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Abstract 

Traditional and much of modern risk assessment and management is old fash-
ioned, unrealistic and trapped in a dogmatic slumber. It generates its own risks, 
evoked by an improper notion of risk which lacks a systemic viewpoint. A cul-
ture dominates theory (economics and finance) and practice (financial institu-
tions) where risk modeling is no longer a functional tool but has become an end 
in itself. It is high time to put an end to the cult of conventional probabilistic risk 
modeling which is not able to cope with the kind of low-probability, high-impact 
events that characterize systemic risk, in particular.  
 In this dissertation, our aim is threefold. Our first result is a negative one: 
We argue – from a complexity and systems science perspective – that modern 
financial systems are dynamically and organizationally complex which requires 
explanatory models for an effective and successful approach to the management 
of systemic risks. Yet, risk evaluations based on statistical calculations are not 
sufficiently explanatory. Even worse for the mainstream, this study undermines 
the citadel of risk assessment and management, arguing that probability theory is 
not an adequate foundation for modeling systemic and extreme risk (in a banking 
context). 
 Secondly, we present a kind of risk model on the constructive side which is 
novel on two accounts. Firstly, in contrast to standard risk modeling approaches 
used by banks, our proposal focuses on the knowledge dimension (banks’ assets 
and liabilities are known) rather than the speculation dimension (unknown min-
imum or expected losses). Furthermore, in contrast to risk models aimed at regu-
lators who analyze systemic risk in order to preserve financial stability, our ob-
jective is not to model the financial system and its changes, but market 
participants’ own positions and their propensity to react to outside changes. Our 
plea for symbolic and logic-based risk modeling is illustrated with the example 
of a certain credit crisis (Long-Term Capital Management) which we regard as a 
systemic risk event in terms of its high rareness and its serious or extreme conse-

 



xii Abstract 

quences. In this context, our approach is based on the following key ideas: We 
formally represent extreme and systemic risks that financial institutions are ex-
posed to by measuring risks of their financial products and instruments (deriva-
tives such as options, swaps, futures, etc.) which we describe in a programming 
language for financial contracts. This vocabulary is based on a small set of 
primitive or atomic contracts that are expressive enough to reconstruct many of 
them through composition. Programs in this language are then interpreted as 
uncertain sequences of transactions, which can be grounded in a number of dif-
ferent formal models of uncertainty. While domain-specific languages have been 
well-researched within functional programming, as have uncertainty models 
within formal epistemology, the potential of a combination of the two for a novel 
approach to risk management has not been realized so far. Our work seeks to 
close this important gap and to expand the toolset for assessing extreme and 
systemic financial risks effectively. 
 The thesis is thirdly closed by a synthetical reflection on methods by elabo-
rating on the meaning of decision-making competency in a risk management 
context in banking. By choosing this poly-dimensional approach, its purpose is, 
finally, to not only systematically explore shortcomings of financial institutions’ 
risk management approaches, but also to point out how they might be overcome. 
In the end, this thesis intends to contribute to the development of a more stable 
and humane financial economy by means of a truly effective or an effectively 
effective, rather than an efficiency-seeking but eventually ineffective, risk man-
agement approach for banks. 
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Zusammenfassung 

Traditionelle und ein Grossteil moderner Risikobewertungs- und -management-
ansätze sind altmodisch, unrealistisch und auf einen dogmatischen Schlummer 
ihrer Urheber zurückzuführen. Klassische Risikomessungsinstrumente bergen 
ihre eigenen Risiken, die von einer unzureichenden, weil nicht-systemischen 
Konzeptionalisierung von Risiko herrühren. Eine Kultur, wo Risikomodellierung 
nicht länger zweckmässig ist, sondern sich zu einem Selbstzweck entwickelt hat, 
dominiert Theorie (Economics and Finance) wie Praxis (Finanzinstitute). Es 
gebietet sich deshalb, dem Kult der konventionellen probabilistischen Risikomo-
dellierung ein Ende zu setzen, da sie insbesondere nicht in der Lage ist, (sehr) 
geringe Wahrscheinlichkeiten und Extremverluste, die wiederum systemische 
Risiken im Finanzsektor charakterisieren, akkurat zu erfassen. 
 Das Anliegen dieser Dissertation ist ein dreifaches. Unser erstes negatives 
Forschungsergebnis lautet, dass klassische Risikobewertungen, die auf statisti-
schen Berechnungen basieren, nicht ausreichend erklärend (sondern primär de-
skriptiv) sind, wohingegen dynamische und organisierte Komplexität, die auf 
moderne Finanzsysteme und Risikomanagement in diesem Zusammenhang zu-
trifft, erklärende (Risiko-)Modelle erfordert. In einem fundamentalen Sinne übt 
diese Arbeit ferner die begriffliche Kritik am Zeitgeist, dass die Kolmogorovsche 
(Pascalsche) Wahrscheinlichkeitstheorie für die Modellierung von systemischen 
und extremen Risiken (im Bankenkontext) keine adäquate Grundlage stiftet. 
 Zum anderen entwerfen wir eine neuartige Risikomodellierungsweise auf 
der konstruktiven Seite, die erstens im Gegensatz zu den Standardansätzen von 
Banken das betont, was uns Modellierern bekannt ist (etwa Aktiva und Passiva 
der Banken) und nicht kaum begründeter Spekulation frönt (etwa durch die Be-
rechnung von minimalen oder erwarteten Verlusten). Zweitens in Abgrenzung zu 
etablierten Systemrisikomodellen, womit Regulatoren auf die Bewahrung der 
Finanzstabilität zielen, geht es uns nicht um die dynamische Beschreibung des 
Finanzsystems per se, sondern um die Modellierung der Positionen (im Portfo-
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lio) der Marktteilnehmer sowie ihre Propensität auf Systemveränderungen zu 
reagieren. Unser Plädoyer für symbolische und logikbasierte Risikomodellierung 
wird am Beispiel der Kreditkrise von Long-Term Capital Management illustriert. 
Wir bauen dabei auf die folgenden drei Grundideen: Zunächst operationalisieren 
wir die Messung von Extrem- und Systemrisiken für Finanzinstitute, indem wir 
Risiken ihrer Finanzprodukte und -instrumente (Derivate wie Optionen, Swaps, 
Futures, etc.) fokussieren, und diese mithilfe einer Zerlegung in atomare Finanz-
kontrakte in einer Programmiersprache abbilden. Programme in dieser Sprache 
werden dann als sogenannte unsichere Sequenzen von Transaktionen interpre-
tiert, die in einer Reihe von verschiedenen formalen Modellen zur Repräsenta-
tion von Ungewissheit gründen können. Während domänenspezifische Sprachen 
Forschungsgegenstand der Funktionalen Programmierung bilden, und Modelle 
zur Messung von Ungewissheit im Rahmen der formalen Epistemologie er-
forscht werden, wurde das Potenzial, das aus ihrer Kombination resultiert, noch 
nicht geborgen respektive für quantitatives Risikomanagement fruchtbar ge-
macht. Die vorliegende Dissertation ist bemüht, diese eklatante Lücke zu 
schliessen und das Toolset für die effektive Evaluierung von extremen und sys-
temischen finanziellen Risiken zu erweitern. 
 Eine Methodenreflexion sowie eine synthetische Betrachtung von Risiko-
messung im grösseren Gefüge von Risikomanagement schliesst die Arbeit im 
vierten Teil ab. Unter diesem Titel erörtern wir die Frage nach der Bedeutung 
von Entscheidungskompetenz in einem Risikomanagementkontext. Am Ende des 
Tages hoffen wir durch die Skizzierung eines effektiv effektiven, anstatt eines 
nach Effizienz trachtendem, aber schlussendlich unwirksamen Risikomanage-
mentvorschlags für Banken einen Beitrag zur nachhaltigen Entwicklung einer 
stabileren und humanen Finanzwirtschaft erbracht zu haben. 
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Introduction  

For it is your business, when the wall next door catches fire. 
(Horace 65–8 BC, Epistles) 

Ignorance is preferable to error 
And he is less remote from the truth who believes nothing 

Than he who believes what is wrong. 
(Thomas Jefferson, 1781) 

It is soberly true that science has, to date, 
succeeded in solving a bewildering number of relatively easy problems, 

whereas the hard problems, and the ones  
which perhaps promise most for man's future, lie ahead.  

(Warren Weaver, 1948) 

Le serment d'Hippocrate demande au médecin de ne pas causer de tort.  
En finance, je pense que les modèles conventionnels 

et leurs «corrections» les plus récentes violent ce serment. […] 
Dans un monde toujours plus complexe, les scientifiques ont besoin  

des deux outils: des images aussi bien que des nombres […]. 
(Benoît Mandelbrot, 2005) 

The recent global financial crisis of 2007-091 had many intertwined and mutual-
ly reinforcing causes (Detken & Nymand-Andersen, 2013: 749). The Financial 
Crisis Inquiry Commission (FCIC) identified “dramatic failures of corporate 

1  “It is generally agreed that the subprime-originated US financial crisis started in 2007, but 
debates are still active about when it ended – or will end” (Choi & Douady, 2013: 454). We as-
sume here that the crisis ended sometime in 2009, “but its impact lingered long enough to look 
as if the crisis had still continued” (ibid.). 

 A financial crisis is said to be an event, for example, in which a panic (or fear of panic) affects 
the functioning of the financial system (Geithner & Metrick, 2015). Financial markets fail to 
function; it is supposed that serious changes in the value of financial institutions’ assets occur, 
that “liquidity dries up” because of a “loss of confidence”, to the extent that the sustainability 
of the financial system is in danger. Technically, a financial crisis is different from and more 
fatal than a market crash or a banking crisis. Cf. also Gorton & Metrick, 2009; Abberger & 
Nierhaus, 2008; Bernanke & James, 1991: Table 7; Kindleberger, 1978. Other ways of under-
standing exist.  

 In successive sections, we do not always pay careful attention to the differences between 
collapses, crises, crashes, shocks, turmoils, panics, etc. 
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2 Introduction 

governance and risk management at many systemically important firms” as one 
of the key causes of the crisis (FCIC, 2011: xviii; cf. also Sullivan, 2009). Among 
others, the crisis has demonstrated the need to rethink the conceptual approach to 
risk, risk assessment and management.2  
 To put it radically, our enduring obsession with outdated concepts, in both 
academia and the economic practice, is partly culpable for the disaster. Financial 
risk management has been, and still is, in a state of confusion. For decades, 
banks’ risk management experts have employed analytical instruments, designed 
in the ‘ivory tower’of Economics and Finance, such as statistical risk measures 
(e.g., Value at Risk) and qualitative risk analysis tools (e.g., stress testing) for 
dealing with risk and uncertainty.3 For instance, as declared by some banks 
themselves (e.g., UBS, 2008; Swiss Federal Banking Commission, 2008), risk 
management and risk control practice, on the one hand, has put excessive confi-
dence in received quantitative methods of analysis, stress tests and estimates of 
value at risk using statistical models. On the other hand, according to Hellwig 
(2008: 52) and others (cf. also Duffie, 2007; Stulz, 2009; Daníelsson et al., 
2001), the reliability of a quantitative risk model is very limited. Admittedly, 
statistical instruments and inference have also been used in other contexts, i.e., in 
other business units (e.g., Stulz, 1996: 16) or industries and, undeniably, with 
often high success rates – e.g., insurance companies base their entire business 
model successfully on the ground of statistics, diagnosis and prognosis (see also 
Chapter 6.1.2.). Therefore, the current study is positioned, not in the context of 
‘regular’ market swings nor the insurance industry, but in the context of (the 
assessment of) extreme, tail and systemic risks in modern financial systems 
(banking in particular) while we are inclined to not exclude that it might also add 
to a broader discussion (see Chapter 22). There are several more reasons, apart 
from the lessons drawn from the recent global financial crisis, for examining risk 
concepts, risk assessment and management approaches in the financial sector; 
among them are the following:   

2  Note, however, that risk management failures such as the demise of Lehman Brothers can also 
have other sufficient causes, which are rather practical than theoretical or conceptual (Wiggins 
& Metrick, 2014; see below). 

3  “Risk” and “uncertainty” are sometimes used synonymously (Gronemeyer, 2014: 86). It is a 
central objective of this dissertation to establish clarity on the relevant concepts in the realm of 
(financial) risk management (such as “risk” and “uncertainty”). See Chapter 4. 
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Introduction 3 

1) A paradigm from a complexity/systems lens: Modern financial systems 
are more interconnected and complex than many other economic sys-
tems (Bookstaber et al., 2015: 152; see Chapter 6.3.). 

2) Global importance: The financial industry, in general, has a fundamen-
tal and essential function within the economy; namely, primarily, of 
channeling funds from those with surplus funds to those with shortages 
of funds (Saunders & Cornett, 2010: 4-10).4 “Banking really is at the 
nexus of the real economy” (Braswell & Mark, 2014: 268; cf. also 
French et al., 2010: 86). 

3) Special status: Whereas in organizations of other industries risk man-
agement usually focuses on the negative – threats and failures rather 
than opportunities and successes (Kaplan & Mikes, 2012: 50) –, risk 
management plays a decisively different, namely a broader and more 
central and sophisticated role in financial institutions: In the financial 
universe, risk and return are two sides of the same coin. Absorbing, re-
packaging and passing on risks to others (with different levels of inten-
sity, to be sure) is the core of their business model (Bessis, 2010: 38).5 
Accordingly, the effective management of risks is central to a financial 
institution’s performance (Saunders & Cornett, 2010: 182). 

4) Expertise: Financial institutions and intermediaries have been regarded 
as the world’s processors of risk par excellence, as leaders in the use of 
risk assessment and management techniques (Pergler & Freeman, 
2008: 13; Mehta et al., 2012). Yet, numerous examples, including the 
fact that these same institutions have also been the worst hit by the fi-
nancial and economic crisis that erupted in 2008, seem to highlight 
shortcomings in their methodologies and presage that too much em-
phasis has been placed on the deceptively precise outputs of statistical 

4  Standard references and textbooks on banking refer to what is called “maturity transformation” 
as a core function that banks perform for the economy (Admati & Hellwig, 2013: 51; Mishkin, 
2007: 223; Gurley & Shaw, 1960). For a critical reply, cf., e.g., Hellwig (1994, 1995, 1998). 

5  Cf. also the following quotes: “In contrast to industrial corporations, the primary function of 
financial institutions is to manage risk to make money“ (Philippe Jorion, Professor of Finance, 
University of California) and “Banking is not about money, banking is about taking risk!” 
(Charles S. Sanford, Jr., Former Chairman Bankers Trust). These quotes are taken from 
Stegemann, 2013: 16. Risk has always been traded in financial markets. “What is new is the 
development of markets that deal only with risk, which have learned to standardize risk enough 
to be able to exchange it and give it a price” (Esposito, 2011: 107). 
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measures and probabilistic models – “the hubris of spurious precision” 
(Rebonato, 2007: xi).6 Financial institutions have not managed to act as 
the specialists in risk measurement/management they are supposed to 
be (Saunders & Cornett, 2010: 18).  

All things considered, attention to risk assessment and management in the finan-
cial industry is thus required now more than ever. But what kind(s) of risk, it 
may fairly be asked, should be looked at and from whose perspective (e.g., 
states, regulators, banks, individuals)? While financial institutions (banks, for 
short) usually classify uncertainties into risk categories, there is, in the wake of 
the global financial crisis that began in 2007, increasing recognition of the need 
to address risk at the systemic level (Bookstaber et al., 2015; Haldane & May, 
2011: 351). Therefore, we look at systemic, and more broadly (see 4.2.), extreme 
risks, but not from bank practitioners’, but from a system theorist's point of view 
and canvass the impact of our findings for primarily the risk management litera-
ture as well as, secondarily, banks (not states or regulators that are also interested 
in, and affected by, systemic risks). In other words, our target audience are risk 
experts and professionals in academia and practice as well as complexity explor-
ers (which subsumes not only scholars) keen to understand and design risk man-
agement systems.  
 In successive chapters, we show why the tenets, on which the citadel of 
modern risk assessment and management rests, are false, offering in their place 
an alternative viewpoint for dealing with the kind of low-probability, high-
impact events (e.g., the crisis which crescendoed in 2008, the collapse of Barings 
Bank or the Asian crisis) that characterize extreme and systemic risk.  
 The overall research hypothesis of this dissertation is the following:  

“Conventional probabilistic risk models used by banks are not effec-
tive for dealing with extreme and systemic risks, while certain non-
probabilistic, structural risk models are suitable tools.”  

Most risk professionals know from experience how inaccurate stochastic risk 
modeling can be. On this point, there is probably a large consensus. Our thesis – 

6  We regard “statistical measures/models” and “probabilistic measures/models” as mutually 
interchangeable in this piece of work, which does not imply that there is no difference between 
probability theories and statistics. But this difference can be neglected if mathematical statistics 
is understood as applied probability theory (Weaver, 1967: 154). See also Chapter 7.2. 
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on which agreement may be less general – is this: Firstly, the problem is far 
more fundamental than you might think and perhaps even insurmountable and, 
therefore, the way to solve this problem is not to look for better probabilistic risk 
models by perfecting techniques. Secondly, the better approach, this author be-
lieves, is to accept barely measurable deep (see Chapter 6.1.4. and Appendix A) 
uncertainty at face value, focus on what drives risks instead, the system and its 
structure, try to understand it, and make it part of our reasoning.  

Effectively Ineffective: How Efficiency Seeking misses the point  

It is an old and hotly debated question concerning financial systems whether or 
not they work efficiently. The Nobel Prize in economics in 2013 was awarded 

jointly to Eugene Fama, who believes in efficient markets (where prices reflect all 

relevant information)7, Robert Shiller, the father of behavioral economics and a 
vehement critic of Fama’s efficient-market hypothesis, and Lars Hansen, who 
developed tests of market efficiency (Pedersen, 2015). Financial systems’ 
effectivity, i.e., their ability to actually perform their intended functions, by con-
trast, receives much less attention and is, rather, taken for granted.8 
 Concomitantly, risk managers9 and modelers in the financial world become 
so absorbed that they tend to forget to pose the right questions; uncircumventable 
if we do not want to be left trapped in our conceptual errors (Bernstein, 1996b: 
336). Research in financial risk management, advancing, for example, from one 
conventional risk measure like Value at Risk to another conventional risk meas-
ure like Expected Shortfall (see 2.2.3.; Acerbi & Tasche, 2001) without challeng-

7  Put differently, “the market price always equals the fundamental value and, as soon as news 
comes out, prices immediately react to fully reflect the new information. If markets are fully 
efficient, there is no point in active investing because the prices already reflect as much infor-
mation as you could hope to collect. But without active investors, who would make the market 
efficient in the first place?” (Pedersen, 2015: 3). 

8  Doubt might be legitimate as “the financial system is self-organized. Individual financial 
entities generally have risk-management procedures and controls to preserve their own stabil-
ity, but the system as a whole was never engineered for safety and stability.” (Bookstaber et al., 
2015: 148). 

9  Given the central significance of risk for banks, it is not trivial to say which persons or job 
titles are included by “risk managers in banks”. Here, a broad meaning of the term is chosen 
because not only the risk experts in the risk management department of a bank, but also traders, 
senior or general managers, managing directors (including, in some firms, a chief risk officer) 
and others need to manage (systemic) risks (Rossi, 2014: 76) – firms typically claim that the 
management of risk is everyone’s task (which is, of course, difficult to achieve in practice). We 
might also personify the bank as a whole and speak of the bank as a risk manager. 
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ing the fundamentals, is in this sense obsessed with aspiration for efficiency. In 
particular, every financial turmoil is a crisis of confidence; confidence on which, 
after all, financial systems are built. Risk managers lose confidence in their mod-
els as ‘extraordinary’ losses are realized in the banking community, the magni-
tude of which defies estimates from most standard risk models (Thiagarajan et 
al., 2015: 113). The market events make risk managers painfully aware of the 
need to measure risks more reliably. Yet, after some “fancier econometric foot-
work” (Lucas, 1976) has been undertaken (i.e., efficiency seeking), the next 
turmoil happens, and the same reaction sets in again. In this sense, orthodox risk 
modeling actually turns out to be ineffective and, thus, it can be called entirely 
ineffective or, synonymously, effectively ineffective10 – with the duplicate attrib-
ute signaling that the effectiveness of risk management is generally not ques-
tioned. Since efficiency presupposes effectivity, efficiency-seeking approaches 
that ultimately prove to be ineffective miss the point. Under the circumstances of 
their application, the cycle of financial turmoil followed by intensified risk mod-
eling ambitions followed by financial turmoil does not seem to stop or to produce 
any relief. To us, this signifies that it is not some performance properties of the 
models, that need to be changed, but the complete models themselves, which facili-
tates true, effective effectiveness. 
 This dissertation is, therefore, purely conceptual, theoretical, and aims at 
contributing to a truly effective approach towards managing extreme and system-
ic risks within modern financial systems. At the end, truly effective risk man-
agement is tantamount to well-informed decision-making where the risks are 
known and understood by the decision-makers (Part IV). It calls for, or is at least 
fostered by, effectively effective risk modeling which subverts the fundamentals 
and expands the realm of known risks (Part III). As Peter Drucker said, the 
greatest danger in times of turbulence is not the turbulence; it is to act with yes-
terday’s patterns of thinking.  
 The interesting aspect in the turbulent environment of our time is less the 
often praised ‘optimization’, ‘efficiency’ (“doing things right”) of a certain un-
questioned approach (Churchman, 1968: chapter 2) – optimization simply en-
genders vulnerability of banks to changes in the environment (Taleb et al., 2009: 
80) –, but the primary determination of (a) robust, reliable and effective (“doing 

10  However, “effectively ineffective” is not synonymous with “ineffectively effective” because 
the latter term just does not make much sense.  
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the right things”)11 path(s) for addressing an issue like evaluating systemic risks 
within dynamically complex financial systems. For most of the great real prob-
lems, where mathematical methods are useful and come into play, they fall far 
short of being able to find the ‘best’ solution (Forrester, 1975: 47). The mislead-
ing objective of trying only for an optimum or efficient solution “often results in 
simplifying the problem until it is devoid of practical interest” (ibid.).12 If then 
the optimum or efficient solution to the problem on the paper is transferred to the 
real-world problem, real damage can occur as the former is relatively simple 
while the latter is complex, which necessitates essentially different mathematical 
treatments (see Chapter 6). 
 Much of finance theory and risk management approaches are predicated on 
the notion that risks in the financial system can be captured precisely in probabil-
ity terms and that “highly probable outcomes occur near the center of a normal 
distribution and tail events are rare” (Thiagarajan et al., 2015: 115). Yet, this 
focus and restriction on more or less well probabilistically quantifiable risks 
comes at a cost: the undervaluation of (at least) extreme risks (Bhansali & Wise, 
2001).13 But instead of simply locating extreme risk management to lie ‘outside 
the efficient frontier’, the quest for an effectively effective risk management 
approach is launched in order to get a better grasp on just how exposed banks’ 
positions are to sudden high-impact, low-probability changes in the environment 
they operate in. It is indeed insights into how sensitive the firms’ financial posi-
tions are “to a wide variety of external circumstances that lie at the heart of ef-
fective management of risk” (Braswell & Mark, 2014: 188). 
 Theoretically speaking, progress in risk assessment and management can be 
achieved by adopting a perspective of complexity and systems science because 

“[e]ffective decision making and learning in a world of growing dynamic com-
plexity [see Chapter 2.1., Appendix A] requires us to become systems thinkers” 
(Sterman, 2000: vii); while on the practical side, the insights gained will caution 

11  Peter Drucker reminds us that effectiveness relates to getting the right things done and that 
effectiveness must be learned (Drucker, 2006). 

12  “The lack of utility does not, however, detract from the elegance of the analysis as an exercise 
in mathematical logic [i.e., a brain-teaser, C.H.]” (ibid.). 

13  That low-probability events, for instance, immediately prior to the recent financial crisis, have 
been and still are actually underweighted (Bhansali, 2014: 161) does not necessarily contradict 
behavioral economics (e.g., Kahneman & Tversky’s prospect theory) which purports that peo-
ple generally tend to overweight the probability of rare events and underweight the probability 
of more common events. 
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professionals and leaders of financial firms against succumbing to the traps of 
optimization and complexity, while improving their managerial effectiveness. 
 Von Bertalanffy (1968/2013: xvii) observes that the systems movement has 
penetrated and epitomizes a novel “paradigm” in scientific thinking (to use 
Thomas Kuhn’s expression)14. Likewise, time has now come to alter the modus 
operandi of risk management itself. To put it in a nutshell, we will draw on the 
thriving paradigm of systems thinking to inject momentum into a Kuhnian para-
digm shift in (the literature on) risk management in banking. Starting from a 
complexity and systems scientific angle, this study attempts to pave the way for 
a scientific revolution in risk management and finance as well as to provide a 
rationale for a shift from mainly efficiency seeking and data-driven to effectivity 
reaching and explanatory risk modeling. From there, the ground of real risk 
modeling (on the object level in contrast to critical and systems thinking on risk 
modeling on a meta level) is entered and a disruptive approach for dealing with 
extreme and systemic risks is both described and discussed (Part III). 

The Purpose of this Thesis, its Scope and an Outline  

Hence, the purpose of this study is, on the one hand, to systematically explore 
and expound the principal shortcomings of banks’ conventional risk management 
approaches and, on the other hand, to provide a proposal for overcoming them by 
presenting an entirely effective approach towards managing extreme and system-
ic risks. First and foremost, the thesis intends to add to theory-building and to the 
literature of critical finance as well as on extreme risk assessment, in particular. 
 Theory building, in principle, “is more than an exercise in academic ab-
stractions, but rather an activity fundamental to the survival of societies, organi-
zations and even individuals” (Schwaninger & Grösser, 2008: 448; cf. also 
Schwaninger & Hamann, 2005). Theory building, as conceived of here and guid-
ed by meticulous observation of and reflection on what is going on in the real 

14  In the sense of Kuhn (1970), “[p]aradigms are self-consistent communities of like-minded 
scientists, sharing a worldview encompassing not only a body of theory and evidence but also 
methods of inquiry, standards of proof, textbook examples, and heroes” (Sterman, 2000: 849). 
“Eventually comes a period when the ruling paradigm cannot solve certain problems, and sci-
entists start questioning the paradigm’s fundamental assumptions. When enough scientists be-
come convinced that it is impossible to solve the anomalies accumulating within the frame-
work of the ruling paradigm, and only if an alternative paradigm is available, then a scientific 
revolution takes place.” (Barlas & Carpenter, 1990: 156). 
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world, consists of generating, complementing and formalizing theory15 in order 
to orientate action. 
 Along these lines, this thesis pursues several specific key objectives: 

• In theoretical terms, it will facilitate the integration of economic (Fi-
nance), and system- / complexity-theoretical variables and constructs 
into the study and analysis of systemic and extreme financial risk and 
risk management in banking. Issues of risk cut across traditional disci-
plinary boundaries. In this light, a systems perspective is adequate to in-
vestigate financial systems (Hoffmann & Grösser, 2014) and to explain 
the inappropriateness of risk models used by banks (Hoffmann, 2016).  

• The main objective in Part I of the dissertation, dealing primarily with 
the model level (i.e., with how a system and its components are repre-
sented), is to define and locate risk and systemic risk, respectively, in 
order to clarify the meaning and extension of these terms.16 In this 
way, we provide a sound starting point for demonstrating, on the one 
hand, the relevance of systemic risk for banks and for disclosing, on 
the other hand, conceptual weaknesses of standard quantitative risk as-
sessment/management approaches in the light of dynamic and orga-
nized complexity which characterizes modern financial systems. In 
other words, if we take complexity in financial systems seriously and 
at face value, we must stop operating with probability distributions, 
which are, after all, central to conventional risk measures or models 
(because the latter are derived from return or loss distributions17, 
which are ultimately derived from random variables). Finally, we will 
gain important insights on the notion of complexity and its connection 
to randomness and risk on the way. 

15  It suffices to conceive of a theory as “a structured, explanatory, abstract and coherent set of 
interconnected statements about a reality” (Schwaninger & Grösser, 2008: 448); or to follow 
Davis et al. (2007: 481) in defining theory as “consisting of constructs linked together by prop-
ositions that have an underlying, coherent logic and related assumptions”. 

16  This clarification is already an important contribution to the relevant literature, see the section 
“Methodology”. 

17  In Chapter 4.1., we state that it makes sense in the context of risk management in banking to 
primarily associate risks with adverse, negative or undesirable events. As a consequence, if 
probability distributions are focused, the focus lies rather on loss distributions (less on return 
distributions). Working directly with the return distribution (not the loss distribution), however, 
is often more convenient (McNeil et al., 2005). 

 

                                                           



10 Introduction 

• Part II, a transition from the model to the decision level, briefly re-
views and evaluates scenario analysis as well as stress testing for main-
ly two reasons: it forms an indispensable stepping stone to pave the 
way for Part III; and given the negative result from Part I, qualitative 
approaches could be considered suitable for filling the yawning gap. 
This point has indeed been made firmly by an emerging and flourish-
ing critical finance society. However, despite the possible inclusion of 
systems thinking in scenario and stress test analysis to some extent, we 
argue that those qualitative risk analysis instruments are rather ren-
dered obsolete too by the problems of induction and complexity, famil-
iar from Part I. Therefore, lessons for rethinking the approach to as-
sessing extreme and systemic risks are derived before a constructive 
counterproposal is presented and discussed. 

• In Part III, we concoct several ideas for an enhanced conceptual ap-
proach towards responding to systemic and extreme risks in the finan-
cial system. In a nutshell, we are measuring risks of banks’ financial 
instruments and transactions, which we describe in a programming 
language for financial contracts. The output in this language is inter-
preted as a set of scenarios of transactions, which can be grounded in a 
number of different formal models of uncertainty. As a first step in this 
direction, our goal is to not only introduce the indispensable theoretical 
underpinnings of such a formalism, but also install a novel type of risk 
measure based chiefly on ranking theory as well as on an algebraic de-
scription of financial products, making no assumptions about the prob-
abilities of external events. This Third Way describes precise models 
of what is known (one’s own assets and liabilities) rather than spuri-
ously precise models of what is not known (the future behavior of the 
financial system). It will be illustrated and tested by the case of the fall 
of the hedge fund Long-Term Capital Management, LTCM. Moreover, 
the new models can be regarded as constituting an exact, explanatory 
scenario planning method from complexity principles. Managerial im-
plications will be drawn. 

• Finally, the main purpose of Part IV is to adopt a critical and global 
perspective on a meta level by further exploring the meaning of effec-
tive risk management with recourse to the results from the previous 
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parts of the study and by taking into account that risk management has 
a decision-guiding purpose and ultimately comes down to making 
good decisions. In line with the novel proposal in Part III, a case for 
well-informed decision-making is made where the risks are known and 
understood by decision-makers. This reflection on methods not only 
concludes and closes the study, but also manifests a synthesis, essential 
for systems thinking (Appendix A), where we envision the focal ob-
ject, risk measurement, as being part of the overall process of risk 
management in banking and beyond.  

Thus, we consider primarily systemic risk and complexity in financial systems, 
risk assessment models and instruments used or usable in banks as units of anal-
ysis. More precisely, the units of analysis of this research project are found in the 
notions of systemic risk and dynamic or organized complexity as well as proba-
bilistic risk modeling in Part I, in scenario and stress test analysis in Part II, and 
in formal logic-based risk modeling in Part III. Part IV, by contrast, has the func-
tion of a concluding paragraph only, which does, therefore, not launch another 
in-depth discussion.  
 Why look at tools at all? Instead of indulging in the credulous belief of 
simply regarding tools and risk management tools, in particular, as a materializa-
tion of (economic) rationality, many management theorists and others have start-
ed to think otherwise18 and call attention to limitations and the functioning of 
tools or compare them to practices, institutions, human actors, etc. 
 

Methodology  

The financial fallout of 2007-09, one of this author’s main drivers for grappling 
with some of the most compelling and complex problems of risk management, 
can be regarded as very special or even unique, a caesura in the history of finan-
cial combustions:19 It is systemic in nature (Bessis, 2010: xi). “The interplay of 
partial crises [and crashes,20 C.H.] (which were indeed known and not new) 

18  Cf., e.g., the entries in the blog “Socializing finance”: https://socfinance.wordpress.com/ 
(25/10/15).  

19  By contrast, Reinhart & Rogoff (2013, 2009) foreground common features of financial fallouts 
throughout many centuries. Despite the regularities they identify from one point of view, the 
gobal crisis of 2007-09 can still be very special from another point of view. 

20  E.g., the bursting of the US-American housing bubble; cf. Gorton & Metrick (2012) and Shiller 
(2005). 
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resulted in emergent properties of the system of global finance which nobody 
had intended or foreseen” (Willke et al., 2013: 23).21 22 The modern financial 
system “is self-organized; it did not develop as a carefully engineered system 
with proper consideration given to the stability and the management of its com-
plex interactions” (Bookstaber et al., 2015: 161). “The financial system had 
changed in ways that nobody fully appreciated” (Krugman, 2009: 152), which 
has demonstrated how traditional ideas are not able to deal with complexity 
(Bar-Yam in Gershenson, 2008: 19). As academics, we have a moral obligation 
and a societal duty to ask ourselves: “What really went wrong?” (Das et al., 
2013: 701). 
 This study suggests that a systems- and complexity-oriented framework is a 
useful paradigm for this challenge when the question is narrowed to theoretical 
issues of risk management failures – the topic of this thesis. Our intention is, 
however, neither to apply a specific systems theory to risks and risk management 

nor a recourse to concepts of complexity which is fraught with obstacles (Chapter 

6). Rather, we perpetuate systems thinking (Appendix A) and principles to enrich 
notions of risk (which lack a systemic viewpoint), to comprehend and evaluate 
risk management instruments according to finance or in banking (from a systems 

theoretical lens), and to propose a precise, structure-oriented modeling approach 
(derived from complexity or systems principles). Especially in terms of systemic 
risks, it should be clear that “[w]ithout at least […] some acquaintance with 
systems theory, it appears to be very improbable that the term systemic risk can 
be constructed and used except in a merely metaphorical way” (Willke et al., 
2013: 18f.). “Systemic risk is a classic complex systems problem” (Thurner, 
2012: 24; see Chapter 5.1.). As Willke et al. (2013: 19) underscore, the point of 
immersing in the subject of systemic risk is not that the system (whatever it may 

be) might crash or that it is in danger of collapsing due to an external shock. 
Systems thinking rather teaches that the orthodox way of thinking and acting, 

21  Warning signs of the crisis were, for example, perceived by Shiller (2005) who warned of an 
asset bubble in the U.S. housing market or Rajan (2006) who presented research showing that 
recent financial innovations had increased risk in the banking sector. 

22  There is bewildering dissent on the precise meaning of “emergence”. Consider, e.g., the fol-
lowing definition: “Emergence occurs when a complex system exhibits properties that can’t be 
predicted by considering its subcompo-nents in isolation” (Nitschke, 2009). An unpleasant 
consequence then would be that “calling a property 'emergent' is uncomfortably close to saying 
'I wasn't clever enough to predict it', or worse” (ibid.) as predictability is subjective. 
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manifested in probability-based risk modeling and contributing to the regular 
operational mode of the system, as it is, can lead to the self-destruction of that 
system. This clarification of “systemic” has major implications for not only un-
derstanding a term (the level of language), but especially for revolutionizing risk 
modeling practice. 
 On the methodological side, most previous studies on systemic risk in fi-
nancial systems have focused on the stability of systems as wholes (Cont et al., 

2013: 330), either in stylized equilibrium settings (Allen & Gale, 2000; Freixas et 
al., 2000; Battiston et al., 2012) or in simulation studies of default cascades (Up-
per & Worms, 2004; Mistrulli, 2011; Nier et al., 2007). Yet, the subject of sys-
temic risk in financial systems and its management in banking is still in its infan-
cy if it is located in the realm of systems theories and complexity. This thesis’ 

contributions to this subject are packaged in a range of propositions, which epit-
omize the central research results of this study. Overall, we develop specific 
propositions or theses which we are able to derive from our argumentation. 
While mathematics views propositions technically as theorems,23 “proposition” 
is used here more loosely and informally, more in the sense of management 
research, where it can be broadly paraphrased as “a declarative sentence express-
ing a relationship” (Van de Ven, 2007: 117). Furthermore, this study remains 
silent on empirical work to test our propositions or corresponding hypotheses. We 
differentiate between fully fledged propositions and less developed, under-
determined conjectures. Our research statements are falsifiable and do not neces-
sitate verification which is impossible in our realm (Chapter 19). They stand for 
themselves as a contribution to theory-building, extension as well as refinement 
and are available at one glance in Appendix B. 
 Both deduction and induction are components of the research process here, 
but deductive reasoning does take center stage. For example, the Central Argu-
ment of Part I in Chapter 7 is demonstrably complete. Or with regard to the in-
troduction of our novel risk modeling approach in Part III, we first proceed de-
ductively by postulating a number of formal laws and requirements before we 
concoct a mathematical model, which obeys the postulates. After the theoretical 
validation in the form of propositions, theorems etc. we draw on a case study 

23  Strictly speaking, the terms are not completely synonymous (e.g., when “proposition” is re-
served for theorems of no particular importance). 

 

                                                           



14 Introduction 

(LTCM) to show how our risk model can be applied specifically to a portfolio of 
financial products and how it is to be validated in this more practical context. 
 The nature of this dissertation is descriptive (e.g., what are the tools of risk 
management in banking), mainly explorative (e.g., in what sense and why are 
risk management tools not appropriate), but also prescriptive (e.g., how risks 
should be managed) and analytic (in terms of concepts and conceptual relation-
ships). In contrast to empirical research (quantitative, qualitative, multi-
paradigmatic), purely conceptual work is central for this research project (cf. 
Corley & Gioia, 2011). A primarily empirical approach towards the research 
topic is repudiated for at least six reasons: 

1) Scholars are generally aligned around the idea that there is a major 
need for theory-building in management research24 and beyond 
(Zikmund et al., 2013; Whetten, 1989; Dubin, 1978). A key strength of 
theory-building or conceptual approaches is that they are well suited 
“to challenge and extend existing knowledge” (Whetten, 1989: 491), 
and that logical reasoning predominates (rigor), enabling theorists to 
convince others that their propositions make sense. 

More specifically: 

2) This kind of reflective thinking or reasoning, in which one step leads in 
an orderly way to the next step, the whole consecutive process con-
verging finally to a conclusion, reaches a particularly refined level of 
mathematics, serving in one form (probability theory, Part I) or another 
(non-classical logics, Part III) as a breeding ground for establishing 
risk models. Hence, conceptual work is absolutely essential for this dis-
sertation when it is committed to making a contribution to formal risk 
modeling. 

3) As we will see in successive chapters, it makes much sense (relevance) 
and it has been omitted by past studies (innovativeness) to shed light 
on banks’ analytical risk management instruments by simultaneously 
adopting different theoretical perspectives (from systems and computer 
science, the philosophy of science). A valuable contribution to scien-

24  This thesis can be regarded as being embedded in the broad field of Management because 
managing and uncertainty [and, thus, risk and complexity; C.H.] are two sides of the same coin 
(Smith & Tombs, 2000: 7). 
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tific communities is reached by critically integrating results, insights, 
ideas from different streams of research which, by definition, charac-
terizes conceptual work.  

4) It would be beyond the scope of one single dissertation to conduct con-
ceptual and empirical work to address the research questions presented 
below (Chapter 3 and 14).   

5) A more substantial contribution can be made by means of theoretical 
research. On the one hand, many empirical studies do not bear fruits, 
they utilize maladaptive methods, and have a relatively limited impact 
on future research (The Economist, 2014; Taleb, 2012; Gibbert & 
Ruigrok, 2010; Gibbert et al., 2008; Gary et al., 2008). On the other 
hand, to establish clarity on relevant concepts (in the realm of financial 
risk management, for example) is already an important contribution to 
the pertinent literature since a problem cannot be solved if it cannot be 
defined – or, at least, it cannot be solved sustainably– “because confu-
sion over the nature of the problem can obscure attempts to provide so-
lutions” (Schwarcz, 2008: 197; cf. also Heinemann, 2014: 172). 

6) To plausibilize the relevance of our work for practitioners as well 
(managerial implications), some secondary data is taken into account.  
Secondary sources include corporate reports like (UBS, 2008), reports 
by governmental bodies or investigation committees like the FCIC, 
empirical studies, and other specific material, e.g., McKinsey’s work-
ing papers on risk.25 

Given the complexity and large scope of the topic, slightly different methods will 
be needed for the realization of the research activities. In the following list (Ta-
ble 1), a number of methods and rules are suggested and linked to the different 
parts of the thesis. 

25  The rigor-relevance debate is a recurring theme in discussions concerning gaps between re-
search and practice, which often turns into simplistic either/or arguments (Gulati, 2007; 
Lorsch, 2009). We believe that the notion of rigor versus relevance needs to be replaced with 
recognition that achieving direct relevance for the economic practice is dependent upon rigor-
ous thought and action in the face of, and at the same time focused upon addressing, the com-
plexity of practitioners’ situations and perceptions. 
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Table 1:  Methods and rules to realize the research objectives. 

Part of the thesis Method 

Part I: Concepts, Model Level and 
Risk Assessment – The Risk of 
Ineffective Risk Management I: 
Limitations of Quantitative Risk 
Models in Banks 

- Literature review  
- Logical reasoning: explication and analysis of concepts, 

characteristics of / relationships between concepts, con-
cept extensions, deriving (also normative) conclusions 

- Causal loop diagrams (CLDs) 
- Single case study analysis (for illustration purposes only) 
- Knowledge integration and progress through critical 

discourse with scholars 
- Systematic, theoretical analysis of, and reflection on, the 

(quantitative) methods applied to risk management in 
banks 

Part II: The Transition to the Deci-
sion Level, Risk Assessment and 
Management – The Risk of Ineffec-
tive Risk Management II: Overcom-
ing Limitations of the Qualitative 
Risk Analysis Approach in favor of 
Logic-Based Risk Modeling 
 

- Literature review 
- Comparative analysis 
- Evaluation 
- Logical reasoning 
- Systematic, theoretical analysis of, and reflection on, the 

(qualitative) methods applied to risk management in 
banks 

Part III: In Search of a New Para-
digm: The Third Way as a Road to 
Logic-Based Risk Modeling      

- Logical and mathematical reasoning: axiomatization, 
derivation of theorems, developing a semantics of a for-
mal language 

- Model interpretation 
- Knowledge integration 
- Risk analysis (model the risk of complex financial in-

struments as a combination of the risk of their 
underlyings) and risk synthesis (model the function of 
basal models in more encompassing risk models) 

- Single case study analysis (for illustration) 
- Model validation 

Part IV: Meta level: Thinking about 
Thinking and Practices – What it 
Means to Reach Effective Risk 
Management Decisions 

- Synthesis: Focus on the whole (risk management), not the 
part (risk measurement), and outlining the role or function 
of risk assessment in a larger context 

- “The art of reflection”  

Outlook and Limitations 

Together, the following chapters seek to show why, in what way extant risk man-
agement tools are not an adequate approach to deal with systemic and extreme 
risks (1-12) and how to manage them effectively and competently (13-22). Indi-
vidually, the four parts are situated on different levels of analysis with relevance 
both to the dissertation's overall alignment and to related, yet distinct bodies of 
literature. 
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 Given the ambitious and courageous goals set in this study, it is clear that its 
four parts (especially Part III) to some extent merely set out a program and delin-
eate an agenda for future theoretical and empirical research. In other words, not 
all of the research questions stated in Chapter 3 and 14 can be answered compre-
hensively (see Chapter 22). But most importantly, a crucial challenge for this 
research endeavor is to find a good trade-off between highlighting the conceptual 
diversity of the topic and placing importance on adopting an integrative view-
point, on the one hand, and strengthening the argumentation by providing a lucid 
understanding of the central concepts and by explaining in detail how the theo-
retical perspectives (of finance, critical finance, and complexity) can enrich both 
the concept of risk and risk management approaches in the financial industry, on 
the other hand. Therefore, in order to promote the feasibility of the project, we 
are explicitly reluctant to look at the following questions and aspects:26 

• Since this study’s focus is on risk management tools, it could, in prin-
ciple, contribute to both theory (economics & finance), where they are
developed, studied, validated, and practice (banking and real-world fi-
nancial systems), where they are applied as decision support. However,
even though some managerial implications will be presented, emphasis
is predominantly placed on theoretical contributions for several rea-
sons. For example, a practical issue: if it was planned to conduct em-
pirical analyses to investigate the inappropriateness of risk manage-
ment methods used by actual banks, field access would be a decisive
success factor. Yet, it is very doubtful whether sufficient and suffi-
ciently reliable data could be collected due to its confidential nature.
On top of that, a theoretical and strategic thought: There is a myriad of
sufficient causes for risk management failures in practice (which do
not even require extreme events of happening) and the selection of a
conceptual critique of probabilistic risk modeling, which leads to inef-
fective risk management, might not seem to be the most pressing prob-
lem for practitioners (Wiggins & Metrick, 2014; see also Chapter 17);
whereas the consequences for academia are devastating: the critique
demonstrates that the house of modern risk measurement research is

26  This list of questions that are excluded from analysis might be subject to changes (i.e., exten-
sions or cutbacks) in the future (see Chapter 22). 
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not in danger of collapsing but has never been well-established since it 
lacks a theoretical foundation for extreme events. Yet, to stress the dual 
importance of our research we also speak of “risk management tools 
used by banks” – which is really uncontroversial (Wiggins & Metrick, 
2014; Saunders & Cornett, 2010; Bessis, 2010; Pergler & Freeman, 
2008; Stulz, 2002). 

• The global financial crisis was a sharp reminder of the overriding im-
portance of monitoring and tackling risks across the financial system as 
a whole (Brose & Flood, 2014: 6) and of the fact that systemic finan-
cial risk management is a critical task (Bookstaber et al., 2015: 148). 
However, we do not aim to provide a systematic analysis of the global 
financial crisis and its causes. The reference to it in the Introduction 
serves as one piece of motivation (among others) for studying extreme 
or systemic financial risks and techniques for their measurement, re-
spectively. Surely, not only that risk management failures trace back to 
other roots than ineffective risk assessment (which we aspire to over-
come here), but also many phenomena not related to risk management 
would deserve appreciation if we looked at the global financial crisis 
more closely: the shareholder value principle (Mayer, 2013: 37f.), lev-
erage effects, political interests, (universal) banks’ business models, 
etc. 

• Theoretical approaches to decision-making under risk or uncertainty 
(Luce & Raiffa, 1957), including Bayesian epistemology or decision 
theory (Talbott, 2008), are not considered;27 nor their strengths and 
weaknesses or the possible links to risk management. 

• Risk management is not contextualized in financial mathematics, con-
crete asset or options pricing theories, etc. either; risk manage-
ment/measurement (in the financial world) is investigated in itself. 

• How can/should the term “dynamic complexity” be measured and op-
erationalized?28 

27  For example, in the “risk” case: Expected Utility Theory, Prospect Theory, etc.; in the (com-
pletely) “uncertain” case, many strategies have been proposed, including the Minimax strategy 
(von Neumann & Morgenstern, 1944; Wald, 1950), Savage’s “Minimax of Regret” or “Horo-
witz’s alpha”. 

28  That this question is of subordinate value follows from Proposition 3 in Chapter 6. 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


Introduction 19 

• What is the exact scope of a logic-based risk modeling approach? How 
does it work in practice? How should one interpret “probability” in the 
light of the plea for ‘qualitative probabilities’ which is offered?29 

• Explanatory risk modeling in the guise of network analysis and agent 
based models is not discussed due to several reasons (see 2.3. and 2.4.). 

• Neither the potential applicability of our ideas and research outputs to 
regulatory risk management contexts is examined, as opposed to 
banks’ internal or in-house risk management purposes (to the extent 
that managerial implications are drawn); nor are the successive propo-
sitions going to be tested empirically (see also Chapter 22). 

• Etc. 

The task ahead is to review and evaluate quantitative risk assessment and man-
agement approaches in banking. 
 

29  Details on this innovative risk modeling approach are expounded elsewhere; cf. Hoffmann & 
Müller, 2017; Müller & Hoffmann 2017a,b. 
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1. Introduction to Part I 

Statistical thinking will one day be as necessary   
for efficient citizenship as the ability to read and write.  

(Herbert G. Wells, 1951) 

Conventional quantitative risk management, characterized by probability-based 
risk assessment and designed for monitoring and addressing those risks in a way 
that ensures the firm bears only the risks its management and board want expo-
sure to (Stulz, 2008: 58f.), produces its own risks, generated through an inade-
quate notion of risk which lacks a proper systemic viewpoint. A culture has 
emerged in theory (economics and finance) and practice (financial institutions) in 
which risk modeling is no longer a functional tool but has become an end in 
itself. In particular, a trend towards addressing risk in its extreme form (e.g., 
Taleb’s black swans) by statistical extreme value methods (e.g., McKelvey, 
2013: Vol. 5; Bernard et al., 2013; Das et al., 2013; Johansen & Sornette, 2010; 
Allen & Gale, 2009; Malevergne & Sornette, 2006) can be observed in the af-
termath of the financial crisis which crescendoed in 2008 since failure to manage 
these risks has been witnessed to be extremely costly for the players 
(Thiagarajan et al., 2015: 113) and for society as a whole (Poledna & Thurner, 
2016). Indeed, there are very few trends in the financial world that have prolifer-
ated as much as extreme risk management following the global financial crisis 
(Thiagarajan et al., 2015: 113). Yet, “in the face of crisis and criticism, propo-
nents of ‘counting’ do not abandon their measurement efforts but, rather, intensi-
fy them” (Mikes, 2011: 227; cf. also Power, 2004a). 
 However, it is high time to acknowledge the quite reasonable ineffective-
ness of stochastic methods for dealing with the kind of low-probability, high-
impact events that characterize systemic and extreme risk. In this part of the 
dissertation, we show – from a complexity and systems science perspective – 
that theoretical quantitative risk assessment and management approaches, which 
are also used in practice (Mehta et al., 2012), suffer from conceptual weaknesses. 
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We argue that these caveats are not just minor issues that could be remedied with 
better models or distributions, but that they form part of a fundamental problem, 
namely that probabilistic reasoning is not an adequate foundation for modeling 
systemic or extreme risk in a banking context.  
 After consolidating the relevant literature where some foundational concepts 
of quantitative risk modeling are restated (Chapter 2) and developing guiding 
research questions (Chapter 3), we begin by briefly presenting and discussing 
notions of risk and systemic risk in the realm of banking (Chapter 4). We then 
argue and emphasize that (private) banks (and not only regulators) should take 
account of, and try to deal with, systemic risks in the sense which will be es-
poused in this survey. Moreover, we provide concrete systemic risk scenarios for 
banks by shedding light on the illustrative case of the rise and fall of Long-Term 
Capital Management (LTCM) (Chapter 5). Thirdly, in Chapter 6, we propose a 
specification and characterization of complexity by drawing on the concept of 
organized complexity which was coined by Weaver (1948). This step appears 
promising because he stipulated that phenomena of organized situations escape 
statistical or probabilistic approaches. On this basis, we attempt to show that the 
assessment of extreme and systemic risks can be classified as a case of organized 
complexity. Yet, this endeavor turns out to be doomed to failure since the 
(Weaverian) notion of (organized) complexity seems to elude a conceptual anal-
ysis and, therefore, remains somehow obfuscatory. A separate argument for 
deriving the ineffectiveness of conventional risk modeling is required and, in-
deed, propounded in Chapter 7. Before Part I is closed by detailing lessons 
learned and a path of inquiry for the remainder (Chapter 8), this Central Argu-
ment constitutes a good (and sufficient) reason for declining probability statistics 
for the modeling of extreme and systemic risks and goes far beyond of what the 
current state of research considers as obstacles to effective extreme and systemic 

risk management. Ultimately, statistical thinking is not only about efficient citi-
zenship, but good statistical thinking also includes raising awareness for its limi-
tations, and it deals with effectiveness in the first place.  
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2. Literature Synthesis, Theoretical Background and 
Research Focus 

Another treatise on systemic risk is a risky venture for any author. There are 
simply so many of them. However, despite the amount of research undertaken in 
the area of systemic risk in the financial sector (e.g., Battiston et al., 2012; Billio 
et al., 2012; Blyth, 2010; Sornette, 2009; Gorton & Metrick, 2009; Huang et al., 
2009a; Hellwig, 2008; Schwarcz, 2008; Taleb, 2007a; etc.), a holistic and, espe-
cially, a complexity/systems theories driven and logic-based perspective can be 
very fruitful for contributing to how to be better equipped for assessing and man-
aging systemic risks more effectively in the future (Klimek et al., 2015; Thurner 
et al., 2010); a critical perspective on systemic and extreme risks in financial 
systems and quantitative risk models that lie within banks’ scope. To start with, 
it ought to be acknowledged that systems theoretic notions are beginning to pro-
vide new insights on risk and resilience of banks (e.g., Battiston et al., 2016; 
Bonabeau, 2007: 64)30. Therefore, we immerse ourselves in reviewing notions of 
system, financial systems and complexity before the spotlight is turned to risk, 
systemic risk and risk modeling in the financial sector. 

2.1. Complexity and Modern Financial Systems 

There are many definitions of the fundamental term “system” (cf. e.g. Stacey, 
2010: 122f. for an overview). Schwaninger (2011: 753) gives two examples: “A 
portion of the world sufficiently well-defined to be the subject of study; some-
thing characterized by a structure, for example, a social system (Anatol Rapoport). 
A system is a family of relationships between its members acting as a whole (In-

30  For example, Bonabeau (2007: 64) stresses that it is the context of complex systems where 
systemic risks arise. Literature has not yet sufficiently examined this relationship between 
complexity and systemic risks. Thus, it is picked up in this dissertation (Chapter 6). 

 

                                                           

© Springer Fachmedien Wiesbaden GmbH 2017
C. H. Hoffmann, Assessing Risk Assessment,
https://doi.org/10.1007/978-3-658-20032-9_3



26 Part I: Concepts, Model Level and Risk Assessment 

ternational Society for the Systems Sciences).”31 What is crucial to know about 
the concept of system is that it is a formal concept, which designates the form of 
many, in practice very different objects and phenomena. In particular, it applies 
not only to ‘classical objects’ (financial system vs. ecosystem vs. a car as a system,
etc.), but also many other different things such as problems are termed systems 
(Gomez & Probst, 1997: 14f.; Ulrich & Probst, 1990: 109; Beer, 1959: 24 and see 
Weaver, 1948 in Chapter 6).32 The demarcation between a system and its envi-
ronment is highlighted by specifying a boundary of the system (Klir, 1991: 10f., 
30).33 The following Figure 1, adapted from Schwaninger (2005: 31), depicts the 
system as a whole with elements, subsystems, relationships and environment. 
 Banks are systems and they are embedded in (larger) financial systems (see 
also 6.3.). According to Cecchetti (2008: 2), a financial system is constituted of 
five parts, each of which plays a fundamental role in a country’s economy. Those 
parts are money, financial instruments, financial markets (comprising credit, capi-
tal, and money markets), financial institutions, and central banks.34 Gurusamy 
(2008: 3) defines a financial system similarly as a set of “interconnected financial 
institutions, markets, instruments, services, practices, and transactions”; cf. also 
Schinasi (2004: 6) and the simple toy models of the financial and real economy 
in Thurner & Poledna (2013: 2) and Rossi (2011: 70). Notwithstanding these and  

31  It can be left open whether systems exist in the real world (Flood & Carson, 1993: 250). There 
exist several definitions of systems science. For example, Klir (1991: 6) defines it as “a science 
whose domain of inquiry consists of those properties of systems and associated problems that 
emanate from the general notion of systemhood”. For more details, see Chapter 6. 

32  “We have also come to realize that no problem ever exists in complete isolation. Every prob-
lem interacts with other problems and is therefore part of a set of interrelated problems, a sys-
tem of problems.” (Ackoff, 1974: 21). 

33  This distinction is absolute in the theoretical construct of a closed system, i.e. where no rela-
tionships are found or made between elements of a system and things external to it (Flood & 
Carson, 1993: 8). Conversely, an open system exchanges material, information, and/or energy 
with its environment across a boundary (ibid.). 

34  Simply put, money functions as a medium of exchange; a unit of account; a store of value; and, 
perhaps, a standard of deferred payment. Financial instruments are used to transfer resources 
from savers to investors and to transfer risk to those “who are best equipped to bear it” 
(Cecchetti, 2008: 2). Stocks, mortgages, and insurance policies are examples of financial in-
struments. The third part of a financial system, financial markets, allows participants to buy 
and sell financial instruments quickly and cheaply (ibid.). The New York Stock Exchange 
(NYSE) is an example of a financial market. Fourth, financial institutions (or banks, for short) 
provide a myriad of services, including access to the financial markets and collection of infor-
mation about prospective borrowers to ensure that they are creditworthy etc. (ibid.). Finally, 
central banks like the ECB or the Fed manage a state’s or a confederation’s currency, money 
supply, and interest rates and monitor and stabilize the economy (ibid.). 
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Figure 1:  The systems view (After: Schwaninger, 2005).35  

In addition to that, Appendix E gives an insight into the utter interconnectedness of fi-
nancial systems by sketching the global banking network in 2007Q4 and 2008Q4. 

other definitions, the fact should not be masqueraded that system boundaries are not 
absolute or fixed (Klir, 1991: 30), but rather each definition of the system boundaries 
is arbitrary to some extent and subject to the peculiar issue at hand (Ulrich & Probst, 
1990: 50; Gomez, 1981: 40f.). Therefore, the concrete definitions by Cecchetti or 

35  To receive some impression of the workings and dynamics of financial systems, we cite from 
the system description in Bookstaber et al. (2015: 150f.): “A bank/dealer acts as an intermedi-
ary between buyers and sellers of securities, and between lenders and borrowers of funding. Its 
clients are investors, such as asset management firms, hedge funds, and pension funds, as well 
as other bank/dealers. There are specific business units within the bank/dealer that process 
funding and securities to create products for these clients. The bank/dealer's network, with its 
connections to other financial entities and among its business units, is complex. For the sake of 
simplicity, […], we now consider a simplified version of the reality and focus only on two 
types of bank/dealer activities […]: 1. Funding and securities lending: The bank/dealer goes to 
sources of funding such as money market funds through the repo [repurchase agreement, C.H.] 
market [a part of the money market, C.H.], and to security lenders such as pension funds and asset 
management firms through their custodian banks. 2. Providing liquidity as a market maker: The 
bank/dealer goes to the asset markets, to institutions that hold assets, and to other market mak-
ers to acquire positions in the securities that the clients demand. This function also includes secu-
ritization taking securities and restructuring them (see also the glossary at the end, Appendix A). 
This involves liquidity and risk transformations.” The function of the central bank is it to man-
age, for example, the money supply for banks and in the economy, e.g. by setting interest rates. 

 

 

                                                           



28 Part I: Concepts, Model Level and Risk Assessment 

Gurusamy etc. just allow to gain a first (and sufficient for the moment) comprehen-
sion of what a financial system is. A more specific definition, by contrast, depends 
on the specific problem which is examined or the purpose of the investigation and to 
provide such a definition is at least a non-trivial matter (Klir, 1991: 47; Ashby, 1956). 
 On specific grounds, we simply add that focal systems are modern financial 
systems. Roughly speaking, modern financial systems have come into existence 
since the 1970s and 1980s when in the wake of the Vietnam War and the oil 
price shocks of 1974 and 1979 (Wack, 1985), inflation and interest rates in the 
money market rose significantly (Admati & Hellwig, 2013: 53) and deregulation 
of financial markets set in (e.g., the so-called ‘Big Bang’ in 1986). The financial 
system has become “considerably deeper (meaning an increasing ratio of bank 
assets-to-GDP, implying larger leverage of finance on economic activities) and 
more concentrated” (Willke et al., 2013: 12f.).36 Since then, the variability of 
markets has started to no longer follow a normal statistical distribution (as the 
movement of particles in a fluid, the Brownian motion that served as a model for 
options pricing techniques; see 2.5.), but now shows wild variations and trends 
with the possibility of much wider and much more frequent fluctuations (Wack, 
1985a: 73; Esposito, 2011: 149). As we will see below, these reports could be 
illuminated by exploring a system’s property of complexity (Chapter 6). 
 On general grounds, it is safe to say (see 6.3.) that financial systems are 
dynamic wholes (Ulrich & Probst, 1990: 30), i.e., they are able to assume differ-
ent states or to change over time, and that they are open (Katz & Kahn, 1969), 
i.e., in exchange of matter, energy and information with its environment, present-
ing import and export, building-up and breaking-down of its material compo-
nents.37 In contrast to a simple dynamic and open system, in contrast to what von 
Foerster (2003, 1985) baptizes ‘a trivial machine’, which constantly converts a 
certain input to a predictable output, systems of interest here do not exhibit a 

36  Furthermore, “there are good arguments to distinguish between a Bretton-Woods era of mostly 
national financial systems and a post-Bretton-Woods [modern] era (starting in the 1970s, acceler-
ating in the Reagan-Thatcher era of the 1980s, and coming into bloom in the 1990s) of a mostly 
globalized financial system” (ibid.: 33). Specifying the demarcation between the eras could go on: the 
globally pervasive emergence of a shadow banking system, the equally pervasive use of highly so-
phisticated financial instruments such as CDOs (collateralized debt obligations), currency debt swaps, 
or auction rate preferred securities, etc. are all peculiar to modern financial systems. For more de-
tails on their characterization, cf. Willke et al., 2013; Rossi, 2011; Neave, 2010; Minsky, 1986/2008.   

37  As can be seen in Figure 1, the system influences its environment (“outputs”), but the envi-
ronment also affects the system (via “feedback”). 
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certain transformation function where the same input steadily leads to the same 
output (which would make the system’s behavior extremely predictable).38 Finan-
cial systems are non-trivial in the sense that a certain input is not always trans-
formed into the same output by the system because the system possesses its own 
internal dynamics (eigendynamics), the transformation function is not unvarying 
(Ulrich & Probst, 1990: 60). Overall, this variability in different dimensions 
alludes to a third general property of financial systems: complexity.  
 In the aftermath of the recent crisis of 2007-09, financial systems have been 
characterized as consisting of occasional periods of severe market stress 
(Litzenberger & Modest, 2010), they have been labeled as “non-robust and non-
deterministic” (Fouque & Langsam, 2013), as “chaotic” (Mandelbrot & Taleb, 
2010; Hsieh, 1991), “turbulent” (Allen & Gale, 2009) and “vulnerable to failure 
that can pull down the entire system” (Helbing, 2013; Admati & Hellwig, 2013). 
Here, the objective is not simply to add another label to this list, but to provide a 
systematic analysis of the complexity of modern financial systems (Neave, 2010) 
that will steer the whole reasoning in the course of this study. 
 In the last 30 years there has been a tremendous amount of interest in “com-
plex systems” of various kinds (Edmonds, 1999; Gell-Mann, 1994; Klir, 1991: 
113f.).39 A standard definition of “complexity” is that “[...] complexity consists 
in a large number of distinct (potential or actual) states or modes of behavior” of 
a system (Schwaninger, 2009: 12). Yet, there might not be a single good defini-
tion and there are certainly many different ways in which the term “complexity” 
is used. Seth Lloyd even once said that “the main feature of complexity is that it 
resists all attempts to define it” (Lloyd in Gershenson, 2008: 87; cf. also Cilliers in 
Gershenson, 2008: 28f.). Additionally, “complexity is given a somewhat subjective 
connotation since it is related to the ability to understand or cope with the thing 
under consideration” (Klir, 1985: 131). Further, there is not (yet) a single science 
of complexity, but rather several different theoretical perspectives on complexity 
(Mitchell, 2009: 95). For example, the physicists Jim Crutchfield and Karl Young 
shaped the term “statistical complexity”, which measures the minimum amount of 
information about the past behavior of a system that is needed to optimally predict 

38  To produce such a deterministic and predictable behavior is exactly what we aspire to as far as 
the construction of technical facilities is concerned (e.g., a punching machine).  

39  Etymologically, complexity comes from the Latin term “plexus”, which means “interwoven” 
whereas the similar English word “complicated” uses the Latin “plic(āre)” which means “to fold”. 
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the statistical behavior of the system in the future. Simon (1962), by contrast, pro-
poses that the complexity of a system can be characterized in terms of its degree of 
hierarchy: the complex system being composed of subsystems that, in turn, have 
their own subsystems, and so on. Lloyd (2001) even compiles 45 definitions of 
complexity; Philip W. Anderson, at the other end, thinks that it is a mistake to try 
to define complexity at all (cf. also Mitchell, 2009: Chapter 7; Gershenson, 2008; 
and Edmonds, 1999: Appendix 1 for an overview). This is but a small selection 
of academic treatises where “complexity” pops up, but it is sufficient to get the 
picture: work on this topic is still far from establishing clarity and consensus. 
 Helbing (2010: 3) distinguishes three different types of complexity out of 
which the first two mentioned are relevant in this context of risk management in 
banking (cf. also Ulrich & Probst, 1990: 57ff.).40 

1) Structural complexity or complicatedness refers to systems that have 
many (moving) parts, but they operate in patterned ways (Sargut & Mc 
Grath, 2011: 70). A complicated system can be meaningfully analyzed and 
integrated, i.e., it can be taken apart into its components and reassembled 
from those components, which means crucially that it can be described by 
a mathematical system founded on linearity (Byrne & Callaghan, 2014: 4; 
Zadeh & Desoer, 1979: 132f.). Structural complexity or complicatedness 
applies, for example, to a car, which is a designed and complicated system 
made up of many parts. But these parts are constructed in a way that let 
them behave in a predictable and deterministic way, i.e. according to 
fixed rules. Therefore, a car is relatively easy to control (Helbing, 2010: 
3). In other words, a complicated system is folded (Latin “plic”) and 
consequently conceals its internal structure. Nevertheless, given enough 
time, we can discover how it works (Rzevski & Skobelev, 2014: 5). 

2) Instead of the previous ‘analytical’ or ‘reductionist’ approach, charac-
terized by “decomposing a system in components, such that the detailed 
understanding of each component was believed to bring understanding in 

40  Apart from structural complexity and dynamic complexity, Helbing (2010) introduces the term 
“algorithmic complexity”, pioneered by Andrei Kolmogorov, Ray Solomonov and Gregory 
Chaitin, which quantitatively measures the amount of resources (such as time and storage) 
needed by an algorithm or a computer to solve certain problems requiring significant resources. 
This notion of complexity is traditionally prevalent in theoretical computer science (see Ap-
pendix C), but less interesting for applications to risk management. Because, for example, Nicolis 
(in Gershenson, 2008: 107) states that algorithmic complexity is a static, equilibrium like concept. 
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the functioning of the whole” (Sornette, 2009: 1), dynamic complexity 
demands that one tries to comprehend the interconnections and relation-
ships, i.e., “the whole picture as well as the component parts” (ibid.); this 
in turn includes analysis as well as synthesis (so-called ‘systems think-
ing’ is circular, Schwaninger, 2005: 32, 37; Morin, 2008; Suppes, 1983). 
Dynamic complexity can arise even in simple systems41 (Pina & Rego, 
2010: 92f.; Gribbin, 2005: 97) in terms of a low number of variables or 
components in a system (low levels of combinatorial or detail complexi-
ty; Morecroft, 2007: 21; Sterman, 2000)42; but, ceteris paribus, the more 
complex the system in the structural or combinatorial sense, the more it 
is dynamically complex. The latter primarily results from the interactions 
among the agents of a system over time (Morecroft, 2007: 21; Sterman, 

2000: 21). It may be illustrated by freeway traffic where “the interac-
tion of many independent driver-vehicle units with a largely autono-
mous behaviour can cause the self-organisation of different kinds of traf-
fic jams, the occurrence of which is hard to predict” (Helbing, 2010: 3).43 

41  If a system contains few interactions and if its behavior is extremely predictable, it is called a 
simple system – e.g., switching a light on and off: The same action produces the same result 
under normal conditions (Sargut & McGrath, 2011: 70). On more philosophical grounds, 
Rosen (1987: 324) calls a system “simple” if it is one in which “Aristotelian causal categories 
can be independently segregated from one another”. Other forms of distinction exist and the 
one proposed by Weaver (1948) is particularly interesting. See Chapter 6. 

42  Sterman (2000: 21) and Senge (2006: 71f.) who use this term do not further explicate the 
concept of combinatorial (Sterman) or detail (Senge) complexity. 

43  At first glance, it might be objected that it would be illegitimate or overstating the case to draw 
a qualitative distinction between structural and dynamic complexity: If a ‘combinatorially 
complex’ situation is understood as one where you have to expect a large amount of possible 
outcome states (whose individual probabilities may be difficult to determine because they de-
pend on a large number of aspects or variables), then taking additionally into account the inter-
action between agents over time just seems to multiply the number of possible outcome states. 
Indeed, it is hard to see why a ‘purely combinatorially complex’ system, able to assume many 
different states because of high numbers of components in a system and/or combinations, can-
not be as complex as a dynamically complex system in finite time (i.e., in terms of the degree 
of complexity or variety) whose agents or system elements interact heavily, but are only few in 
number. Therefore, for the sake of the argument, interaction over time by itself seems simply to 
be one among other factors affecting/increasing the overall complexity.  
While this objection might be valid to some complexity or systems researchers, because they 
do not sufficiently explain the difference between different notions of complexity (e.g., 
Sterman, 2000; Senge, 2006; Grösser, 2013), it should and will be elaborated on the special 
features of systems as dynamically and organized complex, which require, for example, specif-
ic modeling approaches, pointing, in turn, to a qualitative distinction between dynamic and 
other forms of complexity. 
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This dissertation focuses mainly on dynamic complexity because social systems, 
including financial systems,44 are dynamic (i.e., dynamic wholes, Ulrich & 
Probst, 1990: 30), and “it is not so much discrete states which are of interest, but 
rather dynamic patterns or modes of behavior” (Schwaninger, 2009: 12; cf. also 
Peters & Gell-Mann, 2016). How, then, can we frame dynamic complexity? 
Naturally, one could simply introduce the term “dynamic complexity” by build-
ing on the general definition by Schwaninger (2009: 12): “A system is dynami-
cally complex if, and only if, it is able to assume many different states or to pro-
duce many different behavior patterns over time.” (Cf. also Ulrich & Probst, 1990: 
58). This is a plausible, general definition, outlining complexity as a global charac-
teristic or property of a system and which is intended to have different interpreta-
tions in different contexts; but at the end of the day, it might not be sufficiently 
enlightening or apt for application to real-world systems (Hoffmann, 2016). 
 A first step towards a concept clarification and refinement, which is very 
relevant for our purposes where ultimately doubt should be casted on the trust-
worthiness of statistical risk model results, was undertaken by Weaver (1948). 
His approach is outlined and extended in Chapter 6. For now, the previous find-
ings from the literature are summarized in Figure 2. 

2.2. Risk and Risk Management in the Financial World 

Risk is absolutely central to modern finance (Lee et al., 2010; Saunders & Cornett, 
2010; Allen & Gale, 2009). It is often captured by the concept of volatility and 
its cognates like variance and standard deviation (Markowitz, 1952; Rothschild 
& Stiglitz, 1970: 226; but also more recently: Goldstein & Taleb, 2007; Adrian, 
2007: 3; Cecchetti, 2008: 97f.; Esposito, 2014: 22; Thiagarajan et al., 2015: 113).45 

44  Social systems “may be groups, organizations, societies or functional subsystems of society 
such as an economy, a legal or a financial system” (Willke et al., 2013: 19). In modern finan-
cial systems, in particular, periods of stability (or of tranquility) are only transitory (Minsky, 
1986/2008: ix). “The difficult part of understanding social systems is that they develop proper-
ties beyond the mere interaction of people [see below, Chapter 6].” (Willke et al., 2013: 19). 

45  Compared to the variance, the standard deviation is more useful because it is measured in the 
same unit as the payoffs: monetary units. (Variance is measured in value terms (Swiss francs, 
say) squared.) Volatility or the standard deviation of returns measured in percentage terms are 
usually provided on an annual basis. Volatility is a critical variable in risk as it measures the 
magnitude of deviations from the mean of a market variable. The simplest definition of the 
volatility of random variables is the standard deviation. 
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Figure 2:  The disassembly of complexity I (with          for illustration's sake only).   

Yet, this interpretation is not unproblematic. For example, the “volatility para-
dox” that characterized the mid-2000s – low market volatility as risks were 
building (Brose et al., 2014a: 333) – made it implausible to identify risk with 
volatility.46 On a conceptual level, it is clearly to object that we ought to distin-
guish between what risk is and how to operationalize the concept (see Chapter 
4.1.), given that variance and standard deviation are a measure of risk (like Value 
at Risk, see 2.2.2.) and not risk itself. 
 An overview of many different and material notions of risk including some 
of their major characteristics, strengths and weaknesses is given below (in Table 
4) and a proper definition is invoked (4.1.), roughly saying that risk is the real or 
realistic possibility of a negative rare or very rare event with serious or even 
extreme consequences the occurrence of which is not certain, or expectable but 
only more or less likely. 

46  Moreover, volatilities, whatever the measure, are elusive and they are unobservable (Bessis, 
2010: 189f.). Volatility is volatile itself: “I try to measure the volatility. It changes all the time. 
Everything changes. Nothing is constant. It’s a mess of the worst kind” (Mandelbrot & Hud-
son, 2008: 149). In addition to that, it is not clear that volatility is well-defined in a statistical 
sense, even for a time series (Granger, 2010: 40). Rothschild & Stiglitz (1970) show that the 
concept of increasing risk is not equivalent to that implied by equating the risk of X with the 
variance of X. Cf. also Goldstein & Taleb (2007) for another critique of volatility.  
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 Turning to systemic risks, in particular, much ado has been made about 
defining the term. The current debate is not very satisfactory and, thus, illuminat-
ing (see Chapter 4.2.) because there is widespread dissent on the definition of 
“systemic risk” (Getmansky et al., 2015: 74; Bisias et al., 2012). For example, 
the iconic term “black swan”, above all coined by Taleb (2007a) and going back 
to Popper and others, is often said to neatly capture the notion of systemic risk, 
but, in fact, it is understood in many different ways (Aven, 2013b; Johnson et al., 
2012; Blyth, 2010). For now, before an appropriate definition is motivated in-
depth, there is no need to differentiate between risk associated with (very) rare 
events with extreme consequences, and systemic risk. 
 At this point, an already important finding, a first out of four major research 
gaps,47 can be gained from this laconic review on complexity, risk and systemic 
risk, which might remind the reader of Gilbert Ryle’s provocative dictum: “many 
people can talk sense with concepts but cannot talk sense about them” (Ryle, 
1949: 7f.). 

Research Gap I:   
Poor conceptualization of the terms “risk”, “systemic risk”, and “com-
plexity”, as well as knowledge deficits concerning the conceptual rela-
tionships between them, in a banking context. 

This dissertation, therefore, follows the call of Heinemann (2014: 172), Grösser 
(2013: 211), Schwarcz (2008: 197), Helbing (2010: 2) and others for concept 
clarification and refinement. While not enough effort has been placed on circum-
scribing and explicating the concepts of risk and systemic risk, the field of mod-
ern finance has introduced seemingly sophisticated tools for measuring and man-
aging risks. Financial risk management is the industry’s analytical response to 
the challenges presented by an imperfect and uncertain world (Brose et al., 
2014a: 369): “The analysis requires information as its key input, which in turn 
seem to require enormous amounts of data. The output is an array of concrete 
decisions, such as whether to make or deny a loan, whether to add capital to the 
firm, or how to hedge a position” (ibid.). 
 The definition of risk management that forms the basis for the development 
of risk measurement and management tools is wide and general. Based on a con-

47  The other three research gaps are presented on page 56, 63 and 71, respectively.  
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solidated review of different articles and papers in the literature of economics & 

finance, we propose to summarize the definition with the following sentence by 
Hubbard (2009): Risk management encompasses “the identification, assessment, 
and prioritization of risks […] followed by coordinated and economical applica-
tion of resources to minimize, monitor, and control the probability and/or impact 
of unfortunate events” (Hubbard, 2009: 46; cf. also Saunders & Cornett, 2010). 
Accordingly, risk management may be broken down into a number of sub-
processes: 

1) Risk identification: Internal and external events that would or might af-
fect the financial performance of a bank or the achievement of a bank’s 
objectives must be identified (Brose et al., 2014a: 367; COSO, 2004). 

2) (Quantitative) risk assessment:48 Risks are analyzed, considering like-
lihood and impact, as a basis for determining how they should be ad-
dressed (ibid.).  

3) Communication of risks from the risk management unit / department to 
senior management (and possibly the board of directors): Material in-
formation is beheld, captured (e.g., in a risk report) and conveyed in a 
form and time frame that enable people to carry out their responsibili-
ties – ‘risk owners’ must be specified, see Part IV. The final decision to 
take (analyzed) risks “rests not with the risk manager, but with top 
management [in some firms, there is a chief risk officer; C.H.]” (Stulz, 
2008: 59). This decision depends on the bank’s strategy, which in turn 
depends heavily on its risk appetite or the tolerance of the institution, 
and both strategy and risk appetite are the prerogatives of senior or top 
management (Greenbaum, 2015: 170f.; Wiggins & Metrick, 2014): “It 
is at the heart of the firm’s strategy and how it creates value for its 
shareholders” (Stulz, 2008: 59).49 

4) Risk response planning: Management selects risk responses, including: 
averting, accepting, reducing or sharing risk, developing a set of ac-
tions to align risks with the bank’s risk tolerances and risk appetite 
(Brose et al., 2014a: 367; COSO, 2004). 

48  Part II of this dissertation deals with qualitative risk assessment. 
49  Unfortunately, senior executives often do not have the time or are often not equipped to evalu-

ate the results that mathematical models generate (Boatright, 2011: 8). 
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5) Risk monitoring and control: Monitoring or control is accomplished 
through ongoing activities like modifications to the risk management 
process, or separate evaluations, or both (COSO, 2004).  

There is a lucid emphasis on strategic issues (risk appetite, objectives/goals), 
awareness (event identification, risk assessment, monitoring) and reaction (con-
trol activities, risk response planning, communication). In the context of this 
dissertation, the focus lies on step 2, on risk evaluation, because “the main re-
sponsibility of risk management is to assess the firm’s risks” (Stulz, 2008: 59). 
Risk analytics is a critical first step towards managing it and McKinsey research 
suggests that by 2025 the risk function’s staff are principally dedicated to risk 
measurement (Härle et al., 2016: 3). Within this piece of work, “risk assessment / 
evaluation” is used synonymously with “risk measurement”, and measurement, 
tout court, is “the process by which numerals, numbers, and other symbols are 
assigned to defined attributes of the [not necessarily real, C.H.]50 world in such a 
way as to describe51 them according to further clearly defined rules” (Flood & 
Carson, 1993: 39). If we wish to represent risks using, for example, probability 

theory (see below), then we must abide by these rules. Later on, it will be useful to 

distinguish between different scales of measurement (Chapter 18). 
 At the heart of the body of knowledge on financial risk management and 
practices is a collective of financial economic theories, employing a variety of 
stochastic models to assess and calculate the risks associated with a plethora of 
events, financial assets and contracts. Judging from briefly synthesizing several 
leading textbook in financial economics (McDonald, 2006; Hull, 2010; Stulz, 

2002), there appears to be much evidence of the predictive powers of modern 
financial economics: “the accuracy and validity of risk models and the applica-
tions that use them are said to be tested and revalidated literally millions of times 

50  Because there is a major controversy among risk experts about the nature of (objective vs. 
subjective) risks. See Chapter 4.1. 

51  From a more critical and philosophical point of view, it might be noteworthy that, contrary to 
risk assessment, risk management is not a scientific undertaking. Hansson (2007: 22) argues 
that its starting point is the outcome of risk assessment, which it combines with economic and 
technological information pertaining to various ways of reducing or eliminating the risk in 
question, and also with political and social information. Based on this, a decision is made on 
what measures (if any) should be taken to reduce the risk (ibid.). An essential difference be-
tween risk assessment and management, according to his view, is that values only appear in 
risk management. Ideally, risk assessment is a value-free process (ibid.). But is it value-free in 
practice? See Chapter 10 and Part IV of this thesis. 
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a day in the markets” (Millo & MacKenzie, 2009: 638). This study adds, howev-
er, critically that probability-based risk models suffer from principal flaws when 
applied to extreme and systemic events (Chapter 7). 

2.2.1. Risk modeling 

As unit of analysis for this Part I, we consider probabilistic modeling of extreme 
or systemic risk. In very broad terms, modeling can be said to be a device that 
helps its users to spot the systems they are dealing with. Insofar, a model can be 
defined as a representation of a system – a group of functionally interrelated 
elements forming a complex whole (Mitchell, 2009: 209; Sterman, 2000: 89); 
but for a model to be useful, it must address a specific problem and must simpli-
fy rather than attempt to mirror a system replete with elements in detail. The use 
of models can fulfill different functions, such as description, explanation, design, 
decision and change (Schwaninger, 2010).52  
 In the context of this Part I of the dissertation, we deal with formal or math-
ematical models. A formal model is a set of assumptions plus the resulting body 
of pure theory which apply to an idealized system which seems closely enough 
like the real system so that the theory of the idealized system will “explain” or 
organize and simplify or describe the real phenomena or predict or prescribe 
their future behavior (Weaver, 1963: 39).53 Probabilistic models are formal mod-
els that utilize probability theory. Like all models, they are supposed to corre-
spond in a useful way to some real phenomena. 
 In order to contribute to the understanding of risk, and extreme or systemic 
risk in particular, and not just the understanding of “models”, we have to extend 
the formalist definition with a reference to the concept that is being modeled, i.e., 
to (extreme or systemic) risk. It can therefore be said: 

52  According to Schwaninger (2010), descriptive models represent what is the case; they make the 
issue under study comprehensible. Explanatory models elucidate why the real system at hand 
behaves as it does and not differently (ibid.: 1421). “They try to capture interrelationships, e.g. 
causalities, interactions and dependencies. Models of analysis and diagnosis, which are among 
the explanatory models, inquire into the implications of system behavior and of the structure 
underlying it.” (ibid.). See also Chapter 8. Finally, design models are “instruments that support 
the conceptual development of systems” (ibid.). 

53  If one is a very pure theoretician, one may be interested only in inventing and developing pure 
theories, “leaving it to others to look around in the real world to see if there is any ‘application’ 
for the theory” (Weaver, 1963: 39); i.e., whether there is a body of real phenomena behaving in 
accordance with the theory. 
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Definition 2.1:  
(Extreme or systemic) risk models are sufficiently54 accurate descrip-
tions of (extreme or systemic) risk given in a formal language.55 

In terms of Schwaninger (2010), risk models as defined here fulfill the following 
functions:56 

• Descriptive (per definition: “descriptions of risk”)
• More or less explanatory: The ability of risk models to explain and an-

alyze the risk that a peculiar institution, individual, etc. is exposed to
depends on the choice of the formal language and comes from the in-
terpretation of the right, i.e., well-chosen, formal language, which al-
lows one to arrive at causal claims about how certain aspects of a real
system function or to make inferences; e.g., about future developments
of the system behavior (hence, predictions).

• Predictive: Non-causal (i.e., their mathematical relations are not based
on a theorized causal mechanism), but statistical and correlational
models can also be used for prediction by simply expressing observed
associations (in the form of statistical correlations) among various el-
ements of a real system.

The quality or usefulness or validity of a risk model is then determined by, above 
all, two aspects: first, by the accuracy of predictions, i.e., how adequately the 
inferences from the model match reality, and second, by the plausibility of the 
model assumptions. More precisely, it has been stressed and argued that a (risk) 
model must generate the “right output for the right reasons” (Barlas, 1996: 186; 

54  A broad concept of “model” would subsume theories, frameworks and the like. The concept of 
“model” used here, however, is a more operational one. In accordance with Schwaninger & 
Grösser (2008: 450), we conceive of modeling as a process by which models are built, whereby 
we will focus on computational models. 

55  A formal language (e.g., mathematical formula, proposition in logic, computer program, etc.) is 
essentially a modeling language. Formal languages have precise syntax and semantics (inter-
pretation in another formal language). For example, a set of random variables describing gains 
and losses (à la Artzner et al., 1999) is a risk model. Even the “model-free” measures of risk in 
Artzner et al. are subsumed under our definition since a portfolio or list of securities is also 
given in (semi-)formal language. 

56  Rapoport (1953: Part III), for example, presents two further functions. The first he calls heuris-
tic function (which leads the modeler to new (research) questions). The second he calls meas-
uring function, which allows to quantify hitherto qualitative concepts. 
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Forrester, 1968; see also section 19 in Part III of this thesis for a more thorough 
discussion of model validation). It remains a legitimate question though why 
often rather unrealistic models in the social sciences remain matters of academic 
discussion (von Bertalanffy, 1968/2013: 112)?57 

Definition 2.2.: 
Furthermore, we define a risk measure as a mapping from a risk model 
to a real number. More formally: Let 𝕄 be the set of all risk models. A 
risk measure is a function 𝑖𝑖: 𝕄 → ℝ.58 Consequently, a risk measure is 
also a risk model (but not vice versa) since it is definitely a description 
of risk, namely as a mathematical function. 

A large number of different risk models exist in order to primarily make fore-
casts of the likely losses that would be incurred for a variety of risks (Rebonato, 
2007: 43, 107f.): “it is vital to remain mindful that it is the forecast that matters” 
(Brose et al., 2014a: 340). Such risks are typically grouped into market risk (= 
the risk of losses in positions arising from movements in market prices), credit 
risk (= referring to the risk that a borrower will default on any type of debt by 
failing to make required payments), liquidity risk (= a given security or asset 
cannot be traded quickly enough in the market to prevent a loss), and operational 
risk (= the risk of direct or indirect losses, incurred for inadequate or failed inter-

57  Some economists defend remote assumptions of “if, then” models on “as if” grounds, whereby 
“the philosophy of as if” traces back to Hans Vaihinger’s monumental work from 1913: “As 
long as the model yields accurate predictions, it’s fine to represent the world as if it had […] 
outlandish features” (Bhidé, 2010: 97). According to Milton Friedman, for example, the as-
sumptions of a hypothesis need not be verified; a hypothesis is confirmed only by its predictive 
success. Given that such success is achieved, the validity of assumptions is irrelevant. Unrealis-
tic assumptions may well have value, as he and other so-called neoclassical economists argue, 
in making positive theories concise (ibid.: 99). “But when carried over into normative domains, 
they can produce dubious prescriptions” (ibid.). And, at least, theories of the social sciences are 
laden with values (Ulrich, 2014: 5f. Ulrich, 1993): There is no neutral theory concerning hu-
man affairs (Shrader-Frechette, 1985: 69). And Cyert & Grunberg (1963) propose that we give 
much more emphasis to the explanatory ability of models (see Part III of this thesis). 

58  This definition is similar to the one given by Artzner et al. (1999: 207). According to them, a 
measure of risk is a mapping from 𝒢 into ℝ where  𝒢 is the set of all risks, i.e. the set of all re-
al-valued functions on Ω. Note that it is for good reason that 𝕄 is less specified and refined 
than 𝒢: While Artzner et al. stand in the tradition of probabilism (what we call Risk II in 4.1.), 
we endorse a broader framework (Risk I). See also 15.1. for modeling implications.  
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nal processes, people and systems, or from external events (including legal 
risk))59 categories. 
 In this regard, it is common to speak of risk silos (apart from risk catego-
ries) and risk silo management (e.g., Mikes, 2009a). Given the importance and 
the reliance that nearly all financial institutions place on specific analytical mod-
els of various types and uses (as outlined in the successive sections) for assessing 
risks into the future (e.g., Mehta et al., 2012), it is particularly important that 
models be understood, vetted and calibrated (Braswell & Mark, 2014: 203; Cas-
sidy, 2010: 1). The category of model risk grasps this idea and it is paraphrased 
as the risk associated with using a misspecified and, ergo, inappropriate model 
for measuring risk (McNeil et al., 2005: 3; The Economist, 1999).60 

While the financial risks like market or credit risk can be thought of as the 
raison d’être for a bank – “it is only by accepting, managing and optimizing one 
or more of these financial risks that a firm can make a profit” (Mark & Krishna,
2014: 58) –, firms assume non-financial risks like operational or model risk, in 
contrast, simply by being in business but there is usually no upside for assuming 
such risks.61 
 The following Table 2 provides an overview of the major risk categories 
banks are confronted with and indicates how they usually measure and manage 
them. Apart from the three basic silos of risk, counterparty (credit) risk is empha-
sized because it has proven to be one of the most important sources of “systemic 
risk” (Nathanaël, 2010; French et al., 2010: 45) and it will be elaborated on in 
Part III for an exemplary application of a logic-based risk modeling approach,
developed, endorsed and promoted, after all, in this thesis. Another important role 
is taken on by the category of model risk which is located at a higher level and 
reflects, in a way, the combative spirit of this whole thesis, aiming at pointing to 

59  Although efforts to define and determine this category’s scope more positively are recogniza-
ble – whereas within early regulatory discourses on the subject, operational risk was seen as 
simply a residual category for “other risks” –, this definition does still leave open a range of in-
terpretations of the scope of operational risk which different groups could exploit (Power, 
2007: 111). Cf. also BCBS (2015) for admitted difficulties in measuring the notion.  

60  In an insurance context, the term “risk of error” is often used to designate model risk. Risk of 
error can be separated into forecasting risks and diagnostic risks.  

61  Note that there are, however, a number of firms that have made non-financial risk mitigation 
their business by successfully building a business model where certain essential functions may 
be out-sourced by financial firms at a lower cost than keeping the function in-house and assum-
ing the resulting risk (Mark & Krishna, 2014: 58). In terms of operational risks, examples in-
clude “IT out-sourcing contracts, securities custody services”, etc. (ibid.). 
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limitations of standard risk management approaches. Albeit specific risk assess-
ment and measurement procedures exist, the table also highlights the fact that the 
technique Value at Risk (VaR) is applied across all major risk silos. As an inter-
esting side note, it is finally hinted at an empirical study by Kuritzkes & 
Schürmann (2010) where the authors show that the risks less (credit risk) and 
least (operational risk) easy to quantify, i.e., those risk silos which present risk 
silo managers with the greatest quantitative challenge (see footnote 62), have the 
greatest impact on bank earnings volatility. 
 Given the large number of risk models (Lee, et al., 2010; Saunders & Cor-
nett, 2010; McDonald, 2006; McNeil et al., 2005; Hull, 2005; Stulz, 2002), it is 
neither possible nor necessary to canvass each and every one here. Most of them 
are closely related to each other (Daníelsson, 2002), and we feel justified in 
shedding light on a carefully selected subsample only (depending on how promi-
nent, established and frequently studied or used the risk models are) since the 
conceptual and principal critique, which is developed in Chapter 7, targets basic 
properties, namely the probabilistic nature of most, if not all, models employed 
to deal with (very) high impact risks linked to (very) rare events. The models that 
will be sketched, thus for illustration's sake only, are: Value at Risk (VaR) and 
Expected Shortfall (ES), as well as some remarks on Conditional Value at Risk 
(CoVaR), Systemic Expected Shortfall (SES) (Bernard et al., 2013: 167-173), 
and the Extreme Value Theory (EVT) (e.g., Diebold et al., 1998).  
 The review of risk measures and models serves three purposes: To make the 
reader aware of the intricacies of the conventional approaches to risk measure-
ment, above all focusing on extreme and systemic risks; to exemplify blind effi-
ciency seeking in risk management, which was condemned in the Introduction of 

this thesis; and (most importantly) to allow for a comparison with our own pro-
posal for an innovative and combative logic-based risk modeling approach which 
will be presented below (Part III). 

2.2.2. Value at Risk (VaR) 

VaR is the most frequently cited technique of risk silo management (Riedel, 
2013: 21; Litzenberger & Modest, 2010: 75; Jorion, 1997). Interestingly, it was 
originally suggested by a group of bankers (Flood, 2014: 25; Granger, 2010: 36). 
VaR is the primary statistical tool for measuring market risk (Daníelsson, 2003: 
178). Simply put, it is a statistical composite measure of unanticipated loss, derived 
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Table 2:  Risks banks face and how they measure and manage them62 
(based on: Capponi, 2013; Kuritzkes & Schürmann, 2010; Bessis, 2010; Mikes, 2009a: 
11; Cecchetti, 2008: 295; Bervas, 2006; McNeil et al., 2005: 3; Drzik et al., 2004; 
Rebonato, 2002). 

62  Data is taken from Kuritzkes & Schürmann (2010: 138). The authors conduct empirical re-
search on bank earnings volatility – they define risk in banking in terms of earnings volatility. 
Their analysis precedes the credit crisis and financial market turmoil that began in mid-2007. 
Nevertheless, it establishes, for the 300+ U.S. bank holding companies that had total assets of 
at least USD 1bn (2005Q1 dollars) from 1986Q2 to 2005Q1, what the total level of earnings 
volatility (as reflected by quarterly deviation in returns on Basel I risk-weighted assets) is at 
varying quantiles. The analysis includes tail observations out to the 99.9% level corresponding 
to a 0.1% one-year default probability. Kuritzkes & Schürmann estimate the relative contribu-
tion to bank earnings volatility from each of five sources of risk identified in their taxonomy. 
Apart from the three basic categories, they consider structural asset/liability risk (a financial 
risk, 18%) and business risk (a non-financial risk, 18%). They found, for example, that alt-
hough the most is “known” about market risk – “knowledge of bank risk increases as our abil-
ity to quantify risk increases” –, it contributes the least to bank earnings volatility at the 99.9% 
level. 
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terrorist attack 

- Extreme Value Theory techniques 
  (De Fontnouvelle et al., 2006) 
- Basic Indicator Approach (Mark 

& Krishna, 2014: 60) 
- AMA/LDA approaches (BCBS, 

2015) 

Counterparty 
risk 

(Financial risk) 
(see Part III) 

Counterparty 
fails to meet 
their 
obligations in 
a financial 
contract63 

- Potential Future Exposure, and the 
Expected Exposure Profile 
(Capponi, 2013: 489); actions: 
e.g., deciding on trade execution
or setting credit risk limits 

- Exemplary application of a logic-
based risk modeling approach 
proposed in Part III of this thesis 

Model risk 
(“Meta risk”) 

(see Part I–IV) 

Using a 
misspecified 
model for 
measuring risk 

- Inhabits, by definition, the opaque area where  
ascertained (Rebonato, 2002) 

- Validation is a continuous process of testing  
- Design more appropriate, “more valid” risk   
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63

63  The difference between counterparty risk and credit risk is that the latter can be effectively 
mitigated by requiring a security (collateral) from the borrower, whereas the former includes 
the potential loss incurred when the value of the security does not cover the value of the princi-
pal. “Unlike a firm’s exposure to credit risk through a loan, where the exposure to credit risk is 
unilateral and only the lending bank faces the risk of loss, the counterparty credit risk creates a 
bilateral risk of loss, when both parties are default-sensitive” (Capponi, 2013: 485). 

Risk 
allo-

cation 
(in %)62 

Risk management actions Our 
ability to 
quantify 

High 6 
Mitigate market risk: e.g., liquidate 
tradable instruments or hedge their 
future changes 

Medium 46 
Mitigate credit risk: e.g., diversify to 
spread risk or screen for creditworthy 
borrowers 

Low 12 

Mitigate operational risk: e.g., set 
up a common classification of 
events that should serve as a 
receptacle for data-gathering 
processes on event frequencies and 
costs (Bessis, 2010: 36) 

Low 

Comment 
Embedded in all financial contracts which are 
traded over the counter (OTC), where the credit 
quality of counterparties plays a key role. 
Counterparty credit risk as one of the major 
drivers of the credit crisis of 2007-09, evidencing 
that counterparty risk is one of the most 
important sources of system-wide failure 
(Nathanaël, 2010). 

Comment 
  the value of instruments cannot be fully & directly   

    & building confidence in models (see Part III&IV)   

     models (Part III) 
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from the loss distributions of different risk types that institutions track (e.g., 
market losses, credit losses, operational losses, insurance losses). Phrased differ-
ently, VaR is the upper bound potential loss not exceeded with some predeter-
mined high probability, called a confidence level α (Bessis, 2010: 201). It was 
designed to provide an answer to the following question (where the wording 
clarifies the reference of VaR to the tail of the distribution):  

What is the minimum loss incurred in the 1–α least likely cases of our 
portfolio?64 

In formal terms: If 𝐹𝐿(𝑓𝑓) is the loss distribution, that is the probability that the 
loss L is smaller than or equal to 𝑓𝑓, a maximum loss value amount (e.g., lost in 
liquidating a position), or 𝐹𝐿(𝑓𝑓) = 𝑃(𝐿 ≤ 𝑓𝑓), is 

V𝑎𝑅𝛼    =   inf  {l ∈ ℝ  |  𝐹𝐿(l) ≤ (1 − 𝛼)}. 
  ⎕      ⎕                              ⎕

𝑉𝑉𝑎𝑅 is a quantile of the loss distribution – of course a real VaR calculation on a 
so-called clean P&L (see Appendix A) is a highly complicated matter; it is not 
“just reading off a quantile”, it is all about L. Usually it holds that 𝛼 = 0.95 or 

higher. To give an illustrative example, in the case of a bank whose senior man-
agement specifies a 99 per cent (%) confidence level, a one-day VaR of $150 
million would mean that the firm has a 1% chance of making a loss in excess of 
$150 million – provided, of course, the VaR has been correctly estimated.65 In 
other words, we have V𝑎𝑅0.99 = inf {l ∈ ℝ| 𝐹𝐿(l) ≤ 0.01} = inf(150,000,000, ∞) = 
150,000,000. The argument to inf ⎕ contains all the losses that occur with a 
probability smaller than or equal to 0.01, and the VaR is the smallest of those. 

 Risk measurement takes place in the context of risk metrics like VaR. The 
choice of risk metrics has been named the cornerstone of risk management 
(Stulz, 2008: 60). VaR received critical examination from several papers (e.g., 
Rowe, 2009; Bookstaber, 2009; Johnson & Kwak, 2009; Daníelsson, 2002; En-
gel & Gizycki, 1999). The reasons for its popularity are many, but the following 
might be the most important: First, it was specified by regulators (BCBS, 1996). 

64  The question does not have to be related to a portfolio. See below. 
65  Although financial institutions generally report daily VaR measures, VaRs can also be estimat-

ed for longer periods of time (Stulz, 2008: 59). 
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Second, it is said to have the largest set of desirable properties compared to other 
possible risk measures (Daníelsson, 2003: 178) – surely, a statement we cannot agree 
with (see Part III). Third, unlike simple volatility measures, VaR is clearly focused 
on the tails of (the downside of) the returns distribution,66 given that 𝛼 = 0.95 or 
higher (Brose et al., 2014a: 337), which makes it especially attractive in the con-
text here. Fourth, it is also widely applicable, not just to equities, but also to 
bonds, commodities, derivatives (see Part III), and other financial instruments, to 
single assets, asset classes or portfolios, and to both individual and firm-wide 
risks (Nocera, 2009). Finally, fifth, it “utilizes sophisticated mathematical formu-
las to circumvent the need to perform an immense number of calculations about 
each asset in a portfolio” (Boatright, 2011: 12f.), for example, and hence, its 
wide-spread adoption is due to the convenience of a single dollar or franc figure 
that epitomizes a complex concept (which points to its weaknesses at the same 
time; cf. Rootzén & Klüppelberg, 1999, for example; and see Chapter 4). 
 However, VaR has drawbacks as well. In particular, one can behold three 
specific flaws of VaR as a mode of risk assessment, which rather concern its 
irresponsible and unwarranted application (points 1 and 2), less the risk measure 
per se (point 3).  

1) Foremost, VaR does not give any information about the severity of
losses that occur with a probability lower than 1–𝛼. This is particularly
interesting for this study since rare events whose probability is almost
certainly less than, e.g., 5%, are targeted. If, on the other hand, a much
higher confidence level was picked (e.g., 𝛼 = 0.999 etc.), the model
results would be implausible: Rebonato (2007: 136) regards such
quantiles as science-fiction (cf. also Das et al., 2013: 715). VaR re-
mains unchanged by large risk exposures that occur sufficiently infre-
quently to fall beyond the VaR threshold, and the ubiquity of VaR as a
tool for setting risk limits thus encourages traders, users, to take on
large tail risks (Brose et al., 2014a: 337; Rowe, 2009).

2) Some common, not all, implementations of VaR (e.g., by means of the
so-termed variance-covariance technique; see 7.2.) implicitly and unre-

66  While a simple variance framework is often criticized for failing to distinguish between the 
downside of the return distribution (usually considered to be risk, see 4.1.) and the upside (usu-
ally considered to be potential), VaR is one (of several) ways of focusing on the downside. 
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alistically assume ‘normally’ distributed returns (so-called because it 
has been long viewed as the norm in nature; for a critical reply, see 
2.5.), arriving independently from day to day with no jumps in the pro-
cess. “In a normal distribution the likelihood that an observation many 
standard deviations beyond a 95% or even a 99% confidence interval 
will occur is infinitesimal” (Crotty, 2009: 571). In fact, “security prices 
follow a distribution in which the preponderance of observations are 

‘normal’, but every five to ten years observations occur that are so far 
from the mean that they are virtually incompatible with the assumption 
of a normal distribution” (ibid.; cf. also Fama, 1965, 1970; Heri & 
Zimmermann, 2001: 1005; Buchanan, 2013: 436f.; Redak, 2011: 
449ff.; Mandelbrot & Hudson, 2008: 134ff., 186ff.; Helbing, 2010: 4; 
Erben & Romeike, 2006). Taleb (2013: 37) baptizes this phenomenon 
the “masquerade problem” – “a fat tailed distribution can masquerade 
as a low-risk one, but not the reverse”. Examples of this well-
acquainted trouble with ‘fat tails’67, i.e., high kurtosis68 or significant 
outliers69, of extreme events that are much more likely than for normal-
ly distributed data with the same mean and variance (see 2.5. and Fig-
ure 17 and 18) include the distortions brought on by the collapse of the 
giant hedge fund Long Term Capital Management (see 5.2.), the Asian 
crisis, or the demise of Lehman Brothers etc. Such common VaR im-
plementations are recipes for underestimating tail risks (Brose et al., 
2014a: 337; BCBS, 2011). See IIIc) in Chapter 2.4. and Chapter 7 for a 
fundamental issue behind this admonition. In face of this conceptual cri-
tique (Chapter 7), a regime-switching volatility model that assumes dif-
ferent market regimes with various volatilities (Papaioannou et al., 
2015: 25) and that has been suggested in response to this issue of 
procyclicality is not convincing.  

3) Artzner et al. (1999) present and vindicate a set of four desirable prop-
erties for measures of risk, and mark the measures satisfying these 
properties “coherent”. They demonstrate that VaR measures, or more 

67  The literature also speaks of heavy or long tails and there is no need to differentiate between 
those terms. 

68  A normal distribution will have a kurtosis of 3. 
69  An outlier is an observation that lies an abnormal distance from other values in a random 

sample from a population (Sornette, 2009: 5). 
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generally, quantiles-based risk measures, are not coherent since they do 
not satisfy postulate Nr. 2, sub-additivity. Sub-additivity reflects the 
idea that risk can be curtailed by diversification – in the words of Mi-
guel de Cervantes Saavedra’s Don Quixote (1605): “it is the part of a 
wise man to keep himself today for tomorrow, and not to venture all 
his eggs in one basket [emphasis added]” –, a time-honored principle 
in economics and finance (for technical details, cf. their paper).70 Many 
researchers (e.g., McNeil et al., 2005; Bertsimas et al., 2000; 
Embrechts, 2000; Pflug, 2000) and practitioners / regulators (Yamai & 
Yoshiba, 2002) take these axioms seriously in terms of regarding these 
axioms as defining the concept of risk or risk measure itself. As a con-
sequence, VaR is sometimes considered as not being a risk model at all. 

2.2.3. Expected Shortfall (ES) 

VaR is only the smallest potential loss that occurs with a given probability of 
less than or equal to 1 − 𝛼, and does not contain any information about the dis-
tribution of loss beyond 𝛼. This can be seen in the definition of VaR (see above), 
which takes the infimum (inf ) of all losses with sufficiently low probabilities. 
Assume, for example, a α=99%-VaR of $150M. This could mean that, for exam-
ple, the chance of losing $150M is 0.9% and the chance of any losses greater 
than $150M is 0.1%. However, the following scenario is also possible and results 
in exactly the same VaR: Assume the probability of losing exactly $150M is 
0.001 (a tenth of one percent), but the probability of losing, say, $300M is 0.009 
(nine tenths of one percent). In this latter case, the VaR value of $150M would 
be delusive since there is a higher loss ($300M) with a much higher probability 
than that of $150M. For this reason, the Expected Shortfall (ES) or the tail condi-
tional expectation (sometimes also named conditional VaR; Söderlind, 2014)71 
considers all losses that occur with low probabilities, by integrating over the 
entire tail of the distribution. It is geared to provide an answer to the following 
question: 

70  More precisely, the non-subadditivity of VaR holds for so-called non-elliptical portfolios 
(Embrechts et al., 1998). More about coherent risk measures follows in a later section of Part 
III. See Chapter 15.1. 

71  Here, we use the two different terms for two different concepts. See 2.3.1. 

⎕
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What is the expected loss incurred in the 1–α least likely cases of our 
portfolio? 

𝐸𝑆𝛼 =
1

1 − 𝛼
� 𝑞𝑢(𝐹𝑙)d𝑢

1

𝛼

 ⎕      =
1

1 − 𝛼
� 𝑉𝑉𝑎𝑅𝑢(𝐿)d𝑢

1

𝛼

where α is the confidence interval and 𝐹𝑙 stands for the loss distribution. 

The primary improvement of ES over VaR is that ES (through integrating over 
the tail of the distribution) considers the expected value of all losses with a suffi-
ciently low probability, rather than the minimum loss that might occur. 𝐸𝑆𝛼   
depends only on 𝐹𝐿 and 𝐸𝑆𝛼 ≥ 𝑉𝑉𝑎𝑅𝛼. 
 ES addresses some of the theoretical drawbacks of VaR by tackling the 
problem of ignoring loss exposures in the tail of a loss distribution. It is able to 
overcome some of the conceptual deficiencies of VaR related to sub-additivity. 
Indeed, the coherence of ES can be proved (McNeil et al., 2005: 243f.; Acerbi & 
Tasche, 2001). 
 ES (i.e., the expected loss, conditional on being in the tail) also forms a 
useful complement to VaR (Brose et al., 2014a: 338). It is preferred to VaR by 
more and more risk professionals for several reasons (McNeil et al., 2005: 44): 
Like VaR, ES is universal: it can be applied to any instrument and to any under-
lying source of risk. ES is complete: it produces a global assessment for portfoli-
os exposed to different sources of risk. Being a sub-additive measure of risk, ES 
values, e.g., of different trading desks, can be aggregated to firm-levels in a way 
that respects portfolio diversification. ES is (even more than VaR) a simple con-
cept since “it is the answer to a natural and legitimate question on the risks run 
by a portfolio” (Acerbi & Tasche, 2001: 8). Furthermore, “any bank that has a 
VaR-based Risk Management system could switch to ES with virtually no addi-
tional computational effort” (ibid.). Finally and most importantly, in the sense of 
proper risk management which takes place, not in the world of ‘If’-thinking, but 
in a world of “What if” thinking (see also Chapter 5.1.: event-oriented world-
view vs. feedback view of the world), ES can be regarded as a step in the right 
direction due to its severity, not frequency orientation (attributed to discussions 
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with Prof. Paul Embrechts). In this (after efficiency aspiring) sense, ES vis-à-vis 
VaR constitutes a certain progress in financial risk management. 
 Yet, the fundamentals are not undermined, the potential of “What if” or 
systemic thinking is not fully tapped as Part III of this thesis reveals. ES is still 
susceptible to improper distributional assumptions, misleading estimation win-
dows and, foremost, this is due to it being grounded in statistics and classical 
probability theory which will lead us to our central objection to conventional 
quantitative management tools of extreme risks in general (Chapter 7).  

2.3. Systemic Risk Assessment 

Many so-called systemic risk models with different functions, designs and 
groundings exist. Two major approaches can be distinguished. The first major 
approach, the so-termed Extreme Value Theory (EVT), is a branch of statistics 
dealing with extreme quantiles and probabilities “by fitting a ‘model’ to the 
empirical survival function of a set of data using only the extreme event data 
rather than all the data, thereby fitting the tail, and only the tail” (Diebold et al., 
1998: 2).72  
 The second has more heterogeneous manifestations. There are mainly two 
subgroups. One consists of chiefly network analysis and agent based models 
(e.g., Bookstaber et al., 2015; Cristelli, 2014; Thurner & Poledna, 2013) and 
works directly on the structure, the nature of relationships between banks in the 
market (Bernard et al., 2013: 166). King et al. (2014: 108f.) provide a good ex-
position of such explanatory systemic risk models, designed for, above all, regu-
lators which they group into three broad families: 1) High level analyses which 
focus on a few causes and effects, 2) Network and institutional analyses (cf. 
Bernard et al., 2013), and 3) Granular analyses encompassing simulation as a tool 
and System Dynamics (SD) Modeling. In the broader context of the discussion 
of mathematical models in general, Barlas & Carpenter (1990: 148) add with 

regard to this first subgroup that these models base their mathematical expres-
sions on postulated causal relations within the modeled system and are commit-
ted to substantiate causal claims about how certain aspects of a real system func-
tion. They can be used for both prediction and explanation (ibid.). Explanatory 

72  The survival function is simply one minus the cumulative density function, 1 – P(x). Note, in 
particular, that because P(x) approaches 1 as x grows, the survival function approaches 0 
(Diebold et al., 1998: 1f.). 
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systemic risk models for regulators, basically frameworks for systemic risk (in 
the narrow sense, see 4.2.) monitoring (e.g., King et al., 2014), are however not 
discussed in this context for mainly three reasons.73 
 Another systemic risk approach, principally different, is to investigate the 
impact of one institution on the market and its contribution to the global systemic 
risk (Bernard et al., 2013: 166). Similarly, Barlas & Carpenter (1990: 148) refer 
to these models’ counterparts (i.e., on more general grounds) as non-causal, 

which simply express observed associations (in the guise of statistical correla-
tions) among various elements of a real system. They call them purely empirical 
or correlational, their mathematical relations are not based on a theorized causal 
mechanism. 
 In any case, we refrain from an exact definition or a comprehensive charac-
terization of the models in these rubrics due to many reasons. For example, Ex-
treme Value Theory (EVT) is an entire branch of statistics and its full presenta-
tion would go far beyond the boundaries of current work. Conditional Value at 
Risk (CoVaR), and Systemic Expected Shortfall (SES) are just derivatives of 
VaR and ES, respectively. On top of that, the Central Argument of this Part I and 
the critique it puts forward is fundamental, rather than specific to peculiar risk 
models or measures. Therefore, only some brief conceptual remarks on CoVaR, 
SES, and EVT follow in the frame of this work.74 

73  Firstly, following Bernard et al. (2013) and Weistroffer (2012: 12), CoVaR and SES are defi-
nitely the more prominent, established and more frequently studied or used systemic risk mod-
els (in the classical or narrow sense of “systemic risk”) and this might not be unjustified. Be-
cause interestingly, it is secondly far from clear whether or not explanatory systemic risk 
models for regulators are more useful in a systemic risk management and monitoring context 
than their counterparts which are purely empirical or correlational (as Barlas & Carpenter 
(1990: 148) would put it). For example, Adrian & Brunnermeier (2011: 9) view it as a virtue 
rather than as a disadvantage that the CoVaR measure does not distinguish whether the contri-
bution to systemic risk is causal or simply driven by a common factor. Be that as it may (i.e., 
even if Adrian & Brunnermeier (2011) are right in preferring their non-causal measure CoVaR 
to alternatives of certain explanatory systemic risk models, this does not entail that all explana-
tory systemic risk models would be inferior), the primary subject of this thesis are thirdly mod-
els for assessing extreme financial risks or systemic risks in the sense of 4.2. from market par-
ticipants’ or banks’ (not regulators’) point of view (see also 8.2.). The question of which other 
systemic risk models to consider is subordinate. 

74  Formal details and numerical examples are provided by Bernard et al. (2013: 172f.). 
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2.3.1. Tools primarily for regulators: Conditional Value at Risk (CoVaR) 
and Systemic Expected Shortfall (SES) 

Conditional Value at Risk (CoVaR) 

Contributing to that second subgroup of (non-causal) approaches, Adrian & 
Brunnermeier (2011) invoke, on the one hand, the CoVaR measure. They pursue 
two objectives: first, to construct a measure that identifies “the risk to the system 
by ‘individually systemic’ institutions, which are so densely interconnected and 
large that they can cause negative risk spillover effects on others, as well as by 
institutions that are ‘systemic as part of a herd’” (ibid.: 1; cf. also Brunnermeier 
et al., 2009b). Second, to provide regulators with measures that “recognize that 
risk typically builds up in the background in the form of imbalances and bubbles 
and materializes only during a crisis” (Adrian & Brunnermeier, 2011: 1). The 
idea of CoVaR now is to compare the VaR of the system under “normal condi-
tions” and the VaR of the system “conditional on institutions being under dis-
tress”. Adrian & Brunnermeier (2011) define an institution’s contribution to 
systemic risk as the difference between CoVaR conditional on the institution 
being under distress and the CoVaR in the median state of the institution. Their 
proposal of CoVaR allows, for instance, to ventilate the question of “which insti-
tutions are most at risk [of default, for example; C.H.] should a financial crisis 
occur” (ibid.: 8). 
 CoVaR conditions on the event that an individual institution is at its VaR 
level, occurring with probability 1–α. The systemic risk is then measured by the 
difference with the unconditional VaR or by the difference with the “median” 
situation. The difference between the VaR of the financial system conditional on 
the distress of a particular financial institution and the VaR of the financial sys-
tem conditional on the ‘normal’ or median state of the institution captures the 
marginal contribution of a particular institution (in a non-causal sense) to the 
overall systemic risk (ibid.: 2), whereas previous risk measures like VaR or ES 
only focus on the individual risks of individual institutions. 

Systemic Expected Shortfall (SES) 

Similarly, one main stimulus for Acharya et al. (2010: 2) to develop SES is the 
tension between the fact that financial regulations, such as Basel I and Basel II, 
and risk measures in this connection, on the one hand, are designed to assess and 
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limit each institution’s risk seen in isolation; and, on the other hand, a focus on 
systemic risk which “is often the rationale provided for such regulation”. System-
ic risk is linked in their view to financial contagion (see also 4.2. for a discussion 
of different understandings). In contrast to Adrian & Brunnermeier’s (2011) 
proposal, they define a systemic risk measure, SES, in terms of the marginal 
expected shortfall (MES), i.e., a financial firm’s “losses in the tail of the aggre-
gate sector’s loss distribution” (Acharya et al., 2010: 3). For example, MES can 
be specified to be “the average return of each firm during the 5% worst days for 
the market” (ibid.: 4).75 “A financial system is constituted by a number of banks, 
just like a bank is constituted by a number of groups. We can therefore consider 
the expected shortfall of the overall banking system by [replacing a certain 
bank’s return by; C.H.] the return of the aggregate banking sector or the overall 
economy.76 Then each bank's contribution to this risk can be measured by its 
MES.” (Ibid.: 6f.). 
 SES is measurable because it “increases in the bank's expected losses during 
a crisis” (ibid.: 3). This creates a systemic risk index among banks based on their 
individual contribution to the capital shortfall of the financial system (Acharya & 
Steffen, 2013: 247). The SES measures, and is conceived of as, the propensity of 
a bank to be undercapitalized when the system as a whole is undercapitalized 
(Bernard et al., 2013: 170; Acharya & Steffen, 2013: 248). The measure increas-
es with the bank’s leverage and with its expected loss in the tail (ES) of the sys-
tem’s loss distribution (SES). 
 Acharya et al. (2010: 1) show empirically “the ability of SES to predict 
emerging risks during the financial crisis of 2007-2009”. A lesson for regulators 
might be that financial institutions internalize the cost that affects the financial 
system or its players, respectively (who did not choose to incur that cost which 
results e.g. from a bank’s demise)77, i.e., internalize their externality, if they are 
“taxed” based on their SES (cf. also Poledna & Thurner, 2016). 
 In this stream of literature, systemic risk seems to be (narrowly, see 4.2.) 
ascertained by the dependency between the individual institution and the finan-

75  An empirical extension is given by Brownless & Engle (2011). 
76  The return of the aggregate banking sector can be seen as a weighted sum of the returns of each 

bank (out of a total number of banks) and the weight of each bank is relative to the total aggre-
gated value of the market (it could be interpreted as each bank’s assets divided by the aggre-
gate value of the market). 

77  Of course, distress costs can occur even if a firm does not actually default. 
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cial system or the economy in a state of stress (Bernard et al., 2013: 166). Other 
tail dependence measures alternative to CoVaR and SES exist (cf. Joe, 1997; Juri 
& Wühtrich, 2003; Embrechts et al., 2003; McNeil et al., 2005; Nelsen, 2006): 
e.g., co-exceedances and exceedance correlations between the financial system 
and an individual financial institution.  

2.3.2. Extreme Value Theory (EVT) 

Longin (1996, 2000) is one of the main promoters of EVT and he has advocated 
its use for risk management purposes. As stated earlier, we will not attempt to 
depict EVT in a ‘short summary’ form; cf. Embrechts et al., 1997; Embrechts et 
al., 1999 and the references therein. The key point is that EVT deals with the 
description (rather than the explanation)78 of extremes (maxima, minima, longest 
runs, longest time, …) of random phenomena (Embrechts, 2000: 7). It focuses on 

extreme deviations from the median of probability distributions. It is a territory 
of statistics that is devoted to modeling the maxima of a random variable (e.g., 
the potential extreme profits and losses made by a bank’s portfolio) or to “esti-
mating what happens to a distribution in the far-out tails (i.e., to assessing the 
probability of exceedingly rare events)” (Rebonato, 2007: 167). In its easiest 
form, EVT “yields the canonical theory for the (limit) distribution of normalised 
maxima of independent, identically distributed random variables” (Embrechts, 
2000: 7). “In its more advanced form, EVT describes the behavior of extremal 
events for stochastic processes, evolving dynamically in time and space” (ibid.). 
 In particular, it provides a general foundation for the estimation of the VaR 
for very low-probability ‘extreme’ events (Johansen & Sornette, 2001: 1). In-
deed, EVT can be used to model tail-focused risk measures such as VaR, but 
also ES (Gilli & Kellezi, 2006). EVT is in antagonism to traditional parametric 
statistical and econometric methods that are typically based on the estimation of 
entire densities, and which have been considered ill-suited to the assessment of 
extreme quantiles (especially, 𝛼 > 0.999) and event probabilities (see above; 
Christoffersen et al., 2003: 166). On the one hand, these parametric methods 
implicitly strive to attain a good fit in regions where most of the data fall, poten-
tially “at the expense of good fit in the tails, where, by definition, few observa-
tions fall” (Diebold et al., 1998: 1).79 On the other hand, “seemingly sophisticat-

78  Strictly speaking, we should not call it a theory then, see footnote 15. 
79  This includes, for example, the fitting of stable distributions, as in McCulloch, 1996. 

 

                                                           



54 Part I: Concepts, Model Level and Risk Assessment 

ed non-parametric methods of density estimation, such as kernel smoothing, are 
also well-known to perform poorly in the tails” (ibid.: 1f.).80 By contrast, 
Diebold et al. (1998: 2) underline that EVT has a number of attractive features, 
including: 

• The estimation method is tailored to the object of interest, the tail of 
the distribution, rather than the center of the distribution. 

• An arguably-reasonable functional form for the tail can be formulated 
from a priori considerations (however, see Chapter 7 for the manifesto 
of an outspoken partisan). 

• Moreover, Embrechts (2000) stresses that the main virtue of EVT is 
that it gives the user a critical view on, and a methodological toolkit 
for, issues like skewness, fat tails, rare events, stress scenarios, etc.  

The concerns of EVT are in fact wide-ranging and comprise fat-tailed distribu-
tions, time series processes with heavy-tailed innovations, general asymptotic 
theory, point process theory, long memory and self-similarity (see 2.5.), and 
much else (Diebold et al., 1998). 
 However, although it has been claimed that EVT holds promise for accurate 
estimation of extreme quantiles and tail probabilities of financial asset returns, 
there are also a number of severe pitfalls associated with the use of EVT tech-
niques (Diebold et al., 1998): 

• For example, whereas the EVT literature usually assumes independent 
returns, which implies that the degree of fatness in the tails decreases 
as the holding horizon lengthens, Johansen & Sornette (2001) demon-
strate that this is not the case: “returns exhibit strong correlations at 
special times precisely characterized by the occurrence of extreme 
events, the regime that EVT aims to describe” (ibid.: 1). See also IIIb) 
and IIIc) in 2.4. 

• In the light of widespread complexity, it is also fatal that “non-
linearities can ruin the heavy-tailed modeler’s day” (Resnick, 1998). 
See also Chapter 6 and 7. 

• In addition, the reliance on elusive estimations of tail probabilities pos-
es serious difficulties for the use of extreme value distributions for risk 

80  Cf. Silverman, 1986. 
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management (Johansen & Sornette, 2001). One has to make mathemat-
ical assumptions on the tail model which are very difficult (if at all) to 
verify in practice (Embrechts, 2000). Hence, there is intrinsic model 
risk. See Part I-IV. 

The problem as relevant for the present context – applications of statistical 
methods like EVT in financial risk management – is that “for estimating objects 
such as a ‘once every hundred years’ quantile, the relevant measure of sample 
size is likely much better approximated by the number of non-overlapping hun-
dred-year intervals than by the number of data points. From that perspective, our 
data samples are terribly small relative to the demands we place on them” 
(Diebold et al., 1998: 8). As a consequence, current risk evaluation is more based 
on confidence intervals and tolerance ranges and less on exact tail probabilities. 

2.4. General Appraisal 

Extant systemic risk models and measures are used to predict what happens 
when the system is under stress. Some (CoVaR, SES) are based on standard risk 
measures (VaR and ES), and others (EVT) are designed specifically for tail risks. 
In contrast to VaR, ES, and EVT, SES and CoVaR, as the perhaps most promi-
nent representatives of systemic risk measures or models, were primarily initiated 
for improving the work of regulators (King et al., 2014: 118, 136; Adrian & 
Brunnermeier, 2011: 4). This is not surprising since systemic risk is usually 
defined narrowly and systemic risk in this sense is usually seen as the concern of 
regulators (see Chapter 5.1. for a critical reply).81 
 However, none of the systemic risk models presented hitherto in this thesis, 
be it SES and CoVaR (according to the classical and narrow comprehension of 
systemic risk) or VaR, ES, and EVT (according to the broad use of the term pro-
posed in Chapter 4.2.), explain why the system is under stress or what the causes 
of stress are (Bernard et al., 2013: 177). For example, VaR and ES pose and 
answer a What question and not a Why question. Or in terms of SES and CoVaR, 
a company may indeed be culpable for creating systemic risk or producing a 
certain state (stress) or behavior of the financial system without being under 

81  For example, such traditional systemic risk models serve as a rationale for which institutions 
should be considered systemically relevant or the main policy implication might be that mini-
mum capital standards for banks should be higher than they have been to date. 
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stress when the system is under stress (e.g., consider the role of Goldman Sachs 
or of Fabrice Tourre, VP at Goldman Sachs, during the financial crisis of 2007-
09; ibid.: 178; Le Monde, 2013). Those models hinge on big amounts of data 
(Brose et al., 2014: 369; see also 7.2.) and do not distinguish whether the contri-
bution to potential losses is causal or simply driven by a common factor. They 
are explanatorily impotent (Schwaninger, 2010: 1421).  
 Albeit managing risks is inevitably directed by evidence claims (Renn, 
2008: 4): e.g., what are the causes and what are the effects?, and even though the 
plea for taking dynamics, interrelations and interdependencies in risk modeling 
into account is not new (e.g., Acharya et al., 2013: 204; Thurner & Poledna, 
2013; Helbing, 2010; Stulz, 2008: 62), the literature has not yet amply identified 
and discussed the need for explanatory models (see Appendix A for a defini-
tion/characterization) to describe, quantify and explain systemic risks in and to 
the financial system – especially from market participants’ and not regulators’ 
stance. Accordingly, the second out of four research gaps says the following. 

Research Gap II:   
Lack of understanding of what sort of explanatory models are required 
for banks’ in-house systemic risk management purposes, why they are 
needed, and in what sense existing systemic or extreme risk measures 
and models turn out to be insufficiently explanatory. 

Table 3 summarizes and organizes the different kinds of systemic risk models, 
what purposes they are able to serve and how they should reasonably be catego-
rized.  

2.4.1. Advantages of conventional risk models and measures 

According to McNeil et al. (2005), reasons for using statistical risk models that 
are derived from probability or (profit and) loss distributions (see Chapter 7.2.), 
in general, include: 

1) Losses are the central object of interest in risk management and so it is 
natural to base a measure of risk on their distribution. 

2) The concept of a loss distribution makes sense on all levels of aggre-
gation from a portfolio consisting of a single instrument to the overall 
position of a financial institution. 

  

 

www.ebook3000.com

http://www.ebook3000.org


2. Literature Synthesis, Theoretical Background and Research Focus 57 

Table 3:  Overview of systemic risk models and how they might be classified. 
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3) If estimated properly, the loss distribution reflects netting and diversi-
fication effects. 

4) Loss distributions can be compared across portfolios. 

Yet, none of these reasons require the use of statistical models. Indeed, symbolic 
and logic-based risk modeling, as we are going to invoke and summarize it (Part 
III), provides very similar benefits; however, purged of appealing on 

loss/probability distributions. Furthermore, the latter add additional benefits – for 
example, knowledge reusability, which diminishes the cost of developing risk 
models. See Chapter 19.  

2.4.2. Weaknesses of conventional risk models and measures 

In general terms and as the discussion in Stulz (2008) suggests, there are five 
types of risk management failures:  

1) Failure to use suitable risk metrics 
2) Mismeasurement of known risks 
3) Mismeasurement stemming from overlooked risks 

3.1) Ignored known risks (wrongly viewed as immaterial) 
3.2) Unknown or undetected risks 

4) Failure in communicating risks to top management 
5) Failure in monitoring and managing risks.  

In this dissertation, we will focus on the first three mentioned of these failures in 
turn since 4) and 5) would form the object of another analysis while the problem 
areas 1) to 3) specify what is meant by “the ineffectiveness and inappropriate-
ness of risk models” in this study. They all point to limitations of statistical risk 
measurement techniques. 
 According to the failure to use suitable risk metrics, a risk metric or model 
does not provide the right information to senior or top management, information 
tailored to their needs, not because it is calculated incorrectly, but because, for 
example, it answers the wrong question (which is true for, e.g., VaR; Acerbi & 
Tasche, 2001: 4). Accordingly, this weakness of a risk model would amount to 
its diminished applicability if, on the one hand, it does not pick up the (strategic) 
questions which guide risk management in banking. On the other hand, there 
might be difficulties to interpret model results, because it might be difficult to 
discern the reasoning behind the sophisticated calculations (Boatright, 2011: 8). 
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In this case, the model is perhaps more complicated and (skill-)demanding than 
necessary82 or does not achieve highest levels of transparency in the formaliza-
tions.83 For instance, “due to their [structural; C.H.] complexity,84

 analytical
models are often viewed as ‘black boxes’ that emit ‘correct’ results. Models are 
often accepted or relied upon without sufficient understanding or checks and 
balances.” (Braswell & Mark, 2014: 203). 

The second issue, beheld by Stulz (2008) but which we want to understand 
in slight difference to him, says that risk managers could make a mistake in as-
sessing the likelihood of a large loss, or they could be wrong about the size of the 
loss (the impact), given that the respective risk can be identified and quantified ex 
ante. Or they could use the wrong distribution altogether or may mismeasure the 
correlation across different risks or among the different positions of a bank 
(ibid.). The vulnerability of the bank or of a portfolio to low-probability events 
with extreme consequences, resulting not only from an increase of correlations 
(Stulz, 2008), but also from the mismeasurement, may be critical. Hence, a risk 
model might be poor at assessing and analyzing certain already identified possi-
ble risk events correctly in terms of likelihood and impact although they can 
basically be identified and quantified in advance. 
 Finally, third, a bank’s risk managers may either ignore a known risk, whose 
extent and full implications might remain unclear, “perhaps because of a mistak-
en assumption that it is immaterial, or because of the difficulty of incorporating 
it in the existing risk models” (Stulz, 2008: 62f.). Or a significant risk is “truly 
unknown, or at least completely unanticipated” (ibid.: 63). The corresponding 
weakness of a risk model would be to neglect the installation of new risks and 

82  As Einstein is supposed to have said when asked how complex a theory or a model should be: 
“Everything should be made as simple as possible, but not simpler.” 

83  However, one should not disregard that results of mathematical finance are based on centuries 
of development in mathematical logic and that the conditions under which certain (very) pre-
cise conclusions hold are an integral and crucial part of any theorem. Therefore, from a more 
technical, methodological point of view, another reading of the fact that non-suitable risk met-
rics have been used might be provided: “The Crisis saw numerous examples where ‘practice’ 
fully misunderstood the conditions under which some mathematical concepts or results could 
be applied” (Das et al., 2013: 702; cf. also Angius et al., 2011: 2). As a result, another im-
portant lesson to be learned is to always understand in detail the premises and conclusions of a 
mathematical theorem (ibid.; see Chapter 7).  

84  For example, according to Snowling (2000: 2), ”model complexity” “describes the level of 
detail in the relationships describing the processes in a system. Model complexity is higher in 
models with greater numbers of state variables, parameters and processes, and fewer simplify-
ing assumptions.” 
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some major sources of uncertainty or to be unable to assess risks meaningfully at 
present.85  

Specific weaknesses of extreme and systemic risk modeling 

More precisely, by looking more closely at extant extreme or systemic risk mod-
els and measures, we find that we overall lack good methods of describing and 
measuring systemic and extreme risks (cf. also Helbing, 2013: 57). State-of-the-
art risk analysis still appears to have a number of shortcomings out of which the 
following are addressed. 
 The first and second flaw below correspond to Stulz’s (2008) mismeasure-
ment problems 2) and 3) above. And the third risk assessment issue which is 
approached and tackled in this study pertains to his first overall problem area, 
namely what he baptizes “the failure to use appropriate risk metrics”. 

IIIa) Problem statement: Estimates for probability distributions and parame-
ters describing rare events, including the variability of such parameters 
over time, are often poor as there is not enough and/or no reliable or per-
tinent historical data. Put differently, by relying on historical data, ortho-
dox stochastic procedures tend to be pro-cyclical, in the sense that they 
extrapolate future movements based on past experience; future events, 
however, that are “diverse” from the available data (Collier, 2008: 233).86  

 Systemic explanation: The underlying structure of the financial system 
can change dramatically, especially during times of stress (Liechty, 
2013: 163; see Chapter 6). For such cases, a statistical model would get 
it horribly wrong. On the one hand, the rareness of the events under 
study (extreme or systemic events; see Chapter 4) makes it virtually 
impossible to estimate these probabilities exclusively based on past da-
ta (Litzenberger & Modest, 2010: 97). On the other hand, the changing 
nature of financial systems and crises (e.g., due to the rapid pace of in-
novation) poses huge challenges for risk modeling, especially if solely 

85  Some experts (e.g., Kuritzkes & Schürmann, 2010: 104) would probably like to add a further 
category of un-knowable risks. However, by definition, little can be done to learn about or 
manage the unknowable. 

86  It is a commonplace that the information we can gain from the past indicates only what observ-
ers expect in the future, not what the future will be. It is a problem, however, that “[t]hese pre-
dictions, based on this information, affect real movements, although nobody knows how” (Es-
posito, 2011: 138; cf. also Lucas, 1976). 
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with recourse to data and without regard to the structure of the system 
and current trades (ibid.). 

IIIb) Problem statement: The likelihood of coincidences of multiple unfortu-
nate, rare events is often underestimated (e.g., Thurner, 2012; French et al., 
2010: 45; Perrow, 1984), even though their interaction dynamics may lead 
to amplification effects and feedback loops (such as procyclicality or posi-
tive feedback loops; cf. also Daníelsson et al., 2001: 3).  

 Systemic explanation: Systemic or financial risk moves in a not fully 
random way (contrary to the works following the pioneers of classical 
finance: Bachelier, 1900; Black & Scholes, 1973) because of forms of 
dependence (Battiston et al., 2016), where the past influences the fu-
ture non-linearly, i.e., not in the sense of continuity: natura non facit 
saltus (Esposito, 2011: 150; von Linné, 1751/2012). Interconnections 
(e.g., of the players in the market) and correlations (e.g., of risks or 
bank positions, also correlations along many dimensions) are some-
what opaque or may be poorly understood as their precise nature may 
be entirely different in a stressed scenario than under ‘normal’ condi-
tions (Acharya et al., 2013: 204). Within finance, correlations are not 
only difficult to assess, as they can change over time, at times abruptly 
(Stulz, 2008: 62), but overall correlations are very badly understood 
due to the falsity of some commonly held views on correlation 
(Embrechts et al., 1998). In complex systems, we are dealing not only 

with interactions among the components at the same level. The charac-
ter of complex systems is a consequence of interactions of system parts 
with each other; interactions of parts of the system with the system as a 

whole; and interactions of the (open) system with other systems with 

which it intersects, within which it is nested, and with which it may 
share interpenetrating components (Byrne & Callaghan, 2014: 173). 
Eventually, we have to look at the forest (system) rather than the trees 
(system elements), and too few really do that (Sornette, 2009: 15). 

IIIc) Problem statement: Common assumptions underlying established ways 
of thinking are not questioned enough. In particular, conventional sta-
tistical risk assessment approaches not only assume that probabilities 
can be expressed by numerical values and that those values can be ac-
curately ascertained, which is already challenged by the two preceding 
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points, but also the following is often taken for granted (cf. Mandelbrot 
& Hudson, 2008: 85ff.):87 First, statistical independence:88 Two events 
are said to be independent if the occurrence of one does not affect the 
probability of the other.89 This implies, for instance, that any infor-
mation that could be used to predict tomorrow’s market price is con-
tained in today’s price, so there would be “no need to study the histori-
cal charts” (ibid.: 87). This supposition lies behind most statistical 
narratives (Blyth, 2010: 458). A second delicate supposition is statisti-
cal stationarity: According to this principle, the statistics (statistical 
properties such as mean, variance, autocorrelation, etc.) are independ-
ent of the time origin.90 And third, many risk models assume a normal 
distribution of data, returns, prices, etc. This means that changes follow 
the proportions of the so-called bell curve (because the normal distri-
bution is the distribution whose density function (which defines the 
distribution) is epitomized by the famous bell or Gaussian91 curve), a 

87  For example, Modern Portfolio Theory assumes that price changes follow a so-called Browni-
an motion (Mandelbrot & Hudson, 2008: 87). From this assumption, independence, statistical 
stationarity and a normal distribution can be derived (ibid.). Many other problematic assumptions 
that accompany probability theory exist and are well-documented. For example, the so-called 
Principle of Indifference, given a canonical formulation by Laplace in 1814 and which is prom-
inent in decision theory, suffers from a number of grave defects (Salmon et al., 1992: 74-77) and 
may lead to inconsistent probability assignments (Frigg et al., 2015: 3999f.; Halpern, 2005: 18).   

88  This shall not exclude that probability theory has also been most fruitfully applied to series of 
dependent trials, i.e., to cases where past events do influence present probabilities and which 
constitute Bayesianism.  

89  More precisely, if, for two events A and B, 0 < P(A) and 0 < P(B), then, A and B are statistical-
ly independent if, and only if: P (A│B) = P (A). Hájek & Hall (2002) point to two cautions: 
firstly, the locution “A is independent of B” is somewhat careless, encouraging one to forget 
that independence is a relation that events, variables or sentences bear to a probability function. 
Secondly, this technical sense of “independence” should not be identified unreflectively with 
causal independence, or any other pre-theoretical sense of the word. 

90  “If you assume coin tosses decide prices [a hypothetical mechanism generating price changes, 
C.H.], the coin does not get switched or weighted in the middle of the game. All that changes 
are the number of heads or tails as the coin is tossed; not the coin itself” (Mandelbrot & Hud-
son, 2008: 87). Please note that the fact that this assumption does make sense in a coin tossing 
game does not entail that the same holds for financial systems where we do not find such a 
mechanism for price changes. See Chapter 6.3. Cf. also Gottman, 1981: Chapter 8. 

91  The normal distribution was discovered in 1733 by the mathematician Abraham de Moivre as 
an approximation to Jacob Bernoulli’s binomial distribution when the number of trials is large. 
The distribution is more usually associated with the name of Gauss who derived it in 1809, in 
his Theoria motus corporum coelestium, as the law of errors of observations, with particular 
reference to astronomical observations (Bulmer, 1979: 108).  
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symmetrical graph that represents a probability distribution, – most 
changes are small and extremely few are large, in predictable and rap-
idly declining frequency. 

 This is what theory, among other things, presupposes in order to allow 
for the emergence of ‘elegant and sophisticated’ risk models. However, 
in reality, life is more complex. 

Surely, risk models and some of their shortcomings – especially, the inadequacy of 

objective interpretations of probability for many situations in risk management; 
black swans that cannot be measured / predicted, etc.; Taleb, 2007a; Rebonato, 
2007; Pergler & Freeman, 2008; Pergler & Lamarre, 2009; Helbing, 2010 – have 
been widely discussed in the literature and even though more and more attention 
has been devoted to systemic and extreme risks in the aftermath of the financial 
crisis that erupted in 2008, these three deficits have not yet been amply debated; 
nevertheless, they refer to not less pressing problems. On the contrary, it is one 
of the main contributions of this study to show that they can be exacerbated to 
provide evidence for the conceptual inadequacy of probability-based models of 
systemic and extreme risks (Chapter 7). Albeit our argument directs the spotlight 
not on probability theory or statistics itself, but on its scope, it will nonetheless 
impair the trustworthiness of many risk model results dramatically and, there-
fore, this is nothing short of a methodological disaster, given that probabilistic 
forecasts of extreme events are used in many places and all the time. Hence, the 
third gap can be formulated as follows. 

Research Gap III:   
Minimal insights on linking IIIa)-c) with the fundamental inadequacy 
of probability theory as a foundation for modeling systemic and ex-
treme risk in a banking context. 

2.5. Excursus: Benoît Mandelbrot's Plea for Fractal Methods   

The mathematician Benoît Mandelbrot, a protagonist of chaos theory, elaborated 
a flourishing mathematical systems theory and asserted to have already given a 
satisfactory reply to the three challenges IIIa)-c). Therefore, we will examine in 
the following briefly to what extent our third research gap can be closed by 
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drawing on Mandelbrot's fractal methods.92 Fractal (from the Latin “fractus”) is 
the term coined by Mandelbrot (1983, 1968) and used to describe curves, sets or 
objects with the following properties: “1) fine structure (detail at all scales, how-
ever small); 2) self-similarity (made up of small scale copies of itself in some 
way); 3) classical methods of geometry and mathematics are not applicable; 4) 
‘size’ depends on the scale at which it is measured; 5) a simple recursive con-
struction; 6) a natural appearance” (Falconer, 2013: 7).93 The concept of fractals 
is related to, but distinct from, the notion of hierarchy in systems theory (e.g., 
Simon, 1962).94 
 Mandelbrot's work is driven by the insight that irregular objects should be 
regarded as the norm rather than the exception, which includes that our compre-
hension of how markets work, how prices move and how risks evolve has been 
very limited. With regard to our challenge IIIc), he found that critical assump-
tions underlying standard financial (Mandelbrot & Hudson, 2008: Part I; Engle, 
1982; Mandelbrot, 1963b) and risk models (Mandelbrot & Hudson, 2008: 272-
275) are wrong, by pointing at conspicuous and strong symptoms of non-
independence (The Joseph Effect, a long-term memory of time series)95, non-
stationarity (“Market time is relative”; ibid.: 22)96 and non-normality (The Noah 

92  Schwaninger (2011: 755) elucidates that several mathematical systems theories have been 
elaborated, e.g., ma-thematical general systems theory (Klir, Pestel, Mesarovic and Takahara), 
as well as a whole stream of theoretical developments which can be subsumed under the terms 
“dynamical systems theory“ or “theories of non-linear dynamics“; for example, catastrophe 
theory (Zeeman, 1977; Thom, 1975), chaos theory (Lorenz, 1963) and complexity theory 
(Kauffman, 1993). Under the latter, branches such as the theory of fractals are subsumed. 

93  “Is there a more precise definition of a fractal? There has been considerable debate about this 
ever since the term was introduced. Mandelbrot originally proposed a technical definition in 
terms of dimensions, but this was abandoned because there were plenty of objects that did not 
fit in with the definition but which clearly ought to be considered fractals. The current consen-
sus is to regard something as a fractal if all or most of the properties listed above […] hold in 
some form.” (Ibid.: 8). 

94  Introductions to fractals with some mathematical details are found in Sayama (2015) and 
Peitgen et al. (2004). 

95  “Price changes are not independent of each other. Research over the past few decades, by me 
and then by others, shows that many financial price series have a 'memory', of sorts” (ibid.: 
11f.). For example, “[s]ometimes a trend will continue just because traders expect (or fear) that 
it will” (Lowenstein, 2002: 72). Furthermore, Mandelbrot showed that dependence can be infi-
nitely long. 

96  “[…] I came to think of markets as operating on their own 'trading time' – quite distinct from 
the linear 'clock time' in which we normally think. This trading time speeds up the clock in pe-
riods of high volatility, and slows it down in periods of stability.” (Mandelbrot & Hudson, 
2008: 22). 
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Effect, the fatter tail syndrome)97. Mandelbrot tackled those symptoms one by 
one: first, by incorporating heavily non-Gaussian marginal distributions (1963a, 
b), then by focusing on strong long-term dependence (1965), and finally by 
bringing those two features together by introducing the new notion of 
multifractality (Mandelbrot & van Ness, 1968; and since). 
 Fractal and multifractal geometry98 is the study of roughness, of the irregu-
lar and jagged (see Figure 3). Its objects are not reduced to a few perfectly sym-
metrical and smooth shapes as in Euclidean geometry. Instead, it explores the 
asymmetry, roughness, and fractal structures of nature, which Mandelbrot regards 
as no mere imperfection from some ideal, but indeed as the very essence of many 
natural objects. Based on Falconer’s (2013: 7) definition or characterization of 
fractals, they can be said to be objects that have structure on many different 
scales; the same shapes repeat at larger and smaller sizes. More precisely, fractal 
processes are self-similar and invariant in distribution with respect to changes of 
time and space scale.99 The occurrence of self-similarity, roughness and 
fractality can be highlighted in a wide range of settings: “clouds are not spheres, 
mountains are not cones, coastlines are not circles”, (Mandelbrot & Hudson, 
2008: 124), and financial markets do not harbor smooth bell, but much wilder 
curves. Small portions of a coastline or a cloud or a brick’s fractured surface 
resemble larger parts, and these larger parts in turn resemble the whole; irregular 
structures in nature are often “self-similar” in this way. 

Impact on finance and risk management  

The power of Mandelbrot’s approach comes from its unique ability to “express a 
great deal of complicated, irregular data in a few simple formulae“ (Mandelbrot & 

97  “Price movements do not follow the well-mannered bell curve […]; they follow a more violent 
curve [e.g. obeying a so-called 'power law' where the tails do not become imperceptible, see 
below; C.H.]”; ibid.: 20. 

98  Mandelbrot (1997a) studies, for example, financial charts as geometric objects. 
99  The self-similarity index or scaling coefficient is a non-negative number denoted by H, the 

Hurst index. For more details, cf. the references to Mandelbrot’s work. The most important in-
terpretation of H is that “it reflects the statistical predictability, or long-term dependence of 
phenomena that arise as a combination of many competing effects” (Falconer, 2013: 100). For 
instance, if H (which is defined between 0 and 1) lies between 0.5 and 1, then there is a posi-
tive correlation between the past and future (ibid.). Yet, this interpretation is tremendously 
problematic not so much due to a superficial difficulty of estimating Hurst exponents from em-
pirical data, but because this inductive procedure presupposes a uniformity of nature which is 
very critical (see Chapter 7). 
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Figure 3:  Images of three different fractals: two pure mathematical objects – the Sierpinski triangle 

(left) and the Mandelbrot set (center) – and a natural fern, which is only approximately 
fractal.   
If you zoom in on one of these fractal objects, it will look similar or exactly like the orig-
inal shape. 

Hudson, 2008: 117). It describes the observed behavior of financial markets (e.g., 
capital or equity market returns) in a more accurate way that encloses, for exam-
ple, jumps, heavy-tails, and skewness (measure of asymmetry of the probability 
distribution) observed in the real financial world, which, euphemistically, are much 

too often considered as 'anomalies' by standard theory; what made Mandelbrot 
(1983) speak of “suicidal” statistical methodologies.  
 Mandelbrot adopts a complexity perspective as it is suggested in this study 
as well (although chaos theory is not countenanced, see 6.2.2. and thereafter). 
With regard to our challenge IIIb), it should, therefore, be noted that his work in 
finance has been largely devoted to the roles of discontinuity and closely related 
forms of concentration (Mandelbrot, 1997b): Even in the absence of actual 
jumps, market price changes, which cause market risk, do not occur evenly over 
time, but tend to be concentrated in short ‘turbulent’ periods. One of the lessons 
of this finding for risk management is that the procedure of eliminating an op-
tion’s risk through continuous dynamic hedging is incompatible with fractal 
discontinuities (Mandelbrot & Taleb, 2010: 54; Taleb, 2007a). 
 All things considered, it has been argued that Mandelbrot's innovative ideas 
enrich risk management research as well as present an opportunity to profession-
als in the territory of banks’ risk management to improve their quantitative and 
qualitative tools (e.g., Mandelbrot & Taleb, 2010). Some of the implications of 
his work for both risk management in banking and this study include: 
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• Given empirical evidence, fractional or self-similar processes like fraction-
al Brownian motion, a generalization of Brownian motion allowing for 
dependent increments (Mandelbrot & van Ness, 1968), have advantages 

over simplistic or ordinary Brownian motion models for ‘measuring’ or 
(better) estimating the magnitude of risks in actual financial systems more 
reliably (e.g., Sun et al., 2009).100 This is the case because the former ex-
hibit both the Joseph Effect and Noah Effect which characterize modern fi-
nancial systems and, therefore, because they give up the common, but at 
least contestable, if not untenable, suppositions behind the latter (Man-
delbrot & Hudson, 2008: 87ff.; Mandelbrot, 1997a). Yet, accounting for 
some non-normal distribution forms or the Noah Effect and the Joseph Ef-
fect is undeniably a valuable contribution to enhance risk modeling capa-
bilities for real-world applications, but Mandelbrot’s approach might turn 
out to be too short-sighted: dynamics and feedback in complex systems 
deserve further investigation and wilder distribution forms than those 
that follow from fractal models are conceivable. See Chapter 6 and 7. 

• A concrete application of fractal methods to risk management has been 
proposed by Mandelbrot & Taleb (2010) to evaluate the robustness of a 

portfolio over an entire spectrum of extreme risks (Diebold et al., 2010: 26). 
They expect of a stress test analysis complemented with fractal methods 
that it will give us a much clearer idea of a bank’s risks by expressing 
them as a series of possibilities. For more details, cf. their article; for an 
overview of scenario analysis in general, see Chapter 11 and 12. 

100  The so-called Brownian movement of very small particles suspended in a liquid, caused by 
accidental bumps from the liquid’s moving molecules, can be seen in the light of a very general 
‘random walk’ problem (cf. e.g. Gottman, 1981: 75 and Hughes, 1995; Weiss, 1994.). In other 
words, Brownian motion can be thought of as a random walk with infinitely many infinitesi-
mally small steps and a random walk, in turn, is basically a mathematical formalization of a 
path that consists of a succession of such random steps, which has had serious applications in 
many fields. There are different types of random walks: e.g., so-called lattice random walks, 
continuous-space short jumps / discrete time, discrete-space short jumps / continuous time, 
continuous space & time (diffusion), or non-stationary random walks (i.e., with shrink-
ing/growing steps), etc.; the first four types lie in the domain of the celebrated Central Limit 
Theorem (see footnote 222). It is essential to bear in mind that Pearson (1905) who originally 
proposed the term “random walk” seems to have been referring to pure and genuine random-
ness (by the phrase “through any angle whatever”; cf. also Suppes, 1984: 34). As stressed in 
Chapter 6, another kind of randomness exists, demanding a different (compared to the work by 
Bachelier, 1900, for example) and special treatment. (This distinction goes, of course, far be-
yond the truism that there is no true attainable randomness in practice, but only in theory.) 
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• The essential property of fractals, their self-similarity can be translated 
into the jargon of probability distributions, which are central to con-
ventional risk assessment (see Chapter 7): There is one single class of 
probability distributions which are scale-free (i.e., they look like the 
same at all scales) or self-similar, namely so-called power law distribu-
tions. And the study of power laws has had a strong impact on risk 
management in the sense that the power law has been found to be a 
good description of the heavy tails of many distributions (of losses) 
that are encountered in practice (Hull, 2010: 198; Helbing, 2010; Man-
delbrot & Taleb, 2010; Sornette, 2009; see above 2.2.2. and Chapter 
7.2. below). 

• For many power laws means or variances do not exist (see the next 
sections). The moral of this story for risk management is not only that 
we should not take averages for granted; but that, in situations de-
scribed by such power laws, reporting a mean from a finite set of data, 

although it is mathematically well-defined for this sample, can be be-
wildering, in the sense that it is not an expression of a valid generaliza-
tion (which is a problem because most of the time when we describe a 
situation, we use an average to make a general statement, not about the 
sample, but about the population). While the more data we get, the bet-
ter our estimate is for an average if this mean of a random variable x 
exists; big data is delusive when a mean does not exist, which invades 
the citadel of conventional and, thus, data-driven risk assessment. See 
Chapter 6, 7 and 8 for a follow-up. 

Some first remarks on power laws 

Tout court, a power law is a function or a mathematical relationship of this 
form:101  

𝑝𝑝 (𝑝𝑝)  =   𝐴𝐴 × (
1
𝑝𝑝

)𝐷  =   𝐴𝐴 𝑝𝑝−𝐷 

101  At this point, it is important to differentiate between “p” and “P”. p in the formula here is a 
probability distribution function while the capital letter would denote a (complementary) cumu-
lative distribution function (= fraction that are equal to or greater than x), for which a power 
law must be defined in a slightly different way:  

 P (x) = [A/(D-1)] x - (D-1). 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


2. Literature Synthesis, Theoretical Background and Research Focus 69 

This mathematical relationship is called a power law because the variable x is 
raised to the (fixed) power –D. Through data analysis the exponent D and the 
constant A can be determined.102 x can be, for example, the frequency of occur-
rence of unique words in a text like the novel “Moby Dick” by Herman Mel-
ville.103 We then ask ourselves how the distribution of the word frequencies (a 
histogram) looks like or how likely it is that a certain word has frequency x. 
Around 210000 words in total and 18855 different words appear in Moby Dick. 
Some of them appear very frequently like “the”, which can be found 14086 
times, or “of” (6414 times), while other words are much rarer, all in all indicat-
ing a wide range of frequencies or data. A histogram of word frequencies for 
Moby Dick would tell us that 9161 different words appear only once, there are 
around 3200 words that appear twice and there are fewer words still that appear 
three times, four times and five times. The most common frequency is thus 1 and 
then it drops off very quickly. Accordingly, the probability of a randomly chosen 
(in the genuine sense) word from a list of unique words in Moby Dick to appear 
only once is almost 0.5. Circa 17% of the words appear only twice and so on. Or 
by using the formula from above, if we suppose (or ascertain through meticulous 
data analysis), for instance, that D is approximately 1.95 and A is approximately 
0.59 and if we are interested in x = 10 (i.e., what is the probability that a word 
has the frequency 10), then we obtain: p (10) ≈ 0.59 (10-1.95) ≈ 0.0066. This 
means that there are around 18800 different words that appear in Moby Dick and 
if we select one of these 18855 words at random, then the probability that this 
word appears 10 times in the novel is very small, namely 0.0066.  
 Power law distributions look similar to exponential or geometric functions 
and different from normal distributions (see 7.2.). It is the special property of 
power laws though that they are scale-free or self-similar. Furthermore, they 
possess heavy or long tails, i.e., it takes a relatively long time for power law 
distributions before their tails get so close to zero that they become practically 
indistinguishable; power law distributions decay and get smaller, but linger for a 
long time (compared to bell curves or the curves of exponential functions that 
decay much more quickly in the tails, see Figure 17). The superscript D (also 

102  The superscript D is given by the slope of the line on a log-log plot. A can be calculated from 
the intercept. Powers of numbers are closely related to logarithms (Falconer, 2013: 44). 

103  The Moby Dick data can be obtained at http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm 
(20/11/15). This data is analyzed and discussed in Clauset et al., 2009. 
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referred to as the ‘scaling parameter’) characterizes the nature of the tail; the 
scaling parameter typically lies in the range 2 < D < 3 (Clauset et al., 2009). For 
D ≤ 2, the mean of x does not exist and if D ≤ 3, the standard deviation (= a 
measure of average departure from the mean) of x is theoretically not defined 
(Sornette, 2009: 2). Mandelbrot argued, based on his observations of stock and 
real asset price movements, that a power law distribution would characterize 
them better (see also 7.2.). Power laws are often viewed as ‘signatures’ of specif-
ic mechanisms, namely, critical phase transitions (Bak, 1996) and preferential 
growth (Barabási, 2002), but also many others would be to name (some multipli-
cative processes that can yield power laws; or optimal distribution networks; etc.). 
Yet, real objects only behave as fractals over a restricted range of scales – “we 
call this the range of fractality” (Falconer, 2013: 49) or, put differently, few 
empirical phenomena in practice obey power laws for all values of x (Clauset et 
al., 2009: 662). 

Résumé 

In partial response to the need for explanatory risk models in the sense of 
Schwaninger (2010), expressed in research gap II, it is noteworthy that Man-
delbrot's fractal methods are less a tool for prediction of, e.g., price changes 
(and, hence, the development of (market) risks), but rather an enabler of a better 
understanding of the variables that drive risk factors (Mandelbrot & Hudson, 
2008: 121ff.; Mandelbrot, 1963a). 
 This being so, we would basically embrace the insights that have been 
gained by Mandelbrot and his fellows. However, we do not share a common 
ground, there is a principal disagreement (see also Conjecture 4): While Man-
delbrot calls himself a true believer in the power of probability – “probability is 
the only tool at our disposal” (Mandelbrot & Hudson, 2008: 30) –, this study will 
be more radical and do nothing less than to refute the usefulness of probabilistic 
reasoning in the field of risk management (see Chapter 7). Thus, even though 
Mandelbrot focuses much of his work on dealing with the objections IIIa)-c), he 
misses to link them with the fundamental ineptness of probability theory as a 
theoretical framework for modeling systemic and extreme risk.  
 Moreover, if this fundamental inadequacy can be shown, there arises the 
need for developing models of risk that are not probabilistic in nature. Therefore, 
in terms of Part II and III of this thesis, one further research gap stands out. 
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Research Gap IV:   
Knowledge deficits concerning risk models that do not rely on a specif-
ic notion of uncertainty (such as in probabilistic terms), but that are 
based upon alternative measures of uncertainty. 

The research gaps I to III, which have been identified and motivated in the pre-
vious sections, and IV remain to be closed and, therefore, they are addressed by 
the successive research questions. 

 



  
 
 

 

3. Research Questions 

Based on this literature synthesis, this dissertation sets out to contribute to the 
existing literature by answering two overarching research questions RQ1 and 
RQ2 throughout this dissertation. 

RQ1:  
Are the taken-for-granted quantitative risk assessment and manage-
ment approaches, including VaR, CoVaR, ES, etc., effective; if not, 
under what conditions are they useless and do become themselves a 
risk object for banks? 

RQ2:  
How can the measurement and management of systemic or extreme 
risk be improved to compensate for the shortcomings of conventional 
quantitative approaches and to account for the financial system’s dy-
namic complexity?    

Questions of how to increase the effectiveness with which systems serve their 
purposes are singled out as central in the so-called Systems Age (Ackoff, 1974: 
18). RQ1 is central in Part I, RQ2 in Part III, and Part II represents an indispen-
sable stepping stone between the response to RQ1 on the one hand and RQ2 on 
the other. The final Part IV serves as a concluding paragraph and embeds the 
preceding study in a larger context or system. 
 Pursuing RQ1 properly requires to raise certain more specific or sub-
questions that guide our research activities in the remaining chapters of this Part 
I, in order to operationalize the objectives set out in the Introduction and to close 
the research gaps I (in terms of concept clarification and refinement), II (in terms 
of the need of explanatory models), and III (in terms of the objections IIIa)-c)), 
respectively.  
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Sub- or Specific Guiding Questions:   

RQ1.1: What is an adequate concept of risk in the realm of banking?  
 Answered in Chapter 4.1. 

RQ1.2: What is an adequate concept of systemic risk in the realm of 
banking? 
 Answered in Chapter 4.2. 

RQ1.3:  Why should banks (and not only regulators) take account of, and 
try to deal with, systemic risks? 
 Answered in Chapter 5.1. 

RQ1.4:  What are concrete systemic risk scenarios for banks? 
 Answered in Chapter 5.2. 

RQ1.5:  What is an adequate concept of complexity for examining the 
suitability of quantitative risk assessment and management ap-
proaches and how can it be applied?  
 Answered in Chapter 6.1. and 6.2. 

RQ1.6:  Wherein lies the complexity of modern financial systems and of 
problems of risk assessment therein? 
 Answered in Chapter 6.3. 

RQ1.7: To what degree is error of risk measurement averted when the da-
ta from complex systems is treated statistically?  
 Answered in Chapter 7. 

RQ1.8: In what sense point the objections IIIa)-c) in the literature to the 
fundamental inadequacy of probability theory as a foundation for 
modeling systemic and extreme risk in a banking context? 
 Answered in Chapter 7. 

RQ1.9:  In what sense and why are existing systemic or extreme risk 
measures and models insufficiently explanatory? What sort of ex-
planatory models are required for banks’ in-house systemic risk 
management purposes? 
 Answered in Chapter 8 and Part III. 

By ventilating these questions we construct this first of four pillars of the disser-
tation. 

 



4. On an Adequate Concept of Risk and Systemic Risk in
the Realm of Banking

The purpose of this chapter is to outline and discuss different concepts of risk 
(4.1.), systemic risk (4.2.), and to define a proper meaning of the two terms in the 
realm of banking. This is essential as the central research question RQ1 revolves 
around quantitative risk assessment and management approaches and it should 
be clear what the object of interest, of assessment and management endeavors is. 

4.1. The Notion of Risk 

In non-technical contexts and contexts of common parlance, the word “risk” 
refers, often rather vaguely, to situations in which it is possible but not certain 
that some undesirable event will occur (Hansson, 2011; Heinemann, 2014).104 
More precisely, the philosopher Sven O. Hansson distinguishes five particularly 
important and more specialized uses and meanings of the term, which are widely 
used across academic disciplines and/or in everyday language (Hansson, 2011). 

1) risk = an unwanted event which may or may not occur.
An example of this usage is: “The risk of a financial collapse is vast.”

2) risk = the cause of an unwanted event which may or may not occur.
An example of this usage is: “Subprime lending is a major risk for the
emergence of a housing bubble.” Both (1) and (2) are qualitative sens-
es of risk. The word also has quantitative meanings, of which the fol-
lowing is the oldest one:

3) risk = the probability of an unwanted event which may or may not occur.

104  The origin of the concept of risk is not clear. Etymologically, the term is, among other things, 
derived from the Greek word “rhiza” which can be translated with “cliff”, supporting the above 
negative mode of explanation, and from the Latin vulgar expression “risicare” / “resecare”, 
meaning “to run into danger” or “to wage / to hazard”. Cf. Heinemann, 2014: 59. 
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This usage is exemplified by the following statement: “The risk that a 
financial collapse will occur within the next five years is about 70%.”  

4) risk = the statistical expectation value of an unwanted event which may 
or may not occur.  
The expectation value of a possible negative event is the product of its 
probability and some measure of its severity. It is common to use the 
total amount of monetary costs as a measure of the severity of a finan-
cial crash. With this measure of severity, the “risk” (in sense 4) laden 
with a potential financial collapse is equal to the statistically expected 
number of monetary costs. Other measures of severity give rise to oth-
er measures of risk.105  

5) risk = the fact that a decision is made under conditions of known prob-
abilities (“decision under risk” as opposed to “decision under uncer-
tainty”).106 

All concepts of risk have in common what philosophers call contingency, the 
distinction between possible and actual events or possible and chosen action 
(Renn, 2008: 1). In addition to these five common meanings of “risk”, according 
to Hansson (2011), there are several other more technical meanings, which are 
well-established in specialized fields of inquiry. With regard to economic and 
particularly relevant analyses for the purposes of this study, nota bene that the 
current debate on risk resembles a Babylonian confusion of tongues. The present 
situation is characterized by many weakly justified and inconsistent concepts 
about risk (Aven, 2012: 33). Some of the many different definitions that are circu-

105  “Although expectation values have been calculated since the 17th century, the use of the term 
‘risk’ in this sense is relatively new. It was introduced into risk analysis in the influential Reac-
tor Safety Study, WASH-1400, (Rasmussen, 1975).” (Hansson, 2011). Today, Hansson (2011) 
regards it as the standard technical meaning of the term “risk” in many disciplines. Some risk 
analysts even think that it is the only correct usage of the term (ibid.). 

106  “Most presentations of decision theory work from Luce & Raiffa’s (1957) [building on Knight, 
1921; C.H.] classic distinction between situations of certainty (when the consequences of ac-
tions are known), risk (when the probability of each possible consequence of an action is 
known, but not which will be the actual one) and uncertainty (when these probabilities are un-
known)” (Bradley & Drechsler, 2014: 1229). 

 This taxonomy has also had a major impact on other literature streams. For example, the 
literature of management science on risk and uncertainty typically distinguishes between risks 
of two types: risks with known probabilities (“risk proper”) and risks with unknown probabili-
ties of the outcomes (“uncertainty”). Cf., e.g., Abdellaoui et al., 2011; Van de Kuilen & Wak-
ker, 2011; Zimmermann, 2014. 
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lating are triaged and a subsumption system for them is given in Table 4. The 
purpose of this overview is to lay out the variety of material risk notions, rather 
than to claim that the categories proposed are exhaustive or mutually exclusive. 
 In light of this ambiguity, some notes on the epistemology of risk are in 
order to escape possible snares before we will deduce our own definition of risk. 

The epistemology of risk 

When there is a risk, there must be something that is unknown or has an un-
known outcome. Therefore, knowledge about risk is knowledge about lack of 
knowledge (Hansson, 2011). This combination of knowledge and lack thereof 
contributes to making issues of risk difficult to grasp from an epistemo-logical 
point of view. 
 Second, it is sensible to acknowledge that risk not simply refers to some-
thing unknown, but to draw a conceptual framework distinguishing between the 
known, the unknown, and the unknowable (“KuU” as it is labeled by Diebold et 
al., 2010). Accordingly, Kuritzkes & Schürmann (2010: 104) call a risk known 
(K) if it can be identified and quantified ex ante; unknown (u) if it belongs to a 
collective of risks that can be identified but not meaningfully quantified at pre-
sent;107 and unknowable (U) if the existence of the risk or set of risks is not antic-
ipatable, let alone quantifiable, ex ante. Nota bene that there is no sharp defini-
tional line to be drawn between these classes, maybe leaving the KuU classes 
lying along a continuum of knowledge. 
 Third, things are even more confusing because even “known” risks (in the 
sense of Kuritzkes & Schürmann, 2010) contain uncertainty: “[…] as recent evi-
dence coming from the financial markets painfully shows, the view according to 
which a ‘known probability distribution’ contains no uncertainty is not quite right” 
(Fedel et al., 2011: 1147).108 The authors strengthen their assertion as follows 
(ibid.): Suppose a die is being rolled. One thing is to be uncertain about the face 
that will eventually show up (a “known” risk). One quite different thing is to be 
uncertain about whether the die is fair or unbiased (is the ostensibly known risk 

107  The unknown might, therefore, also be knowable insofar as there (will) exist mechanisms that 
allow transforming the unknown into the known. These mechanisms can be either known or 
unknown. It is often unknown whether a risk or circumstance is a “knowable unknown” or an 
“unknowable unknown”, which might remind the reader of Donald Rumsfeld’s dictum of 
known and unknown unknowns – another demarcation line. 

108  Ellsberg (1961) speaks of the ambiguity of a piece of information. 
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Table 4:  Classification system for risk definitions and characterization of different risk definition 
categories.109 

 

109  x: yes, o: no, x?: answer depending on the meaning of the terms or it is not specified. A similar, 
but not fully satisfactory summary is found in Aven (2012: 37). 

Issue R = EV R = P V OU R = V 
Definition Risk is the expected 

value 
Risk is (known) 
probability or 
objective / measurable 
uncertainty 

Risk is volatility 
around the mean 

Examples where this 
concept is found 

- De Moivre, 1711 
- Rasmussen, 1975 
- Adams, 1995 
- Mark & Krishna, 

2014 

- Haynes, 1895  
- Knight, 1921 

(»risk« proper) 
- Luce & Raiffa, 

1957 

- Markowitz, 1952 
- Sharpe, 1966 
- Rajan, 2006 
- Cecchetti, 2008 
- Saunders & 

Cornett, 2010 
- Esposito, 2014 

Literature  
Stream 

- Classical 
Economics 

- Decision / Safety 
Analysis 

- Modern Economics  
- Rational Choice 

Theory 
- Statistics  

- Economics and 
Finance 

- Insurance 
Mathematics 

Criterion R = EV R = P V OU R = V 
Risk is defined 
quantitatively X X  X  

Risk is a qualitative 
concept O O O 

Risk exists objectively 
(is subjective)  

X 
(X?) 

X 
(X?) 

X 
(O) 

Risk balances 
different attributes 
(e.g., consequences 
and likelihood) 

X O O 

Reference to 
probability calculus  X X O 

Risk relates to 
undesirable 
consequences / 

  

X? O O 

Allows for distinction 
between the concept 
and how to measure / 
operationalize it 

O/X? O X? 
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R = (Si, Pi, Ci) R = C R = U R = U&C 
Risk is equal to a 
triplet of possible 
scenarios, their 
probability and the 
severity of their 
consequences 

Risks are the possible 
negative consequences 
of agents’ own 
decisions or actions 

- Risk is uncertainty 
- Risk is the effect of 

uncertainty on 
objectives 

Risk is the real or 
realistic possibility of 
a negative, (very) rare 
and uncertain event 
with serious or even 
extreme consequences 

- Kaplan & Garrick, 
1981 

- Sheffi, 2005 

- Nida-Rümelin, 
2002 

- Luhmann, 1991 

- Keynes, 1937 
- McNish et al., 2013 
- Gronemeyer, 2014 
- Heinemann, 2014 
- ISO, 2009 
- Helbing, 2013 

- Steigleder, 2012  
- Aven & Renn, 2009 
- Taleb, 2007a 
- Stulz, 2008  
- Power, 2009 
- Mikes, 2011 
- Definition used 

here 

Engineering - Ethics 
- Luhmann’s System 

Theory 
- Common parlance 

- (Strategic) 
Management 

- Ethics in Finance 

- Critical Finance and 
Management 

- Ethics in Finance 

R = (Si, Pi, Ci) R = C R = U R = U&C 

X  O O O 

O X  X  X  

X 
(X?) 

X? 
(X) 

X? 
(X) 

X? 
(X) 

X X O/X? X 

X O O O 

X X O X 

O X X X 
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really known?) (ibid). In other words, we can rather naturally differentiate be-
tween first order and second order uncertainty, respectively. In the former case, 
we are uncertain about some (presently unknown) state of affairs. In the latter, we 
are uncertain about our uncertainty, i.e., second order uncertainty refers to the 
assessment that an agent makes about her own uncertainty (Fedel et al., 2011: 
1147f.).110 It follows that (almost) all decisions are made “under uncertainty” if 
one abstracts from clear-cut and idealized textbook cases.111 
 Finally, fourth, Hansson (2011) observes that a major problem in the epis-
temology of risk, a problem which is paid special attention to in this study, is how 
to deal with the severe limitations that characterize our knowledge of the behav-
ior of unique complex systems that are essential for estimates of risk (e.g., mod-
ern financial systems). Such systems contain components and so many, potentially 
shifting, interactions between them that it is in practice unpredictable (ibid.). How-
ever, in spite of this fundamental uncertainty, meaningful statements about some 
aspects of these systems and their behavior can and will be made (see Part III). 
 These four points already presage that the relationship between the concepts 
“risk”, “knowledge” and “uncertainty” seems to be wide-ranging, multi-layered 
and elusive. Hereafter, we try to cope with these issues and, further, to establish 
four explicit conditions for defining a proper, i.e., a more useful and a con-
sistent,112 notion of risk.  

Condition 1:   
Risk should be defined in such a way that it can be distinguished be-
tween risk per se (what risk is) and how risk is measured, described or 
managed (Aven, 2012: 33; Bradley & Drechsler, 2014: 1226).  

This condition is important because there exist perspectives on risk in which this 
distinction is not made (see Table 4 and cf., e.g., Beck, 1992: 21; Hansson, 2007: 

110  In principle, even higher orders of uncertainty are conceivable. 
111  If a decision problem is treated as a decision “under risk”, this does not mean, as Hansson 

(2011) clarifies, that “the decision in question is made under conditions of completely known 
probabilities. Rather, it means that a choice has been made to simplify the description of this 
decision problem by treating it as a case of known probabilities. This is often a highly useful 
idealization in decision theory” but it is, at the same time, important to distinguish between 
those probabilities that can be treated as known and those that are genuinely uncertain (ibid.). 

112  Following Rothschild & Stiglitz (1970: 226f.), it is, of course, impossible to prove that one 
definition is better than another. Instead, they point out that definitions are chosen for their use-
fulness as well as their consistency. 
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27). Like MacKenzie (2006: 143-179), George Soros (2008: 3) notes how “our 
understanding of the world in which we live is inherently imperfect because we 
are part of the world we seek to understand” and he focuses on “how our 
knowledge of the world is interdependent with our measurements of it” (Blyth, 
2010: 460).113 In principle, every (measurement or description or management) 
tool in use (which could be based on stochastic models) should be treated as such. 
Every such tool has its limitations and these must be given due attention. By a 
distinction between risk as a concept, and its descriptions or assessments “we will 
more easily look for what is missing between the overall concept and the tool” 
(Aven, 2012: 42). By the same token, if a proper framework clarifying the dis-
parity between the overall risk concept, and how it is being measured or opera-
tionalized etc. is not established, it is difficult to know what to look for and how to 

make improvements in these tools (ibid.). In addition to that, it is a central princi-
ple of systems science to examine issues from multiple perspectives – “to expand 
the boundaries of our mental models” (Sterman, 2000: 32) – and, as a consequence, 
the risk concept should not be illuminated by one theoretical perspective only 
(e.g., mere probabilistic underpinnings); it should not be founded on one single 

measurement tool. Because in the various scientific environments, application 
areas or specific contexts, there might not be one best way to measure / describe 
risk. This appears to be, therefore, a reasonable and uncontroversial premise. 

The second condition purports the following: 

Condition 2:  
Risk should be defined in such a way that it can be distinguished be-
tween what risk is and how risk is perceived (Aven, 2012: 34)114 as well 
as that the definition does not presuppose an interpretation of either ob-
jective or subjective risk (Hansson, 2011). 

113  An impressive example of how knowledge is interwoven with our measurement tools can be 
taken from fractal geometry: Intuitively, we would assume that a question like “How long is 
the coast of Britain?” is well-defined and can be answered clearly and precisely by pointing to 
a certain fact. However, by adding to the observations by Lewis Richardson (1881-1953), 
Mandelbrot (1967) shows that the length of a coastline, a self-similar curve or fractal object, 
depends on the scale at which it is measured (which has become known as the ‘coastline para-
dox’). 

114  According to Aven (2012), this premise is not in line with cultural theory and constructivism 
(cf. also Jasanoff, 1999; Wynne, 1992; and critical comments in Rosa, 1998). Beck (1992: 55), 
for example, writes that “because risks are risks in knowledge, perceptions of risks and risk are 
not different things, but one and the same”. 
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There is a major debate among risk professionals about the nature of risks: are risks 
social or subjective constructions (human ideas about reality, a feature of the 
agent’s informational state) or real-world, objective phenomena (representations 
of reality, a feature of the world itself;). Willett (1901/1951) and Hansson (2011), 
for example, speak up for a strong objective component of risk: “If a person does 
not know whether or not the grass snake is poisonous, then she is in a state of un-
certainty with respect to its ability to poison her. However, since this species has 
no poison there is no risk to be poisoned by it” (Hansson, 2011). On the other hand, 

it is obvious to others that risks constitute mental models (Renn, 2008: 2). They are 
not veritable phenomena, but originate in the human mind (ibid.). As Ewald (1991: 
199) notes: “Nothing is a risk in itself; there is no risk in reality. […] [A]nything 
can be a risk; it all depends on how one analyses the danger, considers the event.” 
The definitional framework should, hence, try to “avoid the naïve realism of risk as 
a purely objective category, as well as the relativistic perspective of making all 
risk judgments subjective reflections of power115 and interests” (Renn, 2008: 3). 
 There are at least two more requirements for a good risk definition.  

Condition 3:   
Risk should be defined in such a way that it is helpful to the decision-
maker in lieu of misguiding her in many cases (Aven, 2012: 42), and, 
thereby, the risk definition should capture the main pre-theoretic intui-
tions about risk (Rothschild & Stiglitz, 1970: 227).  

At first glance, this condition might sound vacuous. But if proposals such as R = 
P V OU (see Table 4) are taken into account, then Aven (2012: 41) objects that, 
“referring to risk only when we have objective distributions would mean we 
exclude the risk concept from most situations of interest”. Moreover, it must not 
be forgotten that risk cannot be confined to the ivory tower of scholarly delibera-
tions. Even though it might be a theoretical and abstract concept, risk has forged 
a direct link with real-life management challenges and actual decision-making. It 
has a direct impact upon our life: Speaking for the banking context, banks, tax-
payers, governments lost a lot of money (and much more; e.g., credibility) be-
cause risk managers (in a broad sense) ignored or misjudged risks, miscalculated 
the uncertainties or had too much confidence in their ability to master dangerous 

115  Power, for example, to the extent that what counts as a risk to someone may be an act of God 
to someone else, resigned to her/his fate (Bernstein, 1996b). 
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situations (FCIC, 2011). Ultimately, only time and feedback from the economic 
practice can tell whether or not this premise is fulfilled. 
 In conjunction to this third premise, opening the debate to a wider (namely, 
to a non-academic) audience, one can also see the following ethical demand. 

Condition 4:  
Risk should be defined in such a way that it does not divert attention 
away from, but emphasizes (very) low-frequency events in a high-
dimensional space or systemic effects that have an impact on not only 
the actor, but also on other actors (Rehmann-Sutter, 1998: 120).  

Rehmann-Sutter (1998: 122) bemoans that in some economic concepts of risk, 
“there is only one personal position: the decision-maker”, whereas most risks are 
not individual but rather social (Sen, 1986: 158f.), i.e., there might be negative 
consequences for others from “taking risks”. He adds, however, that we have 
difficulty in adequately including those other persons (e.g., taxpayers in our 
context) affected by the consequences of the (risk management) decision (of a 
bank) in the decision-making process, where the concept of risk is worked out in 
reality (Rehmann-Sutter, 1998: 122). “These other participants are abstract; at-
tention is diverted away from them. These participants are conceptually hidden.” 
(Ibid.). While we cannot regard this critique as fundamental in terms of the eco-
nomic risk concepts taken into consideration in Table 4 – e.g., the definition R = 
EV does not entail a narrow reading of the consequences. Nevertheless, an im-
portant lesson can be learned from this admonition, among the most prominent 
of which was drawn by Kristin Shrader-Frechette.  
 Shrader-Frechette (1991) points to the unease we feel when we are using a 
concept which was elaborated for optimization of entrepreneurial behavior in an 
unpredictable market to describe interventions into the (financial) system with 
potential or actual adverse effects to other persons and institutions. What is pri-
ma facie rational might secunda facie not be rational if a feedback view of the 
world is adopted (Sterman, 2000; see Chapter 5 and 6). Since only those risks 
enter standard probabilistic risk measurement procedures that (directly!) affect the 
respective bank, risk managers or traders etc. often do not see a direct connection 
between their actions and other actors (Garsten & Hasselström, 2003: 259) or with 
significant changes in the financial system or even the global economy, which, in 
the end, bounce back on the individual institutions themselves (see below in 5.1.).  
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 This problem will be explicitly taken up by extending the discussion of an 
appropriate risk notion (with a strong focus on low-frequency/high-severity loss-
es) to the debate on a sound concept of systemic risk which includes our argu-
ment that (private) banks (as opposed to e.g., regulators) should also account for 
systemic risk and should actively address it for in-house risk management pur-
poses (Proposition 1). 
 Prior to that, a bottom line is that, unfortunately, many extant definitions of 
risk do not even meet the first two basic requirements (see Table 4, Criteria 3 and 
7). In terms of Table 4, only risk in the sense of uncertainty (R = U) and risk as the 
real or realistic possibility of a negative, (very) rare and uncertain event with seri-
ous or even extreme consequences (R = U&C) remain in the game. Since seeing 
risk as uncertainty can be considered a special case of U&C, the latter seems to be 
the most promising candidate whereas the other risk concepts presented do not 
only turn out to not have some desirable properties, but also suffer from other 
shortcomings. For example, the especially in a banking context relevant identifica-
tion of risk with volatility or the variance of returns (R = V) is clearly unsatisfacto-
ry (see also Chapter 2.2.): “We can construct distributions that have identical vari-
ance but with which we would associate very different degrees of ‘riskiness’ – and 
risk, as the saying goes, is one word but is not one number” (Rebonato, 2007: 237; 
cf. also Rootzén & Klüppelberg, 1999); “[i]n any case, anyone looking for a single 
number to represent risk is inviting disaster” (Taleb et al., 2009: 80; cf. also Power, 
2007: 121; and see the section on reductionism vs. reduction in Chapter 21, Part IV). 
 Before we shed some more light on U&C, it makes sense to first look closer 
at another example, namely the field of the risk definition R = P V OU where 
Knight (1921) made one of the first large-scale distinctions between risk and 
uncertainty, for what became known as ‘Knightian risk’ (= measurable uncer-
tainty) and ‘Knightian uncertainty’. Albeit there might be good reasons for re-
garding Knight’s original argument for distinguishing between risk and uncer-
tainty as going astray (see condition 3),116 it is nevertheless important to bear it 
in mind due to several reasons. First, it is very puzzling to see how different 
economists, risk experts and others have reacted to Knight’s oeuvre, how they 

116  Taleb & Pilpel (2004) and Aven (2012), for example, argue that we should leave the Knightian 
nomenclature once and for all: “[…] the distinction is irrelevant, actually misleading, since, 
outside of laboratory experiments, the operator does not know beforehand if he is in a situation 
of ‘Kightian risk’” (Taleb & Pilpel, 2004: 4). 
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interpreted it and what conclusions have been drawn. A good example is that 
while both groups like Heinemann (2014), Stout (2012), Bhidé (2010), Aven & 
Renn (2009), Bäcker (2008), or Taleb & Pilpel (2004), on the one hand (critical 
and modest), and Friedman (1976), Ellsberg (1961), Savage (1954) on the other 
(economic mainstream and imperialistic), consider Knight’s distinction between 
risk and uncertainty as invalid because his risk perspective is too narrow, the 
interests of these two groups are diametrically opposed to each other: Whereas 
the former repels probability based definitions of risk (“risk as a concept should 
not be founded on one specific measurement tool [such as probability, C.H.]”, 
Aven, 2012: 42) in favor of uncertainty, the latter maintains that Knightian risk, 
i.e. risk measured by probability, would prevail instead of “uncertainty” (“for a 
‘rational’ man all uncertainties can be reduced to risks [because it is believed 
that we may treat people as if they assigned numerical probabilities to every 
conceivable event, C.H.]”, Ellsberg, 1961: 645).117  
 Second, Knight’s seminal work might, therefore, be seen as very influential 
or even path-breaking for the more recent history of economic thought (Heine-
mann, 2014: 61f.; Aven, 2012: 41; Esposito, 2011: 32) and as laying the grounds 
for a common meaning of “risk” (Hansson, 2011), especially relevant in eco-
nomics and decision theory (Luce & Raiffa, 1957). Indeed, the tie between risk 
and probability is seen as so strong that only few seem to question it: “Risk can 
only be found in situations that have to be described by probabilities” (Granger, 
2010: 32). Moreover, Knight (1921) introduced a simple but fundamental classi-
fication of the information challenges faced in banks’ risk management, between 
Knightian risks which can be successfully addressed with statistical tools (VaR, 
ES, etc.), and Knightian uncertainties which cannot (Brose et al., 2014a: 369). 
Good risk management, thus, calls for toolkits that handle both Knightian risk 
and uncertainty (ibid.; see Chapter 13). 
 Hence, it is third in turn important to have a risk concept based on probability 
models to be able to participate in, and contribute to, the discourse of risk if a great 
number of participants and economists or people interested in risk management 
in banking, in particular, should be reached. Since such a definition of risk would 
not do justice to the requirements set above (e.g., the first condition), however, it 
will not be the one which is pursued and embraced in this study after all.  

117  However, the agent’s acting as if the representation is true of her does not make it true of her. 
Cf. Hájek, 2009: 238. 
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 Hence, it would be premature to simply and uncritically take on Taleb & 

Pilpel’s (2004) or Aven’s (2012) position of pleading in favor of leaving the 
Knightian nomenclature once and for all. Instead, our strategy is twofold. We first 
conclude that the kind of definitions by Heinemann (2014), Steigleder (2012), 
Aven & Renn (2009), etc. are the most appropriate before we approve a narrow 
notion of risk that is compatible with how risk discussions are commonly held. 

Understanding risk 

As an answer to RQ1.1, risk, in this dissertation, is paraphrased broadly as…118  

… the real or realistic possibility of a positive or negative event the oc-
currence of which is not certain, or expectable119 but only more or less 
likely. However, the probability that the positive or negative event will 
occur does not have to be known or be subject to exact numerical spec-
ification.  

Thus, the term “risk” is not used as an antonym to “uncertainty”, as is customary 
in decision theory, but rather as a generic concept that covers both “risk in a 
narrower sense” (what Knight, 1921, calls measurable uncertainty) and “uncer-
tainty”. This is because we frequently lack a sufficient basis to determine the 
probabilities with any precision (Greenbaum, 2015: 165) as it will be clarified 
below. From a systems theoretical perspective, it is furthermore interesting to see 
that an event-oriented worldview (see 5.1.) might be underlying this definition. 
 This broad notion of risk is designated by Risk I. Structurally, risk in this 
sense captures:  

• What can happen?  
o Answering this question requires the identification or description 

of consequences or outcomes of an activity.  
• Is it more or less likely to happen (in contrast to how likely is that to 

happen)?  
o Attention is restricted to rather rare or very rare events.120 

118  These first two passages are taken from Steigleder (2012: 4). 
119  We follow Steigleder (2012: 4) in calling an event expectable here “if it is known to be a 

normal and common consequence of certain circumstances or actions. Whenever an event that 
is expectable in this sense does not occur, that is something abnormal and needs explanation.” 

120  Weaver (1963: 222) says that probability and degree of rarity are essentially identical concepts. 
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• If it does happen, what is the impact?
o Answering this question requires the evaluation of consequences

which are rather serious or even extreme.

We thereby follow the call of Das et al. (2013: 715) that quantitative risk man-
agement research will have to dig deeper “in going from more frequency orient-
ed ‘if’ questions to a more severity oriented ‘what if’ approach, and this at sever-
al levels”. The focus lies on (very) low-frequency events in a high-dimensional 
space or, in particular, on low-frequency, high-severity (monetary) losses for 
several reasons. For example, pushing natural phenomena to an extreme unveils 
truths that are ensconced under normal circumstances.  
 As stressed in Johansen & Sornette (2001) and following the 16th century 
philosopher Francis Bacon, the scientific appeal of extreme events is that it is in 
such moments that a complex system offers glimpses into the true nature of the 
underlying fundamental forces that drive it (Johnson et al., 2012: 3). 
 Accordingly, the need to address unexpected, abnormal or extreme out-
comes, rather than the expected, normal or average outcomes is a very important 
challenge in risk management in banking (McNeil et al., 2005: 20; Malevergne &
Sornette, 2006: 79; Greenbaum, 2015: 164); because improving the comprehen-
sion (of the distribution) of extreme values, which cannot be dismissed as outliers 
because, cumulatively, their impact in the long term is dramatic, is of paramount 
importance (Mandelbrot & Taleb, 2010; Joint Central Bank Research Confer-
ence, 1995).121  
 Benoît Mandelbrot uses a nice metaphor for illustration's sake (cf. also 
Churchman, 1968: 17): “For centuries, shipbuilders have put care into the design 
of their hulls and sails. They know that, in most cases, the sea is moderate. But 
they also know that typhoons arise and hurricanes happen. They design not just 
for the 95 percent of sailing days when the weather is clement, but also for the 
other 5 percent, when storms blow and their skill is tested.” (Mandelbrot & Hud-
son, 2008: 24). And he adds: The risk managers and investors of the world are, at 

121  The need for a response to this challenge also became very clear in the wake of the LTCM case 
in 1998 (McNeil et al., 2005: 20). John Meriwether, the founder of the hedge fund, clearly 
learned from this experience of extreme financial turbulence; he is quoted as saying: “With 
globalization increasing, you’ll see more crises. Our whole focus is on extremes now – what’s 
the worst that can happen to you in any situation – because we never want to go through that 
again.” (The Wall Street Journal, 2000). See also 5.2. 

www.ebook3000.com

http://www.ebook3000.org


88 Part I: Concepts, Model Level and Risk Assessment 

the moment, like a mariner who “builds his vessel for speed, capacity, and com-
fort – giving little thought to stability and strength. To launch such a ship across 
the ocean in typhoon season is to do serious harm”. (Ibid.: 276).  
 Clearly, this does not mean that (very) low-probability risk events matter 
simply because they have a very low probability. For example, there is some 
probability that a pink elephant will fall from the sky. But such a risk does not 
affect managerial decisions in banks. The known or unknown risks that matter 
for our purposes are, of course, those that, had senior or top management been 
aware of them, would have resulted in different actions (Stulz, 2008: 64) – e.g., 
the bursting of a pricing bubble or an escalating political conflict etc. (see Chapter 
5.2.). 
 Second, a narrow concept of risk is invoked (Risk II); it is basically circum-
scribed by two key variables, the severity of the consequence and its probability 
of occurrence,122 and it presupposes that possible / significant consequences and 
the corresponding values of severity and probabilities are known.123 Risk II en-
compasses Hansson’s (2011) risk definitions 3 to 5124 and it can be regarded as a 
special case of the broad risk definition (Risk I): 

A Taxonomy of Uncertainty  

In our broad risk definition, risk is grounded in uncertainty. Apart from the dif-
ferent orders of uncertainty (Fedel et al., 2011: 1147; Ellsberg, 1961), different 
types of uncertainty need to be taken into account. In Figure 4, we distinguish 
three qualitatively different types of uncertainty: (a) what decision theorists or phil- 

122  The probability of occurrence or at least the subjective probability must be less than 1 and 
more than 0, otherwise there would be certainty about the event or the possible outcomes of an 
action. (Going back to Lewis 1980, the principle that, roughly, one’s prior subjective probabili-
ties conditional on the objective chances should equal the objective chances is called the prin-
cipal principle.) Moreover, the probability should be seen in relation to a fixed and well-
defined period of time. For the concept of probability including objective and subjective prob-
abilities, in general, cf. Hájek (2011). 

123  For readers well versed in economic theories of decision sciences, it should be added that, 
depending on the particular theory, probabilities are not always assigned to the consequences 
of action alternatives (e.g., Jeffrey, 1983), but also, for example and actually more often, to so-
called states of the world (e.g., Savage, 1954). 

124  The risk formula “Risk = probability * measure of severity (e.g., utility, monetary unit, etc.)” 
directly follows from the Risk II concept (Hansson’s fourth definition). Since Risk II presup-
poses known probabilities (with 0 < p < 1), decisions under “risk” are made, and not decisions 
under conditions of “uncertainty” (Hansson’s fifth definition). And, finally, seeing risk as 
probability (third definition) can be considered a special case of Risk II. 
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Figure 4:  Two relevant risk concepts: Risk I encompasses Risk II and uncertainty.125 

osophers might call state uncertainty, (b) what they might call option uncertainty 
and/or state space uncertainty, and (c) what corresponds to ethical uncertainty, a 
form of normative uncertainty (cf. Bradley & Drechsler, 2014). On top of that, 
many different kinds of risk (business risk, social risk, economic risk, etc., 
Kaplan & Garrick, 1981: 11) or categories of risk (market, credit, operational 
risk, etc.), as briefly mentioned above, are discussed in the literature and many 
more classification systems are introduced. It will be argued, however, that, even
though some of the taxonomies offered for bank risks or for knowledge (or the 
lack thereof) are persuasive, e.g., the conceptual framework “KuU” by Diebold et 
al. (2010), at least the silo-treatment of risks should be overcome. Instead of 

125  A similar illustration (but insufficient explanation of the concepts) is found in Heinemann 
(2014: 61). 

Risk I 
(Risk in the broad sense) 

Steigleder (2012) 

Uncertainty 

- The agent does not have sound 
objective (von Neumann & Mor-
genstern, 1944) or subjective 
(Savage, 1954) probabilities (a); 

- Or the agent is not fully aware of 
what can happen, i.e., she does 
not know all possible and 
relevant consequences of the 
activity or the event at stake (b); 

- Or the agent does not know the 
(exact) extent of the positive/nega-
tive impact of the consequences 
(measuring the severity); payoffs 
are (rather) complex (c). 

- (The "or" is not exclusive.) 

- There are invisible and non-linear 
outcome generators. (Chapter 6) 

Risk II 
(Risk in the narrow sense) 

- The agent knows the 
probabilities for the realization 
of possible consequences. 

- 0 < p < 1 
- Not stipulated whether or not 

subjective probabilities equal 
objective probabilities 

- Probabilities related to a fixed 
and well-defined period of time 

- In general, consequences cannot 
only be negative, but also 
positive; in any case, payoffs are 
(rather) simple 

- There are visible outcome 
generators. (Chapter 6) 
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devoting much attention to different forms of risk, the focus lies here on system-
ic risks in and to the financial system and their implications for banks’ in-house 
risk management. 
 The broad concept of risk is chosen in this piece of work as a form of de-
scription since it is not a priori clear for the risks at issue, the extreme and sys-
temic risks in and to the financial system, whether or not the probabilities and 
potential consequences as well as their severity are known. Thus, when we use 
the concept of risk in the following, we always refer to the comprehensive term 
Risk I. Accordingly, much of what we today call risk management is “uncertain-
ty management” in Knightian terms, i.e., courageous efforts to manage ‘risk 
objects’ for which probability and outcome data are, at a point in time, unavaila-
ble or defective (Power, 2007: 26; Willke et al., 2013: 9).  
 However, whereas the general notion of Risk I retains both positive and 
negative consequences (in terms of the evaluation of outcomes), we assume from 
now on that it is judicious in the context of risk management in banking to pri-
marily associate risks with adverse, negative or undesirable events (Bessis, 2010: 
26).126 For financial risks, the subject of this dissertation, we might, thus, arrive 
at a reading of Risk I where consequences are specified as adversely affecting a 
financial institution’s ability to achieve its objectives and execute its strategies 
(McNeil et al., 2005: 1).127 

126  Even though it makes much sense in this special context of risk management in banking, the 
general definition of risk should actually not distinguish between positive and negative conse-
quences (desirable and undesirable consequences), the point being that the activity results in 
some significant consequences (whatever they are). In practice, there are always some out-
comes that are judged as undesirable (Aven, 2012: 42). “The activity runs, and there is a possi-
bility of undesirable consequences, but the consequences could also be positive. When taking 
risk, we balance these concerns.” (ibid.). Of course, it would have been possible to generally 
and strictly restrict the consequences to undesirable consequences. However, by doing this we 
would need to determine what is undesirable, and for whom (ibid.). An outcome could be posi-
tive for some stakeholders and negative for others. “It may not be worth the effort and energy 
discussing whether an outcome is classified in the right category, and therefore most general 
risk definitions allow for both positive and negative consequences” (ibid.). 

127  Note that this narrower reading of Risk I, that a restriction to negative consequences does not 
contradict the statement made above, namely that in the financial universe, risk and return are 
two sides of the same coin or that it is special for financial institutions that risk management 
not only focuses on the negative, but also on opportunities and successes. Because, of course, 
banks can make a good deal by absorbing, repackaging and passing on risks (with its negative 
connotation) to others. 
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 Furthermore, Knight’s important distinction between risk and uncertainty is 
esteemed by separating Risk II from uncertainty. This dichotomy is made explic-
it in sections of this study where a differentiated and nuanced view is desirable or
reasonable.  
 It will become obvious that this differentiation is, in some cases, indispen-
sable for the discourse of risk (management) in banking because different impli-
cations arise. The risk perspective chosen strongly influences the way risk is 
analyzed and, hence, it may have serious effects on risk management and deci-
sion-making (Aven, 2012: 42). 

4.2. The Concept of Systemic Risk 

Not very surprisingly, the current situation in the literature, regarding the defini-
tion of systemic risk, is not satisfactory either (Getmansky et al., 2015: 74). The 
precise meaning of systemic risk is ambiguous; there is a perplexing cacophony 
of conflicting opinions. The very definition of systemic risk “is still somewhat 
unsettled” (Schwarcz, 2008: 196).  
 Albeit the increase in theoretical, empirical and policy analyses of financial 
instability has been substantial and while systemic risk is now widely accepted 
as the fundamental underlying concept for the study of financial instability, there 
has been little attention paid to what is endogenous to the financial system128 and 
events that are external (Fouque & Langsam, 2013: xx). The recent crisis has 
painfully demonstrated that it is not so robust that one can ignore systemic risks 
(ibid.). One of the lessons taken from it is that “the conceptual way we think 
about risk in the financial sphere needs to be changed by taking an economic 
system wide perspective” (Detken & Nymand-Andersen, 2013: 753). 
 Given this starting point, we develop an elaborated concept of systemic risk 
or, at least, a plausible working definition of systemic risk in order to establish a 
modus vivendi “in handling and managing a pressing perennial problem” (Willke 
et al., 2013: 10) by, first, explicating and analyzing existing concepts and, se-

128  Systemic risk in a very general sense is by no way a phenomenon limited to economics or the 
financial system. De Bandt & Hartmann (2000: 6, 13f., 26) identify three interrelated charac-
teristics that may justify why financial systems can be more prone to systemic risk than other 
sectors of the economy: First, the structure of bank balance sheets, second, the complex net-
work of exposures among financial institutions and, third, the inter-temporal character of fi-
nancial contracts and related credibility problems. 
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cond, synthesizing relevant factors. The term’s general meaning is “[o]f, or per-
taining to, a system” (Oxford English Dictionary 499 (1989)).  
 Up to date, a search of the literature revealed three frequently used types of 
concepts (e.g., Heinemann, 2014; Anand, 2010; Schwarcz, 2008; Kaufman & 
Scott, 2003). 

1) According to the first, systemic risk is described as the result of causal 
relationships between market participants. Systemic risk is the proba-
bility that cumulative losses will accrue from a single internal event, 
usually the default by one market participant, that sets in motion a se-
ries of successive losses along a chain of institutions or markets com-
prising a system (Kaufman, 1995: 47). That is, systemic risk is the risk 
of a “chain reaction of falling interconnected dominos” (ibid., cf. also 
Helbing, 2010).129 Sometimes it is distinguished between a) the failure 
of a chain of markets or institutions or b) a chain of significant losses 
to financial institutions, “resulting in increases in the cost of capital or 
decreases in its availability, often evidenced by substantial financial-
market price volatility” (Schwarcz, 2008: 204). This type of definition 
is sometimes also known as the so-called domino model of financial 
contagion (De Bandt & Hartmann, 2000: 10ff.). These definitions em-
phasize correlation with causation (the triggering event and the reac-
tions to it), and they demand close or direct connections among institu-
tions or markets (Kaufman & Scott, 2003: 372f.). Banks are, for 
example, closely linked to each other through the interbank market. 
Linkages are rather direct, e.g., if several institutions are connected to 

129  This definition is consistent with the one given by McNeil et al. (2005: 15): “Systemic risk is 
the danger that problems in a single financial institution may spill over and, in extreme situa-
tions, disrupt the normal functioning of the entire financial system”; and with that of the Feder-
al Reserve (the Fed): In the payments system, “systemic risk may occur if an institution partic-
ipating on a private large-dollar payments network were unable or unwilling to settle its net 
debt position. If such a settlement failure occurred, the institution’s creditors on the network 
might also be unable to settle their commitments. Serious repercussions could, as a result, 
spread to other participants in the private network, to other depository institutions not partici-
pating in the network, and to the nonfinancial economy generally.” (Board of Governors of the 
Federal Reserve System, 2001: 2). 

 Likewise, the Bank for International Settlements (BIS) defines systemic risk as “the risk that 
the failure of a participant to meet its contractual obligations may in turn cause other partici-
pants to default with a chain reaction leading to broader financial difficulties” (BIS, 1994: 
177). Etc. 
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each other by mutual obligations and liabilities, but they could also be 
indirect in nature when institutions have similar risk structures and are 
thus affected by market fluctuations in the same way (see definition 
type 3): “By synchronizing the actions of market participants, the feed-
back effects are amplified” (Brunnermeier et al., 2009a: 17). In think-
ing about systemic risk, one must therefore go beyond considerations 
of individual players and incentives and pay attention to issues of sys-
temic interdependence (Fouque & Langsam, 2013: xxi; Hellwig, 2008). 

2) The second discerns systemic risk as a possible trigger of an unex-
pected “big” shock or macro-shock “that produces nearly simultaneous, 
large, adverse effects on most or all of the domestic economy or sys-
tem” (Kaufman & Scott, 2003: 372). Concomitantly, Adrian & 
Brunnermeier (2011) treat systemic risk as the risk that the intermedia-
tion capacity of the entire financial system is damaged, “with potential-
ly adverse consequences for the supply of credit to the real economy” 
(ibid.: 1). Here, “systemic” refers to “an event having effects on the en-
tire banking, financial, or economic system, rather than just one or a 
few institutions” (Bartholomew & Whalen, 1995: 4).130 Put differently, 
the shock is rather systematic than idiosyncratic (De Bandt & Hart-
mann, 2000: 11). This kind of definition does not further specify the 
nature of the sudden event and how effects are transferred from a mac-
ro-shock to individual units (banks). Instead, emphasis is placed on the 
event occurring unexpectedly, causing a misallocation of capital or fi-
nancial instability that can131 become so widespread that it compromis-
es the functioning of the financial system to the point where economic 
growth and welfare are materially impaired (ECB, 2010; Oet et al., 
2013: 792; Group of Ten, 2001).  
According to this definition type, any risk that threatens the financial 
system, can be referred to as “systemic”. This encloses risks, such as 
„economic downturn, borrower defaults, pressures in funding markets, 
sovereign risk, failure of financial institutions, regulatory and account-

130  Likewise, Mishkin (1995: 32) defines systemic risk as “the likelihood of a sudden, usually 
unexpected, event that disrupts information in financial markets, making them unable to effec-
tively channel funds to those parties with the most productive investment opportunities”. 

131  A shock does not have to result in a crisis (Varnholt, 1995: 11). 
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ing changes, financial market dislocation, loss of confidence in authori-
ties, tight credit conditions, disruptions to derivatives and insurance 
markets, loss of confidence in pitching, disclosure and ratings, opera-
tional risk, property price falls and infrastructure disruption” (Bank of 
England, 2008/2009: 231). 

3) The third definition type focuses on systemic risk as an (after-)effect or 
spillover from an initial exogenous external shock, but it does not (in 
contrast to definition 1) involve direct causation and depends on weak-
er and more indirect connections (Kaufman & Scott, 2003: 373). In the 
same vein, Illing & Liu (2006: 244) postulate that systemic risk or fi-
nancial stress “is the product of a vulnerable [market] structure and 
some exogenous shock”. Exogenous sources originate from outside the 
financial system and be intensified and impacted by other financial 
systems within other economic areas and/or other political and busi-
ness events failing to contain the systemic risk within the local finan-
cial system (Detken & Nymand-Andersen, 2013: 754). This definition 
3) stresses similarities in third-party risk exposures among the units in-
volved (Kaufman & Scott, 2003: 373), which increases losses or the 
number of defaults in bad scenarios (i.e., if the external shock occurs), 
depending on how similar the risk profiles and (investing, risk expo-
sure) strategies are (see also 5.1.). Moreover, when one bank experi-
ences adverse effects from the shock, this shock prompts not only di-
rect severe losses at this bank and other banks with similar risk 
profiles, but also uncertainty is created about the values of other units 
potentially also subject to adverse effects from the same shock. These 
other units will be canvassed by market participants to see whether and 
to what extent they are at risk. “The more similar the risk-exposure 
profile to that of the initial unit economically, politically, or otherwise, 
the greater is the probability of loss, and the more likely it is that par-
ticipants will withdraw funds as soon as possible” (Kaufman & Scott, 

2003: 373).132 This response by the players in the market may induce 

132  Even worse, at this stage, common-shock contagion may appear indiscriminate, potentially 
affecting more or less the entire universe and reflecting a general loss of confidence in all units 
(Kaufman & Scott, 2003: 374). Solvent parties, i.e., those which are perceived to be economi-
cally sound and not overly leveraged, might not be differentiated from insolvent (ibid.). 
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liquidity problems or even more fundamental solvency problems and it 
might also result in a ‘bank run’ (Schwarcz, 2008: 199). Kaufman & 
Scott (2003: 373) refer to this pattern as a “common shock” or “reas-
sessment shock” effect and it “represents correlation without direct cau-
sation (indirect causation)”.  

Even though the pertinent literature potentially contains other types of concepts, 
we embark on discussing these three main proposals for defining “systemic risk” 
at this point. 
 Common ground: The definitions have in common, for example, that they 
all describe a triggering event, followed by a series of negative economic conse-
quences (Heinemann, 2014: 171). More importantly, however, there are a range 
of inconsistencies and weaknesses of the proposals made in the literature. Some 
are pointed out in what follows. 

Inconsistencies: 
• In the first definition risks are endogenous, i.e., they are provoked

within the financial system or by the interdependencies and correla-
tions between its components (e.g., financial intermediaries, markets 
and instruments and/or financial infrastructures). The second allows for 
the possibility of risks originating from within the financial system 
while the third excludes this possibility.  

• In contrast to Def. 2), Def. 1) and Def. 3) focus more on the micro lev-
el and on the transmission of the shock and potential spillover from 
one unit to others. 

• In contrast to Def. 1), the network of system elements does not play a
major role in Def. 3). 

• Unlike in the second (macro shock) definition, only one bank needs to
be exposed in direct causation to the initial shock in the first definition. 
“All other banks along the transmission chain may be unexposed to 
this shock. The initial bank failure sets off the chain or knock-on reac-
tion” (Kaufman & Scott, 2003: 373). 
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• The trigger event in the first is a “default by one market participant”; in 
the second, merely a “big” and unexpected “event”, not further speci-
fied, and in the third definition an “exogenous external shock”.133  

 Specific weaknesses: 
• With regard to Def. 1), Brunnermeier et al. (2009a: 17) contend that the 

so-called “domino model of contagion is flawed, and is not useful for 
understanding financial contagion in a modern, market-based financial 
system”. First, it is only with implausibly large shocks that the simula-
tions engender any meaningful contagion (ibid.: 16). Second, the reason 
is that the domino model paints a non-dynamic picture of passive banks 
that stand by and do nothing as the sequence of defaults unfolds (ibid.). 
In practice, however, they “will take actions in reaction to unfolding 
events, and in anticipation of impending defaults” (ibid.). Third, defaults 
need not even be necessary to generate contagion (French et al., 2010: 
67). While price changes themselves may actually be enough, the model 
ignores reinforcing feedback loops – e.g., “[…] changes in prices lead to 
losses […], [l]osses worsen funding liquidity for many financial insti-
tutions, forcing them to shed even more assets which further depresses 
prices and increases losses, and so on” (Brunnermeier et al., 2009a: 17). 

• Following Brunnermeier et al.‘s (2009a) third caveat to the domino 
model of contagion, it can be noted that also the second definition is 
guilty of over-emphasizing the role of a big shock for the emergence of 
systemic risks. However, a relatively unremarkable risk exposure can 
have a big impact on a bank’s business if its ability of absorbing losses 
is not given (Varnholt, 1995: 11). If a dynamic perspective is adopted, 
this implies that different states of the financial system are considered 
and, obviously, this comprises phases of relative stability of the bank 
or of the bank’s environment (e.g., 2004-07), where minor or major 
shocks might be absorbed, as well as situations where the system is un-
stable and fast-changing (e.g., since 2007) and the bank is vulnerable. 
Moreover, definition type 2) leaves (too) many things open: Not only 
is the nature of the sudden event and how effects are transferred from a 

133  Moreover, it is not the case that the initial shock to the system must be a single shock. There 
can also be independent shocks simultaneously affecting all banks (e.g., Battiston et al., 2012), 
or correlated shocks (e.g., Amini et al., 2012; Ladley, 2011). 
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macro-shock to individual units not specified, but it also remains un-
clear whether the “big” shock epitomizes the risk event itself or merely 
its cause (Heinemann, 2014: 172). 

• In terms of the third proposal, it needs to be objected that a system may
get into a critical state not only via external influences affecting its sta-
bility (Haldane & May, 2011: 351; Sornette, 2003: xv).134 ‘Extreme
events’ can be “a result of the inherent system dynamics rather than of
unexpected external events” (Helbing, 2013: 52; cf. also Albeverio et
al., 2010). Senge (2006: 46) bemoans that assumptions of an “external
cause” pervade non-systemic thinking. Again, relatively small initial
shocks have the potential to make strong contributions to systemic risk
(Haldane & May, 2011: 353; Lorenz, 1963). The misconception that
crises and disasters in social or anthropogenic systems are ‘natural’, or
accidents emanating from external disruptions is dangerous.135

General weaknesses: 
• The three proposals suggest that systemic risks are linked to single and

big or major shock events whereas catastrophic or systemic risk events
often result not from a single cause but from inter-connected risk fac-
tors and multiple causes and conditions (Bonabeau, 2007: 64). Each
(perhaps, minor) risk factor taken in isolation might not cause a disas-
ter, but risk factors working in synergy can (Sargut & McGrath, 2011:
72). Consequently, complex, dynamic and interconnected systems like
modern financial systems (Neave, 2010; see Chapter 6) conjure up
many, sometimes unexpected or counter-intuitive vulnerabilities.

134  “Events external to the banking system, such as recessions, major wars, civil unrest or envi-
ronmental catastrophes, clearly have the potential to depress the value of a bank’s assets so se-
verely that the system fails. Although probably exacerbated by such events […], the present 
crisis seems more akin to self-harm caused by overexuberance within the financial sector it-
self.” (Haldane & May, 2011: 351). Bonabeau (2007: 64) would agree by adding that “[a]n ex-
ternal trigger must not be confused with the cause of – or be blamed for – a catastrophic event. 
[…] [E]xternal triggers merely served to highlight the existence of internal flaws, which de-
serve the true blame for those catastrophes.” 

135  Helbing (2013: 57) provides the explanation that “[f]or a long time, humans have considered 
systemic failures to originate from ‘outside the system’, because it has been difficult to under-
stand how they could come about otherwise. However, many disasters in anthropogenic sys-
tems result from a wrong way of thinking and, consequently, from inappropriate organization 
and systems design”. For the role of systems thinking in this study, see also Chapter 5.1. and 6. 

www.ebook3000.com

http://www.ebook3000.org


98 Part I: Concepts, Model Level and Risk Assessment 

• In none of the systemic risk definitions triaged, “risk” is understood in 
a way that would be compatible with how the term is used here (Risk 
I). It appears that not much thought and care have been put into the un-
derlying concept – “risk” is simply read as “event” or “probability”, for 
example – while relatively detailed views on the meaning of “system-
ic” have been presented. The risk notion in Def. 1) – 3) is too narrow 
because risk is identified with probability or it is simplistic when 
equated with “event”. 

All in all, a more appropriate definition of systemic risk is needed. In particular, 
the critique suggests that more attention ought to be devoted to focal (dynamic 
and complex) systems and their attributes. For example, Brunnermeier et al. 
(2009a) indirectly affirm that financial systems are dynamic and complex by 
emphasizing, for example, that they are governed by feedback and that a dynam-
ic viewpoint would be desirable. It is also to acknowledge that sources of sys-
temic risks can be endogenous or exogenous. In addition to that, it can be noticed 
that the importance of systemic risk has at least two dimensions, the severity of 
systemic events as well as the (not necessarily quantifiable) likelihood of their 
occurrence, referring back to our definition of risk and cf. also, De Bandt & 
Hartmann (2000: 13): “Strong systemic events, in particular systemic crises, are 
[very; C.H.] low probability events, which might lead some to consider them as 
less of a concern. However, once a crisis strikes the consequences could be very 
severe.” (Ibid.). In consonance with Risk I, systemic risks may be regarded as 
systemic uncertainties (Heinemann, 2014: 195; Willke et al., 2013: 9; Bailey, 
2005: 84). 

What is Systemic Risk instead? 

The different types of risk, such as market risk and credit risk, describe risk aris-
ing from different sources. What the risk types have in common is that they are 
caused by change: Market risk is created by changes in market prices and credit 
risk arises from changes in the creditworthiness of borrowers. Needless to say, 
markets change all the time and default events are also not unheard of in day-to-
day lending, but the kind of change that creates significant risk – and is of interest 

to risk management – is an unexpected, unanticipated change of conditions for the 
worse. In this spirit and as an answer to RQ1.2, a (at least temporary working) 
definition for systemic risk may be (cf. also Johansen & Sornette, 2010: 206f.):  
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Definition 4.  
“Systemic risk is either endogenous risk caused by a significant change 
of the system in which a business operates; for banks, this system is the 
financial system.136 Or it is induced by a significant change of another 
system (an exogenous shock).“ 

While some authors, as seen above, miss the point of reaching the systems part 
of systemic risk – e.g., by foregrounding individual institutions (often called 
‘systemically important’) rather than the financial system as a whole, or events / 
system behavior in lieu of system structures, etc. (cf. also the critique by Thurner 
& Poledna, 2013: 1; Rossi, 2011: 62, 75; French et al., 2010: 26, 135) –, this 
broad definition of systemic risk underscores its roots in systems.  “System” is 
its essential element in at least four ways, which at the same time aid to clarify
the definition further.137 First, from a systems perspective there is no absolute 
difference between internal (endogenous) and external (exogenous): what is 
internal for the system is generally external for its subsystems. It all depends on 
where one draws the boundary between the system and its environment 
(Heylighen in Gershenson, 2008: 70f.; see also 2.1.).  
 Second, this definition does not lead to a too big class of elements, e.g., 
excluding risk entities simply associated with (very) rare and (very) impactful 
events – i.e., events caused by a significant change of the system – but that are 
well understood. Since, above all, systemic risks within modern financial sys-
tems (Neave, 2010) are the subject of this study and as these systems are usually 
characterized as complex (Chapter 2.1. and 6.3.), which includes that their be-
havior is not well understood, it follows that the resulting systemic risk events 
under study are not well understood. Dynamic complexity imposes certain re-
strictions on how to interpret systemic risks.  

136  Strictly speaking, different financial systems exist, e.g., in geographical terms. As a conse-
quence, the geographical reach of systemic risk can be regional, national or international (De 
Bandt & Hartmann, 2000: 11). To the extent we are concerned with the risk implications of the 
global financial crisis of 2007-09 and its consequences, our focus is on the international or 
global financial system – “international” and “global” can be seen as interchangeable here. 

137  Another clarification would be that systemic risk is an economic, not a political, definition 
(Schwarcz, 2008: 204): “It should not be used uncritically as an ex post political label for any 
large financial failure or downturn.” 
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 Third, we refer to systemic risks as systemic risks because they are caused by 
a change or changes138 of the financial system and not because their realization 
would have the effect that the whole system would be affected. The latter would 
be rather unwarranted as many authors, if not all, repudiate that a systemic risk 
must concern the whole system (e.g., McNeil et al., 2005: 15; Sornette, 2003: 75; 
De Bandt & Hartmann, 2000: 11; Varnholt, 1995: 11; Heinemann, 2014; Group 
of Ten, 2001)139. Apart from that, a systemic risk might have an impact on sev-
eral systems, i.e., going beyond the financial system (Oet et al., 2013: 792; 
Detken & Nymand-Andersen, 2013: 754; Haldane & May, 2011: 351). By con-
trast, it is a common, but not necessarily necessary, effect of systemic risks that the 
ability of the system to function as intended is seriously degraded. Furthermore, by 
taking changes in the system to be the cause of systemic risk – e.g., “risk arises 
not through the failure of individual components in the system […], but rather 
due to the ‘herd behavior’ and network effects contained in the actions of large 
fractions of market participants” (Thurner, 2012: 7) –, our definition is consistent 
with those of other risks, e.g., market risk (caused by, not resulting in, changes in 
the market; Artzner et al., 1999: 205). And highlighting that risks “are produced 
because of changes” reveals their dynamic nature (Trieschmann et al., 2005: 5). 
 Finally fourth and most importantly, systemic risk should be distinguished 
from downturns that are caused by ‘normal’ changes of the system (e.g., regular 
market swings). “Although these downturns are sometimes conflated with sys-
temic risk, they are more appropriately labeled systematic risk, meaning risk that 
cannot be diversified away and therefore affects most, if not all, market partici-
pants” (Schwarcz, 2008: 204; cf. also Harry Markowitz’s Modern Portfolio The-

138  For the latter, think of, for example, the numerous relatively small, distinct but interconnected 
changes of the financial system that, taken together, describe a change of the sort of (very) low-
frequency, (very) high severity because they resulted in the financial meltdown of 2007-09; 
e.g., the relaxation of banking regulations, monetary policies that kept interest rates low, igno-
rance on the part of borrowers, etc. 

139  A counter-example is Willke et al. (2013: 10) who demand even more – more than an effect on 
the whole financial system – from systemic risk and its definition: “Bankruptcy of a financial 
firm, a local financial crisis or the breakdown of a large investment fund are normal accidents 
and normal events in a competitive financial market characterized by ups and downs and by 
successes and failures. As long as these volatilities do not impinge on the economy at large 
[…], and as long as they do not impinge on the political system, these financial crises can 
strictly be seen as results of market dynamics. Only when a financial crisis is threatening the 
political system and thus forces politics to save private firms with public money, the term sys-
temic risk comes into play.” 
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ory).140 Indeed, as stated earlier, the significance of systemic risk, and, therefore, 
of the corresponding change of the system, has two dimensions, the severity of 
events possibly resulting from the change of the system as well as the likelihood 
of their occurrence (Brose et al., 2014a: 367; Willke et al., 2013: 9; De Bandt & 
Hartmann, 2000: 13). Systemic risks are found in the (very) low-frequency, 
high-dimensional space (Thiagarajan et al., 2015: 115). Therefore, systemic risks 
can be said to be tantamount to certain extreme risks. 
 What makes risk in complex systems different from other types of risk is 
that it cannot be captured in isolation (unlike market risk or credit risk in a simple 
or complicated, but not interdependent world), which might almost be counted as 
an axiom according to systems science. Instead, it has to be scrutinized at the 
higher level of interactions between parts of the system and between parts and 
the whole. This being so, systemic risk is systemic and not merely extreme.  
 Moreover, a systemic risk event is defined as the realization of systemic risk 
in form of a (very) rare event with extreme consequences; or put differently, 
events induced by a significant change of the system, endangering the functioning 
of the whole (financial) system, possibly resulting in a crash or ‘black swan’ or 
‘dragon-king’.141 Given that the ties between events and times are loose,142 it is 

140  “System” has two adjectives, systemic and systematic. In a general sense, “systemic” refers to 
holistic thinking whereas “systematic” refers to step-by-step procedures. 

141  Systemic risks are well captured by the image of black swan (Taleb, 2007a; Aven, 2013b) or 
by Sornette’s important dragon king terminology (Sornette, 2009). Taleb (2007a) refers to a 
black swan as an event with the following three attributes.  
1) Firstly, it is an outlier, as it lies outside the realm of regular expectations, because nothing in

the past can convincingly point to its possibility.
2) Secondly, it carries an extreme impact.
3) Thirdly, in spite of its outlier status, human nature makes us concoct explanations for its oc-

currence after the fact, making it explainable and predictable.
However, we do not agree with Taleb’s extreme view (as exposed in Taleb, 2007a) according 
to which he doubts whether any value can be given to a scientific/rational approach to finance 
(cf. also Das et al., 2013: 715).  
The term “king” has been introduced by Sornette to emphasize the importance of those events, 
which are beyond the extrapolation of the fat tail distribution of the rest of the population. 
Sornette (2009: 5) also likes to refer to these exceptional events as “dragons” to stress that we 
deal with a completely different kind of animal, beyond the normal, with extraordinary charac-
teristics, and whose presence, if confirmed, has profound significance. 

142  Events can be construed as times cum description, i.e., as temporal instants or intervals during 
which certain statements hold (van Benthem, 1983). On this view, for example, the occurrence 
of the 2007-09 financial crisis is identified by an ordered pair <i,φ> where i is the relevant time 
period (corresponding to the descriptor “2007-09”) and φ is the sentence “The financial crisis 
occurs”. Cf. also Casati & Varzi, 2014. 
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unproblematic to speak of, for example, the financial crisis of 2007-09 as a sys-
temic risk event on a relatively abstract level, on the one hand, and, at the same 
time, of the fact that the financial meltdown can be traced to numerous distinct 
but interconnected events, which, taken by themselves, might not be considered 
as the realization of systemic risks because and provided that they are not of the 
sort of (very) low-frequency, (very) high severity: the relaxation of banking 
regulations, the invention of instruments that entitled lenders to shift risk off 
their balance sheets, monetary policies that kept interest rates low, the evapora-
tion of reasonable credit standards and conventional down-payment require-
ments, and so on. 
 These definitions may need further refinement by future work, but they 
already capture the hallmarks of systemic risk at this stage. The definition pro-
vided for systemic risk will underlie this study in the remainder. The absence of 
an accepted definition of systemic risk in the literature is not simply an abstract 
academic ivory tower issue. Systemic risks in and to the financial system are 
regarded as triggers of global financial crises (Schwarcz, 2008: 193-249; Kelly, 
1995: 221ff.). Having lucid definitions is a fundamental requirement for man-
agement and modeling (Fouque & Langsam, 2013: xxviii). Without a well-
thought notion of systemic risk and approaches for measuring and managing the 
amount and nature of the risks, it would be difficult to effectively target indis-
pensable (e.g., mitigating) action without running the real risk of doing more 
harm than good (ibid.). 

 



  
 
 

 

5. On the Relevance of Systemic Risks for Banks 

The purpose of this chapter is to argue for the relevance of systemic risks for 
(private) banks (as opposed to regulators) (5.1.) and to provide empirical evi-
dence for systemic risk events (5.2.) by drawing on an illustrative case which 
will reappear in the course of this work. This chapter is essential, not only for 
contextualizing RQ1 as this study is interested in banks’, and primarily in-house, 
risk management approaches, but also for clarifying the centrality of RQ1 for all 
participants in financial markets. 

5.1. Why should Banks take account of, and try to deal with, Systemic 
Risks? 

Systemic risks affect financial market participants in many ways. However, the 
literature insists firmly that they are and, in fact, should be of little concern to 
(private) banks (as opposed to regulators). For example, the Bank of England 
clarifies in its Financial Stability Review (2005: 3) that “private firms cannot be 
expected voluntarily to take full account of the possible consequences of spillo-
vers from their actions for the overall stability of the financial system as a whole 
[…]”. In other words, “because systemic risk, by definition, breaches the bound-
aries of individual firms, the task of monitoring these risks falls to the regulatory 
community” (Brose & Flood, 2014: 6.). To the extent that systemic risk is “the 
concern of regulators [e.g., European Systemic Risk Board (ESRB), Financial 
Stability Board (FSB), C.H.], they should have no obvious role to play in active-
ly managing the day-to-day affairs of the bank […]” (Rebonato, 2007: 224). In 
the same vein, it might be impossible to determine a price for the general risk, 
which could be incorporated in banks‘ respective calculations (LiPuma & Li, 

2005: 416; Pryke & Allen, 2000: 271). Alan Greenspan, thus, concludes that “the 

management of systemic risk is properly the job of the central banks” (ibid.: 249; 
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cf. also Willke et al., 2013).143 According to this view, systemic risk is not just 
beyond the interest and power of any one firm to manage, but is also a risk that 
affects all groups in an economy (see the systemic risk definition type 2, and cf. 
Bartholomew & Whalen, 1995: 4) and that should, therefore, be monitored and 
managed by regulatory bodies (only). These and many more accounts have been 
given to enunciate this assertion. 
 On the other hand, there are plenty of actual cases where systemic risks are 
disregarded by banks. Varnholt (1995: 6) observes that the risk of a system col-
lapse is usually irrelevant for decision-making processes of market participants 
because there is a very low subjective probability of occurrence: Most of the risk 
experts from the economic practice who were interviewed by Nocera (2009) 
confirm that there is “a great deal to be said for being able to manage risk 99 
percent of the time, however imperfectly, even though it [means] you [cannot] 
account for the last 1 percent [if standard tools like VaR are employed, C.H.]” 
(ibid.: 15). “[T]he individuals who flourish are those who have demonstrated 
expertise solving current problems, not those addressing systemic concerns that 
may never materialize” (French et al., 2010: 38). In the recent financial crisis, the 
risks of loans, including subprime mortgages and collateralized debt obligations 
or CDOs (see also the glossary at the end, Appendix A) that were securitized 
from them, “were of little concern to banks once these risks were transferred to 
other parties” (Boatright, 2011: 6). The main risks that were managed were (di-
rectly) “confined to the banks own portfolios; the losses that might result from 
these toxic assets were someone else’s problem” (ibid.).144 In the current regula-
tion context, “financial institutions do maximize their risk-adjusted returns” 
without taking systemic risks into account (Acharya et al., 2010 in Bernard et al., 
2013: 170; cf. also Schwarcz, 2008: 198). This entails that banks which are in 
default impose losses on creditors and externalities on the society at large,145 in 
case of a systemic crisis (Acharya et al., 2010). 

143  Cf. also Financial Times, 2009a: 4. 
144  Similarly, the moral hazard that the implicit government guarantee provided to so-called too-

big-to-fail institutions or institutions of systemic relevance (i.e., too-interconnected-to-fail) 
were “opportunities” to be exploited, without regard for the consequences to others (ibid.). 

145  Private costs of an initial failure can be lower than the social costs. Then, “individually rational 
bank management may lead to a higher level of systemic risk than would be socially optimal” 
(De Bandt & Hartmann, 2000: 16). 

 

                                                           



5. On the Relevance of Systemic Risks for Banks 105 

 As documented above, the response to this socially unwelcome situation 
(e.g., negative external effects) which is usually put forward in the literature is 
that regulators or policy makers should intervene to deal with systemic risks 
because banks will not or cannot be expected to do so, unless at least their incen-
tives are altered (which calls for again regulators to improve the regulatory 
framework). In this chapter, by contrast, we show that this response is in need of 
completion, that the arguments in the literature are flawed and that not only regu-
lators or policy makers, but also banks should indeed account for, and deal with, 
systemic risks (irrespectively of the regulation context). This thesis may be es-
poused on moral grounds (Heinemann, 2014; Boatright, 2011), e.g., if banks 
have a corporate social responsibility,146 but here we argue that morality follows 

from reasons of rationality; in particular, if a so-termed feedback view of the 
world (Sterman, 2000) is adopted. In reference to RQ1.3, asking for the need to 
look at systemic risks from banks’ point of view, two answers are provided.  
 First, the view usually adopted in the literature is based on an arbitrarily 
narrow interpretation of, perspective on, the term “systemic risk” and a systemic 
risk event does not only comprise the default, failure or bankruptcy of (a) certain 
bank(s). Since one of the foremost purposes of risk management in banking is to 
evaluate risks of the category „high severity, low likelihood“ (Banks, 2009: 17f.; 
Arnoldi, 2009: 15; McNeil et al., 2005: 20; Posner, 2004: 6; Moss, 2002: 31; 
Stulz, 1996: 7), a minimal goal for private-bank risk managers (Rebonato, 2007: 
249), it is clear that (private) banks should take account of systemic risk and 
should try to deal with it, given how the term is defined here. In opposition to 
Taleb’s (2007a, 2007b, 2012) extreme view according to which he doubts 
whether systemic risks or black swans can be reckoned or calculated at all, a 
scientific and rational approach is possible (Part III). 
 Second, even if we stuck with a narrow reading of systemic risk, the man-
agement of systemic risks in banks does make sense because the frequently made 
distinction between individual risks (banks' business) vs. systemic risks (none of 
banks' business) usually goes astray. This dichotomy is often found in the litera-
ture (see above and also the next paragraph) and the reasoning behind it can be 
captured by a systems theoretical model (see Figure 5). However, this reasoning 

146  Note that corporate social responsibility can be an expression of systems thinking, namely 
environmentalization: “the process of putting into a system’s mind its relationship to the whole 
of which it is part” (Ackoff, 1974: 55). 
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and the corresponding model do not do justice to how the real system behaves, 
which is better modeled in Figure 6. By following the ‘logic’ of this latter model, 
it becomes obvious that systemic risks and their management are highly relevant 
to banks, regardless of how exactly the term “systemic risk” is specified.   
 In terms of the flawed argument in favor of the dichotomy between individual 
vs. systemic risks, it is often asserted (even by the Queen of England; Helbing, 2013: 
53) that individual risks may rightly have been viewed as small regarding the occur-
rence of a financial meltdown – because single banks perceived their individual risk 
(e.g., of default or insolvency) diminish as a result of cooperation (i.e., risk sharing147 
by diversification) – while the risk to the system as a whole was vast or increas-
ing (Garnier et al., 2013: 432; Helbing, 2013: 53; Haldane & May, 2011: 353). 
 This reasoning in the literature appears to suggest that individual banks did 
not need to be on red alert, that their risk management was effective, and that no 
further (mitigating) action or special attention to systemic risk was required by 
them. The following causal loop diagram (CLD) interconnects the variables that 
were found important according to this flawed reasoning with arrows that are 
supposed to indicate causal relationships.148 

147  Interbank lending constitutes risk-sharing as Staum (2013: 532) explains: “it enables banks to 
survive liquidity shocks by borrowing, but it drains liquidity from lenders, leaving them more 
exposed to future liquidity shocks”. 

148  How to read a CLD: The arrows indicate the causal relationships. The + (–) signs at the arrow-
heads indicate that the effect is positively (negatively) related to the cause: e.g. an increase in 
systemic risks causes risk management efforts to rise above what it would have been (and vice 
versa). The B in the center of a loop denotes a balancing feedback, a negative feedback loop 
which is self-correcting. The overall polarity of a loop is the product of the signs on the arrows 
constituting that loop. All systems, no matter how complex, consist of networks of positive and 
negative feedbacks, and it is often stated that all dynamics arise from the interaction of these 
loops with one another (Sterman, 2000). 

 Even though this piece of work makes use of CLDs, the debate over the use and usefulness of 
CLDs still goes on (e.g., Warren, 2004; Homer & Oliva, 2001) and their fundamentally limited 
character should not be disguised. For example, despite their comparative advantage of explicitly 
representing feedback loops, they cannot represent the fact that the effects of a cause may show 
up in a smoothed way (Schaffernicht, 2007; Richardson, 1997). Moreover, causal loop models 
are supposed to contain and represent only causal relationships as opposed to correlations (Sterman, 
2000: 141); yet, the notion of causality, including the concept, its role, and function in CLDs (and 
other System Dynamics modeling contexts), have not received much attention in the literature 
(Pedercini, 2006). On the other hand, CLDs concisely visualize the (both obvious and hidden) 
interconnections (and, thus, in some sense complexity), they can be used to elicit and capture the 
mental models of individuals or groups, and CLDs also capture hypotheses about dynamic behav-
ior (Morecroft, 2007: 51). Due to these reasons they can be useful in spite of their weaknesses, 
which are rather insignificant here because our CLDs are used for illustration purposes only. 
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Figure 5:  Risk sharing and systemic risks I: As the textbook reasoning goes, banks perceive their 

risks decrease as a result of cooperation.149  

This figure reflects how textbooks and the literature (e.g., Saunders & Cornett, 
2010; Bessis, 2010; Cecchetti, 2008) describe (and overestimate) the function of 
‘risk sharing between banks’ which is outlined as being beneficial for the parties 
involved and which is the variable in focus in this model (see footnote 149). In 
financial theory, hedging and transferring of risk are possible because the risk is 

149  This model consists of two causal feedback loops which are balancing. “Risk sharing between 
banks” is the key variable that expresses the degree to which financial risks are diversified 
among market participants. It is embedded in the causal circuit B1. Its logic is as follows: A 
comparison between banks’ target risk level, a desired minimum value R*, and the actual level 
R results in a gap. The gap determines the magnitude of banks' in-house risk management ef-
forts to mitigate risks which in turn positively affects the intensity of risk sharing between 
banks (i.e., more/less of the cause leads to more/less of the effect), etc., all along the loop. The 
logic of the other feedback loop B2 in the diagram is that more (less) risk management efforts 
and actions are required by regulators to mitigate risks if systemic risks in the financial system 
increase (decrease), which in turn depends on actions taken by the regulators. However, the 
crucial weakness of the model, of the underlying reasoning found in the literature, is that it nei-
ther establishes nor explains the link between rising (declining) individual risks or risk sharing 
initiatives and rising (declining) systemic risks, which is indicated by the question marks in the 
CLD. To be precise, this weakness is not a weakness of the model, but arises from the short-
comings of the reasoning which it is meant to depict. By contrast, it is indeed a flaw of this di-
agram that not all variables seem to be operationali-zable (e.g., “average bank's in-house risk 
management efforts to mitigate risks”); a flaw, however, which we consider as negligible since 
the CLDs in this study are used for illustration purposes and clarification of arguments only.  

 

 
 

 

Risk sharing
between banks

Systemic risks in the
financial system

+

+

Risk management efforts
required by regulators to

mitigate risks
+Average bank's in-house

risk management efforts to
mitigate risks

+

B1

Average bank's individual
risks (state of the

subsystem R)

+

Individual risks regarding
the occurrence of a
financial meltdown

+

Risks transferred to
those best able to

manage them

?
??

+

+

Discrepancy R - R* Average bank's target risk
level (desired state of

subsystem R*)

+ -

Corrective actions

+-

B2

- +

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


108 Part I: Concepts, Model Level and Risk Assessment 

assumed by parties who can bear it more efficiently (Cecchetti, 2008: 2, 48f.). In 
this light, risk sharing appears to be the right thing to do for banks (at least if 
they act ‘rationally’). On the other side, systemic risks build up in the back-
ground when contemporaneously measured risk is low (Adrian & Brunnermeier, 
2011: 8). This link, however, between decreasing individual risks by risk sharing 
and increasing systemic risks, culminating in the great financial crash which 
crescendoed in 2008, and the tension between seemingly low individual risks 
regarding the occurrence of a financial meltdown and the objectively enormous 
risk to the system as a whole is neither resolved nor clarified in the literature 
(indicated by the question marks). The central point that the financial system can 
exhibit global instability even in the face of each unit acting to manage its risk 
(Bookstaber et al., 2015: 154) is not underscored and, if an explanation is pro-
vided, it is not sufficiently traced back to the phenomenon of risk sharing 
(Thurner, 2012: 23f.; FCIC, 2011). Therefore, the flawed reasoning represented 
by Figure 5 ought to be discurtained as such and, hence, a more appropriate and 
realistic picture or diagram needs to be drawn, respectively. 
 Indeed, risk sharing has not worked out in practice: The proposition that 
sophisticated modern risk management was able to transfer risk to those best 
able to manage it has failed (Crotty, 2009: 572). The paradigm is, instead, that 
“risk has been transferred to those least able to understand it” (ibid.; Financial 
Times, 2009b). Systemic risks occur then “because financial agents do not un-
derstand (or care) how their behaviour will affect everyone else and how syn-
chronization of behaviour builds up” (Thurner, 2012: 24). Interconnectedness 
through risk sharing (or spreading) poses substantial threats to the stability of the 
financial system (Bookstaber et al., 2015: 147). To the extent systemic risk af-
fects markets or the whole financial system (the Wall Street) or the real economy 
(the Main Street) etc., it is positively correlated with the markets etc. and cannot 
be diversified away (Schwarcz, 2008: 200). Risk sharing entails a kind of non-
linearity that causes robust-yet-fragile behavior in financial systems (Bookstaber 
et al., 2015: 147; Staum, 2013: 532).150 In other words, risk sharing decreases the 
expected number of bank defaults, it is beneficial unless a tipping point is passed. 
Then it turns into a disadvantage because the interconnectedness of banks no 
longer dampens a shock, buth rather amplifies and distributes the damage 

150  A property of a system is robust if it is invariant with respect to a set of perturbations (Alder-
son & Doyle, 2010: 840). Fragility is the opposite of robustness, i.e., the lack of invariance. 
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throughout the system (Willke et al., 2013: 30). The disadvantage is that risk 
sharing “increases the variance of the number of defaults and it increases the 
number of defaults in bad scenarios” (Staum, 2013: 532). In the extreme case of 
complete risk-sharing, there are no defaults (i.e., robustness) unless the aggregate 
shock, a systemic risk event, “exceeds the capacity of the system as a whole to 
absorb it, in which case every firm fails [i.e., fragility]” (ibid.). Higher connectiv-
ity leads to more extreme robust-yet-fragile behavior (ibid.: 534).151 For exam-
ple, when the strategies of (bank) companies all over the world become more and 
more similar due to inviting the same consultancy companies, the result is a lack 
of variety or heterogeneity in the system, which implies that “the number of 
defaulting companies is either negligible, or many companies fail at the same 
time” (Helbing, 2010: 12). 
 The successive CLD substitutes the previous diagram and illustrates that 
important feedback has been neglected which operates in real life,152 as opposed 
to text book cases, highlighting that “[f]inancial instability typically results from 
positive feedback loops intrinsic to the operation of the financial system” 
(Bookstaber et al., 2015: 147). 
 Although banks thought that they had transferred the risks in their own 
portfolios successfully (e.g., by means of credit default swaps) – such banks have 
perceived themselves as smart (see loop B and the differences in comparison to 
the similar loop B1 in Figure 5) –, the risk returned to them after a while (see R1 
to R5 in Figure 6) – and to taxpayers – when the counterparties were unable to 
pay claims (Boatright, 2011: 6). Hence, risk sharing might be regarded as a 
blessing and a curse in the course of time, which corresponds to Staum’s (2013) 
robustness-vs.-fragility distinction as to financial systems. 
 Basically, this CLD in Figure 6 might be traced back to a simple generic 
structure, namely a systems archetype which Senge (2006: 103) calls “Shifting 
the Burden”. Because for both cases it is characteristic that symptomatic solu-
tions (like risk sharing) tend to have short-term benefits (for the “smart” banks) at 
best while in the long term, the problem (of coping with risks effectively) resur-
faces and there is then increased pressure for symptomatic response. And Senge 
(2006: 22) has a good point when he warns: “Today, the primary threats to our 

151  Empirical evidence for this phenomenon can be provided, cf. Vitali et al. (2011: 7). 
152  The model could be further extended to incorporate more feedback, variables and interconnec-

tions between them. 
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survival, both of our organizations and of our societies, come not from sudden 
events but from slow, gradual processes.” 

 
Figure 6:  Risk sharing and systemic risks II: In reality, the distinction between individual vs. sys-

temic risks usually goes astray.153 

Why systemic risks have been viewed as immaterial for/by banks 

One cause of not comprehending the full range of feedbacks operating in a sys-
tem, of not seeing the inter-connections, relationships or the structures that under-
lie situations, is our tendency to interpret experience as a series of events, our so-
called event-oriented worldview, which leads to an event-oriented approach to 
problem solving (Sterman, 2000: 10). Figure 7 shows how we often try to solve 
problems. 

153  This model consists of six causal feedback loops. The loops which are added here are self-
reinforcing, hence the loop polarity identifier R. They are called positive feedback loops. De-
lays between “systemic risks in the financial system” (cause) and “number of systemic risk 
events in the financial system” (effect), etc. are pervasive and denoted by the orthogonal dashes 
on several arrows. “Risk sharing between banks” is still the key variable. This time, however, it 
is embedded in several causal circuits. On the one hand, the functioning of the loop B is very 
similar to the logic of B1 in Figure 5, with two peculiarities though: first, this CLD is more ab-
stract in the sense that some steps or variables are skipped; second, it is more specific in the 
sense that a differentiation is made between “smart” and “dumb” banks. On the other hand, the 
five reinforcing feedback loops work in a similar way. They all show that some banks (“dumb” 
banks) do not profit from risk sharing, their individual risks increase with risk sharing. This re-
sults in growing systemic risks in the financial system, which on one way or the other bounces 
back to banks that thought they would be smart because they transferred risk to those “least 
able to understand it” in the first place. 
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Figure 7:  Event-oriented view of the world (Source: Sterman, 2000). 

According to this view, as Sterman (2000: 10) describes, we assess the state of 
affairs and compare it to our goals. The gap between the situation we desire and 
the situation we perceive defines our problem (ibid.). For example, suppose that 
a bank wishes to minimize its individual risks (R* in Figure 5 and 6). The prob-
lem is that individual risks are higher than desired. The bank then considers 
various options to correct the problem. It might share or diversify its risks by 
selling CDOs or doing xyz (Cecchetti, 2008: 47), it might stop taking high risks in 
the first place, or take other actions. The bank selects and implements the option 
it deems best. It might observe its risks decline: problem solved. Or so it seems. 
 However, “[p]roblems and solutions are in constant flux; hence problems do 
not stay solved” (Ackoff, 1974: 31). Yesterday’s ‘solution’ can become today’s 
problem. Namely, it is important to see that actors in the financial system are not 
puppet masters influencing a system out there. There is feedback (see Chapter 
6): The results of banks’ risk management activities define the situation they face 
in the future. The new situation changes their assessment of the problem and the 
decisions which will be taken tomorrow. Their decisions alter the state of the 
system, leading not only to new decisions,  

 
Figure 8:  The feedback view of the world, Part I (Source: Sterman, 2000). 
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but also triggering side effects154 (e.g., as risk sharing rises, the probability of a 
financial meltdown deteriorates), delayed reactions (e.g., systemic risk affects 
individual risk), and interventions by others (e.g., risk sharing efforts by other 
banks, interventions by regulators). These feedbacks may lead to changes in 
goals, unanticipated results and ineffective policies (Sterman, 2000: 11).  

 
Figure 9:  The feedback view of the world, Part II (Source: Sterman, 2000, 1994): Information 

feedback about the environment not only alters our decisions within the context of exist-
ing frames and decision rules, but feeds back to alter our mental models and decision 
goals. “The development of systems thinking is a double-loop learning process” 
(Sterman, 1994: 297; cf. also Stacey, 2010: 119f.). 

If risk managers are not able to grasp and spot the factors determining the behav-
ior of the system, if they do not adopt a feedback view of the world (Figures 8-9), 

then they do not only disregard systemic risks for in-house risk management pur-
poses, but their interventions in the financial system can be even responsible for 
the instability of the system or possibly result in serious problems like a financial 
crisis that (badly) affects all market participants.155 In a nutshell, to understand 
individual decisions (e.g., of banks’ risk-sharing strategies) and their impact on 

154  “Side effects are not a feature of reality but a sign that our understanding of the system is 
narrow and flawed” (Sterman, 2000: 11). 

155  This is not to say that such crises are (fully) caused by individual bad decisions, by mistakes of 
individuals or by external forces, but that more often than we realize systems cause their own 
crises. However, Forrester (1961) maintains that the causes of many pressing public issues 
(like a financial crash) lay in the very well-intentioned policies designed to alleviate them (i.e., 
what he refers to as contra-intuitive behavior of social systems). 
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the system in which the actors are embedded, to cope with dynamic complexity, 
which is pervasive and a central organizational issue (Anderson, 1999; see Chap-
ter 6), and to perceive system changes, which cause systemic risks, a feedback 
view of the world is prerequisite. It entitles risk managers, especially in the prac-
tice, to become aware of the relevance of systemic risks for in-house risk man-
agement purposes, which is of utmost interest to themselves and society at large 
(see 5.2.; cf. also Soros, 2013; NZZ, 2016 for a current case at hand: Falcon Pri-
vate Bank). 
 Summa summarum, this argumentation allows to derive the first proposition 
to pioneer on uncharted terrain. 

Proposition 1:  
(Private) banks should adopt a feedback view of the world, they should 

account for systemic risk and actively address it for in-house risk 
management purposes. 

Bottom line 

By putting this postulation forward, it is not meant to replace the activities and 
the engagement of regulators, but to complement them. Admittedly, bright-line 

bank regulations have their advantages: Metaphorically speaking, “it is usually 
better to specify a speed limit than to enjoin drivers from speeding” (Bhidé, 
2010: 289). Yet, in many situations of bank regulations considerable reliance on 
broad, as opposed to tight, rules is unavoidable. For example, one set of capital 
requirements does not fit all: “If bankers are given a precise definition of activi-
ties that fall under the rubric of casino banking, they will surely find other ways 
to gamble” (ibid.). Regulation and the law are rather crude instruments, and the 
law “is not suited for regulating all aspects of financial activities, especially 
those that cannot be reduced to precise rules” (Boatright, 2008: 9). In addition to 
that, regulation often develops as a reaction to activities that are considered to be 
socially undesirable or unacceptable. It would be perverse to encourage people in 
banks to “do anything that they want until the law tells them otherwise“ (ibid.). 
Therefore, a certain amount of self-regulation is requisite, not as a surrogate for 
legal regulation, but as a supplement for territories which the law cannot easily 
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touch upon and as an ideal for rising above the law (ibid.).156 In other words, 
rather than solely placing our bets on new ‘super’ or ‘systemic’ regulatory bod-
ies, the effective and fair implementation of broad rules calls for decentralized, 
case-by-case judgments (Bhidé, 2010: 289) and must be fostered by in-house 
approaches towards managing systemic risks in the financial system. 
 Furthermore, the implications of this first central research finding (Proposi-
tion 1) should not be underestimated. In particular, as stated earlier, the starting 
point for all common risk-management frameworks in banks is the classification 
of risks into risk categories (Mikes, 2009a). There is market risk, there is opera-
tional risk, there is reputational risk, there is credit risk – all separately discussed 
and managed in banks (ibid.; Detken & Nymand-Andersen, 2013: 759–761). On 
the one hand, such subsumption and categorizations may appear to be compulso-
ry in order to present manageable information to executive management (Bras-
well & Mark, 2014: 245). Likewise, it is often thought to be the case that the crea-
tion and introduction of risk silos is an important part of the effort to make an 
otherwise ill-defined risk measurable, manageable and transferable since “[e]ach 
category of risk calls for distinct sets of risk management skills which are often 
used to define, delegate and organize the risk management activities of an FI 
[financial institution]” (Mark & Krishna, 2014: 35). 
 But, on the other hand, the reality in light of the systemic viewpoint here is 
different from the picture drawn by these practices: All the risk categories inter-
act (Mikes, 2011: 239). The danger is that risk has been compartmentalized too 
much – for example, Kuritzkes & Schürmann (2010) dedicate all their efforts to 
identifying room for risk management improvements by ventilating all the risk 
silos separately.  
 Yet, the only viable way forward for a successful handling of financial risk 
consists of a holistic approach, i.e., an integrated approach taking all types of risk 
and their interactions into account (McNeil et al., 2005: 3). Whereas this is a 
clear goal, current models do not yet allow for a fully satisfactory platform 
(ibid.). Along these lines, investigating systemic risks of the financial system 
transcends the usual risk silo management approach and focuses on changes of 

156  More critically, regulation might even be harmful and contra-productive: Implementing differ-
ent regulation scenarios, such as the Basel accords, may deepen crisis when leverage levels are 
high, which is due to enhanced synchronization effects induced by the regulations (Thurner, 
2012). 
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dynamically complex financial systems, including interdependencies and spillo-
vers between risk clusters. As a result, Proposition 1 provides a strong reason for 
overcoming the silo-treatment of risks, at least to some extent. Moreover and still 
on the theoretical side which is foregrounded in this thesis, the perspective of 
complexity and well-grounded systems theories, that is required due to the dy-
namic complexity (Byrne & Callaghan, 2014: 39; Schwaninger, 2005: 32), is 
hardly compatible with the standard categorization of risks, which is aggravated 
anyway by new emerging risk categories (Härle et al., 2016: 6).157  
 To use an analogy, risk management is chemistry (complexity science, 
global), not particle physics (mechanical science, local). You cannot separate the 
risks! 

5.2. What are concrete Systemic Risk Scenarios for Banks? 

Many different concrete systemic risk scenarios can be composed to illustrate the 
relevance of systemic risks for banks (ad RQ1.4). Taken from the more recent 
past and apart from the recent financial crisis of 2007-09, these might involve 
events like the collapse of Barings Bank in 1995 or of the giant158 hedge fund 
Long Term [!]159 Capital Management in 1998, and the Asian crisis in 1997/98. 
Countless more (very) rare events with extreme consequences exist or can be 
envisioned, ranging from natural disasters (e.g., an earthquake in Tokyo from the 
point of view of a bank with its headquarters in Tokyo’s financial district) over 
severe political conflicts (e.g., Western sanctions against Russia over the Ukraine 

157  An empirical reason is that the standard categorization has proved to be unhelpful and, indeed, 
dangerous. For example, credit and market risks are often monitored independently from each 
other along functional responsibility lines for credit risk and asset-liability management 
(ALM). Although it is stressed in this case that it is absolutely critical that both groups periodi-
cally share reporting strategy, methodology and data in order to ensure alignment to the great-
est extent possible (Rossi, 2014: 79), reality all too often departs from this ideal. One observer 
noted that in the recent financial crisis, the risk of CDOs (i.e., collateralized debt obligations 
which are securities that bundle together large numbers of loans and divide them into tranches 
with different risks and rates of return) “was not widely recognized because they fell between 
market and credit risks, and the parties responsible for each of these risks thought the problem 
belonged to the other” (Boatright, 2011: 9). 

158  In terms of personnel, LTCM was of limited size: initially, eleven partners and thirty employ-
ees; by September 1997, fifteen partners and around 150 employees (MacKenzie, 2003: 354). 
These people, however, managed a considerable body of assets: in August 1997, LTCM’s as-
sets totaled $126 billion, of which $6.7 billion was the fund’s own capital (ibid.). 

159  The fund existed for no more than four years. Apart from that, Taleb (2005: 54) objects that 
under (utter) leverage there is no such thing as long term. 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


116 Part I: Concepts, Model Level and Risk Assessment 

crisis from the stance of a Russian bank) to homemade failures (for the latter, 

think, e.g., of the rogue trader in the case of Barings Bank (Nick Leeson),160
 

Société Générale (Jérôme Kerviel) or UBS (Kweku Adoboli); Jacque, 2015: 143-
196). Yet, the diversity of extreme and systemic events underscores that they ne-
cessitate very different management and hedging approaches, at least on a de-
tailed level (Bhansali, 2014: 152). 
 The well-studied case of the fall of the hedge fund161 Long Term Capital 
Management (cf., Lowenstein, 2002) and its impact on banks and the interna-
tional banking system is presented in this context and discussed as a systemic 
risk event in-depth. This means that an explanation is provided of in what sense 
the event of LTCM’s fall is or can be considered as (very) rare, as producing 
disastrous consequences and of what is really systemic and not only extreme 
about it. But first, the impressive story of LTCM, containing defining moments 
of the economic history of the 1990s, runs in a short form as follows.162 
 LTCM was a hedge fund management firm, founded in 1994 by John W. 
Meriwether, the former vice-chairman and head of bond trading at Salomon 
Brothers and by common consent the most talented bond trader of his generation 
(MacKenzie, 2003: 352). Members of LTCM's board of directors included Myron 
S. Scholes and Robert C. Merton, who shared the 1997 Nobel Memorial Prize in 
Economic Sciences for a “new method to determine the value of derivatives” 
(The Royal Swedish Academy of Sciences, 1997). This might explain why 
LTCM has been labeled the “probably […] best academic finance department in 
the world” (Mandelbrot & Hudson, 2008: 106). Therefore, it is not perplexing 
that sophisticated investors, including many large investment and commercial 
banks, flocked to the fund, investing $1.3 billion at inception (Drobny, 2006: 24). 
LTCM was hugely successful: “at its peak, it deployed what is almost certainly 
the largest single concentration of arbitrage positions ever” (MacKenzie, 2003: 
352).163 This one obscure arbitrage fund amassed an amazing $100 billion in 
assets, virtually all of it borrowed from not more than one hundred investors 

160  Note that both Leeson’s fraudulent, unauthorized and speculative practices (as a whole) and the 
collapse of Barings Bank itself (which in turn was caused by his trading activities) can be re-
garded as systemic risk events.  

161  For a selective review of the recent academic literature on hedge funds as well as updated 
empirical results for this industry, cf. Getmansky et al. (2015). 

162  For a longer version, cf. Lowenstein, 2002.  
163  Arbitrage refers to trading that seeks to profit from price discrepancies. 
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(Lowenstein, 2002: xix). Against this background of a huge amount of capital, it 
entered into thousands of derivative contracts, essentially side bets on market 
prices, which covered an astronomical sum of more than $1 trillion (ibid.). And 
yet in the late 1990s the firm's master hedge fund collapsed, ultimately due to the 
Russian financial crisis in 1998 (Jorion, 2000), in which the Russian government 
imposed a moratorium on foreign debts, defaulted on some domestic debts, and 
ended the Rubel's peg on the dollar which led to a large fall in the Russian cur-
rency's value (Stiglitz, 2002: 145f.). (But unsurprisingly, as we do not inhabit a 
mono-causal world, LTCM also faced other problems like on the Danish mort-
gage market.) These events happened during a more general financial crisis in 
Asia that had begun a year before, and together they led to a flight of capital 
towards US Treasury bonds, causing the spread between them and underlying 
interest rates to widen, contrary to the expectations of LTCM. At the same time, 
other market participants were aware of LTCM's strategy and intentionally tried 
to increase the spread even further, which caused LTCM to have to post more 
and more collateral until it had used up all its capital and required a bailout by 
other banks (Roubini & Mihm, 2011: 29; Greenspan, 2007; Mac Kenzie, 2003: 

367). In Chapter 16, we are going to analyze exactly the kind of trade that result-
ed in the fund's demise, and show that our model would have been able to capture 
some of the consequences of the 1998 events, without having to make difficult 
assumptions such as pinpointing a probability for a default of the Russian govern-
ment, which in the end denounced LTCM as “a catastrophe that was caused by the 
pseudo-science of economics” (Taleb, 2005: 54). 
 It is prima facie beyond dispute that LTCM’s crisis – the firm was driven to 
the brink of bankruptcy – can be classified as a systemic risk event. First, the 
event is or can be considered as (very) rare in reference to similar situations or 
situations perceived as similar. While it might be impossible to specify an objec-
tive probability for LTCM’s collapse considering high scientific standards of 
rigor – the “true” probability of a loss of 77% in a certain interval may have been 
0.1% or 25% or it may have been more or less probable but since LTCM lost 
77% on only one occasion, nothing can be concluded from this fact; neither ‘the 
true value’ nor anything about the effectiveness of LTCM’s risk management 
(cf. Stulz, 2008: 62; and see also Chapter 7) –; the subjective degrees of belief 
concerning the fund's failure were very small. Especially, the fund's managers, 
who considered themselves to be smarter than others (Lowenstein, 2002: 89), 
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believed that such a scenario would be negligible. LTCM did not merely concede 
the possibility of loss, it reckoned the supposed odds of its occurring, and to 
precise mathematical degrees (Lowenstein, 2002: 61): “Just as [in] a handbook of 
poker […], the professors calculated that Long-Term would lose at least 5% of 
its money 12% of the time (that is, in twelve of every hundred years). The letter 
went on to state that ”[o]nly one year in fifty should it lose at least 20 percent of 
its portfolio – and the Merton-Scholes encyclical did not entertain the possibility 
of losing more” (ibid.: 63). On this basis, it is clear that a collapse was not on 
their radar. In fact, the partners explained the blowup of LTCM as the result of a 
‘ten sigma event’, which should take place once per lifetime of the universe. It 
would be more convincing, however, to consider that, rather, they used the 
wrong distribution (Taleb & Pilpel, 2004: 3).164 In addition to that, LTCM’s 
letter represented a dramatic leap: While it heartily acknowledged risk in the 
sense of Risk II (see also Appendix A), it banished uncertainty or risk in the 
broad sense by putting numerical odds on its likelihood of loss.  
 Second, the event’s consequences were extreme. LTCM’s losses were stun-
ning in their size and rapidity: for example and yet this was only a foretaste of 
what was to come, in August 1998, it lost 44% of its capital (MacKenzie, 2003: 

365). LTCM’s final, cumulative loss was staggering (see Figure 10). Through 
April 1998, the value of a dollar invested in the firm quadrupled to $4.11 (having 
grown to $2.85 after deducting the partners’ fees). By the time of the bailout, 
only five months later, precisely 33 cents (23 cents) of that total remained (Low-
enstein, 2002: 224; Jacque, 2015: Chapter 15).  
 In net terms, the greatest fund ever had lost 77 percent of its capital while 
the ordinary stock market investor had been more than doubling his money 
(ibid.: 225). LTCM experienced a flight-to-quality and a cascade of self-
reinforcing adverse price movements (MacKenzie, 2003: 353). The result was “a 
downward spiral which fed upon itself driving market positions to unanticipated 
extremes well beyond the levels incorporated in risk management and stress loss 
discipline” (Lowenstein, 2002: 219). In the end, in terms of the firm itself and its 
internal stakeholders it is noteworthy that the partners’ investment in LTCM – once 

164  “As the crisis [of 2007-09] began, reports of ‘10-sigma’ or ‘20-sigma’ events were common-
place until a sort of ennui set in, and it became understood that models designed to characterize 
the behavior of asset prices during normal market conditions had little relevance in a crisis so 
extreme that the need to survive trumped many financial institutions’ normal profit-seeking be-
haviors.” (Getmansky et al., 2015: 62). 
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Figure 10:  Gross value of $1 invested in LTCM, March 1994 – September 1998  

(Source: Lowenstein, 2002; cf. also Fung & Hsieh, 1999: 329). 

worth $1.9 billion – was totally gone, most of it lost in a mere five weeks (ibid.: 
208). The fund’s employees received most of their pay in the form of year-end 
bonus money. Most of those bonuses had been invested in the fund and went 
down the drain as well (ibid.: 225). A month after the rescue, LTCM laid off 33 
employees, almost a fifth of the staff (ibid.). After that, there was a steady stream 
of defections (ibid.). 
 On the other hand, the crisis was extreme for external stakeholders, respec-
tively. Greenspan (1998: 1046), for example, speculates that if “the failure of 
LTCM triggered the seizing up of markets […] it could have potentially im-
paired the economies of many nations, including our own”. LTCM’s monstrous 
indebtedness (almost $100 billion) and its notional derivative exposure ($1 tril-
lion) had endlessly intertwined it with every major bank on Wall Street. If 
LTCM defaulted, all of these banks would be left holding one side of a contract 
for which the other side no longer existed (Lowenstein, 2002: xix). In the words 
of William J. McDonough, the former President of the Federal Reserve Bank of 
New York: “Had Long-Term Capital been suddenly put into default, its counter-
parties would have immediately ‘closed out’ their positions […]. [I]f many firms 
had rushed to close out hundreds of billions of dollars in transactions simultane-
ously […] there was a likelihood that a number of credit and interest rate markets 
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would experience extreme price moves and possibly cease to function for a peri-
od of one or more days and maybe longer.” (McDonough, 1998: 1051f.; cf. also 
Adrian, 2007: 1). Thus, not only the banks directly involved would be exposed to 
tremendous and untenable (credit or counterparty) risks, but also whole financial 
markets would be endangered, which in turn concerns national and international 
institutions and society at large. 
 All things considered, it is therefore safe to say that the fall of LTCM can be 
regarded as a very rare event with extreme consequences. It is, additionally, not 
only extreme but truly systemic (Getmansky et al., 2015: 75) because the risk of 
LTCM’s collapse needs to be investigated at the higher level of interactions and 
interdependencies due to its high degree of interwovenness with every other 
major player on Wall Street. Put differently, the crisis of LTCM is systemic in 
nature as (reinforcing) feedback loops played a major role for explaining both its 
emergence as well as its (possible) impact (MacKenzie, 2003). A tightly coupled 
system as a set of elements, here: LTCM and its contractual or trade partners, 
standing in heavy interrelation was established (von Bertalanffy, 1968/2013: 38). 
 LTCM’s crisis has aroused widespread comment (cf., Lowenstein, 2002) and 

this case study is particularly interesting in the context of this thesis for a couple 
of reasons. 

1) “Risk is a critical component of hedge fund strategies [even more than 
elsewhere; C.H.], so the way in which it is measured is extremely im-
portant” (Adrian, 2007: 2). Moreover, “[e]ver since the demise of LTCM 
in 1998, hedge funds have become inextricably linked to systemic risk, 
though the links are still not yet well defined” (Getmansky et al., 2015: 
62). On top of that, it has been purported that tail or extreme risk is a 
distinctive facet of hedge-fund risk management (ibid.: 55). 

2) Merton saw LTCM not merely as a “hedge fund”, “a term that he and 
the other partners sneered at, but as a state-of-the-art financial interme-
diary”, a financial-technology company, that provided capital to mar-
kets just as banks did (Lowenstein, 2002: 30). More specifically, its 
partners and managers fell prey to “managing risk by the numbers” 
(ibid.: 65; see Chapter 10). Therefore, very interesting lessons can be 
learnt from studying this case. For example, the partners assumed that, 
all else being equal, the future would look like the past (ibid.: 59) 
which serves as a nice illustration for the target of the objection IIIb) 
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and for invoking Chapter 7. Another lesson is that there were misbe-
liefs about risk. For instance, LTCM’s press spokesman, glibly ex-
plained: “Risk is a function of volatility. These things are quantifiable” 
(ibid.: 64). Third, in opposition to some accounts which claim that 
LTCM’s partners had blind faith in the accuracy of risk management or 
finance theory’s mathematical models (cf. MacKenzie, 2003: 352), it 
appears to be the case that the traders at LTCM knew the models were 
imperfect – “’we know this doesn’t work by rote’, said Robert Stavis, 
the former member of the Arbitrage Group at Salomon; ‘but this is the 
best model we have’” (Lowenstein, 2002: 75). The response given here 
is that there might be a more appropriate modeling approach compared 
to orthodox methods (Part III) and that even if no persuasive alterna-
tives could be found, this would not make up for the applied methods’ 
shortcomings (Part IV). Etc. 

3) The rise and especially the fall of LTCM were presented in such detail 
because in later sections the case of LTCM is taken up in the following 
ways.   
a) This thesis looks at LTCM's collapse not only as a general sys-

temic risk event, but as a counter-party credit risk crisis (the rea-
son why intervention by the Fed was a sine qua non for prevent-
ing it) from banks' point of view in particular.  

b) This thesis is not interested in LTCM's (investment) strategy per 

se but rather an example trade is provided (Chapter 16.1.) to form 
the starting point for an illustration for the applicability of a novel 
and enhanced conceptual program towards responding to systemic 
risks in the financial system (introduced in Part III).  

c) The case of LTCM is employed as empirical evidence for our 
Central Argument in Chapter 7.    

Ultimately, the overriding importance of systemic risks for banks also results 
from the importance of managing complexity in banks. 
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6. Dealing with Quantitative Risk Management in 
Banking as a Complex Systems Problem 

Ideas thus made up of several simple ones put together, I call Complex;  
such as are Beauty, Gratitude, a Man, an Army, the Universe.  

(John Locke, 1689) 

The whole is more than the sum of its parts. 
(Aristotle, 384 – 322 BC) 

True wisdom comes to each of us when we realize how little we understand about life, our-
selves, and the world around us. 

(Socrates, 470/469 – 399 BC) 

“Risk is like a polished gem with different facets: each facet reflects the light in 
different colors; but the whole gem can be appreciated only if the images of all 
the facets are being absorbed” (Renn, 2008: xv). Indeed, risk is a truly interdisci-
plinary, if not transdisciplinary, phenomenon and difficult questions about risks 
often depend upon a transdisciplinary vision of the risk concept. None of the 
single discipline-based approaches to grasp the entire substance of the risk issues 
can thrive (ibid.). Only if they combine forces, one can expect an adequate ap-
proach towards understanding and managing risks (ibid.). Thus, investigating 
risks necessitates a multi- or (better) transdisciplinary, i.e., disciplines brought 
together in an integrated fashion, approach which renders a systems / complexity 
perspective an appropriate choice for comprehending and managing systemic 
risks in and to the financial system. Because it is important to recognize that the 
discipline of ‘systems science’165 in fact claims to be a meta-discipline (Flood & 
Carson, 1993: 21). In other words, systems science is not, strictly speaking, mul-
ti-disciplinary, it is not concerned with lots of disciplines separately, but rather it 
is an interdisciplinary meta-subject (ibid.). Systems science grew out of the need 

165  It is controversial if such a thing as systems or complexity science exists. Bruce Edmonds or 
W. Brian Arthur, to name just two skeptics, would rather call it a movement or an approach to 
do science (cf. Gershenson, 2008). Therefore, we use the term “systems / complexity science” 
only in a loose way. 
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to communicate across disciplinary boundaries as a counter-current to the in-
creasing fractionation of science into highly specialized branches: “We must stop 
acting as though nature were organized into disciplines in the same way that 
universities are” (Ackoff, 1960: 6). 
 When, however, asked to expound what systems science or theory (better: 
theories) is all about, many systems scientists are confronted with a rather daunt-
ing task.166 The discipline tends to be presented and understood in a fragmented 
way (Flood & Carson, 1993: 1). Figure 11 tries to give a consolidated overview 
of the many and broad-ranging subject areas and the systems movement’s evolu-
tion in general (which is not meant to be exhaustive). 
 “Systems movement“ – often referred to briefly as “systemics“ – is a broad 
term, which takes into account the fact that there is no single or royal road to 
systems theory, but a range of different approaches (Schwaninger, 2011: 753). 
Returning to the quest for an overview understanding of systems science, a 
standard answer might be twofold. First, it is noteworthy that a very close rela-
tionship exists between the different systems theories, on the one hand, and an 
underlying methodological holistic way of thinking on the other. The common 
denominator of the different systems approaches in our day is that they are 
aligned around a worldview which is an integrating, an analytical as well as a 
synthesizing (Ulrich & Probst, 1990: 34), form of thinking, expanding one’s 
horizon, starting from larger contexts and taking many factors into account, 
compared to a more isolating and decomposing analytical procedure. Rather, to 
be an effective systems scientist, we must at the same time be both a holist, look-
ing at the system as a whole (e.g., the financial system and its dynamic com-
plexity), and a reductionist, discerning the system in more detailed forms (e.g., 

analysis of financial systemic and extreme risks) (Flood & Carson, 1993: 17). 
The various systems approaches originate from a form of thinking which in-
volves “seeing” interconnections and relationships, i.e., the whole picture as well 
as the component parts (Ulrich & Probst, 1990: 11f.). Systems theories are then 
formalizations of holistic, systemic or systems thinking (Flood & Carson, 1993: 4), 

166  There exist several definitions of systems science, which are often unsatisfactory. For example, 
Klir (2001: 5) defines it as “a science whose domain of inquiry consists of those properties of 
systems and associated problems that emanate from the general notion of systemhood”, where 
he traces “systems science” to the not less nebulous term of systemhood, which is not even a 
correct English word according to The Oxford English Dictionary (OED Online, accessed 
April 14, 2015). 
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Figure 11:  The evolution of the Systems Approach  
(based on Schwaninger, 2011). 

 

not systematic thinking (Ulrich & Probst, 1990: 20). It has been said that systems 
thinking is a framework of thought that helps us deal with complex things in a 
holistic way (e.g., Schwaninger, 2011: 753; Senge, 2006: 69; Flood & Carson, 
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1993: 4), which hints at the second aspect in response to the quest for an over-
view understanding (see also Appendix A). 
 Second, when reflecting on what systems science is all about, the classic 
answer, reinforced by the purpose of systems thinking, is that it is all about deal-
ing with complexity (Flood & Carson, 1993: 2; Ulrich & Probst, 1990: 19).167 
This identifies a need to clearly comprehend the concept of complexity. But 
complexity has many possible meanings. As stated and explained in Chapter 2, 
this study mainly focuses on dynamic complexity, which is of primary im-
portance for studying social systems but which is not yet amply characterized.  
 Taking both replies into consideration, our general aim in this thesis is not 
to apply a specific systems theory to systemic risks and risk management in 
banking, but to foster systems thinking and principles to discuss notions of risk 
(which lack a systemic viewpoint), to spot and criticize risk management tools in 
banking (from a systems theoretical perspective), and to propose an exact, ex-
planatory scenario planning method (in Part III, derived from complexity or 
systems principles).  
 While some systems researchers do not exactly delineate (the difference 
between) different notions of complexity (e.g., Sterman, 2000; Senge, 2006; 
Grösser, 2013), our specific aim in this Chapter 6 is to develop a conceptual 
framework, providing an appreciation of dynamic complexity by drawing and 
building on Weaver’s important work on so-called organized complexity (Klir, 
1991: 23).  
 As an answer to RQ1.5, Weaver’s “organized complexity” will be invoked 
as an adequate concept for examining the suitability of quantitative risk assess-
ment and management approaches. This will contribute to our comprehension of 
systemic risks in the financial system and how they should (not) be addressed or 
managed. At the end of this chapter, we will be able to explain the relationship 
between and draw together the concepts of complexity, randomness, systemic 
risks and their modeling. 
 The following figure summarizes the line of argumentation as well as the 
storyline in this Chapter 6 and its purpose, the latter by integrating and pointing 
to Chapter 7 where the Central Argument is presented.  

167  Note that the inversion does not hold: Not every mode of dealing with complex issues is sys-
temic. 
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Figure 12:  The line of argumentation in Chapter 6 and its embeddedness: In a nutshell, the storyline 
runs as follows: Taking the presentation of dynamic complexity in Chapter 2 and its in-
sufficient characterization as a starting point, we refine and replace the term by Weaver’s 
“organized complexity” in the following. According to him, problems of organized com-
plexity require non-statistical approaches, including, for example, explanatory models 
(which is picked up in Chapter 8). Against the background of demonstrating the inept-
ness of statistical instruments in risk management, which is a main aim of this study, it 
would be expedient to deploy the Weaverian concept of organized complexity. Unfortu-
nately, Weaver leaves (too) many questions open. And even though introducing 
unstable randomness into the picture is illuminating, as it proves to be both necessary 
for the emergence of systemic risk and the existence of organized complexity as well as 
necessary and sufficient for the inadequacy of statistical methods, obscurities remain. 
Therefore, we seem to be obliged in the end to propound a separate argument (Chapter 
7).
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6.1. A Trichotomy of Scientific Problems – Warren Weaver’s Scheme 
as a General Answer to How to Manage Complexity 

In a classic and massively referenced article, Weaver (1948) distinguishes three 
significant ranges of complexity, which considerably differ from each other in 
the mathematical treatment they require. He offers a classification that separates 

simple, few-variable problems (or a small number of significant factors) of ‘orga-
nized simplicity’ at the one end from the ’disorganized complexity’ of numerous-
variable problems at the other, where the variables exhibit a high level of random 
behavior. This leaves ‘organized complexity’ sitting between the two extremes 
(cf. Huberman in Gershenson, 2008: 79; see Appendix A). 

6.1.1. Tackling disorganized complexity versus organized simplicity 

Organized simplicity is represented by systems that are adequate models of some 
real-world phenomena and, yet, consist of (or can be reduced to) a very small 
number of variables (typically two or three), which depend on each other in a high-
ly deterministic fashion (Klir, 1985: 135f.). Systems of this sort had been pervasive 
in science prior to the 20th century (Weaver, 1948: 536f.). Indeed, the recorded 
history of the main discoveries in science from the 17th to the 19th century consists 
basically of variations on the same theme: a discovery of hidden simplicity in a 
phenomenon that only appears complex (Klir, 1985: 136). Phenomena of this sort 
are characterized by small numbers of significant factors and large numbers of 
negligible factors – e.g., physical science before 1900 learned variables, which 
brought us the telephone, the radio, and the automobile etc. (Weaver: 1948: 536). 
Organized simplicity corresponds to structural complexity or complicatedness (see 
2.1.), where the scientist is entitled to introduce acceptable simplifying assump-
tions, according to which a few significant factors can be isolated from a large 
number of presumably negligible factors, which in turn describes an analytical or 
reductionist procedure. Application of the analytical procedure depends on two 

conditions. The first is that interactions between parts are non-existent or weak 
enough to be omitted for certain research purposes. “Only under this condition, 
can the parts be ‘worked out’, actually, logically, and mathematically, and then 
be ‘put together’. The second condition is that the relations describing the behav-
ior of parts be linear [for basic aspects of linearity, cf. Zadeh & Desoer, 1979: 
132f.; C.H.]; only then is the condition of summativity given [i.e., an equation 

describing the behavior of the total is of the same form as the equations describing 

 

www.ebook3000.com

http://www.ebook3000.org


6. Dealing with Quantitative Risk Management in Banking as a Complex Systems Problem 129 

the behavior of the parts; C.H.]” (von Bertalanffy, 1968/2013: 19). “Due to their 
nature, systems with the characteristics of organized simplicity are perfectly 
suitable for analytic mathematical treatment, usually in terms of the calculus and 
differential equations. They are best exemplified by systems based upon Newto-
nian mechanics.” (Klir, 1985: 136; cf. also Gomez, 1981: 15f.). 
 Disorganized complexity168 possesses attributes that are exactly opposite to 
these: it is represented by systems with very large numbers of variables and high 
degrees of randomness (Weaver, 1948: 537f.).  

Preliminaries on randomness 

We follow Eagle (2005: 775) in defining randomness as a strong or utter form of 
unpredictability: an event is random if, and only if, the probability of an event, 
conditional on evidence, equals the prior probability of the event (cf. also Kyburg, 

1974: Chapter 9; Suppes, 1984: 31f.; Klir, 1991: 20; and for some conceptual 

problems with “randomness”, cf. Churchman, 1961: 156ff. and Eagle, 2012 for 
an overview).169 Likewise, “a random process is one for which we are not able to 
predict what happens next” (Frigg, 2004: 430).170 On the other hand, while McNeil 
et al. (2005: 4) appear to neglect conceptual differences between randomness and 
chance171 when they foreground that the former “has eluded a clear, workable 
definition for many centuries; it was not until 1933 that the Russian mathematician 
A.N. Kolmogorov gave an axiomatic definition of randomness and probability”;172 
this study questions that there is a tight and unbreakable connection between 

168  In essence, what Weaver called disorganized complexity was ultimately a way to extend the 
“simple” to large ensembles and, in his thinking, was not really about complexity at all (Alder-
son & Doyle, 2010: 847). 

169  That something is ‘predictable’ implies that there exists a constraint (Ashby, 1956: 132). 
Neither chaos nor disorder nor indeterminism is a synonym for randomness (Earman, 1986: 
145; Eagle, 2012). 

170  Following Eagle (2012), it is important to clarify that “for this kind of view to yield the right 
results, we cannot count as ‘being able to predict a process’ if we merely guess rightly about its 
outcomes. For that reason, prediction must involve some notion of reasonableness; it must be 
rational for the agent to make the predictions they do. […] [S]imply guessing will not be rea-
sonable, even if it's correct.” 

171  This position appears to be endorsed in the scientific literature too (Eagle, 2012 – cf. Futuyma 
(2005: 225) as an example). Some authors might be subject to an unthinking elision, but others 
deliberately use “random” to mean “chancy” (prominent examples include: Earman, 1986: 137; 
Suppes, 1984: 27; von Mises, 1957).  

172  Note that Kolmogorov did indeed develop an important definition of randomness (see Appen-
dix C), however not in 1933 (when his oeuvre on probability was published), but in the 1960s 
(in the field of algorithmic information theory, cf. Kolmogorov, 1963, 1965). 
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randomness and probability – they indeed overlap in many cases, but are sepa-
rate concepts (Eagle, 2012). It poses the counterquestion (see 6.2.2.) whether 
such formal definitions used in the fields of probability theory and statistics do 
not turn out to be too narrow or whether they should not be complemented by 
other definitions. Indeed, if McNeil et al. (2005) suggest that randomness in 
general (and not only probability) should conform to Kolmogorov's (1933) 
axiomatization of the probability calculus, this would be inconsistent with the 
research results in Chapter 7, Proposition 5 in particular (as Kolmogorov's 
(1933) work is there not questioned as standard mathematical theory of probabil-
ity as such). Appendix C deepens our understanding of randomness (cf. also 
Eagle, 2012 and see Appendix A for a synopsis). 
 Interest in systems of this sort of disorganized complexity began in the late 
19th century with the investigation of systems representing the motions of gas 
molecules in a closed space (Weaver, 1948: 538). “Such a system would typical-
ly consist of, say, 1023 molecules. The molecules have tremendous velocities and 
their paths, affected by incessant impacts, assume the most capricious shapes. It 
was obvious that systems with these characteristics could not be explored in 
terms of the ideas and methods developed for dealing with systems in the catego-
ry of organized simplicity”. (Klir, 1985: 136).  
 While organized simplicity is quantifiable by analytical mathematics concen-
trating on specific elements, the latter class of problems is apt for analysis by 
probabilistic or statistical means, calculating average properties of many variables. 
The demarcation line between simplicity and disorganized complexity is that the 
problem becomes unmanageable as soon as one tries to analyze many instead of 
few variables (e.g., the motion of ten or fifteen vs. two or three balls on a billiard 
table), not because there is any theoretical difficulty, but just because the actual 
labor of dealing in specific detail with so many variables turns out to be imprac-
ticable (Weaver: 1948: 537). The flipside is that the problem now becomes easi-
er, as long as we are interested only in aggregate quantities (Somfai, 2013: 210). 
This is the realm where the methods of statistical mechanics are applicable, 
emanating from the work of Ludwig Boltzmann and Josiah W. Gibbs.173 The 
radically new paradigm of statistical methods eventually emerged at the begin-

173  The early work in probability theory, on which much of current economic theory is based, 
predates the development of the notion of ergodicity, and it assumes that expectation values re-
flect what happens over time (Peters & Gell-Mann, 2016). 
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ning of the 20th century. Their purpose is not to deal outspokenly with the indi-
vidual variables – for example, the detailed history of one special billiard ball or 
the motions of the individual molecules – but to use a small number of calculated 
average properties – focusing on questions such as, on the average how many 
balls per second hit a given stretch of rail? Etc. (Weaver: 1948: 537). This is the 
section of probability theory, namely the Laws of Large Numbers, that is vague-
ly but not always properly understood by those who talk of the “law of averag-
es”, and who state that the probabilities “work out” in the long run (Weaver, 
1967: 145; Huberman & Hogg, 1986: 376). Calculations are based on the suppo-
sitions of large numbers of randomness. “Disorganized complexity is thus best 
exemplified by systems based upon principles of statistical mechanics” (Klir, 
1985: 136).  

6.1.2. Disorganized complexity and statistical techniques 

Statistical techniques are not restricted to situations where the scientific theory of 
the individual events is very well known, as in the billiard example where the 
impact of one ball on another can be precisely explained. In principle, there are 
two different – or at least apparently different – fields or types of problems to 

which probability theory and statistical techniques reasonably apply (Weaver, 

1967: 147f.).  
 For the first type of problem probability theory is used not so much because 
we are convinced that we are to use it but because it is so very convenient (ibid.). 
Probability-based methods can then be applied to, on the one hand, situations 
which may be considered deterministic174 but where the individual event is 
shrouded in mystery; like the life insurance example, where the insurance com-
pany can have no knowledge whatsoever concerning the approaching death of 
any one individual, but has dependable knowledge of the average frequency with 
which deaths will occur (Weaver, 1948: 538). Probability statements are possi-
ble, useful, and sufficiently robust. Since new people are steadily being added to 
the system, actuaries rely on samplings. They are not perfect, but they work, 
because the sample of people is very large and mortality rates change only slow-
ly. It is one of the most striking and fundamental things about probability theory 
and statistics that it leads to a comprehension of the otherwise peculiar fact that 

174  This means that observed randomness may be no (true) randomness after all. 
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even events which are individually capricious and unpredictable can, when treat-
ed en masse, lead to stable average performances (Weaver, 1963: 273); whereby 
the relevance and precision of statistical methods increase with a rise in the 
number of variables and their degree of randomness (Klir, 1985: 136). 
 On the other hand, there are many situations of this sort in serious everyday 
life where we use probabilities not because it is clear that ‘chance’ plays some 
cryptic and mysterious role – e.g., there seems to be no essential mystery about 
why a coin lands heads or tails – but primarily because the situation is so com-
plex, so intricately affected by so many small causes, that it is prohibitively in-
convenient to attempt a rigorous analysis (Weaver, 1967: 148). “[W]e merely 
mean that, conveniently for us, the very complexity that makes a detailed analy-
sis practically impossible assures an overall behavior which is describable 
through the laws of probability” (ibid.). The causes are too numerous, too com-
plicated, and/or too poorly understood to permit a complete deterministic theory 
(ibid.: 149). We therefore deal with these subjects through probability. But in all 
these cases we would say, with Henri Poincaré, that chance “is only the measure 
of our ignorance”. 
 The second type of probability problems, appears very different at first 
glance because probabilistic reasoning seems to be even theoretically unavoida-
ble (ibid.: 147). It is a more foundational use which (physical) science makes of 
statistical techniques.  

The motions of the atoms which form all matter, as well as the motions of the stars 
which form the universe, come under the range of these new techniques. The fundamen-
tal laws of heredity are analyzed by them. The laws of thermodynamics, which describe 
basic and inevitable tendencies of all physical systems, are derived from statistical con-
siderations. The entire structure of modern physics, our present concept of the nature of 
the physical universe, and of the accessible experimental facts concerning it rest on these 
statistical concepts.  

(Weaver, 1948: 538). 

Moreover, most scientists, in contrast to Einstein who has remarked in a charac-
teristically appealing way that “I shall never believe that God plays dice with the 
world”, believe that some of the most elementary occurrences in nature are es-
sentially and inescapably probabilistic (Ismael, 2015). They adhere to quantum 
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mechanics.175 Thus, with regard to modern physics and the problems the disci-
pline addresses, “probability notions are essential to any theory of knowledge 
itself” (Weaver, 1948: 538). 
 All things considered, the crucial point is that both problem areas pertain to 
the class of disorganized complexity because the common denominator of the 
two types of problems is a high number of variables that (at least) appear to dis-
play a high level of random behavior. 

Figure 13:  Weaver (1948, 1963, 1967) on probability theory, statistics and fields of application: The 
demarcation line between “for convenience” and “theoretically unavoidable” is only dot-
ted because the division is not strict and rigid (cf. Beer, 1959: 28). 
* in stable environments with plenty of data only: e.g., chess (cf. Lai, 2015) 

Organized complexity, by contrast, is principally different: here, complexity is 
not determined componentwise or by variety, but by other factors, above all by, 
of course, the degree of organization.  

175  However, the distinction between the two problem areas, while of practical value, might turn 
out to be illusionary (Weaver, 1967: 147). On the one hand, one could doubtless deal quite 
successfully from a large-scale and practical point of view with large-scale phenomena which 
depend ultimately on small-scale probabilistic phenomena; for example, with coin tossing on 
the basis of very careful actual measurements, plus all the analytical resources of dynamical 
theory; it remains true yet that “the coin is made of elementary particles whose positions and 
motions can be known, as science now views the matter, only in a probability sense” (ibid.: 
150). On the other hand, quantum mechanics can be interpreted as a deterministic theory (Hol-
land, 1993). 
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6.1.3. Tackling organized complexity: open questions remain 

In addition to, and in-between ‘problems of simplicity’ that are solvable with 
hard sciences and ‘problems of disorganized complexity’ to be dealt with by 
probability theory and statistics, Weaver beheld a third kind and, therefore, a 
trichotomy of scientific problems – maybe for the first time at all (Seising, 2012: 
61): “One is tempted to oversimplify, and say that scientific methodology went 
from one extreme to the other – from two variables to an astronomical number – 
and left untouched a great middle region” (Weaver, 1948: 539; cf. also Klir, 
1991: 23; see Figure 14).  
 The importance of this middle region does, however, not depend primarily 
on the fact that the number of variables involved is moderate – large compared 
to two, but small compared to the number of atoms in a pinch of salt. The hall-
mark of problems of this middle region, which science has as yet little scrutinized 
or conquered (Weaver, 1948: 539), lies in the fact that these problems, as con-
trasted with the disorganized situations where statistical or probabilistic methods 
hold the key, show the essential feature of organization (ibid.). This in turn in-
volves dealing simultaneously with a sizable number of factors which are inter-
related to form an organic whole. Interactions and the resulting interdependence 
lead to emergence, i.e., to the spontaneous appearance of features that cannot be 
traced to the character of the individual system parts (Anderson, 1972), and, 
therefore, cannot be fully captured in probability statistics nor sufficiently re-
duced to a simple formula. Something more is needed than mathematical analy-
sis or the mathematics of averages (Weaver, 1948: 540; Huberman & Hogg, 
1986: 376).  
 Weaver (1948: 539) lists examples of problems of organized complexity 
where in each case a substantial number of relevant variables is involved that are 
varying simultaneously, and in subtly interconnected ways; that “are all interre-
lated in a complicated, but nevertheless not in helter-skelter, fashion” (ibid.). In 
particular, the economic is viewed as being within the realm of organized com-
plexity (Klir, 1991: 119). 

• On what does the price of wheat depend?
• How can currency be wisely and effectively stabilized?
• To what extent is it safe to depend on the free interplay of such eco-

nomic forces as supply and demand? …
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That statistics turns out to be ‘impotent’ to deal with such cases of organized 
complexity has been underlined by not only Weaver, but other authors as well. 
Three prominent examples with different backgrounds (Friedrich August von 
Hayek (economist and philosopher), Fredmund Malik (management cybernet-
ics), and Lotfi A. Zadeh (mathematician and systems theorist)) suffice to clarify 
this point.  

Because statistics is designed to deal with large numbers it is often thought that the diffi-
culty arising from the large number of elements of which complex structures consist can 
be overcome by recourse to statistical techniques. Statistics, however, deals with the 
problem of large numbers essentially by eliminating complexity and deliberately treating 
the individual elements which it counts as if they were not systematically connected. It 
avoids the problem of complexity by substituting for the information on the individual 
elements information on the frequency with which their different properties occur in 
classes of such elements, and it deliberately disregards the fact that the relative position 
of the different elements in a structure may matter. In other words, it proceeds on the as-
sumption that information on the numerical frequencies of the different elements of a 
collective is enough to explain the phenomena and that no information is required on the 
manner in which the elements are related. The statistical method is therefore of use only 
where we either deliberately ignore, or are ignorant of, the relations between the individ-
ual elements with different attributes, i.e., where we ignore or are ignorant of any struc-
ture into which they are organized. Statistics in such situations enables us to regain sim-
plicity and to make the task manageable by substituting a single attribute for the 
unascertainable individual attributes in the collective. It is, however, for this reason irrel-
evant to the solution of problems in which it is the relations between individual elements 
with different attributes which matters.  

(Von Hayek, 1967: 29f.) (Cf. also Malik, 1996: 201) 

As Weaver did already more than a decade before, Zadeh denied in 1962 that 
probability theory is an adequate mathematical tool to manage the analysis of 
highly complex systems (Seising, 2012: 55). 

[T]he fundamental inadequacy of the conventional mathematics – the mathematics of 
precisely-defined points, functions, sets, probability measures, etc. – [is reflected in its 
inability of] coping with the analysis of biological systems [more generally, systems 
which pervade life sciences, social sciences, philosophy, economics, psychology and 
many other ‘soft’ fields; Zadeh, 1969a: 1], […] which are generally orders of magnitude 
more complex than manmade [complicated, C.H.] systems. [W]e need a radically differ-
ent kind of mathematics, the mathematics of fuzzy or cloudy quantities which are not de-
scribable in terms of probability distributions.  

(Zadeh, 1962: 857; cf. also Zadeh, 1969b: 199) 

Nonetheless, the diagnosis that probability theory is not of use and success in 
this realm of organized complexity, which was already reached by Weaver, von 
Hayek, Malik, Zadeh and others, still remains vague and is, therefore, revised in 
Chapter 7.3. and clarified in the following sense: the thesis will be (a) exactly 
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deduced by providing an explicit argument and (b) broken down to risk man-
agement of extreme and systemic events in banking.  
 On the constructive side, Weaver (1948), in contrast to Zadeh who has put 
forward his theory of fuzzy sets and systems and fuzzy logic, respectively (see 
Part III, Chapter 15.2.), also remains vague in his responses to the challenge of 
organized complexity. Basically, his answer revolves around harnessing the 
power of computers and cross-discipline collaboration. While the former, among 
others, points to simulation runs (as, e.g., performed by System Dynamics re-
searchers (e.g., Sterman, 2000; Grösser, 2013; Forrester, 1961)) and the latter to 
systems science at large as a linking element between several theoretical per-
spectives, much more work is needed to widen Weaver’s scheme. 

6.1.4. Synopsis 

The inclusion of Weaver’s trichotomy in this chapter allows to examine more 
closely what complexity is, how to tackle different forms of complexity (cf. also 
von Bertalanffy, 1968/2013: 34, 93) and, thereby, to bring together in one single 
framework concepts of complexity, on the one hand, and statistical or probabil-
ity-based methods, which are essential to conventional quantitative risk man-
agement in banking (e.g., McNeil et al., 2005), on the other. Weaver’s answers 
forges what has been stated earlier in Chapter 2.1.: Complicated or structurally 
complex worlds are reducible: The general Weaverian proposition is that by 
reducing complicated systems to their constituent parts (ad organized simplicity) 
or their orderly and analyzable average properties (ad disorganized complexity), 
and fully comprehending each part or statistical key figure, we will then be able 
to understand the world. As the parts begin to connect with one another and inter-
act more, however, the scientific underpinnings of this approach begin to fail. 
 Dynamically complex systems and systems of organized complexity, re-
spectively, resist simple reductionist analyses, because interconnections and 
feedback loops preclude holding some subsystems constant in order to study 
others in isolation (Anderson, 1999: 217). We then move from the realm of com-
plication and structural complexity to dynamic and organized complexity, and 
reduction no longer gives us insight into construction (Miller & Page, 2007: 27); 
systems thinking is required.  
 Figure 14 extends the picture of the decomposition of the complexity con-
cept drawn in Chapter 2 by consolidating the findings and impulses from Weav-
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er’s work (1948, 1963, 1967) which was summarized in the previous sections of 
Chapter 6. 

Figure 14:  The disassembly of complexity II: The extended framework.176  

Furthermore, Table 5 resumes the relationship between Weaver’s notions of
complexity and the suitability of stochastic methods in terms of the respective 
status of probabilistic statements. This already points to different corresponding 
states of uncertainty, which paves the way for bringing risk and extreme/systemic 
risk into the scheme (elaborated on in 6.2. and 6.3. and cf. also Rzevski & 
Skobelev, 2014: 7).  

176  The diametrical opposition between randomness and determinism, which Weaver (1948) 
declares, is not really in existence, considering chaotic systems where randomness and lack of 
chance or probability go hand in hand: In the classic example of the baker's transfor-
mation (Earman 1986: 167f.) or Lorenz’ (1963) model of the weather, we have random se-
quences; yet none of these outcomes happens by chance; chaotic systems like the baker's trans-
formation are entirely deterministic (Eagle, 2012). Furthermore, the possibility of deterministic 
chance (Loewer, 2001) would also render a stringent Weaverian contradistinction untenable. 
See also 6.2.2. below for an argument against assuming a fundamental split between the two 
endpoints on the scale. 
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Table 5:  A suggested taxonomy of uncertainties and complexities based on Weaver (1948).  
(* see Appendix A)177

177  Suppose one wants to know whether or not P is the case for some proposition P – “The next 
card I will draw from a standard deck of cards will be black”. The beauty of cards is that the 
universe is known; there are 52 cards in the deck, and only 52 and the rules of the game are set. 
One cannot find out the truth-value of P, but one can find out the probability of it being true. 
Under certain conditions (e.g., a complete deck) one can conclude that p(‘black’) = p(‘red’) = 
0.5. One is then in a state of decision-making under risk in the classical decision-theoretical 
sense of the phrase (Luce & Raiffa, 1957), or as it would be put here: decision-making under 
risk II. 
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Certainty Risk II  Risk I:   Deep uncertainty* 

Description of the 
system 

System of organized 
simplicity 

- Low variability / 
- dynamics 
- Low variety /  
- pluralism 

System of 
disorganized 
complexity 

- Low variability /    
- dynamics 
- High variety /        
- pluralism 

Relatively complex 
system (organized 
complexity) 

- High variability / 
- dynamics 
- Low variety /   
- pluralism 

Extremely complex 
system (organized 
complexity) 

- High variability / 
- dynamics 
- High variety /    
- pluralism 

Future system 
behavior 

A clear enough 
future 

Alternate futures 
(with probabilities) 

A few more or less 
plausible futures (i.e. 
with qualitative pro-
babilities, Part III) 

A multiplicity of more 
or less plausible futures 

Probability 
statements 

- Point prediction  
- A future event has  
- either the probability 
- of 1 or 0; i.e.,     
- determinism    
- One can become  
- certain of the truth-  
- value of the  
- proposition if one    
- has the right data 

- Informative or  
- accurate probabi-    
- listic prediction   
- The probability of a 
- future event can be 
- clearly determined  
- Not truth-value of  
- proposition, but  
--probability of it    
- being true 

- The probability of a 
- future event cannot 
- be determined   
- Truth-value of the  
- proposition cannot  
- be find out  
- Meaningful probabi-
- lity can only be given 
- it in a qualitative     
- sense (see Part III) 

- The probability of a 
- future event cannot 
- be determined  
- Truth-value of the   
- proposition cannot  
- be find out         
- Meaningful probabi-
- lity can only be given 
- it in a comparative    
- sense (see Fig. 36) 

Decision-making Under “certainty”  
(Luce & Raiffa, 1957) 

Under risk  
(ibid.) 

Under uncertainty 
(ibid.) 

Under uncertainty / 
“ignorance” (ibid.) 

Example - Automobile    
- Diesel engine 

- Life insurance  
- (informative)  
- Deck of cards177 
- (accurate)  

- Subsystem of a  
- financial system  
- Local financial syst. 
- See Chapter 6.3. 

Modern international 
financial system    

See Chapter 6.3. 
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6.2. Weaver’s Taxonomy Revisited: Attempts of Clarification, 
Extension and Refinement 

As seen, Weaver introduced a classification of scientific problems which entitles 
us to distinguish the simple, the complicated, and the genuinely complex. This 
study now seeks to unveil that the concept of organized complexity applies to the 

problem of assessing extreme or systemic risks, which would debunk orthodox 
methods of quantitative risk management in banking as inadequate. Before this 
objective could be met, the issue of how to employ Weaver’s concept needs to be 
tackled. Two strategies can be separated. The approaches in the literature to-
wards operationalizing “organized complexity” prove to be insufficient (6.2.1.). 
Therefore, a novel proposal for identifying so-called unstable randomness as a 
sufficient condition for organized complexity is put forward, which, however, in 
the end turns out to be not satisfactory either because, rather, the latter is suffi-
cient for the former and not vice versa (6.2.2.). Nonetheless, introducing unstable 
randomness into the picture is enlightening since it can reasonably be viewed as 
both necessary and sufficient for the inadequacy of statistical methods. 

6.2.1. Approaches towards the operationalization of Weaver’s concept of 
organized complexity 

How to understand organized complexity and organization is not much dis-
cussed, and it is far from trivial: Not only lies complexity on a spectrum from 
less organized to increasingly organized, somewhere in between the extremes of 
organized simplicity and disorganized complexity, but moreover, organization in 
its most general form – when activities and entities each do something and do 
something together to provoke a certain phenomenon – itself comes in a multi-
dimensional spectrum of increasingly complex organization (Illari & William-
son, 2012: 128). “Our world seems to involve different forms of organization, 
more or less complex, in different cases. In the simplest cases organization might 
be simple or trivial, but it is still present.” (ibid.). This interwovenness of more 
or less organized complexity and more or less complex organization poses the 
warning that the attempt of operationalizing “organized complexity” is at least a 
problematic matter. In addition, it is reasonable to assume that a system’s com-
plexity is purely relative to a given observer, which renders untenable the under-
taking to measure an absolute or intrinsic complexity; in favor of regarding com-
plexity as something in the eye of the beholder (Ashby, 1973). 
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 One of the first who accepted the challenge was Herbert Simon. In an influ-
ential article titled “The Architecture of Complexity”, he follows the distinction 
made by Weaver between unorganized and organized complexity in avoiding a 
formal definition of complexity, suggesting only that complex systems are ones 
“made up of a large number of parts that interact in a nonsimple way” (Simon, 
1962: 468). Simon (1962) views organized complexity as complexity with an 
architecture. More specifically, the architecture that seems to characterize com-
plex systems in the behavioral and life sciences is one of hierarchical composi-
tion (or modularity), whereby a system “is composed of interrelated subsystems, 
each of the latter being in turn hierarchic in structure until we reach some lowest 
level of elementary subsystem” (ibid.). Above all, he argues that such an archi-
tecture allows us to make sense of the rapidity with which complexity has 
evolved. In partial accordance with Simon (1962), Huberman & Hogg (1986) 
invoke a physical measure of the complexity of a system based on its diversity, 
while ignoring its detailed specification. It applies to discrete hierarchical struc-
tures made up of elementary parts and provides an accurate, readily computable 
quantitative measure. This measure of complexity is maximal for systems which 
are intermediate between perfect order and complete disorder, and which might 
thus be labeled as organizationally complex. 
 Norbert Wiener (1961) worked on the formalization of organized complexi-
ty in his development of cybernetics as a common theoretical core to the inte-
grated study of technological and biological systems (Seising, 2010). By the 
1960s, it became clear to many engineers, mathematicians, biologists, and social 
scientists (at least) that organization was more than the statistics of random en-
sembles (Alderson & Doyle, 2010: 848). For example, Jacobs (1961: Chapter 
22) argues that cities should be identified, understood, and treated as problems of 
organized complexity but that the theorists of conventional modern city planning 
have consistently misjudged cities as problems of simplicity and of disorganized 
complexity, and have tried to analyze and treat them thus. 
 More recently, Keller (2009), Crutchfield & Wiesner (2010), or Alderson & 
Doyle (2010) stress the need to extend Weaver’s scheme if, e.g., one wishes to detect 
a demarcation line between organic wholes and physical systems (Keller, 2009: 27). 
 Finally and most interestingly, La Porte (1975a) builds on Weaver (1948) 
directly and comprehensively. He attempts to provide initial operational grounds 
for treating organized complexity as an independent variable; i.e., as a condition 
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which if altered would in turn alter other important relationships. La Porte (1975a: 
6) offers a working definition of organized social complexity, i.e., his concern is 
limited to social systems possessing the characteristics of organized complexity. 

The degree of complexity of organized social systems (Q) is a function of the number of 
system components (Ci), the relative differentiation or variety of these components (Dj), 
and the degree of interdependence among these components (Ik). Then, by definition, the 
greater Ci, Dj, and Ik, the greater the complexity of the organized system (Q). 

La Porte (1975a: 6f.) illuminates the different parts of this definition one by one. 
First, a component of an organized social system is paraphrased as “a person or 
group occupying a position within the system and evincing these characteristics: 
(1) sufficient mutual agreement or consensus about this position so that he or she 
or it is the object of expectations and actions from other members and (2) recog-
nition on the part of the person or group of the legitimacy of the others’ expecta-
tions and positive response to those expectations, at least to the degree required 
for maintaining membership in and avoiding expulsion from the system” (ibid.).  
 Second, differentiation of components is circumscribed as “the number of 
different social roles or positions within the system, based on the degree of mu-
tual exclusiveness of the activities distributed among the roles in an organiza-
tion” (ibid.: 7).  
 The most difficult element of his definition is, third, the interdependence of 
components, which is by far the most important and the least developed. “Inter-
dependence among persons or groups assumes varying degrees of reciprocal 
relationships between them. Interdependence means an exchange relationship of 
at least one resource between at least two persons. Interdependent relationships 
can vary between any two members (a, b) exchanging resource r1 as follows: 

1) member A dominant over member B, i.e., B depends on A for some de-
sired resource (a >> b)r1 

2) A and B mutually dependent upon one another for a resource both par-
ties desire (a << >> b)r1 

3) B dominant over A (a << b)r1.” (Ibid.). 

This basic illustration contains only one resource; however, in many situations 
several resources may be exchanged with all three dependence relationships 
obtaining between two or more persons. Moreover, on the operational level, 
determining the degree of interdependence would require that the persons in 
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question recognize their relatedness (ibid.: 8). For more details, several anticipat-
ed analytical difficulties with his proposal, and some examples, cf. La Porte’s 
(1975a) contribution. The crucial point is that, even though his approach is very 
interesting, the purpose of the function La Porte is proposing seems to be rather 
illustrative. In other words, to realistic or real-world cases, i.e., what transcends 
his artificial or designed examples, his explication of Weaver’s concept of orga-
nized complexity appears to not hold the key – imagine the overwhelming task 
of identifying all components and subsystems of modern financial systems (not 
more than a glimpse is given in Figure 1), of comparing the complexity of differ-
ent systems over time, or of accounting for the multi-layered and multifarious 
complexity of real social and financial systems (see 6.3.). Thus, the application of 
La Porte’s (1975a) function to show that a system is of organized complexity 
might turn out to be practically extraneous. At least up to now, the same seems to 
hold for other approaches found in the literature. Another strategy might thus be 
required to make use of Weaver’s notion of organized complexity.  
 Hereafter, we argue that it is important to clarify the disparity in approaches 
to managing organized vs. disorganized complexity by paying some more atten-
tion to randomness and the fact that, while similar degrees of effective random-
ness are given, different generators can be very differently organized (Crutch-
field & Wiesner, 2010: 37). In other words, we must become aware that there are 
“different algorithmic structures that use different amounts of memory organized 
in different ways” (ibid.). 

6.2.2. The bigger picture of complexity and randomness   

According to Alderson & Doyle (2010: 851), the views of organized and disor-
ganized complexity continue to be so incompatible that there is no veritable 
dialogue between them. This section is committed to contribute to creating a 
basis for dialogue and a common denominator by pointing to random processes 
which are characteristic for both disorganized and organized complexity. Two 
different kinds of random processes or mechanisms need to be separated though: 
stable vs. unstable randomness. 
 Yet, this distinction is anything but familiar. While the idea behind the term 
“stable randomness” can be regarded as well-established because it is basically 
old wine in a new bottle (and a new bottle is needed as another type of wine has 
been discovered), “unstable randomness” is hardly appreciated and singled out. 
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This marks a poor basis for defining the dichotomy exactly, but fortunately char-
acterizing and paraphrasing the two cases in a first conceptual approach is suffi-
cient to design a proposal for how this distinction might help enhance the applica-
bility of the notion of organized vs. disorganized complexity: If unstable (stable) 

randomness proved to be a sufficient condition for organized (disorganized) 
complexity, then demonstrating the existence of unstable random processes in 
modern financial systems would automatically show that these systems are of 
organized complexity and save the trouble of dealing directly with the concept of 
organized complexity (see 6.2.1.).   

Stable random mechanisms correspond to disorganized complexity 

Albeit the name “stable randomness” is not very common, the phenomena de-
noted by it seem to be well-known. While Eagle (2005: 775), as seen in 6.1.1., 
defines randomness, in general, as a strong form of unpredictability (see also 
Appendix C), explicitly allowing for greater or lesser degrees of unpredictabil-
ity/randomness (ibid.: 772), Brose et al. (2014a: 330) specify that there are “sta-
ble random processes”, on the one hand, which simply means that there exists a 
mechanism generating the observations or observable events and it exhibits a 
stable mean, dispersion, symmetry178, etc. Put differently, it has been argued in 
the literature on randomness (see Appendix C) that a genuinely random process 
should satisfy all of the various “properties of stochasticity” (Martin-Löf, 1966: 
604) and Brose et al. (2014a) clarify that, ideally, randomness is time-invariant or 
indifferent to history because, as we might add, the property of large numbers is 
named among those properties (Eagle, 2012), i.e., “the claim that the limit fre-
quency of a digit in a random sequence should not be biased to any particular 
digit” (ibid.; see also Appendix C). Brose et al.’s (2014) specifications render 
explicit what is commonly, but sometimes diffusely associated with genuine 
randomness (Pearson, 1905) and, therefore, help refine our understanding. It is 
namely “our curious tendency to take independent identically distributed trials, 
like the Bernoulli process of fair coin tossing [where all those beautiful proper-
ties of stochasticity can be observed over time; C.H.], to be […] the paradigm of 
random sequences” (Eagle, 2012; cf. also Dasgupta (2011: 656) who immerses 
himself in stochastic laws of randomness in view of an underlying fair coin mod-

178  It is open to debate if classical randomness allows for skewness (as lack of symmetry) and for 
biased chance processes, respectively (cf. Eagle, 2012). 
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el). A formal definition of stable (vs. unstable) randomness goes hand in hand 
with a mathematical discussion of issues of stationarity and ergodicity that is 
beyond our scope here.179  
 According to stable randomness, there are visible outcome generators, 
where sampling the past causes convergence to the ‘real mean’ and ‘real vari-
ance’ of the type of event in question (Blyth, 2010: 452).180 The repeated realiza-
tions of random events are produced by a stable stochastic mechanism, or, at 
least, one with a high degree of stochastic inertia; i.e., where the structure of the 
randomness changes only slowly over time (Brose et al., 2014a: 331). The practi-
cal consequences are that any two large samples of random events from the same 
mechanism will resemble one another;181 the larger the sample size, the smaller 
the discrepancy between samples (ibid.: 330; Hoffmann, 2009; Bernoulli, 1713). 
The mechanism is not perfectly known, but one might say that it is measurable in 
this sense (Brose et al., 2014a: 330).182  
 Examples of these stable random processes abound. Above all, they enclose 
Bernoulli’s (unbiased) urn experiments (with replacement) (Hoffmann, 2009: 
Chapter 2.2) and the many games of chance (coins, dice, etc.), known since the 
early days of probability theory, where, for example, one can describe – and 
assign probabilities to – all possible future paths that might ensue in an unfinished 
game of chance. Or in another field, the actuaries have seen how individual un-
certainties can add up, when large numbers of cases are involved, to dependable 
behavior (Weaver, 1967: 152; see also footnote 222 on the Central Limit Theo-
rem) – e.g., in terms of (only slowly changing) mortality rates.  
 In this regard, we add that it is this category of randomness, characterized as 
‘distributional’ in nature, which is typical for Weaver’s disorganized complexity – 
i.e., it is what Weaver actually had in mind when he undifferentiatedly spoke of 
randomness. The name “Risk II” is assigned here in this study to the unknown events 

which are brought about by this first and classical type of random mechanisms. 

179  For details, cf. Tsay, 2010 and the references therein. Cf. also Gottman, 1981: Chapter 8. 
180  Only the metaphysicians will wish to pursue further the question as to whether a ‘true value’ 

really exists or not (Weaver, 1967: 151). Cf. also Bhidé, 2010: 96f. 
181  It is notable that von Mises' (1919) initial description of randomness was expressly constructed 

with this in mind – “for him, a random sequence is one for which there is no admissible subse-
quence having a frequency differing from the frequency in the original sequence” (Eagle, 
2012). 

182  For a discussion of a direct vs. an inverse application of Bernoulli’s theorem, the Weak Law of 
Large Numbers, cf. Hoffmann, 2009: Chapter 4.2. 
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Unstable random mechanisms correspond to organized complexity  

In reviewing pertinent economic and mathematics journals, business and man-
agement journals from the ISI183-database, it has been found that the notion of 
unstable randomness, on the other hand, is vastly understudied. To the best of 
our knowledge, it has been introduceded, but barely coined by Brose et al. 
(2014a) who bring in a dynamic perspective. Corresponding to Weaver’s orga-
nized complexity, this category of unstable randomness refers to situations where 
the mechanism is not measurable, “either because observations are too rare (or 
even unique), or because the mechanism itself is unstable, perhaps because hu-
man agents are in the mix disrupting the process” (Brose et al., 2014a: 330f.). 
Following Daníelsson (2002), this in turn is related to Goodhart’s Law (cf. also 
the Lucas critique; Lucas, 1976).184 
 Put differently, dealing with an organized complex system means that we 
have invisible (Taleb, 2007b: 40; see also Figure 15 “below the waterline”) and 
non-linear (Blyth, 2010: 452) outcome generators because, for example, orga-
nized complexity normally comprises feedback loops, which themselves entail 
non-linearity (Richardson, 1999: 308). Sampling the past does not converge to a 
real mean or real variance, since no such mean and variance exist (Blyth, 2010: 
452; Taleb, 2013: 6). This is true for power laws (with D ≤ 2 and D ≤ 3, respec-
tively). But power laws are just one example and there is a whole range of other 
probability distribution forms which are ‘wild’ in the sense that they exhibit fat, 
long or heavy tails (e.g., log-normal distributions), which means that the variance 
is indeed immense or infinite. In addition to that, there can also exist distributions 
which are ‘wilder’ and, thus, have a more irregular form – for example, multi-
modal distributions (i.e., they have multiple peaks) due to regime shifts of the 
system.185  
 Generated events, which are typically rare or non-recurring, are sometimes 
designated by “black swans” – especially if economically significant – and are then 
considered in this study as Risk I events and systemic risk events, in particular. One 

183  Institute for Scientific Information. 
184  Goodhart’s Law mandates that any statistical relationship will break down when used for 

policy purposes. 
185  Yet, many theorists appear to be unimaginative in this regard; for example, when the genera-

tion of a multi- or bimodal distribution is the result of mixing two or more normal distributions, 
each from a different regime (cf. Bhansali, 2014: 130). 
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could also deem risk in the broad sense to remain unpredictable to a high extent, 
pointing in turn to high randomness, “precisely because it [risk] does not follow 
a random walk” (Esposito, 2011: 135). Rather, ”it presents a series of correlations 
and stickiness that makes it partly predictable (albeit only locally and in refer-
ence to contingent situations), and a reflexivity that produces sharp discontinui-
ties and abrupt changes” (ibid.: 150; cf. also Mandelbrot & Hudson, 2008).  
 But although such systems do change radically from time to time, they will 
often, in the absence of significant perturbations, follow a ‘normal’ linear trajec-
tory or exhibit regular patterns (e.g., cycle-like phenomena such as Kondratieff 
Waves or Pork Cycles; cf. also Buchanan, 2013: 435f.; Rapoport, 1986: Chapter 
3.2, 3.7-3.8; Ashby, 1956: 78; Sterman, 1994: 298). 
 In this light, the lack of attention towards unstable randomness in the litera-
ture is not very surprising for at least two reasons. First, “unstable randomness” 
might be regarded as even a contradictio in adjecto or an oxymoron because 
randomness is usually assumed to be indifferent to history (see the section on 
stable randomness), while unstable randomness is not, as its name already tells: 
The simplest way in which unstable randomness is history-dependent is when the 
conditions that may be responsible for a certain event change over time (i.e., 
become unstable). Second, to many, “it is very natural to reject the idea that the 
observed outcomes are random” (Eagle, 2012) at all if the “’stochastic law of 
unbiasedness’ as a ‘stochastic law of randomness’” (Dasgupta, 2011: 656) does 
not hold.  
 While it might be true that biased sequences, which characterize unstable 
randomness (given, for example, non-linear outcome generators), really are less 
disorderly (Eagle, 2012), a then lesser, but possibly still high degree of random-
ness, i.e. unstable randomness, is prima facie compatible with both our/Eagle’s 
(2005) definition of randomness and Kolmogorov complexity as a standard 
measure of randomness (see Appendix C); and examples in favor of generalizing 
the notion of randomness can be provided. 
 Apart from manipulated cases of games of chance (for example, such that 
the outcome x1 is the result of a generator G1 (a fair coin) at time t1, outcome x2 
that of generator G2 (a biased coin) at later time t2, and so on), the case of mod-
ern Western banking systems can be provided as an original example of ‘unsta-
ble random processes’ in 6.3., which is based on Blyth (2010: 452) and 
Daníelsson (2002).  
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Necessary and sufficient conditions 

Unfortunately, the proposal does not work. Rather than identifying unstable 
(stable) randomness as sufficient for organized (disorganized) complexity, the 
situation appears to be just the other way around:  First, if unstable randomness 
was sufficient for organized complexity, then organized complexity would be 
necessary for unstable randomness, but, as the examples of manipulated cases of 
games of chance show, the latter is not the case.  
 Second, organized complexity is instead a sufficient condition for unstable 
randomness because Brose et al. (2014a) introduced the term “unstable random-
ness” in a way that it is both necessary and sufficient for the inadequacy of prob-
ability-based methods and Weaver (1948) shaped “organized complexity” such 
that it is sufficient for probability-based methods not holding the key. Hence, 
focusing on unstable randomness does not allow to surrogate the examination of 
organized complexity, but it does answer why probabilities and statistics do not 
work when organized complexity is present.  

Figure 15:  The bigger picture of complexity and randomness: Reality can be explained by using the 
iceberg metaphor (Van der Heijden, 2009: 104) which basically means that events are 
above the waterline (and thus visible) whereas trends and structures are beneath the sur-
face (invisible). Systems science then mandates that events are just the tip of the iceberg while 
the underlying structures and patterns are the core elements of the system that lead to the crea-
tion of events (Probst & Bassi, 2014: 25; Warren, 2004: 333; Richardson, 1999: 299). 
Relations in their entirety, between system elements and between them and the whole 
constitute the system’s structure and patterns are a set of relationships that allow the 
description of a system to be shorter than the set of descriptions of its parts. Vice versa, the 
system behavior also influences the structure (Ulrich & Probst, 1990: 70). Risk (“the real or 
realistic possibility of a positive or negative event…”) and randomness (Eagle, 2005; 
Appendix C) are defined in relation to events while a system’s property of organized 
complexity refers to its structure and patterns. 

Unstable randomness Organized complexity 

Necessary condition

Sufficient condition

Focus on events 
and, thus, 
risk 

Focus on structure and patterns 

Events

T r e n d s

S  t  r u  c  t  u  r  e
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Figure 15 summarizes the mutual relationship between unstable randomness and 
organized complexity and clarifies the different levels (events vs. structure) they 
refer to. 

Lessons learned 

In this Chapter 6.2., the attempt was undertaken to develop further the still 
undertheorized Weaverian characterization of organized vs. disorganized com-
plexity in order to render the notions applicable to real-world systems, modern 

financial systems in particular. While the arguments in the literature to operational-
ize “organized complexity” do not stand up to diligent scrutiny (6.2.1.), the wid-
ening of Weaver’s scheme to include first conceptual remarks (which need to be 
enlarged upon in future work) on the separation of “stable” vs. “unstable ran-
domness” (6.2.2.) is insightful despite the initial suspicion (unstable randomness 

being a sufficient condition for organized complexity) turning out to be not con-
firmed. Our proposal (in 6.2.2.) helps treat quantitative risk management in 
banking as a complex systems problem by tracing financial systemic risks back 
to the organized complexity of focal systems, which is underpinned by Proposi-
tion 2, to be gained in the following, and taken up in Part III. But first, we sum-
marize the relationship between and draw together the concepts of complexity, 
randomness, systemic risks and their modeling possibilities (see e.g., Figure 16). 
 Admittedly, it might be ludicrous at first glance to say that randomness is in 
close relationship with organized complexity since, e.g., the latter is character-
ized by dependencies, which comes in sharp contrast to at least strong forms of 
randomness and, thus, unpredictability (Eagle, 2005: 775; random walks). While 
the idea to make randomness depend on complexity is not new (Suppes, 1984: 
30)186, this section, however, aimed to argue that organization and randomness 
are not incompatible but complementary properties (cf. also Crutchfield & 
Wiesner, 2010: 37): 

“Randomness” is a gradual concept and unstable randomness is random or unpredictable 
to a high, but lesser degree than stable or genuine randomness. The structures of orga-
nized complex systems are the mechanism of unstable random processes. 

186  The intuitive idea is that only sequences that are highly complex in the sense of so-called 
algorithmic complexity or Kolmogorov complexity (see 2.1. and Appendix C) are random. Ear-
ly important papers have been those of Kolmogorov (1963, 1965), Martin-Löf (1966), 
Solomonov (1964) and Chaitin (1969). See Appendix C. 
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Considering the attributes of the two different forms of randomness and how the 
uncertainty of events produced by the corresponding mechanisms can/should be 

managed, unstable randomness, Risk I (Appendix A) movements or situations of 
organized complexity remain risky. It is therefore particularly risky to think that 
they can be controlled. And furthermore, through the transition from Risk I to 
systemic risk, uncertainty is raised in a twofold sense. First, systemic risks, qua 
definitione, are more uncertain: compared to non-extreme risks, they are realized 
less frequently and, thus, less is known about them. Second, if the importance of 
systemic risk is increasing (if they become less remote or more frequent), then the 
system will assume more different states, i.e., be more complex, for a given peri-
od of time, and therefore, there will be more uncertainty. In other words, “if [a 
random variable, C.H.] X and [a random variable, C.H.] Y have density functions 
f and g, and if g was obtained from f by taking some of the probability weight 
from the center of f and adding it to each tail of f in such a way as to leave the 
mean unchanged, then it seems reasonable to say that Y is more uncertain than 
X” (Rothschild & Stiglitz, 1970: 226).  
 Simply put, Risk II embedded in situations of disorganized complexity and 
engendered by stable random processes can be analyzed in a distributional or 
statistical framework and Risk I within the organized complexity framework 
cannot. It would be problematic – even counter-productive – to force a distribu-
tional apparatus into the study of such non-recurring events (Brose et al., 2014a: 
331; and see especially Chapter 7). Therefore, organized complexity, Risk I and 
systemic risk, respectively, require a principally different evaluation approach 

which is described in Chapter 8 and spelled out in Part III.  
 Note that Mandelbrot (1997a) also distinguishes between different “states” 
of randomness: “Any attempts to refine the tools of [conventional risk manage-
ment, C.H.] by relaxing [some standard] assumptions, or by fudging and adding 
the occasional jumps will not be sufficient. We live in a world primarily driven 
by random jumps, and tools designed for [mild] random walks address the wrong 
problem.” (Mandelbrot & Taleb, 2010: 47). According to them, randomness can 
be either in a mild or wild state, two mutually exclusive types of randomness 
(ibid.). On the one hand, mild randomness is exemplified by the Gaussian or 
‘normal’ distribution. The corresponding bell curve has ‘thin tails’ in the sense 
that large events are considered possible but far too rare to be consequential. On 
the other hand, wild or fractal randomness is epitomized by power law distribu-
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tions (Mandelbrot & Taleb, 2010). The power law exemplifies a “second stage of 
indeterminism” (see 2.5. above and 7.2. below). Simply put, wild randomness is 
an environment in which a single observation or a peculiar number can impact 
the total in a disproportionate way due to the ‘fat tails’ of power law distribu-
tions. Recall, in particular, that in case of most power laws (i.e., for D ≤ 3), the 
standard deviation of the random variable x does not exist, which means that the 
fluctuation around the mean (if a mean exists at all) is immense; in fact, it is 
infinite (see 2.5.). There is no convergence and, therefore, gathering more or big 
data is worthless in cases of wild randomness (specific power laws) or unstable 
randomness (wild distributions in general) because no general statements about x 
or the situation / phenomena / processes described by it and its distribution can 
be earned. 
 Nonetheless, Mandelbrot does not repel probabilistic or statistical analysis, 
the distributional apparatus, for situations engendered by wild or fractal random-
ness, but sheds light on the peculiarities of this type, which calls for a special 
treatment (cf. Mandelbrot’s work). By contrast, Chapter 7 contains a plea against 
the use of probability distributions in financial risk management contexts and 
against the representation of financial quantities (such as profits and losses) with 
random variables. 
 The whole picture, where complexity, randomness and risk are brought 
together, is drawn in Figure 16. 
 Even though to some scholars it is beyond dispute that complexity is a 
source of risk and uncertainty or systemic risks (e.g., Bonabeau, 2007: 64), this 
stance deserves some scrutiny and reflection, which was delivered in this Chap-
ter 6.2.2. Moreover, that systemic risks, the concept of which derives from Risk 
I, result from organized or dynamic complexity is already suggested by our defi-
nition of systemic risk (see 4.2.): “Systemic risk is […] caused by a significant 
change of the system” (cf. also Diebold et al., 2010: 12); change entails dyna-
mism and significance refers to other components or implications of organized
complexity, nonlinearity (Richardson, 1999: 308) and potential for abrupt change 
(due to unstable randomness) in particular. 
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Figure 16:  Bringing complexity,  randomness  and risk  together:  On a  profound level ‘beneath  the 
waterline’, different system structures can be identified. Truly complex systems with a 
high variability or dynamics and a more or less high variety are separated from compli-
cated and disorganized complex systems which exhibit a high variety, but remain rather 
invariable (of course, what appears to be unchanging is, over a longer time horizon, 
seen to vary too). The former generates unstable randomness above the waterline while 
the latter can be viewed as a mechanism for stable randomness (whereas simple systems 
are dispensable in this regard and only included for the sake of completeness). 
Randomness, in turn, is the direct source of risk. As extreme and systemic risks cannot 
be measured in probability terms (we see that in Chpt. 7), they spring from uncertainty. 

To suppose then that systemic risk and uncertainty originate in complexity is in 
line with many other accounts.187 Furthermore, following Rzevski & Skobelev 
(2014: 11) and, first and foremost, the acknowledged principle that the system 
structure (complexity) influences or even determines the system behavior (risk), 

187  For example, Helbing (2013: 51) reasons that systemic failures and extreme events are conse-
quences of the highly interconnected systems humans have created. Similarly, Ulrich & Probst 
(1990: 60) highlight and elaborate that high dynamic complexity has the unfortunate conse-
quence that a system behaves so different over time that we are unable to predict what state it 
will assume next. This causes the observer to be in a (doxastic) state of high uncertainty (ibid.). 
According to Bernstein (1996b: 232), game theory says that the true source of uncertainty lies 
in the intentions and the behavior of others which, too, points to dynamic and organized com-
plexity since it results from the interactions among the agents of a system over time (cf. also 
Sterman, 2000; Edmonds, 1999: 60). 

- Mechanism not measurable,          
- invisible and non-linear,               
- possibly unstable 
- Mechanism typically produces    
- rare or non-recurring events 
- Generated events do not        
- happen by pure chance and a         
- sequence of these events does  
- not follow a ‘mild’ random walk 

Systemic or  
extreme risks 
- Black swans 
- Dragon kings 

Systemic or extreme risks 
- Only hypothetically possible 
- Because extreme and systemic 

risks cannot be measured in 
probability terms in modern 
financial systems (see Chapter 
7) 

- Measurable, visible, stable             
- stochastic mechanism
- exhibiting a stable mean,               
- dispersion, symmetry, etc. 
- Repeated realizations of                 
- random events are produced 
- Viewed as genuine randomness 
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and vice versa, the behavior also influences the structure (see Figure 15), it is 
hence safe to establish the following innovative thesis: 

Proposition 2:  
Systemic risks and uncertainties result from the dynamic and 

organized complexity of a system and uncertainty further increases the 
complexity. 

Complexity and uncertainty seem to be closely and strongly interrelated as the 
former is linked to a lack of understanding: it “has to do with the multifarious-
ness and uncertainty of an object we have to deal with” (Schwaninger, 2009: 11). 
Additionally, due to our (doxastic) state of uncertainty, we can choose a mala-
daptive framework for considering a problem and this makes solving it more 
complex (Edmonds, 1999: 60). Concrete systems for which the Proposition 2 
holds might be modern financial systems. 

6.3. Organized Complexity, Financial Systems and Assessing Extreme 
and Systemic Risks 

Over the last few decades, systems in a socio-economic context that used to be 
separate are now interdependent and interconnected (Schwaninger, 2009; Levy, 
1994), which means that they are, by many definitions (including the one by 
Weaver), more complex. This affects organizations, banks in particular, in two 
different ways (ad RQ1.6).  
 On the one hand, they themselves are systems because they consist of inter-
connected components (e.g., departments, teams, etc.) that work together and 
form a dynamic (e.g., changes in enterprise size, portfolio structure, strategies, 
etc.) and open (e.g., importing information on borrowers from the external envi-
ronment and exporting some financial products into the environment) whole 
(Anderson, 1999: 216; Ulrich & Probst, 1990: 52; Ackoff, 1971: 670). And most 
of these systems have gone from relatively complicated to complex: Thompson 
(1967: 6) describes a complex organization as a collective of interdependent 
parts, which together make up a whole that is interdependent with some larger 
environment (e.g., through the interbank trading system). Daft (1992: 15) 
equates complexity, as it relates to organizations, with the number of activities or 
subsystems within the organization, noting that it can be measured along three 
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dimensions:188 (1) Vertical complexity deals with the number of levels in an 
organizational hierarchy, (2) horizontal complexity deals with the number of 
functions, units, or jobs across the organization, and (3) spatial complexity is the 
number of geographical locations. On this basis, it must be concluded that: 
“[l]arge banks and financial institutions are by far the largest corporations in the 
world by asset size, and they are also arguably among the most complex” 
(Admati & Hellwig, 2013: 89, 76) and that “it cannot be emphasized enough that 
banks […] have become horrendously complex” (Boot, 2011: 28; cf. also Paul-
son, 2011: 99; Williams, 2010).189 
 On the other hand, the environment banks are facing consists of complex 
instead of merely simple or complicated systems. With respect to environments, 
Scott (1992: 230) equates complexity with the number of different items or ele-
ments that must be dealt with simultaneously by the organization. Needless to 
say, the fact that (literature leaves no doubt that) many large banks and financial 
institutions as parts of the larger financial system are complex already suggests 
that the financial system itself is complex (Simon, 1962).190 Indeed, to some 
authors it is obvious that “any sensible observer is ready to agree that modern 
financial systems are complex objects” (Gaffeo & Tamborini, 2011: 80; cf. also 
Helbing, 2010: 12; Taleb et al., 2009: 79; Malik, 2008: 210). As an answer to 
RQ1.6. and in terms of organized complexity in particular, the claim of orga-
nized complex financial systems and problems of risk assessment, respectively, 
can be supported by shedding light on the structural features of such systems and 
problems (6.3.1.) as well as on unstable randomness and the corresponding 
events in modern financial systems to which risks and systemic risks of banking 
are linked (6.3.2.). 

188  Other conceptualizations of organizations as complex systems can be found, e.g., Siggelkow, 
2001. 

189  Admati & Hellwig (2013) add that, of the largest companies in the world, in 2011 the top 
seventy-nine corporations in the world by asset size were all banks. Saunders & Cornett (2010: 
2) bring in the example of J.P. Morgan Chase and according to UBS (2013), the UBS Group 
comprises the Corporate Center and five business divisions (Wealth Management, Wealth 
Management Americas, Retail & Corporate, Global Asset Management and the Investment 
Bank), each consisting of many more layers (ad vertical complexity) and offering a whole 
range of financial services or products (ad horizontal complexity). Overall, the bank had 60205 
employees (as of 31 December 2013, ad vertical and horizontal complexity), active in more 
than 50 countries (in terms of own offices) (ad spatial complexity).  

190  “[A]s one moves to considerations of larger and larger systems, the problems of complexity 
become enormous” (Churchman, 1968: 77). 
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 Unfortunately, in spite of the much evidence in the literature for regarding 
those systems as organized complex, it cannot be shown, demonstrated or proved 
that a concrete system is organized complex. This is not surprising though be-
cause the fact that a system cannot be described accurately and in detail just 
expresses its extreme complexity (Beer, 1959: 27, 32; Ulrich & Probst, 1990: 
108f.). On the other hand, it might indeed be even more problematic to explicate 
and apply Weaver’s concept of organized complexity than, e.g., La Porte (1975a) 
thought. Namely, especially with regard to social (including financial) systems, it 
seems rather simplistic or reductionistic if organized complexity is determined 
on just two scales (Weaver: number of variables and their degree of organiza-
tion) or by three arguments (La Porte: the number of system components, their 
degree of differentiation and of interdependence).191  

6.3.1. On the level of structures 

La Porte (1975a: 17), for example, would consider a modern financial system as 
organized complex if its elements have a very high degree of interdependency. 
And indeed, modern financial systems are made up of components that are so 
tightly coupled that, should one component fail, e.g., Lehman Brothers (Wil-
liams, 2010) or another so-called systemically important financial institution,192 
the whole system either collapses or becomes inoperative. Bookstaber et al. 
(2015: 152) stress that the system for a bank is more interconnected than that of a 
business in another sector because some system elements that receive the output 

191  Such a simplistic proposal would not do justice to the much more multi-layered and multifari-
ous complexity of social or financial systems. They are characterized by many more aspects 
where it is at least prima facie not clear how they can be captured on Weaver’s two scales or 
by La Porte’s three arguments; e.g., highly developed forms of adaptation, communication, 
people and their risk attitude, observations, regulation, motives, intentions, antici-pation, fears, 
hopes, etc. This author is grateful to Andreas Hieronymi for the thought-provoking idea that 
our inability to understand modern financial systems, which he sees as a major source of sys-
temic risk, originates from an insufficient engagement in studying Weaver’s middle region. 
“The difficult part of understanding social systems is that they develop properties beyond the 
mere interaction of people” (Willke et al., 2013: 19). 

192  For the example of Bear Stearns, Henry Paulson describes tight coupling in these terms: “A 
Bear Stearns failure wouldn’t just hurt the owners of its shares and its bonds. Bear had hun-
dreds, maybe thousands, of counterparties – firms that lent it money or with which it traded 
stocks, bonds, mortgages, and other securities. These firms – other banks and brokerage hous-
es, insurance companies, mutual funds, hedge funds, the pension funds of states, cities, and big 
companies – all in turn had myriad counterparties of their own. If Bear fell, all these counter-
parties would be scrambling to collect their loans and collateral.” (Paulson, 2011: 99; cf. also 
Thurner & Poledna, 2013: 1). 
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from a bank are at the same time sources of inputs: “A hedge fund that is bor-
rowing in order to buy securities might also be lending other securities. A pen-
sion fund that is providing funding might also be using the bank/dealer for mar-
ket making. Hedge funds and related institutional investors are on both sides of 
the production in that they are both buyers and sellers of securities, and in that 
sense provide inputs as well as output in market making.” (Ibid.). 
 As seen, Simon (1962) is also concerned with Weaver’s organized com-
plexity and proposes to conceive of complexity as degree of hierarchy. Accord-
ingly, modern financial systems are organized complex because they are made 
up of interrelated subsystems (e.g., the interbank lending market) that, in turn, 
have their own interrelated subsystems (e.g., banks), and so on.193  
 How then does the term “organized complexity” apply to problems of as-
sessing extreme and systemic risks in banking or within modern financial sys-
tems? More precisely, the question is to what extent risk assessment and man-
agement activities involve studying systems which are organic wholes, with their 
parts in close interrelation: Organic or viable systems (Ulrich & Probst, 1990: 62, 

101; Gomez, 1981: 87f.; Beer, 1959) comprise ecosystems and socio-economic 

systems (including financial systems) which consist of living entities as essential 
components (such as human beings or banks in a certain sense (Ulrich & Probst, 
1990: 242f.)). They meet the demands of surviving in changing environments; in 
other words, they are adaptive. And modern financial systems as organic wholes 
with their parts in close interrelation are central to measuring systemic risks, 
given that systemic risk is defined in this study in reference to primarily such 
systems (see 4.2.). The same also holds for extreme risks and financial risks tout 
court because the respective events (risk (e.g., loss) events) occur in the financial 
system. 

6.3.2. On the level of events 

Churchman (1961: 163f.) highlights that the supposition that the process of gen-
erating outcomes is like a stable random-number process appears to be extremely 
dubious in case of business executives’ ventures: “[I]t is absurd to picture the 
drama of the business executive as made up of ‘random’ scenes, so that today’s 

193  Does this not contradict the earlier statement that the complexity of the whole cannot be accu-
rately traced to individual parts of the system? Cf., for example, the quote by Aristotle (“the 
whole is more than the sum of its parts”) and see also the second last footnote. 
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ventures are merely random draws from a large urn consisting of equivalent 
ventures of yesterday and tomorrow. No doubt many decision-makers do ration-
alize their choices on this basis.” (ibid.: 163). Churchman affirms that “no man-
ager can feel sure that the events that he faces come from a system that generates 
[stable] randomness” (ibid.: 164). Indeed, a risk manager’s situation should ra-
ther be conceived of as being triggered by unstable randomness.  
 “The major flaw of our type of [financial] economy is that it is unstable” 
(Minsky, 1986/2008: 11), which is due to the internal processes that in turn are 
the manifestation of complex, sophisticated, and evolving financial structures 

(ibid.; Minsky, 1992; Bhattacharya et al., 2015; Shefrin, 2013; Fisher, 1933). 
Blyth (2010: 452) considers the Western banking system in this light:  

If you took a monthly time series average of financial-industry profits in the West from, 
say, June 1948 until June 2008, you could talk with some degree of accuracy about the 
mean rate of return, the “standard” deviation, and all the rest up until about July 2008. 
But if you included returns from July-December 2008 in the sample you would have in-
cluded an outlier so large that it would blow your earlier historical measures out of the 
water.  

In financial systems, we are never sure that the sample is complete or reliable 
because an unstable and drastically changing stochastic mechanism or a high 
degree of unstable randomness is responsible for sample sizes which are too 
small and samples, respectively, which cannot represent the population. For 
example, as Lowenstein (2002: 71) straightens out, the universe of all trades 
looked one way throughout the 1920s and another way after the Great Depres-
sion. The pattern changed again during the inflationary 1970s, yet again in the 
effervescent 1990s. After which of these periods was the picture ‘representative’, 
‘normal’ or ‘complete’, and how do we know that the next new period will not 
change the story again (ibid.)? Moreover, when extreme financial events in par-
ticular are considered, “[…] the relevant measure of sample size is likely much 
better approximated by the number of non-overlapping hundred-year intervals 
than by the number of data points” (Diebold et al., 1998: 8). Thus, from that 
perspective, our data samples or the number of data points would be terribly 
small in contrast to those of disorganized situations, with which statistics can 
cope, and therefore relative to the demands we would place on them if statistical 
methods were applied. The example of the complex Western banking system 
embodies an unstable random process and a system of organized complexity.  
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 Esposito (2011: 148) adds and expounds that, until the mid-1980s, it was 
realistic to expect the financial system and risk to behave in a predictable way as 
“there was a high correlation between theoretical predictions and the behaviour 
of the markets. Since 1987, however, things have begun to change.” (See also 
footnote 36.) Today, the finding of some nonlinearity in financial data, which 
expresses among others organized complexity, appears to be a robust result (Lux, 
1998: 144; MacKenzie, 2006: 183ff.).  
 That financial markets react to themselves through the operation of feed-
back loops (such as seen in Chapter 5.1.) distorts the calculation of risk (if it was 
set without considering this reflexivity). In the same vein, Daníelsson (2002) 
differentiates the statistical process of risk from that of the weather in at least one 
sense: forecasting the weather does not (yet) change the statistical properties of 
the weather, but forecasting risk does change the nature of risk, which is related 
to Goodhart’s Law (and cognate ideas known as Campbell's law or the Lucas 
critique). To Goodhart is attributed the insight that “any statistical relationship 
will break down when used for policy purposes because the behavior of people 
following the policy will systematically alter the statistical relationship” 
(Boatright, 2011: 10). The corollary drawn by Daníelsson (2002) is that risk 
management systems (which rely on statistical relationships) will break down 
when used for its intended purpose (ibid.). Events in financial history demon-
strated the limitations of risk models which adhere to stable randomness and 
disorganized complexity194 in lieu of embracing the challenge of unstable ran-
domness and organized complexity. 

6.4. A Tentative Bottom Line 

The story of this chapter can now be briefly retold. We began with the hope that, 
by falling back on Weaver’s “Science and Complexity”, the inadequacy of or-
thodox (hence, probability-based) quantitative risk management instruments 
(VaR, ES, etc.) can be disclosed by recourse to the notion of organized complex-
ity which has been coined by Weaver (6.1.) and others (6.2.). We realize that no 

194  “There is commonly an underlying assumption that the future will resemble the present in 
some statistical sense. All our tomorrows are assumed to be sampled from the same distribu-
tion as today” (Lee, 1976: 152). However, we do not live in a simple statistical world; “it is 
more the world of T.S. Eliot’s Four Quartets. There is plenty to think about.” (Ibid.: 153). First 
ground is broken in the subsequent Chapter 7. 
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matter how we grasp and try to make use of the concept of organized complexi-
ty, we seem to be always driven to the necessity of introducing judgement: the 
operation of verifying that modern financial systems or problems of assessing 
extreme and systemic financial risks, in particular, are members of the class of 
systems of organized complexity is ultimately based on judgement (6.3.). This 
finding alludes to the subjectivity of complexity and its multifariousness or 
multilayeredness which appears to escape conceptual analyses (as suggested by 
e.g. La Porte). In a certain sense, we have taken a long route to arrive at an ap-
parent truism: complexity is complex (Cilliers, 1998: 9; cf. also Cilliers in 
Gershenson, 2008: 28f. and Lloyd in Gershenson, 2008: 87). Wide off the mark, 
this self-reference is highly explosive as well as insightful, and constitutes there-
fore a central, but negative research result of this study. 

Proposition 3:  
The concept of organized complexity seems195 to be complex itself. If it 

is complex, only characteristics of complexity can reasonably be 
discussed and a definition or an explication of complexity, which is 

analytic and reductionist in nature, cannot be achieved. This interferes 
with the application of the concept because it remains somehow 

nebulous. 

Thus, the recourse to Weaver’s notion of organized complexity entitles us to cast 
(vehement) doubt, but is unfortunately not viable enough to allow the stronger 
and crude conclusion that probability-based models are truly inadequate for 
measuring extreme and systemic risks. A separate argument is required and, 
indeed, propounded in the next Chapter 7.  

195  Just as it cannot be shown that any other system is complex, it cannot be shown that the con-
cept itself is complex. 
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7. The Fundamental Inadequacy of Probability Theory as 
a Foundation for Modeling Systemic and Extreme Risk 
in a Banking Context 

Cum ex aliquo observationum numero indagamus lineam cometae,  
supponimus eam esse ex conicarum aut alio faciliorum genere.  

Datis quotcunque punctis inveniri possunt lineae infinitae per ipsa transientes.  
(Gottfried Wilhelm Leibniz, 1703)196  

The comet may have taken an infinite number of other trajectories from point to 
point, the finitely many points observed on its previous path do not say how the 
actual trajectory continues in the future or at the other points, respectively. In a 
similar way, a finite number of statistical data may not be safely extrapolated 
into the future. Nonetheless, we may rely on the “habits of nature”, which, as 
experience according to Leibniz shows, let her causes recur in a similar manner 
throughout time197 – put in the image of the comet: it may be safely assumed a 
path with no wild or radical changes. The empirical estimation will be useful and 
sufficient in practice (Leibniz, 1703/1962: 84). Only an exact mathematical 
model of contingent events cannot exist from his point of view. 
 Without wishing to undermine Leibniz’ caveat – the opposite is true –, it 
must be noted that, from today's perspective, his example is an unfortunate 
choice. Because to bring the tenet of physics, that a comet’s trajectory corre-
sponds to a simple and regular geometric shape, into question would mean noth-
ing less than to raise doubt on the gravitational force (in a thought experi-

196  Leibniz, 1703/1962: 84. 
197  According to Leibniz, natura non facit saltus (“nature does not make a jump”). Nature obeys 

laws, hence the laws of nature. But there always exists the possibility that God suspends these 
laws of nature (since He is not amenable to the laws). In other words: Laws of nature are not 
necessarily valid, but only stand for “habits of nature”. 

 However, cf. also the work of 2016’s laureates of physics who opened the door on an unknown 
world where matter can assume strange, unaccustomed states (which is more in accordance 
with a complexity worldview). 
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ment).198 Instead, this chapter of the thesis presents a more suitable case or ex-
ample where the so-called problem of induction applies; namely the problem that 
“the habits of nature” do indeed allow to estimate probabilities, but never with 
quantifiable or even asymptotically increasing precision and reliability. But in 
addition, we go beyond many philosophical accounts – what began with Hume was 
induction as a problem of philosophical skepticism (Hacking, 2006: Chapter 19) – 
and uncover that here we do not tackle a mere ‘skeptical problem’, where the 
‘pragmatist’ or ‘realist’ can accept the skeptic scenario199 and continue to work 
with what he perceives as reality. By contrast, we deal with an issue of high practi-
cal relevance, from which it follows that probability theory loses its claim to be a 
breeding ground for the management of systemic and extreme risk in banking. 
 This research endeavor of Chapter 7 is an important contribution to enlarge 
upon the argumentation in the previous sections. For example, the finding that 
probabilistic reasoning is not of use and success in the realm of organized com-
plexity, which goes back to Weaver, von Hayek, Malik, Zadeh and others (see 
Chapter 6.1.), but turned out to be afflicted with vagueness (see e.g., Proposition 
3), is refined in 7.3. in this sense: it will be (a) exactly deduced by providing an 
explicit argument and (b) verified for the measurement of extreme and systemic 
risks in financial systems.200 
 Our Central Argument thereby exceeds the truism by far that there is simply 
not enough historical data (not to speak of enough reliable and pertinent histori-
cal data) to obtain an estimate of the ‘true’ probability distribution of, say, finan-
cial crises, with reasonable accuracy. Because merely pointing to the fact that 
systemic, i.e., extreme events, only take place extremely rarely would obviously 

198  Gravitation is one of the four fundamental forces of nature and to imagine a world without 
gravitation would require, according to the prevailing scientific model of the Universe known 
as the Big Bang, to draw a picture of the ‘world’ in the Planck epoch, a brief period extending 
from time zero to approximately 10−43 seconds after the Big Bang (which took place ca. 13.7 
billion years ago). 

199  For example, we cannot be absolutely sure that the sun will rise tomorrow, that our favorite 
dish will not be poisonous tomorrow, that pink elephants will not fall from the sky, etc. How-
ever, we can accept the possibility that things might be suddenly otherwise without changing 
our everyday lives. The practical or acting man has no reason to attach any importance to such 
logical and epistemological precariousness (von Mises, 1957/2005: 201).  

200  Another implication of the reasoning in this Chapter 7 for the topic of the previous Chapter 6 
would be, for example, that certain notions of complexity, foremost, statistical complexity 
(which measures the minimum amount of information about the past behavior of a system that 
is needed to optimally predict the statistical behavior of the system in the future; see 2.1.), be-
come rather untenable. 
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result in nothing more than telling an analytic truth. By contrast, the point we 
make is much more fundamental (see 7.4.) and says that it is, with necessity, not 
even possible to estimate a ‘true’ probability distribution of gains and losses in 
modern financial systems. 
 In the following, we will first delineate the philosophical problem of induc-
tion and briefly review its development in a systematic (not historical) manner 
(7.1.). Because “[n]owhere is the problem of induction more relevant than in the 
world of trading [in the branch of financial economics, more generally; C.H.] – 
and nowhere has it been as ignored” (Taleb, 2007b: 116; cf. also Spitznagel, 
2013: 98, 178, 243; von Mises, 1949/1998: 31)201. Before pointing out its con-
crete and practical implications for the risk management in banking context by 
developing the Central Argument of this chapter (7.3.), we explain in a few 
words the meaning of probability theory as being germane in this context and as 
being subverted by the Central Argument (7.2.). The chapter is closed by linking 
this conceptual critique with IIIa)-c), which can be viewed as ‘signs’ or ‘signa-
tures’ of the principal inadequacy of probability theory as a foundation for mod-
eling systemic risk in banking (7.4.). 

7.1. Philosophical Roots of the Problem of Induction: some Preliminaries  

Arguably, David Hume’s greatest single contribution to contemporary philoso-
phy of science has been the so-termed problem of induction (1739-40/1888).202 
At a first pass, induction concerns inferences whose conclusions are not validly 
entailed by the premises (Hájek & Hall, 2002: 149). This contemporary notion of 
induction should not be confused with the too narrow understanding of what we 
now know as enumerative induction or universal inference; inference from par-
ticular inferences: 

201  Indeed, “[a]t the heart of the Austrian methodology is healthy skepticism of data and, in partic-
ular, how economics (and, equivalently, investing) uses data to back-fit a story around spurious 
relationships found in the data [i.e., data mining; C.H.]. Admittedly, we do take a peek at the 
data […], but we do not rely upon statistical and historical information to form our understand-
ing. […] I might go so far as to call myself an antiempiricist, because empiricism often creates 
illusions and obfuscates the true underlying mechanism at work.“ (Spitznagel, 2013: 177). The 
most experience can teach us is that there might be an ascertainable regularity in all the cases 
witnessed in the past (von Mises, 1957/2005: 4), but beyond, regularity is a desideratum which 
is far from being actualized when it comes to human action (ibid.: 6, 57, 203, etc.). 

202  The problem of induction is to be distinguished from ‘mathematical induction’, a deductive 
argument form. 
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a1, a2, …, an are all Fs that are also G, 
 

to a general law or principle 

All Fs are G. 

Because there are, of course, many counterexamples that may suggest the in-
creased breadth of the contemporary notion: e.g., (good) inductions with general 
premises and particular conclusions (see footnote 199). On the other hand, it 
would be a bit too inclusive to take inductive inference to enclose all non-
deductive inference (as Rudolf Carnap suggested; Vickers, 2014). But albeit 
inductive inferences are not easily characterized, we do have a lucid mark of 
induction: “Inductive inferences are contingent, deductive inferences are neces-
sary” (Vickers, 2014);203 inductions are ampliative, i.e., they “can amplify and 
generalize our experience, broaden and deepen our empirical knowledge”; 
whereas deduction is explicative, i.e., it “orders and rearranges our knowledge 
without adding to its content” (ibid.). 
 The original problem of induction now can be simply put; it concerns “the 
support or justification of inductive methods” (Vickers, 2014); methods that predict 
or infer, in Hume’s words, that “instances of which we have had no experience 
resemble those of which we have had experience” (Hume, 1739-40/1888: 89), i.e., 
nature continues always uniformly the same. The problem is how to enunciate or 
vindicate the principle and it leads to a dilemma: it “cannot be proved deductively, 

for it is contingent, and only necessary truths can be proved deductively” (Vickers, 
2014). Nor can the principle “be supported inductively – by arguing that it has al-
ways or usually been reliable in the past – for that would beg the question” (ibid.), 
i.e., it would result in a petitio principii,204 by assuming just what is to be proved. 
 This Humean problem of induction must be separated from at least another 
one, which has been labeled new riddle of induction (Goodman, 1955; Mill, 1843) 
and which is that of amplifying what distinguishes good from bad inductions. The 
old, or traditional problem of induction was to warrant induction; “to show that 
induction, typically universal and singular predictive […] inference, leads always, 
or in an important proportion of cases, from true premises to true conclusions” 

203  Of course, the contingent power of induction brings with it the risk of error; good inductions 
may lead from true premises to false conclusions (ibid.). 

204  A petitio principii or “begging the question” is a logical fallacy and means assuming just what 
is to be proved, i.e., a type of circular reasoning. 
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(Vickers, 2014). This problem, says Goodman, is, as Hume demonstrated, not 
soluble, and “efforts to solve it are at best a waste of time” (ibid.): We have been 
looking at the wrong problem: “It is not the least of Goodman's accomplishments 
to have shown that three questions all issue from the same new riddle” (ibid.):205  

• What is the difference between those generalizations that are supported 
by their instances and those that are not? 

• Which generalizations support counterfactual conditionals?  
• How are lawlike generalizations to be distinguished from accidental 

generalizations?206  

Many different replies to the problems of induction can be found in the literature 
and it would be beyond the scope of the present study to present and agitate them. 
Two concise comments shall suffice at this point. First, there is an extended debate 
revolving around probability and induction.207 Second, one of the most influential 
and controversial views on the problem of induction has been that of Karl Popper 
who held that induction has no place in the logic of science (Popper, 1959a).208 
 The gist of the matter put forward in 7.3. is a problem of induction as in-
spired by the reading of ‘Kripkenstein’ on rules and the rule-following paradox 
(Kripke, 1982; see 7.3.).  

205  The wording of these questions is also taken from Vickers (2014). Cf. also Freitag (2015). 
206  Goodman’s own response to the new riddle was that those generalizations that are supported by 

their instances involve predicates that have a history of use in prediction. Such predicates 
Goodman called projectible. 

207  For example, on Reichenbach’s view (1949), the problem of induction is just the problem of 
ascertaining probability on the basis of evidence. Cf. Kyburg & Teng (2001) for an overview. 

208  While agreeing with Hume that no rational justification of induction can be found, Popper 
insists that this result is innocuous, simply because induction forms no part of the practice of 
science (Barlas & Carpenter, 1990: 154). According to Popper, scientists propose ‘conjec-
tures’, “and then subject these conjectures to severe observational tests in an effort to falsify 
them” (Hájek & Hall, 2002: 154). He claims that “we are never rationally warranted in consid-
ering such an hypothesis to be probable, given that it has passed such tests” (ibid.). And since, 
according to the simplest version of falsificationism, deductive relations are all we need attend 
to in order to check that a hypothesis has been refuted by some piece(s) of evidence, “the prob-
lem of induction poses no threat to the rationality of scientific practice” (ibid.). As a descriptive 
claim about what scientists, qua scientists, actually do – let alone about what they believe about 
what they do – Popper’s view strikes Hájek & Hall (2002) as absurd. But even as a normative 
claim it fares little better: “The simplest and most devastating point was nicely emphasized by 
Putnam (1974): Popper seems willfully blind to the fact that we use evidence from the past and 
present as a basis for making practical decisions, decisions whose rationality is hostage to the 
rationality of the inferences drawn about their likely consequences on the basis of the given ev-
idence” (ibid.: 154). 
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7.2. Probability Theory in a Nutshell, its Embeddedness and its 
Applications 

The Latin root of probability is a combination of probare, which means to test, to 
prove, or to approve; and ilis, which means able to be, something like “worthy of 
approbation” (Bernstein, 1996b: 48). Probability has always carried this double 
meaning, one looking into the future, the other interpreting the past, one concerned 
with our opinions and beliefs (interpretation as subjective probabilities), the other 
concerned with what we actually know or with frequencies in the real world (ob-
jective concept) (Hájek, 2011; Hacking, 2006: Chpt. 2; Jaynes, 2003: 39). But even 
though the interpretation of probability is an important foundational problem (ibid.) 
and even though the inadequacy of frequency interpretations of probability for 
many situations in risk management deserves appreciation (Rebonato, 2007),209 it 
plays no major role in motivating and developing the Central Argument in 7.3. Nor 
does probability theory in some strict sense represent the object of criticism. Be-
cause what ought to be referred to as “probability theory” is the branch of mathe-
matics and the standard formalism concerned with probability as axiomatized by 
Kolmogorov (1933) (cf. Schneider, 1988: Chapter 8). To be sure, Kolmogorov’s 
axiomatization, which we shortly present in what follows, has achieved the status 
of orthodoxy, it provides the lingua franca for discourses on risk (II) (McNeil et al., 
2005: 1f.) and it is typically what economists, risk experts and others have in mind 
when they think of “probability theory” (but also Jaynes, 2003: xi, 44).210   
 Following Kolmogorov (1933) and the outline by Hájek (2011), let Ω be a 
non-empty set (‘the universal set’). A field (or algebra) on Ω is a set F of subsets 
of Ω that has Ω as a member, and that is closed under complementation (with 
respect to Ω) and union. Let P be a function from F to the real numbers obeying: 

1) (Non-negativity) P (A) ≥ 0, for all A ∈ F. 
2) (Normalization) P (Ω) = 1. 

209  The point is still worth making since, astonishingly enough, some writers “have come to real-
ize that many everyday events, including those in economics, finance, and even weather fore-
casting, are best thought of as analogous to the flip of a coin or the throw of a die” (Cecchetti, 
2008: 92). The “generator will toss a coin; heads and the [investment] manager will make USD 
10,000 over the year, tails and he will lose USD 10,000” (Taleb, 2007b: 152).  

210  Alternatives to Kolmogorov’s probability calculus exist (e.g., Skyrms, 1980; Jeffrey, 1983; 
Spohn, 1986 and see Chapter 15.2. and 18). For an overview and an introduction to probability 
theories, cf. Reichenbach, 1949; Fine, 1973; Schneider, 1988. 
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3) (Finite additivity) P (A ∪ B) = P (A) + P (B) for all A, B ∈ F such 
that A ∩ B = ∅. 

Call P a probability function, the bearers of probabilities “events”, “sentences (of 
a formal language)”, or “outcomes”, and (Ω, F, P) a probability space. The as-
sumption that P is defined on a field guarantees that these axioms are non-
vacuously instantiated, as are the various theorems following from them (ibid.).  
 In the words of Hájek (2011), let us now strengthen our closure assumptions 
regarding F, requiring it to be closed under complementation and countable union; 
it is then called a sigma field (or 𝜎𝜎-algebra) on Ω:211 

3’) (Countable additivity) If A1, A2, A3 … is a countably infinite sequence 
of (pairwise) disjoint sets, each of which is an element of F, then 

𝑃 �� 𝐴𝐴𝑛

∞

𝑛=1

�  =   � 𝑃 (𝐴𝐴𝑛)
∞

𝑛=1

 

The non-negativity and normalization axioms establish, by and large, a conven-
tion for measurement, although it is non-trivial that probability functions take at 
least the two values 0 and 1, and that they have a maximal value (unlike various 
other measures, such as length, volume, and so on, which are unbounded). It is 
now easy to see that the theory applies to various familiar cases. For example, 
we may represent the results of tossing a single fair die once by the set Ω = {1, 2, 
3, 4, 5, 6}, and F be the set of all subsets of Ω. Under the natural assignment of 
probabilities to members of F, we obtain such welcome results as P ({6}) = 
1/6, P (even) = P ({2} ∪ {4} ∪ {6}) = 3/6, P (odd or less than 4) = P (odd) + P 

(less than 4) – P (odd ∩ less than 4) = 1/2 + 1/2 − 2/6 = 4/6, and so on (ibid.). 
 To the extent that Kolmogorov’s first two axioms are simply matters of 
convention (which is not undisputed)212, they are not controversial. And albeit 
the third postulate (‘finite/countable additivity’) is therefore seen as the most 
puzzling one for debate, that is indeed taken up in Chapter 15.1., 15.2. and 18 – 

211  “It is controversial whether we should strengthen finite additivity, as Kolmogorov does. [… 
He] comments that infinite probability spaces are idealized models of real random processes, 
and that he limits himself arbitrarily to only those models that satisfy countable additivity. This 
axiom is the cornerstone of the assimilation of probability theory to measure theory.” (Hájek, 
2011). For probability theory without measure theory cf. Shafer & Vovk, 2001. 

212  For example, physicists such as Dirac, Wigner, and Feynman have countenanced negative 
probabilities. 
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and establishing it is rightly regarded as one of the main achievements in many 
contexts, e.g., of Bayesian scholarship (Bradley, 2010)213 – it is not the target of 
the Central Argument either. Naturally, the same holds for the theorems derived 
from the axioms. Hence, we temporary adopt a standard view by not bringing the 

Kolmogorovian probability calculus into question; namely, both in terms of its 
soundness and basic applicability and as long as we speak of probability theory 
simpliciter. But if the Central Argument does not deal with either the classical 
formalism or its interpretation, what, it may fairly be asked, is the objection 
about at all? 
 The gist of the plea against probability-based risk models is not that they are 
invalid214 (in terms of the deductive reasoning), but that modeling systemic or 
extreme risks lies outside the scope of classical probability theory (7.3.). In a 
nutshell, the problem is with that application, not with the theory itself.  
 Thus, what we ought to bear in mind when the difficult task is attempted to 
expose the principal ineptness of probability theory as a foundation for modeling 
systemic risk in banking and when it is referred to probability theory in this con-
text is that it was stimulated by games of chance in the 17th and the early 18th 
century and inaugurated by the Fermat-Pascal, Bernoulli-Leibniz (see the intro-
duction of this chapter), etc. correspondences (Hacking, 2006; Bernstein, 1996b). 
While this playground where dice, coins, urns, playing cards, etc. are found, has 
offered a stable, sterile, and ideal environment to study probabilities and ‘laws of 
probability’, parts of reality, modern financial systems in particular, are not only 
quite different (see Chapter 6), but are characterized by conditions which do not 
allow to reasonably and meaningfully employ probabilities or stochastic methods 
(7.3.). Stated more compactly, although it should be a truism, it is all too often 
ignored or underestimated that life is not like Jacob Bernoulli’s jar experi-

213  According to Bayesians, basically probability theorists who support the subjective view of proba-
bility, rational degrees of belief are probabilities. Probability axioms can be said to characterize ra-
tional belief. Contemporary Bayesianism, after Thomas Bayes and going back to F.P. Ramsey in 
1930, is not only a doctrine, or family of positions, about probability. It applies generally in epis-
temology and the philosophy of science as well (Vickers, 2014). In terms of Kolmogorov’s third 
postulate, arguments for saying that degrees of belief, when represented by fractions, should be 
additive have not been undisputed (Hacking, 2006: 152f.; see also 15.2. and 15.3.). 

214  In another sense, it is right to say that validation and verification of models with empirical 
content is impossible or to point out that all such models are wrong because these models, 
mental or formal, are limited, simplified representations of the real world or of a real system, 
respectively (Sterman, 2000: 846; Forrester, 1961: 123). See also the sections on model valida-
tion in Part III. 
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ments,215
 that in the real financial world very few problems (if any) are akin to 

coin-tossing problems because the right implications have not yet been drawn. 
 It is well-rehearsed at the very least that, for a long time after its inception, the 
theory of probability was largely concerned with gambling games of various sorts 
(Weaver, 1963). In addition, there are other fields or types of problems to which 
probability theory reasonably applies and which have been classified as disor-
ganized and complex (see Chapter 6, Figure 13). Now, after having delineated what 
probability theory is, where probabilities and probability theory (according to the 
Kolmogorov system) should be applied (1. situations of disorganized complexity, 

including 2. games of chance, and 3. the microcosm where quantum mechanics can 
explain phenomena etc.; see above and cf. also Renn, 2008: 16) and before arguing 
where they should not be applied (see 7.3.), the question arises in what sense prob-
ability theory is applied to (extreme) risk management in banking.   
 Commonly selected approaches to describe (extreme and systemic) risks, 
including VaR, ES, EVT, CoVaR, SES, are grounded in probability theory 
(Malz, 2011; McNeil et al., 2005 and see Chapter 2). More precisely, risk models 
are probabilistic models in at least the following two senses: 

1) A (systemic) risk model is defined here as a sufficiently meticulous de-
scription of (systemic) risk given in a formal language. Kolmogorov’s 
(1933) definition of probability and its accompanying theory provide 
the lingua franca for describing (systemic) risks, especially in terms of 
Risk II, which often corresponds to the standard view of risk (see 4.1. 
and cf. McNeil et al., 2005: 1f.). 

2) Risk models are probabilistic models in the sense that they represent fi-
nancial quantities such as profits and losses with random variables whose 
values are described by probability distributions (Pergler & Freeman, 
2008: 3; Rebonato, 2007: 148). That quantities are expressed by random 
variables entails that the quantities are governed by (stable) randomness, 
corresponding to functions on the probability space (see below).216  

215  Elsewhere the term “Bernoullian probabilities” has been coined to specify a certain class of 
probabilities that satisfy certain conditions – e.g., the Weak Law of Large Numbers, 
equiprobability, etc. (cf. Vickers, 2014). 

216  Random quantities provide a convenient way to talk about many probabilities. The value taken 
by a (discrete or continuous) random variable is subject to chance, and the associated likeli-
hoods are described by a function called the probability (mass or density) function (Grimmett 
& Stirzaker, 2001: Chapter 2). Cf. also Kyburg & Teng, 2001: 54f.; Rapoport, 1986: Chapter 3.3. 
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Or even more precisely, VaR and ES (and therefore also CoVaR and SES) are 
risk measures or models which are derived from the loss distributions (in relation 
to different risk types that institutions track), which of course are probability 
functions.217 EVT, on the other hand, provides a general foundation for the esti-
mation of the VaR or ES for very low-probability “extreme” events by dealing 

with extreme deviations from the median of probability distributions. It is devot-
ed to estimating what happens to a distribution in the far-out tails. 
 Probability distributions, which are thus fundamental to the risk models 
discussed, can generally be understood as follows: Whenever there is an event E 
(e.g., a loss) which may have outcomes E1, E2, …, En whose probabilities of 
occurrence are p1, p2, …, pn, we can speak of the set of probability numbers as 
the “probability distribution” associated with the various ways in which the event 
may occur (Weaver, 1963: 179).218 A probability distribution in a purely formal 
sense is further a function that satisfies Kolmogorov’s axioms of probability 
(Frigg et al., 2014: 5). 
 Compliant with Mark & Krishna (2014: 40f.), Rebonato (2007: 148f., 180) 
and Embrechts (2000: 449f.), there are basically three ways of building a proba-
bility distribution for some financial random variable. 

1) Historical method: The distribution of the losses is simply constructed 
by ‘brute force’, i.e., by using the empirical distribution (frequencies) 
of past returns or losses.219 

217  As seen above, VaR is the smallest potential loss occurring with some predetermined probabil-
ity while ES considers all losses that occur with low probabilities (and not just the minimum 
value, by integrating over the entire tail of the distribution). 

218  This is a very natural and sensible terminology, for it refers to the way in which the available 
supply of probability (namely unity) is distributed over the various things that may happen 
(different losses, in particular). 

219  Suppose, following Rebonato (2007: 148f.), that we obtained 1000 observations of changes in 
the S&P index and, therefore, 1000 ranked hypothetical profits and losses. Let us take the tenth 
worst hypothetical outcome, and let us assume that it was −$20 millions (ibid.). We have 990 
better (more favorable) outcomes and 9 worse outcomes (ibid.). By definition, we have just 
built from our sample an estimate of the true 99th percentile of the population (ibid.). Since the 
historical method appears to make use of no free parameters, “it is often referred to as a non-
parametric approach” (ibid.: 148). Yet, an extremely important parameter is used; namely, the 
length of the statistical record or the length of the so-called ‘statistical window’ to be consid-
ered in the analysis (ibid.). This implicitly determines what constitutes the relevant past and 
does so in a binary manner – fully relevant and included in the data set or totally irrelevant and 
outside the boundaries of our data set (ibid.). 
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2) Parametric techniques, including the ‘Variance-Covariance Approach’ 
(Mark & Krishna, 2014: 40) ‘Empirical Fitting Approach’ (Rebonato, 
2007: 150f.) and the ‘Fundamental Fitting Approach’ (ibid.: 152f.): 
These techniques assume that the market or the distribution of profits 
and losses obeys a simple statistical formula or is a member of one of 
the many families of distribution functions one finds in statistics 
books. For example, in the case of the elegant Gaussian distribution, 
there are then only two parameters, its mean and its variance or stand-
ard deviation, to describe the returns. 

3) Monte Carlo simulation method: It randomly generates market factors 
such as interest rates and calculates the expected return on, e.g., the 
portfolio. This procedure is repeated many times (potentially hundreds 
of thousands of times). Ultimately, the resultant set of portfolio values 
form a distribution from which risk measures such as VaR can be cal-
culated in the way earlier described.220  

All three approaches have their weaknesses. In their article “On the Unfortunate 
Problem of the Non-observability of the Probability Distribution”, Taleb & 
Pilpel (2004) elaborate on essential and principal problems with arriving at a 
probability distribution for some financial entities; in contrast to many other 

220  Even though banks widely consider the Monte Carlo method as one of the best theoretical 
approaches to simulation of risk (Mehta et al., 2012; Pergler & Freeman, 2008), it should also 
be remarked that if we have strong ex ante reasons to believe that the probability distribution 
we are interested in is of a particular type and that we exactly know what its parameters are, 
then Monte Carlo simulations can indeed be a very powerful tool to sample the tails of this dis-
tribution. Rebonato (2007: 157f.) points out that in more common situations, however, ex ante 
information is not available or is of dubious validity (especially in the tails). “What we do have 
is a finite number of actual data points, painstakingly collected in the real world. On the basis 
of these data points I can choose an acceptable distribution and its most likely parameters given 
the data […]. This approach may well do a good job at describing the body of the distribution 
(where the points I have collected are plentiful); but, when it comes to the rare events that the 
timorous risk manager is concerned about, the precision in determining the shape of the tails is 
ultimately dictated, again, by the quantity and quality of my real data [emphasis added].” 
(Rebonato, 2007: 157f.). But there is worse news. A fatal trade-off is prevalent between the in-
crease in accuracy coming from learning more precisely what the relevant conditions are and 
the loss of estimation power arising from the progressive loss of pertinent data (ibid.: 144). 
Moreover, what constitutes the relevant past is not ‘contained in the data’ (ibid.: 146). Conse-
quently, there is also an assumption, implicit or explicit, about what constitutes relevance. 
Rebonato (2007: 159) concludes then that “if the underlying parametric model is not sound and 
trustworthy, a Monte Carlo simulation will only allow the very precise calculation of an incor-
rect percentile. There is no modeling content in Monte Carlo or other simulation techniques”. 
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scholars who think that the central problem would reside in tackling the problem 
of fat tails, and therefore propose to surrogate the ‘normal’ distribution (with 
‘thin tails’ or a small range of outcomes) by ‘power laws’, ‘Pareto distributions’ or 
‘Zipf’s law’ etc., or more generally, so-called ‘heavy-tail distributions’, allegedly 
better suited for describing many fundamental quantities such as stock and real 
asset prices (Hagel, 2013; Newman, 2013; Helbing, 2010; Mandelbrot & Taleb, 
2010; Sornette, 2009).221  
 Since such more ‘sophisticated’ distributions imply that extreme events occur 
much more frequently than expected while orthodox risk models based on normal 
distributions have dramatically underestimated extreme risks (such as realized in 
the financial crisis which crescendoed in 2008), the problem of providing a sound 
basis for risk modeling in banking is solved; or so it seems. Figure 17 juxtaposes 
the ‘old and denounced’ normal distribution with a ‘new and powerful’ power law 
distribution – devoid of disguising that the former with its elegant properties (e.g., 
one can reasonably or meaningfully speak of the average of the distribution) keeps 
on playing a prominent role in statistics and probability theories.222  
 Adding to this contrasting juxtaposition, the following Figure 18 evidences 
that actual empirical data or an empirical return distribution conforms poorly to a 
prespecified theoretical normal distribution (cf. also Lux, 1998). (Obviously, the 
exact form of an empirical return distribution depends on the asset type and on 
the data frequency; Söderlind, 2014.223 In other words, different data sets are 
differently well approximated by a certain prespecified theoretical distribution.)  

221  The finding of fatter tails or of excess kurtosis in almost all financial data has generated much 
research in the attempt to fit stochastic processes with this feature to the data (Lux, 1998: 146). 
Candidates which have been proposed over the years include the stable Paretian distributions 
(Mandelbrot, 1963b, Fama, 1963), compound normal distributions (Kon, 1984), and mixed 
diffusionjump processes (Friedman & Laibson, 1989) to name only some alternatives. 

222  It not only approximates many real-life situations well (e.g., the normal distribution of human 
body heights), but, even if a random variable xi is not distributed according to a normal distri-
bution, the Central Limit Theorem states that, given certain conditions (e.g., random variables 
need to be independent, each with a well-defined expected value and well-defined variance, 
which is all in all critical in our context; see Chapter 2 and 6), the distribution of a sum of the 
random variables xi approaches a normal distribution as the number of variables in the sum be-
comes large. As a consequence, a variable that is the result of a number of additive influences 
should be normal. The real reason for the importance of the normal distribution lies in this 
Central Limit Theorem (Bulmer, 1979: 109). Henri Poincaré was among the first who recog-
nized that many distributions are not normal. 

223  An extreme example are options returns that typically have very non-normal distributions (in 
particular, since the return is -100% on many expiration days). Ibid. 
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Figure 17:  Heavy/fat and long versus thin and short tails: The value of the random variable according to 
the normal distribution or Gaussian distribution or the bell curve is practically zero when it lies 
more than a few standard deviations away from the mean. Insofar, the choice of a bell curve 
may not be appropriate when a significant fraction of outliers – values which lie many standard 
deviations away from the mean – is to be expected. A tricky problem is, as Taleb (2013: 
9) states, that fat-tailed probability distributions can masquerade as thin tailed (see 2.2.2.). 

Figure 18:  Normal distributions are not the (new) norm(al): A QQ plot of daily S&P 500 returns (the 
American stock market index Standard & Poor's 500), from 1957:Q1 – 2014:Q3; in general, 
a QQ plot is a way to assess if an empirical distribution matches reasonably well a prespecified 
theoretical distribution; for instance, a normal distribution (or a normally distributed continu-
ous random variable N) where the mean (µ) and variance (σ2) have been estimated from the 
data. Each point in the QQ plot shows a specific percentile (quantile) according to the empir-
ical as well as according to the theoretical distribution. For instance, if the 0.02 percentile is 
at -10 in the empirical distribution, but at only -3 in the theoretical distribution, then this shows 
that the two distributions have fairly different left tails. The visual inspection of a histogram 
can also give useful clues for assessing the normality of returns. Source: Söderlind, 2014. 
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In particular, this so-called Q–Q plot (Quantile-Quantile plot) indicates that the 
two distributions have fairly different left tails, which means that the frequency 
of factual extreme losses is not well-described by the tail of a bell curve. This 
might be seen as grist for the mill of power law proponents. 
 Nonetheless, it ought to be emphasized that to reasonably privilege heavy-
tail over normal distributions, because the former is apparently able to depict and 
describe (but not to explain)224 reality in banking in a better way (Mandelbrot) – 
in the words of mathematician Walter Willinger and his colleagues: “[t]he pres-
ence of [power law] distributions in data obtained from complex natural or engi-
neered systems should be considered the norm rather than the exception” 
(Mitchell, 2009: 269) –, results in nothing less than an untenable assertion, (*): 
namely, that we now have a better (i.e., more reliable or trustworthy) or the right 
(?) extrapolation rule at hand; or, in the end, even an underlying theory of how 
bodies in the financial system behave and interact. 
 Indeed, the following statement by Sornette (2009: 5) who embraces the 
abandonment of ‘normal’ distributions in favor of wilder distributions feeds the 
doubt that the search for the one right rule or theory is tantamount to a never-
ending task (see also footnote 221): “[I]n a significant number of complex sys-
tems, extreme events are even ‘wilder’ than predicted by the extrapolation of the 
power law distributions in their tail” (cf. also Spitznagel, 2013: 244). The physi-
cist and network scientist Cosma Shalizi had a less polite phrasing of his senti-
ments: “Our tendency to hallucinate power laws is a disgrace” (Mitchell, 2009: 
254). Stumpf & Porter (2012) reinforce the stance and contend that most report-
ed power laws lack statistical support and mechanistic backing: “[…] a statisti-
cally sound power law is no evidence of universality without a concrete underly-
ing theory to support it” (ibid.: 666). Renn (2008: 16) already remarked 
fundamentally that the interactions between human activities and consequences 
are more complex, sophisticated or unique than the average probabilities used in 
technical risk analyses are able to capture. Alan Greenspan conceded “that no-
body can predict the future when people are involved. Human behavior hasn’t 
changed, people are unpredictable.” (Cited in Sornette, 2003: 321). Churchman 
(1961: 164) differentiates that in the case of the gambler, such a theory [in the 
context of his discussion: a ‘well-substantiated’ theory of the manner in which 

224  Capturing time series properties of data by some stochastic model does not explain the underly-
ing regularities. 
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draws of various types occur for a given reference class] may be available; in the 
case of the executive [metaphorically speaking of real-world businesses and risk 
management], there is no such theory.225 Von Hayek (1967: 30) makes a very 
similar point.226  
 To this author, the assertion (*) is therefore after all untenable since it has 
not yet been sufficiently accounted for the challenges posed by the complexity of 
modern financial systems:  
 While Mandelbrot and fellows have taken a step in the right direction by 
addressing some  

• non-linearities (The Noah Effect) and  
• some dependencies (The Joseph Effect),  
• real dynamics or unstable time series (i.e., what is above the waterline, 

see Figure 15) – evolving or changing complex systems over time, 

which does not entitle us to pick a specific probability function be-
cause we do not have a good reason to prefer one to the other (see 7.3.) 
– and  

• other dependencies such as feedback in open systems (i.e., what is be-
neath the waterline, see Figure 15) – self-similarity and invariance in 
distribution with respect to changes of time and space scale do not in-
dicate systems whose parts interact and that exchange material, infor-
mation, and/or energy with their environment across a boundary –227  

225  Furthermore, it is “useless to say the economist should look at history and let the facts ‘speak 
for themselves‘, because we need an antecedent theory to know which facts we should even 
consider, and to even know how to classify a ‘fact‘ in the first place“ (Spitznagel, 2013: 177). 

226  Indeed, the unpredictability of human action (and the enormous influence individual choice 
wields in how economics works) is the core of the Austrian (or Viennese) School of economics 
(along with von Hayek, L. von Mises, Joseph Schumpeter, Murray Rothbard and many others). 
For example, von Mises (1949/1998: 31) writes: “No laboratory experiments can be performed 
with regard to human action. We are never in a position to observe the change in one element 
only, all other conditions of the event remaining unchanged. Historical experience as an expe-
rience of complex phenomena does not provide us with facts in the sense in which the natural 
sciences employ this term to signify isolated events tested in experiments. The information 
conveyed by historical experience cannot be used as building material for the construction of 
theories and the prediction of future events. Every historical experience is open to various in-
terpretations, and is in fact interpreted in different ways.” 

227  Moreover, a system, at least a complex system, is more than the sum of its parts whereas, in the 
case of fractals, the parts are similar to the whole. “Viewed structurally, a system is a divisible 
whole; but viewed functionally it is an indivisible whole in the sense that some of its essential 
properties are lost when it is taken apart” (Ackoff, 1974: 14). 
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have not yet received enough attention (see Part III for an answer to some of 
those open challenges).  
 This finding can be packaged in a resounding, but in this form still under-
determined and more suggestive research statement (which is why we refer to it 
as a conjecture, not as a fully fledged proposition). 

Conjecture 4:  
There is no good theory of how bodies in the financial system behave 

and interact and, therefore, a scientific basis for proclaiming the 
accuracy, suitability, and commonality of power law distributions is 

missing. 

From the perspective of organized complexity, it is not power laws per se that 
are important, but the presence of underlying high variability / dynamics (Alder-
son & Doyle, 2010: 849). Moreover, the foundational and epistemological prob-
lem of identifying and utilizing the ‘right’ probability distribution is not, and 
perhaps cannot be solved (7.3.). All in all, ‘power law’ proponents like other 
probabilists seem to be just poking around in the dark. Trying to predict future 
(extreme) losses with structurally wrong models is like trying to predict the tra-
jectory of a comet with Newtonian models. These models will invariably make 
maladaptive projections beyond some lead time, and these errors cannot be 
erased by adding a discrepancy term derived from other Newtonian models 
(Frigg et al., 2015: 3997). Even though it might not hold for every purpose of 
scientific work, the exact functional form of the distribution matters for our pur-
poses because we are keen to investigate whether or not probabilities of extreme 
losses can be meaningfully ascertained, whether or not extrapolation of data on 
rare or systemic events works well. We would receive very different probability 
estimations and extrapolation paths, depending on the functional form we as-
sume for our observation range (i.e., if the data is best fitted by a power law or a 
log-normal distribution, etc.).  
 Taleb & Pilpel (2004: 3) prepared the way for relativizing and restricting 
the power of power laws and company by pointing to, what they call, the central 
problem, which serves as a direct input for the Central Argument that we are 
going to develop in the following; namely that one does not observe probability 
distributions, but merely the outcome of random generators.  
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7.3. The Central Argument against using Probability Theory for 
Financial Risk Management 

In this section, we show that the determination of a probability (or loss) distribu-
tion for (extreme or systemic) risk management purposes in banking is not possi-
ble. This is due to a foundational epistemo-logical problem of induction concern-
ing deep doxastic uncertainty (rather than an ontological problem as it took 
center stage in Chapter 6, see 6.1.3. and 6.3. above and the comment on Premise 
5 below). The argument runs as follows (and, at a glance, it is displayed in a 
condensed form in Appendix D): 

Premise 1:   
In general, there are two ways that probabilities can be determined: a 
priori or a posteriori; e.g., either by inference from the physical shape 
of the respective object (e.g., coin, dice; i.e., a priori) and from the pa-
rameters of a controlled experiment (e.g., lotteries; i.e., a priori), re-
spectively, or by empirical observations to obtain an estimate for the 
chance of certain events (a posteriori).228 
Rationale:   
This is a commonplace established since the early days of the emer-
gence of mathematical probability theories (e.g., Bernoulli, 1713/1988: 
65). 

Premise 2:   
In financial risk management, probabilities can only be gained and 
evaluated a posteriori. And in terms of empirical observations, only 
samples and no complete observation are possible. 
Rationale: 
• It is impossible to know all the parameters involved, especially consid-

ering that modern financial systems consist of a plethora of parts and 
elements (a very simplified extract is given in Figure 1) that are tightly 
coupled and in close interrelation (6.3.). 

228  By the laws of large numbers, the accuracy of the estimate increases with the number of obser-
vations if certain conditions are met (Grimmett & Stirzaker, 2001: 193). And yet it is unclear 
why convergence among still inaccurate measurements should be taken as an indication of 
truth (Tal, 2015). 
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• Ultimately, every (risk) model invariably extrapolates from data of the 
past to the future (Heinemann, 2014: 194; Redak, 2011: 450ff.). In par-
ticular, there are basically three ways of building a probability distribu-
tion for some financial random variable (see 7.2.), which depend main-
ly on hindsight, the same holds for evaluating those probabilities 
(Stulz, 2008: 62), and which are thus based on ‘empirics’ or ‘experi-
ence’. 

• The importance of inductive reasoning depends on the basic fact that, 
apart from trivial exceptions, the events and phenomena in the finan-
cial world (and, in general, of nature) are too multiform, too numerous, 
too extensive, or too inaccessible to permit complete observation 
(Weaver, 1963: 234). So, we have to content ourselves with samples. 
An issue is that we seem to demand a sample that is ‘representative’ of 
the whole (Churchman, 1961: 154). 

Premise 3:   
For any finite set of (P&L) data, there is an infinite number of proba-
bility distributions that are in accordance with that data / those obser-
vations and describe possible portfolio values. 
Rationale: 
• There are infinitely many values of returns ((profits and) losses) to 

which probabilities can be ascribed. Suppose, for instance, that “so far 
the daily change in a stock’s price have been limited to the range be-
tween 0 and 10 points. Is there any reason to suspect that it will not 
move 1000 points one way or the other in the future?” (Taleb & Pilpel, 
2004: 30).229 

229  In this respect, Taleb & Pilpel (2004: 35) point to an important distinction between physical 
and financial systems: While in the former, “it is often the case that we can tell in advance, due 
to external, purely deductive reasons, that the ‘generator’ must be bounded and therefore (rela-
tively) benign; we can therefore use the past data for inductive inference about the future […]”. 
In terms of the latter, however, this appears to be not the case: “There are potential events in 
many such [financial] systems that would cause losses (or gains) that are, in theory, unbound-
ed. To convince oneself of this, one need only look at a simple ‘option’: the possibility exists 
of losing an infinite amount of money combined with the fact that such probability may remain 
unknown by us” (ibid.). Cf. also Lux (1998: 144) for a difference in time series between eco-
nomics and natural sciences and von Mises (1957/2005: 61, 209) for differences between per-
ennial laws of nature and praxeology or patterns of human action. 
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• The past usage of a certain function is susceptible to an infinite number 
of different interpretations or extrapolations (in analogy to Kripke, 
1982)230. 

Premise 4:   
If there is an infinite number of probability distributions to represent 
possible portfolio values, not all of them are equally suitable for proba-
bility-based risk modeling and a given risk management purpose. If a 
probabilistic risk modeling approach is selected, only a suitable func-
tion ought to be picked. 
Rationale: 
• Only suitable or correct probabilities (of occurrence) should be as-

cribed to the loss values of interest (allowing a certain margin of error) 
– otherwise it is useless to employ probabilities at all. 

• Frigg et al. (2013: 483f.) present a case where one can explicitly see 
that a certain function pt (x) need not be the correct probability distri-
bution. Taking a ‘wrong’ probability distribution as a guide to actions 
can be ruinous (ibid.): One example is the blowup of LTCM discussed 
in 5.2. The partners explained it as the result of a very rare event albeit 
it would be more convincing to consider that they used the wrong dis-
tribution (Taleb & Pilpel, 2004: 3; Jorion, 2000). 

230  Kripke (1982) originally introduced the following scenario to illustrate Wittgenstein’s paradox: 
Suppose that you have only added numbers smaller than 57 before (the point is that everybody 
gave themselves only a finite number of examples instantiating that function). Suppose further 
that you are asked to perform the computation “68 + 57”. Our natural inclination is that you 
will apply the addition function as you have before, and calculate that the correct answer is 
“125”. But now imagine that you encounter a bizarre skeptic who argues: 
1) That there is no fact about your past usage of the addition function that determines “125” as 

the right answer. 
2) That nothing justifies you in giving this answer rather than another. 
After all, it is perfectly consistent with your previous use of “plus” that you actually meant it to 
mean the wild “quus” function, defined as (ibid.: 9): 

𝑝𝑝 𝑞𝑢𝑢𝑠𝑠 𝑦𝑦 =  �𝑝𝑝 + 𝑦𝑦  𝑖𝑖𝑖𝑖 𝑝𝑝, 𝑦𝑦 < 57
5             𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.

� 

The skeptic questions whether there is any fact that you meant plus, not quus, that will answer 
his skeptical challenge; and second, he questions whether you have any reason to be so confi-
dent that now you ought to answer “125” rather than “5” (ibid.: 11). Your past usage of the ad-
dition function (a ‘mild’ function like the Gaussian (so to speak)) is susceptible to an infinite 
number of different quus-like or outlandish (wild) interpretations (see 6.2.2.). 
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• An objection to the validity of Premise 4 might be that, from a Bayesi-
an perspective, one could point out that by using one peculiar probabil-
ity distribution to compute predictions a prior probability of one has 
been implicitly assigned to that function. Given that we have no reason 
to assume that this model is true, this confidence is misplaced and one 
really ought to take uncertainty about the model into account (Frigg et 
al., 2014: 28). 
Frigg et al. (ibid.), however, refute the objection in several ways.231 

Premise 5:   
A probability distribution is suitable for probability-based risk model-
ing and a given risk management purpose if, and only if, it fits not only 
the past but also future observations (of, e.g., loss values) or least any 

one that matches future observations within an acceptable margin of er-
ror (Definition).232 
• Comment: It is obscure what it means for a probability function to “fit 

the past”: For example, following the historical method (see 7.2.), we 
take a certain period of time and record data (e.g., gains and losses in a 
certain context) and the frequencies, respectively. Relative frequencies 
and, in the end, probabilities can be derived. Yet, many problems arise: 
1) The number of (completely countable) observations and sufficiently 

231  The first problem is that “it is not clear how to circumscribe the relevant model class. This 
class would contain all possible models of a target system. But the phrase ‘all models’ masks 
the fact that mathematically this class is not defined, and indeed it’s not clear whether it is de-
finable at all” (ibid.). The second problem they point out is that “even if one could construct 
such a class in one way or another, there are both technical and conceptual problems with put-
ting an uncertainty measure over this class. The technical problem is that the relevant class of 
models would be a class of functions and function spaces do not come equipped with measures. 
The conceptual issue is that even if the technical problem could be circumvented somehow, 
what measure would we chose? The model class will contain an infinity of models and it is at 
best unclear whether there is a non-arbitrary measure on such a set that reflects our uncertainty 
about model choice.” (Ibid.). 

232  Another version of this definition, which is closer to a subjective interpretation of probability, 
could be: A probability distribution is suitable or ‘right’ if, and only if, the agent is sufficiently 
convinced or justified in applying it to a certain set of data (specific loss values of interest). 
Because “sufficiently convinced or justified” could be translated with assigning prior probabili-
ties to probability distributions and ultimately, after updating degrees of belief, one model 
stands out. However, see the previous footnote for some problems with this proposal. 
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similar circumstances233 are critical for counting frequencies and deriv-
ing sound probabilities. 2) Objective probabilities are tacitly assumed 
and it is at best far from clear whether, e.g., the frequency notion is able 
to convey any fruitful meaning when reference classes are small, i.e., 
when it comes to rare events (Churchman, 1961: 148f.). 3) This ap-
proach may well do a good job at describing the body of the distribution 
(where the points we have collected are plentiful); but, when it comes 
to (very) rare events, it might or will fail. For example, as seen in 5.2., 
LTCM made a loss of more than 70% of capital. LTCM lost 70% on 
only one occasion and LTCM was capable of losing 70%, whether the 
‘true’ probability of that loss was 1% or 25% (Stulz, 2008: 62). Etc.  
In this light, it seems that speaking of a ‘suitable’ probability function 
does not make sense in the realm of dynamic, organized and complex 
systems where, e.g., sufficiently similar and stable circumstances can-
not be assumed over time. If so and if modern financial systems are 
sufficiently dynamically and organizationally complex, the Central Ar-
gument would become redundant. Because then, not an epistemological 
(how to identify the ‘right’ probability function), but an ontological 
problem (there is no one ‘right’ distribution form) would take center 
stage – see 6.1.3. and 6.3. 

• Implication: So, the problem is to choose by relying on experience 
from an infinite set of probability distributions the one that best match-
es future observations if such a function exists or is defined at all. The 
latter is a tacitly assumed premise here in 7.3., otherwise the conclusion 
follows more directly. 

Premise 6:   
The suitability of a probability distribution for describing some past and 
future P&L data as well as for a given risk management purpose can-
not be determined from past data. 

233  The importance of a stable ‘chance set-up’ (see 6.2.2.) becomes obvious if one adheres to 
Popper’s (1959b) propensity interpretation of probability. For him, a probability p of an out-
come of a certain type is a propensity of a repeatable experiment to produce outcomes of that type 
with limiting relative frequency p (Hájek, 2011). But to claim that “an experimental arrangement 
has a tendency to produce a given limiting relative frequency of a particular outcome, presup-
poses a kind of stability or uniformity in the workings of that arrangement” (ibid.) – for, consider-
ing unstable randomness from above, the limit would not exist in a suitably unstable arrangement. 
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Rationale: 
• Skeptical reasoning: There is no fact about the past usage of a certain 

probability function P* that determines its ‘suitability’ for future appli-
cations (in analogy to Kripke’s (1982: 8f.) argument). 

• Practically relevant supplement: As argued in 6.3., modern financial 
systems possess structures, on the one hand, that single them out as 
complex in some sense. Accordingly, events in the financial system, on 
the other hand, seem to be generated by unstable random processes. In 
particular, modern financial systems not only have the potential to 
change (as a mere theoretical possibility as it is the case in Kripke’s 
skeptic scenario, see footnote 230), but they do change radically and 
non-linearly (Bhansali, 2014: 20) where the past only has a limited in-
fluence on the future and where the past in fact influences the future 
not in the sense of continuity (Esposito, 2011: 150).234 Similarity of the 
past to the future cannot be inferred (Taleb & Pilpel, 2004: 33f.). Many 
dependencies within the system may be opaque and poorly understood. 
Ergo: All things considered, this renders simple or naïve, including lin-
ear as well as nonlinear,235 extrapolation fallacious and, ipso facto, re-
lying on the past for determining the accuracy/suitability of a probabil-
ity distribution turns out to be fallacious, too. In this sense, data can be 
said to be toxic (Taleb, 2012: 126).236 

• Logical reasoning: “If one needs a probability distribution to gauge 
knowledge about the future behavior of the distribution from its past 
results, and if, at the same time, one needs the past to derive a probabil-
ity distribution in the first place, then we are facing a severe regress 

234  Moreover, history shows that financial markets can implode without perceived warning and 
precursory phenomena, not unlike ‘phase transitions’ (Bak, 1996) that occur in physical sys-
tems (Bhansali, 2014: 20).   

235  The fact that organized complex systems change non-linearly does not say how they change 
non-linearly (cf. e.g. Gomez, 1981: 44f.). 

236  Consider also that big data is misleading when we deal with wild or unstable randomness 
where e.g. the mean of the distribution does not exist (see 2.5.); and the fatal trade-off between 
more relevant vs. less limited amounts of data or issues like how to define the ‘statistical win-
dow’ which cannot be derived from the data (see footnote 220). Moreover, of what use would 
historical data be at all when it comes to a new risk, a risk that has not manifested itself in the 
past? For instance, “prior to the subprime crisis, there had been no experience of a downturn in 
the real estate market when large amounts of securitized subprime mortgages were outstand-
ing” (Stulz, 2008: 62). 
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loop” (Taleb & Pilpel, 2004: 2); i.e., Hume’s principle of uniformity of 
nature is designated as both conclusion and premise. See also the 
petitio principii presented in 7.1. 

Conclusion 1:   
Thus, any choice of a particular probability distribution for a given 

risk management purpose is necessarily arbitrary and cannot be 
justified. 

Note that this finding is in line with the results reported by many mathematicians 
(mathematical finance) – in contrast to some applied scientists and practitioners 
(involved in the broader quantitative finance scene): “[…] The [Financial] Crisis 
[of 2007-09] saw numerous examples where ‘practice’ fully misunderstood the 
conditions under which some mathematical concepts or results could be applied. 
Or indeed where models were applied to totally insufficient or badly understood 
data; the typical ‘garbage in, garbage out’ syndrome.” (Das et al., 2013: 702; cf. 
also Riedel, 2013: 23f., 33, 52, 180; Jaynes, 2003: 65f., 74; Daníelsson et al., 

2001: 3). In the light of our Central Argument, however, they unfortunately 
phrased their concerns in a too reluctant manner. 
 Conclusion 1 is furthermore different from and stronger than the analogous 
result in Kripke’s (1982) skeptical argument. While in the Kripkian case one can 
ignore the skeptical reasoning in a carefree manner because one has still good 
reasons to use the addition function in lieu of a wild quus or quus-like function 
(namely, for example, that the ‘practical man’ succeeds in life by employing the 
former, not the latter), our Central Argument, by contrast, is practically relevant 
in several regards.  
 It is important to see though that its correctness does not depend on the 
practically relevant supplement, i.e., on problems of systemic risk assessment 
being organized complex and escaping statistical analysis – otherwise, the rea-
soning would be circular. Rather, the practically relevant supplement is given 
because it emphasizes and locates the link between complexity and the inade-
quacy of probability-based modeling of extreme and systemic risks. The im-
portance of the Central Argument has different facets.  
 First, it exposes the uselessness of probability-based models of predomi-
nantly extreme risks, as the differences between probability distributions are less 
significant in the body (see Figure 17). In other words, we clearly reveal a wrong 
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track of risk modeling in today's world, namely one which cannot succeed by 
normal statistical means, when we push logic to the extreme. The output of risk 
measures like VaR or ES, for example, is a value for a loss of money the magni-
tude of which depends on which loss or probability distribution is assumed. Proba-
bility distributions are not directly observable and as long as we have no system-
atic way of drawing a line between the ‘good’ and the ‘bad’ distributions, we 
should not rely on our calculations of minimum or expected losses etc. when mak-
ing provisions for the future (Frigg et al., 2013: 487). Conditional on the settings 
depicted by the Central Argument (excluding, for example, situations of disor-
ganized complexity where the Premise 6 does not hold)237, probabilistic forecasts 
are unreliable and do not provide a good guide for action as such (ibid.: 490).  
 Second, the probabilities of events such as potential loss values are un-
known and since Risk II presupposes known probabilities (with 0 < p < 1), the 
Central Argument makes a strong case in favor of Risk I as a more proper risk 
concept, in favor of non-orthodoxy (see 4.1.).  
 Third, this entire discussion on probability distributions would have re-
mained completely theoretical if it was not occurring against the background of 
risk management practices in the financial industry. Any real-life risk calcula-
tions which hinge on knowledge about probability distributions are suspicious 
and as it can be very expensive to use the ‘wrong’ distribution (consider, for 
example, the collapse of LTCM; see 5.2.) which we cannot separate from a suit-
able one according to the Central Argument, it is finally to conclude: 

Conclusion 2 / Proposition 5:  
There is no point in drawing on probability theory for financial 

extreme and systemic risk management purposes.   

This Central Argument is valid and the rationale beneath each of its premises 
should ensure that they are correct (or at least, very plausible) and that, therefore, 
the whole argument is sound. In that case, the house of modern risk management 
where probability theory and distributions are constituting elements is not in 
danger of collapsing, but has never been well-established since it lacks a theoret-
ical foundation. 

237  One explanation is this: In systems with very large numbers of variables and high degrees of 
(genuine) randomness, the laws of large numbers, the Central Limit Theorem and other so-
called “properties of stochasticity” (Martin-Löf, 1966: 604) hold (see Appendix C). 
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7.4. Linking the Central Argument with the Current State of the 
Literature (IIIa)-c)) 

In Chapter 2, this thesis reviewed and discussed three objections to conventional, 

i.e., probabilistic, risk modeling (IIIa)-c)), which we are now able to expound as 
forming part of the problem of induction outlined by the Central Argument: On the 
one hand, it purports that the inference to obtain a certain probability distribution 
that (within a certain margin) describes some past and future P&L data and that 
can be used to calculate the minimum or expected loss is arbitrary and, therefore, 
an instance of an unsound or bad induction. On the other hand, it is problematic 
when bad inductions are embraced (be it consciously or not) so that it is no won-
der that the (in theory as well as in practice) dominating probabilistic reasoning 
is closely associated with severe difficulties in the effectivity aspects of corpo-
rate, financial and other systems because its consequences are all too often disas-
trous (see 5.2., and cf., e.g., FCIC, 2011). Hence, we face a problem of induction. 
 If IIIa)-c) are symptoms or elements of this underlying and foundational 
problem of induction, they turn out to be conceptual problems (ad RQ1.8) – 
conceptual because then these issues are inherent in the concept of probabilistic 
financial risk modeling and result from risk models’ grounding in probability 
theory, respectively.238 Thereby, we unveil that the failure of standard risk mod-
els is not accidental (a contingent fact), but that it is caused by their reliance on 
probability theory (a necessary fact). With recourse to Chapter 2, IIIa)-c) can be 
briefly restated as follows: 

IIIa) Estimates for probability distributions and parameters describing rare 
events, including the variability of such parameters over time, are often 
poor, because there is not enough and/or no trustworthy historical data.  

IIIb) The likelihood of coincidences of multiple unfortunate, rare events is 
often underestimated, even though their interaction dynamics may lead 
to amplification effects and feedback loops (such as procyclicality or 
positive feedback loops).  

IIIc) Common assumptions underlying established ways of thinking are not 
questioned enough: statistical independence; statistical stationarity; 
normal distributions of data, returns, prices, etc. 

238  In general, to point at conceptual problems is the strongest form of critique. 
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Now, how can IIIa)-c) be grasped as symptoms or signs or elements that indicate 
the problem of induction pointed out by the Central Argument? Firstly, IIIa), 
namely that estimates for the ‘true’ probability distribution are often poor, fol-
lows from Conclusion 1. That there does not exist enough (reliable) historical 
data is naturally true for systemic or extreme risk events and relevant due to 
Premise 1 and 2. Secondly, IIIb) alludes to central characteristics of organized 
and dynamic complexity and is represented in (the motivation of) Premise 6. 
Finally, in terms of IIIc), assumptions should be questioned as a result of Con-
clusion 1 (the assumption of normal distributions) or should be given up because 
they are incompatible with dynamic or organized complexity (stationarity and 
independence), against the background of which the Central Argument is con-
ducted.239   
 Commonly used risk models to describe risks are grounded in probability 
theory (Malz, 2011; McNeil et al., 2005). This makes available the elegant math-
ematical framework that probability theory is based on, but it comes at a cost: 
The strong supposition that probabilities can be expressed by (exact) numerical 
values and that those values can be accurately determined. While probability-
based risk models usually share this principal assumption, many of them impose 
additional constraints. They may require, for example, that statistical variables be 
independent or assume that data from the past is an accurate or at least a reliable 
indicator of probability distributions. Standard risk models cannot accurately 
model the risk posed by especially rare, systemic events, as a number of financial 
crises in the past two decades have shown (Aven, 2012). Not only have such rare 
events occurred far more frequently than predicted, but they have brought with 
them strong interdependencies between institutions and rapidly increasing corre-
lations between markets, for example, that would, under ‘normal’240 circum-
stances, be deemed unrelated (Lowenstein, 2002; MacKenzie, 2003).241  
 Conventional risk models have, therefore, all in all failed and failed exactly 
when they were needed the most (namely, when to address extreme risks) since 
they have proved to be conceptually inappropriate. 

239  Aven (2013b: 46) concludes that the probability-based approach to treating risks and uncertain-
ties tends to hide critical assumptions and, thus, provides a delusive description of the possible 
occurrence of future events. 

240  Is there a norm at all? See 6.3.2. and cf. Lowenstein, 2002: 71. 
241  Their tendency to become highly correlated during times of market distress is sometimes 

regarded as a unique aspect of hedge-fund returns (Getmansky et al., 2015: 55). 
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 This study thus proposes a new and subversive thesis: 

Proposition 6: 
Standard quantitative systemic and extreme risk assessment 

approaches are conceptually inappropriate. 

 



  
 
 

 

8. Conclusion to Part I 

In order to draw inferences from data as described by econometric texts,  
it is necessary to make whimsical assumptions […]. 

The haphazard way we individually and collectively study the fragility of  
inferences leaves most of us unconvinced that any inference is believable.  

(Edward E. Leamer, 1983: 43) 

The Central Argument has shaken the house of modern risk management litera-
ture and practice with their standard extreme risk modeling approaches in bank-
ing to its very foundations; it further serves the purpose of shaking risk manage-
ment professionals out of a ‘dogmatic slumber’ (with regard to Part III). In a 
broader sense, it also illustrates the confusion (folly and nonsense) that can occur 
when a concept that belongs properly to one realm, namely that of disorganized 
complexity and of gambling, wagering, betting and games of chance, in particu-
lar (Hacking, 2006), is uncritically and improperly applied to another (risk man-
agement in banking): the borrowing of any method on the sole ground that is has 
been successful somewhere else is inadmissible (Schumpeter, 1954/1994: 17; 
von Hayek, 1943).242 
 In fact, it has been rather popular for scientists to remark that people do not 
really understand anything until they know how to measure it (cf. Weaver, 1963: 
275). It has to be declared clearly though that this statement is of limited useful-
ness.243 Measurement in this imperfect world of ours is subject to error and one 

242  There might be a temptation to respond that Chapter 7 does not show that probabilities are 
useless, not even in the realm of risk management in banking; common experience only shows 
that we should not use probabilities when they are misleading. The problem with this sugges-
tion is that outside of thought experiments we have no means to tell when that happens. “The 
only thing we have is the model, which we know to be imperfect in various ways” (Frigg et al., 
2014: 13). Examples show that model-probabilities and ‘probabilities in the world’ (if such things 
exist) can come unstuck dramatically, but we do not know where and when (ibid.). See also 7.3. 

243  As Weaver (1963: 275) remarks, science has probably never measured anything as frequently or 
as accurately as intervals of time; but both, he and this author, are not aware that this persistence 
has at all increased an understanding of what “time” really is (ibid.). Furthermore, it is a myth, 
Aven & Krohn (2014: 4) say, a costly myth, that “if you can't measure it, you can't manage it”. 
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cannot make progress towards precision unless we have some way of dealing 
with error (ibid.: 276). In the previous Chapter 7, the attempt was undertaken to 
enunciate the thesis, as a negative answer to RQ1.7 (about the degree of error 
prevention in risk measurement), that probabilities are not only not apt for deal-
ing with errors of risk measurement, but that employing probabilities (at least) in 
the field of risk management in banking implies errors. This result opens the 
floor for the debate on a more promising and effective approach to dealing with 
financial systemic risks (see Part III). 
 Probabilistic reasoning is not worthless, not even in terms of its application 
to the real world (as opposed to gambling games of various sorts and text book 
cases); but, instead of using it not so much because we are convinced that we are 
to use it but because it is so very convenient, it is time, at the risk of boresome 
repetition, to use it with caution, deliberation, and restraint; the latter especially 
when facing organized and dynamic complexity (cf. also Peters & Gell-Mann, 
2016). 

8.1. Résumé  

We are now able to answer the overarching question RQ1 of this Part I:  

“Under what conditions are taken-for-granted quantitative risk assess-
ment and management approaches, including VaR, CoVaR, ES, etc., 
ineffective and do become themselves a risk object for banks?”, 

In retrospect of the previous chapters, the following conditions can be identified: 

• Condition 1: Improper risk concept is applied (Risk II) – Chapter 4.1.  
Explanation: Since we frequently lack a sufficient basis to determine 
the probabilities of certain risk or loss events with any precision (in fa-
vor of Risk I and reinforced by the result of Chapter 7), it would mean 
we exclude the risk concept from most situations of interest if the term 
was restricted to cases where probabilities are known. It would be dan-
gerous to devote our risk management interests only to a clear minority 
of cases, which are not only of low frequency but also of relatively low 
severity (compared to systemic and extreme risk events that cannot be 
captured in probability terms, see Chapter 7). Good risk management, 

thus, calls for toolkits that handle both, Risk II (which can be success-
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fully addressed with statistical tools, VaR, ES, etc.) and uncertainty, Risk 
I, (which takes center stage and cannot be ignored) – see Chapter 13. 

• Condition 2: Narrow notion of systemic risk is employed – Chapter 4.2 
and Chapter 5.1.  
Explanation: Systemic risk is usually defined narrowly (also in terms 
of the underlying risk concept) and systemic risk in this sense is usually 

seen as the concern of regulators. It is often said that systemic risks are 
or should be beyond the interest and power of any one bank to manage 
although systemic risks (even in the narrow sense) affect financial 
market participants in many ways and thus should in fact be actively 

addressed by banks for in-house risk management purposes (Proposi-
tion 1).  

• Condition 3: Broad notion of systemic risk is employed – Chapter 4.2 
and Chapter 5.1. 
Explanation: A broader notion is put forward in this study and it stands 
in stark contrast to the common compartmentalization of risk. Systemic 
risk has to be scrutinized at the higher level of interactions. Orthodox 

tools such as VaR are, by contrast, techniques of risk silo management. 
• Condition 4: Event-oriented worldview is adopted – Chapter 5.1. 

Explanation: The full range of feedbacks which operate in a system has 
not been understood due to an improper event-oriented worldview. If 
risk managers are not able to grasp and understand the factors deter-
mining the behavior of the system they are operating in, if they do not 
adopt a feedback view of the world to perceive system changes causing 
systemic risks, then their interventions in the financial system, which 
they derive from VaR, ES etc. calculations among others, can even con-
tribute to the instability of the system or possibly result in serious prob-
lems like a financial crisis.  

• Condition 5: Lessons have not been learned from the past – Chapter 5.2.  
Explanation: The managers and partners of LTCM naively believed in 
the uniformity of nature, the conformity of future and past. There were 
misbeliefs about risk and pretense of knowledge (von Hayek), etc. 

• Condition 6: Assessing and managing extreme and systemic risks in 
banking is mistakenly categorized as a problem of disorganized com-
plexity – Chapter 6. 
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Explanation: Even though Weaver’s concept of organized complexity 
must remain under-determined (Proposition 3), it seems fair to say that 
risk management activities involve studying modern financial systems 
which are organic wholes, with their parts in close interrelation. This 
organized complexity is different from disorganized complexity as it 
escapes statistical or probabilistic approaches, which is suggested by 
Weaver (1948) and others and which is underpinned by the introduc-
tion of unstable randomness into the picture. If assessing and managing 
extreme and systemic risks in banking represents an example of orga-
nized complexity and if stochastic methods do not hold the key in such 
cases, then conventional approaches to assess and manage extreme and 
systemic risks become untenable. 

• Condition 7: Probabilistic reasoning is not an adequate foundation for 
modeling systemic or extreme risk in a banking context – Chapter 7.  
Explanation: Standard measures to describe (extreme and systemic) 
risks are grounded in probability theory and probability distributions 
because they are derived from loss distributions, which are ultimately as-
sociated with random variables. However, any choice of a peculiar 
probability distribution is invariably a display of despotism in the face 
of complexity and cannot be vindicated; a scientific basis is missing 
(Conjecture 4). Since the differences are more and primarily signifi-
cant in the tails across different distributions, this leads to the conclu-
sion that there is especially no point in falling back on probability theo-
ry for financial systemic and/or extreme risk management purposes 
(Proposition 5). Hence, we are left with the disastrous outcome that 
taken-for-granted quantitative systemic/extreme risk assessment ap-
proaches are conceptually inappropriate (Proposition 6). 

• Condition 8: The systems part of systemic risks is grasped in not a 
merely metaphorical way and quantitative risk management in banking 
is treated as a complex systems problem. 
Explanation: The nature of systemic risk and complexity, the latter giv-
ing rise to the former and uncertainties (Proposition 2), requires explana-
tory modeling (Proposition 7) – Chapter 6, Chapter 2.4 and 8.2 – while 
actual modeling of extreme or systemic risk in banking (EVT, VaR, 
CoVaR, ES, SES) turns out to be insufficiently structure-oriented. 
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8.2. Outlook: Explanatory Models for In-House Risk Management in 
Banking 

From the negative result that taken-for-granted quantitative risk assessment or 
management approaches proved to be non-effective, it arises the need for alterna-
tives; alternatives which are inspired by the insight that describing and quantify-
ing systemic risks in and to the financial system necessitates explanatory models: 
What makes systemic risk different from other types of risk is that it cannot be 
captured at the level of the individual components of a system (unlike market 
risk or credit risk, see 4.2.). Instead, it has to be studied at the higher level of 
interactions between parts of the system and between parts and the whole. These 
relations in their entirety constitute the system’s structure (Kirchhof, 2003: 8; 
Probst, 1981: 112), which is addressed by explanatory models and disregarded 
by traditional risk models. The latter only tend to work at the component level 
(under certain conditions), and therefore do not adequately model systemic risk 
(see also Chapter 7). 
 On a more profound level, it is furthermore well-known in systems science 
that complexity (an organized complex system) requires a well-grounded sys-
tems theory (explanatory models; Schwaninger, 2005: 32; Byrne & Callaghan, 
2014: 39; Schwaninger, 2010; Sterman, 2000). We learned that (financial) risks 
are the symptoms of problems of complexity (in financial systems) and that 
dynamic or organized complexity is their generator (see Figure 16 and Proposi-
tion 2). Hence, when it comes to assessing risk assessment approaches in this 
new light, problem articulation must be seen as the most important step in risk 
modeling: What is the real problem, not just the symptom of difficulty? 
(Sterman, 2000: 89). Our risk management attention should not be drawn to the 
symptoms of difficulty (certain possible and uncertain events), but rather to the 
underlying drivers (dynamic and organized complexity as well as their determi-
nants, respectively). 
 On this basis and in partial anticipation of a comprehensive reply to RQ1.9, 
it should be clarified what explanatory models are and how those used by regula-
tors might be different from those endorsed in Part III (LBR). In general, explan-
atory models elucidate why the real system at hand behaves as it does and not 
differently (Schwaninger, 2010: 1421). Instead of relying on big amounts of 
data, they try to capture interrelationships, for example but not limited to, causal-
ities (Cartwright, 1983), interactions and dependencies, and “inquire into the 
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implications of system behavior and of the structure underlying it” 
(Schwaninger, 2010: 1421).  
 Explanatory models express a systemic view, being aligned to complex, 

dynamic and organized systems, and an interest in describing, explaining and 
often designing or at least influencing them (Schwaninger, 2011: 753). In order 
to distinguish explanatory models from such that merely describe and allow to 
make predictions, the following Figure 19 illustrates the formal process which is 
said to model the natural process and it integrates the three different functions 
(descriptive, explanatory, predictive) a model can have. 

 
Figure 19:  The modeling relations. 

Explanatory models can obviously be of great value to regulators, striving to 
achieve financial stability (Schinasi, 2004), because they can be used to identify 
changes that influence the system in a certain way. Explanatory models of this 
kind focalize agents and networks in the system, often lending themselves to 
simulation. Their primary interest lies in the behavior of the system as a whole 
(for example, the likelihood that a default is contagious) and the behavior of its 
components is only relevant in relation to the system (King et al., 2014).  
 By contrast, individual market participants may also use explanatory mod-
els, but with a different outlook: Their main interest is the impact – direct or 
indirect – of changes in the system on their own exposure (for example, how a 
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sharp decrease in market prices affects their liquidity). The system as a whole is 
therefore only relevant to the extent that it affects the individual.  
 As a consequence, requirements for explanatory models used by banks are 
different from those used by regulators. Market participants have to take into 
account their own position in detail, whereas regulators use aggregate values to 
represent individual participants. On the other hand, models for regulators try to 
represent the interactions between all parts of the system accurately, whereas 
market participants usually do not have the information, or are reticent to share 
information (Battiston et al., 2016), to model the interactions between third par-
ties (Thurner & Poledna, 2013; Caballero & Simsek, 2009) albeit not only their 
own interactions with others might be relevant for them (e.g., envision direct and 
indirect contractual links between banks).  
 The risk models ventilated in this thesis are aimed at individuals and in-
house risk management in particular, not at regulators. As such, their primary 
function is to explain the impact of systemic events rather than their cause within 
the system in which they occur. They are not primarily causal, but interested in 
logical connections. The desired focus on dynamic and organized complexity in 
our models is realized through analyzing complex financial instruments (deriva-
tives), which (among others) drive the financial system’s dynamic complexity. 
All in all, this study argues against unnecessary complexity in modeling endeav-
ors (enunciated by, e.g., the inquiry of the nexus of complexity drivers in place 
of spotlighting complex derivatives only) as well as against the trends of endless 
specification (exact probability measurement) and big data movements (which 
does not make much sense in the realm of few and poor data) to create room for 
a novel approach. 

Proposition 7:  
An appropriate model of systemic risk should be explanatory and thus, 
structure-based in lieu of data-driven; i.e., for banks, it should explain 

the impact of systemic risk events on their own exposures. 

Proposition 7 and its derivation provide a rationale for a shift from extant (main-
ly data-driven) to disruptive explanatory modeling in banks’ risk management. 
This is not a side note in the theoretical frame-work of risk management, but 
rather a call for a Kuhnian paradigm shift. How a plea for explanatory modeling 
might then find its concrete way into risk modeling in banking, how such an 
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approach is to be tested in a business setting, etc. is the topic of Part III. Part III 
elaborates on LBR (Logic-Based Risk modeling) against the background of 
financial trading and the LTCM counterparty credit risk crisis, exemplifying the 
kind of explanatory systemic risk model for market participants, and discloses 
that this proposal exhibits many strengths in contrast to conventional, merely 
descriptive and statistical models. We strive for explanatory models with suffi-
cient richness and that, at the same time, are simple enough to remain managea-
ble in particular. This opens the way for a convincing systematic in-house ap-
proach to examining, assessing and managing systemic risks in the financial 
system (Part III). The groundwork for that is laid in the following Part II. 



Part II:  
The Transition to the Decision Level, Risk Assessment and 
Management 
The Risk of Ineffective Risk Management II: Overcoming Limitations of the 
Qualitative Risk Analysis Approach in favor of Logic-Based Risk Modeling 
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9. Introduction to Part II 

Problem solving has traditionally been taken to be  
an essential function of management.  

Through systems thinking, however, we have come to doubt  
the existence of problems and solutions to them.  

(Russell L. Ackoff, 1974) 

[T]he development of systems thinking is crucial for the survival of humanity. 
(John D. Sterman, 1994) 

A steady stream of philosophers, scientists, and management gurus is observed 
by Sterman (1994: 291) to lament that “[c]omplexity had extended itself on im-
mense horizons, [that] arithmetical ratios were useless for any attempt at accura-
cy [and] even mathematics [in general, C.H.] should soon succumb” (Adams, 
1918: 490, 496). They call for leaps to fundamental new ways of thinking and 
acting since, when trying to solve problems successfully, “[w]e fail more often 
because we solve the wrong problem than because we get the wrong solution to 
the right problem” (Ackoff, 1974: 8). Many have advocated the development of 
systems thinking – “the ability to see the world as a complex system, in which 
we understand that ‘you can’t just do one thing’ and that ‘everything is connect-
ed to everything else’” (Sterman, 2000: 4). A holistic worldview, it is argued, 
could yield action that is in consonance with the long-term best interests of the 
system as a whole (ibid.), and be manifested through envisioning possible future 
behavioral paths of the systems; i.e., by articulating alternative futures and their 
implications for a certain business in order to foster discussion and debate among 
decision-makers in the context of risk management in banking, for example. 
 This Part II of the thesis looks at qualitative risk management and, under 
this heading, only at scenario planning, thinking or analysis as well as stress 
testing to some extent. This focus is chosen for several reasons: 

1) In the end, it is all about decision-making competency in financial and 
systemic risk management (e.g., Brose et al., 2014a: 369; see also 
Chapter 21) and it has been argued by some authors that holistic quali-
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tative tools in a larger learning process are better able to deal with de-
cisions of great consequence than narrow and possibly reductionist 
quantitative approaches (e.g., Power, 2007: 120). This point is put for-
ward in the literature of critical finance and reproduced in Chapter 10. 

2) A lesson from the negative result that quantitative risk assessment and 
management techniques proved to be non-effective (Part I) could be 
that more room should be left for using ‘softer’ instrumentation with 
more qualitative calibration to frame (financial, especially extreme) 
risks. A critical finance society flourished, gaining new ground and 
new adherents. They have insisted on this shift of emphasis and high-
lighted that uncertainty should be tackled by scenario analysis (Mikes, 
2011: 241). Their point (of view) is presented in Chapter 10. 

3) The strong link between risk thinking and scenario planning deserves ap-
preciation (e.g., Renn, 2008). This point is made in Chapters 10 and 11. 

4) Scenario analysis has been declared as a key approach to master the 
challenges of today’s global, complex and rapidly changing business 
environment (Varum & Melo, 2010; Roxburgh, 2009; Burt et al., 
2006). It is, together with stress testing, the principal tool of risk analy-
sis when quantitative instruments fall short (Diebold et al., 2010: 25). 
This point is sketched in Chapter 11. 

5) Many strengths of scenario analysis exist: e.g., promotion of ‘better 
quality thinking about the future’, integration of hard and soft data with 
social judgments, emphasis on the decision level, on effective deci-
sion-making and learning. This point is worked out in Chapter 12. 

6) Notwithstanding the many weaknesses of scenario planning, on the 
other hand, which do not allow to advocate it or qualitative risk man-
agement tools in general as panacea (Chapter 12), valuable implica-
tions can be derived for rethinking the approach to assessing extreme 
and systemic risks, which combines both quantitative and qualitative 
elements (in Part III). This point is stressed in Chapter 13. 

Thereby, the stepping stone towards Part III is laid where the second guiding 
research question can then be tackled. The answer in Part III will stem from an 
insight gained in this Part II, namely that important issues in the world of the un-
known or unknowables, of extreme and systemic risks, are more economic, phil-
osophical and strategic than statistical and probabilistic (Diebold et al., 2010: 29). 
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10. The Critical Turn: The Renaissance of Practical 
Wisdom  

Not everything that can be counted counts,  
and not everything that counts can be counted.  

(Attributed to Albert Einstein) 

The moral of the story of the preceding discussion in Part I could well be that 
quantitative approaches to assessing and managing (extreme and systemic) risk 
ought to be abandoned, which goes beyond the conclusions reached in Part I. 
One might argue in favor of reinventing finance (Shiller, 2012: xii) and that 
uncertainties, as contrasted with clearly measurable risks which are not to be 
expected (see Chapter 7, where “our [supposedly] best tools [might have] 
prove[d] to be our worst instruments”; Blyth, 2010: 453), require a broader, more 
forward-looking and strategy-oriented approach to risk management. 
 Indeed, it is recognized by many that risk management in banks “is under-
going a quiet revolution, moving from an essentially compliance-driven, quanti-
tative control function244 toward a senior-management capability relevant at the 
highest levels of decision-making and strategy setting” (McNish et al., 2013: 1). 
In other words, senior management has shifted the notion of risk management 
from a disciplinary, backward-facing craft building on an exclusively defined 
technical expertise in risk management departments for the counting of risks to a 
forward-directed practice, offering knowledge and strategic advice tailored to 
management needs; proving that, even without elaborate calculations, risks can 
count (Mikes, 2011: 240; Power, 2007: 122). A critical finance, management and 
accounting society or community (or simply: critical finance society) emerged in 
the face of the recent crisis that erupted in 2008, which encouraged Power (2009) 
to conclude that the risk management of everything (Power, 2004b) turns out to 
be the risk management of nothing (cf. also Taleb, 2007a). We reproduce their 
views, critique, and learnings in a summarized form in this Chapter 10. To some 

244  There often exists an illusion of control (Helbing, 2013: 51). 
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extent, we will build on their findings, which guide us, on the other hand, to an 
engagement with scenario analysis. 
 It has been witnessed by this community (e.g., by Brose et al., 2014a: 369; 
Mikes, 2009a; MacKenzie, 2006) that risk management has its own “calculative 
culture” determined by “cultural cartographers”: Some draw the boundaries of 
quantitative risk management around the body of a loss distribution, others sub-
stantiate claims on the probabilistic modeling and control245 of uncertainties, 
dragon kings, and systemic risks for which trustworthy measurements do not (yet) 
exist (Mikes, 2011: 230). The critics say that those calculative idealists display 
quantitative enthusiasm, glorifying “optimization” and “efficiency” (“doing 
things right”) of a peculiar unchallenged strategy or course of action, without a 
preceding determination of a proper starting point (Drucker, 2006) for tackling 
extreme and systemic risks within dynamic and complex financial systems. In-
stead, they “aim to manage risk ‘by the numbers‘, replacing judgmental risk 
assessments with risk quantification” (Mikes, 2009a: 8). The consensus, accord-
ing to the observations of the critical finance community, seems to be that any 
risk model output is better than none – even if it is wrong (Mandelbrot & Taleb, 
2010: 52). In this sense, “calculative idealists are reductivists” (Power, 2007: 

120) and blinded. We strengthen and clarify this characterization of calculative 
idealism by the critical finance society through introducing the subsequent prop-
osition. 

Proposition 8:  
Quantitative risk management, as practiced by banks that narrowly 
focus on probabilistic risk models and use them to colonize hitherto 
uncontrolled and wild (unstable) areas of uncertainty, extreme and 

systemic risks, has no functional, economic function, but seems to be 
ceremonial, a signaling exercise. 

This thesis is in need of further evidence and arguments from the literature, as 

well as of examples abetting it. Scherer & Marti (2008: 279), for instance, appear 
to raise a similar objection when they reclaim that “[i]t has to be analyzed whose 
interests are served by the models developed with a technical cognitive interest”. 
Rebonato (2007: 253) disillusions picturesquely that “banks were not battening 

245  Focusing on risk control by measurement (Mikes, 2011: 241). 
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down the hatches against the perfect storm. Rather, much as a peacock parading 
its beautiful but ultimately useless tail, they were engaging in a signaling exercise 
[emphasis added]”. “[T]hey wanted to send to bond-holders and shareholders 
signals that had become linked to the granting of credit ratings” (ibid.: 252). 
 McGoun (1995: 185) adds with regard to the ceremonial character of devel-
oping and applying (at least some) stochastic risk models that they set standards 
that facilitate exclusion: “Mathematics, like medieval Latin, is a medium of dis-
putation in economics wherein those skillful in its use can subdue those who are 
not, independent of any substantive economic meaning”. Attempts of quantifying 
and calculating risk “are very opaque, and appear to be ‘a special kind of alche-
my’” (Esposito, 2011: 131; Bougen, 2003). “The desire to have a ‘magic formu-
la’, a single number capable of encapsulating and resolving the complexity of 
financial decision making, is understandable but does not improve the practice of 
risk management” (Rebonato, 2007: 256). Bernstein (1996a: 47) cautions, risk 
management could become “a new kind of religion, a creed that is just as im-
placable, confining, and arbitrary as the old”. An overreliance on probabilities 
“may lead to errors as serious as those committed by ancient priests who relied 
on omens and offerings” (Boatright, 2011: 3; cf. also Ferguson, 2008; Bernstein, 
1996b: 336).  
 In sharp contrast to this style of risk management of calculative idealism, 
the critical finance society places a much lesser degree of “trust in numbers” 
(Porter, 1995) accompanied by risk analytics because, for example, relying on a 
single number may itself be an operational risk (model risk; Wilson, 2001; Taleb 
et al., 2009: 80). The old narrative of the persuasive triumph of the undisputable 
efficiency “of risk scoring over the relative inefficiency of human ‘judgmental’ 
decision-making” (Marron, 2007: 113) needs to be replaced in their opinion. In 
light of probability-based risk models that have (all too) often failed in the past, 
it is tried to manage, to verstehen246 uncertainty in academia (e.g., Mikes, 2011; 

246  The juxtaposition of Erklären vs. Verstehen is well-known (e.g., Lane, 2000: 13; von Mises, 
1949/1998: 49f.). Whereas natural scientific explanation is Erklären, Verstehen is the herme-
neutical process of understanding and interpreting the subjective meaning that humans attach to 
objects and to their actions. Critical Theorists – and other humanities scholars – are profoundly 
suspicious of Erklären, of this form of determinism, believing that “social life [does] not lend 
itself to such causal explanation” (Morrow & Brown, 1994: 94). 

 “The balance of appropriate explanation in social sciences (Erklären versus Verstehen) is 
widely seen to vary with the detail of the phenomena studied” (Lane, 2000: 13). 
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Redak, 2011; Blyth, 2010; Power, 2009; Daníelsson, 2002) and in the economic 
practice (e.g., the Swiss Re Liability Risk DriversTM model, cf. Swiss Re, 2016; 
Gotebank in Mikes, 2009a), which is a key aspect of organizational reality 
(Stacey, 2010: 53). According to the critical finance society, emphasis is on the 
decision level, on decision-making competence and effective decision-making 
and learning.  
 By using ‘softer’ instrumentation with more qualitative calibration (Power, 
2004a) “to frame and visualize non-measurable uncertainties” (Mikes, 2011: 
227), managers and leaders of financial firms should be sensitized for the myths 
of optimization, complexity and blind efficiency seeking. Advocates of such a 
critical turn can be regarded as quantitative skeptics (Power, 2003, 2007; Mikes, 
2009b, 2011) that revolt against a “tyranny of numbers” (Boyle, 2001), a “new 
kind of religion” that has turned us into slaves (Bernstein, 1996a: 47) and the 
“quantificational spirit” of our age (Mikes, 2010: 2). They are “weary of promot-
ing risk control as an ‘answer machine‘” (Mikes, 2009a: 8; Burchell et al., 1980). 
The critical finance community considers risk management to be more art than 
science, resisting “the urge to push metrics into carefully protected areas of 
judgment” (Mikes, 2011: 227). Risk figures are viewed as mere trend indicators 
(calculative pragmatism; Power, 2007), which they seek to complement, and 
often overwrite by practical wisdom (Schwartz & Sharpe, 2010), by senior man-
agerial discretion, experience and judgment (Cassidy, 2010: 3; Bhidé, 2010).  
 Rather than falling prey to temptations of ‘taming’ Risk I (Appendix A) and 
reducing it to measurable silos of risk, this critical finance approach puts focus 
on risk anticipation and “envisioning risks” based on actors’ mental models, 
prior experience and intuition (Mikes, 2011: 241). It manages uncertainty by first 
and foremost “articulating alternative futures and their implications for the busi-
ness in order to encourage wider discussion and debate among decision makers” 
(ibid.: 237). This is the essence of scenario planning, as being introduced in the 
next chapter, that has been located in the realm of qualitative risk management 
activities. 
 But before we turn to this principal tool of qualitative risk management 
(e.g., Brose et al., 2014a: 369; Diebold et al., 2010: 25) which has been promoted 
by, among others, the critical finance society, Table 6 summarizes their insights 
and beliefs and provides from this angle a juxtaposition of quantitative risk mod-
eling and qualitative risk analyses along different criteria. 
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Table 6: 247 A critic's comparison of quantitative risk modeling (theme of Part I) and qualitative risk 
analyses (theme of Part II). 

 Quantitative risk modeling Qualitative risk analyses 
Underlying worldview Mechanical worldview (see 6.1.1. & 

6.1.2.) and ‘analytical’ approach 
Complexity worldview? 
At least, more holistic view 

The function of risk 
management  

Computation tool  ‘Learning machine’ 

Span of quantitative 
risk management 
(attempts) 

Risks I, including extreme and 
systemic risks  

Only quantifiable risks (e.g., 
corresponding to the body of a 
return or loss distribution) 

Tools of risk assess-
ment / management 

- Value at Risk (VaR) 
- Expected Shortfall (ES) 
- … 

- Scenario planning 
- Stress testing  
- … 

Time perspective Modeling based and depending on 
historical data 

More forward-looking, risk antici-
pation 

Strategic significance 
of risk management  

Derived from the integration of risk 
management with planning and 
performance management  

Derived from influencing top-level 
decision-making (providing a 
‘strategic view‘ of risks) 

Calculative culture  Quantitative enthusiasm:  
- Risk numbers are deemed repre-

sentative of the underlying eco-
nomic reality 

- Emphasis on the ‘robust’ and 
‘hard’ nature of modeling  

- Calculative idealism and economic 
imperialism: Replacing judgmen-
tal risk assessments with risk 
quantification 

- Risk control by measurement 

Quantitative skepticism:  
- Placing a much lesser degree of 

“trust in numbers” (Porter, 
1995) 

- Risk numbers are taken as trend 
indicators  

- Focus on “softer” instrumenta-
tion and envisioning risks 

- Emphasis on learning about the 
underlying risk profile from the 
trend signals 

In the following, the strong link between risk thinking and scenario-thinking, as 
perceived for example by Renn (2008), is esteemed and illuminated. As humans 
have the ability to design different futures, they “construct scenarios that serve as 
tools for the human mind in order to anticipate consequences in advance and to 
change, within the constraints of nature and culture, their course of actions ac-
cordingly. If the future were either predetermined or independent of today’s 
human activities [i.e., if there was no reason to engage in scenario planning; 
C.H.], the term ‘risk’ would make no sense.” (Ibid.: 1).  

247  A simpler form of Table 1 can be found in Mikes (2009a: 35). 
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 Considering risk management to be more art than science (Mikes, 2011: 
237), that uncertainty should be diminished as far as it can be, but no further 
(Schoemaker, 2002: 66), and given the necessity of (expert) judgment (Power, 
2007: 202; Bhidé, 2010), alternative futures in terms of their implications for the 
business or venture should be developed, articulated and made use of in order to 
foster wider discussion and debate among decision-makers.  
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11. Scenario Planning in a Nutshell and its Role in Risk 
Management in Banking 

The distinctions between qualitative (see this Part II) and quantitative (see Part I 
above) approaches have been sharply etched and, as underscored by Forrester 
(1975: 48) or Rapoport (1953), somewhat exaggerated.248 Yet, “the proper im-
pression emerges – the ‘art’ of the former is still better able to deal with deci-
sions of great consequence than the ‘science’ of the latter” (Forrester, 1975: 48). 
The anthropomorphic desiderata of good and effective (risk management) deci-
sions, resilience, and flexibility (Brose et al., 2014a: 369; Helbing, 2013; Detken 
& Nymand-Andersen, 2013; Sheffi, 2005) become more important than precise-
ness, efficiency and optimization under conditions of volatility, uncertainty, 

complexity, and ambiguity that characterize our world, a so-named “VUCA 
world” (Bennett & Lemoine, 2014; Kleindorfer, 2010: 185; see Chapter 6 for a 
deeper analysis of complex systems). In situations under these conditions, where 
single forecasts often pretend false certainty (Burt et al., 2006; Roxburgh, 2009), 
scenario planning has been honored as a key approach to cope with the challeng-
es (Kleindorfer, 2010: 187; Varum & Melo, 2010; Roxburgh, 2009; Postma & 
Liebl, 2005) as it provides descriptions of multiple possible futures (Brummell & 
Macgillivray, 2008) and appears to recognize today’s global business environ-
ment as complex and rapidly changing (Burt et al., 2006; Georgantzas & Acar, 
1995). In particular, it is, together with stress testing, the principal tool of analy-
sis in the domain of “Unknowns” and qualitative financial risk management 
(Diebold et al., 2010: 25); although scenario planning and stress testing are fa-

248  An example of overstating the juxtaposition would be to regard scenario analysis as a purely 
qualitative tool while scenarios are in fact often quantified (e.g., “in terms of volume, price, 
impact on individual oil producers [etc.]”; Wack, 1985a: 82). In addition to that, scenario anal-
ysis can be combined with other ‘qualitative’ uncertainty coping tools, e.g. Delphi analysis, a 
structured, interactive group communication and judgmental forecasting process (Donohoe & 
Needham, 2009; Linstone & Turoff, 1975) by means of which quantitative probabilities of 
each scenario can be gained (Walsh, 2005; Schoemaker, 2002: 106). 
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vored by regulators (ibid.) while banks’ risk managers still privilege quantitative 
approaches (Pergler & Freeman, 2008: 13; Mehta et al., 2012).249 
 In the late 1960s and early 1970s, the oil company Shell pioneered a tech-
nique known as “scenario planning”. “By listening to planners’ analysis of the 
global business environment, Shell’s management was prepared for the eventual-
ity – if not the timing – of the 1973 oil crisis” (Wack, 1985a: 73). The main lines 
on which the Shell scenario approach operates would not be that it would yield 
meticulous forecasts, but rather that “it focuses attention on the specification of 
different sets of reasonable, or even unreasonable but not ignorable, assump-
tions” (Lee, 1976: 151) that result in ex ante forecast outcomes which should be 
read as counterfactuals or potential histories, serving in turn as basis for decision-
making. The decision-maker needs “to confront multiple futures and consider 
them all equally plausible” (Van der Heijden, 2009: 99; Schoemaker, 2002: 15). 
In the interim, Shell’s scenario planning approach has disseminated widely from 
Shell. It is now a standard tool for planning activities that span the medium and 
long term (Probst & Bassi, 2014: 156). Scenarios have become popular and 
reached banking among others. 
 The word “scenario”, however, is not very well defined in the literature; it is 
used for many different contexts, approaches and tools (Van der Heijden, 2009: 
113). A scenario can be circumscribed as a coherent but contrasting (with regard 
to at least one other) picture of a future which the company might have to face or 
to express “expectations of possible future events […], used to analyse potential 
responses to new and upcoming developments” (Probst & Bassi, 2014: 155). (Cf. 
also Brummell & Macgillivray, 2008; Comes et al., 2011.) 

Scenarios serve multiple purposes  

First of all, they draw comprehensive pictures of possible futures and enhance 
the comprehension of the environment; “better quality thinking about the future” 
(Van der Heijden, 2009: 6; Vecchiato, 2012; Johnston et al., 2008). Scenario 
planning as a speculative exercise does not claim that scenarios will materialize 
as such; “they are not meant to be tested against what actually will happen” (Van 
der Heijden, 2009: 110). The test is so to speak “whether they represent our 
current best knowledge of the situation and outlook, our current process theories, 

249  This can serve as a rationale for Part II being much smaller than Part I. See also Conjecture 9. 
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and thereby lead to better strategies” (ibid.). As part of the future analysis, driv-
ers of relevant future developments are identified (Gudonavičius et al., 2009; 
Brummell & Macgillivray, 2008; Burt et al., 2006). In addition to that, scenarios 
may uncover the effects that different drivers might have as well as the dynamic 
interrelations of these drivers and allow for the derivation of strategic implica-
tions (Johnston et al., 2008; Burt et al., 2006; Walsh, 2005). Scenario develop-
ment widens executives’ horizons by opening their eyes for strategically relevant 
possibilities that would otherwise be ignored (Walsh, 2005). In this regard, “[t]he 
scenarios are an important tool in a larger learning process” (Van der Heijden, 
2009: 118). The aim is to prompt “decisions that are more robust under a variety 
of alternative futures [i.e., ‘multifuture robust’ instead of ‘single-future robust’ 
decisions]” (ibid.: 5); to challenge prevailing mental models and change given 
mindsets, thereby triggering organizational learning (Johnston et al., 2008; 
Postma & Liebl, 2005). “[U]nless we influenced the mental image, the picture of 
reality held by critical decision makers, our scenarios would be like water on a 
stone” (Wack, 1985a: 85). Designing scenarios is thus closely bound to the deci-
sion level. Good scenarios push to action, respond to managers’ deepest concerns 
and supply a vital “bridge”; “they must encompass both managers’ concerns [the 
world of perceptions] and external reality [the world of facts]. Otherwise, no one 
will bother to cross the bridge.” (Ibid.: 87).   
 Moreover, application of the scenario approach allows for identifying, test-
ing, refining and evaluating strategic options and their payoffs across different 
situations (Ram et al., 2011; Johnston et al., 2008; Brummell & Macgillivray, 
2008; Postma & Liebl, 2005) if “(1) [scenarios] are based on a sound analysis of 
reality, and (2) they change the decision makers’ assumptions about how the world 
works and compel them to reorganize their mental model of reality” (Wack, 
1985a: 74). This is said to lead to improved organizational preparedness (Rox-
burgh, 2009; Brummell & Macgillivray, 2008), the acknowledgement, structur-
ing, understanding and possibly reduction of uncertainty, and the enhancement 
of strategic decisions (Varum & Melo, 2010; Brummell & Macgillivray, 2008).  

Process of developing and using scenarios 

Albeit there is no completely standardized process of developing or using scenar-
ios and different approaches may show individual characteristics (Postma & 
Liebl, 2005), the following key steps are considered essential: (1) determination 
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of a focal question, field of interest, (2) identification and analysis of key driving 
forces, (3) generation and description of scenarios, (4) derivation of strategic 
implications (Wright & Cairns, 2011; Brummell & Macgillivray, 2008; Kosow 
& Gaßner, 2008). These four steps can be extended and refined from a systemic 
viewpoint (see Figure 20 below). 
 For generating and describing scenarios (step 3), literature defines some 
quality criteria. Each scenario needs to be plausible, which means that it does not 
transcend what is realistically possible and coherent. It should contain descrip-
tions of specific developments, i.e., sequences of events, actions, etc. (Kosow & 
Gaßner, 2008); and the constellation of a set of influencing factors that forge this 
scenario and affect the result of a chosen (business) strategy within this scenario 
(Klein & Scholl, 2004; Thomas, 2001; Gausemeier et al., 1998). Structure and 
patterns – usually captured “as the need for internal consistency in scenarios” 
(Van der Heijden, 2009: 102; Lee, 1976: 152) – as well as a challenging narrative 
description of possible futures in the external world play a decisive role in all sce-
nario design. Causal links indicating why a scenario might arise are made obvi-
ous, clear, and consistent (Comes et al., 2011; Kosow & Gaßner, 2008). Fur-
thermore, the entire set of scenarios, which should not be too big (otherwise, it 
becomes unmanageable for most decision makers; Wack, 1985b), is requested to 
be mutually exclusive and collectively exhaustive (Klein & Scholl, 2004). Final-
ly, “scenarios should be as value free as possible” (Van der Heijden, 2009: 128). 

Scenario planning and systems thinking 

Lee (1976) was early in advocating a mixed approach to forecasting in which 
regularities from the historical record are assembled with various possible as-
sumed structural changes. “Events are the raw material we work from to build 
up our understanding. While considering multiple events we have observed we 
start seeing trends and patterns. […] [W]e wonder where this order comes from. 
This is the origin of causal thinking. It leads to implying an underlying structure 
behind the events we are observing.” (Van der Heijden, 2009: 103). And this is 
basically where the art of systems thinking sets in, which is all about “the ability 
to see through the complexity to what is really essential” (Senge, 1992: 62). In 
effect, it “lies in seeing through the detail complexity [the sort of complexity in 
which there are many variables or events, see 2.1., Chapter 6, and Senge, 2006: 
71f.; C.H.] to the underlying structures generating change. Systems thinking 
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does not mean ignoring detail complexity. Rather, it means organizing detail 
complexity into a coherent story that illuminates the causes of problems and how 
they can be remedied in enduring ways.” (Senge, 2006: 124, 69). “[I]n systems 
thinking an attempt is made to evaluate performance of a system as a part of the 
larger system that contains it” (Ackoff, 1974: 15).  
 Scenario planning without systems thinking would end up “painting lovely 
pictures of the future with no deep understanding of the forces that must be mas-
tered to move from here to there” (Senge, 2006: 12).250 
 Scenario planning has become an important tool of systems theories (Ulrich 
& Probst, 1990: 158-173): Scenarios are part of a larger, holistic and systemic 
problem solving process, which is iterative (ibid.: 114; 224, Abb. 91); they ex-
plore the structure of the system to provide a comprehension of how it may react 
to imposed and/or emerging changes (Probst & Bassi, 2014: 161). 
 From a systems perspective, scenario analysis not only involves developing 
scenarios (steps 1-3 in the following), but also analyzing interventions and sys-
tem responses (steps 4-6). “The art of scenarios is not mechanistic but organic; 
whatever we had learned after one step advanced us to the next” (Wack, 1985a: 
74). Wack (1985a: 77) distinguishes, for example, between “exploratory first-
generation scenarios”, on the one hand, and “proper decision scenarios”, on the 
other, throughout the iteration (see Figure 20). The former is especially systemic  

 
Figure 20:  Scenario planning as a circular and iterative process from a feedback view of the world 

(Source: Probst & Bassi, 2014: 162). 

250  However, one might also concede that systems thinking is a popular and shimmering, but also 
a poor and delusive concept. For example, in contrast to the sometimes endorsed reduction of 
systems thinking to CLD (e.g., at the International Systems Dynamics Conference 2014 in 
Delft; cf. also Warren, 2008: 191f.), it must be said that drawing a diagram of interdependen-
cies in terms of feedback loops is not systems thinking. It is a diagram. 
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in nature as their goal is not action but understanding. “Their purpose is to give 
insight into the system, to identify the predetermined elements, and to perceive 
connections among various forces and events driving the system. As the sys-
tem’s interrelatedness became clear, we realized that what may appear in some 
cases to be uncertain might actually be […] not possible” (ibid.: 78). 
 Following the lead of Probst & Bassi (2014: 162f.), the individual steps 
along the circle can be described as follows. 

1) Identify the issue to be analyzed: Scenarios are best suited to look at 
the future through the lens of a specific issue. 

2) Identify key causes and main drivers of systems: These are the factors 
that are most relevant for the focal issue and are responsible for gener-
ating the system’s observed and future patterns of behavior. 

3) Write scenario descriptions, fully explaining the underlying drivers 
(e.g., feedbacks) of each scenario. These are the stories that try to ex-
plain how driving forces interact and what effects they have on the sys-
tem and the analyzed problem.  

4) Evaluate the system responses of each scenario. Each scenario, de-
scribing occurrences and processes in the system, is likely to trigger 
different feedbacks and response mechanisms.  

5) Identify the main indicators to be monitored to anticipate upcoming 
challenges and opportunities. Indicators help decision-makers monitor 
the system and triage the correct entry point for, and timing of, inter-
vention. 

6) Turn scenarios into strategies. Once scenarios have been built and re-
fined, expressing in the best case a new understanding of the system, 
they should be translated into actionable interventions, presented clear-
ly and logically, and implemented as needed. 

Finally, Probst & Bassi (2014: 163) contend that step 1-6 should lead to the crea-
tion of scenarios and derived actions that are plausible, consistent, relevant, crea-
tive and challenging. 

Scenario planning in a risk management context 

Above all, scenario planning finds its way into banks’ risk management in the 
guise of stress testing. Stress testing concerns formulating and calibrating scenar-
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ios used to determine the stability of a given (financial) system or entity (e.g., a 
bank) within the system; scenarios that put the spotlight on extreme and systemic 
risks and expose potential vulnerabilities (Mark & Krishna, 2014: 53; Diebold et 
al., 2010: 25; Sheffi, 2005: 20). A real-world example of a (by their own ac-
count) “forward-looking” modeling approach that operates with loss scenarios is 
Swiss Re’s proprietary Liability Risk DriversTM scheme (Swiss Re, 2016). An-
other impactful, intuitively appealing proposal comes from Rebonato (2010) who 
positions stress testing as a bridge between the statistical areas of Risk II, where 
VaR, ES etc. can be effective, and the domain of Risk I and deep uncertainty by 
laying down the quantitative foundations, i.e., Hierarchical Bayesian Networks, 
for stress tests to obtain a coherent output that can satisfy the needs of industry 
users and regulators.  
 In terms of the identification of the main system drivers for forging scenari-
os (step 2 in Figure 20), careful attention should be directed to which relation-
ships will continue to hold and which relationships will break down in times of 
stress (Diebold et al., 2010: 25). Therefore, it would be sensible to couple stress 
testing and scenario planning or qualitative risk analysis, in general, with a sys-
tems theoretical (modeling and simulation) approach, like not only Dynamic 
Bayesian Networks (which is however probabilistic), but also System Dynamics 
(Garbolino et al., 2016), favoring the development of a dynamic risk assessment 
framework. Stress testing helps bank firms “assess major changes in one or two 
specific variables whose effects would be major and immediate, although the 
exact timing is not forecastable” (Kaplan & Mikes, 2012: 57f.). They employ 
stress tests to assess, for example, how an event such as a large swing in interest 
or exchange rates, the tripling of prices for stocks, commodities etc., or the de-
fault of a major institution (e.g., LTCM, see 5.2.) or sovereign country (e.g., 

Greece) would affect trading positions and investments. Banks usually place 
limits on the outcome of stress tests, which “should anticipate and compensate 
for an attempt to model a participant’s (e.g., management or trader) behavior and 
potential actions to stay below a stress test limit in a stress environment” (Mark 
& Krishna, 2014: 54). 
 “Scenarios can be created based on perceived risks to the portfolio (e.g., a 
scenario of sharply rising interest rates may be relevant to a yield-curve sensitive 
portfolio). Alternatively, historical or hypothetical events can be used to deter-
mine the effect on underlying risk factors (interest rates, equity indices, com-
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modity prices, etc.), which can then be applied against the firm’s portfolio. In 
practice, firms often use a hybrid approach by creating hypothetical scenarios 
informed by market behavior during real events.” (Mark & Krishna, 2014: 54f.). 
Stress testing, the consideration and simulation of shocks and crises, is not de-
pendent on their realization and may be of help even if such extreme events nev-
er occur. “The data necessary to simulate a crisis may prove useful in monitoring 
vulnerability [i.e., the inability of a system to withstand the effects of the envi-
ronment; C.H.] and a careful consideration of the consequences of such a crisis 
may lead to changes in strategy and/or risk management. Crises seldom unfold 
according to the anticipated scenario, but strategies for responding to one kind of 
shock may prove useful when a different kind of shock occurs. For example, 
evacuation procedures that Morgan Stanley established after the bombing of the 
World Trade Center in 1993 enabled the firm to safeguard all of their employees 
in the much more severe terrorist attack on September 11, 2001.” (Diebold et al., 
2010: 26). 
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12. Strengths and Weaknesses of Scenario Planning as a 
Risk Management Tool 

There could be good reasons for believing that forecasts of any kind and im-
portance are inherently fallible (Wack, 1985a: 73), given dynamic complexity (a 
specific reason) and given that the future is invariably a combination of the 
known and the unknown or unknowable (Diebold et al., 2010) and the proportion 
of the latter tends to rise as the time-scale extends (a general reason, etc.). A 
more limited aspiration, of identifying a range of versions of what might happen, 
could be, however, a tenable and supportable basis for (qualitative) risk and 
planning analysis. Precisely, the aim of problem structuring methods like scenar-
io planning is both more modest and more ambitious than that of the previous 
generation of exact probability-based risk measurement methods (Part I), brand-
ing efficiency seeking management of risks in financial systems. More modest, 
“because they do not set out to capture a single truth [noting that literature also 
discusses imprecise probabilities; C.H.] about the situation from which the one 
best answer can be derived“ (Rosenhead & Mingers, 2009: 2). More ambitious, 
“because their aim is rather to provide useful assistance to those processes of 
dialogue and debate which prepare the way for decisions that significantly affect 
future prospects” (ibid.). 
 The scenario development and analysis may need a lot of resources and it is 
difficult to evaluate the effectiveness of the method tout court (Johnston et al., 
2008). Moreover, the following more concrete features (Table 7) are seen as key 
advantages and disadvantages of scenario planning, underscoring that it can be 
an adequate informative aid to dealing with uncertainty, but is, at the same time, 
in need of revision for the purposes here (see Part III for a constructive answer). 
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Table 7:  Strengths and weaknesses of scenarios and scenario analysis. 

Strengths Weaknesses 
    General 

- Scenarios nurture innovative thinking 
about possible future behavioral paths 
of the systems (Probst & Bassi, 2014: 
157);  

- “better quality thinking about the 
future” (Van der Heijden, 2009: 6). 

- The success of the scenario analysis is contingent on 
many conditions: e.g., the plausibility and relevance 
of scenarios, their coherence, a challenging narrative 
description of scenarios, etc. 

- Scenarios require continuous revision, refinement 
and control by a specialized team (Probst & Bassi, 
2014: 157). 

- Scenarios are an important tool in a 
larger learning process (Van der 
Heijden, 2009: 118). 

- The interface of scenarios and decision makers 
might be ignored or neglected (Wack, 1985b). 

- Scenarios are ineffective if not integrated into the deci-
sion-making process (Probst & Bassi, 2014: 157). 

- Scenario planning accepts uncertainty, 
unpredictability, and vagueness, and 
aims to offer orientation only 
(Rosenhead & Mingers, 2009: 11). 

- Scenario planning is afflicted with vagueness, 
impreciseness, and a vulnerability to multiple inter-
pretations or concretizations, and offers at best some 
orientation only. 

- People are conceptualized as active 
subjects (Rosenhead & Mingers, 2009: 
11) 

- In general, tools, including scenario planning and 
probabilistic risk models, are only as good as the 
people that develop or use them. 

- Diminished data demands, achieved by 
greater integration of hard and soft data 
with social judgments (Rosenhead & 
Mingers, 2009: 11) 

- Inadequate for short-term planning: The continuous 
repetition of the exercise may simply add confusion, 
as the methodology does not apply well to technical 
decisions that have to be implemented in the short 
term (Probst & Bassi, 2014: 157). 

- Scenarios abet the monitoring and 
identification of potential future chal-
lenges resulting from implemented ac-
tions (Probst & Bassi, 2014: 157) 

- Scenarios require a disciplined monitoring, analysis 
and communication process (Probst & Bassi, 2014: 
157). 

- To the extent that scenario develop-
ment stimulates creative thinking and 
controversial debate (Ringland, 2006), 
it is supposed to avoid common errors 
and biases like overconfidence, mis-
judgment of likelihoods and tunnel vi-
sion (Comes et al., 2011; Schoemaker, 
1995; Eisenhardt, 1989).  

- Cognitive biases: For example, a design that in-
cludes three scenarios describing alternative out-
comes along a single dimension is dangerous be-
cause many managers cannot resist the temptation to 
spot the middle scenario as a baseline. A scheme 
based on two scenarios raises a similar risk if one is 
easily seen as optimistic and the other pessimistic. 
Etc. Wack, 1985b. 

- Companies find themselves testing a 
wide range of hypotheses, imagining 
(some/many?) alternative futures, in-
volving changes in all sorts of underly-
ing drivers (Roxburgh, 2009) 

- Scenarios can induce “a sense of complacency, of 
having all your bets covered” (Roxburgh, 2009). It is 
not possible that scenarios cover the full range of 
(future) possibilities, they “leave you exposed exact-
ly when scenarios provide most comfort. […] We 
are typically too optimistic going into a downturn 
and too pessimistic on the way out. No one is im-
mune to this trap, including professional builders of 
scenarios and the companies that use them.” (Ibid.). 
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 - Likewise, the future is multivariate, and there are 
elements users will miss when they create scenarios 
that fall on a single spectrum (“very good”, “good”, 
“not so good”, “very bad”). 

Looking at the scenario planning function from the systems approach 
- There is both benefit in the product and 

the process (Brummell & Macgillivray, 
2008), as the very process of develop-
ing scenarios breeds a lot of insights 
and understanding (Meristö, 1989; 
Roxburgh, 2009) by finding structure 
in the events in the environment (Van 
der Heijden, 2009: 102). 

- Scenarios attempt to give the whole cause-and-effect 
story, leading to a comprehension of why things hap-
pen. But for this reason they are also less efficient as 
input to yes/no type decision-making. It is less 
straightforward to make a decision on the basis of a 
set of scenarios than a forecast. (Van der Heijden, 
2009: 110). 

- Scenarios help decision-makers behold 
elements of uncertainty (Probst & 
Bassi, 2014: 158). 

- Scenarios are too passive (Ackoff, in Schoemaker, 
2002: 169) and broad (Roxburgh, 2009): Emphasiz-
ing the search for external scenarios leads to a paral-
ysis or passivity about controlling the future. The 
endogenous point of view is the sine qua non of sys-
tems approaches (Richardson, 2011). 

- Tools are required that capture not only uncertain-
ties, but that are able to deal with dynamic complexi-
ty (because complexity is a source of uncertainty; 
Proposition 2) 

- Scenarios do not normally produce 
conclusions in a mechanistic way 
(Probst & Bassi, 2014: 157; Van der 
Heijden, 2009). 

- Scenario planning relies on a broad notion of sce-
narios and can be spelled out very differently in dif-
ferent contexts. In particular, developing, analyzing 
and employing scenarios as a veritable expression of 
systems thinking is by no way certain or compulsory. 

- Scenario planning is non-optimizing; it 
seeks alternative solutions which are 
acceptable on separate dimensions, 
without trade-offs (Rosenhead & 
Mingers, 2009: 11) 

- Grasping scenario planning as a form of analysis 
compromises its potential as a systems tool since 
systems thinking would require both analysis as well 
as synthesis – systems thinking is circular 
(Schwaninger, 2005: 32, 37) 

- The call to incorporate systems thinking in the tool 
of scenario planning (Senge, 2006) is somehow 
vague, abstract and obscure. 

 - There is nothing that is obviously beneficial about a 
scenario planning activity, simply because some 
group of people will be the planners and we have no 
special reason to trust them (Churchman, 1968: 
149). 

 - VUCA conditions render useless any efforts to spot 
the future and to plan responses. Bennett & Lemoine 
(2014) demonstrate that by overlooking important 
differences in the conditions that volatility, uncer-
tainty, complexity, and ambiguity describe, we have 
disempowered leaders. 
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Specific evaluation in a risk management context 

Advantages 
With regard to the plea by the critical finance community that risk management 
ought to be characterized more by learning and experiment rather than by rule-
based processes, scenario planning should be appreciated as it depends essential-
ly on human capacities to “imagine alternative futures to the present rather than 
quantitative ambitions to predict the future” (Power, 2004b: 61). Scenario plan-
ning places emphasis on the decision level, on decision-making competence and 
effective decision-making and learning. Another benefit of using a scenario anal-
ysis for risk management is that “stress tests can be incorporated as scenarios 
that a simulation engine can evaluate, thereby bridging stress testing analysis and 
analysis of more continuous deviations from current state under one roof” 
(Braswell & Mark, 2014: 263; Rebonato, 2010). Stress tests can help in deciding 
in advance the actions to take in response to large market moves and they are 
sometimes used as a way to allocate capital (Mark & Krishna, 2014: 54). Scenar-
ios improve multi-stakeholder, cross-sectoral risk management (Probst & Bassi, 
2014: 157). Moreover, stress tests can be easily communicated to senior man-
agement since “the loss outcome(s) being described can be attributed to concrete 
stress scenarios. For example, a board or executive committee can easily under-
stand a scenario calling for a 20% decline in home prices but would have much 
greater difficulty understanding what a 99% event looks like.” (Rossi, 2014: 92). 

Disadvantages  
A major issue for scenario planning in combination with stress testing in banking 
is that the ignorance towards the upper bound of possible losses invites faulty 
stress testing. Stress testing resembles a probability-free approach to simulate a 
single, fixed, large deviation – as if it were the known payoff from a lottery tick-
et –, ensconced in a protective bubble of parables, otherwise known as scenario 
descriptions (Taleb, 2008: 2). Against the background of the oil crisis of 1973, 
Wack (1985b), for example, presents a so-called boom & bust scenario as a se-
ries of surprises and their probability of occurrence is not given, nor how severe 
the bust can turn out to be (e.g., how much money can a bank lose in this scenar-
io?), which might scare banks’ risk managers because the information they re-
ceive from the model appears to be far too unspecific and, thus, inappropriate for 
their needs. Considering, for instance, that it is onerous to debate the merits of 
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intuitive (versus a quantitative) criteria or schemes for assessing uncertainties or 
certain parameters (Shrader-Frechette, 1985: Chapter 6),251 the matter of defining 
risk in terms of numbers is crucial. How can managers and investors decide how 
much risk to take unless they can ascribe some order of magnitude to the risks 
they face? (Bernstein, 1996b: 259). Taking this exemplary question as prior work 
into account, we contend the following drastic thesis: 

Conjecture 9:  
Even though risk managers have been confronted with drawbacks 

when extreme risks are managed ‘by the numbers‘, they appear to be 
not willing to embrace unmeasurable uncertainty as long as business is 

ruled ‘by numbers’ (which is perhaps even a necessity inherent in 
financial and economic systems)252. 

But also the choice of a ‘maximum (likely)’ jump of the loss function would be 
problematic, as it pre- supposes knowledge of the structure of the distribution in 
the tails (Taleb, 2008: 2).253 Stress testing thus suffers from the same limitation 
as VaR or probabilistic analyses: Even extreme historical events may not be a 
reliable indicator for future turmoils, they may not be sufficiently stressful (Ros-
si, 2014: 93). 
 Moreover, “[h]ypothetical (i.e., non-historical) scenarios can be arbitrarily 
extreme but, whether hypothetical or historical, scenarios must be credible and 
achieve buy-in from management. It is difficult to imagine management teams 
before the crisis placing much credence in stress test results based on a nation-
wide collapse in home prices as experienced in the years after the boom.” (Ibid.). 

251  Even if such a criterion could be formulated clearly (a big if), “participants in the debate are likely 
to approach it in terms of radically different assumptions” (Shrader-Frechette, 1985: 166). 

252  Quantifications cannot be avoided when it comes to economic activities, such as the allocation 
and distribu-tion of goods (Wieland, 1996: 34, 36f.). The form of a numerical representation 
improves the practicality of business processes and might also be a prerequisite for them to 
take place in the first place (Boysen, 2002). 

253  One illustration of how stress testing can be deemed dangerous is provided by Taleb (2008): 
“Many firms, such as Morgan Stanley, lost large sums of their capital in the 2007 subprime cri-
sis because their stress test underestimated the outcome – yet was compatible with historical 
deviations”. Traditional stress testing assumes, for example, “that whenever one has seen in the 
past a large move of, say, 10%, one can conclude that a fluctuation of this magnitude would be 
the worst one can expect for the future” (Mandelbrot & Taleb, 2010: 52). “Before the crash of 
1987 […], stress testing would not have included a 22% drop in share prices within a single 
day. They [Mandelbrot & Taleb] note that just ten trading days account for 63% of the returns 
on the stock market over the past 50 years.” (Diebold et al., 2010: 26). 
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Similarly, Mandelbrot & Taleb (2010) caution that traditional stress testing, 
which relies on selecting a number of worst-case scenarios from the past history 
and past data, “may be seriously misleading because it implicitly assumes that a 
fluctuation of this magnitude would be the worst that should be expected. They 
note that crashes happen without antecedents.” (Diebold et al., 2010: 26).254 
 Goodhart (2010) sheds light on a different concern regarding stress testing 
and scenario planning: “What may matter most in crises are interactive effects 
that occur when many institutions attempt to adjust their portfolios in the same 
way at the same time. These are decisive to understanding an institution’s vul-
nerability in a crisis, but are omitted from most scenarios.” (Diebold et al., 2010: 
26; see 5.1.). 
 In conclusion, it seems uncontroversial that conventional stress testing (sce-
nario planning), despite its possible inclusion of systems thinking to some extent, 
(still) rests on the principle that better risk assessment (at least in some major 
part) means better data (and not sufficient systems-, complexity- or structure-
orientation). Data can be very valuable if tomorrow’s world will be much like 
today’s. Under this assumption, which is delicate (see Chapter 7), scenario anal-
ysis benefits from better data and data can get better in several ways. One way is 
new data about phenomena that previously did not exist. 
 “For example, exchange-traded house price futures contracts have recently 
begun trading. Many now collect and examine those futures prices, which contain 
valuable clues regarding the market’s view on the likely evolution of house pric-
es. But such data could not have been collected before – they simply did not exist.” 
(Diebold et al., 2010: 5). Due to new data new scenarios could be concocted. 
 Perhaps most importantly, better financial data and modeling can come out 
of new insights regarding the determinants of risks and returns (ibid.: 6); see also 
Chapter 6, where randomness (direct) and complexity (indirect) were identified 
as determinants of risks, and see Part III. Thus far, literature in both the quantita-
tive (Part I) and qualitative (Part II) camp has, however, treated better risk as-
sessment as mainly better data or progresses in risk measurement due to better 
data, but what of better tools with which to summarize and ultimately discern 
complex financial systems where the risks emerge; i.e., really structure-oriented, 
rather than data-driven models? That is, what of a better class of models?  

254  In Mandelbrot & Taleb’s (2010) view, by contrast, stress test analysis should be complemented 
with fractal mathematical methods (see also Chapter 2.5.). 
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13. Deriving Lessons for Rethinking the Approach to 
Assessing Extreme and Systemic Risks 

Faced with the ruins of the house of risk management, we now recognize that the 
first way to managing extreme and systemic risks effectively (Part I) turned out to 
be not promising or ineffective (Propositions 6 and 8) and that the same holds 
for the second way in this Part II, which dealt with not quantitative, but qualita-
tive approaches (Conjecture 9). Yet, criticizing something is always considerably 
easier than proposing a constructive alternative. The call for a Third Way, for 
alternative risk models and measures, better: an alternative class of risk models 
for complex financial systems thus becomes unmistakable. 
 In line with the results of Part I and in differentiation to the theses put for-
ward by the critical finance society (Chapter 10), ‘trust in numbers’ and risk 
management ‘by the numbers‘ can still be upheld. The Central Argument of Part 
I of this thesis only passed sentence on probabilistic approaches to evaluating 
extreme and systemic risks (see Propositions 5 and 6, but also 8). The, in some 
regard, more critical view advanced by the critical finance community, which 
accuses the ‘quantificational spirit’ of our age right away, does not follow from it 
(or from Part I altogether). In terms of how risk assessment should work, i.e., 
become more effective, we share some of the postulates with the critical finance 
society, including: 

• calculative pragmatism in lieu of idealism, 
• no gullible efficiency seeking,  
• no reduction of risks or uncertainties to measurable silos,  
• placing importance on scenario-thinking (especially when linked to 

systems thinking); 
but quarrel with their conclusion: embrace (Knightian) uncertainty and 
quantitative skepticism. Rather, this study purports  
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• that our toolkit for quantitative risk assessment not only contains prob-
abilistic models, but can be enriched by formal logic and modern com-
puter science based techniques – thereby, we follow the call for a more 
abstract, less data-centric skill set in risk management (Härle et al., 

2016: 5; Brose et al., 2014a: 332): 
o fuzzy logic & non-classical logics for handling uncertainty (see 

15.2.), 
o theory of formal (i.e., programming) languages for describing 

portfolio valuations, etc.; 
• that both quantitative and qualitative risk assessment approaches have 

their strengths which should be unified and augmented: 
o advantages of quantitative approaches: risks can be managed ‘by 

the numbers‘ (which is crucial, see Conjecture 9), preciseness, ri-
gor, etc.; 

o advantages of qualitative approaches (scenario-thinking): cur-
tailed data demands, modesty (when accepting barely measurable 
uncertainty), focus on effectiveness and the pursuit of satisficing, 
non-optimal solutions only, etc.; 

• and that our risk modeling endeavors ought to focus on the known,  
o banks’ assets and liabilities, 
o structural composition of financial products and instruments (de-

rivatives) through, 
o financial contracts; 

  not the unknown,  
o future behavior of the financial system, 
o composition of the financial system, 
o minimum or expected losses, etc.; 

and accepts deep uncertainty, a subcategory of Risk I, emerging from highly 
organized complexity, (see Chapter 6 and Appendix A) as a fact, not as a 
problem.  
• This study does not state that uncertainty in general would be a given 

fact (where we could do nothing about it) rather than a problem (which 
can be solved) because risk is defined in terms of uncertainty (Risk I) 
and management is about “decision making and decision making in-
volves problem solving” (Ackoff, 1974: 20). Therefore, if we contend-
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ed that uncertainty would simply be a fact, not a problem, it would not 
make any sense to become concerned with risk management at all.  

• However, concentration on the uncertainty of future outcomes in dy-
namic and complex financial systems, which pervades both scenario-
thinking and quantitative risk management as outlined in Part II and I, 
respectively, eventually goes hand in hand with problems of induction 
that, in turn, become fatal in the wake of factual complexity. 

To this end, the knowledge dimension needs to be highlighted, and much more 
than what is typically seen today in risk assessment applications. Our disruptive 
risk management approach, propounded in the subsequent Part III, is strongly 
guided by a firm belief that the inclusion of methods from logic and computer 
science to model the complex factors and structures that determine risk (see the 

‘iceberg model’ in Figure 15) are essential for the establishment of best-practice 
risk management in banking and beyond. Neither data nor information alone will 
improve risk management (decisions, see Part IV) “unless the analysis fits the 
problem” (Brose et al., 2014a: 333). This in turn requires “detailed structural 
data” (ibid.). Part III presents a symbolic approach to risk modeling. It relies on a 
quasi probability theory that is not grounded in analysis, but in algebra, and em-
ploys formal languages from functional programming for specifying financial 
contracts, which allow, for example, to predict the impact of changing correla-
tions on a credit portfolio. We will see and understand that a key benefit of this 
technique is that a risk model can be derived automatically from a formal de-
scription of the individual positions (Jones et al., 2001). 
 Since this counter-proposal in Part III thus makes use of a formal language 
as well (like approaches criticized in Part I do), it is important to highlight that 
we do not seek to radically replace a risk model based approach to systemic and 
extreme risk management by something else (e.g., by qualitative risk analysis 
tools as Part II suggests). Again, our criticism (Chapter 7) was not of formal 
methods in general, but of the type of formal method that is used conventionally. 
In other words, this study assumes that formal languages in economics or in risk 
management contexts, in particular, serve to keep the logic straight, to guarantee 
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that the ‘then’ does follow the ‘if’,255 which it so frequently does not if we just 
write/use prose (when designing scenarios) because natural languages are basi-
cally systems to describe perceptions (Zadeh) and perceptions are imprecise. 
Further, we hope that we are able to uphold that assumption while paying tribute 
to the critical finance movement, to the finding, for instance, that simply select-
ing ‘ifs’ for reasons of conventionality or elegance can be a recipe for great mis-
chief. We further hope to uncover that the following proposal contributes to a 
truly effective risk management in banking, compared to standard quantitative 
approaches, on the one hand – insofar, we hope to make use of a more adequate 
formal language –, and compared to qualitative risk and scenario analysis tech-
niques, on the other – insofar, we hope to demonstrate that our formal language 
is more powerful than tools referring to common parlance. This valiant goal will 
be reached by combining the best of both worlds (so to speak) to create an exact, 
algebraic and explanatory as well as a complexity/systems theory-inspired sce-
nario planning method and, hence, by unveiling a Third Way apart from the ones 
taken by quantitative enthusiasts and quantitative skepticists.  

255  “Mathematics is nothing but a language, with its own grammar and syntax – arguably the 
simplest, clearest, and most concise language of all” (Sornette, 2003: 135). The mathematical 
notation used for describing models is unambiguous. It is a language that “is clearer, simpler, 
and more precise than” such spoken languages as English and its advantage is in the “clarity of 
meaning and simplicity of language syntax” (Forrester, 1971). 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


 

Part III:  
In Search of a New Paradigm: The Third Way as a Road to 
Logic-Based Risk Modeling (LBR) 

 



 

14. Introduction to Part III 

It is high time, however, that we take our ignorance more seriously.  
(Friedrich August von Hayek, 1967) 

Risk assessment can never fully capture black swans,  
but improvements can and should be made compared to the probabilistic approach  

that dominates the present quantitative risk assessment practice. […] 
The knowledge dimension needs to be highlighted much more strongly […]. 

(Terje Aven, 2013) 

Reconciling right-wing and left-wing politics by advocating a varying synthesis  
can be well-captured in The Lord Giddens’ metaphor of the Third Way.  

In risk management, we find a wing of quantitative idealism and  
quantitative scepticism. As an alternative to both, however, we should rely  

on precise, rather than non-formal, modelling of what is known  
(one’s own assets and liabilities) rather than on spuriously precise models of  

what is not known (the future behaviour of the financial system). 
(Jann Fridolin Müller, 2015) 

Every financial crisis is a wake-up call for risk managers: Extreme and systemic 
risks need to be measured better, they say we must pay more attention to the fat 
tail of a loss distribution, and so on. But after the models have been tuned and 
‘improved’, the next crisis happens, and the same calls are heard again. The 
cycle of systemic crisis followed by ‘better’ risk modeling followed by systemic 
crisis does not seem to stop – unremitting cycles of ‘innovation’ in measurement, 

crisis, and revision, pushing metrics into spheres where the results are “at best 
ambivalent and at worst dysfunctional” (Power, 2004a: 771).  
 To this author, this signifies that it is not the parameters of the models which 
need to be improved (in contrast to so-called quantitative enthusiasts, see Chap-
ter 2 (Part I)), but the models themselves, without throwing out the baby with the 
bathwater (in contrast to so-called quantitative skepticists, see Chapter 10 (Part II)). 
Despite the lip service that is often paid to holistic risk management (Nario et al., 
2016: 24; McNish et al., 2013; Pergler & Lamarre, 2009), a new approach to risk 
modeling is required, a hybrid of scenario-thinking and quantitative ambitions, in 
order to get a better grasp on just how exposed our (banks’) positions are to sud-
den high-impact, low-probability changes in the environment we operate in. Build-
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ing better models of extreme and systemic risks is challenging and worthwhile: in 
this Part III, we will combine the qualitative and the quantitative, imagination and 
precisiation (which presupposes understanding), art and science, all in the ser-
vice of achieving truly effective risk management by finding approximate patterns 
underlying the behavior of financial systems (scenarios) and known/knowable 
structures of financial instruments or products (via a language for contracts).  
 As Popper (1963/2002: 38) and after him others have pointed out, “the more 
we learn about the world and the deeper our learning, the more conscious, specif-
ic, and articulate will be our knowledge of what we do not know, our knowledge 
of our ignorance”. A corollary drawn by this study is that we ought to learn 
enough to know that we cannot know all that we would have to know for a full 
explanation and prediction as well as an exact assessment of (extreme or system-
ic) risk phenomena. However, we may partly pierce the boundary and expand the 
realm of the known by deliberately cultivating a technique which aims at more 
limited objectives (von Hayek, 1967: 40) – the explanation not of individual 
events, but merely of the appearance of certain patterns in the behavior of finan-
cial systems as well as the emphasis on fixed structures of their subsystems. The 
focus on engendering insights into the patterns provoked by the systems under 
study is a consequence of putting emphasis on system understanding 
(Schwaninger, 2011: 758), which in turn characterizes explanatory models, 
which this study purports to implant into banks’ in-house risk management (see 

Chapter 8). The service of this approach that does neither tell us what particular 
events to expect, nor how accurately quantifiable expectations would look like, 

but only what kinds of more or less likely scenarios we are to expect within a 
certain range of magnitude (their impact) would perhaps be better described by 
the terms “systemic explanation” and “orientation”256 than by speaking of predic-
tion (von Hayek, 1967: 18). Albeit such a modeling technique is limited, “it will 
make the world around us a more familiar world in which we can move with 
greater confidence that we shall not be disappointed because we can at least 
exclude certain eventualities” (ibid.). 

256  Note that a function of orientation was also evaluated as a strength (and weakness) of scenario 
planning in Chapter 12. Here, “orientation” has a more positive connotation because, for ex-
ample, we will see that the proposal in this Part III does not suffer from vagueness, or a vulner-
ability to multiple interpretations. See Chapter 19. 
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 The restriction is that the statements from our novel logic-based approach 
may be less specific (contrasted with those earned on the first way, see Part I), 
while the extension lies in the fact that we can thereby penetrate into the realm of 
complex phenomena (Malik, 1996: 205). In this environment, we do not afford 
to measure uncertainty a priori (which is not possible), nor a posteriori (which 
gives poor results), but manage uncertainty by focusing on the system structure, 
which comprises reasoning a priori as well as a posteriori. Another extension is 
based on a re-examination of the foundations of the modern axiomatic approach 
to risk measures: Here, we strive for allowing a myriad of new and alternative 
risk measures, that do not rely on accurate probabilities anymore (which are 
impossible to obtain) or model outputs in form of a single number (at the expense 
of analyzing scenarios), but that, instead, come equipped with weaker and less 
farfetched assumptions and that are open to a variety of formalisms for represent-
ing uncertainty. Our framework thus encourages risk modelers to choose which-
ever representation is best suited to the task; a plea for heterogeneity and diversi-
ty which is in line with viewing risk from different angles (e.g., Risk I, Risk II, 
systemic or extreme risks, deep uncertainty, etc.; see also Condition 1 in 4.1.). 
 A third main extension of the innovative approach this study is proposing 
springs from the roots of the Austrian School of Economics257 and “its unique 
methodology that is grounded in deduction, [and] a priorism” (Spitznagel, 2013: 
76). It is the already mentioned shift of focus, from the unknown to the known, 
which is spelled out hereafter. In the Austrian tradition, we acknowledge that 
“[o]ne cannot learn from history, a posteriori, because causal [and other; C.H.] 
relationships are deceptively veiled from our perception” (ibid.: 75). “Rather, in 
many cases the foreseen emerges through the logical rigor of deduction, based on 
what one knows (and, to some degree, what one observes and experiences) as a 
sentient human being” (ibid.). Specifically, in our context, banks’ assets and 
liabilities, financial contracts or instruments and their composition as well as 
other things are known. We ought to utilize this knowledge to measure risks 
because the past history of an object for risk management, although it should not 
be ignored, is just to be accepted as highly insufficient. 
 In some sense, it is slightly unrealistic to single out ‘logic-based models’ as 
a distinct class within the spectrum of modeling approaches that is paid special 

257  Cf. Schulak & Unterköfler (2011) for an overview. 
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attention to.258 Nevertheless, there are types of (risk) models “in which represen-
tation of the logical structure is the dominant feature” (Flood & Carson, 1993: 
188): LBR grasps the structure of financial instruments in a programming lan-
guage and makes use of fuzzy & non-classical logics for measuring risk (instead 
of glorifying probability theory as a gold standard). In principle, the employment 
of such (specifically) logic-based modeling approaches is apt because “[t]hey can 
provide a clear picture of logical connections and, as such, aid in the understand-
ing of complexity” (ibid.: 189). 
Research questions 

Pursuing the overarching research question RQ2 (see also Chapter 3) properly 

RQ2:  
How can the measurement and management of systemic or extreme 
risk be improved to compensate for the shortcomings of conventional 
quantitative approaches and to account for the financial system’s dy-
namic complexity?  

requires to raise certain more specific or sub-questions that guide our research 
activities in the remaining chapters of this Part III, in order to introduce alterna-
tive risk models for complex financial systems and to close the research gap IV, 
respectively. 

Sub- or Specific Guiding Questions:   

RQ2.1: In what sense is our plea for explanatory risk modeling in banking 
implemented?  
 Answered in Chapters 15.4. and 15.6. 

RQ2.2: How can the axiomatic approach to risk models by Artzner et al. 
(1999) be generalized to cover non-probabilistic models of risk? 
 Answered in Chapter 15.1. 

 

258  “Any model should represent the logical structure and connectivity of the processes under 
investigation. Equally, assessment of logical consistency is an important ingredient of model 
validation.” (Flood & Carson, 1993: 188). We understand “logic” in a classical way: “Typical-
ly, a logic consists of a formal or informal language together with a deductive system and/or a 
model-theoretic semantics” (Shapiro, 2013; cf. also Halpern, 2005: 6). 
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RQ2.3: To what extent should financial risk modeling make use of ‘quali-
tative’ probabilities? 
 Answered in Chapters 15.1. and 18. 

RQ2.4: How can non-probabilistic models of uncertainty within one sin-
gle formal framework serve as a breeding ground for a new gen-
eration of risk management tools that are suited for assessing high-
impact, low-probability risks in highly complex financial systems? 
 Answered in Chapter 15.5. 

RQ2.5: What are some concrete LBR models of systemic and extreme 
risk that fit into the axiomatization developed (in the reply to 
RQ2.2) and that integrate alternative notions of uncertainty? 
 Answered in Chapter 16. 

RQ2.6: What lessons can be drawn from LBR for actual risk managers 
and practitioners? 
 Answered in Chapter 17. 

RQ2.7: How are LBR models evaluated against competing probabilistic 
risk models? 
 Answered in Chapter 19. 

The task ahead is to first delineate the theoretical foundations of our disruptive 
formalism (Chapter 15). We then test an exemplary LBR risk model, and illus-
trate our plea for symbolic and logic-based risk modeling with the LTCM exam-
ple of a liquidity and counterparty risk crisis,259 followed by an outline of the 
queries our model will be able to answer (16). We close by ventilating the topic 
of scales of measurement (18), so-called qualitative probabilities (18), and model 
validation (19) as well as by detailing lessons for the economic practice (17). 

259  We are developing a symbolic model of counterparty and liquidity risk, but basically our 
approach can be generalized to other ‘types of risk’. See also Chapter 15.6. and 22. 
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15. Theoretical Foundations of a Logic-Based Risk 
Modeling (LBR) Approach 

The fact that simple mathematical structures can simulate complex, dynamic 
systems is well-known and exemplified by, for instance, the “Game of Life” 
(Berlekamp et al., 2001). Our symbolic models of risk are designed in the tradi-
tion of such devices and embedded in a novel LBR approach which consists of 
three components:  

I) A formal framework for risk models, including an axiomatic apparatus 
(15.1.), and non-probabilistic, but formal representations of uncertainty 
(15.2.), specifically Spohn’s ranking theory (15.3.); 

II) A vocabulary for describing correlations (15.4.), the central and main 
pillar in Figure 21; 

III) An interpretation of this formal language of Jones et al. (2001) for fi-
nancial contracts in models of extreme and systemic risk (15.5.), as 
well as of LBR models in total as an exact, explanatory scenario plan-
ning method from complexity principles (15.6.). 

Parts (I) and (II) are the mathematical underpinnings of part (III), the actual risk 

models, which is depicted in the following figure. We will now describe the three 
parts very briefly. 

15.1. A less Restrictive Axiomatization 

The objective in this subchapter is to generalize the axiomatic approach to risk 
models by Artzner et al. (1999) to cover non-probabilistic models of risk mainly 
for two interwoven reasons: On the one hand, we would like to evaluate our risk 
models in respect to the coherence laws established in their work (see also Chpt. 
19), which are widely considered as having achieved the status of a de-facto 
standard (Riedel, 2004: 186), and, on the other hand, probabilistic models are 
ineffective for extreme and systemic risks (7.3.).  
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Figure 21:  The solid house of LBR: The pillars are well-established in the literature – the right one 
in the field of formal epistemology, the major load-bearing one in the middle in 
connection to financial engineering and the left pillar is actually partly new due to the 
extension of Artzner et al.’s (1999) path-breaking work on risk measurement to non-
probabilistic cases. The construction standing on this foundation reflects our principal 
contribution to research on the constructive side and must be seen as novel in a 
threefold way: On the broadest scale, LBR represents a whole conceptual framework, 
on a lower level of abstraction, we refer to LBR as a method which encompasses 
specific risk models in the most concrete sense of LBR. 

Artzner et al. invoke the term “risk” in the tradition of Risk II. The authors assume 
a probability space (Ω, F, P) where, as introduced in 7.2., F is a 𝜎𝜎-field over Ω 
and P is a probability measure on the measurable space (Ω, F). Let 𝑋 be a ran-
dom variable over the probability space representing the future value of a bank’s
investments. The key idea now is to introduce the notion of risk capital,260

 denoted 
by 𝑚, which is the amount of money that one should invest into a risk-free asset 
in order to keep the probability of losing 𝑋 below or equal to a given threshold 
1−𝛼: 𝑃 (𝑋 + 𝑚 <  0) ≤ (1 − 𝛼) (⋮). If we take the smallest value for 𝑚 that 
still makes statement ⋮ true, we obtain the well-known VaR measure (2.2.2.): 
𝑉𝑉𝑎𝑅𝛼(𝑋) =  inf  {𝑚 ∈ ℝ ∣ 𝑃 (𝑋 + 𝑚 < 0) ≤ (1 − 𝛼)}.261 Other risk measures
can be defined in a similar way using the probability space (Ω, F, P) and the no-

260  Strictly speaking, Artzner et al. (1999) do not make use of the term “risk capital”. They operate 
with “minimum extra capital” which means that, if invested in the reference instrument, it 
makes the future value of the modified position become acceptable (ibid.: 204). This, however, 
is captured by our notion of risk capital. 

261  Both definitions (the one in 2.2.2. and the one here in 15.1.) are equivalent, which is evident if 
we take into account that F is a loss distribution and P, in the formulation of Artzner et al., 
stands for a value distribution. 

Novel framework in which different uncertainty formalisms can be represented 
and compared in terms of extreme and systemic risk measurement (15.5.) 

Formal language of 
financial contracts 

(instruments) – Jones et 
al., 2001 
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models (16) 

Exact, algebraic and explanatory 
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tion of risk capital. In order to respond to RQ2.2, i.e., to generalize the axioms by 
Artzner et al. (1999), translation invariance, sub-additivity, positive homogeneity, 
and monotonicity,262 we have to start with the initial definition of a probability 
space.  

Probability space vs. uncertainty space  

The construction of a probability space is accompanied by making a bunch of 
structural assumptions and its full generalization would demand the 
problematization of every constituent part by heuristically describing and classi-
fying uncertainty (uncertainty mining by means of addressing questions such as: 
What data is important? What is the quality of the data, the uncertainty about the 
data? Are sets of data independent? etc.; see also Part IV).263 We, however, con-
fine ourselves here to generalizing the probability measure P only because this 
already requires some additional theory which is exposed below in 15.5.264 For 
now, where we focus on a generalization of Artzner et al.’s axioms rather than of 
Kolmogorov’s (1933), we sketch the approach in reference to Chapter 7.2., i.e., 
purged of introducing any further background knowledge, and recall that 
𝑃: 𝐅 → [0, 1] such that 𝑃(Ω) = 1 and 𝑃(⋃𝐴𝐴𝑖) = Σ 𝑃(𝐴𝐴𝑖) for all sets {𝐴𝐴𝑖} of 
pairwise disjoint events. 

Probability measure vs. uncertainty measure  

P will be surrogated by a new measure called ℚ. The range of ℚ does not have to 
be [0, 1] ⊆ ℝ – instead it is an arbitrary set 𝑆, so the signature of ℚ is ℚ:  𝐅 → 𝑆. 
Of course, 𝑆 should not be completely arbitrary, it ought to have a certain struc-
ture. This structure can be inferred from the three invariants that must hold for 
the original probability measure P (that were not questioned in Chapter 7). As 
stated in 7.2., the second invariant mandates that the probability of the entire 
event space Ω equals 1, the max. element of [0, 1]. For the time being, we accept 

262  We go on without reproducing Artzner et al.’s formal definition of coherent probabilistic (!) 
risk models. Föllmer & Schied’s book (2016: Chapter 4) contains an excellent summary. 

263  This task is non-formal and might be analogous to the procedure of studying and classifying 
plants in botany (from the general to the specific, bottom-up, and so on). That purely technical 
answers are incomplete and unsatisfying has been named the fallacy of unfinished business 
(Shrader-Frechette, 1985: Chapter 4). 

264  We use uncertain sequences, and uncertainty monads (see 15.5.3.), concepts from category 
theory, to integrate the notion of an uncertainty space (15.1.–3.) with the algebra for financial 
products (15.4.). Cf. also Adachi (2014).   
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this convention for measurement in terms of 𝑆 and state that 𝑆 should be 
equipped with a preorder ≤𝑆 and a maximum element 𝟏 ∈ 𝑆. Then ℚ (Ω) =
𝟏.265 However, the third invariant says that the probability of the union of some 
disjoint events must be equal to the sum of the probabilities of the events. This is 
genuinely conflict-laden and a much more delicate matter considering the fact 
that there exist forms of uncertainty which escape a cardinal measurement (see 
Proposition 17). Therefore, it is really in need of revision (as announced in 7.2.) 
and to express the third Kolmogorovian requirement in a general way for 𝑆, we 
need to have a binary operation that resembles, but is weaker than, the + opera-
tor. Since there is already a partial order on 𝑆 with a maximum element 𝟏, the 
‘natural’ next step is to stipulate that 𝑆 be a semilattice (i.e., a partially ordered 
set with a binary join operation ∨).266  
 More precisely, we require that 𝑆 be a bounded join-semilattice. Then we 
obtain  ℚ (⋃𝐴𝐴𝑖) = ⋁ ℚ (𝐴𝐴𝑖) for all sets {𝐴𝐴𝑖} of pairwise disjoint events. Two 
short remarks are in order to clarify to what extent we have left the 
Kolmogorovian home. Firstly, even if we copied all three of his axioms, the cru-
cial point is that we do not automatically end up with classical probabilities – or 
the unpleasant assumptions of probability-based risk models to that stake, see 
IIIc) – because there are, in fact, various quantities which do satisfy those postu-
lates (normalized mass, length, area, volume, etc.), and obviously, they have 
nothing to do with probability as they do not play the right role in our conceptual 
apparatus (Hájek, 2011). And secondly, the following examples elucidate that our 

third invariant is, and not only appears to be, less restrictive than Kolmogorov’s 
version since countable additivity does not hold in Example 15.3., for instance. 

Example 15.1.  
An obvious candidate for 𝑆 is the range [0, 1] with + as the join opera-
tion and 1 as the maximum element. This results exactly in the original 
definition of the probability measure P. 

265  Kolmogorov’s first postulate does not need an explicit appreciation here since we are postpon-
ing a specification to Definition 15.6. where it is important to be included as we’ll assume the 
existence of a zero element when we introduce uncertainty monads while we wish to keep the 
definition of an uncertainty model (Definition 15.1.) broad and general also in order to remain 
attractive to accounts in favor of negative ‘probabilities’, for example. 

266  A lattice is a set with two binary operations meet and join that are required to be distributive. 
The V operator (“Big V”) takes a set {a, b, c, d, e, ...} as an argument and applies v (the binary 
operator) to all elements: V ({a, b, c, d, e, ...})  =  a v b v c v d v ...   v is associative. 
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Example 15.2.   
Another candidate for 𝑆 is the set {𝑇, 𝐹} of truth values, with logical 
OR as the join operation and 𝑇 as the maximum. This removes any 
gradual degrees of uncertainty, leaving us only with the two extremes 
truth (complete certainty) and falsity (complete uncertainty or impossi-
bility)267. 

Example 15.3.   
Consider 𝑆 = {𝑖𝑖𝑚𝑝𝑝𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒, 𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦, 𝑝𝑝𝑓𝑓𝑎𝑢𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒, 𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦, 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛} as 
an example of a discrete set, with the partial order given by “degree of 
likelihood” in the meanings of the terms. The 𝟏 element is 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛, 
and the binary operation ∨ is given by choosing the term with the higher 
likelihood (for example, 𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦 ∨ 𝑝𝑝𝑓𝑓𝑎𝑢𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒 = 𝑝𝑝𝑓𝑓𝑎𝑢𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒). This is a 
simple example of how linguistic (and vague, Zadeh) terms can be trans-
lated directly into a framework of so-called ‘qualitative probabilities’.268  

Risk capital 2.0 and qualitative models of uncertainty  

Now that probability spaces have been replaced with triples (Ω, F, ℚ) for some 
semilattice 𝑆, let us take another look at the definition of risk capital which is at 
the heart of the axiomatization of risk measures. We still assume a ‘random’269 
variable 𝑋 denoting the future value of the investment, though it will be named a 
measurable function270 on F. First, nota bene that risk capital is originally de-
fined in relation to some probability threshold 1−𝛼. In the original definition, 

𝛼 ∈ [0, 1] holds, so we now have to require that 𝛼 ∈ 𝑆. With this change we are 
again able to determine the truth of the proposition ℚ (𝑋 + 𝑚 <  0) ≤  𝛼.271 At 
this point, we could actually define a less restrictive or qualitative version of 
𝑉𝑉𝑎𝑅 (see 15.5.5.) – doing so would be a distraction however, as we are not even 

267  Hájek (2010) investigates the difference between a zero probability event and an event that is 
impossible. 

268  cf. Halpern & Rabin, 1987; Segerberg, 1971; Rescher, 1968: Chapter IV; and see also Chapter 18. 
269  Note that „random“ can have different meanings (see Chapter 6.2.2.) and that random variables 

do not need to be described by probability functions (in the strict sense, see also Figure 35). 
270  Recall that a function 𝑖𝑖: 𝑋 → 𝑌 over two sets 𝑋 and 𝑌 equipped with 𝜎𝜎-algebras Σ and Τ, 

respectively, is measurable if and only if for all 𝑡𝑡 ∈ Τ, 𝑖𝑖−1(𝑡𝑡) ∈ Σ. Random variables are by 
definition measurable functions. 

271  Obviously, we cannot write “1−𝛼” here since S can be composed of non-numerical values (see 
Example 15.3.). 
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half-way towards our final goal: We have reached a definition of risk capital that 
rests on a qualitative measure (Def. 15.1. with respect to RQ2.3), but we have 
not yet covered the algebraic aspect of our risk models (15.4.), nor their concreti-
zation (15.5.4.). Prior to this, we will offer two working definitions272 to capture 

what has just been presented and proceed with both restating the laws of coherent 
risk measures in a general form (15.1.) and enriching the ossature by installing 
specific theories of uncertainty apart from probability theory (15.2. and 15.3.). 

Definition 15.1.   
A (qualitative) uncertainty model is a triple (Ω, 𝐅, ℚ) where Ω is the set 
of possible states of the world, 𝐅 is a 𝜎𝜎-field over Ω and ℚ: 𝐅 → 𝑆 for a 
bounded join-semilattice (𝑆,∨, 𝟏) such that ℚ (Ω) = 𝟏 and ℚ(⋃𝐴𝐴𝑖) =
⋁ ℚ(𝐴𝐴𝑖) for all sets {𝐴𝐴𝑖} of pairwise disjoint events. 

This definition is in harmony with the Definition 2.1. of a risk model (as a suffi-
ciently accurate description of (extreme or systemic) risk given in a formal lan-
guage) and of “risk” in 4.1., respectively (where the relationship between risk 
and uncertainty has been established, see Figure 4). In the remainder of this ex-
position, we will use the term “valuation” for a measurable function 𝑋: 𝐅 → ℝ. 
The intuitive meaning is that 𝑋 represents the possible values of a position (or a 
portfolio, a trade, etc.), and 𝑋(𝑠𝑠) is the value of the position for a specific state of 
the world 𝑠𝑠 ∈ 𝐅.  

Coherent risk measures and models in a LBR framework 

The second definition, more precisely the amendment of Definition 2.2., we need 
in this section is that of a coherent risk measure. As Definition 2.2. mandates, a 
risk measure is a function 𝑖𝑖 that assigns a monetary value 𝑒𝑒 ∈ ℝ to each valua-
tion 𝑋. Risk measures are, or ought to be, characterized by several laws which 
ultimately brings us to the four axioms put forward by Artzner et al. (1999):  

Translation invariance:   
If we increase 𝑋 by a constant amount, say 𝑋′ = 𝑋 + 𝑐𝑐, then 𝑖𝑖(𝑋′) 
should be equal to 𝑖𝑖(𝑋) + 𝑐𝑐. Consult Riedel (2004: 188) to see why 

272  Definition 15.1. is provisional only, for instance, because this thesis is not the right place to 
raise another fun-damental question, the delicate and complex matter of discussing alternatives 
to a Sigma-algebra, a classical set-theoretic structure, as the incorporation of non-classical logics 
into LBR would require another foundation. Cf. Weatherson, 2003 for a possible starting point. 
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we think that this property is reasonable for measuring risks.273 It has a 
straightforward equivalent in LBR, since we can add the sequence 
𝜇𝜇 (𝛼, 1) to an uncertain sequence (15.5.3.), increasing the sum of 
transactions in all branches by 𝛼. 

Sub-additivity:   
The combined risk of two positions is not greater than the sum of the 
two risks separately: 𝑖𝑖 (𝑋1 + 𝑋2) ≤  𝑖𝑖(𝑋1) + 𝑖𝑖 (𝑋2). We believe that 
this property, which could be stated in the brisk form “a merger does 
not create extra risk”, is a natural requirement as it implies that diversi-
fication is beneficial (for an example, cf. Riedel, 2004). This axiom also 

holds in LBR, because the ⊙+ operator over uncertain sequences of 
transactions (see 15.5.4.) is homomorphic with the + operator over risk 
measures. 

Monotonicity:   
If there are two valuations (two positions) 𝑋1 and 𝑋2, and the value of 
𝑋2 is greater than or equal to that of 𝑋1 for all states of the world, then 
the risk of 𝑋2 is higher than or equal to that of 𝑋1. Monotonicity is cer-
tainly a reasonable requirement (Riedel, 2004: 188). It is a conse-
quence of the convexity requirement that Artzner et al. impose on ac-
ceptance sets, and translates to LBR in a similar way. 

Positive homogeneity:   
If we multiply the value of a position by a factor 𝜆𝜆 ≥ 0, then the risk 𝑖𝑖 
increases by the same factor, that is, 𝑖𝑖(𝜆𝜆𝑋) = 𝜆𝜆𝑖𝑖(𝑋). Interpretation: 
Loosely speaking, if the agent doubles her position or portfolio, then 
she doubles her risk. Positive homogeneity entails that the risk of a risk 
object is proportional to its size. This postulate holds for LBR models 
too, because multiplication of all elements of an uncertain sequence by 
a factor 𝜆𝜆 commutes with the 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 operation in Definition 15.13. 

273  At first sight, Artzner et al. (1999) seem to state something else by the axiom of translation 
invariance because their factor 𝛼 appears with positive sign on the left and with negative sign 
on the right. This is because in their methodology, 𝜌 denotes the additional capital that needs 
to be invested in the risk-free asset to make the position acceptable. Since 𝜌 (𝑋 +  𝛼 ∗ 𝑒𝑒) repre-
sents the position X modified by investing 𝛼 in the risk-free asset, the amount of risk captial 
required is exactly 𝛼 smaller than that for the original position X. 
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These axioms have been extended in numerous ways. An obvious further postu-
late is that of normalization: the risk of the empty position (whose value is al-
ways 0) is zero. An important non-trivial addition to Artzner et al.’s coherency 
axioms is the introduction of temporality, of a dynamic setting or of an axiom of 
dynamic consistency by Riedel (2004). Temporality considers how risk measures 
behave on a time dimension. We will capture the motivation for his major con-
tribution – ‘no contradiction in one’s risk assessments over time’ – by treating 
uncertain sequences as expression of a temporal sequence of events (15.5.3.); so 
it seems natural to transfer Riedel's idea into our formalism (Müller & Hoff-
mann, 2017a: 5.2.).  

Definition 15.2.   
A coherent LBR risk measure or model over an uncertainty model 
(Ω, 𝐅, ℚ) is a function 𝑖𝑖: (𝐅 → ℝ) → ℝ such that 𝑖𝑖 is measurable and 
has the following properties: 

1) For all valuations 𝑋 and every 𝑐𝑐 ∈ ℝ, 𝑖𝑖(𝑋 + 𝑐𝑐) = 𝑖𝑖(𝑋) + 𝑐𝑐 
(Translation invariance)  

2) For all X1, X2 ∈ 𝑋, 𝑖𝑖 (𝑋1 + 𝑋2) ≤  𝑖𝑖(𝑋1) + 𝑖𝑖 (𝑋2) (Sub-
additivity)  

3) For all X1, X2 ∈ 𝑋, 𝑋1 ≤ 𝑋2 ⇒ 𝑖𝑖(𝑋1) ≤ 𝑖𝑖(𝑋2) (Monotonicity)  
4) For all X and every 𝜆𝜆 ≥ 0, we have 𝑖𝑖(𝜆𝜆𝑋) = 𝜆𝜆𝑖𝑖(𝑋) (Positive 

homogeneity).  
5) 𝑖𝑖(0) =  0 (Normalization). 

Definitions 15.1., 15.2. are close enough to the originals in probabilistic terms 
that the axioms formulated by Artzner et al. can be applied without much ado or 
many changes to the generalized (LBR) risk models (to be developed in the fol-
lowing). The reproduction of the coherence axioms in the concretized language 
of LBR (where probabilities are going to be replaced by ranks) is expounded 
elsewhere (Müller & Hoffmann, 2017a: Section 5). In the direction of RQ2.2, 
which by contrast refers to the general (i.e. not the probabilistic or ranking-
theoretic) case (of stating the postulates), we thus conclude that: 

Proposition 10:   
Laws of coherence for risk models, in the sense of Artzner et al. (1999) 
and Riedel (2004), can be conferred to non-probabilistic frameworks. 
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Consequently, we can now move on to the second pillar of our risk modeling 
approach (out of three): As we showed that reasonable laws of coherent risk mod-
els do not necessitate a probabilistic signature, the floor is opened for debating 
non-probabilistic alternatives to risk or uncertainty modeling. 

15.2. Non-Probabilistic Models of Uncertainty 

Satisfying the need for reasoning about uncertainty and likelihood in financial 
risk management is thwarted by the fact that there is sometimes no sound proba-
bilistic basis for doing so (Chapter 7). However, probability theory is perhaps 
only the earliest, but certainly not the only existing formal modeling approach 
for coping with uncertainty. This branch of mathematics has grown from its 
beginnings in the 17th and 18th century to a wide range of procedures and meth-
ods. The field was dominated by few homogeneous quantitative methods until 
the 1970s when the quest for Artificial Intelligence (AI) sparked a great research 
interest in logical, symbolic, and partly non-numerical models of uncertainty.274 
Apart from qualitative alternatives, several quantitative, but non-probabilistic 
methods have emerged, which retain high standards of rigor, but often relax, 
modify or drop some of the usual axioms of, and assumptions behind probability 
theory. Therefore, they are of special interest to us when we focus on extreme 
and systemic financial risks in systems that possess the characteristics of orga-
nized complexity, i.e., which are too complex or too ill-defined to admit of precise 
probabilistic analysis (Zadeh, 1969a: 1; Seising, 2010: 4475). In this connection, 
we should name Zadeh’s principle of incompatibility (1973). Termed informally, 
the essence of this principle is that “as the complexity of a system increases, our 
ability to make precise and yet significant statements about its behavior dimin-
ishes until a threshold is reached beyond which precision and significance (or 
relevance) become almost mutually exclusive characteristics” (Dubois & Prade, 
1980: 189; see also Chapter 6.1.3.). Some of the approaches which thrive in such 
a difficult environment of (organized) complexity are briefly displayed below. 
 While they all permit us to grasp uncertainty as being measurable, but not 
necessarily as being composed of different degrees, distinct directions can be 
distinguished: We find quantitative generalizations of probability theory, (e.g., 

274  Unfortunately, the so-called Golden Age of AI ended without a breakthrough, and modern AI, 
having been awoken from hibernation by the arrival of Big Data, again relies heavily on ho-
mogeneous, unimaginative methods. 
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Dempster-Shafer Theory)275, substitutions of probabilities simpliciter (e.g., 
Ranking Theory)276 or new qualitative and quantitative foundations (e.g., modal 
logics in opposition to classical two-valued propositional logic that underlies 
probability theory, Adams, 1998: 22; Hájek & Hall, 2002). Some are guided by 
the old question of how likely it is that some statement is true, and others, more 
deductive directions, turn to new questions of what additional information we 
can infer, based on the knowledge we have. At first sight, the former strategy 
seems to be more suited for risk assessment (where inductive uncertainty meas-
urement still occupies a prominent position), but one of our findings is that logic-
based modeling can also be employed for risk management and should indeed be 
incorporated into endeavors of describing extreme and systemic risks (which is 
then rather about the opposite and counterpart, i.e., knowledge, not the the lack 
thereof)277.  
 We scrutinize the following schemes which are normally embedded in ra-
ther inductive methods. 

Dempster-Shafer Theory 

Dempster and Shafer’s theory on belief functions (Dempster, 1967; Shafer, 
1976) also deals with quantified uncertainties. It attempts to attach numbers to 
the likelihood of various events and outcomes, just as probability theory does, 
but it addresses yet another problem. This branch of research is also called “in-
formation fusion”, and the name hints at the application: With Dempster-Shafer 
theory we can fuse information from various sources, and account for any dis-
crepancies between those sources. While it is traditionally applied to sensor in-
formation, we employ DST in a more deductive style and to reason about finan-
cial (macroeconomic) indicators (Müller & Hoffmann, 2017b; http://www.lbrm. 
de/).  

Ranking Theory 

is outlined in greater detail below (15.3.). 

275  Whereas probabilities are additive (see 7.2., Kolmogorov’s third axiom), Dempster-Shafer 
belief functions are only super-additive. Therefore, DST is more inclusive. 

276  Spohn (2012) introduces ranks in place of working with probabilities. 
277  As Spohn (2009: 214) once phrased it: “Traditional epistemology is interested in knowledge, a 

category entirely foreign to probability theory” and its siblings. 
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 On the other hand, symbolic and classically deductive alternatives to numer-
ical probability theory abound in the mathematical areas of logic and algebra. 
Standard Boolean logic, which at the same time underlies probabilistic reasoning 
(Chapter 18), can only express two states, namely truth and falsity. There is, how-
ever, a wide range of non-standard logics in which it is possible to articulate finer 
nuances of truth values. Again, we differentiate between several accounts. 

Fuzzy Logic or Fuzzy Set Theory 

A way of dealing with highly complex systems is to allow imprecision in de-
scribing properly aggregated data. The imprecision is not of a statistical nature 
(although the possibility of imprecise statistical descriptions is included as well), 
but rather of a more general modality (Klir, 1985: 138). The mathematical appa-
ratus for this new modality is recognized under the name “fuzzy logic”. It is a 
logic where the truth values range from 0 to 1, instead of being exactly one of 0 
or 1.278 The meaning of these truth values is the extent to which a statement is 
true, and not the probability with which it is true. Because fuzzy logic describes 
graduality and degrees, which are fuzzy themselves, it can be used to consider 
subjective, qualitative and obscure terms in risk modeling, which opens up the 
possibility to integrate a new type of dependencies between classical key figures 
and uncertain estimations (Borgonovo & Peccati, 2006). 

Non-Monotonic Logic 

Non-monotonic logic is an umbrella term for a variety of different logics that can 
express conflicting information and are able to handle inconsistencies, such as 𝑎 
∧ ¬𝑎 (Besnard & Hunter, 2001). To see why that is useful, consider this example 
in classical (i.e., monotonic) logic: If we are able to infer 𝑎 from a set of formu-
lae, then we can infer 𝑎 from any superset, regardless of what additional infor-
mation may be available. In non-monotonic logic, this property does not hold, 
and as a result, we can invalidate prior inferences by adding knowledge. We can 
use non-monotonic logic to deal with conflicting information which we (most 
probably) come across when we strive to model financial risks. 

278  Accordingly in the parlance of the underlying fuzzy set theory (Zadeh, 1978), we say that an 
element need not belong to a given set either completely or not at all, but may be a member of 
the set to a certain degree. In terms of uncertainty modeling, this emphasizes the idea that the 
degree of confidence in an event is not totally determined by the confidence in the opposite 
event, as assumed in probability theory (where (𝑃(𝐴𝐴) = 1) ⇒ (𝑃(�̅�𝐴) = 0) holds). 
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Modal logics  

Halpern & Rabin (1987) have expressed discomfort with the use of numerical 
probabilities and quantitative approaches to uncertainty. Instead, they present a 
modal logic which they call LL, the logic of likelihood, where an additional 
unary operator L is used to express modalities such as probability or possibility 
and that allows to speak about the likelihood of events – something that is clearly 
a concern for risk models (cf. also Fagin et al., 1990 and Darwiche & Ginsberg, 
1992). Notwithstanding the fact that likelihood is not assigned quantitative val-
ues through probabilities or ranks etc., Halpern & Rabin (1987: 380) can capture 
many properties of likelihood in an intuitively appealing way (cf. their paper). 

Quo vadis? 

We have listed several different kinds of uncertainty models, all of which appear 
to be useful for financial modeling as they entitle us to describe uncertainty with 
fewer constraints than classical probabilities that, in turn, have proved fallacious 
(Chapter 7). And even if the Central Argument was not persuasive, there is no 
reason (especially, from a systemic viewpoint) why risk models should only rely 
on one particular representation of uncertainty. Hence, in contrast to much of the 
stream of the literature which has also recognized the demand for reformation in 
favor of non-probabilistic approaches (e.g., Dutta, 2015; Katagiri et al., 2013; Liu 
et al., 2011; Huang et al., 2009b; Lin et al., 2008; Horgby, 1999), but lags behind 
when it comes to moving beyond compartmentalization towards a holistic 
view,279 we aspire to avoid writing models that are tied to a specific uncertainty 
model. Considering that there is a multitude of risk model purposes to serve, it is 
entirely implausible that one account could serve all.  
 If we are able to identify a “common language” in which to express the future 
behavior of our risk object (e.g., a portfolio) without committing to a single repre-
sentation of uncertainty, we will be able to write a model once and evaluate it with 
different uncertainty formalisms, or combinations thereof. Prior to specifying such 
a formal language, so-called monadic representations of uncertainty (15.5.), which 
we use to extend a modular and algebraic approach for describing financial con-
tracts (going back to Jones et al., 2001; see Chapter 15.4.), and which is then, when 

279  There are attempts of unification like Halpern (2005) and huge handbooks like Gabbay et al. 
(1994), which, however, leaves us with the impression that one hardly sees the wood for trees. 
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applied to the context of financial risk management, the actual core of our con-
structive proposal, we delve into ranking theory (pioneered by Professor Spohn).  

15.3. Ranking Theory 

We endorse ranking theory as a suitable (but only exemplary) alternative to a 
probabilistic foundation while strongly encouraging future work to take into ac-
count other models of uncertainty (as well as combinations of them) within our 
framework we are establishing in sections 15.5.  
 Like adherents of probability (DS and possibility) theory, Spohn (2012) 
uses a quantitative notion of belief that admits of degrees. However, in contrast 
to proper probabilities, he invokes ranks which obey laws of thought and belief 
that are not identical with the laws of probability (see below). This basic notion 
of ranking theory is simple, defined by Spohn (2009: 188) and illuminated by an 
example (in 15.5.4.):  

Definition 15.3.:   
Let 𝒜 be a Boolean algebra over W, a non-empty set of mutually ex-
clusive and jointly exhaustive possible worlds or possibilities.280 Then 
𝓀𝓀 is a negative ranking function for 𝒜 if, and only if, 𝓀𝓀 ∶  𝒜 →  ℝ*, 
i.e., 𝓀𝓀 is a function from 𝒜 into ℝ* = ℝ+ ∪ {∞} (i.e., into the set of 
non-negative reals plus infinity) such that for all A, B ∈ 𝒜:  

1) 𝓀𝓀(W) = 0 and 𝓀𝓀(∅) = ∞,  
2) 𝓀𝓀(A ∪ B) = min {𝓀𝓀(A), 𝓀𝓀(B)}  

[the law of disjunction (for negative ranks)].  

𝓀𝓀(A) is called the (negative) rank of A.  

It immediately follows for each A ∈ 𝒜 where Ᾱ denotes the comple-
ment of a set 𝐴𝐴 (or, when interpreting the set operators as a Boolean 
algebra, the negation of a term 𝐴𝐴):  

3) either 𝓀𝓀(A) = 0 or 𝓀𝓀(Ᾱ) = 0 or both (in which case 𝓀𝓀 is neutral on A) 
[the law of negation].  

280  Following Artzner et al. (1999: 206), a possibility or a state of the world might be described by 
a list of the prices of all securities and all exchange rates, when we deal, for example, with 
market risk. 
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Admittedly, we might just as well phrase things in positive terms (cf. definition 4 
in Spohn, 2009: 191). Yet, although positive ranking functions seem distinctly 
more natural, Spohn shows that negative ranks behave very much like probabili-
ties (and this parallel would remain concealed if we were thinking in positive 
terms). According to the standard interpretation, a negative ranking function 𝓀𝓀 
expresses a grading of disbelief.281 This reading suggests to regard ranking func-
tions as being designed for the representation of belief and, as a matter of fact, 
Spohn (2009: 192) contends that the study of belief is the study of the formal 
structure of ranks. Intriguingly, however, ranking theory does not deal with de-
grees right away, but with ungraded belief, from which the ranking structure 
arises. Additionally, Spohn is especially interested in the representation of the 
dynamics of (ungraded) belief. In terms of this second aim, everything stands and 
falls with Spohn’s (2009: 193) notion of conditional ranks (cf. his Def. 6 and see 
our Definition 15.11.). Ranking theory then admits a single well-defined condi-
tionalization of ranks, unlike DS belief theory, for which several divergent and 

competing methods of conditionalization have been proposed (ibid.: 220f.), 
wherefore we continue with a number of brief comparative remarks. 

Delimitation of areas in the realm of uncertainty modeling 

A large and natural field of comparison for ranking theory is nonmonotonic rea-
soning due to the joint focus on the revisability of beliefs, which is meticulously 
investigated by Rott (2001) who proved far-reaching equivalences between many 

variants on both sides (Spohn, 2009: 221). Ranking theory and possibility theory 
(Dubois & Prade, 1988a), the latter in turn stems from fuzzy logic or set theory 
(Zadeh, 1978), are formally alike,282 but that does not mean that their interpreta-
tions are the same. The same holds true when using the example of (Dempster-
Shafer) DS belief functions. While negative ranking functions, just like possibility 
measures, turn out to be formally a special case of DS belief functions, it is to be 
expected that they are interpretationally at cross-purposes (Spohn, 2009: 223). He 
(ibid.: 224) therefore concludes that ranking theory is a strong independent pillar 

281  For example, if 𝓀𝓀(A) = 0, A is not disbelieved at all; if 𝓀𝓀(A) > 0, A is disbelieved to some 
positive degree. Belief in A is the same as disbelief in Ᾱ; hence, A is believed in 𝓀𝓀 if, and only 
if, 𝓀𝓀(Ᾱ) > 0. This entails (via the law of negation), but is not equivalent to 𝓀𝓀(A) = 0. Cf. 
Spohn, 2009: 188. 

282  In fact, one can render possibility theory isomorphic to a real-valued version of ranking theory 
(Huber, 2016). 
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in that confusingly rich variety of theories found in the uncertainty literature (see 
the extract in 15.2.). In contrast to those other members of the non-classical proba-
bility family, Spohn explains, particularly, that many essential virtues of the proba-
bilistic standard (with its enormous powers, rich details and ramifications) can be 
duplicated in ranking theory (e.g., an equivalent of Bayes’ rule for conditional 
probabilities). Still, one might suspect then that Spohn can claim these successes 
only by turning ranks into fake probabilities. He has never left the Bayesian 
home, it may seem. May we, hence, prompt the question of whether Spohn’s 
(and the other) alternative formal structures eventually reduce to probabilism? 

Ranks and Probabilities 

The relation between the two is intricate: Does Spohn present his ranks as an 
independent alternative to (classical) probability or simply probability itself in a 
different disguise? The latter suspicion is aroused since Spohn (2012: 202f.) first 
fuels speculation that any probabilistic theorem can be translated into a ranking 
theorem as the translation of products and quotients of probabilities suggests that 
negative ranks would simply prove to be the logarithm of probabilities (with respect 
to a base taken to be some infinitesimal i). Yet, at secunda facie, the translation is 
not fool-proof.283 Spohn then (2012: 205) identifies algebraic incoherencies as well 
as further disanalogies that are not resolved. An elaboration of his findings would 
reveal the slight failures of a translation program which turns the sum of proba-
bilities into the minimum of ranks, the product of probabilities into the sum of 
ranks, and the quotient of probabilities into the difference of ranks – thereby, the 
probabilistic law of additivity transforms into the law of disjunction, the proba-
bilistic law of multiplication into the law of conjunction,284 and the definition of 
conditional probabilities into the definition of conditional ranks (Definition 
15.11.) etc. Moreover, if at all feasible, an analogy could only be in existence for 
ranks and nonstandard probabilities. All in all, this suggests that ranks really are 
non-standard counterparts to conventional probabilities even in terms of a formal 
comparison, let alone utter interpretational differences (and albeit we must point 
to Spohn’s work for the actual comparison due to space constraints here). 

283  Cf. Spohn (2005) for slight deviations concerning positive and non-negative instantial rele-
vance; and Spohn (1994) for slight divergences concerning conditional independence. 

284  Spohn (2009) enforces the law of conjunction (for negative ranks) as follows: 𝓀𝓀 (𝐴𝐴 ∩ 𝐵)  =  
𝓀𝓀(A) + 𝓀𝓀 (𝐵|𝐴𝐴). 
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Brief evaluation 

We can spot several advantages of ranking theory over its competitors like prob-
ability theory. Whereas Spohn (2009) provides evidence in terms of epistemolo-
gy, we seek to tailor the evaluation more to risk management purposes. In this 

light, ranking theory, for instance, enables a unified treatment of measured or 
directly measurable uncertainty and qualitative assertions in the same frame-
work, just as fuzzy logic does (Liu et al., 2011). We find a bunch of merits of such 

approaches (cf. Katagiri et al., 2013; Borgonovo & Peccati, 2006), which, how-
ever, do not authorize us to single out one specific promising formalism (let’s 
say ranking theory over fuzzy logic). The ultimate reason here for the recourse to 
ranking theory in preference to other alternative accounts subsumable under the 
label of 15.2. is, at least at this stage, rather technical than substantial. Recall that 
in our framework (15.5.) we will use ranking theory (or, in principle, any of its 
siblings) to model uncertainties as functions of the structure of financial products 
(15.4.), and not directly to cope with risks and uncertainties. Now, while the 
contestation over probability theory has indeed been substantial (Part I), the ra-
ther technical argument in favor of ranking theory is twofold: First, while we 

could appeal to ranking theory or DST to define that function (which will map 
each ‘scenario’ to a ‘qualitative probability’), monadic representations of uncer-
tainty, it would be more difficult to insert formal logics to this end (which have 
another structure, provable statements). Second, in contrast to DST (see also 
footnote 298), ranking theory is particularly well positioned to model beliefs that 
change over time, and thus integrates well with both Riedel’s (2004) call for a 
dynamic setting for risk measurement (15.1.) and our interpretation of contracts 
as uncertain sequences (15.5.). Hence, ranking theory. 

15.4. Syntax of a Language for Describing Contracts and Correlations 

Il n'est pas certain que tout soit incertain. 
(Blaise Pascal, 1623 – 1662) 

Considering non-probabilistic alternatives to uncertainty modeling (see 15.2. and 
15.3.) can be brought to another level of investigation. In lieu of glorifying prob-
ability theory that is grounded in analysis (Stroock, 2010), we give preference to 
an algebraic approach to measure extreme and systemic risks. Specifically, our 
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proposal is rooted in abstract algebra,285 which is a branch of mathematics that 
studies the composition and decomposition of structures (Pratt, 2007). 
 An algebra is a formal language and saying that our approach is algebraic is 
the same as saying that it is language-based or an interpretation of a formal lan-
guage, which is outspokenly attached to our definition 2.1 of a risk model. Alge-
bra is appealing to us as risk modelers because it abstracts away from the numer-
ical foundations of probability theory (troublesome according to IIIa) – IIIc) and 
the succeeding chapters) while retaining many of the features of the original 
account. In what follows, we outline the algebraic approach by Jones et al. 
(2001), which we develop further to model risks associated with financial prod-
ucts and instruments. We invite the reader to refer to the original paper for a 
more detailed exposition of their combinator library and its completeness or 
essentiality while our own independent contribution in this territory begins in the 
sections of 15.5., where we propound a novel interpretation, a new semantics of 
their language (syntax). 
 

Risk Measurement and Contract Specification 

In line with what Chapter 8.2. prescribes, we intend to model extreme risks from 
banks’ (not regulators’) point of view, which we now decode and specify 
through focusing on their affairs or operations and on evaluating risks of their 
financial products/instruments, derivatives in particular, represented by a bundle 
of financial contracts. A spotlight on financial contracts is worthwhile as banks 
can basically be viewed as giant ledgers of contracts that have future positive 
and negative cash flows (Ross, 2016: 170). This entitles us to spell out the de-
sired shift for risk modeling and management as an answer to RQ2.1, RQ1.9. 

Proposition 11:  
Explanatory risk modeling for banks, which should explain the impact 

of systemic or extreme risk events on their own exposures, can be 
operationalized by measuring the risks affiliated with their positions in 
financial or derivatives trading under extreme scenarios, which can be 

described structurally (as defined by the composition of derivatives 
themselves) and systemically (as defined by their behavior in the face 

of extreme system changes). 

285  Not to be confused with elementary algebra. 
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In financial trading, a position is a binding commitment to buy or sell a given 
amount of financial products or instruments,286

 such as derivatives that, in turn, 

are based on other, ‘underlying’ financial products (as opposed to, say, stocks or 

basic loans; see the glossary in Appendix A and cf. also Jacque, 2015: Chapter 1). 
Their name derives from the fact that the prices of derivatives are derived from 
their underlying instruments, via precise mathematical formulas. Derivatives can 
be used for a number of purposes, for risk management or reduction (e.g., 
through insuring against price movements) among others (J.P. Morgan, 2013). 
At the same time, they particularly carry, in classical bankers’ jargon, market and 
counterparty credit risk (e.g., due to events unspecified by the derivative con-
tract; see also Table 2).287 The risk models of derivatives (such as VaR), howev-
er, are not derived from the risk models of their underlying instruments. Instead, 
they are designed from scratch, exactly like those of their underlying entities 
(such as an asset, index, or interest rate)288 or, simply, underlyings. Apart from 
the principal short-comings elucidated in Part I, those conventional risk models 
for derivatives thus suffer from the problem that they do not make use of detailed 
structural data that is readily available in the specification of the derivatives 
themselves. We describe dynamic derivatives in a programming language for 
financial contracts with the aim of modeling the risk of derivatives as a combina-
tion of the risk of their underlyings (analysis) and expounding the function of 
basal models in more encompassing risk models (synthesis). With that in mind, 
we pursue, at the end of the day, the overall aim of capturing, explaining, and 
hedging against the impact of extreme and systemic risk events on banks’ own 
exposures (Proposition 7). Our concern does not relate to the financial system 

286  In a static sense, “position” also depicts the amount of financial products, securities or com-
modities and so forth held by a person, firm, or institution. Then, the boundary between “posi-
tion” and “portfolio” is fairly fluid – in the language of Jones et al., there is, for example, the 
“AND” operator, which can be used to merge two positions, so that in an extreme case the 
whole portfolio could be described by a single position. At the end of the day, we are interested 
in the portfolio though, which is the sum of all positions, and, therefore, the exact delineation 
between positions does not matter much. 

287  It is clear that different types of derivatives are exposed to counterparty risk to different de-
grees. For example, while swaps (and others even more) count as relatively risky, standardized 
stock options by law require the party at risk to have a certain amount deposited with the ex-
change. 

288  Apart from derivatives whose underlyings are that simple, there exist derivatives such as CDO2 
(a CDO whose underlying assets are CDOs) or CDO3 (the underlying assets are CDO2) and so 
on that are much more complex –so that one person’s derivative has become another person’s 
underlyer. 
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and its changes, but rather to market participants’ own positions and their pro-
pensity to react to radical system changes (Proposition 11). 
 Even though the number of different (and, indeed, increasingly complex) 
instruments that banks trade on a daily basis is vast and ever-increasing, it is 
indeed possible to specify a small set of primitive or atomic contracts that are all 
we need to comprehend more complex ones (cf. Jones et al., 2001). As a conse-
quence, we reason in a systemic manner (which respects analysis as well as syn-
thesis) as follows:  

Proposition 12:  
Financial products and instruments (particularly, derivatives), that are 

composed of other financial contracts or underlyings, exhibit 
structural complexity, which is reducible. Therefore, their risks can be 

meaningfully analyzed and integrated, i.e., such risks can be taken 
apart into their components and reassembled from those components. 

Proposition 12 justifies us in our modular risk measurement procedure, i.e., of 
dismantling and unfragmenting financial contracts, the latter also being the ap-
proach chosen by Jones et al. (2001). They are, however, interested in financial 
engineering/pricing (not risk), and the authors do not question probability distri-
butions of prices. Our choice of language elements does not differ from theirs, but 
albeit the price of a contract and the risk in a position are obviously related, they 
refer to different research programs, and thus, we pursue a different objective 
with the interpretation of their language (which we give in 15.5.). 
 In the following, object level terms in the language of contracts are set in 
tele type and their interpretations are set in italics. When type annotations are 
required, they will be separated from their terms by a double colon ::. Some 
contracts depend on external quantities such as interest rates or stock prices, and 
some involve not monetary amounts, but other contracts (the underlyings), for 
example as collateral to a loan (see Appendix A). A contract between two parties 
defines rights and obligations for each party. Each contract also has an acquisi-
tion date and an expiry date (horizon) – it can only be acquired within those two 
dates. 
 The language consists of primitives and combinators that describe the rela-
tionship between rights, obligations, underlyings, and so forth. 𝑧𝑒𝑒𝑒𝑒𝑜𝑜 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 
is the first primitive – a contract with no rights, no obligations, and an infinite 

 



250 Part III: The Third Way as a Road to Logic-Based Risk Modeling 

horizon.289 The logical next step is 𝑜𝑜𝑛𝑛𝑒𝑒 ∶: 𝐶𝐶𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐𝑦𝑦 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡, mapping a 
currency to a contract that pays the holder one unit of that currency immediately 
upon acquisition. 𝑔𝑖𝑖𝑣𝑒𝑒 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 reverses the rights and obliga-
tions of a contract: All of the original contract’s holder's rights become the coun-
terparty's rights and vice versa. With 𝑎𝑛𝑛𝑓𝑓 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 →
𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 we combine the rights and obligations of two contracts, whereas with 
𝑜𝑜𝑒𝑒 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 we express a choice of one of two 
contracts (not both). 
 The combinator 𝑡𝑡𝑒𝑒𝑢𝑛𝑛𝑐𝑐𝑎𝑡𝑡𝑒𝑒 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 changes or 
truncates the expiry date of a contract (after this date, it may not be acquired, but 
may well have rights and obligations). With 𝑎𝑡𝑡 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 →
𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 we can acquire a contract at a given date, and 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 →
𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 lets us replace a contract with another one after the 
expiry date of the first.  
 Contracts may depend on observable quantities such as interest rates. Such 
quantities have the type 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒. The Libor (London Interbank Offered 
Rate, see our glossary), for example, is represented as 𝑓𝑓𝑖𝑖𝑏𝑜𝑜𝑒𝑒 ∶: 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒, a 
function that returns the interest rate at each day.290 A number of primitives have 
been defined for observables: 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑛𝑛𝑡𝑡 ∶: 𝑁𝑢𝑚𝑏𝑒𝑒𝑒𝑒 → 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 produces an 
observable with a constant value, 𝑡𝑡𝑖𝑖𝑚𝑒𝑒 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 gives the num-
ber of days between the date of the observation and the parameter, and 𝑠𝑠𝑐𝑐𝑎𝑓𝑓𝑒𝑒 ∶
: 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 multiplies the value of a contract by a 
quantity observed at its acquisition date. The following example shows how to 
bring the language developed by Jones et al. (2001) into operation to describe a 
simple contract. 

Example 15.4.   
A simple, unsecured loan consists of a principal p (paid out at the be-
ginning), interest i and a time span t, in a currency c. At the beginning 

289  It is common to have a zero element in such programming languages for formal reasons (be-
cause this is demanded in definitions such as “monoid”, “monad”, etc., see 15.5.) as well as for 
practical reasons (e.g., by “𝑐𝑐 𝑜𝑜𝑒𝑒 𝑧𝑒𝑒𝑒𝑒𝑜𝑜”, we can express that there is the option to acquire the 
contract c or not – and “non-acquiring” is just expressed by the contract zero). 

290  There are primitive observables such as Libor, but also combinators that work with observa-
bles, such as e.g., truncate. In this respect, they do not represent a third category apart from 
primitives and combinators. They provide a way to access external data. 
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of the life time of a loan, we (the lender) hand out the principal. The 
principal can be expressed as a constant observable principal =
scale (constant p) (one c), and the interest is  

interest = scale (constant (i ∗ p)) (one c). After t days have passed, 
we receive the principal and interest (assuming only a single interest 
payment). Such a loan can be expressed as  

loan ∶: Number → Number → Days → Contract  
loan p  i  t = and paid received where 

                                      paid  =  give principal 
                                      received  =  at t (principal ′and′ interest) 
                                      principal =   scale (constant p) (one CHF) 
                                      interest  =   scale �constant (i ∗ p)� (one CHF) 

In this definition of 𝑓𝑓𝑜𝑜𝑎𝑛𝑛, we assumed Swiss Francs (CHF) as the default curren-
cy. The notation ‘𝑎𝑛𝑛𝑓𝑓’ means that 𝑎𝑛𝑛𝑓𝑓 is used as an infix operator, between its 
arguments, instead of its usual prefix position.291 Following the convention of 
the programming language Haskell, a standard language whose syntax is very 

similar to the mathematical notation, we use indentation to denote locally defined 
expressions (within the scope of 𝑓𝑓𝑜𝑜𝑎𝑛𝑛).292 Yet, this formulation of loan does nei-
ther cover the modularity of our approach, nor mention the possibility of default 
and assumes that the principal and interest are always paid back at t. The latter 
makes sense, since a default essentially constitutes a violation of the contract, 
and should thus not be modeled as part of the contract itself. We do, however, 
have to consider potential defaults in our interpretation of the language as well as 
more complex examples / financial instruments (15.5.). For now, Table 8 con-
tains a summary of our language constructs borrowed from Jones et al. (2001). 

291  The notation usually used in arithmetical and logical formulae and statements is called infix 
and it denotes the placement of operators between operands, i.e.,”infixed operators” – such as 
the plus sign in “2 + 2”. 

292  In the examples, we use the programming language Haskell (as did Peyton Jones et al. in their 
paper). Haskell is a functional programming language well-established in PL research, and the 
main advantage of using it in this thesis is that it gives us a clean, easy-to-read syntax. For our 
purposes, Haskell is an implementation of the typed lambda calculus, with one significant syn-
tactic change: Function application is not denoted by braces (), but by a space. So the expres-
sion “and paid received” means “and(paid, received)”, and “at t (principal 'and' interest)” 
means “at(t, and(principal, interest))” in prefix notation. 
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Table 8:  Summary of the vocabulary for financial contracts. 

Name Intuitive Meaning 
𝑧𝑒𝑒𝑒𝑒𝑜𝑜 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Empty contract 

𝑜𝑜𝑛𝑛𝑒𝑒 ∶: 𝐶𝐶𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐𝑦𝑦 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Contract that pays one unit of currency (CHF) 
upon acquisition 

𝑔𝑖𝑖𝑣𝑒𝑒 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Reverses the rights and obligations of a con-
tract 

𝑎𝑛𝑛𝑓𝑓 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Combines the rights and obligations of two 
contracts 

𝑜𝑜𝑒𝑒 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Immediately choose one of two contracts 

𝑎𝑛𝑛𝑦𝑦𝑡𝑡𝑖𝑖𝑚𝑒𝑒 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Acquire the underlying contract at any time 
before it expires 

𝑎𝑡𝑡 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Acquire the underlying contract at a date 

𝑡𝑡𝑒𝑒𝑢𝑛𝑛𝑐𝑐𝑎𝑡𝑡𝑒𝑒 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Changes the horizon of a contract 

𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ∶: 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Replaces a contract with another one after the 
expiration of the first 

𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑛𝑛𝑡𝑡 ∶: 𝑁𝑢𝑚𝑏𝑒𝑒𝑒𝑒 → 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 Observable with a constant value 

𝑠𝑠𝑐𝑐𝑎𝑓𝑓𝑒𝑒 ∶: 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 → 𝐶𝐶𝑜𝑜𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑐𝑐𝑡𝑡 Multiplies the value of a contract by a quantity 
observed at its acquisition date 

 
𝑡𝑡𝑖𝑖𝑚𝑒𝑒 ∶: 𝐷𝑎𝑡𝑡𝑒𝑒 → 𝑂𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑎𝑏𝑓𝑓𝑒𝑒 

Get the number of days between the date of 
the observation and the parameter 

In what follows, we will define the semantics of contracts, by translating each 
part of the object-level syntax into the meta-level language of mathematics. 

15.5. Semantics: Financial Contracts as Uncertain Sequences in a Non-
Probabilistic Risk Model  Context 

We now have a vocabulary for describing contracts at hand, but we have not 
specified the meaning of those contracts. Apart from grasping the valuation of a 
structurally complex contract as only depending on the valuations of the simpler 
contracts it consists of, our risk modeling ambitions are indeed based on another 
key idea: namely, that financial contracts (instruments) in our language are inter-
preted as uncertain sequences of transactions rather than as single values (or 

 

www.ebook3000.com

http://www.ebook3000.org


15. Theoretical Foundations of a Logic-Based Risk Modeling Approach 253 

probability distributions).293 In the next sections (15.5.1. and 15.5.2.), we will 
shape the notion of uncertain sequences intuitively, by developing an example. 
The formal definition of uncertain sequences will be given thereafter (15.5.3.) 
before they are instantiated by means of ranking theory (15.5.4.). Ultimately, we 
introduce another layer of interpretation, namely when we interpret uncertain 
sequences in turn as scenarios (15.5.5.). 

15.5.1. Uncertain sequences by example 

Consider the unsecured loan from Example 15.4. It involves two transactions: 
First, in t1, we transfer the principal p to the borrower, and later in the second 
transaction t2 we receive the principal plus interest i in return. We are using the 
following graphical notation to describe sequences of transactions: 

Edges between nodes are annotated with transactions, and their direction indi-
cates chronological order.     nodes mark the end of a sequence, and       nodes are 
used for non-empty sequences. The value of the first transaction is 𝑡𝑡1  =  −𝑝𝑝 (the 
principal) and the value of the second transaction is 𝑡𝑡2  =  𝑝𝑝 + 𝑖𝑖 (return of loan 
plus interest), resulting in the total value of this contract: 𝑡𝑡1 + 𝑡𝑡2  =  −𝑝𝑝 + 𝑝𝑝 +
𝑖𝑖 =   𝑖𝑖 – exactly the interest paid by the borrower. Each node in the sequence 
represents the transactions on a single day, starting from the beginning of the 
contract. For our example, this means that t1 occurs on the first day and t2 on the 
second day, so the loan is paid back on the very next day. Longer durations, for 
instance three instead of two days (and so on), will result in a number of edges 
with the empty transaction e: 

293  “Transaction” is the key concept in double-entry bookkeeping, where it describes the move-
ment of some commodity (money or other) from at least one debit account to at least one credit 
account. And in fact, to be able to properly work with the assumptions that our price valuations 
are based on, we use the concept of double-entry bookkeeping, which has been applied in the 
accounting world for hundreds of years – but only for past data. We extend it so that it can be 
used for future data as well (cf. Müller & Hoffmann, 2017b). 

t1 t2 
 ×
 

 ×
 

t1 t2 e 

 ×  
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In the examples, we will mostly elide sequences of empty transactions, but they 
are useful for modeling real-world contracts where there may be long periods of 
inactivity. Let us now turn to the uncertainty contained in contracts. We have not 
considered the alternate outcome, that the borrower defaults and we do not get 
back the principal. In this case, t1 would be followed not by t2, but by a third 
transaction 𝑡𝑡3  =  0. To show that there are two potential outcomes of loan, we 
will display sequences of transactions as directed acyclic graphs (DAG): 

 

The total value of the contract now depends on which path we take through the 
graph – it is either 𝑡𝑡1 + 𝑡𝑡2, or 𝑡𝑡1 +  𝑡𝑡3. If we have some knowledge of the likeli-
hood of each outcome, we can annotate the edges of the graph with an uncertain-
ty value to obtain a distribution of all possible outcomes for this contract. For 
now, we are drawing on a scale of likelihood with values 
{𝑖𝑖𝑚𝑝𝑝𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒, 𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦, 𝑝𝑝𝑓𝑓𝑎𝑢𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒, 𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦, 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛} (see Example 15.3.). The 
positive path (loan is paid back) ending in t2 consists of a 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛 step and a 
𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦 step, and the negative path ending in t3 has a 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛 step followed by an 
𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦 step. To get the likelihood for an entire path based on the likelihoods of 
its steps, we apply the 𝑚𝑖𝑖𝑛𝑛293F

294 operator succesively. We thus end up with the 
following mapping of likelihoods to contract values: {𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦 ↦   𝑖𝑖, 𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦 ↦
 �−𝑝𝑝}. 

 
Figure 22:  Transactions of an unsecured loan annotated with uncertain values. 

294  Assuming an ordering from 𝑖𝑖𝑚𝑝𝑝𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒 to 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛. 
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In other words, we will gain the interest payment in the likely outcome, and lose 
the principal in the unlikely outcome. If we had tied in numerical probabilities 
instead of qualitative likelihoods, we would have multiplied the edge probabili-
ties to arrive at the path probability, and we could also compute derived 
measures such as the expected value of the contract. However, as stated earlier 
(15.2.), we wish to remain flexible in the choice of uncertainty formalism(s), so 
we do not commit to a specific model here. For this reason, we stick with 
{𝑖𝑖𝑚𝑝𝑝𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖𝑏𝑓𝑓𝑒𝑒, … , 𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛} in this example and will make only a small number 
of assumptions about the uncertainty model when we formalize our approach in 
the following. 

Modularity and Structural Complexity 

In the paragraphs above, we have translated contracts to uncertain sequences, 
which are DAGs whose nodes mark the beginning or end of a sequence and 
whose edges are branches annotated with likelihoods or some measure of uncer-
tainty. In 15.4. (Proposition 12), we pleaded for the language of financial con-
tracts to be modular, so that its interpretations can be modular, too. For a graph-
ical demonstration of this modularity we need to introduce a more complex 
contract than 𝑓𝑓𝑜𝑜𝑎𝑛𝑛. 

Example 15.5. 
Loans in financial markets are usually backed by a collateral, an asset 
or security that is provided by the borrower in exchange for the princi-
pal. If the borrower fails to make payments on the loan, the lender 
keeps the principal to compensate for the default. Mortgages and car 
loans are familiar examples (backed by the property or car, respective-
ly), but in principle any kind of asset or security can function as collat-
eral. In our parlance of financial contracts, we can define a function 
𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 (co is short for collateralized) with the following signature: 

coLoan ∶: Contract → Number → Number → Days → Contract 

Compared to 𝑓𝑓𝑜𝑜𝑎𝑛𝑛 from Example 15.4., 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 takes an additional 
argument, the collateral. The type of this argument is Contract, which 
demonstrates the modularity of our approach: It could be any kind of 
financial contract, and we could even process the result of 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 to 
construct yet more complex contracts (which would lead us to Collat-
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eralized Debt Obligations, CDOs, which are packages of loans sold in 
tranches staggered by credit ratings; see the glossary). In any case, 
knowing that we (the lender) take the collateral at the beginning of the 
loan, and return it at the end of the loan, we can define 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 as fol-
lows: 

coLoan ∶: Contract → Number → Number → Days → Contract 
coLoan coll  p i t =   (loan  p i t) 

 ′and′ (get coll) 
 ′and′ (truncate t (give coll)) 

In this definition, we can see that coLoan consists of the loan function 
we defined earlier, and two additional transactions: get coll at the be-
ginning of the contract, and give coll after a period of t days.  

How does coLoan look in the graphical notation? For this example, we first need 
to specify a collateral. Let us assume the loan is backed up with a corporate bond 
(yet another loan!) which results in a series of five interest payments, c1 to c5. At 
each step, there is a possibility that the bank defaults, in which case the sequence 
of transactions ends with e and there are no additional payments. 

Figure 23:  Transactions in a bond brought forward as collateral for a loan. 

Figure 23 shows that there are five possible outcomes for the payments received 
from the bond: The successful outcome (all five transactions from c1 to c5), and 
the four unsuccessful options with an opportunity for default between each pay-
ment and the next. Combined with the transactions for the loan, we get the fol-
lowing graph, in which the loan is due after two payments have been made on 
the bond (Figure 24): 

 ×
 

c1 c2 c4 c3 c5 

e e e e 

 ×
 

 ×
 

 ×
 

 ×
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Figure 24:  Transactions in a collateralized loan. 

This graph has a number of paths and we marked four of them with the letters A 
to D. Path A is the most positive outcome (from our / the lender’s point of view): 
We hand out the principal of the loan (t1), receive the collateral (which results in 
payments c1 and c2) and get the principal and interest back, in exchange for the 
collateral (so there is only one more transaction t2). Path B is the scenario where 
the borrower defaults: Instead of getting back the principal and interest, we are 
left with an empty transaction t3 when the loan expires, but we keep the collateral 
and thus receive payments c3, c4 and c5. Note that after each of the collateral's 
payments ci it is possible that the bond issuer defaults, rendering our collateral 
worthless and resulting in a termination of the sequence of payments. In path C, 
the loan is paid back but the company issuing the collateral defaults after the first 
payment, c1. In this case, we still make a profit from the loan, but we miss out on 
c2, the second interest payment on the bond. Path D is the worst case: Both the 
borrower and the bond issuer default. 

15.5.2.  From contract value to risk 

The examples should have made clear how we intend to benefit from the intro-
duction of uncertain sequences. But one question still has to be scrutinized be-
fore we can turn to a formal definition of our LBR models: How do uncertain 
sequences relate to risk?  
 Consider the scenarios A to D in Figure 24. Each of them corresponds to the 
default status of the two counterparties involved in the transaction (borrower and 
bond issuer): In path A, there is no default, in path B the borrower defaults, in 
path C the bond issuer defaults after one payment and in path D both counterpar-
ties default after the first payment on the bond. There are also several variations 
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of path B, which we did not mention explicitly, arising from a potential default 
of the bond issuer after each payment. By annotating the edges with qualitative 
probabilities, we can assign a likelihood to each path.  
 In a second step, we give a formal definition of risk models in terms of 
uncertain sequences (Definition 15.8.1.) and formulate predicates (see 15.5.5.) 
for (really or realistically) possible negative events the occurrence of which is 
not certain, but only more or less likely, that is for scenarios we are interested in. 
For example, “2 or more counterparties default AND our loss exceeds 33%” 
would be such a risk event or scenario. We can then compute the likelihood 
(which does not have to be the same as a numerical probability, see Chapter 18) 
that a predicate holds for a specific uncertain sequence. 

15.5.3.  Formalization of the approach 

Having gained an intuition for uncertain sequences we will now define them 
formally. Figure 24 shows that even a standard contract such as 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 can 
result in a complex uncertain sequence with many different possible paths. The 
structural complexity of the model grows fast when contracts are combined. 
With 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 we have only touched the surface of what is possible in financial 
trading (Célérier & Vallée, 2014; Jacque, 2015). For example, a number of col-
lateralized loans can be bundled up into a collateralized debt obligation and sold 
to investors at different ‘tranches’ (seniority for payments). While such a CDO 
(glossary) containing multiple 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛𝑠𝑠 would be impossible to visualize graph-
ically in this format, it is straightforward to describe them as a composition of 
uncertain sequences using the definitions below as well as the vocabulary of 
contracts from Section 15.4. 
 To avoid having to draw out each contract individually, as we did with 
𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛 in the example above, we will now give an interpretation of all contracts 
as uncertain sequences. The syntax of the language for contracts by Jones et al. 
(2001) was defined using principles from programming language research, and 
in the original paper, an interpretation is provided by means of denotational 
semantics (which is also essential for the modularity of the approach).295 In the 
same spirit, we are proposing our risk-based interpretation of the language em-

295  Denotational semantics is a way of describing the meaning of programming languages, by 
assigning a meaning (the “denotation”) to each primitive expression of the language. The 
meaning of an entire program is then derived from the meanings of its expressions. 
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ploying denotational semantics. We first establish the formal model of uncertain-
ty monads, a concept from category theory, as the cornerstone of our LBR risk 
modeling framework. In doing so, we follow the tradition established by Moggi 
(1991) and others, namely of viewing computations as monads in a given catego-
ry, which is rooted in abstract algebra, underscoring that monads have been em-
ployed to solve related problems. As a consequence, we will then proceed with a 
definition of uncertain sequences as an algebraic data type using uncertainty 
monads. 

Uncertainty monads 

We will briefly review the relevant definitions and notation from category theo-
ry. This section is kept very terse due to space constraints, but we ensured that it 
is well compatible with the scheme established in MacLane (1971), so we refer 
the reader to his book for a thorough exposition. A category 𝑪𝑪 consists of a set of 
objects 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, … and a set of arrows 𝑓𝑓, 𝑔𝑔, …. Each arrow points from a ‘do-
main’ object to a ‘range’ object, written as 𝑓𝑓 ∶ 𝐴𝐴 → 𝐵𝐵. Each object 𝐴𝐴 has an 
identity arrow 1𝐴𝐴, and there is an associative operation ’о‘ on arrows, that for 
every two arrows 𝑓𝑓 ∶ 𝐴𝐴 → 𝐵𝐵, 𝑔𝑔 ∶ 𝐵𝐵 → 𝐶𝐶 returns an arrow g о 𝑓𝑓 ∶ 𝐴𝐴 → 𝐶𝐶. 
 For our purposes, we can think of the objects as sets and of the arrows as 
functions between those sets. A category has products if for any two objects A 
and B, there is an object 𝐴𝐴 × 𝐵𝐵 with unique arrows 𝜋𝜋𝐴𝐴 ∶  𝐴𝐴 × 𝐵𝐵 → 𝐴𝐴 and 𝜋𝜋𝐵𝐵 ∶
 𝐴𝐴 × 𝐵𝐵 → 𝐵𝐵. All categories together form a category whose objects are catego-
ries and whose arrows are called functors. A functor 𝐹𝐹 ∶  𝑪𝑪 × 𝑪𝑪 → 𝑪𝑪 from the 
product category of C to C is a bifunctor. Functors themselves also form a cate-
gory, the arrows of which are called natural transformations (arrows between 
functors).  An object 1 is called the terminal object of a category 𝑪𝑪 if for every 
object A in 𝑪𝑪 there is a unique arrow 𝐴𝐴 → 1. 
 Monoidal categories are categories with a binary operation that resembles 
the properties of monoids – associative and equipped with a unit. We need 
monoidal categories in order to define uncertainty monads. A strict monoidal 
category (𝐶𝐶, ⎕, 𝑒𝑒) is a category C with a bifunctor ⎕: 𝐶𝐶 × 𝐶𝐶 → 𝐶𝐶 which is 
associative, ⎕ (⎕ × 1) =  ⎕ (1 ×  ⎕) ∶   𝐶𝐶 × 𝐶𝐶 × 𝐶𝐶 → 𝐶𝐶 and an object e 
which is a left and right unit for ⎕ ∶   ⎕(𝑒𝑒 ×  1)  =   𝑖𝑖𝑖𝑖𝐶𝐶  =  ⎕(1 ×  𝑒𝑒). In 
order to reduce notation overhead, we will only work with strict monoidal cate-
gories in this thesis, even though our definitions can be generalized to all 
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monoidal categories. Any category with finite products is monoidal, including 
the category of sets, and the category of endofunctors. The latter is monoidal in a 
second sense, with composition о as the binary operation and IdC (the identity 
functor) as unit: (𝑪𝑪𝑪𝑪, о, 𝐼𝐼𝐼𝐼𝑪𝑪). Monoidal categories are important for LBR be-
cause we will formulate risk models as a special class of objects in monoidal 
categories. 
 A monad over a category 𝑪𝑪 is a triple (𝑀𝑀, 𝜂𝜂, 𝜇𝜇) where 𝑀𝑀 ∶ 𝑪𝑪 → 𝑪𝑪 is an 
endofunctor and 𝜂𝜂 ∶  1𝑪𝑪  → 𝑀𝑀  and 𝜇𝜇 ∶  𝑀𝑀2  → 𝑀𝑀 are natural transformations for 
which the equalities 𝜇𝜇 о 𝑀𝑀𝜇𝜇 =  𝜇𝜇  о 𝜇𝜇𝑀𝑀 and 𝜇𝜇 о 𝑀𝑀𝜂𝜂 = 𝜇𝜇 о 𝜂𝜂𝑀𝑀 =  1𝑀𝑀 hold. 𝜂𝜂 is 
called the unit of M and 𝜇𝜇 is called multiplication.  
 Common Monads. We will now define two specific instances of a monad 
that are well-known in functional programming. First the annotation monad, also 
known as the “writer monad”, based on a monoid: For every monoid (R, ∙, 1) the 
annotation monad of R, short AnnotR, is given by AnnotR : 𝐴𝐴 → 𝑅𝑅 × 𝐴𝐴 (tuples of 

R and A) with η (x) = (ϵ, x) as its unit and µ ��r1, (r2, x)�� = (r1 ∙ r2, x) as its 

multiplication. It annotates values a with annotations 𝑟𝑟 ∈  ℝ and is presented as 
a tuple (𝑟𝑟, 𝑎𝑎). Second is the list monad (indeterminism monad). The empty list 
will be denoted with [], and [x1, x2, …, xn] is a list with n elements x1 to xn. The 
concatenation of two lists is defined as [x1, …, xn] ◊ [y1, …, yl] = [x1, …, xn, y1, 
…, yl]. The list monad consists of lists of values, and its multiplication is list 
concatenation. The list monad is denoted by 𝐿𝐿𝐿𝐿𝐿𝐿 ∶  𝐴𝐴  →  𝐴𝐴∗ (lists of A), with 
𝜂𝜂 (𝑥𝑥) = [𝑥𝑥]  (a list with one element) and 𝜇𝜇 ([𝑙𝑙1, … , 𝑙𝑙𝑛𝑛]) =  𝑙𝑙1  ◊  …  ◊  𝑙𝑙𝑛𝑛. 
 In LBR, we want to describe trades and other objects of risk analysis as 
uncertain sequences. Sequences traditionally consist of a head and a tail, and in 
uncertain sequences the tail is given as a value in some uncertainty monad M. 
We will make precise the notion of uncertainty monads prior to formalizing the 
notion of uncertain sequences thereafter. We start by introducing another way of 
looking at monads. 

Definition 15.4. (Monoid in Category). 
Let (𝑪𝑪,⎕, 𝑒𝑒) be a monoidal category. Then a monoid in C is a triple 
(𝑐𝑐, 𝜇𝜇 ∶ 𝑐𝑐⎕𝑐𝑐 →   𝑐𝑐, 𝜂𝜂 ∶   𝑒𝑒 → 𝑐𝑐) such that c is an object of C and the 
following diagrams commute: 
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Figure 25:  Two commutative diagrams of objects (vertices) and morphisms (arrows or edges) such 
that all directed paths in the diagrams with the same start and endpoints lead to the same 
result by composition.296 

Every monad over C is a monoid in 𝑪𝑪. Uncertainty monads now are not only 
monoids, but semirings in 𝑪𝑪, as defined below: 

Definition 15.5. (Semiring in Category).  
Let 𝑪 be a category such that C is monoidal in two products  ⎕∗, ⎕+  
with units e ∗,  e +  respectively. Then  (𝑪,  ⎕∗, e ∗,  ⎕+,  e +) form  a 
semiring if, and only if,   

1)

2)

⎕∗ left distributes over  ⎕+ ∶ c ⎕∗ (c ⎕+ c)  =   (c ⎕∗𝑐𝑐  )⎕+(c ⎕∗c) 
and
Multiplication with e+ annihilates 𝑐𝑐  ∶  c ⎕ ∗e+ =   e + =   e + ⎕∗𝑐𝑐  .

Intuitively, in the context of uncertainty monads, 𝑒𝑒 + maps a value (of A) to an 
element in MA with ‘zero certainty’ (for example, a probability of 0, or the 
knowledge that a logical proposition is false; see 15.2.). From the same perspec-
tive, e∗ can be seen as the certain map, expressing absolute certainty – for exam-
ple, a probability of 1. ⎕+ fulfills the role of a logical ‘or’ operator as it is used 
to combine the uncertainty of its two components additively. If M is a semiring  

296  Commutative diagrams play the role in category theory that equations play in algebra. Cf. 
MacLane (1971) and Barr & Wells (2013: Chapter 1.7) for more information, also on how to 
read such diagrams. 

𝑐𝑐× (𝑐𝑐×𝑐𝑐) (𝑐𝑐×𝑐𝑐)×𝑐𝑐 (𝑐𝑐×𝑐𝑐) 

        1×𝜇𝜇  𝜇𝜇 

𝑐𝑐×𝑐𝑐 𝑐𝑐 

1×𝑐𝑐 𝑐𝑐×𝑐𝑐 𝑐𝑐×1 

        𝜆𝜆          𝜇𝜇     𝜎𝜎 

𝑐𝑐 𝑐𝑐 𝑐𝑐 

= 𝜇𝜇×1 

𝜇𝜇 

𝜂𝜂×1 1×𝜂𝜂 

= = 
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in the category of endofunctors, then e +(𝑝𝑝) should be the neutral element of  ⎕+ 
for all 𝑝𝑝 ∈ 𝐴. Two well-known additive monads are the powerset monad with 
set union ∪ as addition, and the list monad with list concatenation as addition. 
Both are also monads with null: The empty set for the powerset monad and the 
empty list for the list monad.  

Definition 15.6. (Uncertainty Monad).   
An uncertainty monad is a semiring in (𝑪,   ⎕∗, e ∗,   ⎕+,  e +). 

Uncertainty monads provide us with a basic toolkit for working with uncertain 
values: We have  ⎕∗ and  e ∗ for constructing values with absolute uncertainty  and
certainty, and ⎕+ and e + for combining uncertain values. Every uncertainty 
monad then has a number of additional constructors that take into account its 
specific structure. The list monad is an uncertainty monad as the    list [𝑎, 𝑏, 𝑐] can 
be seen as representing three possibilities 𝑎, 𝑏 and 𝑐, all with the same likelihood. 
⎕∗ is the empty list, and    ⎕+ is the list concatenation. Annotation monads on
their own are not uncertainty monads, as they lack the  ⎕∗  and  ⎕+ operations,
although they allow for a more fine-grained representation of uncertainty 
(through the annotation value rather than lists). However, we can construct an 
uncertainty monad over any monoid through composition with the list monad. 
The composition M1 о M2 of two monads does not yield a new monad automati-
cally, but only in specific cases. Luckily, Lst о AnnotR is a monad for any 
monoid (R, ∙, 1). 

Proposition 13:  
Let (R, ·, 1) be a monoid. Then Lst о AnnotR is an uncertainty 

monad.297 

Example 15.6. 
Consider the following example, with the monoid (ℝ≥0,∗, 1) (multipli-
cation of real numbers). [(0.5, a), (0.3, b) (0.2, c)] means that the 
probability of a is 0.5 and so on. The unit 𝜂 maps an element 𝑝𝑝 to the 
certainty [(1, x)], and 𝜇𝜇 ([(p1, [(p11, v11), (p12, v12)]), (p2, [(p21, v21), 
(p22, v22)])]) is obtained by multiplying the probability of each inner  

297  The proof of this proposition can be found in Appendix F. 

www.ebook3000.com

http://www.ebook3000.org


15. Theoretical Foundations of a Logic-Based Risk Modeling Approach 263 

element pik with that of its outer element pi: [(p1 * p11, v11), (p1 * p12, 
v12), (p2 * p21, v21), (p2 * p22, v22)] and so forth. 

The Giry monad (Giry, 1982) is an uncertainty monad that gives rise to a classical, 
probabilistic interpretation of uncertainty with continuous distributions. However, 
we saw that standard probability theory comes at a cost which is not only compara-
tively high, but really unbearable. The new and interesting twist now is that there 
are many other monads besides the classical probability monad that are apt for 
modeling uncertainty. For example, the set of belief assignments forms a monoid 
under the fusion operation defined in Dubois & Prade (1988b), giving rise to a 
model of uncertainty that is still quantitative, but not probabilistic (see 15.2., “fuzzy 
logic or fuzzy set theory”).298 Ergo, in the cadre of different uncertainty monads, 
the performance of LBR models rooting in ranking theory, for example (see 
15.5.4.), or any other non-standard approach to measure uncertainty (15.2.), can in 
principle be benchmarked against standard probabilistic strategies (manifested in 
the Giry monad, see also 15.5.5.). On top of that, we are also planning to investi-
gate a monad based on formal methods of argumentation (cf. Besnard & Hunter, 
2001), which allows for a more principled handling of inconsistencies than our 
current approach (see also 15.2. “non-monotonic logic”). 

Uncertain sequences 

Monads can be interpreted as models of computation (Moggi, 1989). In that sense, 
uncertainty monads are models of uncertain computations. In order to be able to 
reason about sequences of transactions, we now elaborate on uncertain sequenc-
es. Uncertain sequences have a structure that is not linear (like that of “certain” 
sequences), but is determined by an uncertainty monad. In Definition 15.7., we 
grasp uncertain sequences SM over a monad M as a union of ⋆ (the empty se-
quence) and 𝑀 (1𝑪  ×  𝑆𝑀) (a pair of a value and the rest of the sequence). 

Definition 15.7. (Uncertain Sequences).  
Every uncertainty monad M over a category C gives rise to a functor 
SM : C → C, the uncertain sequences over M. SM is defined as: 

𝑆𝑀 = 1 + 𝑀 (1𝑪  ×  𝑆𝑀) 

298  The better-known Dempster fusion operator (in DST, see also 15.2) is not associative, because of 
its normalization factor. Therefore, it cannot be used as the multiplication operator in a monoid. 
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SM resembles the typical head-tail structure of lists in functional programming. 
The head is the first element in the tuple, 1C – a concrete value. The tail is the 
rest of the list, again of type SM. What makes this an uncertain list is the fact that 
it is wrapped in an uncertainty monad M. Uncertain sequences SM are functors, 
but generally not monads – except for some specific cases of M. The empty se-
quence will be denoted with ⋆. 

Example 15.7.  
The transactions of the 𝑙𝑜𝑜𝑎𝑛𝑛 from the previous example (see also Fig-
ure 22) can be conveyed to the following uncertain sequence. The 
monad in this case is Lst о AnnotR, a combination of the list monad and 
the annotation monad. 

𝑠𝑠𝑙𝑜𝑎𝑛  =   [(𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛, (𝑡𝑡1, [ 
�𝑙𝑖𝑖𝑘𝑒𝑒𝑙𝑦, (𝑡𝑡2,⋆)�, 
�𝑢𝑛𝑛𝑙𝑖𝑖𝑘𝑒𝑒𝑙𝑦, (𝑡𝑡3,⋆)� 
]))] 

This example shows how the graphical notation maps to values of Lst о AnnotR, 
and from now on, we will only use the graphical notation. 
 As specification of Definition 2.1. and Definition 2.2., we call here a risk 
model an uncertain sequence whose elements form a semigroup (to enable analy-
sis of different scenarios). 

Definition 15.8.1. (Specification of Risk Models).  
If M is an uncertainty monad and (R, ∗) a semigroup, then we use the 
term “risk model” to refer to uncertain sequences s ∈ 𝑆𝑀  (𝑅). 

Given two risk models 𝑠𝑠1, 𝑠𝑠2  ∈  𝑆𝑀  (𝑅) and semigroup (R, ∗), we can combine 
them into a single risk model s1 ⊙∗ s2 by adding the elements at each step, effec-
tively taking the cross product of the two sequences. 

Definition 15.8.2. (Combination of Risk Models).  
Let M be an uncertainty monad, (R, ∗) a semigroup, and 𝑠𝑠1, 𝑠𝑠2  ∈
 𝑆𝑀 (𝑅) be two uncertain sequences. The combination of s1 and s2, 
short s1 ⊙∗ s2 is defined as 
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s1 ⊙∗ s2   = 

 

The empty sequence ⋆ is a neutral element wrt. ⊙∗, giving rise to a monoid of 
risk models (𝑆𝑀  (𝑅), ⊙∗, 1) provided that (R, ∗) is itself a semigroup. The ⊙∗ 
operation is an important part of the toolkit for building risk models with LBR, 
because it allows us to fuse a number of risk models (e.g., different trades) to 
form a single, combined risk model. Being able to ‘add’ multiple risk models is 
of great theoretical and practical importance, and we will get back to this topic in 
Chapter 16.2. 
 Finally, we will need to be able to compute the prefix of length n of an 
uncertain sequence, in the same way we could compute the prefix of a regular 
(certain) sequence.  

Definition 15.9. (Prefix of Uncertain Sequence).  
Let M be an uncertainty monad, (R, ∗) a semigroup, s ∈ 𝑆𝑀  (𝑅) an un-
certain sequence and 𝑛𝑛 ∈  ℕ. The prefix of length n of s is defined as 

 

Example 15.8.  
The sequence sloan from Example 15.7. only has a maximum length of 
two, so we can compute prefixes between 0 and 2 in length: 

𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑠𝑠𝑙𝑜𝑎𝑛 , 0)  =  ⋆ 
𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑠𝑠𝑙𝑜𝑎𝑛 , 1) =   [�𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑖𝑖𝑛𝑛, (𝑡𝑡1,⋆)�] 
𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑠𝑠𝑙𝑜𝑎𝑛 , 2) =   𝑠𝑠𝑙𝑜𝑎𝑛  

The operations ⊙∗ and 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 are defined independently of the underlying 
uncertainty monad and can be used with any risk model. 

15.5.4.  Concrete instantiations of uncertainty monads: ranking functions 

Uncertainty monads can be instantiated in many ways, and it is our objective to 
explore a number of instantiations in future work (cf. also Müller & Hoffmann, 
2017a, 2017b). This section serves two purposes: To demonstrate how uncertain-

  �
𝑠𝑠1   𝑖𝑖𝑖𝑖 𝑠𝑠2 = ⋆
𝑠𝑠2   𝑖𝑖𝑖𝑖 𝑠𝑠1 = ⋆
 𝑠𝑠1 > > = (ℎ1,  𝑡𝑡1) →  (𝑠𝑠2 > > = (ℎ2,  𝑡𝑡2) →  𝜇𝜇 (ℎ1  ∗  ℎ2, 𝑡𝑡1  ⊙∗  𝑡𝑡2))        𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 

𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑠𝑠, 𝑛𝑛) =   �
⋆           𝑖𝑖𝑖𝑖 𝑛𝑛 = 0  𝑜𝑜𝑒𝑒  𝑠𝑠 = ⋆
𝑠𝑠 > > =   (ℎ, 𝑡𝑡)   →   𝜇𝜇�ℎ, 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝(𝑡𝑡, 𝑛𝑛 − 1)�    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 
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ty monads can be instantiated for a given model, and to establish the foundation for 
our case study in Chapter 16. At this point, we would like to recall that we have an 
ambitious aim which we pursue by conceptualizing LBR as a non-standard scheme 
for measuring risks in complex systems: namely fundamentally, to offer an alterna-
tive to classical probability theory as the foundation of risk modeling. We achieve 
this by making our framework, uncertain sequences (15.5.3.), parametric in the 
choice of uncertainty representation. Different possibilities of representing uncer-
tainty are subsumed under the label of 15.2. and ranking theory stands out (15.3.). 
 As stated earlier, ranking functions (Sphon, 2009: 188) are based on the 
idea of ranking propositions by disbelief, or degree of surprise (Halpern, 2005). 
Propositions that are more plausible (believed) are assigned lower ranks than less 
plausible ones. The lowest possible rank is 0, denoting certainty, and the highest 
is ∞, denoting impossibility. Building on Definition 15.3. (Ranking Function), 
we illustrate the employment of ranking functions by an example. 

Example 15.9. 
For our LBR risk models, we are interested in the behavior of counter-
parties, specifically in their ability to meet their contractual obliga-
tions. We will assume three counterparties, A, B and C and denote 
their default events with dA, dB and dC. Table 9 shows the ranking func-
tion 𝓀𝑑. The most likely case is that none of the three counterparties 
default, and the least likely case (rank 30) is that all three default. The 
case of one default is much more likely (rank 10) and the case of two 
defaults is ranked 25. 

Table 9:  Ranking function 𝓴𝒅, showing the likelihood of default (di) for three counterparties A, B 
and C. The most likely case is 𝒅𝑨���� ∧  𝒅𝑩���� ∧  𝒅𝑪����, meaning no defaults. 

  𝓀 𝑑𝐴  ∧  𝑑𝐵 𝑑𝐴  ∧ 𝑑𝐵���� 𝑑𝐴��� ∧  𝑑𝐵 𝑑𝐴��� ∧  𝑑𝐵���� 
  𝑑𝐶 30 25 25 10 

 𝑑𝐶��� 25 10 10 0 

But how do we get from a given ranking function 𝓀 to an uncertainty monad 
𝑀𝓀? In order to be able to utilize our earlier definition of an Lst о Annot, the 
combination of list and annotation monad, we need an associative operation on 
ranking functions with a unit. 
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Definition 15.10. (Combination of Ranking Functions).   
Let 𝓀𝓀, 𝜆𝜆 be two ranking functions over 𝒜. The combined ranking func-
tion 𝓀𝓀 ⊕  𝜆𝜆 is defined as 

(𝓀𝓀 ⊕  𝜆𝜆) (𝐴𝐴) = min  {𝓀𝓀 (𝐴𝐴), 𝜆𝜆 (𝐴𝐴)}. 

This operation is clearly associative, but it does not have a unit (i.e., there is no 
𝓀𝓀1 such that 𝓀𝓀1 ⊕  𝓀𝓀 =  𝓀𝓀 =  𝓀𝓀 ⊕  𝓀𝓀1). The reason is that stipulating 
𝓀𝓀1 (𝑝𝑝) =  ∞ for all x would violate the conditions of Definition 15.3., but any 
other definition would violate the property that 𝓀𝓀1  is a unit under ⊕. We solve 
this problem by considering conditional ranking functions instead, compliant 
with the approach by Halpern (2005). Intuitively, a conditional ranking function 
𝓀𝓀 (𝑉𝑉|𝑈) tells us the rank of V under the condition that U is true (that is, under 
the condition that U has rank 0). This means for example that 𝓀𝓀 (𝑈|𝑈) = 0  for 
all 𝑈 ≠  ∅. Formally, conditional ranking functions are introduced as follows: 

Definition 15.11. (Conditional Ranking Function).  
A conditional ranking function 𝓀𝓀 is a function mapping a Popper al-
gebra299 2𝑊  ×  𝒜′ 𝑡𝑡𝑜𝑜 ℕ∗ satisfying the following properties: 

1) 𝓀𝓀 (∅|𝑈) =  ∞  𝑖𝑖𝑖𝑖 𝑈 ∈  𝒜′

2) 𝓀𝓀 (𝑈|𝑈) =  0  𝑖𝑖𝑖𝑖 𝑈 ∈  𝒜′

3) 𝓀𝓀 (𝑉𝑉1  ∪  𝑉𝑉2 | 𝑈) = min{𝓀𝓀 (𝑉𝑉1|𝑈), 𝓀𝓀 (𝑉𝑉2|𝑈)}   𝑖𝑖𝑖𝑖 𝑉𝑉1  ∩  𝑉𝑉2 =  ∅,
𝑉𝑉1, 𝑉𝑉2 ∈  𝒜, 𝑎𝑛𝑛𝑓𝑓 𝑈 ∈ 𝒜′

4) 𝓀𝓀 (𝑈1  ∩  𝑈2 | 𝑈3) =  𝓀𝓀 (𝑈1 | 𝑈2  ∩  𝑈3 ) +  𝓀𝓀 (𝑈2 | 𝑈3)   𝑖𝑖𝑖𝑖 𝑈2  ∩
𝑈3  ∈  𝒜′ 𝑎𝑛𝑛𝑓𝑓  𝑈1 ∈  𝒜

From now on, we will only consider conditional ranking functions. A non-
conditional ranking function 𝓀𝓀 can be turned into a conditional one by setting 

𝓀𝓀 (𝑉𝑉|𝑈) =  𝓀𝓀 (𝑉𝑉 ∩  𝑈) −  𝓀𝓀 (𝑈) 

Conversely, given a conditional ranking function 𝓀𝓀 and a formula f, we can 
compute the unconditional rank of f by computing 𝓀𝓀 �𝑖𝑖�⏉� (where ⏉ symbol-

299  Formally, a Popper algebra over W is a set 𝒜 ×  𝒜′ of subsets of 𝑊 × 𝑊 such that (a) 𝒜 is 
an algebra over W, (b) 𝒜′ is a nonempty subset of 𝒜, and (c) 𝒜′ is closed under supersets in 
𝒜; i.e., if 𝑉𝑉 ∈  𝒜′, 𝑉𝑉 ⊆  𝑉𝑉 ′, and V' ∈ 𝒜, then 𝑉𝑉 ′  ∈  𝒜′. (Popper algebras are named after Karl 
Popper, who was the first to consider formally conditional probability as the basic notion.) Cf. 
Halpern (2005: 74f.). 
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izes verum or a tautology as it is custom in formal logics). The ⊕ operator (Def-
inition 15.10.) naturally extends to conditional ranking functions. In addition, we 
can define a unit 𝓀𝓀1: 

𝓀𝓀1 (𝑉𝑉|𝑈) =  �0       𝑖𝑖𝑖𝑖 𝑈 = 𝑉𝑉 ≠  ∅
∞             𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

� 

Proposition 14:  
Conditional ranking functions form a monoid ℜ with (⊕, 𝓀𝓀1).300 

By composing the annotation monad of ranking functions, 𝐴𝐴𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡ℜ, with the list 
monad we directly obtain an uncertainty monad (see Proposition 13 in 15.5.3.). 
 Let us go back to the sequence in Figure 24 (in 15.5.1.) and assume that we 
had annotated it with a ranking function such as 𝓀𝓀𝑑. Whenever the sequence 
splits into multiple branches, we gain additional information on each branch. For 
example, if we follow path A (consisting of transactions t1, c1, c2 and t2), we 
know that at no point in the sequence was there a default event for either of the 
two counterparties. In path C on the other hand, the counterparty of the bond 
defaulted after one payment, whereas the other counterparty remained liquid 
throughout. We can annotate the sequence with this information (assuming the 
bond was issued by counterparty A, and the loan taken by B). The result is 
shown in Figure 26, ommitting most of path B to save space. If there is a branch 
in which no additional assumptions are made, we could annotate it with ⏉ 
(truth) since 𝓀𝓀⏉ = 𝓀𝓀.  
 Comparing Figure 26 to the sequence in Figure 22, we can see that the for-
mer is annotated with elements of the algebra on which the ranking function is 
established, and the latter is annotated with uncertainty values themselves. The 
disparity is that elements of the algebra do not tell us the likelihood of a branch, 
and we cannot combine them in a straightforward way to obtain the likelihood of 
a whole path, for example path A. We, therefore, ought to translate the know-
ledge available at each step into a new conditional ranking function that is trans-
formed to an annotation of this step. This process is called conditionalization, 
and equivalent methods exist for other representations of uncertainty, such as 
probability distributions, belief functions, etc. (cf. Halpern, 2005). 

300  The proof of this proposition can be found in Appendix F. 
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Definition 15.12. (Conditionalization of Ranking Functions).   
Let 𝓀𝓀 be a ranking function for 𝒜, let 𝑈 ∈  𝒜 such that 𝓀𝓀 (𝑈) ≠  ∞. 
Then the conditional rank of 𝑉𝑉 ∈  𝒜 given U is defined as 𝓀𝓀 (𝑉𝑉|𝑈) =
 𝓀𝓀 (𝑈 ∩  𝑉𝑉) −  𝓀𝓀 (𝑈). The function 𝓀𝓀𝑈 ∶ 𝑉𝑉 ↦  𝓀𝓀 (𝑉𝑉|𝑈) is a ranking 
function, called the conditionalization of 𝓀𝓀 by U. 

We are now equipped to model branches in uncertain sequences, by conditioning 
each branch with the desired information and then combining the branches de-
ploying + of the uncertainty monad. If we wish to model a branch where no 
information has been gained, we can condition it with ⏉. 

 
Figure 26:  Transactions in a collateralized loan, annotated with default information. 

Table 10: 𝓴𝒅
′  obtained by conditioning  𝓴𝒅 𝒘𝒊𝒕𝒉 𝒅𝑨  ∨  𝒅𝑩. (Table 10 is obtained by applying Def. 

15.11. to the ranking function in Table 9.) 

   𝓀𝓀 𝑓𝑓𝐴  ∧  𝑓𝑓𝐵 𝑓𝑓𝐴  ∧ 𝑓𝑓𝐵���� 𝑓𝑓𝐴��� ∧  𝑓𝑓𝐵 𝑓𝑓𝐴��� ∧  𝑓𝑓𝐵���� 
   𝑓𝑓𝐶 20 15 15 ∞ 

   𝑓𝑓𝐶��� 15 0 0 ∞ 

Example 15.10.   
If we condition 𝓀𝓀𝑑 with 𝑓𝑓𝐴  ∨  𝑓𝑓𝐵 (meaning that at least one of A and B 
has defaulted), we receive the function 𝓀𝓀𝑑

′  as shown in Table 10. The 
rankings of cases where neither A nor B have defaulted evaluate to ∞. 
The rankings of the remaining cases are all lower than before (in Ta-
ble 9). 
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Note that 𝓀𝓀𝑈 is a ranking function, but we annotate uncertain values with condi-
tional ranking functions. We can turn 𝓀𝓀𝑈 into a conditional ranking function as 
described in the previous sections, resulting in 𝓀𝓀𝑈

′  with 𝓀𝓀𝑈
′  (𝑉𝑉|𝑈) =

 𝓀𝓀𝑈  (𝑉𝑉 ∩  𝑈) − 𝓀𝓀 (𝑈). While Definition 15.12. specifically applies to ranking 
functions, similar definitions can be found for other models, including belief 
functions, possibility measures, and probability measures (see also 15.2.). An 
overview of the technique is given by Halpern (2005: Chapter 3). 

15.5.5.  Evaluating risk models 

In this section, we will evaluate uncertain sequences of transactions by formulat-
ing queries. Focusing on uncertainty monads of the form Lst о AnnotR, we then 
show how the uncertainty model can be adjusted to account for different scenari-
os, for example different economic developments or changing default ‘probabili-
ties’, resulting in a ‘stress test’ of the portfolio. 

Distribution 

Given an uncertain sequence SM (T) of transactions, we obtain a distribution of 
transactions (value of M (T)) by effectively ‘folding’ all possible paths: 

Definition 15.13. (Fold).   
Let T be a monoid and let SM (T) be an uncertain sequence of R. The 
operation fold: 𝑆𝑀 (𝑇) →  𝑀 (𝑇)  is defined as 

 

Example 15.11.   
Let l be the unsecured loan annotated with , unlikely, likely, certain 
from Figure 22 (in 15.5.1.). Using min and certain as the multiplica-
tion and unit of the monoid, we get  

𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 (𝑓𝑓) =  [(𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦, 𝑡𝑡1 +  𝑡𝑡2), (𝑢𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑒𝑒𝑓𝑓𝑦𝑦,  𝑡𝑡1 +  𝑡𝑡3)]  

For the collateralized loan cl from Figure 26, we get 

𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 (𝑐𝑐𝑓𝑓) =  [(𝓀𝓀𝐼 , 𝑡𝑡1 +  𝑐𝑐1 +  𝑐𝑐2 + 𝑡𝑡2), (𝓀𝓀𝐼𝐼 , 𝑡𝑡1 +  𝑐𝑐1 + 𝑐𝑐2
+  𝑡𝑡3), (𝓀𝓀𝐼𝐼𝐼 , 𝑡𝑡1 + 𝑐𝑐1 +  𝑡𝑡2), (𝓀𝓀𝐼𝑉 , 𝑡𝑡1 +  𝑐𝑐1 + 𝑡𝑡3)] 

𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 (𝑝𝑝) =  �
𝜂𝜂 (ϵ)                                                                                              𝑖𝑖𝑖𝑖 𝑝𝑝 = ⋆
𝑝𝑝 > > = (ℎ, 𝑡𝑡)  → 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 (𝑡𝑡) > > = 𝑦𝑦 → 𝜂𝜂 (ℎ ∙ 𝑦𝑦)       𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 
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The ranking functions 𝓀𝓀𝑖 are detailed below, but only for values where 
they differ from ∞. 

𝓀𝓀𝐼 =  �𝑓𝑓𝑐  ↦ 10, 𝑓𝑓𝑐���  ↦ 0� 
𝓀𝓀𝐼𝐼 =  �𝑓𝑓𝑐  ↦ 15, 𝑓𝑓𝑐���  ↦ 0� 
𝓀𝓀𝐼𝐼𝐼 =  �𝑓𝑓𝑐  ↦ 15, 𝑓𝑓𝑐���  ↦ 0� 
𝓀𝓀𝐼𝑉 =  �𝑓𝑓𝑐  ↦  5, 𝑓𝑓𝑐���  ↦ 0� 

Each 𝓀𝓀𝑖 corresponds to one of the paths A to D in Figure 26, and is 
defined for 𝑓𝑓𝑐 and 𝑓𝑓𝑐���. The reason for this result is that each of the 
paths specifies the truth values of 𝑓𝑓𝐴 and 𝑓𝑓𝐵, and therefore only the 
value of 𝑓𝑓𝑐 is unknown. For example, path A evaluates to 𝑓𝑓𝐴��� ∧  𝑓𝑓𝐵����. 

Assuming that the uncertainty monad is Lst о AnnotR for a monoid R, and there 
exists an order ≤R, we can already readdress a prominent question in risk model-
ing: “What is the minimum loss incurred with a (qualitative) ‘probability’ of 𝛼 or 
smaller?” for an 𝛼 ∈  ℝ. This is, as we know, also known as the guiding ques-
tion behind the value at risk (VaR) risk measure (see 2.2.2.).301 In reference to 
RQ2.4, which puts forward the quest for novel risk management approaches in 
finance, we are thus in the position to not only point to the previous subchapter 
where we exemplified the integration of non-probabilistic models of uncertainty 
(by means of ranking theory) into one single formal framework, but also to ex-
pound that we can thereby enter the realm of risk assessment in financial systems 
(illustrated in 16.3.). 

Predicates 

With 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 from Definition 15.13. we can obtain a distribution of outcomes in 
the chosen uncertainty model, considering all possible paths. There is another 
type of analysis we can perform: Instead of applying 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 to an entire uncertain 
sequence, we might want to compute a distribution of only those paths that meet 
a given condition. Such conditions can be described with predicates. For exam-
ple, we could be keen to test the likelihood that our liquidity drops below a cer-

301  We saw that VaR is not the ‘holy grail’ of risk measures. We make the comparison with VaR 
at this place because the definition can be applied to non-probabilistic models in a straightfor-
ward way (as announced in 15.1.). As also remarked there (footnote 271), we now write “𝛼” in 
lieu of “1−𝛼” (2.2.2.). 
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tain threshold during the trade (even if it rises above that threshold again before 
the end of the trade). By describing this condition as a predicate, we get a distri-
bution in the underlying uncertainty monad of the two truth values 𝑇𝑒𝑒𝑢𝑒𝑒 and 
𝐹𝑎𝑓𝑓𝑠𝑠𝑒𝑒. The evaluation is straightforward: Given a predicate p and uncertain 
sequence s, we apply p to s by exploiting the fact that Boolean values form a 
monoid under disjunction (∨) and 𝐹𝑎𝑓𝑓𝑠𝑠𝑒𝑒. 

Definition 15.14. (Evaluation of predicates).   
Let s : SM (T) be an uncertain sequence and let 𝑝𝑝 ∶ 𝑇 → {𝑇𝑒𝑒𝑢𝑒𝑒, 𝐹𝑎𝑓𝑓𝑠𝑠𝑒𝑒} 
be a predicate on its values. The evaluation of p on s, short ℐ (𝑝𝑝, 𝑠𝑠) is 
given by  

ℐ (𝑝𝑝, 𝑠𝑠) = 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 �𝑆𝑀  (𝑝𝑝) (𝑠𝑠)� 

In Definition 15.14. we use the functoriality of uncertain sequences to transform 
the predicate p into a morphism 𝑆𝑀  (𝑇)  →   𝑆𝑀  (𝐵). 

Example 15.12.   
In the running example of a collateralized loan involving two counter-
parties (see Figure 26), we are interested in the likelihood that we 
have to make payment t2. This can be expressed as the mapping pt2 
:  𝑝𝑝 ↦ 𝑝𝑝 =  𝑡𝑡2, which returns 𝑇𝑒𝑒𝑢𝑒𝑒 if a transaction equals t2 and 
𝐹𝑎𝑓𝑓𝑠𝑠𝑒𝑒 otherwise. Applying the predicate to cl, the collateralizsed loan, 
we get 

ℐ (𝑝𝑝𝑡2, 𝑐𝑐𝑓𝑓)  =  [(𝐾𝑉 , 𝑇𝑒𝑒𝑢𝑒𝑒), (𝐾𝑉 𝐼 , 𝐹𝑎𝑓𝑓𝑠𝑠𝑒𝑒)] 

with the following ranking functions, again shown only in places where 
they differ from ∞: 

 

Scenarios  

By conditioning the initial ranking function 𝓀𝓀 we can adjust our model to differ-
ent scenarios. We introduced this technique in Example 15.10., where we condi-
tioned 𝓀𝓀𝑑 with the information that at least one of the counterparties A and B has 
defaulted. However, by conditioning the initial 𝓀𝓀 that is used to evaluate an 

 

𝓀𝓀𝑉𝑉  =  �𝑓𝑓𝐴𝐴 ∧  𝑓𝑓𝐶𝐶  ↦ 25, 𝑓𝑓𝐴𝐴 ∧  𝑓𝑓𝑐𝑐���  ↦ 10, 𝑓𝑓𝐴𝐴���  ∧  𝑓𝑓𝐶𝐶 ↦ 10, 𝑓𝑓𝐴𝐴���  ∧  𝑓𝑓𝑐𝑐���  ↦ 0� 

𝓀𝓀𝑉𝑉 𝐼𝐼  =  �𝑓𝑓𝐴𝐴 ∧  𝑓𝑓𝐶𝐶  ↦ 20, 𝑓𝑓𝐴𝐴 ∧  𝑓𝑓𝑐𝑐���  ↦ 15, 𝑓𝑓𝐴𝐴���  ∧  𝑓𝑓𝐶𝐶 ↦ 15, 𝑓𝑓𝐴𝐴���  ∧  𝑓𝑓𝑐𝑐���  ↦ 0� 
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uncertain sequence of transactions (𝑇)𝓀𝓀
′ , we can only change the a priori rank-

ings that hold at the beginning of the sequence. If we are inclined to express, for 
example, that at least one bank defaults within five units of time, we need to 
change the uncertain sequence itself. 
 As we already have a means to modify uncertain sequences (in the form of 
⊙∗, Definition 15.8.2.), it makes sense to define scenarios in terms of it, avoid-
ing the addition of a new primitive. We will therefore say that a scenario sc is a 
kind of uncertain sequence, and apply it to a risk model m by computing 
𝑚 ⊙∗ 𝑠𝑠𝑐𝑐. Scenarios should only change the probabilities of the outcomes in a 
risk model, not the values of individual transactions (because those are deter-
mined by the underlying financial contracts, independently of any uncertainties). 
This condition ensures that every scenario can be applied to many different risk 
models, because it is defined without reference to a specific contract. For this 
reason, scenarios are uncertain sequences over the monoid over the one-element 
set, ({⋆}, ∙⋆, ⋆).  

Definition 15.15. (Scenario).   
A scenario is an uncertain sequence s ∈ 𝑆𝑀 ({⋆}). 

Example 15.13.   
The case that counterparty A defaults after the second payment is 
modeled in the following scenario, short sc1: 

 

In scenarios, the ⋆ symbol is the only value allowed for transactions 
(because scenarios are uncertain sequences over the one-element set, 
and the only element of that set is ⋆). Therefore, every edge on the 
graph of a scenario is annotated with ⋆. Further, some edges are anno-
tated with the event ⏉, or “any event”. Because ⏉ is always true, a 

branch with the probability ⏉ will always be taken, and conditioning a 
ranking function 𝓀𝓀 with ⏉ has no effect. We can therefore use ⏉ in 
scenarios whenever we do not want to constrain the set of events under 
consideration at a particular point. 
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As shown in Example 15.13. and in analogy to the literature review in Chapter 
11, scenarios describe sequences of events or expectations of possible future 
events, relevant to potential business responses, thus constraining the space of 
possibilities in which a risk model is evaluated. When designing a scenario, one 
is free to choose how strict this constraint is – for example, we can specify exact-
ly one sequence of events that we want to evaluate (as we have done in the ex-
ample), or we can more vaguely state that some events are excluded, without 
changing the probabilities of the remaining events.  
 To apply a scenario 𝑆𝑀  ({⋆}) to a risk model SM (T), we first need a mapping 
from {⋆} to T, so that we can turn the scenario into an uncertain sequence SM (T) 
and apply the multiplication operation ⊙∗. This mapping should be a monoid 
homomorphism, and since {⋆} is the one-element set there is only one mapping 
that may reasonably be used here: !𝑇  ∶  ⋆ ↦  𝜖𝑇.  

Definition 15.16. (Applying a Scenario).   
Let M be an uncertainty monad, (T, ∙, e) be a monoid, r ∈ 𝑆𝑀 (𝑇) a risk 
model and s ∈ 𝑆𝑀  ({⋆}) be a scenario. The application of s to r is de-
fined as  

𝑒𝑒 ⊙T  𝑆𝑀 (!𝑇)(𝑒𝑒). 

Example 15.14.   
To apply sc1, the scenario introduced in Example 15.13., to the risk 
model of the collateralized loan, we first need to compute !𝑇  (𝑠𝑠𝑐𝑐1) – in 
other words, we need to map ⋆ to the null transaction e, resulting in 
the following sequence 𝑠𝑠𝑐𝑐1

′ =  !𝑇 (𝑠𝑠𝑐𝑐1): Note that 𝑠𝑠𝑐𝑐1
′  is not a scenario 

anymore, because its 

 

values are transactions instead of ⋆. Instead, 𝑠𝑠𝑐𝑐1
′  is a risk model, a val-

ue of 𝑆𝑀 (𝑇), similar to the model of the collateralized loan cl. We can 
therefore compute 𝑐𝑐𝑓𝑓 ⊙T  𝑠𝑠𝑐𝑐1

′ , resulting in the sequence shown in Fig-
ure 27.  
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Figure 27:  Risk model cl', showing the collateralized loan after applying the scenario from Exam-

ple 15.14. A comparison with Figure 26 points to two important differences. The path af-
ter node A has been ommitted, because it will never be reached – its condition is 𝒅𝑨���� 
∧ 𝒅𝑨 = ⊥. And each of the first three transactions in the sequence has been augmented 
by e – the empty transaction. This change is only shown for illustrative purposes as it 
does not alter the value of the uncertain sequence. 

In this example, we showed each of the two steps involved in the application of a 
scenario separately. In an application, the user would only be shown the end 
result, as the intermediate uncertain sequence (with the empty element e substi-
tuted for ⋆) is of no relevance to the analysis and interpretation process. 
 Scenarios can be combined with ⊙∧, multiplication of uncertain sequences 
under ∧. 𝑠𝑠𝑐𝑐1 ⊙∧  𝑠𝑠𝑐𝑐2 for two scenarios sc1 and sc2 and a semigroup R intuitively 
corresponds to sc1 and sc2. An important aspect of the practicality of LBR mod-
els is what kind of questions they answer, that is, the output of our models, 
which is thus what the next subchapter deals with. 

15.6. Model Interpretation and Output: An Exact, Explanatory 
Scenario Planning Method 

Our models, taking into account the structure of the assets (derivatives), that 
have been posted as security for loans for example, are intended to be utilized in 
preparation for and hedging against the impact of systemic and extreme risk 
events. The latter can be grouped into two themes:  

1) Market Scenarios: What kind of scenarios may cause a rapid change in 
prices or correlations between prices? Are there any hidden correla-
tions between positions in our portfolio? 

2) Exposure Scenarios: Are there counterparties to which we have a high 
indirect exposure? Etc. 
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LBR can be regarded as a scenario planning method that is exact and explanato-
ry, which in turn can be clarified one by one. First, LBR models are evaluated to 
uncertain sequences (trees whose branches are annotated with uncertainties – see 
Definition 15.7.) and we focused on a specific instance of uncertain sequences, 
namely those that are annotated with scenario models. Once we have translated a 
contract to an uncertain sequence, we can evaluate this sequence to answer spe-
cific queries (such as in 1) and 2) above). This evaluation constitutes the output 
of LBR and elucidates that LBR model outcomes can be tested and simulated. 
For example, as we are going to do in the case study (see Chapter 16), we can 
assess the effect of changing the likelihood of default of one counterparty. In this 
way, LBR is a scenario planning method.  
 Second, LBR is exact since formal, numerical and symbolic, representations
of uncertainty (15.2., 15.3.), functional programming (15.4.), as well as their 
combination respectively (15.5.) really are at its nexus. Put differently, our lan-
guage-based approach rests on a precise mapping of contracts and their 
constitutent parts to uncertain sequences. If we apply this mapping not to an 
entire complex contract, but only to the more basic contracts it consists of, we 
get a number of uncertain sequences (rather than one all-encompassing se-
quence). Each of those uncertain sequences itself can be queried and investigated 
as we suggested above. We can process these partial interpretations and appeal to 
their role or function in more encompassing risk models, i.e., to assess how the 
risk model of the more complex contracts is determined by the risk models of 
their components. When applied in this more synthesis-oriented manner, the risk 
models proposed in this thesis can thus, third, be employed to explain in detail 
how its output is traced back to its input.302 
 Moreover, LBR is explanatory in a fundamental sense because explanatory 
models, in general, focus on, and inquire into, interrelationships, interactions and 
dependencies in systems at hand (see 8.2.), which holds true for LBR as well. On 
the one hand, LBR is steered by a question on causal links (see the first one 
above, in 1)). On the other hand, LBR models themselves, however, foreground 
rather logical than causal relationships, which does not disqualify them since 

302  This feature is much stronger than the truism that the output can always be derived from its 
input in correct for-mal modeling as the latter does not distinguish explanatory models and sys-
temic modeling, respectively, which res-pects analysis and synthesis. The approach of partially 
evaluating contracts needs to be investigated in future work. 
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explanatory models generally capture the structures of a system which are consti-
tuted by the relations between parts of the system and between parts and the 
whole (see 8.2.) and these relations can be causal or logical. Logical connections 
are appreciated in our LBR framework through the integration of both formal 
logics (see 15.2.) and the vocabulary from Jones et al. (2001). 
 Caution is required when speaking of “model output” in connection with 
LBR as it would not do justice to our overall proposal if we simply grasped LBR 

as a single risk model. Even though we will concretize LBR in Chapter 16 for 
illustration purposes and to answer RQ2.5, respectively, we usually refer, on the 
one hand, to models, the plural not the singular. Because, on the other hand, it is 
more proper to say that it is a novel risk modeling approach, a new framework or 
class of models, which recalls the three-tier model of LBR (see Figure 21), dif-
ferentiating between models, method and framework. On the top scale, LBR is 
conceived of as concrete risk models and their output is a distribution of returns 
(or losses) over different scenarios, which possess different qualitative probabili-
ties of materialization (Chapter 18) and serve as an anchor around which falsifia-
ble hypotheses can be put up. On the middle layer, we gain certain precise as well 
as explanatory scenarios, testable and appraised with respect to specific queries, 

where the appraisal or analysis through predicates embodies the output of LBR; 
and in the broadest sense, it does not make much sense to examine its output, or 
it is at least underdetermined, namely when we think of LBR as a loosely defined 
framework or paradigm. (In some regard, we could maybe maintain that a narra-
tive is the output, which is not to neglect in the overall risk management process, 
see Part IV.) We wish LBR to be understood in this threefold way and for whose 
scope we achieve the following preliminary result (also with regard to RQ2.1). 

Proposition 15:   
Structure-oriented and explanatory risk modeling warrants the focus 
on objects that exhibit much structure. The more complex financial 
instruments are, the more structure they possess, and the more the 

modeler can derive from that structure to measure risks. 

As a consequence, LBR thrives when we deal with (structurally) complex in-
struments. This is the hallmark of LBR which faces a trend marked by an ex-
ploding number of different financial products that also become more and more 
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complex (Célérier & Vallée, 2014; Admati & Hellwig, 2013).303 Therefore, its 
potential as well as the number of its possible application areas is huge (Chapter 
17). On the one hand, further evidence for the usefulness of modularity can be 
found in the realm of CDOs. Before the global financial crisis (and ever since)304, 

it has not only been regular CDOs that enjoyed great popularity, but also more 
exotic products such as CDOs-squared (see footnote 288; cf. Brunnermeier & 
Oehmke, 2009; Nomura, 2005) – CDOs whose collateral are other CDOs (as 
opposed to more traditional debts such as mortgages), and CDOs-cubed – CDOs 
whose collateral are CDOs-squared.  
 These instruments can be represented in LBR in a straightforward way, be-
cause our models for CDOs do not distinguish different types of collateral. Any 
uncertain sequence of transactions can be employed to represent the collateral, 
and so our methodology is able to handle CDO-squared, CDO-cubed and, more 
generally, CDOn for any n. On the other hand, our approach to risk modeling is 
by no way even restricted to financial contracts: If we have a domain-specific 
language for, say, commodity shipments, we can still apply our proposal for 
scenarios, as long as that language has an interpretation as uncertain sequences. 
 Unfortunately, it is currently a not yet settled question where the demarca-
tion line between sufficiently complex and simple financial products runs. This 
classification is, in fact, much less clear cut than one may suspect (Brunnermeier 
& Oehmke, 2009: 4; Becker et al., 2012: 5). However, it is clear that if we, for 
example, invest all our capital in non-complex products, such as shares, then 
LBR cannot say anything about portfolio risk, except for “it can go up or down” 
– we would simply be at the mercy of deep uncertainty. 

303  Célérier & Vallée (2014: 4, 21) also provide evidence for this trend: The more complex a 
product is, the more profitable it becomes for the bank structuring it. 

304  The 2008 fallout gave a few credit products a bad reputation, like CDOs or CDS. But now, a 
marriage of the two terms (using leverage, of course) is making a comeback – it just comes un-
der a different name: “bespoke tranche opportunity”. (Bloomberg, 2015). 
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16. Case Study: LTCM and Extreme Risk 

In this inquiry, we envision the behavior of LBR by taking up the case of LTCM 
from Chapter 5.2. The LTCM case is a predestined application example of LBR 
since its fall counts as one of the most impressive instances of massive losses in 
derivative markets. This chapter is structured as follows. We start by reconstruct-
ing its dynamic trading and so-called ‘fixed income’ strategy with an example 
trade (16.1.), before elaborating on how the portfolio is described in a concrete 
LBR model (16.2.). The out-come of our exemplary risk model for the portfolio 
will be discussed at the end, in the remaining two sections, 16.3. based on the 
three steps of visual data mining (overview – zoom/filter – details); and 16.4. as 
an overall bottom line.  
 Derivatives are often subject to the following criticism of hidden tail risk. 
According to Raghuram Rajan (2006), a former chief economist of the Interna-
tional Monetary Fund (IMF),  

... it may well be that the managers of these firms [investment funds] have figured out 
the correlations between the various instruments they hold and believe they are hedged. 
Yet as Chan and others (2005) point out, the lessons of summer 1998 following the de-
fault on Russian government debt is that correlations that are zero or negative in normal 
times can turn overnight to one, a phenomenon they term “phase lock-in”. A hedged po-
sition can become unhedged at the worst times, inflicting substantial losses on those who 
mistakenly believe they are protected.  

Furthermore, (credit) derivatives “can be difficult to price due to their complexity 
and due to some CDOs being based on OTC and assets that are lightly traded or 
not traded” (Tapiero & Totoum-Tangho, 2012). One of our aims for this case 
study is therefore to show how the idea that correlations rise in times of crisis 
can be represented in our LBR models (see also 1) Market Scenarios in 15.6.). 
More generally, we seek to depict how to describe a realistic trade in LBR, by 
building a complex model from smaller pieces, and how to extract answers to 
typical questions in risk management from this model. This chapter thus serves 
both as pattern for a manual for practitioners and as evidence for the relevance of 
our approach. 
 
© Springer Fachmedien Wiesbaden GmbH 2017
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16.1. Example Trade 

Generally, LTCM can be classified as a more highly leveraged version305 of 
market neutral funds that actively seek to avoid major risk factors, but take bets 
on relative price movements utilizing investment strategies such as fixed income 
arbitrage among others (Fung & Hsieh, 1999: 319, 329).306 LTCM’s basic fixed 
income arbitrage strategy consisted in ‘convergence’ and ‘relative-value’ arbi-
trage: the exploitation of price differences that either must be temporary or have 
a (ostensibly) high probability of being temporary (MacKenzie, 2003: 354). 
Prototypical in turn were its many trades involving ‘swaps’, wherefore the fol-
lowing is a description of a swap-spread arbitrage trade. It is based on MacKenzie 
(2003).  
 In this trade, LTCM would buy US Treasury bonds with a maturity of twen-
ty years and a yield of 6.77%. At the same time, a swap of a fixed interest rate 
(in USD) of 6.94% vs. the Libor could be entered into, meaning that LTCM pays 
6.94% and receives whatever the Libor rate is. The swap spread is therefore 
(6.94 –  6.77 =  0.17) %. The trade is profitable for LTCM if it can borrow 
money at a rate at least 17 basis points (0.17%) cheaper than the Libor. At the 
time, an interest rate of about 20 basis points below the Libor was available to 
LTCM (the repo rate)307, resulting in a net annual cash flow of 0.03%: 

 (𝐿𝑖𝑖𝑏𝑜𝑜𝑒𝑒 𝑒𝑒𝑎𝑡𝑡𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑝𝑝𝑜𝑜 𝑒𝑒𝑎𝑡𝑡𝑒𝑒) + 6.77% − 6.94% 
 = (𝐿𝑖𝑖𝑏𝑜𝑜𝑒𝑒 𝑒𝑒𝑎𝑡𝑡𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑝𝑝𝑜𝑜 𝑒𝑒𝑎𝑡𝑡𝑒𝑒) − 𝑠𝑠𝑒𝑒𝑎𝑝𝑝 𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑓𝑓 
 = 0.20% − 0.17% 
 = 0.03% 

305  “Hedge funds typically leverage their bets by margining their positions and through the use of 
short sales” (Fung & Hsieh, 1999: 314). 

306  Specifically, LTCM can be viewed as a fixed income arbitrage fund (which are themselves 
only a small segment in the entire hedge fund and commodity trading advisors fund industry). 
In contrast to related strategies such as long–short equity, stock index arbitrage, convertible 
bond arbitrage, fixed income arbitrage generally refers to the trading of price or yield along the 
yield curve, between corporate bonds and government bonds of comparable characteristics, or 
more generally, between two baskets of similar bonds that trade at a price spread (Fung & 
Hsieh, 1999: 320). 

307  The discount stems from the bonds being posted as a collateral and a ‘haircut’ (additional cash 
from LTCM) to protect against default. 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


16. Case Study: LTCM and Extreme Risk 281 

Table 11:  Rates for LTCM trade. 

Quantity Symbol Value 
Principal P 100 000 USD 
Haircut Hc 500 USD 
Swap rate Swp 6.940 % 

This trade involves two counterparties, A and B. One lends money to LTCM and, 
in return, receives US Treasuries as collateral and the haircut (glossary) from 
LTCM. The other one pays interest at the Libor rate to LTCM while receiving 
interest at the fixed rate of 6.94%. In LTCM’s case, the two counterparties were 
usually different in order to obscure the fund’s trades (MacKenzie, 2003; Low-
enstein, 2002). 

16.2. A Fixed Income Portfolio in LBR 

We will first incorporate the two parts of the trade separately into LBR and then 
combine them using the ⊙+ operator defined in section 15.5.3.308 We are going 
to use the monoid of conditional ranking functions with  ⊕ and 𝓀𝓀1 (see 15.5.4.) 
in an uncertainty monad Lst о 𝐴𝐴𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡ℜ. 
 The first part of the trade is essentially the collateralized loan from Figure 
26. The collateral in this case are US Treasuries, and the interest rate depends on 
Libor. We borrow money at an interest rate of 5.425%, and provide US Treasur-
ies and an additional ‘haircut’ as collateral to secure the loan. Since the loan is 
used to buy the bonds, the only cashflows involved are the haircut (hc), paid by 
us at the beginning of the transaction, and the interest payments. The variable p 

308  An alternative approach would be to start with transferring the example to the programming 
language by Jones et al. (2001), see 15.4., i.e., to combine the two separate parts of the trade by 
using the 𝑎𝑛𝑛𝑓𝑓 operator. The first part is essentially 𝑐𝑐𝑜𝑜𝐿𝑜𝑜𝑎𝑛𝑛, the collateralized loan from Ex-
ample 15.5. (see 15.5.1.). The collateral in this case are US Treasuries, and the interest rate de-
pends on Libor. By means of the two auxiliary definitions, 𝑒𝑒𝑒𝑒𝑝𝑝𝑜𝑜 for the interest at which 
LTCM can borrow, and 𝑡𝑡𝑒𝑒𝑒𝑒𝑎𝑠𝑠𝑢𝑒𝑒𝑖𝑖𝑒𝑒𝑠𝑠 to model US Treasuries we can arrive at the following 
representation: 

treasuries ∶: Double → Double → Days → Contract 
   treasuries coll  p i t =   (loan  p i t) 

       ′and′ (get coll) 
       ′and′ (truncate t (give coll)) 

 This translation is provided for illustration purposes only. Due to the lack of space we skip a 
lengthy continuation of this procedure and refer the reader to Müller & Hoffmann (2017b). 
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stands for the principal, i.e. how much money we borrow. The total length of this 
transaction is one week. Table 11 shows the fixed quantities involved in the 
trade. The variable quantities (interest rates) are modeled as uncertain sequences 
and will be explained next.  
 Since the profitability of the trade directly depends on the difference be-
tween the swap rate and the variable rates, we will model the latter as uncertain 
sequences. The relevant rates will be abbreviated with lbr (Libor), rp (repo rate) 
and ust (US Treasury bonds). The repo rate, rp, is shown in Figure 28.  

 
Figure 28:  Repo rate rp expressed as an uncertain sequence. At each stage the rate either stays the 

same (condition ⏉) or increases, if one of the counterparties defaults (condition 
𝒅𝑨  ∨  𝒅𝑩). 

Note that, in contrast to the uncertain sequences we have shown previously, rp 
does not depict transactions that happen at a point in time. Instead, it shows the 
interest rate on that day. In order to use rp as part of the model of the LTCM 
trade, we can use ⊙∗ from Definition 15.8.2., but with multiplication as the 
semigroup operation. This way, we can multiply a quantity such as the principal 
p with the interest rate at a given day. The libor rate follows a similar structure 
and is shown in the following Figure 29. 
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Figure 29:  Libor rate lbr expressed as an uncertain sequence (values in percent). The rate increases 

if one counterparty defaults (conditions dA and dB), and increases sharply if two counter-
parties default (𝒅𝑨  ∧  𝒅𝑩). Note that this graph contains a number of similar sub-
sequences, annotated with the condition ⏉ – this information could be compressed by 
displaying it as a directed acyclic graph instead of a tree. 

 

 
Figure 30:  Part I of LTCM Trade. We borrow money at an interest rate of 5.425%, and provide US 

Treasuries and an additional ‘haircut’ as collateral to secure the loan. 

The first part of the trade is shown in Figure 30 and we will refer to it with t1. 
The second part of the trade exhibits a similar structure, visualized in Figure 31: 
Each day, interest at a rate of lbr is paid to us, while we pay interest at the fixed 
rate swp. We refer to this part with t2. 
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Figure 31:  Part II of LTCM Trade. Swap of interest payments with counterparty B. We pay interest 

at the swp rate and receive interest at the lb rate (Libor). 

From the two graphs we can see what makes this position profitable (in the op-
timal path): Even though we have to deploy our own capital to provide the hair-
cut hc initially, we get it back when the loan expires, and our returns are purely 
determined by the disparity in interest rates. While these returns are miniscule 
compared to p, they are more significant in relation to hc, so the return on our 
capital is higher than the net cash flow of 0.03%. The uncertain sequence repre-
senting the overall trade is given by tLTCM  =  𝑡𝑡1  ⊙+  𝑡𝑡2.  

16.3. Analysis 

The analysis of LBR risk models is an iterative and interactive process in which 
small, step-wise transformations are applied to the data. The transformations are 
intended to highlight interesting patterns, and resemble the workflows of interac-
tive data mining techniques (Keim et al., 2008) used in On-Line Analytical Pro-
cessing, OLAP (Han & Kamber, 2000), software across business functions in-
cluding sales and marketing analysis, budgeting, planning, and performance 
measurement.309 A typical OLAP application enables users to interactively refine 

309  Very generally, OLAP involves a data set in which each element has a number of attributes 
(dimensions) and measures. For example, an entry in a data set on retail sales has the dimen-
sions: location, date, category of item and the single measure price. Instead of looking at each 
data point individually, one is interested in aggregations – subsets of the data set that share 
some dimensions (e.g., all sales in a location on the same day) and are aggregated on their 
measures (e.g., average price). 

 Of most interest to us is the structure of dimensions. Their values are arranged in a lattice, and 
the “drill-down” and “roll-up” operations correspond to the two binary lattice operations 
(Kuijpers & Vaisman, 2016). In LBR, we can impose a similar structure on the uncertainty an-
notations (Uncertainty Monad) and on sequences, enabling an analysis workflow similar to that 
in typical OLAP products. 
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the aggregated data set by applying filters and other operations (Ravat et al., 
2008) to it, commonly following a three-step process: overview, zoom and filter, 
and details-on-demand (Shneiderman, 1996).  
 The following paragraphs describe how each of these steps is accomplished 
in LBR. Since the example trade tLTCM is a bet on the difference between two 
interest rates (spread), the question that steers this analysis will be, “what could 
cause the spread to shrink below the threshold of profitability, and how exposed 
are we to liquidity risk in such a scenario?” 

16.3.1. Overview 

The first step is to gain an overview of the possible developments of tLTCM. We 
start by inspecting the graph in Figure 39 (see Appendix G) – however, it is 
evident that the raw graph of the entire tree is not an appropriate tool for risk 
analysis, because it contains all possible developments and its size increases in 
proportion with the number of times the ⊙∗ is used to combine underlying se-
quences. Further, this kind of display (rendering the uncertain sequence as a tree) 
is only possible because we use Lst о 𝐴𝐴𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡ℜ as the uncertainty monad. Show-
ing the ‘raw’ data for an uncertain sequence is only possible if the underlying 
monad lends itself to this kind of visualization – in particular, the probability 
distribution has to be discrete, so that each value can be shown as a branch. If it 
was continuous, extracting a tree structure would require a discretization step 
such as splitting the distribution into percentiles.  
 We, therefore, need to find a better way to show the possible developments 
over time, as a high-level starting point for the analysis. One approach is to show 
the range of possible values at each point in time, resulting in a more traditional 
graph. To obtain the graph shown in Figure 32, we first compute the prefix at 
each step using 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 from Definition 15.9. For example, 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑡𝑡𝐿𝑇𝐶𝑀, 3) 
gives an uncertain sequence representing the trade after three days. We then 
compute the distribution of values on that day: 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓(𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 (𝑡𝑡𝐿𝑇𝐶𝑀, 3)), and 
plot the values.  
 For the case study, we inspect the graph in Figure 32 and decide next to 
focus the view on days one to eight (Figure 33), in order to get a better idea of the 
interest-rate based transactions that occur in this time. 
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Figure 32:  Range of values in the period from zero to nine days, computed with 𝒑𝒓𝒆𝒇𝒊𝒙 (Defini-

tion 15.9.). This technique works independently of the underlying uncertainty monad M. 
Each rank in 𝓴𝟏 is represented by two lines, one for the low end of the range (e.g., 10-
Min) and one for the high end of the range (10-Max). The graph is dominated by the ini-
tial outlay of 500. We restrict the time range to days 1 to 8, as shown next in Figure 33. 

16.3.2. Zoom and filter 

The overview of the whole trade 𝑡𝑡𝐿𝑇𝐶𝑀 in Figure 32 clearly showed the cash 
outlay at the beginning, and the recurrency of profitability at the end. However, 
for the purposes of risk analysis we are more keen to learn about the transactions 
that occur in between, because they represent the actual fixed-income part of the 
trade.  
 The next step in our analysis is, therefore, to restrict the value graph to the 
period between one and eight days, resulting in Figure 33. Here, the most likely 
development (rank zero), marks both the high end and the low end of the value 
graph, as indicated by the (dark and light) green lines. This is due to the depend-
ence on interest rates. The possible developments appear to split after day two. 

 

 
 

 

www.ebook3000.com

http://www.ebook3000.org


16. Case Study: LTCM and Extreme Risk 287 

 
Figure 33:  Range of values in the time period from one to eight days. The most likely development, 

rank zero, marks both the high end and the low end of the value graph, as indicated by 
the (dark and light) green lines. 

Once we have narrowed down the time frame for analysis even further, we can 
show the subsequence in more detail. One approach is to bring some order into 
the graph, and reduce the amount of nodes that are visible. In risk models based 
on Lst о 𝐴𝐴𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡𝓀𝓀, sequences can be shortened by applying 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 to a number of 
nodes that should be hidden from view. This method is shown in Appendix H 
(Figure 40, 41).  
 In Figure 40 in Appendix H, an uncertain sequence is visualized similar to 
previous graphs, showing the nodes and edges annotated with transactions. 
However, compared to earlier figures there are two improvements. First, the 
branches are ordered by transaction value on the y-axis, making it easier to spot 
cases where unexpected losses are occurring. Second, the initial three nodes have 
been reduced to two in order to hide the details of this linear subsequence.  
 A common workflow in interactive OLAP analysis is to isolate an interest-
ing subset of the data and then switch to a different visualization for that subset, 
so that previously unseen patterns may be revealed. In LBR, we can achieve a 
similar effect by plotting the values of a sub-sequence as shown in Figure 41. 
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16.3.3. Details on demand 

We have now narrowed down the data to the period between two and four days, 
and want to focus our analysis on possible developments during that time. In par-
ticular, we would like to investigate the effect of counterparty defaults on our 
payment obligations. We therefore create the scenario (see Definition 15.15.) that 
at least one of the three counterparties A, B and C defaults on day two or three. 
This scenario is represented as the uncertain sequence s1 shown in Figure 34. 

 
Figure 34:  Scenario s1 modeling the default of A, B or C on day two or three. 

By combining s1 and tLTCM, we get an uncertain sequence showing only the pos-
sible transactions for the case that at least one default occurs in the period of 
interest: t'LTCM  =  𝑠𝑠1  ⊙∗ 𝑡𝑡𝐿𝑇𝐶𝑀. This sequence, t'LTCM can then be analyzed again 
using the approach described in Sections 16.3.1. and 16.3.2. 

16.4. Discussion and Conclusion 

This case study showed how to model a single trade of the kind favored by 
LTCM in our approach (in form of 𝑡𝑡𝐿𝑇𝐶𝑀), and how to evaluate its counterparty 
and liquidity risks iteratively to answer RQ2.5 on the concretization of LBR 
models. We were able to perform this analysis without relying on statistical data 
about interest rates, by utilizing primarily structural information about the rights 
and obligations towards counterparties. In Chapter 5.2., we were looking at the 
emergence and development of LTCM’s downfall. The trade we analyzed above 
is a typical example of LTCM's strategy that led to the hedge fund's demise. So, 
we could generalize our analysis to a large part of LTCM's portfolio, provided it 
is formalized as an uncertain sequence of transactions. Our model would then 
have been able to predict some of the consequences of the events in 1998, with-
out having to make difficult assumptions such as pinpointing a probability for a 
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default of the Russian government. However, knowing about the possible conse-
quences of extreme risks is not enough, because one also has to act on that 
knowledge (see Part IV), and as also seen in 5.2., it appears that LTCM's belief 
in its own invincibility, and consequent refusal to make preparations for an ab-
rupt and thorough worsening of market conditions, also played a role in its fail-
ure. LBR of course cannot prevent such errors of judgment (see Chapter 21). But 
it can be an important addition to the toolkit of risks analysts (Chapter 13), be-
cause it requires such few assumptions and because of the low cost (time and 
effort) incurred by analyzing another scenario or formulating another query. 
 In critical view of our procedure here in this frame, i.e., of having investigat-
ed risks by categorization (counterparty vs. liquidity) even though we reject the 
silo-treatment of risks (see 5.1.), nota bene that we do not stipulate any sharp 
boundaries between risk classes. For example, the transition from counterparty to 
liquidity was organic: Counterparty and liquidity risk are captured by the same 

model (splitted in two parts) – more precisely, counterparty risk is a result of 
repeated transactions with liquidity risk.310 The specific LBR risk model was 
labeled by the variable “𝑡𝑡𝐿𝑇𝐶𝑀”.  
 One of the challenges in displaying the information was that we cannot 
compute an expected value from a distribution with ranking functions. We ad-
dressed this issue by providing the range of values for each scenario. While the 
example trade is typical of the type of trades that some hedge funds engage in, 
our uncertainty model was constricted to the minimum amount necessary for the 
two use cases. For example, we could have considered more general macroeco-
nomic indicators than just the default events of three counterparties, making the 
logic available for expressing conditions much more fine-grained. A more de-
tailed version of this case study is explored elsewhere (Müller & Hoffmann, 
2017b).  
 The case study introduced a number of general patterns for risk modeling 
with LBR, such as using the ⊙∗, 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓 and 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝 operations to first assemble a 
model from its components and then reduce it to answer specific questions, for 
example by applying a scenario (see Figure 34). Even in its basic form, the mod-
el presented here is still able to compute not just a general distribution of the 
expected outcomes, but also the loss given the default of one or more counterpar-

310  Other ‘risk silos’ could easily enter the stage. For instance, market risk manifests itself because 
contracts involve market data (like interest rates) and are thus subject to market risk also. 
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ties. It becomes vividly visible in this case study that there does not exist a single 
LBR risk analysis outcome, which is in line with what the systems movement 
propagates (e.g., investigate objects from different angles, in larger and smaller 
systems): Both Figure 32, 33 and 40, 41 constitute concrete LBR model outputs 
(the latter, however, with comparative advantages as argued in 16.3.2.), that, in 
general, hinge on which guiding question is pursued.  
 By evaluating prefixes of an uncertain sequence we gave a prediction of the 
liquidity requirements during the trade. Several advantages of our approach stand 
out and will be presented more comprehensively in Chapter 19. First, LBR mod-
els are based on structural descriptions of the trade (specific rights and obliga-
tions with counterparties), and not on statistical estimations of the price of the 
trade. Because of this, we can evaluate the same model in multiple ways, by 
transforming it and applying the relevant 𝑖𝑖𝑜𝑜𝑓𝑓𝑓𝑓. Second, LBR models are modu-
lar, because a complex model can be assembled from simpler parts (for example, 
by defining 𝑡𝑡𝐿𝑇𝐶𝑀 =  𝑡𝑡1  ⊙+  𝑡𝑡2). A practical consequence of modularity, which 
leads us to the subsequent Chapter 17, is that firms can establish a vocabulary of 
common trades and so reduce the amount of time needed to create a new model. 
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17. Managerial Implications 

LBR must prove itself not only in relation to the scientific quest for knowledge, 
but first and foremost as an aid to the people responsibly active in practice (see 

Part IV). LBR thrives in complex environments and, accordingly, there is a 
whole myriad of real-world application contexts where LBR models can flourish. 
One of its primary and predestined employments is financial investment plan-
ning, wealth and portfolio management. Portfolios are traditionally structured to 
cope with ‘normal’ levels of volatility, but in the wake of the abnormal the time-
honored principle of reducing and controlling risk by diversification falls 
short.311 A solution for wealth and portfolio management can be tail hedging, 
which allows portfolios to be positioned more offensively in a world of turmoil 
caused by recurring financial bubbles. 
 The basic idea of active and dynamic tail risk hedging is that severe system 
crises (as in 2008) create exploitable opportunities for investors since an increase 
in risk exposures (via risky assets) during those stressful times may improve the 
return distribution of most investment portfolios (“simply because valuations are 
cheap and risk premiums are high”; Davis & Page, 2013: 302). Put differently, a 
tail-hedging strategy is not only risk-reducing but also return-enhancing and it 
should be thought of “not as a high-frequency trade or even passive buy-and hold 
but rather as an asset-allocation decision” (Bhansali, 2014: 73). In general, there 
are many ways to approach tail hedging, ranging from a simple purchase of ‘in-
surance’ or the holding of cash, via put options to a portfolio of volatility-
focused strategies that spans multiple asset classes and financial instruments 

311  Historical relationships between many asset classes broke down and correlations rose in the 
financial crisis which crescendoed in 2008, so that even carefully diversified portfolios suf-
fered. For example, the average 60 (stocks) / 40 (bonds) portfolio lost more than 29% in the 
year ending February 28, 2009. Source: Barclays Capital, S&P and AllianceBernstein 
(McKoan & Ning, 2011). However, diversification could indeed have its resurgence, namely 
on a meta level; then higher order diversification would mean that “guarding against the tails is 
best achieved by a mix of approaches rather than blind adherence to one” (Bhansali, 2014: 46). 
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which can be described in our formal language of LBR. In this area of wealth and 
portfolio management, LBR can be applied in two different ways. First, it com-
plements risk management tools and systems which are currently used. By com-
paring the different approaches and their performance through case studies and 
simulations, risk managers will be able to spot divergences which may hint at 
risk factors that are genuinely not picked up by one of the methods, but that are 
clearly of crucial importance to tail risk hedging.312 Second, LBR can become 
part of a tail risk management toolkit for drafting new investment strategies. In 
this application, risk measured by LBR is, for instance, one of a number of indi-
cators that influence the allocation of funds in a portfolio. The first use case 
benefits from requiring very little change to existing processes for modeling and 
managing risk, and is, therefore, a suitable starting point for the introduction of 
LBR to wealth management firms.  
 The second use case requires the application of the theoretical principles 
behind LBR to an entire investment business, so there is a bigger hurdle to im-
plementing it in practice. We believe though that the latter is the more promising 
application in the long term, because it would not only improve awareness of 
risks from extreme or tail events to our portfolio, but also decrease cost by apply-
ing automated reasoning techniques and yield new insights on investment strate-
gies to the desired end that returns are increased by diminishing the downside of 
present investment strategies. The second use case further clarifies that LBR has 
the potential to transcend the narrow framework of risk measurement (and enter 
the investment side), which is remarkable since its intrinsic performance value 
for practitioners might then really be unimpaired despite that ineffective risk 
assessment (which we aspire to overcome in this thesis) is not always the most 
pressing practical issue. There exist others which are predominantly culpable for 

312  Such a case study could be steered by the following question: What is the performance of a 
LBR-based tail hedging strategy compared to a more traditional one? Due to the scarce data on 
extreme or systemic risk events, the case study would not be able to conclusively judge the 
quality of the predictions of both models (see also Chapter 19 on model validation). However, 
the case study would shed some light on the behavior of both models for recent specific events, 
depending on the period that is selected (e.g., the global financial crisis, the Asian crisis). Per-
haps more importantly, it would also allow us to compare the cost of different approaches. 
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past risk management failures in real systems and/or which are easier to sur-
mount (Wiggins & Metrick, 2014).313 
 In connection with the subject of the previous chapter, other territories of 
LBR application enclose the assessment of liquidity and counterparty risk. Many 
organizations engaged in financial or physical trading activities, such as brokers, 
banks or commodity trading houses, face the challenge to manage substantial 
counterparty risks. In this realm, LBR could also help break through these obsta-
cles. Nonetheless, a thorough evaluation and identification of possible LBR 
implications for management must be postponed due to the radical novelty of 
LBR (specifically, in terms of risk management practices). For now, we synthe-
size with regard to RQ2.6 about the practical value of LBR on a not yet solid 
basis: 

Conjecture 16:  
A logic-based risk modeling approach (LBR) is, prima facie, suitable 

for the economic practice and can be employed for not only direct and 
narrow risk assessment, but also financial investment planning, 
portfolio, wealth and tail risk management, by asset managers, 

brokers, banks or commodity trading houses among others. 
To strengthen the potential of LBR further, it can be demarcated from estab-
lished, used and concrete alternatives in academia as well as of the economic 
practice. Three rival approaches are singled out. 

“Finance without Probability”: Shafer & Vovk (2001) propose a game-
theoretic framework as a mathematical foundation for probability where all 
its classical interpretations (Hájek, 2011) fit into it and which can dispense 
with the partly troublesome stochastic assumptions currently accepted in fi-
nance theory (see e.g., IIIc) in 2.4.). Instead of employing a stochastic mod-

313  For example, the demise of Lehman Brothers, which is willingly treated as a model case of 
(glaring) risk management failure, was preceded by the operation of “a very respectable risk 
management system” (ibid.: 1). The collapse of the investment bank can namely be fully ex-
plained by the fact that Lehman actively began dismantling its carefully crafted risk manage-
ment framework as it pursued a new high-leverage growth strategy. “[I]t exceeded many risk 
limits, aggressively increased a number of risk metrics, disregarded its risk procedures, and ex-
cluded risk management personnel from key decisions. In October 2007, it replaced its well-
regarded chief risk officer with a seasoned deal maker who lacked professional risk manage-
ment experience.” (Ibid.). 

 

                                                           



294 Part III: The Third Way as a Road to Logic-Based Risk Modeling 

el, their game-theoretic approach can use the market to price volatility, to 
test for market efficiency, etc. From the angle of LBR, Shafer & Vovk’s 
(2001) ideas to handle various practical and theoretical complications asso-
ciated with conventional probability-based models are thus similar to what 
we are trying to achieve by introducing ranking theory (and other non-
standard non-probabilistic models of uncertainty). However, since the au-
thors are more concerned with efficiency (like the efficient-market hypothe-
sis) in lieu of addressing effectivity in the first place and as they do not ex-
pand on the complexity and structures of financial instruments altogether – 
indeed their attention is restricted to European and American options –, we 
would be reluctant to call their proposal a true competitor of LBR. This 
holds for the next two alternatives to a much lesser degree. 
ACTUS (Algorithmic Contract Types Unified Standards). The goals of 
project ACTUS, put forward by Deloitte Consulting LLP and the 
Brammertz Consulting GmbH among others, are similar to ours in that it, 
“the ACTUS project aims to establish a global standard that allows a con-
sistent mapping of financial instruments by means of unambiguously de-
fined and standardized contract types” (Brammertz Consulting, 2014), using 
the obligations of counterparties and external risk factors as the most basic 
data for analysis (Mendelowitz et al., 2013). However, the approach differs 
from LBR in mainly three aspects. First, ACTUS defines a collection of 
around thirty standard contracts, while we only define a small collection of 
building blocks from which a large variety of contracts can be derived. A 
drawback of their catalogue approach is that it only covers contracts that are 
currently in use, whereas ours can be employed to describe contracts that 
are completely novel.314 Our case study in the previous chapter illustrated 
the difference very well. The trade described in Section 16.1. consists of an 
interest rate swap and a collateralized loan. Each of those can be modeled 
with ACTUS contract types, but their combination (the actual trade) cannot. 
In LBR on the other hand, we can simply use the ⊕ operator to obtain a 
combined model of the two. The combined model takes into account inter-

314  Cf. Jones et al. (2001): “The finance industry has an enormous vocabulary of jargon for typical 
combinations of financial contracts […]. Treating each of these individually is like having a 
large catalogue of prefabricated components. The trouble is that someone will soon want a con-
tract that is not in the catalogue.” 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


17. Managerial Implications 295 

dependencies between risk events. For example, the default of one counter-
party leads to an increased default risk of all other counterparties.  
 Further, when modeling trades with ACTUS one has to specify a set of 
default events, including dates, as input to the model. In LBR we use uncer-
tain sequences to describe all possible combinations of default events. Be-
cause of this structure, we are able to automatically identify the most rele-
vant default scenarios. A final disparity between ACTUS and LBR is that 
our modeling approach allows for a variety of representations of uncertain-
ty, including ranking functions as we have shown in examples throughout 
Part III. ACTUS does not address the question of uncertainty representation 

directly, but it does make use of common techniques for calculating the 
price of financial instruments, and so implicitly assumes classical probabil-
ity throughout. 
Fault Tree Analysis. The way we visualized uncertain sequences as trees, 
for example in Figure 26 and Figure 29, is visually similar to fault tree 
analysis (FTA), a failure analysis technique used primarily in safety and re-
liability engineering (Tapiero, 2013: 208) but also in finance and credit risk 
analysis (e.g., Gatfaoui, 2008). However, FTA is fundamentally different 
from LBR. First, traditional FTA does not have a notion of time and there-
fore cannot express the temporal sequence of transactions that our LBR 
models are based on. A fault tree in FTA is essentially a term in Boolean al-
gebra that is interpreted in classical probability theory. The trees that LBR 
deals with represent sequences of events, and while terms in a Boolean al-
gebra do appear in our models, they act as conditioners of the underlying 
uncertainty models. In FTA the terms stand for actual events (in the proba-
bility-theoretic sense of the word) and are ultimately combined into a single 
event whose probability can be computed.  
 Second, FTA is a top-down analysis method, because the first step in 
fault-tree analysis is to pick a critical event. The analysis then focuses on 
potential causes for that specific event. LBR, by contrast, is both analytical 
and synthetic (see 15.6. and 15.4.), it is a bottom-up method because it starts 
by describing the individual components of a trade. An LBR risk model for a 
firm is assembled from a number of risk models for its branches, departments, 
and so forth. Only after the LBR model has been defined we may pick one, 
or a number of, critical events to study, by describing them as scenarios 
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(15.5.5.). While LBR can be used to predict the consequences of individual 
critical events, it also has explanatory power and supports other analyses (see 

15.5.5. on evaluating risk models, and the case study). Our approach thus 
avoids having to focus on a single event appointed beforehand and ex ante, 

and encourages a dynamic, interactive way of analyzing and synthesizing 
risks. A general appraisal of LBR on a larger scale follows in Chpt. 19. 
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18. Scales of Measurement and Qualitative Probabilities 

It is a commonplace that we must not undertake impermissible transformations 
on the data we wish to analyze, nor must we make interval statements on ordinal 
data, in particular (Flood & Carson, 1993: 41f.).315 In this thesis, we differentiat-
ed between different forms of risk and uncertainty (see Chapter 4) and investi-
gated their relationship with different forms of complexity (see Chapter 6.1.4. 
and 6.2.2.). Based on the characterization of deep uncertainty which emerges 
from highly organized and dynamic complexity and which is not measurable in 
probability terms (see Table 5; cf. also Stulz, 2008; Kuritzkes & Schürmann, 
2010; Kwakkel et al., 2010; Pruyt & Kwakkel, 2014), we hypothesize that when 
we as risk modelers are in a state of deep uncertainty about some future data or 
events (see our understanding of “risk” proposed in Chapter 4.1.), then we can 

perform, not a cardinal, but an ordinal ‘measurement’ of that risks only.316 In 
other words freely adapted from the logician and philosopher W.V.O. Quine, 
cardinalists’ overpopulated universe offends the aesthetic sense of us who have a 
taste for desert landscapes. Their aspiration after pedantic preciseness abets a 
breeding ground for disorderly mathematical operations on data and risks that 
necessitate modesty.  

315  We differentiate among four types of scales: nominal, ordinal, interval and ratio. According to 
Tal (2015: 3.2), “[n]ominal scales represent objects as belonging to classes that have no partic-
ular order, e.g., male and female. Ordinal scales represent order but no further algebraic struc-
ture” and admit of any transformation function as long as it is monotonic and increasing. Cel-
sius is an example of interval scales: “they represent equality or inequality among intervals of 
temperature, but not ratios of temperature, because their zero points are arbitrary. The Kelvin 
scale, by contrast, is a ratio scale, as are the familiar scales representing mass in kilograms, 
length in meters and duration in seconds.” This classification was further refined to distinguish 
between linear and logarithmic interval scales and between ratio scales with and without a nat-
ural unit (ibid.). “Ratio scales with a natural unit, such as those used for counting discrete ob-
jects and for representing probabilities, were named ‘absolute’ scales” (ibid.). 

316  It is an open issue whether the representation of magnitudes on ordinal scales should count as 
measurement at all (Tal, 2015). 
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Proposition 17:  
Deep uncertainty does not admit of degrees, but is a merely 

comparative notion. 

Proposition 17 complements the qualification of the term “deep uncertainty” 
which was introduced in 6.1.4. It clarifies that some uncertainties or risks have to 
be measured on an ordinal scale, from which it does not follow that we would 
always be bound to the constraints of ordinal schemes (which represent order but 
no further algebraic structure) when we model risks because not all of them are 
laden with deep uncertainty. However, on the one hand, Wang (1996: 3), for 
example, claims that “the main function of a risk measure is to properly rank 
risks”, which points to the centrality of ordinality. On the other, given Proposi-
tion 17 and the significance of deep uncertainty for risk assessment in dynami-
cally complex financial systems, we must employ a formal apparatus for modeling 

that approves both a common cardinal as well as an ordinal theory where degrees 
of uncertainty have no arithmetical meaning. 
 While classical probabilities are represented on more demanding cardinal 
(precisely, absolute) scales, LBR makes room for evaluating ordinal risks. In the 
context of this work, we confined ourselves to ranking theory (15.3.), which 
allows for more generality than probability theory and (at least in its early ver-
sion) assumes an arbitrary set of ordinal numbers as the range of a ranking func-
tion (Spohn, 1983, 1988). (If we intend to calculate with ranks though, this meant 
to engage into ordinal arithmetic, which is awkward; Spohn, 2009.)317 However, 
it is interesting to see that Spohn’s (2009) law of disjunction (see definition 
15.3.) can be conferred to ordinal scales. 
 In the broader context of LBR, it is very valuable that it comprises models 
and theories that are explicitly skeptical about degrees of, or quantitative ap-
proaches to, uncertainty. In an environment where deep uncertainty predomi-
nates, LBR could thus tie in, for instance, modal logics or the proposal of 
Halpern & Rabin (1987), in particular, where more than an ordinal assignment is 
not strived for as likelihood is not assigned quantitative values through numerical 
probabilities or ranks etc. (see the meaning of qualitative probabilities below 
instead). The following Figure 35 integrates the new dimensions around deep 
uncertainty and scales of measurement in the known, but slightly altered frame-

317  Spohn (2009), therefore, confines himself to complete ranking functions. 

 

                                                           

www.ebook3000.com

http://www.ebook3000.org


18. Scales of Measurement and Qualitative Probabilities 299 

work about the disassembly of the complexity notion and a characterization of its 
different subtypes. 

Figure 35:  The disassembly of complexity III: The unifying framework.318

Figure 35 consolidates new and previous insights about traits of complexity and 
extends former schemes (e.g., the Weaverian). It not only illustrates that orga-
nized or dynamic complexity produces unstable randomness (see also Figure 16), 
which in turn is responsible for a magnitude of uncertainty that can only be cap-
tured on an ordinal scale, but also, on the right-hand side, that LBR might be 
driven by the challenge of dynamic complexity in financial systems; however, it 
nonetheless exploits the opportunities of structural complexity as related to fi-
nancial instruments. Nota bene that furthermore dynamic complexity and struc-
tural complexity, at least in this example, are entangled: A major source of the 
increased interconnectedness and complexity of modern financial systems are the 
new products like CDSs and CDOs, which leads to the fact that more and more 

318  The condition of summativity holds (see 6.1.1.). 
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financial institutions interact over time (Admati & Hellwig, 2013: 161, 66-69, 
181; Boot, 2011: 1; Brunnermeier & Oehmke, 2009: 2). 

LBR models and qualitative probabilities 

In contrast to standard probability functions, Definition 15.1 distinguished quali-
tative or, as we may now add, partially319 ordinal measures of uncertainty. 
Building on this formal description of models, we will show subsequently in 
what sense and to what extent LBR makes use of ‘qualitative’ probabilities as a 
more comprehensive response to RQ2.3. As a first step in this direction, we elab-
orate on the meaning of “qualitative probabilities” as opposed to narrow proba-
bilities simpliciter – the emphasis is here on the interpretation, not on a formal 
definition (15.1.) – prior to turning to their incorporation into risk modeling.  
 Departures from probabilities simpliciter, i.e., the classical Kolmogorovian 
calculus, come under a range of different and renowned names.320 “Baconian 
probability” is coined by Cohen (1980: 219) as a collective term which denotes 
probabilities that are not “structured in accordance with the mathematical calcu-
lus of chance” because Baconian probabilities represent, for instance, a 
nonadditive deviation from it (Hájek & Hall, 2002: 167). If the finite/countable 
additivity postulate (see 7.2.) is dropped, then the way is paved for modeling 
ordinal risks properly. In this tradition (cf. also Fine, 1973), we conceive of qual-
itative probabilities as probabilities where we dispute the requirement that they 
have to have numerical values. Put differently, LBR is compatible with both, it 
favors a cardinal measurement (be it conventionally probabilistic or embedded 
in (forms of) ranking theory, DST, etc.), depending on the quality of the data, 
i.e., if deep uncertainty is not an overwhelming issue in the environment we 
operate in; but, at the same time, it countenances theories of comparative proba-
bility, exemplified by statements of the form “A is at least as probable as B”, 
which exactly corresponds to an ordinal measurement. 
 In terms of another major disparity between classical and qualitative proba-
bilities, we woud like to stress that probabilistic reasoning presupposes classical 
two-valued logic, in the sense that the definition of probability functions requires 

319  Compare, for instance, example 15.1 (cardinal) and example 15.3 (ordinal) in Chapter 15.1. 
320  For example, there are advocates of indeterminate, imprecise or vague probabilities, who 

represent probabilities not as single numbers, but as intervals, or more generally sets of num-
bers (e.g., Bradley & Steele, 2014; van Fraassen 1990). Skyrms (1980) allows probabilities to 
be infinitesimal. Some physicists have flirted with complex-valued probabilities and so forth. 
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notions from classical logic (Adams, 1998: 22; Weatherson, 2003: 111; footnote 
278). On the other hand, LBR is amenable to non-classical and modal logics (see 
15.2.), which can bear fruits in attempts to remove difficulties with two-valued 

logic, particularly in fuzzy sets, and complex systems (Jaynes, 2003: 18). In this 
further explored respect, qualitative probabilities under the guise of different 

models of uncertainty find their concrete way into LBR, ensuing from LBR models 
that are designed in accordance with definition 15.1 (ad RQ2.3). The Euler dia-
gram hereinafter sums up and depicts the extension of “qualitative probability” 
in terms of its relationship to some other similar concepts.  

 
Figure 36:  The notion of qualitative probability as head of a cluster. 

The transition from classical to qualitative or Baconian probabilities does not 
involve a loss of relevant information and, therefore, seems tenable or even rea-
sonable for risk modelers. First, we comply with the highest measurement stand-
ards permissible – cardinal risks permit a cardinal measurement of risks and 
ordinal risks reclaim ordinal measurement techniques. Second, the actual origin 
of risk measurement is the actual decison about taking a risk or allowing one to 
take it, which is fundamentally binary (i.e., of the “yes or no” type), with the 
result that ordinal information often suffices (Artzner et al., 1999: 208; and see 
also Part IV). Third, risk managers (i.e., decision-makers) are mostly concerned 
about the cost or the severity of tail events, rather than their probability of occur-
rence or other statistical properties (Bhansali, 2014: 14). The strategic question 
one must ask is not, how likely is the extreme risk event? The questions must be: 
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Bernoullian probabi-
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What is the situation and its impact if that crisis strikes, no matter how small the 
probability? What makes the difference between survival and almost certain 
ruin? Etc. (Malik, 2007: 112f.; Bhansali, 2014: 15). We should prioritize resili-
ence and persistent effectivity over efficiency and alleged ‘optimization’ because 
success relates to the former in the light of (deeply) unforeseen events 
(Bhattacharya et al., 2015: 933; Probst & Bassi, 2014: 124; Sheffi, 2005). 
 Having both the right conceptual vocabulary (interpretation as qualitative 
probabilities) and the right underlying mathematics (uncertainty models) is es-
sential for being able to understand and explain organized complex systems as 

well as their manifestations (in banking) and implications (for risk management). 
In the words of the French novelist, essayist, dramatist and adventurer André 
Gide: “On ne peut découvrir de nouvelles terres sans consentir à perdre de vue le 
rivage pendant une longue période.” In the next chapter, we shed some light on 
the meaning of “model validation”, essentially just enough light to assemble a 
tentative register of validity attributes in order to evaluate the quality of, and 
plausibilize, LBR models. 
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19. Model Validation 

The assurance of model validity is a prominent challenge in the social sciences 
(Grösser & Schwaninger, 2012: 157; Schwaninger, 2010: 1422). Surely, it is an 
uncontroversial and unambiguous matter in pure mathematics – namely, a matter 
of formal accuracy rather than practical use. Such mathematical models or pure 
analytic statements “do not make any assertion about the empirical world, but 
simply record our determination to use symbols in a certain fashion” (Ayer, 
1952: 31) and, therefore, they can be shown to be either true or false. In this 
study (and the social sciences tout court), however, we have to rest content with 
imperfect models.321 (Numerical or mental) models with empirical content, such 
as LBR and other models of financial systems, are by their very nature abridged 
and restricted representations of the real world and thus “wrong” (Sterman, 
2000: 846).322 As they never comprehensively capture the complexity of the 
social system of interest, their absolute validation, verification is impossible 
(Sornette, 2003: 134f.; Sterman, 2002; Zeigler et al., 2000; Forrester, 1961: 
123).323 This means that validity cannot reveal itself mechanically in our realm. 
It is not sufficient to point to an entirely theoretical validation in the form of 
(sound) mathematical propositions, theorems, formal algorithms, etc. 

321  In addition, House & McLeod (1977) reject the desirability of perfect models, even as an ideal 
concept. 

322  This is consistent with our definition 2.1. and even if risks are conceived of as subjective 
constructions, in lieu of real-world, objective phenomena, they would eventually be representa-
tions of the real world. The tension between ‘objective’ representation and ‘subjective’ con-
struction is resolvable, e.g. if the modeler is regarded as creating “a new world” (von Foerster, 
1984) by the act of either observing or modeling (cf. also Watzlawick, 1980). 

323  “The word ‘verify’ derives from the Latin verus – truth; Webster’s defines ‘verify’ as ‘to 
establish the truth, accuracy, or reality of.’ ‘Valid’ is defined as ‘having a conclusion correctly 
derived from premises… Valid implies being supported by objective truth.’ By these defini-
tions, no model [with empirical content; C.H.] can ever be verified or validated. Why? Because 
all models are wrong.” (Sterman, 2000: 846). See also footnote 214. 
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 A second overrestriction of the notion of model validity, and thus a second 
major problem with so-called early logical empiricism (or logical positivism),324 
lies in the insistence on predictive ability as the only criterion for model justifica-
tion (cf. also Milton Friedman’s appeal for positive finance; McGoun & 
Zielonka, 2006: 49; Scherer & Marti, 2008: 263)325. As Barlas & Carpenter 
(1990: 154) have outlined: 

Since, according to logical positivism, the content of a scientific theory [or model; C.H.] 
is irrelevant to the philosophical problem of verification, explanatory power is not a cri-
terion. According to the principle of verifiability (or falsifiability), the only criterion for 
justification is whether the observations match with the predictions (implications) of the 
theory. According to this view, explanation may be quite important in other activities, 
such as the construction of new theories, but has nothing to do with justification. 

Yet, relying merely on predictions for model validation resembles an absurdi-
ty.326 Indeed, apart from the accuracy of predictions as an admittedly important 
aspect of the quality or usefulness or validity of a model, i.e., how adequately the 
inferences from the model match reality, other criteria (see below), and specifi-
cally the plausibility of the model assumptions, need to be taken into account. 
Explanation must be esteemed as evidence of knowledge (Barlas & Carpenter, 
1990: 154) and a model ought to generate the “right output for the right reasons” 
(Barlas, 1996: 186; Forrester, 1968) since model validity cannot be controverted 
without reference to a specific (modeling) purpose (Forrester, 1961). In other 
words, it is a relative concept.  
 Hence, in contrast to validation in the sense of preserving truth, on the one 
hand, and reliability of predictions, on the other hand, the validity of a model 
should be defined broadly and loosely as “usefulness with respect to some pur-
pose” (Barlas, 1996: 84), as “the property a model has of adequately reflecting 
the system being modeled, contingent on the model’s purpose” (Kleindorfer & 

324  Cf. Barlas & Carpenter (1990: 154), and Creath (2011). 
325  Positive finance purports that a model or hypothesis “is true if it corresponds to what people 

are doing” (McGoun & Zielonka, 2006: 49). Positive finance is the most widespread variant of 
positivistic finance, which in turn predominates within the finance discipline (Scherer & Marti, 
2008: 263) and which “considers phenomena as ontologically given to the observer (i.e., the 
researcher) and suggests a structural similarity (or even identity) between financial models and 
hypotheses and the financial markets that they describe” (ibid.). Positivistic finance not only 
deals with the misguided question of under what conditions a model or hypothesis is true, but 
also provides inadequate answers (cf. Scherer & Marti, 2008, who, however, seem to overlook 
the former). 

326  Toulmin (1977), by reviewing the last 25 years of philosophy of science, finds that we would 
then consider horse race tipsters scientists and evolutionary biology nonscientists. 
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Geneshan, 1993; cf. also Grösser & Schwaninger, 2012: 157). Put differently, “[a] 

model is valid if it represents what it is supposed or claimed to represent” 
(Schwaninger, 2010: 1422). Conceptually, the validation process is an iterative 
learning cycle, embedded throughout the model-building operation (Richardson 
& Pugh, 1981: 311; see Figure 19). It becomes a semiformal, conversational pro-
cess in which validation efforts gradually establish (more but not completeness 
achieving) trust and confidence in a model (Barlas, 1996; Klir, 1991: 119; For-
rester & Senge, 1980) and where understanding is enhanced through the interac-
tion of a formal model (e.g., a risk model) with a mental model (i.e., of individu-
als or groups) (Morecroft, 2007: 375). As a consequence, we can summarize in 
the words of Barlas & Carpenter (1990: 157) that 

[a] valid model is assumed to be only one of many possible [or admissible; Dubois & 
Prade, 1980: 189] ways of describing a real situation. No particular representation is su-
perior to all others in any absolute sense, although one could prove to be more effective. 
No model can claim absolute objectivity, for every model carries in it the modeler’s 
world view. Models are not true or false but lie on a continuum of usefulness. 

In this respect and steered by the prior work of Rossi (2014: 79ff.), Stern & 
Feldman (2013), Schwaninger & Grösser (2008: 451), Holton & Lowe (2007), 
McNeil et al. (2005: 41) and Bacharach (1989: 500), we elicit a set of criteria 
that aids to evaluate the validity, usefulness or quality of a model, in general, and 
of LBR risk models, in juxtaposition to primarily probabilistic rivals (Table 3), 
in particular. Further, we organize model validity features under the latter rubric 
by grouping them as rather theoretical or more practical. This collection is meant 
to be illustrative rather than exhaustive; overlappings are avoided. 
 Table 12 gives an overview of the different dimensions of model validity 
which this study proposes based on the aforenamed prior work in the literature. 
They are spelled out, delineated, and discussed in the context of LBR thereafter, 
which also functions as a résumé of this Part III. 
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Table 12:  Validating LBR risk models along a collective of reasonable criteria. 

Dimensions / criteria Logic-Based Risk Modeling (LBR) Competing models 
(1) Falsifiability In several regards Not discussed 
(2) Comparability In several regards Not discussed 

(3) Parsimony and 
simplicity 

Prima facie 
 
- better than 
- better than 

Due to (**): Non-feasibility of 
absolute validation 
- Probabilistic risk models 
- Explanatory risk models 

(4) Reduction of 
costs  

In many regards better than, 
in some regards worse than (e.g., due to 
increased computational complexity) 

 
Probabilistic risk models (due 
to **) 

(5) Fruitfulness Only time and feedback from the econom-
ic practice can tell 

Other risk (specifically proba-
bilistic) models (due to **) 

(6) Reliability and 
precision 

Prima facie  
- better (reliability) and worse (preci-

sion) than 
- better than 

Due to (**) 
- Probabilistic risk models 
- Qualitative risk analysis 

(7) Com-
prehensiveness 
and clarity 

Prima facie better than 
Other risk (specifically proba-
bilistic) models (due to **) 

(8) Coherence Prima facie better than Probabilistic risk models (due 
to **) 

(9) Aggregate and 
(unit) specific No significant differentiation 

(10) Forward looking 

Prima facie better (explanatory power 
yielding orientation or clear and reliable 
predictions) and worse (when accounting 
for costs of liquidation on prospective 
losses) than 

Probabilistic risk models (due 
to **) 

(11) International, 
financial institu-
tions broadly 

No significant differentiation 
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General attributes of model validity: 

1) Falsifiability or refutability: The ability of a model (theory or hypothe-
sis or conjecture etc.) to be falsified (refuted) or supported.327  
LBR models ensure falsifiability in more than one sense:  
o Each interrelationship can be tested, both logically (through repre-

sentation of relationships in formal logics (Chapter 15.2.) and 
functional programming (15.4.)) and empirically (through resort-
ing to existing financial contracts (Chapter 15.4. and 15.5.) and 
case studies (16.)). 

o LBR models make the underlying (e.g., structural) assumptions 
explicit and transparent – ‘white boxes instead of black boxes’ –, 
they are formalized, thus, testable and falsifiable (Chapter 15). 

o Popper’s critical rationalism (1959a, 1963/2002) praises deduc-
tive relations and LBR, in an Austrian tradition, also puts empha-
sis on a deductive procedure (Chapter 15 and Proposition 12), 
which is explicit and rigorous, whereas probabilistic risk model-
ing approaches are much less skeptical about empirics and hinge 
on inductive procedures (see Chapter 7). And the more explicit 
and rigorous a solution is, the more easily it is criticizable 
(Floridi, 2013: 29). 

o LBR model outcomes can be tested / simulated (Chapters 15.6. and 
16); the models’ performance can be benchmarked against e.g., 
standard probabilistic strategies (reference modes, see 15.5.).328 The 
basic value of a model or simulation outcome consists in it embody-
ing hypotheses (to be developed) that can be refuted and serve as an 

327  In general, theories, models, hypotheses, and any other claims to knowledge are specified, they 
can and should be rationally criticized, and (if they have empirical content) be submitted to 
tests. These tests are essentially endeavors of refutation, as established in Popper’s critical ra-
tionalism (Popper, 1959a, 1963/2002; see footnote 208). The test object cannot be confirmed or 
proven (see above, the first flaw of logical empiricism), it can only be falsified. “If, however, 
the attempt of falsification is not successful, then it can be temporarily maintained” 
(Schwaninger & Grösser, 2008: 450). Accordingly, “[t]he most important question about any 
financial model is how wrong it is likely to be, and how useful it is despite its assumptions” 
(Derman & Wilmott, 2009). 

328  The performance of a method “is characterized by the degree of its success in dealing with the 
class of problems to which it is applicable. It can be expressed in various ways, typically by the 
percentage of cases in which the desirable solution is reached, by the average closeness to the 
desirable solution, or by a characterization of the worst case solution.” (Klir, 1991: 88f.). 
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anchor around which arguments can be built (Schwaninger & 
Grösser, 2008: 450).329 For more details, see comparability. 

2) Comparability: If absolute model validation is not feasible, the evalua-
tion of models in comparison to other models becomes crucial. The fo-
cal risk model, modeling approach or paradigm should thus allow for a 
clear comparison to rival models, measures, methods, methodologies 
or procedures. 
Application of the criterion to LBR: 
o LBR not only nominates concrete risk models, but also embeds 

the measurement of extreme and systemic risks in a larger 
framework, where the choice of uncertainty formalisms becomes a 
parameter of the model, so it can be adapted to the particular ap-
plication (15.5.), and it is not constrained to classical probabilities 
(15.2.; proof of commensurability). In particular, it contains, as 
opposed to narrow probabilistic frameworks (Chapter 7), the 
equipment to construct models tailored to the object of our inter-
est, namely extreme and systemic risks (Proposition 11). 

o The path-breaking work by Artzner et al. (1999), which can and 
ought to be extended to a multi-period or dynamic framework 
(Riedel, 2004), sets the ‘gold standard’ for coherent risk measures 
(15.1.). We recast and incorporate their findings into the LBR sys-
tem (see Proposition 10), which enables us to compare different 
risk measures in terms of their obedience or non-obedience to 
those postulates (proof of commensurability).  

o Since LBR focuses on risk posed by rare, high-impact events, it natu-
rally complements conventional risk models which are better suited 
for evaluating more regular market swings or less significant cred-
it risks etc. Through case studies and simulations, we compare 

standard and our non-standard risk models over time to spot areas 
of interest, where the approaches diverge. They are intended to an-
swer many questions, such as the following in a portfolio manage-

329  Simulation methods are among the most adequate in environments of (high) dynamic and 
organized complexity because they enable us to trace, capture, manipulate, and study the ele-
ments of dynamic complexity (e.g., multiple, delayed, nonlinear effects) in vitro (Harrison et 
al., 2007; Axelrod, 2005; Zeigler et al., 2000). 
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ment context: Do LBR risk models lead to a change in the risk-
reward ratio of a certain portfolio? That is, does the performance of 
the portfolio (beta measure) change when using LBR? Are the dif-
ferences in measured risk correlated to changes of the portfolio val-
ue? Etc. There are at least two major problems with case studies 
and simulations that we need to be aware of: Historic data is no 
good indicator of future performance (Chapter 7). The outcome (suc-
cessful/unsuccessful) may be due to some parameters of the study, 
for example the chosen time period or the selected portfolio, and can-
not necessarily be seen as an indicator of the quality of our model. 

o The established Monte Carlo simulation method can be applied in 
principle, which would require us though to adopt the classic 
probabilistic interpretation of our uncertainty models.330 Yet, the 
flipside would be an augmentation of comparability of our models 
to orthodox models. 

o LBR is not only compared abstractly to probability-based risk 
models, but its merits are briefly highlighted in contrast to the 
concrete alternatives ACTUS and Fault tree analysis (Chapter 17).  

o Any bank that has a conventional (e.g., a VaR-based) risk man-
agement system could switch to LBR with negligibly additional 
computational effort. Insofar, the systems are compatible. 

3) Parsimony and simplicity: This characteristic of model validity, in es-
sence, advocates the avoidance of multifariousness (as opposed to the 
capability for absorbing complexity, which has to be fostered as Ash-
by’s law postulates)331. The parsimony of the model refers to its lim-
ited size and its simplicity “lies in the small set of components it con-
sists of, which is fully transparent and focused on the essentials” 
(Schwaninger & Grösser, 2008: 458). 
o In general, models and theories should be as simple as possible, 

but not simpler than that (attributed to Einstein and at least partial-
ly rooting in Occam’s razor). 

330  We would need to generate random data which necessitates a probability distribution, so all 
information we could get out of the simulation would be a function of those distributions. 

331  Ashby’s law of requisite variety can be quoted as: “Only variety can destroy [absorb, C.H.] 
variety”. Cf. Ashby (1956) and Schwaninger (2009: 14). 
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The users of a model (e.g., risk managers) ought to understand the 
model. Given that “[c]omplexity is linked to a lack of understand-
ing” (Schwaninger, 2009: 11), it should only be added to the de-
gree it favors another desired attribute. 

o Application of the criterion to LBR as opposed to other explanato-
ry risk models: Instead of succumbing to temptations towards cap-
turing the combinatorial richness of real financial systems, the 
complications of structural or disorganized complexity at the ex-
pense of tackling dynamic or organized complexity, LBR is driven 
by a specific problem or issue to “explain the impact of systemic 
risk events on [banks’] own exposures” (see Proposition 7 and 
Proposition 11) and not by ambitions to reflect a whole (financial) 
system with all its details. This marks a vital disparity between 
LBR and many explanatory risk models primarily designed for 
regulators (see Chapter 8.2. and Appendix E). 

o Application of the criterion to LBR as opposed to probabilistic 
models: LBR is modest. No complicated procedures (like in EVT) 
are needed when accepting deep uncertainty as barely measurable 
(Definition 15.1 and Proposition 17), whereas capabilities of 
probabilistic approaches are overestimated if applied to the as-
sessment of extreme and systemic risks in financial systems, 
which should be considered outside the scope of the Kolmogorov 
system (Chapter 7, 8, 10). 

4) Reduction of costs emanating from the limitations of techniques ap-
plied to risk measurement; 
The pressure for cost savings will continue (Härle et al., 2016: 7). Ap-
plication of the criterion to LBR as opposed to probabilistic models: 
o The wealth of statistical techniques available for dealing with disor-

ganized complexity is contrasted with the (absolute) paucity of such 
techniques for coping with unstable and wild randomness (Chapter 6) 
– “[a] popular fix [by standard theorists] is censorship, hypocritically 
termed ‘rejection of outliers’” (Mandelbrot, 1983). LBR, howev-
er, is capable of capturing extreme risks, which are accompanied 
by unstable randomness and organized complexity, respectively, 
and thereby cuts down costs through abolishing censorship. 
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o Probabilistic predictions are not useless, not ineffective in an ab-
solute sense, because, even though uncertainty in predictions is 
inherent in the complexity of the task, they “are better than pure 
chance once users know their shortcomings and take those into 
consideration” (Sornette, 2003: 322).332 Yet, while acknowledg-
ing that the application of (working) models to particular areas of 
experience (i.e., phenomena that have a reasonable degree of 
complexity) is almost always schematic and highly approximate 
in character (Suppes, 1984: 115), we allege that probability theory 
and its application in financial risk management is less effective333 
(ergo, more costly) than LBR. This is basically the main outcome 
of the reasoning in the preceding chapters (e.g., LBR comes with 
lower model risk) as the overall title of this work presages.   

o Increased automatization and, thus, e.g., decreased overhead 
costs, result from LBR due to its algebraic underpinnings and an 
automatic translation of any material financial contract, that can 
be incorporated in the language of Jones et al. (2001), into our 
risk model (Chapter 15.4., 15.5.; cf. also Härle et al., 2016: 5). 
While logic-based approaches are burdened with computational 
complexity or algorithmic / Kolmogorov complexity (see 2.1. and 
Appendix C)334 which is directly correlated to their expressive-
ness, they make it possible to automatically prove new sentences, 
which is exactly what is required to discover previously unknown 
correlations.  

o Knowledge reusability is accomplished through inferring the risk 
profile of complex derivatives from their structure alone. As de-
rivatives are composed from simpler parts and ultimately from 
primitives, their risk models are also composed from simpler 

332  Moreover, even if a model were maladaptive when used for quantitative prediction, it “can be 
an informative aid to understanding phenomena and processes” (Frigg et al., 2014: 20). 

333  A comprehensive overview of validation of econometric models is provided by Dhrymes et al. 
(1972). 

334  “Computational complexity is a characterization of the time or space (memory) requirements 
for solving a problem by a particular method” (Klir, 1991: 88). The problem size can be 
viewed as being represented by the required time or memory space. As a consequence, compu-
tational complexity or algorithmic complexity (see also Chapter 2, footnote 40) entails costs 
which must be overcompensated. 
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parts. In other words, we reuse risk information on their 
underlyings in lieu of designing ad-hoc risk models from scratch 
for each derivative. This reduces the cost of developing risk models 
(see Proposition 12 and Chapter 15.4.). 

5) Fruitfulness: The question here is whether the theory-building process 
has led to important insights and ultimately to the development of new 
knowledge. 
Application of the criterion to LBR as opposed to other risk (specifi-
cally probabilistic) models: 

1.  

o In theoretical terms, LBR is novel on several accounts. It focuses 
on the knowledge rather than the speculation dimension and, es-
sentially, constitutes a plea for symbolic and logic-based risk 
modeling. We think outside the box when we describe risks by 
means of decomposing risk objects, singling out their known 
structures by analyzing financial contracts, resulting in a novel 
(risk-focused) interpretation of an established programming lan-
guage for derivatives, and when we make use of interactive visual-
izations to present our results. LBR expands the toolset for deter-
mining extreme risks (Chapter 13, 15, 16). Etc. See also the list of 
propositions (Appendix B). 

o In practical terms, i.e., LBR models provide a conceptual frame-
work for practice (see also the criteria 9-11 below): At the end of 
the day, it is actual risk managers, i.e., practitioners as the target 
group for which the models have been eventually created, who 
should, first and foremost, assess the worth, significance and prac-
ticality of a model (Schwaninger & Grösser, 2008: 451). In this 
regard, the thrust of our initial action plan is twofold: To persuade 
professionals of the superiority of LBR, we conducted a first case 
study of measuring systemic risk in a business situation (Chapter 
16), on the one hand, and launched a webpage (http://www.lbrm-
labs.net/), on the other (and beyond this dissertation project), 
where we provide an interactive tool which our stakeholders, our 
partnering firms, in particular, may use to run simulations and 
compare the performance of LBR with benchmarks under differ-
ent circumstances and market conditions. Overall, the fruitfulness 
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of LBR could be striking (see Conjecture 16) considering the fact 
that we live in a world overpopulated by complex financial in-
struments (Chapter 15.6.). Yet, given the demanding goals of the 
LBR program, research and applications beyond the boundaries of 
current endeavors are indicated (see Chapter 22). 

Theoretical attributes of (risk) model validity: 

6) Reliability and precision: Model reliability can be understood as the 
extent to which the employment of a method is free of measurement 
errors (e.g., the consequences of a model test remain constant, if re-
peated under ‘identical’ (if possible) conditions; Schwaninger & 
Grösser, 2008: 459). In a general reply to the problem of model risk, 
any model needs to have its own error taken into account (Chapter 21). 
o Application of the criterion to LBR as opposed to probabilistic 

models: LBR often only countenances an ordinal or imprecise 
measurement of extreme and systemic risks in banking. However, 
albeit a probabilistic approach would be more precise, a more ex-
pressive language in terms of measurement in this field (see Chap-
ter 18), it turns out wrong after all (see Chapter 7 and 8), which 
can be rephrased as subscribing to the myth of pedantic and “infi-
nite precision” (Rebonato, 2007: 257). Put another way, the latter 
implies errors (more precise, but also more erroneous) while the 
former proves to be more robust and reliable and, thus, less af-
flicted by measurement errors (less precise, but also less prone to 
error). See also the trade-off between relevance and precision de-
scribed by Zadeh’s principle of incompatibility (Zadeh, 1973 and 
Chapter 15.2.) for discerning the superiority of LBR which does 
not make a fetish of rigor and mathematical formalism, but is tol-
erant of imprecision and partial truths.  

o Moreover, statements on an ordinal scale of measurement suffice 
since we “often need only a ranking of relative riskiness to make 
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the decision” (Granger, 2010: 36).335 Specifically, the likelihood of 
extreme losses or systemic events is much less important than 
their severity (Bhansali, 2014: 14) wherefore comparative (as a 
subclass of qualitative) in lieu of classical probabilities are all we 
need to assess their rarity (see Chapter 18 and Definition 15.1). 

o As contrasted with qualitative scenario and stress testing analysis, 
LBR does not suffer from vagueness, impreciseness, and a vul-
nerability to multiple interpretations or concretizations, but enti-
tles us to manage risks ‘by the numbers‘ (which is key, see Con-
jecture 9). LBR mainly proceeds deductively, in favor of rigor as 
opposed to impreciseness. For instance, we agitated the subject of 
modern financial systems and their structures (Chapter 6) and de-
rived modeling demands for handling extreme and systemic risks 
effectively (Chapter 8.2. and 15, Proposition 12). 

7) Comprehensiveness and clarity: This criterion establishes whether the 
risk model is sufficiently broad to cover the substantive issues of risk 
management interests (e.g., what-if-questions rather than if-ones), as 
well as sufficiently clear so that propositions and lessons can easily be 
drawn from it. 
Application of the criterion to LBR: 
o LBR facilitates the description or modeling of risks from different 

angles; e.g., appreciating different risk notions (Chapter 4), meas-
urement techniques (where probability theory is only one example, 
15.2.), which manifests systemic and holistic and, therefore, com-
prehensive thinking. 

o The LBR modeling approach differentiates between different and 
important logical and epistemological steps and levels, which 
should not be confounded: e.g., what risk is and how risk is meas-
ured, described or managed (see Chapter 4).  

o We have paid close attention to the consistent and accurate use of 
the terms, constructs and concepts which appear in, or are ger-

335  Cf. also Renn (2008: 4) who reinforces this statement: “In managing risks one is forced to 
distinguish between what is likely to be expected when selecting option X rather than option Y, 
on the one hand, and what is more desirable or tolerable: the consequences of option X or op-
tion Y, on the other.” 
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mane to, the emerging LBR modeling approach. They were ex-
plained, also in terms of their relationships (e.g., see Table 5), and 
documented in a glossary (Appendix A) to furnish an exact and co-
herent conceptual apparatus. As opposed to probabilistic approach-
es (Chapter 7), LBR is conceptually appropriate (Chapter 15). 

o By harnessing the work of Jones et al. (2001) on a language for 
describing contracts (15.4.), we ensure that LBR can describe a 

wide range of financial contracts. Due to the constructive nature of 
our approach, we do not constrain ourselves to a fixed number of 
common contracts (cf. ACTUS), and make it possible to apply our 
models to novel kinds of contracts that are as of yet unknown. 
Therefore, LBR is comprehensive in the number of derivatives 
that can be expressed in it. 

o LBR is further holistic and systemic, respectively, in terms of 
pooling resources of both analytical and synthetical thinking (see 
15.4., 15.6., 16.3. and Proposition 12). 

8) Coherence: Risk models ought to be coherent which implies that they 
must satisfy, in the view of most risk experts/scholars, the first four 
(Artzner et al., 1999) of the following axioms (15.1.). The fifth (cf. 
Riedel, 2004; and see “uncertain sequences” in 15.5.3. as the temporal 
component of LBR) was added as a requisite in the wake of the dy-
namic perspective which is adopted in this study. 
o Translation invariance 
o Sub-additivity 
o Positive homogeneity 
o Monotonicity 
o Dynamic consistency 
Application of the criterion to LBR: 
o LBR models obey these postulates if the modeler wishes to specify 

them accordingly (see Definition 15.2.; Müller & Hoffmann, 

2017a) whereas common risk models (VaR, Chpt. 2) are incompati-
ble with some axioms (sub-additivity), showing that LBR is well-
behaved in a formal sense. 

o In terms of the coherence between the model and real systems, 
LBR model assumptions are weaker and more realistic than what 
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is commonly assumed in probability-based models. Specifically, 
the messy imperfection of the real world, which is not only black 
and white and which does not allow us to work with perfect mod-
els, is reflected in the choice of our formal apparatus: ranking 
theory (Chapter 15.3.) and its siblings (15.2.) in lieu of (pure) 
probabilistic reasoning which in turn presupposes classical two-
valued logic (Chapter 18; Weatherson, 2003). 

Specific attributes designating risk models as particularly useful and valuable 
to risk managers and practitioners (Stern & Feldman, 2013: 746f.). This sublist 

is rather practice-oriented and it is supposed to be derived from needs, pain 
points in the economic practice. In real settings, by real examples, we will be 
able to find out where the real virtues and limitations within risk management lie 
(Embrechts, 2000). 

9) Aggregate and (unit) specific: The risk model should be clearly linked 
to the overall level of risk. Managers also wish to know how to appor-
tion that aggregate total across units (markets, positions, etc.). 
Application of the criterion to LBR: 
o Like VaR or ES, LBR is universal: within its scope, we encounter 

any instrument and any underlying source of risk (e.g., market 
turbulences, credit crises, etc., see 5.1./2.). On the highest level, 
for example, the allocation of funds in a portfolio describes the ra-
tio of long to short positions, but the LBR approach permits us to 
elaborate on strategies in any level of detail (specific industries, 
markets, derivatives, etc.). Because risk measures defined in LBR 
use the same mathematical language as investment rules in a strate-
gy, there is no need to translate between different scales, which 
would only reduce the fidelity of the data (Chapter 15 and 17). 

o It is currently a not yet settled question if LBR is less universal 
than its competitors as it appears at least to be predestined for tail 
risks in the realm of liquidity and counterparty, on the one hand, 
and for sufficiently complex financial instruments (whatever that 
means, most probably excluding basic loans, stocks etc.), on the 
other. Future research is indicated to determine the scope of LBR 
(in continuation of Proposition 15). 
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o LBR models are designed in the spirit of the interplay between 
aggregate and unit specific views. 

o The analysis of LBR risk models is an iterative and interactive pro-
cess (Chapter 16.3.) where zoom and filters are applied, which is in 
line with what systemics propagates (e.g., see Figure 20 and 19). 
LBR lends itself to sophisticated, appealing data visualization pro-
grams – e.g., the award-winning Tableau Software™. In contrast to 
many existing tools, LBR is not static and inflexible, and it not on-
ly supports ‘traditional’ applications of risk models, such as sensi-
tivity / liquidity analysis. LBR and uncertain sequences really of-
fer abundant opportunities to get integrated in practice. 

o Harboring sub-additive measures of risk (as posited in 15.1.), 
LBR values, e.g., of different trading desks, can be aggregated to 
the firm-level in a way that respects portfolio diversification. 

10) Forward looking (cf. also diachronic sensibility, which has been dis-
cussed in connexion with Dutch Book arguments; van Fraassen, 1989): 
The risk model ought to possess sensible and distinctly desirable time se-
ries properties. The model should increase (long) before a financial cri-
sis or another risk event impacts the bank’s positions, for example, and 
be able to maintain consistency over time, as well as to examine emerg-
ing trends or patterns in a risk object’s (e.g., a portfolio’s) risk profile. 
Application of the criterion to LBR: 
o In contrast to many standard approaches, LBR is an explanatory 

modeling technique (see Chapter 8.2., 15.6. and Table 3) and, thus, 
elucidates why the system behaves as it does and not differently 
by capturing structural determinants (the network of contracts or 
of assets and liabilities). Specifically, it explains the impact of sys-
temic and extreme risk events on banks’ own exposures and draws 
attention not to the symptoms of difficulty (certain possible and 
very uncertain events), but rather to the underlying drivers (dy-
namic and organized complexity as well as their antecedents in 
terms of the high, increasing but exploitable structural complexity 

of financial products). Predictions can be inferred from LBR’s 
explanatory power (Chapter 2.2.1. and Figure 19). 
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o With regard to Riedel’s requirement of temporality for the axiomatic 
framework of Artzner et al. (1999), we treat uncertain sequences 
as expression of a temporal sequence of events (see 15.5.). 

o In contrast to traditional and prevailing risk models, LBR does not 
hinge mainly on hindsight due to curtailed data demands and a 
structure- or pattern- (not event-)oriented alignment. 

o Foresight requires system understanding which, in turn, is facili-
tated by focusing not on a variety of systems, but dynamic com-
plexity (Chapter 6 and Figure 15). In such complex environments, 
LBR does not offer meticulous predictions, but orientation in lieu 
of pushing predictive power (Chapter 14), thereby acknowledging 
that the behavior of the financial system and minimum or expected 

losses are deeply unknown (Table 5). Hence, it eschews the trap of 
endless specification. The downside is that LBR is limited in, e.g., 

taking into account the exact costs of liquidation on prospective 
losses ((see 16.4.) because this would fall under the heading of 
“deep uncertainty”, which is circumnavigated). And “illiquidity of 
markets is nowadays regarded by many risk managers as the most 
important source of model risk” (McNeil et al., 2005: 41).336  

11) International (if relevant) and financial institutions broadly: Global 
systems and markets necessitate a global approach to risk, also given 
that the network of financial activities is international (see Appendix 
E) and not just performed by banks (in the proper sense), but by a myr-
iad of other financial institutions (including shadow banking etc.). 
Application of the criterion to LBR: 
o LBR is a systemic approach and, while systems in their entirety 

can be large or small (recall that “system” is a formal concept, see 
2.1.), an emphasis on global financial systems was placed. 

o A plea against the compartmentalization of risks and for global 
and holistic thinking was put forward (see 5.1.). 

336  Assume that the measurement of a certain risk leads to the decision of liquidating a certain 
position. While some measures like VaR recommend that no more than an amount l would be 
lost in liquidating the position (for a VaR estimate at a certain confidence level, e.g., α = 0.95) 
(Lawrence & Robinson, 1995), the act of liquidation would in fact have the effect of “moving 
the price against the trader disposing of a long position or closing out a short position. For 
large positions and illiquid instruments the costs of liquidation can be significant […].” (Ibid.). 
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o Heterogeneity of financial systems is acknowledged and “banks” 
has been used in a very broad sense, i.e., in place of “financial in-
stitutions” at large (see Introduction). 

In a nutshell, we gain the following intermediate result on the validation of LBR 
models (ad RQ2.7); intermediate since the foregoing catalogue of criteria a) does 
not claim to be comprehensive, and b) its application to LBR models reflects a 
gradual learning and conversational process, which can be iterated and then 
possibly lead to different (e.g., more nuanced or diverging) outcomes. 
 

Proposition 18:  
A logic-based risk modeling approach (LBR) is more valid or useful or 

of higher quality, respectively, than conventional probabilistic 
approaches to assessing extreme and systemic risks in a modern 

financial system, emanating from its dynamic and organized 
complexity. 

All things considered, the question, which guides us, is not how existing models 
of systemic or extreme risk should be improved in the proper sense, because this 
would be tantamount to blind efficiency seeking, but, in a more disruptive sense, 
they should be replaced for particular applications to extreme and systemic fi-
nancial risks and,337 generally speaking, be complemented by logic-based risk 
models (LBR). LBR turns out to be more effective than rival models in the face 
of dynamically complex financial systems and, hence, constitutes the core of our 
proposal for approaching the overarching RQ2. 
 Others have suggested what is now reserved for future discussion, namely 
that a good systematic risk model should encourage companies to hedge and 
reward companies that do not play with the system to increase their benefits – 
“detect and punish speculation” (Bernard et al., 2013: 178; Riedel, 2013). There-
by, we enter the broader territory of decision-making competency where we 
always need what we may refer to as “managerial review and judgment”, where 
the decision-maker sees beyond the formal decision support (Aven, 2013b: 48). 
Indeed, decision-making and risk management are inseparable. 

337  As stated earlier, the scope of LBR is not yet defined. At least, it bears fruits in the realm of 
liquidity and counterparty risks, as well as in connection with complex financial instruments. 

 

                                                           



 

Part IV:   
Meta Level: Thinking about Thinking and Practices – What it 
Means to Reach Effective Risk Management Decisions 

 

www.ebook3000.com

http://www.ebook3000.org


 

20. Introduction to Part IV as Overall Conclusion 

There is an art of which every human being should be a master, the art of reflec-
tion.338 Very pertinent is the question which the English poet Samuel Taylor 
Coleridge puts, – “If you are not a thinking man, to what purpose are you a man 
at all?” (Coleridge, 2015). Daniel Kahneman differentiates between “Thinking, 
Fast and Slow”. Yet, both instinctive and emotional thinking (what he calls fast 
thinking) and more deliberative, more logical or analytical thinking (what he calls 
slow thinking) can be superficial and quick, as well as premature and insufficient. 
In our time where analytical and quick thinking (skills) is (are) often praised, re-
warded and overrated, it (they) might really go (lead) astray or might only be in-
dispensable because people have begun too late to think about an issue (Ulrich & 
Probst, 1990: 299). Thus, deep thinking – and, as special cases, creative or disrup-
tive (Schumpeter) and holistic or systems thinking –, which takes time, ought to 
be honored. From time to time, we must step out of the stream of direct experi-
ence and our immediate responses to it. Otherwise, there is the veritable risk that 
one might just end up being quick on the avoidable road to doom and disaster.339 
 By profound thinking or reflection, we are able to unmask the illusion that 
all financial market participants can eradicate their risk or hedge them all away at 
the same time. Moreover, it helps us identify a “trap for logicians” that we as logi-
cians (see Part III) would like to escape. “Life is ‘a trap for logicians’ because it 
is almost reasonable but not quite; it is usually sensible but occasionally otherwise” 
(Lowenstein, 2002: 69). “It looks just a little more mathematical and regular than it 
is, its exactitude is obvious, but its inexactitude is hidden; its wildness lies in wait” 

338  Wilhelm von Humboldt jotted down a few aphorisms which, posthumously, his editors put 
under the heading “About Thinking and Speaking”. The first three aphorisms deal with reflec-
tion, “the essence of thinking”, and the second stands out: “In order to reflect, the mind must 
stand still for a moment in its progressive activity, must grasp as a unit what was just present-
ed, and thus posit it as object against itself” (cited in von Glaserfeld, 1995: 90). 

339  In the less drastic and sharp words of Zaleznik (2004): Managers “instinctively try to resolve 
problems quickly – sometimes before they fully understand a problem’s significance”. 
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(Bernstein, 1996b: 331). Beyond doubt, logics and mathematics in economics and 
finance serve to keep the reasoning straight, to make sure that one step of an argu-
ment leads in an orderly way to the next, which is frequently not the case when we 
condemn formal methods. Thus, formal methods have been embraced to assess and 
manage risks (see Part III). But even though “[c]rystal-clear logical connections340 
between the ‘if’ and the ‘then’ are, of course, desirable, […] we cannot neglect the 
choice of the ‘ifs’” (Bhidé, 2010: 84; see also Part II and III). Picking ‘ifs’ just 
because they are best suited to some special (e.g., a specifically elegant or conven-
ient) form of mathematical or formal risk modeling can open the door to great 
mischief (ibid.). This logician’s trap would be to use, in other words, a standard 
risk model (Part I) for past data from an imperfect world, constituting an elusive 
and random sequence of events rather than a set of independent or normally 
distributed etc. observations, which is what many standard, i.e., probabilistic risk 
models demand or assume (see IIIc) in 2.4.), because many economic and finan-
cial variables and quantities look like they would possess such idealized proper-
ties. Yet once again, “resemblance to truth is not the same as truth. It is in those 
outliers and imperfections that the wildness lurks.” (Bernstein, 1996b: 335). 
 Finally, risk management not only struggles with those problems for (espe-
cially some) ‘logicians’ (who neglect whether the assumptions, they need to 
establish if a certain modeling approach is selected and applied, are satisfied), 
but also with many more, partly pressing issues. For example, risk management 
sometimes creates new risks even as it brings old risks under regulation and 
control to some extent. “Our faith in risk management encourages us to take 
risks we would not otherwise take” (ibid.). 
 Against this background of lurking traps on the terrain of risk management, 
the call for an avoidance strategy cannot be ignored. The fourth part of this dis-
sertation functions as a concluding paragraph. It does not launch another in-
depth discussion, rather it offers an overarching conclusion and embeds the pre-
ceding study and analysis in the larger context of decision-making competency in 
the risk field. This manifests a synthesis, essential for systems thinking (Appen-
dix A), where we envision the focal object, risk measurement, as being part of 
the overall process of risk management in banking and beyond. 

340  Of course, to avoid a misinterpretation of his words, logicians are only interested in the form, 
not the content of an argument (the latter including assertions about causal relationships be-
tween events). 
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21. Escaping the Traps for Logicians: Towards Decision-
Making Competency in Risk Management 

Follow effective action with quiet reflection. 
From the quiet reflection will come even more effective action.  

(Peter Ferdinand Drucker)341 

“The financial markets, seen by many as the most efficient and farsighted,342 
should rapidly evolve to near-optimality due to the huge stakes and enormous 
talent brought to bear. Yet even the highly sophisticated hedge funds [like 
LTCM, C.H.] bear the scars of self-inflicted wounds from open-loop thinking 
[see 5.1.; because their risk models have missed to consider that other actors 
might pursue the same or a similar strategy as an input to the models; C.H.].” 
(Sterman, 2000: 697). At best, the result is inefficiency; at worst, it is ineffectivity 
which hurts the organization, the people in it, and not too rarely third parties or 
even the larger society. In the densely connected, complex and turbulent world of 
ours, optimization or efficiency may still be desiderata, but ensuring effectivity, 
often taken for granted or underappreciated as a minimum accomplishment, 
would be a respectable primary goal; worth striving for when tackling an issue 
like evaluating systemic and extreme risks within complex financial systems. 
Good and effective risk management, in turn, ultimately comes down to making 
good decisions. “Risk assessment has a decision-guiding purpose” (Hansson, 
2007: 23; cf. also Taleb, 2013: 7). The output of the risk management process, 
where evaluating risks is the crucial step (see 2.2. and cf. Stulz, 2008: 59), is, as 
stated earlier, “an array of concrete decisions, such as whether to make or to 
refuse a loan, whether to add capital to the firm, or how to hedge a position” 
(Brose et al., 2014a: 369). What can good, adequate or effective risk management 

341  As quoted in Edersheim (2006: x). 
342  “The chief problem is the absence of an obvious counterfactual: how well is the financial 

sector allocating our economy’s capital compared to what? If we did not rely on our banks, 
other private lenders, and stock and bond markets to allocate our capital, with all the cost that 
they entail, how else would we perform this function?” (Friedman, 2010: 17). 
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achieve? In the following, we are committed to determine effective risk man-
agement in the sense of characterizing decision-making competency in a risk 
management context of banking and by taking the results from Part I–III explic-
itly into account. We begin with a negative answer to the foregoing question. 

Every approach to risk management can be maladaptive  

Effective risk management does not provide a guarantee against failure (Stulz, 
2008: 60). The employment of any, even of an entirely effective decision-
supportive tool for quantitative or qualitative risk assessment and management 
can neither eliminate model risk (McNeil et al., 2005: 3), nor compulsorily entail 
good risk management decision outcomes. Risks are inevitably cohesive with 
undeniable uncertainty (be it measurable or not, see our definition in 4.1.), which 
implies that taking and managing risks is connected with uncertain decision 
outcomes. The decisive point for grasping the quality of a risk management deci-
sion is then not represented by the still uncertain amount of actual profit or loss 
induced by that action because, at the point of decision-making, a certain chance 
of loss could be more than offset by a certain chance of rewards, but still failure 
could occur at the end. We should therefore not base our judgment on the effec-
tiveness of risk management tools on the ex ante unknowable (values), which is, 
unfortunately, not sufficiently acknowledged in the literature and practice.343 For 
example, the mere fact that the risk management function of many banks “played 
an essential role in the recent financial crisis does not necessarily mean that it 
was at fault in any way. Some risks are worth taking, and even great risks may 
be rationally chosen if the [expected] returns are sufficiently high.” (Boatright, 
2011: 11).344  

343  For example, Williams (2010: 107) writes naively: “Lehman traders took on risk with each 
trade every day. At day’s end, these bets showed up on the firm’s profit and loss (P&L) state-
ment as either profit or loss. This provided immediate feedback on whether risk was appropri-
ately managed or not.” 

344  “Do not treat risk management as distinct from profit making and as an afterthought; treat them 
as profit-generating activities” (Taleb et al., 2009: 80). Even though this imperative sounds 
plausible and compelling, it might be problematic and in conflict with our mindset because “as 
profits swell, risk management is viewed as a constraint on profit – a dangerous sentiment” 
(Williams, 2010: 105). “If you save people in the process of drowning you are considered a he-
ro. If you prevent people from drowning by averting a flood you are considered to have done 
nothing for them. Such asymmetry is apparent: you do not get bonus points for telling agents to 
avoid investing. They want ‘something tangible’.” (Taleb, 2005: 55). 
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Effective risk management is ascribed to well-informed decision-making 
where the risks are known345 and understood by decision-makers 

Nevertheless, it is evident in the recent financial crisis, “that the leaders of finan-
cial institutions of all kinds did not understand the risk they were taking and 
made decisions that not only turned out badly but were objectively unwarranted 
at the time” (ibid.). In other words, risk management should enable well-informed 

decision-making, which is not a trivial matter to describe. The decisive point for 
grasping the quality of a risk management decision is thus represented by the 
degree of which decision-makers know and understand the risks “associated with 
possible outcomes of the firm’s strategy before they make decisions to commit 
the firm’s capital” (Stulz, 2008: 60). The purpose of risk management is “to 
ensure that top management knows and understands the risks and the potential 
gains and makes prudent trade-offs” (Boatright, 2011: 11). 

Understanding risks does not culminate in risk control, but creates room for 
more cybernetic regulation 

This study discerns this risk management goal of comprehending risks not as 
controlling risks (in contrast to Bessis (2010: 37), for example) since control is 
not feasible (in consonance with the critical finance society, see Chapter 10). 
Systems science, including cybernetics (Wiener, 1961; Ashby, 1956; Ulrich & 
Probst, 1990: 19), sheds more light on regulation, less on controlling when deal-
ing with dynamic and organized, complex and open systems (Ulrich & Probst, 
1990: 256).346 Accordingly, seen from the theoretical perspective adopted here in 
this thesis, risk management in banking should result in more regulation and less 
control. And as Professor Paul Embrechts added,347 cybernetic regulation, in 
more than one sense, may indeed be important in a financial world more and 
more engulfed by algorithmic trading, blockchain technology, machine learning, 
Fintech etc.  

345  We follow Kuritzkes & Schürmann (2010) in calling a risk known if it can be identified and 
quantified ex ante. 

346  The central theme of cybernetics is regulation and control which are intimately related (Ashby, 
1956: 195, 213). For a discussion of “steering”, “control” and “regulation”, cf. Ashby, 1956: 
Part III; Ulrich & Probst, 1990: 78-89. 

347  Interview, 13th October 2016. 
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 Following Ulrich & Probst (1990: 256), control presupposes a high degree 
of knowledge of possible future disturbances in the system and requires a very 
rapid and prescient intervention, i.e., before the disturbance actually occurs. 
However, this requirement may hardly be met by banks or organizations as (far 
as) they are open systems, which are incorporated in an extremely dynamic, 
organized and complex environment (ibid.). Furthermore, isolating the firm from 
the outside to ward off disturbances is also only possible to a very limited extent 
because, otherwise, it loses its integrability into the environment and, therefore, 
its viability (Beer, 1959). Thus, the more complex the environment, the less 
promising is a risk management approach that sees its role in the direct control of 
the individual system elements. Often this provokes a vicious circle (Ulrich & 
Probst, 1990: 256): the less it is feasible for a risk manager to really steer and 
determine what is happening, the more he intervenes in the system in a com-
manding and after control striving way, in the vain attempt to finally transfer the 
situation into a manageable one for all times. What is needed is a change in per-
spective: “[A] social system is not primarily subject to exogenous control but 
[…] it regulates and steers itself to a great extent” (Schwaninger, 2009: 16). And 
not the individual activities of elements, but the structure of systems ought to be 
put at the center of attention; a transition from control (attempts) to regulation is 
a sine qua non for absorbing and coping with complexity, which is to create a 
play of complexity reduction and complexity increase (Ulrich & Probst, 1990: 
63f.). In other words, “most of the complexity absorption takes place within the 
systems, not between them. These forces of self-organization must be purposeful-
ly leveraged.” (Schwaninger, 2009: 16). 

Amidst philosophy of science 

Part I to IV predicate on methodological thinking; the systematic study of meth-
ods that have been and predominantly are, but should in fact not be applied with-
in the discipline of risk management (Part I), methods that should at least be 
complemented (Part II) or rendered more precise by a novel, formal logic-based 
approach to extreme and systemic risk modeling (Part III), which should be 
evaluated against the larger framework of the actual task and purpose of risk 
management (Part IV). 
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True decision-making competency involves modesty: insights into the limits 
and limitations of methods 

Intellectual modesty follows from personal reflectiveness, which has, for exam-
ple, the following facets: 

• using numerical and symbolic models of risk boldly to estimate values 
without being overly impressed by mathematics (Derman & Wilmott, 
2009); 

• opening the black boxes of risk modeling and global finance 
(MacKenzie, 2005) in order to fully understand the premises and con-
clusions of mathematical theorems (Das et al., 2013: 702); 

• not expecting more from risk management than it can deliver (Stulz, 
2008: 58; in particular, manageable knowable unknowns vs. unman-
ageable unknowable unknowns, see the next sections); 

• questioning not only alleged solutions to (the seemingly right) problems, 
but also whether we deal with the right problems at all (Ackoff, 1974: 8). 

Part I and II gave an insight into the limits and limitations of conventional quan-
titative risk models and qualitative risk management instruments. While the 
literature discusses extensively three types of theoretical risk management fail-
ures in connection with risk models’ shortcomings (see Chapter 2 and cf. also 
Stulz, 2008 for an overview and the classification scheme)348, this study fore-
grounded a more fundamental issue. We saw that both kinds of approaches – 
quantitative and qualitative – suffer from a fundamental and disastrous problem 
of induction emerging from real-world complexity, that is, exactly not a problem 
of opacity, which could be cleared up by more information. With regard to the 
quantitative camp, the Central Argument (Chapter 7) demonstrated that any 
choice of a particular probability distribution, from which conventional risk 
measures or models are derived, is arbitrary in nowadays world and cannot be 
vindicated. Due to modern financial systems’ complexity (6.3.), the accuracy and 
suitability of a probability distribution for future observations cannot be deter-
mined with any reliable certainty from past data. This is essentially the problem 

348  As stated earlier, Stulz (2008) introduces the following three classes: 1) Failure to use suitable 
risk metrics (e.g., a risk model is more complicated than necessary); 2) Mismeasurement of 
known risks (e.g., a risk model assumes the wrong loss distribution); and 3) Mismeasurement 
stemming from overlooked risks (e.g., a model is unable to incorporate new risks). 
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of induction which together with some other uncontroversial premises leads to 
the conclusion that there is especially no point in retreating into the cosy closed 
space of probability theory for systemic and/or extreme risk management pur-
poses and that such blinkered assessment approaches ought to be abandoned due 
to conceptual inappropriateness.  
 With regard to the qualitative camp, jumping from the pan of probabilistic 
reasoning into the fire of measurement refusal, a morass of induction manifests 
itself in a less narrow sense. But basically by the same token, stress testing and 
scenario analysis must be viewed critically. They rely on selecting a number of 
scenarios from the past history to describe possible future situations, which may 
be seriously leading astray since they implicitly suppose “that a fluctuation of 
this magnitude would be the worst that should be expected” (Diebold et al., 
2010: 26). And even though there is the significant difference that quantitative 
enthusiasts try to measure (partially un- or at least barely measurable) uncertain-
ty while quantitative skepticists accept or even embrace unmeasurable risks, both 
camps have in common that they focus on the uncertainty of future outcomes, 
which is eventually a recipe for problems of induction, which, in turn, become 
acute and impetuous in light of factual complexity. The complexity of (financial) 
systems evokes events and unstable random behavior of systems which can be 
characterized as deeply uncertain (as far as the systems are of high dynamic and 
organized complexity, and not merely complicated; see also Table 5 in Chapter 6). 
 Deep uncertainty signifies that meaningful classical probabilities cannot be 
obtained and, following Stulz (2008) and Kuritzkes & Schürmann (2010), that 
we are unable to assess such risks (concerning deeply uncertain events) meaning-
fully at present (see also Chapter 18). Yet, the bottom line is not that we should 
throw our hands in the air, putting the case for extreme views (as e.g. exposed in 
Taleb, 2007a) by conceding that the limitations are overwhelming and that no 
value can be given to a scientific/rational approach to finance and to assessing 
extreme and systemic risks, in particular. Rather, the proposed solution was to 
accept deep uncertainty as a fact (instead of regarding it as the central problem to 
be solved), but to not let our risk modeling endeavors be fully dictated by this fact; 
the goal is rather to spot the system’s structures and its complexity which both 
yields risks (see Figure 15) and delivers an important aspect of risk measurement 
(in terms of complex derivatives, see Proposition 11). Thereby, we place, in the 
tradition of Austrian economics, emphasis on the known in lieu of the unknown. 
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Decision-making competency comprises the use of good and effective risk 
management methods: Part III aimed at enhancing our risk management 
methods by expanding the realm of known risks and, thus, facilitates 
effective risk management 

As stated earlier, decision-making competency and, as a consequence, effective 
risk management require that risks are known and understood by decision-
makers. In this light, LBR is a better, a more valid and effective tool (compared 
to conventional quantitative and qualitative methods of risk management, see 
also Chapter 19) as it enlarges the realm of known risks. Hitherto unknown risks 
can be transformed into the known, which clarifies that such unknowns really 

were knowable unknowns (instead of unknowable unknowns, where, by defini-
tion, little can be done to learn about or manage the situation).  
 Specifically, we modeled extreme and systemic risks that banks are exposed 
to by measuring risks of their financial products and instruments (derivatives 
such as options, swaps, futures, etc.; see Appendix A) which we describe in a 
programming language for financial contracts (15.4.). This vocabulary deter-
mines a small collective of primitive or atomic contracts that are sufficient to 
describe many of them through composition. Programs in this language are then 
interpreted as uncertain sequences – sequences that have a structure similar to 
lists in functional programming (consisting of a head element and the tail of the 
sequence), except that a given sequence may have more than one tail, and the 
different tails are annotated with expressions of belief (15.5.). Uncertain se-
quences are parametric in the choice of uncertainty representation, and so can be 
instantiated with probability distributions, DS belief or ranking functions, and 
others. In this work, we argued for, and made use of ranking theory. The ele-
ments of uncertain sequences in our case have been transactions between us and 
various counterparties. By aggregating all transactions in a sequence, we were 
able to compute the total value of the position that the sequence represents, with-
in a novel model of uncertainty. Hence, Part III looked at risks, in general, from 
a different angle, namely no longer, from a crude event-oriented worldview, as 
an accurately measurable quantity that can be ultimately concluded from histori-
cal data, but rather as an abstract entity – the ‘uncertainty’, for which various 
mathematical models exist (15.2.). While domain-specific languages have been 
well-researched within functional programming, as have uncertainty models 

within formal epistemology, the potential of a combination of the two for a 
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pathbreaking approach to risk management has not been realized so far. Our 
work was committed to close this important gap and to expand the toolset for 
assessing extreme and systemic financial risks effectively. 
 Our focus has been on the question of how the exposure to risks varies with 
a bank’s activities and trading positions, and not on classical probabilities – be it 
in the form of whole distributions or their tails (Part I) or in form of worst-case 
assumptions (Part II). Put differently, we heed the ancient wisdom that decision-
makers are mostly concerned about the cost of mistakes, rather than an exact, but 
futile conjecture about some statistical properties as we live in a payoff space, 
not a probability space (Taleb, 2013: 41; cf. also Braswell & Mark, 2014: 188; 
Rebonato, 2007: 254; and see Chapter 18). More comprehensively, the quality of 
LBR risk models in differentiation to mainly common probabilistic approaches 
has been ascertained by a bunch of aspects (Chapter 19). However, at the end of 
the day, holistic or systems thinking, even in its sophisticated form of LBR, tack-
ling unresolved problems of risk management and society, is only a necessary 
antecedent of holistic action. 

A latent paradox: Effective risk management and mitigation deteriorates 
risks 

Effective risk management is not only incapable of providing a guarantee against 
failure, but, counter-intuitively, effective quantitative or technical risk assess-
ments like LBR might even be a source of new risk as soon as it is perceived as 
advantageous by (sufficiently many) risk managers or experts.  
 In general, “stability is destabilizing” (Minsky, 1986/2008), relative tran-
quility encourages more risk-taking; notably technical risk evaluations “consti-
tute legitimization strategies for justifying the creation of ubiquitous risks and 
lure people into accepting threats to their lives and livelihoods that they would 
not accept on the basis of their intuitive feelings” (Renn, 2008: xiv; see also 
Chapter 10).349 Tools of risk measurement cater to our tendency to understate 
uncertainty and complexity in order to offer an illusion of understanding the 
world (Mandelbrot & Taleb, 2010: 47; cf. also Cassidy, 2010; The Economist, 

349  Economists are well-aware of such ‘unintended’ effects. For example, Peltzman (1975) au-
thored a controversial paper (which was picked up by Gary S. Becker and others) where he ar-
gued that mandatory safety devices such as seatbelts decrease the likelihood that drivers are 
harmed if they crash, but also encourage drivers to be more reckless. ‘Holding other factors 
constant’, he found that mandating seatbelt use caused more accidents. 
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1999). It is an unpleasant but inevitable fact that theoretically beneficial model 
properties (model level) do not necessarily lead to practical enhancements in 
larger concrete systems.   
 In particular, if LBR became the new gold standard, this might have impli-
cations (in a dynamic and complex system) which are unforeseeable at the mo-
ment. For instance, risk managers could overestimate the power of LBR (e.g., by 
trying to transform the unknowable into the known) or if they adopted LBR – 
especially if it was applied by a high number of users/banks;350 and in the ex-
treme, a new cult of modeling would result –, new feedback (loops) would 
emerge that affects the functioning and the constitution of the system as well as 
the effectiveness of risk management approaches (Billioa et al., 2012: 555). 
More drastically, one might even provide the pessimistic outlook, to which we 
would agree if “right” meant “efficient”, “optimal”, or “a single best” but not if it 
meant “an effective”: “Many academics imagine that one beautiful day we will 
find the ‘right’ model. But there is no right model, because the world changes in 
response to the ones we use.” (Derman & Wilmott, 2009). 
 The conclusion here is fourfold:  
 First, tackling open-loop thinking is an enduring task along the different 
steps in an iterative risk management process. 
Second, empirical evaluations are unavoidable for model validation (see Chapter 
19 and 22).  
 Third, we conjecture that, in the economic practice, prudence is a virtue, 
prudence in acting is a dominant strategy and that most successful risk managers 
excel since, in the face of fallible models combined with possibly harmful dy-
namics, they manage to keep exposure very low (Sheffi, 2005). “Instead of try-
ing to anticipate low-probability, high-impact events, we should lower our vul-
nerability to them. Risk management, we believe, should be about lessening the 
impact of what we don’t understand.” (Taleb et al., 2009: 78; see also Chapter 
18). When we recognize that designing and employing risk models has enormous 
effects on banks, other users, and the economy in toto, many of them beyond our 
comprehension, we ought to “make sure that a given strategy, however good it 
may look ex ante, will not bring about unacceptable losses if events do not un-
fold according to plan A (or B)” (Rebonato, 2007: 145). Likewise, we ought to 

350  In a competitive world a recipe followed by everyone cannot possibly be a formula for success. 
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pay attention to possible warning signs of financial turmoil (e.g., excess leverage, 

lack of transparency, hubris, funding mismatches, …) and adopt a complexity 
worldview to not see single causes, but many insignificant inputs, e.g., for a 
financial crisis, “that may be amplified and may accumulate over time to reach a 
tipping point and cause a catastrophic event; or cancel each other out” (Rzevski 

& Skobelev, 2014: 21). Etc. 
 Finally, no single model output can capture (extreme and systemic) risks 
comprehensively, but we can still have a handle on them so long as we use a 
variety of decisional tools and risk indicators and so long as we can have an open 
mind. 

Practical Wisdom is trump for determining decision-making competency: 
Formal modeling does not substitute for human judgment in evaluating 
risks 

While risk models and their technical sophistication might sometimes over-
whelm the human capability to comprehend them (Jagadish, 2013), they also satis-
fy our ingrained human desire to simplify by squeezing into one single model 
output matters that are too rich to be described by it (Mandelbrot & Taleb, 2010: 
47). We like simplicity, but we like to recall that it is our models that are compli-
cated or (in better cases) simple (i.e., not more complicated than necessary) and 
their result which can (but should not) be simplistic, not the world, which is 
complex. 
 What would there be to do if some factors just cannot be reasonably consid-
ered in a risk model? Where should we draw the demarcation line between a 
legitimate reduction, a reasonable abstraction and a naïve reductionism, a blind 
oversimplification (Hohwy & Kallestrup, 2008; Knox, 2015; also von Mises, 
1949/1998: 214f.; Dreyfus, 1972/1999: 55f.)? Metaphorically speaking, do 
mathematical models “[strip] actual events to the bones or [cut] away vital parts 
of their anatomy” (von Bertalanffy, 1968/2013: 113)? It appears that such ques-
tions have been disregarded too much for too long and, instead, it has been 
pointed to the practicality of sacrificing reality for elegance. On the other hand, a 
critical question is also whether it is more arbitrary to quantify imperfectly (but 
have the qualitative risk factors counted) or not to quantify such items at all (and 
have them possibly ignored; Shrader-Frechette, 1985: 190). 
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 Albeit fuzzy logic, for example (see 15.2.), addresses this latter dilemma of 
how to deal with vague and qualitative assessments in favor of quantification 
(which is in line with Conjecture 9), the high degree of abstraction which is im-
plied by formal risk modeling, in general, is tantamount to an immense risk of a 
reductionism. Purely technical answers are incomplete and unsatisfying. Reduc-
tionisms should not be accepted readily and sustainably though as they are guilty 
of imposing untenable a priori metaphysics on the world and on science (Bran-
don, 1996: 189). The knowledge of the own ‘pragmatic reduction’ alone is not 
enough to tackle the resulting deficits. Rather, there should be thorough reflec-
tion on the once excluded, seemingly captured contents, and a proper disclosure 
of the abstraction process in its full extent or manifestation. It would be requisite 

to fathom ways of how to extinguish the deficits encountered. The latter is unfortu-
nately all too often reserved for philosophy, theology, sociology and other disci-
plines.  
 In a risk management context, the decision-maker thus needs to know not 
just the output of a formal risk model, which is only an intermediate result in a 
risk assessment process, but also an appropriate amount of information surround-
ing it. Because what is (apparently) not measurable and cannot be expressed in 
mathematical form could disappear from sight, and a dominant pursuit of accu-
racy would entail that small parts were taken out of larger contexts in order to 
capture a simplified picture and single relationships accurately (Ulrich & Probst, 
1990: 15f.). Different endeavors, as Aristotle wrote, necessitate different degrees 
of precision and finance or risk management is not among the natural sciences 
(where less ‘extra’ and soft information is needed). On the decision level, risk 
managers should profit from their experience in the financial arena, not in the 
sense of involving an obscurantist intuitionism or a mechanical and uncritical 
application of habits of thought to fields different from those in which they have 
been formed (von Hayek); but experience that sensitizes them for what should be 
formally modeled, and how (e.g., problematize the construction of an uncertainty 
space, see Chapter 15.1.), as well as experience that has taught them to be very 
humble in applying mathematics to real systems, and to be extremely wary of 
ambitious theories, which are in the end trying to model human behavior 
(Derman & Wilmott, 2009). Rather than simply navigating the rules and incen-
tives established by others (Schwartz & Sharpe, 2010), risk managers are en-
couraged to identify and cultivate their practical wisdom. Our technical risk eval-
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uations eventually face the tribunal of reflectivity and such practical wisdom. In 
other, context-related words, risk professionals should focus on 

• disclosing the abstraction and reduction (or reductionism?) process of 
risk modeling in its comprehensive extent and manifestation; 

• qualitative managerial judgments about investment or risk strategies, 

market conditions etc. which are valuable inputs into risk management 
processes (at best, integrated in a systematic, consistent fashion with 
quantitative tools; Getmansky et al., 2015: 88); because not everything 
that is germane to risk assessment might be captured in formal models 
and, in particular, risk measurement should succeed a non-formal heu-
ristic reasoning to facilitate a clear, transparent and steered formaliza-
tion of risks; 

• disciplining or challenging, at the same time, intuition because the 
quality of an intuitive judgment requires an assessment of the regularity 
in the domain and the predictability of the environment (Kahneman & 
Klein, 2009); 

• reaching a so-called reflective equilibrium, in the most general sense 
“the end-point of a deliberative process in which we reflect on and re-
vise our beliefs about an area of inquiry” (Daniels, 2011; cf. also 
Goodman, 1955: 65-68); the inquiry might be the broad question, “how 
to manage extreme and systemic risks effectively?” or it might be 
much more specific; 

• bringing holistic and systems thinking in line with holistic and system-
ic action, which requires us to treat the tackling of open-loop thinking 
as a permanent and perennial task; 

• …351 

Practical wisdom helps raise awareness of how to interpret the results gained by 
means of risk models and how to embed them in the larger risk management 
process (cf. also Derman & Wilmott, 2009; Bäcker, 2008; Rebonato, 2007).  

351  Scordis (2011: 10) objects that such guides or handbooks for competent behavior are of limited 
practical value because “judgments are emergent rather than static, vague rather than clear, par-
ticular rather than universal”. We would disagree that this list is of limited practical value since 
it is attached to central and relevant research results of this study. 
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Bottom line 

Beyond doubt, it is still a long way from here to a sustainable solution to both 
theoretical and practical risk management issues and failures. Much remains to 
be done but the path forward to new horizons continues: “No matter how efficient 
school training may be, it would only produce stagnation, orthodoxy, and rigid 
pedantry if there were no uncommon men pushing forward beyond the wisdom 
of their tutors” (von Mises, 1957/2005: 175). For now, the subsequent proposi-
tion summarizes our tentative insights on effective risk management and deci-
sion-making competency. 

Proposition 19:   
Effective risk management can be characterized in the sense of 
decision-making competency. In demarcation to ineffective risk 

management, decision-making competency and effective risk 
management have the following features (among others): 

• realizing that every approach to risk management can be inap-
propriate 

• understanding and knowing risks 
• creating room for more cybernetic regulation in lieu of risk con-

trol 
• being intellectually modest and perceiving limits and limitations 

of methods 
• using effective risk modeling approaches that enlarge the realm of 

known risks 
• cultivating prudence as a successful strategy in risk management 
• fostering practical wisdom. 

 



 

22. Final Remarks and a Path for Future Research 

Crisis, a serious or decisive state of things, or the point of time when an affair 
must soon terminate or suffer a material change, a turning point, a critical juncture. 

Revolution, a total or radical change of circumstances or of system. 
(Webster’s Universal Dictionary, 1936) 

The presence, if not prevalence, of crises is not unusual in many systems. Cur-
rent risk management and financial systems are not an exception. It does not 
follow, however, that they must decline and face doom. “Decline and doom are 
not inevitable; they can be avoided, but they may not be. Survival is not inevita-
ble either.” (Ackoff, 1974: 3). This dissertation paved the ground for an intellec-
tual revolution in financial risk management, particularly of extreme and system-
ic events, in four regards: It highlighted I) fundamental drawbacks of classical 

quantitative risk measurement and II) qualitative risk assessment (in reference to 

the first main research question, Chapter 3)352, hence deriving the ineptness of 

much admired methods in a more concise and cogent way than in the existing 
literature on risk management. It showed III) a way of overcoming these short-
comings (to respond to the second main RQ, Chapter 14) in the shape of an elabo-
rated program, ready to be fitted for practical use. Finally, by its systemic point 
of view and by stressing and advancing the ‘starting from the known‘ approach, 
it offered IV) a concluding synthesis and new impulses for the general reflection 
on risk management methods. In the face of the valiant and heterogeneous goals 
of this dissertation, it is clear that some of its pieces merely set out a program 
and outline an agenda for future research. In other words, not all of the research 
questions stated earlier could have been answered comprehensively. Many ex-

352  Recall: RQ1: Are the taken-for-granted quantitative risk assessment/management approaches, 
including VaR, CoVaR, ES, etc., effective; if not, under what conditions are they useless and 
do become themselves a risk object for banks? RQ2: How can the measurement/management 
of systemic or extreme risk be improved to compensate for the shortcomings of the approaches 
from I and to account for the financial system’s dynamic complexity? For a detailed answer to 
RQ1, see the résumé in 8.1. whereas Part IV accounts for a global, synthesizing view. 
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planations can be offered for this limitation. For instance, risk management “is 
an enormous and enormously intricate topic” (Brose et al., 2014a: 370). At the 
same time, the whole range of topics touched upon here is merely the tip of an 
iceberg. We hope the references in the text will serve as useful pointers to more 
rigorous investigations.  
 Clearly, the passages on logic-based risk modeling (LBR) might leave the 
reader with more questions than answers today, and that should be no surprise. In 
consonance with the message of Chapter 21, it might be a good thing, on the one 
hand, when the output of any sophisticated risk model raises more questions than 
it answers because “new questions will have advanced the thinking” (Pergler & 
Freeman, 2008: 13). On the other hand, the conventional or standard methods of 
modern financial risk analysis have benefited from more than a half-century of 
study and development, by thousands of mathematicians, economists and finan-
cial analysts. Given this discrepancy, it is high time that work on LBR finds its 
continuation. For example, up to now LBR has only been illustrated by, and 
applied to, the example of the fall of LTCM as a liquidity and counterparty risk 
crisis. Other (larger) case studies, e.g., in cooperation with an existing financial 
institution and for other contexts – both within banking (e.g., ‘other risk catego-
ries’ as the literature would put it) and beyond (e.g., physical trading via com-
modity trading houses or maybe even ostensibly remote territories like risks in 
political systems)353 –, or the derivation of possible implications for related fields 
like Modern Portfolio Theory etc. would be desirable as those extensions might, 
for example, aid to determine the scope of LBR. 
 The discussion in this work rests on, and is shaped by, selected theoretical 
perspectives, our interpretations and evaluations, and it is obvious that our under-
lying subversive views on what is the ‘best’ way of defining risk and grasping or 
enhancing risk management affects our analysis. (Nick Watkins from the LSE 
once put it like this: One of the terrible dangers in complexity science is that it is 
at its peak of arrogance.)  
 What is essential in the thesis and decisive for its possible impact are the 
arguments propounded, their objective validity and quality. However, other lines 

353  At least, systemic risks are virulent in political systems. For instance, the ‘systemic’ metaphor 
(from the Introduction) “for it is your business, when the wall next door catches fire” (Horace 
65–8 BC, Epistles) unfolds its dramatic and explosive force (e.g., from a Western perspective) 
in the wake of global attacks by the so-called IS or ISIS or Daesh that recruits so-called ji-
hadists from all over the world. Cf. Bar-Yam, 2015. 
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of productive future inquiry would be necessary to remove the limitations of 
current work. For example, financial systems or risk management in banking 
were only the context in many ways. In concrete terms, this means, among oth-
ers, that since statistics or probability theory is relied upon in almost all empiri-
cal scientific research, serving to obtain, support and communicate scientific 
findings, the Central Argument (of Part I) could help initiate paradigm changes 
in many other fields that deal with dynamically and organizationally (not 
disorganizationally)354 complex systems as well. Insights also ought to acquire 
part of their potential force from empirical observations about such systems’ 
attributes and their behavior (which are partially available already).355  
 Apart from that, possible future avenues of research might include a transfer 
and advancement of our ideas and research output to/for regulatory risk man-
agement contexts as opposed to internal risk management purposes;356 or empir-
ical work to test our propositions or corresponding hypotheses. In this connec-
tion, it would also be very interesting to compare the kind of explanatory 
systemic risk modeling for market participants introduced here in Part III to the 
classical, and perhaps weak, explanatory systemic risk models for regulators 
which are already out there (e.g., King et al., 2014) in a systematic manner. 
Moreover, understanding the nature of systemic risk, reaching its systems part, 
and conceptualizing curative and management tools necessitates further well-
funded multi-disciplinary research (Fouque & Langsam, 2013: xxviii). If this 
study stimulates further controversy of how to conceive risk and approach risk 
management, as such debate is considered very important for the development of 
the risk fields (Aven, 2012: 34), it will have served a useful purpose.  
 The task ahead would furthermore also be to construct, in a very practical 
sense, risk management and financial systems that better serve economic welfare 
by insisting on more robustness and effectiveness (Kohn, 2010: 303). In terms of 
a unification of analysis and synthesis, we should do both, focusing on and learn-
ing about individual items (e.g., underlyings of derivatives) as well as looking at 
the system as a whole (e.g., complex derivatives; see 15.4.), the interactions 
among risks (see 16), markets and participants that might unveil a vulnerability 

354  Again, the merits of probability theory are undeniable (see also Chapter 6.1.2. and Figure 13). 
355  Cf., e.g., Richardson (1999); Forrester (1969). 
356  For example, a novel and good risk measure could be used to levy a speculation or risk tax 

(Riedel, 2013: 181). 
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which could be missed otherwise (see 5.1.). In response to the quest for “a better 
way for the financial system to deal with the unknowns and the unknowables that 
are the inevitable consequence of an innovative and adaptable market-based 
financial system and economy” (ibid.), this thesis showed in the end one (among 
many more possible) starting point(s) for how to develop a more stable and hu-
mane357 financial economy. We need change. The public reclaims it. But first we 
expect a serious, open debate about what kind of financial and risk management 
systems will be truly effective, that is for example “sustain real, inclusive dyna-
mism that enriches the lives of all” (Bhidé, 2010: 297). First impetus has been 
initiated in this frame when Part III presented an effectively effective system for 
systemic risk assessment instead of trying (and failing) to render an ultimately 
ineffective approach more efficient by tuning probabilistic models and improv-
ing their parameters while not preventing risk management failure. 
 This work is finally foundational in that it could form part of a new ‘science 
of complexity’ (Casti, 1992). Much more can be done in this regard, including 
the integration of this piece into other work in the field of ‘complex systems’, 
especially with regard to examining not only possible sources of risk and ran-
domness, but also of complexity (Hoffmann, 2016). Perhaps a very promising 
way this work could be extended by complexity explorers is towards a model of 
the process of risk modeling itself. “The future depends greatly on what prob-
lems we decide to work on and how well we use Systems Age technology to 
solve them” (Ackoff, 1974: 18). 
 The use of modern (Part I) as well as postmodern (Part III) quantitative risk 
management methods for decision support is invariably limited but powerful if 
properly employed – in fact, quantitative but quasi postmodern risk management 
was endorsed in Part III. Yet, the role of judgment (Bhidé, 2010) and practical 
wisdom (Aristotle; Schwartz & Sharpe, 2010) in applying those methods will 
continue to be of central importance (Part II, IV). “The tension between calcula-
tion, qualitatively justified procedures, and judgment will not disappear” 
(Suppes, 1984: 221). Nor will its reflective and meta-theoretical analysis. Ap-
pealing to more intellectual modesty in academia and risk management in the 

357  For example, no blind faith in numbers and risk models (see the previous chapter). Yet, this 
plea for a more humane financial economy does not pre-determine the validity of the so-called 
argument from dehumanization, namely that a hitherto uninvaded sphere of human activity and 
phenomena (e.g., the value of life, well-being, feelings etc.) ought not to be subjected to “the 
dehumanization of quasi-economic rationalization” (cf. e.g. Shrader-Frechette, 1985: 172). 
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sense of Sir Karl Popper, we would like to close with a bon mot by the French 
author and laureate of the Nobel Prize in Literature in 1947, André Gide: 
“Croyez ceux qui cherchent la vérité, doutez de ceux qui la trouvent.” 
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