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Preface

“Faith is the bird that feels the light and sings while the dawn is still
dark”

Rabindranath Tagore

Quantitative study of form and form change comprises the field of mor-
phometrics. Cuvier (1828) was one of the first biologists to verbalize the
dictum “form follows function”. Charles Darwin’s work on the theory of
natural selection and evolution relied heavily on the study of form and
especially variation in form (Darwin, 1859). The seminal work of D’Arcy
Thompson (Thompson, 1917) formulated the subject in detail.
Substantial developments in both biological and statistical aspects of
morphometrics occurred over the next several decades of the twentieth
century. Work by Mahalanobis, Rao, and their colleagues initiated the use
of multivariate statistical analysis for classification of organisms into
groups. Julian Huxley (Huxley, 1932) formulated the field of allometry
studying the relationship between size and shape of organisms. James
Mosimann (1970) constructed a proper statistical foundation for the ideas
of size, shape and allometry.

The method of superimposition, particularly the Procrustes superim-
position, was developed and introduced to the biological sciences by the
famed anthropologist Franz Boaz and his student Eleanor Phelps (Boas,
1905; Phelps, 1932; see Cole, 1996). Later, Sneath (1967) initiated the use
of explicit deformation functions for modeling form change. In the last
two decades, the idea of studying form change using superimposition and
deformation approaches has been seriously considered and further devel-
oped by several individuals. While Bookstein considered the deformation
approach, Kendall and his colleagues Mardia, Goodall, Small, and others
concentrated on superimposition techniques. A particular deformation
approach, Finite Element Scaling Analysis, was developed by bioengi-
neers (Lew and Lewis, 1977; Lewis et al., 1980) and then applied to addi-
tional biological problems by Cheverud and his colleagues (Cheverud, et



al., 1983, 1991; Richtsmeier and Cheverud, 1986). However, finite ele-
ment scaling analysis was never fully embraced by biologists. Some of the
reluctance felt by biologists stemmed from the seemingly complex math-
ematics that served as the foundation of the finite element method, but
the lack of invariance of this method and other superimposition tech-
niques was recognized (Moyers and Bookstein, 1982; Cheverud and
Richtsmeier, 1987; Richtsmeier, 1990). Lele (1991) formalized a precise
statement regarding the lack of invariance in morphometrics and provid-
ed the solution that is invariant to the arbitrary choice of coordinate sys-
tem. This monograph summarizes and synthesizes the development of
this solution in the context of significant scientific problems.

This work is a collaborative effort between a statistician (SL) and a
biologist (JTR), each one making the other think more deeply and care-
fully about the problems and solutions. It is intended for both biologists
and statisticians. We have strived to make discussions as mathematical-
ly and statistically precise as possible, while keeping “the science,” that is
the scientific question posed at the top of our agenda.

We feel it necessary to caution the reader on one aspect of this book:
this is not a statistics textbook. Although some of the basic concepts in
statistics are explained in the text at an intuitive level, these discussions
are not, in any way, meant as a substitute or replacement for the study of
a proper statistical textbook. Most chapters have two parts. Part 1 is
intended to be accessible to biologists with some statistical training, thus
making it more intuitive and unfortunately, somewhat more vague and
less mathematically rigorous. The underlying mathematical concepts
require equations. Part 2 of most chapters contains fully rigorous mathe-
matical arguments. Critical readers of statistical methodology should
concentrate on the part 2 of most chapters.We have chosen pedagogy over
mathematical rigor in Part 1 of each chapter, knowing that mathematical
rigor will be demonstrated properly in Part 2. We also have provided fair-
ly detailed computational algorithms, when appropriate.

This book is composed of seven chapters. Chapters 2, 3, and 4 have two
parts. Chapters 1, 2, 5 and 6 are written to be accessible to all readers.
Part 1 of Chapters 3 to 5 contain notation and mathematical concepts, but
are written to be accessible to the quantitative biologist. Part 2 of
Chapters 3 and 4 are targeted towards statisticians, or more advanced
quantitative biologists. Included in Chapters 2 through 6 are detailed
computational algorithms for the implementation of various methods.
These are targeted towards statisticians, or more advanced quantitative
biologists. The book is organized in this way so that the more difficult
mathematical portions can be passed over without loss of continuity or of
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CHAPTER 1

Introduction

Natural scientists have long perceived and classified organisms pri-
marily on the basis of their appearance and structure, otherwise
known as their form. Beyond classification, students of biology study
form in order to understand those processes that underlie variation in
form, processes like disease, growth, and evolution. The true form of an
object does not change whether an organism is moving across a surface
(translation in mathematical terms) or spinning on an axis (rotation).
Our perception of the organism may change when orientation changes,
but perception is not our concern here. It follows that any quantitative
representation of a form should not change if the coordinate system
used to represent that form changes. Moreover, any comparison of
forms should give us equivalent results regardless of whether the oper-
ations of translation and rotation are used in these comparisons. These
simple observations underscore the importance of the principle of
invariance in the study of form.

The invariance principle and its implications for the study of bio-
logical form have prompted us to write this book. There are now many
morphometric methods available to the biologist who wants to study
form quantitatively, and computer programs for most of these methods
are easily obtained. However, until recently the invariance principle
and its implications for the study of biological form have not been care-
fully considered in the field of morphometrics. We have worked togeth-
er for over ten years developing a unique approach to the study of bio-

“Nor must we forget that the biologist is much more exacting in his
requirements, as regards form, than the physicist; for the latter is usual-
ly content with either an ideal or a general description of form, while the
student of living things must be specific.”

D’Arcy Thompson (1992)



logical form. This approach, Euclidean Distance Matrix Analysis, or
EDMA (pronounced ed·ma), has considered invariance a central prop-
erty since its inception (Lele 1991). Real biological questions and the
issues that surround them provided the motivation for the develop-
ment of this approach. We have had the advantage of both statistical
and biological perspectives from the beginning of our collaborative
work, and believe that this has resulted in a method that is not just
statistically correct, but also valuable to biologists. We have struggled
with communicating cogent concerns from two different disciplines
throughout our collaboration, and have repeatedly stumbled onto new
insights that would not have come without scientific questions moti-
vating the development of the methods. Some of these realizations
were subtle and complex, others were simpler. Since our collaborative
publications have appeared in a number of different journals over
many years, we felt it timely to bring our methods, observations, and
insights together into a presentation suited to both the biological and
statistical community.

Biologists measure forms to obtain quantitative information about
specimens. The term measurement connotes quantitative observation,
ascertainment of dimensions, and comparison with standards.
Referring to an organism as a “large dog’’ is not particularly informa-
tive unless we have an idea of what constitutes “largeness,’’ or have a
common frame of reference for dogs. A record of weight and standing
height of the “large dog’’ adds precision to the statement and enables
explicit comparison among dogs. Measurements can be used to vali-
date relationships that are qualitatively evident, but can also be used
to discover aspects of biological phenomena that may not be discern-
able from casual observation. Whether metric differences are obvious
or obscure, quantitative data can ultimately be used to reveal infor-
mation pertaining to growth patterns, evolutionary processes, biome-
chanical design, or phylogenetic relationships. These phenomena are
not always directly observable, but may be reflected in morphology.

Most scientific studies of biological morphology focus on one of two
primary components: design and diversity (Lauder, 1982). Design
refers to the relationship between form and function, a relationship
that serves as the basis for several disciplines. Functional anatomy,
biomechanics, biochemistry, crystallography, and bioengineering are
examples of fields built around ideas pertinent to biological design. The
other component, diversity, concerns variation observed among organ-
isms. Variation is observable between and within groups of biological
organisms that currently populate this planet, but also across time in



the study of evolutionary trends or developmental trajectories. Proper
study of design and diversity requires objective criteria upon which to
base decisions regarding similarities or differences among organisms.
One class of objective criteria is measurement.

1.1 A brief history of morphometrics

The quantitative study of form and form change comprises the field of
morphometrics. Morphometrics experienced tremendous activity dur-
ing the 1980s and 1990s (e.g., Bookstein, 1978; 1982; 1990; 1991; Rohlf
and Bookstein, 1990; Reyment, 1991; Marcus, Bello et al., 1993; Rohlf
and Marcus, 1993; Marcus, Corti et al., 1996; Small, 1996; Dryden and
Mardia, 1998), but its foundations can be traced to the early part of the
twentieth century. Sir D’Arcy Thompson is regarded by some as the
father of morphometrics, even though a term for this field of study had
not been coined at that time. According to Thompson (Thompson,
1992), the purpose of his volume, On Growth and Form, was:

To correlate with mathematical statement and physical law certain of
the simpler outward phenomena of organic growth and structure or
form, while all the while regarding the fabric of the organism, ex hypoth-
esi, as a material and mechanical configuration.

Thompson’s work is still regarded as advanced for his time, and his
transformational grids are most modern morphometricians’ envy. The
information communicated by Thompson’s transformational grids
remains the goal of most morphometric studies (e.g., Bookstein, 1978;
Cheverud, Lewis et al., 1983; Bookstein, 1988, 1989; O’Higgins, 1999;
Richtsmeier and Lele, 1993).

Two early studies by Franz Boas (1905) and his student Eleanor
Phelps (1932) demonstrate that the birth of morphometrics also lies in
part in the work of these early anthropologists (Cole, 1996). The reason
Boa’s contribution is so significant is that he explicitly recognized the
arbitrary nature of registration systems used in craniometry (e.g., the
Frankfurt Horizontal plane), as well as the implicit assumption that
the selected registration points are biologically “stable”. Boas suggest-
ed that the most favorable superimposition of any two forms would be
obtained when all points are considered as having equal weight in the
comparison. As pointed out by Cole (1996), Boas’ (1905) solution recog-
nized the arbitrary nature of registration systems and anticipated



Sneath’s (1967) application of least-squares superimposition by over
60 years.

Julian Huxley also figures prominently in the study of biological
shape change because of his generalization of allometry to the study of
brain-body relationships (Gould, 1977). Many phenomena of metabo-
lism, biochemistry, morphogenesis, and evolution are governed by the
allometric equation in which one characteristic (e.g., length or weight
of an organ) can be expressed as a power function of another charac-
teristic (e.g., the length or weight of another organ or of the organism
as a whole). Allometric studies usually consist of collapsing measures
taken from biological organisms onto two-dimensional, bivariate plots.
Most often allometric analysis involves a regression of some biological
measure onto another biological variable, the latter being a represen-
tative of body size. The projection of measures from individual organ-
isms onto these plots can provide information about the relationship of
one organism to another, the relationship of one body part to another
part or to the whole, or the change in such relationships over phylo-
genetic and ontogenetic time.

When used in the study of morphology or morphogenesis, allometry
is the study of the relationship between parts, or the proportional rela-
tionship of parts to the whole, during either ontogenetic or evolution-
ary time. In its most general usage, these relationships are often
referred to as the relationship between size and shape. Since size and
shape are the vocabulary of allometry, allometric studies are closely
allied with morphometrics. In allometry, measures are chosen to act as
surrogates for body size, and the relationships among these and other
variables are interpreted as indicators of shape differences among the
organisms. The allometry literature is immense and it is clear that
important relationships have been delineated using this approach.
Allometry is really a study of proportions, however, and does not carry
with it information on the two- or three-dimensional geometry of the
organism.

Fred Bookstein’s 1978 contribution, The Measurement of Biological
Shape and Shape Change brought geometry back to the modern study
of biological form. Though Bookstein’s earliest work (1978) deals sole-
ly with two-dimensional data, his intention is to “redefine and recon-
struct morphometrics — the measurement of shapes, their variation
and change — as a branch of applied modern geometry (ibid: 3).” This
definition of morphometrics does not include the term biology, but
Bookstein’s emphasis is clearly on biological applications. By the early
1980’s, morphometrics was redefined as “the empirical fusion of geom-



etry with biology’’ (Bookstein, 1982). The dual emphasis has remained
in theory, but applications have often failed on one or the other of these
two foci.

For morphometrics to fulfill its promise of fusing geometry with
biology, there must be equal emphasis on the two components.
Morphometric techniques need to be designed and applied with biolo-
gy in mind. Quantitative results must be directly interpretable biolog-
ically. In addition, biologists have needs specific to the nature of life.
Biologists require methods for correctly analyzing change over time
due to growth or evolution, methods that provide for the completion of
partial specimens using available data, and methods for predicting, or
“retrodicting” in the case of paleontology, the geometry of hypothetical
forms based on evolutionary, ecological, functional, and/or develop-
mental considerations. We believe that morphometrics should provide
these tools.

Although our focus is on studies in modern biology at the level of
the organism, we hope that those seeking tools for use in studies of the
cellular or molecular levels of scientific investigation will find value
and potential applications in this book. We provide a molecular exam-
ple through a contribution from our colleague Tim Cole in Chapter 7.
We also hope that workers in alternate disciplines such as ecology,
geology, paleontology, meteorology, and geography may find value in
this book. If our methods are truly useful, they should be applicable to
any discipline that requires a statistical tool for the study of geometric
relationships when coordinate data are given.

1.2 Foundations for the study of biological forms

We believe, as Bonner and Medawar did, that the success of D’Arcy
Thompson’s masterful morphometric work, On Growth and Form, can
be explained by the uniqueness of the author’s scholarship and abili-
ties. According to Medawar (1958), D’Arcy Thompson had not only the
makings, but the actual accomplishments of three scholars: classicist,
mathematician, and naturalist. The fact that these talents were inte-
grated within one person explains his achievement in combining math-
ematics and biology into a single work that is at the same time a beau-
tiful piece of literature. Neither of the authors of this volume are
experts in more than one field. For this reason, we joined forces in
authorship. The motivation for comparing biological objects and the
knowledge for interpreting those comparisons must come from biology,
but the tools for comparison come from statistics and mathematics.



Statisticians must appreciate the nuances of biology and biologists
must be cognizant of the assumptions of certain methods and require-
ments made of the data.

Our collaborations have resulted in the following axioms:

1. The importance of scientific relevance. The scientific
questions being posed, in our case those pertaining to biology,
are of paramount importance. Morphometric methods are
developed as tools for answering scientific questions and have
little value if the results are not interpretable in terms that
relate directly to the scientific question posed. In biology, sta-
tistics and mathematics are means to an end. That end is to
assist the scientist in the formulation and testing of informed
hypotheses.

2. The importance of biological variability. Variability can
be extreme or subtle, but it is inherent to biological systems.
Variability lies at the root of what interests biologists.
Variability in biological systems must be modeled as correctly
and as accurately as possible. To accomplish this, variability
should be modeled stochastically rather than deterministically.

3. The importance of invariance. In any geometrically based
analysis of biological form, the choice of a coordinate system
is arbitrary. Alignment of specimens (registration and super-
imposition are terms used synonymously with alignment) is
required for many morphometric techniques and for all meth-
ods of visualization. Alignment is usually accomplished by
selecting either a subset of landmarks, a line, or a plane for
superimposition of all specimens. When alignment is required,
the scientist should be cautioned to run the same analysis try-
ing varying alignments of the same specimens. If results of the
comparison of specimens vary between the analyses done
using different alignments, then the method used for compar-
ison reflects the effects of the chosen method of alignment
rather than the biology of the organisms. The scientific infer-
ences should be invariant to such an arbitrary choice. When
scientific inferences are invariant with respect to this arbi-
trary choice of alignment or coordinate system, they are
known in the statistical literature to satisfy the Invariance
Principle (Berger, 1985). The Invariance Principle will be fol-
lowed and discussed at length in the context of this book.



These three axioms permeate our book. We lack the contribution of a
classicist, but we hope that our collaboration has produced a cohesive
blend of mathematics and biology in a readable format that is of sci-
entific value. Our intent is to provide a clear synopsis of Euclidean
Distance Matrix Analysis (EDMA), one of several techniques within
the class of methods called “geometric morphometrics’’ (Bookstein,
1978). Our goal is to produce a clear, uncomplicated discussion of
EDMA including simple examples that can be joined with a precise
presentation of the mathematical and statistical details if the reader
so chooses. The discussion will occur within a broader description of
alternative geometric morphometric methods in order to clarify certain
characteristics of EDMA.

Understanding morphometric techniques can be especially difficult
because statisticians and mathematicians often devise the methods,
because the methods are communicated in formats that do not always
include an explanation of the underlying principles and algorithms,
and because biologists, whose familiarity with statistics may only be
casual, eventually adopt the methods. We keep the novice morphome-
trician in mind as we write this volume. We do this by offering expla-
nations of the statistical logic and algorithms at varying levels of diffi-
culty. The first part of Chapters 2 through 4 contains intuitive expla-
nations with uncomplicated arguments of the underlying statistical
and mathematical ideas along with analyses of real biological data
sets. The second part of these chapters provides a fully rigorous, math-
ematical treatment of the statistical theory that underlies the meth-
ods. The data sets to be used throughout this book are described below.

1.3 Description of the data sets 

Three data sets that have been studied in previous publications (Corner
and Richtsmeier, 1991; Richtsmeier, Cheverud et al., 1993; Richtsmeier,
Valeri et al., 1998; Richtsmeier, Baxter et al., 2000) are used throughout
the book to clarify methods and concepts as they are introduced. Any
number of examples could be used, but we present data sets with which
we have had experience in order to convey statistical and biological
observations. Our scientific interest has focused on craniofacial mor-
phology and growth, and our examples reflect that interest. Here, we
introduce these data sets in fair biological detail by providing basic
descriptions and background relevant to why the data sets are inter-
esting biologically. We provide information pertaining to the collection



of these data, but data collection methods are more thoroughly dis-
cussed in Chapter 2. Interested readers can go to the original publica-
tions for more details pertaining to the data sets and the scientific ques-
tions originally addressed through these data. Copies of the original
data are available for download from http://oshima.anthro.psu.edu/ or
http://www.personal.psu.edu/faculty/j/t/jta10.

1.3.1  Data set 1. Mandibular dysmorphology in a genetically 
engineered animal model.

Trisomy 21 or Down Syndrome (DS) is the most frequent live-born ane-
uploidy and results in a characteristic spectrum of developmental per-
turbations affecting many different tissues. Each individual with DS
expresses different subsets of the phenotypes that characterize the
syndrome. Some of these phenotypes (e.g., heart defects) are less com-
mon in DS individuals than other phenotypes. The craniofacial appear-
ance of children with DS occurs in 100% of affected individuals and is
immediately recognizable, although variable (e.g., Kisling, 1966;
Thelander and Pryor, 1966; Frostad, Cleall et al., 1971; Cronk and
Reed, 1981).

Mouse models provide a powerful approach to the identification of
genes whose dosage imbalance contributes to specific aspects of the DS
phenotype. Distal mouse Chromosome 16 (MMU16) demonstrates con-
served linkage with much of human Chromosome 21 (HSA21), the
sequence of which is now known (Hattori et al., 2000). The conserved
linkage spans that portion of the chromosome from the most proximal
known gene called STCH which is located on the q arm of Chr21 to a
gene located in the proximal half of the q arm of Chr21 (21q22.3) called
MX1 (Reeves and Irving et al., 1995; Reeves and Rue et al., 1998;
Baxter and Moran et al., 2000). The Ts65Dn mouse (Davisson et.al.,
1990) has been produced and bred so that it is trisomic for most of this
conserved segment of Chr16, meaning that it is at dosage imbalance
for many of the genes indicated in DS (Reeves and Irving et al., 1995).

Ts65Dn mice demonstrate several phenotypic characteristics simi-
lar to those of DS. Reeves et al., (1995) demonstrated impaired per-
formance of Ts65Dn mice in a complex learning task indicating that
dosage imbalance for a gene(s) in this conserved region contributes to
this impairment. Other phenotypes reminiscent of the human DS con-
dition have also been found in the Ts65Dn mouse (Holtzman, 1996;
Baxter, 1998). We were interested in studying these mice to see if they

http://oshima.anthro.psu.edu/
http://www.personal.psu.edu/faculty/j/t/jta10/


expressed patterns of craniofacial dysmorphology. Many genes are
conserved across mammals, and the proximate functions of those genes
are likely to be conserved as well. We asked whether a conserved
phenotypic response could arise from a similar complex genetic insult
in humans and mice using the Ts65Dn mouse (Richtsmeier and Baxter
et al., 2000). If dysmorphic craniofacial phenotypes are common to
Ts65Dn mice, then they can be used to understand the processes by
which trisomy for particular genes results in the development of cran-
iofacial dysmorphology.

The Ts65Dn data set consists of landmarks collected from mandibles
of aneuploid Ts65Dn mice and euploid littermates. Three-dimensional
coordinate locations of 22 mandibular landmarks (Figure 1.1) were
recorded using the Reflex microscope (see Chapter 2 for discussion of
the instrument for data collection). The analysis of the original data set
showed that the crania (including the mandible) of the Ts65Dn mice are
significantly different from crania of their normal littermates in ways
reminiscent of the difference between the skulls of normal children and
those of children with DS (Richtsmeier et al., 1999).

1.3.2  Data set 2: Craniofacial growth in monkeys  

The study of growth has long been of interest to biologists. Growth of
the skull requires a complex coordination of changes in individual
bones as the skull keeps pace with the growing soft tissue organs and

Figure 1.1 Mouse hemi-mandible (left) with 11 left-sided landmarks shown in place.
The landmarks are by number: 1, coronoid process; 2, mandibular angle; 3, anterior-most
point on mandibular condyle; 4, posterior-most point on mandibular condyle; 5, superior-
most point on inferior border of mandibular ramus (joining of angular notch with cor-
pus); 6, inferior-most point on border of ramus inferior to incisor alveolar; 7, inferior-most
point on incisor alveolar rim (at bone-tooth junction); 8, superior-most point on incisor
alveolar rim (at bone-tooth junction); 9, mandibular foramen;10, anterior point on molar
alveolar rim; 11, intersection of molar alveolar rim and base of coronoid process.
Bilateral right-sided points are numbered landmarks 12-22.



spaces that the skull serves to protect and support. Understanding the
complex changes that occur during growth of the skull can explain the
basis for morphological differences observed in adult forms. Inter specif-
ic studies of growth can help us to understand the processes responsible
for the production of characteristic features that we use to recognize
species differences. Since small changes in growth pattern can be
responsible for fairly significant differences in adult form (e.g., Gould,
1977; McKinney and McNamara, 1990; McKinney and McNamara, 1991;
McNamara, 1995), studies of growth can provide novel information
about phylogenetic relationships among more closely related species.

Growth can be studied using longitudinal data where data points
have been collected from a single individual over a period of time.
Growth can also be studied using cross sectional data. Cross sectional
data consist of a group of measures for each age, but each individual is
measured only once so that the sample for an age group does not con-
tain any of the individuals in the previous age group. Both types of data
have their limitations and advantages depending upon the research
question (Eveleth and Tanner, 1976; Tanner, 1989; Bogin, 1999). We deal
exclusively with cross sectional growth data in this volume.

Our cross sectional growth data consist of landmark data collected
from skulls of Macaca fascicularis, the crab-eating macaque. Male and
female skulls from the National Museum of Natural History,

Figure 1.2 Adult Macaca fascicularis skull with the location of 6 facial landmarks shown:
1, nasale; 2, intradentale superior; 3, premaxillary-maxillary junction; 4, zygomaxillare
superior; 5, maxillary tuberosity; 6, posterior nasal spine (located on the sagittal plane).



Smithsonian Institution, were aged according to dental eruption pat-
terns (Richtsmeier and Cheverud et al., 1993). Landmarks were digi-
tized directly from the external surface of the face, neurocranium, and
cranial base of these skulls using the 3Space digitizer (see Chapter 2).
Landmarks used in this book represent a subset of the available facial
landmarks (Figure 1.2).

In addition to the landmark data collected from a large collection of
skulls of Macaca fascicularis, we have a comparable data set collected
from skulls of Cebus apella, the capuchin monkey (Corner and
Richtsmeier, 1991) (Figure 1.3). These species are members of differing
infraorders of the suborder Anthropoidea. The split between the New
World monkeys (Infraorder: platyrrhini, of which Cebus apella is a
member) and the Old World monkeys (Infraorder: catarrhini, of which
Macaca fascicularis is a member) dates to a time before the Oligocene.
Beyond the geographic separation that has been maintained over mil-
lions of years, New World monkeys differ from Old World monkeys in
many respects including, but not limited to social structure, overall
body size, and craniofacial features.

These data sets enable us to look specifically at differences in

Figure 1.3 Adult Cebus apella skull with the location of 6 facial landmarks shown.
These landmarks are homologous to those plotted on the adult Macaca fascicularis skull
in Figure 1.2. Landmarks shown include: 1, nasale; 2, intradentale superior; 3, premax-
illary-maxillary junction; 4, zygomaxillare superior; 5, maxillary tuberosity; 6, posterior
nasal spine (located on the sagittal plane).



growth patterns between two species whose phylogenetic relationship
is known. A combination of tools based on EDMA will allow us to deter-
mine differences in immature morphologies, differences in growth pat-
terns, and differences in adult morphologies, providing an understand-
ing of the role of growth pattern in the determination of adult differ-
ences in cranial morphology.

We will also use these data sets to demonstrate the use of EDMA
tools in experiments in evolutionary morphology. Beginning with an
immature individual of either species, we will demonstrate how our
methods can be used to apply an observed growth pattern to that form,
producing a hypothetical morphology. The hypothetical morphology
represents what an immature form would look like if it had followed
the growth trajectory implemented in the experiment. We believe that
these tools may prove powerful in future analyses of phylogenetic rela-
tionships, evolutionary trajectories, and developmental or phylogenet-
ic constraints.

1.3.3  Data set 3: Human craniofacial dysmorphology and growth

This data set consists of landmark coordinate data collected from com-
puted tomography (CT) scans of children diagnosed with isolated sagit-
tal synostosis (Richtsmeier et al., 1998). Sagittal synostosis is the pre-

Figure 1.4a The developing human skull showing isolated bones (frontal (F), parietal
(P), occipital (O)) and sutures that lie between the bones (coronal (C), sagittal (S), lamb-
doid (L)). 1.4b The typical dolichocephalic shape of a skull when the sagittal suture clos-
es prematurely (sagittal synostosis).



mature closure of the sagittal suture. Isolated, or nonsyndromic synos-
tosis of the sagittal suture is fairly common (3 to 5 per 10,000 births),
occurring more frequently in males than in females (Cohen, 1986). The
developing neurocranium is made up of a number of roughly shell
shaped bony plates that align with one another at joints or articula-
tions called sutures. The sagittal suture lies between the paired pari-
etal bones (Figure 1.4.a). The anterior-most point of this suture lies at
the anterior fontanelle and in the more mature individual is defined by
the landmark bregma, which marks the intersection of the paired
frontal and paired parietal bones. The sagittal suture runs from the
anterior fontanelle (or the landmark bregma) between the two parietal
bones along the top of the skull until it intersects with the right and
left segments of the lambdoid sutures that separate the parietal bones
from the occipital bone. The intersection of the sagittal suture with the
lambdoid suture is marked by the landmark lambda. In most children,
the sagittal suture remains open until adulthood when it begins to

Figure 1.5 Three-dimensional reconstruction of a computed tomography (CT) scan of a
child with premature closure of the sagittal suture. Figure 1.5a shows a superior view of
the skull with superior surface of neurocranium removed. Figure 1.5b shows a superior
view of the skull with external surface of the neurocranium intact and demonstrating
approximate placement of the following landmarks: 3=bregma, 4=lambda, 5= right
frontal boss, 6= left frontal boss, 7= right parietal boss, 8=left parietal boss. Figure 1.5c
provides a lateral view of the left side of the skull with the following landmarks indicat-
ed: 2= left asterion, 3=bregma, 4=lambda, 6=left frontal boss, 8=left parietal boss.



ossify. If the suture is closed prematurely, the neurocranium takes on
a characteristic shape that is long and narrow relative to a normal
skull (Figure 1.4b). This condition is referred to as dolichocephaly or
scaphocephaly. There is the potential problem of increased intracranial
pressure and eventual neurological damage in children diagnosed with
sagittal synostosis. For this reason children with a positive diagnosis
of sagittal synostosis almost always undergo surgical suture release
and in some cases, reconstructive surgery.

Landmark data were collected from CT scans of patients ranging in
age from six weeks to seven years with a positive diagnosis of sagittal
synostosis (Figure 1.5). The majority of the patients were aged from 4
to 14 months. Normal, comparative data were collected from CT scans
of the Bosma collection (Shapiro and Richtsmeier, 1997), a sample of
normal pediatric skulls that were aged by tooth eruption patterns and
chosen to correspond as closely as possible in age to the individuals
that make up the sagittal synostosis sample.



CHAPTER 2

Morphometric Data

Data are collected from any object of interest in order to capture
salient features of overall form and characteristics of specific regions
defined by the scientific problem under study. The purpose of the study
might be descriptive, exploratory, comparative, or explanatory, and the
type of data used may vary with the purpose of the analysis. In Part 1
of this chapter, we introduce a variety of morphometric data types, but
we emphasize landmark data. Because we are primarily concerned
with biological inquiry, we explore the biological meaning of land-
marks, then discuss various methods of landmark data collection,
including some pitfalls, and provide a design for measurement error
studies. In Part 2 of this chapter, we give a brief introduction to matrix
algebra to clarify the mathematics necessary to work with landmark
data. These concepts are then used to develop generalized approaches
to the study of measurement error for landmark data.

2.1 Types of morphometric data

2.1.1 Unidimensional measures

A single uni-dimensional measure may be all that is needed to ade-
quately describe the form under study for a particular research
purpose (Figure 2.1.a). Measures like crown-rump length, head cir-
cumference, and wing span give a general indication of the overall size
of a biological form and may provide enough information to determine

“We may want now and then to make use of scanty data, and find a
rough estimate better than none.”

D’Arcy Thompson (1992)
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Figure 2.1 Aspects of a human skull used to demonstrate various data types used in mor-
phometric analysis. a) a single unidimensional measure (linear distance from nasale to
lambda) that could represent overall length or size of the skull; b) a set of unidimensional
measures made up of three linear distances with no common endpoints that measure dif-
ferent aspect of skull form; c) the outline of the neurocranium as recorded from a lateral
view. Here we show an open curve, but closed curves can be used; d) the surface of the
parietal bone; e) size of the interior of the skull measured as a volume; f) the form of the
skull measured as a set of landmark locations in three dimensional space.
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if an object lies within the predetermined size distribution of a popu-
lation. For example, the standard growth chart for infants plots the
mean and standard deviation for body length, body weight, and head
circumference against age. New data points can be plotted and evalu-
ated in terms of the population norms for these measures.

2.1.2 Groups of linear distances

Sets of linear distances can be designed to summarize a form (Figure
2.1.b). Linear distance data are collected using measuring tapes or
sticks, hand-held calipers or other anthropometric devices, or comput-
ed from the coordinates of landmarks. Univariate statistics enable the
study of each of the measures by itself. However, scientists often want
to study the relationships among these various measures. Two linear
measures can be combined as a ratio to provide an index of the rela-
tionship between these measures within a form (e.g., wing length and
breadth). Such indices are often referred to as measures of shape and
are commonly used in biology. (To learn more about the use of ratios in
biology see Atchley, Gaskins et al., 1976; Atchley, 1978; Mosimann and
James, 1979).

Multivariate statistical techniques enable the study of multiple
measurements by considering the relationships among them. The use-
fulness of these methods in the analysis of biological organisms was
quickly recognized and multivariate techniques gained popularity
among biologists by the late 1960s. The use of multivariate statistics
did more than offer a way to look at a combination of linear distances.
These methods also offered a way to simultaneously consider multiple
measurements representing variables of different types (e.g., morpho-
logical, ecological, nutritional, or life history measurements). There are
many excellent statistical texts that treat multivariate techniques (e.g.,
Mardia, Kent et al., 1979). Kowalski (1972) provides a clear summary
of multivariate techniques, as well as an informed cautionary note
regarding the potential scientific (biological) ambiguity of results and
the impact of this on interpretation and communication of results.

2.1.3 Outlines, surfaces and volumes

Outline data are two-dimensional representations of the boundary of a
form (Figure 2.1.c). Examples of such data include the outlines of a
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skull, a joint articulation, an insect wing, or a granule of grain.
Techniques for quantitative analysis of such data are most commonly
based on either Fourier analysis or on Eigenshape analysis (e.g.,
Ehrlich and Weinberg, 1970; Lestrel, 1982; Ehrlich, Pharr et al., 1983;
Lohmann, 1983; Ferson, Rohlf et al., 1984; Lestrel, 1989; Lohman and
Schweitzer, 1990; MacLeod and Rose, 1993; Rao, 2000).

One major drawback of outline data is that one cannot unambigu-
ously establish correspondence between the outlines of two objects. A
one-to-one correspondence between data sets collected from various
objects is critical to meaningful comparisons. The lack of correspon-
dence between outlines makes it unlikely that the analysis of outlines
will enable the identification of localities that are different between
forms (Cole and Wall, 2000). On the other hand, outlines can provide
certain information about the form (e.g., curvature) that cannot be cap-
tured by landmarks (Bookstein et al., 1982; Ehrlich et al., 1983; Read
and Lestrel, 1986; see Figure 2.2).

A surface is the area of the outer or inner face of an object (Figure
2.1.d). A surface can be recorded as an array of points in three-dimen-
sional space. A volume can be thought of as the amount of space within
a closed surface measured as a single number in cubic units (Figure
2.1.e). An alternate measure of volume is the three-dimensional coor-
dinates of points that map the contents of that closed surface. Data
arrays representing surfaces and volumes are large, and statistical
tools for summarizing and comparing the topography or shapes
described by these data sets are not well developed.

Figure 2.2. Outlines can provide certain information about the form (e.g., curvature)
that cannot be captured by landmarks. In this figure identical sets of landmark data
are recorded on two forms. In the example shown here, comparison of the sets of land-
mark data collected from the two forms would determine that the two forms are the
same while outline information shows clear differences between the two forms (after
Read and Lestrel (1986), figure 2).
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2.1.4 Landmarks

A landmark is a point in two- or three-dimensional space that corre-
sponds to the position of a particular feature on an object of interest.
For example, in the study of osteological remains, a landmark might be
defined as the point that marks the scar of a muscle insertion on a
bone, the intersection of two or more bones at a cranial suture, or the
foramen that marks the path of a neurovascular bundle. We choose to
focus on landmark data because we want to analyze data that have
unambiguous correspondence between the forms being compared.
Issues relating to correspondence are discussed below. The mathemat-
ical reasons for preferring landmark data are developed later in this
book (see especially Part 2 of Chapters 3 and 4).

One of the first decisions that a researcher must make is the selec-
tion of landmarks for approaching a research question. This choice is
necessary but subjective. Landmarks should be chosen in order to pro-
vide an adequate representation of the object under study, but the
research question will also dictate the landmarks chosen for study.
There are no concrete rules for making this choice. Our rules of thumb
include: 1) know your specimens, 2) make a list of all potential land-
marks, 3) collect data from as many landmarks as are feasible. Once
data are collected and analyses are underway, the number of land-
marks can be reduced on the basis of measurement error studies, or
redundancy of information from landmarks.

Landmarks collected from biological objects may be classified into
three general groups discussed below. Similar groups can probably be
formed from landmarks taken from nonbiological objects but our lack of
experience with non-biological data sets discourages us from generalizing.

a) Traditional landmarks

Traditional landmarks are precisely delineated points corresponding to
the location of features of some biological significance. There are two
classes of traditional landmarks: those whose definition is not dependent
upon a coordinate system, and those whose definition is tied to a partic-
ular orientation or a coordinate system. Examples of the first class
include landmarks such as nasion and nasale. Nasale is defined as the
distal end of the internasal suture, while anterior nasal spine is defined
as the intersection of the right and left nasal spines of the maxilla
(Figure 2.3). Both of these points can be located on a skull regardless of
the orientation of the skull or its position in the laboratory. The exact
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coordinates of either of these points change according to the position of
the skull, but their location relative to each other and to other land-
marks on the skull remains the same regardless of position or
orientation of the skull.

The second class of traditional landmarks consists of precisely
delineated points corresponding to the location of features of some bio-
logical significance but whose definition is dependent upon a
particular coordinate system. Examples include glabella and inion
(Figure 2.3). Glabella is defined as “the most forward projecting point
of the forehead in the midline at the level of the supra-orbital ridges
above the naso-frontal suture” (Bass, 1971). The definition of this land-
mark requires that the skull be positioned in a particular way in order
for that landmark to be located. This means that the location of this
landmark may change depending upon the orientation of the skull.
Even when orientation is explicitly defined (e.g., the Frankfort hori-
zontal plane), the exact orientation may never be duplicated when
collecting data from other subjects, resulting in an additional source of
potential error. For this reason, landmarks that require orienting of
the specimens for data collection are less desirable.

Figure 2.3. Examples of two classes of traditional landmarks. Shown at left are the
landmarks nasale, anterior nasal spine and maxillary foramen. The location of these
landmarks can be precisely given without reference to a coordinate system. Shown at
right are the landmarks glabella and inion. These landmarks can only be found when
the skull is placed in the Frankfort horizontal orientation and the skull is viewed from
the side. Thus, the placement of these landmarks requires a specific coordinate system.
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b) Fuzzy landmarks:

A fuzzy landmark is a point corresponding to a biological structure
that is precisely delineated and that corresponds to a locus of some bio-
logical significance, but that occupies an area that is larger than a
single point in the observer’s reference system (Valeri et al., 1998). The
definition of a fuzzy landmark usually includes a positional reference
(e.g., centroid, apex) that corresponds with a place on the feature that
best represents it as a point. Because fuzzy landmarks must be locat-
ed on a larger structure or surface, there is the possibility that more
measurement error will be included in their location (see Valeri et al.,
1998). Fuzzy landmarks become necessary when portions of the form
under study are made up of relatively large, smooth surfaces or fea-
tures and do not include sufficient traditional landmarks. Biological
examples of such features include the squamous portion of mammalian
cranial bones, the articular surface of the astragulus, the articular sur-
face of the capitulum of the humerus, the basin between two shearing
facets on a tooth, the outer capsule of pome fruits, the external surface
of some crab carapaces, the leading edge of a canine tooth, and the
ischial tuberosity. The example in Figure 2.4 shows the left frontal

Figure 2.4 Three-dimensional reconstruction of a computed tomography scan of an
infant showing an example of a fuzzy landmark. The frontal boss is a swelling on each
frontal bone. It is a rather large area. The black points shown in the figure depict the
placement of a single point to localize this feature in a series of data collection trials.
The white point provides an estimate of the average location of these trials.
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boss, a large eminence on the left frontal bone of human juveniles, the
center of which can be considered a “fuzzy” landmark. Due to their
nature, placement of fuzzy landmarks on an object may require multi-
ple data collection episodes with the average of the coordinates from
several data collection episodes being used for analysis.

c) Constructed landmarks:

Constructed landmarks are points corresponding to locations that are
defined using a combination of traditional landmarks and geometric
information. Oftentimes, there exist surfaces of interest that are void
of traditional landmarks and fuzzy landmarks. In this instance, land-

Figure 2.5. Two constructed landmarks shown on a human hip bone. The first is con-
structed by locating two traditional landmarks, the anterior superior iliac spine and
the posterior superior iliac spine (marked by open circles) and connecting these land-
marks by a line that follows the arc of the iliac crest. The midpoint of this arc (shown
as a filled circle) is recorded as a constructed point. The second constructed point is
located by drawing two lines at right angles to each other across the acetabulum (sock-
et for the ball of the femur), one line measuring the width of the acetabulum, the other
measuring the height. The intersection of these lines cross on the acetabular surface is
recorded as a constructed point.
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marks can be constructed. Let us say that data are being collected from
the pelvis. Several features of the pelvis can serve as traditional land-
marks (e.g., McHenry and Corrunccini, 1978; Li and Richtsmeier,
1996), but the large alar surfaces are void of landmarks. Figure 2.5
shows several landmarks located on a human innominate (hip) bone. A
landmark can be constructed by using the location of two traditional
landmarks, say anterior superior iliac spine and posterior superior
iliac spine (marked by open circles on either side of the bone in Figure
2.5) and connecting these points by an arc that stretches along the sur-
face of the iliac crest. A single midpoint along this arc (as shown in
Figure 2.5) or several points at specific intervals along the arc can be
identified and their location recorded as a constructed landmark. The
same could be done using a combination of any of the traditional land-
marks defined on a form. A string that hugs a surface can be useful in
defining constructed points. The “string” can be an actual one, hand-
held by the researcher, or can take the form of an algorithm that
computes the shortest distance between the two traditional landmarks
along a given surface captured in digital format.

Constructed landmarks are those that might easily be placed by
computer-based algorithms for landmark locating. Although computer
automation of data collection would significantly reduce the amount of
time required for data collection, caution must be taken. Biological
variability can figure into landmark location in unexpected ways. For
example, if a point were defined as lying midway along the shortest
possible distance between two points, it is possible that the shortest
distance between two points may not cross the surface of interest, but
instead pass through or wrap around an alternate surface. When total
automation of landmark data collection by computer algorithm is a
viable option, continued supervision by the researcher is critical in cor-
rectly locating all landmarks.

Whether located by a human or a computer, the biological and sta-
tistical properties of constructed landmarks are different than those of
traditional landmarks, and this needs to be considered during data col-
lection, analysis, and interpretation. As suggested above, a lack of
correspondence between constructed landmarks collected on different
forms may occur. The locus midway between two landmarks along a
surface on one object may not correspond biologically with a locus mid-
way between the same two points along the homologous surface of
another object. Error in the location of constructed landmarks is
dependent upon error in the location of each of the traditional land-
marks and error in the placement of the constructed landmark.
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Population variability in constructed landmarks will reflect population
variability in the traditional landmarks and in the surface used in
their construction.

2.2 Landmark homology and correspondence

In many biological studies that use landmark data, researchers refer
to landmarks as homologous. A homologue, as defined by Richard
Owen (1848), is “same organ in different animals under every variety
of form and function.” Though the definition seems simple enough, the
concept of homology continues to stimulate debate (Hall, 1994; 1999).
Some of this discussion stems from common usage of the term homol-
ogy as the “correspondence of parts” with no specification about
whether the parts correspond with respect to structure, phylogeny,
development, or on the basis of another relationship. Biologists (par-
ticularly paleontologists, anthropologists, and natural historians)
define homology as the establishment and conservation of individual-
ized structural units in organismal evolution (Müller and Wagner,
1996), or more simply, similarity in structure due to descent from a
common ancestor. When used in mathematics and engineering, homol-
ogy does not imply phylogenetic relationships. But even within a
discipline, the definition of homology is applied inconsistently, and a
practical definition remains elusive (Wagner, 1989; Roth, 1988).

Although we cannot cover the topic adequately here, the reader
needs to be aware of the nuances associated with the concept of homol-
ogy. For example, characters can appear to be homologous (similar due
to common descent) but actually represent homoplasy. Homoplasy
exists when a character is present in two species but is not possessed
by all intervening ancestors or by the most recent common ancestor of
the two or more species under consideration. A character can evolve
more than once in unrelated species due to similar selection pressures
acting on those species, as in the case of convergent evolution (e.g.,
wings evolved separately among the mammalia and among the birds;
leglessness evolved separately in snakes and in certain lizards).

This situation forces careful use of the term homology when select-
ing features for morphometric comparison. In this monograph, our
examples investigate differences in form within single species or with-
in very closely related species. However, care must be taken in the use
of the term homologous when landmarks designate features on organ-
isms of diverse phylogenetic history. We believe that the term
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homologous should be reserved for the analysis of features that are
shared due to common descent (see below). We suggest the term corre-
spondence be substituted for all other relationships so as not to confuse
phylogeny with other bases for comparison. Phylogenetic history is
known for relatively few organisms, and other important issues need
to be evaluated (see below). We offer the following outline of useful
terms as a tentative nomenclature and a basis for further discussion.
The proposed categories of landmark correspondence are not mutually
exclusive.

a) Homologous landmarks

Homologous landmarks are those landmarks chosen to represent fea-
tures on organisms that are similar due to a phylogenetic relationship.
The organisms being compared thus share a common ancestor, and the
feature under study is present in all organisms under consideration
due to each inheriting it from the common ancestor. This meaning
refers to the phylogenetic, evolutionary, or historical definition of
homology (Wagner, 1989). If the organisms being compared represent
members of a single species, then corresponding landmarks are homol-
ogous by definition because all members of a species descended from a
common ancestor. But if organisms from different species are being
compared, the landmarks used can only be considered homologous if
the phylogenetic history of the organisms is known. Lack of this type
of information forces the researcher to consider alternate terms when
referring to landmarks (see Wagner, 1989; VanValen, 1982; Muller and
Wagner, 1996).

b) Structurally corresponding landmarks

Structurally corresponding landmarks are those landmarks chosen to
represent structurally similar features on organisms. Structural corre-
spondence of parts is relatively easy to establish morphologically and
is a more conservative definition of relationships, especially when the
phylogenetic history of the organisms under consideration is not
known. An example would be a comparison of the femur of a dog and
the femur of a dinosaur; two organisms separated greatly in terms of
evolutionary time and phylogeny, but with limbs that show basic struc-
tural correspondence. Femora of these two taxa share many
distinguishing features, and comparable landmark data can be collect-
ed from the two species for that reason. Landmarks identified on
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structurally corresponding parts may display functional correspon-
dence, as in the case of bat and bird wings, or they may not (e.g., dorsal
fin of a dolphin and hind leg of a salamander).

c) Functionally corresponding landmarks

Functionally corresponding landmarks are those landmarks that are
defined on features that have similar function in the organisms under
consideration. Insect wings and bird wings are textbook examples of
structures with functional correspondence, but differing phylogenetic
histories (i.e., insect wings are functionally similar to bird wings but
not homologous). Identification of functionally corresponding features
usually requires in-depth biomechanical analysis to confirm function-
al correspondence.

d) Developmentally corresponding landmarks

Developmentally corresponding landmarks are chosen to represent
features that are the developmental precursors of specific adult struc-
tures. Developmentally corresponding landmarks may be similar in
structure between organisms, or they may be very different. This is
because the structures of different organisms can be homologous even
though their developmental pathways have come to differ substantial-
ly due to evolutionary change of developmental pathways (Müller and
Wagner, 1996; Fuytuma, 1995; Rice, 1998; Hall, 1999). When form is
more conservative than the developmental route by which it is
achieved, the form of an organism or parts of that form retain an iden-
tity through evolutionary time, but the molecular blueprint or
developmental pathway of the structure may change (Futuyma, 1995;
Raff, 1996; Rice, 1998). For example, Jacobson and Sater (1988) have
shown that the optic cup is necessary to lens formation in some species
of vertebrates, but not in others. Non-corresponding developmental
processes can therefore produce corresponding structures. Hall (1999)
provides an excellent discussion and additional examples of the vari-
ability of developmental processes that produce homologues. The need
for consideration of this special case of correspondence may be rare in
the analysis of landmark data, depending upon whether an ontogenet-
ic stage (embryological vs. postnatal), the adult form, or the
developmental pathway is the focus of the research. Molecular genet-
ics and evolutionary developmental biology have shown us that
conserved mechanisms of development may indicate homology of 
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morphologically divergent characters, that non-homologous structures
can develop from homologous anlagen, and that the molecular mecha-
nisms of development may be put to use in varying contexts producing
novel morphologies (Müller and Wagner, 1996). Resolution of these pos-
sibilities in any particular case requires careful evaluation of
molecular mechanisms, developmental programs, and morphological
similarity.

It is obvious from the above classification that there are landmarks
that could be shared among organisms on more than one of the biolog-
ical bases outlined above. The particular orientation of the research
and the research question that is being posed will dictate the actual
choice of landmarks. The choice of which specific landmarks should be
used in a study is arbitrary but should be made on the basis of the sci-
entific question being posed.

2.3 Collection of landmark coordinates

Landmark coordinates are the location of points in space recorded
along X- and Y-axes in two-dimensions and along X-, Y-, and Z- axes in
three-dimensions. Landmark coordinate data can be collected directly
from whole specimens, from serially sectioned specimens, or from
images of specimens. The following is not meant to be a comprehensive
review of available techniques and equipment, but rather a listing and
description of some of the types of devices already used in biological
research and available to the scientific community. We mention by
name only those instruments with which we have had personal expe-
rience or with which we have had personal contact with users. Parts of
this discussion follow a paper prepared by Luci Kohn (1994), present-
ed at the Morphometrics workshop held during the International
Conference of Vertebrate Morphology, Chicago, 1994.

2.3.1 Commonly used devices for collection of 
landmark coordinate data from whole specimens

Diagraph

The diagraph is a machine that allows collection of landmark coordi-
nate data using only paper and pencil. A stable vertical stand anchors
necessary parts of this device. The object to be digitized is immobilized
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on a stage secured to the stand over a piece of ordinary paper. The
paper is taped to the writing surface so that it does not move during
data collection. Two pointers are also mounted on the stand. These
pointers are plumb with each other and move in concert in X and Y
space. One of the pointers is used to locate the landmark on the object
being digitized, while the other pointer traces this location in X,Y
space near the bottom of the stand. When a landmark is located by
touching a location using the upper pointer, the lower pointer is
depressed to mark the landmark location in X,Y space on the paper.
That location is then labeled. The Z coordinate is read from a scale
mounted on the stand that indicates the height of the upper pointer
that is in contact with the landmark and recorded. This is done for
each landmark. After the X and Y coordinates of all landmarks are
marked on the paper, they are most easily entered into a computer
using a two-dimensional digitizer pad. The Z coordinate associated
with each X,Y pair is entered by hand. If a digitizing pad is not avail-
able, a coordinate system superimposed onto the paper could allow the
researcher to determine the X and Y coordinates. These could then be
entered into a computer along with the Z coordinate. Diagraphs can be
custom built or bought from anthropometric instrumentation supply
houses for less than $1500. The diagraph is highly portable and does
not require a computer during the data collection phase. It is techni-
cally simple and easy to use.

Digitizers 

A digitizer is a machine that enables either two- or three-dimensional
coordinate data to be collected directly from a specimen by direct con-
tact of a mouse (2D) or stylus (3D) to the point of interest.
Two-dimensional tablets are inexpensive, manufactured by many com-
panies, and come in a large selection of designs and sizes. All
two-dimensional digitizers are intended to record the location of spec-
ified points of interest within a 2D grid. Three-dimensional digitizers
are more expensive, more limited in availability and design, and oper-
ate using either sonic or electrostatic signals. The 3D digitizers are
able to sense the location of a pointer or indicator in a defined 3D vol-
ume and to assign a specific coordinate location to that point within
the defined volume.

The Polhemus 3Space tabletop digitizer is the machine with which
we have had the most experience (see Corner, Lele et al., 1992), but it
is no longer available commercially. The next generation of 3D digitiz-
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ers available from Polhemus includes the 3DRAW digitizing tablet.
The 3DRAW enables direct digitization of specimens in either two- or
three-dimensions. The 3DRAW includes a stylus that is shaped like a
pencil connected to a tablet. The 3DRAW uses electromagnetic tech-
nology that precisely measures the location of the stylus tip and, if
desired, its orientation in reference to the source located within the
tablet. 3DRAW requires connection to a host computer via the RS-
232C serial port. Data can be continuously input as the stylus moves
through space around the object, or single data points can be collected.
A data capture switch is located on the stylus as well as on a footplate.
We have found the capture switch on the stylus to be less useful for
landmark data collection, as depressing the switch invariably causes
movement of the stylus, which should remain motionless and in con-
tact with the landmark. The footplate is relatively easy to use,
especially if placed on a tabletop and depressed by hand. Once the data
capture switch is depressed, the X, Y, and Z coordinates of that point
are written to an ASCII file on the host computer. The 3DRAW tablet
is portable (approximate dimensions: 21.5’’ x 16.4’’ x 3.1’’), weighing 5.5
pounds. Objects are measured within a volume measuring 17.75’’ x
12.75’’ x 12’’ which limits the user to smaller specimens. The resolution
of the 3DRAW is quoted by Polhemus to be within 0.005, with an accu-
racy of 0.01 inch root mean square. The cost of the 3DRAW exceeds
$5000. It is portable, but requires a computer. Elementary software for
digitizing landmarks is included.

Immersion Corporation produces the MicroScribe-3D, a highly
portable digitizer with a mechanical arm and sensors that track the
position and orientation of the stylus tip. Digitizing software available
with the MicroScribe-3D allows graphical modeling using points, lines,
polygons, or splines. Data can be exported in several standard formats,
and drivers are available that allow the digitizer to function with
graphic modeling packages as well as spreadsheet software. The digi-
tizer requires a computer connection but is compatible with PC,
Macintosh, and Silicon Graphics workstations. Three models are avail-
able which differ in cost and resolution. Steve Leigh (personal
communication) has reported an average error estimate of .5 mm (cal-
culated as the average distance between multiple digitizations of a
single landmark). He reports a lack of statistically significant differ-
ences between linear distances calculated between points digitized
using the MicroScribe-3D and those same linear distances measured
using calipers. We have not conducted measurement error studies
using this digitizer.

Chapter 2-C0319  11/25/02  1:43 PM  Page 29©2001 CRC Press LLC

©2001 CRC Press LLC



Optical metric systems

The Reflex 3-Metric System includes instruments that provide mea-
surements from stationary objects in three dimensions without
directly touching the specimen and requires interface with a personal
computer. MacLarnon (1989) described these instruments in detail.
The Reflex Microscope involves the use of the stereoscopic ability of the
observer to pinpoint the surface of an image to within a few microns
along the Z-axis, from a distance of typically 65mm. This allows the
examination of objects that have a very uneven surface. An illuminat-
ed spot of a selectable size is used to precisely locate the feature to be
measured. The selected size of the illuminated spot allows very precise
delineation of the part of the image under examination. The act of mea-
surement does not degrade the image and no direct contact is made
with the specimen under view. The microscope represents a hybrid
between a small coordinate measuring machine and a surface profiler
and is ideal for measuring three dimensional distances and angles
between small surface features with irregular surfaces. It is also capa-
ble, in principle, of quantifying sub-surface features in transparent or
semi-transparent materials, although to do this, the influence of the
material refractive index has to be accounted for.

When digitizing, the object is viewed through an adapted stereo-
scopic microscope where a small light spot appears in the field of view.
Using the motorized stage the light spot can be moved until the loca-
tion of the relevant surface feature coincides with the spot. The depth
coordinate is set by the observer using stereoscopic vision to locate the
spot “on” the surface of the object. The X-, Y-, and Z-coordinates are
monitored continuously via linear encoders and can be stored on com-
mand in the computer so that single points or streams of points that
describe curves can be collected and written to a file for future analy-
sis. The object stage, driven by motors, can be guided manually using
high resolution joysticks or automatically under software command,
allowing movements to be constrained to predetermined planes or
directions if required or to pre-set patterns.

Measurement error studies of earlier models of the Reflex instru-
ments are available (Scott, 1981; Setchell, 1984; Speculand et al., 1988a,
1988b; see also MacLarnon, 1989). The latest version of the microscope
(January, 1999) provides an absolute accuracy of better than ± 3µm in
XY and ± 4 µm along the Z-axis. Repeatability is said to depend largely
on the skill of the operator and is expected to be better than ±2 microns
in X- and Y-, and ±4-microns in Z-, using the highest standard magnifi-

Chapter 2-C0319  11/25/02  1:43 PM  Page 30©2001 CRC Press LLC

©2001 CRC Press LLC



cation. Reflex Measurement Ltd. has developed an auto-focusing facility
device that automates measurement along the Z-axis. We have not yet
published our repeatability studies using this device.

Surface scanners

Surface scanners are devices that make use of a variety of digital 3D
sensing techniques to produce a high resolution image of the surface of
objects. The surface is recorded as a series of closely spaced points in
3D space. For example, Coward and McConathy’s (1995) facial images
each consist of 256,000 points. Landmarks can be identified on imaged
surfaces, and coordinate data can be collected from those surfaces. A
large number of surface scanners are available for use in the study of
biological morphology. If a laser scanner is readily available, this is a
reliable way to collect landmark data (Kohn and Cheverud, 1992).
Moreover, if specimens are of a difficult size, scanning an entire speci-
men enables one to either scale the specimen up (as in the case of
Eocene primates) or down (as in the case of Neoceratopsian dinosaurs)
for digitization. This enables data collection from an organism that
would be difficult or impossible to digitize in its natural state.

2.3.2 Digitizing whole specimens in multiple phases

When collecting coordinate data from whole specimens, it is essential
that the specimen remain stable. If the specimen is jostled or moved
during the digitization process, the integrity of the relative location of
landmarks is lost and the digitization procedure needs to be restarted.
To ensure stability, it is necessary to secure the specimen in place.
Pressing a specimen into a mound of clay is a common practice. When
this is done, a portion of the specimen is hidden from view while the
remainder is being digitized. After digitizing one side of the specimen,
it must be repositioned in order to collect landmark data from the
other side, yielding two (or more) subsets of data for each specimen. In
order to join the two landmark subsets into a common coordinate sys-
tem, it is necessary that a specific group of landmarks, visible from
both views, be collected from the specimen in both orientations along
with the set that can only be seen from one side. Once the data collec-
tion is complete, two subsets of data exist for every specimen, and each
subset includes a group (N ≥ 3) of shared or common points that are
recorded from both views. The two subsets are joined into a single,
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three-dimensional configuration by simply translating and rotating
the common landmarks is recorded in one view (e.g., landmarks from
the right side of an object) to match exactly the coordinates of the same
common points collected from the other view (e.g., left side). Computer
programs can facilitate this process. Since the relative location of the
common landmarks are identical in the first and second set (barring
significant measurement error), the coordinates of the common land-
marks can be matched exactly, and the relative location of the
remaining landmarks collected from the two sides are brought into
this single coordinate system.

2.3.3 Landmarks from serial sections or captured images

Embryonic, fetal, and other histological and anatomical specimens are
often serially sectioned in order to reveal aspects of internal structure.
Historically, reconstructions of these sections have been done to reveal
the three-dimensional structure of internal features. Two-dimensional
data can be collected from each slice, and when special precautions are
taken to enable registration of the sections to one another, a surrogate
coordinate of the third dimension can be added using information from
the relative location and thickness of the particular slice. Working with
serially sectioned specimens introduces new avenues for potential
error. First, error can be introduced by the methods of registration and
alignment used in reconstruction of the sectioned specimen.
Additionally, Lozanoff (1992) points out that tissues may distort or
shrink if subjected to fixation and dehydration. Distorted images may
result even when tissues are normal if the optical properties of the
video camera or the configuration of the video board are flawed
(Lozanoff, 1992). These problems may seem overwhelming to the
untrained histomorphologist who wants to obtain reliable landmark
data from histological sections. Lozanoff (1992) has demonstrated an
alternative approach that involves the recording of images of sectioned
surfaces prior to microtome sectioning. He provides the accuracy and
precision of measurements taken from computerized three-dimension-
al reconstructed models made from these images.
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2.3.4 Landmarks from images

The collection of two-dimensional landmarks from projections of forms
onto film or paper has a long and rich history in biological research.
Camera Lucida drawings of objects viewed under a microscope, clinical
x-rays taken using a roentgenographic cephalometer, and simple pho-
tographs taken with attention paid to scale can all be used as a source
from which to collect landmarks. All that is required is that a grid of
known scale be superimposed over the stationary image, and points
located on the biological form and their coordinates be noted for later
analysis. Although collection of these coordinates can be done with
pencil and paper, two-dimensional digitizing tablets that attach to a
computer increase the speed and precision of data collection. These
digitizing tablets are inexpensive and ubiquitous (see Digitizers,
above).

Stereophotogrammetry has been used to collect three-dimensional
coordinate data in biological analysis (e.g., Creel, 1978; Hartman,
1986). This method requires a specialized camera system. Two expo-
sures, a stereo pair, are made of a single object. The pair represents the
object from two slightly different perspectives. A specialized stereo-
plotter, of the sort used in cartography to construct contour maps from
aerial photos, is then used to project a dot onto a landmark location.
The position of the dot in X, Y, and Z space is measured by the
stereophotogrammetric system. The usual stereophotogrammetric sys-
tems (including cameras and plotters) are expensive. Simplified short
base stereophotogrammetry instruments were developed for clinical
applications in the 1960s (Beard, 1967; Burke and Beard, 1967) and
have been used to measure change in facial morphology due to growth.
Biostereometrics is an expansive field with a rich history and a vast
literature, which we will not attempt to document here.

Diagnostic medical imaging in the form of computed tomography
(CT) and magnetic resonance imaging (MRI) has become routine in
medical practice and fairly common in biological research. The avail-
ability of large data sets at little or no cost and public domain imaging
software for viewing images makes this type of data a practical
research alternative for most laboratories. For example, anatomical
data are available via the Internet from the Visible Human Project
(http://www.uke.uni-hamburg.de/institute/imdm/idv/forschung/vhp/
index.en.html) and the Visible Embryo project. Software tools that are
available free of charge via the Internet include NIH image, available
via the Research Services branch of the National Institute of Mental
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Health (http://rsb.info.nih.gov), and etdips (http://www.cc.nih.gov/cip/soft-
ware/etdips/). There are many, many software packages that can be
purchased for use in analysis of medical images.

We focus exclusively on landmark data collection from CT images
in this chapter, since these are the data that we find most useful and
accessible. The principles discussed apply to data collected from other
types of medical images (MRI, ultrasound, Positron emission tomogra-
phy) with accommodations made for resolution of the scans produced
by alternate modalities.

Figure 2.6 Pictorial representation of a single CT slice through the head of a child.
The grid pictured is meant to represent the matrix of pixels (usually 256x256 or
512x512) that produces a picture of the anatomical features based on the linear atten-
uation coefficients that follow a scale having air at one extreme and a dense
substances (e.g., mercury) at the other extreme. All tissues are assigned a score based
on this scale. Pixels size, the dimension of a unit in the X and Y plane is used to pro-
duce a scale for the image. When the slices are combined to make a 3D reconstruction,
the scale for the third dimensions, Z, is determined in part by the thickness of the slice
images. A unit in the 3D matrix reconstructed in this way is called a voxel. An example
of a voxel with X and Y units equal to pixel size and Z units equal to slice thickeness is
shown diagrammatically.
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Landmarks from CT images

CT provides a two-dimensional representation of an anatomical sec-
tion through the biological object. A useful metaphor is a loaf of bread
that has been sliced. The pieces of bread are numbered consecutively
starting at one end so that the relationship of one slice to the others
and to the whole is known. You can remove a slice and see what the
inside of the bread looks like anywhere along the loaf and replace the
slice to reconstitute (reconstruct) the loaf.

When a biological form undergoes CT scanning, images are made
that represent slices through the form. This is done by means of nar-
row collimated x-ray beams that penetrate the form and produce x-ray
transmission measures. Large numbers of these measures are taken
from many more beams targeted through the same cross section from
many (approximately 200-1200) directions, some overlapping. The
totality of these beam measurements are recorded and combined to
reconstruct a two-dimensional matrix of coefficients that represent the
linear x-ray attenuation coefficients of the scanned slice (Zonneveld,
1987). Each element of this matrix is referred to as a pixel, and each
pixel has a known size that is used to produce a scale for the image.
The reconstruction of all pixels produces a picture of the entire slice
based on the linear attenuation coefficients that follow a scale having
air at one extreme and a dense substance (e.g., mercury) at the other
extreme (Figure 2.6). All tissues are assigned a score based on this
scale.

Two-dimensional landmark coordinate data can be collected direct-
ly from slice images following methods similar to those discussed
above for serially sectioned specimens. As long as the scale (pixel size)
is known, 2D landmark locations can be recorded according to pixel col-
umn and row and later converted into metric units. In order to obtain
a three-dimensional coordinate location for a landmark on a slice,
information about the location of the point in the plane of  the slice (X,
Y coordinates), the thickness of the slice, and the location of that slice
within the whole (Z coordinate) must be known. First, the slice con-
taining a landmark of interest is identified. Next the X, Y coordinate of
the landmark is recorded according to pixel column and row. The Z
coordinate for each landmark is assigned according to table position
(the position of the table for that particular slice as it moves through
the x-ray tube), or it can be assigned according to a sequential num-
bering system from one end of the specimen to the other. The thickness
of the slice must be accounted for in this numbering system. When
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viewing a single slice, all features exist on a single plane, so all land-
marks within a slice will have the same Z coordinate. However, the
software may determine whether these features are placed on the
superior surface, the inferior surface, or projected midway between the
upper and lower faces of the slice. When a feature appears in two con-
tiguous slices, the Z coordinate of the corresponding landmark can be
estimated as halfway between contiguous slices. If the thickness of the
slice is greater than the dimensions of the pixel, the observer can
expect measurement error to be disproportionately greater along the
Z-axis as compared to the X- and Y-axes (see Richtsmeier et al., 1995).

Computerized reconstruction of CT images involves interpolation of
the pixels between slice images, thereby producing a three-
dimensional volume or surface of the form that has been scanned.
There are several reconstruction programs available (e.g., etdips
http://www.cc.nih.gov/cip/software/edtips/; Mullick and Venkatar-aman
et al., 1998); ANALYZE (http://www.mayo.edu/bir/); (Robb and Hanson,
1995; Hanson and Robb et al., 1997; MEASURE (Barta and Dhingra et
al., 1997), VOXBLAST (http://www.vaytek.com/VoxBlast.html). Some
visualization and measurement software provide tools to determine
the location of landmarks in 3D space. A landmark can be located
simultaneously on the reconstruction, the axial images, and on recon-
structions orthogonal to the axial plane (e.g., sagittal, coronal). These
softwares and the hardware required to run them are becoming less
expensive as personal computer technology advances.

2.4 Reliability of landmark coordinate data

Studying the reliability of the data collection methods is essential
before any type of statistical analysis can be conducted. Moreover, a
specific instrument may require certain types of testing. Our general
advice is, know your instrument, talk with colleagues who have used
the instrument previously, and design a measurement error study that
will provide you with knowledge of the limitations of your data.

It is important to understand the various sources of error that can
contribute to what is measured. Kohn and Cheverud (1992) define pre-
cision as the average absolute difference between repeated measures
of the same specimen. Precision of a method of data collection is mea-
sured as the variability among repeated measures of the same
specimen. Lack of precision results in variability among repeated mea-
sures of the same specimen and has two components: 1) observer error
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in locating landmarks; and 2) instrument error in identifying land-
mark coordinates. Only specific research designs can partition
measurement variability into these two components.

The study of repeatability, in contrast to precision, involves repeat-
ed measures taken on several specimens. Variability among repeated
measures on more than one specimen includes variability due to the
instrument, due to the observer, and due to biological differences
among specimens. Repeatability is the precision of a particular mea-
sure relative to the biological differences among specimens, and it is
measured as the ratio of the precision of a particular measure  to the
biological differences among specimens (Kohn and Cheverud, 1992).

This section deals only with the study of precision of various meth-
ods of data collection. The purpose is to isolate the effects due to the
observer and due to the data collection instrument and not to confound
it with the inherent biological variability among specimens. Biological
variability is discussed in the next chapter.

Consider a single specimen fixed on a data collection device from
which we are measuring landmarks. Suppose a single observer collects
data from this specimen several times using a single instrument over
a period of several days. In an ideal world, all coordinate measures
would be identical to each other because the specimen is immobilized,
but they usually are not. The variability in the measurements is due in
part to instrument error and in part to error by the observer. Error
studies should look for systematic differences in precision along the
major axes.

Now suppose there is another observer who is also taking mea-
surements on the same immobilized specimen using the same device.
Though these measurements should be identical to the measurements
made by the first observer, they rarely are. Differences in the two data
sets stem from several sources. The second observer might be more or
less experienced with the digitizer, or (s)he may know more or less
about the specimen and the landmarks being collected. The differences
between the measurements made by two or more observers of the same
specimen constitute inter-observer error. Precision can be separately
calculated for each investigator to determine the contribution of inter-
observer error to the study. Excessive, inter-observer error can be
avoided by limiting data collection to a single observer.
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2.4.1 Measurement error studies

This section reports the measurement error associated with different
data collection procedures by describing the results of studies conduct-
ed in our laboratory (Corner and Lele et al., 1992; Richtsmeier and
Paik et al., 1995). By presenting two studies, we are emphasizing the
fact that different data collection devices may require varying types of
measurement error studies. The first study reports the measurement
error associated with the 3Space digitizer (see Section 2.3.1). The sec-
ond study discusses the measurement error associated with the
landmark coordinates obtained from CT slice scan images (see Section
2.3.4).

a) Measurement error for collecting landmark coordinate data
using the Polhemus 3Space digitizer

Corner and colleagues (1992) studied the precision in landmark coor-
dinate data collected by the Polhemus 3Space digitizer using the
following data-gathering experiment (see Hildebolt and Vannier, 1988
for another measurement error study of this device). Two experienced
observers collected coordinate data from 11 landmarks located on a
single skull of a subadult male crab-eating macaque, Macaca fascicu-
laris. The skull was secured to the digitizer table and digitized twenty
times by each observer. Data were collected twice daily with approxi-
mately six hours separating the daily digitizations, until each
observer’s sample of 20 digitizations was complete. The time gap was
introduced in order to ensure that the digitizations were independent
of each other, reducing any “memory effect.” Most importantly, the ori-
entation and location of the specimen was fixed. Lack of movement of
the object between digitizations is essential, as any movement of the
object introduces random rotation and translation into measurement
error calculations, making some of the variance parameters nonidenti-
fiable (see Chapter 3 for the details on this issue). Having controlled
for orientation and translation in this way, we can estimate the mea-
surement error around each landmark. Measurement error is given by
the sample variance for each landmark obtained from the 20 digitiza-
tions calculated using the coordinate locations for each axis. Since the
data collectors were experienced, it is assumed that measurement
error does not depend strongly on the data collector but depends most-
ly on the type of landmark and the measuring device.

Table 2.1 (Corner and Lele et al., 1992) provides the measurement
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error associated with each of the landmarks along the three major
axes. These are reported as standard deviations and not as variances
(see Table 2.2 and Figure 1.2 for landmark identification). Each observ-
er shows a high consistency in locating the landmarks. The standard
deviation along any of the three axes ranges from 0.146 mm to 0.451
mm. The consistently low variation in coordinate values across the
three dimensions indicates that no single direction is particularly
prone to error for any of the landmarks considered here. Table 2.1 also
indicates that Observer 2 (who was more experienced with the use of
the machine and the anatomy of the skull) achieved a slightly better
measurement error than Observer 1.

Table 2.1. Measurement error for 3Space digitizer (Corner et al.,
1992). These are standard deviations (in mm) for the twenty repeated
measurements of a fixed Macaca fascicularis skull. Larger values
indicate larger measurement error or lack of precision. Definitions for
the landmark abbreviations are given in Table 2.2 and some of the
landmarks are pictured in Figure 1.2.

Landmark Observer 1 Observer 2
X Y Z X Y Z

NAS .249 .379 .248 .173 .256 .195
NAL .248 .451 .378 .361 .229 .304
ZMI .163 .208 .338 .154 .143 .336
ZMS .246 .385 .417 .199 .280 .446
IDS .297 .395 .259 .287 .170 .205
PNS .201 .281 .270 .228 .350 .373
MXT .211 .180 .289 .300 .157 .446
VSJ .226 .146 .253 .294 .166 .383
PTA .224 .258 .343 .196 .216 .212
BRG .165 .197 .204 .194 .219 .330
CAR .200 .234 .239 .335 .201 .278

This study enables us to provide the following recommendations for
the use of 3D digitizers as data collection devices. First, the researcher
should become very familiar with both the specimens under study and
the data collection device. We have found data collection practice ses-
sions to be very useful. Second, when landmark data are collected but
linear distances are computed for further statistical analysis (See
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Chapter 3 for such an approach), the impact of measurement error on
the reliability of the distance data varies with the distance. The pro-
portion of error is greater over small distances than it is over large
distances. For example, in the measurement error study described
above, the linear distances between any two landmarks ranged from
0.72 to 7.6 cms. Even if the maximum error along any of the axes
(0.451 mm) occurred at a landmark defining an endpoint of the small-
est linear distance, the error constitutes only 16% of that distance. For
larger distances, the error is negligible. Consequently, the imprecision
that can be tolerated in a study varies with the measures being used
and comparisons being made (Kohn and Cheverud, 1992). Third, mea-
surement error can systematically vary among the landmarks studied.
For example, in this particular study larger measurement error was
found at landmarks that mark the extreme ends of sutures located on
an osseous edge (e.g., posterior nasal spine located at the distal end of
the internasal suture; zygomaxillare superior located at the zygomax-
illary suture along the orbital rim). Finally, if measurement error
seems to be excessive, the following simple steps can be taken to
reduce its impact. Data should always be collected at least twice. If nei-
ther trial contains large measurement error, the trials can be averaged
to represent the specimen in analysis. When particular landmarks
show increased error, and the landmark is needed in analysis, we sug-
gest that the problematic landmark coordinates be collected

Table 2.2. Landmarks used in Corner et al. (1992) with their abbre-
viations

1) Nasion (NAS)
2) Nasale (NAL)
3) Right Zygomaxiilare inferior (ZMI)
4) Right Zygomaxiilare superior (ZMS)
5) Intradentale superior (IDS)
6) Posterior Nasal Spine:Vomer-Palatine intersec-

tion (PNS)
7) Right Maxilliary Tuberosity:Maxilliary-

Palatine junction (MXT)
8) Vomer-Sphenoid junction (VSJ)
9) Right Pterion Anterior: Zygo-Spheno-Frontal

junction (PTA)
10) Bregma (BRG)
11) Right Carotid Canal: center of canal (CAR)
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repeatedly, preferably four to five times, from a fixed specimen and the
average of the landmark coordinates be used for that specimen.
Determining the number of repeated observations per specimen or per
landmark depends primarily on two factors: 1) the distances between
landmarks (smaller distances needing more repetitions); and 2) the
landmark type (problematic landmarks requiring a larger number of
repetitions).

b) Measurement error for collecting coordinate data from CT
slice image

Use of computed tomography scans as a source for landmark coordi-
nate data requires an alternate error study. A study conducted in our
laboratory (Richtsmeier et al., 1995) evaluated the precision and
repeatability of locating anatomic landmarks in three dimensions
using CT slice images (each slice is 2D), and then validated these mea-
sures by comparing them to those taken using an already validated
measurement system (the 3Space digitizer). We do not need to be con-
cerned with issues of rotation and translation when comparing
measures taken from a single set of images because once a specimen or
patient undergoes a CT scan and the image is acquired, it is by defini-
tion fixed. However, we need to quantify any error that occurs in the
acquisition of the image, and this requires that we compare data col-
lected from various images of the same specimen.

In this study, 10 dry skulls underwent two episodes of CT scanning
resulting in two sets of CT images for each skull. Landmarks were col-
lected from each set of slice images during two separate data collection
episodes. This resulted in four landmark sets being collected for each
skull (two sets of landmark data from each image set). Differences in
data collected from the two CT image sets of a single skull are due to
error in digital recording by the CT scanner. Differences in data col-
lected at separate times from the same image are due to recording
error, which may have contributions from both the observer and the
data collection software. This design enabled separation of error due to
the imaging device from error in locating the landmarks on the images.
Finally, the same landmark data were collected directly from the same
ten skulls using the 3Space tabletop digitizer. Comparison of the land-
mark data sets collected from the CT scans and the digitizer
quantifieserror in the way that data are acquired and displayed by a
CT image and error in collecting data from the CT images (software).

The results of this study showed that three-dimensional landmark
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data collected from CT slice images are internally consistent and pre-
cise. It was noted, however, that error along the Z-axis (the axis along
which the table is moving during image acquisition and which defines
the slice thickness) is greater than error along the other two major
axes. A subsequent study (Valeri et al., 1998) found error along the Z-
axis to be reduced when the same data were collected from
three-dimensional reconstructions of computed tomography slice
images.

When collecting landmark data from 3D CT reconstructions, tradi-
tional landmarks that do not depend upon the orientation of the
specimen are desirable because they exclude a potential source of error
(Richtsmeier et al., 1995). Adding the coordinate system to the defini-
tion of a landmark adds another level of potential error to landmark
identification. An example of a landmark that is dependent upon a spe-
cific orientation is glabella, defined as the most anterior projecting
point on the frontal bone. The position of this landmark relative to
other features of the skull will shift depending upon the orientation
(coordinate system) of the specimen, and the orientation needs to be
defined in order to collect comparable data from other specimens.

We use the term “local coordinate system” to refer to the coordinate
system inherent to the object under study. When collecting landmark
data from an object sitting on a digitizer, the local coordinate system is
defined on the basis of the position of the object. If the object is moved,
the local coordinate system changes. This is why an object must remain
stable during data collection using a digitizer. However, when slice
images or three-dimensional reconstructions of images (MRI or CT for
example) are used for data collection, the local coordinate system is
captured along with the image and remains inherent to the image
regardless of any movement of the reconstructed image within most
software programs. In effect, the exact coordinates for any given land-
mark (e.g., lambda) are the same whether collected from the 3D
reconstruction oriented in the Frankfort horizontal position or from
that same reconstruction turned upside-down and tilted at an oblique
angle. The imaged specimen can be moved and tumbled through space
during data collection.

We emphasize that these are only examples of measurement error
studies for landmark data collected using specific devices. With each
new instrument, researchers should conduct specialized studies of
measurement error in order to assess the data collector’s competency
and the instrument error.
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2.5 Summary

In this first part of Chapter 2, we have provided an outline of the types
of data that could be used in morphometric analysis, a detailed expla-
nation of the types of landmarks that could be identified for analysis,
a summary of our experience with particular devices that can be used
to collect landmark coordinate data, and guidance on potential sources
of error. We stress that measurement error studies should always be
done before analysis of data and that those measurement error studies
must be designed with the data collection instrument in mind. In part
2 of this chapter, we provide a more thorough treatment of measure-
ment error studies for landmark data. We provide the reader with
those basics of matrix algebra that are required for managing land-
mark data, as well as an introduction to the concepts of rotation and
translation and their effect on landmark coordinate data.
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CHAPTER 2
PART 2

Statistical and Mathematical 
Preliminaries for Landmark 

Coordinate Data

We now introduce some statistical and mathematical concepts that are
important for the statistical analysis of landmark data, whether con-
ducting measurement error studies or comparing two forms or shapes.
Matrix algebra is an essential mathematical tool in multivariate sta-
tistical analysis. It is particularly useful in the statistical analysis of
landmark coordinate data. We strongly recommend that everyone read
this part carefully. Readers who are mathematically and statistically
challenged should at least try to familiarize themselves with the nota-
tion and some of the essential statistical and mathematical
terminology introduced here, as it is used throughout the remaining
chapters.

2.6 Introduction to matrix algebra

In this section, we introduce some of the basic ideas of matrix algebra.
This is by no means a complete tutorial in matrices and their uses in
multivariate analysis. For such a review, we refer the reader to Searle
(1982). There are also many mathematical books on matrix algebra,
e.g., Barnett (1990). The inquisitive reader may look to these sources
for more details. The choice of topics covered here is dictated by our
requirements for exposition of the use of matrix algebra in the analy-
sis of landmark data.

1) Definition of a matrix: A matrix is a rectangular array of ele-
ments arranged in rows and columns.
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For example, is a matrix.

2) Dimension of a matrix: A matrix with m rows and n columns
is said to have dimensions m � n and is referred to as an 
m � n matrix. We read it as “m by n matrix”. In text, we may
either write an m � n matrix, or interchangeably, an m by n
matrix.

The above matrix A is a 2 x 3 matrix. This matrix has 2 rows and 3
columns. Notice that this matrix has 6 elements. The number of ele-
ments in a matrix equals the product of the number of rows and the
number of columns.

As in ordinary algebra, we use symbols to identify the elements of
a matrix. In our applications the rows are represented by the symbol,
i, while columns are represented by the symbol j.

An element is identified by its location in the matrix according to
its row and column location. Thus, aij refers to the element in the i-th
row and j-th column. For example, a12 is the element in the first row
and second column. We read it as “a sub one two” or, if the context is
clear, simply as “a one two”. A commonly used short notation for a
matrix is A = [aij]i=1,2,...,m;j=1,2,...,n or simply A = [aij] if the range of the
subscripts is obvious from the context. For notational convenience, we
generally use the second notation.

For example, for the matrix, A the element a13 = 3

3) Square matrix: A matrix is said to be square if the number of
rows equals the number of columns.

For example, is a square matrix. This matrix  

has 3 rows and 3 columns. Also notice that this has a total of 9 elements.
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4) Square symmetric matrix: A square matrix of dimension m �
m is said to be symmetric if and only if aij = aji for all i = 1,2,..,m;
j = 1,2,...,m.

For example, is a 3 x 3 square, symmetric matrix.

5) Definition of a vector: A matrix that has only one column and
has dimension m � 1, is called a vector. Sometimes this is also
called a column vector. We denote a vector V of length m by 
V = [vi]i=1,2,…m.

For example, is a vector of length 3. Also notice that, in this 

example, v1 = 1,v2 = 2 and v3 = 3.

6) Transpose of a matrix: The transpose of a matrix is a matrix
obtained by turning columns of the original matrix into rows
while keeping their original order. The transpose of a matrix
A is denoted by AT.

For example, if                   then 

The transpose of a column vector is called a row vector.

7) Equality of two matrices: Two matrices A and B are said to be
equal to each other if, and only if, they have the same dimen-
sion and aij = bij for every i and j. That is, if and only if all of
the corresponding elements are identical.

2.6.1 Addition and multiplication of matrices

Matrices do not behave like ordinary numbers. Addition and multipli-
cation of matrices are allowed only if the matrices conform to certain
dimensional restrictions.
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1) Addition of two matrices: Let A = [aij] and B = [bij] be two
matrices of the same dimension. Then A + B = [aij + bij]. The
corresponding elements are added to obtain the sum of two
matrices. The resulting matrix retains the same dimension.

Let                  and .

Then                                                  .

The addition of two matrices is allowed only if they have
exactly the same dimensions.

2) Multiplication of a matrix by a real number: Let A = [aij] be a
matrix and c be a real number. Then cA = [caij]. Multiplying a
matrix by a real number results in the multiplication of each
element by that real number. In mathematical literature, a
single number (or a 1 x 1 matrix) is commonly referred to as
a “scalar”.

For example, .

3) Multiplication of a row vector by a column vector: Let V =
[vi]i=1,2,...,n be a row vector of dimension 1 � n and W =
[wi]i=1,2,...,n be a column vector of dimension n � 1. Notice that
V and W have the same number of elements. Let U = VW. Then
U is given by (v1w1 + v2w2 +...+vnwn). Notice that this is a scalar
(a single real number). A short notation for this sum 

that is often used is             .

As an example, let                                     Then U = VW = 
(1 � 3) + (2 � 4) = 11.

4) Multiplication of two matrices: Let A and B be two matrices.
The product of these two matrices, C = AB, is defined only if
the number of columns in matrix A is the same as the number
of rows in matrix B.

Suppose A is a 4 x 3 matrix and B is a 3 x 5 matrix. Then AB can be



calculated. However, given the condition stated above, BA cannot be
calculated.

Let A and B be two matrices of dimensions m � n and n � p. In this
case, the product AB can be calculated. Let C � AB. Then the (i,j)-th ele-
ment of the matrix C, denoted by C ij, is given by the product of the i-th
row of the matrix A and the j-th column of the matrix B. The matrix C
is an m � p matrix.

Consider the matrices A and B, defined previously. The product of
these two matrices is given by

For example, the (1, 1)-th element of the product matrix is calculated

by multiplying the first row  of A, [1  2] by the first column of B, ,

using the multiplication of a row vector by a column vector described
earlier. The other entries can be obtained similarly. The (1,2)-th ele-
ment is obtained by multiplying the first row of A by the second column
of B, the (2,1)-th entry is obtained by multiplying the second row of A
by the first column of B, and the (2,2)-th element is obtained by multi-
plying the second row of A by the second column of B. Notice also that
the resultant matrix is a 2 x 3 matrix. This dimension is given by the
number of rows of the first matrix and the number of columns of the
second matrix.

Exercise: Using the above rule and the vectors V and W defined

above, show that                       . Notice that WV is not the same as VW.

Notice also that this is a 2 x 2 matrix.
In general, for matrix multiplication, AB is not equal to BA, even

when both products are well defined. Suppose A is an m � n matrix and
B is an n � m matrix, then AB is an m � m matrix, whereas BA is an n
� n matrix. By definition, if the two matrices are of different dimen-
sions, they cannot be equal to each other.

We now turn to some simple applications of matrix algebra in the
study of biological forms.

2.7 Matrix representation of landmark coordinate data
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Landmark coordinate data, for both computational and statistical pur-
poses, are most conveniently represented as a matrix. Suppose
landmarks are collected from a three dimensional biological object. A
typical “observation,” a series of landmark coordinates obtained by the
data collection methods described in Part 1, can be represented in a
matrix form as described below.

For the sake of simplicity, instead of using proper biological names
of the landmarks, we index them from 1 to K. It is assumed that a
proper record of the correspondence between the biological nomencla-
ture and the index is maintained consistently throughout the study.

The landmark coordinates of a three dimensional, K landmark
object are written as a K � 3 matrix as follows:

where the first row corresponds to the X, Y, and Z coordinates of land-
mark 1, the second row corresponds to the X, Y, and Z coordinates of
landmark 2, and so on.

Thus M is a matrix with K rows and 3 columns with each row rep-
resenting the X, Y, and Z coordinate values of the corresponding
landmark. We say that M is a K by 3 matrix. M is called a landmark
coordinate matrix. For a two-dimensional object where only X and Y
coordinates exist for each landmark, the landmark coordinate matrix
is a K by 2 matrix.

Throughout this monograph, we use the letter K to denote the num-
ber of landmarks, and letter D to denote the number of dimensions of
the object, unless specified otherwise. The dimension D is typically
either 2 or 3. In general, a landmark coordinate matrix is a K by D
matrix of real numbers.

The next question we ask is: what happens to the landmark coordi-
nate matrix of a given object if we rotate (spin around a point) or
translate (shift) the object? The rotation and translation of objects can
be described using matrix algebra. This requires a few more definitions.

a) An identity matrix: An identity matrix is a square matrix with
diagonal elements equal to 1 and all the other elements equal
to 0. An identity matrix is denoted by I.
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For example, is a 3 by 3 identity matrix. In this

monograph we will denote such a matrix by I3 which tells us
that the matrix is an identity matrix of a specific dimension,
in this case 3. Thus ID is a D by D identity matrix. An impor-
tant property of an identity matrix is that if we multiply any
matrix by an identity matrix, the resultant matrix is the same
as the original matrix.

b) An orthogonal matrix: A square matrix is an orthogonal
matrix if the product of itself and its transpose is an identity
matrix. In other words, a matrix R is an orthogonal matrix, if
RRT � RTR � I.

Exercise: Verify that a matrix                               is an orthog-

onal matrix. To verify this result, recall that sin2 (0–) � cos2 (0–) � 1.

Because this matrix features in the rotation of an object by an
angle 0–, we denote it by R (0–). Thus, we write 

R0–= .

We refer to R (0–) also as the rotation matrix or the rotation
parameter.

c) Rotation of an object: Let the landmark coordinate matrix for
a given two-dimensional object be denoted by M. Suppose we
rotate this object by an angle 0–. The landmark coordinate
matrix corresponding to the rotated object, M̃, can be obtained
by multiplying the original landmark coordinate matrix by
the orthogonal matrix R (0–) . Thus, we get M̃ � MR (0–) .

Similarly, for a three dimensional object one can obtain the
landmark coordinates of the rotated object by multiplying the
original landmark coordinate matrix by a 3 by 3 orthogonal
matrix. A 3 by 3 orthogonal matrix is given by:

.
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Notice that rotation of a three-dimensional object requires
specification of two angles of rotation α and o/ .

d) Translation of an object: Let the landmark coordinate matrix
for a given two dimensional object be denoted by M. Suppose
we translate this object so that all the X-coordinates are
moved by t1 units and the Y-coordinates are moved by t2 units.
The landmark coordinate matrix of the translated object is 

given by M + 1t where 1=      , a K � 1 column vector of 1’s and 

t is a 1 by 2 row vector. We call “t” the translation vector or a
translation parameter.

Figure 2.7 Pictorial representation of the operations of translation and rotation. The
triangle drawn with an unbroken line is the original configuration. The triangle drawn
with a broken line represent a change in the triangle due to rotation on an axis with
no translation. The triangle drawn with a dotted line represents a change in the trian-
gle due to translation across the plane with no rotation. The triangle drawn with dots
and dashes represents the result of the combination of rotation and translation.
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For a three-dimensional object, the translation vector t � �t1
t2   t3� is a 1 by 3 vector.

One can combine the two operations and obtain the landmark
coordinate matrix of a translated and rotated object by MR (0–)
� 1t. Figure 2.7 provides the pictorial representation of these
three operations. Figure 2.7 provides the original landmark
coordinates for the triangle, a rotation (R) of the original, a
translation (t) of the original, and the combination of rotation
and translation (R + t) of the original.

2.8 Statistical model and inference 
for the measurement error study

In the measurement error study described in the previous part of this
chapter, we fixed a single skull to the digitizer and collected the coor-
dinates of the same set of landmarks multiple times. Let Mi denote the
true but unknown landmark coordinate matrix for this skull in this
fixed orientation. Each data collection episode produced a landmark
coordinate matrix, say Mi, where “i” denotes the i-th data collection
episode. Due to measurement error, we will not get exactly the same
landmark coordinate values during every data collection episode. The
variability among the Mi’s denotes the measurement error. We need a
statistical model to study and quantify this variability.

2.8.1 Preliminaries of the matrix normal distribution

First notice that the M i ’s are related to the true landmark coordinate
matrix M. This relationship may be written as Mi � M � Ei. That is, M i

is obtained by adding an error matrix Ei to the true coordinate matrix
M. We assume that this error matrix has certain properties. These
assumptions are detailed below.

Assumption 1: There is no systematic bias introduced when locating
a landmark in space. That is, the measurement errors at any particu-
lar landmark along any particular direction cancel each other out and
are on an average zero.

Assumption 2: The errors introduced at any particular landmark
and along any particular direction are distributed according to a
Normal distribution. Though normally distributed, these errors, how-
ever, may be correlated with each other.
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Errors local to a landmark and the association of errors between
landmarks and along directions are calculated as variances and covari-
ances and can be collected in a matrix form. For the definitions of
variance and covariance, the reader may refer to any elementary
statistics textbook, (e.g., Rosner, 1995).

Let us start with a simple situation of three landmarks on a two
dimensional object. In this case, the true landmark coordinate matrix
M is a 3 by 2 matrix. There is measurement error associated with each
landmark along each direction.

Focusing only on the X direction, let us define 

where VX,11, VX,22, and VX,33 are the variances representing measure-
ment errors in the X direction for landmarks 1, 2, and 3 respectively;
VX,12 is the covariance between errors in the X direction for landmarks
1 and 2, VX,13 is the covariance between errors in the X direction for
landmarks 1 and 3, and VX,23 is the covariance between errors in the X
direction for landmarks 2 and 3. Notice that the matrix VX is a square,
symmetric matrix, and that there are only six distinct entries.
Similarly, we can write the variance matrix VY for the errors in the Y
direction. The covariance matrix representing errors between the X
and Y directions is written as VX,Y . Each of these is a 3 by 3 square,
symmetric matrix. These matrices can be combined to form a new 6 by
6 matrix,

.

This matrix is sometimes written in a shorter form as .

V
V V V
V V V
V V V

X

X X X

X X X

X X X

=
















, , ,

, , ,

, , ,

11 12 13

12 22 23

13 23 33
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Notice that the first three diagonal elements of this matrix corre-
spond to the variance in the X direction for landmark 1, 2, and 3
respectively. Similarly the next three diagonal elements of this matrix
correspond to the variance in the Y direction for landmark 1, 2, and 3
respectively. Other elements (called the off-diagonal elements) provide
information on the covariances. Such a matrix V is called either a “vari-
ance-covariance matrix,” a “covariance matrix,” or a “variance matrix.”
All three names are acceptable. In our application the matrix V sum-
marizes the measurement errors. This matrix V is a 2K � 2K matrix
where K, the number of landmarks is 3 and the dimension of the object
is 2.

Remark: Let us refer to Table 2.1. In that particular measurement
error study, we have 11 landmarks and the Macaca fascicularis skull
is a three-dimensional object. The resultant covariance matrix is a 33
by 33 symmetric matrix. This table provides only the square root
(standard deviations) of the diagonal elements of the covariance
matrix. For example, the first entry in the f 0.249, is equal to
��VX,11 , the standard deviation of the measurement error for landmark
1 along the X direction. The remaining entries in the column include
the values of  ��VX,22, ��VX,33, and so on.

Exercise 1)  Verify that if the object under study is two-dimension-
al and has K landmarks, the variance-covariance matrix V is a 2K � 2K
square, symmetric matrix.

Exercise 2)  Verify that if the object under study is three-dimen-
sional and has K landmarks the variance-covariance matrix V is a 3K
� 3K square, symmetric matrix. Notice that for three dimensional
objects,

.

The observations just presented, that the true landmark coordinate
matrix is M, that measurement errors Ei are Normally distributed with
variance covariance matrix V, and that Mi � M � Ei, are summarized
by the notation: Mi ~ N (M,V). We read this as “M i follows a matrix
Normal distribution with mean matrix M and the variance-covariance
matrix (or simply variance) V.”

Remember that for a two dimensional object M is a K by 2 matrix,
and for a three-dimensional object, it is a K by 3 matrix. The variance
matrix V is a square, symmetric matrix of dimension 2K � 2K when the
dimension of the object is two, and 3K � 3K when the dimension of the
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object is three. When the object is three dimensional, the first K diag-
onal elements of V quantify variability in the X direction, the next K
elements quantify the variability in the Y direction, and the last K
elements quantify the variability in the Z direction for landmarks 1
through K. In the measurement error study we concentrate on the
diagonal elements (variances) and ignore the off-diagonal elements
(covariances). The matrix V can be used to identify those landmarks
that are highly error prone.

In practice, the matrix V is unknown, and we have to use the obser-
vations from N data collection episodes to estimate it. Let M1, M2,...MN

denote the observations (the landmark coordinate matrices) from N
data collection episodes.

We start with calculating the mean of these observations. Let 

denote the sample mean matrix. Notice that �M is a 

K by 2 or a K by 3 matrix, depending on the dimension of the object.
Let A be an m � n matrix. Then A< i > denotes the i-th column of A. For

example, Mi
< 2> denotes the second column of the observation Mi. With

this notation, for a two-dimensional object, the variance-covariance
matrix V is obtained using the following formula. The first equation
provides the variance-covariance matix in the X direction, the second
equation provides the variance-covariance matrix in the Y direction,
and the third one provides the covariances between X and Y directions.

Extension to three-dimensional objects is straightforward. The
additional terms needed are given by:
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Strictly speaking, the above formulae provide an estimate of the
variance covariance matrix. For the sake of simplicity of exposition, in
this chapter, we de-emphasize the difference between the true V and its
estimated value.

2.8.2 Further properties of the matrix valued normal distribution

Chapter 3 introduces statistical models to model variability between
different individuals within a population. We call such variability “the
biological variability.” The following concepts and notation are useful to
understand the discussion in Chapter 3. In particular, we introduce a
special form for the variance-covariance matrix based on the
Kronecker product which is mathematically convenient and biological-
ly reasonable for modelling biological variability. We also introduce the
idea of transformation of a random variable and discuss the impact of
such transformation on the distribution of the random variable.

Kronecker product of two matrices
Let A be an m � n matrix and B be a p � q matrix. Then the Kronecker
product of A and B is defined as:

Then A � B �

The resultant matrix is an mp � nq matrix.

For example, let                  and     .
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Then A � B �                                                 .

Exercise: Calculate B � A. Show that it is not equal to A � B.
Also, notice that the Kronecker product can be calculated for any

two matrices. Recall that in order to calculate the usual product of two
matrices, the number of columns of the first matrix has to be equal to
the number of rows of the second matrix.

Modeling the variance-covariance matrix V for the matrix 
normal distribution

Let us consider a two-dimensional object with K landmarks. We know
that the variance-covariance matrix corresponding to the measure-
ment error model described above is of dimension 2K � 2K. In some
special situations, the matrix V can be written in the Kronecker prod-
uct form. We describe some of these situations below. In the next
chapter, we argue that these models are mathematically convenient
and biologically reasonable for modeling biological variability.

Situation 1: Suppose the measurement errors at all land-
marks and along all directions are identical to each other. In
addition, suppose that they are also uncorrelated to each
other. In this situation the variance-covariance matrix V has
the same quantity, say �2, along the diagonal and all off-diag-
onal entries are zero. Such a matrix may be written as �2I2K.
It can also be written equivalently in the Kronecker product
form as �2IK � I2. This model is sometimes known as the
“isotropic errors” model.

Situation 2: The assumption of isotropic errors may seem
unrealistic in practice. Suppose the measurement errors at
different landmarks are correlated, but that the error along
different axes are uncorrelated and equal. The covariance
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matrix corresponding to such a measurement error structure
can be written as �K � I2 where �K is the covariance matrix
between landmarks. Remember that in order for �K to be a
covariance matrix, it must be a K � K square symmetric
matrix.

Situation 3: In the above model, we may want to include dif-
ferent magnitudes of variability along the two axes and also
correlations between the axes. In this case, the covariance
matrix may be written as �K � �2 where  �K is a K � K square,
symmetric matrix, and �2 is a 2 by 2 square, symmetric
matrix.

Remarks:

1. These examples of covariance matrices for measurement
error are not exhaustive. There are certain covariance struc-
tures that are not captured by the above matrices.

2. Generalization to three-dimensional object entails replacing
all 2 x 2 matrices in the above discussion by 3 x 3 matrices.

3. Strictly speaking, the matrices �K and  �D should also be pos-
itive semidefinite, that is, all the eigenvalues of these
matrices should be non-negative. See Barnett (1990) for
details on positive semidefinite matrices.

2.8.3 Effect of rotation and translation on the matrix normal distribution

The following observations are standard results from the theory of
matrix valued Normal distribution. See Arnold (1981, page 312) for
mathematical details. These results are used extensively in Chapters
3 and 4. For this reason, we present them here. Readers who are not
comfortable with the mathematical aspects should at least read
through this part and familiarize themselves with the notation and the
intuitive meaning of these results. This will prepare the reader for the
less-mathematical discussion found in Chapters 3 and 4, Part 1.

Let us first try to understand intuitively what we mean by the
statement an observation X, “comes from” or equivalently, “follows” a
normal distribution. Let us say that X corresponds to “height of a per-
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son.” Consider the population of all individuals in which we are inter-
ested. Suppose we calculate the mean of the heights of all these
individuals. This mean is called the “population mean,” usually denot-
ed by � (mu). Similarly the variance of the heights of all these
individuals is called the “population variance,” denoted by �2 (sigma
square). Suppose further that, when we plot the histogram of the
heights of all the individuals in the population, it looks like a “bell
shaped curve.” Then we say that the population distribution is Normal.
Now suppose we select an individual from this population at random.
What can we say about the height of this individual? The height of this
individual is more likely to come from the “middle” of the distribution
near � than the tails. In statistical terminology, this is expressed as X
~ N (�,�2) and we read it as “X follows a normal distribution with mean
� and variance  �2.” Suppose we select “n” different individuals ran-
domly from this population. Let Xi denote the height of the i-th
individual. We say that Xi ~ N (�,�2) are independent (because the indi-
viduals are selected randomly from the population) and identically
distributed (because they come from the same population) random
variables.

Let us now say that the experimenter used inches as the unit for
measuring height. The population values, also called the parameters,
� and �2, are in the units of inches and inches2 respectively. Suppose
that by mistake the height of the 10th individual was measured and
reported in units of centimeters. Clearly we cannot say that X10 ~ N
(�,�2) because the units are different. What we can say is that: X10 ~ N
(2.5�,(2.5�) 2). We simply change the units for the mean parameter and
the variance parameter to match the units of the other measurement.
The moral of the story is that if we transform an observation, the dis-
tribution of that observation changes as well. We next generalize the
idea of transformation to Matrix Normal distribution and landmark
coordinate matrices.

Recall that a matrix Normal distribution is characterized by two
quantities, the mean matrix M and the variance-covariance matrix 
V. Suppose that the covariance matrix V can be written in the
Kronecker product form, V � �K � �D. Suppose we observe a landmark
coordinate matrix of an object and denote it by X. Suppose further that
X ~ N(M,�K � �D). Below we summarize how translation and rotation
of the original object affects the distribution. (This is similar to the
transformation from inches to centimeters described in the previous
paragraph.)
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a) Effect of translation: X � 1t ~ N(M � 1t, �K � �D). This means
that if we translate an object, the mean matrix gets translated by
the same amount, but the variance-covariance matrix remains
unaffected.
b) Effect of rotation: XR ~ N (MR,�K � R T�DR) . This means that
rotation of an object affects the mean as well as the variance-
covariance matrix.
c) Effect of translation and rotation combined: XR � 1t ~ N(MR �
1t ,�K � RT�DR) . This means that rotation and translation of an
object affects both the mean and the variance-covariance
matrix.
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CHAPTER 3

Statistical Models for
Landmark Coordinate Data

In this chapter, we present models that are used to study form and
variability among forms as represented by landmark data. In Part 1 of
this chapter, we discuss the concept of variability among organisms,
models that are used to characterize variability and the way in which
these models relate to the methods used for analysis of form. Based on
these considerations, we then discuss the landmark coordinate repre-
sentation of form and present our method for characterizing form
without reference to a coordinate system. The final portion of Part 1 of
this chapter presents analysis of the example data sets presented in
Chapter 1 using these methods and models. Part 2 of this chapter pre-
sents the formal statistical theory for characterizing a single
population of forms using landmark data and presents the necessary
computational algorithms for estimation of the mean and variance.

Before we discuss models and methods for the analysis of landmark
data, it is necessary to differentiate between a statistical model and a
statistical method. A model, as used in this monograph, is a mathe-
matical construct that attempts to characterize certain aspects of the
underlying phenomenon. This mathematical construct includes quan-
tities called parameters. For example, consider the simple linear
regression model that describes the relationship between height and
weight of an individual. Let Y denote the weight of an individual and
X denote the height of the same individual. The statistical model used
in this situation may be: Y=�0 + �1 X+ �. This model states that the
weight of an individual is a linear function of the height of the indi-
vidual with the addition of some random variability. The parameters of
this model are the intercept, �0, and the slope, �1. The term � denotes
the variability around the mean response �0 + �1X. Usually, we
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assume that the variability around the mean can be modeled by a
Normal distribution with mean 0 and variance �2. We also assume that
the individuals are independent of each other. For this particular case,
this assumption means that the individuals are not siblings or other-
wise related.

The simple statistical model presented for the relationship between
height and weight includes all of the following considerations: lineari-
ty of the relationship, Normal variability, and individuals that are
independent of each other. The validity of each component of the model
can be debated. If a component is changed, a new statistical model is
obtained.

Notice that data do not enter into the discussion of the model. A
model is formulated using the intuition of the scientist and whatever
previous experience and knowledge (s)he may have. Once a model is
formulated, the data are used to determine those parameters of the
model that are most compatible with the observations. This process is
called “estimation of the parameters.” Many different methods may
exist for the estimation of the parameters. A method is any technique
used in the analysis of data.

While conducting any scientific study, a model should be specified
first. Following the specification of a model, methods should be devised
or chosen for estimating the parameters of the model and for conduct-
ing any other relevant data analysis. A particular method is judged as
good or bad, correct or incorrect, only in relation to its efficacy under a
particular model. An evaluation of the conclusions of any scientific
analysis of data must consider the validity of the model and the cor-
rectness of the method.

3.1 Statistical models 

“The ubiquity of noise is why statisticians and statistics are useful to science
— if there is no noise, no uncertainty, then there is no need for us or it.’’

Holland (1992)

There is variation among biological organisms. No two individuals, no
matter how closely related, are exactly the same. Even if two individu-
als are twins or clones, variability between the phenotypes exists due
to the individual’s interactions with the environment. To describe this
variability and to enable proper statistical comparison of groups, a
method for estimating variability within a population is needed.

The first and most important step in the statistical analysis of land-
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mark data is the specification of a model for variability within a group.
This step is important because the model that is adopted and used in
analysis influences the analytical results. An inappropriate model can
produce illusory or incorrect results. As discussed above, we use the
term model to describe the mathematical construct that attempts to
characterize (not calculate) how individuals within a population vary.
Unfortunately, there is no such thing as the correct model. All models,
even highly complex ones, are approximations.

The choice of a suitable model is dependent on several factors
including previous experience of the investigator, knowledge of the
specimens, familiarity with the nature of the data, and mathematical
convenience. In choosing a model, we need to be concerned that it is
realistic enough to model observable facts reasonably well, but at the
same time simple enough mathematically to allow statistical infer-
ence. The parameters of the chosen statistical model (e.g., the mean
and the variance) should help elucidate the biological phenomena, and
should be estimable using a sample of observations. For example, if
technical problems do not allow the collection of three-dimensional
data from biological organisms that are truly three-dimensional, the
observer needs to make an informed decision regarding whether the
organisms can be adequately represented by two-dimensional data.
Additionally, any model of the variability of landmark coordinate data
should be such that all the observations generated under such a model
belong to the same dimensional space as the original data (i.e., either
two-dimensional or three-dimensional Euclidean space).

In short, three criteria should be met in designing the model and
the parameters: 1) the model should be a reasonable approximation of
the variability within a population; 2) the parameters should convey a
direct, tangible meaning to the phenomena under study (i.e., a biolog-
ical meaning for biological data sets); and 3) the parameters should be
estimable using available data. The first two criteria require knowl-
edge of the biology of the specimens. The third criterion requires
statistical knowledge. The aim of this chapter is to suggest a reason-
able statistical model for landmark coordinate data and to discuss the
estimation of the relevant parameters.

3.2 Model for intra-group variability

Our model of intra-group variability can be illustrated by conducting
the following experiment. Imagine that you have eleven transparen-

Chapter 3-C0319  11/25/02  1:53 PM  Page 63©2001 CRC Press LLC

©2001 CRC Press LLC



cies in front of you. Assume that these transparencies are not the
familiar rectangular ones, but instead are circular, each with a differ-
ent radius. The importance of the circular transparencies will become
evident as you work through the experiment. On one transparency,
draw a triangle (using a red pen) and label each of the three vertices
as a landmark using the numbers 1, 2, and 3. Take a second trans-
parency and put it on top of the first. Using a black pen, place a single
point in the proximity of the original (red) landmark 1 at a random dis-
tance and direction from landmark 1. Next, on the same transparency,
place a point in the proximity of landmark 2 at a random (though
small) distance and direction from the original landmark 2. Do the
same for landmark 3. You now have a three-point configuration on the
second transparency that was created using the original red triangle
as a template. Repeat this procedure of forming a novel three point
configuration in black ink nine more times, using a different trans-
parency each time. At completion, you will have a stack of eleven
transparencies. Ten of these contain a random three-point configura-
tion drawn in black that are related to the original three point
configuration (drawn in red). The spread of the black points around
each of the red points can be thought of as the variability around an
average location.

Biological organisms that constitute a group resemble each other to
such a degree that we have an intuitive understanding of a typical or
“average” form (the red triangle) that represents all members of the
group. Individuals within a group correspond to the ten black triangles
that were just created on the circular transparencies. Some members
are very similar to the average, while others are less like the average.
Since all forms differ from each other in various ways, a scheme for
characterizing these differences is needed. It is convenient to organize
and specify these differences as divergences from an average form.

In biology, genetic and environmental influences combine to affect
structures represented by each of the landmarks, thereby creating ran-
domly perturbed forms. When observing a group of forms, we think of
these individuals and the variation among them by relating them to a
typical form that does not exist but that we are able to envision. This
is formally done in statistics by calculating an average form and mea-
suring variation in the sample with reference to an average.

To quantify variability within a sample, the researcher needs to
make some decisions about how the individuals in a sample vary.
These decisions constitute the choice of a perturbation model, the
mathematical construct that characterizes the way in which individu-
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als within a population vary with respect to an average form. The
degree to which a specific model correctly approximates the perturbed
copies of the average form depends upon the appropriateness, or the
“fit” of the model to the data. The better we are able to anticipate these
perturbations, the better the model will fit the data. Again, knowledge
of the study specimens puts the researcher in a better position to
choose the appropriate model.

Suppose we assume that a normal distribution will model the per-
turbation of the transparency data appropriately. Let M denote the
mean form. M can be likened to the notion we have of a form that has
the typical features of individuals within the group and that fairly rep-
resents members of a particular group. In the transparency
experiment M corresponds to the red triangle. Since we are dealing
with landmark data, M is a K � D matrix where K corresponds to the
number of landmarks and D corresponds to the dimension of the form.
Each of the perturbed observations (black triangles) are obtained by
adding some noise, namely E i, to the mean form, where E i ’s are
assumed to be matrix-valued normal random variables with a mean of
0 and a covariance matrix. Each observation is written as M � E i . In
our transparency experiment, each M � E i  corresponds to one of the
ten configurations drawn using the black pen.

In a simple world, these would be our only concerns in choosing a
model. However, there is an additional complication. This complication
involves the relationship between the coordinate system local to the
object and the coordinate system used to collect the landmark coordi-
nate data. No information is available regarding how these coordinate
systems relate to one another. To clarify this problem, imagine that
after creating the ten transparencies, they are dropped onto the floor.
When we pick the transparencies up and put them onto the table, their
original orientations are changed. Because they are circular, we have
no outside reference to inform us about how they were related to one
another before they fell to the floor. In order to study biological vari-
ability, knowledge of the relationship between the transparencies
before they fell to the floor is essential.

Let us now go back to the original, undisturbed stack of trans-
parencies and consider the effect of lifting a single transparency from
its original position and putting it elsewhere on the table. Movement
of a single transparency introduces a particular translation and rota-
tion to the definition of this transparency in relation to its original
location. Lifting the next transparency and moving it to another loca-
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tion on the table introduces a different translation and rotation specif-
ic to that transparency.

Rotation refers to change in orientation characterized as movement
around an axis (Figure 2.7). Imagine placing a pin through the origi-
nal pile of transparencies. This pin can be used as an axis about which
the black transparencies spin. Upon rotation, the relative locations of
the points on any single transparency remain the same, but the orien-
tation of the perturbed observations (the triangles) changes by rotation
around an axis. Mathematically, rotation of an object corresponds to
multiplication of the landmark coordinate matrix by an orthogonal
matrix (see Chapter 2, Part 2).

Translation, on the other hand, corresponds to a black transparen-
cy remaining stable in terms of rotations around axes but sliding in
any direction along the plane defined by the tabletop (Figure 2.7). As
with rotation, the relative locations of points are maintained under
translation. Mathematically, translation corresponds to adding a
matrix of identical rows to a matrix (see Chapter 2, Part 2).

With these definitions of rotation and translation in hand, we can
now present the data using the full perturbation model which represents
the observations after they have been arbitrarily translated and rotated.
A single observation, X i , incorporating the full perturbation model is
represented mathematically by: X i � (M�E i)R i � 1 t i where Ei is the ran-
dom perturbation of the mean form M, Ri is the orthogonal matrix
corresponding to rotation of Xi, and t i is the translation matrix. We
emphasize that each observation, X i, may be rotated and translated dif-
ferently. In the context of the transparency experiment, X i corresponds
to the landmark coordinate matrix representing the i-th transparency
after it has been dropped onto the floor, picked back up, and put onto the
table. The original landmark coordinate matrix for any black trans-
parency (before disturbing it) is given by M �E i. Once the matrix has
been arbitrarily rotated and translated, it is written as (M �E i)R i�1 t i.

Let us now deal with modeling the perturbation pattern that was
used to generate the black transparencies from the red one.
Perturbation patterns are quantified by the covariance structure of the
random variables, E i. These covariance matrices are best conveyed by
a graphic representation of the variability implied by different covari-
ance structures. Let us begin by accepting, for instructional purposes
and mathematical convenience, the assumption of Gaussian (Normal)
perturbations across all landmarks on a two-dimensional, three-land-
mark object. Complex objects with more landmarks in three
dimensions can be modeled using similar covariance matrices.
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We will consider four different types of covariance structures
(graphically presented in Figure 3.1), chosen for both statistical and
biological reasons. Statistically, these four types of covariance struc-
tures are amenable to analysis using a sample of arbitrarily rotated
and translated objects. Biologically, these covariance structures seem
reasonable and appropriate, reflecting expectations gained through
experience with data collected from biological populations.
Mathematical details of the various covariance structures conveyed
graphically in Figure 3.1, are provided in Part 2 of this Chapter.

a

c

b

d

Figure 3.1. Four types of covariance structures that may be used in the matrix normal
perturbtion model: a) independent and same variances (isotropic); b) independent and
different variances; c) correlated landmarks and uncorrelated axes; d) correlated land-
marks and correlated axes. We generated 100 matrix Normal random variables under
different covariance structures and plotted these in the original coordinate system
without introducing any rotation, translation or reflection. Visually, it is difficult to dif-
ferentiate the first three covariance structures. However, the statistical inferences
estimated from these different covariance structures (e.g., confidence intervals) are
quire different under these different covariance structures. The mathematical details
of the various covariance structures conveyed graphically in f 3.1, are provided in
Part 2 of this chapter.
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(a) Isotropic variance. Perhaps the simplest type of covariance
structure for the perturbation distribution is one in which all
landmarks are perturbed with the same variance irrespective of
direction. This corresponds to adding a Normal random variate
with mean 0 and variance �2 to each landmark coordinate along
both the X- and the Y-axes. In this model �2 is equal along the X-
and Y-axes. Figure 3.1a shows a collection of 100 objects that are
generated from the template of a simple 3 landmark, two-
dimensional object using this perturbation covariance structure.

This isotropic variance structure is easy to visualize, but may not
be biologically realistic in the study of certain biological structures or
certain populations. For example, we found in a sample of primate
skulls (Lele and Richtsmeier, 1990) that the variances for osseous
landmarks that mark sites of muscle attachment are larger than the
variance of those that mark foramina for neurovascular bundles.

(b) Independent and different variances. To account for observa-
tions that suggest differing variability for specific landmarks, a
model can be constructed that allows for perturbation of each
landmark by a different variance. A graphical depiction of such
a covariance structure is provided in Figure 3.1b. Differences
between Figure 3.1a and 3.1b are apparent.
(c) Correlated landmarks. Since subsets of landmarks can corre-
spond with functionally or developmentally integrated units
(Atchley, 1987; Atchley, Cowley et al., 1990; Atchley and Hall,
1991; Atchley, 1993; Cheverud 1995; Cheverud, 1996; Cheverud,
Routman et al., 1996), in some cases it may be appropriate to
assume correlation among landmark perturbations. For exam-
ple, if landmark data were available from a long bone, we might
expect that the landmarks on the shaft would share certain
aspects of variability, while landmarks on a joint surface might
share other aspects of variability. Variability of landmarks on
female pelves may vary depending on whether the landmark is
located at a site associated with locomotion or parturition. A
covariance structure can be made somewhat more realistic by
allowing correlation among the perturbations local to specific
subsets of landmarks. For mathematical convenience, we
assume independence between X- and Y-axes. Figure 3.1c
depicts this covariance structure.
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(d) Correlated landmarks with correlations between the axes.
When we are fortunate in having even more information per-
taining to the variation patterns of the landmarks, it may be
possible to add this information to the model. Assume that we
are collecting landmark data on femora of human male adoles-
cent individuals. We know that these teenagers are experiencing
a pronounced growth spurt affecting most parts of the body and
that the magnitude and the exact chronological timing of the
growth spurt vary between individuals. The covariance struc-
ture for correlated landmarks (Figure 3.1d) allows us to assume
that landmarks located on the shaft of the femur will have sim-
ilar covariance structures with correlation between the X- and
Y-axes. In the same model, we can specify an alternate covari-
ance structure for landmarks on the joint surfaces that allows
for a different correlation between the X- and Y-axes.

At this point, we remind the reader of an important caveat for any
statistical or mathematical model. Models are only approximations
that should fit the data as closely as possible. They cannot reflect real-
ity perfectly. This is the reason that the scientist’s knowledge of the
data under study should be used when choosing a model. If the statis-
tical model deviates substantially from reality, any statistical analysis
based on that model is of limited utility. This is one reason to strive for
procedures that are valid under a variety of models (Lele, 1991; Lele
and Richtsmeier, 1991).

3.3 Effect of nuisance parameters

Let us return to the transparency experiment where the ten trans-
parencies and the original template are lying in their original
orientation on the table. Now let us suppose that while searching for
the reprint of an important article on covariance structures, the entire
pile of transparencies is knocked to the floor. In the act of retrieving
them from the floor, the red template transparency slips behind a file
cabinet, where it is lost forever. The remaining black pen transparen-
cies are placed back onto the desk and an attempt is made to restore
order to the pile by straightening them (translating and rotating). The
rotation and translation of each transparency away from its original
orientation (the path each transparency took as it flew to the floor, was
retrieved and then straightened within the stack) is unknown and
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unknowable. If the path for each transparency were known, the
inverse of these paths could be used to reorient them to their original
positions. The mean form, M, is lost as well. This mimics the situation
encountered by a biologist while collecting data from a sample of bio-
logical organisms. The mean form that represents the population
average is unknown. Likewise, the random perturbation among speci-
mens, Ei, is unknown and the rotation and translation associated with
each form is unknown and unknowable.

Suppose the next day we return to our office and decide to create a
few more objects on additional transparencies. We realize that the
mean form template (the red transparency) is lost, and we did not
record the exact perturbation structure (the covariance matrix of E)
that was used when we created the original black triangles. Because
our transparencies are circular and of different diameters, there is no
particular edge or other outside frame of reference that can be used to
put the black transparencies together in a way that may bring us to
the original arrangement. We have an informed idea of what the mean
form might look like, but no information other than the black trans-
parencies that detail its configuration. This is exactly the situation a
scientist faces when examining a set of observations. The scientist has
observations but no fundamental frame of reference within which to
work. In addition, the mean form and the perturbation structures are
unknown.

Questions relating to samples or populations cannot be answered
without tools for summarizing the data. The mean form is one sum-
mary parameter and the perturbation pattern is yet another. The
biological and statistical relevance of the mean form is apparent, while
knowledge of the perturbation pattern is the keystone for studying
variability. Our primary questions include whether or not we can esti-
mate the mean form from the available observations and whether or
not we can estimate the perturbation pattern used to generate the
observations.

Estimation of the mean form and the covariance structure in the
situation described above is complicated. The complexity comes from
the arbitrary and unknown parameters of translation and rotation. We
have only the displaced black pen transparencies and no knowledge of
the original frame of reference (coordinate system) in which they were
created. It is up to the investigator to decide if these parameters are
critical or even of scientific interest for a specific problem. When study-
ing biological organisms, important biological considerations may
enter into this decision. If knowledge of rotation and translation is not
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germane to the stated scientific problem, it is best to avoid them alto-
gether in analysis. In this context, “avoidance” does not mean inclusion
of an arbitrarily chosen rotation and translation system for mathe-
matical convenience. “Avoidance” means that any inferences made from
the data should remain the same regardless of, or invariant with
respect to, such an arbitrary choice. The existence of translation and
rotation affects the estimation of the essential parameters of interest:
the mean form M, and the covariance structure �. For this reason,
translation and rotation are referred to as “nuisance parameters” in
statistics and must be considered carefully.

The difficulty of statistical inference in the presence of nuisance
parameters is well-studied in statistics. Jerzy Neyman and Elizabeth
Scott (Neyman and Scott, 1948) used a simple one-dimensional exam-
ple to illustrate the effect of nuisance parameters on statistical
inference. We consider a similar example here to clarify the concept of
nuisance parameter.

Suppose that we have introduced a new drug to treat high blood
pressure. We are specifically interested in the intrinsic efficacy of the
drug and the variability of the effectiveness. Let Yij denote the reduc-
tion in blood pressure for the j-th patient treated in the i-th clinic.
Suppose that we treat two patients per clinic and that there are I clin-
ics in the study. Let 	 denote the average reduction in blood pressure
and � 2 denote the variability in this effect due to patient variability.
Because each clinic also has a slightly different environment, the mean
response to the administration of the drug varies from clinic to clinic,
but we are not interested in this aspect. Our interest lies in the effect
of the drug, 	, and the variability in this effect, �2. The model that
describes the relationship among the parameters is Y i j ~ N (	 � α i ,�2) ,
i �1,2,…, I ; j �1,2. . . . , where α denotes the “clinic effect.” Given the
research problem and specific research question posed above, the dif-
ference in the effect of the drug from clinic to clinic, or the clinic effect,
α i, is a “nuisance” parameter. Not only are we not interested in the nui-
sance parameter, estimation of the nuisance parameter can influence
estimation of the parameters of interest.

The field of statistics is based on the idea that as the sample size
increases; the amount of information increases and estimates that
more closely approach the truth are obtained. An estimator is called a
consistent estimator if, as sample size increases, the estimator more
closely approximates the true value. Nuisance parameters, if not taken
into account properly, can lead to statistical anomalies such as non-
estimability and inconsistency. Neyman and Scott (1948) showed in the
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above example that as the number of observations tends to infinity, the
maximum likelihood estimate of �2 converges to a quantity that is dif-
ferent from the true value of the patient-to-patient variance. They also
showed that, in this case, 	 is non-estimable. In this example the max-
imum likelihood estimator of patient-to-patient variability, �2, is
biased and is also a “statistically inconsistent” estimator.

In Part 2 of this chapter, we prove that certain estimators such as
those based on shape coordinates suggested by Bookstein (1991) and
Procrustean superimposition estimators suggested by Goodall (1991)
are statistically inconsistent. These estimators are inconsistent due to
the effects of nuisance parameters (see Lele and Richtsmeier, 1990;
Lele, 1991; Lele, 1993).

3.4 Invariance and elimination of nuisance parameters

The existence of nuisance parameters, though not appreciated in many
statistical analyses of laboratory or field data, poses significant problems
for the estimation of the mean and variance using landmark coordinate
data. An inconsistent estimator is unsatisfactory for use in scientific
research. Fortunately, there are ways to circumvent these problems.

One approach is to transform the data such that the distribution of
the transformed data is independent of the nuisance parameters.
Statistical inference is then based only on the transformed data.
Consider the blood pressure example introduced earlier. Using the
variables introduced in that example we can define a new variable,
Wi �Yi1
Yi2. The new observation, Wi, represents the difference
between observations Yi1 and Yi2, and is the difference in the reduction
of blood pressure for the two patients at the i-th clinic. This transfor-
mation introduces a new model for the distribution of the transformed
data. After this transformation, the data Wi ’s are distributed as
W i ~ N (0,2�2) . Notice that the distribution of Wi does not depend upon
the nuisance parameter αi, the clinic effect. We have eliminated the
nuisance parameter αi by transforming the data (Yi1, Yi2) to Wi.
Removal of the nuisance parameter enables estimation of the variance
parameter, �2, using the maximum likelihood method (Casella and
Berger, 1990) where the likelihood is based on W i ~ N (0,2�2) . This esti-
mator is also statistically consistent (Neyman and Scott, 1948).

In the study of landmark coordinate data, nuisance parameters can
be eliminated using a similar approach. We first transform the land-
mark coordinate matrix to what is known as the Euclidean distance
matrix that consists of all possible linear distances among the land
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marks. This transformation eliminates the nuisance parameters of
translation, rotation, and reflection. One important consequence of any
such transformation adopted for the purpose of eliminating nuisance
parameters is that the original parameters of interest, namely, the
mean form and the perturbation structure, are transformed as well. As
a result, only the transformed parameters are estimable and not the
original parameters. But are these transformed parameters useful for
scientific interpretation? Our experience is that in the case of land-
mark coordinate data used in biological analysis, the transformed
parameters described are meaningful and interpretable.

In the next section, we explain the necessary data transformation and
corresponding parameter transformation that eliminate the nuisance
parameters of translation, rotation, and reflection. We also demonstrate
that the transformed parameters are biologically interpretable.

3.5 A definition of form

To demonstrate that the suggested transformation does not affect the
study of form, we must begin with a precise definition of the concept of
form of an object.

Definition: The form of an object is the characteristic that remains
invariant under any translation, rotation or reflection of the object.

To clarify this definition, consider the simple situation of a triangle,
defined by the location of three landmarks. Suppose we rotate or trans-
late or reflect the triangle by an arbitrary amount. Any such movement
of the triangle results in changes in the coordinate locations of the
three vertices. Although no changes have been made regarding the rel-
ative location of the landmarks, a new set of coordinates is required to
define the new location of the three landmarks once the triangle has
been translated, rotated, or reflected. This means that the landmark
coordinate matrix changes upon reflection, translation, or rotation and
that the landmark coordinate matrix is not invariant with respect to
translation, rotation, and/or reflection.

Now, consider characterizing the form of a triangle as a vector of
distances between all possible pairs of landmarks (a vector of three dis-
tances in the case of a triangle). This vector of inter-landmark
distances is equivalent to the definition of the triangle by landmark
locations with one subtle but important difference: a coordinate system
is not required to record the inter-landmark distances. While rotation,
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translation, and reflection change the values of the coordinate loca-
tions of landmarks that define the triangle, these operations have no
effect on the vector of distances between landmark pairs. A vector of all
possible inter-landmark distances representing the relative location of
the landmarks is invariant with respect to rotation, reflection, and
translation of the triangle.

In fact, a stronger property holds. There is a one to one correspon-
dence between a given triangle and a vector of three distances such
that given this vector of distances, one can draw (or reconstruct) the
original triangle. For example, in simple Euclidean geometry terminol-
ogy, two triangles have the same form if they are congruent (Fishback,
1969). When a triangle is drawn from a vector of inter-landmark dis-
tances, it will be a triangle congruent with the original triangle from
which the distances were calculated. Given one type of data, we can
construct the other uniquely (up to translation, rotation, or reflection).
Such a one-to-one, invariant transformation of the data is called a
“maximal invariant.”

At this point, the following statement bears repeating: the land-
mark coordinate matrix is not invariant to translation, rotation, or
reflection, but the corresponding vector of all possible pair-wise dis-
tances is invariant to these operations. Our example has focused on
triangles but these findings are true for objects defined by more than
three landmarks in two- or three-dimensional space. Given a landmark
coordinate matrix, there is a corresponding and unique vector of all
possible pair-wise distances. Conversely, given a vector of all possible
distances, one can construct the original landmark coordinate matrix
up to translation, rotation, and reflection. We have neither gained nor
lost information, whether the form is recorded as a vector of distances
or as a landmark coordinate matrix. All the relevant “geometric” infor-
mation is identical in both representations, and the transformation
from one to the other is exact. The main difference between these two
representations of the form is that the vector of distances is indepen-
dent of the choice of an arbitrary orientation, whereas the landmark
coordinate matrix is not. The vector of distances is a coordinate system-
free representation of form. We will show that a vector of all possible
distances is biologically interpretable as well.
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3.6 Coordinate system-free representation of form

We have described a coordinate system-free representation of a trian-
gle as the Euclidean distances among all possible landmark pairs. This
can be easily extended to an object with any number of landmarks,
that number represented by K, and any number of dimensions repre-
sented by D, such that K is strictly larger than D. Because all the
information about the form of an object defined on the basis of land-
mark coordinates is summarized in the collection of all distances
between pairs of landmarks, we call such a collection of distances (put
in matrix form) a form matrix. The number of unique pair-wise linear
distances in a form matrix is L where L � K (K 
1 ) / 2 .

Definition of form matrix: The form matrix or Euclidean distance
matrix corresponding to the landmark coordinate matrix A is a
matrix consisting of all possible pair-wise distances between
landmarks. The form matrix of A is defined as:

This is a square, symmetric matrix where dij is the Euclidean dis-
tance between landmarks i and j. The form matrix for a given object
provides all the relevant information about the form of that object that
can be obtained from landmark coordinates.

As an illustration, we present a simple two-dimensional example.
We strongly recommend that the reader conduct these calculations and
draw the original triangle on a piece of graph paper. The distances
between landmarks can be obtained easily using a ruler.

Let the landmark coordinate matrix be                    This is a tri- 

angle with vertices at (0,0), (1,0), and (0,1) for landmarks 1, 2, and 3,
respectively. The form matrix corresponding to this triangle is given by
the collection of all pair-wise distances in a matrix, namely,
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where columns represent landmarks 1, 2, and 3 read from left to right,
and rows represent landmarks 1, 2, and 3 read from top to bottom. The
matrix is square because the number of columns is equal to the number
of rows. Each cell represents the distance between the landmark that
heads a row and the landmark that heads a column. The cell in the
upper left-hand corner represents the linear distance between land-
mark 1 and itself. The second cell in the first row represents the
distance between landmarks 1 and 2, while the third cell in the first row
represents the distance between landmarks 1 and 3. Notice that the
entries on the diagonal are all 0 because the distance between a land-
mark and itself is zero. The matrix is symmetric, meaning that the
entry for the (i, j)-th cell is equal to the entry for the ( j, i) -th cell. The
first cell in the second row represents the distance between landmarks
2 and 1, which is equal to the value entered in the second cell in the first
row, the distance between landmarks 1 and 2.

Since this matrix is symmetric, we need not write it in full matrix
format but can abbreviate it by collecting only the above-diagonal ele-
ments and writing those numbers as a vector.

When written as a vector, the elements to the right of the first diago-
nal element in row 1 are written in order first, followed by the
elements to the right of the diagonal in row 2 and so on. Unless we
specify otherwise, the form matrix is always written as a vector.

3.7 The ability to estimate the mean form and variance

In this section, we provide a verbal description of two key results
regarding the estimation of the mean form and variance. These results
are proven in Part 2 of this chapter. The discussion in this section is

FM A( ) .
.

=
















0 1 1
1 0 1 41
1 1 41 0
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targeted at the scientist who is interested in understanding the bio-
logical significance of the mathematical results presented in Part 2.

Result 1: The mean landmark coordinate matrix, M, consisting of
landmark coordinates cannot be estimated. However, the matrix
of all possible pair-wise distances corresponding to M, otherwise
known as the form matrix of M, or FM(M), can be estimated.

An algorithm for the estimation of the mean FM is given in Part 2
of this chapter. If we know the form matrix for a given object, we have
all the relevant information about the form of that object that can be
obtained from landmark coordinates. This result means that given the
landmark coordinate data, we can capture the essence of the mean
form by using the vector of all possible linear distances among land-
marks. This can be done even in the presence of nuisance parameters
of translation, rotation, and reflection.

However, the unfortunate effect of these nuisance parameters
becomes apparent when we attempt to estimate the variance. Suppose
the variance-covariance matrix V characterizes the perturbation pat-
tern, where  V��K��D   � (See Chapter 2, Part 2 for details on �K and
�D)

Result 2: Neither �K nor �D can be estimated. What we can esti-
mate is a singular version of �K, denoted by �K*, and only the
eigenvalues of �D.

A consequence of the non-estimability of �K and �D is that inter-
pretation of the estimators of the variances becomes complex. In fact,
this constraint means that we cannot estimate the variability local to
any particular landmark. However, the eigenvalues of �D can be used
to determine whether or not there is a difference in the variability cal-
culated along the three major axes. We underscore that the nuisance
parameters prohibit valid estimates of the exact magnitude of vari-
ability surrounding landmarks. Consequently, biological questions that
require specific values (estimates) of local variability cannot be
addressed. Since the estimation of exact quantities of local variability
is impossible due to the presence of nuisance parameters, we need to
determine how we might use those quantities that can be estimated in
scientific analysis.

We refer to the quantities that are estimable, namely �K* and the
eigenvalues of �D , as the perturbation pattern. These estimators can
be used as tools to evaluate differences in form or shape between pop-
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ulations, to identify locations or regions that differ least and/or most
between two populations, to evaluate a new observation in relation to
another group, and to cluster or classify a group of individuals into
potential subgroups. The way in which �K* and the eigenvalues of �D

can be used to address many of these issues will be shown in subse-
quent chapters. Although nuisance parameters limit our inferences
many biologically relevant and interesting questions can be addressed
using the landmark coordinate matrix data.

Our conclusion is simple. Landmark coordinate data can be used to
obtain a coordinate system-free representation of form, the form
matrix, or FM, which is invariant to the operations of translation,
rotation and reflection. Landmark coordinate data can also be used to
obtain useful features of sample variability. These parameters can be
obtained in a statistically sensible and operationally simple fashion.
We show in Part 2 of this chapter that these estimators are statistical-
ly consistent in that as the sample size increases, the estimators
approach the true values. Moreover, these estimators are simple to
compute and have high efficiency as compared to other estimators
(e.g., maximum likelihood estimators) (Lele and McCulloch, 2000).
These topics are more fully developed and studied in Part 2 of this
chapter. In the next section, we present estimates of the mean and
variance (mean form and variance-covariance matrices) for the biolog-
ical data sets introduced in Chapter 1.

3.8 Analysis of example data sets

In this section we provide the estimates of the mean form, both in
terms of the form matrix (FM) and the landmark coordinate matrix for
data sets introduced earlier. Recall that the coordinate matrix repre-
sentation is useful for pictorially representing the object under study
but carries with it all of the problems associated with nuisance param-
eters. We also present the variance-covariance matrices for these data
sets. Throughout this section, we only consider the model where �D � I.
The algorithms used to estimate mean forms and the perturbation
covariance structure (�K*) for each sample are presented in Part 2 of
this chapter.

3.8.1 Ts65Dn mouse mandibles

Individuals with Trisomy 21 (Ts21) or Down Syndrome (DS) express
different subsets of the phenotypes that characterize the syndrome
(e.g., Hirschprungs disease, cardiovascular anomalies, atlanto-axial
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instability), but the distinct craniofacial appearance seems to occur in
all children with DS. Though present in all individuals with DS, the
characteristic facial features are highly variable. Since these features
most likely arise due to differences in the developmental regime of
euploid (non-trisomic) and trisomic individuals, an animal model pro-
vides certain advantages to the study of the developmental basis of
these facial features since it can be manipulated at any time during
development.

The Ts65Dn mouse is a model for DS. To establish the value of the
Ts65Dn mouse model in the study of DS, initial energies were directed
towards definition of the various phenotypes of interest that are
expressed in the animal model. We sought to define the craniofacial
phenotype. Using the Reflex microscope, three-dimensional landmark
coordinate data were collected from the mandibles of seven adult
Ts65Dn mice and 13 adult euploid littermates. Landmarks identify loci
on the exterior surface of the left hemi-mandible (see Figure 3.2). These
data were used to calculate a mean form, a mean form matrix, and a
variance-covariance matrix for both the euploid and aneuploid samples
using the methods described above and presented in detail in Part 2 of
this chapter. The estimated parameters are given in Table 3.1a-f.

Table 3.1a. Mean form of the aneuploid Ts65Dn mandible (mm) (Coordinate
values correspond to the mean form matrix)

Landmark (number) X Y Z
coronoid process (1) 2.312 2.582 0.408
mandibular angle (2) 5.185 -2.875 -0.044
anterior aspect of condyle (3) 4.702 1.517 -0.070
posterior aspect of condyle (4) 6.231 0.631 -0.460
high point on mandibular body (5) 0.220 -1.872 0.308
posterior aspect at base of alveolar thickening (6) -1.902 -2.221 -0.113
posterior aspect of incisor at alveolus (7) -5.192 -0.795 -0.126
anterior aspect of incisor at alveolus (8) -5.552 1.438 -0.496
body of alveolar ridge (9) -2.971 -0.269 0.325
anterior aspect of M1 on alveolus (10) -2.361 0.965 0.039
intersection of coronoid -0.672 0.901 0.229
process and alveolar rim (11)
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Table 3.1b. Mean form matrix of the euploid Ts65Dn mandible (mm)

1 2 3 4 5 6 7 8 9 10 11
Landmark 1 0.000 6.184 2.660 4.446 4.922 6.411 8.246 7.998 6.004 4.958 3.429
Landmark 2 6.184 0.000 4.418 3.682 5.077 7.118 10.584 11.580 8.570 8.467 6.973
Landmark 3 2.660 4.418 0.000 1.810 5.631 7.589 10.161 10.263 7.888 7.085 5.417
Landmark 4 4.464 3.682 1.810 0.000 6.556 8.626 11.517 11.811 9.280 8.613 6.942
Landmark 5 4.922 5.077 5.631 6.556 0.000 2.192 5.535 6.702 3.572 3.845 2.914
Landmark 6 6.411 7.118 7.589 8.626 2.192 0.000 3.586 5.182 2.268 3.223 3.373
Landmark 7 8.246 10.584 10.161 11.517 5.535 3.586 0.000 2.292 2.326 3.338 4.841
Landmark 8 7.998 11.580 10.263 11.811 6.702 5.182 2.292 0.000 3.201 3.270 4.936
Landmark 9 6.004 8.570 7.888 9.280 3.572 2.268 2.326 3.201 0.000 1.406 2.582 
Landmark 10 4.958 8.467 7.085 8.613 3.845 3.223 3.338 3.270 1.406 0.000 1.701
Landmark 11 3.429 6.973 5.417 6.942 2.914 3.373 4.841 4.963 2.582 1.701 0.000

Table 3.1c. Variance-covariance matrix, �K*, of  Ts65Dn mandibles (mm2)

1 2 3 4 5 6 7 8 9 10 11
Landmark 1 0.03481 -0.00554 0.00719 0.01942 0.03584 -0.01517 -0.02313 -0.02508 -0.015 -0.00362 -0.00972
Landmark 2 -0.00554 0.02876 -0.00745 -0.01084 0.02146 0.01146 -0.0086 -0.01958 -0.00661 -0.00833 0.00527
Landmark 3 0.00719 -0.00745 0.01558 0.00719 0.0185 -0.00853 -0.01161 -0.01059 -0.00384 -0.00042 -0.00603
Landmark 4 0.01942 -0.01084 0.00719 0.02126 0.02152 -0.01071 -0.01467 -0.0209 -0.00757 0.00197 -0.00667
Landmark 5 0.03584 0.02146 0.0185 0.02152 0.09834 -0.0138 -0.05432 -0.07706 -0.02829 -0.0165 -0.00568
Landmark 6 -0.01517 0.01146 -0.00853 -0.01071 -0.0138 0.01789 0.00808 0.00665 0.00337 -0.00149 0.00224
Landmark 7 -0.02313 -0.0086 -0.01161 -0.01467 -0.05432 0.00808 0.03263 0.04129 0.01583 0.00797 0.00653
Landmark 8 -0.02508 -0.01958 -0.01059 -0.0209 -0.07706 0.00665 0.04129 0.06808 0.02286 0.0113 0.00303
Landmark 9 -0.01500 -0.00661 -0.00384 -0.00757 -0.02829 0.00337 0.01583 0.02286 0.01068 0.00433 0.00424
Landmark 10 -0.00362 -0.00833 -0.00042 0.00197 -0.0165 -0.00149 0.00797 0.01130 0.00433 0.00733 -0.00255
Landmark 11 -0.00972 0.00527 -0.00603 -0.00667 -0.00568 0.00224 0.00653 0.00303 0.00424 -0.00255 0.00935
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Table 3.1d. Mean form of the euploid Ts65Dn mandible (mm)
(Coordinates corresponding to the mean form matrix)

Landmark (number) X Y Z
coronoid process (1) 3.138 2.903 0.394 
mandibular angle (2) 5.414 -3.428 -0.031 
anterior aspect of condyle (3) 4.714 1.591 -0.103 
posterior aspect of condyle (4) 6.277 0.691 -0.505 
high point on mandibular body (5) 0.070 -1.834 0.451 
posterior aspect at base of alveolar thickening (6) -1.932 -2.341 -0.197 
posterior aspect of incisor at alveolus (7) -5.408 -0.845 -0.126
anterior aspect of incisor at alveolus (8) -5.915 1.492 -0.469
body of alveolar ridge (9) -3.162 -0.206 0.297 
anterior aspect of M1 on alveolus (10) -2.472 0.999 0.074 
intersection of coronoid process and alveolar rim (11) -0.723 0.978 0.215

There is a direct correspondence between the coordinate data present-
ed for the mean forms and the mean form matrices. Each cell of the
form matrix represents a distance in three-dimensional space that
does not require a coordinate system. For example, the cell that con-
tains the number 6.741 in the mean form matrix of the euploid
mandibles (Table 3.1e) represents the distance between landmarks 1
and 2, a distance that was calculated directly from the landmark coor-
dinate data, but that could be measured on a mouse mandible using
calipers (though perhaps with less precision). The landmark coordi-
nates calculated for the mean form and the mean form matrix are
equivalent expressions; given one, you can derive the other. However,
to express the mean form in terms of landmark coordinates, a coordi-
nate system must be chosen. The mean form matrix does not require
that such a choice be made.

When we compare �K* for the two samples, the landmarks with
high levels of variation are different for the two samples. Landmarks
3,6,9,10 and 11 show low variance in the euploid sample, while land-
marks 10 and 11 appear to be the least variable landmarks in the
aneuploid sample. Also note that the aneuploid Ts65Dn mouse
mandible is more variable overall. Finally, both mandibles show land-
marks 5 and 8 to be highly variable.

The variance-covariance matrix provides an indication of variabili-
ty local to each landmark (variances along the diagonal) and of the
association of variability measures between pairs of points (covari-
ances on the off-diagonals), but nuisance parameters prevent us from
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f 3.1e. Mean form matrix of the aneuploid Ts65Dn mandible (mm)

1 2 3 4 5 6 7 8 9 10 11
Landmark 1 0.000 6.741 2.110 3.945 5.644 7.318 9.346 9.202 7.026 5.932 4.318
Landmark 2 6.741 0.000 5.068 4.234 5.598 7.428 11.126 12.359 9.167 9.044 7.559
Landmark 3 2.110 5.068 0.000 1.848 5.796 7.723 10.411 10.635 8.088 7.212 5.481
Landmark 4 3.945 4.234 1.848 0.000 6.769 8.757 11.792 12.219 9.516 8.774 7.044
Landmark 5 5.644 5.598 5.796 6.76 0.000 2.165 5.596 6.908 3.622 3.824 2.930
Landmark 6 7.318 7.428 7.723 8.757 2.165 0.000 3.785 5.534 2.513 3.394 3.556
Landmark 7 9.346 11.126 10.411 11.792 5.596 3.785 0.000 2.416 2.373 3.473 5.038
Landmark 8 9.202 12.359 10.635 12.219 6.908 5.534 2.416 0.000 3.324 3.521 5.262
Landmark 9 7.026 9.167 8.088 9.516 3.622 2.513 2.373 3.324 0.000 1.407 2.712
Landmark 10 5.932 9.044 7.212 8.774 3.824 3.394 3.473 3.521 1.407 0.000 1.754
Landmark 11 4.318 7.559 5.481 7.044 2.930 3.556 5.038 5.262 2.712 1.754 0.000

Table 3.1f. Variance-covariance matrix �K* of euploid Ts65Dn mandible (mm2)

1 2 3 4 5 6 7 8 9 10 11
1 0.01796 0.00512 0.00718 0.00821 0.00862 -0.00567 -0.01313 -0.01721 -0.01001 -0.00305 0.00198
2 0.00512 0.01282 0.00179 0.00047 -0.00674 0.00032 -0.00234 -0.00654 -0.00525 -0.0031 0.00346
3 0.00718 0.00179 0.00744 0.00866 -0.00018 -0.00375 -0.00658 -0.01071 -0.00578 0.00025 0.00168
4 0.00821 0.00047 0.00866 0.02336 -0.01071 -0.00821 -0.00698 -0.01029 -0.00608 0.00128 0.00029
5 0.00862 -0.00674 -0.00018 -0.01071 0.03549 -0.00418 -0.01215 -0.00808 -0.00448 -0.00233 0.00473
6 -0.00567 0.00032 -0.00375 -0.00821 -0.00418 0.00876 0.00395 0.00412 0.00542 0.00036 -0.00113
7 -0.01313 -0.00234 -0.00658 -0.00698 -0.01215 0.00395 0.01623 0.01692 0.00839 0.0002 -0.00453
8 -0.01721 -0.00654 -0.01071 -0.01029 -0.00808 0.00412 0.01692 0.02379 0.01163 0.00276 -0.0064
9 -0.01001 -0.00525 -0.00578 -0.00608 -0.00448 0.00542 0.00839 0.01163 0.00822 0.0011 -0.00314
10 -0.00305 -0.00310 0.00025 0.00128 -0.00233 0.00036 0.0002 0.00276 0.0011 0.00557 -0.00305
11 0.00198 0.00346 0.00168 0.00029 0.00473 -0.00113 -0.00453 -0.0064 -0.00314 -0.00305 0.00611
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obtaining a valid estimate of the exact magnitudes of variability local
to each landmark (see Result 2, page 77). Whether a measure of co-
variability is positive or negative is not meaningful in our use of the
variance-covariance matrices. Even though we cannot treat the diago-
nal values from the variance-covariance matrix as proper estimates of
variability values, our estimates of the mean form and the variance-
covariance matrix can be used to obtain a visual representation of how
the location of landmarks varies across a sample of specimens. We do
this by generating hypothetical forms using parameters computed
from the original data. The resulting data can be used to provide a
visual impression of how variability is distributed across the sample of
specimens.

As an example, the mean form matrix and variance-covariance
matrix for the normal and Ts65Dn mandibles were used to generate
hypothetical populations of 50 specimens for each sample (Figure 3.3).
To generate data like those represented in Figure 3.3, a mean form
matrix is estimated following algorithm 1 (Chapter 3, Part 2) and is
transformed back to landmark coordinates using an algorithm 1. The
landmark coordinates of the mean form are used as a template, just as
the original transparency was used to generate triangles in our pre-
ceding exercise with transparencies. However, instead of randomly
placing points around each of the given landmarks as we did with the
transparencies, the points are placed according to the Gaussian distri-
bution with the estimated variance-covariance matrix. The
hypothetical data displayed in Figure 3.3 (Richtsmeier et al., 2000) are
constrained by the variances calculated local to each landmark and by
the covariances that represent the relationships among variances for
all landmarks. The diagram drawn of the hypothetical data (Figure
3.3) enables visualization of differences in variances local to specific
landmarks within a sample. The true sample size, of course, remains
small. Remember that the choice of coordinate system into which to

Figure 3.2. Left mouse hemi-mandible showing 11 landmarks used in analysis.
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project the mean form is arbitrary, and that the visual impression of
the simulated data can change with the coordinate system. Generation
of the hypothetical data is simply a tool to help visualize variability
local to landmarks.

It is important to understand that within any sample, estimation of
�K* changes depending upon the landmarks included in its estimation.
Suppose that instead of analyzing all eleven landmarks on the aneu-
ploid Ts65Dn mouse mandible, we decide to analyze a subset of the
original group of landmarks, say landmarks 1, 2, 3, 5, 7, and 10. The
estimate of the parameters of interest using only those data for the
landmark subset are given in Tables 3.2a-c.

+

+

+

Figure 3.3. Fifty Gaussian random observations generated for the sample of Ts65Dn
aneuploid mice (left) and the sample of Ts65Dn normal littermates (right). The random
observations for each sample were generated using the mean form and variance-
covariance matrix estimated from the landmark coordinate data (after Richtsmeier et
al., 2000). This graphical depiction of the variability for each sample is not invariant
with respect to the coordinate system as we are viewing the three-dimensional data
from a given perspective. A mouse hemi-mandible is shown to indicate approximate
location of landmarks on the mean form.
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Table 3.2a. Mean form of the aneuploid Ts65Dn mandibles using the land-
mark subset (Coordinates corresponding to the mean form matrix)

Landmark (number) X Y Z
Landmark 1 1.504 2.670 -0.269
Landmark 2 4.370 -2.801 -0.009
Landmark 3 3.891 1.588 0.286
Landmark 5 -0.588 -1.783 -0.152
Landmark 7 -6.005 -0.718 0.104
Landmark 10 -3.172 1.044 0.041

Table 3.2b. Mean form matrix of the aneuploid Ts65Dn mandible using the
landmark subset (mm)

1 2 3 5 7 10
Landmark 1 0.000 6.182 2.678 4.922 8.247 4.961
Landmark 2 6.182 0.000 4.425 5.064 10.583 8.467
Landmark 3 2.678 4.425 0.000 5.623 10.162 7.088
Landmark 5 4.922 5.064 5.623 0.000 5.527 3.835
Landmark 7 8.247 10.583 10.162 5.527 0.000 3.336
Landmark 10 4.961 8.467 7.088 3.835 3.336 0.000

Table 3.2c. Variance-covariance matrix �K* of the aneuploid Ts65Dn
mandibles using the landmark subset (mm2)

1 2 3 5 7 10
1 0.01633 -0.01579 0.00444 0.02117 -0.02009 -0.00606
2 -0.01579 0.02376 -0.00804 0.00017 0.00428 -0.00438
3 0.00444 -0.00804 0.00286 -0.00329 0.00111 0.00292
5 0.02117 0.00017 -0.00329 0.07947 -0.06613 -0.0314
7 -0.02009 0.00428 0.00111 -0.06613 0.05744 0.02339
10 -0.00606 -0.00438 0.00292 -0.0314 0.02339 0.01553

When we compare these estimates with those based on all eleven land-
marks (Tables 3.1a to 3.1c), we notice that corresponding elements of
the mean form expressed as a form matrix are identical (within
numerical accuracy) to those of the form matrix estimated using the
full landmark set. However, landmark coordinate locations in X,Y,Z
space are quite different between the estimates. This occurs because
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placement of the mean form into a coordinate space is arbitrary.
Elements of �K* calculated from the original data and the landmark
subset are also different. The reason for this difference is that esti-
mates reported by �K* are dependent upon the centering that is done
during estimation (see Part 2 of this chapter). Estimation of the mean
form matrix does not require centering, but estimation of the variance-
covariance matrix does. If a different set of landmarks is used, a
different centering occurs, and the variance-covariance matrix
changes. Importantly, values reported in the form matrix remain the
same whether the entire set of landmarks or a subset are used in the
calculation. The mean form matrix is coordinate system-free, but �K* is
not. For this reason, specific values of the variance-covariance matrix
should not be directly compared between samples. Relative magni-
tudes of variance estimates within an estimated variance-covariance
matrix can be compared.

The samples presented thus far were chosen as examples of rela-
tively small sample size. Small sample sizes are common in biological
research, and the investigator needs to be aware of the consequences
for the estimation of parameters and for the statistical testing of dif-
ferences in forms. There are often economic, scientific, or biological
reasons for small sample sizes in research situations. In our example,
the aneuploid Ts65Dn sample is small because the transmission of seg-
mental trisomy to offspring is well below 100%, and of the segmentally
trisomic animals produced in any litter, only the females are fertile.
Moreover, the mice are expensive to house and breed. When faced with
a small sample size, our experience suggests that estimates based on
method of moments techniques may be more stable than those based
on maximum likelihood techniques (Lele and McCulloch, 2000). It
should be kept in mind, however, that any estimator might fail given
small sample sizes.

Small sample sizes can impact the estimation of certain parame-
ters. When calculating the mean form matrix, a quantity is calculated
(see Algorithm 1, Step 5, Part 2 of this chapter) that represents the dif-
ference between the sample mean of the squared Euclidean distance
between two landmarks and the sample variance of the squared
Euclidean distance. When the variance of the squared distance is larg-
er than the square of the mean distance between two landmarks, this
quantity is negative, which causes obvious problems. This situation is
more likely to occur in small samples among landmarks that are close-
ly spaced and is less likely to occur as sample size increases.

The most effective way to avoid this problem during estimation is
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by increasing the sample size. When increasing the sample size is not
possible, we suggest the following alternate solution. Observe the land-
marks that lie in close proximity to one another on the form, and
decide on the basis of the scientific question under consideration and
your knowledge of the forms whether both landmarks are truly need-
ed for analysis. If both landmarks are important, the data can be
analyzed initially with only one of the two neighboring landmarks, and
then analyzed again with the other.

3.8.2 Crab-eating macaque facial skeleton

Three-dimensional landmark data from a sample of juvenile (N= 26)
and adult (N=30) male crab-eating macaque (Macaca fascicularis)
skulls provide the next example. Individual skulls were aged by
observing which teeth were present (Richtsmeier and Cheverud et al.,
1993). Developmental age groups were formed based on previous stud-
ies correlating tooth eruption with chronological ages in laboratory
specimens. The juvenile developmental age data set consists of indi-
viduals who had any combination of their deciduous teeth and first
permanent molar erupted. The adult developmental age data set con-
sists of individuals who have all permanent teeth in full eruption.

Data representing six landmarks on the right side of the facial
skeleton (Figure 3.4) of the crab-eating macaques were collected using
the 3Space tabletop digitizer (units are in cm). From these data, a mean
form matrix, a mean form, and a variance-covariance matrix were cal-
culated for each age group. These data are given in Table 3.3a-f.

Figure 3.4. Facial landmarks plotted on the juvenile (left) and adult female (right)
skull of Macaca fascicularis (scale is approximate).
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Table 3.3a. Mean form matrix of the juvenile Macaca fascicularis facial
skeleton (cm)

1 2 3 4 5 6
1 0.000 1.273 1.546 1.161 2.574 2.334
2 1.273 0.000 0.929 1.739 2.558 2.520
3 1.546 0.929 0.000 1.283 1.994 2.237
4 1.161 1.739 1.283 0.000 1.857 1.937
5 2.574 2.558 1.994 1.857 0.000 0.842
6 2.334 2.520 2.237 1.937 0.842 0.000

Table 3.3b. Mean form of the juvenile Macaca fascicularis facial skeleton
(cm) (Coordinates corresponding to the mean form matrix)

Landmark (number) X Y Z
Nasale (1) 0.918 0.726 -0.266
Intradentale superior (2) 1.070 -0.529 -0.420 
Premaxilla-maxillary junction (3) 0.556 -0.648 0.345 
Zygomaxillare superior (4) 0.199 0.551 0.628 
Maxillary tuberosity (5) -1.400 -0.292 0.199 
Posterior nasal spine (6) -1.343 0.192 -0.488 

Table 3.3c. Variance-covariance matrix, �K*, of the juvenile Macaca fascicu-
laris facial skeleton (cm2)

1 2 3 4 5 6

1 0.01858 -0.00085 0.0062 0.00573 -0.0191 -0.01056
2 -0.00085 0.04619 0.02962 -0.02073 -0.02768 -0.02655
3 0.0062 0.02962 0.03353 -0.02394 -0.02752 -0.01789
4 0.00573 -0.02073 -0.02394 0.0245 0.00816 0.00627
5 -0.0191 -0.02768 -0.02752 0.00816 0.04132 0.0248
6 -0.01056 -0.02655 -0.01789 0.00627 0.0248 0.02393

Table 3.3d. Mean form matrix of adult Macaca fascicularis facial skeleton (cm)

1 2 3 4 5 6

1 0.000 2.357 2.239 1.695 3.741 3.104
2 2.357 0.000 1.214 3.475 4.387 4.196
3 2.239 1.214 0.000 2.740 3.621 3.672
4 1.695 3.475 2.740 0.000 2.818 2.447
5 3.741 4.387 3.621 2.818 0.000 1.249
6 3.104 4.196 3.672 2.447 1.249 0.000
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Table 3.3e. Mean form of the adult Macaca fascicularis facial skeleton (cm)
(Coordinates corresponding to the mean form matrix)

Landmark (number) X Y Z
Nasale (1) 0.860 -1.194 0.455
Intradentale superior (2) 2.192 0.750 0.392
Premaxilla-maxillary junction (3) 1.461 0.700 -0.577
Zygomaxillare superior (4) -0.424 -1.288 -0.648
Maxillary tuberosity (5) -2.141 0.917 -0.279
Posterior nasal spine (6) -1.947 0.114 0.657

Table 3.3f. Variance-covariance matrix, �K*, of the adult Macaca fascicularis
facial skeleton (cm2)

1 2 3 4 5 6

1 0.0164 -0.00109 0.00028 -0.0034 -0.00747 -0.00471
2 -0.00109 0.01942 0.00775 -0.01604 -0.00442 -0.00561
3 0.00028 0.00775 0.00833 -0.00654 -0.00598 -0.00383
4 -0.0034 -0.01604 -0.00654 0.01605 0.00356 0.00637
5 -0.00747 -0.00442 -0.00598 0.00356 0.01176 0.00255
6 -0.00471 -0.00561 -0.00383 0.00637 0.00255 0.00524

Notice that variances calculated for the landmarks in the adult face
are relatively small. Some of this is scale related; variances are small-
er with respect to the distances between the landmarks in larger
specimens. In addition, the samples are defined on the basis of devel-
opmental ages, based on tooth eruption patterns. The adult sample
contains individuals who have a complete set of permanent teeth. The
sample of immature individuals on the other hand includes skulls of
individuals who had very few deciduous teeth erupted, as well as indi-
viduals who have all deciduous dentition erupted including the first
molar. The juvenile sample therefore contains individuals at various
stages during a particularly intense period of growth.

Two landmarks, intersection of the premaxilla and maxilla on the
alveolus (landmark 3) and posterior nasal spine (landmark 6), display
variances that are smaller than the variances calculated for the other
points in the adult sample (see the 3rd and 6th entries along the diag-
onal for �K* for the adults, Table 3.3f). The premaxillary-maxillary
intersection marks the most anterior point for the canine. The posteri-
or nasal spine is the most posterior point on the hard palate, defining
the length of the hard palate. Biological constraints concerning unifor-
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mity in dentition, requirements of the palate to separate the oral and
nasal orifices, and attachment sites for soft tissues, may account for
the relatively reduced variances for these two landmarks. The inter-
pretations that we offer as potential reasons for local differences in
variation come from prior knowledge of the anatomy and development
of the primate skull, and should be further investigated. Prior knowl-
edge from any relevant discipline can and should be used to interpret
local differences in variation.

3.8.3 Neurocranial morphology in craniosynostosis

Eight landmarks from the external surface of the neurocranium
(calotte or skullcap) were collected from computed tomography (CT)
scans of 16 infants and children diagnosed with premature closure of
the sagittal suture. These children range in age from six weeks to
seven years of age. The mean form matrix, mean form, and variance-
covariance matrix for these data are given in Table 3.4a-c.

Table 3.4a. Mean form of the calotte of children with sagittal synostosis
(mm). (Coordinates corresponding to the mean form matrix).

Landmark (number) X Y Z
Right asterion (1) 41.509 42.599 24.623
Left asterion (2) 43.008 -40.134 26.122
Bregma (3) -38.021 -1.320 -40.743
Lambda (4) 68.148 -0.770 -27.897
Right frontal boss (5) -68.448 27.304 12.088
Left frontal boss (6) -67.125 -28.598 13.242
Right parietal boss (7) 9.464 50.580 -3.954
Left parietal boss (8) 11.464 -49.661 -3.481

Variances are very large in this small sample. One reason for this lies
in the extremely large age range represented by the children that
make up this sample. Given that more than two thirds of adult head
size is attained by two and one half years of age, this sample includes
an extreme range of sizes, from specimens very close to the smallest
human postnatal size possible to those approaching 75% of their even-
tual adult head size. Additionally, the frontal and parietal bosses
(landmarks 5, 6, 7, 8) represent “fuzzy landmarks” (see Chapter 2), the
measurement error of which has been shown to be relatively larger
than that of more traditional landmarks (Valeri et al., 1998).
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Table 3.4b. Mean form matrix for the sagittal synostosis sample (mm)

1 2 3 4 5 6 7 8
Landmark_1 0.000 82.760 111.923 73.136 111.721 130.384 43.672 101.018
Landmark_2 82.760 0.000 111.997 71.412 131.024 111.483 101.286 44.297
Landmark_3 111.923 111.997 0.000 106.945 67.351 67.123 79.384 78.576
Landmark_4 73.136 71.412 106.945 0.000 145.070 144.103 81.571 78.737
Landmark_5 111.721 131.024 67.351 145.070 0.000 55.929 82.882 112.036
Landmark_6 130.384 111.483 67.123 144.103 55.929 0.000 111.494 83.064
Landmark_7 43.672 101.286 79.384 81.571 82.882 111.494 0.000 100.263
Landmark_8 101.018 44.297 78.576 78.737 112.036 83.064 100.263 0.000

Table 3.4c. Variance-covariance matrix, �K*, of the sagittal synostosis sample (mm2)

1 2 3 4 5 6 7 8
1 126.2355 27.65825 -63.3063 33.3013 -57.8084 -63.69 32.42553 -34.8159
2 27.65825 112.6592 -61.2221 33.54741 -57.5014 -52.5317 -40.4518 37.84221
3 -63.3063 -61.2221 59.42549 -44.2029 59.33071 58.88485 0.52835 -9.43802
4 33.3013 33.54741 -44.2029 78.37691 -90.3996 -88.2266 33.47435 44.12919
5 -57.8084 -57.5014 59.33071 -90.3996 123.0724 119.9785 -43.4827 -53.1895
6 -63.69 -52.5317 58.88485 -88.2266 119.9785 119.5009 -44.6665 -49.2495
7 32.42553 -40.4518 0.52835 33.47435 -43.4827 -44.6665 61.69917 0.47355
8 -34.8159 37.84221 -9.43802 44.12919 -53.1895 -49.2495 0.47355 64.24797
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Variances calculated for right and left asterion (sutural intersec-
tions) and for the frontal bosses (fuzzy landmarks) are similar and
relatively large. The variance for bregma (3), lambda (4), and the pari-
etal bosses (7 and 8) (fuzzy landmarks) are similar to one another and
relatively small. This example demonstrates that the increased mea-
surement error in locating fuzzy landmarks (Valeri et al., 1998) may
not always result in fuzzy landmarks displaying greater measures of
variance relative to other landmark types.

Markedly high variances for any landmark is a condition that
needs to be closely studied in any morphometric analysis, especially
when landmarks with large variances are located close to one another
on a form. When EDMA is applied and the model-based bootstrapping
method is chosen for statistical testing, hypothetical forms will be gen-
erated from the mean form and variance-covariance matrix. When the
variability around a landmark is large and landmarks are placed rela-
tively close to one another (Figure 3.5), it is possible that two
landmarks can change relative positions within a form created for the
testing procedure. The data shown in Figure 3.5 could produce a simu-
lated form with landmarks swapping relative locations, resulting in an
error that would prohibit statistical testing.

3.9 Some comments on EDMA 
vs. other morphometric methods

Reflection Invariance. Earlier we defined form as “that characteristic
which remains invariant under translation, rotation, or reflection of
the object.” In some of the approaches to the analysis of landmark coor-
dinate data, reflection invariance is not included in the definition of
form (e.g., Goodall, 1991). However inclusion of reflection may sub-
stantially simplify statistical and mathematical analysis and may be
advantageous in certain research situations. Reflection invariance
does not compromise biological understanding or intuition, because
any scientist who has collected data knows those data, as well as the
data he or she would ideally like to have for analysis. Consider the fol-
lowing example. A paleontologist is trying to understand the evolution
of a species from fossilized teeth. She is collecting landmark coordinate
data from cusp tips and other landmarks identified on the occlusal sur-
face of teeth. Different tooth types (incisors, canines, premolars, and
molars) cannot be combined to increase the sample size for certain
poorly represented species. However, if in some individuals only a right
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first molar is available, while in other individuals only a left first molar
is available, these can be combined into a single sample if symmetry of
the biological organisms can be assumed and if the methods used are
reflection invariant. Of course the biologist will keep records of the col-
lected data and have knowledge of which specimens were reflected for
analysis. The concept of reflection invariance can be useful mathemat-
ically, statistically, and biologically.

Nuisance parameters and variance estimation. We have proposed a
method for estimating the mean form and the variability of forms with-
in a single population using the Euclidean Distance Matrix
representation of the form of an object. An alternate method for the
estimation of the mean form and variability of forms within a single
population is based on Procrustes superimposition (Goodall, 1991).

Figure 3.5. A hypothetical example of landmark data whose proximity and local vari-
ability cause landmarks to swap relative locations during statistical analysis
prohibiting statistical testing. When EDMA is applied and the model-based bootstrap-
ping method is chosen for statistical testing (see Chapter 4), hypothetical forms are
generated from the mean form and variance-covariance matrix. When the variability
around a landmark is large and landmarks are placed relatively close to one another,
as in the center of this figure, two landmarks can change relative positions preventing
statistical testing.
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Lele (Lele, 1993) provided the first evidence of errors associated with
this intuitively appealing approach, which were subsequently support-
ed and extended by Kent and Mardia (1997). The problems associated
with the Procrustes method when applied under the Gaussian pertur-
bation model used in this chapter (and used by Goodall, 1991) have
consequences for data analysis. Choosing a single coordinate system
for Procrustes superimposition does not eliminate the nuisance param-
eters. Instead, it constrains the nuisance parameters to take a certain
form. Moreover, because the nuisance parameters are not eliminated
properly, the Procrustes mean form and mean shape estimators are
statistically inconsistent. This means that as the sample size increas-
es, the estimator converges to a quantity that is different from the true
mean form, or the true mean shape. Even more important, however, is
the observation that the variance-covariance estimator is statistically
inconsistent. We have found that even when the amount of error in the
estimation of the mean form or mean shape is small, the error in the
covariance estimator can be substantial.

The implications of inconsistency of the variance-covariance esti-
mator are serious. Any statistical inference procedure that uses the
Procrustes estimator of variance will yield incorrect results.
Confidence intervals for form or shape difference cannot have correct
coverage probabilities if the variance estimators are wrong. For exam-
ple, when the variance estimators are wrong and it is claimed that we
have a 95% confidence interval, the true value may not actually be cov-
ered 95% of the time. Similarly, Principal Components Analysis based
on the Procrustes residuals (Kent, 1994) can be patently misleading
when variance is estimated incorrectly. In biology, perhaps more than
in any other science, variability is one of the most important parame-
ters than can be estimated using statistics. The Procrustes method
fails in its estimation of this parameter.

The following example, which our readers can carry out using trans-
parencies, illustrates how the Procrustes approach fails to correctly
measure variability (a rigorous mathematical discussion is provided in
Part 2 of this chapter). Let us begin by examining how the Procrustes
superimposition is implemented. Consider the two quadrangles in
Figure 3.6. On one transparency, use a red pen to draw the solid quad-
rangle, and on another transparency use a green pen to draw the
dashed quadrangle. The centroid of each quadrangle is defined as the
point at which the two diagonals cross. The first step in any superim-
position method is to fix one of the figures (say the red quadrangle) and
translate the other figure (the green quadrangle) so that it matches the
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first figure at some point. In the Procrustes superimposition, the first
step is to translate the second figure so that the centroids of the two fig-
ures match. Once this is done, no further translation is allowed and the
relative position is held constant during the rotation step. Mimic the
translation step by overlaying the transparencies to match the cen-
troids and push a pin through the superimposed centroids. Now rotate

Figure 3.6. Two quadrilaterals, each defined by four, two-dimensional landmarks super-
imposed on their centroids. This superimposition demonstrates a basic tendency of the
Procrustes fitting criterion: corresponding landmarks farthest from the centroid are
matched closely at the cost of mismatching those that are closer to the centroid.
Additionally, after rotation, the landmark locations of points 2 and 4 over-estimate the
distance between landmarks 2 and 4. Similarly, the placement of landmarks 1 and 3
after rotation tend to underestimate the distance between landmarks 1 and 3 along the
Y-axis (not readily apparent in this figure; after Lele, 1993). Moreover, estimates of vari-
ability for those landmarks lying farther from the centroid are reduced, while estimates
of variability for landmarks lying close to the centroid are amplified (data not shown).
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the green quadrangle in an attempt to minimize the sum of the squared
distances between corresponding landmarks in the two quadrangles.

Note that if we disregard landmarks 1 and 3, a rather nice fit is
accomplished between landmarks 2 and 4 of the red and green trans-
parencies. As the green quadrangle is rotated to match landmarks 1
and 3 of the green and red quadrangles, we tend to lose the fit between
landmarks 2 and 4. On the other hand, as landmarks 2 and 4 align
closely, landmarks 1 and 3 are not well matched.

This simple example demonstrates a basic tendency of the
Procrustes fitting criterion: corresponding landmarks farthest from
the centroid are matched closely at the cost of mismatching those that
are closer to the centroid. A consequence is that estimates of variabili-
ty for those landmarks lying farther from the centroid are reduced,
while estimates of variability for landmarks lying close to the centroid
are amplified. This effect will be most pronounced when the object is
not symmetric around the centroid and when the landmarks are not
uniformly spread on the object. This means that the Procrustes method
tends to estimate variability according to a rule that has little to do
with the natural variability of the specimens, but is instead driven by
the distance of landmarks from the centroid.

3.10 Summary

In Part 1 of this chapter, we provided the reader with working models
for landmark data and introduced concepts that should be considered
when analyzing landmark data. The terms model and method were
defined and related to one another. We defined nuisance parameters as
they exist in the study of form. We introduced the concept of invariance
and how it relates to elimination of the nuisance parameters, and pre-
sented a coordinate system-free representation of form. We presented
statistical models for landmark data and explained the estimators for
the one-sample case using Euclidean Distance Matrix Analysis.
Finally, we commented upon aspects of our approach to the analysis of
landmark data that were not essential to the central presentation of
our ideas, but that place our approach within the context of the field of
morphometrics. Part 2 of this chapter deals with the mathematical and
statistical details of the one-sample case.
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CHAPTER 3
PART 2

Statistical Theory for the 
Analysis of a Single Population

In this part, we discuss the statistical theory involved in the analysis
of data obtained from a single population. In particular, we describe
the use of invariance to eliminate nuisance parameters. The distribu-
tion of the maximal invariant is used to shed some light on the
identifiability of the parameters of interest. The method of moments is
used to obtain estimators of the parameters of interest. It is argued
that these estimators are consistent and are computationally simple to
obtain. We also compare and contrast competing methods of estima-
tion: the Procrustes method, the shape coordinates method, and the
method of maximum likelihood from both the theoretical point of view
and the practical point of view. This discussion is based on Lele (1993)
and Lele and McCulloch (2000).

3.11 The perturbation model

We model the inter-individual variability by the Gaussian perturbation
model that has been previously described (Goodall, 1991 or Lele, 1993).
The perturbation model may be thought of as representing the follow-
ing process. To generate a random geometrical object or equivalently a
K point configuration in D dimensional Euclidean space, one must first
choose a mean form (represented by matrix M) and perturbs the ele-
ments of this matrix by adding noise to this mean form according to a
matrix valued Gaussian distribution. The K point configuration so
obtained is then rotated and/or reflected by an unknown angle and
translated by an unknown amount. Such perturbed, translated, rotat-
ed, and/or reflected K point configurations constitute our data. The
above description can be put in a mathematical form as follows.
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Let M be a K � D matrix corresponding to the mean form. Let Ei be
a K � D matrix-valued Gaussian random variable (Arnold, 1981, pages
309-323) representing the error for the i-th individual. We assume Ei to
be Gaussian with a mean matrix of 0 and covariance matrices given by
�K and �D. The matrix �K describes the covariances between elements
within the same column of Ei and �D describes the covariances within
the rows of Ei. In terms of notation we have E i ~ N (0,�K , �D) . More pre-
cisely, if we stack the matrix, Ei, into a vector, vec(Ei), then we have
var(vec(E T )) � �K ��D. Let R i be an orthogonal matrix corresponding
to the rotation of the i-th individual, and let ti be a 1 � D matrix corre-
sponding to the translation of the i-th individual. Then the landmark
coordinate matrix corresponding to the i-th individual may be repre-
sented as: X i � (M �E i)R i �1 t i where 1 is a K �1 matrix of 1’s. The
random matrices X i thus follow: X i ~ N (MR i �1 t i , �K,R i �DR iT) .

An important thing to notice is that the matrices Ri and ti are
unknown and unknowable. These are nuisance parameters, while the
parameters of interest are (M, �K, �D). In fact, there are more unknown
parameters than there are observations and the number of parameters
grows with the sample size. This problem falls within the class
described by Neyman and Scott (1948).

3.12 Invariance and elimination of nuisance parameters

One way to eliminate the nuisance parameters is by considering a
maximal invariant under a group of transformations. We briefly review
the definition of a maximal invariant and an important consequence of
using a maximal invariant for the statistical inference to the identifi-
ability of the underlying parameters. For an excellent discussion of
invariance, we refer the reader to Lehmann (1959, Chapter 6), Berger
(1982, Chapter 6) or Arnold (1981, Chapter 1).

Definition 1: Let G be a group of invertible functions from a set C to
itself. A function T(c) is called a maximal invariant if it satisfies the fol-
lowing two conditions:

a) T (g(c))�T (c) for all g�G and c�C.
b) If T(c1) �T(c2), then there exists g�G such that c2 � g(c1).

For any set C and any group G of invertible functions from C into
itself, there exists a maximal invariant. Any one to one function of a
maximal invariant is itself a maximal invariant. Hence, maximal
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invariants are not unique. However, all maximal invariants are equiv-
alent in the sense that their sets of constancy coincide.

Let X be distributed according to a probability distribution P0–, 0–��.
Denote by gX the random variable that takes on the value gx when X�x,
and suppose that when the distribution of X is P0–, the distribution of gX
is P0– ', with 0–' also in �. The element 0–' associated with 0– in this manner
will be denoted by –g0–. The transformation –g of � onto itself, defined in
this manner, is one to one provided the distributions P0– corresponding to
different values of 0– are distinct. The action of the group –G induces a
partition of the parameter space � into equivalency classes.

Invariance, by reducing the data to a maximal invariant statistic T,
typically also shrinks the parameter space. Let T(x) be a maximal
invariant under G and let the distribution of T(x) depend on v(0–). Then
the inverse image of v(0–) partitions the original parameter space into
equivalency classes. All the points that belong to the same equivalen-
cy class map onto v(0–) and conversely, if two parameter values 0–1 and 0–2

are such that v(0–1 )�v(0–2), then 0–1 and 0–2 belong to the same equivalen-
cy class. The partition of � under the group –G and the partition induced
by v(0–) do not necessarily match each other.

We illustrate these ideas using a simple example involving only the
translation group. Let Xi be a bivariate random variable and let
Xi ~ N(	,�). Then the parameter space � is given by ��{(	,�) :	�R2

and � is any 2 x 2 real, symmetric, positive definite matrix}. Let the
group action consist of translations only. That is, gX i � X i � 1 t i. It then
follows that gXi ~ N(	�1ti,�) where 1 is a 2 x 1 vector of 1’s, ti is a real
number and � is a 2 x 2 real, symmetric, positive definite matrix. The
orbit corresponding to any given (	*,�* ) under the group –G is given by
{(	,�)��:	�	�1t,���*}.

A maximal invariant under the translation group in the above sit-
uation is given by: Yi � (Xi2
Xi1). The distribution of this maximal
invariant is N(	2
	1,�11��22
2�12). Let us denote 	2
	1��	 and
�11��22
2�12�o/ . Then, given the values of (�	,o/ ), the inverse image in
the original parameter space � is given by {(	,�)��:	2
	1��	,�11�
�22 
2�12 �o/ }. This defines a partition of � which is different than the
partition defined by the group –G. Notice that the partition defined by
the maximal invariant Yi�(Xi2
Xi1) is more coarse than the partition
defined by –G. If invariance is used, only the partitions defined by v(0–)
are identifiable. This is the cost we pay due to the presence of nuisance
parameters.

Now let us consider the landmark coordinate data problem. The land-
mark coordinate matrix is denoted by X. Recall that the group of
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transformations involved in the analysis of landmark coordinates con-
sists of translation, rotation and possibly reflection. Thus gX � XR�1t. It
is easy to see that if X d

�N(M, �K, �D), then gX d
�N(MR�1t, �K,RT �DR),

where d
� means equal in distribution.

Let us now consider the parameter space used by the Matrix
Normal distribution and the partition of this parameter space induced
by the group –G.

Let �{(M, �K, �D):M �K �D matrix, �K is a K x K real, positive
definite, symmetric matrix and �D is a D x D real, positive definite,
symmetric matrix.}.

The matrix Normal distribution defines equivalency sets on  so that
o/ , 

~
o/ ��  are  equivalent  if  and  only  if                                                   

Notice that under this model, the parameter combinations (M, �K, �D)
and                    for any c >0 are equivalent. The equivalency sets
defined under the group →G are such that o/ , ~o/ �� are equivalent if 
and only if                                                                        Notice again that 
here again the parameter combinations (M, �K, �D) and
for any c>0 are equivalent.

We now consider one particular maximal invariant under this
group and derive the parameters that are obtained under it, T(·) and
v(0–) in the notation used before. We then study the partition induced by
v(0–) of the parameter space � and discuss the identifiability of various
parameters. Since all maximal invariants are equivalent, the identifi-
ability issues will remain the same for all of them.

Let L be a (K 
1)�K matrix whose first column consists of -1’s and
the rest of the matrix is an identity matrix of dimension (K 
1)�(K 
1).
Now define T(X)�LXXTLT. Since L1�0 and because R is an orthogonal
matrix i.e., RRT�I, it is easy to see that T(X)�T(XR�1t) and therefore is
invariant. To show that it is a maximal invariant, we need to show
that, given T(X), one can map it back to a unique orbit in the original
sample space. This can be proved by using the fact that T(X) is a cen-
tered inner product matrix and that there exists a unique mapping (up
to rotation, translation and reflection) from the centered inner product
matrix to a coordinate matrix, see Lele (1991, 1993). This is also a stan-
dard result in the multidimensional scaling literature (Young and
Householder, 1938). For an elementary discussion of multidimensional
scaling analysis, see Mardia et al., (1979, Chapter 14). Next, we derive
the distribution of this maximal invariant in order to determine which
parameters are identifiable.

We introduce some additional notation. Let �D=diag{�1,�2,...,�D}
denote the diagonal matrix of the eigenvalues of �D and let �K*�L�KLT.

(M, 1
c SK ,cSD )

( , , )M cK D
1
c Σ Σ
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Consider a spectral decomposition of the matrix

where dj’s are the scaled eigenvectors of (LM)�D
-1(LM)T, that is, �dj���j,

the j-th eigenvalue of (LM)�D
-1(LM)T. Let djdjT�� j and note that � j is of

rank one.
Theorem 1: The maximal invariant T(X)�LXXTLT is distributed as a

linear combination of non-central Wishart matrices. More precisely

stated, where Z j
d

�WK(1, � j, �K*). a non-central Wishart

matrix of dimension K � K with non-centrality parameter �j and scale
parameter �K*.

Proof: Notice that LX~N(LM, L�KLT,�D). The above result follows by
taking A to be an identity matrix in Theorem 2 presented by deGunst
(1987, 248-249).

The partition induced on the parameter space by T(X) is thus given
by the inverse image of (�D�L�KLT,�1�1,�2�2,…,�D�D). The equiva-
lency sets defined by v(0–) are such that o/ ,

~
o/ �� are equivalent if and only

if ~M�MR�1tT and 
~
�D �

~
�K = R�DRT� L�KLT. Notice that similar to the

bivariate case discussed earlier, �K � �D itself is not identifiable but
only �D � L�KLT is identifiable. It will be shown in the next section,
that the �’s along with �D can be used to construct the mean form M
up to rotation, reflection, and translation. This will be used mainly for
representing the mean form graphically. All the inferences would and
should be based only on the identifiable parameters. That is, any infer-
ence should be the same regardless of which member of the partition
induced by T(X) is utilized.

Independence of the partition of the choice of c and L

a) Choice of c: Let v(M,�K,�D)�(�1�1,�2�2,…,�D�D,�D�L�KLT).
Let

~
�D�c�D and ~

�K�c-1�K. Then ~�j�c�j,
~
�j�c-1�j and L

~
�KLT�c-1L�KLT

Then v(M,
~
�K,

~
�D)�(

~
�1

~
�1,

~
�2

~
�2,…,

~
�D

~
�D,

~
�D�L,

~
�KLT)�v(M,�K,�D).

The partitions therfore are the same for any c>0.
b) Choice of the centering matrix L: Let L1 and L2 be two different

centering matrices. We can write L2�AL1 with A�L2L1T(L1L1T)-1.
To show the invariance of the partition to the choice of the center-

ing matrix, we need to show that for (M,�K,�D) and ( ~
M,

~
�K,

~
�D) in the
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parameter space �, vL(M,�K,�D)�vL(
~
M,

~
�K,

~
�D) if and only if

vL*(M,�K,�D)�vL*(
~

M,
~
�K,

~
�D).

Consider first the statement L1�KLT1�L1
~
�KLT1 if and only if

L2�KLT2�L2
~
�KLT2. 

L1�KLT1�L1
~
�KLT1⇒ΑL 1�KLT1AT�ΑL1

~
�KLT1AT⇒L 2�KLT2�L2

~
�KLT2.

The converse implication is proved in the same fashion. The rest of
the proof follows along the same lines.

Another maximal invariant suggested in the literature is form coor-
dinates (also known as size and shape coordinates; Bookstein, 1986;
Kendall, 1989). Its properties are studied in detail by Dryden and
Mardia (1991). This maximal invariant does not include reflection as
part of the group transformation. Dryden and Mardia (1991) also study
the maximal invariant under an additional component of scaling in
order to consider only “shape coordinates”. The exact distributions of
“form” as well as “shape” coordinates are obtained in Dryden and
Mardia (1991). Identifiability issues are not dealt with explicitly in any
of these papers. More details on the exact distribution of the shape
coordinates are discussed later in this chapter. Rao and Suryawanshi
(1996, 1998) and Rao (2000) describe a maximal invariant consisting of
all possible angles. This is a maximal invariant under the group of
transformations which includes scaling.

3.13 Estimation of parameters

Having established the identifiability of certain parameters, the next
natural question is whether these parameters can be estimated in a
practically suitable and statistically desirable fashion. There have
been various methods suggested in the literature. The most commonly
used method is based on Generalized Procrustes Analysis. The review
article by Goodall (1991) provides a description of this method.
Alternatively, maximum likelihood estimation can be conducted using
the exact shape distributions derived by Mardia and Dayden (1998) or
estimators can be constructed via the method of moments (Stoyan,
1990; Lele, 1993).

Method of moments estimators are based on the moments of the
distribution of the maximal invariant described in the previous sec-
tion. Lele (1993) showed that under the assumption that �D = I, the
estimating functions based on the method of moments have a unique,
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analytical solution. Moreover, Lele (1993) also shows that the estima-
tor of the mean form M can be obtained up to translation, rotation, and
reflection consistently and the covariance parameter �K*�L�KL� is
also estimable consistently. However, assuming �D= I imposes restric-
tions on the applicability of this model so we next extend the method
to the situation where �D ≠ I .

3.13.1 Method of moments estimators

We will first consider a model where the perturbation of landmarks
along the D axes are independent and identical to each other, but the
correlations between landmarks are allowed. That is, we consider the
perturbation model where the covariance structure is given by
�K � ID. The main advantage of this model is that there exists a 
non-iterative, close form, consistent estimator for the mean form
matrix and the covariance matrix. For notational simplicity, let
�*K �L �KLT �[ �lm].

Let elm denote the squared Euclidean distance between landmarks
l and m. Thus elm�(Xl,1
Xm,1)2�(Xl,2
Xm,2)2. Under the Gaussian per-
turbation model, it can be seen that (Xl,1
Xm,1)2 and (Xl,2
Xm,2)2 are
non-central chi-squared random variables with the same scale param-
eter �lm��ll��mm
2�em and non-centrality parameters (ml,1
mm,1)2

and (ml,2
mm,2)2. Because the two axes are perturbed independently, it
follows that elm is a sum of two independent non-central chi-squared
random variables with common scale parameter. Hence 
elm~ �lmX2

2( �lm/ �lm) where �lm is the squared Euclidean distance
between landmarks l and m in the true mean form, that is,
�lm �(ml,1
mm,1)2�(ml,2
mm,2)2 and �lm��ll��mm
2�em.

The first two moments of a non-central chi-squared distribution are
given by (Johnson and Kotz, 1970, Chapter 28): E(elm)�2�lm��lm and

var(elm)�4�lm2�4�lm�lm. It thus follows that

To obtain estimators we equate the sample moments with the popula-
tion moments and solve the resulting equations for the parameters.

Let elm,i denote the squared Euclidean distance between land-

marks l and m in the individual “i”. Let                          be the average

of the squared Euclidean distance between landmarks l and m in n

elm = E2(elm) -var(elm ).

elm =
1
n

elm,i
i=1

n

∑
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individuals and let                         be the variance of the 

squared Euclidean distance between landmarks l and m in n individuals.

Then,

The estimator of the mean form matrix, which consists of the
Euclidean distances between all pairs of landmarks, is thus given by
To generalize these results to three-dimensional objects, notice that

e lm~ �lm where   �lm � (ml,1
mm,1)2 � (ml,2
mm,2)2�(ml,3
mm,3)2

and �lm��ll ��mm 
 2�em. The first two moments for this distribution
are given by: E(elm) �3�lm � �lm and var(elm) �6�lm2 � 4�lm�lm. It thus 

follows that 

In this case, we calculate                                      for all pairs of

landmarks l�1,2,.…,K;m�1,2,…,K. The estimator of the mean form
matrix is obtained by:

This matrix may not necessarily correspond to a configuration of K
in two- or three-dimensional Euclidean space. This estimator can be
improved by constraining it to be a form matrix corresponding to a
two- or three-dimensional (as the case may be) object as described
below.

STEP 1: Construct the matrix 

êlm = (elm

2
-s2 (elm ))

0.5  for l,m = 1,2,… K.

χ3
2 ε lm

ϕlm











s2 (em) =
1
n

(elm,i -elm)2

i=1

n

∑
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which is the squared Euclidean distance matrix correspond-
ing to the above mean form matrix.
STEP 2: Calculate the corresponding centered inner product

matrix by 

where is a K�K symmetric matrix.

STEP 3: Calculate the eigenvalues and eigenvectors of B(M̂).
Let us denote its eigenvalues arranged in a decreasing order
by �1,�2,…,�K and the corresponding eigenvectors by
h1,h2,…,hK.
STEP 4: If the original data are from two-dimensional objects,
the estimate of the mean form matrix is given by

and if the original data are from three-dimensional objects
the estimate of the mean form matrix is given by

STEP 5: Calculate the form matrix (the matrix of all pairwise
distances) for the above landmark coordinate matrix. This is
an improved estimator of the mean form matrix.

The matrix M obtained in Step 3 can be used to graphically repre-
sent the mean form of the sample. It should be remembered, however,
that this estimator is a representation of the mean form M only up to
rotation, reflection, and translation. In practice, to obtain a graphical
representation that is biologically meaningful, one may need to reflect
the above estimator by multiplying one or more of the axes by -1.
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Estimating the covariance matrix �K*

Having obtained the estimator of the mean form matrix M described
above, it is fairly simple to obtain the estimator of the covariance �K*.
Notice that Y�(LX)(LX)T~Wishart((LM)(LM)T,L�KLT) with D degrees of
freedom.

The mean of the non-central Wishart distribution is given by
(Arnold, 1981) E(Y)�(LM)(LM)T�D(L�KLT). Hence, the moment estima-
tor of �K*�L�KLT is given by:

where M̂ is the estimator of the mean form as obtained at the end of
Step 4.

The estimator of �K* obtained above, although square and symmet-
ric, is not guaranteed to be positive semi-definite. One can obtain a
positive semi-definite version using a procedure, sometimes known as
Principal Coordinate Analysis. Consider the spectral decomposition of
the matrix �̂K*, namely, �̂K*�PDPT where matrix D is a diagonal
matrix with the diagonal elements corresponding to the eigenvalues of
�K*. Replace the negative elements in D by zero and call this modified
matrix ~D. Obtain a new matrix �̂K*�P~DPT. This matrix is guaranteed
to be square, symmetric, and positive semi-definite.

The estimator given above is slightly different than the one
described in Lele (1993). In that paper, instead of L�KLT, an estimator
for H�KHT was provided. In this monograph, we use the centering
matrix L, instead of H, to remain consistent with the rest of the chap-
ter. Replacing L in the above description by H retrieves the formulae
and description in Lele (1993).

In the above discussion, we assumed that �D �I . This imposes some
restrictions on the applicability of this model. We now consider a more
general situation where the covariance structure is given by �K ��D.

For notational simplicity, let Y�T(X)�LX(LX)T. Let Y�[Ylm] where
l �1,2,…,K ;m �1,2,…,K denoting the individual elements of the
matrix Y. From the previous section, we know that Y is distributed as
a linear combination of non-central Wishart random variables with
parameters given by ( �D � L �KL T , �1 �1 , �2 �2 ,…,�D �D). Let
�K* �[ �lm] and �j �[ �lm j]. It follows from their definition that the

matrices � j ’s are symmetric and that  δ lm
j = δ ll

jδ mm
j .
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The following expressions provide the first two moments of the ran-
dom matrix Y (Alam and Mitra, 1990).

Without loss of generality, one can assume �1�1. Notice that there
are (KD
1)�K (K
1)/2 unknowns. We choose as many moments and
equate the sample moments with the corresponding population
moments. Solving the resultant equations, one can numerically obtain
the estimates of the parameters (�2 ,…,�D ,�*K,�1,�2,…,�D). Given
these estimates, we obtain the mean form of the object (up to transla-
tion, rotation and reflection). From the definition of � j’s, it is clear that
they are symmetric matrices with rank 1. One can write � j �d j d j T ,
where d j is a scaled eigenvector. If the observations are coming from
two-dimensional objects, the estimate of the mean form up to transla-

tion, rotation, and reflection is given by  

whereas for three-dimensional objects, the estimate of the mean form
up to translation, rotation and reflection is given by 

Estimation of the variability around landmarks

In many important biological problems, it is of interest to know the
variability around each of the landmarks individually. So far the
results described above suggest that it is possible to estimate L�KLT

but not �K itself. However, if one is willing to assume a somewhat sim-
pler structure for �K and �D, then it is possible to estimate the
variability around each of the landmarks. We assume that the land-

M̂ =
0 0
d̂1 l̂2 d̂2











˙
,

M̂ =
0 0  0
d̂1 λ̂2 d̂2 λ̂3 d̂3











˙
.

Cov(Ylm ,Ynp) = λ j
2 {σ lnσmp +σ lpσmn + σ lnδmp

j +σ lpδmn
j +σmnδlp

j +σmpδln
j }

j =1

D

∑
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marks are perturbed independently of each other, that is, �K as well as
�D are diagonal matrices. Without loss of generality, we assume that
the first element of �D is equal to 1. We show that for this model, it is
possible to obtain the estimator for �K and not just its singular ver-
sion.

To begin, let us consider the case where �D�ID. In the case that �K

is diagonal, L�KLT has a typical form that may be exploited to obtain
an estimator of �K based on the estimator of L�KLT , which we know
can be estimated. Let �K�diag(�1

2,�2
2,…,�K

2). Then the diagonal ele-
ments of L�KLT are given by �i

2��1
2 and all off-diagonal elements are

given by 
�1
2. Thus a simple estimator of �1

2 is given by -1 times the
average of all the off-diagonal elements of the estimator of L�KLT

obtained in the previous discussion of the general case. The estimators
of �1

2 are simply obtained by subtracting the average of all the off-
diagonal elements of the estimator of �1

2 from the i-th diagonal
element of the estimator L�KLT .

Obviously, these estimators can be improved substantially by using
the structure of L�KLT in the method of moments equations directly.
The purpose of the above discussion is to show the possibility of esti-
mating the variability around each of the landmarks when certain
structures for the covariance matrix are adopted. One can also check
the reasonability of the assumed structure by looking at the estimate
of L�KLT obtained in the general case and checking if the off-diagonal
elements are very similar to each other or not. If they are very similar,
the diagonal structure may be a reasonable model.

The consistency of the method of moments estimators follows from
the well known fact that sample moments converge to the population
moments as the sample size increases (Serfling, 1980). The details can
be found in Lele (1993).

3.13.2 Maximum likelihood estimators

Dryden and Mardia (1991) derived the exact distributions of the form
coordinates and the shape coordinates. This distribution can be used to
write down the likelihood function. One can then maximize this likeli-
hood function to obtain maximum likelihood estimators of the mean
form as well as the covariance parameters. It should be noted again
that these parameters are identifiable only up to the partition induced
by v (0–). Such a partition was described earlier. A significant drawback
of the maximum likelihood approach is that the exact distributions of
form and shape coordinates are mathematically complex when the
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number of landmarks is large and/or the objects are three-dimension-
al. It is not uncommon in medical research to need at least 10, 15, or
more landmarks to represent an object reasonably. In such a situation,
the exact shape distribution is extremely complicated as can be seen
below. Notice that it involves telescoping sums whose number of com-
ponents increase geometrically with the number of landmarks.

In the following, we briefly discuss the exact distribution of the
shape coordinates, sometimes referred to as the Mardia-Dryden distri-
bution. For the details of the derivation, the reader should refer to
Dryden and Mardia (1991,1992). Their paper deals only with two-
dimensional objects and we restrict our attention to that case. For
generalizations and details, the reader may refer to Dryden and
Mardia (1998).

a) Definition of Kendall shape variables

Let X be a K�2 landmark coordinate matrix and let Xc = C1X be the
centered landmark coordinate matrix where C1=diag (H1,H1) and
H1

T is the usual Helmert matrix without the first column. Notice that
this centering matrix is different than the centering matrix L intro-
duced earlier in this chapter. Define new variables as follows:

for i�1,2,…,K
2. Notice that there are 2(K
2) variables. These are
called Kendall Shape variables. Let us denote the shape variables by a 

vector S, where 

b) The probability density function for the Kendall Shape vari-
ables

Assume that vec(X)~N(vec(M),�).
First define new vectors U+ and V+ as follows:
U+�(1,U1,U2,…,UK-2,0,V1,V2,…,VK-2) and V+=(1,
V1,
V2,…,


VK-2,0,U1,U2,…,UK-2). Let M*�C{vec(M)},�*�C�CT.
Define new matrices:

and g�M*T�*-1U+
�TC-1�.

C =
U+T

Ω *-1
U + U +T

Ω *-1
V +

V +T
Ω *-1U + V +T

Ω *-1
V +










 ,̇  b =  M*T

Ω *-1
U+

M *T
Ω *-1

V +











˙
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Let �1 ��2 be the eigenvalues of C
1 with the corresponding eigen-
vectors l1,l2. Let � j (a)(x) be the generalized Laguerre polynomial of
degree j (Abramovitz and Stegun, 1965).

The probability density function of the Kendall shape variables for
a two dimensional object is given by:

Notice that the derivation of the distribution does not depend on
the Kronecker product form of the variance. Thus this distribution can
be used in more general situations than discussed in the methods of
moments approach. Although considering the sample sizes encoun-
tered in practice, it seems unwise to use a model with such a large
number of parameters.

3.13.3 Efficiency comparisons between method of moments and 
maximum likelihood: a simulations study

All the maximal invariants are equivalent in the sense that maximum
likelihood estimators based on any of them give estimates on the same
orbit. The use of maximal invariance to eliminate nuisance parameters
usually leads to some loss of efficiency as compared to the situation
where the nuisance parameters are known. As shown earlier, the
method of moments estimators based on the maximal invariant T(X)
are easy to obtain. We next study the loss of efficiency of method of
moments as compared to maximum likelihood based estimators.

Table 3.5 gives the result of a small simulation study comparing the
method of moments based on the inter-landmark differences (EDMA),
the MLE based on the Mardia-Dryden distribution and the MLE based
on the (unobserved) data before translation or rotation. Thus the
“unobservable MLE” represents an idealized situation for comparison
since the nuisance parameters, Ri and ti, are assumed known. Table 3.6
provides the mean form and the covariance structures used for the
above simulation study.

The following are the percent relative root mean squared errors for
the two methods based on 100 simulations. Samples of size 30 were
generated under two different mean forms and two different covari-
ance structures (see Table 3.6). The column “Unobserved MLE”
corresponds to the relative root mean squared error for the maximum
likelihood estimators based on the assumption the nuisance parame-
ters are known. These values represent best achievable results.
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Table 3.5 Efficiency Comparisons Between the Method of Moments and the
Method of Maximum Likelihood.
Scenarios Parameters EDMA MLE Unobserved 

MLE
(M1,�K,1,I2) Mean distances* 1.0 1.0 1.0

Variances* 23.2 19.5 16.3
Covariances* 45.6 37.7 28.4

(M1,�K,2,I2) Mean distances 1.5 1.5 1.5
Variances 21.4 18.7 14.6

Covariances 36.4 31.0 24.7
(M2,�K,1,I2) Mean distances 2.2 2.2 2.2

Variances 24.2 19.4 14.9
Covariances 48.4 41.3 30.1

* Because of the non-convergence of the maximum likelihood routine, these are based
on only 98 out of 100 simulations.

Table 3.6 The Mean Form Coordinates (centered) and the Covariance
Matrices Used in the Simulation Study.

In estimating the inter-landmark distances or the variance-covariance
parameters, none of the methods exhibited any bias, therefore Table
3.5 concentrates on the relative root mean square error, which primar-
ily reflects variability. Since performance of the methods was similar
within the mean parameters, within the variance parameters and
within the covariance parameters, the results are averaged across the
(three in each case) parameters. We can see that, for estimating the
mean form, both EDMA and the MLE do as well as the unobservable
MLE. For estimating the variance parameters EDMA and the MLE
perform worse than the unobservable MLE, and EDMA performs
slightly worse than the MLE. For the covariance parameters, there is
some loss of efficiency in using EDMA compared to the MLE, but not a
dramatic amount.
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Another point is worth mentioning in comparing EDMA with the
MLE: even for the simple case of three landmarks in two-dimensions,
we found the likelihood very difficult to maximize numerically using
the Dryden and Mardia (1991) distribution. Despite estimating the
variance-covariance matrix using a Cholesky decomposition to guar-
antee positive semi-definiteness, many data sets required new starting
values and/or a preliminary sizing step for the variance-covariance
parameters in order to achieve convergence. Despite repeated
attempts there were still 2 data sets (out of 100) in the first parameter
configuration for which we could not obtain convergence.

The practical utility of the maximum likelihood method of estima-
tion based on Mardia-Dryden distribution is therefore somewhat
suspect, especially when one is dealing with a large number of land-
marks for three-dimensional objects and a medium sample size. Such
a situation is not at all uncommon and should be clear from the typi-
cal data analyses presented in this book as well as various papers cited
herein.

As a practical alternative to the maximum likelihood estimation,
Goodall and Bose (1987) and Goodall (1991) discuss Procrustes super-
imposition based estimators of the mean form, mean shape, and the
variance-covariance matrix. See also Bookstein (1991) for similar esti-
mators based on Bookstein shape coordinates. Kent (1994) and Kent
and Mardia (1997) show that the Procrustes estimators can also be
viewed as estimators based on tangent space approximation to the
Kendall shape space. These estimators are computationally easier
than the maximum likelihood estimators. Unfortunately, these estima-
tors, under the Gaussian perturbation model with general covariance
structure, are inconsistent for mean form as well as mean shape (Lele,
1993, Kent and Mardia, 1997).

Moreover, simulations reported in Lele (1993) and the discussion in
Part 1 of this chapter show that the Procrustes estimator of the vari-
ability does not correspond to the variance-covariance matrix used in
the Gaussian perturbation model. Given these results, we find the
Procrustes estimators inadequate. They are not discussed here in
detail. See Dryden and Mardia (1998) for a detailed discussion of the
Procrustes and related approaches.

3.14 Computational algorithms 

3.14.1 Algorithms for estimation of mean and variance parameters
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In the following, we provide detailed computational algorithms for
estimation of the mean form matrix and variance-covariance matrix.
In order to program these algorithms, the reader will need to under-
stand the following concepts and related computation procedures:
Form matrix, Centered landmark coordinate matrix, Centered inner
product matrix, Eigenvalues, and Eigenvectors. Except for the concepts
of eigenvalues and eigenvectors, all other concepts are described below.
For details on eigenvalues and eigenvectors of a square, symmetric
matrix, refer to any standard matrix algebra textbook such as Barnett
(1990). For computational algorithms, see Press et al., (1986).

Definition of a centered landmark coordinate matrix: Let A be a
landmark coordinate matrix. First, calculate the mean of the
first column and subtract it from all the elements of the first col-
umn; calculate the mean of the second column and subtract it
from all the elements of the second column, and calculate the
mean of the third column and subtract it from all the elements
of the third column. The resultant matrix, denoted by Ac, is
called the centered landmark coordinate matrix.

For example, let the landmark coordinate matrix be

Then the centered landmark coordinate matrix is given by subtracting
from each of the entry in a column by the average of the corresponding
column in the landmark coordinate matrix A. Thus

is the centered landmark coordinate matrix.

Notice that the column sum of Ac is always 0. Notice that this matrix
is obtained when one shifts the original triangle such that its centroid,
instead of matching landmark 1, matches with (0,0).

Centered inner product matrix: Let Ac be a centered landmark
coordinate matrix. Define a new matrix B�Ac(Ac)T. This matrix
is called the centered inner product matrix corresponding to A.

The centered inner product matrix corresponding to the above
example is given by
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Algorithm 1

This algorithm describes the estimation procedure when the covari-
ance structure is �K �ID, similar to the covariance structure depicted
in Figure 3.1d. The estimation procedure is particularly simple in this
situation. We suggest that the reader first try to program this algo-
rithm and then try the more general algorithm (Algorithm 2) that is
applicable when the covariance structure is of the form �K��D. All the
data analyses carried out in this book and various papers using
Euclidean Distance Matrix Analysis (EDMA) use Algorithm 1 as pre-
sented by Lele (1993). The parameters estimated are the form matrix,
FM(M), corresponding to the mean form M and the covariance matrix
�K*, the singular version of �K.

Let X1,X2,…,Xn denote the landmark coordinate matrices of n indi-
viduals in the sample.

a) Algorithm for estimation of mean form:

STEP 1: Calculate the form matrix corresponding to each of
the landmark coordinate matrices X1,X2,…,Xn. For simplicity
of notation let us denote the form matrices by Fi instead of the
clumsier (albeit clearer) notation FMi or FM(X i). Thus Fi is a
matrix of Euclidean distances between all pairs of landmarks
for the i-th individual.
STEP 2: Calculate the squared Euclidean distance matrices
E1,E2,…,En corresponding to each individual in the sample,
where Ei is obtained by squaring each element in the matrix
Fi. Let elm,i denote the squared Euclidean distance between
landmarks l and m in the individual “i”.

STEP 3: Calculate                          the average of the squared 

Euclidean distance between landmarks l and m in n individuals.

STEP 4: Calculate                                           the variance of 
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the squared Euclidean distance between landmarks l and m in
n individuals.
STEP 5: If the original objects are two-dimensional, calculate

for all pairs of landmarks. If the original
objects are three dimensional, calculate 

for all pairs of landmarks 

l�1,2,…,K ;m�1,2,…,K.

The estimate of the mean form matrix, that is the estimate of the
distances between pairs of landmarks in the mean form (the red pen
transparency) is provided by 

This estimator can be improved by constraining it to be a form matrix
corresponding to a two- or three-dimensional (as the case may be)
object as described below.

STEP 6: Construct the matrix 

the squared Euclidean distance matrix corresponding to the
above mean form matrix.
STEP 7: Calculate the corresponding centered inner product 

matrix by          where
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is a K �K symmetric matrix.

STEP 8: Calculate the eigenvalues and eigenvectors of B( M̂ ).
Let us denote its eigenvalues arranged in a decreasing order
by �1,�2,…,�K and the corresponding eigenvectors by
h1,h2,…,hn.
STEP 9: If the original data are from two-dimensional objects,
the estimate of the mean form matrix is given by 

, and if the original data are from three-
dimensional objects, the estimate of the mean form matrix is

given by 

STEP 10: Calculate the form matrix (the matrix of all pair-
wise distances) for the above landmark coordinate matrix.
This is an improved estimator of the mean form matrix.

Note: The M obtained in STEP 3 can be used to graphically repre-
sent the mean form of the sample. It should be remembered that this
estimator is a representation of the mean form M only up to rotation,
reflection, and translation. In practice, to obtain a graphical represen-
tation that is biologically meaningful, one may need to reflect the
above estimator by multiplying one or more of the axes by -1.

Having obtained the estimator of the mean form matrix M described
above, it is fairly simple to obtain the estimator of the covariance
matrix, �K*. The following steps provide the details.

b) Algorithm for estimation of �K*

STEP 1: Calculate the centered matrices X1c,X2c,…,Xnc corre-
sponding to the observations X1,X2,…,Xn.
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STEP 2: Calculate                                                   whereD is

the dimension of the observations.

The estimator obtained above, although square and symmetric, is
not guaranteed to be positive semi-definite. One can obtain a positive
semi-definite version using the following steps.

STEP 3: Calculate the spectral decomposition of the matrix
�̂K*. That is, find its eigenvectors and eigenvalues and write it
as �̂K*�PDPT where matrix D is a diagonal matrix with the
diagonal elements corresponding to the eigenvalues of �K*. If
there are any negative elements in D, replace them by zero
and call this modified matrix  ~D. Obtain a new matrix �K*�
P 

~
DPT. This matrix is guaranteed to be square, symmetric, and

positive semi-definite.

Algorithm 2

In this section, we provide an algorithm for the estimation of the mean
form and the covariance structure when we expect that the perturba-
tions along the x, y, and z axes are correlated with each other. We
provide the algorithm for the two-dimensional three landmarks case in
detail. More general situations can be developed using the description
in Part 2. The reader should, however, be aware that to fit more com-
plex models, larger sample sizes are needed to obtain reasonable
estimates. Thus, although more realistic, in practice, this general
model might be more difficult to fit.

Define a matrix 

Let Xc�LX denote the centered matrices. This centering is slightly
different than the one used in the previous algorithm.

Let �K�L�KLTand �D denote a diagonal matrix consisting of the
eigenvalues of �D.

It was proven in Part 2 that these are the only estimable quantities
related to covariance.

Define a new matrix 
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STEP 1: Calculate the centered matrices X1c,X2c,…,Xnc where
Xic�LXi.
STEP 2: Calculate the centered inner product matrices
Bi�Xic(Xic)T. Notice that these centered inner product matri-
ces are 2� 2 symmetric matrices. Let B11,i,B22,i,B12,i be the
three distinct elements of Bi.
STEP 3: Calculate the following quantities:

B11 =
1
n

B11,i

i=1

n

∑

B22 =
1
n

B22,i
i=1

n

∑

B12 =
1
n

B12,i
i=1

n

∑

var(B11) =
1
n

(B11,i - B11)
2

i=1

n

∑

var(B22 ) =
1
n

(B22,i -B22 )2

i=1

n

∑

var(B12 ) =
1
n

(B12,i -B12 )2

i=1

n

∑

cov(B11, B22 ) = 1
n

(B11,i -B11)(B22,i -B22)
i=1

n

∑

cov(B11,B12 )=
1
n

(B11, i -B11 )(B12,i - B12 )
i=1

n

∑

cov(B22 ,B12 ) =
1
n

(B22,i -B22 )(B12,i - B12 )
i=1

n

∑
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STEP 4: Solve the following sets of equations simultaneously

under the constraints: ��l and 
Notice that there are eight equations and eight 
unknowns.

λ j {δ11
j +σ11} = B11

j =1

2

∑

λ j {δ22
j +σ22 } = B22

j =1

2

∑

λ j {δ12
j +σ12 } = B12

j =1

2

∑

λ j
2{σ11

2 +σ11σ11 +σ11σ11
j +σ11σ11

j + 2σ11σ11
j } = var(B11)

j =1

2

∑

λ j
2{σ22

2 +σ22σ22 +σ22δ22
j +σ22δ22

j +2σ22δ22
j } = var(B22 )

j =1

2

∑

λ j
2{σ12

2 +σ11σ22 +σ11δ11
j + σ22δ22

j + 2σ12δ12
j } = var(B12)

j =1

2

∑

λ j
2{σ12σ12 +σ12σ12 + σ12δ12

j +σ12δ12
j +σ12δ12

j +σ12δ12
j } = cov(B11,B22)

j =1

2

∑

λ j
2{σ11σ12 +σ12σ11 +σ11δ12

j +σ12δ11
j +σ11δ12

j +σ12δ11
j } = cov(B11,B12)

j =1

2

∑
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STEP 5: The estimate of the coordinates of the mean form is given by:

This can be used to calculate the form matrix by calculating the dis-
tances between the three landmarks.

The estimate of the covariance matrix �K*�L�KLT is given by 

and the estimate of the eigenvalues of 

�D is given by

Generalization of this algorithm to three-dimensional objects and
objects with more than 3 landmarks is notationally complicated but
straightforward. We do not provide the details here.

3.14.2 Generating observations using the estimated mean form and
the covariance matrix

We will describe the algorithm for the covariance model �K � ID in
detail. This is the model that is extensively used throughout this mono-
graph. The following algorithm is described for a two-dimensional
object. Generalization to three-dimensional object is straightforward.

Let MK-1 be a submatrix consisting of the first (K-1) rows of M, the
mean form coordinate matrix obtained in Step of Algorithm 1. Let �K-1*

denote the (K-1) � (K-1) submatrix of �K*. This matrix consists of the
first (K-1) rows and (K-1) columns of �K*. In general, �K-1* should be a
positive definite matrix. The non-positive definiteness of �K-1* implies
that the sample size is much too small to fruitfully conduct any statis-
tical analysis, see the discussion in Part 1 of this chapter.

Algorithm for generating matrix normal random variates

STEP 1: Obtain the Cholesky decomposition of �K-1*. That is,
obtain an upper triangular matrix C such that �K-1*� CCT.
STEP 2: Generate 2 (K-1) random numbers from N(0,1) distri-
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bution and arrange them in a (K
1)�2 matrix. Call this
matrix Z.
STEP 3: Calculate Y � MK-1 �CZ. The matrix Y is a (K-1) �2
matrix.
STEP 4: Construct a K � 2 matrix X by adding the K-th row to
the Y matrix such that the sum of each column is zero. That
is, the K-th row element of a column is obtained by simply
adding the preceding (K-1) elements and multiplying the sum
by -1. The matrix X so obtained is a realization from the
matrix normal distribution with mean M and covariance
�K* � ID.
STEP 4: Repeat STEPS 1-3 as many number of times as the
required number of observations.

For a three dimensional object, replace the STEP 2 above by:

STEP 2: Generate 3(K-1) random numbers from N(0,1) distri-
bution and arrange them in a (K
1)�3 matrix.
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CHAPTER 4

Statistical Methods for
Comparison of Forms

“In a very large part of morphology, our essential task lies in the com-
parison of related forms rather than in the precise definition of each....”

D’Arcy Thompson (1992)

The previous chapter presented our notation and method for repre-
senting the form of an object and mean form for a sample. In this
chapter, we turn to the comparison of forms and introduce our method,
Euclidean Distance Matrix Analysis, or EDMA (pronounced ed·ma). To
clarify our approach, we consider other methods for the comparison of
forms, all of which can be classified as either superimposition tech-
niques or deformation techniques. We then present the EDMA
approach to the comparison of forms, providing suggestions for inter-
preting the output of these analyses and statistical approaches.
Statistical testing of the equality of shapes is provided in keeping with
traditional aspects of statistics. Since the testing of similarity in
shapes provides little in the way of biological information, we de-
emphasize that aspect of statistical testing and stress the importance
of exploring and demonstrating local differences between forms using
EDMA output (i.e., the form difference matrices) and confidence inter-
val methods. Finally, we provide analyses of our example data sets in
order to clarify and solidify the ideas presented.

4.1 Introduction

When observing the form of any object, we may be struck with a curios-
ity about why the object looks the way it does and why it is different



from the things around it. Consciously or unconsciously, we compare
one object to others to try to explain or justify its appearance. When
observing the form of any biological organism, two key questions come
to mind. First, why do organisms look the way they do? And second, why
do organisms look different from one another? Members of biological
groups are often distinguished from one another on the basis of appear-
ance or morphology. Morphologists have always suspected that form
follows function to some degree (Cuvier, 1828; Hildebrand et al., 1985;
Radinsky, 1987) but have sought explanations for form using not only
biomechanical reasoning and functional models but also phylogenetic
information, optimization criteria, consideration of sexual dimorphism,
developmental programs, genetic factors, evolutionary trends, and
mathematical models. To understand the relationship between form
and any of these explanatory variables, a method is needed that enables
both a precise definition of form and the quantitative comparison of
forms, including the ability to “localize” form differences.

In practice, there are several limiting factors that make something
as seemingly simple as comparing forms extraordinarily difficult. In
the following chapter we discuss the implications of these limiting fac-
tors for some of the more popular methods of superimposition and
deformation by examining several Procrustean approaches (e.g., Rohlf
and Slice, 1990; Goodall, 1991; Dryden and Mardia, 1998) and the use
of thin plate splines (Bookstein, 1989; Bookstein, 1991). The problem of
invariance discussed previously in the context of describing form is
also encountered when comparing forms. We show that the shortcom-
ings of superimposition and deformation approaches stem from their
failure to satisfy the principle of invariance. EDMA is shown to satis-
fy the principle of invariance. Sections 4.2 through 4.6 are based on
ideas originally presented in Lele (1999).

4.2 Limiting factors in morphometrics

The first limiting factor of any morphometric analysis concerns the
type of data chosen for analysis. With the choice of landmark coordi-
nate data comes the acknowledgment that landmarks can never
entirely represent a biological form or the form of the population that
the specimen represents. This issue was more fully discussed in
Chapter 2. The decision to use landmark data to represent a form is a
primary limitation that is accepted and understood. Additional limit-
ing factors faced by morphometricians are divided in to three major



classes introduced below. These include restricted information, biolog-
ical variability, and lack of a common coordinate system.

1. Incomplete information: Landmark data used to study
form can be restricted in two ways.
(a) Sample size: In practice, it may be difficult to get a large
number of observations pertaining to the problem under
study. For example, the number and condition of available fos-
sil specimens may be limited, or the disease being
investigated may be too rare to obtain many cases. In certain
cases, the “normal” sample used for comparison can also be
limited in size.
(b) Number and choice of landmarks: The form of biolog-
ical objects is extremely complex. Our approach to the study
of form involves choosing biologically relevant loci to serve as
landmarks. There may be situations in which one region or
portion of a form contains more closely spaced landmarks
than another portion of the same form, or where certain
regions are without landmarks. This results in unequal repre-
sentation of aspects of a single form. One important criterion
for choosing landmarks is that they reflect positions repre-
sentative of underlying processes. This and issues of
repeatability guide our decision whether to include any spe-
cific landmark in the analysis. Consideration of both of these
concerns places limits on the number and nature of land-
marks available for analysis.

2. Variability: Variability is ubiquitous in nature and is of
great interest to biologists, but it is also our nemesis. In the
previous chapter we discussed the presence of variability
among biological organisms, the need to correctly account for
variability, and ways to model within-population variability.
We noted that the nuisance parameters of translation, rota-
tion, and reflection contribute to the difficulty of correctly
estimating variability. These same nuisance parameters con-
tribute to the difficulties in comparing samples of forms.
These issues are explored more fully in this chapter.

3. Lack of a common coordinate system: The presence of
nuisance parameters is linked to the lack of a common coor-
dinate system. The effect of these nuisance parameters on the
estimation of mean form and variability were documented in
the previous chapter. Though often unappreciated by basic



research scientists and statisticians, the lack of a common
coordinate system has severe implications when comparing
forms. This is because methods that are coordinate system
based require that a particular coordinate system be adopted,
and this choice can profoundly affect analytical results. It is
important that these issues and their implications be exam-
ined and understood thoroughly.

4.3 Comparing two forms: introduction to the problem

When comparing samples of biological forms, within-population vari-
ability cannot be ignored. However, for instructional purposes we begin
our discussion by comparing two forms rather than two samples of
forms. We do this to clarify the act of form comparison and to isolate
and observe the effect of the lack of a common coordinate system on the
comparison of forms. The consequence of within-population variability
for the comparison of forms is discussed later in this chapter.

Suppose we are studying two groups of organisms (e.g., two differ-
ent species, sexes, or age groups) by choosing a representative form
from each of the groups. Typically, the first question posed is: are the
two forms different? It is important to have quantitative data that sub-
stantiate the answer to this question, especially when form differences
are subtle. However, many times the differences are substantial and
the answer is obviously affirmative. The more important question then
becomes: in what aspects do the two forms differ from one another? The
answer to this question requires identifying those loci where differ-
ences are profound and those where differences are minimal. We refer
to this process as the “localization of form differences.” Information
pertaining to the location of component parts that are most or least dif-
ferent between specimens is essential to the investigator’s discovery of
the mechanisms (e.g., physiological, genetic, developmental, pathologi-
cal, environmental, evolutionary) that underlie the form difference or
the form change.

Before delving into the comparison of complex biological forms, let
us first consider a simple triangle in two dimensions with three land-
marks. We will conduct a simple experiment using three circular
transparencies with different diameters as the media on which data
are recorded. Start by drawing the three points of a triangle on one of
the transparencies using a red pen. Number the points from 1 to 3 and



think of this as the average triangle for the first group. Put another
transparency on top of the first and, using a green pen, place three
points on the second transparency in close proximity to the red points
on the first transparency, but change the location of each of the points
any way you like. Label these points from 1 to 3 corresponding to the
numbering system for the first triangle. Think of the triangle that you
just drew in green as the average of a second group.

Now, take a third transparency and lay it over the first two without
disturbing the relative positions of the points drawn in red and in green
on the two original transparencies. On the third transparency, draw
vectors connecting the landmark drawn in red and labeled “1” to the
landmark drawn in green and labeled “1,” then connect the red land-
mark “2” to the green landmark “2,” and finally connect the red
landmark “3” to the green landmark “3,” with a vector. These vectors,
originating at the red point and ending at the green point, justifiably
represent the form difference or form change required to go from trian-
gle 1 to triangle 2, providing precise information pertaining to the
direction and magnitude of change local to each landmark. The trans-
parency that contains these vectors represents the “true form change.”
The vectors enable “localization” of the changes from one form to the
other.

We refer to the transparency with red markings as the “red trans-
parency,” the transparency with the green markings as the “green
transparency,” and the transparency with the vectors depicting the
change from red to green as the “true form change” transparency. Take
away the true form change transparency and set it aside for future use.
Move the red and green transparencies away from one another in an
arbitrary fashion (e.g., throw them on the floor and pick them up). This
exercise simulates the effect of the loss of a common coordinate system.
Once the common coordinate system is lost, our job is to determine
whether the vectors that depict the true form change can be recreated
using only the landmark data recorded on the red and green trans-
parencies.

The conditions we have described in this experiment reflect the sit-
uation of the scientist who wants to compare two objects. All that the
scientist has are the red and green transparencies. Nothing inherent
to those transparencies provides information regarding the common
coordinate system that enabled the recording of the true form change.
Superimposition approaches posit that the true form change depicted
as vectors that represent the magnitude and direction of change can be
found using these red and green transparencies. Next, we present



superimposition approaches in detail to gain an understanding of why
this claim is invalid.

4.4 Superimposition-based approaches

The most intuitive way to compare two objects is to overlay one on top
of the other, or to superimpose them, in order to visualize the differ-
ences between them. Many scientific approaches to the study of form
have developed from this simple idea. Boas (Boas, 1905) proposed a
superimposition approach at the beginning of the twentieth century,
although his role in the establishment of this approach for the field of
anthropology was not broadly recognized until recently (Cole, 1996).
The invention of x-ray techniques and the consequent development of
Roentgen cephalometry (Broadbent, 1975) early in this century
spawned a number of research projects focusing on the collection and
analysis of longitudinal data. Radiology permitted the study of growth
of internal structures and the field of Roentgen cephalometry grew out
of the simple comparison of head x-rays by overlaying two-dimension-
al tracings of the pertinent data. The first comparisons were done by
manually matching x-rays to the center of the pituitary fossa (marked
by a landmark called “sella”) and orienting on a line that stretched
from sella to a point marking the intersection of the nasal bones with
the frontal bone (the landmark nasion; see see 4.1). Methods of
standardization and various quantitative approaches were later devel-
oped so that comparisons could be made between data collected from
various longitudinal series using more automated techniques (Nanda,
1956). Additionally, two- and three-dimensional superimposition-based
approaches have been proposed to determine localized differences
between forms. For example, a recent comparison of cranial profiles of
evolving lineages of Homo used Procrustes superimposition of land-
marks and semi-landmarks located on the internal surface of the
frontal bone (Bookstein et al., 2000).

The fundamental idea behind superimposition-based approaches is
quite intuitive. The following steps relate closely to those presented in
the transparency experiment and explain the basic idea behind all
superimposition approaches. Fix the first object (the red transparen-
cy). Translate and rotate the second object (the green transparency) so
that the landmarks on the green transparency lie as close as possible
to the corresponding landmarks on the red transparency. Then draw
the vectors that connect the red landmark 1 to the green landmark 1,



the red landmark 2 to the green landmark 2, and so on. The vectors
drawn are presumed to depict the true form change and are used to
infer biologically based reasons for the changes/differences observed.

In the instructions given above, we asked that you match all corre-
sponding landmarks to the best of your ability. Methodologically,
various algorithms are used in superimposition schemes. Each algo-
rithm is designed to minimize a particular measure of similarity (e.g.,
Sneath, 1967; Gower, 1975; Bookstein, 1978; Siegel and Benson, 1982;
Bookstein, 1986; Goodall and Bose, 1987). We refer to the way in which
forms are superimposed so as to minimize a particular measure as the
“minimization criterion.” A commonly used measure of similarity is
based on the Procrustes distance where the minimization criterion
includes fixing one object and superimposing other objects on that one

Figure 4.1. Comparison of the tracing of a cephalometric radiograph of a single indi-
vidual with Apert syndrome (age 2 1/2 years, solid line) and an unaffected individual
(same approximate age, broken line). The two tracings are superimposed on the land-
mark sella and oriented to a line that connects the landmarks sella and nasion. From
this superimposition, interpretations are made regarding how the skulls of unaffected
and affected individuals differ from one another.



in an attempt to minimize the sum of the squared distances between
corresponding landmarks on the forms. In our transparency example,
this process corresponds to fixing the red transparency and rotating
and translating the green transparency so that the sum of the squared
distances between corresponding landmarks on the red and green
transparencies is minimized (see Goodall, 1991; Dryden and Mardia,
1998 for details on the “Generalized Procrustes Analysis” (GPA)
approach to superimposition). The application of GPA to the compari-
son of our triangles results in the difference between the red and green
transparencies being roughly equally distributed among all landmarks.

Methodologically, the measure of similarity (the minimization cri-
terion) differs between approaches. This follows intuitively from the
fact that there is more than one way to superimpose. In practice, min-
imization of an alternate measure will produce an alternate
superimposition of forms. For example, another superimposition
scheme translates and rotates the green transparency so that the sum
of the absolute distances (instead of the sum of the squared distances)
is minimized. This results in some landmarks being matched closely,
while other corresponding landmarks fall farther from one another.
Siegel and Benson (1982) describe this “Robust Procrustes” superim-
position and other related approaches. These are only two examples of
minimization criteria that can be used to superimpose forms. In reali-
ty, there are infinite potential measures of similarity and their
corresponding superimposition schemes, although some may be more
sensible than others. Figure 4.2 illustrates the results of superimpos-
ing our example triangles according to various schemes. Figure 4.2a
shows the “true form difference” that we created (the form difference
that you created in the experiment will be different), Figure 4.2c shows
the form difference depicted by the robust superimposition method,
and Figure 4.2b shows the form difference depicted by the least
squares superimposition method. Figure 4.2d provides the form differ-
ence depicted by edge superimposition. Notice that none of the
schemes recreate the “true form difference,” and that the various
superimposition schemes provide varying versions of the overall com-
parison with dissimilar descriptions of the local differences between
the red and green transparency.

Once the original relative positions of the red and green trans-
parencies are disturbed, we lose the information necessary to put them
back into their original, relative positions. The failure of superimposi-
tion schemes in localizing the true form change stems from the fact
that once disturbed, the original relationship between the transparen-



cies (or any forms) can never be known. The original relationship
between the transparencies cannot be known because there is no sin-
gle common coordinate system in which to put them. We cannot,
therefore, reproduce the original relationship. Of course, they can be
superimposed using any system of choice, but adoption of a particular
superimposition scheme determines the relationship that will be “dis-
covered.” Comparison of the two forms using one superimposition
scheme will produce one relationship, while comparison of the same
two forms using another superimposition scheme will produce another
relationship. No information is available that enables identification of
which relationship is the true one. For the scientist, this means that
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Figure 4.2. Superimposition of two triangles (three landmarks) according to various
schemes. In 4.2a the “true form difference” that we created is given. Fig 4.2b shows the
form difference depicted by the robust superimposition method. Fig. 4.2c shows the
form difference depicted by the least squares method. Figure 4.2d provides the form
difference depicted by edge superimposition. None of the superimposition methods
depicted recreate the “true form difference.” The various superimposition schemes pro-
vide varying versions of the overall comparison with dissimilar descriptions of the local
differences between the two original triangles.



this method cannot give reliable information concerning how two
forms differ from one another. The mathematical details of this non-
identifiability are provided in Part 2 of this chapter (see also Lele and
McCulloch, 2000).

4.5 Transformational grids and deformation-based
approaches

Deformation approaches, sometimes including the use of transforma-
tional grids, provide an alternate way to study form difference. These
methods present the difference between forms as the changes required
to transform one object into the other. Differences are expressed as mag-
nitudes along specified directions and are depicted by the way in which
a uniform grid placed over the original object changes or deforms during
the transformation from the initial to the target object. However, as with
the superimposition approach, the loss of a common coordinate system
has profound effects for the description of form change.

In this discussion of deformation approaches, we refer to one of the
objects as the initial object and to the other as the target object.
Results of the analysis will be expressed as those changes that are
required to transform the initial object into the target object. To
explain the deformation approach, consider a lump of bread dough.
Flatten the top of the dough ball and draw a square grid directly onto
it. Now, plot the coordinates for the first object (e.g., the three land-
marks of the red transparency) directly onto the grid that is drawn on
the dough. Next, use your hands or a rolling pin to push, pull, or roll
the dough in any manner you please. The relative positions of the land-
marks have changed, as well as the appearance of the grid. The
distorted grid is an excellent descriptor of the form change. It “local-
izes” and summarizes the form change/difference relative to the
original, uniform grid.

Now take a blank, circular transparency and place it over the rolled
dough. Trace the changed landmark positions onto this transparency
using a green marker. This landmark configuration becomes the
deformed or target object in this experiment. Refer to it as the green
transparency. To simulate the loss of the common coordinate system,
do two things: 1) roll the flattened dough with the grid markings back
into a ball, and 2) shuffle the red and the green transparencies.
We need to determine if it is possible to recreate the (distorted) grid



that was on the dough given these two transparencies representing the
initial and target configurations.

Transformation grids are thought to recreate the true form change
grid as our bread dough did in the above experiment, but there are sev-
eral reasons why they fail to do so. These reasons, some of which were
introduced at the beginning of this chapter, are discussed with specif-
ic reference to deformation approaches below.

Arbitrary choice of deformation

There are many ways in which one object can be deformed into any
other given object. Knowledge of material properties may help us to
expect certain classes of deformations, but in most morphometric
applications, material properties are neither available nor are explicit-
ly considered, and the choice of deformation is arbitrary.

Sir D’Arcy Thompson recognized that the combined action of many
different appropriate forces on any material form could transform one
form into another. Thompson suggested that only simple transforma-
tions should be considered in biology, citing the laws of physics to
support the use of parsimony in choosing a deformation. Parsimony is
a guiding principle in many branches of biology, and in the case of
deformation approaches, minimum energy deformations correspond to
a specific type of parsimony. But without a valid scientific reason for
the adoption of this principle in any particular study, the use of parsi-
mony is difficult to defend. Parsimony is often defended on the basis of
statistical reasons or mathematical convenience, but these reasons are
a poor substitute for biological relevance.

Relationship between the number of landmarks and the choice
of deformations under parsimony

Recall that in our example we have only three landmarks on each of
the objects. With only three landmarks on each object, the simplest
deformation that deforms one object into another is the affine defor-
mation. Goodall and Green (1986) provide an excellent description of
affine deformation. Simply stated, an affine transformation is a trans-
formation such that lines that are parallel in the original grid remain
parallel in the deformed grid. Equivalently, a circle drawn on the orig-
inal grid is transformed into an ellipse in thetransformed grid. Thus,
shear (change on an axis not parallel with the original grid) does not
occur in the affine transformation.



Think about the bread dough that you rolled out in the last experi-
ment, and you will realize that the deformation resulting from rolling
the dough may not necessarily be affine. That is, shear may have actu-
ally occurred, but because we have only three landmarks the best we
can infer under the maxim of parsimony is that the deformation is
affine. The mathematical reason for this situation is very similar to
that found in classical regression. If only two data points are available,
a straight line is the only curve that can be fit to the data. No matter
how nonlinear the true relationship between the covariate and the
response variable might be, the regression model can only provide a
linear relationship because there are only two data points. A more
informed idea about the underlying nonlinear relationship requires
additional data points. For example, if the underlying relationship is
quadratic, a minimum of three data points is required. Similar to this
situation, in the study of deformation of objects, unless one has a sub-
stantial number of landmarks, the type of deformations that may be
inferred is limited and is related to the number of landmarks available
for study. This means that the deformation representing the most par-
simonious solution changes with the number of landmarks. It can be
shown that addition or subtraction of just one landmark changes the
estimate of form change. This indicates that the original estimate can-
not equal the true form change.

Lack of a common coordinate system

Suppose that the underlying deformation is affine and that three land-
marks will, in fact, provide adequate information for determining this
deformation. Can the information within the red and green trans-
parencies that have been disturbed from their original positions
provide this deformation? The same difficulty faced in the superimpo-
sition case presents itself here: we do not know and can never know the
configuration of landmarks (the red and green transparencies) in their
original version that includes information on their relative position in
space. All that we have are the red and green transparencies which are
rotated and translated versions of the original landmark configura-
tions. Since we do not know the relationship of the original
configurations to these translated and rotated versions, we can never
know “the” coordinate system within which to conduct the deformation
study.

To clarify, let’s go back to the lump of bread dough and assume that
the underlying deformation caused by the rolling of the dough is, in



fact, affine. The affine deformation can be described using the follow-
ing notation. Let M1 and M2 denote the landmark coordinate matrices
corresponding to the two objects in their original positions. These
matrices consist of the coordinates of the landmarks drawn on the
transparencies before they are disturbed or thrown onto the floor.
These are 3 � 2 matrices with each row representing the two-dimen-
sional coordinates of the corresponding landmark. Under the
assumption that the transformation from M1 to M2 is affine, we find
this transformation by solving the equation: M2 � M1A � 1t where A is
a 2 � 2 matrix corresponding to the affine transformation (degree of
change parallel to the initial grid), t is a 1 � 2 vector corresponding to
the translation required to go from M1 to M2, and 1 is a 3 � 1 matrix of
1’s. This is a linear system of six equations and six unknowns with a
unique solution. The matrix A fully describes the deformation from M1

to M2. However, we have no knowledge of M1 and M2 in their original
versions or positions. All that we know are the rotated and translated
versions of M1 and M2, namely, M1* and M2*, where M1* � M1R1 �1t1 and
M2* � M2R2 �1t2, R1 and R2 denote the unknown rotation parameters
(R1,R2 are orthogonal matrices), and t1 and t2 are the unknown transla-
tion parameters.

The question then becomes, can we obtain the full and correct
description of the true affine deformation by working with M1* and
M2*? That is, if we solve the equation: M2* � M1*A* � 1t*, can we obtain
the full and correct description of the true affine deformation? The
answer is yes if, and only if, A* � A. But a simple mathematical fact is
that A* does not equal A. Although the singular values of A*and A are
equal, the left and right eigenvectors are different due to the rotation
matrices (R1,R2). The lack of a common coordinate system precludes us
from finding full information, which includes not just the eigenvalues
but also the eigenvectors, corresponding to the affine deformation.

4.6 The relationship between mathematical and 
scientific invariance

We have shown that the number of landmarks and the lack of a com-
mon coordinate system limit what can be learned about the true form
change from the deformation-based description of form change. The
superimposition approach cannot provide the vectors that depict the
true form change vectors. Similarly, transformation grids cannot recre-
ate the true deformation. Both approaches fail due to the



nonidentifiabilty of the true common coordinate system in which forms
can be compared. Any coordinate system can be chosen, but that choice
has implications for statistical results and scientific interpretations.
Only those inferences that are invariant to such an arbitrary choice
are acceptable.

There is an exception to the strict application of this principle. The
application of the principle of invariance may be relaxed if, under all
possible choices of the external constraints in the superimposition
approach or the deformation approach, the scientific conclusions drawn
are identical (or at least similar enough to make no practical differ-
ence). In this case, the scientific results will be effectively invariant to
the external constraints. To determine whether noninvariant descrip-
tors of form change based on superimposition and deformation produce
“scientifically invariant” answers, all noninvariant descriptors must be
applied. This requires a great deal of work. Beyond this consideration,
the following simple example is given to show that scientific invariance
does not necessarily hold in real biological situations.

The method of Roentgenographic cephalometry (RCM) was intro-
duced earlier in this chapter. A cephalometric radiograph is an x-ray
produced under controlled conditions that allows for correction of dis-
tortion and enlargement, both of which occur during exposure of the
film, by an x-ray beam. The data analyzed can consist of two-dimen-
sional coordinates of landmarks identified on the cephalometric
radiographs. Clinicians and dentists compare x-rays of skulls using
this method. The method is often applied to compare the x-ray of a nor-
mal child with that of a child with a disorder, or to compare x-rays of a
child taken at different points during growth (see Figure 4.1). The goal
is to be able to describe and quantify differences between forms or sam-
ples of forms with reference to specific biological landmarks.

Apert syndrome is a genetic disorder that affects the bones of the
skull. The genetic mutations responsible for this syndrome are known
(Reardon and Winter et al., 1994; Park and Meyers et al., 1995; Wilkie
and Slaney et al., 1995; Park and Theda et al., 1995c; Oldridge and
Zackie et al., 1999). A method like RCM is applied to x-ray or comput-
ed tomography data to understand the craniofacial phenotypic aspects
of this syndrome for the purpose of planning possible surgical proce-
dures, planning the timing of these procedures, and inferring the
biological processes that are responsible for the obvious difference in
craniofacial form.

Let us again take the tracings of two cephalometric radiographs, one



from a normal child at 21/2 years of age (broken line in Figure 4.3) and
one of a 21/2-year-old child with Apert syndrome (solid line in Figure
4.3). Following traditional procedures, we locate sella in the center of
the pituitary fossa and nasion at the intersection of the nasal and the
frontal bones. Next, we match the two tracings by registering on the
landmark sella (matching its location exactly in the two configurations)
and rotating the two tracings until the lines that stretch from sella to
nasion overlay one another. This is the superimposition seen in Figure
4.3a. Now take the same two tracings and register on sella, but super-
impose on a line stretching from sella to the landmark basion (the most
anterior point on the rim of foramen magnum). This superimposition is
shown in Figure 4.3b. It is obvious that the two superimposition
schemes produce varying summaries of the differences between the two
forms. The superimposition scheme on the top shows the face of the
Apert individual elevated and projected posteriorly as compared to nor-
mal, while that on the bottom shows the Apert face projected superiorly
and posteriorly but to a different degree and in a different direction. The
posterior portions of the calvaria match fairly well in the comparison at
the bottom, but show marked differences using the superimposition
shown at top. Since decisions regarding pathological processes and clin-
ical treatment are made on the basis of these types of comparisons, it is
critical to understand that the results vary depending upon (are not
invariant to) the superimposition scheme used. This example is not
unlike superimposition methods currently being applied in neuro-
science, where specific features of the brain are mapped by registering
on a “model” brain or atlas.

To underscore the influence of the choice of a superimposition
scheme in the context of the analysis of biomedical data, we further
scrutinize the example given above. Eleven two-dimensional landmarks
were located on the cephalometric radiographs of a sample of children
diagnosed with Apert syndrome from the Center for Craniofacial
Anomalies, University of Illinois, Chicago, and on the radiographs of
unaffected children of similar age from the Bolton-Brush Growth
Series, Cleveland, OH. The landmark data were originally presented in
Richtsmeier (1985). Figure 4.4a shows the placement of the landmarks
on a radiographic tracing (upper left quadrant) and comparison of the
estimated mean forms for the two samples using various superimposi-
tion schemes (Figures 4.4b,c,d). Landmarks corresponding to the
unaffected sample mean form are shown as solid diamonds, whereas
the open diamonds correspond to the landmark locations on the mean
form of the Apert sample. The superimposition shown in Figure 4.3b



Figure 4.3 The
superimposition of
radiographs of simi-
larly aged children,
one diagnosed with
Apert syndrome, the
other unaffected.
Figure 4.3a shows a
comparison of the
two forms based on
a sella-nasion
superimposition
scheme. The com-
parison shown in
Figure 4.3b is based
on a sella-basion
superimposition
scheme. Differences
in the two compar-
isons are obvious.
The choice of which
superimposition
scheme is used
might ultimately
influence the plan-
ning of patient
treatment (following
Richtsmeier, 1986).



mimics the standard in RCM comparisons where the position of land-
mark 7 (tuberculum sella) is matched exactly on the two forms
(samples of forms) and the forms are oriented along a line stretching
from landmark 7 to landmark 1 (nasion). The cranial base is common-
ly used for superimposition as described above because it is thought to
be biologically stable, but this assumption of stability affects the
results of any comparison. Under this superimposition scheme (Figure
4.4b), we conclude that there is no difference local to tuberculum sella,
but that the posterior neurocranium (represented by landmarks 10
and 11) in the Apert skull is shallower than the normal skull. The face
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Figure 4.4 This figure demonstrates the lack of invariance of superimposition approach-
es. The upper left quadrant of this figure provides the placement of the landmarks used in
the analysis as closed diamonds on a tracing of a radiograph of an unaffected child’s skull.
In the other three quadrants, the position of corresponding landmarks located on the esti-
mated mean forms of the Apert syndrome sample are shown as open diamonds, while the
locations of the corresponding landmarks on the mean form of the unaffected sample are
shown as closed diamonds. The upper right quadrant (b) shows the results of comparing
data collected from the Apert and unaffected samples using the sella-nasion superimposi-
tion. The lower left quadrant (c) shows the results of comparing the same data using the
sella-basion superimposition. The lower right quadrant (d) shows the results of comparing
the same data using the least squares superimposition. Notice that the local differences
between the two forms vary according to which superimposition scheme is used.



(landmarks 1, 2, 3, and 4) does not extend as far forward in the Apert
individual. The upper face (landmarks 1 and 2) is shifted posteriorly,
whereas the lower face and palate (landmarks 3, 4, and 6) are shifted
posteriorly and superiorly.

In Figure 4.4c the same two mean forms are compared using anoth-
er superimposition scheme that matches landmark 7 (tuberculum
sella) exactly and orients the forms on a line stretching from landmark
7 to landmark 10 (basion). In this comparison, similar to the previous
superimposition scheme, there is no difference in the forms local to the
sella region (landmarks 7, 8, and 9). However, landmark 11 is displaced
in the Apert individual, in a pattern that is opposite to what we
obtained by the first superimposition. All facial landmarks of the Apert
individual (landmarks 1, 2, 3, 4, and 6) are displaced posteriorly and
superiorly.

Finally, in Figure 4.4d, we show the superimposition obtained
according to the least squares criterion. This provides another quite
distinct description of how the two mean forms differ from each other.
In this comparison, landmarks local to the pituitary fossa (landmarks
7, 8, and 9) on the Apert cranial base are displaced inferiorly. The ante-
rior face (landmarks 1, 2, 3, and 4) of the Apert individual is displaced
superoposteriorly. There is minimal difference local to the posterior
portion of the palate (landmark 6). The posterior neurocranium of the
Apert individual is displaced inferiorly, indicating a shallower neuro-
cranium in the unaffected individual.

Now, let us remind ourselves of the reasons for comparing these
forms. One reason involved providing the surgeon with information on
how the Apert syndrome skull differs from the normal skull. A surgeon
might design varying corrective procedures depending upon which
superimposition scheme is applied to the data. It should be clear from
this example that the application of the superimposition approach pro-
vides very different scientific inferences depending on the choice of the
external constraint.

Now consider the comparison of the same two mean forms using the
thin-plate spline methodology. One of the attractions of the thin-plate
spline methodology is the ability to present the form change graphi-
cally as the way in which a square grid changes under the estimated
deformation. In Figure 4.5 we show the deformation grid that results
from the comparison of the normal and Apert data when the constraint
is based on the minimum bending energy thin-plate spline (Figure
4.5b), and when the constraint is based on W � D�1 where D is the
matrix of squared distances between all pairs of landmarks in the



normal child (Figure 4.5c). It is clear that the two grids are quite dif-
ferent, leading to different scientific conclusions about the locus,
magnitude and direction of the differences between the two forms.
Looking at the inverse-squared distance weighted grid (Figure 4.5b),
we see that the grid has been markedly compressed on the lower left
corner. This represents compression of both the posterior aspect of the
neurocranium (landmarks 10 and 11) and the distance from the back
of the palate (landmark 6) to the anterior aspect of the foramen mag-
num (landmark 10). A less obvious constriction is noted on the upper
right corner of the grid while the lower right corner is stretched. This
indicates constriction of the upper face (landmark 1) and stretching of
the lower face (landmarks 3, 4, and 6). Within the grid, anteroposteri-
or expansion or stretching is shown local to the pituitary fossa region
of the cranial base (landmarks 7, 8, 9). The external shape of the min-
imum bending energy grid shows comparatively less deformation
(Figure 4.5c). The face (landmarks 1, 2, and 4) shows some superoinfe-
rior constriction, while additional restriction occurs along the
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Figure 4.5 The noninvariance of the deformation approach is shown in this figure.
Part 4.5a provides the initial grid with landmarks in place on the estimated mean
form of the normal sample. Panel 4.5b shows deformation of the normal mean form
into the mean form estimated for the Apert sample  based on the inverse squared dis-
tance weighted deformation. Panel 4.5c gives the same deformation but this time
based on minimum bending energy. The deformation grids produced from the compari-
son of the same data sets differ according to the choice of the side condition. Scientific
conclusions of the two deformation analyses differ.



anteroposterior axis in the lower center of the grid (between land-
marks 6 and 10). The pituitary fossa (landmarks 7, 8, 9) shows
stretching along both the superoinferior and anteroposterior axes.

The form difference measure based on the ratio of the singular val-
ues of the affine deformation parameter used in the two thin-plate
spline approaches also differs. In the case of minimum bending energy
the value is 1.1 (0.897/0.807), and in the case of the inverse square dis-
tance-weighting scheme it is 2.6 (1.731/0.665). These are obviously
different quantities and affect our interpretation of the deformation
analysis. In the case of the minimum bending energy constraint, the
affine component of the form difference is relatively small, and we
assume that the difference between the forms could be explained by
the nonaffine deformation. On the other hand, according to the
inverse-squared distance constraint, there is a substantial affine com-
ponent. This analysis of real data demonstrates that statistical and
scientific inferences can change considerably depending on the choice
of the constraint. This example illustrates that the noninvariance of
the superimposition and deformation approaches is not simply a math-
ematical detail. Ignoring the principle of invariance can have
significant implications in practical and scientific terms.

In conclusion, we repeat that the number of landmarks and the lack
of a common coordinate system limit what can be learned about the
true form change from any deformation-based description of form
change. We have shown that superimposition approaches cannot pro-
vide the vectors that depict the true form change vectors, nor can
transformational grids recreate the true deformation. Both approach-
es fail due to the nonidentifiabilty of the true common coordinate
system in which forms can be compared. Any coordinate system can be
chosen for use in analysis, but that choice has implications for statisti-
cal results and scientific interpretations. Only those inferences that
are invariant to such an arbitrary choice are acceptable. We turn now
to the introduction of an alternate approach to the comparison of forms
that satisfies the invariance requirement.

4.7 An invariant approach:
Euclidean Distance Matrix Analysis (EDMA)

We have just shown that nuisance parameters can affect results in
unpredictable ways. We have shown how the arbitrary choice of a coor-
dinate system for analytical purposes has unwanted effects on



empirical results and scientific conclusions. The alternative approach
is to choose not to adopt a coordinate system. In this section, we pre-
sent an approach that enables the comparison of forms independent of
any and all coordinate systems. This is the approach that we favor. The
following section clarifies the significance of comparing forms using a
coordinate system-free method. We begin by presenting the concept of
“orbit” as it relates to the study of form difference. Understanding this
concept will reinforce our insistence on using only that information
that we know unambiguously when comparing forms.

4.7.1 Orbits of equivalent forms and description of form difference

Let M be a landmark coordinate matrix of dimension K � D. Following
our definition, the form of an object as represented by this collection of
landmark coordinates is that characteristic which remains invariant
under the group of transformations consisting of rotation, translation,
and reflection. Now, think of the collection of all K � D matrices that
can be obtained by any rotation, reflection, and translation of M. That
collection of matrices is called an orbit described by M under the group
of transformations consisting of rotation, reflection, and translation
(Figure 4.6). All matrices within any single orbit represent exactly the
same form because they differ only on the basis of translation, rotation,
or reflection. An invariant descriptor of form change describes the dif-
ference in the orbits that the forms occupy.

As an aid to understanding the idea of an orbit, consider a topo-
graphic map of a mountainous area. Each contour on a topographic map
corresponds to a surface of constant (equal) elevation. No matter where
a point lies in longitude or latitude, elevation remains the same as long
as the point stays on the defined contour. In other words, as long as a
point remains on a single contour line, elevation is invariant with
respect to latitude and longitude. Orbits in the space of all form matri-
ces as defined above are similar to contours on a topographic map.

Suppose that a person is hiking on the surface described by the
topographic map. Suppose further that this hiker carries a sensor that
sends out a signal that identifies only his elevation exactly. If we are
trying to locate this hiker but only have the signal from his sensor, we
can place that hiker onto a contour defined by a particular elevation,
but not to any particular location on that contour. This is analogous to
the limitations of our knowledge when dealing with landmark coordi-
nate data. All that we can know with certainty is the orbit to which the



form under study belongs in the space of all K � D matrices. We can-
not know the exact location of the original K � D matrix on the
identified orbit.

Now, suppose we know that the hiker started his hike at elevation
of 2000ft. above sea level but he is now at an elevation of 2560ft. We
know the contour on which the hiker started and the contour that he
presently occupies, but we have no information regarding his exact
starting place, nor his exact location at the current elevation. This is
analogous to the problem of form comparison. We know the orbit of the
first form and the orbit of the second form, but we do not know the
exact location of the forms on their respective orbits.

If our information is limited to elevation, we can only know that the
hiker has ascended 560 vertical feet. This finding is invariant to the
exact location of the hiker on the initial contour and invariant to the

Figure 4.6. Graphic representation of an orbit for a cube of specific dimensions with
eight landmarks. All rotated, reflected, and translated versions of the 8x3 matrix rep-
resenting this cube map to the orbit depicted as a curve.



final location of the hiker on a given contour. Although we would like
to describe the exact path that the climber followed to gain this eleva-
tion, without further information we cannot. We can assign a “sensible”
starting point for the hiker, but this information may be wrong and
eventually misleading. The description of the exact path can be pro-
vided if, and only if, we know exactly the point where the hiker started
and every intermediate point that he traversed as he attained the
higher elevation. If our information is limited to elevation, we simply
do not have the information to obtain a description of his path.

To take this analogy a bit further, let us say that we know the exact
position of a specific path between the elevations of 2000ft. and 2560ft.
The most parsimonious conclusion in this case is that the hiker used
this path to gain 560ft in elevation. But, perhaps the path was
designed for beginners and this particular hiker prefers a challenge.
The hiker forges trails up embankments and scales walls to reach
2560ft. We do not have this information, however, and parsimony
forces us to assume that the hiker used the well-known path. In this
case, the assumption of parsimony provides us with incorrect informa-
tion regarding how the hiker got from his starting point to his ending
point. As scientists, our choice is between using only the information
that is known, or including information or assumptions that are not
testable but that provide a more “complete” answer.

The complete mathematical description of these concepts is pre-
sented in Part 2 of this chapter. A simple and brief mathematical
description is presented here. Let M1 be any point on the first orbit in
the space of the landmark coordinate matrices. The orbit of M1 contains
all translated, rotated, and reflected versions of M1. Let M2, which is
also a two-dimensional three-landmark object, be represented by any
point on the second orbit in the space of the landmark coordinate
matrices. Let Diff (M1M2) denote a description of the difference between
the two forms. Because we only know the orbits on which the two forms
lie but not the exact locations of the forms on the orbits, the descrip-
tion of the difference between the two forms should not require
information pertaining to the exact locations on the orbits. Instead this
description should be invariant to the exact location of the forms on
their respective orbits (Lele and McCulloch, 2000). Mathematically,
this is written as Diff (M1,M2) � Diff (M1,R1 � 1t1, M2R2 � 1t2).

Inclusion of information other than what is unambiguously known
may provide a seemingly more complete, but potentially misleading
answer. The information that is unambiguously known consists of
identification of the orbit on which the form lies. An invariant descrip-



tor of form change utilizes only this unambiguous information and
describes the difference in orbits that the forms occupy. We now use the
principles of EDMA as presented in Chapter 3 to create descriptors of
form change that are invariant and useful to the investigator who is
striving to propose scientific inference from observations of form.

4.7.2 The form space

We continue with a simple situation in which we have a form repre-
sented by three landmarks. Recall that the form of an object
represented by three landmarks can be expressed as a vector of three
distances. We have shown that the vector of three distances is an
invariant representation of the form. That is, no matter how the object
is rotated, reflected, or translated, the vector of three distances
remains unchanged.

Let us consider the object represented by the landmark coordinate 

matrix                    .

We have seen in the last chapter that the form matrix corresponding
to this object is given by 

FM(M) � , and that the form matrix can be written

as a vector of all entries above the diagonal, .

Now consider all distinct three-landmark objects that form a trian-
gle. There is a vector of three distances corresponding to each of these
objects. Each vector, although consisting of linear distances, corre-
sponds to a point in a three-dimensional Euclidean space. The
collection of points corresponding to all three-landmark objects is
called the form space of three landmark objects. Figure 4.7 shows the
form space of all three-landmark objects that form triangles with vec-
tors corresponding to the measure of each linear distance of the
triangle. The vector of three distances is recorded as a single point in



this space.
There are certain constraints on three-landmark objects that form

triangles that make this space only a subset of the entire three-dimen-
sional Euclidean space. For example, dimensions measured on an
object must be positive, and so any distance corresponding to the side
of a triangle on this object must be positive. Consequently, the location
of three-landmark objects in this form space will be restricted to the
positive quadrant of Euclidean space. In addition, a set of three posi-
tive numbers corresponds to a triangle if and only if the sum of any two
numbers exceeds the third. This further restricts the subset of space
corresponding to three-landmark objects that form triangles. There are
parts of the Euclidean space where this constraint is not met and
therefore cannot be part of the defined form space.

Generalization of these findings to K-landmarks is fairly straight-
forward. We have seen in Chapter 3 that the form of any K-landmark
object, whether two- or three-dimensional, can be represented by the
collection of all possible pair-wise distances. There are L�K(K�1) �2
such distances, so that the dimension of this space is equal to L. Thus,

Figure 4.7. The subset of a three-dimensional Euclidean space that corresponds to the
form space of three-landmark objects. Every point in this subset corresponds to some
three-landmark object, and every three-landmark object corresponds to some point in
this subset. Points labeled R and G represent the location of the red and green trans-
parencies (three-landmark forms) in this space.



one can plot a single point in the L-dimensional Euclidean space corre-
sponding to each distinct K-landmark object. The collection of all such
points is called the form space corresponding to K-landmark objects.

Definition of the form space of K-landmark objects: The form
space of K-landmark objects is a collection of points in
L �K(K�1) �2 dimensional Euclidean space such that each point in
this collection corresponds to a form matrix of some K-landmark
object.

Every possible form with K-landmarks corresponds to one and only one
point in the identified form space. Similar to the three-landmark case,
this form space occupies only a subset of L-dimensional Euclidean
space (e.g., only that part of the space with positive numbers). When
the forms being studied include more than three landmarks (K > 3),
the additional constraints that specify the form space subset are com-
plicated. The exact mathematical description of these constraints is
provided in Part 2 of this chapter.

4.7.3 Studying the difference between two forms using the form space

Suppose we have two objects. Any two objects will do, but let’s think
back to the red and green transparencies described previously. Given
our definition of form space, there is a single point in the form space
corresponding to the red transparency and all other three-landmark
objects with the same form. Similarly, there is another single point in
the form space corresponding to the green transparency and all other
objects with the same form. Since we are dealing with three landmark
objects, we can plot them in the form space as points R and G in Figure
4.7. How can the difference between points R and G be determined?

There are many different ways to describe the difference between
points R and G. We will present a few possibilities that have proved
useful in our own research. As long as this description depends solely
on the location of points R and G in the defined form space, and not on
any other extraneous information, the description will satisfy the
invariance requirement. Definitions of form difference should satisfy
the invariance requirement and be biologically interpretable.



Defining the difference between two forms 

Let us begin with two forms, A and B. We will set the landmark coor-
dinates for forms A and B to differ only in the position of landmark 2,
so that the coordinate locations for these two forms are:

FM (A) and FM (B) denote the form matrices corresponding to the
two objects. Recall that FMij (A) is the distance between landmarks i
and j in object A and that FMij (B) is the corresponding distance in
object B. The form matrices for the above objects are:

We present three possible ways to express form difference using the
form matrices, FM (A) and FM (B).

Arithmetic form difference

The difference between forms can be expressed as the arithmetic dif-
ference between like linear distances in the two forms. The collection
of these differences can be expressed as a matrix consisting of elements
that correspond to the arithmetic difference between like linear dis-
tances in the two objects. For example, the absolute form difference
matrix, AFDM (B, A) � FMij (B) � FMij (A), for the above two objects, is
given as:
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0 1 1
1 0 1 41
1 1 41 0

0 2 1
2 0 2 23
1 2 23 0



Relative form difference

The relative difference between forms is another useful way of describ-
ing form difference in biological objects. When written as a matrix, the
collection of relative differences is called the form difference matrix.
Our emphasis on this particular expression of form difference has

resulted in the following notation, FDM (B,A) � , where 

elements of the form difference matrix correspond to the ratios of like-
linear distances, and the division is done element-wise (where 0 � 0 � 0
by definition). Continuing with the data sets described above, the form
difference matrix for forms A and B is written:

Because form difference matrices are square, symmetric matrices
with zero along the diagonal, only the above diagonal elements are
needed to describe the form difference. As a matter of convention, we
write the form difference matrix in vector form, where only the above-
diagonal elements are reported:

Scaling factors and differences in scaled forms

In many biological studies, it is helpful to adjust for size differences
according to some scaling factor before comparison. Within the context
of landmark coordinate data, one can use various measures as scaling
factors. For example, a specific biological distance might be used, or the
geometric mean of all distances could be used as a scaling factor.
Mosimann (1979) provided a general mathematical definition of scal-
ing factor and referred to scaling factors as a measure of ‘size.’
Following these ideas, the scaled form is referred to as ‘size-corrected.’
Comparison of size-corrected forms is often considered a comparison of
‘shapes.’ 

Following Mosimann (1979), we consider any function of the dis-
tances that always takes a positive value as a scaling factor. However,

FDM B A( , ) .
.

=
















0 2 1
2 0 1 59
1 1 59 0

FDM B A( , )
.

=
















2
1

1 59



the terminology of ‘size’ and ‘shape’ that follows from the use of scaling
factors is not precise (Mosimann, 1979; Lele, 1991). Surrogate mea-
sures for ‘size’ are many (e.g., volume, weight, length) and the use of
each will result in a different size-corrected shape. Keeping this impre-
cision in mind, we adopt the common usage of the terms ‘size’ and
‘shape’ in the following discussion.

Suppose we calculate the geometric mean of all distances in FM(A)

and refer to the geometric mean as ‘size.’ Let S (A) �

denote the ‘size’ of object A. Using the ongoing example, the geometric
mean or size of form A is 1.12. Similarly, let S (B) denote the ‘size’ of
form B. In the example above, S (B) � 1.64. Now consider the matrix

We consider SMij (A) to represent the ‘scaled form 

of A’ or the shape matrix of A. Similarly, we define
as the shape matrix of B. These matrices are given as:

and 

One can describe the form difference between objects A and B by

using two quantities. quantifies the ‘size difference’ 

between forms A and B, while the shape difference between forms is
given by a shape difference matrix whose elements represent the abso-
lute difference between like-linear distances of the two shape matrices,
SDMij(B,A) = SMij(B) – SMij(A). In our example, the shape difference
matrix is:

4.7.4 Estimation of form difference using EDMA 

Up to this point, we have been discussing the comparison of single
forms and have operated under the assumption that the true means are
available. Remember, however, that in practice the true means are
never available. All that are available are rotated and translated ver-
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sions of the mean. We have demonstrated that because of the nuisance
parameters of translation, rotation, and reflection, only the form matrix
corresponding to the coordinates of the mean form can be estimated.

In most research situations, we must estimate the mean template
from a sample of available observations. We will denote the estimated
form matrix corresponding to the mean of the first group by FM(Â) and
the estimated form matrix corresponding to the mean of the second
group by FM(B̂). The reader can think of an estimated mean form as a
form matrix representing the average of the linear distances from all
forms in the sample, although the exact estimation procedure is a bit
more complex (see Part 2 of this chapter). The mean form difference
matrix provides the estimation of the difference between mean forms.
Details of the estimation procedures are given in Part 2 of this chapter.

Estimating the mean form difference matrix 

The estimated mean form difference matrix is given by 

Estimating the scaling factor

Although there are a number of possible estimates that can be used as
a scaling factor, in this example we use the geometric mean of the 
distances. In this case, the estimated scaling factor is given by
S(Â) �{�FM ij(Â)}I/L.

Estimating the mean shape matrix

The estimated mean shape matrix is given by                               .

We emphasize that the definition of a shape matrix is dependent upon
the choice of the scaling factor.

Estimating the mean shape difference matrix

The estimated mean shape difference matrix is given by 

Using ideas of the form space, we have provided ways to estimate



form and shape difference as arithmetic differences between forms, as
relative differences between forms, and arithmetic differences between
scaled forms. We now discuss statistical methods that can be used to test
for differences in form and shape.

4.8 Statistical analysis of form and shape difference
using EDMA

Traditionally, the first step in statistical analysis is the testing of a
simple null hypothesis that the two forms or shapes are identical to
each other. However, an excessive emphasis on such a test may prevent
further exploration of the data and may even mislead researchers by
obscuring important local similarities or differences in forms or
shapes. For this reason, we advocate and emphasize the use of confi-
dence intervals when comparing forms. We present both approaches to
the statistical comparison of forms.

4.8.1 Confidence intervals for localized form differences

Suppose that the estimated form difference matrix determines that a
particular distance is larger in object B as compared to object A. How
do we know that this difference is significant in a statistical sense?
Basic statistics tells us that if we have a very large number of obser-
vations, or if the biological variability is very small, we can put greater
trust in the estimated form difference matrix than if we had a small
sample size and/or large variability. It is important that any estimate
of a scientifically relevant quantity carry with it a statement about its
reliability. Point estimates do not provide any information about relia-
bility of the estimate. An interval estimate incorporates reliability into
the estimate and can therefore be a powerful statistical tool (Kowalski,
1972; Reichardt and Gollob, 1997). When an interval estimate has a
certain probability of including the true value of the parameter, that
interval is called a confidence interval. We provide a brief discussion at
the end of this section concerning the interpretation of confidence
intervals for form and shape difference. For the precise meaning of con-
fidence intervals, we ask the reader to refer to a statistical text (e.g.,
Casella and Berger, 1990; see also Harlow, Mulaik, and Steiger, 1997).
The subtleties of interpretation cannot be fully covered here but it is
important that the user understand them.



Lele and Richtsmeier (1995) introduced the procedure for obtain-
ing confidence intervals for elements of the form difference matrix.
There are two different approaches available for the computation of
confidence intervals for the form difference matrix. The first approach,
called the Monte Carlo approach, is model-based and assumes that the
underlying perturbation model is Gaussian. In addition to assuming
Gaussian perturbation, the Monte Carlo approach makes direct use of
the parameters estimated from the samples under study (i.e., mean,
variance-covariance matrix). The second approach, called the
Bootstrap approach, is less model-based as dependence on the assump-
tion of the underlying Gaussian perturbation model is relaxed (Efron
and Tibshirani, 1991). The Monte Carlo approach is preferable if one
has reasonable confidence that the data being analyzed follow the
underlying model as Monte Carlo confidence intervals can be sensitive
to deviations from the underlying model (Huber, 1972). For this reason,
if evidence suggests that the data do not follow the model, the
Bootstrap approach might be more suitable. However, if only a small
number of observations are available, the Bootstrap approach may
prove problematic and it may be necessary to adopt the Monte Carlo
approach. Both the Monte Carlo and Bootstrap methods for obtaining
confidence intervals are described below. The computational algo-
rithms for these approaches are presented in Part 2 of this chapter.

4.8.2 The Bootstrap method for obtaining confidence intervals

The following steps briefly describe the Bootstrap procedure. A proper
computational algorithm is provided in Part 2 for any reader who wish-
es to program this procedure.

Let A1, A2, A3,..., An and B1, B2, B3,..., Bm be the landmark coordinate
matrices for individuals from samples representing populations A and
B. Suppose we have obtained a sample of size n from population A and
a sample of size m from population B.

STEP 1. Obtain a simple random sample with replacement of
size n from sample A1, A2,..., An and of size m from sample B1,
B2,..., Bm. Let us refer to the samples from the first population
as A*1, A*2,...A*n and those from the second population as B*1,
B*2,...B*m.
STEP 2. Calculate the mean form difference matrix,
FDM(B*,A*) for the samples obtained in Step 1 using the
equations given previously.



STEP 3. Repeat Steps 1 and 2 for C times where C is suffi-
ciently large (i.e., from 200 to 1000).

Each FDM(B,A) calculated from a Bootstrap sample is written as a
vector with K(K-1) /2 entries. The collection of all FDM(B,A) obtained
in this way is written as a matrix that has K(K-1) /2 rows and C
columns. Each FDM is sorted according to the landmarks that define
the linear distance. Each column is a form difference matrix in vector
format obtained at the end of Step 2, and each row represents C form
difference ratios for a linear distance between a specified pair of land-
marks. To obtain a confidence interval for each linear distance, the
ratios in each row are sorted in increasing order. The 100(1-α)% confi-
dence interval is delimited by removing the first α/2 % and the last α/2
% of the sorted entries. The minimum and maximum entries remain-
ing in that row constitute the lower and upper confidence limits for
that particular linear distance. If the interval of entries spanning the
lower and upper confidence limits contains the value 1, then it is like-
ly that the particular distance is not different in the two populations.
The interval also provides some idea as to the range of values that par-
ticular ratios might take. For example, if a confidence interval is
(1.3,1.7) we know that this particular linear distance is larger in sam-
ple B relative to sample A, but also that the linear distance in sample
B is likely to be 30% to 70% larger than the same distance in sample
A. Similar statements may be made separately for each row using the
values obtained to estimate the confidence interval for each linear dis-
tance.

4.8.3 The Monte Carlo method for obtaining confidence intervals.

As in the previous case, let A1, A2, A3,…An and B1, B2, B3 …, Bm denote
the two samples.

STEP 1. Estimate the mean form and the variance-covariance
matrix for samples A and B.
STEP 2. Use estimates of the mean form and variance-covari-
ance matrix based on sample A to generate a new sample of
observations (N�n) using the Gaussian perturbation model.
STEP 3. Use the estimates of the mean form and variance-
covariance matrix based on sample B to generate a new
sample of observations (N�m) using the Gaussian perturba-
tion model.



STEP 4. Use the parametric samples generated in Steps 2
and 3 to calculate a new form difference matrix for these sam-
ples, FDM(B*,A* ).
STEP 5. Repeat Steps 2 through 4 for C times, where C is suf-
ficiently large (i.e., from 200 to 1000).

Each FDM(B*,A* ) calculated from the Monte Carlo samples is writ-
ten as a vector with K(K-1) /2 entries. A collection of Monte Carlo
samples compared in this way and written as a matrix has K(K-1) /2
rows and C columns, each column being sorted according to the land-
marks that define the linear distance. Each column is a form difference
matrix in vector format obtained at the end of Step 4 and each row rep-
resents C form difference ratios for a linear distance between a
specified pair of landmarks. Sort the values in each row in ascending
order. The 100(1-α)% confidence interval is delimited by removing the
first α/2 % and the last α/2 % of the sorted entries. If the interval of
entries spanning the lower and upper confidence limits contains the
value 1, then it is likely that the particular distance is not different in
the two populations. As with the Bootstrap approach, this interval also
provides a suggestion of the range of values that a particular ratio
might take. Thus, if the confidence interval is say (0.85,0.95) we can
conclude that the linear distance is smaller in sample B relative to
sample A, and that it is likely that the linear distance is 5 to 15%
smaller in sample B. Once a confidence interval is obtained for each
linear distance, similar statements can be made separately using data
from each row.

Notice that the only difference between the Bootstrap procedure
and the Monte Carlo procedure is the way in which the samples in Step
2 are generated. The Bootstrap approach accomplishes this by using
simple random sampling directly from the data, while the Monte Carlo
procedure uses the Gaussian model to generate data from the estimat-
ed parameters.

An additional nuance of both the Bootstrap and Monte Carlo pro-
cedures is that the exact output of running either procedure will vary
even if the input data remain the same. Suppose you run the Bootstrap
program for obtaining confidence intervals at home on Monday eve-
ning. You leave the printout at home and have to re-run the Bootstrap
confidence interval routine again the following morning at work. If you
were to compare the two outputs that have used the exact same input
data, they will be slightly different. The reason for this is that the sam-
ples obtained in Step 2 of both the Bootstrap and Monte Carlo



procedures will not, in general, be the same from one analysis to the
next. The full statistical explanation for this is beyond the scope of this
monograph but a colloquial explanation should help here.

Both the Bootstrap approach and the Monte Carlo approach involve
a randomized procedure. In the case of the Bootstrap approach, if we
randomly pick individuals from the known sample, it is highly unlikely
that the same random sample will be chosen upon repetition. This will
result in slight differences in output when the whole procedure is run
different times. The Monte Carlo approach is also a randomized proce-
dure, but it is model-based. Even though the estimate of the mean and
variance-covariance matrix is constant from analysis to analysis, the
generation of data under the Gaussian model using these estimates
will result in slightly different Monte Carlo samples each time the
analysis is done. Consequently, the exact values of the limits of the con-
fidence intervals will change as you repeat a confidence interval
estimation analysis. The differences between analyses, however, are
not so large as to affect your conclusions.

Let us try to understand the interpretation of the confidence inter-
vals in an intuitive fashion. Suppose that there are 100 researchers in
the world who are studying the difference in craniofacial form between
unaffected children and children with Apert syndrome. Each scientist
has a sample of patients and controls from his own clinic and collects
the coordinates for the same landmarks from these individuals. When
the affected and unaffected individuals from each clinic are compared
using the above procedures, 90% confidence intervals are obtained.
Each of the researchers uses the confidence intervals derived from
their clinic data to make a decision regarding whether or not a partic-
ular linear distance is larger in Apert syndrome children as compared
to unaffected children. Following the confidence interval interpreta-
tion, we say that approximately 90 of the 100 researchers are correct
in this decision. Knowing this statistic does not guarantee that any
particular researcher is correct about their decision, but on average,
the community of researchers is right 90% of the time.

We provide percentile intervals because they are simple to interpret
and are sufficient in most biological applications. We stress that the
intervals provided are element-wise confidence intervals. This means
that each confidence interval is computed for a specific linear distance
and that they should be interpreted in that way. Finally, although the
confidence intervals are reported separately for each linear distance
(Lele and Richtsmeier, 1995), our computational procedures do not
assume that the distances in the form matrix are independently dis-



tributed. Our procedures fully account for the dependence between the
distances.

The confidence intervals described above can localize form differ-
ence to particular linear distances, and in some cases to particular
landmarks. For that reason, they are more useful in revealing biological
information and relationships than they are for testing equality of
form or shape. The testing of global null hypotheses has a long history
and is desired by certain scientists. For this reason, we present two dif-
ferent statistical procedures for testing the hypothesis of equality of
shapes using point estimates.

4.9 Statistical hypothesis testing for shape difference

The testing of statistical hypotheses has become a standard and near-
ly required part of biological analyses. We deemphasize the importance
of this procedure because it can distract the researcher from looking
carefully at the data and direct the researcher away from data based
inferences that are not directly revealed by the results of hypothesis
testing. We include statistical hypothesis testing so as to satisfy the
more traditionally minded biologists and to offer a complete suite of
methods.

The rules for conducting a valid and rigorous statistical test of a null
hypothesis are fairly standard in statistics (see Casella and Berger,
1990). Any statistical testing procedure has the following components:
1) a statement of the null and the alternative hypotheses; 2) a test
statistic which takes a specified value if the null hypothesis is true and
a different set of values under the alternative; and 3) the distribution of
the test statistic when the null hypothesis is true. If the observed value
of the test statistic lies in the extreme tails of the null distribution, the
null hypothesis is rejected. One may also calculate the probability of
getting the observed (or more extreme) value of the test statistic and
report it as a p-value. Various approaches to hypothesis testing in the
study of difference in form using EDMA are detailed below.

When comparing shapes using EDMA, the null hypothesis is that
the mean form of one population is a scaled version of the other popu-
lation (i.e., the ratios of all linear distances are equal to a constant).
The inability to reject this null hypothesis would mean that the two
samples of forms are similar in shape and differ only in size. The alter-
native hypothesis is that the two populations differ in form. In this
case, the two populations are not merely scaled versions of one anoth-



er. Differences in size exist but vary among the linear distances con-
sidered.

4.9.1 The EDMA-I hypothesis test

Details of the EDMA-I procedure were introduced by Lele and
Richtsmeier (1991) and are based on the Union-Intersection principle
(Casella and Berger, 1990). We begin by presenting an intuitive
description of this testing procedure.

Assume that there is no biological variability, and that mean form
matrices are available for the two populations under study. If the two
mean forms are simply scaled versions of each other, then the form
matrices representing the mean forms will differ by a ‘scaling factor,’
S. If this is the case, then the form difference matrix will consist of a
single number, a constant, S. If the form difference matrix consists only
of S and we divide the maximum entry in the form difference matrix
by the minimum entry in it, the ratio will be equal to 1. Since we are
dividing the maximum entry in the form difference matrix by the min-
imum entry, the resulting ratio can never be smaller than 1. Moreover,
as this ratio deviates increasingly from the value of 1, the implication
is that the forms under consideration are more and more different from
one another.

In reality, it would be rare to have the form matrices of two forms
differ by a constant, S. In practice, we do not have the true mean forms
but only their estimates based on the observed landmark data. Even if
the true mean forms are scaled versions of each other, their estimates
may not be. In practice then, the ratio of the maximum entry of the
form difference matrix to the minimum entry will most likely be dif-
ferent from 1. Our goal is to determine the probability of obtaining the
observed (or a larger) maximum-to-minimum ratio value due to under-
lying biological variability when the two mean forms are, in fact,
similar. This probability is known as the p-value. If the calculated p-
value is small, we claim that the observed value is unlikely under the
null hypothesis of similarity in form and reject the null hypothesis. By
the same results, we entertain the alternative hypothesis. The  EDMA-
I test of the null hypothesis of similarity in forms assumes that the
variances of the two samples being considered are equal.

The null hypothesis is that the average shapes of the two samples
are the same. The steps for testing for the equality of average shapes
are as follows. Again, let A1, A2,…, An and B1, B2,…, Bm be the landmark
coordinate matrices for individuals from the two samples.



STEP 1. Estimate the mean form matrices for sample A and
for sample B.
STEP 2. Calculate the form difference matrix for these sam-
ples, FDM(B, A) and sort the vector in ascending order.
STEP 3. Calculate the test statistic, T, which is the ratio of the
maximum ratio in the matrix  FDM(B,A) to the minimum
entry in FDM(B,A). Using our observations from samples A

and B, .

The next step constitutes a Bootstrap approach to estimate the null
distribution of the test statistic, T. To do this you must first choose one
of the samples, say B, as your baseline sample.

STEP 4. Select n individuals randomly and with replacement
from sample B, and call this sample A1. Then, select m indi-
viduals randomly and with replacement from sample B, and
call this sample B1. Follow steps 1, 2, and 3 using A1 and B1 to
obtain a T value for the bootstrapped sample.
STEP 5. Repeat Step 4 an adequate number of times (e.g., 200
to 1000 times).
STEP 6. Use the distribution of T values produced by Steps 4
and 5 in the form of a histogram as the null distribution of T
when the null hypothesis is true. If Tobs falls in the upper α%
tail of the null distribution, we reject the null hypothesis at
the α% level of significance.

Notice that Step 4 requires the choice of a baseline sample. This
choice is required because the test that we have designed does not sim-
ply test whether or not the two mean forms are similar. Instead, we
test whether or not the average form of the first sample is similar to
the average form of the baseline group. Our test is designed to answer
the specific question, is the mean form of Group A similar to the mean
form of Group B? Importantly, the answer to this question may not be
the same as the answer to the question, is the mean form of Group B
similar to the mean form of Group A? Our test is a one-way test and
due to the design of the test, one group (generally the group with the
larger sample size) must be chosen to serve as the baseline group.

The question that this test addresses is similar to the question,
could sample A have arisen from the distribution of the population
from which sample B was obtained? This subtle point that pertains to
this testing procedure means that if one wants to know for certain if



two populations are different from one another, the testing should be
done twice using each of the samples as the baseline in one of the anal-
yses. If one sample is particularly small, preventing its use as the
baseline sample in testing, it is important to make this clear in report-
ing the results that the test is a one-way test. The EDMA-I test also
requires the assumption that variances in the two samples are equal.
If information is available that indicates that this assumption is not
supported by the data, results of this test may be misleading.

4.9.2 A two-way test of the null hypothesis using EDMA-II 

This procedure, discussed in detail by Lele and Cole (1996), is based on
ideas outlined above, but uses a different statistic for testing the null
hypothesis of similarity in shapes. An important difference between
the two procedures is that unlike EDMA-I, EDMA-II does not require
the assumption of equality of variances in the two populations. EDMA-
II is also a two-way test removing the need to choose one of the
samples as the baseline group. However, EDMA-II does require that a
scaling factor be chosen to represent the “size” variable. A single linear
distance, or a combination of all linear distances (e.g., the geometric
mean of the distances) could be used to scale the data and represent
size.

When testing the null hypothesis of similarity of shapes using the
EDMA-II procedure, it is important to realize that choice of a measure
to represent “size” has implications. Although the choice of the scaling
factor does not affect the validity of the test, it does affect the power of
the test (Lele and Cole, 1996). The logic for choosing a particular scal-
ing factor should be biological and not based simply on mathematical
convenience. Choice of the scaling factor will be influenced by the bio-
logical problem at hand. For example, the geometric mean might be a
reasonable scaling factor for studying skulls, whereas overall length
may be a more appropriate scaling factor in the study of femur mor-
phology.

When conducting the EDMA-II test, the first step is to select a scal-
ing factor. Using this scaling factor, a shape difference matrix is
calculated. If the two mean forms are similar to each other, irrespec-
tive of which scaling factor is chosen, the shape difference matrix will
consist of zeros. Thus, if the two forms are not similar, the entry that is
farthest away from zero (either a positive or negative value) provides
us with a measure of their dissimilarity.

The steps for testing for the equality of average shapes using



EDMA-II are as follows. Let A1, A2,..., An and B1, B2,..., Bm be the land-
mark coordinate matrices for individuals from the two samples.

STEP 1. Estimate the mean form matrix for sample A and
sample B.
STEP 2. Calculate the scaling factor for each mean form
matrix and use these scaling factors to standardize the mean
form matrices for each sample by dividing each entry of the
matrix by the respective scaling factor. For example, divide
each entry of FM(A) by the scaling factor estimated from sam-
ple A, SA. The new matrix is called the shape matrix of A and
is denoted as SM(A). Do the same for sample B using SB to pro-
duce SM(B).
STEP 3. Calculate the shape difference matrix for these sam-
ples, SDM(B,A), by calculating the difference between like
linear distances, and sort SDM(B,A) written as a vector in
ascending order. The test statistic Z is given by either the min-
imum entry in SDM(B,A), or the maximum entry in SDM(B,A),
whichever is most different from zero.
STEP 4. Using the estimates of the mean forms and variance-
covariance matrices, generate parametric bootstrap (Monte
Carlo) samples under the Gaussian perturbation model.
Calculate the Z statistic for the bootstrap samples.
STEP 5. Repeat Step 4 an adequate number of times (e.g., 200
times) to obtain Z1, Z2, …, Z200. Sort these values in ascending
order and denote the ordered values by Z(1), Z(2), …, Z(200). The
100 (1-α)% confidence interval is delimited by (Z(11), Z(190)). If
this interval contains 0, accept the null hypothesis that the
samples are similar in shape; otherwise, the test provides evi-
dence that the two forms are not similar.

The above testing procedure works well in most situations.
However there is a situation where careless application of Step 5 can
be problematic. Look carefully at the distribution of the values in
SDM. If the maximum positive entry in SDM and the maximum neg-
ative entry in SDM have very similar magnitudes, it is necessary to
look carefully at the histogram of Z1, Z2, …, Z200. If this histogram indi-
cates a bimodal distribution with a large dip in the number of
observations near zero, the null hypothesis should be rejected.
Careless application and interpretation of Step 5 will lead to accep-
tance of the null hypothesis in this situation. As in all statistical



analyses, the user must be wary of outcomes and pay close attention to
data and distributions. The example analysis given later in this chap-
ter demonstrates this type of situation and its resolution.

Table 4.1 summarizes the differences and similarities between the
two methods for testing the hypothesis of similarity in shapes of forms
sampled from two populations.

Table 4.1. Tabulation of the salient characteristics of the two methods
for hypothesis testing using EDMA.

EDMA-I EDMA-II
Description and comparison of Description and comparison of
forms are coordinate system-free forms are coordinate system-free

Null hypothesis states that the Null hypothesis states that the 
shapes are similar shapes are similar

Enables statistical determination Enables decomposition of 
of differences due exclusively to statistically significant 
scale or due to differences in form differences into differences in 

shape and differences in scaling 
factor (or “size”)

Mean form matrices are invariant Mean shape matrices are 
to the choice of scaling factor dependent on the choice of 

scaling factor

Assumes equality of the variance- Does not assume equality of the
covariance matrices for the two variance-covariance matrices
samples under consideration

Testing procedure cannot determine Testing procedure cannot
localized differences; confidence determine localized differences;
intervals for elements of the FDM confidence intervals for elements
have been developed for of the SDM have been developed
this purpose. for this purpose.



4.9.3. Cautionary notes regarding hypothesis testing 
for similarity of shape

1. We emphasize that statistical testing for equality of shape,
although a standard feature of most published analyses, is
overrated and rarely provides the information desired or
required by the scientist. This is because the answer given
from a statistical test is limited to either, “yes, the shapes are
the same” or  “they are different.” What is generally needed is
the detection of those parts of the forms that are similar and
those that are different, along with a measure of this differ-
ence. Localization facilitates the formulation of informed
hypotheses about “why” or “how” two forms differ. Explan-
ation and discovery are our goals, not description. Our method
for the calculation of confidence intervals, in addition to the
exploration procedures described below, are tools designed for
studying the more subtle and meaningful aspects of form dif-
ference.

2. There are many different ways to test a hypothesis of equali-
ty of shape. Unfortunately, due to the nature of the problem,
there cannot be a single test that is ‘best’ in every situation.
By ‘best’ we mean the test that has the greatest statistical
power to detect a real shape difference (the probability of
rejecting a false null hypothesis). Simulation studies can be
misleading because they report the power of one test relative
to others in a specific situation. The problem is that one can
always find a situation where any particular test behaves
well. Due to the nature of biological data, simulation studies
cannot support the use of one test over the other in all, or even
most, situations. In the light of the above discussion we feel it
necessary to remark on the misleading nature of the com-
mentary on the EDMA testing procedures provided by James
Rohlf (2000). As we have pointed out, superimposition and
deformation approaches base their inference on non-identifi-
able parameters, which makes these approaches scientifically
and statistically problematic, and possibly undesirable.
Unfortunately, Rohlf (2000) provides a highly biased view of
shape analysis in his paper. The main flaws in his argument
are presented below.
a) Using simulations, Rohlf shows that the EDMA testing



procedures can have smaller power as compared to some
other testing procedures. As pointed out here, and in the
original papers, neither EDMA-I or II are the uniformly
most powerful (UMP) tests. We never claimed EDMA-I or
EDMA-II to be UMP tests. Like most  informed statisti-
cians, we are aware of the fact that tests in multivariate
analysis are seldom uniformly best; that is, they are not
the most powerful alternative in every possible situation.
Just as EDMA-based tests have smaller power in certain
testing situations, Procrustes-based tests have smaller
power in other situations. This finding alone does not
make either testing procedure (or any alternative!) unde-
sirable.

b) Rohlf ’s claim that the EDMA-II procedure is invalid stems
from an uninformed application of Step 5 in EDMA-II (see
above). Rohlf has fallen prey to the error of blind statisti-
cal testing that was pointed out in the original paper by
Lele and Cole (1996), and that we illustrate to the readers
of this monograph by way of an example (see Section 4.1.2,
Analysis of example data sets). EDMA-II, though not
UMP, is currently the only test that can be applied when
the covariance matrices for two populations are different.

c) Rohlf chooses a particularly unrealistic covariance struc-
ture, namely isotropic covariance, to conduct his
simulations. It has been shown that the Procrustes esti-
mators of mean form, mean shape, and covariance are
patently wrong for any covariance structure other than
isotropic (Lele, 1993; Kent and Mardia, 1997). What is obvi-
ous to statisticians, but perhaps less clear to biologists, is
that statistical inference procedures that use these erro-
neous estimators are not statistically valid. Rohlf (2000)
ignores this important issue and chooses to concentrate on
the non-UMP nature of the shape comparison tests.



4.10 Methods for exploring the form difference matrix

In the previous section, we showed how to test the null hypothesis of
equality of shapes. Testing for the equality of shapes or forms is most
often a formality; one almost required in published analyses, but one
that may not provide information relevant to the problem under study.
We have found in our experience that even when the null hypothesis of
equality of overall shape or form cannot be rejected, there may be
regions or loci where the forms are different. On the other hand, sam-
ples of forms that are shown to be statistically different may share
features that are similar. What is needed is a method that localizes
form difference to those parts of the objects that contribute signifi-
cantly to the observed form difference, or that differentiate seemingly
similar forms at very specific loci. This activity falls under the heading
of data exploration. Calculating confidence intervals for elements of
the form difference matrix is one way of uncovering those differences.
In this section, we address the activity of data exploration. This
includes methods for identifying those regions that contribute sub-
stantially to the observed form or shape difference and the ranking of
parts of the object in terms of relative contribution to the observed dif-
ference.

When we specify the location of differences between forms under
study, we say that the difference is “local” to a particular linear distance,
to a particular landmark, or to a set of landmarks. We use the term
“influential” to describe landmarks whose relative ranking is high in
terms of the contribution to the difference in form or difference in
shape. We remind the reader that the relative locations of landmarks
are simply a manifestation of underlying biological processes. The land-
marks are not “causing” the form difference or “influencing” the change
in form. The difference occurs due to biological processes that affect the
phenotype. Moreover, the difference noted local to a landmark might
reflect differences local to a larger region that includes that particular
landmark exclusively or several related landmarks. With this under-
standing, we will refer to “influential” landmarks, and designate
differences that are “local” to particular regions.

4.10.1 Detection of influential landmarks

Consider the form difference matrix FDM(B,A). Recall that if an entry
in the form difference matrix is close to 1, it signifies that little differ-
ence exists local to the relative positions of the corresponding pair of



landmarks. On the other hand, if the entry is markedly different from
1, it signifies that the relative position of the corresponding pair of
landmarks is substantially different in the two mean forms represent-
ing the two populations. When an entry is very different from 1, this
signifies that the two landmarks involved in defining this distance fig-
ure prominently in explaining the observed form difference.

The first step in exploring the form difference matrix is to arrange
the entries in increasing order. Simply looking at the extremes (mini-
mum and maximum) of such an ordered vector provides substantial
information. If one or more distances at either the maximum or the
minimum ends of the vector delineate a relevant region, this provides
information relevant to the processes that underlie the form difference.
However, analysis does not end with the simple reporting of which
ratios are larger or smaller than 1. Instead, the researcher should
attempt to relate these observations to potential underlying processes
(i.e., physiological, biomechanical, pathological, evolutionary) and for-
mulate hypotheses. The generation of new hypotheses from EDMA
results will depend upon the scientific background of the investigator,
the goals of the research, and the availability of alternate data. Once
new hypotheses are generated, one can collect an alternate data set
that bears on the new hypotheses. These data sets may or may not
include landmark coordinates. The new hypotheses are then tested
using the new data set. This process is similar to the general scientif-
ic process of hypothesis formulation followed by hypothesis testing,
modification of the hypothesis on the basis of those results, additional
data collection, and further hypothesis testing.

Two additional tools for systematic exploration of the form differ-
ence matrix are presented below. These tools can be used to gain an
understanding of the observed form difference and as an aid in refor-
mulation of hypotheses. These tools were originally presented in Lele
and Richtsmeier (1992) and Cole and Richtsmeier (1998).

4.10.2 The landmark deletion approach.

The idea behind this technique is very simple. Recall the test statistic,

T, defined in EDMA-I as                                         Remember also that

if the two mean forms are very similar to each other, the value of T is
close to 1 and as the forms become more and more dissimilar, the value
of T differs increasingly from 1.

T
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Let us take a simple example. Consider the two objects shown in
Figure 4.8 whose landmark coordinates are provided below.

Let                   and                          .

The corresponding form matrices (with numbers rounded to two
significant digits) are given by 

and

The form difference matrix, in the vector form, can then be given as

The value of T for the FDM of these two objects is the ratio of the
maximum entry (1.75) and the minimum entry (1.10) and hence T�
1.59. Now suppose we delete landmark 3 from both objects and re-cal-
culate the value of T for the objects that now consist only of landmarks
1, 2, and 4. The new value of T, 1.14, is much closer to 1 than the orig-
inal T calculated using all landmarks. After deleting landmark 3, the
value of T indicates that the remainders of the two objects are more
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similar to each other than we found originally. We interpret this as a
demonstration of the importance of landmark 3 in establishing the
form difference between these two objects. Similarly if we calculate T
after deleting landmark 4 (but include landmarks 1, 2, and 3), the
value of T, is 1.44. This value of T is reduced as compared to the origi-
nal T calculated using all landmarks, but the change in the value of T
is not as large as when landmark 3 was deleted. From this experiment,
we conclude that landmark 3 plays a larger part in determining the
form difference than does landmark 4. Both landmarks are influential
but landmark 3 is more influential than landmark 4.

If we begin this exercise again, but delete landmark 1, the value of
T is 1.40. This value is similar to the one obtained after deleting land-
mark 4. This implies that landmarks 1 and 4 have comparable
influence. The value of T obtained when deleting landmark 2 is 1.5,
indicating that landmark 2 does not explain much of the difference
between the two forms. From these analyses, we can rank the land-
marks according to their influence in the differentiation of forms;
landmark 3 being the most influential, landmarks 1 and 4 having sim-
ilar influence and landmark 2 the least influential of all.

Based on this simple example, we can propose the following proce-
dure for detecting influential landmarks.

STEP 1: Calculate the value of T for the complete object.
STEP 2: Delete the i-th landmark and recalculate the value of T.
Let us denote it by T( -1 ). Calculate T( -1 ), T( -2),…, T( -K).

One can consider a landmark to be the most influential if it sub-
stantially reduces the value of the original T upon deletion. The

Figure 4.8. Graphical Representation of landmark location for objects A and B.



landmark that reduces the value of T to the next lowest value is the
second-most influential landmark, and so on. Thus, one can rank the
landmarks according to their influence in explaining the form differ-
ence. If testing for similarity in shapes is of concern, the p-value can be
estimated and checked for each value of T( -i) noting those landmarks
that make a substantial difference in the level of significance.

Instead of, or in addition to, working through this process one land-
mark at a time, groups of landmarks can be identified and deleted as
a set. The object could be divided into regions or features, each defined
by a set of landmarks, and the sets can be deleted one at a time. Parts
of the object can then be ranked according to their role in influencing
the form difference. Those parts of the object that  reduce the value of
T substantially when deleted are highly influential.

In summary, if a particular part of the object is responsible for a
majority of the form difference, deletion of that part of the object
should result in an improved match of the forms defined by the
remaining landmarks. Using these observations, the influence of par-
ticular landmarks or sets of landmarks can be ranked by observing the
reduction in T caused by deleting that particular set: the larger the
reduction, the larger the influence.

Two concerns should be noted when applying this logic and this
approach. First, remember that the FDM is based on the comparison of
mean form matrices and that these are only estimates of the mean
form, and not the true mean forms. The various values of T calculated
during the landmark deletion process are not directly comparable due
to sampling variability. We need a way to calibrate the T values so that
sampling variability is taken into account. The p-values can be used
towards this purpose. After deletion of a set of landmarks, a substan-
tial increase in the p-value indicates substantial influence of the
deleted landmarks. Recall that as T gets closer to 1, the corresponding
p-value increases. Thus, any reduction in the value of T corresponds to
an increase in the p-value.

Second, some consideration should be given to the number of land-
marks deleted. To this end, common sense is our only guide. For
example, if deletion of a single landmark or relatively small set of land-
marks achieves a reduction in T (or increase in the p-value) similar to
that achieved by the deletion of a larger set, the smaller set is more
influential. That is, the smaller set accounts for a “statistically compara-
ble difference,” but because this difference is confined to a smaller area,
the locus of the difference is more identifiable and hypotheses regarding
processes responsible for the differences may be more specific.



We stress that these data exploration techniques should not be
applied haphazardly. Statistical exploration for influential landmarks
can be important scientifically, but biological knowledge, focused
thinking, and common sense are necessary for understanding and
explaining the differences observed, as well as guarding against spuri-
ous results. Investigators using these techniques should understand
the underlying logic, and should always use their judgment when
interpreting and explaining the implications of the results. Simplistic
conclusions reporting localized increases and decreases in particular
linear distances are rarely informative by themselves. Plausible pro-
cesses that may underlie such changes should always be discussed. In
the best case, the results of data exploration should be formulated as
hypotheses to be tested using alternate, relevant data that may need
to be generated through other experiments, or the analysis of addi-
tional specimens.

4.11  A graphical tool for the detection of influential
landmarks

This method, proposed by Cole and Richtsmeier (1998), involves the use
of a two-dimensional scatter plot to summarize, explore, and interpret a
form difference matrix. Positions along the horizontal axis of this scatter
plot correspond to the landmarks numbered from 1 to K. Positions along
the vertical axis are real numbers corresponding to values of the off-
diagonal elements of the form difference matrix for each landmark pair.

Let us continue with data presented earlier (Figure 4.8). Rewrite
the form difference matrix for this comparison as a square, symmetric
matrix. The first row of this matrix contains the ratios of the distances
in the two objects that involve landmark 1 as one of the end points.
Similarly, the second row of the matrix contains the ratios of the dis-
tances in two objects that involve landmark 2 as one of the end points.

Now consider the scatter plot in Figure 4.9. The landmark numbers
1, 2, 3, and 4 are plotted on the horizontal axis. Above the point corre-
sponding to landmark 1, those values corresponding to the first row of
the form difference matrix are plotted. Above the point corresponding
to landmark 2, the ratios that correspond to the second row of the form
difference matrix are plotted. The same is done for those ratios that
correspond to the third and fourth row of the form difference matrix.
Remember that the form difference matrix is a square symmetric
matrix. This means that our scatter plot will contain two points for the



value corresponding to each landmark pair. For example, the value rep-
resenting the ratio for the landmark pair 3, 4 will be plotted once above
the “3” on the X-axis and again above the “4” on the X-axis.

A pattern is easily seen when looking at the scatter plot (Figure
4.9a). All points plotted in the column for landmark 3 are skewed
towards the extremes of the values on the Y-axis. When a different
marker (e.g., �) is used to represent those points that correspond to
linear distances that have landmark 3 as an endpoint (Figure 4.9b),
these linear distances stand out from all others.

Cole and Richtsmeier (1998) suggest the use of such plots for
exploring the influence of a particular landmark. The distribution of
the form difference matrix elements that correspond to a single land-
mark gives a visual impression of its influence. This approach could be
used as a complement to the “delete one” procedure just described, by
sequentially eliminating landmarks from the plot beginning with the
most influential. However, if this is done the investigator should be

Figure 4.9. Scatter plot showing results of an EDMA comparison of the two forms
whose data are presented in Figure 4.8. The Y-axis represents the value of the ele-
ments of the form difference matrix, while landmark numbers are shown along the
X-axis. The ratio value for the comparison of each linear distance is shown twice on the
graph, once for each landmark that is an endpoint for the linear distance. The values
for the comparison of a linear distance with itself (that value always being “1”) are not
entered on the graph. On the graph shown at the left we see all form difference ratios
for all linear distances. The column for landmark three suggests that large values are
associated with this landmark. On the graph shown at the right all ratios associated
with linear distances that have landmark 3 as an endpoint are graphed as closed
squares showing that the outlying values for each landmark map to the distance
between that landmark and landmark 3.



careful to preserve the horizontal and vertical scales of the scatter plot
so that perceptions of influence are consistent from one plot to anoth-
er (Cole and Richtsmeier, 1998).

Additional visualization tools suggested by Cole and Richtsmeier
(1998) are best described using example data sets. In the following sec-
tion, we explore the data sets introduced in chapter 1 using these tools.

4.12 Analysis of example data sets: mouse mandibles

In Chapter 1, we introduced the Ts65Dn mouse model for Down
Syndrome. The three-dimensional coordinates of the normal and
Ts65Dn mandibular data sets are presented in Chapter 3. Here, we use
the methods outlined in the earlier part of this chapter to compare a
sample of Ts65Dn mice mandibles (N=7) with a sample of normal lit-
termates (N=13).

Form difference matrix

In this example, the mean form estimated from the normal mouse
mandible is used as the numerator, and the estimated mean form of the
Ts65Dn mandible is used as the denominator in an EDMA-I analysis.
The null hypothesis is that the shapes of the two mean forms are simi-
lar. The form difference matrix is presented in matrix format (Table
4.2). Since the form difference matrix is symmetric, we present only the
diagonal elements (all equal to zero) and lower off-diagonal elements.

Observations can be made by simple inspection of the form differ-
ence matrix. For example, it is easy to see that elements that are
greater than one far out number elements that are less than one. This
means that the normal mandible is generally larger than the Ts65Dn
mandible along most dimensions. It also appears that many of the lin-
ear distances that have landmark 1 as an endpoint (look to the column
labeled LND 1) are of relatively greater magnitude than elements
associated with other landmarks.

Inspecting the form difference matrix in this way is not systematic
and can become tedious, especially as the number of landmarks
increases. One way to look for patterns among the linear distances in
terms of their contribution to the difference in forms is to calculate con-
fidence intervals for the linear distances.



Table 4.2. The form difference matrix for the comparison of the Ts65Dn and normal mouse mandibles

LND 1 LND 2 LND 3 LND 4 LND 5 LND 6 LND 7 LND 8 LND 9 LND 10 LND 11
LANDMARK 1 0.000 
LANDMARK 2 1.090 0.000 
LANDMARK 3 0.793 1.147 0.000 
LANDMARK 4 0.883 1.150 1.021 0.000 
LANDMARK 5 1.147 1.102 1.029 1.032 0.000
LANDMARK 6 1.141 1.044 1.017 1.015 0.987 0.000 
LANDMARK 7 1.133 1.051 1.024 1.024 1.011 1.055 0.000
LANDMARK 8 1.150 1.067 1.036 1.034 1.030 1.068 1.054 0.000
LANDMARK 9 1.170 1.070 1.025 1.025 1.014 1.108 1.020 1.038 0.000 
LANDMARK 10 1.196 1.068 1.018 1.019 0.994 1.053 1.040 1.076 1.000 0.000 
LANDMARK 11 1.259 1.084 1.011 1.014 1.006 1.054 1.040 1.060 1.050 1.031 0.000 
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90% bootstrap confidence intervals for form difference between
Ts65Dn and normal mouse mandibles

Confidence intervals are calculated following methods outlined previ-
ously in this chapter and detailed in Part 2 of this chapter. Once
confidence intervals are estimated, the form difference matrix is writ-
ten as a vector, along with the lower and upper limits of a 90%
confidence interval. Remember that if the confidence interval does not
contain the value 1 (a value of 1 signifying that two forms are the same
for a particular linear distance), then the null hypothesis that the two
forms are similar for that linear distance is rejected. We have marked
the linear distances that do not contain the value 1 within the confi-
dence interval with a “*”. Of the 55 linear distances, 39 of the confidence
intervals do not contain the value 1.0. This allows us to pinpoint those
measures that do not differ between the two samples as well as those
that do. For example, many of the linear distances that have landmark
4 or 5 as endpoints do not differ between the samples.

Confidence intervals for form differences between Ts65Dn 
and normal mouse mandibles based on 100 resamples 
with α=0.10.

Lower Upper
Limit Estimate Limit

LANDMARK 2 with LANDMARK 1 1.063 1.090 1.111*
LANDMARK 3 with LANDMARK 1 0.767 0.793 0.815*
LANDMARK 3 with LANDMARK 2 1.108 1.147 1.184*
LANDMARK 4 with LANDMARK 1 0.870 0.884 0.894*
LANDMARK 4 with LANDMARK 2 1.093 1.150 1.210*
LANDMARK 4 with LANDMARK 3 0.982 1.021 1.050
LANDMARK 5 with LANDMARK 1 1.111 1.147 1.179*
LANDMARK 5 with LANDMARK 2 1.058 1.102 1.163*
LANDMARK 5 with LANDMARK 3 0.996 1.029 1.072
LANDMARK 5 with LANDMARK 4 1.004 1.032 1.067* 
LANDMARK 6 with LANDMARK 1 1.108 1.142 1.163*
LANDMARK 6 with LANDMARK 2 1.027 1.044 1.061*
LANDMARK 6 with LANDMARK 3 1.002 1.018 1.033*
LANDMARK 6 with LANDMARK 4 0.995 1.015 1.034
LANDMARK 6 with LANDMARK 5 0.869 0.988 1.074
LANDMARK 7 with LANDMARK 1 1.099 1.133 1.156*
LANDMARK 7 with LANDMARK 2 1.031 1.051 1.067*
LANDMARK 7 with LANDMARK 3 1.008 1.025 1.038*
LANDMARK 7 with LANDMARK 4 0.999 1.024 1.040
LANDMARK 7 with LANDMARK 5 0.945 1.011 1.063



LANDMARK 7 with LANDMARK 6 1.019 1.056 1.093*
LANDMARK 8 with LANDMARK 1 1.112 1.151 1.182*
LANDMARK 8 with LANDMARK 2 1.042 1.067 1.093*
LANDMARK 8 with LANDMARK 3 1.015 1.036 1.057*
LANDMARK 8 with LANDMARK 4 1.012 1.035 1.056*
LANDMARK 8 with LANDMARK 5 0.968 1.031 1.077
LANDMARK 8 with LANDMARK 6 1.031 1.068 1.099*
LANDMARK 8 with LANDMARK 7 1.011 1.054 1.109*
LANDMARK 9 with LANDMARK 1 1.130 1.170 1.197*
LANDMARK 9 with LANDMARK 2 1.050 1.070 1.085*
LANDMARK 9 with LANDMARK 3 1.009 1.025 1.037*
LANDMARK 9 with LANDMARK 4 1.003 1.025 1.038*
LANDMARK 9 with LANDMARK 5 0.920 1.014 1.094
LANDMARK 9 with LANDMARK 6 1.069 1.108 1.141*
LANDMARK 9 with LANDMARK 7 0.980 1.020 1.068
LANDMARK 9 with LANDMARK 8 0.989 1.038 1.087
LANDMARK 10 with LANDMARK 1 1.163 1.196 1.217*
LANDMARK 10 with LANDMARK 2 1.049 1.068 1.080*
LANDMARK 10 with LANDMARK 3 1.007 1.018 1.026*
LANDMARK 10 with LANDMARK 4 1.002 1.019 1.028*
LANDMARK 10 with LANDMARK 5 0.918 0.995 1.053
LANDMARK 10 with LANDMARK 6 1.019 1.053 1.079*
LANDMARK 10 with LANDMARK 7 1.001 1.041 1.078*
LANDMARK 10 with LANDMARK 8 1.025 1.077 1.132*
LANDMARK 10 with LANDMARK 9 0.941 1.000 1.062
LANDMARK 11 with LANDMARK 1 1.190 1.259 1.313*
LANDMARK 11 with LANDMARK 2 1.059 1.084 1.104*
LANDMARK 11 with LANDMARK 3 0.992 1.012 1.030
LANDMARK 11 with LANDMARK 4 0.994 1.015 1.031
LANDMARK 11 with LANDMARK 5 0.927 1.006 1.057
LANDMARK 11 with LANDMARK 6 1.021 1.054 1.079*
LANDMARK 11 with LANDMARK 7 1.007 1.041 1.068*
LANDMARK 11 with LANDMARK 8 1.016 1.060 1.099*
LANDMARK 11 with LANDMARK 9 1.012 1.050 1.089*
LANDMARK 11 with LANDMARK 10 0.967 1.031 1.109

Observe the first entry in the vector written above. The estimate 1.090
is greater than 1, indicating that the linear distance from landmark 1
to 2 is larger in the mean normal mandible (numerator) than in the
mean Ts65Dn mandible (denominator). Notice that the confidence
interval for this linear distance does not contain the value 1. A confi-
dence interval that does not contain the value 1 indicates that the two
forms are different for that specific linear distance. Confidence inter-
vals for distances between landmarks 3 and 4, and 3 and 5 contain the
value 1 and indicate that these distances are not significantly different
in the two samples using the α�0.10 confidence limits.



Next, consider the confidence interval calculated for the distance
between landmarks 1 and 3. This interval does not include 1, but unlike
the previous estimate examined, this estimate is less than 1. We inter-
pret this as indicating that the distance between landmarks 1 and 3 is
significantly smaller in the mean normal hemi-mandible relative to the
mean Ts65Dn hemi-mandible.

Testing the null hypothesis of similarity 
in form using EDMA-I

One way to organize EDMA output is to write the form difference
matrix as a vector and sort the elements from smallest to largest val-
ues. This format is shown below. It is convenient to write the output in
this format when the EDMA-I test is used to determine whether or not
we can reject the null hypothesis of similarity in shape. The Bootstrap
test, described previously in this chapter, is applied and the output is
given below.

Form Difference Matrix (Sorted from Minimum to Maximum)

LANDMARK 3 with LANDMARK 1 0.79328
LANDMARK 4 with LANDMARK 1 0.88377
LANDMARK 6 with LANDMARK 5 0.98774
LANDMARK 10 with LANDMARK 5 0.99459
LANDMARK 10 with LANDMARK 9 1.00024
LANDMARK 11 with LANDMARK 5 1.00576
LANDMARK 7 with LANDMARK 5 1.01100
LANDMARK 11 with LANDMARK 3 1.01177
LANDMARK 9 with LANDMARK 5 1.01416
LANDMARK 11 with LANDMARK 4 1.01458
LANDMARK 6 with LANDMARK 4 1.01521
LANDMARK 6 with LANDMARK 3 1.01765
LANDMARK 10 with LANDMARK 3 1.01787
LANDMARK 10 with LANDMARK 4 1.01864
LANDMARK 9 with LANDMARK 7 1.02009
LANDMARK 4 with LANDMARK 3 1.02135
LANDMARK 7 with LANDMARK 4 1.02390
LANDMARK 7 with LANDMARK 3 1.02461
LANDMARK 9 with LANDMARK 3 1.02535
LANDMARK 9 with LANDMARK 4 1.02547
LANDMARK 5 with LANDMARK 3 1.02934
LANDMARK 8 with LANDMARK 5 1.03074
LANDMARK 11 with LANDMARK 10 1.03110
LANDMARK 5 with LANDMARK 4 1.03244
LANDMARK 8 with LANDMARK 4 1.03452



LANDMARK 8 with LANDMARK 3 1.03625
LANDMARK 9 with LANDMARK 8 1.03834
LANDMARK 10 with LANDMARK 7 1.04054
LANDMARK 11 with LANDMARK 7 1.04073
LANDMARK 6 with LANDMARK 2 1.04363
LANDMARK 11 with LANDMARK 9 1.05043
LANDMARK 7 with LANDMARK 2 1.05127
LANDMARK 10 with LANDMARK 6 1.05319
LANDMARK 8 with LANDMARK 7 1.05413
LANDMARK 11 with LANDMARK 6 1.05423
LANDMARK 7 with LANDMARK 6 1.05551
LANDMARK 11 with LANDMARK 8 1.06014
LANDMARK 8 with LANDMARK 2 1.06728
LANDMARK 8 with LANDMARK 6 1.06791
LANDMARK 10 with LANDMARK 2 1.06810
LANDMARK 9 with LANDMARK 2 1.06964
LANDMARK 10 with LANDMARK 8 1.07662
LANDMARK 11 with LANDMARK 2 1.08393
LANDMARK 2 with LANDMARK 1 1.09016
LANDMARK 5 with LANDMARK 2 1.10249
LANDMARK 9 with LANDMARK 6 1.10790
LANDMARK 7 with LANDMARK 1 1.13338
LANDMARK 6 with LANDMARK 1 1.14152
LANDMARK 5 with LANDMARK 1 1.14671
LANDMARK 3 with LANDMARK 2 1.14706
LANDMARK 4 with LANDMARK 2 1.15007
LANDMARK 8 with LANDMARK 1 1.15058
LANDMARK 9 with LANDMARK 1 1.17023
LANDMARK 10 with LANDMARK 1 1.19642
LANDMARK 11 with LANDMARK 1 1.25924

Tobs [�max/min of FDM or 1.25/0.79 ] � 1.58
p-value� 0.005

Since Tobs, the observed value of T calculated from the data, lies in the
extreme tail of the distribution of bootstrapped T-values, we reject the
null hypothesis of similarity in shape. Remember that the p-value rep-
resents the probability of obtaining the observed value of T when the
two populations are identical in shape. Remember also that this is a
one-way test. We selected the normal sample as the baseline group
because of its larger sample size. This test enables us to formally state
that the average form of the Ts65Dn mandible (test sample) is signifi-
cantly different from the average form of the normal sample (baseline
group). If sample size permits, and the investigator believes it neces-
sary, the test can be run again using the alternate sample as the
baseline sample.



Table 4.3. Distribution of Bootstrapped T Statistics:

T
1.028 |*****
1.057 |*****************************************
1.087 |***************************************************************
1.116 |*************************************************
1.146 |***********************
1.175 |************
1.205 |***
1.234 |****
1.264 |
1.293 |
1.322 |
1.352 |
1.381 |
1.411 |
1.440 |
1.470 |
1.499 |
1.528 |
1.558 |
1.587 |Tobs

Testing the null hypothesis of similarity in form using EDMA-II

EDMA-II was developed for testing the difference in shapes of two
populations where the variance-covariance matrices are not equal. As
described in Chapter 1, the Ts65Dn mouse is a model for Down syn-
drome. Previous quantitative studies of the craniofacial phenotype in
children with Down syndrome have documented increased variability
in this group as compared to unaffected children (Kisling 1966;
Thelander and Pryor, 1966; Frostad, Cleall et al., 1971; Cronk and
Reed, 1981). Because Ts65Dn mice are at dosage imbalance for many
of the same genes duplicated in Down syndrome (Richtsmeier, Baxter
et al., 2000), it may be necessary to adopt a working hypothesis that
the Ts65Dn mouse will also show increased variability as compared to
euploid littermates. If evidence for the working hypothesis is found,
application of EDMA-I to these samples may be inappropriate and
EDMA-II testing should be implemented.



Using the estimators of mean form and variance-covariance struc-
ture described above, we estimate the mean shapes for the two
populations and calculate the shape difference. In the example below,
we use the geometric mean of the distances among mandibular land-
marks as the scaling factor and standardize the form difference matrix
for a sample by dividing each entry by the scaling factor calculated for
that sample. The result is a mean shape matrix that is dependent upon
the choice of scaling factor. In other words, if a scientific reason exists
for choosing an alternate measure as a scaling factor (i.e., the length of
a particular linear distance), the mean shape matrix will change. The
null hypothesis that the shapes are similar is tested using a paramet-
ric Bootstrap (i.e., Monte Carlo) procedure (see previous description of
EDMA-II this section and Part 2 of this chapter).

This example uses the same landmark data from the Ts65Dn and
normal mandibles used in the EDMA-I example above. The mean form
matrices estimated for these samples were given in Chapter 2. The
scaling variables for the two samples are:

Geometric mean for linear distances from the normal sample: 5.23902
Geometric mean for linear distances from the Ts65Dn sample: 4.98840
Difference in geometric means between samples: 0.25062

Dividing each entry of the mean form matrix estimated for each sam-
ple by the sample-specific scaling factors, we arrive at a shape matrix
for each sample.

Elements of the shape difference matrix represent the difference
between like-linear distances in the two samples:



Shape matrix for the normal mandibles  (each linear distance divided by the geometric mean):

LND 1 0.00000 
LND 2 1.28673 0.00000 
LND 3 0.40283 0.96729 0.00000 
LND 4 0.75299 0.80826 0.35283 0.00000 
LND 5 1.07724 1.06845 1.10641 1.29204 0.00000 
LND 6 1.39685 1.41786 1.47406 1.67151 0.41324 0.00000 
LND 7 1.78392 2.12376 1.98717 2.25082 1.06821 0.72240 0.00000 
LND 8 1.75649 2.35898 2.03003 2.33225 1.31861 1.05632 0.46110 0.00000 
LND 9 1.34111 1.74983 1.54388 1.81640 0.69138 0.47966 0.45293 0.63439 0.00000 
LND 10 1.13230 1.72623 1.37657 1.67467 0.72994 0.64785 0.66296 0.67199 0.26851 0.00000 
LND 11 0.82424 1.44277 1.04616 1.34444 0.55934 0.67873 0.96170 1.00431 0.51771 0.33480 0.00000

Shape matrix for the Ts65Dn mandibles:
LND 1 0.00000 
LND 2 1.23961 0.00000 
LND 3 0.53332 0.88564 0.00000 
LND 4 0.89483 0.73810 0.36281 0.00000 
LND 5 0.98661 1.01781 1.12888 1.31431 0.00000 
LND 6 1.28516 1.42684 1.52127 1.72919 0.43939 0.00000 
LND 7 1.65306 2.12167 2.03688 2.30872 1.10967 0.71879 0.00000 
LND 8 1.60331 2.32131 2.05743 2.36769 1.34356 1.03884 0.45939 0.00000 
LND 9 1.20360 1.71808 1.58135 1.86028 0.71598 0.45470 0.46631 0.64166 0.00000 
LND 10 0.99395 1.69737 1.42035 1.72662 0.77078 0.64604 0.66914 0.65553 0.28193 0.00000 
LND 11 0.68744 1.39793 1.08593 1.39170 0.58408 0.67616 0.97048 0.99493 0.51762 0.34101 0.00000



Shape difference matrix:

LND 1 0.00000 

LND 2 0.04712 0.00000 

LND 3 -0.13049 0.08164 0.00000 

LND 4 -0.14184 0.07016 -0.00998 0.00000 

LND 5 0.09063 0.05064 -0.02247 -0.02227 0.00000 

LND 6 0.11170 -0.00898 -0.04721 -0.05767 -0.02615 0.00000 

LND 7 0.13085 0.00209 -0.04971 -0.05790 -0.04146 0.00361 0.00000 

LND 8 0.15318 0.03767 -0.02740 -0.03544 -0.02495 0.01748 0.00170 0.00000 

LND 9 0.13751 0.03174 -0.03747 -0.04388 -0.02460 0.02496 -0.01339 -0.00727 0.00000 

LND 10 0.13835 0.02886 -0.04378 -0.05195 -0.04084 0.00181 -0.00618 0.01647 -0.01342 0.00000 

LND 11 0.13680 0.04484 -0.03978 -0.04726 -0.02474 0.00257 -0.00879 0.00938 0.00009 -0.00622 0.00000
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Shape-Difference Matrix Written in Vector Format Sorted
From Minimum to Maximum:

LND 1 LND 4 -0.14184
LND 1 LND 3 -0.13049
LND 4 LND 7 -0.05790
LND 4 LND 6 -0.05767
LND 4 LND 10 -0.05195
LND 3 LND 7 -0.04971
LND 4 LND 11 -0.04726
LND 3 LND 6 -0.04721
LND 4 LND 9 -0.04388
LND 3 LND 10 -0.04378
LND 5 LND 7 -0.04146
LND 5 LND 10 -0.04084
LND 3 LND 11 -0.03978
LND 3 LND 9 -0.03747
LND 4 LND 8 -0.03544
LND 3 LND 8 -0.02740
LND 5 LND 6 -0.02615
LND 5 LND 8 -0.02495
LND 5 LND 11 -0.02474
LND 5 LND 9 -0.02460
LND 3 LND 5 -0.02247
LND 4 LND 5 -0.02227
LND 9 LND 10 -0.01342
LND 7 LND 9 -0.01339
LND 3 LND 4 -0.00998
LND 2 LND 6 -0.00898
LND 7 LND 11 -0.00879
LND 8 LND 9 -0.00727
LND 10 LND 11 -0.00622
LND 7 LND 10 -0.00618
LND 9 LND 11 0.00009
LND 7 LND 8 0.00170
LND 6 LND 10 0.00181
LND 2 LND 7 0.00209
LND 6 LND 11 0.00257
LND 6 LND 7 0.00361
LND 8 LND 11 0.00938
LND 8 LND 10 0.01647
LND 6 LND 8 0.01748
LND 6 LND 9 0.02496
LND 2 LND 10 0.02886
LND 2 LND 9 0.03174
LND 2 LND 8 0.03767
LND 2 LND 11 0.04484
LND 1 LND 2 0.04712



LND 2 LND 5 0.05064
LND 2 LND 4 0.07016
LND 2 LND 3 0.08164
LND 1 LND 5 0.09063
LND 1 LND 6 0.11170
LND 1 LND 7 0.13085
LND 1 LND 11 0.13680
LND 1 LND 9 0.13751
LND 1 LND 10 0.13835
LND 1 LND 8 0.15318

Z statistic: 0.15318
In this example, the element at the positive end of the vector is far-

ther from 1 than the element at the negative end of the vector (the
shape difference between LND 1 and LND 8 � 0.15318 while the shape
difference between LND 1 and LND 4  � �.14184), and so the former
is chosen as the Z statistic. Using the parametric bootstrap procedure
described previously, a 90% confidence interval for the Z statistic is
estimated and shown below.

Table 4.4. Confidence Interval for Z with α � 0.100

Distribution of Bootstrapped Z Statistics
-0.179 |*
-0.158 |***********
-0.138 |*********
-0.118 |
-0.098 |
-0.078 |
-0.058 |
-0.037 |
-0.017 |
0.003 |
0.023 |
0.043 |
0.064 |
0.084 |
0.104 |
0.124 |****
0.144 |Z******************************
0.164 |********************************
0.185 |************
0.205 |*

Upper bound: 0.18138    Lower bound: -0.16500



Since this confidence interval contains zero, these results do not allow
us to reject the null hypothesis of similarity in shapes between the two
samples. This result is in contrast to the result obtained using EDMA-
I. Can this be explained? Recall that at the end of the description of
EDMA-II, we remarked that if the magnitudes of the extreme negative
element and the extreme positive element are similar, careful atten-
tion must be paid while applying and interpreting the results of
EDMA-II. Observe that the bootstrap distribution of the test statistics
is bimodal with a dip near zero. This suggests that the two shapes are
different from each other, but because the two ends of the shape dif-
ference matrix are so similar, the test cannot determine if it is the
positive end or the negative end that is more important. Instead of pro-
viding a summary measure that conveys this information, the
summary measure tells the investigator that the forms are not differ-
ent in shape, when they are clearly different. When the distribution of
bootstrapped Z statistics is bimodal, the magnitudes of the extreme
negative element and the extreme positive element should be checked
for similarity in absolute value, and additional data exploration tech-
niques should be used. This is an additional reason why we stress the
use of the confidence interval procedure and advise against the isolat-
ed testing of a simple null hypothesis of equality of shapes.

In a case like this one where evidence points to a difference in the
form of the two populations that are being compared, we may want to
determine the role of scale in the difference. To examine this aspect of
difference in form, confidence intervals for difference in scale (size) of
the two populations can be estimated. To do this, we follow the same
methods for generating bootstrapped samples as described above. For
each pair of bootstrapped samples, the absolute difference in scaling
variable is calculated. A distribution of the scaling variables is obtained
in this way. A confidence interval can be obtained by sorting these boot-
strapped scaling variables in ascending order. If this confidence interval
contains zero, it indicates that there is no significant difference in the
size of the forms representing the two populations (according to the cho-
sen measure of size). For the example above, we calculate the confidence
interval for the difference in the geometric means.



Table 4.5. Confidence Interval for Scale Difference with α � 0.100

Distribution of Bootstrapped Scale Differences
-1.961 |**
0.146 |**
0.160 |**
0.174 |**
0.187 |***
0.201 |*****
0.214 |**********
0.228 |*************
0.242 |***************
0.255 |D********
0.269 |**************
0.283 |*********
0.296 |*****
0.310 |*****
0.323 |**
0.337 |**
0.351 |*
0.364 |
0.378 |*
0.391 |
0.405 |*

Upper bound: 0.32669       Lower bound: 0.15548

This confidence interval (Table 4.5) does not contains zero and
therefore suggests that the two populations do not differ significantly
in scale. Remember, however, that there is no single value that repre-
sents “size” and that this result may change depending upon the
chosen scaling factor. With no evidence for a difference in size, confi-
dence intervals for the estimated shape difference matrix can be
examined.

Confidence Intervals for Shape Differences Based on 100
Resamples with α � 0.10

Lower Limit Estimate Higher Limit
LND 1 LND 2 0.003 0.047 0.076
LND 1 LND 3 -0.159 -0.130 -0.112
LND 2 LND 3 0.055 0.082 0.107
LND 1 LND 4 -0.165 -0.142 -0.123
LND 2 LND 4 0.042 0.070 0.092
LND 3 LND 4 -0.027 -0.010 0.004



LND 1 LND 5 0.054 0.091 0.127
LND 2 LND 5 -0.003 0.051 0.085
LND 3 LND 5 -0.068 -0.022 0.021
LND 4 LND 5 -0.076 -0.022 0.019
LND 1 LND 6 0.072 0.112 0.136
LND 2 LND 6 -0.028 -0.009 0.009
LND 3 LND 6 -0.080 -0.047 -0.023
LND 4 LND 6 -0.093 -0.058 -0.034
LND 5 LND 6 -0.064 -0.026 0.014
LND 1 LND 7 0.099 0.131 0.157
LND 2 LND 7 -0.016 0.002 0.021
LND 3 LND 7 -0.076 -0.050 -0.032
LND 4 LND 7 -0.085 -0.058 -0.036
LND 5 LND 7 -0.084 -0.041 0.005
LND 6 LND 7 -0.014 0.004 0.019
LND 1 LND 8 0.126 0.153 0.181
LND 2 LND 8 0.017 0.038 0.068
LND 3 LND 8 -0.044 -0.027 -0.009
LND 4 LND 8 -0.057 -0.035 -0.018
LND 5 LND 8 -0.075 -0.025 0.026
LND 6 LND 8 -0.010 0.017 0.044
LND 7 LND 8 -0.014 0.002 0.016
LND 1 LND 9 0.106 0.138 0.159
LND 2 LND 9 0.014 0.032 0.053
LND 3 LND 9 -0.059 -0.037 -0.020
LND 4 LND 9 -0.064 -0.044 -0.023
LND 5 LND 9 -0.062 -0.025 0.015
LND 6 LND 9 0.013 0.025 0.038
LND 7 LND 9 -0.026 -0.013 -0.005
LND 8 LND 9 -0.024 -0.007 0.010
LND 1 LND 10 0.117 0.138 0.158
LND 2 LND 10 0.005 0.029 0.053
LND 3 LND 10 -0.064 -0.044 -0.026
LND 4 LND 10 -0.072 -0.052 -0.032
LND 5 LND 10 -0.086 -0.041 -0.003
LND 6 LND 10 -0.017 0.002 0.016
LND 7 LND 10 -0.023 -0.006 0.007
LND 8 LND 10 -0.005 0.016 0.033
LND 9 LND 10 -0.026 -0.013 -0.002
LND 1 LND 11 0.107 0.137 0.159
LND 2 LND 11 0.022 0.045 0.065
LND 3 LND 11 -0.062 -0.040 -0.019
LND 4 LND 11 -0.071 -0.047 -0.023
LND 5 LND 11 -0.064 -0.025 0.011
LND 6 LND 11 -0.016 0.003 0.021
LND 7 LND 11 -0.026 -0.009 0.006
LND 8 LND 11 -0.018 0.009 0.031
LND 9 LND 11 -0.016 0.000 0.013
LND 10 LND 11 -0.024 -0.006 0.011



Most confidence intervals excepting those that have landmarks 1 or 2 as
an end point include zero within the confidence interval. This result
localizes differences in shape to two landmarks, the coronoid process
(landmark 1) and the mandibular angle (landmark 2).

A non-statistical approach to exploring the shape or form 
difference

Simple inspection of the form difference matrix written as a sorted vec-
tor (see section for testing the null hypothesis using EDMA-I above)
makes certain observations evident. First, the two smallest values
within the form different matrix are considerably smaller than any
other values in the matrix. Second, these two values are associated
with linear distances that share landmark 1 as an endpoint. Third, the
normal mouse (the numerator sample) is equal to or larger than the
Ts65Dn mouse for all other linear distances. This informs us that the
distance between landmarks 1 and 3 and landmarks 1 and 4 are
markedly different between the two samples, but also differ from the
overall pattern of form difference between the samples.

Look now to the other extreme of the vector. Landmark 1 also
appears as an endpoint for many of the linear distances that have rel-
atively large magnitudes. Since the normal mouse is being used as the
numerator in this calculation, linear distances at this end of the matrix
are relatively larger in the mandibles of the normal mice. Clearly, land-
mark 1 is being revealed as a landmark that is influential to the
difference between the mandibular morphology of these two popula-
tions. Our goal is to explain how some linear distances that have
landmark 1 as an endpoint are smaller than normal in the Ts65Dn
mandible while others are larger than normal.

Pictures of the mean forms can be helpful in interpreting this out-
put. Consider Figure 4.10. In this figure we indicate those linear
distances associated with landmark 1 that are larger in the Ts65Dn
aneuploid mandible (from 1 to 3 and from 1 to 4) using a bold line.
Those linear distances associated with landmark 1 that are smaller in
the Ts65Dn aneuploid mandible are shown using a thin line.
Landmark 1 is located on the apex of a process that is a site of attach-
ment for one of the larger muscles of mastication. Linear distances
originating from the coronoid process (landmark 1) and stretching
along a posteroinferior axis are larger, while linear distances originat-
ing at landmark 1 but stretching along an anteroinferior axis are
smaller in the Ts65Dn mandible. We propose that a local change in the



morphology of the coronoid process has occurred that results in reduc-
tion of the overall process and anterior migration of its apex. Such a
local change in morphology can account for the specific pattern of dif-
ferences in linear distances on the mouse mandible.

The delete-one landmark approach

Another way to determine the influence of a particular landmark on
the overall form difference is to re-run the EDMA-I or EDMA-II anal-
ysis after deleting one or more landmarks. Since we have found
landmark 1 to be at both the minimum and maximum extremes of the
form difference matrix calculated using all eleven landmarks, we run
the EDMA-I analysis again, after deleting landmark 1.

Inspection of the form difference matrix indicates that the number
of linear distances that are less than 1 has decreased. Below, we write
the form difference matrix as a vector and observe the minimum and
maximum values.

Form Difference matrix with landmark 1 deleted written as a
sorted vector:

LND 6 LND 5 0.98568
LND 10 LND 5 0.99466
LND 10 LND 9 1.00052
LND 11 LND 5 1.00662

Figure 4.10. Differences in mandibular morphology between Ts65Dn aneuploid mice
and their normal littermates. Thin lines indicate those linear distances that are small-
er in the aneuploid individuals, while the bold lines indicate those linear distances
that are larger in the aneuploid individuals. Interpretation of these results are that
the morphology of the coronoid process (landmark 1, indicated by arrow) has changed
such that the tip has moved more anteriorly and inferiorly.



Form difference matrix for the normal to Ts65Dn mandible comparison with landmark 1 deleted:

LND 2 LND 3 LND 4 LND 5 LND 6 LND 7 LND 8 LND 9 LND 10 LND 11

LND 2 0.00000 
LND 3 1.14628 0.00000 
LND 4 1.15038 1.01674 0.00000 
LND 5 1.10241 1.02920 1.03239 0.00000 
LND 6 1.04358 1.01710 1.01522 0.98568 0.00000 
LND 7 1.05127 1.02451 1.02395 1.01102 1.05524 0.00000 
LND 8 1.06729 1.03612 1.03454 1.03070 1.06781 1.05422 0.00000 
LND 9 1.06964 1.02529 1.02543 1.01432 1.10527 1.02059 1.03828 0.00000 
LND 10 1.06811 1.01778 1.01859 0.99466 1.05230 1.04098 1.07670 1.00052 0.00000 
LND 11 1.08413 1.01178 1.01459 1.00662 1.05392 1.04132 1.06053 1.05073 1.03194 0.00000
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LND 7 LND 5 1.01102
LND 11 LND 3 1.01178
LND 9 LND 5 1.01432
LND 11 LND 4 1.01459
LND 6 LND 4 1.01522
LND 4 LND 3 1.01674
LND 6 LND 3  1.01710
LND 10 LND 3 1.01778
LND 10 LND 4 1.01859
LND 9 LND 7  1.02059
LND 7 LND 4 1.02395
LND 7 LND 3 1.02451
LND 9 LND 3 1.02529
LND 9 LND 4 1.02543
LND 5 LND 3  1.02920
LND 8 LND 5 1.03070
LND 11 LND 10 1.03194
LND 5 LND 4 1.03239
LND 8 LND 4 1.03454
LND 8 LND 3 1.03612
LND 9 LND 8 1.03828
LND 10 LND 7 1.04098
LND 11 LND 7  1.04132
LND 6 LND 2  1.04358
LND 11 LND 9 1.05073
LND 7 LND 2  1.05127
LND 10 LND 6 1.05230
LND 11 LND 6 1.05392
LND 8 LND 7 1.05422
LND 7 LND 6  1.05524
LND 11 LND 8 1.06053
LND 8 LND 2 1.06729
LND 8 LND 6 1.06781
LND 10 LND 2  1.06811
LND 9 LND 2  1.06964
LND 10 LND 8 1.07670
LND 11 LND 2 1.08413
LND 5 LND 2 1.10241
LND 9 LND 6 1.10527
LND 3 LND 2 1.14628
LND 4 LND 2 1.15038

T statistic [=max/min]: 1.16709

Notice that the value of the observed T statistic, Tobs, has been reduced
from 1.587 (when all landmarks were included in the analysis) to
1.167. This indicates that landmark 1 was important to the overall
form difference. The test of the null hypothesis using the reduced land-
mark set indicates the same finding.

p-value = 0.06



Table 4.7. Distribution of Bootstrapped T Statistics
1.034 |****
1.044 |***********
1.054 |***************
1.064 |**********************
1.074 |*********************
1.085 |***************************
1.095 |********************
1.105 |*****************
1.115 |***********
1.125 |*****************
1.136 |*******
1.146 |*****
1.156 |**********
1.166 |**Tobs

1.176 |****
1.186 |***
1.197 |**
1.207 |
1.217 |*
1.227 |*

When confidence intervals are estimated for the reduced set of
landmarks (see below), the exact values of the confidence intervals will
not be the same as when these are estimated with all eleven land-
marks. This occurs due to changes in the estimates for �K* or the
boostrapping procedures when landmarks are added to or subtracted
from analysis (review Chapter 3).

90% confidence intervals for form differences between Ts65Dn
and normal mouse mandibles after deleting landmark1:

Low Estimate High
LND 3 LND 2 1.105 1.146 1.179
LND 4 LND 2 1.091 1.150 1.215
LND 4 LND 3 0.984 1.017 1.056
LND 5 LND 2 1.053 1.102 1.160
LND 5 LND 3 1.005 1.029 1.063
LND 5 LND 4 1.007 1.032 1.068



LND 6 LND 2 1.027 1.044 1.058
LND 6 LND 3 1.001 1.017 1.029
LND 6 LND 4 0.998 1.015 1.028
LND 6 LND 5 0.881 0.986 1.081
LND 7 LND 2 1.035 1.051 1.065
LND 7 LND 3 1.011 1.025 1.038
LND 7 LND 4 1.008 1.024 1.040
LND 7 LND 5 0.939 1.011 1.068
LND 7 LND 6 1.017 1.055 1.092
LND 8 LND 2 1.046 1.067 1.087
LND 8 LND 3 1.017 1.036 1.056
LND 8 LND 4 1.013 1.035 1.054
LND 8 LND 5 0.976 1.031 1.080
LND 8 LND 6 1.038 1.068 1.101
LND 8 LND 7 1.015 1.054 1.112
LND 9 LND 2 1.052 1.070 1.084
LND 9 LND 3 1.009 1.025 1.038
LND 9 LND 4 1.010 1.025 1.041
LND 9 LND 5 0.922 1.014 1.099
LND 9 LND 6 1.057 1.105 1.145
LND 9 LND 7 0.993 1.021 1.057
LND 9 LND 8 1.002 1.038 1.090
LND 10 LND 2 1.051 1.068 1.082
LND 10 LND 3 1.006 1.018 1.028
LND 10 LND 4 1.006 1.019 1.030
LND 10 LND 5 0.919 0.995 1.059
LND 10 LND 6 1.021 1.052 1.084
LND 10 LND 7 1.006 1.041 1.074
LND 10 LND 8 1.032 1.077 1.131
LND 10 LND 9 0.940 1.001 1.055
LND 11 LND 2 1.063 1.084 1.106
LND 11 LND 3 0.989 1.012 1.031
LND 11 LND 4 0.994 1.015 1.033
LND 11 LND 5 0.932 1.007 1.068
LND 11 LND 6 1.026 1.054 1.077
LND 11 LND 7 1.013 1.041 1.065
LND 11 LND 8 1.029 1.061 1.094
LND 11 LND 9 1.011 1.051 1.086
LND 11 LND 10 0.967 1.032 1.105

A simple graphical technique

Another way to determine the influence of particular landmarks is to
view the elements of the form difference matrix as a scatter plot. This
approach provides a visual impression of which landmarks are most
influential in determining the difference between forms. Figure 4.11



provides such a scatter plot for the comparison of the Ts65Dn and nor-
mal mouse mandibles using all eleven landmarks. Landmark numbers
are written along the horizontal axis while values of the off-diagonal
elements of the form difference matrix (the form difference ratios) are
on the vertical axis. Remember that since the form difference matrix is
a square, symmetric matrix, the ratio for each linear distance appears
twice. The value of any particular ratio will appear once in the column
for each landmark that marks an endpoint of any linear distance.

In our example, the greatest dispersion of matrix values associated
with a single landmark is seen local to landmark 1. If we substitute an
alternate symbol for ratios corresponding to linear distances that have
landmark 1 as an endpoint, the influence of landmark 1 to the form dif-
ference becomes even more obvious (Figure 4.11b). The largest matrix
values associated with landmarks 4 through 11 involve landmark 1,
and the smallest matrix values associated with landmarks 3 and 4
involve landmark 1. Visual inspection of this scatter plot provides the
researcher with evidence to pursue the role of landmark 1 in determin-
ing the difference between these two populations of forms.

Figure 4.11 Graph of the results of an EDMA comparison of the Ts65Dn aneuploid
mandibles with their normal littermates shown on a scatter plot. The Y-axis represents
the value of the elements of the form difference matrix while landmark numbers are
shown along the X-axis. The ratio value for the comparison of each linear distance is
shown twice on the graph, once for each landmark that is an endpoint for the linear dis-
tance. Figure 4.11a shows that the largest range of ratio values are associated with
linear distances that have landmark 1 as an endpoint. In Figure 4.11b all ratios associ-
ated with linear distances that have landmark 1 as an endpoint are graphed as closed
diamonds showing that the outlying values (in either the direction greater than or less
than 1) for each landmark map to the distance between that landmark and landmark 1.



4.13 Summary

This chapter has provided the basic tools for comparing forms using
EDMA. We have provided explanations for the inadequacy of superim-
position and deformation approaches to the comparison of forms. We
have provided an invariant approach to the statistical analysis of bio-
logical forms, along with the analysis of example data sets to illustrate
the nuances of our approach. We have underscored the importance of
careful application of our methods and thoughtful interpretation of the
results. Part 2 of this chapter presents the statistical theory and the
computational algorithms for the comparison of forms. Chapter 5 pre-
sents the use of these methods in the study of growth.



In Chapter 3, we studied the effects of the nuisance parameters of
translation, rotation, and reflection on the identifiability and estima-
tion of the mean form and the covariance parameters. In particular, it
was shown that mean forms are identifiable only up to the orbit to
which they belong and not their precise location on the orbit. In this
chapter, we study the effect of nuisance parameters on the identifia-
bility and estimation of the differences in the mean forms of two
populations.

The statistical setting is as follows. We have two populations under
study. Following the convention of the last chapter we assume that
they follow matrix valued Gaussian distributions. Let X1, X2,…, Xn be
the landmark coordinate matrices for the sample of n individuals from
the first population. Let us assume that Xi ~ N(M1Ri � 1ti, �K,1, RiT�D,1Ri)
for i � 1,2,…, n. Similarly, let Y1, Y2,…, Ym be the landmark coordinate
matrices for the sample of m individuals from the second population.
Let us assume that Yj ~ N(M2Rj � 1tj, �K,2, RjT �D,2Rj) for j � 1,2,…, m.

When comparing two forms, the interest usually lies in studying
the relationship between the two mean forms M1 and M2. Recall that
mean forms are identifiable only up to the orbit to which they belong
and the precise location on this orbit cannot be specified. An implica-
tion of this result is that we can estimate those differences between the
mean forms that depend only on the specification of the orbits and that
we cannot estimate differences that require information as to a specif-
ic location on the orbit. Hence, we make the following definition.

Definition 1: Let Diff (M1, M2) be a measure of the difference
between two mean forms M1 and M2. Then Diff (M1, M2) is an invariant
measure of form difference if and only if Diff (M1, M2) � Diff (M1R1 �

1t1T, M2R2 � 1t2T ) for all orthogonal matrices Ri and translation vectors ti.
In other words, the notion of form difference should not depend on
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which members of the two orbits, corresponding to M1 and M2, are cho-
sen to calculate the form difference. One should be able to take any
member of the first orbit, any member of the second orbit, and calcu-
late a form difference that is invariant to the choice of the particular
members.

There are several different measures of form difference that are
used in practice. We examine some of the prominent ones in light of the
above definition.

4.14 Deformation approach to form difference

Let M1 and M2 be two mean forms under consideration. A typical way
to represent the relationship between M1 and M2 is to consider M1

being deformed into M2 by a function h. Typically a parametric family
of functions represents this deformation. Thus we have M2 = h(M1, o/ )
and the value of the parameter o/ helps us understand the underlying
biological mechanisms that are associated with this deformation.

To make the basic ideas understandable, let us consider the simplest
case of two-dimensional objects with three landmarks each. We assume
that the only possible deformation is of the simplest type — an affine
deformation. Under this model, M2 � M1 A � 1tT where A is any 2 x 2
matrix and t is a translation vector. Thus the parameter of interest is A
and t is the nuisance parameter. It is easy to see that A � (LM1)-1(LM2)
where L is the translation matrix defined in Chapter 3. A physical inter-
pretation can be given to this matrix A by writing its singular value
decomposition in the following manner (Goodall and Green, 1986):

The angle 0– corresponds to the initial rotation to the principal axes
of M1, the singular values p and q correspond to the stretching along
the principal axes and the angle 	 corresponds to the rotation of the
deformed M1 to match exactly with M2. From the scientific point of
view, the parameters of interest are (0–, p,q) because they contribute to
the deformation, whereas the parameter 	 does not. Let us examine
whether A is invariant as a measure of form difference. In the notation
used in definition 1, Diff(M1, M2) � A � (LM1)-1(LM2), whereas, Diff(M1R1

� 1t1T,M2, R2 � 1t2T) � R1-1AR2 � R1-1Diff(M1, M2)R2. Thus, this measure
of form difference is not invariant. It depends on which members of the



orbits are chosen to evaluate the affine deformation. However, if one is
interested in the singular values of the affine deformation matrix A,
then it is clear that singular values are invariant. Thus, the measure
of anisotropy, defined as the logarithm of the ratio of the singular val-
ues (Small, 1996, page 95), is invariant.

The affine deformation is the simplest type of deformation function.
In practice, more complex types of deformation functions are required.
For example, Bookstein (1989, 1991, and 1996) suggests the use of thin
plate splines as a deformation function. An advantage of thin plate
splines is that it depicts the deformation geometrically and that the
total deformation can be decomposed into several orthogonal compo-
nents which, in turn, can be studied in order to localize the form
differences. Such localization, presumably, helps understand the bio-
logical processes that might be responsible for the form change. We
refer the reader to Bookstein’s work for more details and applications.
We would also like to point out that deformation functions other than
the thin-plate splines may also be used.

We now consider the non-invariance of the thin plate splines in
more detail. Assume that the objects under consideration are two-
dimensional. Let dij denote the Euclidean distance between landmarks
i and j in M1, and let U(d) � d2log d2. Let U be a K � K matrix given by
U � [U(dij)]i,j=1,2,…,K. According to the thin plate splines model, the rela-
tionship between the two forms is given by: M2 � 1tT � M1A � UN where
t is the translation parameter, A is a 2 x 2 matrix corresponding to the
affine deformation, and N is a K � 2 matrix corresponding to the non-
affine deformation parameters. Notice that there are (2K � 4 � 2) 
unknown parameters whereas the system of equations given by M2 �
1t � M1A � UN has only 2K equations. In order to make the parameters
identifiable, one needs additional constraints. Traditionally, in the
thin-plate splines literature (e.g.,Cressie, 1991, page 181), additional
constraints are imposed by presuming that the parameter N is such 

that                         The resultant thin-spline function is termed as the 

‘minimum bending energy’ spline.
There are, of course, any number of different external constraints

that may be considered to make the parameters identifiable. A class of
such constraints that is considered in practice (Rohlf, 1996) can be 

described as follows. Let                   and W be any K � K symmetric



matrix. The constraint specifies that the parameters corresponding to
translation and affine deformation are such that 

and then  U-1(M2 �1tT �M1A) �N.

Depending on the choice of the weight matrix, one obtains different
solutions.

An important point to make is that this choice is external to the
group structure. Fixing this constraint is analogous to fixing a linear
constraint among the α i in the model for a one-way ANOVA:
E[y i j] �
�α i. For example, Arnold (1981) considers the constraint

One can also use the constraint α 1 �0 or any number of other 

constraints. For the sake of estimation, such an arbitrary constraint
may be necessary, however when it comes to scientific and statistical
inference, such a constraint should have no effect. For example, in the
analysis of variance, inferences are based only on estimable functions
of the α i’s, which are invariant to the choice of the constraint.

Analogous to the linear models situation, the principle of invari-
ance suggests that such external constraints should have no effect on
the statistical inference when the deformation approach is used to
define form difference. Unfortunately the thin-plate methodology does
not satisfy the principle of invariance. Such lack of invariance is also
unappealing from a scientific point of view. Those inferences that vary
depending on the choice of the external constraints are, generally, sci-
entifically unacceptable. In Part 1, Section 5 of this chapter, we have
illustrated the scientific consequences of this lack of invariance of the
thin-plate splines methodology.

4.15  Superimposition methods for comparison of forms

We now examine the superimposition method for comparing two forms.
For details on this method, we refer the reader to Siegel and Benson
(1982), Rohlf and Slice (1990) and Lele (1991). This method of form dif-
ference analysis has been in use in morphometrics since the beginning
of this century (Cole, 1996) and has been recently proposed by Goodall
(1991) and Rohlf and Slice (1990). Dryden and Mardia (1998) provide
a book length treatment of this approach. Small (1996, page 35) gives



a succinct description of this approach as “an attempt to discover the
shape differences between sets will typically involve a matching of the
sets to determine how differences in the coordinates of corresponding
points can be explained through similarity transformations. Any
residual differences that cannot be explained through similarity trans-
formations can be understood to be due to differences in shape.”

The model used in the superimposition approach may be described
in mathematical terms as follows. Suppose we are interested in
describing the difference in two forms M1 and M2. The superimposition
approach postulates that the two forms are related to each other by the
model: M2�1 tT�M1R�DF where t is a translation parameter, R is an
orthogonal matrix and the matrix DF describes the form difference. If
one is interested in shape differences, the model is given by
M2�1tT�αM1R�DS where α> 0 is a real number, taking into considera-
tion the scaling of an object and the residual matrix DS describes the
shape difference. The model component 1tT�αM1R is known as the sim-
ilarity transformation because the resultant objects after this
transformation are geometrically similar to the original object M1.
According to the superimposition approach, what remains after the
similarity transformation, namely DS, describes the shape difference.

Consider the model describing the form difference:
M2�1tT�M1R�DF. Given M1 and M2, we want to determine t, R and DF

such that this equation is satisfied. Suppose the objects under consid-
eration are two-dimensional. Then, there are 2 parameters related to
translation — one parameter related to the angle of rotation and 2K 
parameters related to the form difference. It can be noted immediate-
ly that there are 2K �3 unknowns and 2K equations, hence, there is no
unique solution. To make the form difference identifiable, superimpo-
sition methods put additional constraints on these parameters. For
example, one Procrustes superimposition approach (Siegel and
Benson, 1982), also known as the least squares fitting criterion, applies
the constraint that the rotation and translation parameters are such
that tr{(M2�M1R�1t)(M2�M1R�1t)T} is minimum. Once the trans-
lation and rotation parameters are fixed in this fashion, the form
difference is well defined. There are other sets of constraints that are
also used in practice. For example, consider the edge superimposition
scheme commonly used in roentgenographic cephalometry. This partic-
ular method of studying form difference translates and rotates M1 in
such a manner that an edge joining a chosen pair of landmarks match-
es with the corresponding edge in M2. This, in effect, imposes the
constraint that one particular row and one other element of DF is zero.



It is easy to show that the form difference matrix DF obtained by the
least squares constraint will be different than the one obtained by the
edge superimposition constraint.

Similar to the discussion of the deformation approach, the principle
of invariance suggests that we should restrict ourselves to inferences
that are invariant to the choice of the external constraint. In Part 1,
Section 5 of this chapter, we have illustrated the practical conse-
quences of the lack of invariance of the superimposition approach. In
the following, we discuss the relationship between invariance and
identifiability in a mathematically rigorous fashion and show that the
transformations considered by the deformation and superimposition
approaches are non-identifiable.

4.16  Matrix transformations, invariance,
and identifiability issues

The problem of studying form differences can be put in terms of study-
ing transformation of one K �D matrix into another K �D matrix. The
invariance ideas described in Chapter 3 can then be easily extended to
the two-sample problem. We then discuss the non-identifiability of the
transformations considered by the superimposition and deformation
approaches. Our argument is that non-identifiable transformations
should not be used for statistical or scientific inferences. We then show
that identifiability is equivalent to invariance. In the next section we
discuss invariant procedures to study form difference.

Consider the class of all transformations that map the space of
K �D matrices to the space of K �D matrices. Let � denote the space of
all K �D matrices. Let H : � → � be the collection of all transformations
that map any given  K �D matrix to another K �D matrix. For exam-
ple, the affine transformation discussed earlier belongs to this class, so
do the thin-plate splines and superimposition transformations belong
to this class.

Recall that two K �D matrices are equivalent to each other if they
are rotations, reflections, and/or translations of each other. We can par-
tition the space � into equivalency classes, each class consisting of
equivalent matrices. Let O(M ) denote the class of matrices equivalent
to a given matrix M.

Let h1 and h2 be two members of H such that h1(MR1�1t1)�h2

(MR2�1t2)R�1t. That is, the resultant matrices from both transforma-
tions acting on equivalent matrices are also equivalent to each other.



We say that these two transformations are equivalent to each other.
Let us denote by HM1,M2, the set of transformations that map an ele-
ment of the orbit of M1 to an element of the orbit of M2.

The key result that follows from the maximal invariance machinery
developed in Chapter 3, Part 2, is that:

For h1,h2 �HM1,M2, likelihood(h1 �Data) �likelihood(h2 �Data).

That is, data cannot help us distinguish between the transforma-
tions that map an element of the orbit of M1 to an element of the orbit
of M2. It is thus imperative that our inferences be invariant to the
choice of a particular transformation within HM1,M2. This is precisely
the requirement specified in definition 1.

It seems, however, that the superimposition and deformation meth-
ods are able to specify a particular transformation from this class. How
is that possible? The superimposition methods choose one of the trans-
formations HM1,M2 using an external criterion such as the least squares.
Similarly the thin-plate splines methods choose a particular transfor-
mation that minimizes the bending energy or some such external
criterion. No amount of data can instruct us which of these external cri-
terion is valid in nature. We have shown in Part 1 of this chapter that
the inferences based on these different criteria can be quite distinct
from each other. Our argument is that since data cannot distinguish
between these different criteria and hence these different scientific
inferences, the proper thing to do is to base statistical and scientific
inferences only on those quantities that remain invariant to the choice
of a particular transformation in HM1,M2.

To argue that this may be problematic, we consider a somewhat
simpler situation where the issues are transparent. Suppose we are
studying two treatments for reducing blood pressure. Suppose we have
several physicians in the study. Each physician selects one of his
patients and administers one of the treatments. After a month, reduc-
tion in the blood pressure is reported as reduction in diastolic and
systolic blood pressure.

Let X1,X2,…,Xn denote the observations under the first treatment
and Y1,Y2,…,Ym denote the observations under the second treatment.
Suppose we model these data as: Xi ~N( 
�1ti, I ) and Y j ~ N(
��1tj, I )

where                   is the mean reduction in the diastolic and systolic blood

pressure due to treatment 1, is the effect of treatment 2 over



and above treatment 1 and ti’s correspond to the individual physician
effects.

This problem belongs to the class of problems considered by
Neyman and Scott (1948). Suppose we use invariance to eliminate the
nuisance parameters ti’s corresponding to the physician effect. Notice
that Xi,2�Xi,1 is a maximal invariant under the group of translations
and Xi,2�Xi,1~N(( 
2�
1),2). Similarly Yj,2�Yj,1~N(( 
2�
1)�(2�1),2.

Let us denote 
2�
1�d 
, (2�1)�d . Now consider the partition
of the original parameter space ��{(
, ,�):
�R2, �R2} induced by
this maximal invariant: Orbit(d
,d)�{(
,)�� such that

2�
1�d
,(2�1)�d}.

Now consider the likelihood for two sets of parameters, (
*, *) and
where                                                        , that is, they 

belong to the same orbit induced by the maximal invariant. Since the
distribution of the maximal invariant is a function of (d
,d), it is clear
that the two combinations of the parameters have identical likelihood.
An immediate consequence of this is that 1 and 2, the change in the
diastolic blood pressure and the change in the systolic blood pressure,
are not identifiable. We can only find out if the change in the diastolic
blood pressure is larger or smaller than the change in the systolic
blood pressure and the magnitude of that difference. But the question:
How much does the treatment 2 reduce systolic blood pressure or dias-
tolic blood pressure, is unanswerable in this situation.

Instead of accepting this limitation of the data, we decide to follow
the superimposition logic and conduct the following analysis.

1. Least squares approach: Since there are nuisance parame-
ters related to the translation group, we first superimpose, that
is translate, the observations in Sample 1 in such a manner 

that                                           is minimized. This corre-

sponds to transforming the observations 

to                                Similarly, we translate the observations 

in Sample 2 to                      Now, we average these trans-



formed observations to obtain      and     . It is easy to see that

To study the difference between the two populations, now we 
superimpose, that is translate, so that it matches     in the 
sense that is minimized. It can be seen
that the best translation in this case is no translation at all,
and that the difference between two populations is given by:

. As the sample sizes converge to infinity, this quantity

converges to

2. Edge superimposition analysis: We can conduct similar
calculations where instead of translating the observations so
that least squares criterion is satisfied, we translate them so
that the first component (landmark 1) is matched. Such calcu-
lations lead to the difference in two populations which 

converges to                                 It leads us to the conclusion

that treatment 2 is effective only in reducing the systolic
blood pressure and has no effect on the diastolic blood pres-
sure. Had we decided to match the second component
(landmark 2), we would have come to the conclusion that
treatment 2 only affects the systolic blood pressure and not
the diastolic blood pressure.

It should be obvious from the above example, that the choice of the
side conditions has a significant impact on the scientific conclusions
and that even an infinite amount of data cannot tell us which side con-
dition is “correct.” One may argue that the choice of the side condition
is similar to the choice of the “Normal” distribution model. The differ-
ence between choosing a particular model such as the Normal
distribution in the above example and choosing a side condition is that
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data potentially can refute or support the choice of the Normal model.
However, there is no potential for refuting or supporting a particular
choice of the side condition.

The situation in morphometrics is the same as above, except that
the group structure is more complicated, involving rotations and reflec-
tions. Since the choice of the side condition is not even potentially
refutable, we suggest that only those conclusions that remain invariant
to the choice of these side conditions are valid conclusions. Immediate
questions that come to mind are: what quantities do remain invariant
to the choice of the side conditions, and are they of any use in the sci-
entific inquiries? We address the first question here. The second issue
of scientific relevance is addressed in Part 1 of this chapter.

4.17  Form comparisons based on distances

In the first part of this chapter, we have described various notions of
the form difference and shape difference matrix which consist of the
ratios of the corresponding distances in the two mean forms. Let us
look at one particular definition of form difference, the form difference
matrix, from the invariance perspective. Other notions, such as the
shape difference matrix, can be studied in a similar fashion.

Recall that the form difference matrix consists of the ratios of like
linear distances in the two forms, namely,

Now suppose we rotate, reflect and

translate the two forms, each one differently, and then calculate the
form difference matrix. We know that rotation, translation and reflec-
tion of an object does not affect the form matrix, that is,
FM(M)�FM(MR�1t).

It is clear that FDM(M1,M2)�FDM(M1R1�1t1T ,M2R2�1t2T ). This measure
of form difference, thus, satisfies definition 1.

Let us now study some important mathematical properties of the
form matrix and related quantities.



4.18  Form space based on Euclidean Distance 
Matrix representation

We noted in Chapter 3 that every object in D -dimensional space rep-
resented by K landmarks corresponds to some K �D matrix, and,
conversely, it is also true that corresponding to every K �D matrix,
there exists an object in D -dimensional space represented by K land-
marks.

Let X be any K �D matrix. Let FM(X) be the form matrix corre-
sponding to X. Recall that the form matrix is a square, symmetric
matrix with zeros along the diagonals and consists of all pairwise
inter-landmark distances in the object X. Let us collect all the upper
diagonal entries of the form matrix in a vector of length K (K �1)/2 . It
is easy to see that this vector can be represented as a point in the
Euclidean space of dimension K (K �1)/2 . Thus, every object in D-
dimensional space represented by K landmarks can also be
represented by a single point in a Euclidean space of dimension
K (K �1)/2 .

Now, conversely, suppose that we are given an arbitrary point in the
Euclidean space of dimension K (K �1)/2 . When does such a point cor-
respond to some D dimensional object with K landmarks?

One condition is obvious because the distances are always positive,
such a point should belong to the positive quadrant of the Euclidean
space. However, this is not a sufficient condition. In Part 1 of this chap-
ter, we noticed that corresponding to a collection of three positive
numbers or equivalently, a point in the positive quadrant of a three
dimensional Euclidean space, there corresponds a triangle or a three
landmark object in two dimensions, if and only if the sum of any two
numbers exceeds the third number. The following discussion general-
izes this result to the case when we have K landmarks and D
dimensional objects. We first introduce some additional notation and
then state the necessary and sufficient conditions under which a point
in the positive quadrant of a Euclidean space of dimension K (K�1)/2
corresponds to a D-dimensional object represented by K landmarks.

Let d be a point in the positive quadrant of the Euclidean space of
dimension K(K�1)/2 . Let d T�(d12,d13,…,d1K,d23,d24,…,d2K,…d(K–1)K)
be the elements of this vector. Construct two new matrices using the
individual elements of this vector:



and,

Let

and define a new matrix,

Theorem 1: Corresponding to a point d�EK (K–1)/2 there exists
a D-dimensional object with K landmarks, if and only if:
i) d belongs to the positive quadrant, that is, all the ele-
ments of this vector are non-negative, and,
ii) The matrix Bd is a positive semi-definite matrix with
rank(Bd)�D.

Proof: This is a standard result in multidimensional scaling litera-
ture. See Mardia et al. (1979, Chapter 14) for details.

Similar to the discussion about the form space corresponding to
three-landmark, two-dimensional objects in Part 1, it can be noticed
that the set of points that satisfies the above condition constitute a
subset of the positive quadrant of the Euclidean space of dimension



K (K �1)/2 . The above theorem provides a characterization of this sub-
set of the K (K �1)/2 dimensional Euclidean space that corresponds to
forms of K-landmark, D-dimensional objects. We call this subset “the
form space of K-landmarks, D-dimensional objects” or “the form space,”
for short.

Suppose now that we are given a point d from the form space. How
do we obtain the landmark coordinates of the corresponding object? It
is clear that the mapping from the form space to the space of landmark
coordinate matrices is not one-to-one. A single point in the form space
maps onto a single orbit, which is, in fact, a collection of several matri-
ces, in the space of landmark coordinate matrices. Thus, corresponding
to a single point in the form space, there is a unique orbit in the land-
mark coordinate matrix space and conversely, corresponding to a given
orbit there is a unique point in the form space. For a discussion of
orbits or equivalence classes, see Chapter 3 or the first part of this
chapter. In the following, we show how to map a given point in the form
space to a particular member of the corresponding orbit. Once such a
member is obtained, one can rotate, reflect, or translate it to obtain any
other member in the orbit.

Let d be a point in the form space. Calculate Bd. Consider the spec-
tral decomposition of the matrix Bd, namely, Bd�P�PT. Because the
rank of matrix Bd is D and is positive semi-definite, there are D non-
zero eigenvalues. Let �1, �2,…,�D be the eigenvalues and let
P(1),P(2),…,P(D) be the corresponding eigenvectors. Construct a K � D

matrix as follows: This matrix is

a landmark coordinate representation of the object corresponding to d.
If we calculate the form matrix corresponding to Ad, namely the matrix
of all possible pairwise distances between these landmark coordinates,
it exactly equals d.

The results above provide a way to transform a landmark coordi-
nate representation to the form matrix representation and vice versa.

4.19  Statistical properties of the estimators of 
mean form, mean form difference, and mean shape 
difference matrices

Under the Gaussian perturbation model described in Chapter 3, we
show that the mean form difference and mean shape difference matri-
ces can be estimated consistently.



Theorem 2: Let X1,X2,…,Xn be independent, identically dis-
tributed, matrix random variables following the distribution
N (M, �K, I ) . As the sample size n increases, FM( M̂)→ FM(M) .
That is, the mean form matrix estimator described in Chapter 

3 is consistent. Similarly 

Proof: The results follow from the fact that the sample moments are
consistent estimators of the population moments and that FM(M) and
L�KLT are continuous functions of sample moments and hence are also
consistent.

Theorem 3: Let X1,X2,…,Xn be independent, identically dis-
tributed, matrix random variables following the distribution
N (M1,�K ,1, I ) . Similarly let Y1,Y2,…,Ym be independent,
identically distributed, matrix random variables following the
distribution N (M2,�K ,2, I ) . Let samples X and Y be indepen-
dent of each other. As the sample sizes n and m increase,

Proof: This follows from Theorem 2 and the fact that FDM(M2,M1)
is a continuous function of FM(M1) and FM(M2).

Similar results can be proved in the case where the data arise from
the distribution N (M,�K, �D) . The details are similar and not present-
ed here.

4.20  Computational algorithms

In this part, we describe the computer algorithms that are used for the
bootstrap and Monte Carlo testing procedures and confidence intervals
for mean form difference matrix.

Bootstrap-based procedures

Bootstrap procedures may be used provided the sample size is larger
than 15 or 20. The main advantage of these procedures is that they do
not assume that the perturbations are Gaussian random variables.

FM M M FM M M( ˆ , ˆ ) ( , ).2 1 2 1→



EDMA-I testing procedure for testing equality of shapes

As explained in Part 1 of this chapter, the EDMA-I testing procedure
requires a choice of one of the populations as the reference or the base
population. The null hypothesis to be tested is that the mean of the sec-
ond population is a scaled version of the mean form of the base
population. More precisely, the question being answered is similar to
the hypothesis in a classification problem: Could the sample from the
second population have arisen from the first population? In order to
apply this testing procedure we do not need to assume that the per-
turbations are Gaussian. However, we do need to assume that the
covariance matrices for the two populations are proportional to each
other.

STEP 1: Calculate the form difference matrix using the esti-
mated mean forms for the two populations and calculate 

STEP 2: Generate new set of samples X1*, X2*,…, Xn* and
Y1*, Y2*,…, Ym* with replacement from the base or the reference
sample.

STEP 3: Calculate 

STEP 4: Repeat Steps 2 and 3 B times to obtain T1*, T2*,…, TB*.
STEP 5: Arrange T1*, T2*,…, TB* in an increasing order. Reject
the null hypothesis of equality of shapes if Tobs is in the top 
α-th percentile where α is the size of the test.

Confidence intervals for the form difference matrix 

The Bootstrap procedure to obtain confidence intervals for the form
difference matrix does not need the choice of a reference or base popu-
lation, nor does it require the assumption of proportional covariance
matrices or a Gaussian perturbation model. The algorithm for com-
puting bootstrap confidence intervals is detailed below.

STEP 1: Calculate the form difference matrix using the esti-
mated mean forms for the two populations.

T
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STEP 2: Generate a new set of samples X1*, X2*,…, Xn* with
replacement from the first sample X1, X2,…, Xn and
Y1*, Y2*,…, Ym* with replacement from the second sample
Y1, Y2,…, Ym.
STEP 3: Calculate the form difference matrix based on these
bootstrap samples.
STEP 4: Repeat Steps 2 and 3 B number of times.

The bootstrap sample based form difference matrices obtained in
this fashion can be collected in a matrix with K (K�1)/2 rows and B
columns. In this matrix, each column is a form difference matrix
obtained at the end of Step 3 and each row represents B form differ-
ence ratios for a linear distance between a specified pair of landmarks.

To obtain a confidence interval for each linear distance, the ratios
in each row are sorted in an increasing order. If a 90% confidence inter-
val is sought, then the first 5% and the last 5% of the total entries in
this sorted row are deleted. The minimum and the maximum entries
remaining in that row constitute the lower and upper confidence lim-
its for that particular linear distance. This is done separately for each
row to obtain a confidence interval for each linear distance ratio.

Monte Carlo-based procedures 

The difference between the Bootstrap procedures described above and
the Monte Carlo procedures described below is that in the Monte Carlo
procedure, instead of obtaining Bootstrap samples using simple ran-
dom sampling with replacement from the original sample, we generate
Bootstrap samples using the Gaussian model and the estimated mean
form and the variance-covariance matrix. This procedure is valid pro-
vided the Gaussian perturbation model is a reasonable model. This
procedure may be used when the sample sizes are small, say 10-15
individuals in each group.

Monte Carlo confidence intervals for the form difference
matrix

STEP 1: Calculate the form difference matrix using the esti-
mated mean forms for the two populations.
STEP 2: Generate a new set of samples X1*, X2*,…, Xn* from 

and Y1*, Y2*,…, Ym* from N M IK( ˆ , ˆ , ),1 1Σ N M IK( ˆ , ˆ , ).,2 2Σ



STEP 3: Calculate the form difference matrix based on these
Monte Carlo samples.
STEP 4: Repeat Steps 2 and 3 B number of times.

The Bootstrap sample based form difference matrices obtained in
this fashion can be collected in a matrix with K (K�1)/2 rows and B
columns. In this matrix each column is a form difference matrix
obtained at the end of Step 3 and each row represents B form differ-
ence ratios for a linear distance between a specified pair of landmarks.

To obtain a confidence interval for each linear distance, the ratios
in each row are sorted in an increasing order. If a 90% confidence inter-
val is sought, then the first 5% and the last 5% of the total entries in
this sorted row are deleted. The minimum and the maximum entries
remaining in that row constitute the lower and upper confidence lim-
its for that particular linear distance. This is done separately for each
row to obtain a confidence interval for each linear distance ratio.

Monte Carlo-based EDMA-I testing procedure

STEP 1: Calculate the form difference matrix using the esti-
mated mean forms for the two populations. Calculate 

STEP 2: Assuming that the first population is the base sam-
ple, generate a new set of samples X1*, X2*,…, Xn* from 

and Y1*, Y2*,…, Ym* from .

STEP 3: Calculate

STEP 4: Repeat Steps 2 and 3 B times to obtain T1*, T2*,…, TB*.
STEP 5: Arrange T1*, T2*,…, TB* in an increasing order. Reject
the null hypothesis of equality of shapes if Tobs is in the top α-th
percentile where α is the size of the test.
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Monte Carlo-based EDMA-II testing procedure

The difference between EDMA-I and EDMA-II is described in detail in
Part 1 of this chapter. We do not repeat the discussion here.

STEP 1: Calculate the shape difference matrix using the esti-
mated mean forms for the two populations. Calculate the
extreme value in the shape difference matrix, either negative
or positive.
STEP 2: Assuming that the first population is the base sam-
ple, generate a new set of samples X1*, X2*,…, Xn* from 

and Y1*, Y2*,…, Ym* from .
STEP 3: Calculate the shape difference matrix based on these
samples and calculate the most extreme value, negative or
positive and call it T*.
STEP 4: Repeat Steps 2 and 3 B times to obtain T1*, T2*,…, TB*.
STEP 5: Arrange T1*, T2*,…, TB* in an increasing order. Assume
that the size of the test is 0.10, then calculate the 5-th per-
centile and the 95-th percentile values of these T* ’s. If zero
lies in between these values, then accept the null hypothesis
of equality of shapes, otherwise reject it.

We want to reemphasize the fact that if the distribution of the test
statistic is bimodal, one should not conduct the above test. In general,
we prefer the confidence intervals for the shape or form difference
matrices over simplistic null hypothesis testing.

N M IK( ˆ , ˆ , ),1 1Σ N M IK( ˆ , ˆ , ),1 1Σ



CHAPTER 5

The Study of Growth

“The form of an organism is determined by its rate of growth in various
directions”

D’Arcy Thompson (1992)

Up to this point we have limited our discussion to the description and
comparison of two forms. Growth analysis stems directly from the
methods we have already developed in the last chapter and is simply a
special case of form comparison. Instead of comparing the form of one
group to the form of another group, we compare the form of one age
class to the form of another age class within the same group.
Consequently, the tools that we have presented thus far are adequate
for studying growth within a single group.

We define growth pattern as the composite of geometric changes in
biological structure occurring through ontogenetic time. In many prac-
tical situations, we are interested in comparing the growth pattern of
one group with the growth pattern of another. The issues of comparing
growth patterns lead to different challenges and problems necessitat-
ing further development of analytical techniques. This chapter
discusses the special difficulties faced in comparing growth patterns,
and develops relevant methods. This discussion is based in part on
ideas presented in Richtsmeier and Lele (1993).

The study of growth provides important information for many fields
of inquiry. In the study of dysmorphology or disease, a valid question
concerns the original source and reason for continuation or intensifi-
cation of the dysmorphology. Is the dysmorphology a product of an
initial developmental insult that is carried to a new developmental
stage by following a normal growth pattern? Or is growth affected such
that the dysmorphology is at least in part a product of an aberrant
growth pattern? The answer to this question might inform us about



disease process and can be used in the planning of surgical or non-sur-
gical interventions in the case of human malformations (Dufresne and
Richtsmeier, 1995).

Studies of growth patterns can provide information about the
attainment of features in varying species. Increase in snout length in
mammalian species might be attained by growth changes local to the
maxillae and premaxillae or by changes in the relative positions and
sizes of the pterygoid plates, sphenoidal body or the vomer, as these
osseous components determine in part how the face is hafted onto the
cranial base. Careful growth analyses can provide information about
the timing of developmental events, or changes in magnitudes and
rates of growth. This can, in turn, be used to determine the ways in
which differences in local growth patterns contribute to difference in
morphological traits among species (Richtsmeier, Corner, et al., 1993).
The challenge in any analysis of growth is to go beyond quantitative
description; it is to use the study of growth to explore aspects of the
biology of the organism such as the genetic basis of morphogenesis,
phylogenetic underpinnings of developmental patterns, or the role of
hormones, teratogens, dietary elements, and other environmental vari-
ables on the growth process.

In previous chapters, we discussed in detail the problems relating
to registration and lack of a common coordinate system. These prob-
lems are equally important when the study concerns growth and the
comparison of growth patterns. To give an example, the field of
Roentgencephalometry (Broadbent, 1975) was developed to enable
quantitative comparison of x-rays. The method was developed to study
craniofacial form and growth. It became the method of choice for clini-
cal studies in the 1950s and 1960s and is still commonly used today
e.g., (Kreiborg and Pruzansky, 1981; Kreiborg, Aduss, et al., 1999).
Figure 5.1 contains a growth series of immature human skulls and
shows a fairly standard description of cranial growth based on data
from lateral x-rays. According to the method of roentgencephalometry,
the center of the pituitary fossa (the landmark sella) is the registration
point onto which all cases are superimposed. A line that stretches from
sella to the landmark nasion (the intersection of the frontal and nasal
bones) is used to define the line of orientation of all x-rays being com-
pared. Following this registration method, all cases are first matched
at sella and then rotated such that the orientation of the sella-nasion
lines match. This system of registration results in the description and
quantification of growth shown in Figure 5.1. This system doesn’t
allow for growth at sella and doesn’t allow for non-linear growth



between sella and nasion. Common sense indicates that conditions like
these cannot be assumed in the study of growth and research has con-
firmed this (Moyers and Bookstein, 1979; Richtsmeier and Cheverud,
1986). When superimposition or deformation methods are used for
studying growth, the same difficulties that were discussed in the com-
parison of forms (Chapter 4) are encountered. In this chapter we show
how the coordinate system-free method of EDMA can be extended to
the study of growth and the comparison of growth patterns.

Figure 5.1 Traditional growth series based on longitudinal cephalometric radiographs
from the Bolton-Brush growth Series (Broadbent et al., 1975). Tracings of the x-rays
are superimposed on the landmark sella located in the middle of the pituitary fossa
and oriented on a line that stretches from sella to nasion. The result is an impression
of craniofacial growth as an onion skin-like expansion away from the center of the
skull marked by sella.



5.1 Limiting factors in studying growth 
using morphometric approaches

The methods discussed in this chapter use landmark coordinates to
study the way in which component structures of an organism rear-
range relative to one another as the organism increases in size. This
approach differs from more traditional growth curve analyses (see
Zeger and Harlow, 1987) where measures that span gross anatomical
regions (e.g., crown-rump length, head circumference) or that repre-
sent overall body size (e.g., body weight, stature) are plotted across
time as curves that summarize growth patterns. When studying
growth, the limitations of landmark data need to be recognized.
Beyond the limiting factors presented in Chapter 4, we need to
acknowledge that growth is a very complex process. The choice of ana-
lyzing landmark data as collected from the morphological
consequences of this process places limits on our perceptions. For these
reasons, we add two more limiting factors to our list:

4. Identifiability of the locus of growth. We cannot infer about
the way in which the material between landmarks changes
during growth from the information given by the landmark
coordinates. If chosen intelligently, the landmark data may
capture the evidence of growth processes adequately, but our
answers will be limited to changes local to landmarks.

5. Identifiability of the timing of growth events. Information
obtained on timing and rate of growth is totally dependent
upon the time points at which we sample data. We can infer
little about the timing of specific growth events if we don’t
have data that window that event adequately.

5.2 Longitudinal vs. cross-sectional data

There are two major data types that can be used to study growth: lon-
gitudinal and cross-sectional. Since growth occurs continuously over
time, data points are usually sampled from this continuum for analy-
sis. When working with laboratory animals, the increments can be
chosen to fit the research design. In this case, the observer’s schedule
may be the only complicating factor. If a study of human growth is
prospective, as in the case of growth data being collected to establish



norms or reference data sets (Garza and DeOnis, 1999), sampling
points can be chosen to meet the study criteria. However, most of the
time, sampling cannot be done according to a predetermined design,
and other factors determine the division of this continuum into the
increments that are studied. When growth data are collected from
museum specimens or from patient records, the researcher may have
little control over the intervals of time included in the growth study.

Longitudinal data refer to data points taken from a single individ-
ual at specific intervals over a period of time. Longitudinal data from
numerous individuals can be combined to create samples of longitudi-
nal data. Cross-sectional data refer to data taken at specified ages, but

Figure 5.2 Longitudinal data representing the linear distances between the right and
left foramen lacerum on the cranial base of the New Zealand white rabbit. Note the
variability in the magnitude of growth for each age interval between rabbits. Note
also that the length of this distance decreases with age for some rabbits and some age
intervals. We have found this to be a normal occurrence during craniofacial growth
when studying individual linear distances. An average linear distance was calculated
for each age group and plotted as the cross-sectional mean. The cross-sectional mean
portrays a steady increase in size over time and does not provide information on the
variability in individual growth patterns.



from more than one individual such that a different individual repre-
sents each time point. Cross-sectional data are often collected from a
large population, and each individual is assigned to an age category. In
this case, data for a developmentally staged or chronologically aged
class consists of data from many individuals, and data from any one
individual is only used in a single age class. Mixed longitudinal data
results when longitudinal data are included within a cross-sectional
data set.

Longitudinal data are rare, but extremely valuable when available.
Longitudinal data must be analyzed as dependent data since the con-
dition of a data point at time t+1 is dependent upon the condition of the
data point at time t. Individual modulations in growth patterns can
only be identified with closely spaced longitudinal data points (Wilson,
1999). Longitudinal data are of particular use in the study of secular
trends, and are a requirement for predictive models of development.
On the other hand, closely spaced longitudinal data may obscure more
general patterns and reveal seemingly erratic, idiosyncratic patterns
of individual growth. To study general population patterns, cross-sec-
tional data may be more useful. The research question determines
which types of data are most useful and appropriate.

Growth is a phenomenon of the individual, but samples are needed
to speak to the statistical aspects of growth patterns. When longitudi-
nal data for many individuals are plotted over the same age interval,
it is clear that growth is highly individualized and quite variable (see
Figure 5.2). An average might be offered as representative of the pat-
tern, but these averages can obscure the irregularities observed in
individual patterns. A study of averages provides useful information,
but because the variability noted in individual growth patterns is
responsible in part for inter-individual morphological variability, the
variability of individual growth patterns warrants investigation.

5.3 Assigning age and forming age-related groups 

Statistical analysis of growth calls for analysis of samples of individuals.
To do this, individuals need to be placed into age-graded groups or class-
es according to some criteria. There are no rigid rules for the formulation
of age-specific groups for analysis of growth patterns. If chronological
ages are known, it may help to survey the available data and look for
natural breaks in the age distribution for forming age groups for analy-
sis. If chronological ages are not known, features of the organisms that



have a recognized relationship with chronological age (e.g., tooth erup-
tion patterns, overall body size, annual rings, number of coils, molt stage,
epiphyseal fusion, etc.) can be used as age-surrogates and as a means for
assigning individuals to developmental age classes.

The researcher needs to be aware of any potential ascertainment
biases of the data, and the way in which this bias might affect the age
distribution and the results of analysis of these data. When museum
samples are used, age distribution may be skewed for reasons that
have to do with social behavior of that species. (For example, if a cer-
tain subgroup of a wild population protects the group and therefore
confronts nonmembers, those individuals will most likely be captured
and the resulting collection will be composed primarily of individuals
in that age/sex/status group. Methods of capture (e.g., size of nets or
traps) may also influence sample composition. If patient data are being
accessed, the age at which individuals are diagnosed, treated, or dis-
charged may have implications for the nature of the age groups
available. Depending upon the particular research situation, grouping
may amplify or reduce within-age group variability.

When growth patterns are being compared between groups, care
must be taken to ensure that the criteria used to assign developmen-
tal ages are consistent and comparable across groups. This can be
extremely difficult, especially when comparisons cross species bound-
aries. Assigning developmental ages from biological markers can affect
the degree of variability within age groups, and this can vary from
species to species. For example, let us say that we are interested in
comparing growth during infancy between human and non-human pri-
mates. The human literature can provide a chronological time frame
for the developmental period known as “infancy,” and similar defini-
tions for the relationship between chronological age and life history
intervals are available for certain non-human primate species raised
in laboratory settings. The length of these time frames will be different
in each species and this warrants consideration. Extreme care must be
taken in estimating ages from proxy data when choosing comparable
developmental stages for inter-species comparison. Since each
research situation is different, there is little general advice that can be
offered beyond caution and alertness to these and other potential haz-
ards.



5.4  EDMA applied to the study of growth

As demonstrated previously for the study of form difference, adoption
of an arbitrary coordinate system is undesirable when studying
growth, as the results obtained can be misleading. When studying
growth, we have representative forms from various age groups, and the
goal is to determine the locations where growth occurs. This goal can-
not be attained using coordinate system-based approaches, as results
will change with the coordinate system adopted and there is no way to
know which coordinate system is preferred in any given analysis. The
approach presented here provides coordinate system-free, valid infor-
mation about growth patterns.

Nearly all aspects of EDMA developed in previous chapters can be
applied to the study of growth. Consequently, the essential ideas
required to use EDMA in the study of growth have already been pre-
sented. We reinforce that knowledge by presenting an outline of the
method again, this time using growth data and a specific notation for
growth analyses. Let us begin with a single form, A, at two points dur-
ing ontogeny, time 1 and time 2. The morphology of A at the first point
in time is referred to as A1 while the morphology of A at the second
point in time is referred to as A2. Data are collected for three two-
dimensional landmarks at each point in time. For example, the
coordinates from these three points could be collected as:

FM (A1) and FM (A2) denote the form matrices corresponding to these
landmark data. Recall that FMij (A1) is the distance between landmarks
i and j in object A1 and that FMij (A2) is the corresponding distance in
object A2. Using the landmark coordinate data given above, we obtain
the following form matrices:
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In Chapter 4 we presented three possible ways to express form dif-
ference using the form matrices. We have found that relative change is
a useful way of describing differences that occur due to growth and
therefore present that approach exclusively. The other approaches
described in Chapter 4 could be used to study growth, but appropriate
precautions may be necessary when interpreting the results.

5.5 Growth measured as relative form difference

As described previously, the relative difference between two forms

can be written as a form difference matrix,

where the elements of the matrix correspond to the ratio of like-linear
distances and the division is done element-by-element. In this applica-
tion, the forms being compared are members of a growth series, so we

define the growth matrix (GM) as                       . Note the

similarity in notation and organization of the FDM and the GM. Note
also that the older (i.e., larger) form occupies the numerator position.
We adopt this convention because it is intuitive to think of values
greater than 1 corresponding with a form getting larger through time.
Adopting this convention means that when a linear distance increases
in size with advancing age, the ratio corresponding to growth of that
linear distance is greater than 1. This convention will be followed here
but does not need to be followed by users.

Continuing with the example data sets given previously:
Each entry represents the ratio of like linear distances in FM (A1) and

FM (A2). Because growth matrices are square-symmetric matrices with
zeros along the diagonal, only the above-diagonal elements are needed
to describe form difference due to growth. We write the growth matrix as
a vector where only the above-diagonal elements are reported:
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What this GM tells us is that the distance between landmarks 1
and 2 is three times larger in form A at time 2 than it was at time 1.
The distance between landmarks 1 and 3 and between landmarks 2
and 3 is just over two times larger at time 2 than at time 1.

5.6 Estimation of growth using EDMA

The example above uses information from a single form at two differ-
ent points in time. In certain settings (e.g., clinical), growth of an
individual may be of interest, but researchers rarely operate under the
assumption that analysis of a single individual is a valid representa-
tion of growth for all individuals. Common sense and previous research
tells us that growth of a single individual cannot be assumed to repre-
sent growth for a population. It is at this point that the difference
between longitudinal and cross-sectional data becomes apparent.
Sudden spurts and long periods of stasis mark growth of the individu-
al. Even though some of these episodes are held generally in common
within members of a species (e.g., the adolescent growth spurt in
humans), the exact timing and character of these episodes varies from
individual to individual. Consequently, any statistical analysis of
growth, whether the data are cross-sectional, longitudinal, or mixed
longitudinal, will obscure individual patterns and may smooth the
growth pattern for the sample. A measure of the variance will provide
some indication of individual differences but will not reconstruct indi-
vidual patterns of growth. If a generalized pattern of growth is the
desired outcome of the analysis, the procedure described below is
appropriate. If variability in individual growth patterns is the focus of
research, it may be more useful to study the growth of individuals sep-
arately and then compare the individual patterns. Such comparisons
can be accomplished using Growth Difference Matrix Analysis (see fol-
lowing sections).

Since the true mean forms for any population are never available
(see Chapter 3), we need to collect data from many individuals and
analyze representative growth patterns using mean forms estimated
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from these data. Typically a sample of observations is available from
which we estimate the parameters. Let us denote the estimated form
matrix corresponding to the mean of the first age group by FM (Â1).
Estimation of the form matrix is discussed in Chapter 4. The estimat-
ed form matrix corresponding to the mean of the second group is
represented by FM (Â2). The estimated growth matrix is given by 

Although it is expected that scientists present a valid statistical
test of their analytical work, in the study of growth, it is likely that an
older form will be statistically different from a younger form. Both
hypothesis testing and the confidence interval approach to the statis-
tical comparison of forms presented in Chapter 4 can be used for
growth data. However, we advocate the use of confidence intervals for
the study of growth because simple statistical testing of similarity in
form for different age groups doesn’t provide us with much new infor-
mation. The important information that can be obtained from the
study of growth concerns the discovery of local similarities or differ-
ences in form between age groups. Localization of those measures that
change the most, and those that change the least over time can be
accomplished by using confidence intervals.

Information pertaining to magnitude of change local to landmarks
can be obtained by simple inspection of the GM. Magnitude is mea-
sured by the ratio reported in a GM as the relative change in a given
linear distance. Consequently, we can speak of a linear distance dou-
bling (ratio of 2.0), increasing by 25% (ratio of 1.25), or decreasing by
5% (ratio of .95) during growth. The direction of change for any specif-
ic linear distance occurs along the given distance, but by looking at
groups of landmarks and their associated distances or the association
of a single landmark with all others, overall directions of change of
anatomical structures in relation to others can be inferred. The “delete
one” landmark approach (Chapter 4) can be used to determine the rel-
ative importance of the various loci and directions of change. These
procedures were presented in detail in Chapter 4. More information for
interpreting directions of change from given data sets using these pro-
cedures will be included in the examples at the end of this chapter.

GM A A
FM A

FM A
ij

ij

( ˆ , ˆ )
( ˆ )

( ˆ )
2 1

2

1

=














5.7  Statistical analysis of form and shape difference due
to growth

As discussed in previous sections, although statistical testing is a stan-
dard part of any quantitative analysis of morphology, it should not be
considered the definitive answer to questions concerning similarity of
growth patterns. If GDM (A2,A1 : B2,B1) does not equal 1, patterns of dif-
ferences from 1 should be sought by close examination of the GDM.
This process is labor intensive but graphic aids are available (some of
which are discussed in Chapter 4; also see Cole and Richtsmeier, 1998).
To test for the statistical significance of differences in shape change
due to growth we use the statistic Gobs:

where max (= maximum) is the ratio with the largest value within the
GDM, and min (= minimum) is the ratio with the smallest value. This
test statistic is scale invariant thereby eliminating the effects of scal-
ing. Growth patterns are interpreted as being more similar in shape
change as Gobs approaches 1. A null hypothesis of similarity in shape
change due to growth is stated as:

Ho :GMij (A2, A1) = cGMij (B2, B1)

where c is some scaling factor and c > 0. This is a one-way hypothesis
that states that the growth of sample B is similar to the growth of sam-
ple A. If accepted, it does not imply that the growth of sample A is
similar to the growth of sample B. This would have to be tested by
restating the null hypothesis as:

Ho :GMij (B2, B1) = cGMij (A2, A1)

and rerunning the analysis using the other sample as the base population.
The one-way nature of this hypothesis demands a specific design

for the statistical testing of Gobs. Our design uses an extension of the
bootstrap approach presented in Chapter 4. The statistical comparison
of growth patterns from two populations using a one-way hypothesis
requires that one of the samples be chosen to represent the base pop-
ulation. The choice of which sample to use as the base population can
be made for statistical reasons (e.g., the sample with the largest num-



ber of observations), or on biological grounds (e.g., the sample hypoth-
esized as more primitive in evolutionary studies or the unaffected
sample in studies of pathological specimens). Although all four data
sets are used to calculate Gobs, only the base population is used to pro-
duce the bootstrapped samples.

In testing Gobs, we start with four samples (A1, A2, B1, B2) of size m,
n, o, and p, respectively. A landmark coordinate matrix that is rewrit-
ten as a form matrix for analysis represents each individual in these
samples. If population A is chosen as the base population, using simple
random sampling with replacement, we obtain a sample of size m from
A1 and of size n from A2. These bootstrapped samples are designated A1

*

and A2
*. Similarly, we obtain simple random samples with replacement

of size o from A1 and of size p from A2. These samples are designated
B1

* and B2
*. Next, we calculate a growth difference matrix for the boot-

strapped samples:

and write the GDM as a vector whose elements are sorted from mini-
mum value to maximum value. These steps are repeated B times where
B is sufficiently large (100 ≤ B ≤ 1000). In matrix form, this collection
of vectors formed by the analysis of B bootstrapped samples has K (K -
1)/2 rows and B columns, each column being a sorted (in ascending
order) growth difference matrix for a set of four bootstrapped samples.
The statistic G for each of these bootstrapped samples is defined as the
maximum ratio in the GDM divided by the minimum ratio in that
GDM. G is calculated for each column and represents a summary mea-
sure of similarity in shape change due to growth for each bootstrapped
set of samples. The placement of Gobs calculated from the original data
in relation to the distribution of the bootstrapped G values provides a
means for determining if growth is similar in the two groups being
compared. One may also calculate the probability of getting the
observed (or more extreme) value of the test statistic, Gobs, and report
it as a p-value. Our goal is to determine the probability of obtaining the
observed (or a larger) maximum-to-minimum ratio value due to under-
lying biological variability when the growth of the two groups is, in
fact, similar. If this probability, the p-value, is small, we claim that the
observed value is unlikely under the null hypothesis of similarity in
growth and reject the null hypothesis. By the same results, we enter-
tain the alternative hypothesis.



It is obvious from previous discussions that we are playing down the
importance of hypothesis testing. While providing these testing proce-
dures in order to offer a more complete set of tools, our ultimate goal is to
present methods for examining how two growth patterns differ or coin-
cide with one another. Specifically, we want to localize these similarities
and differences to anatomical complexes. The identification of specific
structures enables interpretation of the biological mechanisms that
might underlie these differences. This information could ultimately be
used to propose explanatory hypotheses.

There are several ways to localize the difference in growth patterns to
anatomical positions. The simplest, but most time-consuming way, is to
simply study the individual GMs for the samples of interest and the
GDM. In addition, non-parametric confidence intervals can be calculated
for growth differences local to each linear distance following methods
similar to those developed for studying form and shape difference
(Chapter 4).

Since confidence intervals are not one-way in nature, all four samples
in a growth analysis are used to create the bootstrapped samples.
Continuing with the previous notation using samples A1, A2, B1, B2 of size
m, n, o, and p, respectively, we obtain a sample of size m from A1 and of size
n from A2 using a random sampling design with replacement. Similarly
we obtain simple random samples with replacement of size o from B1 and
of size p from B2. A  GDM is calculated from these bootstrapped samples
and then sorted according to the landmarks that define the linear dis-
tance. This is done B times. A collection of boot-strapped samples sorted

in this way has                    rows and B columns in matrix format. Each 

column is a growth difference matrix for a set of bootstrapped samples
and each row represents B growth difference matrix ratios for a
defined linear distance. To obtain a confidence interval for each linear
distance, the ratios in each row are sorted in increasing order. If a 10%
confidence interval is sought, then the first 5% (those of minimal
value) and the last 5% (those of maximum value) of the total entries in
the row are deleted. The minimum and maximum entries remaining in
that row constitute the minimum and maximum values for a bootstrap
confidence interval for the linear distance under consideration. As in
the confidence intervals for the study of form (Chapter 4), the collec-
tion of confidence intervals for all linear distances that constitute a
growth difference matrix does not represent a confidence band for
growth of the form. These represent marginal confidence intervals cal-
culated separately for each linear distance.



Although this analysis was developed specifically for the comparison
of growth patterns, it can be used to study related problems in biology.
For example, Lague and Jungers (1999) used GDMA to study differences
in patterns of sexual dimorphism in joint surface morphology among
hominoid species. Other problems that require a quantitative method for
comparing comparisons may also be studied using the method.

5.8 Growth difference matrix analysis: comparing 
patterns of growth using growth matrices

“Great as are the differences between the rates of growth in different parts
of a complex organism, the marvel is that the ratios between them are so
nicely balanced as they are, and so capable of keeping the form of the
growing organism all but unchanged for long periods of time, or of slow-
ly changing it in its own harmonious way. There is the nicest possible
balance of forces and resistances in every part of the complex body; and
when this normal equilibrium is disturbed, then we get abnormal growth,
in the shape of tumours and exostoses, and other malformations and
deformities of every kind.”

D’Arcy Thompson (1992)

Our interest may be less in defining a single growth pattern as in
understanding how the growth pattern for one group differs from that
of another. For example, an abnormal growth pattern needs to be com-
pared to a normal growth pattern to be understood. The comparison of
growth patterns can only be done in a coordinate system-free method of
measurement. Our presentation of a coordinate system-free system for
the comparison of growth patterns follows methods previously present-
ed by Richtsmeier and Lele (1993).

To compare growth patterns of two populations, four samples are
used in analysis. Each sample must contain data for the exact same
landmarks. Let us say that we have collected sample data from indi-
viduals of population A from two age groups, 1 and 2. We refer to these
samples as A1 and A2. We have also collected sample data from corre-
sponding age groups in population B. We refer to these samples as B1

and B2. In this example, we assume that the populations have been
aged correctly, according to comparable aging criteria.

The first step is to calculate the growth pattern for the samples that
represent population A. The growth matrix is estimated using two



form matrices, one for sample A at time 1 and the other for sample A
at time 2:

The growth matrix for samples representing population B is esti-
mated similarly using the estimated form matrices for the
appropriately aged samples:

We now have two growth matrices, each representing an estimate
of the growth pattern for a population. The comparison of two growth
matrices, one for growth of A1 into A2 and one for growth of B1 into B2,
define the differences in relative growth. Growth difference matrix
analysis (GDMA) enables comparison of these growth patterns on a
linear distance-by-linear distance basis. The results of GDMA report
how change in a linear distance in one sample compares to the change
experienced by the same linear distance in another sample over com-
parable growth intervals. GDMA does this for all linear distances.
GDMA uses the two GMs from the samples under study to estimate a
growth difference matrix (GDM):

In this notation, two organisms, or samples of organisms have the
same relative growth if and only if the GDM consists exclusively of
ratios equal to 1.

5.9  Analysis of example data sets:
differences in facial growth

To demonstrate these various techniques for studying growth and dif-
ferences in growth patterns, we use the data sets introduced in
Chapter 1. We provide an analysis of facial growth for a species of New
World monkey, Cebus apella, and a species of Old World monkey,
Macaca fascicularis. Individuals from both species were aged accord-
ing to tooth eruption patterns so that we are comparing equivalent



developmental episodes in these two species. The growth episode con-
sidered here spans the time elapsed from the earliest developmental
group for which we have data (individuals who have any deciduous
teeth present but not the first permanent molar) to adulthood (indi-
viduals whose permanent dentition is fully erupted including both the
maxillary and mandibular third molars). We understand that a growth
analysis with only two points along a time continuum is insufficient,
but we present these data as an example. In addition, we remind the
reader that our data are cross-sectional and not longitudinal.

Growth of the face in these species is studied using six landmarks
located on the sagittal plane and right side of the face (Figure 5.3).
Facial growth of Cebus apella from immature to adult is represented
by the growth matrix, GMCA:

NSL IDS PMM ZMS MXT PNS
NSL 0.00000 
IDS 1.34498 .00000 
PMM 1.23602 1.25348 0.00000
ZMS 1.23616 1.38671 1.43306 0.00000
MXT 1.22091 1.32611 1.31896 1.29656 0.00000
PNS 1.19061 1.31221 1.27509 1.25223 1.20850 0.00000

The distance between zygomaxillare superior (ZMS) and premaxil-
lary-maxillary junction (PMM) shows the largest magnitude of change
relative to all other linear distances. In addition, the growth matrix
shows that a relatively large degree of change has occurred between
intradentale superior (IDS) and all other landmarks. The amount of
growth occurring between nasale (NSL) and other landmarks (except-
ing that between NSL and IDS) is relatively small. A very small
amount of change occurs local to the distance between posterior nasal
spine (PNS) and maxillary tuberosity (MXT), a distance representing
the width of the posterior palate.

Facial growth from immature to adult Macaca fascicularis is sum-
marized in the growth matrix GMMF:

NSL IDS PMM ZMS MXT PNS
NSL 0.00000 
IDS 1.85141 0.00000 
PMM 1.44763 1.30635 0.00000 
ZMS 1.45993 1.99816 2.13650 0.00000 
MXT 1.45347 1.71529 1.81614 1.51753 0.00000 
PNS 1.32945 1.66516 1.64113 1.26350 1.48338 0.00000



Figure 5.3. Immature (top left) and adult female (bottom left) skulls of Cebus apella with location of six facial landmarks used in
growth analysis indicated. Immature (top right) and adult female (bottom right) skulls of Macaca fascicularis are given in the
lower panel. Landmarks include: 1, NSL; 2, IDS; 3, PMM; 4, ZMS; 5, MXT; 6, PNS. The posterior spine is located on the sagittal
plane and cannot be seen from this view. Its location in this drawing is therefore approximate. Though both immature specimens
are from the same developmental age group, the immature M. fascicularis skull is of a younger age than the immature C. apella
skull, which accounts for the size difference in these immature specimens.

©2001 CRC Press LLC



Facial growth in Macaca fascicularis is characterized by large mag-
nitudes for those distances from ZMS to IDS and to PMM. These linear
distances measure the degree of prognathism in the Macaca fascicu-
laris face, or the degree to which the lower face projects from the orbits.
The distance between NSL and IDS changes substantially during
growth. The linear distances indicate a principal extension of the ante-
rior portion of the maxillary alveolus in relation to the midface asa
result of growth from early postnatal life to adulthood. The distance
between the midface and posterior palate (measured from ZMS to PNS)
experiences the smallest magnitude of change during this time interval.

Facial growth in Macaca fascicularis is of a greater magnitude than
the facial growth occuring in Cebus apella. This is not surprising given
that Macaca fascicularis adults are considerably larger than Cebus
apella adults. Estimates of adult body weight for wild caught Cebus
apella males range from 2646 to 3300 g (Napier and Napier, 1967;
Leutenegger and Cheverud, 1982; Harvey and Martin, et al., 1987)
while Macaca fascicularis adult males achieve an adult body weight of
approximately 4930 g (Fleagle, 1988).

Simply looking at similar entries in the two growth matrices pro-
vides a comparison of growth patterns for these two species. However,
comparison of these two relatively small matrices is tedious and this
task becomes increasingly difficult as the number of landmarks
increases. Moreover, we would like to be able to compare patterns with-
in these matrices, rather than just single elements. A growth difference
matrix that compares growth for these two species, GDMCA-MF , is given
below.

NSL IDS PMM ZMS MXT PNS
NSL 0.00000 
IDS 0.72646 0.00000 
PMM 0.85382 0.95952 0.00000
ZMS 0.84672 0.69399 0.67075 0.00000 
MXT 0.84000 0.77311 0.72624 0.85439 0.00000 
PNS 0.89557 0.78804 0.77696 0.99109 0.81469 0.00000 

When the elements of this growth difference matrix are arranged in
ascending order, we obtain the following vector:



Linear Distance Growth Difference 
Ratio

PMM-ZMS 0.671
IDS-ZMS 0.694
PMM-MXT 0.726
NSL-IDS 0.726
IDS-MXT 0.773
PMM-PNS 0.777
IDS-PNS 0.788
MXT-PNS 0.815
NSL- MXT 0.840
NSL-ZMS 0.847
NSL-PMM 0.854
ZMS-MXT 0.854
NSL-PNS 0.896
IDS-PMM 0.960
ZMS-PNS 0.991

Since all elements of the growth difference matrix are less than 1, we
know that the species represented by the numerator, Cebus apella,
experiences a smaller magnitude of change during growth in every
facial dimension as compared to Macaca fascicularis. We also observe
that there is a great degree of variability among the elements of the
growth difference matrix indicating that the difference in facial growth
between these two species cannot be adequately defined as a difference
in scale.

Inspection of the growth difference matrix indicates that the mag-
nitude of growth in the two species is similar for the distance between
ZMS and PNS (the ratio approaches 1). In both species, this is a linear
distance that experienced a relatively small degree of change during
growth. Growth from IDS to PMM was moderately low in both species
and the growth difference matrix shows that the magnitude of growth
is similar in the two species.

Looking at the minimal end of the matrix, we note two linear dis-
tances (ZMS to PMM and ZMS to IDS) that experienced a relatively
large degree of growth for each species. The growth difference matrix
underscores the difference in the magnitudes of growth experienced by
each species local to these distances. The distance between PMM and
MXT measures the length of the maxillary alveolus posterior to the
incisors. Increase in length of the alveolus due to growth is far greater
in Macaca fascicularis as indicated by the growth difference matrix.



In certain instances, an element-by-element examination of each
growth matrix alongside the growth difference matrix is the best way
to digest the analytical output. Statistical tools can also help in assim-
ilating this information as shown below.

5.9.1 Statistical testing of similarity in growth pattern

Hypothesis testing for similarity in growth pattern

The range of the elements of the growth difference matrix just pre-
sented (0.671 - 0.991) indicates that the difference in facial growth in
these two species is not simply a matter of scale. Our previous discus-
sion suggests that there are significant differences in facial growth
patterns of these two species. If statistical testing for difference in
overall growth pattern is required or desired by the investigator, Gobs
can be calculated following methods outlined above and detailed in
Chapter 4 for the two-sample case.

In this example, the Bootstrap reference sample is Macaca fascicu-
laris (the denominator). The histogram below provides the distribution
of 200 bootstrapped G statistics (each “*” represents the value of a sin-
gle bootstrapped G statistic) as well as the placement of Gobs (signified
by the letter G in the figure) within this distribution. The probability
is given as 0.204 and Gobs clearly falls within the central tendency of
the distribution. This means that we cannot reject the null hypothesis
that facial growth of Cebus apella is similar to the facial growth of
Macaca fascicularis. Here is a clear example where biologically inter-
pretable differences have been revealed using the growth matrices and
growth difference matrix analysis, but statistical hypothesis testing
suggests that the overall difference in growth is not significant.

We saw earlier that there were similarities in the pattern of facial
growth of these two species. Those linear distances that changed the
most and that changed the least were similar in the two species. Even
though the magnitudes of the changes differed greatly, the overall pat-
tern of growth is similar between the two species. From this
perspective the results of the Gobs testing is not unexpected.



Gobs statistic (max/min): 1.478
p-value: 0.204
1.047 |******
1.152 |****************************************************
1.257 |********************************************
1.362 |***************************************
1.468 |G************************
1.573 |*************
1.678 |*******
1.783 |***
1.888 |*
1.994 |*****
2.099 |
2.204 |*
2.309 |*
2.415 |*
2.520 |
2.625 |
2.730 |*
2.836 |
2.941 |*
3.046 |*

Confidence intervals for GDMA 

Although we have some idea of the magnitude of differences in growth
pattern by inspecting the growth difference matrix, this cannot provide
information regarding which of these growth magnitudes is statisti-
cally different between the samples. Large within-sample variability
can underlie estimates of the mean and this may produce unexpected
statistical results. As explained previously, confidence intervals can be
calculated for the comparison of growth patterns for each linear dis-
tance. Confidence interval testing for differences in facial growth in
Cebus apella and Macaca fascicularis (shown below) is based on 200
non-parametric Bootstrap resamples. The chosen alpha level is 0.10. If
growth for a specific linear distances is significantly different in the
two samples, that linear distance is marked with a “**.”



Table 5.1 Confidence Intervals for Growth Differences   α = 0.10

Low Estimate High
NSL IDS 0.644 0.726 0.805 **
NSL PMM 0.794 0.854 0.915 **
IDS PMM 0.867 0.960 1.041
NSL ZMS 0.791 0.847 0.907 **
IDS ZMS 0.606 0.694 0.774 **
PMM ZMS 0.573 0.671 0.772 **
NSL MXT 0.773 0.840 0.903 **
IDS MXT 0.701 0.773 0.843 **
PMM MXT 0.656 0.726 0.792 **
ZMS MXT 0.789 0.854 0.913 **
NSL PNS 0.837 0.896 0.950 **
IDS PNS 0.717 0.788 0.849 **
PMM PNS 0.718 0.777 0.835 **
ZMS PNS 0.938 0.991 1.046
MXT PNS 0.729 0.815 0.904 **

These results show that all but two linear distances experience a
significantly greater degree of growth in the Macaca fascicularis sam-
ple. Taken together, we find that we cannot reject the null hypothesis
that the overall pattern of growth is similar between the two groups,
but the magnitude of growth measured local to specific linear distances
is significantly different between the two species.

5.9.2 A method for graphically displaying differences in growth trajectories

The GDM compares the change in each linear distance due to growth
in one sample to the change experienced in those same linear distances
during growth in the other sample. As detailed above, elements of the
GDM can be sorted from minimum to maximum, providing the rank-
ing of those landmarks or regions that contribute most strongly to the
differences in growth between the two samples under consideration.
Graphs like those shown in Figure 4.11  can be used to identify land-
marks or linear distances that show patterns of growth that stand out
in relation to others. Once a specific set of linear distances has been
identified as “interesting,” the relative changes in these linear dis-
tances can be compared graphically as trajectories.

To maintain simplicity and clarity, we limit ourselves to graphing
triplets of linear distances, each axis tracking the change in a single



Figure 5.4. A method to graphically compare growth of three linear distances (expressed in natural logarithms). Graph on left
shows ideal expectation of parallel lines when growth is similar in two organisms or two populations. Graph on right shows longitudi-
nal growth data for three linear distances measured on the cranial base of two New Zealand white rabbits at 5, 7, 9, 11 and 13 weeks
of age. The two rabbits were raised together on a similar diet. Each point on the graph represents the measure of three linear dis-
tances at a specific age. Data from rabbit 1 are plotted as circles; data from rabbit 2 are plotted as squares. Data appear in
chronological order from lower left to upper right. Although growth of these two rabbits appears similar, these graphs are not invari-
ant to rotation and should be viewed from many perspectives in order to determine the similarity of the growth patterns displayed.



linear distance. In such a graph, equivalent patterns of relative growth
in two groups are represented by a constant in the GDM, and the two
growth patterns are graphically represented as parallel vectors when
linear distances are plotted in natural log space (see Figure 5.4a). If
growth patterns differ between the two samples being compared, ele-
ments of the GDM are not uniform and vectors representing the
growth patterns are not parallel.

5.10  Producing hypothetical morphologies 
from forms and growth patterns

An additional application of the methods provided in this chapter con-
cerns the production of hypothetical forms using growth patterns
quantified by EDMA. There are many instances where the creation of
hypothetical forms may be useful in research. Suppose that there is a
disease that results in dysmorphology. The mutation that causes this
disease has been identified, but it is unclear whether this mutation
causes a primary insult that continually affects systemic or localized
growth patterns of affected individuals or if the mutation results in a
prenatal developmental insult that causes a dysmorphology which is
then maintained by a normal growth pattern. Morphological data
could be used to explore these possibilities. For example, a growth
matrix calculated from a sample of normal individuals can be applied
to coordinate data representing the morphology of an affected individ-
ual. In a sense, we are “growing” an affected individual according to a
growth pattern derived from a sample of unaffected individuals. The
resulting form represents the morphology of an affected individual
who has followed a “normal” growth pattern. The hypothetical form
produced using this method can be statistically compared to age
matched affected and unaffected individuals to determine the differ-
ence in form. Similarly, the hypothetical form and samples of normal
and affected individuals can be analyzed using clustering or classifica-
tion techniques (see Chapter 6) to place the hypothetical form into the
group that it matches most closely. These analyses provide information
regarding the role of growth patterns in producing dysmorphology.

Another example of the use of this methodology for the production
of hypothetical forms concerns the testing of hypotheses about the role
of heterochrony in evolution. To offer a simplified sample, let us say
that species A has been described as evolving from species B through
the process of hypermorphosis (“going beyond” the morphology of



species B; see Gould, 1977). We can continue to grow the adult form of
species B by applying the complete growth pattern or a specific portion
of the growth pattern for species B to the species B adult morphology,
producing a hypothetical form that we refer to as B´. B´ can be com-
pared to the adult form of species A. This comparison will determine
whether an extension of the growth pattern of species B can produce a
morphology consistent with that of species A.

To provide an example of how EDMA can be used to produce hypo-
thetical forms, we take the growth matrix obtained for Macaca
fascicularis facial growth and apply it to the landmark data repre-
senting the face of the youngest Cebus apella. The form matrix for the
starting form (Cebus apella age 1) is:

Form matrix for the starting form FMCa1

0.00000
1.28355 0.00000
1.36297 0.77527 0.00000
1.55937 1.97504 1.34787 0.00000
2.67187 2.62567 2.23906 1.86376 0.00000
2.24435 2.33153 2.16739 1.96148 0.83985 0.00000

The “transformation matrix” used in this example is the growth matrix
obtained by comparing the young to the old Macaca fascicularis face
(GMMF).

Transformation Matrix GMMF

0.00000 
1.85100 0.00000
1.44800 1.30600 0.00000
1.46000 1.99800 2.13600 0.00000
1.45300 1.71500 1.81600 1.51800 0.00000
1.32900 1.66500 1.64100 1.26300 1.48300 0.00000

The matrix obtained by multiplying the chosen form matrix FMCa1
by

the transformation matrix (GMMF) represents the hypothetical form
matrix.



Hypothetical Form Matrix

0.00000 
2.37584 0.00000
1.97359 1.01250 0.00000
2.27668 3.94614 2.87906 0.00000
3.88223 4.50303 4.06614 2.82918 0.00000
2.98274 3.88200 3.55668 2.47735 1.24550 0.00000

If we want to plot the relative landmark locations of the hypothetical
form in three-dimensional space, we need the coordinates for the land-
mark locations of the hypothetical form. To re-write the hypothetical
form matrix as a landmark coordinate matrix, the form matrix is sub-
jected to spectral decomposition (see also Chapter 3, Part 2). To do this
we first square the Euclidean distance matrix corresponding to the
hypothetical form matrix. Following the notation given in Part 2 of
Chapter 3, this is written as:

The squared Euclidean distance matrix corresponding to the hypo-
thetical form in our example is given as:

0.00000 
5.6446 0.00000 
3.89505 1.0251 0.00000 
5.18327 15.5720 8.2889 0.00000 
15.0717 20.2773 16.5335 8.00426 0.00000 
8.89674 15.0699 12.64997 6.13726 1.55127 0.00000

Next, we need to calculate the corresponding centered inner product-
matrix using 
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where is a K � K symmetric matrix.

The eigenvalues (�1 > �2 > �3 > ... �K) and eigenvectors of B(M) are cal-
culated next. The eigenvalues are arranged in decreasing order by �1,
�2, �3, ..., �K, and the corresponding eigenvectors are given as h1, h2, ...,
hn. Note that h1, h2, and h3 are K x 1 vectors, and �1, �2, and �3 are
positive real numbers provided the hypothetical form is a three-dimen-
sional object. If the original data are from two-dimensional objects, the
estimate of the coordinates of the hypothetical form matrix is given

by           . If the original data are from three- 

dimensional objects the estimate of the coordinates of the hypothetical

form matrix is given by                           .

The landmark coordinate locations for the hypothetical form from
our example are given below.

Coordinates of the Hypothetical Form

0.93655 -0.89435 0.88308

2.16769 1.01905 0.03706

1.66302 0.10050 -0.66443

-0.77885 -1.54961 -0.51053

-2.33166 0.81673 -0.32909

-1.65674 0.50768 0.58390

These coordinate data for the hypothetical form can be translated and
rotated so that the form appears in a biologically sensible orientation
when viewed. Coordinate locations obtained in this way can be used to
graphically represent the hypothetical form, but we stress that the
estimator is a representation of the hypothetical form only up to rota-



tion, reflection, and translation. Keep in mind that to obtain a graphi-
cal representation that is biologically meaningful, the coordinate
matrix may need to be reflected. This can be done by multiplying one
or more of the axes by -1.

It is important to remember that transformation matrices can be
incompatible with form matrices. When this occurs, the hypothetical
form produced is of a different dimension than the starting form. To
avoid such errors, it is important to check for the dimensionality of the
hypothetical form. Checking the dimensionality of a form is a neces-
sary step in the production of hypothetical forms (Richtsmeier and
Lele, 1993). The first thing that should be done is to check that the
eigenvalues are all positive. There should be no large negative eigen-
values. If there are small, negative eigenvalues, the researcher must
choose whether or not to ignore them. If there are large negative eigen-
values, then the growth matrix and the form matrix are incompatible
and the geometry of the hypothetical form cannot be resolved. If the
majority of the eigenvalues are non-negative, then the dimension of
the hypothetical form must be determined.

To determine the dimensionality of a hypothetical form, we suggest
adding the first D eigenvalues (where D= the number of dimensions of
the starting form) to see if these eigenvalues constitute a given per-
centage of the sum of the K eigenvalues. We suggest the following
criterion be used in determining the dimensionality of a hypothetical
form. Let 
Choose that value of D that makes PD larger than 0.95. The 95% cutoff

is arbitrary, but sensible. A more or less restricted dimensionality
check may be required depending upon the purpose of the experiment.
If we expect a two-dimensional hypothetical form, then the sum of the
first two eigenvalues should exceed 95% of the sum of all eigenvalues.
If we expect a three-dimensional hypothetical form, then the sum of
the first three eigenvalues (but not the first two) should exceed 95% of
the sum of all eigenvalues. The first 6 eigenvalues and their associat-
ed percentages for our hypothetical form are given below. The
remaining eigenvalues are 0.0.



Eigenvalues

1. 17.12972 70.35886%
2. 5.17452 21.25391%
3. 1.93256 7.93784%
4. 0.10941 0.44939%
5. 0.00000 0.00000%
6. 0.00000 0.00000%

In our example, the sum of the first D eigenvalues (but not the first
D-1 eigenvalues) exceeds the check value (95%). Reconstruction of the
landmark coordinates for the hypothetical form is possible.

5.11 Summary

In this chapter, we demonstrated the way in which EDMA can be
applied in the study of growth patterns. We described the types of data
that may be available to the researcher studying growth and suggest-
ed ways to categorize individuals on the basis of life history variables
in the absence of chronological ages. We defined the growth matrix,
GM, and the growth difference matrix, GDM, and provided a method
for comparing patterns of growth. Statistical tests and graphical tech-
niques for comparing growth patterns were also presented. Finally, we
provided a method for the production of hypothetical forms from com-
bining a growth matrix and a form matrix.



Traditionally quantification of the morphology of biological organisms
has played an important role in Numerical Taxonomy (e.g., Sneath and
Sokal, 1973, Reyment et al., 1984). A chief objective of many studies in
Numerical Taxonomy is to find groups in the data such that the organ-
isms within a group are more similar to other members of the group
than they are to the members of alternate groups. A related but dis-
tinct issue of substantial interest to the clinical sciences is the
classification of new patients into already defined groups. This practice
is clearly relevant to the field of medical diagnostics, but it is also use-
ful in evolutionary biology where a scientist may want to assign a
newly found individual to a group; e.g., a clade, a species, a family. In
this chapter, we discuss the ways in which the invariant approach to
the quantitative analysis of forms can be applied towards the problem
of forming groups (clustering) and the assignment of individuals to
known groups (classification). In standard statistical terminology, the
classification approach is used when the groups are known and the
goal is to determine the group membership of a new individual. The
goal of the clustering approach is to find the groups in the data. There
exist a vast array of statistical procedures that can be applied to attain
either goal. We start with the problem of classification, in part, because
it provides a relatively clean statistical answer. We then turn to clus-
tering, although with less enthusiasm due to the fact that clustering is
inherently subjective. This is because the results of a clustering proce-
dure can depend more on the method than on the signal in the data. In
this chapter, we propose algorithms for classification and clustering of
individuals represented by landmark coordinate data.

CHAPTER 6

Classification and Clustering
Applications



The use of these algorithms is illustrated using datasets involving
craniosynostosis patients.

6.1 Classification analysis

The activity of allocating individuals to one of a set of existing groups
is usually referred to as classification, assignment or discrimination.
The term classification has two complementary meanings in the sta-
tistical literature (Gower, 1998). First, classification involves assigning
an observation to one of a set of previously known classes. Secondly,
classification is concerned with the construction and description of the
classes themselves. In this book, we define classification in the first
sense; i.e., assigning a new observation to one of the known classes.
Gower (1998) suggests that this is better described as discrimination
and we agree that the theory of discriminant analysis plays an impor-
tant role in this activity. Here, a discrimination or classification
problem concerns the identification of the sample of interest as belong-
ing to one group within a set of known groups. Using a combination of
features that are held in common by the individuals in the same group,
an individual is identified as belonging or not belonging to the group.
The features may be based solely on landmark data or additional infor-
mation; e.g., life history information, ecological variables, phylogenetic
information. In this book, we restrict ourselves to the exclusive use of
landmark data. However, modification of the classification procedure
to accommodate other variables is straightforward and may be partic-
ularly valuable in specific research situations.

Classification involves specification of a rule that determines the
class to which a new observation is assigned. There are two kinds of
classification rules: “probabilistic” and “non-probabilistic.” In a
research situation of living organisms, classification based on gender
(which is observable from the organism) is non-probabilistic because
the membership of a new individual to the class ‘male’ or ‘female’ can
be done with certainty. On the other hand, probabilistic classification
involves the assignment of specimens into groups with the possibility
for misclassification. For example, classification of an organism into
the groups male and female is usually probabilistic when the specimen
has been skeletonized (or fossilized), and observable features do not
include genitalia; i.e., there is uncertainty inherent to the classifica-
tion. The main difference between a non-probabilistic and probabilistic
classification, then, is that a non-probabilistic classification rule does



not involve the possibility of misclassification of the new observation
into the ‘wrong’ class, whereas the probabilistic classification includes
the possibility of misclassification. This feature makes probabilistic
classification more general, less certain, and more interesting.

Let us consider the probabilistic classification approach for land-
mark coordinate data. Suppose we have C different classes. The classes
might correspond, for example, to different classes (families, clades,
species, etc.) of Early Eocene Notharctinae, each individual represent-
ed by a fossilized first mandibular molar. Suppose further that for each
class a mean form and variance exists representing the first molar. Let
us assume that the variance can be written in the Kronecker product
form: V = �K � I D. Let (Mi,�K,i) denote the mean and variance of the i-
th class. Now, suppose we discover an additional first molar in a
museum drawer and suspect that the individual represented by this
tooth might belong to one of the known classes. In order to classify this
tooth, we collect landmark coordinate data from surface features. The
question is: to which of the C classes does this individual most likely
belong? Notice several important features of this situation. First, we
assume that the individual has to come from one of the C classes and
no other class. Second, we assume that the mean and the variance for
each class are completely known a priori. The first assumption may be
justified based on the knowledge and expertise of the scientist. The sec-
ond assumption may be justified based on the estimated means and
variances of the previously classified fossil samples whose phylogenet-
ic relationships and class membership are confirmed. However, in
practice one or both of these assumptions may be violated.

6.2 Methods of classification

1. Likelihood-based classification
Suppose we accept the two assumptions as reasonable.
Suppose further that there are two known classes. Now sup-
pose, under the usual Gaussian perturbation model, we
calculate the probability that the new individual belongs to
the first class. Let us say, for example, this probability is 0.3.
Similarly we calculate the probability that the new individu-
al belongs to the second class and find this probability to
be 0.8. Naturally we would assign that individual to the cate-
gory that has the highest probability, in this case we would



classify the individual to class 2. This type of classification
rule corresponds to what is called ‘likelihood classification’.

Unfortunately, calculation of the likelihood classification is compu-
tationally difficult when landmark coordinate data are used because of
the presence of the nuisance parameters of translation, rotation and
reflection. The difficulty in computing the likelihood rule is explained
in Chapter 3, Part 2.

2. Dissimilarity measures-based classification
Fortunately, likelihood method is not the only approach to
classification. Another classification tool uses a dissimilarity
measure. In this approach, the first step is to calculate a dis-
tance, or dissimilarity measure between the observation of
interest and each of the defined classes. This distance, repre-
sented by a single number, quantifies the resemblance (or
lack of resemblance) between the new observation and the
class under consideration. We classify the new observation as
belonging to the class that it resembles most closely according
to the chosen measure.

The choice of the measure, be it a dissimilarity metric or a distance,
is subjective. For each distance measure, there exists a corresponding
classification rule. As we noted earlier, every probabilistic classification
rule has the potential to lead to a wrong decision. Given two different
classification rules, we choose that rule that on average leads to a
smaller number of wrong decisions. Unfortunately, in practice, no sin-
gle classification rule turns out to be uniformly the best, in the sense
that it has the smallest error rate under every possible situation. It is
unfortunate, but true, that some classification rules are good for some
situations whereas others work well under different conditions. This
feature makes classification more an art than science. There seldom is
a single classification rule that is best under every situation. It is futile
to argue for one classification rule over others based on a few, simple,
specific situations.

There will certainly be some situations where an alternate classifi-
cation rule works better than the rule we are proposing here.
Presentation of situations where one rule provides superior outcomes
does not prove the superiority of a given approach. Instead this demon-
strates that one classification rule should not be used in every possible



instance, and that no particular rule should be discarded universally.

6.3 Dissimilarity measures for landmark coordinate data

In the following paragraphs, we present a few dissimilarity measures
that are intuitive, simple to calculate, and useful for classification
based on landmark coordinate data. An example of their use in classi-
fication is illustrated in the following section.

Let X denote the landmark coordinate matrix for the new observa-
tion. In this description, let M denote the true mean form for one of the
classes and �K denote the true variance. Recall however from the dis-
cussion in Chapter 3, that these values are non-estimable. Only the
centered and rotated version of the mean form, M C, the form matrix,
FM (M), and the singular version of �K are estimable. Next we provide
various dissimilarity measures for determining the classification of X
into one of several known classes. Notice that in all the measures
described below only these estimable parameters are used. These dis-
similarity measures can therefore be computed in practice.

1. Unweighted Procrustes dissimilarity measure: This is a
Procrustes distance between the centered landmark coordi-
nate matrix, XC = HX, and the centered mean form matrix, MC

= H M, where H is the centering matrix defined in Chapter 3.
The distance is given by: DP (X C, M C ) = tr(X C T X C) � tr(M C T

M C ) – 2tr(X C M C T MC X C T)1/ 2.
The last component of this expression corresponds to the
square root of a matrix. This dissimilarity measure is simple
to calculate, however the value of the measure depends on the
specific centering adopted during analysis and does not take
correlations between landmarks into consideration.

2. Dissimilarity measure based on the Euclidean Distance
Matrix representation using arithmetic differences:
Suppose we calculate the form matrices corresponding to the
observation X and the mean form matrix M. A dissimilarity



measure based on the arithmetic differences between the two
matrices, DA, is given by:

This measure is simple to calculate and does not depend on any cen-
tering protocol. However, it does not take into account the covariance
between the landmarks.

3. Dissimilarity measure based on the Euclidean Distance
Matrix representation using relative differences: A dis-
similarity measure based on the relative differences between
matrices representing the mean form and an individual is
given by:

This measure is also simple to calculate but weighs the differences dif-
ferently; e.g., the smaller distances receive more weight in the
calculation. This may or may not be desirable depending upon the
research problem.

4. Dissimilarity measure based on logarithmic differences:
The following dissimilarity measure is based on the differ-
ences between the logarithms of the distances:

5. Dissimilarity measure based on the Euclidean
Distance Matrix representation of relative differences
in growth pattern: We have found that there are situations
in which a growth pattern can be useful in distinguishing
between groups (Richtsmeier and Lele, 1993; Richtsmeier et
al. 1993a, 1993b). There are situations in which organisms
achieve similar adult forms through differing growth pat-
terns. In this case a dissimilarity measure based on the
growth matrices (and the differences between them) can be
used. Growth data are required for each individual in ques-
tion and for each of the defined groups. The dissimilarity
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measured based on differences between growth patterns is
defined as:

The dissimilarity measures provided above are only a sample of possi-
ble dissimilarity measures that may be used in classification.

Description of the classification rule

All of the dissimilarity measures given above can be used in devising
a classification rule. The steps of the procedure are the same regard-
less of which measure is used. Suppose, for example, we choose the
Procrustes distance to use as the dissimilarity measure. Then, the
steps are as follows:

STEP 1: Collect samples from each of the classes that are of
interest. Estimate the mean form matrix and the variance-
covariance matrix for each sample using these data. Let M̂1

and denote the estimated mean form and the variance
covariance matrix for the first sample. Do this for the samples
representing each class.

STEP 2: Given a new individual represented by a landmark
coordinate matrix, calculate the Procrustes distance between
the individual and each of the classes.

STEP 3: Classify the new individual into that class that it
resembles the most; i.e., the smallest Procrustes distance.

In the next section, we compare the performance of the dissimilar-
ity measures described earlier using data from individuals diagnosed
with differing craniofacial malformations.

6.4  A classification example

As discussed in Chapter 1, the developing neurocranium is made up of
a number of roughly shell-shaped bony plates that align with one
another at joints or articulations called sutures. The typical shape of
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the calvarium of children diagnosed with premature closure of the
sagittal suture is long and narrow relative to a normal skull (Figure
1.4b). Additional sutures are present on the calvarium (Figure 1.4a)
and premature closure of any of the other sutures results in abnor-
mally shaped skulls. When the metopic suture is closed prematurely,
the frontal bone (forehead) becomes pointed and the skull appears tri-
angular in shape when viewed from above. When either the right or
left coronal suture is closed prematurely, the skull takes on an asym-
metric shape when viewed from the top with the forehead and orbit
compressed on the synostosed side. There can also be flattening of the
posterior aspect of the same side and bulging of the neurocranium on
the posterior aspect of the unaffected side (see Figure 7.2).

Asymmetric deformation of the developing skull can occur even when
all sutures remain open. Typically, these skull deformations mimic the
appearance of either premature closure of one coronal suture or one
lambdoid suture. Crowding in the womb or repeated placement of the
infant in a particular sleeping position can result in flattening of one
side of the back of the skull. This deformity is referred to as plagio-
cephaly (literally, twisted skull) and does not involve craniosynostosis
(i.e., all sutures remain open). Data sets for this example include land-
mark coordinate data collected from samples of individuals diagnosed
with posterior plagiocephaly, meaning that the flattened part of their
skull was evident on the more posterior aspect, unicoronal synostosis
(where the coronal suture closes prematurely), metopic synostosis
(where the metopic suture closes prematurely), and sagittal synostosis
(premature closure of the sagittal suture) (see Chapter 1). Both uni-
coronal synostosis and posterior plagiocephaly can occur on either the
right or left side of the skull, and our sample contains children with
both right and left unicoronal synostosis and right and left posterior
plagiocephaly. For the cross validation study presented below, we
reflected all right-sided unicoronal and posterior plagiocephaly cases
such that all cases were left-sided for analysis.

Most children that present with obviously misshapen skulls are
referred to a specialist for consultation. Often a computed tomography
scan is necessary to determine whether or not a suture is truly closed
and to provide information for clinical correction of the deformity
(either by surgery or by a device). Landmark data were collected from
computed tomography images of children diagnosed with sagittal syn-
ostosis (N=25), metopic synostosis (N=11), unicoronal synostosis (N=4),
and posterior plagiocephaly (N=9). The landmarks were identified on
the cranial base (that part of the skull underlying and surrounding the



inferior surface of the brain), a portion of the skull that can be involved
(but is not necessarily involved) in the various deformities considered.

Here, we report a cross-validation study of the misclassification
rates for the first four measures of dissimilarity described above.
Misclassification rates represent the percent of cases misclassified
after the application of a specific dissimilarity measure. Misclassifi-
cation rates indicate the number of times an individual gets classified
into an incorrect class. If this rate is high, the dissimilarity measure
used is a relatively poor metric for classification, or the data do not pro-
vide adequate information for classifying individuals into the proper
class. In this experiment, we utilized four different measures of dis-
similarity in analysis of the same data set and compared the results.
The steps are provided below with the Unweighted Procrustes distance
given as the dissimilarity measure. The same steps were followed using
each of the four dissimilarity measures. The procedure is as follows:

STEP 1: Pick one of the categories, say sagittal synostosis.
Randomly remove one of the individuals from that sample
and call it X.
STEP 2: Estimate the mean form for each of the dysmorphol-
ogy categories.
STEP 3: Compute the dissimilarity measure between the
landmark coordinate matrix for X (the individual which was
removed in Step 1) and the estimated mean forms for each of
the dysmorphology categories. For the first group, sagittal
synostosis, calculate

where M1 is the estimated mean form for the first group
(sagittal synostosis patients). Similarly, compute the dissimi-
larity between individual X and the estimated mean forms for
the remaining groups: unicoronal synostosis (M2), metopic
synostosis (M3), posterior plagiocephaly (M4):

STEP 4: Classify the individual into the dysmorphology cate-
gory for which the dissimilarity is the smallest. Check for
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correctness of classification and record the outcome (classified
correctly or not).
STEP 5: Go back to Step 1, replace the individual that was
removed in this step in the previous iteration, remove a dif-
ferent individual and repeat steps 2 to 4. Continue until each
individual has been removed once and classified.

This method of studying the error rates of a particular procedure is a
cross-validation procedure (Efron and Tibshirani, 1991). We repeated
the cross-validation procedure for other dissimilarity measures. Table
6.1 provides the number of times an individual was classified incor-
rectly. This table suggests that different dissimilarity measures have
about the same misclassification rates and that landmark coordinate
data from the cranial base may not be sufficient for diagnostic classifi-
cation of certain craniofacial phenotypes. Interestingly, the unicoronal
synostosis class, which is characterized by marked asymmetry of the
calvarium and premature closure of a unilateral suture, has the lowest
misclassification rate. Posterior plagiocephaly is also identified by
asymmetry of the calvarium, but not by premature closure of a unilat-
eral suture, and it shows a higher misclassification rate. Both sagittal
and metopic craniosynostosis involve fusion of a midline suture, dis-
play cranial symmetry, and show relatively high percentages of
misclassification.
Table 6.1 Cross-validation based misclassification rates for various dissimi-
larity measures and four known classes. The smaller percentage indicates 
a more correct classification. All four dissimilarity measures seem to be 
equally effective in classifying individuals in different categories of 
craniofacial anomalies.

Unicoronal Sagittal Posterior Metopic

Synotosis Synotosis Plagiocephaly Synotosis
n = 4 n = 25 n = 9 n = 11

Procrustes 0% 40% 22% 18%
Arithmetic 0% 36% 33% 18%

form difference
Relative form 0% 36% 33% 18%

difference
Logarithmic form 0% 32% 33% 27%

difference



6.5 Cluster analysis

Cluster analysis is concerned with investigating a set of data to discover
whether or not relatively distinct groups of observations can be identified
within the data set. The groups are NOT known a priori, and this distin-
guishes cluster analysis from the activity of allocating individuals to one
of a set of existing groups or classification as described above. Uncovering
the group structure (if any) of a set of data is clearly of considerable
importance in understanding the data and using them to answer sub-
stantive science-based questions.

As in the classification problem, the first step in clustering analysis
is to define a suitable measure of distance. Since the classes are not
known a priori, we calculate the distance between pairs of observa-
tions instead of calculating the distance between an observation and
the parameters of the known classes. Suppose we have N observations.
The calculation of the observation-to-observation distances leads us to
N (N – 1) /2 pair wise distances between N individuals. These are dis-
similarities between individuals and should not be confused with
inter-landmark distances within an individual. The dissimilarities
between all individuals can be collected in an N � N matrix, called the
matrix of dissimilarities where each row and each column corresponds
to an individual. The dissimilarity metric calculated between individ-
ual a and individual p will be entered into the cell where column a and
row p intersect and again where column p and row a intersect. The
matrix of dissimilarities is a square symmetric matrix that is mathe-
matically similar to the Euclidean Distance Matrix (Form Matrix) that
was used in Chapters 3 to 5. Given such a matrix of dissimilarities, we
try to construct the groups so that within a group the observations
(measures of dissimilarity) are more similar than they are between
groups. There are many standard statistical procedures (e.g., hierar-
chical clustering or k-means clustering) that may be used towards this
purpose. There are also several standard statistical packages that
implement these procedures. We do not discuss the details of these pro-
cedures here. WinEDMA software (http://faith.med.jhmi.edu) offers a
procedure under the heading “ordination.”

We feel obligated to point out that clustering is a very subjective
process. First, a particular distance measure must be chosen. Second,
once the analysis is run, the results of the clustering procedure are
used to decide how many groups exist in the dataset. This requires that
we decide what is meant by ‘more’ similar. These subjective choices

http://oshima.anthro.psu.edu/


make clustering more an art than a science. Each choice leads to dif-
ferent error rates and it cannot be determined that one approach is
globally the best under all circumstances. Consequently, we advocate
cluster analysis as a method of data exploration only. Arguments in
favor or against different clustering techniques are unproductive.

6.6 Clustering analysis example

In the following example, we use the same dataset discussed in the
classification section but we pretend that the classes of different indi-
viduals are not known. Thus, we mix all four datasets together and
then apply clustering procedures to ‘find’ the groups in the aggregated
dataset. If we find groups that correspond nicely with what we know,
then we can say that the clustering procedure is effective in separat-
ing the different groups. On the other hand, if the clustering procedure
fails to separate the groups, we say that it is not very effective.
Unfortunately, real life situations do not allow the luxury of this kind
of verification.

As before, we describe the example analysis in terms of the
Unweighted Procrustes distance. The procedure is repeated for all
other dissimilarity measures considered.

Let X1, X2,...,XN denote the landmark coordinate matrices corre-
sponding to the n individuals in the combined sample.

STEP 1: Compute the dissimilarity measure between all pairs
of individuals. That is, compute

for i = 1,2,..., n and j = 1,2,..., n.
STEP 2: Put these dissimilarity measures into matrix form
and call that matrix the dissimilarity matrix:
This is a square, symmetric matrix with diagonal elements
equal to zero, since the dissimilarity between an individual
and itself is zero.
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STEP 3: Apply the Hierarchical clustering method to draw
dendograms showing the affinities of various individuals. We
used the Splus 2000 (MathSoft, Inc., 2000) program to con-
duct this analysis. The Splus function used to draw these
dendograms is entitled ‘hclust’ and is described in Venables
and Ripley (1997, 390-391). We also applied the Principal
Coordinates Analysis described in Venables and Ripley (1997,
392) to study the clusters. The results are shown in Figures
6.1 and 6.2.

All methods used to form the dendograms identify the unicoronal
group as distinctly separate from the other four groups. All methods
also show large portions of the sagittal synostosis sample grouped
together, though not all members. All four dendrograms show two
rather large mixed groups made up of sagittal synosotosis, metopic
synostosis, and posterior plagiocephaly cases. The original diagnosis
for these disorders is made on the basis of calvarial shape (followed by
computed tomography scanning), but the data used for this cluster
analysis came from landmarks located on the cranial base; that part of
the skull that underlies the brain (see Figure 1.5a). The reason that
the cranial base landmarks were able to successfully differentiate the
unicoronal cases is that it represents an asymmetric craniosynostosis;
i.e., only one side of the coronal suture is closed prematurely. The pre-
mature closure of one half of the coronal suture redirects vectors of
growth throughout the skull resulting in asymmetry of the cranial
base (DeLeon et al., 2000). Posterior plagiocephaly, on the other hand,
is a deformation that does not involve craniosynostosis and does not
result in growth patterns that affect the symmetry of the cranial base.
The other two categories, sagittal and metopic synostosis, involve cran-
iosynostosis but do not produce asymmetry of the cranial base.

Although each type of craniosynostosis results in a predictable cal-
varial shape (Richtsmeier et al., 1999; Zumpano et al., 1999; DeLeon et
al., 2001), in a previous study, we found that traditional landmarks
taken on the surface of the calvarium (the intersection of suture lines)
were not sufficient to differentiate sagittal synostosis patients from
unaffected individuals (Richtsmeier et al., 1998) nor to completely dif-
ferentiate the various types of symmetric craniosynostosis (Richtsmeier
et al., 1999). What was needed for discrimination were fuzzy land-
marks (see Chapter 2) that mark the location of bosses (bulges) on the
surface of various bones of the calvarium. These fuzzy landmarks,



Figure 6.1. Dendograms computed by single-link clustering for various dissimilarity
measures. They are in order DP, DA, DR and DLR. Note that all four dissimilarity mea-
sures are successful in isolating the Unicoronal synostosis cases; however, other cases
do not form groups that are as clearly discernable.





Figure 6.2 First two principal components of the dissimilarity matrix for various dissimilarity measures. Note that all four dissimilarity
measures are successful in isolating the Unicoronal Synostosis cases; however, other groups are not as clearly distinct from one another.
The Procrustes dissimilarity measure indicates two groups in addition to the Unicoronal Synsostosis group. Dissimilarity measures other
than the Procrustes dissimilarity measure appear to separate out some of the Sagittal synostosis cases indicating three clusters.



although more prone to measurement error (Valeri et al.,1998), contain
diagnostic information on the shape of the calvarium.

This clustering analysis has demonstrated two things. First, all four
methods are equally successful in isolating unicoronal synostosis using
cranial base landmarks. This is due to the asymmetric nature of the cra-
nial base in unicoronal synostosis. Second, none of the methods are able
to differentiate symmetric forms of craniosynostosis and deformational
posterior plagiocephaly using landmark data from the cranial base.

6.7 Summary

In this chapter, we have illustrated the use of landmark coordinate
data for the purpose of classification and clustering. There are many
different dissimilarity measures that may be used toward this end; we
have utilized only four. By their very nature, both classification and
clustering involve an arbitrary choice of a dissimilarity measure. There
is no one dissimilarity measure that works best in every conceivable
situation. Our studies indicate that the four different dissimilarity
measures considered in this chapter can behave similarly. The reader
is reminded that in another research context with alternate data, vary-
ing dissimilarity measures can provide dissimilar and even conflicting
results. Our advice is to study the misclassification rate for the partic-
ular research situation using the cross-validation approach described
in this chapter and choose the dissimilariy measure that works best for
it. We also think that data additional to landmark coordinate data
should be incorporated into the calculation of the dissimilarity mea-
sures. This additional information can potentially reduce the
misclassification rate. It might also improve the performance of the
clustering methods.



CHAPTER 7

Further Applications of EDMA
Theodore M. Cole III

Department of Basic Medical Science
University of Missouri-Kansas City

Dr. Tim Cole has been one of our collaborators in our work with EDMA.
In this chapter, he summarizes some recent extensions of EDMA
methodology to new research areas. These extensions are still under
development and the discussion here is necessarily preliminary.

7.1 The study of asymmetry

Bilateral symmetry of the musculoskeletal system is a phylogenetical-
ly widespread characteristic of many complex organisms (Palmer,
1996). There is a midline plane of symmetry that divides the body into
right and left halves, so that one half is essentially a mirror image of
the other. However, asymmetries in form are frequently observed both
in natural populations of organisms and in clinical settings. Some of
these asymmetries can be very subtle. For example, while normal
human faces may appear symmetric on casual inspection, some slight
differences between sides can always be found. In other cases, there
may be asymmetries that are immediately obvious. Some large-scale,
conspicuous asymmetries may occur in normally symmetric structures
because of developmental anomalies (e.g., hemifacial microsomia), and
there are also dramatic asymmetries that occur normally in natural
populations (e.g., the skulls of flounders).

There are three basic patterns of asymmetry, all of which are
defined at the level of the sample or population: fluctuating asymme-
try, directional asymmetry, and antisymmetry (Palmer, 1996). These
patterns are distinguished on the basis of: 1) the degree of asymmetry,



and 2) the “handedness” of the asymmetry. To illustrate these, let us
first consider asymmetry in a single interlandmark distance. Call the
right-side distance R and the left-side distance L, and collect both for a
sample of organisms. For the ith individual, we can then describe any
asymmetry in terms of the ratio of the right- and left-side distances: Ai

= Ri/Li. If ith individual is perfectly symmetric for this distance, then
A i will equal 1. If the right-side distance is larger than the left-side dis-
tance, A i will be greater than 1. Conversely, a larger left-side distance
will result in a value that is less than 1. Importantly, the distribution
of A indicates the type of asymmetry that occurs in a population.

Fluctuating asymmetry: In reality, no bilaterally symmetric organ-
ism has identical right and left sides. With sufficiently precise
measurement, slight differences between sides will always be found,
and the handedness of these differences (indicating which side of an
individual is larger) will be random. These slight differences are
thought to result from the effects of environmental perturbations on
normal development (Parsons, 1990; Alibert et al., 1997). Because the
handedness of the fluctuations is random, the mean form for a sample
is expected to be symmetric. Therefore, when an entire sample is exam-
ined, the mean of A will be 1, and the amount of dispersion will
indicate the degree of asymmetry in the sample (Figure 7.1a). Traits
that are more developmentally stable should exhibit smaller variances
in A, while more labile traits should exhibit larger variances.

Directional asymmetry: In cases of directional asymmetry, each of
the observations in a sample will be asymmetric, and there will be a
handedness that characterizes the sample as a whole. In addition,
directional asymmetry tends to be characterized by a greater magni-
tude, so that it is conspicuous (Palmer, 1996). Unlike fluctuating
asymmetry, directional asymmetry is thought to have a genetic com-
ponent that fixes its handedness in a population. To illustrate how
directional asymmetry is expressed in the distribution of A, suppose
that every observation in the sample has a right-side measurement
that is substantially larger than its left-side counterpart. The result is
that A will have a unimodal distribution with a mean greater than 1
(Figure 7.1b). Perhaps the most dramatic examples of directional
asymmetry in natural populations are the flatfish (flounders and their
relatives). While they are bilaterally symmetric as larvae, one of their
eyes migrates to the opposite side of the head during metamorphosis,
so that adults have both eyes on the same side of the head. In general,
the handedness of the eyes is fixed within taxa, so that some species
are “right-eyed” and some are “left-eyed” (although some species are



polymorphic for handedness and, therefore, are antisymmetric by def-
inition).

Antisymmetry: Antisymmetry is similar to directional asymmetry
in that each observation in a sample can be considered conspicuously
asymmetric. However, there is no handedness that characterizes the
sample as a whole. Each observation will have a value of A that is
either greater than 1 or less than 1, so that A has a bimodal distribu-
tion (Figure 7.1c). Note that the difference between fluctuating

Figure 7.1 Distributions of A that are expected for different types of asymmetry. (a)
Fluctuating asymmetry: Because there is no handedness in the sample, the distribu-
tion of A is unimodal and the mean is expected to be zero. (b) Directional asymmetry:
The asymmetry in a typical observation is more conspicuous than in the case of fluctu-
ating asymmetry. The distribution of A is unimodal but is not zero because of the
handedness in the population. (c) Antisymmetry: The asymmetry of a typical observa-
tion is conspicuous; but there is no handedness in the population, so that the
distribution of A is bimodal.
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asymmetry and antisymmetry is a matter of degree, where the distri-
butions of A are unimodal and bimodal, respectively. Antisymmetries
are seen both in clinical samples and natural populations. A well-
known clinical example is hemifacial microsomia, where the bones on
one side of the face are markedly undersized (compared to normal-
sized bones on the opposite side). Another example is posterior
plagiocephaly, where one side of the posterior neurocranium appears
“flattened.” In both of these examples, there is no handedness that
characterizes the patient population as a whole, so that right- and left-
side deformities are expected to occur with equal frequency.
Antisymmetries also occur in nature, where most species of fiddler
crabs in the genus Uca are a familiar example (Jones & George, 1982).
In these taxa, each male fiddler crab has one claw that is dramatical-
ly enlarged; however, some males will have an enlarged right-hand
claw and others will have an enlarged left-hand claw (so there is,
again, no handedness that characterizes the population as a whole).

7.1.1. Studying Asymmetry Using EDMA 

We now consider how EDMA can be applied to the analysis of
asymmetry when form is measured using landmark coordinate data. In
using EDMA, we can generalize the univariate examples given in the
previous section to analyses where many interlandmark distances are
considered. As with other EDMA applications, we are not only interest-
ed in determining whether a form difference occurs, but we are also
interested in where it occurs. In other words, our studies of asymmetry
aim to localize the differences in form between the left and right sides.

To quantify asymmetry patterns, we use form matrices, but we
modify the way that they are constructed. In all previous applications,
we described form differences between two observations or two sample
means. However, in studying asymmetry, we want to measure form dif-
ferences within observations (that is, between the right and left sides
of the same observation). The algorithm for studying directional asym-
metry, which is the most straightforward type to study, is presented
below. The basics of this algorithm (where a form difference matrix is
used to compare sides of the same observation) were introduced by
O’Grady and Antonyshyn (1999); we have extended it to include the
computation of confidence intervals.



1. Calculate sample estimates of M̂ and �*K for the entire object,
including all bilateral landmarks and midline points.

2. Divide the mean form into half-forms. The right half-form
consists of all right-side bilateral landmarks and all (option-
al) midline landmarks. Similarly, the left half-form consists of
all left-side bilateral landmarks and, again, all (optional) mid-
line landmarks.

3. Within each half-form, calculate all distances between bilat-
eral landmarks. Also, if midline landmarks are used, calculate
the distances between each bilateral landmark and each of
the midline landmarks. We do not calculate the distances
between midline landmarks, as they have no bearing on the
analysis. Place the right-side distances into a vector called R
and the left-side distances into a vector called L.

4. Define an asymmetry vector (A) by elementwise division of the
half-form vectors: A = R/L. Under the null hypothesis of bilat-
eral symmetry, we expect all of the elements of A to be 1.
Elements other than 1 indicate directional asymmetry. If an
element of A is greater than 1, it indicates a distance where
the right side is larger. Conversely, an element less than 1
indicates a distance where the left side is larger.

5. Compute marginal confidence intervals for the elements of A,
using either nonparametric bootstrapping (Lele & Richts-
meier, 1995) or parametric bootstrapping (Lele & Cole, 1996).
[These methods were introduced in Chapter 4.] If the confi-
dence interval for an element of A contains 1, the null
hypothesis of symmetry for the corresponding distance cannot
be rejected. However, if the confidence interval excludes 1, the
null hypothesis is rejected, and there is evidence of significant
directional asymmetry.

To illustrate with real data, let us consider how EDMA can be used
to study asymmetry in a clinical context. Our sample consists of eight
children affected with unicoronal craniosynostosis, where the coronal
suture has prematurely fused on one side of the neurocranium (Figure
7.2). The premature fusion causes marked asymmetry of the cranial
vault, the cranial base, and the face. All of the children have left-side
fusion, so we can treat this antisymmetry problem as a directional
asymmetry problem. To make our descriptions clearer, we hereafter
refer to the sides of the skull as either “fused” or “unfused” (as opposed



to “left” or “right”).
The landmarks describing cranial form include three pairs of bilat-

eral landmarks and four midline landmarks. The midline landmarks
are found on the face (nasion — NAS) and the basicranium (sella —
SEL; basion — BAS; opisthion — OPI). The bilateral landmarks are
found on the lateral rim of the orbit (frontozygomatic junction — FZJ)
and on the most lateral aspect of the basicranium (external auditory
meatus — EAM; asterion — AST). In the descriptions that follow, the
landmark names will be prefixed with either “f”, denoting the side that
is prematurely fused, or “u”, denoting unfused. To compute the asym-
metry vector A, the fused-side measurements will be divided
(elementwise) by the unfused-side measurements: A = F / U. Elements
of A that are greater than 1 indicate measurements that tend to be
larger on the fused side. In contrast, elements of A that are less than 1
indicate measurements that are smaller on the fused side.

The asymmetry vector (A) is shown in Table 7.1, along with 90%
marginal confidence intervals that were computed using 100 nonpara-
metric bootstrap resamples. Nearly all of the ratios are less than 1,
indicating that the fused side of the cranium tends to be smaller than
the unfused side (Figure 7.3). Many of these ratios have confidence
intervals that exclude 1, indicating that the differences between sides
are significant. This finding makes sense, because we expect premature

Figure 7.2 Three-dimen-
sional CT reconstruction 
of a child with premature
closure of the coronal
suture (superior view, with
anterior toward the top).
The fused coronal suture 
is on the left side, where
the frontal bone appears
flattened.



suture fusion to inhibit proper growth. Two distances show more than
a 10% difference between the fused and unfused sides: FZJ — EAM and
FZJ — AST. This finding is expected because two measurements are
perpendicular to the fused suture (FZJ is anterior to it, while EAM and
AST are posterior), and the greatest limitation of growth should be in
this direction. Most of the other measurements with confidence inter-
vals excluding 1 indicate that the fused side of the cranium is shorter
from front to back, which agrees with the “twisted” appearance of the
cranial base and face when viewed from above (Figure 7.3).

Figure 7.3 Studying asymmetry with EDMA, showing the pattern of asymmetry in
the sample of unicoronal patients. The fused coronal suture is on the left side. Black
lines indicate distances where the fused-side measurements are smaller than the
unfused-side measurements, so that a 90% confidence interval for their ratio excludes
one (see text). The white line indicates the single distance where the fused-side mea-
surement was larger than its unfused-side counterpart. Landmarks: NAS — nasion;
SEL — sella; BAS — basion; OPI — opisthion; FZJ — frontozygomatic junction; EAM
— external auditory meatus; AST — asterion.



Measurements for which the null hypothesis of symmetry is not reject-
ed span bilateral and midline landmarks: FZJ — SEL, EAM — BAS,
EAM — SEL, AST — BAS, and AST — SEL. In general, these results
indicate that the sutural fusion does little to affect the breadths of the
middle and posterior cranial fossae. Finally, there is a single distance
where the fused-side measurement is larger than the measurement on
the unfused side (AST — OPI). This suggests that the posterior cranial
fossa is broader in the fused side. However, the mean difference is only
about 2% and the confidence interval barely excludes 1.

Table 7.1 Unicoronal Example

Distance A (Fused / Unfused) 90% Confidence Interval Pattern
FZJ — AST 0.891 0.842 — 0.938 F < U
FZJ — EAM 0.894 0.835 — 0.944 F < U
FZJ — NAS 0.919 0.864 — 0.965 F < U
EAM — AST 0.928 0.910 — 0.952 F < U
EAM — NAS 0.932 0.891 — 0.974 F < U
AST — NAS 0.932 0.896 — 0.969 F < U
FZJ — OPI 0.962 0.938 — 0.984 F < U
FZJ — BAS 0.967 0.927 — 0.999 F < U
AST — SEL 0.967 0.936 — 1.006 F = U
EAM — OPI 0.980 0.967 — 0.990 F < U
EAM — BAS 0.986 0.961 — 1.011 F = U
FZJ — SEL 0.987 0.944 — 1.021 F = U
AST — BAS 0.991 0.960 — 1.047 F = U
EAM — SEL 1.002 0.979 — 1.024 F = U
AST — OPI 1.024 1.001 — 1.047 F > U

Note: A = asymmetry vector; F = fused; U = unfused. Elements of A
are sorted in ascending order.

7.2 Comparisons of molecular structures

Morphologists are only some of many scientists who are interested in
comparing three-dimensional forms. Biochemists, molecular biologists,
and pharmacologists have a considerable interest in describing and
comparing three-dimensional macromolecular structures. This is
because there is an intimate relationship between molecular structure
and function, and molecules with similar structures may behave simi-



larly in their reactions to other macromolecules in the body, to drugs,
or to pesticides and other toxins. In this section, we show how EDMA
can be applied to the study of molecular structures.

What are the “landmarks” used for molecular comparisons? They
are atoms that are considered “homologous” for all of the molecules
under consideration. To use proteins as an example, these macro-
molecules are made up of amino acids, and each amino acid can
potentially be considered a “landmark” for structural comparisons.
More specifically, we can use the spatial position of a single atom as a
representative of the amino acid as a whole. The choice of this atom is
arbitrary; however, it is usually the Cα atom, because all amino acids
have one and only one. Note that we must assume a one-to-one corre-
spondence between amino acids in the proteins we compare. Just as for
morphological comparisons, molecules that are compared using EDMA
must have the same number of labeled landmarks. This requirement
restricts us to comparisons of molecules with similar amino-acid
sequences (as in the example below), where the “homology” between
amino acids can be confidently inferred. The instrumentation and
quantitative methods used for estimating the three-dimensional posi-
tions of the atoms in a molecule are beyond the scope of this discussion.
The reader is referred to Doucet and Weber (1996) for a review.

7.2.1 Studying molecular structure using EDMA

When we use EDMA to compare molecules, we can ask the same gen-
eral questions that are asked in morphological comparisons: What are

Figure 7.4 Schematic diagram of the structure of an insulin molecule (modified from
Ganong, 1985). The two amino-acid chains are held together by disulfide bridges. The
site of the mutation discussed in the example (B24) is indicated.



the greatest differences in form? What are the greatest similarities in
form? How can these differences and similarities be localized and
summarized? To demonstrate how EDMA methods can be applied to
studies of molecular structure, we examine variations in insulin
molecules, which are small proteins. Insulin is a pancreatic hormone
that is crucial to the maintenance of normal metabolism, so that the
relationship between its structure and function is of great importance
(Hua et al., 1993). The structure of insulin, which is shown schemati-
cally in Figure 7.4, is very conservative across vertebrates. This
conservatism helps us to feel confident about recognizing atomic
homologies. There are two chains of amino acids (called the A and B
chains), linked by disulfide bridges. The A chain is composed of 21
amino acids, while the B chain is composed of 30.

The data for the following examples are the three-dimensional coor-
dinates of C� atoms, available from the Protein Databank at
Brookhaven National Laboratories (Berstein et al., 1977; Abola et al.,
1987). We compare normal human insulin with a mutant form that
substitutes serine (Ser) for phenylalanine (Phe) in the B24 position,
denoting the 24th amino acid of the B chain (Hua et al., 1991, 1993).
The amino-acid sequences are otherwise identical. The clinical conse-
quence of this mutation — diabetes mellitus — is the same as for an
insulin deficiency, even though the molecule is present in normal con-
centrations (Hua et al., 1993). This indicates a reduction in the
bioactivity of the mutant. The amino-acid substitution changes the
three-dimensional structure of the molecule, which causes a change in
its function. The molecules are illustrated in Figure 7.5. Note that the
atoms that describe amino acid positions are literally surrounded by
empty space. There are no underlying morphological structures (as
with morphological landmarks) to place the molecules in a familiar
visual context for making comparisons. In addition, there is no stan-
dard coordinate system for describing molecules, so that (unlike the
case with many complex organisms) terms like “anterior” and “superi-
or” have no meaning. Finally, the large number of landmarks makes
molecular comparisons even more complex.

We can use a form-difference matrix to localize the structural dif-
ferences that result from the mutation. Table 7.2 shows the extremes
of a sorted form-difference matrix where the mutant insulin is in the
numerator and the normal insulin is in the denominator. The ten
smallest values indicate distances in the mutant molecule that are
much smaller than normal. Note that these distances are between
amino acids that bracket the site of the mutation on the B chain (B24).



Because the amino acids literally form a chain, it is useful to think of
the form differences in terms of the angles between the chain’s links.
At B24, we can think of the angle between these segments as becom-
ing more acute (Figure 7.5). At the other extreme of the matrix, we see
that the ten largest values involve distances between the A and B

Figure 7.5 Normal (a) and mutant (b) insulin molecules. In both molecules, the posi-
tions of A- and B-chain amino acids are denoted by circles and triangles, respectively.
Because there is no standard orientation for displaying them, both molecules are ori-
ented so that their long axes are horizontal and the first molecule in the A-chain (A1)
is to the left of the last (A21). The amino-acid substitution in the mutant is at position
B24, producing a pronounced kink in the B chain.



chains. More specifically, we see that the distances between the muta-
tion (B24) and the end of the A chain (A19-A21) are more than twice
the normal values. Therefore, we can conclude that the mutation not
only produces a kink in the B chain but also moves the terminal part
of the B chain further from the A chain.

Table 7.2  Extreme values of a form difference matrix comparing
mutant human insulin in the numerator and normal human insulin
in the denominator.

Mutant << Normal (FDM minima) Mutant >> Normal (FDM maxima)
B22 — B27 0.224 B1 — B14 1.900
B21 — B26 0.380 A20 — B23 1.916
B21 — B27 0.380 A21 — B22 1.921
B22 — B26 0.398 A1 — B29 1.951
B22 — B28 0.402 A21 — B28 1.962
B23 — B27 0.446 A1 — B30 1.977
B21 — B25 0.456 A1 — B28 2.044
B22 — B29 0.462 A19 — B24 2.263
B21 — B28 0.484 A21 — B24 2.370
A19 — B21 0.514 A20 — B24 2.896

7.2.2 Similarity in shape defined by invariant cliques of landmarks

To study regions of similarity in molecules, we can use a heuristic,
EDMA-based method for finding landmark “cliques.” The method was
originally developed for application to morphological problems, where
“shape-conservative” landmark subsets are identified in a series of
anatomical structures (skulls of different taxa, for example; Cole et al.,
1998, 1999). However, the development of the method was inspired by
algorithms that were developed in the context of molecular biology,
reviewed by Willett (1991) and Doucet and Weber (1996). Those algo-
rithms were designed to find the largest similarly shaped regions in
different molecules. In the molecular biology literature, these are
referred to as “largest common substructures.”

Let us first describe in words what the clique-finding algorithm
does. Suppose we are interested in a case where two landmark config-
urations are compared. Since we need at least three landmarks to
describe shape, we begin by selecting a triangle as the “seed” for the
first clique and then adding landmarks (“growing” the clique) through
an iterative process. The seed triangle is defined as the most similar-



ly-shaped triangle in the two configurations. Because we are interest-
ed in the aspects of shape that change the least, we need to define a
statistic that measures the degree of shape difference. We can then
look at all possible triangles and select the one (not necessarily unique)
where the shape difference is minimum. Once the seed triangle is iden-
tified, we expand the clique by adding a landmark to the seed triangle,
so that the clique has four landmarks. Which landmark should be
added? We search through all possible four-landmark cliques (condi-
tional on the three landmarks already included), and we add the
landmark that creates the four-landmark clique where the shape dif-
ference is again minimal. We then add a fifth landmark using the same
criterion, and so on. When do we stop adding landmarks? The clique
will eventually grow to the size where the addition of any remaining
landmark will result in shapes that will be too different to be consid-
ered shape-conservative. We define “too different” by specifying some a
priori tolerance that the shape-difference statistic cannot exceed. Once
the tolerance is exceeded, the clique has reached its maximum size. We
then begin a search for a new clique, providing there are enough land-
marks left over and that there is some remaining triangle that will
meet the criterion for being shape-conservative. At most, the new
clique can share only one (for two-dimensional data) or two (for three-
dimensional data) landmarks with any preexisting clique. Once the
second clique reaches its maximum size (beyond which the addition of
any new landmark will produce configurations that are too different),
the search for a new clique starts over. The analysis concludes when all
possible cliques (given the tolerance) have been found.

The T statistic, defined by Lele and Richtsmeier (1991; see Chapter
4), as a coordinate-system- and scale-invariant measure of shape 

difference that can be used for clique formation. Recall that 
and that T has a minimum possible value of 1.0, obtained when two
landmark configurations have identical shapes. The a priori choice of
a tolerance value for T is arbitrary, and we can vary the tolerance to
examine its effect on how the cliques form. In many cases, a reasonable
starting tolerance might be 5 to 10% of the T statistic that is observed
in a form comparison that uses all of the landmarks.

To illustrate, we can again compare the structures of the mutant
and normal insulins. The results of the analysis are shown in Figures
7.6 to 7.8. When all 51 landmarks are included, the T statistic is 11.85,



Figure 7.6
Cliques found at
a low tolerance
level (T=1.10),
illustrated with
the mutant
insulin molecule.
Filled symbols
indicate clique
membership.
The amino-acid
substitution in
the mutant is at
position B24.



Figure 7.7
Cliques found
at a medium
tolerance level
(T=1.25),
illustrated
with the
mutant
insulin
molecule.
Filled symbols
indicate clique
membership.



indicating a pronounced difference in overall three-dimensional struc-
ture. Beginning with a small tolerance of T=1.10 (Figure 7.6), we find
that the most similar triangle spans the A and B chains. When the tol-
erance is raised to T=1.25 (Figure 7.7), the size of the first clique
increases to include 17 amino acids (12 on the A chain and five on the
B chain), shown in Figure 7.7. In addition, two new, overlapping three-
landmark cliques are found at the end of the B chain: (B28, B29, and
B30) and (B26, B29, and B30). This indicates that, in spite of the pro-
nounced kink in the mutant’s B chain, the structure at the end of the
chain (just past B24) is largely preserved. Finally, when the tolerance
is made substantially larger (T=2.00), we see that the clique is expand-
ed to include all but one of the A-chain atoms (A30), as well as many of
the B-chain atoms that are in close proximity to the A chain (Figure
7.8). However, little of the last third of the B chain is included. This
finding complements the form-difference analysis (Table 7.2) that
localized the most important form differences to the sections of the B
chain that flank the mutation site.

We should note an important distinction between this algorithm
and many of the common-substructure algorithms used by molecular
biologists. Many of the available algorithms for molecular shape com-
parison do not have the requirement of specifying atom-to-atom
correspondences. In many applications, the “fit” of two atoms is not a
description of similarity, but is meant literally, as with the binding
between a ligand and its receptor, where the molecules are so dissimi-

Figure 7.8 The first clique found at a high tolerance level (T=2.00), illustrated with
the mutant insulin molecule. The second and third cliques are as in Figure 7.7 and are
not shown.



lar in size and shape that the concept of atomic “homology” is mean-
ingless. Therefore, many molecular algorithms are designed for use
with unlabeled landmarks, which present a far more imposing compu-
tational problem. Because we are restricting our molecular
applications to comparisons of similar molecules, where labeled atom-
to-atom correspondences seem reasonable, our algorithm is much
simpler to implement.

7.3 Detection of phylogenetic signals

Within the past two decades, biologists have reached a consensus
regarding the importance of a phylogenetic (historical) perspective in
the analysis of comparative data. This consensus holds that a phyloge-
netic framework is essential for addressing many questions about
evolution (Coddington, 1988; Harvey and Pagel, 1991; Stearns, 1992;
Rose and Lauder, 1996). While there are a number of methods avail-
able for studying univariate data, there are currently few published
methods that describe how landmark coordinate data should be ana-
lyzed in a phylogenetic context. Part of our current research is focused
on the development of such methods.

As a first step in developing new methods, we consider a very basic
question: can we detect a phylogenetic signal in morphometric data?
When we say that there is some signal in morphometric data (whether
phylogenetic or not), we mean that similarities in form, growth, or
shape are nonrandomly distributed across the clade. In addition, if the
signal is a phylogenetic one, taxa that are closely-related will tend to
be more similar to each other than they will be to more distant rela-
tives. Put another way, we can say that morphometric data have a
phylogenetic signal if our classifications based on morphometric simi-
larities reflect genealogical relationships. To minimize the chance of
making circular arguments, we use estimates of phylogeny that are
based on data other than morphometrics (e.g., molecular sequence
data).

Before proceeding further, we might ask why phylogenetic signals
are interesting. If a phylogenetic signal does exist, it means that
descendant taxa tend to inherit aspects of their form from their ances-
tors. Furthermore, if there are aspects of form that all members of a
clade have inherited from their common ancestor, those aspects can be
considered synapomorphic (= shared derived) and, therefore, homolo-
gous. In that case, we might develop hypotheses about whether those



shared-derived aspects might constitute “key adaptations” for the
group. Of course, if we are interested in adaptation, we might also be
very interested in cases where there is a strong signal that does not
reflect genealogy. Instead, there might be a strong “alternative” signal
that reflects similarity resulting from something other than genealogy
(as seen in the example below).

When we compare morphometric classifications with a genealogical
hypothesis, we are comparing patterns of hierarchical relationships.
The goal is to determine whether or not there is some hierarchical
structure in the morphometric data. If a hierarchical structure exists
for the data, we must then determine whether it matches the structure
of the cladogram that is constructed from other data. To examine hier-
archical structure in the data, we require a measure of dissimilarity

between taxa. One possible dissimilarity measure that we can use with
landmark data is a statistic defined by Richtsmeier et al., (1998:69):
where FDM(A,B)ij refers to all of the below-diagonal elements of the
form-difference matrix between taxa A and B. If F� =0, then A and B
have identical forms. F� will become increasingly positive as differ-
ences between taxa become more pronounced. To compare multiple
taxa, all of the pairwise F� statistics can be placed into a dissimilarity
matrix. This matrix is then subjected to a hierarchical cluster analysis
(e.g., UPGMA; Sneath and Sokal, 1973). The morphometric and cladis-
tic trees can be compared using any of a large variety of
tree-comparison and consensus statistics.

Because morphometric data vary within samples, our estimates of
mean forms are always made with some sampling error. This sampling
error carries through our computations of form-difference matrices,
dissimilarity measures, hierarchical clustering, and tree comparisons.
In other words, within-sample variation always influences our classifi-
cations that are based on morphometrics, as well as our subsequent
comparisons with trees built with other data. Using the bootstrap, our
knowledge of within-sample variation can be used to assess the effects
of variation on our tree comparisons.

The bootstrap was first used in phylogenetic analysis by Felsenstein
(1985), and most phylogenetic applications since have used the same
method. The data consist of a matrix of taxa (rows) and character states
(columns), which are used to generate an empirical phylogenetic tree
(usually using maximum parsimony). The matrix is then resampled



using a bootstrapping algorithm that selects characters (columns) ran-
domly and with replacement. With each resampling, a bootstrap tree is
constructed. When a large sample of bootstrap trees has been generat-
ed, each node in the empirical cladogram is assigned a bootstrap
proportion. The bootstrap proportion for a node indicates the propor-
tion of resamplings where the included taxa were grouped together in
the bootstrap trees (regardless of the clades’ internal structures). If
there is a strong phylogenetic signal in the data, the bootstrap proba-
bilities should be close to 100%. If there is little or no signal, the
bootstrap probabilities will be closer to 0%, because the tree structure
is unlikely to be reproduced during resampling.

We would like to conduct similar analyses with morphometrics.
However, our application of the bootstrap is somewhat different.
Felsenstein’s (1985) method, and subsequent applications of it,
assumes that characters are invariant within taxa. In addition, there
is an assumption that the characters are independent. With morpho-
metric characters, it is obvious that neither of these assumptions is
met. In addition, we want to avoid any subjective “coding” of the data,
where continuous distributions are transformed into ordinal character
states. Finally, our application will differ from most in that we do not
use the data to construct the cladogram; we are simply evaluating the
fit between a hierarchical structure identified in our morphometric
data and a cladogram that is established ahead of time, using other
sources of data.

Our solution is to use a combination of parametric bootstrapping
and hierarchical cluster analysis. Parametric bootstrapping assumes a
model of variation, and generates random data sets under that model.
Similar approaches have been used before with models of molecular
sequence data (Huelsenbeck et al., 1996). We assume a general pertur-
bation model and estimate the mean forms and variance-covariance
matrices for each taxon under that model (Lele, 1993 and Chapter 3 of
this book). Then, assuming multivariate normal perturbations, we can
generate bootstrap samples under the model (Lele and Cole, 1996). The
bootstrap samples are used to construct a sample of trees. We then
compare their topologies (cluster structures) to the cladogram to see
how often the genealogical relationships are reflected by the morpho-
metric data.

As an illustration of the method, we analyzed the form of the mid-
facial skeleton in a sample of adult, female ateline primates (Cole et
al., 2000). The atelines are a class of New World primates that are
characterized by large body size (6 to 15 kg) and fully prehensile tails



(Rosenberger and Strier, 1989). The living ateline genera include Ateles
(the spider monkey), Alouatta (the howler monkey), Lagothrix (the
woolly monkey), and Brachyteles (the muriqui or woolly spider mon-
key). A widely accepted hypothesis of their genealogical relationships
is shown in Figure 7.9. Despite their close phylogenetic relationships,
the atelines exhibit remarkable diversity in their anatomy, diet, and
behavior (Rosenberger and Strier, 1989). One of the most distinctive
aspects of their anatomical diversity is skull form. Six landmarks were
on the facial skeletons of samples for each genus, and their mean forms
and variance-covariance matrices were estimated. We then scaled each
mean form according to the geometric mean of all distances, so that we
could compare facial shapes. The dissimilarity metric described above
(see also Richtsmeier et al., 1998) was used as the basis of hierarchical
cluster analysis using the UPGMA criterion. The empirical clustering
is shown in Figure 7.10a. Note that it is slightly different from
Rosenberger and Strier’s (1989) cladogram (Figures 7.9 and 7.10b).
While both trees are similar in showing that Alouatta’s shape is most
distinct, the internal structure of the Lagothrix-Ateles-Brachyteles
cluster differs. While Ateles and Brachyteles are the most closely relat-
ed, Ateles and Lagothrix have the most similar shapes. When bootstrap
probabilities (based on 500 resamples) are attached to both the empir-
ical phenogram (Figure 7.10a) and the cladogram (Figure 7.10b), we
see that the Lagothrix-Ateles-Brachyteles cluster is very stable under
resampling. The phylogenetic signal for this part of the tree is very
strong — Alouatta is not only the most distantly related, but it is also

Figure 7.9  Cladogram of the living ateline primates, following Rosenberger and Strier
(1989).



hypothesized to be a sister taxon of the other genera.
Within the Lagothrix-Ateles-Brachyteles clade, however, the phylo-

genetic signal is very weak. The bootstrapped morphometric data only
cluster Ateles and Brachyteles together 3.8% of the time (the correct
genealogy), while Lagothrix and Ateles are clustered together the
remainder of the time (96.2%). Because this high bootstrap probability
is associated with a difference in tree topology, it suggests a very strong
signal that is not a phylogenetic signal, but is some kind of alternative
signal. Cole et al. (2000) hypothesize that the strong shape similarity
between Lagothrix and Ateles is due to a functional similarity related
to diet, which is correlated with variations in facial structure.

Figure 7.10 Results of the bootstrap analysis of the phylogenetic signal in the ateline
data. The clustering based on morphometrics (a) differs from the cladogram (b) in the
affinities of Lagothrix, Ateles, and Brachyteles. The nodes of the trees are labeled with
marginal bootstrap proportions (500 resamples). The results indicate the presence of a
strong “alternative” signal in the data (see text).



Lagothrix and Ateles are frugivorous, while Alouatta and Brachyteles
are folivorous. The primitive diet for the clade’s common ancestor is
believed to have been a frugivorous one (Rosenberger and Strier, 1989),
so that the similarity between Ateles and Lagothrix could be consid-
ered symplesiomorphic (a retained primitive state inherited from a
common ancestor). In contrast, folivory was probably developed in par-
allel in Alouatta and Brachyteles (Rosenberger and Strier, 1989). If
that is the case, why are these genera no more similar in their facial
shape? Cole et al. (2000) hypothesized that any similarities between
Alouatta and Brachyteles that are due to a common diet are probably
obscured by the unusually derived facial form in Alouatta, which is
modified as the result of a hypertrophied hyolaryngeal apparatus
(Rosenberger and Strier, 1989).

7.4 Summary

This chapter has offered new extensions of basic EDMA procedures as
well as new algorithms for addressing complex biological problems.
The examples given in the chapter demonstrate the versatile nature of
the basic EDMA approach and underscore the essential importance of
invariance in adapting the method to new areas of morphometric
description and comparison. The applications demonstrated here are
simply examples, and we are confident that future applications will be
many and diverse.



Postlude

This monograph provides the foundations for quantitative analysis of
landmark coordinate data based on the invariance principle. In addi-
tion to developing the statistical foundations for the study of forms and
shapes as represented by landmark coordinate data, we provide
descriptions and examples of various applications of our approach. The
fields of application in our monograph range from Palentology, where
the origins of morphometrics lay, to modern subjects of reconstructive
surgery, the phenotypes of genetically engineered animal models, and
molecular structure. Where should we go from here? Although we are
not visionaries like D’Arcy Thompson, we’ take this opportunity to
speculate about the future of the field.

There is tremendous potential for the use of landmark data analy-
sis in the fields of medicine, molecular biology, pattern recognition,
computer vision, and biomechanics. One area of study of particular
interest to us is the fusion of morphological data and other kinds of
data, for example, behavioral genetic, life history data. This monograph
discussed techniques that are most useful in exploratory or descriptive
research. Now is the time we need to go beyond description and ven-
ture into explanation. To accomplish this task, we need to contemplate
the construction of models for various processes that might be respon-
sible for form change (e.g., growth, evolution, biomechanical properties,
disease, genetic mutation). We hope that the next edition of this mono-
graph will have at least a chapter explicit models for change in the
geometry of biological form. an additonal aspect that requires atten-
tion is the selection and validation of models in experimental and/or
natural settings. This includes validation of the Matrix Normal distri-
bution as a sensible perturbation model as validation of explanatory
models proposed by future researchers. Finally, the concept of variabil-
ity its role in biological form change and the use of �K* in the study of
biological variability will play a pivotal role in future applications of
our methodology.



We cannot predict the future, but, for us, it has been an extraordi-
nary journey through the morphometrics landscape. We close with the
following quote that we feel particularly appropriate after almost ten
years of collaboration.

So easy it seemed once found, which yet unfound most would have
thought impossible.

John Milton
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