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PREFACE 
The environmental movement of the 1960s and 1970s resulted in the 

creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing 
these laws.  Most of these laws mandate monitoring or assessment of the 
physical environment, which means someone has to collect, analyze, and ex-
plain environmental data.  Numerous excellent journal articles, guidance 
documents, and books have been published to explain various aspects of ap-
plying statistical methods to environmental data analysis.  Only a very few 
books attempt to provide a comprehensive treatment of environmental statis-
tics in general, and this book is an addition to that category. 

This book is a survey of statistical methods you can use to collect and 
analyze environmental data.  It explains what these methods are, how to use 
them, and where you can find references to them.  It provides insight into 
what to think about before you collect environmental data, how to collect 
environmental data (via various random sampling schemes), and also how to 
make sense of it after you have it.  Several data sets are used to illustrate 
concepts and methods, and they are available both with software and on the 
CRC Press Web so that the reader may reproduce the examples.  The appen-
dix includes an extensive list of references. 

This book grew out of the authors’ experiences as teachers, consultants, 
and software developers.  It is intended as both a reference book for envi-
ronmental scientists, engineers, and regulators who need to collect or make 
sense of environmental data, and as a textbook for graduate and advanced 
undergraduate students in an applied statistics or environmental science 
course.  Readers should have a basic knowledge of probability and statistics, 
but those with more advanced training will find lots of useful information as 
well.

A unique and powerful feature of this book is its integration with the 
commercially available software package S-PLUS, a popular and versatile 
statistics and graphics package.  S-PLUS has several add-on modules useful 
for environmental data analysis, including ENVIRONMENTALSTATS for 
S-PLUS, S+SPATIALSTATS, and S-PLUS for ArcView GIS.  Throughout this 
book, when a data set is used to explain a statistical method, the commands 
for and results from the software are provided.  Using the software in con-
junction with this text will increase the understanding and immediacy of the 
methods. 

This book follows a more or less sequential progression from elementary 
ideas about sampling and looking at data to more advanced methods of esti-
mation and testing as applied to environmental data.  Chapter 1 provides an 
introduction and overview, Chapter 2 reviews the Data Quality Objectives 
(DQO) and Data Quality Assessment (DQA) process necessary in the design 
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and implementation of any environmental study, and Chapter 3 talks about 
exploratory data analysis (EDA).  Chapter 4 explains the idea of a popula-
tion, sample, random variable, and probability distribution.  Chapter 5 details 
various methods for estimating characteristics of a population (probability 
distribution) based on a sample (data).  Chapter 6 discusses prediction inter-
vals, tolerance intervals, and control charts, which have been used in the 
manufacturing industry for a long time and have been proposed as good 
methods to use in groundwater monitoring.  Chapter 7 reviews the basic 
ideas in hypothesis testing, including balancing the two possible errors a de-
cision maker can make (e.g., declaring a site contaminated when it really is 
not, or declaring a site not contaminated when it really is).  This chapter also 
illustrates tests for goodness-of-fit and outliers, classical and nonparametric 
methods for comparing one, two, or several groups (e.g., background vs. po-
tentially contaminated sites), and the multiple comparisons problem.  Chap-
ter 8 returns to the DQO process of Chapter 2 and illustrates how to deter-
mine required sample sizes based on the statistical theory presented in Chap-
ters 6 and 7.  Chapter 9 discusses linear models, including correlation, sim-
ple regression, testing for trend, and multiple regression.  This chapter also 
explains the idea of calibration and how this relates to measuring chemical 
concentrations and determining various limits associated with the chemical 
measurement process (i.e., decision limit, detection limit, and quantitation 
limit).  Chapter 10 continues the ideas on calibration discussed in Chapter 9 
by explaining how to handle environmental data that contain “less-than-
detection-limit” results.  Chapter 11 examines methods for dealing with data 
collected over time that may be serially correlated.  Chapter 12 considers 
how to handle data collected over space that may be spatially correlated.  Fi-
nally, Chapter 13 discusses the immense field of risk assessment, which usu-
ally involves both “hard” data and expert judgment. 

TYPOGRAPHIC CONVENTIONS 
Throughout this book, we use the following typographic conventions: 

The bold font is used for section headings, figure and table ti-
tles, equation numbers, and what you click on dialog boxes. 
The italic font and bold italic font are used for emphasis. 
The courier font is used to display commands that you 
type into the S-PLUS Command or Script Window, and the 
names of variables and functions within S-PLUS (S-PLUS

objects). 
The italic courier font is used for mathematical nota-
tion (e.g., variable names, function definitions, etc.). 
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A NOTE ABOUT S-PLUS AND GRAPHICS 
Throughout this book we assume the reader has access to S-PLUS and 

ENVIRONMENTALSTATS for S-PLUS, knows how to start S-PLUS, and knows 
how to load the ENVIRONMENTALSTATS for S-PLUS module.  Also, in Chap-
ter 12 where we deal with spatial statistics, we assume the reader has access 
to and is running S+SPATIALSTATS, ArcView GIS, and S-PLUS for ArcView 
GIS.

At the time this book was being written, the current version of S-PLUS for 
Windows was S-PLUS 2000 Release 2, and the current version of S-PLUS for 
UNIX was Version 5.1.  The current version of ENVIRONMENTALSTATS for 
S-PLUS was Version 1.1 Release 2, but Version 2.0 (which includes pull-
down menus for the Windows version of S-PLUS) was in Beta Release and 
should be available by the time this book is published.  Throughout this 
book, we have included examples demonstrating how to use S-PLUS and 
ENVIRONMENTALSTATS for S-PLUS to create the figures and analyses shown 
in this book.  We assume the reader is using one of the above-mentioned ver-
sions of S-PLUS or a later version. 

The current UNIX version of S-PLUS only works at the command line, so 
if you use this version of S-PLUS you can safely ignore sections that begin 
with the heading Menu (the next UNIX version of S-PLUS, however, will in-
clude pull-down menus).  If you use the Standard Edition of S-PLUS for 
Windows, you can only use the pull-down menus and toolbars; you do not 
have access to the command line, so you can safely ignore sections that be-
gin with the heading Command.  If you use the Professional Edition of 
S-PLUS for Windows, you can use both the pull-down menus and toolbars 
and the command line, so you can apply the information listed under both 
headings. 

Many of the examples of using the command line under a Command 
heading use the attach function to attach a data frame to your search list.  
This is done in order to be able to reference the columns of the data frame 
explicitly without having to use subscript operators.  Please be aware that it 
is possible you may have a data object in your working directory with the 
same name as the column of the data frame that is being used, in which case 
your data object will “mask” the column of the data frame.  For example, the 
data frame epa.94b.tccb.df contains a column named Area.  If you 
already have a data object named Area in your working directory, then any 
examples that involve attaching epa.94b.tccb.df and using the column 
Area will not work correctly.  In these cases, you must change the name of 
your data object or use the $ or [ operator to direct S-PLUS to the correct 
data set (e.g., epa.94b.tccb.df$Area).

In S-PLUS and ENVIRONMENTALSTATS for S-PLUS it is very easy to pro-
duce color plots.  In fact, most of the built-in plotting functions produce 
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color plots by default.  In this book, however, all of the plots are black and 
white or grayscale due to the high cost of color printing.  The steps for pro-
ducing color plots are still included in the examples in this book, but the pic-
tures in the book will be in black and white, whereas in many cases the pic-
tures on your computer screen will be in color. 

All of the graphs you can create with ENVIRONMENTALSTATS for S-PLUS

use traditional S-PLUS graphics and, as such, they are not editable in the 
Windows version of S-PLUS.  If you use the Windows version of S-PLUS,
you can convert traditional plots to editable plots by right-clicking on the 
data part of the graph and choosing Convert to Objects from the context 
menu. 
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1 INTRODUCTION 

The environmental movement of the 1960s and 1970s resulted in the 
creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing 
these laws.  In the U.S., laws such as the Clean Air Act, the Clean Water Act, 
the Resource Conservation and Recovery Act, and the Comprehensive 
Emergency Response and Civil Liability Act mandate some sort of monitor-
ing or comparison to ensure the integrity of the environment.  Once you start 
talking about monitoring a process over time, or comparing observations 
from two or more sites, you have entered the world of numbers and statistics.  
In fact, more and more environmental regulations are mandating the use of 
statistical techniques, and several excellent books, guidance documents, and 
journal articles have been published to explain how to apply various statisti-
cal methods to environmental data analysis (e.g., Berthoux and Brown, 1994; 
Gibbons, 1994; Gilbert, 1987; Helsel and Hirsch, 1992; McBean and Rovers, 
1998; Ott, 1995; Piegorsch and Bailer, 1997; ASTM, 1996; USEPA, 
1989a,b,c; 1990; 1991a,b,c; 1992a,b,c,d; 1994a,b,c; 1995a,b,c; 1996a,b; 
1997a,b).  Only a very few books attempt to provide a comprehensive treat-
ment of environmental statistics in general, and even these omit some impor-
tant topics. 

This explosion of regulations and mandated statistical analysis has re-
sulted in at least four major problems. 

Mandated procedures or those suggested in guidance documents are 
not always appropriate, or may be misused (e.g., Millard, 1987a; 
Davis, 1994; Gibbons, 1994). 
Statistical methods developed in other fields of research need to be 
adapted to environmental data analysis, and there is a need for inno-
vative methods in environmental data analysis. 
The backgrounds of people who need to analyze environmental data 
vary widely, from someone who took a statistics course decades ago 
to someone with a Ph.D. doing high-level research. 
There is no single software package with a comprehensive treatment 
of environmental statistics. 

This book is an attempt to solve some of these problems.  It is a survey of 
statistical methods you can use to collect and analyze environmental data.  It 
explains what these methods are, how to use them, and where you can find 
references to them.  It provides insight into what to think about before you 
collect environmental data, how to collect environmental data (via various 
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random sampling schemes), and also and how to make sense of it after you 
have it.  Several data sets are used to illustrate concepts and methods, and are 
available in ENVIRONMENTALSTATS for S-PLUS (see below) and/or on the 
CRC Press Web site at www.crcpress.com so that the reader may repro-
duce the examples. You will also find a list of relevant URLs on this Web 
site.  The appendices of this book include an extensive list of references and 
an index. 

A unique and powerful feature of this book is its integration with the 
commercially available software package S-PLUS, a popular and powerful 
statistics and graphics package.  S-PLUS has several add-on modules useful 
for environmental data analysis, including ENVIRONMENTALSTATS for
S-PLUS, S+SPATIALSTATS, and S-PLUS for ArcView GIS.  Throughout this 
book, when a data set is used to explain a statistical method, the commands 
for and results from the software are provided.  Using the software in con-
junction with this text will increase the understanding and immediacy of the 
methods. 

INTENDED AUDIENCE 

This book grew out of the authors’ experience as teachers, consultants, 
and software developers.  It is intended as both a reference book for envi-
ronmental scientists, engineers, and regulators who need to collect or make 
sense of environmental data, and as a textbook for graduate and advanced 
undergraduate students in an applied statistics or environmental science 
course.  Readers should have a basic knowledge of probability and statistics, 
but those with more advanced training will find lots of useful information as 
well.  Readers will find that topics are introduced at an elementary level, but 
the theory behind the methods is explained as well, and all pertinent equa-
tions are included.  Each topic is illustrated with examples. 

ENVIRONMENTAL SCIENCE, REGULATIONS, AND 
STATISTICS 

As a brief introduction to some of the problems involved in environ-
mental statistics, this section discusses three examples where environmental 
science, regulations, and statistics intersect.  Each of these examples illus-
trates several issues that need to be considered in sampling design and statis-
tical analysis.  We will discuss many of these issues both in general terms 
and in detail throughout this book. 

Groundwater Monitoring at Hazardous and Solid Waste Sites 

The Resource Conservation and Recovery Act (RCRA) requires that 
groundwater near hazardous waste sites and municipal solid waste sites be 
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monitored to ensure that chemicals from the site are not leaking into the 
groundwater (40 CFR Parts 264 and 265; 40 CFR Part 258).  So how do you 
design a program to monitor groundwater? 

Several Federal and state guidance documents have been published ad-
dressing the design and statistical issues associated with complying with 
RCRA regulations (e.g., USEPA, 1989b; 1991c; 1992b,c).  The current prac-
tice at most sites is to start in a phase called detection monitoring in which 
groundwater is sampled at upgradient and downgradient wells a number of 
times each year.  The groundwater at the upgradient wells is supposed to rep-
resent the quality of background groundwater that has not been affected by 
leakage from the site.  Figure 1.1 is a simple schematic for the physical setup 
of such a monitoring program.  More detailed figures can be found in Sara 
(1994, Chapters 9 to 11) and Gibbons (1995, p. 186). 

Figure 1.1 Simple schematic of an aerial view of a groundwater monitoring system 

During detection monitoring, the groundwater samples are analyzed for 
indicator parameters such as pH, conductance, total organic carbon, and to-
tal organic halides.  For each indicator parameter and each downgradient 
well, the value of the parameter at the downgradient well is compared to the 
value at the upgradient well(s).  If the value of the parameter is deemed to be 
“above background” then, depending on the permit, the owner/operator of 
the site may be required to take more samples, or the site may enter a second 
phase of monitoring called assessment monitoring or compliance
monitoring.
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In assessment or compliance monitoring, the owner/operator of the site is 
required to start analyzing the groundwater samples for other chemical pa-
rameters, such as the concentrations of specific chemicals.  The concentra-
tions of chemicals in the groundwater from downgradient wells are com-
pared to fixed concentration limits (Ground Water Protection Standards or 
GWPS) such as a Maximum Contaminant Level (MCL) or Alternative Con-
centration Limit (ACL).  For any specified chemical, if the concentration is 
“above” the GWPS, the site enters a third phase called corrective action 
monitoring.

There are several basic scientific design and statistical issues involved in 
monitoring groundwater, including: 

How do you determine what constitutes an upgradient well and what 
constitutes a downgradient well?  Can you be sure the gradient will 
stay the same over time? 
What chemicals are contained in the site?  Are the mandated indica-
tor parameters for detection monitoring good indicators of leakage of 
these particular chemicals? 
During assessment monitoring, are you required to test for chemicals 
that are not contained in the site?  If so, why? 
For detection monitoring, how do you determine whether an indica-
tor parameter at a downgradient well is “above” background?  For 
each indicator parameter, what kind of increase in value is important 
to detect and how soon? 
Is there “significant” spatial and/or temporal variability in any of the 
indicator parameters or chemical concentrations in the upgradient 
area?  If so, how do you account for this when comparing upgradient 
and downgradient wells?  Is it possible to use intrawell comparisons 
instead of comparing downgradient wells with upgradient wells? 
What other sources of random variation are present?  Is there a lot of 
variability between samples taken on the same day?  Is there a lot of 
variability in the chemical measurement process?  Are different 
laboratories being used, and if so, is there a lot of variability between 
labs? 
For assessment monitoring, what is the basis of each GWPS?  How 
do you tell whether chemical concentrations at downgradient wells 
are “above” the GWPS? 
How do you account for the possibility of false alarms, which in-
volve increased monitoring costs, and the possibility of missing con-
tamination, which involves a potential threat to public health? 
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Soil Cleanup at Superfund Sites 

The Comprehensive Emergency Response and Civil Liability Act 
(CERCLA), also known as “Superfund,” requires a remedial investiga-
tion/feasibility study (RI/FS) at each site on the National Priorities List 
(NPL) to determine the extent of contamination and the risks posed to human 
health and the environment.  The U.S. Environmental Protection Agency 
(USEPA) has developed several guidance documents that discuss design and 
analysis issues for various stages of this process (USEPA, 1987a,b; 1989a,c; 
1991b; 1992b,d; 1994b; 1996b,c). 

The guidance documents Soil Screening Guidance:  User’s Guide
(USEPA, 1996b) and Soil Screening Guidance:  Technical Background 
Document (USEPA, 1996c) discuss the use of Soil Screening Levels (SSLs) 
at Superfund sites that may have future residential land use to determine 
whether soil in a particular area requires further investigation and/or reme-
diation, or if it can be left alone (or at least does not require any further atten-
tion under CERCLA).  The guidance suggests stratifying the site into areas 
that are contaminated, areas unlikely to be contaminated, and areas that may 
be contaminated.  Within each stratum, the guidance suggests dividing the 
area into exposure areas (EAs) that are up to a half acre in size, and taking 
soil samples within each EA.  For each EA, the concentration of a particular 
chemical of concern is compared with the SSL.  If the concentration is 
“greater” then the SSL, then the EA requires further investigation. 

This soil screening guidance involves several basic scientific design and 
statistical issues, including: 

How do you know what chemicals you are looking for? 
How do you know the boundary of the area to look at?  How do you 
determine which areas are contaminated, which are not, and which 
might be? 
What is the basis for an SSL for a particular chemical? 
How do you determine whether the chemical concentration in the 
soil is “greater” than the SSL? 
What are the sources of random variation in the data (e.g., field vari-
ability, collector variability, within lab variability, between lab vari-
ability, etc.), and how do you account for them? 
How do you account for the possibility of false alarms (saying the 
chemical concentration is greater than the SSL when it is not), which 
involves unnecessary costs for further investigation, and the possibil-
ity of missing contamination (saying the chemical concentration is 
less than the SSL when in fact it not), which involves a potential 
threat to public health? 
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Monitoring Air Quality 

The Clean Air Act is the comprehensive Federal law that regulates air 
emissions from area, stationary, and mobile sources.  This law authorizes the 
USEPA to establish National Ambient Air Quality Standards (NAAQS), 
which are national targets for acceptable concentrations of specific pollutants 
in the air. 

There are two kinds of standards:  primary and secondary.  Primary stan-
dards set limits to protect public health, including the health of “sensitive” 
populations such as asthmatics, children, and the elderly.  Secondary stan-
dards set limits to protect public welfare, including effects on soils, water, 
crops, vegetation, buildings, property, animals, wildlife, weather, visibility, 
transportation, and other economic values, as well as personal comfort and 
well-being. 

The USEPA has set national air quality standards for seven principal air 
pollutants, called criteria air pollutants:  carbon monoxide (CO), lead (Pb), 
nitrogen dioxide (NO2), volatile organic compounds (VOCs), ozone (O3),
particulate matter (PM-10), and sulfur dioxide (SO2).  As an example, the 
primary standard for ozone is based on comparing a specific limit to the 
daily maximum ozone measurement among the network of stations monitor-
ing a specific area.  The monitors at each station record ozone concentrations 
continuously in time, so there are several possible ways to define the “daily 
maximum ozone concentration.”  Between 1978 and 1997, the daily maxi-
mum ozone concentration was based on averaging the concentrations for 
each hour to produce 24 observations per station per day, and the maximum 
daily concentration at a station was defined to be the maximum of these 24 
values.  The daily maximum value (over all of the monitoring stations) could 
exceed 0.12 parts per million (ppm) only three times or fewer within a 3-year 
period. 

The proposed new standard for ozone divides the 24-hour day into three 
8-hour blocks, concentrations are averaged within each 8-hour block to pro-
duce three observations per station per day, and the maximum daily concen-
tration at a station is defined to be the maximum of these three values.  The 
standard looks at the fourth highest daily maximum concentration over all 
stations within a single year.  If the 3-year average of these annual fourth 
highest daily maximum concentrations is less than 0.08 ppm, then the stan-
dard is met. 

The scientific basis for national ambient air quality standards depends on 
knowledge about the effects of air pollutants on health and the environment, 
which involves clinical, epidemiological, and field studies, all of which de-
pend on scientific design and statistical analysis.  Also, USEPA monitors 
trends in air quality over time, which involves time series analysis.  Nychka 
et al. (1998) present several different types of statistical analyses of air qual-
ity data. 
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OVERVIEW 

This section explains the background and layout of this book. 

What is Environmental Statistics? 

Environmental statistics is simply the application of statistical methods to 
problems concerning the environment.  Examples of activities that require 
the use of environmental statistics include: 

Monitoring air or water quality. 
Monitoring groundwater quality near a hazardous or solid waste site. 
Using risk assessment to determine whether an area with potentially 
contaminated soil needs to be cleaned up, and, if so, how much. 
Assessing whether a previously contaminated area has been cleaned 
up according to some specified criterion. 
Using hydrological data to predict the occurrences of floods. 

The term “environmental statistics” must also include work done in various 
branches of ecology, such as animal population dynamics and general eco-
logical modeling, as well as other fields, such as geology, chemistry, epide-
miology, oceanography, and atmospheric modeling.  This book concentrates 
on statistical methods to analyze chemical concentrations and physical pa-
rameters, usually in the context of mandated environmental monitoring. 

Environmental statistics is a special field of statistics.  Probability and 
statistics deal with situations in which the outcome is not certain.  They are 
built upon the concepts of a population and a sample from the population. 

Probability deals with predicting the characteristics of the sample, given 
that you know the characteristics of the population (e.g., what is the prob-
ability of picking an ace out of a deck of 52 well-shuffled standard playing 
cards?).  Statistics deals with inferring the characteristics of the population, 
given information from one or more samples from the population (e.g., after 
100 times of randomly choosing a card from a deck of 20 unknown playing 
cards and then replacing the card in the deck, no ace has appeared; therefore 
the deck probably does not contain any aces). 

The field of environmental statistics is relatively young and employs sev-
eral statistical methods that have been developed in other fields of statistics, 
such as sampling design, exploratory data analysis, basic estimation and hy-
pothesis testing, quality control, multiple comparisons, survival analysis, and 
Monte Carlo simulation.  Nonetheless, special problems have motivated in-
novative research, and both traditional and new journals now report on statis-
tical methods that have been developed in the context of environmental 
monitoring.  (See Appendix A:  References for a comprehensive list of jour-
nal articles, guidance documents, and general textbooks that deal with envi-
ronmental statistics and related topics.) 
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Where Do the Data Come from? 

If a law says that you have to monitor the environment because your fac-
tory is emitting chemicals into the air or water, or because you run a hazard-
ous waste site and you have to make sure nothing is seeping into the 
groundwater, or because you want to develop a shopping mall on a piece of 
real estate that used to be occupied by a plant that put creosote on railroad 
ties, then you have to figure out how to collect and analyze the data.  But be-
fore you collect the data, you have to figure out what the question is that you 
are trying to answer. 

The Data Quality Objectives (DQO) Process is a formal method for de-
ciding what the question is, what data need to be collected to answer the 
question, how the data will be collected, and how a decision will be made 
based on the data.  It is the first and most important step of any environ-
mental study.  The DQO process is discussed in Chapter 2, along with vari-
ous methods of random sampling. 

The actual collection and laboratory analysis of a physical sample from 
the environment that eventually leads to a reported number (e.g., concentra-
tion of trichloroethylene) involves several steps (Clark and Whitfield, 1994; 
Ward et al., 1990, p. 19): 

1. Sample collection 
2. Sample handling 
3. Transportation 
4. Sample receipt and storage at laboratory 
5. Sample work up 
6. Sample analysis 
7. Data entry 
8. Data manipulation 
9. Data reporting 

Figure 1.2, reproduced from Clark and Whitfield (1994, p. 1065), illustrates 
these steps, along with sources of variability that cause the measured concen-
tration to deviate from the true concentration.  Sources of variability are dis-
cussed in more detail in Chapter 2. 

Once the physical samples are collected, they must be analyzed in the 
laboratory to produce measures of chemical concentrations and/or physical 
parameters.  This is a whole topic in itself.  An environmental chemist does 
not just scoop a piece of dirt out of a collection vial, dissolve it in water or 
chemicals in a test tube, stick the tube in a machine, and record the concen-
trations of all the chemicals that are present.  In fact, the process of measur-
ing chemical concentrations in soil, water, or air has its own set of DQO 
steps!  Chapter 9 discusses some of the aspects of chemometrics and the im-
portant topic of machine calibration and detection limit. 
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Figure 1.2 The steps involved in producing environmental data, and their associ-
ated sources of variability.  (From Clark and Whitfield, 1994.  Water Re-
sources Bulletin 30(6), 1063 1079.  With permission of American Water 
Resources Association, Herndon, VA.) 
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How Do You Analyze the Data Once You Have It? 

When most people think of environmental statistics, they think of the 
data analysis part.  The design of the sampling program and the DQO proc-
ess are much more important, however.  In fact, one of the steps in the DQO 
process is to specify how you will analyze the data once you have it. 

Chapters 3 to 9 discuss various ways of analyzing environmental data, 
starting with exploratory data analysis (EDA) in Chapter 3.  Chapter 4 ex-
plains the idea of a population, sample, random variable, and probability 
distribution, and gives examples of each of these in the context of a real data 
set.  Chapter 5 discusses various methods for estimating characteristics of a 
population (probability distribution) based on a sample (data).  Chapter 6 
discusses prediction intervals, tolerance intervals, and control charts, which 
have been proposed as good methods to use in groundwater monitoring.  
Chapter 7 reviews the basic ideas in hypothesis testing, including balancing 
the two possible errors a decision-maker can make (e.g., declaring a site con-
taminated when it really is not, or declaring a site not contaminated when it 
really is).  This chapter also illustrates tests for goodness-of-fit and outliers, 
classical and nonparametric methods for comparing one, two, or several 
groups (e.g., background vs. potentially contaminated sites), and the multiple 
comparisons problem.  Chapter 8 returns to the DQO process of Chapter 2 
and illustrates how to determine required sample sizes based on the statisti-
cal theory presented in Chapters 6 and 7.  Chapter 9 discusses linear models, 
including correlation, simple regression, testing for trend, and multiple re-
gression.  In addition, this chapter explains the idea of calibration and how 
this relates to measuring chemical concentrations and determining various 
limits associated with the process (i.e., decision limit, detection limit, quanti-
tation limit, etc.). 

Special Topics 

Chapter 10 continues the ideas on calibration discussed in Chapter 9 by 
explaining how to handle environmental data that contain “less-than-
detection-limit” results.  Chapter 11 examines methods for dealing with data 
collected over time that may be serially correlated.  Chapter 12 considers 
how to handle data collected over space that may be spatially correlated.  Fi-
nally, Chapter 13 discusses the immense field of risk assessment, which usu-
ally involves both “hard” data and expert judgment. 

DATA SETS AND CASE STUDIES 

Throughout this book, we use several data sets to illustrate statistical 
concepts and methods of analyzing environmental data.  Many of these data 
sets are taken from regulatory guidance documents, but a few of them are 
larger data sets from the real world of environmental monitoring. 
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SOFTWARE 

As mentioned earlier, throughout this book we use the software package 
S-PLUS and some of its add-on modules to display computations and graphs.  
S-PLUS is a popular and powerful software program for statistical and 
graphical analysis.  You can produce results either by using drop-down 
menus and toolbars, or by typing commands in a command window.  
ENVIRONMENTALSTATS for S-PLUS is an add-on module to S-PLUS that pro-
vides several graphical and statistical methods that are used extensively in 
environmental statistics.  S+SPATIALSTATS is an add-on module for statistical 
analysis of spatial data and includes kriging.  S-PLUS for ArcView GIS is an 
add-on module that lets you link the statistical and graphical tools in S-PLUS

with the mapping and visual tools of ArcView.  In this book, when a data set 
is used to explain a statistical method, the commands for and results from the 
software are provided.  Information on the software providers is listed below. 

S-PLUS, ENVIRONMENTALSTATS FOR S-PLUS, S+SPATIALSTATS,
and S-PLUS for ArcView GIS

MathSoft, Inc. 
Data Analysis Products Division 
1700 Westlake Ave N, Suite 500 
Seattle, WA  98109  U.S.A. 
800-569-0123
mktg@splus.mathsoft.com 
www.splus.mathsoft.com 

MathSoft International 
Knightway House, Park Street 
Bagshot, Surrey GU19 5AQ   
United Kingdom 
+44 1276 475350 
splus@mathsoft.co.uk 
www.splus.mathsoft.com 

ArcView GIS

Environmental Systems Research Institute, Inc. (ESRI) 
380 New York Street 
Redlands, CA  92373-8100  U.S.A. 
909-793-2853
www.esri.com 
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SUMMARY 

Several laws mandate some sort of monitoring or comparison to en-
sure the integrity of the environment. 
This explosion of regulations and mandated statistical analysis has 
resulted in several problems, including inappropriate or misused sta-
tistical procedures, a need for more research, a wide variety of back-
grounds in the people who need to use environmental statistics, and a 
lack of comprehensive software.  This book is an attempt to address 
these problems. 
Probability deals with predicting the characteristics of the sample, 
given that you know the characteristics of the population. 
Statistics deals with inferring the characteristics of the population, 
given information from one or more samples from the population. 
Environmental statistics is the application of statistical methods to 
problems concerning the environment, such as monitoring air or wa-
ter quality, or comparing chemical concentrations at two sites. 
This book discusses the importance of determining the question that 
needs to be answered, planning the design of an environmental 
study, how to look at data once you have collected it, and how to use 
statistical methods to help in the decision-making process. 
S-PLUS and its add-on modules, including ENVIRONMENTALSTATS

for S-PLUS, are useful tools for the analysis of environmental data. 

EXERCISES

1.1. Compile a partial list of Federal, state, and local agencies that deal 
with the environment.  Two good places to start are the govern-
ment section of the telephone book, and national agency sites on 
the World Wide Web.  (The URL of the U.S. Environmental Pro-
tection Agency is www.epa.gov.  Also, www.probstatinfo.com 
provides links to agencies that deal with the environment.) 

1.2. Compile a partial list of national, state, and local regulations that 
require some sort of environmental monitoring. 

1.3. Look in the Yellow Pages (published or on the Web) under the 
heading “Environmental.”  What kinds of listings are there? 
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2 DESIGNING A SAMPLING 
PROGRAM, PART I 

THE DQO PROCESS

The first and most important step of any environmental study is to define 
the objectives of the study and to design the sampling program.  This chapter 
discusses the basic scientific method and the Data Quality Objectives (DQO) 
process, which is a formal mechanism for implementing the scientific 
method and identifying important information that needs to be known in or-
der to make a decision based on the outcome of the study (e.g., clean up the 
site or leave it alone).  One of the major steps in the DQO process involves 
deciding how you will sample the environment in order to produce the in-
formation you need to make a decision.  We therefore also discuss several 
sampling methods in this chapter as well.  Finally, we present a real-world 
case study to illustrate the DQO process. 

THE BASIC SCIENTIFIC METHOD 

Any scientific study, whether it involves monitoring pollutants in the en-
vironment, determining the efficacy of a new drug, or attempting to improve 
the precision of airplane parts, can eventually be boiled down to trying to de-
termine a cause and effect relationship.  Over the centuries, science has de-
veloped a set of rules to follow to try to rationally determine cause and ef-
fect.  These rules can be summarized as follows: 

1. Form a hypothesis about the relationship between the supposed 
cause and the observed effect (e.g., the presence of a pollutant in a 
river has decreased the population of a particular species of fish). 

2. Perform an experiment in which one set of subjects (e.g., fish, peo-
ple, petri dishes, etc.) is exposed to the cause, and another set of sub-
jects experiences exactly the same conditions as the first set of sub-
jects, except they are not exposed to the cause.  The group of sub-
jects exposed to the cause is termed the experimental group or ex-
posed group, and the other group is termed the control group.  All 
subjects must be similar to one another and be randomly assigned to 
the experimental or control group. 

3. Record and analyze the results of the experiment. 
4. Revise the hypothesis based on the results.  Repeat Steps 2 to 4. 
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The scientific method recognizes the fact that our environment is con-
stantly changing and that any of these changes may create an observed effect 
which may or may not be related to some cause we have hypothesized.  The 
only way to determine whether a specific cause creates a specific effect is 
through careful experimentation that matches the experimental group with 
the control group on every possible condition except for allowing the ex-
perimental group to be exposed to the cause.  In reality, this is often ex-
tremely difficult or impossible to achieve. 

Observational Experiments 

Often in environmental studies, the experiment is not actually controlled 
by scientists doing the investigation, but rather it is an observational ex-
periment (often called an epidemiological study) in which the experimental 
group is a group of people, organisms, aquifers, etc. that has been exposed to 
a cause (e.g., a pollutant) by virtue of physical location or other factors.  A 
control group is then selected based upon the characteristics of the experi-
mental group.  An observational experiment can be very useful for initially 
identifying possible causes and effects, but suffers from the major drawback 
that the experimental group is self-selected, rather than randomly assigned, 
and therefore there might be something peculiar about this group that caused 
the observed effect, rather than the hypothesized cause.  The tobacco indus-
try used this argument for years to claim that there is no “proof” that smok-
ing causes cancer, since all studies on smoking and cancer in humans are ob-
servational experiments (smoking was not randomly assigned to one group 
and no smoking to another).  On the other hand, if many, many observational 
experiments result in the same conclusions, then this is very good evidence 
of a direct cause and effect. 

The Necessity of a Good Sampling Design 

No amount of advanced, cutting-edge statistical theory and techniques 
can rescue a study that has produced poor quality data, not enough data, or 
data irrelevant to the question it was meant to answer.  From the very start of 
an environmental study, there must be a constant dialog between the data 
producers (field and lab personnel, data coders, etc.), the data users (scien-
tists and statisticians), and the ultimate decision maker (the person or organi-
zation for whom the study was instigated in the first place).  All persons in-
volved in the study must have a clear understanding of the study objectives 
and the limitations associated with the chosen physical sampling and analyti-
cal (measurement) techniques before anyone can make any sense of the re-
sulting data. 
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The DQO Process is the Scientific Method 

The DQO process is really just a formalization of sampling design and 
the scientific method.  We will explain the DQO process in detail, but first 
we need to understand the concepts of population, sample, random sampling, 
and hypothesis test. 

WHAT IS A POPULATION AND WHAT IS A SAMPLE? 

In everyday language, the word “population” refers to all the people or 
organisms contained within a specific country, area, region, etc.  When we 
talk about the population of the United States, we usually mean something 
like “the total number of people who currently reside in the U.S.” 

In the field of statistics, however, the term population is defined opera-
tionally by the question we ask:  it is the entire collection of measurements 
about which we want to make a statement (Zar, 1999, p. 16; Berthoux and 
Brown, 1994, p. 7; Gilbert, 1987, Chapter 2). 

For example, if the question is “What does the concentration of dissolved 
oxygen look like in this stream?”, the question must be further refined until a 
suitable population can be defined:  “What is the average concentration of 
dissolved oxygen in a particular section of a stream at a depth of 0.5 m over 
a particular 3-day period?”  In this case, the population is the set of all possi-
ble measurements of dissolved oxygen in that section of the stream at 0.5 m 
within that time period.  The section of the stream, the time period, the 
method of taking water samples, and the method of measuring dissolved 
oxygen all define the population. 

A sample is defined as some subset of a population (Zar, 1999, p. 17; 
Berthoux and Brown, 1994, p. 7; Gilbert, 1987, Chapter 2).  If the sample 
contains all the elements of the population, it is called a census.  Usually, a 
population is too large to take a census, so a portion of the population is 
sampled.  The statistical definition of the word sample (a selection of indi-
vidual population members) should not be confused with the more common 
meaning of a physical sample of soil (e.g., 10g of soil), water (e.g., 5ml of 
water), air (e.g., 20 cc of air), etc. 

RANDOM VS. JUDGMENT SAMPLING 

Judgment sampling involves subjective selection of the population units 
by an individual or group of individuals (Gilbert, 1987, Chapter 3).  For ex-
ample, the number of samples and sampling locations might be determined 
based on expert opinion or historical information.  Sometimes, public opin-
ion might play a role and samples need to be collected from areas known to 
be highly polluted.  The uncertainty inherent in the results of a judgment 
sample cannot be quantified and statistical methods cannot be applied to 
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judgment samples.  Judgment sampling does not refer to using prior informa-
tion and the knowledge of experts to define the area of concern, define the 
population, or plan the study.  Gilbert (1987, p. 19) also describes “haphaz-
ard” sampling, which is a kind of judgment sampling with the attitude that 
“any sample will do” and can lead to “convenience” sampling, in which 
samples are taken in convenient places at convenient times. 

Probability sampling or random sampling involves using a random 
mechanism to select samples from the population (Gilbert, 1987, Chapter 3).  
All statistical methods used to quantify uncertainty assume some form of 
random sampling has been used to obtain a sample.  At the simplest level, a 
simple random sample is used in which each member of the population has 
an equal chance of being chosen, and the selection of any member of the 
population does not influence the selection of any other member.  Other 
probability sampling methods include stratified random sampling, composite 
sampling, and ranked set sampling.  We will discuss these methods in detail 
later in this chapter. 

THE HYPOTHESIS TESTING FRAMEWORK 

Every decision you make is based on a set of assumptions.  Usually, you 
try to make the “best” decision given what you know.  The simplest decision 
involves only two possible choices, with the choice you make depending 
only on whether you believe one specific condition is true or false.  For ex-
ample, when you get up in the morning and leave your home, you have to 
decide whether to wear a jacket or not.  You may make your choice based on 
whether you believe it will rain that day.  Table 2.1 displays the framework 
for your decision-making process. 

What Happens 

Your Decision It Does Not Rain It Rains 

Wear Jacket Mistake I Correct Decision 

Leave Jacket Correct Decision Mistake II 

Table 2.1  Hypothesis testing framework for wearing a jacket 

If you wear your jacket and it rains, you made a “correct” decision, and if 
you leave your jacket at home and it does not rain then you also made a “cor-
rect” decision.  On the other hand, if you wear your jacket and it does not 
rain, then you made a “mistake” in some sense because you did not need to 
wear your jacket.  Also, if you leave your jacket at home and it does rain, 
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then you also made a “mistake.”  Of course, you may view the “cost” of 
making mistake II as greater than the cost of making mistake I. 

You can think of the above example as an illustration of a hypothesis test.  
We will say the null hypothesis is that it will not rain today.  You then gather 
information from the television, Internet, radio, newspaper, or personal ob-
servation and make a decision based on this information.  If the null hy-
pothesis is true and you decide not to leave your jacket at home, then you 
made the “correct” decision.  If, on the other hand, the null hypothesis is 
false and you decide to leave your jacket at home, you have made a mistake. 

Decisions regarding the environment can also be put into the hypothesis 
testing framework.  Table 2.2 illustrates this framework in the context of de-
ciding whether contamination is present in the environment.  In this case, the 
null hypothesis is that no contamination is present. 

Reality

Your Decision No Contamination Contamination 

Contamination
Mistake: 

Type I Error 
(Probability = )

Correct Decision 
(Probability = 1 )

No Contamination Correct Decision 
Mistake: 

Type II Error 
(Probability = )

Table 2.2  Hypothesis testing framework for deciding on the presence of  

contamination in the environment when the null hypothesis is  

“no contamination” 

Statisticians call the two kinds of mistakes you can make a Type I error
and a Type II error.  Of course, in the real world, once you make a decision, 
you take an action (e.g., clean up the site or do nothing), and you hope to 
find out eventually whether the decision you made was the correct decision. 

For a specific decision rule, the probability of making a Type I error is 
usually denoted with the Greek letter  (alpha).  This probability is also 
called the false positive rate.  The probability of making a Type II error is 
usually denoted with the Greek letter  (beta).  This probability is also called 
the false negative rate.  The probability 1  denotes the probability of cor-
rectly deciding there is contamination when in fact it is present.  This prob-
ability is called the power of the decision rule.  We will talk more about the 
hypothesis testing framework in Chapters 6 and 7, and we will talk about 
power in Chapter 8. 

COMMON MISTAKES IN ENVIRONMENTAL STUDIES 

The most common mistakes that occur in environmental studies include 
the following: 
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Lack of Samples from Proper Control Populations.  If one of the 
objectives of an environmental study is to determine the effects of a 
pollutant on some specified population, then the sampling design 
must include samples from a proper control population.  This is a ba-
sic tenet of the scientific method.  If control populations were not 
sampled, there is no way to know whether the observed effect was 
really due to the hypothesized cause, or whether it would have oc-
curred anyway. 
Using Judgment Sampling to Obtain Samples.  When judgment 
sampling is used to obtain samples, there is no way to quantify the 
precision and bias of any type of estimate computed from these  
samples. 
Failing to Randomize over Potentially Influential Factors.  An 
enormous number of factors can influence the final measure associ-
ated with a single sampling unit, including the person doing the 
sampling, the device used to collect the sample, the weather and 
field conditions when the sample was collected, the method used to 
analyze the sample, the laboratory to which the sample was sent, etc.  
A good sampling design controls for as many potentially influencing 
factors as possible, and randomizes over the factors that cannot be 
controlled.  For example, if there are four persons who collect data in 
the field, and two laboratories are used to analyze the results, you 
would not send all the samples collected by persons 1 and 2 to labo-
ratory 1 and all the samples collected by persons 3 and 4 to labora-
tory 2, but rather send samples collected by each person to each of 
the laboratories. 
Collecting Too Few Samples to Have a High Degree of Confi-
dence in the Results.  The ultimate goal of an environmental study 
is to answer one or more basic questions.  These questions should be 
stated in terms of hypotheses that can be tested using statistical pro-
cedures.  In this case, you can determine the probability of rejecting 
the null hypothesis when in fact it is true (a Type I error), and the 
probability of not rejecting the null hypothesis when if fact it is false 
(a Type II error).  Usually, the Type I error is set in advance, and the 
probability of correctly rejecting the null hypothesis when in fact it 
is false (the power) is calculated for various sample sizes.  Too often, 
this step of determining power and sample size is neglected, result-
ing in a study from which no conclusions can be drawn with any 
great degree of confidence. 

Following the DQO process will keep you from committing these common 
mistakes. 
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THE DATA QUALITY OBJECTIVES PROCESS 

The Data Quality Objectives (DQO) process is a systematic planning tool 
based on the scientific method that has been developed by the U.S. Envi-
ronmental Protection Agency (USEPA, 1994a).  The DQO process provides 
an easy-to-follow, step-by-step approach to decision-making in the face of 
uncertainty.  Each step focuses on a specific aspect of the decision-making 
process.  Data Quality Objectives are the qualitative and quantitative state-
ments that: 

Clarify the study objective. 
Define the most appropriate type of data to collect. 
Determine the most appropriate conditions under which to collect 
the data. 
Specify acceptable levels of decision errors that will be used as the 
basis for establishing the quantity and quality of data needed to sup-
port the decision. 

Once the DQOs are specified, it is the responsibility of the team to determine 
the most cost-effective sampling design that meets the DQOs.  A sampling 
design or sampling plan is a set of instructions to use to scientifically inves-
tigate the study objective and come up with a quantifiable answer.  We will 
discuss several commonly used sampling designs later in this chapter, but it 
is important to note that the actual method of analysis/estimation is part of 
the design, and various available choices must be considered to choose the 
most resource-effective combination of the method of sampling and the 
method of analysis/estimation. 

Figure 2.1 The Data Quality Objectives (DQO) Process 

State the Problem 

Specify Limits on Decision Errors 

Identify the Decision 

Identify Inputs to the Decision 

Define the Study Boundaries 

Develop a Decision Rule 

Optimize the Design for Obtaining Data 
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Figure 2.1 displays a flowchart of the DQO process.  The DQO process 
is described in detail in USEPA (1994a).  The DQO process is a series of 
seven planning steps, as outlined below. 

1. State the Problem.  Clearly and concisely define the problem so 
that the focus of the study will be unambiguous.  Activities include: 

Identify members of the planning team. 
Identify the primary decision maker and each team member’s 
role and responsibilities. 
Develop a concise description of the problem by describing 
what is causing the problem and reviewing prior studies and ex-
isting information to gain a better understanding of the problem. 
Specify available resources and relevant deadlines for the study. 

2. Identify the Decision.  Define the decision statement that the study 
will attempt to resolve.  Activities include: 

Identify the principal study question.  For example:  Is the con-
centration of 1,2,3,4-tetrachlorobenzen (TcCB) in the soil at a 
specific site “significantly” above “background” levels? 
Define possible (alternative) actions to take based on the answer 
to the principal study question.  For example, if the concentra-
tion of TcCB is significantly above background level, then re-
quire remediation; otherwise, do nothing. 
Combine the principal study question and the alternative actions 
into a decision statement. 
Organize multiple decisions. 

3. Identify Inputs to the Decision.  Identify the information that needs 
to be obtained and the measurements that need to be taken to resolve 
the decision statement.  Activities include: 

Identify the information required to resolve the decision state-
ment.  For example, what is the distribution of TcCB concentra-
tions at the site of concern, and what is the distribution of TcCB 
concentrations for a “background” site? 
Determine the sources for each item of information.  Sources 
may include previous studies, scientific literature, expert opin-
ion, and new data collections. 
Identify the information that is needed to establish the action 
level.  For example, will the “background” level of TcCB be es-
tablished based on sampling a nearby “control” site or based on 
a regulatory standard? 
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Confirm that appropriate analytical methods exist to provide the 
necessary data.  Develop a list of potentially appropriate meas-
urement methods, noting the method detection limit and limit of 
quantitation for each method. 

4. Define the Study Boundaries.  Define the spatial and temporal 
boundaries that are covered by the decision statement.   A clear con-
nection should be made between the study boundaries and the state-
ment of the problem so that the decisions are relevant to the problem 
stated in Step 1.  Steps 3 and 4 involve defining the population(s) of 
interest, how it (they) will be sampled, and how the physical samples 
will be measured.  Activities for Step 4 include: 

Specify the characteristics that define the population of interest. 
Define the geographic area within which all decisions apply. 
When appropriate, divide the population into relatively homo-
geneous strata. 
Determine the timeframe within which all decisions apply. 
Determine when to collect the data. 
Define the scale of decision making.  For example, will only one 
decision be made for the whole site, or will the site be divided 
into smaller sub-areas and a separate decision made for each 
sub-area? 
Identify any practical constraints on data collection. 

5. Develop a Decision Rule.  Define the statistical parameter of inter-
est, specify the action level, and integrate the previous DQO outputs 
into a single statement that describes the logical basis for choosing 
among alternative actions.  Activities include: 

Specify one or more statistical parameter(s) that characterize(s) 
the population and that are most relevant to the decision state-
ment.  For example, the average concentration of TcCB, the 
median concentration of TcCB, and the 95th percentile of the 
concentration of TcCB. 
Specify the action level(s) for the study. 
Combine the outputs from the previous DQO steps into one or 
more “If …then...” decision rules that define the conditions that 
would cause the decision maker to choose among alternative ac-
tions.  For example, “If the average concentration of TcCB in a 
sub-area is greater than the background average concentration 
then remediate the sub-area.” 

6. Specify Tolerable Limits on Decision Errors.  Define the decision 
maker’s tolerable decision error rates based on a consideration of the 
consequences of making an incorrect decision.  Since decisions are 
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made based on a sample rather than a census, and there is uncer-
tainty in the measurements, incorrect decisions can be made.  The 
probabilities of making incorrect decisions are referred to as decision 
error rates.  Activities for this step include: 

 Determine the full possible range of the parameter of interest. 
 Identify the decision errors and formulate the null hypothesis. 
 Specify a range of parameter values where the consequences of 

decision errors are relatively minor (gray region). 
 Assign probability values to points above and below the action 

level that reflect the tolerable probability for the occurrence of 
decision errors. 
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Example of a Decision Performance Goal Diagram
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False Negative

Decision Error Rates

Gray Region
(Relatively Large

Decision Error Rates
Considered Acceptable)

Figure 2.2 Decision performance goal diagram for the null hypothesis that the pa-

rameter is less than the action level of 100 ppm 

Figure 2.2, similar to Figure 6-2 of USEPA (1994a, p. 36), illustrates 
a decision performance goal diagram in which the full range of the 
parameter is assumed to be between about 50 and 200 ppm.  The null 
hypothesis is that the true value of the parameter is less than the ac-
tion level of 100 ppm.  The tolerable false positive decision error rate 
is 5% as long as the true value is less than 60 ppm.  If the true value is 
between 60 and 100 ppm, then the tolerable false positive rate is 10%.  
If the true value is between 100 and 120 ppm, this is a gray region 
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where the consequences of a decision error are relatively minor.  If 
the true value is between 120 and 140 ppm, the tolerable false nega-
tive decision error rate is 10%, and if the true value is bigger than 140 
ppm the tolerable false negative decision error rate is 5%. 

7. Optimize the Design.  Evaluate information from the previous steps 
and generate alternative sampling designs.  Choose the most re-
source-efficient design that meets all DQOs.  Activities include: 

Review the DQO outputs and existing environmental data. 
Develop several possible sampling designs. 
Formulate the mathematical expressions required to solve the 
design problems for each design alternative.  These expressions 
include the relationship between sample size and decision error 
rates, and the relationship between sample size and cost of the 
design. 
Select the optimal sample size that satisfies the DQOs for each 
possible sampling design. 
Select the most resource-effective sampling design that satisfies 
all of the DQOs. 
Document the operational details and theoretical assumptions of 
the selected sampling design in the Sampling and Analysis Plan. 
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Figure 2.3 Example of a power curve for the null hypothesis that the parameter is 

less than the action level of 100 ppm 
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Figure 2.3, similar to Figure 7-1 of USEPA (1994a, p. 40) illustrates a 
power curve for a particular sampling design drawn on top of the de-
cision performance goal diagram shown in Figure 2.2.  Here you can 
see that this particular sampling design satisfies the performance 
goals. 

Steps 3 and 4 should include developing a quality assurance project plan 
(QAPP) to document quality assurance (QA) and quality control (QC) and 
insure the integrity of the final results (USEPA, 1998b).  A good QAPP cov-
ers instructions for sample collection in the field, handling, laboratory analy-
sis and reporting, data coding, statistical analyses, and reports.  Embedded in 
these instructions is the chain of custody procedures for documenting who 
has custody of the samples and the current conditions of the samples from 
the point of collection in the field to the analysis at the laboratory.  Chain of 
custody procedures are used to ensure that samples are not lost, tampered 
with, or improperly stored or handled.  See Keith (1991) and USEPA 
(1998b) for more information. 

Step 7 requires information from previous studies and/or a pilot study to 
quantify the amount of variability that is typical in samples.  Once this in-
formation is available, you can estimate the required sample size based on 
the statistical method of analysis that will be used (see Chapter 8).  Even if 
information on sample variability is available from previous studies, how-
ever, it is almost always advisable to conduct a pilot study in order to “fine 
tune” the QA/QC sampling plan and the overall sampling design.  Sample 
size requirements should take into account that a certain proportion of the 
samples will be unusable due to loss, mislabeling, mishandling, or some 
other factor that keeps the samples from meeting the specified QA/QC stan-
dards.

The DQO process is iterative.  During the design optimization step (Step 
7), you may discover that there are not enough funds and/or staff available to 
answer the question, given the required decision error rates specified in Step 
6 and the required sample sizes determined in Step 7.  In this case, you may 
need to adjust the budget of the study or the decision error rates, or investi-
gate alternative methods of sampling that may yield smaller variability.  
Once a sampling design is chosen, you should develop a written protocol for 
implementing the sampling design and QAPP programs.  See Gilbert (1987), 
Keith (1991), and USEPA (1989a; 1992b; 1994a,b; 1996) for more informa-
tion on sampling design. 

SOURCES OF VARIABILITY AND INDEPENDENCE 

Figure 1.2 in Chapter 1 displays several sources of variability in meas-
urements from environmental studies.  Some potential sources of variability 
include: 
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 Natural variability over space. 
 Natural variability over time (including seasonal and year-to-year 

fluctuations). 
 Field sampling variability (sample collection, sample handling, and 

transportation). 
 Within laboratory variability (day-to-day, machine-to-machine, 

technician-to-technician, etc.). 
 Between laboratory variability. 

When you are designing a sampling program, it is very important to be 
aware of these different sources of variability and to know how much they 
contribute to the overall variability of a measure.  For example, RCRA regu-
lations for groundwater monitoring at hazardous and solid waste sites require 
a minimum of only one upgradient well (see Figure 1.1 in Chapter 1).  If 
there is substantial natural spatial variability in the concentration of some 
chemical of concern, then we may not be able to tell whether a difference in 
concentrations between the upgradient well and a downgradient well is due 
to actual contamination showing up at the downgradient well or simply due 
to natural spatial variability. 

Independent vs. Dependent Observations 

A key concept in statistical design and analysis is the idea of independ-
ent observations.  Here is a non-technical definition:  observations are inde-
pendent of one another if knowing something about one observation does not 
help you predict the value of another observation.  As an example of inde-
pendent observations, suppose you have a standard deck of 52 playing cards, 
which you shuffle before picking a single card.  You look at the card, put it 
back in the deck, shuffle the deck again, and pick another card.  Knowing 
that the card you picked the first time was the 10 of diamonds will not help 
you predict what the next card will be when you pick from the deck again.  
The values of the two different cards that you pick are independent.  On the 
other hand, if you had kept the 10 of diamonds after you picked it and not re-
turned it to the deck, then you know that the next card you pick cannot be the 
10 of diamonds.  In this case, the two observations are dependent. 

The idea of independence is closely linked to the idea of accounting for 
sources of variability.  Suppose we are monitoring the concentration of arse-
nic in groundwater around a hazardous waste site and the flow of ground-
water is extremely slow.  If we sample say biweekly or monthly, then the 
temporal variability at a monitoring well will be small, so that observations 
taken close together in time will resemble one another more than observa-
tions taken further apart in time.  Thus, if we combine monthly observations 
over 2 years, these 24 observations would not be considered to be independ-
ent of each other; they would exhibit temporal correlation (see Chapter 11).  
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We would have to adjust the sampling frequency to something like quarterly 
to try to produce observations that act like they are independent. 

Similarly, if there is no appreciable natural spatial variability of arsenic 
concentrations over the area we are monitoring, then the combined observa-
tions from an upgradient well and a downgradient well could be considered 
to be independent (assuming there is no leakage from the waste site).  On the 
other hand, if there is substantial spatial variability (but no leakage from the 
waste site), and the concentrations at the downgradient well tend to be larger 
than the concentrations at the upgradient well, then the combined observa-
tions from the upgradient well and the downgradient well would not be con-
sidered independent; knowing which well an observation comes from (up-
gradient or downgradient) helps us predict the value of the observation.  If 
we know the average concentrations at the upgradient and downgradient 
wells (e.g., 5 ppb at the upgradient well and 10 ppb at the downgradient 
well), we can subtract these averages from the observations to produce “re-
sidual values.”  The combined residual values would be considered inde-
pendent, because knowing whether the residual value came from the upgra-
dient or downgradient well does not help us predict the actual value of the 
residual value. 

Most standard statistical methods assume the observations are independ-
ent.  This is a reasonable assumption as long as we are careful about ac-
counting for potential sources of variability and randomizing over potentially 
influential factors (e.g., making sure each laboratory analyzes samples col-
lected by each different collector).  Time series analysis, discussed in Chap-
ter 11, and spatial statistics, discussed in Chapter 12, are special ways of ac-
counting for variability over time and space.  A very common method of ac-
counting for physical sources of variability in the field is stratified random 
sampling, which is discussed in the next section. 

METHODS OF RANDOM SAMPLING 

This section describes four methods of random sampling:  simple random 
sampling, systematic sampling, stratified random sampling, composite sam-
pling, and ranked set sampling.  Other methods of random sampling include 
two-stage and multi-stage random sampling, double random sampling, se-
quential random sampling, and adaptive random sampling.  See Gilbert 
(1987), Keith (1991, 1996), Thompson (1992), and Cochran (1977) for more 
information. 

In our discussions, we will explain the various methods of random sam-
pling in English.  To compare the methods of sampling, however, we need to 
use equations and talk about concepts like the population mean, sample 
mean, and variance of the sample mean.  We will discuss these concepts in 
detail in Chapters 3 and 4.  For now, you may want to skip the equations and 
return to them after you have read these later chapters. 
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Simple Random Sampling 

Simple random sampling is, true to its name, the simplest type of sam-
pling design.  Recall that a sample is a subset of the population.  A simple 
random sample (SRS) is obtained by choosing the subset in such a way that 
every individual in the population has an equal chance of being selected, and 
the selection of one particular individual has no effect on the probability of 
selecting another individual.  The word random denotes the use of a prob-
abilistic mechanism to ensure that all units have an equal probability of be-
ing selected, rather than the colloquial meaning “haphazard.” 

In order to realize an SRS from a population, a complete listing of the 
units in the population may be needed.  These units are referred to as sam-
pling units.  For example, suppose we are interested in determining the con-
centration of a chemical in the soil at a Superfund site.  One way to define 
the population is as the set of all concentrations from all possible physical 
samples of the soil (down to some specified depth).  In the DQO process, we 
may further refine our definition of the population to mean the set of all con-
centrations from all possible physical samples taken on a grid that overlays 
the site.  The grid points are then the sampling units, and an SRS will consist 
of a subset of these grid points in which each grid point has an equal prob-
ability of being included in the sample.  Figure 2.4 illustrates the idea of 
simple random sampling for a grid with N = 160 points for which n = 16 
points were selected at random. 

Example of SRS with N=160 and n=16

Figure 2.4 Illustration of simple random sampling on a grid 
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In Chapters 3 and 4 we will discuss the concepts of the population mean, 
population variance, sample mean, and sample variance.  One way to com-
pare sampling methods is based on the variance of the sample mean (how 
much wiggle it has).  For simple random sampling, the population mean or 
average, denoted by , is estimated by the sample mean: 

1

1
ˆ

n

SRS i
i

x x
n

(2.1)

where n denotes the number of sampling units selected in the SRS and xi
denotes the value of the measurement on the ith sampling unit that was se-
lected.  The variance of the sample mean is given by: 

2
2ˆ 1SRS x

n
Var Var x

n N
(2.2)

where 2 denotes the population variance and N denotes the number of sam-
pling units in the population (Cochran, 1977, p. 23; Gilbert, 1987, p. 28).  
Note that as the sample size n increases, the variance of the sample mean de-
creases.  For a finite population, if we take a census so that n = N, the sample 
mean is the same as the population mean and the variance of the sample 
mean is 0.  The quantity n/N in Equation (2.2) is called the finite population 
correction factor.  For an infinite population where N = , the finite popula-
tion correction factor is 0 so that the variance of the sample mean depends 
only on the sample size n.

2

ŜRSVar Var x
n

(2.3)

Often in environmental studies, the finite population correction factor is set 
to 0 because the size of the population N is much, much larger than the sam-
ple size n.

Determining Grid Size 

A common question is:  “If I decide to overlay the area with a grid and 
define my population by the set of all possible points on the grid, how fine 
should the grid be?  Should the points be spaced by 10 feet, one foot, half of 
a foot, or some other distance?”  For simple random sampling, the answer is:  
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Make the grid of possible points to sample from as fine as possible, since 
you would like to extrapolate your results to the whole area.  When you 
overlay the area with a grid, you are in effect taking a systematic sample of 
all possible sampling points (see the next section).  You therefore may have 
introduced bias, because even if you sample from all of the points on the grid 
(instead of taking a random sample of points), the mean based on sampling 
all of the grid points may not equal the true population mean.  As you make 
the grid finer, however, the mean of all grid points will get close to the true 
population mean. 

Systematic Sampling 

Systematic sampling involves choosing a random starting point, and then 
sampling in a systematic way, for example, along a line every 2 feet, or on a 
square or triangular grid.  Figure 2.5 illustrates systematic sampling on a tri-
angular grid.  In this figure, the coordinates of the sampling point in the 
lower left-hand corner were generated by random numbers; once this coordi-
nate was determined, the other sampling coordinates were completely  
specified.

Example of Systematic Sample on a Triangular Grid

Figure 2.5 Illustration of systematic sampling with a triangular grid 

Systematic sampling is useful when you are trying to uncover “hot spots” 
of highly contaminated areas.  Gilbert (1987, Chapter 10) discusses how to 
determine grid size when using square, rectangular, or triangular grids to 
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search for hot spots.  Elipgrid-PC is software for determining grid spacing to 
detect hotspots with a specified probability.  It was originally developed at 
Oak Ridge National Laboratory and is available at the following URL:  
http://etd.pnl.gov:2080/DQO/software/elipgrid.html.  Visual Sample Plan 
(VSP; see http://terrassa.pnl.gov:2080/DQO/software/vsp) is an updated ver-
sion of Elipgrid-PC that also includes sample size calculations for simple 
random sampling. 

If you are trying to estimate a mean or a total, systematic sampling works 
as well as or better than simple random sampling if there are no trends or 
natural strata in the population you are sampling.  In general, however, it is 
difficult to obtain reliable estimates of variability with systematic sampling, 
and if some kind of natural trend or pattern is present, systematic sampling 
may yield biased estimates (Gilbert, 1987, Chapter 10). 

Stratified Random Sampling 

Another type of sampling design is called stratified random sampling.  In 
stratified random sampling, the population (site or process) is divided into 
two or more non-overlapping strata, sampling units are defined within each 
stratum, then separate simple random or systematic samples are chosen 
within each stratum.  Population members within a stratum are thought to be 
in some way more similar to one another than to population members in a 
different stratum.  If this is in fact the case, then the sample mean based on 
stratified random sampling is less variable than the sample mean based on 
simple random sampling.  Figure 2.6 illustrates the idea of stratified random 
sampling. 

Example of Stratified Random Sampling
with L=4 Strata and nh=4 Observations per Stratum

Figure 2.6 Illustration of stratified random sampling 
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It is important to note that the formulas for estimators such as the sample 
mean or proportion and the associated confidence intervals (see Chapter 5) 
need to be modified to be applicable to data from stratified random sam-
pling.  For stratified random sampling, the population mean of the hth stra-
tum is estimated by choosing nh sampling units and computing the sample 
mean: 

1

1
ˆ

hn

h h hi
h i

x x
n

(2.4)

where xhi denotes the value of the measurement on the ith sampling unit that 
was selected in stratum h.  The population mean over all strata is estimated 
by a weighted average of the sample means from each stratum: 

1 1

ˆ ˆ
L L

Stratified h h h h
h h

W W x (2.5)

where

h
h

N
W

N
(2.6)

1

L

h
h

N N (2.7)

L denotes the total number of strata, Nh denotes the number of sampling 
units in the hth stratum, and N denotes the total number of sampling units 
(Cochran, 1977, p. 91; Gilbert, 1987, p. 46).  If we let n denote the total sam-
ple size, then 

1

L

h
h

n n (2.8)
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The estimator of the population mean given in Equation (2.5) is not the same 
as the simple sample mean taken over all observations in all the strata unless 
nh/Nh = n/N for all of the L strata, that is, the sampling fraction is the same 
in all of the strata, which is called proportional allocation.

The variance of the stratified sample mean is given by: 

2

1

2
2

1

ˆ
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L

Stratified h h
h

L
h n

h
h hh

Var W Var x

n
W

n N

(2.9)

where 2
h  denotes the variance of the hth stratum (Cochran, 1977, p. 92; Gil-

bert, 1987, p. 47).  Cochran (1977, pp. 96 99) and Gilbert (1987, pp. 50 52)
show how to minimize this variance if you know the variability within each 
stratum and the cost of taking a sample within each stratum. 

When Should You Use Stratified Random Sampling? 

The main advantage of the stratified random sampling design is its ability 
to provide a greater coverage of the population.  By choosing sampling units 
from all strata, you are avoiding the possibility that all of the sampled units 
may come from the same or adjacent geographical areas and certain parts of 
the population are not represented.  Stratified sampling is beneficial if the 
population you are sampling is fairly heterogeneous and you have a good 
idea of how to divide the population up into strata that are fairly  
homogeneous. 

Composite Sampling 

So far in our discussions of simple and stratified random sampling, we 
have inherently assumed that the physical samples are measured only once 
(e.g., a sample of groundwater is pumped from a monitoring well and the 
concentration of arsenic in that sample is measured).  Sometimes, you may 
want to take two samples very close together in space or time, sometimes 
you may want to split a physical sample into two or more subsamples and 
take a measure on each, or sometimes you may want the laboratory to per-
form two or more analyses on a single physical sample.  Each of these is an 
example of a replicate, so you must be very explicit about what you mean 
when you use this term.  Replicates are used in QA/QC studies to estimate 
within-sample variability.  If the within-sample variability is fairly large 

© 2001 by CRC Press LLC



(e.g., of the same order as between-sample variability), and the cost of analy-
sis is fairly small compared to the cost of sample collection, you may want to 
specify two or more replicates in the sampling design. 

Often, however, for environmental studies the cost of collecting a sample 
is relatively small compared to the cost of analyzing it.  For instance, in 
sampling from a site which has highly radioactive material, the entire crew 
needs to rehearse the sample collection procedure to minimize the exposure 
and the time spent at the site for sampling.  Once the sampling crew is in the 
field taking soil samples, however, the additional cost of collecting more soil 
samples is relatively small compared to the cost of analyzing the soil sam-
ples for radioactivity.  In such situations, cost-effective sampling designs can 
be achieved by composite sampling (Lovison et al., 1994; USEPA, 1995a).

Composite samples are obtained by physically mixing the material ob-
tained from two or more sampling units.  Then measurements are obtained 
by analyzing subsamples (replicates) from each composite sample.  Figure 
2.7 illustrates composite sampling in which a composite sample is created by 
mixing together three grab samples (sampling units).  A total of four com-
posite samples are created from 12 grabs.  Two subsamples (replicates) are 
taken from each of the four composite samples and measured, yielding a to-
tal of eight measurements. 

Figure 2.7 Illustration of composite sampling in which three grabs are mixed to-

gether to form a composite sample, then two subsamples are taken 

from the composite sample 

Compositing simply represents a physical rather than mathematical 
mechanism of averaging the measurements from individual sampling units 
that make up the composite.  When the cost of collecting samples is small, a 
large number of samples may be collected to ensure a large coverage of the 
population. 
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Compositing is a cost-effective means of estimating population means.  
Estimating the uncertainty and obtaining confidence intervals are not always 
possible with measurements from composite samples since information re-
garding the extremes is lost when grab samples are composited.  Composit-
ing can also be used to efficiently identify “hot-spots” if the sampled mate-
rial does not deteriorate in storage.  In this case, the individual units are stra-
tegically composited in groups and the “hot” samples are identified based on 
measurements from the composite (Sengupta and Neerchal, 1994).  It is also 
possible to apply compositing with stratification or other types of designs as 
a screening mechanism. 

Composite Sampling vs. Simple Random Sampling 

Suppose we take n grab samples and divide them evenly into g groups of 
size h (so h = n/g), then composite the grabs within each group to produce 
g composite samples.  We then take r subsamples (replicates) from each 
composite sample for a total of gr measurements.  In Figure 2.7, we have  
n = 12, g = 4, h = 3, and r = 2. 

Let xij denote the measurement from the jth grab sample in the ith group 
(i = 1,2,…,g; j = 1,2,…,h).  For simple random sampling, our estimate of 
the population mean is the sample mean based on the n grab samples: 

1 1

1 g h

ij
i j

x x
gh

(2.10)

This is an unbiased estimator of the population mean , and the variance of 
this estimator is given by: 

2

Var x
gh

(2.11)

where 2 denotes the population variance of the grab samples: 

2
ijVar x (2.12)

Let yik denote the kth subsample (replicate) taken from the ith composite 
sample (group), where i = 1,2,…,g and k = 1,2,…,r.  The average of all of 
the subsamples is: 
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(2.13)

The ith composite sample is formed by physically mixing the h grab samples 
within the ith group, so this is a mechanical way to produce a weighted aver-
age of the h grab samples within that group.  We can therefore write yik as: 

1

h

ik ijk ij
j

y w x (2.14)

where 0 wij  1 and 

1

1
h

ijk
j

w (2.15)

The weights wijk represent the contribution of the jth grab sample to the 
ith composite.  These weights are assumed to be random with an expected 

value of 1/h and a variance of 2
w .  In the case of perfect mixing for the ith

composite, each weight is exactly equal to 1/h, the variance of the weights 

is 0 ( 2
w = 0), and the values of all of the r subsamples are exactly the same 

as the average of the h grab samples comprising the ith composite group (as-
suming no measurement error).  It is important to note that subsample meas-
urements coming from the same composite (yi1, yi2,…,yir) are correlated 
because they are based on the same set of h grab samples.  However, meas-
urements from two different composites are uncorrelated because different 
composites are based on distinct sets of grab samples.  It can be shown that 
the average of all the subsamples given in Equation (2.13) is an unbiased es-
timator of the population mean with variance given by: 

2
2 2

w
h

Var y
gh gr

(2.16)

How do you know when it is a good idea to use composite sampling?  
One way to decide is by comparing the variance of the estimator of the popu-
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lation mean under simple random sampling with the variance of the estima-
tor under composite sampling.  Comparing Equations (2.11) and (2.16), we 
see that the variance of the estimator based on compositing can never be 
smaller than the variance of the estimator based on measuring each of the in-
dividual grab samples. 

Let us consider the case now where you have n grab samples but your 
budget only allows you to measure r of the n grab samples, where r < n.  Is 
it better to measure r of the n grab samples and compute the mean based on 
these observations, or is it better to combine all n grab samples into one 
composite, take r subsamples, and compute the mean based on these obser-
vations?  In the first case, the variance of the sample mean is given by: 

2

Var x
r

(2.17)

In the second case, we have g = 1 and h = n, so based on Equation (2.16) the 
variance of the mean of all of the subsamples is given by: 

2
2 2

w
n

Var y
n r

(2.18)

The ratio of these two variances is given by: 

2
w

Var y r
n

Var x n
(2.19)

Composite sampling will be better than measuring r of the n grab samples 

when this ratio is less than 1, which will happen if 2
w  is sufficiently small 

(i.e., the grabs are well mixed in the composite). 
Designing a sampling plan that may include compositing samples re-

quires you to determine the number of grab samples (n), the number of com-
posite groups (g) or the number of grab samples per group (h), and the num-

ber of subsamples per composite (r).  Thorough mixing reduces 2
w  and 

makes composite sampling more competitive with simple random sampling. 
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Using Composite Sampling to Detect “Hot Spots” 

As mentioned earlier, information regarding the extremes is lost when 
grab samples are composited.  If, however, the grabs can be stored without 
any physical deterioration and are available for measurement at a later time, 
then we can use compositing to efficiently determine which, if any, grab 
samples exceed a given threshold without necessarily having to measure 
each individual grab sample.  We shall give a simple example and refer the 
reader to Sengupta and Neerchal (1994) for more details. 

Suppose we have n = 7 grab samples, identified by 1,2,…7, and we want 
to identify any grab sample that exceeds some concentration level L, a level 
that is deemed to be of concern (e.g., a soil screening level as described in 
Chapter 1).  We can use the following procedure. 

1. Make one composite consisting of all seven grabs.  If this composite 
measurement does not exceed L/7, then declare all grabs to be 
“safe.”  If the measurement exceeds L/7, conclude that at least one of 
the grabs is contaminated and go to Step 2.  For this example, we 
will assume that if the composite measure is greater than L/7, it is 
also less than 2(L/7), so that we can conclude that at most one of the 
grabs is “contaminated.” 

2. Form 4 composites as follows: 

Composite Constituent Grabs 
A 1, 3, 5, 7 
B 2, 3, 6, 7 
C 4, 5, 6, 7 

Measure composites A, B, and C and compare each measurement to 
L/4. 

3. Note that each of A, B, and C could either be above L/4 (denoted by 
a +) or below L/4 (denoted by a -).  The table below lists the eight 
possible outcomes and which grab this outcome indicates as being 
contaminated. 

A B C
Contaminated

Grab
+ - - 1 
- + - 2 
+ + - 3 
- - + 4 
+ - + 5 
- + + 6 
+ + + 7 
- - - None 
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As an example, suppose that the grab measurements are 1, 3, 7, 29, 4, 9 
and 2 ppm.  For this method, we do not measure each grab sample but in-
stead make one composite of all the seven grabs.  Assuming perfect mixing 
( w = 0), the composite measurement is simply the average of the grab meas-
urements, which in this case is 7.86 ppm.  Now suppose that a sample is 
considered “hot” if it exceeds L = 28 ppm, so we will compare the concen-
tration of the composite sample to L/7 = 28/7 = 4 ppm.  Since the composite 
measurement is between 4 ppm and 8 ppm, we conclude that there is at most 
one “hot” grab.  Thus we form three more composite as in Step 2.  The re-
sulting measurements are shown in Table 2.3. 

Composite Constituent Grabs Measurement (ppm) 
A 1,3,5,7               3.5 
B 2,3,6,7               5.25 
C 4,5,6,7             11 

Table 2.3  Example of using compositing to determine which grab samples are 

“hot”

Comparing these measurements to 7 ppm, we look up (-,-,+) in the table 
shown in Step 3 above and conclude that grab 4 is possibly “hot.”  One more 
measurement on grab 4 will reveal that it is in fact contaminated.  Note that 
we made a total of five measurements instead of seven.  For the procedure il-
lustrated here we assume perfect mixing and no measurement errors.  Sen-
gupta and Neerchal (1994) show that for a number of situations this proce-
dure leads to savings over testing every grab sample. 

Ranked Set Sampling

Ranked Set Sampling (RSS) was first introduced by McIntyre (1952) and 
is described in Patil et al. (1994b), Johnson et al. (1996), and USEPA 
(1995b).  In RSS, a large number of sampling units are selected from the 
population and only a subset of those are actually measured.  Ranking based 
on an auxiliary variable is used to determine which of the selected sampling 
units are measured, hence its name.  RSS is worth considering if 

The cost of measurements (lab analyses) is far greater than the cost 
of collecting the samples. 
An auxiliary characteristic is available that is highly correlated with 
the main characteristic of interest and is also inexpensive to measure. 

We will first describe the procedure to obtain a ranked set sample and then 
discuss its advantages and disadvantages. 
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Steps to Create a Ranked Set Sample 

In this section we will illustrate how to create a ranked set sample of size 
m = 3 objects, and then explain how to extend this to general values of m.

1. First collect three simple random samples, each of size 3.  Let Sij

denote the jth sampling unit within the ith SRS (i = 1,2,3; j =
1,2,3).

SRS Sampling Units 
1 S11 S12 S13

2 S21 S22 S23

3 S31 S32 S33

2. Next, order the sampling units within each SRS in increasing order 
according to the values for the auxiliary variable.  Let Si(j) denote 
the jth ordered (ranked) sampling unit within the ith SRS (i = 1,2,3; 
j = 1,2,3). 

SRS Sampling Units 
1 S1(1) S1(2) S1(3)

2 S2(1) S2(2) S2(3)

3 S3(1) S3(2) S3(3)

3. Create the ranked set sample by selecting the jth ranked sampling 
unit for the jth SRS (j = 1,2,3).  That is, the ranked set sample is 
S1(1), S2(2), and S3(3) (the diagonal in the table from the upper left to 
the lower right).  These sampling units are shown in boldface in the 
table above.  The actual variable of interest is measured only on 
these units, and we will denote these measurements by x1(1), x2(2),
and x3(3).

In general, a RSS of size m requires taking m simple random samples each of 
size m (a total of m2 sampling units). 

Ranking a large number of sampling units is difficult and prone to error, 
especially if the ranking has to be done visually.  It is therefore recom-
mended that the size of each SRS that needs to ranked should be no larger 
than three to five sampling units.  You can increase the sample size of your 
ranked set sample by replicating the process r times.  For example, if you 
want a total of n = 15 sampling units in your ranked set sample, simply cre-
ate r = 5 ranked set samples, each of size m = 3.  This will require a total of 
5  32 = 45 sampling units, as opposed to 152 = 225 sampling units. 
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The Auxiliary Variable 

As we discussed earlier in the context of composite sampling, often the 
laboratory analyses are much more expensive than the cost of collecting 
samples (per unit).  The auxiliary characteristic used for ranking, on the 
other hand, should be inexpensive to measure.  Often, the ranking can be 
done visually.  For example, if we are interested in estimating the average 
biomass volume in a forest, a ranking of small, medium, and large can be 
done visually, even though measuring the biomass volume will involve time-
intensive analyses.  In a contaminated site, visible soil characteristics may 
provide a means of ranking the units while a soil sample will have to sent to 
the lab to actually obtain measurements. 

Ranked Set Sampling vs. Simple Random Sampling:  Estimating the Mean 

The sample mean based on RSS is an unbiased estimator of the popula-
tion mean .  If we create r ranked set samples, each of size m, to produce a 
ranked set sample of size n = rm, then the variance of the sample mean 
based on RSS is 

2 2

2
1

1
1

m

RSS i
i

Var x
n m

(2.20)

where (i) denotes the expected value of the ith order statistic from a ran-
dom sample of size m (Patil et al., 1994b).  Comparing Equation (2.20) with 
Equation (2.3), we see that the sample mean based on RSS has a smaller 
variance than the sample mean based on a SRS of the same size.  Thus, 
fewer samples are needed to achieve the same precision, leading to a savings 
in sampling costs.  It is worth emphasizing, however, that to obtain unbiased 
estimates of variances you need two or more cycles (see Stokes, 1980 and 
Bose and Neerchal, 1998).  Mode et al. (1999) discuss when ranked set sam-
pling is cost effective based on considering the cost of measuring the auxil-
iary variable, the cost of ranking, and the cost of measuring the variable of 
interest. 

Equation (2.20) assumes there is perfect correlation between the auxiliary 
variable and the variable of interest, and that there are no errors in ranking 
based on the auxiliary variable.  Nevertheless, the variance of the sample 
mean based on RSS is always less than or equal to the variance of the sample 
mean based on SRS.  If there is no correlation between the auxiliary variable 
and the variable of interest, then RSS will simply produce the same results as 
SRS.
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Ranked Set Samples Are More Regularly Spaced Than Simple Random 
Samples

We conclude our discussion of RSS by illustrating a very important prop-
erty of the RSS design with a simple example.  Suppose we want to estimate 
the average weight of a herd of elephants.  Furthermore, assume this simple 
herd of elephants has one calf for every mother elephant and has no father 
elephants at all.  We will consider two options: 

 Simple Random Sampling.  Pick two elephants at random, weigh 
them, and use their average weight as an estimate of the average 
weight for the entire herd.  Note that this procedure gives an unbi-
ased estimate. 

 Ranked Set Sampling.  Pick two elephants randomly in the morn-
ing, pick the smaller of the two, and weigh it.  Pick two elephants 
randomly in the afternoon, pick the larger of the two, and weigh it.  
Use the average weight of the two elephants chosen in this way as an 
estimate of the average weight for the entire herd.  It can be shown 
that this estimate is also an unbiased estimate of the average weight 
of the herd. 

Table 2.4 shows the results of SRS with n = 2 elephants, where c denotes a 
calf and M denotes a mother.  For RSS, Table 2.5 shows the possible results 
for the morning sample (smaller of the two is chosen), Table 2.6 shows the 
possible results for the afternoon sample (larger of the two is chosen), and 
Table 2.7 shows the final results. 

2nd Elephant 
c M 

c cc cM 

1st
 E

le
ph

an
t 

M cM MM 

Table 2.4  Possible results of SRS from the elephant herd with sample size n = 2 

2nd Elephant 
c M 

c c c 

1st
 E

le
ph

an
t 

M c M 

Table 2.5  Possible results of the morning SRS in which two elephants are se-

lected and then the smaller elephant is weighed 
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Table 2.6  Possible results of the afternoon SRS in which two elephants are se-

lected and then the larger elephant is weighed 

Afternoon Elephant 
c M M M 

c cc cM cM cM 

c cc cM cM cM 

c cc cM cM cM 
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M cM MM MM MM 

Table 2.7  Possible results of RSS for the elephant herd with final sample size  

n = 2 

For SRS, the probability of getting two mothers in the sample (resulting 
in an overestimate of the mean) or two calves in the sample (resulting in an 
underestimate of the mean) is 2/4 = 50%.  For RSS, the probability of getting 
two mothers in the sample or two calves in the sample is only 6/16 = 37.5%.  
Clearly RSS is superior to SRS in the sense that RSS gives a “representa-
tive” sample more often.  It can be shown theoretically that RSS gives the 
more representative samples more often in general for any herd of elephants 
regardless of the proportion of calves in the herd (Lacayo and Neerchal, 
1996).

The above example captures the salient feature of RSS of producing less 
variable and more “representative” samples.  This is the reason why the 
sample mean from a RSS has a smaller variance than the sample mean from 
an SRS of the same size.  See Patil et al. (1994b) and the references therein 
for a number of theoretical results comparing RSS to SRS for various stan-
dard estimation problems. 

CASE STUDY 

We end this chapter with a case study that illustrates using the DQO 
process to systematically develop a sampling plan to achieve a specific ob-
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jective.  For our case study, we are interested in determining the percentage 
of employees of a facility who have knowledge of specific critical facts re-
lated to emergency preparedness.  Although the case study is based on a real 
project in which one of the authors was involved, all references to the actual 
facility and people have been removed.  The case study is presented in terms 
of the seven steps of the DQO process.  Neptune et al. (1990) present a case 
study of using the DQO process to design a remedial investigation/feasibility 
study (RI/FS) at a Superfund site. 

1. State the Problem 

A large facility deals with hazardous material on an everyday basis.  The 
facility is required by a Federal law to impart Emergency Preparedness 
Training (EPT) to its employees every year.  The facility has about 5,000 
employees housed in approximately 20 buildings.  In the past, the facility has 
provided training by requiring all employees to attend a training session.  
Assuming a conservative estimate of about 45 minutes of employee time per 
training session (including travel time and not counting the time of the train-
ing staff), the total time spent on EPT adds up to approximately 5,000  0.75 
= 3,750 employee hours.  At an average billing rate of $80 per hour per em-
ployee, the cost of EPT coming out of overhead and research programs is 
about 3,750  $80 = $300,000 per year.  In the past, there has been no fol-
low-up to verify that the employees have retained the material presented at 
the training session. 

To save money and still comply with the law, the facility wants to change 
the training procedure as follows.  Instead of each employee attending the 
formal training session, each employee will receive a list of emergency pre-
paredness (EP) facts the general staff needs to know to be prepared for an 
emergency.  A description of these EP facts is given below, listed in their or-
der of importance (highest to lowest). 

1. Emergency telephone number. 
2. Location of the nearest fire alarm pull box. 
3. Location of the Building Staging Area. 
4. Building alarms and the corresponding required actions by staff 

members. 

The facility wants to verify that the EP facts are retained by the employ-
ees during the year so that they can recall them should an emergency arise.  
The facility will ensure that a high percentage of employees in each facility 
know all of the above facts by actually testing a certain number of occupants 
of each building.  Complete EPT will be required for all occupants of a 
building for which a prescribed proportion of the randomly selected employ-
ees fail to demonstrate the knowledge of these facts. 
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2. Identify the Decision 

It is important that staff members who spend off-hours in the facility on a 
regular basis know each EP fact listed above without exception.  However, it 
may be sufficient if only a high percentage of the remaining staff members 
know these facts.  For example, it may be sufficient if 70% or more of the 
occupants of each building are familiar with the EP facts.  We need to verify 
that a certain large proportion of the occupants of each building are familiar 
with the EP facts 1 through 4.  For each building, if we decide that the pro-
portion of occupants who know the EP facts is too small, then we will send 
everyone in that building to formal EP training. 

3. Identify Inputs to the Decision 

A complete listing of the staff and the respective locations within the fa-
cility is available.  Training manuals containing the EP facts can be provided 
to each staff member and they can be interviewed either in person or by tele-
phone to verify that they have knowledge of all four of the EP facts. 

4. Define the Study Boundaries 

Since the retention of EP information may not last very long, it is impor-
tant to realize that this investigation needs to be repeated every year.  A face-
to-face interview or some honor code may need to be imposed to ensure that 
each staff member is in fact providing the verification based on memory 
rather than using notes. 

5. Develop a Decision Rule 

The number of employees who know the EP facts will be verified for 
each building.  For each building, if 70% or more of the staff members who 
work in that building know the EP facts, we will declare the whole building 
is prepared for an emergency.  If less than 70% of the staff members in a 
building know the EP facts, then everyone in the building will be asked to go 
through the formal EP training session. 

6. Specify Acceptable Limits for the Decision Errors 

Interviewing every single staff member to determine the true percentage 
who know EP facts 1 to 4 would be almost as time consuming as simply 
sending all of the employees to the EPT itself.  Therefore, cost considera-
tions dictate taking a representative sample of staff in each building and in-
terviewing each person in the sample to estimate the percentage of staff in 
each building who know the EP facts.  For each building, a random sample 
of its occupants will be chosen (the recommended sample sizes are given in 
the tables below).  Each selected staff member will be interviewed to deter-
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mine whether he/she knows facts 1 to 4 of the EP checklist.  If the number of 
DUDs (Doesn’t Understand Directions) in the sample does not exceed t (t
is given in tables below), then the building can be declared to be emergency 
prepared.  Otherwise, the building is considered unprepared for an emer-
gency and all staff in the building will be required to go through EPT. 

We assume that the verification is error-free for all the staff members in-
cluded in the sample.  The decision, however, is based on information from 
only a subset of the occupants of the building.  Therefore, we must recognize 
that there are risks involved with our decision.  Table 2.8 summarizes the 
two kinds of decision errors that can be made and the consequences of each. 

True Percentage of DUDs 

Decision  30% > 30% 

Train Occupants Decision Error I; 
Waste of Money 

Correct Decision 

Building is 
Emergency  

Prepared 
Correct Decision Decision Error II; 

Compliance Issue 

Table 2.8  Decision errors and their consequences for the EPT case study 

Risks involved with the two kinds error shown in the table above are 
competing with each other.  That is, when the probability of making Deci-
sion Error I goes down, the probability of making Decision Error II goes up, 
and vice-versa.  The approach taken in developing a statistical decision rule 
is to hold the probability of making the most critical error to a predetermined 
low level and to do the best we can with lowering the probability of making 
the other error.  In this example, it is clear that controlling the probability of 
making the error leading to compliance issues (Decision Error II) should be a 
higher priority than controlling the probability of making the error leading to 
a waste of money (Decision Error I). 

In a series of meetings with the managers involved with emergency pre-
paredness training and legal issues of the facility, the following levels of de-
cision errors were determined to be acceptable:  the probability of deciding 
that a building is emergency prepared should not exceed 1% when in fact 
30% or more of its occupants are DUDs; also, when no more than 10% of 
the occupants of a building are DUDs, the probability that the building will 
be declared emergency prepared is at least 90%.  So the required Decision 
Error II rate is no more than 1%, and the required Decision Error I rate is no 
more than 10%.  Note that the decision error rates must be specified relative 
to the true percentage of DUDs in a building.  Figure 2.8 illustrates these 
performance goals for the sampling design (see USEPA, 1994a). 

© 2001 by CRC Press LLC



% DUDs

P
r(

D
ec

id
in

g 
%

D
U

D
s 

> 
A

ct
io

n 
Le

ve
l)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0  10 20 30 40

Decision Performance Goal Diagram
for EPT Study

Figure 2.8 Decision performance goal diagram for the emergency preparedness 

training study with the null hypothesis that the %DUDs is less than the 

action level of 30% 

7. Optimize the Design 

A representative sample from each building will be taken using simple 
random sampling without replacement.  The probability calculation related 
to this method of sampling is based on the hypergeometric distribution (ex-
plained in detail in Chapter 4).  Table 2.9 lists the number of employees re-
siding in 3 of the 20 buildings, along with the required sample size for each 
building and the maximum number of DUDs that can be present in the sam-
ple without classifying the building as being unprepared for an emergency.  
The probabilities of making the two types of decision errors are also given in 
the table. 

Building
# of

Occupants 
Sample 

Size 
Maximum # 

DUDs (t)
Pr(Error I) 

(in %) 
Pr(Error II) 

(in %) 
A 160 41 6 7.8        0.9 
D 247 46 7 6.7        1 
F 342 47 7 7.5        0.9 

Table 2.9  Sampling plans with probability of Decision Error I  10% and probability 

of Decision Error II  1%. 
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For example, Building A has 160 occupants.  A random sample of 41 oc-
cupants from the building must be interviewed and if no more than 6 of those 
interviewed do not know EP facts 1 to 4, then the building is declared emer-
gency prepared.  The probability of facing a compliance issue by failing to 
identify Building A as unprepared for building emergencies when in fact 
30% or more of its occupants are DUDs is 0.9% (probability of Error II).  On 
the other hand, the probability of wrongly identifying Building A as unpre-
pared for emergencies and wasting money on training when in fact no more 
than 10% of the occupants are DUDs is 7.8% (probability of Error I). 

Figure 2.9 displays the power curve for the sampling design for Building 
A drawn on top of the decision performance goal diagram shown in Figure 
2.8.  Here you can see that this particular sampling design satisfies the per-
formance goals. 
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Power Curve for Building A for EPT Study

Figure 2.9 Power curve for Building A with the null hypothesis that the %DUDs is 

less than the action level of 30%, using a sample size of n = 41 and 

maximum number of DUDs of t = 6 

To explore how the required sample size is affected by our specification 
of the Decision Error II rate, we create Table 2.10, which is similar to Table 
2.9 except that we allow the Decision Error II rate to be 5% instead of 1%.  
Comparing the required sample sizes in these two tables, you can see that 
about 10 to 15 more people per building have to be interviewed to reduce the 
Decision Error II rate from 5% to 1%. 

© 2001 by CRC Press LLC



Building
# of

Occupants 
Sample 

Size 
Maximum # 

DUDs ( t)
Pr(Error I) 

(in %) 
Pr(Error II) 

(in %) 
A 160 31 5         6 4 
D 247 32 5         8 4 
F 342 32 5         8 4 

Table 2.10 Sampling plans with probability of Decision Error I  10% and probability 

of Decision Error II  5%. 

In the discussion above and in the recommended sampling plans, we 
have set the highest acceptable percentage of DUDs in a building at 30%.  If 
this percentage is lowered, then a larger sample size is required to ensure the 
same decision error rates of 1% or 5% for Decision Error II and 10% for De-
cision Error I.  Table 2.11 gives the required sample sizes for the case when 
the passing percentage is “no more than 20% DUDS,” the Decision Error II 
rate is 1%, and the Decision Error I rate is 10%.  Table 2.12 shows the same 
thing, except that the Decision Error II rate is allowed to be 5% instead of 
1%.  The required sample size for each building in Table 2.11 is nearly two 
times the corresponding sample size given in Table 2.9. 

Building
# of

Occupants 
Sample 

Size 
Maximum # 

DUDs ( t)
Pr(Error I) 

(in %) 
Pr(Error II) 

(in %) 
A 160 87 11         7         1 
D 247 104 13       10         1 
F 342 119 15         8         0.9 

Table 2.11 Sampling plans with probability of Decision Error I  10% and probability 

of Decision Error II  1%, with maximum percentage of DUDs set to 

20%

Building
# of

Occupants 
Sample 

Size 
Maximum # 

DUDs ( t)
Pr(Error I) 

(in %) 
Pr(Error II) 

(in %) 
A 160 68 9         8 5 
D 247 83 11         9 4 
F 342 84 11       10 5 

Table 2.12 Sampling plans with probability of Decision Error I  10% and probability 

of Decision Error II  5%, with maximum percentage of DUDs set to 

20%

Figure 2.10 illustrates how the sampling rate (percentage of occupants se-
lected to be interviewed) increases as the maximum allowed percentage of 
DUDs decreases from 50% to 10% for Buildings D and F with 247 and 342 
occupants, respectively.  The figure shows a slow increase followed by a 
rapid increase.  We see that the curves start an uphill climb at around 30%.  
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This documents and, we believe, also justifies the choice of 30% as the high-
est acceptable level of DUDs. 
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Figure 2.10 Sampling rate vs. maximum allowed percentage of DUDs for Buildings 

D and F 

SUMMARY 

The first and most important step of any environmental study is to 
define the objectives of the study and design the sampling program. 
The scientific method recognizes the fact that our environment is 
constantly changing and that any of these changes may create an ob-
served effect which may or may not be related to some cause we 
have hypothesized. 
The basic scientific method consists of forming a hypothesis, per-
forming an experiment using an experimental (exposed) group and a 
control group, analyzing the results of the experiment, and revising 
the hypothesis. 
The Data Quality Objectives (DQO) process is a formalization of 
the scientific method that is a systematic way to create a legitimate 
and effective sampling and analysis plan. 
The term population is defined operationally by the question we ask:  
it is the entire collection of measurements about which we want to 
make a statement. 
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A sample is defined as some subset of a population.  The statistical 
definition of the word sample (a selection of individual population 
members) should not be confused with the more common meaning 
of a physical sample of soil (e.g., 10g of soil), water (e.g., 5ml of 
water), air (e.g., 20 cc of air), etc. 
Probability sampling or random sampling involves using a random 
mechanism to select samples from the population.  All statistical 
methods used to quantify uncertainty assume some form of random 
sampling has been used to obtain a sample. 
Decisions involving the environment can often be put into the hy-
pothesis testing framework.  You choose a null and alternative hy-
pothesis, then decide which one is probably true based on the infor-
mation you have.  You then make a decision based on your belief. 
Common mistakes in environmental studies include lack of samples 
from proper control populations, using judgment sampling instead of 
random sampling, failing to randomize over potentially influential 
factors, and collecting too few samples to have a high degree of con-
fidence in the results. 
The DQO process consists of seven steps:  state the problem, iden-
tify the decision, identify inputs to the decision, define the study 
boundaries, develop a decision rule, specify acceptable limits on de-
cision errors, and optimize the design. 
The DQO process should include developing a quality assurance 
project plan (QAPP) to ensure the integrity of the data collected for 
the study. 
Optimizing a sampling plan requires knowledge of the various 
sources of variability.  It is usually a good idea to perform a pilot 
study to estimate the magnitudes of the sources of variability, and to 
“fine-tune” the QA/QC procedures. 
This chapter describes four methods of random sampling:  simple 
random sampling (SRS), stratified random sampling, composite 
sampling, and ranked set sampling (RSS).  Other methods of random 
sampling include two-stage and multi-stage random sampling, dou-
ble random sampling, sequential random sampling, and adaptive 
random sampling. 
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EXERCISES

2.1. Concrete pipes that have been used to transport crude oil from the 
field to a refinery are passing in the proximity of a town.  There 
are complaints that the pipes have leaked.  A judgment sampling 
plan (sample the joints in the pipeline) is being recommended as a 
preliminary step in investigating the complaints.  How would you 
proceed?  Discuss the pros and cons of judgment sampling in this 
context. 

2.2. Soil excavated from a contaminated site has been placed in 200-
gallon barrels and stored at a temporary storage facility.  Barrels 
containing very high contamination are to be disposed of at a 
permanent disposal site (burial ground), and the rest of the barrels 
will be allowed to stay in the temporary facility.  The analysis 
costs are very high and therefore disposal by batches of five bar-
rels is being contemplated.  Explain how you would use composit-
ing in this project to save analysis costs. 

2.3. Suppose for the elephant example discussed in the section on 
ranked set sampling that the proportion of calves is 25% and the 
proportion of mothers is 75%.  Compute the probability that the 
ranked set sample consists of only calves.  Compute the probabil-
ity of obtaining such a sample under SRS and show that RSS 
gives rise to such extreme samples less often. 

2.4. In the elephant example we obtained a ranked set sample of size n
= 2.  Extend the example to an RSS of size n = 3 and show that 
RSS is superior to SRS in that it gives rise to extreme samples less 
often. 

2.5. For the case study discussed at the end of this chapter, the number 
of DUDs in a sample selected from a specific building is a hyper-
geometric random variable.  Use the S-PLUS menu or the S-PLUS

function phyper to verify the decision error rates shown in Table 
2.9.  (See Chapter 4 for an explanation of the hypergeometric  
distribution.) 
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3 LOOKING AT DATA 

WHAT IS GOING ON ?

Once you have a collection of observations from your environmental 
study, you should thoroughly examine the data in as many ways as possible 
and relevant.  When the first widely available commercial statistical software 
packages came out in the 1960s, the emphasis was on statistical summaries 
of data, such as means, standard deviations, and measures of skew and kur-
tosis.  It is still true that “a picture is worth a thousand words,” and no 
amount of summary or descriptive statistics can replace a good graph to ex-
plain your data.  John Tukey coined the acronym EDA, which stands for Ex-
ploratory Data Analysis.  Helsel and Hirsch (1992, Chapters 1, 2, and 16) 
and USEPA (1996) give a good overview of statistical and graphical meth-
ods for exploring environmental data.  Cleveland (1993, 1994) and Cham-
bers et al. (1983) are excellent general references for methods of graphing 
data.  This chapter discusses the use of summary statistics and graphs to de-
scribe and look at environmental data. 

SUMMARY STATISTICS 

Summary statistics (also called descriptive statistics) are numbers that 
you can use to summarize the information contained in a collection of obser-
vations.  Summary statistics are also called sample statistics because they are 
statistics computed from a sample; they do not describe the whole popula-
tion. 

One way to classify summary or descriptive statistics is by what they 
measure:  location (central tendency), spread (variability), skew (long-tail in 
one direction), kurtosis (peakedness), etc.  Another way to classify summary 
statistics is by how they behave when unusually extreme observations are 
present:  sensitive vs. robust.  Table 3.1 summarizes several kinds of descrip-
tive statistics based on these two classification schemes.  In this section we 
will give an example of computing summary statistics, and then discuss their 
formulas and what they measure. 

Summary Statistics for TcCB Concentrations 

The guidance document USEPA (1994b, pp. 6.22 6.25) contains meas-
ures of 1,2,3,4-Tetrachlorobenzene (TcCB) concentrations (in parts per bil-
lion, usually abbreviated ppb) from soil samples at a “Reference” site and a 
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“Cleanup” area.  The Cleanup area was previously contaminated and we are 
interested in determining whether the cleanup process has brought the level 

Statistic What It Measures / How It Is Computed 
Robust to
Extreme
Values?

Mean Center of distribution 
Sum of observations divided by sample size 
Where the histogram balances 

No

Trimmed Mean Center of distribution 
Trim off extreme observations and compute
  mean 
Where the trimmed histogram balances 

Somewhat, 
depends on 
amount of 

trim 
Median Center of the distribution 

Middle value or mean of middle values 
Half of observations are less and half are
  greater 

Very 

Geometric Mean Center of distribution 
Exponentiated mean of log-transformed
  observations 
Estimates true median for a lognormal
  distribution 

Yes

Variance Spread of distribution 
Average of squared distances from the mean 

No

Standard Deviation Spread of distribution 
Square root of variance 
In same units as original observations 

No

Range Spread of distribution 
Maximum minus minimum 

No

Interquartile Range Spread of distribution 
75th percentile minus 25th percentile 
Range of middle 50% of data 

Yes

Median Absolute  
Deviation

Spread of distribution 
Median of distances from the median 

Yes

Geometric Standard
Deviation

Spread of distribution 
Exponentiated standard deviation of
  log-transformed observations 

No

Coefficient of
Variation

Spread of distribution/Center of distribution 
Standard deviation divided by mean 
Sometimes multiplied by 100 and expressed 
  as a percentage 

No

Skew How the distribution leans (left, right, or  
  centered) 
Average of cubed distances from the mean 

No

Kurtosis Peakedness of the distribution 
Average of quartic distances from the mean,  
  then subtract 3 

No

Table 3.1  A description of commonly used summary statistics 
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of TcCB back down to what you would find in soil typical of that particular 
geographic region.  The data are shown in Table 3.2. 

Area Observed TcCB (ppb) 
Reference 0.22   0.23   0.26   0.27   0.28   0.28   0.29

0.33   0.34   0.35   0.38   0.39   0.39   0.42
0.42   0.43   0.45   0.46   0.48   0.50   0.50
0.51   0.52   0.54   0.56   0.56   0.57   0.57
0.60   0.62   0.63   0.67   0.69   0.72   0.74
0.76   0.79   0.81   0.82   0.84   0.89   1.11
1.13   1.14   1.14   1.20   1.33 

Cleanup   ND   0.09   0.09   0.12   0.12   0.14   0.16
0.17   0.17   0.17   0.18   0.19   0.20   0.20
0.21   0.21   0.22   0.22   0.22   0.23   0.24
0.25   0.25   0.25   0.25   0.26   0.28   0.28
0.29   0.31   0.33   0.33   0.33   0.34   0.37
0.38   0.39   0.40   0.43   0.43   0.47   0.48
0.48   0.49   0.51   0.51   0.54   0.60   0.61
0.62   0.75   0.82   0.85   0.92   0.94   1.05
1.10   1.10   1.19   1.22   1.33   1.39   1.39
1.52   1.53   1.73   2.35   2.46   2.59   2.61
3.06   3.29   5.56   6.61  18.40  51.97 168.64 

Table 3.2  TcCB concentrations from USEPA (1994b, pp. 6.22 6.25)

There are 47 observations from the Reference site and 77 in the Cleanup 
area.  Note that in Table 3.2, there is one observation in the Cleanup area 
coded as “ND,” which stands for nondetect.  This means that the concentra-
tion of TcCB for this soil sample (if any was present at all) was so small that 
the procedure used to quantify TcCB concentrations could not reliably meas-
ure the true concentration.  (We will talk more about why observations are 
sometimes coded as nondetects in Chapters 9 and 10.)  For the purposes of 
this example, we will assume the nondetect observation is less than the 
smallest observed value, which is 0.09 ppb, but we will set it to the assumed 
detection limit of 0.09.  (In Chapter 10, we talk extensively about statistical 
methods for handling data sets containing nondetects.) 

Figure 3.1 displays two histograms (see the next section, Graphs for a 
Single Variable), one for the Reference area TcCB concentrations, and one 
for the Cleanup area TcCB concentrations.  Note that these histograms do not 
share the same x-axis.  Also note that in the histogram for the Cleanup area 
data, the bars for the three largest observations (18.40, 51.97, and 168.64) do 
not show up because of the scale of the y-axis.  Figure 3.2 displays the same 
two histograms, but on the (natural) logarithmic scale so that the two histo-
grams can share the same x-axis.
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Figure 3.1 Histograms of TcCB concentrations in Reference and Cleanup areas 
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Here are the summary statistics for the original TcCB data. 

                              Cleanup Reference
                 Sample Size:  77        47
                   # Missing:   0         0
                        Mean:   3.915     0.5985 
                      Median:   0.43      0.54
            10% Trimmed Mean:   0.6846    0.5728 
              Geometric Mean:   0.5784    0.5382 
                        Skew:   7.566     0.8729 
                    Kurtosis:  61.6       2.993
                         Min:   0.09      0.22
                         Max: 168.6       1.33
                       Range: 168.5       1.11
                1st Quartile:   0.23      0.39
                3rd Quartile:   1.1       0.75
          Standard Deviation:  20.02      0.2836 
Geometric Standard Deviation:   3.898     1.597
         Interquartile Range:   0.87      0.36
   Median Absolute Deviation:   0.3558    0.2669 
    Coefficient of Variation:   5.112     0.4739 

Here are the summary statistics for the log-transformed TcCB data. 

                           Cleanup Reference
              Sample Size: 77         47
                # Missing:  0          0
                     Mean: -0.5474    -0.6196 
                   Median: -0.844     -0.6162 
         10% Trimmed Mean: -0.711     -0.6207 
                     Skew:  1.663      0.0307 
                 Kurtosis:  6.889      2.262
                      Min: -2.408     -1.514
                      Max:  5.128      0.2852 
                    Range:  7.536      1.799
             1st Quartile: -1.47      -0.9416 
             3rd Quartile:  0.09531   -0.2878 
       Standard Deviation:  1.36       0.468
      Interquartile Range:  1.565      0.6538 
Median Absolute Deviation:  1.063      0.4825 
 Coefficient of Variation: -2.485     -0.7553 

Here are a few things to briefly note about the data in Table 3.2 and the 
summary statistics above: 

 Most of the observations in the Cleanup area are similar to or smaller 
than the observations in the Reference area. 

 The Cleanup area data contain several observations that are one, two, 
and even three orders of magnitude larger than the rest of the obser-
vations (this is why we plotted the histograms in Figure 3.2 on a 
logarithmic scale). 
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 The mean or average TcCB concentration in the Cleanup area is 
much larger than in the Reference area (about 4 ppb vs. 0.6 ppb). 

 The median TcCB concentration is smaller for the Cleanup area than 
the Reference area (0.4 ppb vs. 0.5 ppb). 

 The standard deviation and coefficient of variation are both two or-
ders of magnitude larger for the Cleanup area. 

 The skew of the Cleanup area is an order of magnitude larger than 
the skew of the Reference area. 

All of these characteristics of the Cleanup area data indicate that probably 
the TcCB contamination has been cleaned up in most of the area, but there 
are a few places within the Cleanup area with residual contamination.  These 
particular places might be called “hot spots.” 

In ENVIRONMENTALSTATS for S-PLUS, the data in Table 3.2 are stored in 
the data frame epa.94b.tccb.df (see the help file Datasets:  USEPA 
(1994b)).  Here are the steps for using ENVIRONMENTALSTATS for S-PLUS to 
produce summary statistics for the TcCB data by area. 

Menu

To produce summary statistics for the original TcCB data using the 
ENVIRONMENTALSTATS pull-down menu, follow these steps. 

1. Open the Object Explorer, and click on the Find S-PLUS Objects
button (the binoculars icon). 

2. In the Pattern box, type epa.94b.tccb.df, then click OK.
3. Highlight the shortcut epa.94b.tccb.df in the Object column of the 

Object Explorer. 
4. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>EDA>Summary Statistics.  This will bring 
up the Full Summary Statistics dialog box. 

5. In the Data Set box, make sure epa.94b.tccb.df is selected. 
6. In the Variable(s) box, choose TcCB.
7. In the Grouping Variables box, select Area.
8. Click OK or Apply.

To produce summary statistics for the log-transformed TcCB data using the 
ENVIRONMENTALSTATS pull-down menu, it will simplify things if we first 
make a new data frame called new.epa.94b.tccb.df to contain the 
original data and the log-transformed TcCB observations.  To create the data 
frame new.epa.94b.tccb.df, follow these steps. 

1. Highlight the shortcut epa.94b.tccb.df in the Object column of the 
Object Explorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Data>Transform.  This will bring up the Transform dialog box. 
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3. In the Target Column box, type log.TcCB.
4. In the Variable box, choose TcCB.
5. In the Function box choose log.
6. Click on the Add button, then click OK.  At this point, you will get 

a warning message telling you that you have created a new copy of 
the data frame epa.94b.tccb.df that masks the original copy.  
Close the message window.  Also, the modified data frame pops up 
in a data window.  Close the data window. 

7. In the left-hand column of the Object Explorer, click on the Data
folder.  In the right-hand column of the Object Explorer, right-click 
on epa.94b.tccb.df and choose Properties.  In the Name box re-
name this data frame to new.epa.94b.tccb.df and click OK.

To produce summary statistics for the log-transformed TcCB data using the 
ENVIRONMENTALSTATS pull-down menu, follow these steps. 

1. In the Object Explorer, highlight the shortcut new.epa.94b.tccb.df
in the Object column (right-hand column). 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Summary Statistics.  This will bring 
up the Full Summary Statistics dialog box. 

3. In the Data Set box, make sure new.epa.94b.tccb.df is selected. 
4. In the Variable(s) box, choose log.TcCB.
5. In the Grouping Variables box, select Area.
6. Click on the Statistics tab and deselect (uncheck) Geometric Mean

and Geometric Standard Deviation.  Click OK or Apply.

Command

To produce summary statistics for the original TcCB data using the 
S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)

full.summary(split(TcCB, Area)) 

To produce summary statistics for the log-transformed TcCB data, type this 
command. 

full.summary(split(log(TcCB), Area)) 

detach()

Formulas for Summary Statistics 

The formulas for various kinds of summary statistics are shown below.  
In all of these formulas and throughout this book, we will denote the n ob-
servations by: 
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1 2, , , nx x  x

and denote the observations ordered from smallest to largest by: 

1 2, , , nx x  x

That is, 1x  denotes the smallest value and nx  denotes the largest value. 

Measures of Location (Central Tendency) 

Equations (3.1) to (3.4) below show the formulas for four measures of 
location or central tendency.  Often in environmental statistics, we are very 
interested in the central tendency of a group of measures, either because we 
want to compare the central tendency to some standard, or because we would 
like to compare the central tendency of data from one area with the central 
tendency of data from another area. 

Mean 

The mean (sometimes called average) is simply the sum of the observa-
tions divided by the sample size. 

1

1 n

i
i

x x
n

 (3.1)

It indicates approximately where the histogram balances (it is not necessarily 
exactly where the histogram balances because of the subjectivity of choosing 
the histogram classes).  For example, looking at Figure 3.1 and the summary 
statistics above, we see that the histogram for the Reference area TcCB data 
balances at about 0.6 ppb, whereas the histogram for the Cleanup area bal-
ances at about 4 ppb.  These differences in means between the two areas also 
demonstrate that the mean is sensitive to extreme values. 

Trimmed Mean 

The trimmed mean involves first trimming off a certain percentage of the 
smallest and largest observations, and then taking the mean of what is left 
(Helsel and Hirsch, 1992, p. 7; Hoaglin et al., 1983, pp. 306 311).  In the 
formula below,  is some number between 0 and 0.5 that denotes the trim-
ming fraction, and [y] denotes the largest integer less than or equal to y.
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1

1

2

n n

trimmed i
i n

x x
n n

(3.2)

Because we purposely trim off extreme observations, the trimmed mean 
is not as sensitive to extreme values as the mean.  For the TcCB data, you 
can see that the mean for the Cleanup area is about 4 ppb, but the 10% 
trimmed mean is only about 0.7 ppb (very close to the mean for the Refer-
ence area). 

Median 

The median is simply the 50% trimmed mean (Helsel and Hirsch, 1992, 
pp. 5 6; Hoaglin et al., 1983, p. 308).  That is, if there is an odd number of 
observations, the median is the middle value, and if there is an even number 
of observations, the median is the mean of the two middle values. 

1

2

1
2 2

if  is odd

if  is even

       

2

n

n n

x n

Median

x x

n

(3.3)

Half of the observations lie below the median and half of them lie above the 
median. 

The median is very robust to extreme values.  For example, although the 
mean TcCB concentration in the Cleanup area is much larger than in the 
Reference area (about 4 ppb vs. 0.6 ppb), the median TcCB concentration is 
smaller for the Cleanup area than the Reference area (0.4 ppb vs. 0.5 ppb).  
You could take almost half of your data and keep increasing it and the me-
dian would stay the same. 

Geometric Mean 

The geometric mean is often used to describe positive-valued data.  It is 
the exponentiated mean of the log-transformed observations (Helsel and 
Hirsch, 1992, p. 6).  That is, you take the logarithms of the original observa-
tions, compute the mean of these transformed observations, then exponenti-
ate this mean: 
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1

1
exp log

n

g i
i

x x
n

 (3.4)

The geometric mean estimates the true median for a lognormal distribution 
(see Chapter 4 for an explanation of the lognormal distribution).  For exam-
ple, note that for the Reference area TcCB data, both the median and geomet-
ric mean are 0.54 ppb.  The geometric mean is always less than or equal to 
the sample mean, with equality only if all the observations are the same 
value (Zar, 1999, p. 28). 

Just as the median is robust to extreme observations, so is the geometric 
mean.  The geometric mean for the Cleanup area data is about the same as 
for the Reference area (0.6 vs. 0.5 ppb). 

Measures of Spread (Variability) 

Equations (3.5) to (3.16) below show the formulas for seven measures of 
spread or variability.  The spread of a distribution lets us know how well we 
can characterize it.  If the spread is relatively small, then the sample mean or 
median is a fairly “representative” observation, whereas if the spread is 
large, then several observations could be much smaller or much larger than 
the sample mean or median.  When we are comparing chemical concentra-
tions from two or more areas, it is also useful to see whether the variability 
in the data is about the same for all of the areas.  If it is not, this may indicate 
that something unusual is going on.  For example, looking at the log-
transformed TcCB data in Figure 3.2 and the associated summary statistics, 
we can see that the central tendency (mean, median, etc.) of the Reference 
and Cleanup area is about the same, but the spread is much larger in the 
Cleanup area. 

Range 

Probably the simplest measure of spread is the range of the data; the dis-
tance between the largest and smallest value. 

1nRange x x (3.5)

The range quickly gives you an idea about the differences in the orders of 
magnitude of the observations.  For the Reference area TcCB data, the range 
is about 1 ppb, whereas it is about 169 ppb for the Cleanup area.  Obviously, 
the range is very sensitive to extreme observations. 
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Interquartile Range 

The interquartile range (often abbreviated IQR) is a modified form of 
the range.  The 25th, 50th, and 75th percentiles of the data are also called the 
quartiles of the data, so the interquartile range is the distance between the 
75th percentile of the data and the 25th percentile (Chambers et al., 1983,  
p. 21; Helsel and Hirsch, 1992, p. 8; Hoaglin et al., 1983, pp. 38, 59). 

0.75 0.25IQR x x (3.6)

In the above equation, xp denotes the p100th percentile of the data.  In Chap-
ter 5 we will talk about how to compute the percentiles for a set of observa-
tions.  For now all you need to know is that for the p100th percentile, about 
p100% of the observations are less than this number and about (1 p)100%
of the observations are greater than this number. 

Unlike the range, the interquartile range is not affected by a few extreme 
observations; it measures only the range of the middle 50% of the data.  For 
the TcCB data the IQR is about 0.4 ppb for the Reference area and 0.9 ppb 
for the Cleanup area. 

Variance

The variance is the mean or average of the squared distances between 
each observation and the mean. 

22

1

1 n

mm i
i

s x x
n

(3.7)

The sample variance estimates the population variance (see Chapter 5).  The 
formula above is called the method of moments estimator (see Chapter 5), 
but the more commonly used formula for the sample variance is the unbiased 
estimator. 

22

1

1

1

n

i
i

s x x
n

(3.8)

Equation (3.8) is the one used by default in ENVIRONMENTALSTATS for 
S-PLUS and S-PLUS.

For reasons related to estimation (see Chapter 5) and hypothesis testing 
(see Chapter 7), the variance and standard deviation (see below) are the two 
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most commonly used statistics to quantify the spread of a set of observa-
tions.  Unlike the interquartile range, the variance is very sensitive to ex-
treme values, even more so than the mean, because it involves squaring the 
distances between the observations and the mean.  For the TcCB data, the 
variance for the Reference area is about 0.08 ppb2 whereas for the Cleanup 
area it is about 400 ppb2.

Standard Deviation 

The standard deviation is simply the square root of the variance.  The 
formula based on the method of moments estimator of variance is: 

2

1

1 n

mm i
i

s x x
n

(3.9)

but the most commonly used formula for the sample standard deviation is 
based on the unbiased estimator of variance: 

2

1

1

1

n

i
i

s x x
n

(3.10)

Equation (3.10) is the one used for the summary statistics for the TcCB data 
and is used by default in ENVIRONMENTALSTATS for S-PLUS and S-PLUS.

The standard deviation is often preferred to the variance as a measure of 
spread because it maintains the original units of the data.  Just like the vari-
ance, the standard deviation is sensitive to extreme values.  For the TcCB 
data, the standard deviation for the Reference area is about 0.3 ppb whereas 
for the Cleanup area it is about 20 ppb. 

Geometric Standard Deviation 

The geometric standard deviation is sometimes used to describe posi-
tive-valued data (Leidel et al., 1977).  It is the exponentiated standard devia-
tion of the log-transformed observations. 

ys
gs e (3.11)

where
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(3.12)

logi iy x (3.13)

Unlike the sample geometric mean, the sample geometric standard deviation 
does not estimate any population parameter that is usually used to character-
ize the lognormal distribution. 

Median Absolute Deviation 

The median absolute deviation (often abbreviated MAD) is the median 
of the distances between each observation and the median (Helsel and 
Hirsch, 1992, pp. 8 9; Hoaglin et al., 1983, pp. 220, 346, 365 368).

1 2, , , nMAD Median x m x m x m (3.14)

where

1 2, , , nm Median x x x (3.15)

Unlike the variance and standard deviation, the median absolute deviation is 
unaffected by a few extreme observations.  For the TcCB data, the MAD is 
0.27 ppb for the Reference area and 0.36 ppb for the Cleanup area.  You 
could take almost half of your data and keep increasing it and the MAD 
would stay the same. 

Coefficient of Variation 

The coefficient of variation (sometimes denoted CV) is simply the ratio 
of the standard deviation to the mean. 

s
CV

x
(3.16)
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The coefficient of variation is a unitless measure of how spread out the dis-
tribution is relative to the size of the mean.  It is usually used to characterize 
positive, right-skewed distributions such as the lognormal distribution (see 
Chapter 4).  It is sometimes multiplied by 100 and expressed as a percentage 
(Zar, 1999, p. 40).  Like the mean and standard deviation, the coefficient of 
variation is sensitive to extreme values.  For the TcCB data, the CV is 0.5 for 
the Reference area and ten times as large for the Cleanup area. 

Measures of Deviation from a Symmetric or Bell-Shaped
Distribution

Equations (3.17) to (3.19) below show the formulas for two statistics that 
are used to measure deviation from a symmetric or bell-shaped histogram:  
the skew and kurtosis.  A bell-shaped (and thus symmetric) histogram is a 
good indication that the data may be modeled with a normal (Gaussian) dis-
tribution (see Chapter 4).  Many statistical hypothesis tests assume the data 
follow a normal distribution (see Chapter 7).  In the days before it was easy 
to create plots and perform goodness-of-fit tests with computer software, the 
skew and kurtosis were often reported.  Nowadays, they are not so widely 
reported, although they are still used to fit distributions in the system of 
Pearson curves (Johnson et al., 1994, pp. 15 25).

Skew

The skew or coefficient of skewness is based on the mean or average of 
the cubed distances between each observation and the mean.  The average of 
the cubed distances is divided by the cube of the standard deviation to pro-
duce a unitless measure. 
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(3.17)

The formula above uses method of moments estimators.  This is the formula 
that is used by default to compute the skew in ENVIRONMENTALSTATS for 
S-PLUS.  Another formula is sometimes used based on unbiased estimators. 
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The skew measures how the observations are distributed about the mean.  
If the histogram is fairly symmetric, then the skew is 0 or close to 0.  If there 
are a few or several large values to the right of the mean (greater than the 
mean) but not to the left of the mean, the skew is positive and the histogram 
is said to be right skewed or positively skewed.  If there are a few or several 
small values to the left of the mean (less than the mean) but not to the right 
of the mean, the skew is negative and the histogram is said to be left skewed
or negatively skewed.

Because environmental data usually involve measures of chemical con-
centrations, and concentrations cannot fall below 0, environmental data often 
tend to be positively skewed (see Figure 3.1).  For the log-transformed TcCB 
data shown in Figure 3.2 , the Reference area has a skew of about 0.03 since 
this histogram is close to being symmetric, but the Cleanup area has a skew 
of about 1.7. 

Kurtosis 

The kurtosis or coefficient of kurtosis is based on the average of the dis-
tances between each observation and the mean raised to the 4th power.  The 
average of these distances raised to the 4th power is divided by the square of 
the standard deviation to produce a unitless measure.  The formula below 
uses method of moments estimators.  This is the formula that is used by de-
fault to compute the kurtosis in ENVIRONMENTALSTATS for S-PLUS.
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(3.19)

The kurtosis measures how peaked the histogram is relative to an ideal-
ized bell-shaped histogram.  This idealized bell-shaped histogram is based 
on the normal (Gaussian) distribution (see Chapter 4), which has a kurtosis 
of 3.  If the histogram has too many observations in the tails compared to the 
idealized histogram then the kurtosis is larger than 3.  If the histogram has 
short tails and most of the observations are tightly clustered around the 
mean, then the kurtosis is less than 3.  For the log-transformed TcCB data 
shown in Figure 3.2, the kurtosis for the Reference area is about 2, whereas 
it is about 7 for the Cleanup area. 

GRAPHS FOR A SINGLE VARIABLE 

One of the main strengths of S-PLUS and its add-on modules 
ENVIRONMENTALSTATS for S-PLUS and S+SPATIALSTATS is the great variety 
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of graphs you can easily produce.  As Helsel and Hirsch (1992, p. 17) point 
out, the two main purposes of graphs are to help you visually explore the 
data, and also to help you illustrate important points about the data when 
presenting your results to others.  This main section discusses graphs you 
can use when you are concentrating on a single variable (Table 3.3). The 
next main section discusses graphs you can create when you are interested in 
looking at the relationship between two or more variables. 

Plot Type Data Characteristics Plot Characteristics 
Dot Plot, 
Bar Chart 

Numeric data where each 
value has a label or is as-
sociated with a category 

Displays each value or per-
centage and its label 

Pie Chart Numeric data where each 
value has a label or is as-
sociated with a category 

Displays percentages 

Strip Plot, Histogram, 
Density Plot, Boxplot 

Numeric data Displays the distribution of 
the values 

Quantile Plot or
  Empirical CDF Plot 

Numeric data Displays the quantiles of the 
values

Probability Plot or 
  Q-Q Plot, 
Tukey Mean-Difference 
  Q-Q Plot 

Numeric data Compares the distribution 
of the data with some speci-
fied probability distribution, 
or compares the distribu-
tions of two data sets 

Table 3.3  A description of plots for a single variable 

Dot Plots 

A dot plot (also called a dot chart) lets you display quantitative data for 
which each measurement has a distinct label (Cleveland, 1994, p. 150).  You 
can also use a dot plot to display percentages of observations in each cate-
gory based on a categorical variable. 

Table 3.4 shows the median of daily maxima ozone concentration (ppb) 
for June to August, 1974, for some cities in the northeastern United States.  
Figure 3.3 shows a dot plot of these data.  In Figure 3.3, you can immedi-
ately see that Boston and Springfield have lower ozone levels (about 35 ppb) 
than the cluster of cities with ozone levels above 50 ppb.  You can also see 
that Waltham, with 42 ppb, is between Boston and Springfield and the other 
cities.

Cleveland (1994, pp. 152, 244 247) states that our perception of the data 
is enhanced when the data are ordered from largest to smallest.  (An excep-
tion is when the labels have a natural ordering, in which case the dot plot 
should be arranged with that ordering.)  Figure 3.4 shows the dot plot with 
the values ordered by ozone concentration. 
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City 
Ozone  

Concentration 
(ppb)

Boston 36
Cambridge 54
Fitchburg 65
Glens Falls 64
Lowell 63
Medford 52
Pittsfield 65
Quincy 62
Rensselaer 60
Schenectady 56
Springfield 34
Waltham 42
Worcester 66

Table 3.4  Median of daily maxima ozone concentrations (ppb) for June to August, 

1974 for some cities in the northeastern United States.  (From Cleve-

land et al. 1975.) 
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Cambridge
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Pittsfield

Quincy

Rensselaer

Schenectady

Springfield

Waltham

Worcester

35 40 45 50 55 60 65

Median Ozone (ppb)

Dot Plot for NE Ozone Data

Figure 3.3 Dot plot of ozone data from northeastern U.S. cities 
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Dot Plot for NE Ozone Data
Ordered by Ozone Concentration

Figure 3.4 Dot plot of ozone data from northeastern U.S. cities, ordered by ozone 

concentration

In S-PLUS, the data in Table 3.4 are stored in the vectors ozone.city
and ozone.median (see the S-PLUS help file for ozone).  Also, the vector 
ozone.quartile contains the 75th percentile of the daily maxima ozone 
concentrations, and the list ozone.xy contains (negative) longitudes and 
(positive) latitudes of each city.  These data contain information on 41 cities 
in the northeastern U.S.  For simplicity, we have used data only for the 13 
cities with latitudes greater than or equal to 42 degrees north. 

Menu

To produce the unordered dot plot shown in Figure 3.3 using the S-PLUS

pull-down menu, it will simplify things if we first make a new data frame 
called ozone.NE to contain the information.  To create ozone.NE, follow 
these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Data>Select Data.  This will bring up the Select Data dialog box.  
Under Source, click on the New Data button.  Under New Data, in 
the Name box, type ozone.NE.  Click OK.

2. You will now see a data window with the title ozone.NE.  Right-
click on the first column and choose Insert Column.  This will bring 
up the Insert Columns dialog box. 
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3. In the Name(s) box, type Median.  In the Fill Expression box, type 
ozone.median.  Click OK.

4. Repeat Steps 2 and 3, except right-click on the second column, and 
type Quartile in the Name(s) box, and ozone.quartile in the Fill 
Expression box. 

5. Repeat Steps 2 and 3, except right-click on the third column, and 
type City in the Name(s) box, and ozone.city in the Fill Expression 
box.  Also, choose factor under the Column Type drop-down list. 

6. Repeat Steps 2 and 3, except right-click on the fourth column, and 
type Longitude in the Name(s) box, and ozone.xy$x in the Fill Ex-
pression box. 

7. Repeat Steps 2 and 3, except right-click on the fifth column, and 
type Latitude in the Name(s) box, and ozone.xy$y in the Fill Ex-
pression box. 

8. Left-click on the Exit button (X in upper right-hand corner). 

To produce the unordered dot plot shown in Figure 3.3 using the S-PLUS

pull-down menus or toolbars, follow these steps. 

1. Highlight the Data folder in the left-hand column of the Object Ex-
plorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Dot Plot and click OK.  (Alternatively, 
left-click on the 2D Plots button, then left-click on the Dot button.) 

3. The Line/Scatter Plot dialog box should appear.  In the Data Set box, 
select ozone.NE.

4. In the x Columns box, choose Median.
5. In the y Columns box, choose City.
6. In the Subset Rows with box, type Latitude >= 42.
7. Click OK.

See the S-PLUS documentation for information on how to modify the x- and 
y-axis labels and add a main title. 

To produce the ordered dot plot shown in Figure 3.4 using the S-PLUS

pull-down menus, it will simplify things if we first add a new variable to the 
data frame ozone.NE.

1. On the S-PLUS menu bar, make the following menu choices:   
Data>Transform.  This will bring up the Transform dialog box. 

2. In the Data Set box, choose ozone.NE.
3. In the Target Column box, type City.Ordered.
4. In the Expression box, type reorder.factor(City, Median).
5. Click OK.  Close the ozone.NE data window. 
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To produce the ordered dot plot shown in Figure 3.4 using the S-PLUS pull-
down menus or toolbars, follow these steps. 

1. Highlight the Data folder in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Dot Plot and click OK.  (Alternatively, 
left-click on the 2D Plots button, then left-click on the Dot button.) 

3. The Line/Scatter Plot dialog box should appear.  In the Data Set box, 
select ozone.NE.

4. In the x Columns box, choose Median.
5. In the y Columns box, choose City.Ordered.
6. In the Subset Rows with box, type Latitude >= 42.
7. Click OK.

See the S-PLUS documentation for information on how to modify the x- and 
y-axis labels and add a main title. 

Command

To produce the data frame ozone.NE using the S-PLUS Command or 
Script Window, type this command. 

ozone.NE <- data.frame(Median = ozone.median, 

Quartile = ozone.quartile, City = ozone.city, 

Longitude = ozone.xy$x, Latitude = ozone.xy$y) 

To produce the unordered dot plot shown in Figure 3.3, type this command. 

dotplot(City ~ Median, data = ozone.NE,

subset = Latitude >= 42,

xlab = "Median Ozone (ppb)",

main = list(cex = 1.25,

  "Dot Plot for NE Ozone Data")) 

To add the new variable City.Ordered to the data frame ozone.NE,
type this command. 

ozone.NE <- cbind(ozone.NE, City.Ordered =

reorder.factor(ozone.NE$City, ozone.NE$Median)) 

To produce the ordered dot plot shown in Figure 3.4 using the Command or 
Script Window, type this command. 

dotplot(City.Ordered ~ Median, data = ozone.NE, 

subset = Latitude >= 42, 

xlab = "Median Ozone (ppb)", 
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main = list(cex = 1.25, paste( 

  "Dot Plot for NE Ozone Data”, 

  "Ordered by Ozone Concentration", sep = "\n"))) 

Bar Charts 

Just like a dot plot, a bar chart (also called a bar plot) also lets you dis-
play quantitative data for which each measurement has a distinct label.  You 
can also use a bar chart to display percentages of observations in each cate-
gory based on a categorical variable.  The problem with bar charts is that the 
length of the bar is an imposing visual aspect and for bar plots with a base-
line other than 0 the lengths of the bars do not represent meaningful informa-
tion (Cleveland, 1994, p. 152). 

Figure 3.5 is the bar chart version of the dot plot shown in Figure 3.4.  
The baseline for this figure is about 32.5 ppb, so the length of each bar is en-
coding the median ozone for that city minus 32.5, which does not really 
mean anything.  Figure 3.6 shows the bar chart with zero as the baseline. 

Huff and Geis (1954, pp. 61 62) argue that you should always include 
zero in the scale of your graph and not doing so is dishonest.  Cleveland 
(1994, pp. 92 93) argues, however, that for graphical communications in 
science and technology you should expect the viewer to read the tick mark 
labels, and the need to include zero should not outweigh the need to display 
important variation in the data.  The large difference between Springfield and 
Boston vs. the other cities is lost in Figure 3.6. 
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Bar Chart for NE Ozone Data
Ordered by Ozone Concentration

Figure 3.5 Bar chart of ozone data, ordered by ozone concentration 
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Figure 3.6 Bar chart of ozone data, ordered by ozone concentration, with a zero 

baseline

Menu

To produce the ordered bar chart shown in Figure 3.5 using the S-PLUS

pull-down menus or toolbars, follow these steps. 

1. Highlight the Data folder in the left-hand column of the Object Ex-
plorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Bar, Horiz. and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Horiz 
Bar button.) 

3. The Line/Scatter Plot dialog box should appear.  In the Data Set box, 
select ozone.NE.

4. In the x Columns box, choose Median.
5. In the y Columns box, choose City.Ordered.
6. In the Subset Rows with box, type Latitude >= 42.
7. Click on the Position tab. 
8. In the Bar Base box, make sure Data min is selected. 
9. Click OK.
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To produce the bar chart in Figure 3.6 with the scale starting at zero, repeat 
the above steps, but in Step 8 make sure Zero is selected in the Bar Base 
box.

Command

To produce the ordered bar chart shown in Figure 3.5 using the S-PLUS

Command or Script Window, type this command. 

barchart(City.Ordered ~ Median, data = ozone.NE, 

subset = Latitude >= 42, 

xlab = "Median Ozone (ppb)", 

main = list(cex = 1.25, paste( 

  "Bar Chart for NE Ozone Data”, 

  "Ordered by Ozone Concentration", sep = "\n"))) 

To produce the bar chart in Figure 3.6 with the scale starting at zero, type 
this command. 

barchart(City.Ordered ~ Median, data = ozone.NE, 

subset = Latitude >= 42, 

xlim = c(0, max(ozone.NE$Median[ 

  ozone.NE$Latitude >= 42]) + 5), 

scales = list(x = list(axs = "i")), 

xlab = "Median Ozone (ppb)", 

main = list(cex = 1.25, paste( 

  "Bar Chart for NE Ozone Data”, 

  "Ordered by Ozone Concentration", sep = "\n"))) 

Pie Charts 

A pie chart is used to display and compare percentages.  Experiments in 
graphical perception, however, have shown that they convey information far 
less reliably than dot plots or bar charts (Cleveland, 1994, pp. 262 264).

Silver Concentration ( g/L)
0.8  0.1  2  0.2  <5  <1  <2  <25  2.7  <1  1.2  3.2
<20  <10  <5  <0.1  <10  <1  2  <5  560  <0.2  <20  <1
1  10  <10  <5  <0.5  1.4  <0.2  <6  1  <10  0.1  5  2
1  <1  4.4  90  <20  <0.3  <2.5  <10  0.7  <1  1.5  <1
<0.2  2  <0.2  <1  <1  <1  <0.1 

Table 3.5  Silver concentrations from an inter-laboratory comparison.  (From Hel-

sel and Cohn, 1988.) 

Table 3.5 shows silver concentrations that were used in an inter-
laboratory comparison (Helsel and Cohn, 1988).  Out of 56 observations, 34  
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Figure 3.7 Pie chart showing percentage of observations at each of the censoring 

levels for the silver data 
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Figure 3.8 Dot plot for same data as in Figure 3.7 
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were reported as <DL, where DL denotes the detection limit.  (Observations 
reported as less than a detection limit are also called censored observations.)
The observations in Table 3.5 contain 12 distinct detection limits.  (We will 
talk more about the meaning of detection limits in Chapters 9 and 10.  For 
now all you need to know is that if an observation is reported as <DL, this is 
usually interpreted to mean that for the specific laboratory, physical sample, 
and instrument set up, the concentration of the chemical can only be quanti-
fied as being less than this number, that is, anywhere between 0 and DL.)

Table 3.6 shows the number and percentage of observations at each cen-
soring level for the data in Table 3.5.  Figure 3.7 shows a pie chart of these 
percentages, and Figure 3.8 shows the corresponding dot plot. 

Censoring
Level

Number  
Observations

Percent  
Observations

   0.1  2  4 
   0.2  4  7 
   0.3  1  2 
   0.5  1  2 

 1 10 18 
 2  1  2 

   2.5  1  2 
 5  4  7 
 6  1  2 
10  5  9 
20  3  5 
25  1  2 

Not Censored 22 39 

Table 3.6  Number and percentage of observations recorded at each censoring 

level for the data in Table 3.5

In ENVIRONMENTALSTATS for S-PLUS, the data in Table 3.5 are stored in 
the data frame helsel.cohn.88.silver.df (see the help file for 
helsel.cohn.88.silver.df).  This data frame contains the variables 
Ag.orig (a character vector with the observations as they were originally 
coded and as shown in Table 3.5), Ag (a numeric vector with the silver con-
centrations, where censored values are coded to the censoring level), and 
Censored (a logical vector indicating whether the observation was cen-
sored).

Menu

To produce the pie chart and dot plot shown in Figure 3.7 and Figure 3.8 
using the S-PLUS pull-down menu, it will simplify things if we first add a 
variable to the data frame helsel.cohn.88.silver.df that indicates 
either the censoring level or that the observation was not censored, then 
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make a new data frame called silver.table to contain the information 
shown in Table 3.6.  To add the censoring level variable to the data frame 
helsel.cohn.88.silver.df, follow these steps. 

1. Open the Object Explorer, and click on the Find S-PLUS Objects
button (the binoculars icon). 

2. In the Pattern box, type helsel.cohn.88.silver.df, then click OK.
3. Highlight the shortcut helsel.cohn.88.silver.df in the Object column 

of the Object Explorer. 
4. On the S-PLUS menu bar, make the following menu choices: 

Data>Transform.  This will bring up the Transform dialog box. 
5. In the Target Column box, type Censoring.Level.  In the Variable 

box, choose Censored.  In the Function box, choose ifelse.  Click on 
the Add button.  Modify the Expression box so that the expression is 
as follows: ifelse(Censored, Ag, “Not Censored”).  Click OK.  At 
this point, you will get a warning message telling you that you have 
created a new copy of the data frame that masks the original copy.  
Close the message window.  Also, the modified data frame pops up 
in a data window.  Close the data window. 

6. In the left column of the Object Explorer, click on the Data folder. 
7. In the Object column of the Object Explorer, right-click on the 

shortcut helsel.cohn.88.silver.df and choose Properties.
8. In the Name box, rename this data frame to 

new.helsel.cohn.88.silver.df, then click OK.

To create silver.table, follow these steps. 

1. Make sure new.helsel.cohn.88.silver.df is highlighted in the right-
hand column of the Object Explorer. 

2. On the S-PLUS menu bar, make the following menu choices 
Data>Tablulate.  This brings up the Tabulate dialog box. 

3. In the Data Set box, new.helsel.cohn.88.silver.df should be selected.  
In the Variables box, left-click on Censoring.Level.  In the Save In 
box, type silver.table.  Click OK.

4. At this point, you can close the Report window and the data window 
with the title silver.table (left-click on the X button in the upper left-
hand corner). 

5. In the Object Explorer, click on the  Data folder in the left-hand col-
umn, and in the right-hand column click on the shortcut silver.table.

6. On the S-PLUS menu bar, make the following menu choices: 
Data>Transform.  This brings up the Transform dialog box. 

7. In the Data Set box, select silver.table.  In the Target Column box, 
type Percent.  In the Expression box, type 100*Count/sum(Count).
Click Apply.
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8. In the Target Column box, type Numeric.Censoring.Level.  In the 
Expression box, type as.numeric(as.character(Censoring.Level)).
Click Apply.  (At this point, you will get a warning message telling 
you “1 missing value generated coercing from character to  
numeric”.) 

9. In the Target Column box, type Ordered.Censoring.Level.  In the 
Expression box, type reorder.factor(Censoring.Level,
Numeric.Censoring.Level).  Click OK.

10. On the S-PLUS menu bar, make the following menu choices: 
Data>Sort.  This brings up the Sort Columns dialog box. 

11. Under the From group, in the Data Set box select silver.table, in the 
Columns box select <ALL>, and in the Sort By Columns box, select 
Numeric.Censoring.Level.  Under the To group, in the Data Set 
box, select silver.table, and in the Columns box, select <ALL>.
Click OK.

To produce the pie chart shown in Figure 3.7 using the S-PLUS pull-down 
menus or toolbars, follow these steps. 

1. Highlight the shortcut silver.table in the Object column of the Ob-
ject Explorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, click on Pie.  Under the Plot Type 
column, make sure Pie Chart is selected, and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Pie
button.) 

3. The Pie Chart dialog box should appear.  The Data Set box should 
display silver.table.

4. In the x Columns box, choose Count.
5. Click on the Labels tab. 
6. Under the Label 1 group, in the Type box, select Column.  In the 

Data Set box, silver.table should be selected.  In the Column box, 
select Censoring.Level.

7. Click OK.

To produce the dot plot shown in Figure 3.8 using the S-PLUS pull-down 
menus or toolbars, follow these steps. 

1. Highlight the shortcut silver.table in the Object column of the Ob-
ject Explorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
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the Plot Type column, select Dot Plot and click OK.  (Alternatively, 
left-click on the 2D Plots button, then left-click on the Dot button.) 

3. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display silver.table.

4. In the x Columns box, choose Percent.
5. In the y Columns box, choose Ordered.Censoring.Level.
6. Click OK.

Command

To produce a table of counts for each censoring level using the S-PLUS

Command or Script Window, type these commands. 

Censoring.Level <- 

as.character(helsel.cohn.88.silver.df$Ag)

Censoring.Level[!helsel.cohn.88.silver.df$Censored] <- 

"Not Censored" 

silver.table <- table(Censoring.Level) 

To transform these results into a data frame and create the same variables we 
created under the Menu section, type these commands. 

Censoring.Level <- factor(names(silver.table)) 

Count <- as.vector(silver.table) 

Percent <- 100 * Count / sum(Count) 

Numeric.Censoring.Level <- 

as.numeric(as.character(Censoring.Level))

Ordered.Censoring.Level <- reorder.factor( 

Censoring.Level, Numeric.Censoring.Level) 

silver.table <- data.frame(Censoring.Level, Count, 

Percent, Numeric.Censoring.Level,

Ordered.Censoring.Level)

silver.table <-

silver.table[order(Numeric.Censoring.Level),]

To produce the pie chart shown in Figure 3.7 using the Command or Script 
Window, type these commands. 

piechart(~ Count, names = as.character( 

silver.table$Censoring.Level), data = silver.table, 

main = list(paste("Pie Chart for Silver Data", 

"Showing Censoring Levels", sep = "\n"), cex=1.25)) 

To produce the dot plot shown in Figure 3.8, type these commands. 
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dotplot(Ordered.Censoring.Level ~ Percent,

data = silver.table,

xlim = c(0, max(silver.table$Percent) + 5),

scales = list(x = list(axs = "i")), 

xlab = "Percent of Observations", 

ylab = "Censoring Level", 

main = list(paste("Dot Plot for Silver Data", 

"Showing Censoring Levels", sep = "\n"), cex=1.25)) 

Strip Plots 

A strip plot, also called a one-dimensional scatterplot, is simply a plot of 
each observation showing the value of the observation (Chambers et al., 
1983, p. 19; Cleveland, 1994, p. 133).  Strip plots are used to look at the dis-
tribution of one data set, or to compare the distributions of two or more data 
sets.

Figure 3.9 shows strip plots of the log-transformed TcCB data for the 
Reference and Cleanup areas (see Table 3.2).  The strip plots show that most 
of the observations for the Cleanup area are comparable to (or even smaller 
than) the observations for the Reference area, but, as we found out from 
looking at the summary statistics for these data, there are a few very large 
“outliers” in the Cleanup area.  This may indicate a few “hot spots” in the 
cleanup area that were missed during the remediation process. 

Cleanup

Reference

-2 0 2 4

log [ TcCB (ppb) ]

Strip Plot for Log-Transformed TcCB Data

Figure 3.9 Strip plots of log-transformed TcCB concentrations in the Reference 

and Cleanup areas 
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Menu

To produce the strip plots shown in Figure 3.9 using the S-PLUS pull-
down menus or toolbars, follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
new.epa.94b.tccb.df for the version of this data frame that you cre-
ated earlier. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Scatter Plot and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Scat-
ter button.) 

3. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display new.epa.94b.tccb.df.

4. In the x Columns box, choose log.TcCB.
5. In the y Columns box, choose Area.
6. Click on the Symbol tab. 
7. In the Jitter Symbols box, select Y only.  Click OK.

Command

To produce the strip plot shown in Figure 3.9 using the S-PLUS Com-
mand or Script Window, type this command. 

stripplot(Area ~ log(TcCB), data = epa.94b.tccb.df, 

jitter = T, xlab = "log [ TcCB (ppb) ]", 

main = list(cex = 1.25,

"Strip Plot for Log-Transformed TcCB Data")) 

Histograms 

Unlike a strip plot, a histogram does not usually display every observa-
tion in a data set, but rather summarizes the distribution of the data by plac-
ing observations into intervals (also called classes or bins) and counting the 
number of observations in each interval (Chambers et al., 1983, pp. 24 26; 
Cleveland, 1993, pp. 6 8; Cleveland, 1994, pp. 134 136; Helsel and Hirsch, 
1992, p. 19).  The y-axis for a histogram usually displays one of four possi-
ble scales: 

Number (Counts).  The height of the bar indicates how many ob-
servations fall into that interval. 
Percent of Total.  The height of the bar indicates the percentage of 
observations (out of the total number of observations) that fall into 
that interval. 
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 Fraction of Total (called Frequency in S-PLUS).  The height of the 
bar indicates the same thing as for Percent of Total except it is ex-
pressed as a fraction between 0 and 1 instead of a percent. 

 Density.  The height of the bar times the width of the interval indi-
cates the fraction of observations (out of the total number of 
observations) that fall into that interval. 

It is usually a good idea to use a scale other than raw counts if you are com-
paring two data sets with different sample sizes (Cleveland, 1994, p. 134). 

Figure 3.10 displays the Percent of Total histograms for the log-
transformed TcCB data for the Reference and Cleanup areas (see Table 3.2 
and Figure 3.2).  As we saw with the strip plots in Figure 3.9, the histograms 
indicate that most of the observations for the Cleanup area are comparable to 
(or even smaller than) the observations for the Reference area, but there are a 
few very large “outliers” in the Cleanup area. 
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Figure 3.10 Percent of Total histograms of the log-transformed TcCB data for the 

Reference and Cleanup areas 

A histogram is a useful way of displaying the distribution of a data set, 
but as Helsel and Hirsch (1992, p. 19) point out, the appearance of a histo-
gram depends upon how you decide to divide the data into intervals.  As the 
interval widths get smaller and smaller, the histogram get more ragged and 
approaches (starts to look like) a strip plot, and as the interval widths get lar-
ger and larger, the histogram gets less informative and approaches a plot with 
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one interval containing all of the data.  Most of the time, you should choose 
the interval width so that you do not lose too much accuracy, but there is no 
fixed rule for what to choose (Cleveland, 1994, p. 135). 

Menu

To produce the histograms shown in Figure 3.10 using the S-PLUS pull-
down menus or toolbars, follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, left-double-click the 
shortcut new.epa.94b.tccb.df for the version of this data frame that 
you created earlier.  This will bring up a data window. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Histogram and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Histo-
gram button.) 

3. The Histogram/Density dialog box should appear.  Under the Data 
Columns group, in the Data Set box, select new.epa.94b.tccb.df.

4. Under the Data Columns group, in the x Columns box, choose 
log.TcCB.

5. Click on the Options tab. 
6. Under Histogram Specs, in the Output Type box, select Percent.
7. Click on the Histogram Bars tab. 
8. Make sure the Draw Bars and Draw Histograms boxes are 

checked.  Click OK.  A histogram of the data for both areas is dis-
played in a graphsheet. 

9. Click on the data window to bring it forward.  Left click on the top 
of the Area column to highlight that column, then left-click in a cell 
of the column, then drag the column to the top of the graphsheet and 
drop it. 

Command

To produce the histograms shown in Figure 3.10 using the S-PLUS Com-
mand or Script Window, type this command. 

histogram(~ log(TcCB) | Area, data = epa.94b.tccb.df, 

nint = 25, layout = c(1,2),

xlab = "log [ TcCB (ppb) ]",

main = list(cex = 1.25,

  "Histograms for Log-Transformed TcCB Data")) 
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Density Plots 

If we could take larger and larger sample sizes from the population and 
make the intervals (bins) of our histogram narrower and narrower, we would 
eventually end up with a picture that resembles the true probability distribu-
tion or density of the underlying population (we will talk more about 
probability distributions and probability densities in Chapter 4).  A density 
plot is an estimate of the true underlying probability distribution, based on a 
sample of observations.  With a density plot, the area underneath the curve 
between two points on the x-axis is an estimate of the true probability that a 
value will fall into that interval. 

The basic algorithm to construct a density plot is as follows:  for each x-
value, a window (local neighborhood) is constructed about that value, the 
number of observations within the window are counted, and these counts are 
then scaled to produce an estimate of the probability density at that x-value.
Depending on the algorithm, observations farther away from the x-value may 
be down-weighted compared to observations close to the x-value.  See 
Chambers et al. (1983, pp. 32 36) and Silverman (1986) for details. 

Figure 3.11 shows a density plot overlaying a histogram based on the 
log-transformed Reference area TcCB data.  Compare this plot to the strip 
plot and histogram shown in Figure 3.9 and Figure 3.10, respectively.  In the 
strip plot (Figure 3.9), we can see a gap in the data around 0 on the x-axis,
but this gap is hidden in the histogram (Figure 3.10).  In the density plot 
(Figure 3.11), the gap shows up again in the density line. 
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Figure 3.11 Density plot and histogram of log-transformed Reference area TcCB 

data
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Menu

To produce the density plot and histogram shown in Figure 3.11 using the 
S-PLUS pull-down menus or toolbars, follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
new.epa.94b.tccb.df for the version of this data frame that you cre-
ated earlier. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Histogram with Density Line and 
click OK.  (Alternatively, left-click on the 2D Plots button, then left-
click on the Histogram Density button.) 

3. The Histogram/Density dialog box should appear.  Under the Data 
Columns group, the Data Set box should display 
new.epa.94b.tccb.df.

4. In the x Columns box, choose log.TcCB.
5. In the Subset Rows with box, type Area == “Reference”.
6. Click on the Options tab. 
7. Under the Density Options group, in the Window Width box, type 

0.35.
8. Click on the Histogram Bars tab. 
9. Make sure the Draw Bars and Draw Histograms boxes are 

checked.
10. Click on the Density Line tab. 
11. In the Weight box, select 2.
12. Click OK.

Command

To produce the density plot shown in Figure 3.11 (along with a strip plot, not 
a histogram) using the S-PLUS Command or Script Window, type this com-
mand. 

densityplot(~ log(TcCB), data = epa.94b.tccb.df,

subset = Area == "Reference", width = 0.35, 

xlab = "log [ TcCB (ppb) ]",

main = list(cex = 1.25, paste( 

  "Density Plot With Strip Plot for",

  "Reference Area TcCB Data", sep = "\n"))) 
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Boxplots

A boxplot (sometimes called a box-and-whisker plot) is a simple graphi-
cal display invented by John Tukey that summarizes the distribution of a set 
of observations (Chambers et al., 1983, pp. 21 24; Cleveland, 1993,  
pp. 25 27; Cleveland, 1994, pp. 139 143; Helsel and Hirsch, 1992,  
pp. 24 26).  A standard boxplot consists of 

 A “box” defined by the 25th and 75th percentiles. 
 A line or point on the box at the median (50th percentile). 
 A line (whisker) drawn from the 25th percentile to the smallest ob-

servation within one “step” of the 25th percentile (the lower adjacent 
value). 

 A line (whisker) drawn from the 75th percentile to the largest obser-
vation within one “step” of the 75th percentile (the upper adjacent 
value). 

 Observations over one step away from the box ends plotted with a 
symbol (e.g., asterisk) or line. 

-2
0

2
4

Illustration of a Boxplot

Lo
g[

 T
cC

B
 (

pp
b)

 ]

Outside Values

Upper Adjacent Value

75'th Percentile

Median

25'th Percentile

Lower Adjacent Value

Figure 3.12 A boxplot based on the log-transformed TcCB data for the Cleanup area 

Figure 3.12 illustrates a boxplot using the log-transformed TcCB soil data 
for the Cleanup area.  A “step” is conventionally defined as 1.5 times the in-
terquartile range.  (Recall that the interquartile range is the difference be-
tween the 75th and 25th percentiles.)  Given this algorithm for constructing 
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boxplots, you would expect to see at least one “outside value” only about 
0.7% of the time if you were always looking at data from a normal  
distribution. 

A boxplot quickly allows you to see: 

 The center of the data (the median). 
 The spread (variability) of the data. 
 The skewness of the data (by looking at the relative lengths of the 

box halves, and the whiskers). 
 The presence of any “unusual” (outside) values. 

Outside values are not necessarily outliers or bad observations!  Indeed, 
since most environmental data is right skewed, you may see lots of boxplots 
with outside values when you plot variables on their original scales. 

Boxplots are very useful for comparing the distributions of two data sets.  
Figure 3.13 displays side-by-side boxplots for the log-transformed TcCB 
data for the Reference and Cleanup areas (see Table 3.2).  As we saw with 
the strip plots in Figure 3.9 and the histograms in Figure 3.10, the boxplots 
indicate that most of the observations for the Cleanup area are comparable to 
(or even smaller than) the observations for the Reference area, but there are a 
few very large “outliers” in the Cleanup area. 
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Figure 3.13 Boxplots of the log-transformed TcCB data for the Reference and 
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Menu

To produce the boxplots shown in Figure 3.13 using the S-PLUS pull-
down menus or toolbars, follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
new.epa.94b.tccb.df for the version of this data frame that you cre-
ated earlier. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Boxplot and click OK.  (Alternatively, 
left-click on the 2D Plots button, then left-click on the Box button.) 

3. The Boxplot dialog box should appear.  Under the Data Columns 
group, the Data Set box should display new.epa.94b.tccb.df.

4. In the x Columns box, choose Area.
5. In the y Columns box, choose log.TcCB.
6. Click OK.

Command

To produce the boxplots shown in Figure 3.13 using the S-PLUS Com-
mand or Script Window, type these commands: 

attach(new.epa.94b.tccb.df)

boxplot(split(log(TcCB), Area), xlab = "Area", 

ylab = "log [ TcCB (ppb) ]", 

main = "Boxplots for Log-Transformed TcCB Data") 

detach()

or this command (which produces horizontal boxplots): 

bwplot(Area ~ log(TcCB), data = epa.94b.tccb.df,

xlab = "log [ TcCB (ppb) ]",

main = list(cex = 1.25,

"Boxplots for Log-Transformed TcCB Data")) 

Quantile Plots or Empirical CDF Plots 

Loosely speaking, the pth quantile of a population is the (a) number such 
that a fraction p of the population is less than or equal to this number.  The 
pth quantile is the same as the 100pth percentile; for example, the 0.5 quantile 
is the same as the 50th percentile.  For a population, a plot of the quantiles on 
the x-axis vs. the percentage or fraction of the population less than or equal 
to that number on the y-axis is called a cumulative distribution function plot
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or cdf plot (we will talk more about cumulative distribution functions in 
Chapter 4).  The y-axis is usually labeled as the cumulative probability or 
cumulative frequency.

When we have a sample of data from some population, we usually do not 
know what percentiles our observations correspond to because we do not 
know the true population percentiles, so we use the sample data to estimate 
them.  A quantile plot (also called an empirical cumulative distribution 
function plot or empirical cdf plot) plots the ordered data (sorted from 
smallest to largest) on the x-axis vs. the estimated cumulative probabilities 
on the y-axis (Chambers et al., 1983, pp. 11 19; Cleveland, 1993, pp. 17 20; 
Cleveland, 1994, pp. 136 139; Helsel and Hirsch, 1992, pp. 21 24).  (Some-
times the x- and y-axes are reversed.)  The specific formulas that are used to 
estimate the cumulative probabilities are discussed later in the sub-section 
Computing Plotting Positions. 

Figures 3.14 and 3.15 show quantile plots for the Reference area TcCB 
data.  Based on these plots, you can easily pick out the median as about 0.55 
ppb and the quartiles as about 0.4 ppb and 0.75 ppb (compare these numbers 
to the ones listed on page 57).  You can also see that the quantile plot quickly 
rises, then pretty much levels off after about 0.8 ppb, which indicates that the 
data are skewed to the right (see the histogram for the Reference area data in 
Figure 3.1).  Helsel and Hirsch (1992, p. 22) note that quantile plots, unlike 
histograms, do not require you to figure out how to divide the data into 
classes, and, unlike boxplots, all of the data are displayed in the graph. 

You can also use quantile plots to compare the empirical cdf of a data set 
with the cdf from some specified theoretical distribution, or with the empiri-
cal cdf of another data set.  Figure 3.16 shows the empirical cdf for the Ref-
erence area TcCB data compared to the cdf of a lognormal distribution (the 
parameters of this distribution were estimated from the data; we will talk 
more about the lognormal distribution in Chapter 4).  We see that the log-
normal distribution appears to fit these data quite well.  Usually, however, 
quantile-quantile (Q-Q) plots, not empirical cdf plots, are used to visually as-
sess the goodness of fit of a theoretical distribution to a data set (see the next 
section Probability Plots or Quantile-Quantile (Q-Q) Plots). 

Just as with histograms and boxplots, you can also use empirical cdf 
plots to compare data sets.  Figure 3.17 compares the empirical cdf for the 
Reference area with the empirical cdf for the cleanup area for the log-
transformed TcCB data.  As we saw with the strip plots (Figure 3.9), histo-
grams (Figure 3.10), and boxplots (Figure 3.13), the Cleanup area has quite a 
few extreme values compared to the Reference area. 
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Quantile Plot for Reference Area TcCB Data
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Figure 3.14 Quantile plot of Reference area TcCB data (points) 

Quantile Plot for Reference Area TcCB Data
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Figure 3.15 Quantile plot of Reference area TcCB data (line) 
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Empirical CDF for Reference Area TcCB (solid line)
with Fitted Lognormal CDF (dashed line)

Order Statistics for Reference Area TcCB (ppb)
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Figure 3.16 Empirical cdf of Reference area TcCB data compared to a lognormal 

cdf

CDF for Reference Area (solid line)
with CDF for Cleanup Area (dashed line)
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Figure 3.17 Quantile plots comparing log-transformed TcCB data at the Reference 

and Cleanup areas 
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Menu

To produce the quantile plot of the Reference area TcCB data shown in 
Figure 3.14 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
new.epa.94b.tccb.df for the version of this data frame that you cre-
ated earlier. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>CDF Plot>Empirical CDF.  This will 
bring up the Plot Empirical CDF dialog box. 

3. The Data Set box should display new.epa.94b.tccb.df.
4. In the Variable(s) box, choose TcCB.
5. In the Subset Rows with box, type Area=="Reference".
6. Click on the Plot Options tab. 
7. For Plot Type, choose Points.
8. Click OK or Apply.

To produce the quantile plot of the Reference area TcCB data shown in 
Figure 3.15, repeat the above steps, but omit Steps 6 and 7. 

To produce the quantile plot shown in Figure 3.16 comparing the Refer-
ence area TcCB data to a lognormal distribution, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>CDF Plot>Compare Two CDFs.
This will bring up the Compare Two CDFs dialog box. 

2. The Data Set box should display new.epa.94b.tccb.df.
3. In the x Variable box, choose TcCB.
4. In the Subset Rows with box, type Area=="Reference".
5. Under the Distribution Information Group, make sure that the Esti-

mate Parameters box is checked. 
6. In the Distribution box, select Lognormal.
7. Click OK or Apply.

To produce the quantile plot shown in Figure 3.17 comparing the log-
transformed Reference area TcCB data to the log-transformed Cleanup area 
TcCB data, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>CDF Plot>Compare Two CDFs.
This will bring up the Compare Two CDFs dialog box. 

2. For the Compare Data to choice, select Other Data.
3. The Data Set box should display new.epa.94b.tccb.df.
4. In the Variable 1 box, choose log.TcCB.
5. In the Variable 2 box, choose Area.
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6. Click on the Variable 2 is a Grouping Variable box to check it. 
7. Click OK or Apply.

Command

The commands below show you how to produce the quantile plots shown 
in Figures 3.14 – 3.17 using the S-PLUS Command or Script Window.  Note 
that the function ecdfplot is part of ENVIRONMENTALSTATS for S-PLUS,
and that the S-PLUS function cdf.compare has been modified in 
ENVIRONMENTALSTATS for S-PLUS.  All of the commands assume the data 
frame epa.94b.tccb.df has been attached to your search list via the fol-
lowing command: 

attach(epa.94b.tccb.df)

To produce the quantile plot of the Reference area TcCB data shown in 
Figure 3.14, type the following command. 

ecdfplot(TcCB[Area=="Reference"], type = "p",

xlab = "TcCB (ppb)",

main = paste("Quantile Plot for",

  "Reference Area TcCB Data")) 

To produce the quantile plot of the Reference area TcCB data shown in 
Figure 3.15, type the following command. 

ecdfplot(TcCB[Area=="Reference"], xlab = "TcCB (ppb)",

main = paste("Quantile Plot for",

  "Reference Area TcCB Data")) 

To produce the quantile plot shown in Figure 3.16 comparing the Reference 
area TcCB data to a lognormal distribution, type the following command. 

cdf.compare(TcCB[Area=="Reference"], dist = "lnorm", 

xlab = paste("Order Statistics for", 

  "Reference Area TcCB (ppb)"),

main = paste("Empirical CDF for ", 

  "Reference Area TcCB (solid line)\n", 

  "with Fitted Lognormal CDF (dashed line)", 

  sep = "")) 

To produce the quantile plot shown in Figure 3.17 comparing the log-
transformed Reference area TcCB data to the log-transformed Cleanup area 
TcCB data, type the following command. 

cdf.compare(log(TcCB[Area=="Reference"]),

log(TcCB[Area == "Cleanup"]),

xlab = "Order Statistics for log [ TcCB (ppb) ]", 
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main = paste("CDF for Reference Area (solid line)", 

  "with CDF for Cleanup Area (dashed line)", 

  sep = "\n")) 

To detach the data frame epa.94b.tccb.df from your search list, type 
the following command: 

detach(epa.94b.tccb.df)

Computing Plotting Positions 

In a quantile plot, the estimated cumulative probabilities are often called 
plotting positions, since they determine the positions relative to the y-axis.
The estimated cumulative probabilities are usually computed by one of the 
following formulas. 

#
ˆ

j i
i

x x
p

n
(3.20)

î
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where îp  denotes the estimated cumulative probability associated with the 

ith order statistic ix , i=1,2,…,n, and a is some constant between 0 and 

1 (Cleveland, 1993, p. 18; D’Agostino, 1986a, pp. 8, 25). 
The estimator in Equation (3.20) says that for the ith ordered observation, 

the proportion of the population less than or equal to this observation is es-
timated by the proportion of observations in the sample less than or equal to 
this observation.  This estimator is sometimes called the empirical probabili-
ties estimator and is intuitively appealing.  The estimator in Equation (3.21) 
is equivalent to the estimator in Equation (3.20) if there are no ties in the 
data.  The disadvantage of these two estimators is that they imply the largest 
observed value is the maximum possible value of the distribution (the 100th

percentile).  This may be satisfactory if we can model the population with a 
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finite discrete distribution, but it is usually not satisfactory if we want to 
model the population with a continuous distribution. 

When the underlying distribution is assumed to be continuous, Equation 
(3.22) with some specified value of the constant a is usually used to compute 
estimated cumulative probabilities.  Based on certain principles from statisti-
cal theory, certain values of the constant a make sense for specific underly-
ing distributions.  These details are discussed in the ENVIRONMENTALSTATS

for S-PLUS help files under Glossary:  Empirical Cumulative Distribution
Function (ecdf), and Glossary:  Probability Plot or Quantile-Quantile (Q-Q) 
Plot.

Table 3.7, adapted from Helsel and Hirsch (1992, p. 23) and Stedinger et 
al. (1993), displays commonly used plotting positions based on Equation 
(3.22).  In practice, the Blom or Hazen plotting positions are probably the 
most frequently used (e.g., Chambers et al., 1983, p. 12; Cleveland, 1993,  
p. 18), but as Helsel and Hirsch (1992, pp. 23 24) point out, hydrologists 
usually use Weibull plotting positions for flow-duration and flood-frequency 
curves.  In fact, to simplify things, Helsel and Hirsch (1992, p. 24) use Cun-
nane plotting positions throughout their book because they are very close to 
Blom plotting positions and because some hydrologists use them instead of 
Weibull plotting positions.  For moderate and large sample sizes, there will 
be very little difference between the plotting positions listed in Table 3.7. 

Name a
Distribution  
Often Used 
With

References/Examples 

Weibull 0 Weibull,  
Uniform

Weibull (1939), 
Stedinger et al. (1993) 

Median 0.3175 Several Filliben (1975),  
Vogel (1986) 

Bloom 0.375 Normal and 
Others

Blom (1958),
Looney and Gulledge (1985) 

Cunnane 0.4 Several Cunnane (1978),  
Chowdhury et al. (1991) 

Gringorten 0.44 Gumbel Gringorton (1963)  
Vogel (1986) 

Hazen 0.5 Several Hazen (1914), 
Chambers et al. (1983),
Cleveland (1993) 

Table 3.7  Plotting position formulas based on Equation (3.22) (after Helsel and 

Hirsch, 1992, p. 23, and Stedinger et al., 1993) 

For any general value x such that 

1i ix x x (3.23)
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the estimated cumulative probability is usually defined as follows for dis-
crete distributions: 

ˆ îp x  p (3.24)

and as follows for continuous distributions: 

1ˆ ˆ ˆ1 i ip x  r  p  r p (3.25)

1

i

i i

x x
r

x x 
(3.26)

Equation (3.24) says that the quantile plot stays flat until it hits a value on 
the x-axis corresponding to one of the order statistics, then it makes a jump, 
so it is a step function.  Equations (3.25) and (3.26) use linear interpolation 
to compute the value of the estimated cumulative probability at a particular 
value of x; in this case the quantile plot looks like lines connecting the 
points, just as in Figure 3.15. 

Probability Plots or Quantile-Quantile (Q-Q) Plots 

A probability plot or quantile-quantile (Q-Q) plot is a graphical display 
invented by Wilk and Gnanadesikan (1968) to compare a data set to a par-
ticular probability distribution or to compare it to another data set.  The idea 
is that if two population distributions are exactly the same, then they have 
the same quantiles (percentiles), so a plot of the quantiles for the first distri-
bution vs. the quantiles for the second distribution will fall on the 0-1 line 
(i.e., the straight line y=x with intercept 0 and slope 1).  If the two distribu-
tions have the same shape and spread but different locations, then the plot of 
the quantiles will fall on the line y=a+x (parallel to the 0-1 line) where a
denotes the difference in locations.  If the distributions have different loca-
tions and differ by a multiplicative constant b, then the plot of the quantiles 
will fall on the line y=a+bx (D’Agostino, 1986a, p. 25; Helsel and Hirsch, 
1986, p. 42).  Various kinds of differences between distributions will yield 
various kinds of deviations from a straight line. 
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Comparing Data to a Theoretical Probability Distribution 

In practice, we take samples from a population, so a Q-Q plot uses em-
pirical quantiles (i.e., the order statistics), and the corresponding estimated 
cumulative probabilities (plotting positions) are computed using one of the 
Equations (3.20) to (3.22) above (Chambers et al., 1983, pp. 48 57; Cleve-
land, 1993, pp. 21 25, 28 32; Cleveland, 1994, pp. 143 149; Helsel and 
Hirsch, 1992, pp. 40 45).  To compare a data set to a theoretical probability 
distribution, the empirical quantiles (order statistics) are plotted on the y-axis
and the corresponding quantiles from the assumed probability distribution 
are plotted on the x-axis.  The quantiles of the assumed probability distribu-
tion are computed based on the estimated cumulative probabilities associated 
with the empirical quantiles of the data set. 

As an example, let us compare the Reference area TcCB data to a normal 
(Gaussian) distribution.  Table 3.8 below displays the order statistics, Blom 
plotting positions, and corresponding quantiles from a standard normal dis-
tribution for the first three and last three order statistics of the Reference area 
TcCB data. 

Order  
Statistic 

Plotting
Position

Normal
Quantile

0.22 0.013 -2.2 
0.23 0.034 -1.8 
0.26 0.056 -1.6 
… … … 

1.14 0.944  1.6 
1.20 0.966  1.8 
1.33 0.987  2.2 

Table 3.8  Order statistics, Blom plotting positions, and standard normal quantiles 

for the Reference area TcCB data 

Figure 3.18 shows the normal Q-Q plot for these data, along with a fitted 
regression line (see Chapter 9).  In this figure you can see that the points do 
not tend to fall on the line, but rather seem to make a U shape.  This indi-
cates that the Reference area data are skewed to the right relative to a sym-
metrical, bell-shaped normal distribution (see Figure 3.1).  Figure 3.19 
shows the normal Q-Q plot for the log-transformed Reference area data.  
Here you can see the points do tend to fall on the line, indicating that a log-
normal distribution may be a good model for these data.  Compare this figure 
to Figure 3.16. 

An interesting feature of normal Q-Q plots is that if a sample of data 
comes from a normal distribution, and the data are plotted against quantiles 
of a standard normal distribution (with mean 0 and variance 1), then the in-
tercept of the fitted line estimates the mean of the population, and the slope 
of the fitted line estimates the standard deviation (Nelson, 1982, p. 113; 
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Normal Q-Q Plot for Reference Area TcCB Data

Quantiles of Normal(mean = 0, sd = 1)
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Figure 3.18 Normal Q-Q plot for Reference area TcCB data 

Normal Q-Q Plot for Log-Transformed Reference Area TcCB Data
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Figure 3.19 Normal Q-Q plot for the log-transformed Reference area TcCB data 
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Cleveland, 1993, p. 31).  For the fitted line in Figure 3.19, we can eyeball the 
intercept at about –0.6 and the slope at about 0.5.  These numbers are com-
parable to the mean and standard deviation estimated in the usual way shown 
on page 57. 

Comparing Two Data Sets 

You can use a Q-Q plot to determine whether two data sets come from 
the same parent distribution.  The empirical quantiles of the first data set are 
plotted on the y-axis vs. the empirical quantiles of the second data set on the 
x-axis.  If the two data sets have different sample sizes, then the empirical 
quantiles of the smaller data set are used, and the corresponding quantiles for 
the larger data set are computed based on the plotting positions of the smaller 
data set and linear interpolation (Chambers et al., 1983, pp. 54 55; Cleve-
land, 1993, p. 21; Cleveland, 1994, p. 144; Helsel and Hirsch, 1992,  
pp. 43 45).  Specifically, let 

1 2, , , my y y

denote the m ordered observations in the first data set, let 

1 2, , , nx x x

denote the n ordered observation in the second data set, assume both samples 
come from continuous distributions, and assume m < n.  Let 

1 2ˆ ˆ ˆ, , , mp p p

denote the plotting positions corresponding to the m empirical quantiles from 
the first data set and let 

* * *
1 2ˆ ˆ ˆ, , , np p p

denote the plotting positions corresponding the n empirical quantiles from 
the second data set (see Equation (3.22)).  Then the empirical quantile iy

is plotted against 
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*
11i j jx r x r x (3.27)

where

*

* *
1

ˆ ˆ

ˆ ˆ

i j

j j

p p
r

p p
(3.28)

* *
1ˆ ˆ ˆj i  jp p p  (3.29)

(Note: The S-PLUS function qqplot and the S-PLUS menu selection 
Graph>2D Plot>Quantile-Quantile Plot do not compute the quantiles for 
the larger data set in this way.) 

As an example, let us compare the log-transformed Reference and 
Cleanup area TcCB data.  Recall that the Reference area has 47 observations 
and the Cleanup area has 77 observations.  Table 3.9 below displays the or-
der statistics and Blom plotting positions for the first three and last three or-
der statistics of the log-transformed Reference area data.  Note that the first 
column in this table is the log of the first column in Table 3.8, and the second 
column in this table is the same as the second column in Table 3.8.  The third 
column in Table 3.9 displays the corresponding quantiles for the log-
transformed Cleanup area data. 

Quantiles for
Reference Area Plotting Position 

Quantiles for
Cleanup Area 

-1.51 0.013 -2.41 
-1.47 0.034 -2.40 
-1.35 0.056 -2.12 

… … … 
0.13 0.944 1.77 
0.18 0.966 2.88 
0.29 0.987 4.66 

Table 3.9  Empirical quantiles and plotting positions for the log-transformed Refer-
ence and Cleanup area TcCB data 

Figure 3.20 shows the Q-Q plot comparing the Reference and Cleanup 
areas for the log-transformed TcCB data, along with the 0-1 line.  In this fig-
ure you can see the points do not tend to fall on the 0-1 line, but instead tend 
to fall along two different lines, both with a steeper slope than 1.  Q-Q plots 
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that exhibit this kind of pattern indicate that one of the samples (the Cleanup 
area data in this case) probably comes from a “mixture” distribution:  some 
of the observations come from a distribution similar in shape and scale to the 
Reference area distribution, and some of the observations come from a dis-
tribution that is shifted to the right and more spread out relative to the Refer-
ence area distribution because of residual contamination (see Figures 3.2, 
3.9, 3.10, 3.13, and 3.17). 

Q-Q Plot Comparing Cleanup and Reference Area TcCB Data
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Figure 3.20 Q-Q plot comparing log-transformed Cleanup and Reference area TcCB 
data

Assessing Departures from Linearity 

Because the points on a Q-Q plot represent a sample from a population, 
even if the two underlying distributions are in fact the same (or differ only 
by an additive and/or multiplicative constant), the points will never all lie 
exactly on a straight line.  Also, the extreme points have more variability 
than the points toward the center, and Q-Q plots based on small sample sizes 
are more variable than Q-Q plots based on large sample sizes.  It is therefore 
important to have a good idea of what a “typical” Q-Q plot might look like 
for the kind of data, distributions, and sample sizes you are looking at.  In
ENVIRONMENTALSTATS for S-PLUS you can use the menu selection Envi-
ronmentalStats>EDA>Q-Q Plot>Q-Q Plot Gestalt or the command line 
function qqplot.gestalt to create several “typical” Q-Q plots for any 
specified distribution and sample size. 
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Table 3.10 lists common patterns of departures from linearity that you 
might see in a Q-Q plot (D’Agostino, 1986a, p. 47; Helsel and Hirsch, 1992, 
pp. 30 33).  A U-shaped Q-Q plot indicates that the underlying distribution 
for the observations on the y-axis is skewed to the right relative to the under-
lying distribution for the observations on the x-axis (e.g., Figure 3.18).  An 
upside-down-U-shaped Q-Q plot indicates the y-axis distribution is skewed-
left relative to the x-axis distribution.  An S-shaped Q-Q plot indicates the y-
axis distribution has shorter tails than the x-axis distribution.  Conversely, a 
plot that is bent down on the left, linear in the middle, and bent up on the 
right indicates that the y-axis distribution has longer tails than the x-axis dis-
tribution.  A Q-Q plot in which the points tend to fall on two different lines 
indicates one of the data sets probably comes from a mixture distribution 
(e.g., Figure 3.20).  A Q-Q plot in which most of the points fall pretty much 
along a line but one or a few of the extreme points are way above (or below) 
the rest of the points indicates these few points are “outliers.” 

Pattern Cause 
U shape y-axis distribution right skewed 

relative to x-axis distribution 
Upside-down U shape x-axis distribution right skewed 

relative to y-axis distribution 
S shape x-axis distribution has heavy tails 

compared to y-axis distribution 
Bent down on left,
linear in middle, and 
bent up on right 

y-axis distribution has heavy tails 
compared to x-axis distribution 

Two separate lines y-axis distribution is a mixture of 
two different distributions 

Most points linear but one or a 
few way above (below) the rest 

One or more outliers 

Table 3.10 Common patterns of deviation from linearity for Q-Q plots and their 
causes

Tukey Mean-Difference Q-Q Plots 

Instead of adding a fitted regression line to a Q-Q plot, an even better 
way to assess deviation from linearity is to use a Tukey mean-difference Q-Q 
plot, also called an m-d plot (Cleveland, 1993, pp. 22 23).  This is a plot of 
the differences between the quantiles on the y-axis vs. the average of the 
quantiles on the x-axis.  If the two sets of quantiles come from the same par-
ent distribution, then the points in an m-d plot should fall roughly along the 
horizontal line y=0.  If one set of quantiles come from the same distribution 
with a shift in median, then the points in this plot should fall along a horizon-
tal line above or below the line y=0.  If the parent distributions of the quan-
tiles differ in scale, then the points on this plot will fall at an angle. 
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Tukey Mean-Difference Q-Q Plot for
Reference Area TcCB Fitted to Normal Distribution

Mean of Observed and Fitted Quantiles
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Figure 3.21 Tukey mean-difference Q-Q plot for Reference area TcCB data fitted to 

a normal distribution 

Tukey Mean-Difference Q-Q Plot for
Reference Area TcCB Fitted to Lognormal Distribution
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Figure 3.22 Tukey mean-difference Q-Q plot for Reference area TcCB data fitted to 

a lognormal distribution 
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Tukey Mean-Difference Q-Q Plot Comparing
Cleanup and Reference Area log(TcCB) Data
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Figure 3.23 Tukey mean-difference Q-Q plot comparing log-transformed cleanup 

and reference area TcCB data 

A Tukey mean-difference Q-Q plot enhances our perception of how the 
points in the Q-Q plot deviate from a straight line, because it is easier to 
judge deviations from a horizontal line than from a line with a non-zero 
slope.  Figures 3.21 to 3.23 are the Tukey mean-difference analogues of the 
Q-Q plots shown in Figures 3.18 to 3.20. 

Menu

This section shows you how to use the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu to create Figures 3.18-3.23.  To create the normal 
Q-Q plot for the Reference area TcCB data shown in Figure 3.18, follow 
these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
new.epa.94b.tccb.df for the version of this data frame that you cre-
ated earlier. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Q-Q Plot>Q-Q Plot.  This will bring 
up the Q-Q Plot dialog box. 

3. The Data Set box should display new.epa.94b.tccb.df.
4. In the x Variable box, choose TcCB.
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5. In the Subset Rows with box, type Area=="Reference".
6. In the Distribution box, make sure Normal is selected. 
7. Click on the Plotting tab. 
8. Click on the Add a Line box to select this option. 
9. Click OK or Apply.

To create the normal Q-Q plot for the log-transformed Reference area data 
shown in Figure 3.19, follow the same steps as above, except in Step 6 make 
sure Lognormal is selected in the Distribution box.  To create the Q-Q plot 
comparing the Reference and Cleanup areas for the log-transformed TcCB 
data shown in Figure 3.20, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Q-Q Plot>Q-Q Plot.  This will bring 
up the Q-Q Plot dialog box. 

2. Set the Compare Data to button to Other Data.
3. The Data Set box should display new.epa.94b.tccb.df.
4. In the Variable 1 box, choose log.TcCB.
5. In the Variable 2 box, choose Area.
6. Click on the Variable 2 is a Grouping Variable box to select this 

option. 
7. Click on the Plotting tab. 
8. Click on the Equal Axes box to select this option. 
9. Click on the Add a Line box to select this option. 
10. For Q-Q Line Type button, select 0-1.
11. Click OK or Apply.

Note that this plot has the Reference area quantiles on the y-axis and the 
Cleanup area quantiles on the x-axis.

To create the Tukey mean-difference Q-Q plot for the Reference area 
TcCB data fitted to a normal distribution shown in Figure 3.21, follow these 
steps.

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Q-Q Plot>Q-Q Plot.  This will bring 
up the Q-Q Plot dialog box. 

2. The Data Set box should display new.epa.94b.tccb.df.
3. In the x Variable box, choose TcCB.
4. In the Subset Rows with box, type Area=="Reference".
5. Click on the Estimate Parameters box to select this option. 
6. In the Distribution box, make sure Normal is selected. 
7. Click on the Plotting tab. 
8. For the Plot Type button, select Tukey M-D.
9. Click on the Add a Line box to select this option. 
10. Click OK or Apply.
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To create the Tukey mean-difference Q-Q plot for the Reference area data 
fitted to a lognormal distribution shown in Figure 3.22, follow the same steps 
as above, except in Step 6 make sure Lognormal is selected in the Distribu-
tion box.  To create the Tukey mean-difference Q-Q plot comparing the Ref-
erence and Cleanup areas for the log-transformed TcCB data shown in 
Figure 3.23, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Q-Q Plot>Q-Q Plot.  This will bring 
up the Q-Q Plot dialog box. 

2. Set the Compare Data to button to Other Data.
3. The Data Set box should display new.epa.94b.tccb.df.
4. In the Variable 1 box, choose log.TcCB.
5. In the Variable 2 box, choose Area.
6. Click on the Variable 2 is a Grouping Variable box to select this 

option. 
7. Click on the Plotting tab. 
8. For the Plot Type button, choose Tukey M-D.
9. Click on the Add a Line box to select this option. 
10. Click OK or Apply.

Note that this plot is the mirror image (on the y-axis) of Figure 3.23 because 
it is subtracting the Cleanup area quantiles from the Reference area quantiles 
instead of vice-versa. 

Command

The commands below show you how to produce the Q-Q plots and Tu-
key mean-difference Q-Q plots shown in Figures 3.18 to 3.23 using the 
S-PLUS Command or Script Window.  Note that the S-PLUS function 
qqplot has been modified in ENVIRONMENTALSTATS for S-PLUS.  All of 
the commands assume the data frame epa.94b.tccb.df has been at-
tached to your search list via the following command: 

attach(epa.94b.tccb.df)

To produce the Q-Q plot of the Reference area TcCB data fitted to a nor-
mal distribution shown in Figure 3.18, type the following command. 

qqplot(TcCB[Area=="Reference"], add.line = T, 

ylab = "Quantiles of TcCB (ppb)", 

main = paste("Normal Q-Q Plot for", 

  "Reference Area TcCB Data")) 

To produce the Q-Q plot of the Reference area TcCB data fitted to a log-
normal distribution shown in Figure 3.19, type the following command. 
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qqplot(TcCB[Area=="Reference"], dist = "lnorm", 

add.line = T,

ylab = "Quantiles of log [ TcCB (ppb) ]",

main = paste("Normal Q-Q Plot for", 

  "Log-Transformed Reference Area TcCB Data")) 

To create the Q-Q plot comparing the Reference and Cleanup areas for the 
log-transformed TcCB data shown in Figure 3.20, type the following com-
mand. 

qqplot(log(TcCB[Area=="Reference"]),

log(TcCB[Area == "Cleanup"]),

plot.pos.con = 0.375, equal.axes = T, add.line = T, 

qq.line.type = "0-1",

xlab = paste("Quantiles of log [ TcCB (ppb) ]", 

  "for Reference Area"),

ylab = paste("Quantiles of log [ TcCB (ppb) ]", 

  "for Cleanup Area"),

main = paste("Q-Q Plot Comparing Cleanup and", 

  "Reference Area TcCB Data")) 

To create the Tukey mean-difference Q-Q plot for the Reference area TcCB 
data fitted to a normal distribution shown in Figure 3.21, type the following 
command. 

qqplot(TcCB[Area=="Reference"], plot.type = "Tukey", 

estimate.params = T, add.line = T,

main = paste("Tukey Mean-Difference Q-Q Plot for", 

  "\nReference Area TcCB Fitted to ", 

  "Normal Distribution", sep = "")) 

To create the Tukey mean-difference Q-Q plot for the Reference area data 
fitted to a lognormal distribution shown in Figure 3.22, type the following 
command. 

qqplot(TcCB[Area=="Reference"], dist = "lnorm", 

plot.type = "Tukey", estimate.params = T,

add.line = T,

main = paste("Tukey Mean-Difference Q-Q Plot for", 

  "\nReference Area TcCB Fitted to ", 

  "Lognormal Distribution", sep = "")) 

To create the Tukey mean-difference Q-Q plot comparing the Reference and 
Cleanup areas for the log-transformed TcCB data shown in Figure 3.23, type 
this command. 
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qqplot(log(TcCB[Area=="Reference"]),

log(TcCB[Area == "Cleanup"]), plot.type = "Tukey", 

plot.pos.con = 0.375, add.line = T,

ylab = "Cleanup Quantiles - Reference Quantiles", 

main = paste("Tukey Mean-Difference Q-Q Plot ", 

  "Comparing\nCleanup and Reference Area ", 

  "log(TcCB) Data", sep = "")) 

To detach the data frame epa.94b.tccb.df from your search list, type 
the following command: 

detach(epa.94b.tccb.df)

Box-Cox Data Transformations and Q-Q Plots 

Two common assumptions for several standard parametric hypothesis 
tests are: 

1. The observations come from a normal distribution. 
2. If several groups are involved, the variances are the same among all 

groups.

(See Chapter 7.)  A standard linear regression model (see Chapter 9) makes 
the above assumptions, and also assumes a linear relationship between the 
response variable and the predictor variable or variables. 

Often, especially with environmental data, the above assumptions do not 
hold because the original data are skewed and/or they follow a distribution 
that is not really shaped like a normal distribution.  It is sometimes possible, 
however, to transform the original data so that the transformed observations 
in fact come from a normal distribution or close to a normal distribution.  
The transformation may also induce homogeneity of variance and a linear re-
lationship between the response and predictor variable(s) (if this is relevant). 

Sometimes, theoretical considerations indicate an appropriate transforma-
tion.  For example, count data often follow a Poisson distribution (see Chap-
ter 4), and it can be shown that taking the square root of observations from a 
Poisson distribution tends to make these data look more bell-shaped (John-
son et al., 1992, p. 163; Johnson and Wichern, 1992, p. 164; Zar, 1999,  
pp. 275 278).  A common example in the environmental field is that chemi-
cal concentration data often appear to come from a lognormal distribution or 
some other positively skewed distribution.  In this case, taking the logarithm 
of the observations often appears to yield normally distributed data.  Usually, 
a data transformation is chosen based on knowledge of the process generat-
ing the data, as well as graphical tools such as quantile-quantile plots and 
histograms. 
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Although data analysts knew about using data transformations for several 
years, Box and Cox (1964) presented a formalized method for deciding on a 
data transformation.  Given a random variable X from some distribution with 
only positive values, the Box-Cox family of power transformations is de-
fined as: 

1
, 0

log , 0

X

Y

X

(3.30)

where  (lambda) denotes the power of the transformation and Y is assumed 
to come from a normal distribution.  This transformation is continuous in .
Note that this transformation also preserves ordering.  That is, if 

1 2X X

then 

1 2Y Y

Box and Cox (1964) proposed choosing the appropriate value of  based 
on maximizing the likelihood function (see Chapter 5).  Note that for non-
zero values of , instead of using the formula of Box and Cox in Equation 
(3.30), you may simply use the power transformation 

Y X (3.31)

since these two equations differ only by a scale difference and origin shift, 
and the essential character of the transformed distribution remains un-
changed (Draper and Smith, 1981, p. 225). 

The value =1 corresponds to no transformation.  Values of  less than 1 
shrink large values of X, and are therefore useful for transforming positively 
skewed (right-skewed) data.  Values of  larger than 1 inflate large values of 
X, and are therefore useful for transforming negatively skewed (left-skewed) 
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data (Helsel and Hirsch, 1992, pp. 13 14; Johnson and Wichern, 1992,  
p. 165).  Commonly used values of  include 0 (log transformation), 0.5 
(square-root transformation), 1 (reciprocal), and 0.5 (reciprocal root). 

Transformations are not “tricks” used by the data analyst to hide what is 
going on, but rather useful tools for understanding and dealing with data 
(Berthouex and Brown, 1994, p. 64).  Hoaglin (1988) discusses “hidden” 
transformations that are used everyday, such as the pH scale for measuring 
acidity.  It is often recommend that when dealing with several similar data 
sets, it is best to find a common transformation that works reasonably well 
for all the data sets, rather than using slightly different transformations for 
each data set (Helsel and Hirsch, 1992, p. 14; Shumway et al., 1989). 

One problem with data transformations is that translating results on the 
transformed scale back to the original scale is not always straightforward.  
Estimating quantities such as means, variances, and confidence limits in the 
transformed scale and then transforming them back to the original scale usu-
ally leads to biased and inconsistent estimates (Gilbert, 1987, p. 149; Fisher 
and van Belle, 1993, p. 466).  For example, exponentiating the confidence 
limits for a mean based on log-transformed data does not yield a confidence 
interval for the mean on the original scale.  Instead, this yields a confidence 
interval for the median (see Chapter 5).  It should be noted, however, that 
quantiles (percentiles) and rank-based procedures are invariant to monotonic 
transformations (Helsel and Hirsch, 1992, p. 12). 

You can use ENVIRONMENTALSTATS for S-PLUS to determine an “opti-
mal” Box-Cox transformation, based on one of three possible criteria: 

 Probability Plot Correlation Coefficient (PPCC) 
 Shapiro-Wilk Goodness-of-Fit Test Statistic ( W)
 Log-Likelihood Function 

You can also compute the value of the selected criterion for a range of values 
of the transform power .

We will explain the idea of a correlation coefficient in Chapter 9.  For 
now, all you need to know is that a correlation coefficient ranges between –1 
and 1, and that if the data come from a normal distribution then the probabil-
ity plot correlation coefficient (PPCC) should be “close” to 1.  We will also 
explain the Shapiro-Wilk goodness-of-fit test statistic (denoted W) in Chapter 
7.  For now, all you need to know is that W is closely related to the PPCC, it 
is constrained to lie between 0 and 1, and that if the data come from a normal 
distribution then W should be “close” to 1.  Finally, the idea of a likelihood 
function is discussed in Chapter 5.  All you need to know here is that larger 
values of the likelihood function should indicate a better fit to a normal dis-
tribution. 

Figure 3.24 displays a plot of the probability plot correlation coefficient 
vs. various values of the transform power  for the Reference area TcCB 
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data.  For this data set, the PPCC reaches its maximum at about =0, which 
corresponds to a log transformation.  Besides plotting the objective function 
vs. , you can also generate Q-Q plots and Tukey mean-difference Q-Q plots 
for each of the values of .

lambda
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Box-Cox Transformation Results:
PPCC vs. lambda for TcCB in epa.94b.tccb.df

(Subset with Area=="Reference")

Figure 3.24 Probability plot correlation coefficient vs. Box-Cox transform power ( )

for the Reference area TcCB data 

Menu

To create the plot of the PPCC vs. the transform power  for the Refer-
ence area TcCB data shown in Figure 3.24 using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, highlight the Data folder in the left-hand 
column.  In the right-hand (Object) column, highlight the shortcut 
epa.94b.tccb.df.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Box-Cox Transformations.  This will 
bring up the Box-Cox Transformations dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. The Data Set box should display epa.94b.tccb.df.
5. In the Variable box, choose TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. Click OK or Apply.
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You will see a print-out of the results showing the value of the PPCC for 
each of the nine values of the transform power .  You will also see a graph-
sheet with 19 pages.  The first page is the same as Figure 3.24.  The next 
nine pages display the normal Q-Q plots for each of the values of , and the 
last nine pages display the corresponding Tukey mean-difference Q-Q plots. 

Command

To create the plot of the PPCC vs. the transform power  for the Refer-
ence area TcCB data shown in Figure 3.24 using the ENVIRONMENTALSTATS

for S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)

boxcox.list <- boxcox(TcCB[Area=="Reference"]) 

plot(boxcox.list)

detach()

At this point, you will see a menu selection.  You can select 2 to plot the 
PPCC vs.  (Figure 3.24).  Selecting 3 will produce the nine Q-Q plots for 
each of the values of , and selecting 4 will produce the nine Tukey mean-
difference Q-Q plots.  You can create all of these plots by selecting 1.  Select 
0 to exit the menu. 

Alternatively, to create all of the plots, you can type 

plot(boxcox.list, plot.type="All") 

To print the results, type 

boxcox.list

To detach the data frame epa.94b.tccb.df from your search list, type 

detach()

GRAPHS FOR TWO OR MORE VARIABLES 

This main section discusses graphs you can use when you are interested 
in looking at the relationship between two or more variables.  Table 3.11 
summarizes the plots we will discuss in this section.  Two kinds of plots that 
we will postpone discussion of until Chapter 11 are time series plots and 
autocorrelation plots.  Three kinds of plots for multivariate data that are not 
discussed in this section include trilinear diagrams (Helsel and Hirsch, 1992, 
pp. 56 57), profile plots (Chambers et al., 1983, pp. 157 163; Helsel and 
Hirsch, 1992, pp. 51 52), and star plots (Chambers et al., 1983,  
pp. 157 161; Helsel and Hirsch, 1992, p. 53). 
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Plot Type Data Characteristics Plot Characteristics 
Scatterplot Numeric data collected in 

(x,y) pairs (two variables) 
Points on two-dimensional 
graph indicating the values of 
each pair 

Three-dimensional
  Scatter Plot or 
Cloud Plot 

Numeric data collected in 
(x,y,z) triplets
(three variables) 

Points on three-dimensional 
graph indicating the value of 
each triplet 

Scatterplot with Text " Scatterplot that uses the val-
ues of the z variable for the 
plotting symbols 

Bubble Plot " Scatterplot with size of sym-
bol proportional to z variable 

Contour Plot " Interpolated smooth lines on 
two-dimensional graph indi-
cating changes in z variable 

Image Plot or
Level Plot 

" Interpolated, grided color or 
gray-scale picture on two-
dimensional graph indicating 
changes in z variable 

Filled Contour Plot " Combination contour plot and 
level plot 

Surface Plot or  
Wireframe Plot or
Perspective Plot, and 
Filled versions 

" Multiple interpolated smooth 
lines on a three-dimensional 
graph indicating changes in z
variable; filled versions have 
color or gray-scale between 
the lines 

Scatterplot Matrix Numeric data collected on 
three or more variables 

All possible pairwise scatter-
plots

Multi-Panel
  Conditioning Plot 
  or
Trellis Plot 

Data collected on two or 
more variables 

Any of the plots for one vari-
able or two variables, condi-
tioned on one or more other 
variables

Table 3.11 A description of plots for two or more variables 

Scatterplots and Loess Smooths 

A scatterplot is used to look at the relationship between two variables, 
say x and y.  The variables somehow occur “naturally” in pairs (e.g., ozone 
and temperature readings taken at the same time from the same place).  We 
take a sample of n (x, y) pairs from the population of “all possible” (x, y)
pairs, then plot the n pairs of points on Cartesian coordinates.  Often, we are 
interested in determining whether there is some sort of deterministic rela-
tionship between the two variables (e.g., linear or curvilinear) that may be 
hidden by “noise” in the data. 
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Scatterplot of Ozone vs. Temperature
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Figure 3.25 Scatterplot of ozone vs. temperature for data in environmental

Cube-Root of Ozone vs. Temperature
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Figure 3.26 Scatterplot of cure-root of ozone vs. temperature for data in air
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S-PLUS contains two built-in data frames called air and environ-
mental that contain observations on ozone (ppb for environmental,
ppb1/3 for air), solar radiation (langleys), temperature (degrees Fahrenheit), 
and wind speed (mph) for 111 days between May and September 1973.  
Figure 3.25 shows the scatterplot of ozone vs. temperature.  This scatterplot 
show that ozone is positively correlated with temperature:  as temperature 
increases, so does the ozone concentration.  It also shows that values of 
ozone become more variable as temperature increases.  Of course, here we 
are ignoring information in the other variables (wind speed and radiation).  
Figure 3.26 shows the cube-root of ozone vs. temperature using the data 
from the air data frame.  It looks like this transformation of the ozone data 
tends to linearize the relationship with temperature and also keeps the vari-
ability of the ozone values about the same across the range of temperatures. 

To assess whether the relationship between cube-root ozone and tempera-
ture is truly linear, we could fit a straight line using simple linear regression 
and assess the goodness of the fit by doing the usual things like looking at 
the residuals and testing whether the slope is significantly different from 0 
(see Chapter 9 for an explanation of linear regression models).  A very handy 
method of looking for a “signal” in the “noise” without having to impose a 
specific model on the data is to use the smoother called loess invented by 
William Cleveland, and whose name comes from the phrase “locally 
weighted regression” (Chambers et al., 1983, pp. 94 104; Cleveland, 1993, 
Chapter 3; Cleveland, 1994, pp. 168 180; Helsel and Hirsch, 1992,  
pp. 45 46).  A loess curve is constructed as follows. 

1. For each x-value, a window (local neighborhood or bin) is con-
structed about that value. 

2. A straight line (or optionally a quadratic line) is fit only to the obser-
vations within the window using weighted regression so that obser-
vations close to the x-value receive more weight than observations 
farther away from the x-value.

3. Once the line is fit, the y-value is “predicted” based on the current 
x-value.  Often, a robust regression procedure is used in which dur-
ing an iterative fitting process observations with large residuals (ob-
served value minus fitted value) are given less weight than the other 
observations, and the fit is computed again. 

Figure 3.27 shows that in fact the relationship between the cube-root of 
ozone and temperature appears not to be linear, but slightly curvilinear.  Per-
haps it could even be modeled as two separate straight lines, with one line 
describing the relationship when the temperature is less than 75 degrees and 
a second line describing the relationship when the temperature is over 75  
degrees.
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Cube-Root of Ozone vs. Temperature with Loess Smooth
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Figure 3.27 Cube-root of ozone vs. temperature with a loess smooth added 

Menu

To produce the scatterplot of ozone vs. temperature shown in Figure 3.25 
using the S-PLUS pull-down menus or toolbars, follow these steps. 

1. Open the Object Explorer, and click on the Find S-Plus Objects
button (the binoculars icon). 

2. In the Pattern box, type environmental, then click OK.
3. Highlight the shortcut environmental in the Object column of the 

Object Explorer. 
4. On the S-PLUS menu bar, make the following menu choices:   

Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Scatter Plot and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Scat-
ter button.) 

5. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display environmental.

6. In the x Columns box, choose temperature.
7. In the y Columns box, choose ozone.
8. Click OK.
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To produce the scatterplot of the cube-root of ozone vs. temperature shown 
in Figure 3.26, repeat the above steps, but in Steps 2, 3, and 5, replace envi-
ronmental with air.  To produce the scatterplot and added loess smooth 
shown in Figure 3.27, follow Steps 4 to 8 above (using air instead of envi-
ronmental), except in Step 4, select Smoothing – Loess Plot instead of Scat-
ter Plot.  (Alternatively, left-click on the 2D Plots button, then left-click on 
the Loess button.) 

Command

To produce the scatterplot shown in Figure 3.25 using the S-PLUS Com-
mand or Script Window, type this command. 

plot(environmental$temperature, environmental$ozone,

xlab = "Temperature (degrees F)", ylab = "Ozone",

main = "Scatterplot of Ozone vs. Temperature") 

To produce the scatterplot shown in Figure 3.26, type this command. 

plot(air$temperature, air$ozone,

xlab = "Temperature (degrees F)",

ylab = "Ozone (ppb^1/3)",

main = "Cube-Root of Ozone vs. Temperature") 

To produce the scatterplot and added loess smooth shown in Figure 3.27, 
type this command. 

scatter.smooth(air$temperature, air$ozone,

xlab = "Temperature (degrees F)", 

ylab = "Ozone (ppb^1/3)",

main = paste("Cube-Root of Ozone vs. Temperature", 

  "with Loess Smooth")) 

You can also use the function xyplot to produce these plots (see the 
S-PLUS documentation). 

Three-Dimensional Plots 

Three-dimensional scatterplots (also called cloud plots), scatterplots with 
text, bubble plots, contour plots, image plots (also called level plots), and 
surface plots (also called wireframe plots or perspective plots) are all used to 
display the relationship between three variables.  Contour plots, image plots, 
and surface plots are best suited for data in which two of the variables are 
observed on a regular grid in the x-y plane, because z-values at (x,y) pairs 
not on the grid must be interpolated in some fashion.  Even if the (x,y) pairs 
do not fall on a regular grid, however, it is fairly easy in S-PLUS to produce 
smoothed z-values, but you must be careful, as we will see. 
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A three-dimensional scatterplot or cloud plot plots (x, y, z) triplets on a 
rendering of a three-dimensional graph.  Figure 3.28 displays a cloud plot of 
ozone vs. wind speed and temperature for the data in the environmental
data frame.  From this perspective, it looks like perhaps the relationship be-
tween ozone and temperature changes as wind speed changes, and that for 
higher values of wind speed ozone does necessarily increase with tempera-
ture.  Since we are rendering a three-dimensional picture in two dimensions, 
the plot will look different from different perspectives.  In the Windows ver-
sion of S-PLUS, you can easily rotate a cloud plot by simply clicking on the 
middle of the plot and then dragging one of the three filled circles that  
appears.

Wind Speed (mph)
Temperature (degrees F)

Ozone (ppb)

3D Scatterplot for Ozone Data

Figure 3.28 Three-dimensional scatterplot (cloud plot) of ozone vs. wind speed and 
temperature for the data in the environmental data frame 

A scatterplot with text is a scatterplot in which the plotting symbol is the 
value of a third variable.  It is a simple, crude tool to convey information 
about how the z variable changes with the x and y variables.  Figure 3.29 
shows a scatterplot with text for temperature vs. wind speed for which the 
plotting symbol is the value of ozone.  Here we see that ozone ranges from 1 
ppb to 168 ppb, and in general ozone is largest for low wind speeds and high 
temperatures, although there are a few points where ozone is also high at 
moderate and high wind speeds.  Also note that there are no observations for 
simultaneously low values of wind speed and low values of temperature, nor 
are there any for simultaneously high values of wind speed and high values 
of temperature. 
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Scatterplot with Text for Ozone Data
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Figure 3.29 Scatterplot of temperature vs. wind speed, with plotting symbols equal 

to the value of ozone, using the data in environmental

Bubble Plot for Ozone Data
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Figure 3.30 Bubble plot of temperature vs. wind speed, with size of plotting symbols 

proportional to the value of ozone, using the data in environmental
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A bubble plot is simply a scatterplot where the size (area) of the plotting 
symbol is proportional to the value of some third variable.  Figure 3.30 
shows a bubble plot for temperature vs. wind speed, where the area of the 
plotting symbol is proportional to the value of ozone.  Here we see the same 
features as in Figure 3.29, but our eyes do not have to compare numeric val-
ues of ozone. 

Just as we fit a smooth curve to ozone as a function of temperature in 
Figure 3.27, we can fit a smooth surface to ozone as a function of tempera-
ture and wind speed.  There are several different kinds of plots we can use to 
display this smooth fitted surface, including a contour plot, a level plot, and a 
surface plot.  A contour plot uses lines denoting constant height to show 
how the z variable changes over the x- y plane.  Figure 3.31 displays a con-
tour plot showing how ozone changes with wind speed and temperature.  An 
image plot or level plot uses colored or grayscale grids to show how the z
variable changes over the x- y plane.  Figure 3.32 shows a filled contour plot,
which is a level plot combined with a contour plot.  A surface plot (also 
called wireframe plot or perspective plot) uses multiple interpolated smooth 
lines on a three-dimensional graph to indicate changes in the z variable, and 
a filled version has color or grayscale between the lines.  Figure 3.33 shows 
a filled surface plot for the ozone data.  All of these plots were created by 
feeding the original (wind speed, temperature, ozone) triplets into a triangu-
lar interpolation algorithm to produce estimated values of ozone for points 
on an evenly spaced grid in the x-y plane. 
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Contour Plot for Ozone

Figure 3.31 Contour plot of ozone (ppb) as a function of wind speed and tempera-

ture for the data in environmental
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Filled Contour Plot of Ozone

Figure 3.32 Filled contour plot of ozone (ppb) as a function of wind speed and tem-

perature for the data in environmental

Filled Surface Plot for Ozone

Figure 3.33 Filled surface plot of ozone (ppb) as a function of wind speed and tem-

perature for the data in environmental
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The plots in Figures 3.31 to 3.33 show estimated values of ozone over 
the entire combined ranges of wind speed and temperature.  Note for exam-
ple that it looks like ozone increases quickly as both wind speed and tem-
perature increase, and also as wind speed decreases towards 0 and the tem-
perature is around 75 degrees.  This illustrates the danger of using contour, 
level, and surface plots when your data do not span a square area.  Look at 
Figure 3.29 and recall that there are no observed ( x, y) pairs of wind speed 
and temperature where both of these variables are large, nor are there any for 
very low values of wind speed when the temperature is around 75 degrees.  
We therefore have no idea how ozone behaves in these two areas of the plots, 
yet the plots might make us think there are very real trends here.  (In S-PLUS

you can display just the part of the plot that contains the (x, y) observations.) 
Another important point to note about these three-dimensional plots is 

that we are looking at a fitted surface, not the original data.  In Figure 3.27 
we can see both the original data relating ozone to temperature, and the loess 
fit.  In Figures 3.31 to 3.33, we only see the fitted surface, so we do not have 
any kind of feel for the observed variability in ozone. 

Menu

To produce the three-dimensional scatterplot of ozone vs. wind speed and 
temperature shown in Figure 3.28 using the S-PLUS pull-down menus or 
toolbars, follow these steps. 

1. In the Object Explorer, highlight the shortcut environmental in the 
Object column. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>3D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, 3D should be highlighted.  Under the 
Plot Type column, select 3D Scatter Plot and click OK.  (Alterna-
tively, left-click on the 3D Plots button, then left-click on the 3D
Scatter button.) 

3. The 3D Line/Scatter Plot dialog box should appear.  The Data Set 
box should display environmental.

4. In the x Columns box, choose wind.
5. In the y Columns box, choose temperature.
6. In the z Columns box, choose ozone.
7. Click OK.

To produce the scatterplot with text shown in Figure 3.29, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Scatter Plot and click OK.  (Alterna-
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tively, left-click on the 2D Plots button, then left-click on the Scat-
ter button.) 

2. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display environmental.

3. In the x Columns box, choose wind.
4. In the y Columns box, choose temperature.
5. In the z Columns box, choose ozone.
6. Click on the Symbol tab. 
7. In the Height box, type 0.25.
8. Click on the Use Text As Symbol box to select this option. 
9. In the Text to Use box, select z Column.
10. Click OK.

To produce the bubble plot shown in Figure 3.30, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Bubble Plot and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Bub-
ble button.) 

2. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display environmental.

3. In the x Columns box, choose wind.
4. In the y Columns box, choose temperature.
5. In the z Columns box, choose ozone.
6. Click OK.

To produce the contour plot shown in Figure 3.31, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Contour Plot and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Con-
tour button.) 

2. The Contour Plot dialog box should appear.  The Data Set box 
should display environmental.

3. In the x Columns box, choose wind.
4. In the y Columns box, choose temperature.
5. In the z Columns box, choose ozone.
6. Click on the Labels tab. 
7. In the Precision box, type 0.
8. Click on the Contour/Fills tab. 
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9. Under Contour Specs, in the Minimum Level box, type 20, in the 
Maximum Level box type 180, and in the # of Levels box type 9.

10. Click OK.

To produce the filled contour plot shown in Figure 3.32, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Contour - Filled and click OK.  (Al-
ternatively, left-click on the 2D Plots button, then left-click on the 
Filled Contour button.) 

2. The Contour Plot dialog box should appear.  The Data Set box 
should display environmental.

3. In the x Columns box, choose wind.
4. In the y Columns box, choose temperature.
5. In the z Columns box, choose ozone.
6. Click on the Labels tab. 
7. Under Styles, click on the Bold box to select this option. 
8. In the Precision box, type 0.
9. Click on the Contour/Fills tab. 
10. Under Contour Specs, in the Minimum Level box, type 20, in the 

Maximum Level box type 280, and in the # of Levels box type 14.
11. In the Fill Type box, select 3 Color Range.
12. In the Start Color box, choose Bright White.
13. In the Middle Color 2 box, choose Lt Cyan.
14. In the End Color box, choose Lt Blue.
15. Click OK.

To produce the filled surface plot shown in Figure 3.33, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>3D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, 3D should be highlighted.  Under the 
Plot Type column, select Surface – Filled, Data Grid and click OK.
(Alternatively, left-click on the 3D Plots button, then left-click on 
the Filled Data Grid Surface button.) 

2. The Surface/3D Bar Plot dialog box should appear.  The Data Set 
box should display environmental.

3. In the x Columns box, choose wind.
4. In the y Columns box, choose temperature.
5. In the z Columns box, choose ozone.
6. Click on the Fills tab. 
7. In the Fill Type box, select 3 Color Range.
8. In the Start Color box, choose Bright White.
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9. In the Middle Color 2 box, choose Lt Cyan.
10. In the End Color box, choose Lt Blue.
11. Click OK.

You may modify the steps listed above that produce the contour plots and 
surface plot so that the plots only show estimated values of ozone for the 
area of the x- y plane that contains observations of the (wind, temperature) 
pairs.  To do this, add the following step before you click on OK or Apply:
Click on the Gridding/Hist tab, and uncheck the Extrapolate box. 

Command

To produce the three-dimensional plots shown in Figures 3.27 to 3.32 us-
ing the S-PLUS Command or Script Window, first attach the environ-
mental data frame to the search list with the following command. 

attach(environmental)

To produce the three-dimensional scatterplot of ozone vs. wind speed and 
temperature shown in Figure 3.28 using the S-PLUS Command or Script 
Window, type this command. 

cloud(ozone ~ wind * temperature,

data = environmental, xlab = "Wind Speed (mph)", 

ylab = "Temperature (degrees F)",

zlab = "Ozone (ppb)", main = list(cex = 1.25,

"3D Scatterplot for Ozone Data")) 

To produce the scatterplot with text shown in Figure 3.29, type these com-
mands. 

plot(wind, temperature, type = "n",

xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Scatterplot with Text for Ozone Data") 

text(wind, temperature, labels = ozone) 

To produce the bubble plot shown in Figure 3.30, type these commands. 

plot(wind, temperature, type = "n",

xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Bubble Plot for Ozone Data") 

symbols(wind, temperature,

circles = sqrt(ozone), add = T, inches = 0.25) 

© 2001 by CRC Press LLC



To produce the contour plots and surface plot shown in Figures 3.30 to 
3.32 using the S-PLUS Command or Script Windows, we must first create a 
matrix with interpolated values of ozone (this is done automatically when we 
use the menu).  To create the matrix type these commands.  (Note: These 
commands are a bit complicated because there are some duplicate values of 
the pairs (wind, temperature), so we will take the median value of ozone for 
these duplicate pairs, then call the interp function.) 

xy <- paste(wind, temperature, sep = ",") 

i <- match(xy, xy) 

z.smooth <- unlist(lapply(split(ozone, i), median)) 

ord <- !duplicated(xy) 

ozone.smooth <- data.frame(wind = wind[ord],

temperature = temperature[ord], ozone = z.smooth) 

ozone.list <-  interp(ozone.smooth$wind, 

ozone.smooth$temperature, ozone.smooth$ozone,

extrap = T, ncp = 2) 

The object ozone.list is a list with three components called x, y, and 
z.  The components x and y are numeric vectors with 40 evenly spaced 
points between the minimum and maximum values of wind and temperature, 
respectively.  The component z is a 40 by 40 matrix containing the interpo-
lated values of ozone.  If you do not wish to plot estimated values of ozone 
that are extrapolated outside the area of the x- y plane that contains the ob-
served (wind, temperature) pairs, then set extrap=F in the call to interp.

To produce the contour plot shown in Figure 3.31, type this command: 

contour(ozone.list, xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Contour Plot of Ozone") 

or this command: 

contourplot(c(z) ~ rep(x, 40) * rep(y, rep(40,40)), 

data = ozone.list, xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Contour Plot of Ozone") 

To produce the filled contour plot shown in Figure 3.32, type this command. 

contourplot(c(z) ~ rep(x, 40) * rep(y, rep(40,40)), 

data = ozone.list, region = T, 

xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Filled Contour Plot of Ozone") 
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To produce the surface plot shown in Figure 3.33 (but not filled), type these 
commands: 

persp(ozone.list, xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

zlab = "Ozone (ppb)") 

title(main = "Surface Plot of Ozone") 

or this command: 

wireframe(c(z) ~ rep(x, 40) * rep(y, rep(40,40)),

data = ozone.list, xlab = "Wind Speed (mph)",

ylab = "Temperature (degrees F)",

main = "Surface Plot of Ozone") 

Scatterplot Matrix and Brushing 

A scatterplot matrix displays all possible pairwise scatterplots for three 
or more variables, where the plots share some axes.  Figure 3.34 shows the 
scatterplot matrix for all of the variables in the environmental data 
frame.  These plots show that ozone is positively correlated with radiation 
and temperature, and negatively correlated with wind speed.  Also, tempera-
ture and wind speed are negatively correlated.  There is no apparent relation-
ship between radiation and temperature. 
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Figure 3.34 Scatterplot matrix for the variables in the environmental data frame 
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Cleveland (1994, p. 196) points out the inverted V-shape pattern of the 
plot of ozone vs. radiation and notes that for low values of radiation, high 
values of ozone never occur because the photochemical reactions that pro-
duce ozone require a certain amount of solar radiation.  Also, for the highest 
values of radiation, high values of ozone do not occur either because wind 
speed tends to be moderate to high and temperature tends to be moderate to 
low.  In fact, very high levels of radiation occur only when the air pollution 
(including ozone) is minimal. 

In S-PLUS, you can also brush a scatterplot matrix interactively (Cleve-
land, 1994, pp. 206 209).  That is, you can highlight points in one of the 
scatterplots and these same cases will show up highlighted in the other scat-
terplots. 

Menu

To produce the scatterplot matrix shown in Figure 3.34 using the S-PLUS

pull-down menus or toolbars, follow these steps. 

1. In the Object Explorer, highlight the shortcut environmental in the 
Object column. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, select Matrix.  Under the Plot Type 
column, select Scatter Plot Matrix and click OK.  (Alternatively, 
left-click on the 2D Plots button, then left-click on the Scatter Ma-
trix button.) 

3. The Scatter Plot Matrix dialog box should appear.  The Data Set box 
should display environmental.

4. Click OK.

You can brush points in the scatterplot matrix one of two ways.  The first 
way is to create the scatterplot matrix following the above steps, and then do 
the following. 

5. Click on the Graph Tools button, then click on the Select Data but-
ton.  Move the mouse cursor to one of the scatterplots, then hold the 
left mouse button down and drag it to envelope the points you want 
to select within the growing rectangle.  Once you have selected the 
points you want, lift up on the left mouse button, and the points will 
be highlighted in all of the scatterplots. 

The other way to brush points in the scatterplot matrix is to do the following. 

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>Brush and Spin.  This will bring up the Brush Properties 
dialog box.   

2. The Data Set box should display environmental.
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3. Click OK.
4. In the Brush window, left-click outside of any plots to adjust the size 

and shape of the brush. 
5. Within any of the scatterplots, left-click and drag the brushing area 

over the points you want to highlight. 
6. See the S-PLUS documentation for more information on how to use 

brush and spin. 

Command

To produce the scatterplot matrix shown in Figure 3.34 using the S-PLUS

Command or Script Windows, type this command: 

pairs(environmental, labels = c("Ozone\n(ppb)",

"Radiation\n(langleys)",

"Temperature\n(degrees F)", "Wind Speed\n(mph)")) 

or this command: 

splom(~environmental)

To brush the scatterplot matrix, type this command. 

brush(environmental)

Multi-Panel Conditioning Plot (Coplot) or Trellis Plot 

Multi-panel conditioning plots, also called coplots or Trellis plots, let 
you view the behavior of one variable or the relationship between two or 
more variables conditioned on the value of one or more other variables 
(Cleveland, 1993, Chapters 4 and 5; Cleveland, 1994, pp. 198 205).  Figure 
3.10 is a histogram conditioning plot showing the histograms of the loga-
rithm of TcCB conditioned on the value of the variable Area.  Figure 3.35 
shows a scatterplot conditioning plot of ozone vs. temperature conditioned 
on wind speed, with a loess smooth added to each plot.  Here you can see 
that the highest values of ozone occur at the lowest values of wind speed, 
and that in general ozone increases with temperature, but the form of the re-
lationship appears to vary with wind speed.  For example, ozone rises 
quickly with temperature for low wind speeds, but rises more gradually with 
temperature at the highest wind speeds. 

The coplot in Figure 3.35 divides wind speed into four categories that 
contain about the same number of observations.  There is not that much dif-
ference in wind speed between the category 7.4 to 9.7 vs. 9.7 to 11.5, but the 
last category 11.5 to 20.7 contains much higher wind speeds. We can create a 
coplot with only three categories of wind speed that are equal in range in-
stead of number of observations.  Figure 3.36 shows this plot. 
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Figure 3.35 Coplot of ozone vs. temperature conditioned on wind speed, with a 
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Menu

To produce the scatterplot coplot shown in Figure 3.35 using the S-PLUS

pull-down menus or toolbars, follow these steps. 

1. In the Object Explorer, left-double-click the shortcut environmental
in the Object column.  This will bring up a data window. 

2. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Under 
the Plot Type column, select Smoothing – Loess Plot and click OK.
(Alternatively, left-click on the 2D Plots button, then left-click on 
the Loess button.) 

3. The Line/Scatter Plot dialog box should appear.  The Data Set box 
should display environmental.

4. In the x Columns box, select temperature.
5. In the y Columns box, select ozone.  Click OK.  This will produce a 

single scatter plot of ozone vs. temperature with a loess smooth. 
6. Click on the data window to bring it forward.  Left click on the top 

of the wind column to highlight that column, then left-click in a cell 
of the column, then drag the column to the top of the graphsheet and 
drop it. 

To produce the scatterplot coplot shown in Figure 3.36, follow these steps. 

1. Double-click outside the graph area in the plot you just produced.  
This will bring up the Graph2D Properties dialog box.. 

2. Click on the Multipanel tab. 
3. Under Continuous Conditioning, in the # of Panels box, type 3, and 

in the Interval Type box select Equal Ranges.  Click OK.

Command

To produce the scatterplot coplot shown in Figure 3.35 using the S-PLUS

Command or Script Windows, type these commands. 

wind <- environmental$wind 

Wind <- equal.count(wind, number = 4, overlap = 0) 

xyplot(ozone ~ temperature | Wind,

data = environmental,

xlab = "Temperature (degrees F)",

ylab = "Ozone (ppb)", panel = function(x,y) { 

panel.xyplot(x,y); panel.loess(x,y)}) 

To produce the scatterplot coplot shown in Figure 3.36, type these com-
mands. 
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cut.points <- seq(min(wind), max(wind), length = 4) 

cut.mat <- matrix(c(cut.points[-4], cut.points[-1]),

nrow = 3, ncol = 2) 

Wind <- shingle(wind, intervals = cut.mat) 

xyplot(ozone ~ temperature | Wind,

data = environmental,

xlab = "Temperature (degrees F)",

ylab = "Ozone (ppb)", panel = function(x,y) { 

panel.xyplot(x,y); panel.loess(x,y)},

layout = c(1, 3, 1)) 

SUMMARY

Summary or descriptive statistics can be classified by what they 
measure (location, spread, skew, kurtosis, etc.) and also how they 
behave when unusually extreme observations are present (sensitive 
vs. robust). 
Because environmental data usually involve measures of chemical 
concentrations, and concentrations cannot fall below 0, environ-
mental data often tend to be positively skewed. 
Graphical displays are usually far superior to summary statistics for 
conveying information in a data set. 
For univariate data in which there is a label for each value, use dot 
plots, bar charts, and pie charts.  Dot plots are usually superior to pie 
charts.
For conveying the distribution of univariate data, use strip plots, his-
tograms, density plots, boxplots, and quantile plots (also called em-
pirical cumulative distribution function plots). 
To compare two data sets or to compare a data set to a theoretical 
probability distribution, use quantile-quantile (Q-Q) plots (also 
called probability plots), and Tukey mean-difference Q-Q plots. 
To look at the relationship between two numeric variables, use a 
scatterplot.  A fitted line or curve such as a loess smooth is often 
helpful to see the signal among the “noise.” 
To look at the relationship between three variables, use scatterplots 
with text, bubble plots, three-dimensional scatter plots, contour plots, 
level plots (also called image plots), and surface plots (also called 
wireframe or perspective plots). 
Be aware that contour, level, and surface plots usually show only fit-
ted or smooth z values, not the actual observations, and also that the 
fitted z values may have been extrapolated outside the area of the x-y
plane that contain the actual observations. 
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 To look at the relationship between three or more variables, use ma-
trix scatterplots, and multi-panel conditioning plots (also called cop-
lots or Trellis plots).  Brushing matrix scatterplots may reveal impor-
tant cases. 

EXERCISES

3.1. Table 3.12 below shows nickel concentrations (ppb) collected at 
four groundwater monitoring wells (USEPA, 1992c, p. 7).  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the 
data frame epa.92c.nickel1.df.

a. Plot the observations by month, then plot them by well.  
Do you see any major differences between months or 
wells? 

b. Compute summary statistics for these data (combine wells 
and months).  How do the mean and median compare? 

c. Create a histogram with a density plot overlaid for these 
data. 

d. Create a normal Q-Q plot and a Tukey mean-difference 
Q-Q plot for these data. 

e. Do theses data appear to come from a normal population? 
f. Try using another kind of Q-Q plot to fit these data. 

Month Well 1 Well 2 Well 3 Well 4 
1
2
3
4
5

 58.8 
  1.0 
262
 56 
  8.7 

 19 
 81.5 
331
 14 
 64.4 

 39 
151
 27 
 21.4 
578

  3.1 
942
 85.6 
 10 
637

Table 3.12 Nickel data (ppb) from groundwater monitoring wells (USEPA, 1992c,  

p. 7) 

3.2. Table 3.13 below shows arsenic concentrations (ppb) collected 
quarterly at two groundwater monitoring wells.  These data are 
modified from benzene data given in USEPA (1992c, p. 56).  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the 
data frame epa.92c.arsenic3.df.

a. For each well, plot the observations by year.  Do you see 
any major differences between years? 

b. Compute summary statistics for each well (combine 
years).

c. Compare the observed distribution of arsenic at each well.  
Use whatever types of plots you wish. 
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d. Does the compliance well appear to show any evidence of 
contamination?  Why or why not? 

e. Does it appear that the background well data may be 
modeled as coming from a normal distribution? 

f. Note that sampling ceased at the background well after 
year 3.  What problems might this cause in a statistical 
analysis, especially if the compliance well had showed 
evidence of contamination? 

Well Year Observed Arsenic (ppb) 
Background  1 

 2 
 3 

12.6  30.8  52.0  28.1 
33.3  44.0   3.0  12.8 
58.1  12.6  17.6  25.3 

Compliance  4 
 5 

48.0  30.3  42.5  15.0 
47.6   3.8   2.6  51.9 

Table 3.13 Arsenic data from groundwater monitoring wells 

3.3. Using the Reference area TcCB data show in Table 3.2 on page 
55, create the four different kinds of histograms:  number 
(counts), percent of total, fraction of total, and density.  Explain 
what the bars mean for each one. 

3.4. The built-in data set halibut in S-PLUS contains annual catch 
per unit effort (CPUE) and exploitable biomass of Pacific halibut 
for the years 1935 through 1989. 

a. Compute summary statistics for each variable. 
b. For each variable, create a histogram, boxplot, strip plot, 

quantile plot, normal Q-Q plot, and Tukey mean-
difference Q-Q plot. 

c. Do both variables appear to come from a normal popula-
tion? 

3.5. Repeat the steps in the previous exercise for the S-PLUS data set 
rain.nyc1, which contains annual total New York City precipi-
tation, in inches, from 1869 to 1957. 

3.6. Using the data in rain.nyc1, look at a set of Box-Cox trans-
formations by varying the transform power  between –2 and 2 in 
increments of 0.5.  That is, follow the steps shown in the section 
Box-Cox Data Transformations and Q-Q Plots.  Based on the plot 
of PPCC vs.  and the Q-Q plots, which transformation appears to 
be best? 

3.7. Table 3.14 below shows copper concentrations (ppb) collected at 
three groundwater monitoring wells:  two background wells and 
one compliance well (USEPA, 1992c, p. 47).  These data are 
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stored in epa.92c.copper1.df in ENVIRONMENTALSTATS for 
S-PLUS.

a. Compute summary statistics by well type (background vs. 
compliance). 

b. Use plots to compare the compliance well with the data 
for both background wells combined. 

c. Does there appear to be any evidence of contamination? 

Month 
Well 1
(Background) 

Well 2
(Background) 

Well 3 
(Compliance)

1
2
3
4
5
6

 4.2 
 5.8 
11.3
 7.0 
 7.3 
 8.2 

 5.2 
 6.4 
11.2
11.5
10.1
 9.7 

 9.4 
10.9
14.5
16.1
21.5
17.6

Table 3.14 Copper data (ppb) from groundwater monitoring wells (USEPA, 1992c, 

p. 47) 

3.8. Table 3.15 below shows arsenic concentrations (ppm) collected at 
six groundwater monitoring wells (USEPA, 1992c, p. 6).  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the 
data frame epa.92c.arsenic1.df.

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 
1
2
3
4

22.90
 3.09 
35.7
 4.18 

 2.0 
 1.25 
 7.8 
52

  2.0 
109.4
  4.5 
  2.5 

 7.84 
 9.3 
25.9
 2.0 

24.9
 1.3 
 0.75 
27

0.34
4.78
2.85
1.2

Table 3.15 Arsenic data (ppm) from groundwater monitoring wells (USEPA, 1992c, 

p. 21) 

a. Compute summary statistics for each well. 
b. Use strip plots to compare the distribution of observations 

at each well. 
c. Use boxplots to compare the distribution at each well.  Do 

you think it is a good idea to use boxplots with only four 
observations per well?  Why or why not? 

3.9. Using the median daily maxima ozone concentration for June-
August, 1974 and latitudes and longitudes stored in the data frame 
ozone.NE you created on page 70, create a contour plot, level 
plot, and surface plot of ozone concentrations.  Can you figure out 
how to add a map of this part of the U.S. to the contour plot?  
(Hint:  Use the function usa.)
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3.10. The built-in data set quakes.bay in S-PLUS contains the loca-
tion, time and magnitude of earthquakes in the San Francisco Bay 
Area from 1962 to 1981. 

a. Create a scatterplot using just longitude (on the x-axis)
and latitude (on the y-axis).  What kind of pattern do you 
see?  Can you think of an explanation for it? 

b. Create a scatterplot with text for these data, putting the 
longitude on the x-axis, the latitude on the y-axis, and 
plotting the magnitudes of the earthquakes.  Is this kind of 
plot helpful for these data?  Why or why not? 

c. Create a bubble plot for these data.  Is this kind of plot 
helpful for these data?  Why or why not? 

d. Create a contour plot and surface plot, both with and 
without extrapolation.  What happens when you extrapo-
late outside the x-y plane where the quakes were ob-
served? 

3.11. The built-in data sets evap.y and evap.x in S-PLUS contain 
observations on soil evaporation and related variables, including 
soil temperature, air temperature, relative humidity, and total wind 
(see the S-PLUS  help file for evap). 

a. Create a data frame to combine these data using the fol-
lowing command. 

evap <- data.frame(evap=evap.y, evap.x) 

b. Plot evaporation vs. average relative humidity, and add a 
loess smooth. 

c. Use scatterplot matrices and brushing to look at the rela-
tionship between evaporation and some of the other vari-
ables (e.g., average soil temperature, average air tempera-
ture, average relative humidity, and total wind).  What 
patterns do you see? 

d. Use multi-panel conditioning plots to look at these data. 
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4 PROBABILITY DISTRIBUTIONS 

APPROXIMATIONS TO THE REAL WORLD

As we stated in Chapter 3, a population is defined as the entire collection 
of measurements about which we want to make a statement, such as all pos-
sible measurements of dissolved oxygen in a specific section of a stream 
within a certain time period.  Probability distributions are idealized mathe-
matical models that are used to model the variability inherent in a population 
(e.g., all measures of dissolved oxygen will not exactly match each other).  
Certain probability distributions come up again and again in environmental 
statistics.  This chapter discusses the concepts of a random variable and a 
probability distribution, talks about important probability distributions in en-
vironmental statistics, and shows you how to use various functions in S-PLUS

and ENVIRONMENTALSTATS for S-PLUS to plot and generate quantities asso-
ciated with probability distributions. 

WHAT IS A RANDOM VARIABLE? 

When you perform an environmental study, you take a sample from a 
population and record the measurements associated with the sample.  For ex-
ample, the population may be all possible measurements of dissolved oxygen 
in a certain section of a stream within a given time period, and you may take 
50 physical samples of water and measure the dissolved oxygen in each 
sample.  The actual numbers, the actual concentrations of dissolved oxygen, 
are realizations of a concept called a random variable. 

A random variable is “the value of the next observation in an experi-
ment” (Watts, 1991, as quoted by Berthoux and Brown, 1994, p. 7).  It is the 
measurement associated with the next physical sample from the population.  
Outcomes of a random variable usually differ in value from observation to 
observation.  This is because there are usually several sources of variability 
that contribute to the final value (see Figure 1.1). 

Example 4.1:  Flipping a Fair Coin 10 Times 

One of the simplest examples of a random variable involves flipping a 
coin and observing whether the coin lands “heads” or “tails.”  In this case, 
the population is the set of outcomes from flipping the coin an infinite num-
ber of times, and the random variable is the outcome from flipping the coin. 

© 2001 by CRC Press LLC



Figure 4.1 shows the results of flipping a fair coin 10 times.  Here, the 
term “fair” means that a head is just as likely to occur as a tail.  The histo-
gram (really a bar chart) in Figure 4.1 shows the outcome from such an ex-
periment, where 0 represents a tail and 1 represents a head.  We can see that 
there were six tails and four heads in our experiment. 
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Figure 4.1 Results of flipping a fair coin 10 times 

DISCRETE VS. CONTINUOUS RANDOM VARIABLE 

The outcome in the coin-tossing experiment is an example of a discrete
random variable; it can take on only two possible values (either 0 or 1).  In 
general, a discrete random variable can take on only a finite or countably in-
finite number of values. 

On the other hand, a continuous random variable can take on an infinite 
number of values.  For example, the concentration of 1,2,3,4-
tetrachlorobenze (TcCB) in a physical sample of soil may theoretically take 
on an infinite number of values.  In reality, however, the values of a “con-
tinuous” random variable are limited by the precision of the instrument used 
to measure the random variable and the level of mathematical rounding or 
truncation used to report the results. 
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Example 4.2:  TcCB Measurements Modeled as Continuous 

The TcCB data we talked about in Chapter 3 are associated with an ex-
periment in which soil samples were taken from two different areas and the 
amount of TcCB (in ppb) was measured in each physical soil sample.  In this 
case, the population is the set of measurements from all possible soil sam-
ples, and the random variable is the concentration of TcCB that will be ob-
served in a soil sample.  The 47 observed measures of TcCB in the Reference 
area are summarized in the histogram below. 
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Figure 4.2 Histogram of the Reference area TcCB data 

WHAT IS A PROBABILITY DISTRIBUTION? 

In our coin-tossing experiment (Figure 4.1), 40% of our tosses (4/10) re-
sulted in a head.  We can represent this with the relative frequency histo-
gram or density histogram shown in Figure 4.3.  For each class (bar) of a 
density histogram, the proportion of observations falling in that class is equal 
to the area of the bar; that is, it is the width of the bar times the height of the 
bar.  In Figure 4.3, the width of each bar happens to be 1, so Figure 4.3 is ex-
actly the same as Figure 4.1 except we have divided the numbers on the y-
axis by the total number of times we flipped the coin. 

Now let us repeat the coin-tossing experiment, except we will flip the 
coin 100 times.  The result of this experiment is shown in Figure 4.4.  In this  

© 2001 by CRC Press LLC



0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Outcome of Flip

R
el

at
iv

e 
F

re
qu

en
cy

Figure 4.3 Relative frequency (density) histogram for 10 coin flips 
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Figure 4.4 Relative frequency (density) histogram for 100 coin flips 
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case a little over 50% of our tosses resulted in a head.  Because we are toss-
ing a fair coin, we would expect that as we toss the coin more and more 
times, the percentage of heads should “get close” to 50%.  This is called the 
“Law of Large Numbers.” 

For a discrete random variable that takes on integer values, a probability 
distribution can be thought of as what a density (relative frequency) histo-
gram of outcomes would look like if you could take a very large or infinite 
number of samples.  Figure 4.5 shows the probability distribution for the 
coin-tossing experiment. 
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Figure 4.5 Probability distribution for the coin-tossing experiment 

Figure 4.6 shows the relative frequency (density) histogram for the Ref-
erence area TcCB data.  As we stated before, for each class (bar) of this his-
togram, the proportion of observations falling in that class is equal to the 
area of the bar; that is, it is the width of the bar times the height of the bar.  If 
we could take many, many more samples and create relative frequency his-
tograms with narrower and narrower classes, we might end up with a picture 
that looks like Figure 4.7, which shows the probability density function of a 
lognormal random variable with a mean of 0.6 and a coefficient of variation 
of 0.5.  For a continuous random variable, a probability distribution can be 
thought of as what a density (relative frequency) histogram of outcomes 
would look like if you could keep taking more and more samples and mak-
ing the histogram bars narrower and narrower. 
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Figure 4.6 Relative frequency (density) histogram of Reference area TcCB data 
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Figure 4.7 A lognormal probability distribution 
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PROBABILITY DENSITY FUNCTION (PDF) 

A probability density function (pdf) is a mathematical formula that de-
scribes the relative frequency of a random variable.  Sometimes the picture 
of this formula (e.g., Figures 4.5 and 4.7) is called the pdf. 

If a random variable is discrete, its probability density function is some-
times called a probability mass function, since it shows the “mass” of prob-
ability at each possible value of the random variable.  The probability den-
sity (mass) function for the coin-tossing experiment shown in Figure 4.5 is 
given by: 

0.5, 0
Pr

0.5, 1

x
f x X x

x
(4.1)

In this equation, the letter f stands for the probability density (mass) func-
tion, the letters Pr stand for the phrase “the probability that,” the uppercase 
X stands for the random variable (the outcome of the coin toss), and the 
lower case x stands for the actual value that the random variable takes on af-
ter one toss of the coin (0 = tail, 1 = head). 

The probability density function for the lognormal distribution shown in 
Figure 4.7 is given by: 

2

2

1 1
exp log , 0

2 2
f x x x

x
(4.2)

where

2

1 2
2

log
1

log 1

0.6

0.5
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(We will talk more about what all these Greek letters mean later in this chap-
ter when we talk about the lognormal distribution.  Also, in the next chapter 
we will talk about how we came up with a mean of 0.6 and a coefficient of 
variation of 0.5). 

For a relative frequency (density) histogram, the area of the bar is the 
probability of falling in that interval.  Similarly, for a continuous random 
variable, the probability that the random variable falls into some interval, say 
between 0.75 and 1, is simply the area under the pdf between these two in-
terval endpoints.  Mathematically, this is written as: 

1

0.75

Pr 0.75 1X f x dx (4.3)

For the lognormal pdf shown in Figure 4.7, the area under the curve between 
0.75 and 1 is about 0.145, so there is a 14.5% chance that the random vari-
able will fall into this interval. 

Plotting Probability Density Functions 

Figure 4.8 display examples of all of the available probability distribu-
tions in S-PLUS and ENVIRONMENTALSTATS for S-PLUS.  These probability 
distributions can be used as models for populations.  Almost all of these dis-
tributions can be derived from some kind of theoretical mathematical model 
(e.g., the binomial distribution for binary outcomes, the Poisson distribution 
for “rare” events, the Weibull distribution for extreme values, the normal dis-
tribution for sums of several random variables, etc.).  Later in this chapter we 
will discuss in detail probability distributions that are commonly used in en-
vironmental statistics. 

Menu

To produce the binomial pdf shown in Figure 4.5 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Plot Distribution.  This will bring up the Plot Distribu-
tion Function dialog box. 

2. In the Distribution box, choose Binomial.  In the size box, type 1.  In 
the prob box, type 0.5.

3. Click OK or Apply.

To produce the lognormal pdf shown in Figure 4.7, follow these steps. 
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1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Plot Distribution.  This will bring up the Plot Distribu-
tion Function dialog box. 

2. In the Distribution box, choose Lognormal (Alternative).  In the 
mean box, type 0.6.  In the cv box, type 0.5.  Click OK or Apply.

Command

To produce the binomial pdf shown in Figure 4.5 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

pdfplot("binom", list(size=1, prob=0.5)) 

To produce the lognormal pdf shown in Figure 4.7, type this command. 

pdfplot("lnorm.alt", list(mean=0.6, cv=0.5)) 
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Figure 4.8 Probability distributions in S-PLUS and ENVIRONMENTALSTATS for S-PLUS
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Figure 4.8 (continued)   Probability distributions in S-PLUS and

                                  ENVIRONMENTALSTATS for S-PLUS

Computing Values of the Probability Density Function 

You can use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to compute 
the value of the pdf for any of the built-in probability distributions.  As we 
saw in Equation (4.1), the value of the pdf for the binomial distribution 
shown in Figure 4.5 is 0.5 for x = 0 (a tail) and 0.5 for x = 1 (a head).  From 
Equation (4.2), you can show that for the lognormal distribution shown in 
Figure 4.7, the values of the pdf evaluated at 0.5, 0.75, and 1 are about 1.67, 
0.88, and 0.35, respectively. 

Menu

To compute the values of the pdf of the binomial distribution shown in 
Figure 4.5 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type 0:1.  In the Distribution box, choose Binomial.  In the size 
box type 1.  In the prob box type 0.5.  Under the Probability or 
Quantile group, make sure the Density box is checked. 

3. Click OK or Apply.

To compute the values of the pdf of the lognormal distribution shown in 
Figure 4.7 for the values 0.5, 1, and 1.5, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
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Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type c(0.5, 0.75, 1).  In the Distribution box, choose Log-
normal (Alternative).  In the mean box type 0.6.  In the cv box type 
0.5.  Under the Probability or Quantile group, make sure the Density 
box is checked. 

3. Click OK or Apply.

Command

To compute the values of the pdf of the binomial distribution shown in 
Figure 4.5 using the S-PLUS Command or Script Window, type this com-
mand. 

dbinom(0:1, size=1, prob=0.5) 

To compute the values of the pdf of the lognormal distribution shown in 
Figure 4.7 for the values 0.5, 0.75, and 1, type this command using 
ENVIRONMENTALSTATS for S-PLUS.

dlnorm.alt(c(0.5, 0.75, 1), mean=0.6, cv=0.5) 

CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

The cumulative distribution function (cdf) of a random variable X,
sometimes called simply the distribution function, is the function F such that 

PrF x X x (4.4)

for all values of x.  That is, F(x) is the probability that the random variable 
X is less than or equal to some number x.  The cdf can also be defined or 
computed in terms of the probability density function (pdf) f as 

Pr
x

F x X x f t dt (4.5)

for a continuous distribution, and for a discrete distribution it is 

Pr

i

i
x x

F x X x f x (4.6)
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Figure 4.9 illustrates the relationship between the probability density func-
tion and the cumulative distribution function for the lognormal distribution 
shown in Figure 4.7. 
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Figure 4.9 Relationship between the pdf and the cdf for a lognormal distribution 
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You can use the cdf to compute the probability that a random variable 
will fall into some specified interval.  For example, the probability that a 
random variable X falls into the interval [0.75, 1] is given by: 

1

0.75

Pr 0.75 1

Pr 1 Pr 0.75

Pr( 0.75)

1 0.75

Pr 0.75

X f x dx

X X

X

F F

X

(4.7)

For a continuous random variable, the probability that X is exactly equal to 
0.75 is 0 (because the area under the pdf between 0.75 and 0.75 is 0), but for 
a discrete random variable there may be a positive probability of X taking on 
the value 0.75. 

Plotting Cumulative Distribution Functions 

Figure 4.10 displays the cumulative distribution function for the binomial 
random variable whose pdf was shown in Figure 4.5.  Figure 4.11 displays 
the cdf for the lognormal random variable whose pdf was shown in Figure 
4.7.

We can see from Figure 4.10 that the cdf of a binomial random variable 
is a step function (which is also true of any discrete random variable).  The 
cdf is 0 until it hits x = 0, at which point it jumps to 0.5 and stays there until 
it hits x = 1, at which point it stays at 1 for all values of x at 1 and greater.  
On the other hand, the cdf for the lognormal distribution shown in Figure 
4.11 is a smooth curve that is 0 below x = 0, and rises towards 1 as x
increases.

Menu

To produce the binomial cdf shown in Figure 4.10 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 
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Figure 4.10 Cumulative distribution function for the coin-tossing experiment 

Lognormal CDF with
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Figure 4.11 Cumulative distribution function for a lognormal probability distribution 
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1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Plot Distribution.  This will bring up the Plot Distribu-
tion Function dialog box. 

2. In the Distribution box, choose Binomial.  In the size box, type 1.  In 
the prob box, type 0.5.

3. Under Plotting Information, for the Plot button, choose CDF.
4. Click OK or Apply.

To produce the lognormal cdf shown in Figure 4.11, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Plot Distribution.  This will bring up the Plot Distribu-
tion Function dialog box. 

2. In the Distribution box, choose Lognormal (Alternative).  In the 
mean box, type 0.6.  In the cv box, type 0.5.

3. Under Plotting Information, for the Plot button, choose CDF.
4. Click OK or Apply.

Command

To produce the binomial cdf shown in Figure 4.10 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

cdfplot("binom", list(size=1, prob=0.5)) 

To produce the lognormal cdf shown in Figure 4.11, type this command. 

cdfplot("lnorm.alt", list(mean=0.6, cv=0.5)) 

Computing Values of the Cumulative Distribution Function 

You can use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to compute 
the value of the cdf for any of the built-in probability distributions.  As we 
saw in Figure 4.10, the value of the cdf for the binomial distribution shown 
in that figure is 0.5 for x between 0 and 1, and 1 for x greater than or equal 
to 1.  From Equations (4.2) and (4.5), you can show that for the lognormal 
distribution shown in Figure 4.7, the values of the cdf evaluated at 0.5, 0.75, 
and 1 are about 0.44, 0.76, and 0.91, respectively. 

Menu

To compute the values of the cdf of the binomial distribution shown in 
Figure 4.10 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 
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1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type 0:1.  In the Distribution box, choose Binomial.  In the size 
box type 1.  In the prob box type 0.5.  Under the Probability or 
Quantile group, make sure the Cumulative Probability box is 
checked.

3. Click OK or Apply.

To compute the values of the cdf of the lognormal distribution shown in 
Figure 4.11 for the values 0.5, 0.75, and 1, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type c(0.5, 0.75, 1).  In the Distribution box, choose Log-
normal (Alternative).  In the mean box type 0.6.  In the cv box type 
0.5.  Under the Probability or Quantile group, make sure the Cumu-
lative Probability box is checked. 

3. Click OK or Apply.

Command

To compute the values of the cdf of the binomial distribution shown in 
Figure 4.10 using the S-PLUS Command or Script Window, type this com-
mand. 

pbinom(0:1, size=1, prob=0.5) 

To compute the values of the cdf of the lognormal distribution shown in 
Figure 4.11 for the values 0.5, 1, and 1.5, type this command using 
ENVIRONMENTALSTATS for S-PLUS.

plnorm.alt(c(0.5, 0.75, 1), mean=0.6, cv=0.5) 

QUANTILES AND PERCENTILES 

Loosely speaking, the pth quantile of a population is the (a) number such 
that a fraction p of the population is less than or equal to this number.  The 
pth quantile is the same as the 100 pth percentile; for example, the 0.5 quan-
tile is the same as the 50th percentile.  In Figure 4.9, you can see that for a 
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lognormal distribution with a mean of 0.6 and a coefficient of variation of 
0.5, the number 1 is the 0.906 quantile, or the 90.6 percentile. 

Here is a more technical definition of a quantile.  If X is a random vari-
able with some specified distribution, the pth quantile of the distribution of 
X, denoted xp, is a (the) number that satisfies: 

Pr Prp pX x p X x (4.8)

where p is a number between 0 and 1 (inclusive). 
If there is more than one number that satisfies the above condition, the 

pth quantile of X is often taken to be the average of the smallest and largest 
numbers that satisfy the condition.  The S-PLUS functions for computing 
quantiles, however, return the smallest number that satisfies the above condi-
tion (see Computing Quantiles and Percentiles below). 

If X is a continuous random variable, the pth quantile of X is simply de-
fined as the value such that the cdf of that value is equal to p:

Pr p pX x F x p (4.9)

The 100pth percentile is another name for the pth quantile.  That is, the 
100pth percentile is the (a) number such that 100p% of the distribution lies 
below this number. 

Quantiles Are Invariant under Monotonic Transformations 

An important property of quantiles is that quantiles are invariant under 
monotonic transformations.  That is, let X denote a random variable and set 
Y = g(X), where g is some monotonic function.  Then the relationship be-
tween the pth quantile for X and the pth quantile for Y is: 

1

p p

p p

y g x

x g y

(4.10)

For example, if X has a lognormal distribution, then Y = log(X) has a nor-
mal distribution (see the section Lognormal Distribution below).  If yp is the 
pth quantile of the distribution of Y, then the pth quantile of the distribution of 
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X is xp = exp(yp) .  So if the median of Y is 10, then the median of X is 
exp(10).

Computing Quantiles and Percentiles 

A plot of the cumulative distribution function makes it easy to visually 
pick out important quantiles, such as the median (50th percentile) or the 95th

percentile.  Looking at the cdf of the binomial distribution shown in Figure 
4.10, it is easy to see that any number less than 0 is a 0th percentile, any 
number greater than or equal to 0 and less than 1 is a 50th percentile, and any 
number greater than or equal to 1 is a 100th percentile.  (By convention, most 
textbooks and practitioners would say that 0.5 is the 50th percentile.)  Simi-
larly, looking at the cdf of the lognormal distribution shown in Figure 4.11, 
the median (50th percentile) is about 0.5 and the 95th percentile is about 1.1 
(the actual values are 0.537 and 1.167, respectively). 

Menu

To compute the 0th , 25th, 50th, 75th, and 100th percentiles of the binomial 
distribution shown in Figure 4.10 using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type c(0, 0.25, 0.5, 0.75, 1).  In the Distribution box, choose 
Binomial.  In the size box type 1.  In the prob box type 0.5.  Under 
the Probability or Quantile group, make sure the Quantile box is 
checked.

3. Click OK or Apply.

To compute the 50th and 95th percentiles of the lognormal distribution shown 
in Figure 4.11, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Density, CDF, Quantiles.  This will bring up the Densi-
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. For the Data to Use buttons, choose Expression.  In the Expression 
box, type c(0.5, 0.95).  In the Distribution box, choose Lognormal 
(Alternative).  In the mean box type 0.6.  In the cv box type 0.5.
Under the Probability or Quantile group, make sure the Quantile
box is checked. 

3. Click OK or Apply.
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Command

To compute the 0th , 25th, 50th, 75th, and 100th percentiles of the binomial 
distribution shown in Figure 4.10 using the S-PLUS Command or Script 
Window, type this command. 

qbinom(c(0, 0.25, 0.5, 0.75, 1), size=1, prob=0.5) 

To compute the 50th and 95th percentiles of the lognormal distribution shown 
in Figure 4.11, type this command using ENVIRONMENTALSTATS for S-PLUS.

qlnorm.alt(c(0.5, 0.95), mean=0.6, cv=0.5) 

GENERATING RANDOM NUMBERS FROM 
PROBABILITY DISTRIBUTIONS 

With the advance of modern computers, experiments and simulations that 
just a decade ago would have required an enormous amount of time to com-
plete using large-scale computers can now be easily carried out on personal 
computers.  Simulation is fast becoming an important tool in environmental 
statistics and all fields of statistics in general (see Chapter 13). 

For all of the distributions shown in Figure 4.8, you can generate random 
numbers (actually, pseudo-random numbers) from these distributions using 
S-PLUS and ENVIRONMENTALSTATS for S-PLUS.  The density histograms in 
Figure 4.3 and Figure 4.4 are based on random numbers that were generated 
with S-PLUS.  We will talk more about how random numbers are generated 
in S-PLUS in Chapter 13.  For now, all you need to know is that when you set 
the random number seed to a specific value, you will always get the same 
sequence of “random” numbers. 

Menu

To generate the random numbers from a binomial distribution that were 
used to produce Figure 4.3 (the outcomes of 10 coin flips) using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Random Numbers>Univariate.  This will bring up the 
Univariate Random Number Generation dialog box. 

2. In the Sample Size box, type 10.  In the Set Seed with box, type 482.
In the Distribution box, choose Binomial.  In the size box type 1.  In 
the prob box type 0.5.

3. Click OK or Apply.
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To generate the random numbers that were used to produce Figure 4.4 (the 
outcomes of 100 coin flips), follow the same steps as above, except in the 
Sample Size box type 100, and in the Set Seed with box type 256.

To generate 100 random numbers from the lognormal distribution shown 
in Figure 4.7, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Random Numbers>Univariate.  This will bring up the 
Univariate Random Number Generation dialog box. 

2. In the Sample Size box, type 100.  In the Distribution box, choose 
Lognormal (Alternative).  In the mean box type 0.6.  In the cv box 
type 0.5.

3. Click OK or Apply.

Command

To compute the random numbers from a binomial distribution that were 
used to produce Figure 4.3 (the outcomes of 10 coin flips) using the S-PLUS

Command or Script Window, type these commands. 

set.seed(482)

rbinom(10, size=1, prob=0.5) 

To compute the random numbers that were used to produce Figure 4.4 (the 
outcomes of 100 coin flips), type these commands. 

set.seed(256)

rbinom(100, size=1, prob=0.5) 

To generate 100 random numbers from the lognormal distribution shown 
in Figure 4.7, type these commands using ENVIRONMENTALSTATS for 
S-PLUS.

rlnorm.alt(100, mean=0.6, cv=0.5) 

CHARACTERISTICS OF PROBABILITY 
DISTRIBUTIONS

Every probability distribution has certain characteristics.  Statisticians 
have defined various quantities to describe the characteristics of a probability 
distribution, such as the mean, median, mode, variance, standard deviation, 
coefficient of variation, skew, and kurtosis.  The following sub-sections pre-
sent detailed definitions of these quantities.  Note that in Chapter 3 when we 
discussed these quantities, we were actually talking about sample statistics 
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(statistics based on a random sample).  Here, we are talking about quantities 
associated with a population.

Mean, Median, and Mode 

The mean, median, and mode are all measures of the central tendency of 
a probability distribution (although the mode is used very little in practice).  
When someone talks about the average of a population, he or she is usually 
referring to the mean, but sometimes to the median or mode. 

The median of a probability distribution is simply the 50th percentile of 
that distribution.  That is, it is the (a) number such that half of the area under 
the pdf is to the left of that number and half of the area is to the right.  Note 
that for discrete distributions, percentiles are not necessarily unique so nei-
ther is the median necessarily unique.  As we saw earlier, a median of the bi-
nomial distribution shown in Figure 4.5 and Figure 4.10 is 0, and the median 
of the lognormal distribution shown in Figure 4.7 and Figure 4.11 is 0.54. 

The mode of a probability distribution is simply the (a) quantile associ-
ated with the largest value(s) of the pdf.  A probability distribution may have 
more than one mode, such as the normal mixture distribution shown in 
Figure 4.8 on page 150.  The mode of the lognormal distribution shown in 
Figure 4.7 is about 0.5.  The binomial distribution shown in Figure 4.5 does 
not have a unique mode. 

With respect to a probability distribution, the terms mean, average, and 
expected value all denote the same quantity.  If you think of a picture of a 
probability density function and imagine it is made out of a thin sheet of 
metal, the mean is the point along the bottom of the distribution (the x-axis)
at which the distribution balances. 

The mean of a probability distribution is often denoted by the Greek let-
ter  (mu).  Mathematically, the mean of a continuous random variable is de-
fined as 

E X x f x dx (4.11)

and the mean of a discrete random variable is defined as 

x

E X x f x (4.12)
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Note that the mean may be equal to a value that the random variable 
never assumes.  For example, for the binomial distribution shown in Figure 
4.5, the mean of the distribution is 0.5, even though the random variable can 
only take on the values 0 (tails) or 1 (heads). 

Figure 4.12 illustrates the mean, median, and mode for the lognormal dis-
tribution shown in Figure 4.7.  Note that in this case the mean is larger than 
the median. 

Lognormal Density with
(mean=0.6, cv=0.5)
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Figure 4.12 Mean, median, and mode for a lognormal distribution 

Variance and Standard Deviation 

The variance of a probability distribution is the average squared distance 
between an observed value of X and the mean .  It is a measure of the 
spread of the distribution about the mean.  Because the variance is an aver-
age squared distance, it is in squared units (e.g., ppb2).  The standard devia-
tion is the square root of the variance and its units are the same as the origi-
nal units of the random variable.  The standard deviation is usually denoted 
by the Greek letter  (sigma), and the variance is thus usually denoted by 2.
Note that both the variance and standard deviation are always positive quan-
tities.

Mathematically, the variance of a continuous random variable is defined 
as:
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22

2

Var X E X

x f x dx

(4.13)

and the variance of a discrete random variable is defined as: 

22

2

x

Var X E X

x f x

(4.14)

Figure 4.15 illustrates two normal distributions with different standard devia-
tions (and hence different variances). 

Coefficient of Variation 

The coefficient of variation of a distribution (sometimes denoted CV) is 
defined as the ratio of the standard deviation to the mean: 

CV  (4.15)

The coefficient of variation is a measure of the spread of the distribution 
relative to the size of the mean.  Note that since  and  have identical units 
(e.g., ppb, degrees, mg/L, etc.), the coefficient of variation is a unit-less 
measure.  It is usually used to characterize positive, right skewed distribu-
tions such as the lognormal distribution.  Figure 4.20 illustrates two log-
normal distributions with different means and coefficients of variation. 

Skew and Kurtosis 

In the past, the skew and kurtosis of a distribution were often used to 
compare the distribution to a normal (Gaussian) distribution.  These quanti-
ties and their estimates are not so widely reported anymore, although they 
are still used to fit distributions in the system of Pearson curves (Johnson et 
al., 1994, pp. 15 25).
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Skew

The rth central moment of a random variable X is defined as: 

r
r E x

 
(4.16)

The first central moment of any distribution is 0.  The second central mo-
ment is the same thing as the variance. 

The coefficient of skewness of a distribution is defined to be the third 
central moment scaled by the cube of the standard deviation: 

3
3Skew  (4.17)

The skew measures the distribution of values about the mean.  If small val-
ues of the distribution are bunched close to the mean and large values of the 
distribution extend far above the mean (as in Figures 4.7, 4.9, and 4.12), the 
skew will be positive and the distribution is said to be positively skewed or 
right skewed.  Conversely, if small values of the distribution extend well be-
low the mean and large values of the distribution tend to bunch close to the 
mean, the skew will be negative and the distribution is said to be negatively
skewed or left skewed.

Kurtosis 

The coefficient of kurtosis of a distribution is the fourth central moment 
scaled by the square of the variance: 

4
4Kurtosis (4.18)

The kurtosis is a measure of the proportion of values in the tails (extreme 
ends) of the distribution.  The kurtosis is independent of the mean and vari-
ance of the distribution. 

For a normal distribution, the coefficient of kurtosis is 3.  Distributions 
with kurtosis less than 3 are called platykurtic — they have shorter tails than 
a normal distribution.  Distributions with kurtosis greater than 3 are called 
leptokurtic — they have heavier tails than a normal distribution.  Some-
times, the term “kurtosis” is used to mean the “coefficient of excess kurto-
sis,” which is the coefficient of kurtosis minus 3. 
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IMPORTANT DISTRIBUTIONS IN ENVIRONMENTAL 
STATISTICS

Random variables are random because they are affected by physical, 
chemical, and/or biological processes that we cannot measure or control with 
absolute precision.  Certain probability distributions are used extensively in 
environmental statistics because they model the outcomes of physical, 
chemical, and/or biological processes fairly well.  The rest of this section 
discusses some of these distributions. 

Normal Distribution 

The normal or Gaussian distribution is by far the most frequently used 
distribution in probability and statistics.  It is sometimes a good model for 
environmental data, but in a lot of cases the lognormal distribution or some 
other positively skewed distribution provides a better model.  Johnson et al. 
(1994, Chapter 13) discuss the normal distribution in detail. 

The probability density function of the normal distribution is given by: 

21 1
exp ,

22

x
f x

x

(4.19)

where  denotes the mean of the distribution and  denotes the standard de-
viation.  This distribution is often denoted by N( , ).

A standard normal distribution is a normal distribution with a mean of 0 
and a standard deviation of 1, denoted N(0, 1).  Figure 4.13 shows the pdf of 
the standard normal distribution, and Figure 4.14 shows the corresponding 
cdf.  Note that a normal distribution is symmetric about its mean. 

The Mean and Standard Deviation of a Normal Distribution 

A normal probability distribution (probability density function) is a bell-
shaped curve, regardless of the values of the mean  or the standard devia-
tion .  The value of  determines where the center of the distribution lies 
along the x-axis, and the value of  determines the spread of the distribution.  
Figure 4.15 compares a N(0, 1) pdf with a N(3, 2) pdf. 

The Sum or Average of Normal Random Variables is Normal 

A very special and important property of the normal distribution is that 
the sum or average of several normal random variables is itself a normal ran- 
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Figure 4.13 Probability density function of the standard normal distribution 
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Figure 4.14 Cumulative distribution function of the standard normal distribution 
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Two Normal Distributions

Value of Random Variable

R
el

at
iv

e 
F

re
qu

en
cy

-4 -2 0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

N(0,1)
N(3,2)

Figure 4.15 Two normal probability density functions 

dom variable.  Technically speaking, let 1 2, , , nX X X  denote n inde-

pendent normal random variables, where iX  follows a normal distribution 

with mean i  and standard deviation i .  Then the sum of the random 

variables 

1

n

i
i

Y X (4.20)

has a normal distribution with mean given by: 

1 1 1

n n n

i i i
i i i

E Y E X E X (4.21)

and a variance given by: 
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2

1 1 1

n n n

i i i
i i i

Var Y Var X Var X (4.22)

That is, the mean of the sum is simply the sum of the means, and the vari-
ance of the sum is the sum of the variances. 

The average of the random variables 

1

1 n

i
i

X X
n

(4.23)

also has a normal distribution with mean and variance given by 

1

1 n

i
i

E X
n

(4.24)

2
2

1

1 n

i
i

Var X
n

(4.25)

We can use the above information to derive the distribution of the sam-
ple mean when we are sampling from a population that follows a normal dis-
tribution with mean  and standard deviation .  In this case, all of the 
means of the n random variables are the same value , and all of the stan-
dard deviations are the same value , so the sample mean follows a normal 
distribution with the following mean, variance, and standard deviation: 

E X (4.26)

2

Var X
n

(4.27)
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Sd X
n

 (4.28)

The formulas in the above equations for the mean and variance of the sum of 
random variables, and the mean, variance, and standard deviation of the 
sample mean actually hold no matter what the underlying distribution of the 
population. 

The Central Limit Theorem 

The normal distribution often provides a good model for data because it 
can be shown that this is the distribution that results when you add up or av-
erage lots of independent random variables, no matter what the underlying 
distribution of any of these random variables (Ott, 1995, Chapter 7).  The 
technical name for this phenomenon is the Central Limit Theorem.

Figure 4.16 illustrates the Central Limit Theorem.  Here, the random 
variable X is assumed to come from an exponential distribution with a mean 
of 5 (which implies a rate parameter of 1/5).  The pdf of this distribution is 
shown in the top graph of Figure 4.16.  Note that this distribution is ex-
tremely skewed to the right and does not look like a normal distribution at 
all.  In the first experiment, we generate 10 observations from the exponen-
tial distribution and then compute the sample mean of these 10 observations.  
We then repeat this experiment 999 more times.  The histogram of these 
1,000 sample means is shown in the middle graph of Figure 4.16.  You can 
see that this histogram is certainly not as skewed to the right as the original 
exponential distribution, but it does not really look bell-shaped either.  The 
bottom graph in Figure 4.16 shows the results of a new experiment in which, 
for each of the 1,000 trials, we generate 100 observations from the exponen-
tial distribution and then average these observations.  You can see that here 
the histogram of the 1,000 sample means does look like a bell-shaped curve. 

How well you can approximate the distribution of a sum or average of 
random variables with a normal distribution depends on the sample size 
(how many observations you have to sum or average) and how different the 
underlying distributions of the random variables are from a normal distribu-
tion.  For example, if all the random variables come from a normal distribu-
tion, then we have seen that their sum or average automatically follows a 
normal distribution.  On the other hand, with our simulation experiment us-
ing the exponential distribution, we see that when we average only 10 out-
comes instead of 100 outcomes, the distribution of the sample mean does not 
really look bell-shaped. 
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Figure 4.16 Illustration of the Central Limit Theorem 
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Probabilities and Deviations from the Mean 

Figure 4.17 shows the relationship between the distance from the mean 
(in units of the standard deviation ) and the area under the curve for any 
normal distribution.  You can see that there is about a 68% chance of falling 
within one standard deviation of the mean, about a 95% chance of falling 
within two standard deviations of the mean, and almost a 100% chance of 
falling within three standard deviations of the mean.  This is an important 
property, because even though Equation (4.19) shows that the pdf is positive 
for all values of x between –  and +  (hence there is always a possibility of 
seeing very negative or very positive values), the probability of observing 
values outside three standard deviations of the mean is miniscule.  Thus, 
even though environmental data almost always take on only positive values, 
you can sometimes use the normal distribution to model them. 

Transforming Back to a Standard Normal Distribution:   
The z-transformation 

Any normal random variable can be transformed back to a standard nor-
mal random variable by subtracting its mean and dividing by its standard de-
viation.  That is, if X is a random variable with a N( , ) distribution, then 

X
Z (4.29)

is a random variable with a N(0, 1) distribution.  This is sometimes called the 
z-transformation.  One important use of the z-transformation is to trans-
form the sample mean to produce a standard normal random variable: 

X
Z

n
(4.30)

When we sample from a population that follows a normal distribution, 
the random variable Z in Equation (4.30) exactly follows a standard normal 
distribution.  When the population does not follow a normal distribution, the 
Central Limit Theorem tells us that the random variable Z in Equation (4.30) 
still follows a standard normal distribution approximately.  We will return to 
these ideas when we discuss confidence intervals and hypothesis tests in 
Chapters 5 and 7. 

Note that for an observed value x of a normal random variable X, the z-
transformation tells us how far away x is from the mean in units of the stand- 
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a normal distribution 
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ard deviation (and also whether it is larger than or smaller than the mean).  
For example, there is only about a 5% chance that the z value will fall out-
side the interval [ 2, 2], and it is very unlikely that the z value will fall out-
side the interval [ 3, 3]. 

Lognormal Distribution 

The two-parameter lognormal distribution is the distribution of a ran-
dom variable whose logarithm is normally distributed.  That is, if Y =
log(X) (where log denotes the natural logarithm) and Y has a normal dis-
tribution with mean  and standard deviation , then X is said to have a log-
normal distribution.  The distribution of X is often denoted as ( , ) where 

 and  denote the mean of the transformed random variable Y.  (Note:  
denotes the uppercase Greek letter lambda.)  Figure 4.18 shows the pdf of a 
lognormal distribution with parameters = 0 and = 1; that is, X =
exp(Z), where Z is a standard normal random variable.  Figure 4.19 shows 
the corresponding cdf. 

The probability density function of a lognormal distribution was shown 
in Equation (4.2).  A slightly different way to write the pdf of a lognormal 
distribution is shown below in Equation (4.31).  Compare this equation with 
Equation (4.19) showing the pdf of a normal distribution. 

2
log1 1

exp ,
22

0

x
f x

x

x

(4.31)

The two major characteristics of the lognormal distribution (probability den-
sity function) are that it is bounded below at 0 and it is skewed to the right.  
These characteristics are typical of environmental data.  Several authors have 
illustrated various mechanisms to explain the occurrence of the lognormal 
distribution in nature (e.g., Ott, 1990, Chapters 8 and 9).  The basic idea is 
that since the Central Limit Theorem states that the result of summing up 
random variables will produce a normal distribution, multiplying random 
variables will produce a lognormal distribution (recall that log(ab) = 
log(a) + log(b)).

Unfortunately, just because the values of a data set are bounded below at 
0 and appear to be skewed to the right, this does not automatically imply that 
the lognormal distribution is a good model.  Several other probability distri-
butions are bounded below at 0 and skewed to the right as well (for example  
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Figure 4.18 Probability density function of a lognormal distribution 

Lognormal CDF with
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Figure 4.19 Cumulative distribution function of a lognormal distribution 
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gamma, generalized extreme value, Weibull, mixture of lognormals, etc.).  
These distributions can look very similar around the median of the distribu-
tion but be very different looking in the extreme tail of the distribution (e.g., 
90th and 95th percentiles).  Because distinguishing the shape of the tail of a 
distribution usually requires an extensive number of observations, it is often 
difficult to determine the best fitting model to a skewed set of environmental 
data.  We will talk more about fitting data to distributions in Chapters 5 and 
7.

Alternative Parameterization:  Mean and CV 

Sometimes, a lognormal distribution is characterized by its mean and co-
efficient of variation rather than the mean and standard deviation of the log-
transformed random variable.  Let Y = log(X) be distributed as a N( , )
random variable, so that X is distributed as a ( , ) random variable.  Let 
(theta) denote the mean of X and let  (tau) denote the coefficient of variation 
of X.  The relationship between , , , and  is given by: 

2

exp
2

E X (4.32)

2exp 1CV X (4.33)

2
log

1
E Y (4.34)

2log 1Var Y (4.35)

There are two very important points to note about these relationships.  
The first is that even though X = exp(Y), it is not true that = exp( ),
that is, the mean of a lognormal distribution is not equal to e raised to the 
mean of the log-transformed random variable.  In fact, the quantity exp( )
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is the median of the lognormal distribution (see Equation (4.10)), so the me-
dian is always smaller than the mean (see Figure 4.12).  The second point is 
that , the coefficient of variation of X, only depends on , the standard de-
viation of Y.

The formula for the skew of a lognormal distribution can be written as: 

33Skew CV CV  (4.36)

(Stedinger et al., 1993).  This equation shows that large values of the CV 
correspond to very skewed distributions.  As  gets small, the distribution 
becomes less skewed and starts to resemble a normal distribution.  Figure 
4.20 shows two different lognormal distributions characterized by the mean 

 and CV .

Two Lognormal Distributions

Value of Random Variable

R
el

at
iv

e 
F

re
qu

en
cy

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

mean = 2
cv = 0.5

mean = 4
cv = 2

Figure 4.20 Probability density functions for two lognormal distributions 

Three-Parameter Lognormal Distribution 

The two-parameter lognormal distribution is bounded below at 0.  The 
three-parameter lognormal distribution includes a threshold parameter 
(gamma) that determines the lower boundary of the random variable.  That 
is, if Y = log(X- ) has a normal distribution with mean  and standard de-
viation , then X is said to have a three-parameter lognormal distribution.  
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The threshold parameter  affects only the location of the three-parameter 
lognormal distribution; it has no effect on the variance or the shape of the 
distribution.  Note that when = 0, the three-parameter lognormal distribu-
tion reduces to the two-parameter lognormal distribution.  The three-
parameter lognormal distribution is sometimes used in hydrology to model 
rainfall, stream flow, pollutant loading, etc. (Stedinger et al., 1993). 

Binomial Distribution 

After the normal distribution, the binomial distribution is one of the 
most frequently used distributions in probability and statistics.  It is used to 
model the number of occurrences of a specific event in n independent trials.  
The outcome for each trial is binary:  yes/no, success/failure, 1/0, etc.  The 
binomial random variable X represents the number of “successes” out of the 
n trials.  In environmental monitoring, sometimes the binomial distribution 
is used to model the proportion of observations of a pollutant that exceed 
some ambient or cleanup standard, or to compare the proportion of detected 
values at background and compliance units (USEPA, 1989a, Chapters 7 and 
8; USEPA, 1989b, Chapter 8; USEPA, 1992b, p. 5-29; Ott, 1995, Chapter 4). 

The probability density (mass) function of a binomial random variable X
is given by: 

1 , 0,1,2, ,n xxn
f x p p x n

x
(4.37)

where n denotes the number of trials and p denotes the probability of “suc-
cess” for each trial.  It is common notation to say that X has a B(n, p) distri-
bution. 

The first quantity on the right-hand side of Equation (4.37) is called the 
binomial coefficient.  It represents the number of different ways you can ar-
range the x “successes” to occur in the n trials.  The formula for the bino-
mial coefficient is: 

!

! !

n n

x x n x
(4.38)

The quantity n! is called “n factorial” and is the product of all of the inte-
gers between 1 and n.  That is, 
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Figure 4.21 Probability density function of a B(10, 0.5) random variable 
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Figure 4.22 Probability density function of a B(10, 0.2) random variable 
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! 1 2 2 1n n n  n  (4.39)

Figure 4.5 shows the pdf of a B(1, 0.5) random variable and Figure 4.10 
shows the associated cdf.  Figure 4.21 and Figure 4.22 show the pdf’s of a 
B(10, 0.5) and B(10, 0.2) random variable, respectively. 

The Mean and Variance of the Binomial Distribution 

The mean and variance of a binomial random variable are: 

1

E X  np

Var X np p

(4.40)

The average number of successes in n trials is simply the probability of a 
success for one trial multiplied by the number of trials.  The variance de-
pends on the probability of success.  Figure 4.23 shows the function f(p) =
p(1 p) as a function of p.  The variance of a binomial random variable is 
greatest when the probability of success is ½, and the variance decreases to 0 
as the probability of success decreases to 0 or increases to 1. 

Variance of Binomial Distribution
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Figure 4.23 The variance of a B(1, p) random variable as a function of p
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Hypergeometric Distribution 

One way the binomial distribution arises is when you sample a finite
population with replacement, and for each sampling unit you select you note 
whether it does or does not exhibit some characteristic.  For example, sup-
pose you pick a card at random from a standard deck of 52 playing cards, 
note whether the card is a face card or not, then return the card to the deck.  
If you repeat this experiment n times and let X denote the total number of 
face cards (jack, queen, or king) you picked, then X has a binomial distribu-
tion with parameters n and p = 12/52.  The hypergeometric distribution
arises in exactly this same situation, except that sampling is done without re-
placement.  The hypergeometric distribution is not used as often in environ-
mental studies as the binomial distribution, but we did use it in the case 
study in Chapter 2 that dealt with verifying the percentage of employees in a 
building who were familiar with the four emergency preparedness (EP) facts. 

The probability density (mass) function of a hypergeometric random 
variable X is given by: 

, 0,1,...,

m n

x k  x
f x  x  k

m n

k

(4.41)

where m denotes the number of “successes” in the population, x denotes the 
number of “successes” in the sample, n denotes the number of “failures” in 
the population, and k denotes the total number of sampling units selected for 
the sample.  Note that the total population size is m+n.  This distribution is 
sometimes denoted by H(m, n, k).

For our playing card example, if we choose k cards from the deck at ran-
dom without replacement and let X denote the number of face cards in the 
sample, then X has a hypergeometric distribution with parameters m = 12,  
n = 40, and k.  Figure 4.24 shows the pdf of this distribution for k = 5.  
When the sample size k is relatively small (e.g., k/(m+n) < 0.1), the effect 
of sampling without replacement is slight and the hypergeometric distribu-
tion can be approximated by the binomial distribution with parameters n = k
and p = m/(m+n) (Evans et al., 1993, p. 86; Johnson et al., 1992, p. 257).  
Figure 4.25 shows the binomial approximation for the playing card example 
with n = 5 and p = 12/52. 
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Figure 4.24 Probability density function of a H(12, 40, 5) random variable 
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For the case study in Chapter 2, we created the tables of required samples 
sizes for each building (Tables 2.9 to 2.12) by using the hypergeometric dis-
tribution where m denotes the number of employees in the building who are 
not familiar with the EP facts (i.e., the number of DUDs), and n denotes the 
number of employees who are familiar with the EP facts.  We will talk more 
about using the hypergeometric distribution to determine the required sample 
sizes in Chapter 8. 

The Mean and Variance of the Hypergeometric Distribution 

The mean and variance of the hypergeometric distribution are given by: 

1
1

m
E X k

m n

m m m n k
Var X k

m n m n m n

(4.42)

Note that by setting n = k and p = m/(m+n) these formulas are exactly the 
same as for a binomial distribution (Equation (4.40)), except that the formula 
for the variance has a finite population correction factor. 

Poisson Distribution 

The Poisson distribution is named after one of its discoverers, who in 
1837 derived this distribution as the limiting distribution of a B(n, p) distri-
bution, where n tends to infinity, p tends to 0, and np stays constant (John-
son et al., 1992, Chapter 4).  This distribution is useful for modeling the 
number of occurrences of a “rare” event (e.g., radioactive particle emissions, 
number of cars arriving at an intersection, number of people getting in line, 
etc.) within a given time period, or the number of “rare” objects (e.g., plants, 
animals, microorganisms, etc.) within a specific geographic area.  The re-
quirements for a Poisson distribution include the following (Fisher and van 
Belle, 1993, p. 212): 

1. The number of occurrences within one time period or area is inde-
pendent of the number of occurrences in a non-overlapping time pe-
riod or area. 

2. The expected number of occurrences within one time period or area 
is constant over all time periods or areas. 
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3. The expected number of occurrences within one time period or area 
decreases to 0 as the length of the time period or size of the area de-
creases to 0. 

In environmental monitoring, the Poisson distribution has been used to 
model the number of times a pollution standard is violated over a given time 
period (Ott, 1995, Chapter 5).  Gibbons (1987b) used the Poisson distribu-
tion to model the number of detected compounds per scan of the 32 volatile 
organic priority pollutants (VOC), and also to model the distribution of 
chemical concentration (in ppb). 

The probability density (mass) function of a Poisson random variable is 
given by: 

, 0,1,2,
!

xe
f x  x

x
 (4.43)

where  (lambda) denotes the average number of events that occur within the 
given time period or area.  This distribution is often denoted by Poisson( )
or P( ).  Figures 4.26 and 4.27 show the pdf’s of a Poisson(1) and Pois-
son(3) random variable, respectively. 
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Figure 4.26 Probability density function of a Poisson(1) random variable 
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Figure 4.27 Probability density function of a Poisson(3) random variable 

The Mean and Variance of the Poisson Distribution 

The mean and variance of a Poisson distribution are given by: 

E X

Var X

(4.44)

Note that the variance depends upon (in fact is exactly equal to) the mean.  
Thus, the larger the mean, the more variable the distribution. 

Gamma (Pearson Type III) Distribution 

The three-parameter gamma distribution is the same as the Pearson
Type III distribution (Johnson et al., 1994, p. 337; Stedinger et al., 1993).  
Like the three-parameter lognormal distribution, the gamma distribution is 
sometimes used in hydrology to model rainfall, stream flow, pollutant load-
ing, etc. (Stedinger et al., 1993). 

The probability density function of the three-parameter gamma distribu-
tion is given by: 
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1 exp

,

0, 0,

x
x

f x

x

(4.45)

(Johnson et al., 1994, p. 337) where () denotes the gamma function and is 
defined as: 

1

0

, 0

1
, 0, 1, 2,

x tt e dt x

x

x
x x

x

(4.46)

(Johnson et al., 1992, p. 5).  The parameter  determines the shape of the 
pdf, the parameter  determines the scale of the pdf, and the parameter  is 
the threshold parameter. 

Two Gamma Distributions

Value of Random Variable

R
el

at
iv

e 
F

re
qu

en
cy

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

shape = 2
scale = 1

shape = 3
scale = 2

Figure 4.28 Two different gamma distributions 

© 2001 by CRC Press LLC



The two-parameter gamma distribution is a special case of the three-
parameter gamma distribution with the location parameter set to 0 (i.e., =
0).  The two-parameter gamma distribution is often simply called the gamma 
distribution.  Figure 4.28 shows two different gamma distributions. 

Mean, Variance, Skew, and Coefficient of Variation 

The mean, variance, skew, and CV of a two-parameter gamma distribution 
are:

2

2

1

E X

Var X

Skew X

CV X

(4.47)

Note that the shape parameter  completely determines both the skew and 
the CV. 

Extreme Value Distribution 

The extreme value distribution is used to model extreme values (maxima 
or minima) of some process or series of measurements, such as daily maxi-
mum temperatures, daily maximum concentrations of air pollutants (e.g., 
Kuchenhoff and Thamerus, 1996), or annual maximum of daily precipitation 
(e.g., Stedinger et al., 1993).  The extreme value distribution gets its name 
from the fact that this distribution is the limiting distribution (as n ap-
proaches infinity) of the greatest (smallest) value among n independent ran-
dom variables each having the same continuous distribution (Johnson et al., 
1995, Chapter 22). 

There are three families of extreme value distributions.  The one de-
scribed here is the Type I, also called the Gumbel extreme value distribution 
or simply Gumbel distribution.  This distribution is sometimes denoted 
EV( , ).

The probability density function of the two-parameter extreme value dis-
tribution is given by: 
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1
exp ,

0

x xf x  e  e

x (4.48)

where  (eta) denotes the location parameter and  (theta) denotes the scale 
parameter.  This distribution is the largest extreme value distribution; it is 
used to model maxima.  (A different pdf is used for the smallest extreme 
value distribution.)  Figure 4.29 shows the pdf of an EV(10,1) distribution 
and Figure 4.30 shows the corresponding cdf. 

The Mode, Mean, and Variance of an Extreme Value Distribution 

The mode, mean, and variance of the two-parameter extreme value dis-
tribution are: 

2 2

6

Mode X

E X

Var X

(4.49)

where  denotes a number called Euler’s constant and is approximately equal 
to 0.5772157.  The skew (about 1.14) and kurtosis (5.4) are constant. 

Generalized Extreme Value Distribution 

A generalized extreme value (GEV) distribution includes a shape pa-
rameter  (kappa), as well as the location and scale parameters  and 
(Johnson et al., 1995, Chapter 22).  The three families of extreme value dis-
tributions are all special kinds of GEV distributions.  When the shape pa-
rameter = 0, the GEVD reduces to the Type I extreme value (Gumbel) dis-
tribution.  When  > 0, the GEVD is the same as the Type II extreme value 
distribution, and when  < 0 it is the same as the Type III extreme value dis-
tribution.  See the help file on GEVD in ENVIRONMENTALSTATS for S-PLUS

for more information on this distribution. 
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Figure 4.29 Probability density function of an extreme value distribution 
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Figure 4.30 Cumulative distribution function of an extreme value distribution 
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Mixture Distributions 

A mixture distribution results when some portion of the population 
comes from one probability distribution and the rest of the population comes 
from another distribution.  Mixture distributions are often used to model data 
sets that contain a few or several gross “outliers”; that is, most of the obser-
vations appear to come from one distribution, but some appear to come from 
a distribution with a shifted mean and possibly shifted standard deviation. 

In environmental statistics, mixture distributions are useful for modeling 
data from a remediated site that contains residual contamination, such as the 
Cleanup area TcCB data shown in Figure 3.2 of Chapter 3.  Gilliom and Hel-
sel (1986) used a lognormal mixture distribution (as well as several others) 
to assess the performance of various estimators of population parameters. 

The general form of the pdf for the mixture of two distributions is: 

1 21f x p f x p f x (4.50)

where f1() denotes the pdf of the first distribution, f2() denotes the pdf of 
the second distribution, and p is a number between 0 and 1 that denotes the 
mixing proportion. 
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Figure 4.31 Probability density function of a mixture of two normal distributions 
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With ENVIRONMENTALSTATS for S-PLUS, you can compute the pdf, cdf, 
quantiles, and random numbers from the mixture of two normal distributions 
or the mixture of two lognormal distributions.  Figure 4.31 shows the pdf of 
a normal mixture distribution where the first distribution is a N(5, 1), the 
second distribution is a N(10, 2), and the mixing proportion is 30% (i.e., 
70% of the first distribution and 30% of the second distribution). 

Mean and Variance 

The mean and variance of the mixture of two distributions are given by: 

1 2

2 2 2 2
1 2

1

1

E X p p

Var X p p

(4.51)

where 1 and 2 denote the means of the first and second distribution, 1 and 
2 denote the standard deviations of the first and second distribution, and p

denotes the mixing proportion. 

Zero-Modified Distributions 

A zero-modified distribution is a distribution that has been modified to 
put extra probability mass at 0.  That is, it is a special kind of mixture distri-
bution in which a portion of the population comes from the original distribu-
tion, but the rest of the population is all zeros (Johnson et al., 1992, p. 312).  
In environmental statistics, the zero-modified lognormal distribution (also 
called the delta distribution) is sometimes used as a model for data sets with 
nondetects, where the nondetects are assumed to actually be 0 values (e.g., 
Owen and DeRouen, 1980).  USEPA (1992c, pp. 28 34) contains an exam-
ple where the data appear to come from a zero-modified normal distribution. 

The general form of the pdf for a zero-modified distribution is: 

, 0

1 , 0

p x

h x

p f x x

(4.52)

where h() denotes the pdf of the zero-modified distribution, f() denotes 
the pdf of the original distribution, and p denotes the proportion of the popu-
lation with the value of 0. 
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With ENVIRONMENTALSTATS for S-PLUS, you can compute the pdf, cdf, 
quantiles, and random numbers from the zero-modified normal and zero-
modified lognormal distributions.  Figure 4.32 shows the pdf of a zero-
modified lognormal distribution (delta distribution) with a mean of 3 and a 
cv of 0.5 for the lognormal part of the distribution, and a probability mass of 
20% at 0. 

Zero-Modified Lognormal (Delta) Density with
(mean=3, cv=0.5, p.zero=0.2)
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Figure 4.32 Probability density function of a zero-modified lognormal distribution 

Mean and Variance 

Aitchison (1955) shows that the mean and variance of a zero-modified 
distribution are given by: 

2 2

1

1 1

E X p

Var X p p p

(4.53)

where  and  denote the mean and standard deviation of the original  
distribution. 
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MULTIVARIATE PROBABILITY DISTRIBUTIONS 

We will not discuss multivariate probability distributions and multivari-
ate statistics in this book, except in the context of linear regression, time se-
ries analysis, and spatial statistics.  A good introduction to multivariate sta-
tistical analysis is Johnson and Wichern (1998).  We do, however, need to 
discuss the concepts of covariance and correlation, but we will postpone this 
discussion until Chapter 9 on Linear Models. 

SUMMARY

 A random variable is the measurement associated with the next 
physical sample from the population.  Outcomes of a random vari-
able usually differ in value from observation to observation. 

 A discrete random variable can take on only a finite or countably in-
finite number of values.  A continuous random variable can take on 
an infinite number of values. 

 A probability density function (pdf) is a mathematical formula that 
describes the relative frequency of a random variable.  Sometimes 
the picture of this formula (e.g., Figure 4.8) is called the pdf.  If a 
random variable is discrete, its probability density function is some-
times called a probability mass function. 

 The cumulative distribution function (cdf) is a mathematical for-
mula that describes the probability that the random variable is less 
than or equal to some number.  Sometimes the picture of this for-
mula (e.g., Figure 4.9) is called the cdf. 
The pth quantile, also called the 100pth percentile, is the (a) number 
such that 100p% of the distribution lies below this number. 
You can use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to com-
pute values of the pdf, cdf, quantiles, and random numbers from sev-
eral probability distributions (see Figure 4.8).  You can also plot 
these distributions. 
Every probability distribution has certain characteristics.  Statisti-
cians have defined various quantities to describe the characteristics 
of a probability distribution, such as the mean, median, mode, vari-
ance, standard deviation, coefficient of variation, skew, and kurtosis. 
Important probability distributions that are used in environmental 
statistics include the normal, lognormal, binomial, Poisson, gamma, 
and extreme value distributions, as well as mixture and zero-
modified distributions. 
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EXERCISES

4.1. Describe some experiment or observational study.  Define the 
population, and how you will take physical samples.  What is the 
random variable?  What kind of shape and characteristics do you 
think the probability distribution of this random variable will 
have?  Why? 

4.2. For a gamma random variable with parameters shape = 3 and 
scale = 2, do the following: 

a. Generate 10 random numbers from this distribution and 
create a density histogram. 

b. Generate 20 random numbers from this distribution and 
create a density histogram. 

c. Generate 100 random numbers from this distribution and 
create a density histogram. 

d. Generate 1000 random numbers from this distribution and 
create a density histogram. 

e. Add a plot of the probability distribution function to the 
last plot that you created. 

4.3. Compute the value of the probability density function for the fol-
lowing normal distributions: 

a. N(0, 1) at –3, 2, 1, 0, 1, 2, and 3. 
b. N(20, 6) at 17, 18, 19, 20, 21, 22, and 23. 
c. Based on the results in parts a and b above, can you come 

up with a formula involving the pdf f() that expresses 
how a normal distribution is symmetric about its mean? 

4.4. Plot the cumulative distribution function of a standard normal dis-
tribution.  Looking at the plot, estimate the values of the quantiles 
for the following percentages: 1%, 2.5%, 5%, 10%, 50%, 90%, 
95%, 97.5%, and 99%. 

4.5. Repeat Exercise 4.4, but compute the exact values of the quantiles 
(to the 2nd decimal place). 

4.6. Repeat Exercises 4.4 and 4.5 for a N(20, 6) distribution. 

4.7. Let X denote a N( , ) random variable, and let xp denote the pth

quantile from this distribution.  Also, let zp denotes the pth quan-
tile of a standard normal distribution.  Show that the results in Ex-
ercises 4.5 and 4.6 above satisfy the following formula. 
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p px z (4.54)

4.8. Compute the value of the cdf at 23 for a N(20, 6) random variable. 

4.9. Repeat Exercise 4.8, but use only a function that assumes a stan-
dard normal (i.e., N(0, 1)) random variable.  (Hint:  Use the z-
transformation shown in Equation (4.29)). 

4.10. A hazardous waste facility monitors the groundwater adjacent to 
the facility to ensure no chemicals are seeping into the ground-
water.  Several wells have been drilled, and once a month ground-
water is pumped from each well and tested for certain chemicals.  
The facility has a permit specifying an Alternate Concentration 
Limit (ACL) for aldicarb of 30 ppb.  This limit cannot be ex-
ceeded more than 5% of the time. 

a. If the natural distribution of aldicarb at a particular well 
can be modeled as a normal distribution with a mean of 
20 and a standard deviation of 5, how often will this well 
exceed the ACL (i.e., what is the probability that the aldi-
carb level at that well will be greater than 30 ppb on any 
given sampling occasion)? 

b. What is the z-value of the ACL? 

4.11. Repeat Exercise 4.10, assuming the aldicarb concentrations follow 
a N(28, 2) distribution. 

4.12. Repeat part a of Exercise 4.10 assuming the aldicarb concentra-
tions follow a lognormal distribution with a mean of 20 and a CV 
of 1. 

4.13. Suppose the concentration of arsenic (in ppb) in groundwater 
sampled quarterly from a particular well can be modeled with a 
normal distribution with a mean of 5 and a standard deviation of 
1.

a. What is the distribution of the average of four observa-
tions taken in one year? 

b. What is the probability that a single observation will be 
greater than 7 ppb? 

c. What is the probability that the average of four observa-
tions will be greater than 7 ppb? 

d. Plot the distribution of a single observation and the distri-
bution of the sample mean (based on four observations) 
on the same graph. 
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4.14. The sum of several binomial random variables that have the same 
parameter p (the probability of “success”) is also a binomial ran-
dom variable.  For example, suppose you flip a coin 10 times and 
record the number of heads.  Let X1 denote the number of heads.  
This is a B(10, p) random variable (where p = 0.5 if the coin is 
fair).  Now suppose you repeat this experiment, and let X2 denote 
the number of heads in this second experiment.  Then X2 is also a 
B(10, p) random variable.  If you combine the results of these two 
experiments, this is exactly the same as if you had flipped the coin 
20 times and recorded the number of heads.  That is, the random 
variable Y = X1 + X2 has a B(20, p) distribution. 

a. Suppose the coin is not fair, and that the probability of a 
head is only 10%.  Plot the distribution of a B(10, 0.1) 
random variable. 

b. Now plot the distribution of a B(20, 0.1) random variable. 
c. Now plot the distribution of a B(500, 0.1) random vari-

able.  (Use a right-tail cutoff of 0.0001.) 
d. How does the shape of the probability density function 

change as the number of flips changes?  Why can you use 
the Central Limit Theorem to explain the change in the 
shape of the distribution? 

4.15. Normal Approximation to the Binomial.  Suppose that the ran-
dom variable Y has a B(n, p) distribution. 

a. Find the probability that Y is greater than 2 when n = 10 
and p = 0.1. 

b. Find the probability that Y is greater than 60 when n =
200 and p = 0.2. 

c. Let 1 2, , , nX X X  denote n independent B(1, p) ran-

dom variables.  Write Y as a function of these n random 
variables. 

d. What are the mean and variance of each of the B(1, p)
random variables? 

e. Using Equations (4.21) and (4.22), determine the mean 
and variance of Y.

f. Using Equation (4.40), determine the mean and variance 
of Y.

g. The Central Limit Theorem says that the distribution of Y
can be modeled as approximately a normal distribution.  
What are the mean and variance of this distribution? 

h. Repeat parts a and b assuming Y is approximately nor-
mally distributed. 

© 2001 by CRC Press LLC



i. For parts a and b, create a plot of the binomial pdf, then 
overlay the approximating normal pdf. 

j. Note:  A rule of thumb for how large n should be in order 
to use the normal approximation to the binomial is: 
np(1 p)  10 (Fisher and van Belle, 1993, p. 183).  You 
can also use a continuity correction to achieve slightly 
better results (see Fisher and van Belle, 1993, p. 184). 

4.16. Suppose you can model the concentration of TcCB in soil at a 
background site as coming from a lognormal distribution with 
some mean  and some CV .  Suppose further that a regulation 
states that if any concentrations of TcCB at a remediated site are 
larger than the 95th percentile at the background site, then the 
remediated site will be declared to be still contaminated.  Suppose 
the probability distribution of TcCB in the remediated site is ex-
actly the same as the distribution of TcCB in the background site. 

a. If you take n = 1 soil sample from the remediated site, 
what is the probability that the TcCB concentration will 
exceed the 95th percentile of the background site? 

b. If you take n = 10 soil samples, what is the probability 
that at least one of the 10 TcCB concentrations will ex-
ceed the 95th percentile of the background site?  (Hint:  
Use the binomial distribution.) 

c. Repeat part b for n = 100 soil samples. 
d. Do the results in parts a, b, and c depend on the assump-

tion of a lognormal distribution? 
e. If you owned the land, had to follow this regulation, and 

wanted to show the remediated site is “clean,” would you 
want to take lots of soil samples or very few soil samples? 

4.17. Suppose you can model the distribution of a chemical in surface 
water as a lognormal distribution, where the mean of the log-
transformed data is 1 and the standard deviation of the log-
transformed data is 2.  What is the median of this distribution?  
What is the mean of this distribution?  What is the CV of this dis-
tribution? 

4.18. Generate 10 random numbers from a N(10, 2) distribution.  Com-
pute the sample mean, median, standard deviation, skew, and kur-
tosis and compare them to the true values. 

4.19. Repeat Exercise 4.18 using 20, 50, 100, and 1000 random num-
bers.
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4.20. Suppose a regulation is promulgated specifying that an air quality 
standard cannot be exceeded more than once per year on average.
Further, suppose that for a particular emission from a factory, the 
probability that the emission concentration will exceed the stan-
dard on any given day is 1/365. 

a. Consider a sample of one year of emissions data.  Assume 
emission concentrations are independent from day to day.  
Using the binomial distribution to model these data, what 
is the expected number of exceedances? 

b. Given your answer in part a, does the distribution of 
emissions satisfy the regulation? 

c. What is the probability that the standard will be exceeded 
at least twice in any given year? 

4.21. Redo Exercise 4.20, but assume a Poisson model in which the unit 
of time is one year and the mean is given by = np =
365*(1/365) = 1 (i.e., one exceedance per year). 

4.22. Using the Poisson model of Exercise 4.21, what is the probability 
that the standard will be exceeded at least four times in 3 years? 

4.23. In the field of hydrology, the 100pth percentile xp is often called 
the 100(1 p) percent exceedance event because it will be ex-
ceeded with probability 1 p (Stedinger et al., 1993).  For exam-
ple, the 99th percentile is the 1% exceedance event.  Often, hy-
drologists specify the return period (sometimes called the recur-
rence interval) instead of the exceedance probability.  For exam-
ple, the 99th percentile of annual maximum flood-flow is the same 
as the 100-year flood, because each year there is a 1 in 100 chance 
that it will be exceeded, and the expected number of times it will 
be exceeded in 100 years is once.  In general, xp is the T-year
flood for T = 1/(1 p) (Stedinger et al., 1993). 

a. Derive the formula for p, given the value of T.
b. Assuming annual stream flow can be modeled as a normal 

distribution with a mean of 4,500 (cfs) and a standard de-
viation of 1,000 (cfs), find the values of the 25-year, 50-
year, and 100-year flood. 
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5 ESTIMATING DISTRIBUTION 
PARAMETERS AND QUANTILES 

LETTING THE DATA SHAPE THE MODEL

Chapters 1 and 2 discussed the ideas of a population and a sample.  
Chapter 4 described probability distributions, which are used to model popu-
lations.  Based on using the graphical tools discussed in Chapter 3 to look at 
your data, and based on your knowledge of the mechanism producing the 
data, you can model the data from your sampling program as having come 
from a particular kind of probability distribution.  Once you decide on what 
probability distribution to use (if any), you usually need to estimate the pa-
rameters associated with that distribution.  For example, you may need to 
compare the mean or 95th percentile of the concentration of a chemical in 
soil, groundwater, surface water, or air with some fixed standard.  This chap-
ter discusses methods of estimating distribution parameters and quantiles for 
various probability distributions (as well as constructing confidence intervals 
for these quantities), and how to use ENVIRONMENTALSTATS for S-PLUS to 
implement these methods. 

METHODS FOR ESTIMATING DISTRIBUTION 
PARAMETERS

The three most frequently used methods for estimating the parameters of 
probability distributions are:  the method of moments estimator (MME), the 
maximum likelihood estimator (MLE), and the minimum variance unbiased 
estimator (MVUE).  More recently, L-moment estimators have been intro-
duced and used in the hydrological literature.  Sometimes these methods 
produce slightly different formulas for the estimators, but often they produce 
the same formula.  This section briefly explains the ideas behind MMEs, 
MLEs, and MVUEs.  The theory of L-moments is discussed in detail in the 
ENVIRONMENTALSTATS for S-PLUS help file Glossary:  L-Moments. 

Estimators Are Random Variables 

Throughout this section, we will assume that X denotes a random vari-
able and x denotes the observed value of this random variable based on a 
sample.  Thus, x1, x2, …, xn denote n observations from a particular prob-
ability distribution.  All estimators use the observed values from the sample 
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to estimate the population parameter(s) (e.g., the sample mean estimates the 

population mean).  Formally, if we let ˆ  denote an estimator of some popu-
lation parameter , then 

1 2
ˆ , , , nh x x x (5.1)

where h() denotes some function.  For the sample mean, this function h()
is given by: 

1 2
1

1
, , ,

n

n i
i

h x x x x
n

(5.2)

Because an estimator is a function of random variables, it itself is a ran-
dom variable and has an associated probability distribution.  This is some-
thing to keep in mind while we discuss the various methods of estimating pa-
rameters.  We will talk more about this later in the section Comparing Dif-
ferent Estimators. 

Method of Moments Estimators 

A method of moments estimator (MME) is based on the simple idea of 
equating the sample moments based on the data with the moments of the 
probability distribution. 

The Moments of a Distribution 

The rth moment of the distribution of a random variable X is often de-
noted by: 

r
r E X (5.3)

(e.g., Evans et al., 1993, p. 13).  The first moment of X is called the mean of 
X and is usually denoted simply by .  That is: 

1 E X (5.4)

The formula for the rth sample moment is: 
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1

1
ˆ

n
r

r i
i

x
n

(5.5)

Thus, the method of moments estimator of the mean of a distribution is sim-
ply the sample mean: 

ˆmme x (5.6)

where

1

1 n

i
i

x x
n

(5.7)

The rth central moment of a random variable X is defined as: 

r
r E X (5.8)

(Evans et al., 1993, p. 13).  The second central moment of X is called the 
variance of X and is usually denoted by 2.  That is: 

22
2 E X (5.9)

The square root of the second central moment is called the standard devia-
tion of X and is usually denoted by .

The formula for the rth sample central moment is: 

1

1
ˆ

n
r

r i
i

x x
n

(5.10)

Thus, the method of moments estimator of the variance of a distribution is: 
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22 2

1

1
ˆ

n

mme m i
i

s x x
n

(5.11)

and the method of moments estimator of the standard deviation of a distribu-
tion is: 

2

1

1
ˆ

n

mme m i
i

s x x
n

(5.12)

The quantity in Equation (5.11) is sometimes called the sample variance, 
but more often the term “sample variance” refers to the unbiased estimator of 
variance shown in Equation (5.49) below.  Similarly, the quantity in Equa-
tion (5.12) is sometimes called the sample standard deviation, but more often 
the term “sample standard deviation” refers to the square root of the unbi-
ased estimator of variance. 

Example 5.1:  Method of Moment Estimators for a Normal Distribution 

A normal distribution is characterized by its mean ( ) and variance ( 2),
or by its mean and standard deviation ( ).  The method of moments estima-
tors for the mean, variance, and standard deviation are given by: 

ˆmme x (5.13)

2 2ˆmme ms (5.14)

ˆmme ms (5.15)

Example 5.2:  Method of Moments Estimators for a Lognormal 
Distribution

A lognormal distribution can be characterized by its mean ( ) and stan-
dard deviation ( ), by its mean ( ) and coefficient of variation ( ), or by the 
mean of the log-transformed random variable ( ) and the standard deviation 
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of the log-transformed random variable ( ).  (See Equations (4.32) to (4.35) 
in Chapter 4 for the relationship between these different parameters.)  The 
method of moments estimators for the mean, variance, and standard devia-
tion are the same as for a normal distribution: 

ˆ
mme x (5.16)

2 2ˆmme ms (5.17)

ˆmme ms (5.18)

The method of moments estimators for the mean, variance, and standard 
deviation of the log-transformed random variable are exactly the same, ex-
cept they are based on the log-transformed observations: 

ˆmme y (5.19)

2 2
,ˆmme y ms (5.20)

,ˆmme y ms (5.21)

where

log , 1,2, ,i iy x i n (5.22)
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1

1 n

i
i

y y
n

(5.23)

22
,

1

1 n

y m i
i

s y y
n

(5.24)

2
,

1

1 n

y m i
i

s y y
n

(5.25)

Example 5.3:  Method of Moment Estimators for a Binomial Distribution 

A binomial distribution is characterized by two parameters:  n, the num-
ber of trials, and p, the probability of success for each trial.  The single ran-
dom variable X denotes the number of successes in n trials.  The parameter n
is set in advance, so the only parameter to estimate is p.  As we saw in Chap-
ter 4, if X has a B(n, p) distribution, then the mean of X is 

E X np (5.26)

which can be rewritten as: 

p
n

(5.27)

For a single observation x of the random variable X, the sample mean is the 
same as x, so the method of moments estimator of p is: 

ˆmme
x

p
n

(5.28)

© 2001 by CRC Press LLC



That is, the method of moments estimator of the probability of “success” is 
simply the number of successes divided by the number of trials. 

Another way to look at this estimator is as follows.  The random variable 
X can be thought of as the sum of n independent B(1, p) random variables.  
That is 

1

n

i
i

X X (5.29)

where Xi denotes the outcome for the ith trial (1 = success, 0 = failure).  Us-
ing this notation, the method of moments estimator of p can be written as: 

1ˆ

n

i
i

mme

x
x

p x
n n

(5.30)

Maximum Likelihood Estimators 

A maximum likelihood estimator (MLE) is based on the simple idea of 
using the value of the parameter that yields the largest probability of seeing 
that particular outcome.  For example, if you flip a (possibly weighted) coin 
100 times and record 80 heads and 20 tails, does it seem more likely that the 
probability of a head is 50% or 80%?  If in fact the probability of a head is 
0.5, the likelihood (probability) of seeing exactly 80 heads out of 100 flips is 
about 4  10-10 (i.e., 4 in 10 billion).   On the other hand, if the probability of 
a head is 0.8, the likelihood of seeing exactly 80 heads out of 100 flips is 
about 0.1. 

Figure 5.1 shows the probability densities of a B(100, 0.5) and a B(100, 
0.8) distribution.  You can see from this figure that getting something close 
to 80 heads out of 100 flips is much more likely for the B(100, 0.8) distribu-
tion than for a B(100, 0.5) distribution. 

The Likelihood Function 

To compute probabilities using probability density functions, we assume 
the distribution parameter(s) are known and the observations have yet to be 
taken.  The method of maximum likelihood estimation reverses these as-
sumptions:  the observations have been taken and are known, and the distri-
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bution parameter(s) are unknown.  In this case, the probability density func-
tion turns into the likelihood function.
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Figure 5.1 Probability density of a B(100, 0.5) and B(100, 0.8) random variable 

For example, consider the binomial distribution.  As we saw in Chapter 
4, the probability density function for a B(n, p) random variable is: 

| 1 n xxn
f x p p p

x
(5.31)

where x takes on integer values between 0 and n, and p is a fixed number 
between 0 and 1.  In the above equation, the left-hand side can be read as 
“the probability that X = x, given the value of p.”  Now assume we have 
flipped a coin n times and recorded x heads.  The likelihood function is: 

| 1 n xxn
f p x p p

x
(5.32)
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where p is some number between 0 and 1, and x is a fixed integer.  For ex-
ample, if we flipped a coin 100 times and recorded 80 heads, the likelihood 
function becomes: 

2080100
| 80 1

80
f p x p p (5.33)

We can use calculus to maximize the likelihood function relative to p.  For 
our example with 80 heads out of 100 flips, the maximum likelihood esti-
mate (MLE) of p is 80%.  In general, for a binomial distribution, the MLE of 
p is given by: 

ˆmle
x

p
n

(5.34)

which is exactly the same as the method of moments estimator. 
The above discussion uses only one observation from a binomial distri-

bution.  In general, when we have n independent observations from some 
distribution with pdf f(), the likelihood function is simply the product of 
the individual likelihood functions.  (Recall that the probability of two inde-
pendent events is the product of the probabilities.)  So a general formula for 
the likelihood function is: 

1 2
1

| , , , |
n

n i
i

f x x x f x (5.35)

where  denotes the vector of parameters associated with the distribution 
(e.g., mean and standard deviation).  Often it is easier to maximize the loga-
rithm of the likelihood function (called the log-likelihood), rather than the 
likelihood function itself.  A general formula for the log-likelihood is: 

1 2 1 2

11

log | , , , | , , ,

log | log |

n n

n n

i i
ii

f x x x l x x x

f x f x

(5.36)
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Example 5.4:  Maximum Likelihood Estimators for a Normal Distribution 

Suppose we have n observations from a N( , ) distribution and we want 
to estimate the parameters of this distribution.  The log-likelihood is: 

1 2

1

2 2

2
1

log , | , , , log , |

1
log 2

2 2

n

n i

i

n

i

i

f x x x f x

n
x

(5.37)

We can use calculus to maximize this function first relative to , then rela-
tive to 2.  The MLEs of the mean and variance are: 

ˆmle x (5.38)

2 2ˆmle ms (5.39)

The MLE of any monotonic function of a distribution parameter is sim-
ply the value of the function evaluated at the MLE.  Since the square root 
function is a monotonic function, the MLE of the standard deviation is: 

2ˆ ˆmle mle ms (5.40)

Thus, for a normal distribution, the maximum likelihood estimators are ex-
actly the same as the method of moment estimators. 

Example 5.5:  Maximum Likelihood Estimators for a Lognormal 
Distribution

For a lognormal distribution, we can compute the MLEs of the mean and 
variance for the log-transformed observations, then use the relationship be-
tween these parameters and the mean and CV for the untransformed observa-
tions (see Equations (4.32) to (4.35) in Chapter 4) to compute the MLEs on 
the original scale.  Recall the relationship between the mean ( ) and standard 
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deviation ( ) on the log-scale and the mean ( ), coefficient of variation ( ),
and standard deviation ( ) on the original scale: 

2

exp
2

(5.41)

2exp 1 (5.42)

(5.43)

The maximum likelihood estimators of the mean ( ), coefficient of varia-
tion ( ), and standard deviation ( ) on the original scale are given by: 

2

2
,

ˆˆ ˆexp
2

exp
2

mle
mle mle

y ms
y

(5.44)

2

2
,

ˆ ˆexp 1

exp 1

mle mle

y ms

(5.45)

ˆˆ ˆmle mle mle (5.46)
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where y  and 2
,y ms  are defined in Equations (5.22) to (5.24).  Unlike the 

normal distribution, for the lognormal distribution the MLEs of the mean and 
standard deviation are not the same as the method of moments estimators 
shown in Equations (5.16) and (5.18). 

Minimum Variance Unbiased Estimators 

The bias or systematic error of an estimator is defined to be the differ-
ence between the average value of the estimator (remember, estimators are 
themselves random variables) and the parameter it is estimating.  Techni-

cally, if ˆ  is an estimator of a population parameter , then 

ˆ ˆBias E (5.47)

If the average value of an estimator equals the population parameter, then 
the bias is equal to 0 and the estimator is said to be unbiased.  If the average 
value of the estimator is less than the population parameter, the estimator is 
said to be negatively biased.  If the average value of the estimator is greater 
than the population parameter, the estimator is said to be positively biased.  
An estimator with negative or positive bias is called biased.

Unbiased Estimators of the Mean and Variance 

As we saw in Chapter 4, the sample mean is an unbiased estimator of the 
population mean.  That is 

E x E X (5.48)

An unbiased estimator of the population variance is given by: 

22

1

1

1

n

i
i

s x x
n

(5.49)

The quantity s2 is often called the sample variance.  The square root of this 
quantity is often called the sample standard deviation and is denoted s.
Note that s is not an unbiased estimator of the population standard deviation 

.
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1

1

1

n

i
i

s x x
n

(5.50)

The unbiased estimator of the variance is always larger than the method of 
moments estimator of variance shown in Equation (5.11): 

2 2

1
m

n
s s

n
(5.51)

Definition of Minimum Variance Unbiased Estimator 

For a particular probability distribution, there may be several possible es-
timators of a parameter that are unbiased.  A minimum variance unbiased 
estimator (MVUE) has the smallest variance in the class of all unbiased es-
timators.  The technical details of deriving MVUEs are discussed in basic 
text books on mathematical statistics. 

Example 5.6:  Minimum Variance Unbiased Estimators for a Normal 
Distribution

The minimum variance unbiased estimators for the mean and variance of 
a normal distribution are given by the sample mean and variance defined in 
Equations (5.7) and (5.49).  That is, 

ˆmvue x (5.52)

2 2ˆmvue s (5.53)

Example 5.7:  Minimum Variance Unbiased Estimators for a Lognormal 
Distribution

The minimum variance unbiased estimators of the mean and variance of 
a lognormal distribution (original scale) were derived by Finney (1941) and 
are discussed in Gilbert (1987, pp. 164 167) and Cohn et al. (1989).  These 
estimators are computed as: 
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1
ˆ

2
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mvue n
s

e g (5.54)

2
2 2 2

1 1
2

ˆ 2
1

yy
mvue n y n

n s
e g s g

n
(5.55)

where y  is defined in Equations (5.22) and (5.23), and 

22

1

1

1

n

y i
i

s y y
n

(5.56)

0

2

2 2 1 !

i i i

m
i

m m i m z
g z

m m m i m i
(5.57)

Note that 2
ys  is simply the MVUE of 2 (the variance of the log-transformed 

random variable). 

Example 5.8:  Minimum Variance Unbiased Estimator for a Binomial 
Proportion 

The MVUE of the parameter p of a binomial distribution is exactly the 
same as the method of moments and the maximum likelihood estimator: 

ˆmvue
x

p
n

(5.58)

(See Equations (5.28) and (5.34).) 
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USING ENVIRONMENTALSTATS FOR S-PLUS TO 
ESTIMATE DISTRIBUTION PARAMETERS 

With ENVIRONMENTALSTATS for S-PLUS, you can estimate distribution 
parameters based on a sample for almost all of the probability distributions 
discussed in Chapter 4.  Here are three examples. 

Example 5.9:  Estimating Parameters of a Normal Distribution 

Recall that in Chapter 3 we saw that the Reference area TcCB data ap-
peared to come from a lognormal distribution.  Using the data frame 
new.epa.94b.tccb.df we created in that chapter, we can estimate the 
mean and standard deviation of the log-transformed data.  These estimates 
are approximately –0.62 and 0.47 log(ppb).  Figure 5.2 shows a density his-
togram of the log-transformed Reference area TcCB data, along with the fit-
ted normal distribution based on these estimates. 
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Figure 5.2 Histogram of log-transformed Reference area TcCB data with fitted 

normal distribution 

Menu

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 
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1. In the Object Explorer, make sure new.epa.94b.tccb.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure new.epa.94b.tccb.df is selected. 
5. In the Variable box, select log.TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. In the Distribution/Estimation section, make sure Normal is selected 

in the distribution box, and mvue is selected in the Estimation 
Method box. 

8. Under the Confidence Interval section, uncheck the Confidence In-
terval box.  Click OK or Apply.

Command

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(new.epa.94b.tccb.df)

enorm(log.TcCB[Area=="Reference"])

detach()

Example 5.10:  Estimating Parameters of a Lognormal 
Distribution

Again looking at the Reference area TcCB data, we can estimate the 
mean and coefficient of variation on the original scale.  Table 5.1 below 
compares the different estimators of the mean ( ) and the coefficient of 
variation ( ).

Rounding to the nearest hundredth, there is no difference between any of 
the estimates of the mean, and all of the estimates of the coefficient of varia-
tion are the same except for the MME.  The method denoted QMLE stands 
for “Quasi-Maximum Likelihood Estimator” and is exactly the same as the 
MLE, except that the MLE of 2 shown in Equation (5.24) and used in 
Equations (5.44) and (5.45) is replaced with the more commonly used 
MVUE of 2 shown in Equation (5.56) (see Cohn et al., 1989).  Cohn et al. 
(1989) and Parkin et al. (1988) have shown that the QMLE and the MLE of 
the mean can be severely biased for typical environmental data, and suggest 
always using the MVUE.  Figure 5.3 shows a density histogram of the Ref-
erence area TcCB data along with the fitted lognormal distribution based on 
the MVUE estimates. 
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Parameter Estimator Value 
Mean ( ) MME 0.60

" MLE 0.60
" QMLE 0.60
" MVUE 0.60

CV ( )* MME 0.47

" MLE 0.49
" QMLE 0.49
" MVUE 0.49

Table 5.1  Comparison of different estimators for the mean and coefficient of varia-

tion, assuming a lognormal distribution for the Reference area TcCB 

data.  Estimates are rounded to the nearest hundredth. 

* Estimated CV is the ratio of the estimated standard deviation to the 

estimated mean, with these estimates computed based on the specified 

method.
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Figure 5.3 Histogram of Reference area TcCB data with fitted lognormal distribu-

tion based on MVUEs 
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Menu

To estimate the mean and coefficient of variation of the Reference area 
TcCB concentrations using the ENVIRONMENTALSTATS for S-PLUS pull-down 
menu, follow these steps. 

1. In the Object Explorer, make sure epa.94b.tccb.df is highlighted. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.94b.tccb.df is selected. 
5. In the Variable box, select TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. In the Distribution/Estimation section, make sure Lognormal (Al-

ternative) is selected in the distribution box, and mvue is selected in 
the Estimation Method box. 

8. Under the Confidence Interval section, uncheck the Confidence In-
terval box.  Click OK or Apply.

To use the other methods of estimation, in Step 7 above, select something 
other than mvue in the Estimation Method box. 

Command

To estimate the mean and coefficient of variation of the Reference area 
TcCB concentrations using the ENVIRONMENTALSTATS for S-PLUS Com-
mand or Script Window, type these commands. 

attach(epa.94b.tccb.df)

elnorm.alt(TcCB[Area=="Reference"])

detach()

By default, the function elnorm.alt computes the MVUEs.  You can use 
the argument method to specify other types of estimators. 

Example 5.11:  Estimating the Parameter of a Binomial 
Distribution

The guidance document USEPA (1992c, p. 36) contains observations on 
benzene concentrations (ppb) in groundwater from six background wells 
sampled monthly for 6 months.  The data are shown in Table 5.2 and are 
stored in the data frame epa.92c.benzene1.df in 
ENVIRONMENTALSTATS for S-PLUS.  Nondetect values are reported as “<2.”  
Of the 36 values, 33 are nondetects.  Here, we will use these data to estimate 
the probability of observing a nondetect value at any of the six wells, which 
is about 92%. 
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Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 
1
2
3
4
5
6

<2
<2
<2
<2
<2
<2

<2
<2
<2
12.0
<2
<2

<2
<2
<2
<2
<2
<2

<2
15.0
<2
<2
<2
<2

<2
<2
<2
<2
<2
<2

<2
<2
<2
<2
10.0
<2

Table 5.2  Benzene data (ppb) from groundwater monitoring wells (USEPA, 1992c, 

p. 36) 

Menu

To estimate the probability of observing a nondetect value using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find the data frame epa.92c.benzene1.df and 
then make sure it is highlighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.benzene1.df is selected. 
5. In the Variable box, select Censored.
6. In the Distribution/Estimation section, select Binomial in the distri-

bution box. 
7. Under the Confidence Interval section, uncheck the Confidence In-

terval box.  Click OK or Apply.

Command

To estimate the probability of observing a nondetect value using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

ebinom(epa.92c.benzene1.df$Censored)

COMPARING DIFFERENT ESTIMATORS 

As we stated earlier in this chapter, all estimators are functions of random 
variables (the observations in the sample), and are therefore themselves ran-
dom variables.  They will rarely be exactly equal to the parameter they are 
trying to estimate.  Instead, they will “bounce around” the parameter they are 
estimating.  Figure 5.4 displays the distribution of the sample mean for a 
N(10, 2) distribution when the sample sizes are n = 4 and n = 30. 

© 2001 by CRC Press LLC



Distribution of the Sample Mean
for a N(10, 2) Distribution
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Figure 5.4 Distribution of the sample mean for a N(10, 2) distribution based on 

sample sizes of n = 4 and n = 30 

Distributions of Estimators of Variance
for a N(0,2) Distribution (n=4)
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Figure 5.5 Distribution of the method of moments/maximum likelihood estimator of 

variance for a N(0, 2) distribution, based on a sample size of 4 
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Distributions of Estimators of Variance
for a N(0,2) Distribution (n=30)
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Figure 5.6 Distribution of the minimum variance unbiased estimator of variance for 

a N(0, 2) distribution, based on a sample size of 30 

Figure 5.5 displays the distributions of the two different estimators of 
variance for a N(0, 2) distribution (the MME/MLE and the MVUE), based 
on a sample size of n = 4.  Figure 5.6 shows the same thing for a sample size 
of n = 30.  (In these two figures, the true value of the parameter we are try-
ing to estimate is the variance, which is 22 = 4.)  Here we see that for the 
small sample size there is a bit of difference in the distributions of the two 
estimators.  By the time the sample size reaches 30, however, there is very 
little difference in the distributions.  As the sample size increases, the two 
distributions converge (see Equation (5.51)). 

Mean Square Error (MSE) 

Given that there are several ways to estimate the parameters of a prob-
ability distribution, how should you decide which method to use?  One crite-
rion that is commonly used to compare estimators is the mean square error 

(MSE) (Fisher and van Belle, 1993, p. 126).  If ˆ  is an estimator of some 
parameter  its mean square error is defined as: 

22ˆ ˆ ˆ ˆMSE E Var Bias (5.59)
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That is, the mean square error is the average of the square of the distance be-
tween the estimator and the parameter it is estimating.  Note that for an unbi-
ased estimator, the MSE is the same as its variance. 

Example 5.12:  A Study from the Environmental Literature 

Gilliom and Helsel (1986) studied the performance of various estimators 
of the mean, standard deviation, median, and interquartile range for a num-
ber of parent distributions where the data sets were subjected to Type I left 
single censoring (we will talk more about censoring in Chapter 10).  Based 
on an analysis of hundreds of data sets for trace constituents, the four parent 
distributions they considered were lognormal, contaminated lognormal (mix-
ture of two lognormals), gamma, and delta (zero-modified lognormal).  They 
used the root mean square error (RMSE) to compare the performance of the 
estimators. 

Example 5.13:  MSE of the Sample Mean vs. the Sample Median for a 
Normal Distribution 

Suppose we have a random sample of n observations from a N( , ) dis-
tribution.  We can estimate the population mean  with either the sample 
mean or the sample median (remember that for a normal distribution, the 
population mean and median are the same).  Which estimator is better? 

We saw in Chapter 4 and this chapter that the expected value of the sam-
ple mean is the same as the population mean (no matter what the underlying 
distribution), so the bias of the sample mean is 0.  Thus, the mean squared 
error of the sample mean is the same as the variance of the sample mean and 
is given by: 

2

MSE x Var x
n

(5.60)

(See Chapter 4 for the derivation of the variance of the sample mean, no 
matter what the underlying distribution.) 

For a normal distribution, the sample median is also an unbiased estima-
tor of the population mean, so its MSE is also equal to its variance, which is 
approximately equal to: 

2

2
MSE Median Var Median

n
(5.61)
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(Johnson et al., 1994, p. 123).  Therefore, the ratio of the MSE of the sample 
mean to the MSE of the sample median is approximately: 

2MSE x

MSE Median
(5.62)

Thus, for a normal distribution the sample median is only about 63.7% as ef-
ficient as the sample mean for estimating the population mean. 

Example 5.14:  MSEs of the Sample Variances for a Normal Distribution 

Suppose we have a random sample of n observations from a N( , ) dis-
tribution.  We can estimate the population variance 2 with either the mini-
mum variance unbiased estimator s2 shown in Equation (5.49), or the 

method of moments/maximum likelihood estimator 2
ms  shown in Equation 

(5.11).  Which estimator is better? 
The MVUE s2 is unbiased, so its MSE is the same as its variance, which 

is given by: 

4
2 2 2

1
MSE s Var s

n
(5.63)

(Johnson et al., 1994, p. 128).  The MME/MLE 2
ms  is not unbiased.  Its ex-

pected value is given by: 

2 21
m

n
E s

n
(5.64)

hence its bias is given by: 

2
2 2 21
m

n
Bias s

n n
(5.65)

The variance of this estimator is given by: 
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2 4
2

1
2m

n
Var s

n
 (5.66)

Therefore the mean square error of 2
ms  is: 

22
2 4

2

4
2

1
2

2 1

m
n

MSE s
nn

n

n

(5.67)

The ratio of the MSE of s2 compared to the MSE of 2
ms  is: 

2 4
4

22

2

2

2 2 1

1

2

2 3 1

m

MSE s n

n nMSE s

n

n n

(5.68)

Sample Size Ratio of MSEs 
  2 2.67 
  3 1.80 
  4 1.52 
  5 1.39 
 10 1.17 
 25 1.06 
 50 1.03 
100 1.02 

Table 5.3  Ratio of mean square error for the MVUE to the mean square error for 

the MME/MLE for estimating the population variance of a normal distri-

bution

Table 5.3 shows the values of this ratio for various values of the sample 
size n.  Note that this ratio is always larger than 1, but converges to 1 as the 
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sample size gets larger and larger.  Thus, in terms of the mean square error, 

the estimator 2
ms  is slightly more efficient than s2, even though the latter is 

usually the estimator that is used in practice. 

Comparing Estimators Based on Confidence Intervals 

In practice, a decision maker needs an estimate of a parameter and a 
measure of how much “wiggle” is in that estimate.  You can use confidence 
intervals to quantify the degree of “wiggle” in a point estimate (see below).  
Given that confidence intervals are really what are needed and used in prac-
tice, it makes more sense to compare estimators by how well confidence in-
tervals based on these estimators perform.  One possible measure of per-
formance is the mean or median width of the confidence interval. 

There is not necessarily a one-to-one correspondence between how well 
an estimator does based on its MSE vs. how well it does based on measuring 
the performance of its confidence interval.  This is because the confidence 
interval associated with the estimator depends on not only how closely the 
estimator “bounces” around the true parameter value, but also on how well 
the estimator of the variance of the estimator performs. 

ACCURACY, BIAS, MEAN SQUARE ERROR, 
PRECISION, RANDOM ERROR, SYSTEMATIC ERROR, 
AND VARIABILITY 

The terms accuracy, bias, mean square error, precision, random error, 
systematic error, and variability are used quite often in scientific papers and 
reports.  It is very important to understand what the author really means 
when he or she uses these terms, and it is very important for the author to use 
these terms correctly.  In this section we will review the meaning of the 
terms we know already, and talk about the new terms we have not yet intro-
duced.

Bias and Systematic Error 

The bias or systematic error of an estimator is a measure of how close, 
on average, that estimator comes to the true population parameter (Equation 
(5.47)).  If the average value of the estimator equals the population parame-
ter, the bias or systematic error is 0 and the estimator is called unbiased.  If 
the average value of the estimator is less than the population parameter, the 
bias is negative and the estimator is said to be negatively biased.  If the aver-
age value of the estimator is greater than the population parameter, the bias is 
positive and the estimator is said to be positively biased.  An estimator with 
negative or positive bias is called biased and possesses systematic error. 
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Precision, Random Error, and Variability 

The precision or random error or variability of an estimator is measured 
by its variance; it is a measure of how much the estimator “bounces around” 
its average value.  An estimator is precise if it has a small variability, and is 
imprecise if it has a large amount of variability. 

Mean Square Error and Root Mean Square Error 

The mean square error (MSE) of an estimator is the average or mean of 
the squared distance between the estimator and parameter it is trying to esti-
mate.  It is a measure of how much the estimator “bounces around” the pa-
rameter it is supposed to be estimating.  It can be shown that the mean square 
error of an estimator is equal to its variability (random error) plus the square 
of its bias (systematic error).  The root mean square error (RMSE) is simply 
the square root of the mean square error and is preferred by some authors be-
cause it retains the original units. 

Accuracy

There are two conflicting definitions for the term accuracy (Clark and 
Whitfield, 1994).  Some definitions say accuracy measures the same thing as 
bias or systematic error:  an estimator has high accuracy if it is unbiased or 
has a very small bias.  An estimator has low accuracy if it has a very large 
bias (e.g., Sokal and Rolfe, 1981, p. 13; Fisher and van Belle, 1993, p. 125). 

Other definitions say that accuracy is a measure of both bias and preci-
sion (systematic and random error):  an estimator has high accuracy only if it 
has both small or no bias and high precision (e.g., Gilbert, 1987, pp. 11 12; 
Berthoux and Brown, 1994, pp. 11 12).  Note that this definition is equiva-
lent to the measure mean square error given above.  That is, an estimator has 
high accuracy if it has a small mean square error. 

Because of the ambiguity of the term “accuracy,” it is safer to use the 
terms bias and precision and their associated meanings instead, as recom-
mended by the American Society for Testing Materials (ASTM) and Clark 
and Whitfield (1994). 

Example 5.15:  Estimators with Varying Bias and Precision 

Figure 5.7 illustrates the four possible combinations of extremes in bias 
(systematic error) and precision (random error or variability).  In this simula-
tion experiment, a random sample of 100 observations was taken from a 
N(10, 1) distribution, and four estimators of the population mean were com-
puted.  The simulation was run 500 times.  The four estimators are: 
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Figure 5.7 Result of simulation experiment showing the distribution of four different 

estimators of the mean of a N(10, 1) distribution 
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where x(i) denotes the ith ordered value in the sample.  The first estimator is 
the sample mean, which is an unbiased estimator of the true mean.  The sec-
ond estimator is the average of the smallest and largest value, which is also 
an unbiased estimator of the true mean, but is more variable than the sample 
mean.  The third estimator is the average of the 50 largest values.  This is a 
biased estimator of the true mean.  The fourth estimator is the average of the 
51st largest value and the largest value.  This is also a biased estimator of the 
true mean, and is more variable than the third estimator. 

PARAMETRIC CONFIDENCE INTERVALS FOR 
DISTRIBUTION PARAMETERS 

Decision makers need statistics to help them make intelligent decisions.  
Examples of decision makers in the environmental field include: 

A Federal, state, or local regulator in charge of soil cleanup, ground-
water monitoring, or air quality. 
The manager of a plant trying to increase the efficiency of the proc-
ess and decrease the amount of air pollution the plant emits. 
A consultant trying to decide whether a site owned by his or her cli-
ent needs to be cleaned up. 
A member of the public who is attending a meeting concerning the 
risk of a proposed incinerator to be built in the neighborhood. 

No matter what the circumstances, numbers should always be presented with 
some indication of their bias and precision (how much “wiggle” they have in 
them). 

One way to help decision makers is to present an estimate of the popula-
tion parameter (e.g., mean) along with a confidence interval for the parame-
ter.  A confidence interval for some population parameter  is an interval on 
the real line constructed from a sample of n observations so that it will con-
tain the parameter  with some specified probability (1 )100%, where  is 
some fraction between 0 and 1 (usually  is less than 0.5).  The quantity 
(1 )100% is called the confidence coefficient or confidence level associ-
ated with the confidence interval. 

Most confidence intervals used in practice are valid under the following 
assumptions: 

1. The sample is some type of random sample. 
2. The observations are independent of one another. 

Violations of the second assumption are discussed in Chapters 11 and 12, 
which deal with methods for analyzing time series and spatial data. 

A common third assumption used in constructing confidence intervals is: 
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3. The observations come from a specified probability distribution 
(e.g., normal, lognormal, binomial, Poisson, etc.). 

Confidence intervals based on this last assumption are called parametric 
confidence intervals; they assume you know what kind of distribution de-
scribes the population.  Confidence intervals that do not require this last as-
sumption are called nonparametric confidence intervals.  We will talk more 
about nonparametric confidence intervals in the section Nonparametric Con-
fidence Intervals Based on Bootstrapping. 

A confidence interval is a random interval; that is, the lower and/or up-
per bounds are random variables that are computed based on sample statis-
tics.  Prior to taking one specific sample, the probability that the confidence 
interval will contain  is (1 )100%.  Once a specific sample is taken and a 
particular confidence interval is computed, the particular confidence interval 
associated with that sample either contains  or it does not.  You usually do 
not know whether the confidence interval actually contains  or not because 
you usually do not know what the value of  is, which is why you are con-
structing a confidence interval for  in the first place! 

Coverage of 80% Confidence Intervals for Mean
for N(5,1) Distribution with n=10
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Figure 5.8 Results of simulation experiment showing the estimates and confidence 

intervals for the population mean.  The true mean is = 5. 

If an experiment is repeated N times, and for each experiment a sample is 
taken and a (1 )100% confidence interval for  is computed, then the num-
ber of confidence intervals that actually contain  is a binomial random vari-
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able with parameters n = N and p = 1 , that is, it follows a B( N, 1 ) dis-
tribution.  Figure 5.8 shows the results of such a simulated experiment in 
which a random sample of n = 10 observations was taken from a N(5, 1) dis-
tribution and an 80% confidence interval for the mean was constructed based 
on these 10 observations.  The experiment was repeated 100 times.  In this 
case, the actual number of confidence intervals that contained the true mean 
of = 5 was 84. 

Choosing the Confidence Level 

So why bother with anything less than a 100% confidence interval?  That 
way, you know that your interval will always contain the population parame-
ter.  As the saying goes, “there is no such thing as a free lunch.”  A 100% 
confidence interval must span the whole possible range of the population pa-
rameter (e.g., 0 to  for the mean of a lognormal distribution, and 0 to 1 for 
the probability of success associated with a binomial distribution). 

In general, the width of a confidence interval depends on the sample size, 
the amount of variability inherent in the population, and the confidence level 
that you choose (see Chapter 8).  Increasing the sample size or decreasing 
the confidence level will make the confidence interval smaller.  If you can 
improve your sampling scheme and handling protocol, you may be able to 
decrease the variability you see in the data and decrease the size of the con-
fidence interval this way as well.  There is no set rule for what confidence 
level you should choose; this is a subjective decision, but often 90% or 95% 
is used. 

Confidence Interval for the Mean of a Normal Distribution 

We saw in Chapter 4 that if we take a sample of size n from a normal dis-
tribution with mean  and standard deviation , then the sample mean also 
follows a normal distribution with the following mean and standard devia-
tion: 

x E x (5.69)

x Sd x
n

(5.70)

Therefore, based on the z-transformation, the quantity 

© 2001 by CRC Press LLC



x

x

x x
z

n
(5.71)

follows a standard normal distribution. 
Letting zp denote the pth quantile of the standard normal distribution and 

assuming p < 0.5, we can write the following probability statement. 

1Pr 1

1 2

p p
x

z z p p
n

p

(5.72)

Setting p = /2, and recalling that the normal distribution is symmetric about 
its mean so that for a standard normal distribution zp = z1-p, we can rewrite 
the above equation as: 

1 2 1 2Pr 1
x

z z
n

(5.73)

Furthermore, using algebra, we can rewrite the above equation as: 

1 2 1 2Pr

1

x z x z
n n

(5.74)

Therefore, when we know the value of the population standard deviation , a  
(1 )100% confidence interval for the mean  is: 

1 2 1 2,x z x z
n n

(5.75)
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Equation (5.75) is of little use in practice because we usually do not 
know the value of the population standard deviation .  We can, however, 
use the sample standard deviation s of Equation (5.50) to estimate  and 
modify the z-statistic in Equation (5.71) as follows: 

ˆ
x

x

x x
t

s n 
(5.76)

This statistic is called the t-statistic and follows a Student’s t-distribution 
with n  1 degrees of freedom (Johnson et al., 1995, p. 362; Fisher and van 
Belle, 1993, p. 143; Zar, 1999, p. 92).  Figure 5.9 shows the pdf of the t-
distribution for various values of the degrees of freedom parameter .  Like 
the standard normal distribution, the t-distribution is symmetric about 0.  
Also, as the degrees of freedom get larger and larger, the t-distribution ap-
proaches the standard normal distribution. 
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Figure 5.9 The probability density function of Student’s t-distribution for 1, 4, and 

degrees of freedom 

Letting t ,p denote the pth quantile of the t-distribution with  degrees of 
freedom, we can modify Equation (5.74) to use s and t instead of  and z to 
get: 
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1,1 2

1,1 2

Pr

1

n

n

s
x t

n

s
x t

n

(5.77)

so that a (1 )100% confidence interval for the mean  is: 

1,1 2 1,1 2,n n
s s

x t  x  t
n n

(5.78)

Equation (5.78) shows the formula for what is called a two-sided confi-
dence interval.  We can also create one-sided confidence intervals as well.  
The formula for the one-sided upper confidence interval is: 

1,1, n
s

x t
n

(5.79)

and the formula for the one-sided lower confidence interval is: 

1,1 ,n
s

x t
n

(5.80)

Example 5.16:  Confidence Interval for the Mean of Log-Transformed 
TcCB Concentrations 

As an example of computing a confidence interval for the mean of a 
normal distribution, we will look at the Reference area TcCB data again, 
which appeared to come from a lognormal distribution.  Using the data 
frame new.epa.94b.tccb.df we created in Chapter 3, we can estimate 
the mean and standard deviation of the log-transformed data, and also com-
pute a confidence interval for the mean of the log-transformed data.  As we 
saw in Example 5.9, the estimated mean and standard deviation are ap-
proximately 0.62 and 0.47 log(ppb).  A 95% confidence interval for the 
mean is [ 0.76, 0.48].  Figure 5.10 shows a density histogram of the log-
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transformed Reference area TcCB data, along with the fitted normal distribu-
tion and the confidence interval for the mean. 
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Figure 5.10 Histogram and fitted normal distribution for the log-transformed Refer-

ence area TcCB data, along with 95% confidence interval for the mean 

Menu

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations and compute a 95% confidence interval for 
the mean using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, fol-
low these steps. 

1. In the Object Explorer, make sure new.epa.94b.tccb.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure new.epa.94b.tccb.df is selected. 
5. In the Variable box, select log.TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. In the Distribution/Estimation section, make sure Normal is selected 

in the Distribution box, and mvue is selected in the Estimation 
Method box. 
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8. Under the Confidence Interval section, check the Confidence Inter-
val box.  In the CI Type box, select two-sided.  In the CI Method 
box, select exact.  In the Confidence Level (%) box, type 95.  In the 
Parameter box, select mean.  Click OK or Apply.

Command 

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations and create a 95% confidence interval for 
the mean using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, type these commands. 

attach(new.epa.94b.tccb.df)

enorm(log.TcCB[Area=="Reference"], ci=T, 

conf.level=0.95)

detach()

Confidence Interval for the Variance of a Normal Distribution 

Usually we are interested in estimating the population variance or stan-
dard deviation in order to quantify the amount of uncertainty we have in our 
estimate of the population mean.  Sometimes, however, the estimate of vari-
ance and a confidence interval for the variance is of interest in itself.  For ex-
ample, in Chapter 8 we will talk about computing required sample sizes for 
various kinds of intervals and hypothesis tests, and these formulas involve 
the population variance.  It is usually a good idea to use some kind of upper 
bound for the population variance when computing required sample sizes.  
One possible upper bound is the upper confidence limit for the variance. 

For n independent observations from a normal distribution, it can be 
shown that the quantity 

2
2

2

1n s
(5.81)

follows a chi-square distribution with n  1 degrees of freedom, where s2

denotes the sample variance shown in Equation (5.49) (Fisher and van Belle, 

1993, p. 117; Sheskin, 1997, p. 73; Zar, 1999, p. 111).  Letting 2
,p  denote 

the pth quantile of a chi-square distribution with  degrees of freedom, and 
assuming p < 0.5, we can write the following probability statement: 
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(5.82)

Hence, a two-sided (1 )100% confidence interval for the population vari-
ance 2 is given by: 

2 2

2 2
1,1 2 1, 2

1 1
,

n n

n s n s
(5.83)

Similarly, a one-sided upper (1 )100% confidence interval for the popula-
tion variance is given by: 

2

2
1,

1
,

n

n s
(5.84)

and a one-sided lower (1 )100% confidence interval for the population 
variance is given by: 

2

2
1,1

1
,

n

n s
(5.85)

Because of the central limit theorem, the formulas for the confidence interval 
for the mean (Equations (5.78) to (5.80)) work well (i.e., the confidence 
level is maintained) even when the underlying population is not normally 
distributed, as long as the sample size is reasonably “large.”  The formulas 
for the confidence interval for the population variance, however, are ex-
tremely sensitive to departures from normality.  For example, if the underly-
ing population is skewed, the confidence interval will be too wide. 
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Example 5.17:  Confidence Interval for the Variance of Log-Transformed 
TcCB Concentrations 

We saw in Example 5.16 that the estimated mean and standard deviation 
for the log-transformed Reference area TcCB data are about –0.62 and 0.47 
log(ppb).  The estimated variance is 0.22, and a 95% upper confidence 
bound for the variance is 0.32. 

Menu

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations and compute a one-sided upper 95% confi-
dence interval for the variance using the ENVIRONMENTALSTATS for S-PLUS

pull-down menu, follow the exact same steps as in Example 5.16, except in 
Step 8, in the CI Type box select upper and in the Parameter box select 
Variance.

Command 

To estimate the mean and standard deviation of the log-transformed Ref-
erence area TcCB concentrations and create a one-sided upper 95% confi-
dence interval for the variance using the ENVIRONMENTALSTATS for S-PLUS

Command or Script Window, type these commands. 

attach(new.epa.94b.tccb.df)

enorm(log.TcCB[Area=="Reference"], ci=T, 

ci.type="upper", conf.level=0.95, 

ci.param="variance")

detach()

General Formula for a Parametric Confidence Interval 

The formula for the confidence interval for the mean of a normal distri-
bution shown in Equations (5.78) to (5.80) are exact because the distribution 
of the sample mean for a normal distribution is itself normal, and because of 
the relationship between the normal distribution and Student’s t-distribution.  
Formulas for exact confidence intervals are also available for other distribu-
tions such as the binomial, exponential, and Poisson distributions. 

Often, however, a confidence interval for a parameter is based on a 
“normal approximation.”  That is, the distribution of the estimator is as-
sumed to be approximately normal even though the estimator is a function of 
observations from some distribution other than a normal distribution.  (Un-
der certain conditions, which usually hold in practice, the distribution of any 
maximum likelihood estimator is asymptotically normal.) 

In this case, the general formula for an approximate (1 )100% confi-
dence interval for the population parameter  is: 
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ˆ ˆ1 2 1 2
ˆ ˆˆ ˆ,z z (5.86)

where ˆ  denotes the estimator of , and ˆˆ  denotes an estimator of the 

standard deviation of ˆ .  The quantity ˆˆ  is often called the standard error

of the estimator ˆ .
A slightly more conservative formula for the confidence interval replaces 

the quantile from the normal distribution with the quantile from the Student’s 
t-distribution: 

ˆ ˆ,1 2 ,1 2
ˆ ˆˆ ˆ,t t (5.87)

Here  denotes the degrees of freedom associated with the estimate of .
This confidence interval will always be wider than the one shown in Equa-
tion (5.86).  The difference in width diminishes as the sample size increases. 

Confidence Interval for the Mean of a Lognormal Distribution 

As we saw in Chapter 4, the lognormal distribution can be characterized 
by the mean ( ) and standard deviation ( ) of the log-transformed random 
variable, or by the mean ( ) and coefficient of variation ( ) of the original 
random variable.  If you are interested in characterizing the log-transformed 
distribution, then simply take the logarithms of the original data and treat 
them like they come from a normal distribution:  use the sample mean to es-
timate , and use the formula in Equation (5.78) to construct a two-sided 
confidence interval for .

Often, however, we want an estimate of the mean on the original scale, 
because this is what the decision maker wants to see or because this is what 
we need to do further analysis.  For example, in modeling exposure to a toxic 
chemical from contact with soil at a contaminated site, it is often assumed 
that an individual will crisscross the site in a random pattern over time.  In 
this way, the individual is exposed to the spatially averaged mean concentra-
tion (vs. say the median concentration), so the mean on the original scale is 
the parameter of interest (USEPA, 1992d; 1996c, p. 85). 

Some textbooks (e.g., Zar, 1999, p. 275) suggest computing the confi-
dence interval for the log-transformed data, then exponentiating the confi-
dence limits to produce a confidence interval for the mean on the original 
scale.  This method actually produces a confidence interval for the median of 
the distribution, not the mean (see the section Estimates and Confidence In-
tervals for Distribution Quantiles (Percentiles), below). 
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Several researchers have studied the problem of estimating and produc-
ing a confidence interval for the mean of a lognormal distribution, including 
Finney (1941), Bradu and Mundlak (1970), Land (1971), Land (1972), Land 
(1975), Cohn et al. (1989), Parkin et al. (1990), and Singh et al. (1997).  We 
will review some of these methods here, and then look at some examples to 
discuss their advantages and disadvantages. 

Land’s Exact Method 

Land (1971, 1975) derived a method for computing one-sided (lower or 
upper) uniformly most accurate unbiased confidence intervals for the mean 

.  A two-sided confidence interval can be constructed by combining an op-
timal lower confidence limit with an optimal upper confidence limit.  This 
procedure for two-sided confidence intervals is only asymptotically optimal, 
but for most purposes should be acceptable (Land, 1975, p. 387). 

A one-sided upper (1 )100% confidence interval for the mean is given 
by: 

2
10, exp

2 1

y
y

s H
y s

n
(5.88)

a one-sided lower (1 )100% confidence interval for the mean is given by: 

2

exp ,
2 1

y
y

s H
y s

n
(5.89)

and a two-sided (1 )100% confidence interval for the mean is given by: 

2
2

2
1 2

exp ,
2 1

exp
2 1
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y
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Hs
y s

n

Hs
y s

n

(5.90)
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where y  and 2
ys  are defined in Equations (5.23) and (5.56), and the quan-

tity Hp involves some complicated mathematics.  Tabled values of this “H-
statistic” are given in Land (1975) and Gilbert (1987, pp. 264 265).  Land 
(1975) denotes this value with a C, but Gilbert (1987, pp. 169 171,
264 265) uses H, and some guidance documents refer to this quantity as the 
H-statistic (e.g., USEPA, 1992d), so H is used here for consistency with the 
environmental literature. 

Other Methods 

Other methods for computing a confidence interval for the mean of a 
lognormal distribution include those suggested by Parkin et al. (1990), Cox 
(Land, 1972; El-Shaarawi, 1989), and Gilbert (1987, p. 167).  These methods 
are described in detail in the ENVIRONMENTALSTATS for S-PLUS help file for 
elnorm.alt.

Parkin et al. (1990) studied the performance of various methods for con-
structing a confidence interval for the mean of a lognormal distribution via 
Monte Carlo simulation.  They compared approximate methods to Land’s 
optimal method.  They used four parent lognormal distributions to generate 
observations; all had mean 10, but differed in coefficient of variation:  50, 
100, 200, and 500%.  They also generated sample sizes from 6 to 100 in in-
crements of 2.  For each combination of parent distribution and sample size, 
they generated 25,000 Monte Carlo trials.  Parkin et al. (1990) found that for 
small sample sizes ( n  20), none of the approximate methods worked very 
well.  For n > 20, their method (Parkin et al., 1990) provided coverage rea-
sonably close to the assumed coverage.  Cox’s method (Land, 1972) worked 
well for n > 60, and performed slightly better than Parkin et al.’s method for 
highly skewed populations. 

Example 5.18:  Confidence Interval for the Mean of Reference Area TcCB 
Concentrations 

We saw in Example 5.10 that the estimated mean TcCB concentration in 
the Reference area is 0.60 ppb, based on the observed n = 47 concentrations.  
Table 5.4 displays two-sided 95% confidence intervals for the mean concen-
tration based on various methods.  These confidence intervals are almost 
identical to each other. 

Menu

To estimate the mean and coefficient of variation of the Reference area 
TcCB concentrations and compute a 95% confidence interval for the mean 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.
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Confidence Interval Method 
[ 0.52, 0.70 ] Land
[ 0.50, 0.74 ] Parkin et al. 
[ 0.52, 0.69 ] Cox
[ 0.51, 0.68 ] Normal Approximation 

Table 5.4  Two-sided 95% confidence intervals for the mean TcCB concentration 

in the Reference area 

1. In the Object Explorer, make sure epa.94b.tccb.df is highlighted. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.94b.tccb.df is selected. 
5. In the Variable box, select TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. In the Distribution/Estimation section, make sure Lognormal (Al-

ternative) is selected in the distribution box, and mvue is selected in 
the Estimation Method box. 

8. Under the Confidence Interval section, check the Confidence Inter-
val box.  In the CI Type box, select two-sided.  In the CI Method 
box, select land.  In the Confidence Level (%) box, type 95.  Click 
OK or Apply.

To use a different method to construct the confidence interval, in Step 8 se-
lect something other than land in the CI Method box. 

Command 

To estimate the mean and coefficient of variation of the Reference area 
TcCB concentrations and create a 95% confidence interval for the mean us-
ing the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(epa.94b.tccb.df)

elnorm.alt(TcCB[Area=="Reference"], ci=T, 

conf.level=0.95)

detach()

By default, elnorm.alt uses Land’s method.  You can change the method 
for constructing the confidence interval by using the ci.method argument. 
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Example 5.19: Upper Confidence Limit for the Mean of Chromium 
Concentrations 

The guidance document USEPA (1992d) contains an example of 15 ob-
servations of chromium concentrations (mg/kg) which are assumed to come 
from a lognormal distribution.  The example shows how to compute the 95% 
upper confidence limit for the mean of the distribution ( ) using Land’s 
(1972) method.  The data are shown in Table 5.5 below.  In 
ENVIRONMENTALSTATS for S-PLUS, these data are stored in the vector 
epa.92d.chromium.vec.

Chromium Concentrations (mg/kg) 
 10   13   20   36   41   59   67  110
110  136  140  160  200  230 1300 

Table 5.5  Chromium concentrations assumed to come from a lognormal distribu-

tion (USEPA, 1992d) 

Table 5.6 displays one-sided upper 95% confidence intervals for the 
mean concentration of chromium based on various methods.  In this case, 
there is quite a bit of difference among these methods, with the upper confi-
dence limit based on Land’s method about twice the size of the limits based 
on Parkin et al.’s (1990) method and the normal approximation. 

Confidence Interval Method 
[ 0, 497 ] Land
[ 0, 230 ] Parkin et al. 
[ 0, 366 ] Cox
[ 0, 261 ] Normal Approximation 

Table 5.6  One-sided upper 95% confidence limits for the mean concentration of 

chromium, based on data from USEPA (1992d) 

Menu

To estimate the mean and coefficient of variation of the chromium con-
centrations and compute a one-sided upper 95% confidence interval for the 
mean using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow 
these steps. 

1. In the Object Explorer, find the vector epa.92d.chromium.vec.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92d.chromium.vec is selected. 
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5. In the Variable box, epa.92d.chromium.vec should be automatically 
selected.

6. In the Distribution/Estimation section, make sure Lognormal (Al-
ternative) is selected in the distribution box, and mvue is selected in 
the Estimation Method box. 

7. Under the Confidence Interval section, check the Confidence Inter-
val box.  In the CI Type box, select upper.  In the CI Method box, 
select land.  In the Confidence Level (%) box, type 95.  Click OK or
Apply.

To use a different method to construct the confidence interval, in Step 7 se-
lect something other than land in the CI Method box. 

Command 

To estimate the mean and coefficient of variation of the chromium con-
centrations and create a one-sided upper 95% confidence interval for the 
mean using the ENVIRONMENTALSTATS for S-PLUS Command or Script Win-
dow, type this command. 

elnorm.alt(epa.92d.chromium.vec, ci=T, 

ci.type="upper")

By default, elnorm.alt uses Land’s.  You can change the method for con-
structing the confidence interval by using the ci.method argument. 

Example 5.20:  Upper Confidence Limit for the Mean Based on a Small 
Sample Size 

We saw in Example 5.18 that the confidence limits for the mean TcCB 
concentration are fairly close, but in Example 5.19 the confidence limits for 
the mean chromium concentration do not agree so well.  The TcCB data con-
tain n = 47 observations, while the chromium data contain n = 15 observa-
tions.  Here, we will generate 10 observations from a lognormal distribution 
with a mean of 10 and a coefficient of variation of 2, then compare the one-
sided upper 95% confidence limits based on the various methods.  Table 5.7 
displays the 10 simulated observations, and Table 5.8 displays the upper con-
fidence limits. 

10 Random Numbers From a Lognormal Distribution 
0.2764807  0.7303524  2.1939532  5.3785007  6.8565868 
7.2216128  8.2545299  9.1507064  9.7874597 95.8133610 

Table 5.7  10 random numbers from a lognormal distribution with a mean of 10 

and coefficient of variation of 2 
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Confidence Interval Method 
[ 0, 182 ] Land
[ 0,  96 ] Parkin et al. 
[ 0,  68 ] Cox
[ 0,  28 ] Normal Approximation 

Table 5.8  One-sided upper 95% confidence limits for the mean based on 10 ob-

servations from a lognormal distribution with a mean of 10 and a coeffi-

cient of variation of 2 

This example illustrates a disturbing characteristic of Land’s method for 
computing confidence intervals:  the upper confidence limit is about twice as 
large as the largest observed value!  In fact, for small sample sizes, the upper 
confidence limit based on Land’s method can be one or more orders of mag-
nitude larger than the largest observed value.  Furthermore, although Land’s 
method is exact and has optimal properties, it is extremely sensitive to the 
assumption that the data come from a lognormal distribution.  Deviations 
from this distribution (e.g., a mixture distribution that appears similar to a 
lognormal distribution) can also result in extremely large values for the up-
per confidence limit. 

Singh et al. (1997) refer to a simulation study they performed in which 
they found that for sample sizes of 30 or less, Land’s method produces upper 
confidence limits that are “unacceptably high,” especially for populations 
with a CV greater than 1.  They recommend using nonparametric methods, 
such as the bootstrap (see the section Nonparametric Confidence Intervals 
Based on Bootstrapping, below). 

Menu

To reproduce this example using the ENVIRONMENTALSTATS for S-PLUS

pull-down menu, first we have to create the data. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Random Numbers>Univariate.  This will bring up the 
Univariate Random Number Generation dialog box. 

2. In the Sample Size box, type 10.
3. In the Set Seed With box, type 23.
4. In the Distribution box, select Lognormal (Alternative).  In the 

mean box, type 10.  In the cv box, type 2.
5. In the Save As box, type lognormal.df.  Click OK or Apply.

Now we can create the confidence interval based on Land’s method. 

1. In the Object Explorer, select the Data folder in the left-hand col-
umn and highlight lognormal.df in the right-hand column. 
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2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure lognormal.df is selected. 
5. In the Variable box, select Sample.
6. In the Distribution/Estimation section, make sure Lognormal (Al-

ternative) is selected in the distribution box, and mvue is selected in 
the Estimation Method box. 

7. Under the Confidence Interval section, check the Confidence Inter-
val box.  In the CI Type box, select upper.  In the CI Method box, 
select land.  In the Confidence Level (%) box, type 95.  Click OK or
Apply.

To use a different method to construct the confidence interval, in Step 7 se-
lect something other than land in the CI Method box. 

Command 

To reproduce this example using the ENVIRONMENTALSTATS for S-PLUS

Command or Script Window, type these commands. 

set.seed(23)

lognormal.data <- rlnorm.alt(10, mean=10, cv=2) 

elnorm.alt(lognormal.data, ci=T, ci.type="upper") 

This produces the confidence interval based on Land’s method.  You can 
change the method for constructing the confidence interval by using the 
ci.method argument. 

One-Sided Confidence Interval for the Mean of a Skewed 
Distribution

Chen (1995) developed a modified t-statistic for performing a one-sided 
test of hypothesis on the mean of a skewed distribution (see Chapter 7).  
Based on the relationship between hypothesis tests and confidence intervals 
(see Chapter 7), Chen’s method can be used to construct a one-sided confi-
dence interval for the mean of a skewed distribution.  With this method, you 
can construct a one-sided lower confidence interval for the mean of a posi-
tively skewed distribution, or a one-sided upper confidence interval for the 
mean of a negatively skewed distribution.  Because environmental data are 
usually positively skewed, and because we are usually interested in a two-
sided or one-sided upper confidence limit on the mean, this method for con-
structing confidence intervals will usually not be used in practice.  The asso-
ciated test of hypothesis, however, was developed to solve a specific prob-
lem in environmental statistics (see Chapter 7). 
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Example 5.21:  Lower Confidence Limit for the Mean of Chromium 
Concentrations 

Table 5.9 displays one-sided lower 95% confidence intervals for the 
mean concentration of chromium (see Example 5.19), based on several 
methods, including Chen’s general method for positively skewed distribu-
tions.  In this case, the lower confidence limit based on Chen’s method 
agrees closely with that based on Land’s method. 

Confidence Interval Method 
[  95,  ] Land

[ 110,  ] Parkin et al. 

[  82,  ] Cox

[  58,  ] Normal Approximation 

[  97,  ] Chen

Table 5.9  One-sided lower 95% confidence limits for the mean concentration of 

chromium, based on data from USEPA (1992d) 

Menu

To produce the confidence limits shown in Table 5.9 for the first four 
methods using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, fol-
low the steps shown under the Menu section in Example 5.19, except in Step 
9 select lower instead of upper in the CI Type box.  To produce the confi-
dence interval based on Chen’s method, follow these steps. 

1. In the Object Explorer, make sure epa.92d.chromium.vec is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>One 
Sample>t-Test for Skewed Data.  This will bring up the One-
Sample t-Test for Skewed Data dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92d.chromium.vec is selected. 
5. In the Variable box, epa.92d.chromium.vec should be automatically 

selected.
6. In the Alternative Hypothesis box, make sure greater is selected. 
7. In the Confidence Level (%) box, type 95.  In the CI Method box, 

select z.  Click OK or Apply.

Command 

To produce the confidence limits shown in Table 5.9 for the first four 
methods using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, type this command. 
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elnorm.alt(epa.92d.chromium.vec, ci=T, 

ci.type="lower")

By default, elnorm.alt uses Land’s method to construct the confidence 
interval.  You can change the method for constructing the confidence interval 
by using the ci.method argument. 

To produce the confidence interval based on Chen’s method, type this 
command. 

chen.t.test(epa.92d.chromium.vec)$interval$limits

Confidence Interval for the Probability of Success for a Binomial 
Distribution

We saw earlier that when the random variable X follows a B(n, p) distri-
bution, the estimated probability of “success” is simply the observed number 
of successes divided by the total number of trials: 

ˆ
x

p
n

(5.91)

There are two ways to construct a confidence interval for the probability of 
success:  an exact method and a method based on a normal approximation. 

Exact Confidence Interval 

The exact (1 )100% confidence interval for p is given by: 

2 2,LCL UCL (5.92)

where the confidence limits are computed such that: 

2Pr
2

X x p LCL (5.93)

2Pr
2

X x p UCL (5.94)

© 2001 by CRC Press LLC



That is, the lower confidence limit is the smallest value of p such that the 
probability of observing at least as many successes as were actually observed 
is no less than (in fact equal to) /2.  Similarly, the upper confidence limit is 
the largest value of p such that the probability of observing no more than the 
number of successes actually observed is no greater than (in fact equal to) 

/2. 
It can be shown (Zar, 1999, pp. 527 529, Fisher and Yates, 1963) that: 

1 2

2
, ,1 21

x
LCL

x n x F
(5.95)

2 1

2 1

2, 2,1 2
2

2, 2,1 2

1

1

x F
UCL

n x x F
(5.96)

where

1 2 1n x (5.97)

2 2x (5.98)

and
1 2, ,rF  denotes the rth quantile of the F-distribution with 1 and 2

degrees of freedom. 
To construct a one-sided lower confidence interval, /2 is replaced with 

 in Equation (5.95), and the upper confidence limit is set to 1.  To construct 
a one-sided upper confidence interval, /2 is replaced with  in Equation 
(5.96), and the lower confidence limit is set to 0. 

Note that an exact lower confidence bound can be computed even when 
all of the observations are “successes,” and an exact upper confidence bound 
can be computed even when all of the observations are “failures.”  In fact, 
when all the observations are failures (so x = 0), we cannot use Equations 
(5.95) and (5.96), but it is easy to show in this case that the upper 
(1 )100% confidence limit is given by: 
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11 nUCL (5.99)

Similarly, when all the observations are successes (so x = n), the lower 
(1 )100% confidence limit is given by: 

1 nLCL (5.100)

Confidence Interval Based on Normal Approximation 

Following Equation (5.86), an approximate (1 )100% confidence inter-
val for p, based on the normal approximation to the distribution of the esti-
mate of p, is given by: 

ˆ ˆ1 2 1 2ˆ ˆˆ ˆ,p pp z p z (5.101)

where

ˆ
ˆ ˆ1

ˆp
p p

n
(5.102)

Most authors (e.g., Fleiss, 1981, p. 15) recommend using a correction for 
continuity to bring the normal curve probabilities in closer agreement with 
the binomial probabilities. 

ˆ ˆ1 2 1 2
1 1

ˆ ˆˆ ˆ,
2 2

p pp z p z
n n

(5.103)

The normal approximation does not work well for small sample sizes, 
especially when np or n(1 p) is less than 5, or when p is small (p < 0.2) or 
large (p > 0.8) (Zar, 1984, p. 379).  As Zar (1999, p. 529) points out, with 
the availability of the exact method, there is really no need to use the normal 
approximation. 
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Example 5.22:  Confidence Interval for the Probability of a Nondetect 

Recall Example 5.11 in which we computed the probability of observing 
a “nondetect” for benzene concentrations (ppb) in groundwater based on ob-
servations from six background wells sampled monthly for 6 months.  The 
data are shown in Table 5.2, and in ENVIRONMENTALSTATS for S-PLUS they 
are stored in the data frame epa.92c.benzene1.df.  Nondetect values 
are reported as “<2.”  Of the 36 values, 33 are nondetects.  The estimated 
probability of observing a nondetect is therefore 33/36, or about 92%.  Table 
5.10 displays 95% confidence intervals for the probability of observing a 
nondetect value at any of the six wells, based on the exact method and the 
normal approximation method.  You can see that both methods based on the 
normal approximation yield an impossible upper limit of 1.  If in fact p were 
equal to 1, then we would not have been able to observe any detects! 

Confidence Interval Method 
[ 0.78, 0.98 ] Exact
[ 0.83, 1    ] Normal Approximation 

(No Continuity Correction) 
[ 0.81, 1    ] Normal Approximation 

(Continuity Correction) 

Table 5.10 Two-sided 95% confidence limits for the probability of observing a non-

detect for benzene, based on data from USEPA (1992c) 

Menu

To produce the confidence intervals shown in Table 5.10 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, make sure epa.92c.benzene1.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.benzene1.df is selected. 
5. In the Variable box, select Censored.
6. In the Distribution box, select Binomial.
7. Make sure the Confidence Interval box is checked.  In the CI Type 

box, select two-sided.  In the CI Method box, select exact.  In the 
Confidence Level (%) box, type 95.  Click OK or Apply.

These steps will produce the exact confidence interval.  To produce the con-
fidence interval based on the normal approximation with continuity correc-
tion, in Step 7, in the CI Method box, select approx.
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Command 

To produce the confidence limits shown in Table 5.10 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

ebinom(epa.92c.benzene1.df$Censored, ci=T) 

ebinom(epa.92c.benzene1.df$Censored, ci=T, 

ci.method="approx", correct=F) 

ebinom(epa.92c.benzene1.df$Censored, ci=T, 

ci.method="approx", correct=T) 

Confidence Interval for the Mean of a Poisson Distribution 

As we discussed in Chapter 4, the Poisson distribution has been used to 
model the number of times a pollution standard is violated over a given time 
period (Ott, 1995, Chapter 5), as well as to model the distribution of chemi-
cal concentration for a chemical that shows up as mostly nondetects with a 
few detected values (Gibbons, 1987b). 

Given n independent observations from a Poisson distribution with pa-
rameter  (the average number of events that occur within the given time pe-
riod or area), the population value of  is estimated as: 

1

1ˆ
n

i
i

x x
n

(5.104)

This estimator is the maximum likelihood, method of moments, and mini-
mum variance unbiased estimator of .  There are three ways to compute a 
confidence interval for the mean .  Each of these is discussed below. 

Exact Confidence Interval 

An important property of the Poisson distribution is that the sum of inde-
pendent Poisson random variables is also a Poisson random variable.  In par-
ticular, the random variable Y, where Y is defined as 

1

n

i
i

Y X (5.105)
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has a Poisson distribution with mean Y = n .  (Note that Y is simply the to-
tal number of events observed.)  This property is used to construct an exact 
confidence interval for .

Similar to the formula for an exact confidence interval for the probability 
of success for a binomial distribution (Equation (5.92)), the exact 
(1 )100% confidence interval for  is given by: 

2 2,LCL UCL (5.106)

where the confidence limits are computed such that: 

2Pr
2

Y y LCL (5.107)

2Pr
2

Y y UCL (5.108)

That is, the lower confidence limit is the smallest value of  such that the 
probability of observing at least as many total events as were actually ob-
served is no less than (in fact equal to) /2.  Similarly, the upper confidence 
limit is the largest value of  such that the probability of observing no more 
than the number of total events actually observed is no greater than (in fact 
equal to) /2. 

To construct a one-sided lower confidence interval, /2 is replaced with 
 in Equation (5.107), and the upper confidence limit is set to .  To con-

struct a one-sided upper confidence interval, /2 is replaced with  in Equa-
tion (5.108), and the lower confidence limit is set to 0. 

Note that an exact upper confidence bound can be computed even when 
all of the n observations are 0.  In this case, the one-sided upper (1 )100%
confidence limit for  is: 

log
UCL

n
(5.109)
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Confidence Interval Based on Pearson-Hartley Approximation 

For a two-sided (1 )100% confidence interval for , the Pearson and 
Hartley approximation (Zar, 1999, p. 574; Pearson and Hartley, 1970, p. 81) 
is given by: 

2 2
2 ,  2  2  2,1  2

,
2 2

y y

n n
(5.110)

where 2
, p  denotes the pth quantile of a chi-square distribution with  de-

grees of freedom.  One-sided confidence intervals are computed in a similar 
fashion. 

Confidence Interval Based on Normal Approximation 

Following Equation (5.86), an approximate (1 )100% confidence inter-
val for , based on the normal approximation to the distribution of the esti-
mate of , is given by: 

ˆ ˆ2 2
ˆ ˆˆ ˆ,z z (5.111)

where

ˆ

ˆ
ˆ

n
 (5.112)

This approximation is inferior to the Pearson-Hartley approximation.  As for 
the case of the binomial distribution, since the exact method is available, 
there is really no need to use either of the approximations. 

Example 5.23:  Confidence Interval for the Average Benzene 
Concentration 

Let us look again at the benzene in groundwater data that we looked at in 
Examples 5.11 and 5.22.  The data are shown in Table 5.2, and in 
ENVIRONMENTALSTATS for S-PLUS they are stored in the data frame 
epa.92c.benzene1.df.  Nondetect values are reported as “<2.”  Of the 
36 values, 33 are nondetects.  Following Gibbons (1987, p. 574), USEPA 
(1992c, p. 36) assumes that these data can be modeled as having come from 
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a Poisson process.  The three detected values represent a count of the number 
of molecules of benzene observed out of a much larger number of water 
molecules.  The 33 nondetect values are also assumed to represent counts, 
where the count must be equal to 0 or 1, since they are recorded as “<2” ppb. 

Following USEPA (1992c), for this example we will set all of the values 
of the nondetects to 1.  The estimated value of  is 1.94 ppb.  Table 5.11 dis-
plays one-sided upper 95% confidence intervals for the average concentra-
tion of benzene, based on the exact method and the two approximate meth-
ods.  Here the Pearson-Harley method yields the same answer as the exact 
method, and the normal approximation method gives a very similar upper 
limit. 

Confidence Interval Method 
[ 0, 2.37 ] Exact
[ 0, 2.37 ] Pearson-Hartley  

Approximation
[ 0, 2.33 ] Normal Approximation 

Table 5.11 One-sided upper 95% confidence limits for the average benzene con-

centration (ppb), based on data from USEPA (1992c, p. 36) 

As a sensitivity analysis, we can determine the exact upper confidence limit 
when we set the nondetects to 0 or 2 as well.  For the first case, the upper 
confidence limit is 1.35 ppb, and for the second case it is 3.37 ppb. 

It is by no means clear, nor commonly accepted, that modeling concen-
tration data with a Poisson distribution is valid.  Furthermore, the method of 
dealing with nondetects is purely subjective.  A Poisson Q-Q plot of the ben-
zene data with the nondetects set equal to 1 is shown in Figure 5.11.  In this 
plot, the numbers on the plot represent the number of observations plotted at 
that particular ( x, y) coordinate.  Based on looking at many “typical” Poisson 
Q-Q plots, it is quite apparent that these data do not appear to fit a Poisson 
model too well. 

Menu

To produce the confidence intervals shown in Table 5.11 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, it will be helpful to first 
create a modified version of epa.92c.benzen.df that contains a version 
of the Benzene variable with all of the nondetects set to 1. 

1. In the Object Explorer, make sure epa.92c.benzene1.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
Data>Transform.  This will bring up the Transform dialog box. 
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Poisson Q-Q Plot for Benzene

Quantiles of Poisson(lambda = 1.944444)
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Figure 5.11 Poisson Q-Q plot for the benzene data, with nondetects set equal to 1 

3. In the Data Frame box, epa.92c.benzene1.df should be selected. 
4. In the New Column Name box, type new.Benzene.
5. Under the Add to Expression section, in the Variable box, choose 

Censored.  In the Function box, choose ifelse.  Click on the Add
button. 

6. Modify the Expression box so that the expression is as follows: 
ifelse(Censored, 1, Benzene).  Click OK.  (At this point, you will 
get a warning message telling you that you have created a new copy 
of the data frame that masks the original copy.) 

7. In the left column of the Object Explorer, click on Data.
8. In the Object column of the Object Explorer, right-click on the short-

cut epa.92c.benzene1.df and choose Properties.
9. In the Name box, rename this data frame to 

new.epa.92c.benzene1.df, then click OK.

Now we can produce the confidence intervals by following these steps. 

1. In the Object Explorer, make sure new.epa.92c.benzene1.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Parameters.  This will bring up 
the Estimate Distribution Parameters dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
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4. In the Data Set box, make sure new.epa.92c.benzene1.df is selected. 
5. In the Variable box, select new.Benzene.
6. In the Distribution box, select Poisson.
7. Make sure the Confidence Interval box is checked.  In the CI Type 

box, select upper.  In the CI Method box, select exact.  In the Con-
fidence Level (%) box, type 95.  Click OK or Apply.

These steps will produce the exact confidence interval.  To produce the con-
fidence intervals based on the Pearson-Hartley and normal approximations, 
in Step 7, in the CI Method box, select pearson.hartley.approx or nor-
mal.approx.

To produce several Poisson Q-Q plots from a Poisson distribution with 
parameter = 2, based on a sample size of n = 36, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Q-Q Plot>Q-Q Plot Gestalt.  This 
will bring up the Q-Q Plot Gestalt dialog box. 

2. Check the Estimate Parameters box. 
3. In the Distribution box, select Poisson.
4. In the lambda box, type 2.
5. In the Sample Size box, type 36.
6. In the # Pages box, type 5.
7. Click on the Plotting tab, and select Number by the Duplicate 

Points buttons.  Click OK.

You can look at even more “typical” plots by increasing the value of the 
number you type in the # Pages box in Step 6. 

Command 

To produce the confidence limits shown in Table 5.11 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.92c.benzene1.df)

Benzene[Censored] <- 1 

epois(Benzene, ci=T, ci.type="upper") 

epois(Benzene, ci=T, ci.type="upper",

ci.method="pearson.hartley.approx")

epois(Benzene, ci=T, ci.type="upper",

ci.method="normal.approx")

rm(Benzene)

detach()
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To produce several Poisson Q-Q plots from a Poisson distribution with 
parameter = 2, based on a sample size of n = 36, type this command. 

qqplot.gestalt(dist="pois", param.list=list(lambda=2),

sample.size=36, num.pages=5, estimate.params=T,

qq.line.type="0-1", add.line=T,

duplicate.points.method="number")

You can look at even more “typical” plots by increasing the value of the 
num.pages argument. 

NONPARAMETRIC CONFIDENCE INTERVALS BASED 
ON BOOTSTRAPPING 

So far, we have talked about constructing parametric confidence inter-
vals, which require the following three assumptions: 

1. The sample is some type of random sample. 
2. The observations are independent of one another. 
3. The observations come from a specified probability distribution 

(e.g., normal, lognormal, binomial, Poisson, etc.). 

Parametric confidence intervals assume you know what kind of distribution 
describes the population (the third assumption above).  Nonparametric con-
fidence intervals do not require this last assumption.  If we are interested in 
constructing a confidence interval for the median or another percentile, there 
is an easy way to do this based on the ranks of the observations, rather than 
the actual data itself (see the section Nonparametric Estimates for Quantiles 
later in this chapter).  In this section, we will show you a more general 
method to construct a nonparametric confidence interval for any kind of 
population parameter. 

To construct parametric confidence intervals like the one shown in Equa-
tion (5.78) for the mean of a normal distribution or the one shown in Equa-
tion (5.92) for the probability of success for a binomial distribution, we have 
to make an assumption about the form of the population distribution.  Once 
we assume a particular type of population distribution, we can usually figure 
out the distribution of the estimator of the population parameter (e.g., for a 
N( , ) distribution, the distribution of the sample mean is normal with 

mean  and standard deviation n ), and based on the distribution of the 

estimator we can construct a confidence interval. 
To construct a nonparametric confidence interval, we do not want to 

make any assumptions about the population distribution, but in that case, 
what can we do?  Bradly Efron (1979a,b) had the following idea.  He rea-
soned that since you can use the empirical cumulative distribution function 
(also called the empirical cdf, see Chapter 3) to estimate the population cdf, 
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you can also use the empirical cdf to estimate the distribution of the estima-
tor by randomly sampling from the empirical cdf several times, and each 
time constructing an estimate based on this random sample.  Once you have 
this estimated distribution of the estimator, you can construct a confidence 
interval for the population parameter. 

Efron called his idea the bootstrap (Efron, 1979a,b; Efron and Tibshirani, 
1993), after the saying of “pulling yourself up by your own bootstraps.”  One 
definition of bootstrap is “to cause to succeed without the help of others,” 
and here we are not relying on the help of assuming a particular parametric 
distribution.  The basic steps of the bootstrap are: 

1. Estimate the parameter based on the data. 
2. Sample the data with replacement B times, and each time estimate 

the parameter based on this bootstrap sample. 
3. Use the estimated parameter created in Step 1 and the bootstrap dis-

tribution of the estimator created in Step 2 to create a confidence in-
terval for the parameter. 

(Efron, 1979a,b; Efron and Tibshirani, 1993; Shao and Tu, 1995; Manly, 
1997; Davison and Hinkley, 1997).  Note that in Step 2 above, we are using 
the empirical probabilities estimator shown in Equation (3.20) for the plot-
ting positions for the empirical cdf (see Chapter 3). 

Methods of Constructing Bootstrap Confidence Intervals 

There are several ways to construct a bootstrap confidence interval 
(Efron and Tibshirani, 1993; Manly, 1997; Davison and Hinkley, 1997).  
Here we will discuss just four: 

1. Standard Normal Method 
2. Empirical Percentile Method 
3. Bias-Corrected Percentile Method 
4. Bias-Corrected and Adjusted Percentile Method 

Of these four, S-PLUS computes confidence intervals based on the second 
and fourth method. 

In these discussions, we will assume the parameter we are estimating is 

, we will let ˆ  denote the estimate of  based on the original sample, we 

will let ˆb  denote the estimate of  based on the bth bootstrap sample, and 

we will let *̂  denote a random variable that has the bootstrap distribution of 
ˆ  based on the given data. 

© 2001 by CRC Press LLC



Standard Normal Method 

This method is based on the assumption that the distribution of the esti-

mator ˆ  is approximately normal with mean , and therefore we can use 
Equation (5.86) to construct an approximate confidence interval for  (Efron 
and Tibshirani, 1993, p. 168; Manly, 1997, p. 35).  That is, the two-sided 
(1 )100% for  is given by: 

ˆ ˆ1 2 1 2
ˆ ˆˆ ˆ,z z (5.113)

In this case, all we need is ˆˆ , the estimated standard deviation of ˆ .  To 

get this estimate, we generate B bootstrap samples, compute B estimates of 
based on each of the B bootstrap samples, then compute the sample standard 

deviation of ˆ  based on these B estimates of .  More technically, for each 

bootstrap sample we compute ˆb , the estimate of  based on the bth boot-

strap sample.  The estimated standard deviation of ˆ  is then computed as: 

2

1
ˆ

ˆ ˆ

ˆ
1

B

b
b

B
(5.114)

where

1

1ˆ ˆ
B

b
bB

(5.115)

Efron and Tibshirani (1993, p. 52) and Manly (1997, p. 87) suggest that usu-
ally no more than B = 200 bootstraps are needed to get a good estimate of the 
standard deviation of the estimator. 

Empirical Percentile Method 

What if we do not want to assume the distribution of ˆ  is approximately 
normal?  For example, typical environmental data is skewed to the right, and 
the distribution of the sample mean may be skewed even for moderately 
large sample sizes if the underlying population distribution is extremely 
skewed.  The empirical percentile method is based on the assumption that 
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the distribution of the estimator ˆ  is not necessarily approximately normal 
with mean , but rather that the distribution of some monotonic transforma-

tion of ˆ , say ˆf , is approximately normal with mean f  and stan-

dard deviation 1 (Efron and Tibshirani, 1993, p. 170; Manly, 1997, p. 39).  In 
this case, a two-sided (1 )100% confidence interval for f  is: 

1 2 1 2
ˆ ˆ,f z f z (5.116)

But we want a confidence interval for , and we do not know the form of f.
If we knew the form of f, we could create the bootstrap distribution of 
ˆf .  Since the true distribution of ˆf  is normal with mean f  and 

standard deviation 1, we would expect the bootstrap distribution of ˆf  to 

be approximately normal with mean ˆf  and standard deviation 1.  Re-

calling Problem 4.7 and Equation (4.54) in Chapter 4, we can see that the 
confidence interval in Equation (5.116) consists of the /2 and 1 /2 quan-

tiles of the bootstrap distribution of ˆf .  Furthermore, since f  is mono-

tonic and percentiles are invariant under monotonic transformations (see 
Chapter 4), an approximate two-sided (1 )100% confidence interval for 

can be based on the empirical percentiles of the bootstrap distribution of ˆ :

* *
2 1 2

ˆ ˆ, (5.117)

where *̂
p  denotes the pth quantile of the bootstrap distribution of ˆ .  For 

example, a two-sided 95% confidence interval for  is simply the interval be-
tween the observed 2.5 percentile and 97.5 percentile of the bootstrap distri-

bution of ˆ .  Note that we do not need to know the form of the transforma-
tion function f in order to use this method. 

Efron and Tibshirani (1993, pp. 188, 275) recommend using at least B =
1,000 bootstraps for this method of constructing 90% confidence intervals.  
Manly (1997, p. 88) suggests using at least B = 2,000 for a 95% confidence 
interval.  These recommendations also apply to the “bias-corrected percentile 
method” and the “bias-corrected and adjusted percentile method,” both dis-
cussed below. 
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Bias-Corrected Percentile Method 

The empirical percentile method does not work well in practice if ˆf

is a biased estimator of f .  In this case, the median value of the boot-

strap distribution of ˆ  is not “close” to ˆ .  The bias-corrected percentile 
method is a modification of the empirical percentile method to overcome this 
problem.  It makes the more general assumption that the distribution of 

ˆf  is approximately normal with mean 0f z  and standard devia-

tion 1, where the bias 0z  is a constant (Efron, 1981; Manly, 1997, p. 46).  In 

this case, a two-sided (1 )100% confidence interval for f  is: 

0 1 2 0 1 2
ˆ ˆ,f z z f z z (5.118)

But we want a confidence interval for , and now we not only do not know 
the form of f, but we do not know the value of 0z  either. 

If we knew the form of f, we could create the bootstrap distribution of 
ˆf .  Since the true distribution of ˆf  is normal with mean 

0f z  and standard deviation 1, we would expect the bootstrap distri-

bution of ˆf  to be approximately normal with mean 0
ˆf z  and 

standard deviation 1.  Recalling Problem 4.7 and Equation (4.54) in Chapter 
4, we can see that the confidence interval in Equation (5.118) consists of the 

pL
th and pU

th quantiles of the bootstrap distribution of ˆf , where 

0 22Lp z z (5.119)

0 1 22Up z z (5.120)

Again, since f  is monotonic and percentiles are invariant under monotonic 
transformations, an approximate two-sided (1 )100% confidence interval 
for  can be based on the empirical percentiles of the bootstrap distribution 

of ˆ :
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* *ˆ ˆ,
L Up p (5.121)

That is, the lower confidence bound is the pL
th quantile of the bootstrap dis-

tribution of ˆ , and the upper confidence bound is the pU
th quantile of the 

bootstrap distribution of ˆ , where pL and pU are defined in Equations 
(5.119) and (5.120), respectively. 

The confidence interval in Equation (5.121) requires knowing the value 
of the bias 0z .  In practice, we must estimate this quantity.  Since the quan-

tity 0
ˆf f z  has a standard normal distribution, the true value 

of 0z  is simply: 

1
0z p (5.122)

where

ˆPrp (5.123)

(Efron and Tibshirani, 1993, p. 327; Manly, 1997, p. 46).  That is, 0z  is the 
pth quantile of a standard normal distribution, where p is defined in Equation 
(5.123).  This is because of the following: 

0 0

0 0

ˆ ˆPr Pr

ˆPr

Pr

p f f

f f z z

Z z z

(5.124)

where Z denotes a standard normal random variable, and  denotes the cdf 
of a standard normal distribution.  Note that if  is the median of the distribu-

tion of ˆ , so that f  is the median of the distribution of ˆf , then z0

= 0 and we are back to the case of the empirical percentile method. 
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We can estimate the probability p in Equation (5.123) by computing the 

proportion of times the bootstrap estimate of  is less than or equal to ˆ .
Thus, we can estimate z0 with 

1
0 ˆẑ p (5.125)

where

1

1 ˆ ˆˆ
B

b
b

p I
B

(5.126)

if is false

if is true

0

1

x
I x

x
(5.127)

(I is often called the indicator function.) 
Once we have an estimate of z0, the two-sided (1 )100% confidence 

interval for  is computed as: 

* *
ˆ ˆ

ˆ ˆ,
L Up p (5.128)

where

0 2ˆ ˆ2Lp z z (5.129)

0 1 2ˆ ˆ2Up z z (5.130)
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Bias-Corrected and Adjusted Percentile Method 

This method is also called the bias-corrected and accelerated (BCa) 
method (Efron and Tibshirani, 1993, p. 185), or the accelerated bias-
corrected percentile method (Manly, 1997, p. 49).  Here we call it the bias-
corrected and adjusted percentile method to be consistent with S-PLUS

documentation. 
The bias-corrected and adjusted percentile method is a modification of 

the bias-corrected method.  It makes the more general assumption that the 

distribution of the monotonic transformation of ˆ , ˆf , is approximately 

normal with mean 0 1f z a f  and standard deviation 

1 af , where 0z  and a are constants (Efron and Tibshirani, 1993, 

pp. 184, 326; Manly, 1997, p. 49).  The addition of the acceleration constant 

a allows the standard deviation of ˆf  to vary linearly with f .  (Note 

that when a = 0, we are back to the bias-corrected percentile method just dis-
cussed.)

For this case, a two-sided (1 )100% confidence interval for  is given 
by: 

* *
ˆ ˆ

ˆ ˆ,
L Up p (5.131)

where

0 2
0

0 2

ˆ
ˆ ˆ

ˆ ˆ1
L

z z
p z

a z z
(5.132)

0 1 2
0

0 1 2

ˆ
ˆ ˆ

ˆ ˆ1
U

z z
p z

a z z
(5.133)

and z0 is estimated by Equation (5.125).  One way to estimate the accelera-
tion constant a is by: 
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1
3 2

2

1

ˆ ˆ

ˆ

ˆ ˆ6

n

i
i

n

i
i

a (5.134)

where ˆ
i  denotes the estimate of  based on leaving out the ith observa-

tion.  See Efron and Tibshirani (1993, pp. 184 188, 326 328) and Manly 
(1997, pp. 49 55) for details. 

Which Bootstrap Method Should I Use? 

The four methods of constructing bootstrap confidence intervals that we 
have just discussed were presented in order of the one with the most restric-
tive assumptions to the one with the least restrictive assumptions.  As stated 
earlier, of these four methods, S-PLUS computes confidence intervals based 
on the empirical percentile method and the bias-corrected and adjusted 
(BCa) percentile method.  The BCa method requires more computations than 
the empirical percentile method, but it provides coverage closer to the as-
sumed coverage over a broad range of parent distributions (Efron and Tibshi-
rani, 1993, Chapter 14). 

When Does the Bootstrap Work Well? 

If we construct a 95% confidence interval for the mean based on the 
bootstrap, is this a “good” confidence interval?  That is, if we repeated the 
experiment many, many times, and each time we created a confidence inter-
val based on the bootstrap, would the confidence interval include the true 
mean about 95% of the time? 

The answer to the above question depends on at least three things: 

The shape of the parent distribution. 
The sample size. 
The parameter you are estimating. 

The bootstrap works well if the empirical cdf is a “good” estimate of the 
population cdf, which is determined by the first two factors.  For a fairly 
symmetric parent distribution, the bootstrap should work well for moderate 
sample sizes (e.g., n  20), and perhaps even smaller sample sizes, if you are 
constructing a confidence interval for a measure of central location such as 
the population mean or median.  If the parent distribution is highly skewed, 
you will probably need a bigger sample size.  Manly (1997, p. 59) found that 
the BCa bootstrap method (with B = 1,000 bootstraps) works fairly well for 
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constructing a 95% confidence interval for the mean of an exponential dis-
tribution with true mean of 1 when the sample size is n = 20. 

How well the bootstrap works also depends heavily on what kind of pa-
rameter you are estimating.  Manly (1997, Chapter 3) gives an example 
where 95% bootstrap confidence intervals for the standard deviation of an 
exponential distribution provide way too little coverage (i.e., they are too 
narrow).  The sample size in this example was again n = 20. 

As Manly (1997, p. 58) states, bootstrap methods should not be assumed 
to work with small sample sizes.  If you are going to create a confidence in-
terval based on a bootstrap and a “small” sample size, it is a good idea to run 
a simulation to determine the coverage of the confidence interval for various 
assumed parent distributions and sample sizes. 

Nonparametric Confidence Intervals for the Mean 

Table 5.12 shows 95% BCa bootstrap confidence intervals for the mean 
of the Reference area TcCB concentrations of Example 5.18, the chromium 
concentrations of Example 5.19, and the lognormal distribution of Example 
5.20.  For the TcCB concentrations, looking at Table 5.4 we see that the 
bootstrap confidence interval is identical to the one based on Cox’s method, 
and of course for this example all of the confidence intervals are almost all 
identical.  For the chromium concentrations, looking at Table 5.6 we see that 
the upper bootstrap confidence limit of 418 lies between the limit based on 
Cox’s method (366) and the one based on Land’s method (497).  For the ran-
dom sample of 10 observations from a lognormal distribution with a mean of 
10 and a CV of 2, looking at Table 5.8 we see that the upper bootstrap confi-
dence limit of 41 is smaller than any of the other ones except the one based 
on the normal approximation. 

Example Data
Confidence  

Interval
Confidence  

Interval Type 
5.17 Reference area TcCB [ 0.52, 0.69 ] Two-sided
5.18 Chromium   [ 0, 418 ] Upper
5.19 Random Sample   [ 0, 41 ] Upper

Table 5.12 95% BCa bootstrap confidence intervals for three example data sets 

Figure 5.12 displays the bootstrap distribution of the estimated mean for 
the chromium data in the form of a histogram and an overlaid density plot.  
The solid vertical line shows the observed mean of chromium (175.5), and 
the dotted vertical line shows the mean of the bootstrap distribution (172.2).  
The distance between these two lines is an estimate of the bias of the original 
estimator for the parameter it is estimating.  Of course, in this case we know 
the statistic (the sample mean) is an unbiased estimator of the parameter (the 
population mean). 
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Figure 5.12 Bootstrap distribution of the sample mean for the chromium data 

Menu

To produce the confidence intervals shown in Table 5.12 using the 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, make sure epa.94b.tccb.df is highlighted. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Resample>Bootstrap.  This will bring up the Bootstrap 
Inference dialog box. 

3. In the Data Set box, make sure epa.94b.tccb.df is selected. 
4. In the Expression box, type mean(TcCB[Area=="Reference"]).
5. Click on the Options tab. 
6. In the Number of Resamples box, type 2000.
7. In the Random Number Seed box, type 47.  (Note:  this is done just 

so that your results match the ones in this example.  Leaving this box 
blank or explicitly supplying a different seed may yield very slightly 
different confidence limits.) 

8. Click OK or Apply.

The above steps will produce the confidence interval for the mean of the 
Reference area TcCB concentrations. 
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To produce the confidence interval for the mean of the chromium data, 
repeat the above steps with the following exceptions:  in Step 1, highlight the 
vector epa.92d.chromium.vec in the Object Explorer, in Step 3 
epa.92d.chromium.vec should be selected in the Data Frame box, and in 
Step 4 type mean(epa.92d.chromium.vec) in the Expression box. 

To produce the confidence interval for the mean of the lognormal data, 
repeat the above steps with the following exceptions:  in Step 1, highlight the 
data frame lognormal.df in the Object Explorer, in Step 3 lognormal.df
should be selected in the Data Frame box, and in Step 4 type mean(Sample)
in the Expression box. 

By default, the bootstrap distribution is also plotted.  You can also create 
a normal Q-Q plot for the bootstrap distribution (see the options under the 
Plot tab), but remember the BCa method does not assume the distribution of 
the estimator (and hence the bootstrap distribution of the estimator) is ap-
proximately normal, but rather that some transformation of the distribution 
of the estimator is approximately normal. 

Command

To produce the confidence limits shown in Table 5.12 using the S-PLUS

Command or Script Window, type these commands. 

TcCB.ref.boot.list <- bootstrap(data=epa.94b.tccb.df, 

statistic=mean(TcCB[Area=="Reference"]), B=2000, 

seed=47)

summary(TcCB.ref.boot.list)

chromium.boot.list <- 

bootstrap(data=epa.92d.chromium.vec,

statistic=mean(epa.92d.chromium.vec), B=2000, 

seed=47)

summary(chromium.boot.list)

lognormal.boot.list <- bootstrap(data=lognormal.df, 

statistic=mean(Sample), B=2000, seed=47) 

summary(lognormal.boot.list)

To produce plots of the bootstrap distribution like the one for the mean of 
chromium shown in Figure 5.12, type these commands. 

plot(TcCB.ref.boot.list)

plot(chromium.boot.list)

plot(lognormal.boot.list)
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A Simulation Study of the Coverage of the Upper Confidence 
Limit for the Mean Based on Positively Skewed Data 

Table 5.13 shows the results of a small simulation study to assess how 
well the bootstrap BCa method works for constructing one-sided upper 95% 
confidence limits for the mean with small to moderate sample sizes when the 
underlying distribution is positively skewed.  This study looked at just two 
types of parent distributions: a lognormal distribution and a lognormal mix-
ture distribution.  The first lognormal distribution has a mean of 10 and a CV 
of 1.  The second lognormal distribution has a mean of 10 and a CV of 2.  
The lognormal mixture distribution is a mixture of a lognormal distribution 
with a mean of 5 and a CV of 1, and one with a mean of 30 and a CV of 0.5, 
with a mixing proportion is 30%.  Thus the overall mean is 0.7  5 + 0.3 
30 = 12.5.  This last parent distribution could be used to model chemical 
concentrations from an area that has been cleaned up but contains some re-
sidual contamination.  Figure 5.13 displays the parent distributions. 

Table 5.13 shows the actual coverage of the confidence intervals based 
on 1,000 simulations, thus the standard error on these estimates of coverage 
is about 1, since the estimated coverage is between about 80% to 93% (recall 
the formula for the standard error of an estimated proportion given in Equa-
tion (5.102)).  For the first lognormal distribution (CV = 1), the coverage is 
almost adequate for n = 30, but the coverage is worse for the second log-
normal distribution (CV = 2).  For the lognormal mixture distribution, the 
coverage is not too much below the assumed coverage for n as small as 15. 

Distribution Sample size % Coverage 
Lognormal (10, 1) 10 84 

" 15 85 
" 20 87 
" 25 89 
" 30 90 

Lognormal (10, 2) 10 77 
" 15 80 
" 20 83 
" 25 82 
" 30 85 

Lognormal Mixture 10 90 
" 15 92 
" 20 92 
" 25 92 
" 30 93 

Table 5.13 Actual percent coverage of one-sided upper 95% confidence intervals 

for the mean, based on 1,000 simulations using the BCa bootstrap 

method with B = 2,000 bootstraps 
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Figure 5.13 Probability density functions for the lognormal and lognormal mixture 

distributions used in the simulation study 
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These results illustrate that the bootstrap method does not work well for 
producing upper confidence limits for the mean of an extremely right 
skewed distribution until the sample size is fairly “large.”  This is because an 
extremely right skewed distribution has a small amount of probability con-
centrated on very high values, and the mean, unlike the median, is very sen-
sitive to high values.  These fairly high values will not show up too often in 
small sample sizes, so the empirical cdf will not be a good estimate of the 
population cdf for small sample sizes. 

Nonparametric Confidence Intervals for the Difference between 
Two Means or Two Medians 

The method of the bootstrap is not limited to constructing confidence in-
tervals for a single population parameter.  It is a quite general method that 
can be applied to more complicated problems such as comparing two means 
or medians, linear regression, and time series analysis (Efron and Tibshirani, 
1993; Manly, 1997).  Here we will illustrate how to apply the bootstrap to 
construct a confidence interval for the difference between two means and the 
difference between two medians. 

The observed mean concentrations of TcCB in the Cleanup and Refer-
ence areas are 3.9 and 0.6 ppb, respectively, yielding a difference of 3.3 ppb.  
A two-sided 95% confidence interval for the difference between the two 
population mean concentrations, based on the BCa bootstrap method, is 
[0.75, 13].  Figure 5.14 shows the bootstrap distribution of the difference in 
the means. 

The observed median concentrations of TcCB in the Cleanup and Refer-
ence areas are 0.43 and 0.54 ppb, respectively, yielding a difference of –0.11 
ppb.  A two-sided 95% confidence interval for the difference between the 
two population median concentrations, based on the BCa bootstrap method, 
is [ 0.25, 0.6].  Figure 5.15 shows the bootstrap distribution of the difference 
in the medians. 

The bootstrap distribution of the difference in the means and the resulting 
95% confidence interval show that the difference in the true (population) 
means may be anywhere between about 1 and 13 ppb, reflecting the large 
skew in the Cleanup area TcCB data.  On the other hand, the bootstrap dis-
tribution of the difference in the medians and the resulting 95% confidence 
interval show that the difference in the true (population) medians is probably 
relatively small.  Recalling Figure 3.2 in Chapter 3, this is not surprising. 

Menu

To produce the two-sided 95% confidence interval for the difference in 
the means using the S-PLUS pull-down menu, follow these steps. 
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Figure 5.14 Bootstrap distribution of the difference in the mean TcCB concentration 
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1. In the Object Explorer, make sure epa.94b.tccb.df is highlighted. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Resample>Bootstrap.  This will bring up the Bootstrap 
Inference dialog box. 

3. In the Data Set box, make sure epa.94b.tccb.df is selected. 
4. In the Expression box, type mean(TcCB[Area=="Cleanup"]) -

mean(TcCB[Area=="Reference"]).
5. Click on the Options tab. 
6. In the Number of Resamples box, type 2000.
7. In the Grouping Variable box, select Area.
8. In the Random Number Seed box, type 47.  (Note:  this is done just 

so that your results match the ones in this example.  Leaving this box 
blank or explicitly supplying a different seed may yield very slightly 
different confidence limits.) 

9. Click OK or Apply.

To produce the confidence interval for the difference of the median concen-
trations, repeat the above steps, except in Step 4, in the Expression box, re-
place “mean” with “median”:  median(TcCB[Area=="Cleanup"]) - me-
dian(TcCB[Area=="Reference"]).

Command

To produce the two-sided 95% confidence interval for the difference in 
the means using the S-PLUS Command or Script Window, type these com-
mands. 

TcCB.diff.means.boot.list <- 

bootstrap(data=epa.94b.tccb.df, statistic= 

mean(TcCB[Area=="Cleanup"])-

mean(TcCB[Area=="Reference"]), group=Area, B=2000, 

seed=47)

summary(TcCB.diff.means.boot.list)

plot(TcCB.diff.means.boot.list,

xlab="Mean of Cleanup - Mean of Reference (ppb)", 

main=paste("Bootstrap Distribution of ",

"Difference of the Means\n", "for the TcCB Data", 

sep=""))

To produce the two-sided confidence interval for the difference in the medi-
ans, type these commands. 

TcCB.diff.medians.boot.list <- 

bootstrap(data=epa.94b.tccb.df,

statistic=median(TcCB[Area=="Cleanup"]) - 
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median(TcCB[Area=="Reference"]), group=Area, 

B=2000, seed=47) 

summary(TcCB.diff.medians.boot.list)

plot(TcCB.diff.medians.boot.list)

ESTIMATES AND CONFIDENCE INTERVALS FOR 
DISTRIBUTION QUANTILES (PERCENTILES) 

Quantiles or percentiles are sometimes used in environmental standards 
and regulations (e.g., Berthouex and Brown, 1994, p. 65).  For example, in 
order to determine compliance, you may be required to estimate an extreme 
percentile (e.g., the 95th percentile) for the “background level” distribution, 
and then compare observations at compliance wells or remediated areas to 
this upper percentile (or an upper confidence limit for this percentile).  In the 
context of soil cleanup, USEPA (1994b, pp. 4.8 4.9) has called this the 
“Hot-Measurement Comparison.”  (There are some major problems with this 
technique that are discussed in Chapters 6 and 7.) 

As another example, when monitoring groundwater around a RCRA 
landfill, the site may be in “compliance monitoring” with a fixed compliance 
limit for a particular chemical.  The fixed compliance limit may be a maxi-
mum concentration limit (MCL) or an alternate concentration limit (ACL).  
Most MCLs in fact represent average levels, but sometimes an MCL or ACL 
may represent a limit that should be exceeded only a small fraction of the 
time, for example, the 99th percentile of the distribution.  In this case you 
need to compare the 99th percentile of the distribution of the chemical’s con-
centration in the groundwater with the MCL.  If the estimated 99th percentile 
(or a lower confidence limit for this percentile) is greater than the MCL, then 
you are out of compliance. 

As Berthoux and Brown (1994, p. 65) point out, even though using a 99th

percentile for decision making sounds like we are doing the conservative or 
safe thing, we must remember that estimators are random variables, and es-
timates of extreme percentiles can be very, very random indeed!  Berthouex 
and Brown (1994, p. 65) note that for a normal (and therefore a lognormal) 
distribution, the 50th percentile (i.e., median) can be estimated with greater 
precision than any other percentile, and the precision decreases rapidly for 
larger or smaller percentiles.  Estimates of extreme percentiles are very im-
precise, even for data sets with large sample sizes.  Considering these facts, 
it is very important to quantify the precision of any estimate of an extreme 
percentile with a confidence interval. 

Confidence intervals for quantiles are based on the idea of tolerance in-
tervals.  It can be shown (e.g., Conover, 1980, pp. 119 121) that an upper 
confidence interval for the pth quantile with confidence level 100(1 )% is 
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equivalent to an upper -content tolerance interval with coverage 100 p%
and confidence level 100(1 )%.  Also, a lower confidence interval for the 
pth quantile with confidence level 100(1 )% is equivalent to a lower -
content tolerance interval with coverage 100(1  p)% and confidence level 
100(1 )%.  We will talk more about tolerance intervals in the next chapter. 

Formula for the pth Quantile 

Recall the definition of the pth quantile from Chapter 4:  the pth quantile
of a population is the (a) number such that a fraction p of the population is 
less than or equal to this number.  If X is a continuous random variable, the 
pth quantile of X, denoted xp, is simply defined as the value such that the cdf 
of that value is equal to p:

Pr p pX x  F x  p  (5.135)

For a discrete random variable, where several values may satisfy the defini-
tion for a specified value of p, the pth quantile of X is often taken to be the 
average of the smallest and largest numbers that satisfy the condition.  The 
S-PLUS functions for computing quantiles, however, return the smallest 
number that satisfies the condition.  A general formula for the pth quantile is 
therefore:

1
px F p (5.136)

where F-1(p) denotes the inverse cdf evaluated at p.  For a discrete distri-
bution, we will define this function to return the smallest value of all possi-
ble values. 

Parametric Estimates of Quantiles 

To estimate quantiles parametrically, all you need to do is estimate the 
parameters of the assumed distribution, then compute the quantiles based on 
the cdf of this distribution and Equation (5.136).  For example, Figure 4.9 in 
Chapter 4 shows that the value 1 is about the 0.9 quantile (90th percentile) of 
a lognormal distribution with mean 0.6 and CV 0.5.  Of course, to use this 
method you have to be fairly sure that the distribution you are assuming is a 
good model for the data. 
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Estimates and Confidence Intervals for Quantiles of a Normal 
Distribution

In Equation (4.54) of Chapter 4 (see Exercise 4.7), we stated that the pth

quantile of a normal distribution with mean  and standard deviation  is: 

p px z (5.137)

where zp denotes the pth quantile of a standard normal distribution.  Thus, a 
natural estimate for the pth quantile simply replaces  and  with their esti-
mated values: 

ˆp px x s z (5.138)

where x  and s are defined in Equations (5.7) and (5.50), respectively.  The 
estimator in Equation (5.138) is sometimes called the “quasi maximum like-
lihood estimator” (qmle; Cohn et al., 1989) of xp because if the maximum 
likelihood estimator of standard deviation sm (Equation (5.40)) were used in 
place of s, then this estimator would be the mle of xp.

Based on the theory of tolerance intervals for a normal distribution 
(Guttman, 1970, pp. 87 89; Owen, 1962, p. 117; Odeh and Owen, 1980; 
Gibbons, 1994, pp. 85 86), the one-sided upper (1 )100% confidence in-
terval for the pth quantile xp is given by: 

1, ,1,
pn z n

s
x t

n
(5.139)

where t , ,p denotes the pth quantile of the non-central Student’s t-
distribution with  degrees of freedom and non-centrality parameter .  Simi-
larly, the one-sided lower (1 )100% confidence interval for the pth quantile 
xp is given by: 

1, , ,
pn z n

s
x t

n
(5.140)

and the two-sided (1 )100% confidence interval for the pth quantile xp is 
given by: 
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Example 5.24:  Comparing Lower Confidence Limits of the 95th Percentile 
to an ACL for Aldicarb 

The guidance document USEPA (1989b) contains an example on pages 
6-11 to 6-13 of aldicarb concentrations (ppm) at three groundwater monitor-
ing compliance wells (four monthly samples at each well).  These data are 
shown in Table 5.14, and in ENVIRONMENTALSTATS for S-PLUS they are 
stored in the data frame epa.89b.aldicarb2.df.  In this example, it is 
assumed that the permit establishes an ACL of 50 ppm that should not be ex-
ceeded more than 5% of the time.  Thus, for each well, we need to determine 
whether the 95th percentile of aldicarb concentrations is greater than the ACL 
of 50 ppm.  To do this, we need to compute a one-sided lower confidence 
limit for the 95th percentile.  If this confidence limit is above the ACL, then 
we can be fairly sure that the true 95th percentile is above the ACL.  (Note:  
the EPA guidance document incorrectly computes a one-sided upper confi-
dence limit for the 95th percentile.) 

Month Well 1 Well 2 Well 3 
Jan 
Feb 
Mar 
Apr

19.9
29.6
18.7
24.2

23.7
21.9
26.9
26.1

25.6
23.3
22.3
26.9

Table 5.14 Aldicarb concentrations (ppm) at three compliance wells, from USEPA 

(1989b, p. 6-13) 

Statistic Well 1 Well 2 Well 3 
Mean 
SD

95th Percentile 
LCL on 95th Percentile 

23.1
 4.9 
31.2
25.3

24.7
 2.3 
28.4
25.7

24.5
 2.1 
28.0
25.5

Table 5.15 Statistics for aldicarb concentrations at the three compliance wells. 

Table 5.15 displays the estimated mean, standard deviation, 95th percen-
tile, and lower one-sided 99% confidence limit for the 95th percentile for 
each of the three compliance wells.  All of the lower confidence limits for 

© 2001 by CRC Press LLC



the 95th percentile are well below the ACL of 50 ppm, so none of the wells is 
out of compliance. 

To give you an idea of the amount of variability in these estimates of the 
95th percentile, we can also create two-sided confidence intervals.  The two-
sided 99% confidence intervals for the 95th percentiles at each well (rounded 
to whole numbers) are:  [25, 80], [25, 51], and [25, 49].  Of course, a major 
problem here is the very small sample size (n = 4) at each well. 

Menu

To produce the one-sided lower 99% confidence limits for the 95th per-
centiles for each of the compliance wells using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find the data frame epa.89b.aldicarb2.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Quantiles.  This will bring up 
the Estimate Distribution Quantiles dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.89b.aldicarb2.df is selected. 
5. In the Variable box, select Aldicarb.
6. In the Subset Rows with box, type Well=="1".
7. In the Quantile(s) box, type 0.95.
8. Under the Distribution/Estimation group, for Type, make sure the 

Parametric button is selected.  In the Distribution box, select Nor-
mal.  For Estimation Method, select qmle.

9. Under the Confidence Interval group, make sure the Confidence In-
terval box is checked.  For CI Type, select lower.  For CI Method, 
select exact.  For Confidence Level (%), type 99.  Click OK or Ap-
ply.

This will produce the estimated 95th percentile and one-sided lower 99% 
confidence limit for this percentile for the first well.  To produce these quan-
tities for the other two wells, in Step 6 above, type Well=="2" or 
Well=="3".

Command 

To produce the one-sided lower 99% confidence limits for the 95th per-
centiles for each of the compliance wells using the ENVIRONMENTALSTATS

for S-PLUS Command or Script Window, type these commands. 

attach(epa.89b.aldicarb2.df)

lapply(split(Aldicarb, Well), eqnorm, p=0.95, ci=T, 

ci.type="lower", conf.level=0.99) 

detach()

© 2001 by CRC Press LLC



Estimates and Confidence Intervals for Quantiles of a Lognormal 
Distribution

As we stated in Chapter 4, quantiles are invariant under monotonic trans-
formations (see Equation (4.10)).  Therefore, the formulas to estimate per-
centiles and create confidence intervals for them for the normal distribution 
can be easily modified for the lognormal distribution. 

Let X denote a lognormal random variable with mean  and CV , and let 
 and  denote the mean and standard deviation of Y = log(X).  Based on 

Equation (5.137) above, the pth quantile of the distribution of X is: 

expp px z (5.142)

and the quasi-maximum likelihood estimator of this quantile is: 

ˆ expp y px y s z (5.143)

where y  is defined in Equations (5.22) and (5.23) and ys  is defined in 

Equation (5.56).  Furthermore, the one-sided upper (1 )100% confidence 
interval for the pth quantile xp is given by: 

1, ,1, exp
pn z n

s
x t

n
(5.144)

the one-sided lower (1 )100% confidence interval for the pth quantile xp is 
given by: 

1, ,exp ,
pn z n

s
x t

n
(5.145)

and the two-sided (1 )100% confidence interval for the pth quantile xp is 
given by: 
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(5.146)

Example 5.25:  Comparing Lower Confidence Limits of the 95th Percentile 
to an ACL for Chrysene 

The guidance document USEPA (1992c, pp. 52 54) contains an example 
of chrysene concentrations (ppb) at five groundwater monitoring compliance 
wells (four monthly samples at each well).  These data are shown in Table 
5.16, and in ENVIRONMENTALSTATS for S-PLUS they are stored in the data 
frame epa.92c.chrysene.df.  They are assumed to come from a log-
normal distribution. 

In this example, it is assumed that the permit establishes an ACL of 80 
ppb that should not be exceeded more than 5% of the time.  Thus, for each 
well, we need to determine whether the 95th percentile of chrysene concen-
trations is greater than the ACL of 80 ppb.  To do this, we need to compute a 
one-sided lower confidence limit for the 95th percentile.  If this confidence 
limit is above the ACL, then we can be fairly sure that the true 95th percentile 
is above the ACL.  (Note:  The EPA guidance document incorrectly com-
putes a one-sided upper confidence limit for the 95th percentile.) 

Month Well 1 Well 2 Well 3 Well 4 Well 5 
1
2
3
4

19.7
39.2
 7.8 
12.8

10.2
 7.2 
16.1
 5.7 

68.0
48.9
30.1
38.1

26.8
17.7
31.9
22.2

47.0
30.5
15.0
23.4

Table 5.16 Chrysene concentrations (ppb) at five compliance wells, from USEPA 

(1992c, p. 52) 

Statistic Well 1 Well 2 Well 3 Well 4 Well 5 
Mean 
CV

95th Percentile 
LCL on 95th Percentile 

19.9
 0.7 
51.4
22.6

 9.8 
 0.5 
19.0
11.1

46.3
 0.4 
78.5
51.6

24.7
 0.2 
36.5
26.9

29.0
 0.5 
58.5
32.9

Table 5.17 Statistics for chrysene concentrations at the five compliance wells 
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Table 5.17 displays the estimated mean, coefficient of variation, 95th per-
centile, and lower one-sided 99% confidence limit for the 95th percentile for 
each of the five compliance wells.  All of the lower confidence limits for the 
95th percentile are well below the ACL of 80 ppb, so none of the wells is out 
of compliance. 

To give you an idea of the amount of variability in these estimates of the 
95th percentile, we can also create two-sided confidence intervals.  The two-
sided 99% confidence intervals for the 95th percentiles at each well (rounded 
to whole numbers) are:  [25, 178], [11, 63], [52, 235], [27, 95], and [34, 
185].  As in the previous example, a major problem here is the very small 
sample size (n = 4) at each well. 

Menu

To produce the one-sided lower 99% confidence limits for the 95th per-
centiles for each of the compliance wells using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer find the data frame epa.92c.chrysene.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Quantiles.  This will bring up 
the Estimate Distribution Quantiles dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.chrysene.df is selected. 
5. In the Variable box, select Chrysene.
6. In the Subset Rows with box, type Well=="1".
7. In the Quantile(s) box, type 0.95.
8. Under the Distribution/Estimation group, for Type, make sure the 

Parametric button is selected.  In the Distribution box, select Log-
normal.  For Estimation Method, select qmle.

9. Under the Confidence Interval group, make sure the Confidence In-
terval box is checked.  For CI Type, select lower.  For CI Method, 
select exact.  For Confidence Level (%), type 99.  Click OK or Ap-
ply.

This will produce the estimated 95th percentile and one-sided lower 99% 
confidence limit for this percentile for the first well.  To produce these quan-
tities for the other four wells, in Step 6 above, type Well=="2", Well=="3",
Well=="4", or Well=="5".

Command 

To produce the one-sided lower 99% confidence limits for the 95th per-
centiles for each of the compliance wells using the ENVIRONMENTALSTATS

for S-PLUS Command or Script Window, type these commands. 
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attach(epa.92c.chrysene.df)

lapply(split(Chrysene, Well), eqlnorm, p=0.95, ci=T, 

ci.type="lower", conf.level=0.99) 

detach()

Estimates and Confidence Intervals for Quantiles of a Poisson 
Distribution

As we stated earlier, to estimate quantiles parametrically, all you need to 
do is estimate the parameters of the assumed distribution, then compute the 
quantiles based on the cdf of this distribution and Equation (5.136).  For a 
Poisson distribution with mean , if we let xp|  denote the pth quantile of 
this distribution, then the estimated pth quantile is: 

ˆ| |
ˆp p
x x (5.147)

where ˆ  is given in Equation (5.104).  Because ˆ  is the maximum likeli-
hood estimator, the estimator in Equation (5.147) is the maximum likelihood 
estimator of the pth quantile. 

Based on the theory of tolerance intervals for a Poisson distribution 
(Zacks, 1970), the one-sided upper (1 )100% confidence interval for the 
pth quantile is given by: 

|0, p UCLx (5.148)

where UCL denotes the upper (1 )100% confidence limit for  (see the sec-
tion Confidence Interval for the Mean of a Poisson Distribution above).  
Similarly, a one-sided lower (1 )100% confidence interval for the pth quan-
tile is given by: 

| ,p LCLx (5.149)

where LCL denotes the lower (1 )100% confidence limit for , and a two-
sided (1 )100% confidence interval for pth quantile is given by: 

| |,p LCL p UCLx x (5.150)
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where LCL and UCL denote the two-sided lower and upper (1 )100% con-
fidence limits for .

Example 5.26:  Computing an Upper Confidence Limit on the 95th

Percentile of Benzene Concentrations 

Let us look again at the benzene concentrations in groundwater data that 
we looked at in Examples 5.11, 5.22, and 5.23.  The data are shown in Table 
5.2, and in ENVIRONMENTALSTATS for S-PLUS they are stored in the data 
frame epa.92c.benzene1.df.  Nondetect values are reported as “<2.”  
Of the 36 values, 33 are nondetects.  Following Gibbons (1987, p. 574), 
USEPA (1992c, p. 36) assumes that these data can be modeled as having 
come from a Poisson process.  The three detected values represent a count of 
the number of molecules of benzene observed out of a much larger number 
of water molecules.  The 33 nondetect values are also assumed to represent 
counts, where the count must be equal to 0 or 1, since they are recorded as 
“<2” ppb.  Following USEPA (1992c), for this example we will set all of the 
values of the nondetects to 1. 

USEPA (1992c, pp. 38 40) describes how to compute an upper confi-
dence limit for the 95th percentile of the benzene concentrations at the six 
background wells, with the idea that this limit will be used as a threshold 
value for concentrations observed in downgradient monitoring wells (i.e., if 
the concentration at a downgradient well exceeds this limit, this indicates 
there may be contamination in the groundwater).  This is the “Hot-
Measurement Comparison,” and, as already stated, there are some major 
problems with this technique that are discussed in Chapters 6 and 7. 

For this data set, the estimated mean is 1.94, the estimated 95th percentile 
is 4, and the one-sided upper 95% confidence limit for the 95th percentile is 
5.  As we stated earlier in Example 5.23, these data do not appear to follow a 
Poisson distribution too well. 

Menu

To produce the one-sided upper 95% confidence limit for the 95th percen-
tile of benzene concentrations using the ENVIRONMENTALSTATS for S-PLUS

pull-down menu, follow these steps. 

1. In the Object Explorer, highlight new.epa.92c.benzene1.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Quantiles.  This will bring up 
the Estimate Distribution Quantiles dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure new.epa.92c.benzene1.df is selected. 
5. In the Variable box, select new.Benzene.
6. In the Quantile(s) box, type 0.95.
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7. Under the Distribution/Estimation group, for Type, make sure the 
Parametric button is selected.  In the Distribution box, select Pois-
son.  For Estimation Method, select mle.

8. Under the Confidence Interval group, make sure the Confidence In-
terval box is checked.  For CI Type, select upper.  For CI Method, 
select exact.  For Confidence Level (%), type 95.  Click OK or Ap-
ply.

Command 

To produce the one-sided upper 95% confidence limit for the 95th percen-
tile of the benzene concentrations using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(epa.92c.benzene1.df)

Benzene[Censored] <- 1 

eqpois(Benzene, p=0.95, ci=T, ci.type="upper") 

rm(Benzene)

detach()

Nonparametric Estimates for Quantiles 

To estimate quantiles nonparametrically, all you need to do is estimate 
the cdf nonparametrically using the empirical cdf, then use linear interpola-
tion (if necessary).  Graphically, this just means connecting the points in the 
quantile plot by straight lines, then performing the same inverse procedure as 
illustrated in Figure 4.9.  For example, if you have n = 10 observations, you 
might consider the smallest observation an estimate of the 10th percentile and 
the largest observation an estimate of the 100th percentile.  This implies that 
you are using the plotting position formula shown in Equation (3.21) in 
Chapter 3.  Note, however, that because of the plotting positions you are us-
ing, you cannot estimate the 5th percentile (unless you want to assume the 
smallest value is an estimate of any percentile between the 0th and 10th per-
centile). 

In S-PLUS, quantiles are estimated nonparametrically by first creating the 
empirical cdf with the following plotting positions: 

1
ˆ

1
i

i
p

n
(5.151)
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This is the plotting position formula of Equation (3.22) in Chapter 3, with  
a = 1.  Once the empirical cdf is computed, linear interpolation is used to 
estimate the pth quantile: 

1
1 1

1

ˆ
ˆ

ˆ ˆ
i

p i i i
i i

p p
x x x x

p p
(5.152)

where x(i) denotes the ith largest value in the sample.  For this method, the 
smallest observation estimates the 0th percentile and the largest observation 
estimates the 100th percentile. 

One problem with estimating quantiles nonparametrically vs. parametri-
cally is that you need many more observations to estimate extreme quantiles 
with good precision.  In fact, even though S-PLUS will give us estimates for 
the 5th and 95th percentiles, it does not make sense intuitively that we should 
be able to estimate anything less than the 10th percentile or anything more 
than the 90th percentile with any kind of precision if n = 10.  This character-
istic becomes clear when we create nonparametric confidence intervals for 
quantiles (see the next section).  On the other hand, an advantage to estimat-
ing quantiles nonparametrically is that it is often easy to deal with censored 
values since all you have to do is rank them. 

Nonparametric Confidence Intervals for Quantiles 

It can be shown (e.g., Conover, 1980, pp. 114 116) that for the ith order 
statistic:

,Pr 1p n piX x F i (5.153)

for i = 1, 2, …, n, where Fn,p(y) denotes the cumulative distribution func-
tion of a binomial random variable based on n trials and probability of “suc-
cess” p evaluated at y.  This fact is used to construct exact nonparametric 
confidence intervals for quantiles. 

A two-sided nonparametric confidence interval for the pth quantile is 
constructed as: 

,r sx x (5.154)
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where 1 r n-1, 2 s n, and r < s.  This confidence interval has an 
associated confidence level given by: 

, ,1 1n p n pF s F r (5.155)

(actually, for a discrete distribution, it is at least this large, and may be lar-
ger).  This is because: 

Pr

Pr Pr

Pr Pr

pr s

p ps r

p ps r

X x X

x X x X

x X x X

(5.156)

Looking at Equation (5.153), you can see that the last line of Equation 
(5.156) is the same as Equation (5.155). 

Similarly, a one-sided lower nonparametric confidence interval for the pth

quantile is given by: 

,rx (5.157)

and has an associated confidence level of: 

,1 1n pF r (5.158)

and a one-sided upper nonparametric confidence interval for the pth quantile 
is given by: 

, sx (5.159)

and has an associated confidence level of: 
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, 1n pF s  (5.160)

Because nonparametric confidence intervals for percentiles are based on 
the ranks of the data, the confidence level is discrete in nature.  That is, for a 
particular percentile, you can only get certain confidence levels, and these 
confidence levels are limited by the sample size.  Table 5.18 illustrates the 
confidence levels associated with a one-sided upper confidence interval for 
the 95th percentile, based on various sample sizes.  For this table, the upper 
confidence limit is the maximum value (Equation (5.159) with s = n).  You 
can see that a confidence level greater than 95% cannot be achieved until the 
sample size is larger than n = 50. 

Sample  
Size (n)

Confidence  
Level (%) 

  5 23 
 10 40 
 15 54 
 20 64 
 25 72 
 50 92 
 75 98 
100 99 

Table 5.18 Confidence levels for one-sided upper nonparametric confidence inter-

vals for the 95th percentile, based on using the maximum value as the 

upper confidence limit 

Example 5.27:  Constructing a Nonparametric Upper Confidence Limit for 
the 95th Percentile of Copper Concentrations 

The guidance document USEPA (1992c, pp. 55 56) contains an example 
of copper concentrations (ppb) at five groundwater monitoring wells:  three 
background wells and two compliance wells (eight monthly samples at each 
well, except the first four missing at the two compliance wells).  These data 
are shown in Table 5.19, and in ENVIRONMENTALSTATS for S-PLUS they are 
stored in the data frame epa.92c.copper2.df.  Note that 15 out of the 
24 observations at the background wells are nondetects recorded as “<5.” 

USEPA (1992c, pp. 55 56) describes how to compute a nonparametric 
upper confidence limit for an extreme percentile of the copper concentrations 
at the three background wells, with the idea that this limit will be used as a 
threshold value for concentrations observed in the compliance wells (i.e., if 
the concentration at a compliance well exceeds this limit, this indicates there 
may be contamination in the groundwater).  This is the “Hot-Measurement 
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Comparison,” and, as already stated, there are some major problems with 
this technique that are discussed in Chapters 6 and 7. 

 Background Wells Compliance Wells 
Month Well 1 Well 2 Well 3 Well 4 Well 5 

1
2
3
4
5
6
7
8

<5
<5
 7.5 
<5
<5
<5
 6.4 
 6.0 

 9.2 
<5
<5
 6.1 
 8.0 
 5.9 
<5
<5

<5
 5.4 
 6.7 
<5
<5
<5
<5
<5

 6.2 
<5
 7.8 
10.4

<5
<5
 5.6 
<5

Table 5.19 Copper concentrations (ppb) at five groundwater monitoring wells, from 

USEPA (1992c, p. 55)

For this data set, 15/24 = 62.5% of the values at the background wells are 
nondetects, so the estimated median is some value less than 5.  The esti-
mated 95th percentile is 7.925, and using the largest value of 9.2 ppb as the 
upper confidence limit for the 95th percentile yields a one-sided upper confi-
dence interval with a confidence level of only 71%!  If we are willing to use 
9.2 as a threshold value, then Well 4 indicates possible contamination, 
whereas Well 5 does not. 

Menu

To nonparametrically estimate the 95th percentile of copper concentra-
tions at the background wells, and produce the one-sided upper confidence 
limit for the 95th percentile using the ENVIRONMENTALSTATS for S-PLUS

pull-down menu, follow these steps. 

1. In the Object Explorer, find the data frame epa.92c.copper2.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Quantiles.  This will bring up 
the Estimate Distribution Quantiles dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.copper2.df is selected. 
5. In the Variable box, select Copper.
6. In the Subset Rows with box, type Well.type=="Background".
7. In the Quantile(s) box, type 0.95.
8. Under the Distribution/Estimation group, for Type, select the Non-

parametric button. 
9. Under the Confidence Interval group, make sure the Confidence In-

terval box is checked.  For CI Type, select upper.  For CI Method, 
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select exact.  For Confidence Level (%), type 95.  For Lower Bound, 
type 0.  Click OK or Apply.

Command 

To nonparametrically estimate the 95th percentile of the copper concen-
trations at the background wells, and produce the one-sided upper confi-
dence limit for the 95th percentile using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(epa.92c.copper2.df)

eqnpar(Copper[Well.type=="Background"], p=0.95, ci=T, 

lb=0, ci.type="upper", approx.conf.level=0.95) 

detach()

Nonparametric Confidence Intervals for Quantiles Based on 
Bootstrapping

Earlier in this chapter, we discussed the general method of bootstrapping 
to create nonparametric confidence intervals for a population parameter (e.g., 
mean, difference between two means, etc.).  Why not use the bootstrap to 
create nonparametric confidence intervals for percentiles?  Well, we could, 
but it turns out that using the bootstrap to create confidence intervals for per-
centiles gives us essentially the same result as the rank-based method we just 
discussed (Efron, 1979a; Efron, 1982, Chapter 10). 

A CAUTIONARY NOTE ABOUT CONFIDENCE 
INTERVALS

A confidence interval is a form of statistical inference, where we infer 
characteristics about the population based on a sample from the population.  
All the methods that we have discussed for estimating distribution parame-
ters and creating confidence intervals for them assume we have a representa-
tive sample from the population, and that the observations are independent of 
one another.  It is often the case, however, that our sample represents a sam-
ple from a smaller population than the one for which we wish to make an in-
ference.  For example, we may wish to make an inference about the 95th per-
centile of copper concentrations in groundwater at specific background 
monitoring wells.  This distribution may very well have temporal compo-
nents, so that there is a specific pattern of variability between month and 
years.  If we take a sample that covers only part of a year, then we have not 
sampled from a population of copper concentrations that includes monthly 
and yearly variations. 
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Look at Figure 1.1 in Chapter 1 again to remind yourself of all of the fac-
tors that contribute to variability in environmental data.  An extensive sam-
pling program that takes into account all of these possible factors is rare and 
usually not feasible.  Therefore, a general rule of thumb is that most confi-
dence intervals are too narrow. 

SUMMARY

Whether you are conducting a preliminary, descriptive study of the 
environment or monitoring the environment for contamination under 
a specific regulation, you usually need to characterize the distribu-
tion of whatever you are looking at (e.g., a chemical in the environ-
ment), which involves estimating distribution parameters such as 
the mean, median, standard deviation, 95th percentile, etc. 
Estimators are functions of the observations from the sample, so es-
timators are random variables and have associated probability dis-
tributions. 
The three main methods of estimating distribution parameters are the 
method of moments estimator (MME), maximum likelihood estima-
tor (MLE), and minimum variance unbiased estimator (MVUE).
The bias or systematic error of an estimator is defined to be the dif-
ference between the average value of the estimator and the parameter 
it is estimating.  If the expected value of the estimator equals the pa-
rameter it is estimating, it is called an unbiased estimator.
The precision or random error or variability of an estimator is 
measured by its variance; it is a measure of how much the estimator 
“bounces around” its average value.  An estimator is precise if it has 
a small variability, and it is imprecise if it has a large amount of vari-
ability. 
The mean square error (MSE) of an estimator is the average or 
mean of the squared distance between the estimator and the parame-
ter it is trying to estimate.  It is a measure of how much the estimator 
“bounces around” the parameter it is supposed to be estimating. The 
mean square error of an estimator is equal to its variability (random 
error) plus the square of its bias (systematic error). 
The term accuracy is ambiguous.  Some authors use it to refer to the 
bias of an estimator, and some authors use it to refer to the mean 
square error of an estimator.  The term accuracy should be avoided 
and instead the terms bias, precision, and mean square error should 
be used. 
There are several ways to compare the performance of different es-
timators of the same quantity.  One common method is to compare 
estimators based on their mean square errors.  Another possible way 
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to compare estimators is by how well confidence intervals based on 
each estimator perform. 
A confidence interval for some population parameter  is an interval 
on the real line constructed from a sample of n observations so that 
it will contain the parameter  with some specified probability 
(1 )100%, where  is some fraction between 0 and 1.  The quan-
tity (1 )100% is called the confidence coefficient or confidence
level associated with the confidence interval. 
Parametric confidence intervals assume you know what kind of dis-
tribution describes the population.  Confidence intervals that do not 
require this assumption are called nonparametric confidence inter-
vals.
A confidence interval is a random interval; that is, the lower and/or 
upper bounds are random variables that are computed based on sam-
ple statistics.  Prior to taking one specific sample, the probability that 
the confidence interval will contain  is (1 )100%.  Once a specific 
sample is taken and a particular confidence interval is computed, the 
particular confidence interval associated with that sample either con-
tains  or it does not. 
The width of a confidence interval depends on the sample size, the 
amount of variability inherent in the population, and the confidence 
level that you choose. 
You can use bootstrapping to construct nonparametric confidence 
intervals for a population parameter.  How well bootstrapping works 
depends on how well the empirical cdf estimates the population cdf. 
You can compute quantiles by using the inverse of the cumulative 
distribution function, so you can estimate quantiles by using the in-
verse of the estimated cdf.  Parametric estimates of quantiles assume 
a particular probability distribution, while nonparametric estimates 
of quantiles use the empirical cdf. 
You can create confidence intervals for quantiles.  Confidence inter-
vals for quantiles are based on the idea of tolerance intervals, which 
are discussed in the next chapter. 
You rarely can take a random sample from the full population to 
which you really want to extrapolate, so confidence intervals are 
usually too narrow because you underestimate the amount of vari-
ability in the population. 
You can use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to esti-
mate distribution parameters and quantiles and create confidence in-
tervals. 
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EXERCISES

5.1. Consider the nickel concentrations in groundwater shown in Table 
3.12 of Exercise 3.1 in Chapter 3.  In ENVIRONMENTALSTATS for 
S-PLUS these data are stored in the data frame 
epa.92c.nickel1.df.  Assume these data come from a log-
normal distribution (combine all months and wells). 

a. Estimate the parameters of this distribution. 
b. Create a histogram of the data, then overlay the fitted dis-

tribution.  You can either use the log-transformed data and 
overlay the fitted normal distribution, or use the original 
data and overlay the fitted lognormal distribution. 

c. Create a two-sided 95% confidence interval for the mean 
using all of the available methods (Land’s, Parkin et al.’s, 
Cox’s, normal approximation) and compare the results. 

d. Use the bootstrap method to create a nonparametric two-
sided 95% confidence interval for the mean, and compare 
it to the other confidence intervals you created in part a.

e. Compute a 99% upper confidence limit for the 95th per-
centile. 

f. Compute a nonparametric upper confidence limit for the 
95th percentile by using the maximum value as the upper 
limit.  What is the confidence level associated with this 
confidence interval? 

5.2. Consider the arsenic concentrations in groundwater shown in Ta-
ble 3.13 of Exercise 3.2 in Chapter 3.  In ENVIRONMENTALSTATS

for S-PLUS these data are stored in the data frame 
epa.98.arsenic3.df.  Assume the data at the background 
well come from a normal distribution (combine all years).  Repeat 
parts a-f of Exercise 5.1.  (Note:  for part c of this exercise there is 
only one method of constructing the parametric confidence inter-
val.) 

5.3. Consider the Reference area TcCB data show in Table 3.2 of 
Chapter 3 (in ENVIRONMENTALSTATS for S-PLUS these data are 
stored in the data frame epa.94b.tccb.df).  Assume these 
data come from a lognormal distribution. 

a. Estimate the parameters of this distribution. 
b. Create a histogram of the data, then overlay the fitted dis-

tribution.  You can either use the log-transformed data and 
overlay the fitted normal distribution, or use the original 
data and overlay the fitted lognormal distribution. 
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c. Create an upper 99% confidence limit for the 95th percen-
tile   Do any of the observations from the Cleanup area 
fall above this limit? 

5.4. The built-in data set halibut in S-PLUS contains annual catch 
per unit effort (CPUE) and exploitable biomass of Pacific halibut 
for the years 1935 through 1989.  Assume the CPUE data come 
from a normal distribution, but do not make any assumptions 
about the distribution of biomass. 

a. Estimate the parameters of the assumed normal distribu-
tion for CPUE.  Create a histogram of the data, then over-
lay the fitted distribution. 

b. For the CPUE data, compute a two-sided 95% confidence 
interval for the mean. 

c. For the biomass data, compute a nonparametric two-sided 
95% confidence interval for the mean using the bootstrap 
method. 

d. For the biomass data, try to create a two-sided 95% confi-
dence interval for the median.  Is the confidence level for 
this confidence interval 95%? 

e. Compare the two intervals you created in parts c and d.

5.5. Consider the results of the simulation experiment shown in Table 
5.13 for the lognormal distribution with mean 10 and CV 1, for 
the sample size n = 10 (first row of the table).  The estimated pro-
portion of times the bootstrap confidence interval will actually 
contain the mean is 84%.  This result is based on 1,000 simula-
tions. 

a. What is the estimated standard error of the estimated pro-
portion? 

b. Plot the value of the estimated standard error vs. the num-
ber of simulations, assuming 10, 20, 50, 100, 250, 500, 
and 1,000 simulations were run.  (Assume the same esti-
mated proportion of 84% for each case.) 

c. Based on the 1,000 simulations, construct a two-sided 
95% confidence interval for the true proportion of times 
the bootstrap confidence interval will contain the mean. 
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6 PREDICTION INTERVALS, 
TOLERANCE INTERVALS,  
AND CONTROL CHARTS 

IS THAT OBSERVATION OUT OF BOUNDS?

The groundwater monitoring example discussed in Chapter 1 involves 
comparing chemical concentrations at the downgradient wells with “back-
ground” values based on upgradient wells (for detection monitoring) or 
comparing them with Ground Water Protection Standards (for assessment 
monitoring).  The soil cleanup example discussed in Chapter 1 involves 
comparing chemical concentrations in soil with a “soil screening level.”  
Any activity that requires comparing new values to “background” or “stan-
dard” values creates a decision problem:  If the new values greatly exceed 
the background or standard value, is this evidence of a true difference (i.e., is 
there contamination)?  Or are the true underlying concentrations the same as 
background or the standard value and this is just a “chance” event?  Table 
6.1 illustrates this decision problem (see Tables 2.1 and 2.2 in Chapter 2). 

Reality

Your Decision No Contamination Contamination 

Contamination
Mistake: 

Type I Error 
(Probability = )

Correct Decision 
(Probability = 1 )

No Contamination Correct Decision 
Mistake: 

Type II Error 
(Probability = )

Table 6.1  The decision problem of comparing new values to a “background” or 

“standard” value 

The new values you are obtaining are random quantities and therefore 
have an associated probability distribution (recall Figure 1.2 in Chapter 1 for 
a list of factors that influence the new values).  Because the new values are 
random quantities, any hard and fast rule you make, any dividing line you 
choose between deciding “Contamination” vs. “No Contamination,” will re-
sult in instances when you make the correct decision and in instances when 
you make a mistake.  Statisticians call the two kinds of mistakes you can 
make a Type I error and a Type II error.  Of course, in the real world, once 
you make a decision, you take an action (e.g., clean up the site or do noth-
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ing), and you hope to find out eventually whether the decision you made was 
the correct decision. 

For a specific decision rule, the probability of making a Type I error is 
usually denoted with the Greek letter  (alpha), and the probability of mak-
ing a Type II error is usually denoted with the Greek letter  (beta).  With 
this nomenclature, the probability 1  denotes the probability of correctly 
deciding there is contamination when in fact it is present.  This probability is 
called the power of the decision rule. 

One way to come up with an objective decision rule to decide whether 
there is contamination or not is to base it on some kind of statistical interval 
or test.  In this chapter, we will discuss three statistical tools you can use to 
create background intervals:  prediction intervals, tolerance intervals, and 
control charts.  Here, the decision rule about whether contamination has oc-
curred is based on whether the new observations fall inside or outside the 
background interval.  This decision rule is a specific kind of hypothesis test.  
In this chapter, we will concentrate only on making sure we have some kind 
of control over the probability of a Type I error (the probability of declaring 
contamination when in fact none is present).  We will discuss hypothesis 
tests in more detail in Chapter 7, and in Chapter 8 we will talk about sample 
size calculations and controlling the power of a test. 

In the context of groundwater monitoring, one aspect of this kind of test-
ing that cannot be over-emphasized is adequately accounting for spatial vari-
ability.  Because of the ubiquitous presence of spatial variability in chemical 
concentrations in groundwater, it is usually best to generate background data 
specific to each monitoring well (i.e., use intra-well comparisons).  That is, 
the ideal situation is to construct the background intervals based on pre-
landfill data for each well, and compare future observations at a well to the 
interval for that particular well.  Often, however, observations at downgradi-
ent wells are not available prior to the construction and operation of the land-
fill.  In this case, upgradient well data can be combined to create a back-
ground interval, and observations at each downgradient well can be com-
pared to this interval.  If spatial variability is present and a major source of 
variation, however, you have to somehow account for it (e.g., Davis, 1994; 
Davis and McNichols, 1999). 

PREDICTION INTERVALS 

A prediction interval for some population is an interval on the real line 
constructed so that it will contain k future observations or averages from that 
population with some specified probability (1 )100%, where  is some 
fraction between 0 and 1 (usually  is less than 0.5), and k is some pre-
specified positive integer.  (Note:  We will see in a bit how this  is really the 
same as the  we used above to denote the probability of a Type I error.)  
Just as for confidence intervals (see Chapter 5), the quantity (1 )100% is 
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called the confidence coefficient or confidence level associated with the 
prediction interval. 

The basic idea of a prediction interval is to assume a particular probabil-
ity distribution (e.g., normal, lognormal, etc.) for some process generating 
the data (e.g., quarterly observations of chemical concentrations in ground-
water), compute sample statistics from a baseline sample, and then use these 
sample statistics to construct a prediction interval, assuming the distribution 
of the data does not change in the future.  For example, if X denotes a ran-
dom variable from some population, and we know what the population looks 
like (e.g., N(10, 2)) so we can compute the quantiles of the population, then 
a (1 )100% two-sided prediction interval for the next k = 1 observation of 
X is given by: 

2 1 2,x x (6.1)

where xp denotes the pth quantile of the distribution of X.  Similarly, a 
(1 )100% one-sided upper prediction interval for the next observation is 
given by: 

1, x (6.2)

and a (1 )100% one-sided lower prediction interval for the next observa-
tion is given by: 

,x (6.3)

For general values of k, the two-sided, one-sided upper, and one-sided lower 
prediction intervals are given, respectively, by: 

,
L Up px x (6.4)

11
, kx (6.5)
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11 1
,kx (6.6)

where

11 1

2

k

Lp  (6.7)

11 1

2

k

Up  (6.8)

These equations can be derived using the binomial distribution.  That is, 
the probability that all of the next k future observations will fall into the pre-
diction interval is simply pk, where p denotes the probability of one future 
observation falling into the prediction interval.  Setting pk = 1  yields the 
prediction intervals in Equations (6.4) to (6.6).  Figure 6.1 shows the 
probability density function of a N(10, 2) distribution along with one-sided 
upper 95% prediction limits for various values of k.  (Note that the upper 
prediction limit increases with k, the number of future observations the 
prediction limit should contain.) 

N(10,2) Distribution with 95% Upper Prediction Limits
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Figure 6.1 One-sided upper 95% prediction limits for a N(10, 2) distribution 
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Usually the true distribution of X is unknown, so the values of the predic-
tion limits have to be estimated based on estimating the parameters of the 
distribution of X.  For the usual case when the exact distribution of X is un-
known, a prediction interval is thus a random interval; that is, the lower and 
upper bounds are random variables computed based on sample statistics in 
the baseline sample.  Prior to taking one specific baseline sample, the prob-
ability that the prediction interval will contain the next k observations is 
(1 )100%.  Once a specific baseline sample is taken and the prediction in-
terval based on that sample is computed, the probability that that prediction 
interval will contain the next k observations is not necessarily (1 )100%,
but it should be close to this value. 

Suppose an experiment is performed N times, and suppose that for each 
experiment: 

1. A sample is taken and a (1 )100% prediction interval for k = 1 fu-
ture observation is computed. 

2. One future observation is generated and compared to the prediction 
interval. 

Then the number of times a prediction interval generated in Step 1 above 
will contain a future observation generated in step 2 above is a binomial ran-
dom variable with parameters n = N and p = 1  that is, it follows a B( N,
1 ) distribution.  Figure 6.2 shows the results of such a simulated experi-
ment in which a random sample of n = 10 observations was taken from a 
N(5, 1) distribution and an 80% prediction interval for k = 1 future observa-
tion was constructed based on these 10 observations.  Then one future obser-
vation was generated.  The experiment was repeated 100 times.  In this case, 
the actual number of times the prediction interval contained the future obser-
vation was 78. 

It is important to note that if only one baseline sample is taken and only 
one prediction interval for k = 1 future observation is computed, then the 
number of future observations out of a total of N future observations that will 
be contained in that one prediction interval is a binomial random variable 
with parameters n = N and p = 1 *, where * depends on the true popula-
tion parameters and the computed bounds of the single prediction interval.  
The rest of this section explains how to construct prediction intervals for the 
normal, lognormal, and Poisson distributions, and also how to construct 
nonparametric prediction intervals.  As in Chapter 5, throughout this chapter 
we will assume that X denotes a random variable and x denotes the observed 
value of this random variable based on a sample.  Thus, x1, x2, …, xn denote 
n independent observations from a particular probability distribution. 
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Coverage of 80% Prediction Intervals for k=1 Future Observation
for N(5,1) Distribution with n=10
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Figure 6.2 Results of simulation experiment showing the 80% prediction interval 

and one future observation for 100 simulations 

Prediction Intervals for a Normal Distribution 

For a normal distribution with mean  and standard deviation , the form 
of a two-sided (1 )100% prediction interval for the next k future observa-
tions is: 

,x Ks x Ks (6.9)

Similarly, the form of a one-sided upper prediction interval is: 

, x Ks (6.10)

and the form of a one-sided lower prediction interval is: 

,x Ks (6.11)
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In these prediction intervals, x  and s denote the sample mean and standard 
deviation, and K is a constant that depends on the sample size (n), the confi-
dence level ((1 )100%), the number of future observations (k), and the 
kind of prediction interval (two-sided vs. one-sided).  Do not confuse the 
constant K (uppercase K) with the number of future observations (lowercase 
k).  The symbol K is used here to be consistent with the notation used for 
tolerance intervals (see below). 

We will discuss how K is computed in a bit.  Note that the form of predic-
tion intervals for a normal distribution is similar to the form of confidence 
intervals for the population mean (see Equations (5.78) to (5.80) in Chapter 
5).

We can actually compute a prediction interval for k future averages,
where m denotes the sample size associated with each of the k future aver-
ages.  In this case, the constant K also depends on the value of m.  When m =
1, each average is really just a single observation, so in the rest of this sec-
tion we will sometimes use the term “average” instead of “observation or  
average.”

Derivation of K for One Future Observation (k = 1) 

As we noted earlier in this chapter, if we know the true distribution of X,
that is, if we know the value of the mean  and the standard deviation , then 
we can construct a two-sided (1 )100% prediction interval for the next k =
1 observation using Equation (6.1).  Recall from Chapter 4 (Equation (4.54) 
in Exercise 4.7) that the pth quantile of a N( , ) distribution can be written 
as:

p px z (6.12)

where zp denotes the pth quantile of a standard normal distribution.  Thus, 
when we know the values of  and  the prediction interval becomes: 

2 1 2

2 1 2

1 2 1 2

,

,

,

x x

z z

z z

(6.13)
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More generally, a two-sided (1 )100% prediction interval for the next k =
1 average based on a sample of size m is given by: 

1 2 1 2,z z
m m

(6.14)

Because the values of  and  are almost always unknown, they must be 
estimated and the prediction interval must be constructed based on the esti-
mated values of  and .  For a two-sided (1 )100% prediction interval for 
the next k = 1 average, the constant K is computed as: 

1,1 2
1 1

nK t
m n

(6.15)

where t ,p denotes the pth quantile of the Student’s t-distribution with  de-
grees of freedom.  Similarly, for a one-sided lower or upper prediction inter-
val, the constant K is computed as: 

1,1
1 1

nK t
m n

(6.16)

These formulas for K are derived as follows.  Let y  denote the future 
average based on m observations.  Then the quantity y x  has a normal 
distribution with mean and variance given by: 

0E y x (6.17)

2 2
2

2 ,

1 1
0

Var y x Var y Var x Cov y x

m n m n

(6.18)

so the quantity 
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1 1

y x
t

s
m n

(6.19)

has a Student’s t-distribution with n 1 degrees of freedom.  Hence, to derive 
the formula for K for a one-sided upper prediction limit (Equations (6.10) 
and (6.16)), we note that 

1,1

1,1

1,1

1,1

1 Pr
1 1

1 1
Pr

1 1
Pr

1 1
Pr

n

n

n

n

y x
t

s
m n

y x t s
m n

y x t s
m n

y x t s
m n

(6.20)

Similar reasoning yields the value of K for a one-sided lower prediction limit 
or a two-sided prediction limit. 

Derivation of K for Several Future Observations (k>1) 

When k > 1, there are at least two possible ways to compute K:  an exact 
method due to Dunnett (1955), and an approximate (conservative) method 
based on the Bonferroni inequality (Miller, 1981a, pp. 8, 67 70; Gibbons, 
1994, pp. 11 15).  Each of these methods is explained below. 

Exact Value of K 

Dunnett (1955) derived the value of K in the context of the multiple com-
parisons problem of comparing several treatment means to one control mean.  
The value of K is computed as: 
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1 1
K d

m n
(6.21)

where d is a constant that depends on the sample size (n), the confidence 
level ((1 )100%), the number of future observations or averages (k), the 
sample size associated with the k future averages (m), and the kind of predic-
tion interval (two-sided vs. one-sided). 

For a one-sided upper or lower prediction interval, the value of d is the 
number that satisfies the following equation (Gupta and Sobel, 1957; Hahn, 
1970a): 

0

1

, , 1, 1 1F d s k h s n n n ds
(6.22)

where

, ,
1

k
x y

F x k y dy (6.23)

1

1
n

m

(6.24)

2
1

2 1

exp
2

,
2

2

x
x

h x (6.25)

and () and () denote the cumulative distribution function and probability 
density function, respectively, of the standard normal distribution.  Note that 
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the function h() defined in Equation (6.25) denotes the probability density 
function of a chi random variable with n degrees of freedom. 

For a two-sided prediction interval, the value of d is the number that sat-
isfies Equation (6.22), except that the function F() in Equation (6.23) be-
comes: 

, ,

1 1

k

F x k

x y  x y
y dy

(6.26)

Approximate Value of K Based on the Bonferroni Inequality 

When k is larger than one, a conservative way to construct a 
(1 *)100% prediction interval for the next k averages is to set = */k
in Equation (6.15) or (6.16) for K (Chew, 1968).  This value of K is based on 
the Bonferroni inequality (Miller, 1981a, p. 8; see the section The Multiple 
Comparisons Problem in Chapter 7), and will be conservative in that the 
computed prediction intervals will be wider than the exact predictions inter-
vals.  Hahn (1969, 1970a) compared the exact values of K with those based 
on the Bonferroni inequality for the case of m = 1 and found the approxima-
tion to be quite satisfactory except when n is small, k is large, and  is large.  
For example, Gibbons (1987a) notes that for a 99% prediction interval (i.e., 

= 0.01) for the next k observations, if n>4, the bias of K based on the Bon-
ferroni Inequality is never greater than 1% no matter what the value of k.

Relationship between K, Sample Size, Number of Future Observations, 
and Confidence Level 

Figure 6.3 displays a graph of K as a function of background sample size 
( n) and number of future observations (k) for a one-sided 99% prediction in-
terval based on the exact value of K.  Figure 6.4 displays the same thing, ex-
cept in this figure the number of future observations (k) is set to 2 and the 
confidence level is allowed to vary.  Figure 6.5 compares the exact and Bon-
ferroni approximation methods of computing K for k = 2 future observations 
for a one-sided 99% prediction interval.  These figures show that K decreases 
asymptotically with increasing sample size (n), and K increases with increas-
ing number of future observations (k) and/or confidence level ((1 )100%).
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Figure 6.3: K as a function of sample size (n) and number of future observations (k)

for a one-sided 99% prediction interval 
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Figure 6.4: K as a function of sample size (n) and confidence level((1 )100%) for 

k = 2 future observations for a one-sided prediction interval 
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Figure 6.5: K as a function of sample size ( n) and computation method for a one-

sided 99% prediction interval 

Example 6.1:  Normal Prediction Interval for k = 4 Future Observations of 
Arsenic

Table 6.2 below shows arsenic concentrations (ppb) collected quarterly at 
two groundwater monitoring wells.  These data are modified from benzene 
data given in USEPA (1992c, p. 56).  In ENVIRONMENTALSTATS for S-PLUS

these data are stored in the data frame arsenic3.df.  In this example, we 
will use the data from the background well to construct a prediction interval 
for the next k = 4 observations. 

Well Year Observed Arsenic (ppb) 
Background  1 

 2 
 3 

12.6  30.8  52.0  28.1 
33.3  44.0   3.0  12.8 
58.1  12.6  17.6  25.3 

Compliance  4 
 5 

48.0  30.3  42.5  15.0 
47.6   3.8   2.6  51.9 

Table 6.2  Arsenic data from groundwater monitoring wells 

Combining all of the observations from the background well and assum-
ing the data at the background well come from a normal distribution, the ex-
act one-sided upper 95% prediction limit for the next k = 4 future observa-
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tions is 72.9 ppb, and the one based on the Bonferroni method is 73.7.  The 
four observed values of arsenic at the compliance well in year 4 are all below 
both of these prediction limits, as are all four values for year 5, so there is no 
evidence of contamination in either year. 

Of course, this example ignores all sorts of possible design problems, in-
cluding the fact that there is only one background well (so there is no way to 
estimate spatial variability), and the possibility of temporal correlation since 
there are four observations taken within a single month (that is, variability 
within a month may be smaller than variability between months).  Also, 
sampling ceased at the background well in years 4 and 5 so there is no way 
to determine whether a change may have occurred in background concentra-
tions during these years. 

Menu

To construct a prediction interval for the arsenic concentrations using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find the data frame arsenic3.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure arsenic3.df is selected. 
5. In the Variable box, select Arsenic.
6. In the Subset Rows with box, type Well.type=="Background".
7. Click on the Interval tab. 
8. In the Distribution/Sample Size section, make sure the Type button 

is set to Parametric, that Normal is selected in the Distribution box, 
and type 1 in the n(mean) box. 

9. Under the Prediction Interval section, uncheck the Simultaneous 
box, type 4 in the # Future Obs box, in the PI Type box select upper,
and in the PI Method box select exact.

10. Click OK or Apply.

These steps produce an exact upper prediction limit.  To produce the upper 
prediction limit based on the Bonferroni method, in Step 9 above select Bon-
ferroni in the PI Method box. 

Command 

To construct the exact prediction interval for the arsenic concentrations 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(arsenic3.df)
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pred.int.norm(Arsenic[Well.type=="Background"], k=4, 

method="exact", pi.type="upper") 

To compute the prediction interval based on the Bonferroni method, type this 
command. 

pred.int.norm(Arsenic[Well.type=="Background"], k=4, 

method="Bonferroni", pi.type="upper") 

Prediction Intervals for a Lognormal Distribution 

A prediction interval for a lognormal distribution is constructed by sim-
ply taking the natural logarithm of the observations and constructing a pre-
diction interval based on the normal distribution, then exponentiating the 
prediction limits to produce a prediction interval on the original scale of the 
data (Hahn and Meeker, 1991, p. 73).  In fact, you can use any monotonic 
transformation of the observations that you think induces normality (e.g., a 
Box-Cox power transformation), compute the prediction interval on the 
transformed scale, and then use the inverse transformation on the prediction 
limits to produce a prediction interval on the original scale. 

To construct a prediction interval for a lognormal distribution using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow steps similar to 
those shown in the previous section for a normal distribution, except choose 
Lognormal in the distribution box.  To construct a prediction interval for a 
lognormal distribution using the ENVIRONMENTALSTATS for S-PLUS Com-
mand or Script Window, type commands similar to those shown in the previ-
ous section for a normal distribution, except use the function 
pred.int.lnorm instead of pred.int.norm.

Prediction Intervals for a Poisson Distribution 

Just as you can construct a prediction interval for the next k future obser-
vations or averages for a normal or lognormal distribution, you can construct 
a prediction interval for the next k future observations or sums for a Poisson 
distribution.  Here, it is assumed the sums are based on a sample size of m.
When m = 1, this is the same as a single observation. 

Because of the discrete nature of the Poisson distribution, even if the true 
mean of the distribution  were known exactly, the actual confidence level 
associated with a prediction interval will usually not be exactly equal to 
some desired value of (1 )100%.  For example, for the Poisson distribution 
with a mean of = 2, the interval [0, 3] contains 85.7% of this distribution 
and the interval [0, 4] contains 94.7% of this distribution.  Thus, no interval 
can contain exactly 90% of this distribution, so it is impossible to construct 
an exact 90% prediction interval for the next k = 1 observation for this par-
ticular Poisson distribution. 
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For a Poisson distribution with mean , the form of a two-sided 
(1 )100% prediction interval for the next k future observations or sums is: 

,

,x x

mx K mx K

cS K cS K

(6.27)

Similarly, the form of a one-sided upper prediction interval is: 

0, 0, xmx K cS K (6.28)

and the form of a one-sided lower prediction interval is: 

, ,xmx K cS K (6.29)

In these prediction intervals, x  denotes the sample mean, Sx denotes the 
sum of the observed values, and c denotes the ratio of the sample size for the 
future sums (m) to the sample size for the background data (n):

1

1 n

i
i

x x
n

(6.30)

1

n

x i
i

S x (6.31)

m
c

n
(6.32)

and K is a constant that depends on the sample size (n), the confidence level 
((1 )100%), the number of future observations or sums (k), the sample size 
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associated with the future sums (m), and the kind of prediction interval (two-
sided vs. one-sided).  The derivation of K is explained below. 

Derivation of K Based On Binomial Conditional Distribution 

Let Sy denote the sum of m observations from a Poisson distribution with 
mean *.  That is, 

1

m

y i
i

S y (6.33)

where y1, y2, …, ym are m independent observations from a Poisson( *) dis-
tribution.  We want to construct a prediction interval for the next k values of 
Sy, assuming that the mean for the distribution of the future values is the 
same as the mean for the distribution of the background data (i.e., assuming 

* = ).
Nelson (1970) derives a prediction interval for the case k = 1 based on 

the conditional distribution of Sy given Sx+Sy = w, which has a binomial 
distribution (B(n, p)) with n = w and 

*

*

m
p

m n
(6.34)

(Johnson et al., 1992, p. 161).  The prediction limits are computed as those 
most extreme values of Sy that still yield a non-significant test of the null 
hypothesis 

*
0 :H (6.35)

which is equivalent to the null hypothesis 

0 :
m

H p
m n

(6.36)

(see Chapter 7 for an explanation of hypothesis tests). 
Using the relationship between the binomial and F-distribution (see the 

section Confidence Interval for the Probability of Success for a Binomial 
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Distribution in Chapter 5), Nelson (1982, p. 203) states that exact two-sided 
(1 )100% prediction limits [LPL, UPL] are the closest integer solutions 
to the following equations: 

2 2 ,2 ,1 21 xLPL S
x

m n
F

LPL S
(6.37)

2 2,2 ,1 2
1

x
x

S UPL
UPL S

F
n n

(6.38)

where
1 2, ,pF  denotes the pth quantile of the F-distribution with 1 and 2

degrees of freedom.  For a one-sided lower prediction limit, /2 is replaced 
with  in Equation (6.37) and UPL is set to .  For a one-sided upper predic-
tion limit, /2 is replaced with  in Equation (6.38) and LPL is set to 0.  
Note that this method is not extended to the case k > 1. 

Derivation of K Based on Normal Approximation to Binomial Conditional 
Distribution

Cox and Hinkley (1974, p. 245) derive an approximate prediction inter-
val for the case k = 1, based on the same reasoning as Nelson (1970), but 
suggest using the normal approximation to the binomial distribution (without 
the continuity correction; see Zar, 1999, pp. 535 538 or Fisher and van 
Belle, 1993, pp. 183 184 for information on the continuity correction asso-
ciated with the normal approximation to the binomial distribution).  Under 
the null hypothesis shown in Equation (6.35), the quantity 

2

1

1

x y
y

x y

c S S
S

cz
c S S

c

(6.39)

is approximately distributed as a standard normal random variable.  (Note 
that both USEPA, 1992c, p. 36, and McBean and Rovers, 1998, p. 114, in-
correctly state the square of this quantity follows a standard normal distribu-
tion.) 
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For k = 1 future observation or sum, the two-sided prediction limits are 
computed by solving the equation 

2 2
1 2z z (6.40)

where zp denotes the pth quantile of the standard normal distribution.  In this 
case, Gibbons (1987b) notes that the quantity K in Equation (6.27) above is 
given by: 

2 2
1 2  1 2

1 2
1

1
2 4

x

z c  z
K z c S

c
(6.41)

For one-sided lower or upper prediction intervals, /2 is replaced with  in 
the above equation. 

For more than one future observation or sum (i.e., k > 1), Gibbons 
(1987b) suggests using the Bonferroni inequality (see the section The Multi-
ple Comparisons Problem in Chapter 7).  That is, the value of K is computed 
exactly as for the case k = 1 described above, except for a two-sided predic-
tion interval, /2 is replaced with ( /k)/2, and for a one-sided prediction 
interval  is replaced with /k.

Gibbons (1987b) also suggested using a Student’s t approximation in-
stead of a normal approximation.  In this case, all occurrences of zp are re-
placed with tn-1,p where t ,p denotes the pth quantile of the Student’s t-
distribution with  degrees of freedom. 

Derivation of K Based on Normal Approximation 

The normal approximation for Poisson prediction limits was given by 
Nelson (1970; 1982, p. 203) and is based on the fact that the mean and vari-
ance of a Poisson distribution are the same (see Equation (4.44) in Chapter 
4), and for “large” values of n and m, both X and Y are approximately nor-
mally distributed.  This method is discussed in the ENVIRONMENTALSTATS

for S-PLUS help file for pred.int.pois.

Example 6.2:  Poisson Prediction Interval for k = 1 Future Sum of Four 
Benzene Observations 

Consider the benzene concentrations at six background groundwater 
monitoring wells shown in Table 5.2 in Chapter 5.  In Example 5.23, we re-
produced the example in USEPA (1992c, p. 36) of constructing a confidence 
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interval for the mean concentration, assuming these data come from a Pois-
son distribution.  In this example, the 33 values reported as “<2” were set to 
half the detection limit (i.e., 1).  We saw that a Poisson Q-Q plot of these 
data indicates that the Poisson model is a not really a good fit. 

Prediction Interval Method 
[ 0, 16.1 ] Conditional Distribution 
[ 0, 14.9 ] Normal Approximation to 

Conditional Distribution 
[ 0, 15.3 ] Student’s t Approximation 

to Conditional Distribution 
[ 0, 14.9 ] Normal Approximation 

Table 6.3  One-sided upper 99% prediction limits for the sum of four benzene con-

centrations (ppb), based on data from USEPA (1992c, p. 36) 

USEPA (1992c, pp. 36 38) uses these data to illustrate how to construct 
a one-sided upper 99% prediction interval for the next k = 1 sum of four ob-
servations (i.e., m = 4).  This could therefore apply to the next four observa-
tions at a single downgradient well, or to the sum of the next single observa-
tions at four downgradient wells, but in either case you must assume the dis-
tribution of benzene follows the same Poisson distribution as for the com-
bined six background wells.  Table 6.3 displays the upper prediction limit 
based on the four methods discussed above.  In this table, the prediction lim-
its have not been rounded so that you can compare the outcome for the pre-
diction limit based on Student’s t approximation to the conditional distribu-
tion (third row) with the results in USEPA (1992c, p. 37).  In practice, the 
prediction limits should be rounded because we are assuming the observa-
tions follow a Poisson distribution, which can only take on integer values. 

Menu

To construct the Poisson prediction intervals shown in Table 6.3 using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps 

1. In the Object Explorer, highlight new.epa.92c.benzene1.df (the data 
frame that you created in Example 5.23 in Chapter 5). 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure new.epa.92c.benzene1.df is selected. 
5. In the Variable box, select new.Benzene.
6. Click on the Interval tab. 
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7. In the Distribution/Sample Size section, make sure the Type button 
is set to Parametric.  In the Distribution box select Poisson, and 
type 4 in the n(sum) box. 

8. Under the Prediction Interval section, uncheck the Round Limits 
box, type 1 in the # Future Obs box, in the PI Type box select upper,
in the PI Method box select conditional, and in the Confidence 
Level(%) box type 99.

9. Click OK or Apply.

These steps produce the upper prediction limit based on the binomial condi-
tional distribution.  To produce the upper prediction limits based on the other 
three methods, in Step 8 above in the PI Method box, select condi-
tional.approx.normal, conditional.approx.t, or normal.approx.

Command 

To construct the Poisson prediction intervals shown in Table 6.3 using 
the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type 
these commands. 

attach(epa.92c.benzene1.df)

Benzene[Censored] <- 1 

pred.int.pois(Benzene, k=1, n.sum=4, 

method="conditional", pi.type="upper", 

conf.level=0.99, round.limits=F) 

pred.int.pois(Benzene, k=1, n.sum=4, 

method="conditional.approx.normal",

pi.type="upper", conf.level=0.99, round.limits=F) 

pred.int.pois(Benzene, k=1, n.sum=4, 

method="conditional.approx.t", pi.type="upper", 

conf.level=0.99, round.limits=F) 

pred.int.pois(Benzene, k=1, n.sum=4, 

method="normal.approx", pi.type="upper", 

conf.level=0.99, round.limits=F) 

rm(Benzene)

detach()

Nonparametric Prediction Intervals 

So far we have discussed how to construct prediction intervals assuming 
the background data come from a normal, lognormal, or Poisson distribution.  
You can also construct prediction intervals assuming other kinds of paramet-
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ric distributions (e.g., Hahn and Meeker, 1991; Nelson, 1982) but we will not 
discuss these here.  You can also construct prediction intervals without mak-
ing any assumption about the distribution of the background data, except that 
the distribution is continuous.  These kind of prediction intervals are called 
nonparametric prediction intervals.  Of course, nonparametric prediction in-
tervals still require the assumption that the distribution of future observations 
is the same as the distribution of the observations used to create the predic-
tion interval. 

Derivation of Nonparametric Prediction Intervals 

If we let x(i) denote the ith largest observation in our background sam-
ple of size n (i.e., the ith order statistic), then a two-sided nonparametric 
prediction interval is constructed as: 

,u vx x (6.42)

where u and v are positive integers between 1 and n, and u < v.  That is, u
denotes the rank of the lower prediction limit, and v denotes the rank of the 
upper prediction limit. 

To make it easier to write some equations later on, we can also write the 
prediction interval in Equation (6.42) in a slightly different way as: 

1,u n wx x (6.43)

where

1w n v (6.44)

so that w is a positive integer between 1 and n 1, and u < (n+1 w).
If we allow u = 0 and w = 0 and define lower and upper bounds as: 

0x lb (6.45)

1nx ub (6.46)
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then Equation (6.43) above can also represent a one-sided lower or one-sided 
upper prediction interval as well.  That is, a one-sided lower nonparametric 
prediction interval is constructed as: 

1, ,u n ux x x ub (6.47)

and a one-sided upper nonparametric prediction interval is constructed as: 

0 1 1, ,n w n wx x lb x (6.48)

Usually, lb =  or lb = 0, and ub = .
Danziger and Davis (1964) show that the probability that at least k out of 

the next m observations will fall in the interval defined in Equation (6.43) is 
given by: 

1

1

m

i k

m i u w i n u w

m i i

n m

m

(6.49)

Setting u = w = 1 implies using the smallest and largest observed values as 
the prediction limits.  In this case, it can be shown that the probability that at 
least k out of the next m observations will fall in the interval 

1 , nx x (6.50)

is given by: 

2
1

1

m

i k

n i
m i

i

n m

m

(6.51)
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Finally, setting k = m in Equation (6.51), the probability that all of the next m
observations will fall in the interval defined in Equation (6.50) is given by: 

1
1

1

n n

n m n  m
(6.52)

For one-sided prediction limits, the probability that all m future observa-
tions will fall below x( n) (upper prediction limit) is the same as the probabil-
ity that all m future observations will fall above x(1) (lower prediction limit), 
which is given by: 

1 
n

n m 
(6.53)

Example 6.3:  Nonparametric Prediction Interval for m = 2 Future Arsenic 
Concentrations 

The guidance document USEPA (1992c, pp. 59 60) gives an example of 
constructing a nonparametric prediction interval for the next k = m = 2 
monthly observations of arsenic concentrations (ppb) in groundwater at a 
downgradient well, based on observations from three background wells.  The 
data are shown in Table 6.4 below and are stored in the data frame 
epa.92c.arsenic2.df in ENVIRONMENTALSTATS for S-PLUS.

 Background  
Wells

Compliance
Well

Month Well 1 Well 2 Well 3 Well 4 
1
2
3
4
5
6

  <5 
  <5 
   8 
  <5 
   9 
  10 

  7 
  6.5 
 <5 
  6 
 12 
 <5 

  <5 
  <5 
  10.5 
  <5 
  <5 
   9 

 8 
14

Table 6.4  Arsenic data (ppb) from groundwater monitoring wells (USEPA, 1992c, 

p. 60) 

The three background wells were sampled once per month for 6 months.  
The compliance well was only sampled in the 5th and 6th months.  The EPA 
guidance document combines all of the observations from the three back-
ground wells (n = 18) and uses the maximum value 12 as an upper predic-
tion limit for the next k = m = 2 observations at the compliance well.  Based 
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on Equation (6.53), this produces a 90% upper prediction interval.  Since one 
of the values from the compliance well lies above the upper prediction limit, 
we might conclude there is evidence of contamination at the compliance 
well, but we should keep in mind that given the way we constructed our pre-
diction interval, we would incorrectly declare contamination present when in 
fact it is not present about 10% of the time. 

Menu

To construct the nonparametric prediction interval using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer find the data frame epa.92c.arsenic2.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.arsenic2.df is selected. 
5. In the Variable box, select Arsenic.
6. In the Subset Rows with box, type Well.type=="Background".
7. Click on the Interval tab. 
8. In the Distribution/Sample Size section, set the Type button to Non-

parametric.
9. Under the Prediction Interval section, in the # Future Obs box type 

2., in the Min # Obs PI Should Contain box type 2, in the PI Type 
box select upper, and in the Lower Bound box type 0.

10. Click OK or Apply.

Command 

To construct the nonparametric prediction interval using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.92c.arsenic2.df)

pred.int.npar(Arsenic[Well.type=="Background"], m=2, 

lb=0, pi.type="upper") 

detach()

Parametric vs. Nonparametric Prediction Intervals 

In the last example, we easily constructed an upper prediction limit for 
arsenic even though several values were reported as nondetects (<5).  This is 
a major advantage of nonparametric prediction intervals over parametric 
prediction intervals.  (It is in fact possible to construct parametric prediction 
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intervals using data that contain nondetect values, but the mathematics and 
assumptions are complicated; see Chapter 10.)  Also, with nonparametric 
prediction intervals, we do not have to worry about whether the distribution 
with which we have chosen to model the data is valid. 

On the other hand, nonparametric prediction intervals often require large 
sample sizes to achieve an adequate confidence level.  For example, if we 
want to construct an upper 95% prediction interval for the next k = m = 2 ob-
servations, we require a sample size of n = 38 (see Equation (6.53) and 
Chapter 8).  There are no such requirements on sample size for parametric 
distributions, although the width of a parametric prediction interval certainly 
depends on the sample size. 

Another important point to note is that usually nonparametric methods 
are “robust” against “outliers” (e.g., the median is unaffected by a few ex-
tremely large values), but this is not the case with nonparametric prediction 
limits based on the extreme values (i.e., based on the maximum and/or 
minimum values; Davis and McNichols, 1999).  For example, if the back-
ground data contain a transcription error that makes the largest value 91 in-
stead of 19, this would probably make the prediction interval unreasonably 
wide and cause us to miss contamination when it is present.  To guard 
against this kind of problem, Davis and McNichols (1999) suggest deciding 
on which order statistic to use as the prediction limit (largest, next to largest, 
etc.) after looking at the background data but before looking at any future 
observations.  Of course if the cause(s) of the outlier(s) can be identified and 
remedied, this is an even better approach. 

SIMULTANEOUS PREDICTION INTERVALS 

Analyzing data from a groundwater monitoring program involves several 
difficulties, including trying to control for natural spatial and temporal vari-
ability, and perhaps dealing with nondetect values.  One of the main statisti-
cal problems that plague groundwater monitoring programs at hazardous and 
solid waste facilities is the requirement of testing several wells and several 
constituents at each well on each sampling occasion.  The number of con-
stituents monitored can range from around 5 to 60 or more, and some facili-
ties may have as many as 150 monitoring wells (Davis and McNichols, 
1999).  This is an obvious multiple comparisons problem (see Chapter 7), 
and the naïve approach of using a prediction interval with a conventional 
confidence level (e.g., 95% or 99%) for each comparison of a compliance 
well with background for each chemical of concern leads to a very high 
probability of at least one declaration of contamination on each sampling oc-
casion, when in fact no contamination has occurred at any of the wells at any 
time for any of the chemicals of concern.  This problem was pointed out sev-
eral years ago by Millard (1987a) and others. 
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Davis and McNichols (1987, 1994b, 1999) proposed simultaneous pre-
diction intervals as a way of controlling the facility-wide false positive rate 
(FWFPR) while maintaining adequate power to detect contamination in the 
groundwater.  A simultaneous prediction interval is a prediction interval 
that will contain a certain number of future observations with probability 
(1 )100% for each of r future sampling occasions, where r is some pre-
specified positive integer.  The quantity r may refer to r distinct future sam-
pling occasions in time at a single compliance well, or it may refer to sam-
pling at r distinct compliance wells on one future sampling occasion.  (Note:  
Current regulations prohibit evaluating false positive risks over more than 
one monitoring event, so for current practice r must refer to the number of 
compliance wells monitored, and “r future sampling occasions” refers to 
sampling each of the r wells once.)  In either case, it is assumed that the dis-
tribution of concentrations is constant over all r future sampling occasions. 

Although simultaneous prediction intervals help us control the Type I er-
ror rate (probability of declaring contamination when it is not present) over r
monitoring wells, we need to control the Type I error rate over all monitoring 
wells and all constituents (chemicals and physical properties) we monitor.  
To do this, Davis and McNichols (1994b, 1999) suggest using the Bonferroni 
method and creating simultaneous prediction limits with confidence level 
(1 /nc)100% for each of the nc constituents being monitored.  That is, for 
each constituent, the probability of mistakenly declaring contamination pre-
sent at at least one of the compliance wells when in fact it is not present at 
any of the compliance wells (i.e., the significance level) is /nc.

There are several ways to define a rule for a simultaneous prediction 
limit.  We will discuss the following three rules: 

The k-of-m Rule.  For the k-of-m rule, at least k of the next m future 
observations will fall in the prediction interval with probability 
(1 )100% on each of the r future sampling occasions.  If observa-
tions are being taken sequentially, for a particular sampling occasion 
(or monitoring well), up to m observations may be taken, but once k
of the observations fall within the prediction interval, sampling can 
stop.  If m (k 1) observations fall outside the prediction interval, 
then contamination is declared to be present.  For example, suppose 
we have r = 5 monitoring wells and we want to use the 1-of-3 rule 
(i.e., k = 1 and m = 3).  Then for the ith monitoring well (i = 1, 2, 3, 
4, 5), if the first observation is in the interval, we can stop.  If the 
first observation is outside the interval, we have to wait a specified 
time (e.g., a few weeks), and take a second observation.  If the sec-
ond observation is in the interval, we can stop.  If the second obser-
vation is outside the interval, then we have to wait a specified time 
and take a third observation.  If the third observation is in the inter-
val, we can stop.  If the third observation is outside the interval, then 
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contamination is declared to be present.  (Note that in the case k = m
and r = 1, a simultaneous prediction interval reduces to the simple 
prediction interval we have already discussed.) 
California Rule.  This is the rule currently required in the state of 
California.  For the California rule, with probability (1 )100%, for 
each of the r future sampling occasions, either the first observation 
will fall in the prediction interval, or else all of the next m  1 obser-
vations will fall in the prediction interval.  That is, if the first obser-
vation falls in the prediction interval then sampling can stop.  Oth-
erwise, up to m  1 more observations must be taken (with a suffi-
cient waiting time between sampling occasions).  If any of these sub-
sequent m  1 observations falls outside the interval, we declare con-
tamination is present. 
Modified California Rule.  For the Modified California rule, with 
probability (1 )100%, for each of the r future sampling occasions, 
either the first observation will fall in the prediction interval, or else 
at least 2 out of the next 3 observations will fall in the prediction in-
terval.  That is, if the first observation falls in the prediction interval 
then sampling can stop.  Otherwise, up to 3 more observations must 
be taken (with a sufficient waiting time between sampling occa-
sions).  If any two of these next three observations fall into the inter-
val then sampling can stop.  Otherwise, contamination is declared to 
be present. 

Simultaneous Prediction Intervals for a Normal Distribution 

The form of a simultaneous prediction interval based on background data 
from a normal distribution is the same as for a standard normal prediction in-
terval (see Equations (6.9) to (6.11)).  The derivation of the constant K for 
the three different rules is explained below. 

Derivation of K for the k-of-m Rule 

For the case when r = 1 future sampling occasion, both Hall and Prairie 
(1973) and Fertig and Mann (1977) discuss the derivation of K.  Davis and 
McNichols (1987) extend the derivation to the case where r is a positive in-
teger.  They show that for a one-sided prediction interval, the probability p
that at least k of the next m future observations will be contained in the inter-
val given in Equation (6.10) or (6.11) for each of r future sampling occa-
sions is given by: 
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(6.54)

where T(x; , ) denotes the cumulative distribution function of the 
non-central Student’s t-distribution with  degrees of freedom and non-
centrality parameter  evaluated at x, () denotes the cdf of the standard 
normal distribution, I(x; a, b) denotes the cdf of the beta distribution 
with shape parameters a and b evaluated at x, and B(a,b) denotes the 
value of the beta function with parameters a and b

,
a b

B a b
a b

(6.55)

where () denotes the gamma function (see Equation (4.46) in Chapter 4).  
(See the ENVIRONMENTALSTATS for S-PLUS help files for beta and Beta for 
information on the beta function and beta distribution.) 

For given values of the confidence level (p = 1 ), sample size (n),
minimum number of future observations to be contained in the interval per 
sampling occasion (k), maximum number of future observations per sam-
pling occasion (m), number of future sampling occasions (r), and / , Equa-
tion (6.54) can be solved for K.  The quantity  (delta) denotes the difference 
between the mean of the population that was sampled to construct the predic-
tion interval and the mean of the population that will be sampled to produce 
the future observations.  The quantity  (sigma) denotes the population stan-
dard deviation of both of these populations.  Usually you assume = 0 
(hence / = 0) unless you are interested in computing the “power” of the 
rule to detect a change in means between the populations (see Chapter 8). 

Derivation of K for the California and Modified California Rule 

For the California rule, the derivation of K is the same as for the k-of-m
rule, except that Equation (6.54) becomes (Davis, 1998b): 
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For the Modified California rule, the derivation of K is the same as for the k-
of-m rule, except that Equation (6.54) becomes (Davis, 1998b): 

1
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(6.57)

Comparing the Three Rules 

For the k-of-m rule, Davis and McNichols (1987) give tables with “opti-
mal” choices of k (in terms of best power for a given overall confidence 
level) for selected values of m, r, and n.  They found that the optimal ratios 
of k/m are generally small, in the range of 15 to 50%. 

The California rule is mandated in that state for groundwater monitoring 
at waste disposal facilities when resampling verification is part of the statis-
tical program (Barclay’s Code of California Regulations, 1991).  The Cali-
fornia code mandates a “California” rule with m  3.  The motivation for this 
rule is a desire to have a majority of the observations in bounds.  For exam-
ple, for a k-of-m rule with k = 1 and m = 3, a monitoring well will pass if the 
first observation is out of bounds, the second resample is out of bounds, but 
the last resample is in bounds, so that 2 out of 3 observations are out of 
bounds.  For the California rule with m = 3, either the first observation must 
be in bounds, or the next 2 observations must be in bounds in order for the 
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monitoring location to pass.  Davis (1998a) states that if the FWFPR is kept 
constant, then the California rule offers little increased power compared to 
the k-of-m rule, and can actually decrease the power of detecting contamina-
tion. 

The Modified California Rule has been proposed as a compromise be-
tween a 1-of- m rule and the California rule.  For a given FWFPR, the Modi-
fied California rule achieves better power than the California rule, and still 
requires at least as many observations in bounds as out of bounds, unlike a 1-
of-m rule. 

Different Notations between Different References 

For the k-of-m rule described here, Davis and McNichols (1987) use the 
variable p instead of k to represent the minimum number of future observa-
tions the interval should contain on each of the r sampling occasions.  Gib-
bons (1994, Chapter 1, Tables 1.5 to 1.13) presents extensive lists of the 
value of K for both the k-of-m rule and California rule, with values of n rang-
ing from 4 to 100 and values of r ranging from 5 to 50.  Gibbons’s notation 
reverses the meaning of k and r compared to the notation used here.  That is, 
in Gibbons’s notation, k represents the number of future sampling occasions 
or monitoring wells, and r represents the minimum number of observations 
the interval should contain on each sampling occasion. 

Example 6.4:  Simultaneous Normal Prediction Intervals for Arsenic 

Using the background well arsenic data in Table 6.2 of Example 6.1, 
Figure 6.6 displays the value of the 95% upper simultaneous prediction limit 
as a function of the number of future sampling occasions (r) for the 1-of-3 
rule, the California rule with m = 3, and the Modified California rule. This 
figure shows that in this case the upper prediction limit is always largest for 
the California rule and smallest for the 1-of-3 rule.  For example, if you have 
10 compliance wells you need to compare to the background arsenic level, 
you would set the upper prediction limit to about 48 ppb for the 1-of-3 rule, 
about 53 ppb for the Modified California rule, and about 63 ppb for the Cali-
fornia rule.  The probability of declaring contamination at at least one of 
these 10 compliance wells when in fact no well is contaminated is about 5%.  
The naïve 95% upper prediction limit for one future observation at a single 
well is 59.4 ppb.  If you used this limit for all 10 compliance wells (but did 
not allow any resampling at any of the wells), then the probability of declar-
ing contamination at at least one of these wells when in fact no well is con-
taminated is around 1–0.9510 = 40% or larger (see the section The Multiple 
Comparisons Problem in Chapter 7). 
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Figure 6.6 95% upper prediction limit for arsenic as a function of the number of fu-

ture sampling occasions (r) for the three different rules 

Menu

To construct a simultaneous prediction interval for the arsenic concentra-
tions using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow 
these steps. 

1. In the Object Explorer, find arsenic3.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure arsenic3.df is selected. 
5. In the Variable box, select Arsenic.
6. In the Subset Rows with box, type Well.type=="Background".
7. Click on the Interval tab. 
8. In the Distribution/Sample Size section, make sure the Type button 

is set to Parametric and that Normal is selected in the Distribution 
box.

9. Under the Prediction Interval section, check the Simultaneous box, 
type 3 in the # Future Obs box, type 1 in the Min # Obs PI Should 
Contain box, type 10 in the # Future Sampling Occasions box, select 
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k.of.m in the Rule box, in the PI Type box select upper, and in the 
Conf Level (%) box type 95.

10. Click OK or Apply.

These steps produce a simultaneous 95% upper prediction limit for the 1-of-
3 rule for r = 10 future sampling occasions.  To use different values of r,
type a different number in the # Future Sampling Occasions box in Step 9 
above.  To use the California rule, select California in the Rule box in Step 9 
above, and to use the Modified California rule, select Modified California
in the Rule box in Step 9 above. 

Command 

To construct a simultaneous prediction interval for the arsenic concentra-
tions using the ENVIRONMENTALSTATS for S-PLUS Command or Script Win-
dow, type these commands. 

attach(arsenic3.df)

pred.int.norm.simultaneous(

Arsenic[Well.type=="Background"], k=1, m=3, r=10, 

rule="k.of.m", pi.type="upper", conf.level=0.95) 

These steps produce a simultaneous 95% upper prediction limit for the 1-of-
3 rule for r = 10 future sampling occasions.  To use different values of r, set 
the argument r to a different number. 

To use the California and Modified California rules, type these com-
mands. 

pred.int.norm.simultaneous(

Arsenic[Well.type=="Background"], m=3, r=10, 

rule="CA", pi.type="upper", conf.level=0.95) 

pred.int.norm.simultaneous(

Arsenic[Well.type=="Background"], r=10, 

rule="Modified.CA", pi.type="upper", 

conf.level=0.95)

detach()

What if Spatial or Temporal Variation is Present? 

To compare background data with future observations, simultaneous pre-
diction intervals require the assumption that the distribution of the future ob-
servations is the same as the background and that all observations are inde-
pendent.  On a temporal scale, for groundwater monitoring this means you 
must allow for at least a few weeks between observations, which essentially 
limits the value of m to at most about four, assuming you are taking quarterly 
samples (Davis and McNichols, 1999).  On a spatial scale, Davis and 
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McNichols (1999) state that groundwater monitoring data almost always ex-
hibit significant spatial variability in cases where the proportion of nondetect 
values is small enough that it is reasonable to consider parametric methods.  
In such cases, it is usually best to use intra-well prediction intervals at each 
well.  That is, for each well construct the prediction interval based on back-
ground (pre-landfill) data from that well, and compare future observations at 
that well to the prediction interval for that particular well (Davis, 1998a).  
The individual -level at each well is set to the FWFRP divided by the prod-
uct of the number of wells and constituents, that is, ind = /(nc r).

When you must combine background data from several background wells 
(instead of using intra-well comparisons) and substantial spatial variability is 
present, Davis (1994) and Davis and McNichols (1999) suggest performing a 
one-way analysis of variance on location and using the square root of the 
pooled variance estimator for the value of s in the prediction interval (see 
Equations (6.9) to (6.11)).  In this case, the degrees of freedom associated 
with this pooled variance estimator is given by: 

1nom w tdf n n (6.58)

where nw denotes the number of background wells and nt denotes the num-
ber of observations at each background well.  You would replace the quantity 
n 1 in Equations (6.54), (6.56), and (6.57) with the quantity dfnom defined 
in Equation (6.58).  Of course, the pooled variance estimator assumes the 
variance is the same at each well.  This is often not true in practice, but a 
variance-stabilizing transformation may help. 

When temporal correlation is present, Davis (1994) and Davis and 
McNichols (1999) suggest performing a two-way mixed effects analysis of 
variance on location (fixed effect) and time (random effect), and deflating 
the degrees of freedom using the following formula: 

2

2

1

1

w
nom

w w

n F
df df

n n F
(6.59)

where F denotes the F-statistic for the test of the significance of the time ef-
fect.  Note that when F = 1, the degrees of freedom reduce to the expression 
in Equation (6.58). 
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Simultaneous Prediction Intervals for a Lognormal Distribution 

Just as for a standard prediction interval for a lognormal distribution, a 
simultaneous prediction interval for a lognormal distribution is constructed 
by simply taking the natural logarithm of the observations and constructing a 
simultaneous prediction interval based on the normal distribution, then ex-
ponentiating the prediction limits to produce a simultaneous prediction inter-
val on the original scale of the data.  To construct a simultaneous prediction 
interval for a lognormal distribution using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow steps similar to those shown in the previous 
section for a normal distribution, except choose Lognormal in the Distribu-
tion box.  To construct a simultaneous prediction interval for a lognormal 
distribution using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, type commands similar to those shown in the previous section, ex-
cept use the function pred.int.lnorm.simultaneous.

Simultaneous Nonparametric Prediction Intervals 

Chou and Owen (1986) developed the theory for nonparametric simulta-
neous prediction limits for various rules, including the 1-of-m rule.  Their 
theory, however, does not cover the California or Modified California rules, 
and uses an r-fold summation involving a minimum of 2r terms.  Davis and 
McNichols (1994b; 1999) extended the results of Chou and Owen (1986) to 
include the California and Modified California rule, and developed algo-
rithms that involve summing far fewer terms. 

Like a standard nonparametric prediction interval, a simultaneous non-
parametric prediction interval is based on the order statistics from the sample 
(see Equations (6.42) to (6.48)).  For a one-sided upper simultaneous non-
parametric prediction interval, the upper prediction limit is usually the larg-
est observation in the background data, but it could be the next largest or any 
other order statistic.  Similarly, for a one-sided lower simultaneous nonpara-
metric prediction interval, the lower prediction limit is usually the smallest 
observation. 

Davis and McNichols (1999) give formulas for the probabilities associ-
ated with the one-sided upper simultaneous prediction interval shown in 
Equation (6.48).  For the k-of-m rule, the probability that at least k of the 
next m future observations will be contained in the interval given in Equation 
(6.48) for each of r future sampling occasions is given by: 
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where Y denotes a random variable with a beta distribution with parameters 
v and n+1 v, and f() denotes the pdf of this distribution.  Note that v de-
notes the rank of the order statistic used as the upper prediction limit (e.g., v
is usually equal to n).

For the California and Modified California rules, the probabilities are: 
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where Q = 1 Y and q = 1 y.
Davis and McNichols (1999) provide algorithms for computing the prob-

abilities based on expanding polynomials and the formula for the expected 
value of a beta random variable.  In the discussion section of Davis and 
McNichols (1999), however, Vangel points out that numerical integration is 
adequate, and this is how these probabilities are computed in 
ENVIRONMENTALSTATS for S-PLUS.
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Comparing the Three Rules 

As we stated earlier, although simultaneous prediction intervals help us 
control the Type I error rate (probability of declaring contamination when it 
is not present) over r monitoring wells, we need to control the Type I error 
rate over all monitoring wells and all constituents (chemicals and physical 
properties) we monitor.  As in the case of parametric simultaneous prediction 
intervals, Davis and McNichols (1994b, 1999) suggest using the Bonferroni 
method and creating simultaneous prediction limits with confidence level 
(1 /nc)100% for each of the nc constituents being monitored.  That is, for 
each constituent, the probability of mistakenly declaring contamination pre-
sent at at least one of the compliance wells when in fact it is not present at 
any of the compliance wells (i.e., the significance level) is /nc.

Davis and McNichols (1999) note that the number of constituents moni-
tored (nc) can range from about 5 to 60, with more than 100 required annu-
ally in some states, which results in significance levels commonly around 
0.001 and sometimes smaller than 0.0005.  They note that for fixed values of 
background sample size (n), rank of the order statistic used as the upper pre-
diction limit (v), and number of future sampling occasions (r), there always 
exists a 1-of-m plan that meets any pre-specified significance level /nc.
With California plans, however, the smallest significance level is obtained 
when m = 3 and v = n.  They show that for the California plan, very large 
background sample sizes (e.g., on the order of 100 or more) are needed to 
achieve acceptable significance levels.  On the other hand, only moderate 
background sample sizes are required with the Modified California plan. 

Davis and McNichols (1994b) give an example with n = 40 background 
observations, r = 10 monitoring wells, and nc = 5 chemicals being moni-
tored.  For a FWFPR of 5%, the per-constituent Type I error rate should be 
0.05/5 = 0.01.  A 1-of-3 plan yields a per-constituent Type I error rate of 
0.008, whereas California plans with m = 3 or m = 4 yield per-constituent 
Type I error rates of 0.02 and 0.03, respectively.  In order to use a California 
plan with m = 3, you would need a background sample size of at least n = 60. 

Different Notations between Different References 

As for the case of normal and lognormal simultaneous prediction inter-
vals, for the k-of-m rule described here, Davis and McNichols (1994b, 1999) 
use the variable p instead of k to represent the minimum number of future 
observations the interval should contain on each of the r sampling occa-
sions.  Also, Davis and McNichols (1999) use the variable j instead of v to 
denote the rank of the order statistics used for the upper prediction limit. 
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Example 6.5:  Nonparametric Simultaneous Prediction Intervals for 
Arsenic Concentrations 

In Example 6.3 we showed how to create a one-sided upper nonparamet-
ric prediction interval for the next two observations of arsenic at a single 
downgradient well based on n = 18 observations at three upgradient wells 
(see Table 6.4).  In that example, the significance level associated with this 
prediction interval is 10%. 

Now suppose there are r = 5 downgradient wells, nine other constituents 
are being monitored besides arsenic (i.e., nc = 10), and we want a FWFPR 
of 5% for each sampling occasion.  Then the significance level for the simul-
taneous prediction interval for arsenic should be set to 0.05/10 = 0.005, 
which means the confidence level should be set to (1 0.005)100% = 99.5%.  
Using the maximum value of 12 ppb as the upper prediction limit (i.e., v = n
= 18), Table 6.5 displays the associated confidence levels for various plans.  
The 1-of-3 and 1-of-4 plans satisfy the required confidence level, but neither 
of the California plans nor the Modified California plan do.  Note that for 
k-of-m plans, the confidence level increases with increasing values of m,
while the opposite is true for California plans.  In order for a California plan 
with m = 3 to satisfy the required confidence level of 99.5%, a total of at 
least n = 61 background observations are needed.  In order for the Modified 
California plan to satisfy the required confidence level, a total of at least n =
24 background observations are needed (see Chapter 8). 

Rule k m
Confidence
Level (%) 

k-of-m 1 3 99.6 
 1 4 99.9 
CA  3 95.5 
  4 93.9 
Modified CA   99.1 

Table 6.5  Confidence levels for various nonparametric simultaneous prediction in-

tervals based on n = 18 background observations and r = 5 monitoring 

wells 

Menu

To construct the simultaneous nonparametric prediction intervals and ob-
tain their confidence levels (shown in Table 6.5) using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps 

1. In the Object Explorer, highlight the data frame epa.92c.arsenic2.df.
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2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.arsenic2.df is selected. 
5. In the Variable box, select Arsenic.
6. In the Subset Rows with box, type Well.type=="Background".
7. Under the Results group, in the Conf Level Sig Digits box type 7.
8. Click on the Interval tab. 
9. In the Distribution/Sample Size section, set the Type button to Non-

parametric.
10. Under the Prediction Interval section, check the Simultaneous box, 

in the # Future Obs box type 3, in the Min # Obs PI Should Contain 
box type 1, and in the # Future Sampling Occasions box type 5.  In 
the Rule box select k of m, in the PI Type box select upper, and in 
the Lower Bound box type 0.

11. Click OK or Apply.

The above steps produce information for the 1-of-3 plan.  To produce infor-
mation for the 1-of-4 plan, Step 10 above becomes: 

10. Under the Prediction Interval section, check the Simultaneous box, 
in the # Future Obs box type 4, in the Min # Obs PI Should Contain 
box type 1, and in the # Future Sampling Occasions box type 5.  In 
the Rule box select k of m, in the PI Type box select upper, and in 
the Lower Bound box type 0.

To produce information for the California plan with m = 3, Step 10 above be-
comes: 

10. Under the Prediction Interval section, check the Simultaneous box, 
in the # Future Obs box type 3, and in the # Future Sampling Occa-
sions box type 5.  In the Rule box select CA, in the PI Type box se-
lect upper, and in the Lower Bound box type 0.

To produce information for the California plan with m = 4, Step 10 above be-
comes: 

10. Under the Prediction Interval section, check the Simultaneous box, 
in the # Future Obs box type 4, and in the # Future Sampling Occa-
sions box type 5.  In the Rule box select CA, in the PI Type box se-
lect upper, and in the Lower Bound box type 0.

Finally, to produce information for the Modified California plan, Step 10 
above becomes: 
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10. Under the Prediction Interval section, check the Simultaneous box, 
and in the # Future Sampling Occasions box type 5.  In the Rule box 
select Modified CA, in the PI Type box select upper, and in the 
Lower Bound box type 0.

Command 

To construct the simultaneous nonparametric prediction intervals and ob-
tain their confidence levels (shown in Table 6.5) using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.92c.arsenic2.df)

pred.list.1.of.3 <- pred.int.npar.simultaneous( 

Arsenic[Well.type=="Background"], k=1, m=3, r=5, 

rule="k.of.m", lb=0, pi.type="upper") 

print(pred.list.1.of.3, conf.cov.sig.digits=7) 

pred.list.1.of.4 <- pred.int.npar.simultaneous( 

Arsenic[Well.type=="Background"], k=1, m=4, r=5, 

rule="k.of.m", lb=0, pi.type="upper") 

print(pred.list.1.of.4, conf.cov.sig.digits=7) 

pred.list.CA.w.3 <- pred.int.npar.simultaneous( 

Arsenic[Well.type=="Background"], m=3, r=5, 

rule="CA", lb=0, pi.type="upper") 

print(pred.list.CA.w.3, conf.cov.sig.digits=7) 

pred.list.CA.w.4 <- pred.int.npar.simultaneous( 

Arsenic[Well.type=="Background"], m=4, r=5, 

rule="CA", lb=0, pi.type="upper") 

print(pred.list.CA.w.4, conf.cov.sig.digits=7) 

pred.list.Modified.CA <- pred.int.npar.simultaneous( 

Arsenic[Well.type=="Background"], r=5, 

rule="Modified.CA", lb=0, pi.type="upper") 

print(pred.list.Modified.CA, conf.cov.sig.digits=7) 

detach()

Parametric vs. Nonparametric Simultaneous Prediction Intervals 

As with standard nonparametric prediction intervals, simultaneous non-
parametric prediction intervals can easily handle nondetect data.  On the 
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other hand, sample size requirements are larger than for simultaneous para-
metric prediction intervals. 

TOLERANCE INTERVALS 

A tolerance interval for some population is an interval on the real line 
constructed so as to contain 100% of the population (i.e., 100% of all fu-
ture observations), where 0 <  < 1 (usually  is bigger than 0.5).  The quan-
tity 100% is called the coverage.  (Note:  Do not confuse our use of the 
symbol  here with the probability of a Type II error.  The symbol  is used 
here to be consistent with previous literature on tolerance intervals.) 

As with a prediction interval, the basic idea of a tolerance interval is to 
assume a particular probability distribution (e.g., normal, lognormal, etc.) for 
some process generating the data (e.g., quarterly observations of chemical 
concentrations in groundwater), compute sample statistics from a baseline 
sample, and then use these sample statistics to construct a tolerance interval, 
assuming the distribution of the data does not change in the future.  For ex-
ample, if X denotes a random variable from some population, and we know 
what the population looks like (e.g., N(10, 2)) so we can compute the quan-
tiles of the population, then a 100% two-sided tolerance interval is given 
by: 

1 2 2,x x (6.63)

where xp denotes the pth quantile of the distribution of X.  Similarly, a 
100% one-sided upper tolerance interval is given by: 

, x (6.64)

and a 100% one-sided lower tolerance interval is given by: 

1 ,x (6.65)

Note that in the case when the distribution of X is known, a 100% tolerance 
interval is exactly the same as a (1 )100% prediction interval for k = 1 fu-
ture observation, where = 1  (see Equations (6.1) to (6.3)). 

Usually the true distribution of X is unknown, so the values of the toler-
ance limits have to be estimated based on estimating the parameters of the 
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distribution of X.  In this case, a tolerance interval is a random interval; that 
is, the lower and/or upper bounds are random variables computed based on 
sample statistics in the baseline sample.  Given this uncertainty in the 
bounds, there are two ways to construct tolerance intervals (Guttman, 1970): 

 A -content tolerance interval with confidence level (1 )100% is 
constructed so that it contains at least 100% of the population (i.e., 
the coverage is at least 100%) with probability (1 )100%.

 A -expectation tolerance interval is constructed so that it contains 
on average 100% of the population (i.e., the average coverage is 

100%).

A -expectation tolerance interval with coverage 100% is equivalent to 
a prediction interval for k = 1 future observation with associated confidence 
level 100%.  Note that there is no explicit confidence level associated with 
a -expectation tolerance interval.  If a -expectation tolerance interval is 
treated as a -content tolerance interval, the confidence level associated with 
this tolerance interval is usually around 50% (e.g., Guttman, 1970, Table 4.2, 
p. 76).  Thus, a -content tolerance interval with coverage 100% will usu-
ally be wider than a -expectation tolerance interval with the same coverage 
if the confidence level associated with the -content tolerance interval is 
more than 50%. 

Relationship between Tolerance Intervals and Confidence 
Intervals for Percentiles 

It can be shown (e.g., Conover, 1980, pp. 119 121) that an upper confi-
dence interval for the pth quantile with confidence level (1 )100% is 
equivalent to an upper -content tolerance interval with coverage 100p%
and confidence level (1 )100%.  Also, a lower confidence interval for the 
pth quantile with confidence level (1 )100% is equivalent to a lower -
content tolerance interval with coverage 100(1 p)% and confidence level 
(1 )100%.

Using Tolerance Intervals to Determine Contamination 

Prediction and tolerance intervals have long been applied to quality con-
trol and life testing problems.  In environmental monitoring, USEPA has 
proposed using tolerance intervals in at least two different ways. 

Compliance-to-Background Comparisons.  Construct a tolerance 
interval based on background data, then compare data from a com-
pliance well or site to the tolerance interval.  If any compliance data 
are outside of the tolerance interval, then declare contamination is 
present.
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Compliance-to-Fixed Standard Comparisons.  Construct a toler-
ance interval based on compliance data, then compare the tolerance 
limit to a fixed standard (e.g., GWPS).  If the tolerance limit is 
greater (less) than the fixed standard, declare contamination is pre-
sent.

We will discuss the problems with each of these approaches below. 

Compliance-to-Background Comparisons 

USEPA (1989b, Chapter 5, pp. 20 24) proposes using -content normal 
tolerance limits in detection monitoring to compare chemical concentrations 
at compliance wells with concentrations at background wells.  USEPA 
(1992c, pp. 49 56) gives a confusing discussion, explaining the idea of a -
content tolerance interval on page 49, but then proposing -expectation nor-
mal tolerance limits on subsequent pages and incorrectly associating a confi-
dence level with a -expectation tolerance interval.  USEPA (1994b,  
pp. 4.8 4.9) suggests a “Hot-Measurement Comparison” using a one-sided 
upper tolerance interval based on background data to test for contamination 
at a cleanup site.  All of the observations at the cleanup site are compared 
with the upper tolerance limit, and if any observations fall above the upper 
tolerance limit, then the site is declared contaminated. 

The main problem with this method of deciding whether contamination is 
present is that the Type I error (the probability of declaring contamination is 
present when in fact it is not) depends on the sample size for the compliance 
well or site!  For example, suppose we know the background distribution of 
the chemical of concern, and suppose the distribution at the compliance well 
or at the cleanup site is exactly the same as the background distribution.  
Furthermore, suppose we construct a one-sided upper 95% tolerance interval 
following Equation (6.64) above.  Since the distribution of the chemical con-
centrations is exactly the same at the compliance well or cleanup site as for 
background, the probability that one observation falls above the tolerance 
limit is 5%.  In fact, if Y denotes the number of observations that fall above 
the tolerance limit, then Y has a binomial distribution with parameters nc and 
p = 0.05, where nc denotes the number of observations taken at the compli-
ance well or cleanup site.  Thus, the probability that at least one observation 
falls above the upper tolerance limit (and thus the probability of a Type I er-
ror) is given by: 

Pr 1 1 Pr 0

1 0.95 cn

Y Y

(6.66)
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Figure 6.7 displays the Type I error rate as a function of sample size at 
the compliance well or cleanup site (nc).  Clearly, this method of determin-
ing whether contamination is present encourages the party responsible for 
the compliance well or cleanup site to take as few observations as possible.  
Of course in practice we do not know the true background distribution, so we 
must create -content or -expectation tolerance intervals based on sample 
statistics, but the relationship between the Type I error rate and sample size 
is similar. 

Sample Size for Compliance Well or Site

T
yp

e 
I E

rr
or

 R
at

e

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of Incorrectly Declaring Contamination
as a Function of Compliance Sample Size

Figure 6.7: Type I error rate for compliance-to-background comparison (based on a 

95% upper tolerance limit) as a function of sample size at the compli-

ance well or cleanup site 

USEPA (1992c, p. 51) acknowledges the problem with this method of 
determining contamination by stating “…note that when testing a large num-
ber of samples, the nature of a Tolerance interval practically ensures that a 
few measurements will be above the upper Tolerance limit, even when no 
contamination has occurred.  In these cases, the offending wells should 
probably be resampled in order to verify whether or not there is definite evi-
dence of contamination.”  The problem with this approach is that by resam-
pling we have changed the Type I error rate, but USEPA (1992c) does not 
tell you how to compute this new Type I error rate nor how to control it.  
This is why for groundwater monitoring it is much better to use simultaneous 
prediction intervals because we know how to compute the Type I error. 
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For comparing a potentially contaminated site with a background or ref-
erence site, instead of using a one-sided upper tolerance limit as suggested in 
USEPA (1994b, pp. 4.8 4.9), a better way to test for potential hot spots is to 
compute a (1 )100% prediction interval for the next k observations based 
on the background site, setting k equal to the number of observations col-
lected at the potentially contaminated site.  This allows you to control the 
Type I error at a pre-specified level of 100%.

Compliance-to-Fixed Standard Comparisons 

USEPA (1989b, Chapter 6, pp. 11 15; 1992c, pp. 49 54) proposes using 
-content tolerance limits (assuming a normal distribution) in compliance 

monitoring to compare concentrations at compliance wells with a fixed stan-
dard (e.g., MCL or ACL).  This is really the same thing as testing whether 
the pth percentile of the distribution is less than or equal to the fixed standard 
(see Examples 5.24 and 5.25 in Chapter 5).  To correctly implement this 
method, data from the compliance well are used to construct a one-sided 
lower tolerance limit.  If this lower tolerance limit is greater than the fixed 
standard, then contamination is declared to be present.  Note that both 
USEPA (1989b, Chapter 6, pp. 11 15) and USEPA (1992c, pp. 52 54) in-
correctly use the upper tolerance limit. 

There is nothing wrong with this approach to testing for contamination, 
assuming the fixed standard is really a fixed standard and not some statistical 
estimate (e.g., the background mean).  The main problem with this approach 
is the multiple comparisons problem:  if several compliance wells need to be 
compared to a fixed standard, then the probability of incorrectly declaring 
contamination is present at at least one of the compliance wells when in fact 
it is not present at any of the compliance wells can be substantially greater 
than 1  as the number of compliance wells increases.  In this case, the Bon-
ferroni method or some other adjustment should probably be used. 

Tolerance Intervals for a Normal Distribution 

For a normal distribution with mean  and standard deviation , the form 
of a 100% tolerance interval is exactly the same as for a prediction interval 
(see Equations (6.9) to (6.11)).  The derivation of K is explained below. 

The Derivation of K for a -Expectation Tolerance Interval 

As stated earlier, a -expectation tolerance interval with coverage 100%
is equivalent to a prediction interval for k = 1 future observation with asso-
ciated confidence level 100%.  This is because the probability that any sin-
gle future observation will fall into this interval is 100%, so the distribution 
of the number of N future observations that will fall into this interval is bi-
nomial with parameters n = N and p = .  Hence the expected proportion of 
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future observations that will fall into this interval is 100% and is independ-
ent of the value of N.  See the previous section Prediction Intervals for a 
Normal Distribution for information on how these intervals are constructed. 

The Derivation of K for a -Content Tolerance Interval 

For a two-sided -content tolerance interval with coverage 100% and 
associated confidence level (1 )100%, the constant K is approximated by: 

2
1,

1

n

n
K r (6.67)

where n denotes the number of background observations, 2
,p  denotes the 

pth quantile of a chi-square distribution with  degrees of freedom, and r is 
the solution to the equation: 

1 1
r r

n n
(6.68)

where () denotes the cumulative distribution function of a standard normal 
distribution (Wald and Wolfowitz, 1946; Guttman, 1970, p. 59; Gibbons, 
1994, p. 85).  Wald and Wolfowitz (1946) show that this approximation is 
quite good, even for values of n as small as 2, provided both  and 1  are 
greater than 0.95.  Furthermore, Ellison (1964) shows that for this approxi-
mation, the error in the confidence level is on the order of 1/n.

For a one-sided -content tolerance interval with coverage 100% and 
associated confidence level (1 )100%, the constant K is given by: 

1, ,1n z nt
K

n
(6.69)

where t , ,p denotes the pth quantile of the non-central Student’s t-
distribution with  degrees of freedom and non-centrality parameter , and 
zp denotes the pth quantile of a standard normal distribution (Guttman, 1970, 
pp. 87 89; Owen, 1962, p. 117; Odeh and Owen, 1980; Gibbons, 1994,  
pp. 85 86).
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Example 6.6:  Comparing Lower Tolerance Limits to an ACL for Aldicarb 

Example 5.24 in Chapter 5 discusses a permit in which an ACL of 50 
ppm for aldicarb should not be exceeded more than 5% of the time.  Using 
the data from three groundwater monitoring compliance wells (four monthly 
samples at each well) shown in Table 5.14, Example 5.24 computed a lower 
99% confidence limit for the 95th percentile for the distribution at each of the 
three compliance wells, yielding 25.3, 25.7, and 25.5 ppm.  This is equiva-
lent to computing a lower -content tolerance limit with coverage 5% and 
associated confidence level of 99%. 

Menu

To produce the one-sided lower -content tolerance limits with coverage 
5% and associated confidence level 99% for each of the compliance wells 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

1. In the Object Explorer, make sure epa.89b.aldicarb2.df is high-
lighted. 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.89b.aldicarb2.df is selected. 
5. In the Variable box, select Aldicarb.
6. In the Subset Rows with box, type Well=="1".
7. Click on the Interval tab. 
8. Under the Distribution group, for Type, make sure the Parametric

button is selected, and in the Distribution box select Normal.
9. Under the Tolerance Interval group, for Coverage Type select the 

Content button, for TI Type select lower, in the Coverage (%) box 
type 5, and in the Confidence Level (%) box type 99.

10. Click OK or Apply.

This will produce the one-sided lower -content tolerance limit for the first 
well.  To produce the tolerance limits for the other two wells, in Step 6 
above, type Well=="2" or Well=="3".

Command 

To produce the one-sided lower -content tolerance limits with coverage 
5% and associated confidence level 99% for each of the compliance wells 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(epa.89b.aldicarb2.df)
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lapply(split(Aldicarb, Well), tol.int.norm, 

coverage=0.05, cov.type="content", ti.type="lower", 

conf.level=0.99)

detach()

Tolerance Intervals for a Lognormal Distribution 

As with prediction intervals, a tolerance interval for a lognormal distribu-
tion is constructed by simply taking the natural logarithm of the observations 
and constructing a tolerance interval based on the normal distribution, then 
exponentiating the tolerance limits to produce a tolerance interval on the 
original scale of the data (Hahn and Meeker, 1991, p. 73).  To construct a tol-
erance interval for a lognormal distribution using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow steps similar to those shown in the pre-
vious section for a normal distribution, except choose Lognormal in the dis-
tribution box.  To construct a tolerance interval for a lognormal distribution 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type commands similar to those shown in the previous section for a normal 
distribution, except use the function tol.int.lnorm instead of 
tol.int.norm.

Example 6.7:  Using an Upper Tolerance Limit vs. an Upper Prediction 
Limit to Determine Contamination at a Cleanup Site 

Recall the 1,2,3,4-Tetrachlorobenzene data shown in Table 3.2 in Chapter 
3 and displayed in Figures 3.1 and 3.2.  In this example, we will compute an 
upper tolerance limit and an upper prediction limit based on the Reference 
area data and compare the observations from the Cleanup site to each of 
these two limits.  The one-sided upper 95% -content tolerance limit with 
associated confidence level 95% is 1.42 ppb, whereas the one-sided upper 
95% prediction limit for the next k = 77 observations (there are 77 observa-
tions in the Cleanup area) is 2.68 ppb.  There are 14 observations in the 
Cleanup area larger than 1.42 ppb and 7 observations larger than 2.68, so 
both methods indicate residual contamination in the Cleanup area.  The 
method based on the upper tolerance limit, however, should never be used.  
We used it here just to show that the prediction limit is larger than the toler-
ance limit, since the prediction limit controls the Type I error rate at the 
specified level of 5%. 

Menu

To produce the one-sided upper -content tolerance limit based on the 
Reference area TcCB data using the ENVIRONMENTALSTATS for S-PLUS pull-
down menu, follow these steps. 
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1. In the Object Explorer, highlight epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.94b.tccb.df is selected. 
5. In the Variable box, select TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. Click on the Interval tab. 
8. Under the Distribution group, for Type, make sure the Parametric

button is selected, and in the Distribution box select Lognormal.
9. Under the Tolerance Interval group, for Coverage Type select the 

Content button, for TI Type select upper, in the Coverage (%) box 
type 95, and in the Confidence Level (%) box type 95.

10. Click OK or Apply.

To produce the one-sided upper prediction limit based on the Reference area 
TcCB data using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. In the Object Explorer, highlight the data frame epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.94b.tccb.df is selected. 
5. In the Variable box, select TcCB.
6. In the Subset Rows with box, type Area=="Reference".
7. Click on the Interval tab. 
8. In the Distribution/Sample Size section, make sure the Type button 

is set to Parametric, that Lognormal is selected in the Distribution 
box.

9. Under the Prediction Interval section, uncheck the Simultaneous 
box, type 77 in the # Future Obs box, in the PI Type box select up-
per, in the PI Method box select exact, and in the Confidence Level 
(%) box type 95.

10. Click OK or Apply.

Command 

To produce the one-sided upper -content tolerance limit and the one-
sided upper prediction limit for the next k = 77 observations based on the 
Reference area TcCB data using the ENVIRONMENTALSTATS for S-PLUS

Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)
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tol.int.lnorm(TcCB[Area=="Reference"], coverage=0.95, 

cov.type="content", ti.type="upper", 

conf.level=0.95)

pred.int.lnorm(TcCB[Area=="Reference"], k=77, 

method="exact", pi.type="upper", conf.level=0.95) 

detach()

Example 6.8:  Comparing Lower Tolerance Limits to an ACL for Chrysene 

Example 5.25 in Chapter 5 discusses a permit in which an ACL of 80 
ppb for chrysene should not be exceeded more than 5% of the time.  Using 
the data from five groundwater monitoring compliance wells (four monthly 
samples at each well) shown in Table 5.16, Example 5.25 computed a lower 
99% confidence limit for the 95th percentile for the distribution at each of the 
five compliance wells, yielding 22.6, 11.1, 51.6, 26.9, and 32.9 ppb.  This is 
equivalent to computing a lower -content tolerance limit with coverage 5% 
and associated confidence level of 99%. 

Menu

To produce the one-sided lower -content tolerance limits with coverage 
5% and associated confidence level 99% for each of the compliance wells 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

1. In the Object Explorer, highlight epa.92c.chrysene.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.chrysene.df is selected. 
5. In the Variable box, select Chrysene.
6. In the Subset Rows with box, type Well=="1".
7. Click on the Interval tab. 
8. Under the Distribution group, for Type, make sure the Parametric

button is selected, and in the Distribution box, select Lognormal.
9. Under the Tolerance Interval group, for Coverage Type select the 

Content button, for TI Type select lower, in the Coverage (%) box 
type 5, and in the Confidence Level (%) box type 99.

10. Click OK or Apply.

This will produce the one-sided lower -content tolerance limit for the first 
well.  To produce the tolerance limits for the other four wells, in Step 6 
above, type Well=="2", Well=="3", Well=="4", or Well=="5".
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Command 

To produce the one-sided lower -content tolerance limits with coverage 
5% and associated confidence level 99% for each of the compliance wells 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(epa.92c.chrysene.df)

lapply(split(Chrysene, Well), tol.int.lnorm, 

coverage=0.05, cov.type="content", ti.type="lower", 

conf.level=0.99)

detach()

Tolerance Intervals for a Poisson Distribution 

Gibbons (1987b; 1994, pp. 38 40) used the Poisson distribution to model 
the number of detected compounds per scan of the 32 volatile organic prior-
ity pollutants (VOC), and also to model the distribution of chemical concen-
tration (in ppb) when most of the observations are nondetects.  USEPA 
(1992c, pp. 38 40) explains Gibbons’s approach and suggests using -
content Poisson tolerance limits to compare chemical concentrations at com-
pliance wells with concentrations at background wells.  As stated in Chapter 
5 in Example 5.23, it is by no means clear, nor commonly accepted, that 
modeling concentration data with a Poisson distribution is valid. 

-Expectation Tolerance Intervals for a Poisson Distribution 

As stated earlier in this chapter, a -expectation tolerance interval with 
coverage 100% is equivalent to a prediction interval for k = 1 future obser-
vation with associated confidence level 100%.  See the previous section 
Prediction Intervals for a Poisson Distribution for information on how these 
intervals are constructed. 

-Content Tolerance Intervals for a Poisson Distribution 

Zacks (1970) showed that for monotone likelihood ratio (MLR) families 
of discrete distributions, a uniformly most accurate upper 100% -content 
tolerance interval with associated confidence level (1 )100% is constructed 
by finding the upper (1 )100% confidence limit for the parameter associ-
ated with the distribution, and then computing the th quantile of the distribu-
tion assuming the true value of the parameter is equal to the upper confi-
dence limit.  This idea can be extended to one-sided lower and two-sided tol-
erance limits.  It can be shown that all distributions that are one-parameter 
exponential families have the MLR property, and the Poisson distribution is 
a one-parameter exponential family, so the method of Zacks (1970) can be 
applied to a Poisson distribution. 
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Let X denote a random variable with a Poisson distribution with mean ,
and let xp|  denote the pth quantile of this distribution.  That is, 

| |Pr Prp pX x p X x (6.70)

Note that due to the discrete nature of the Poisson distribution, there are sev-
eral values of p associated with one particular value of X.  For example, for 

= 2, the value 1 is the pth quantile for any value of p between 0.14 and 
0.406.

For a one-sided upper tolerance interval, the first step is to compute the 
one-sided upper (1 )100% confidence limit for  based on the n observa-
tions (see the section Confidence Interval for the Mean of a Poisson Distri-
bution in Chapter 5).  Denote this upper confidence limit by UCL.  The one-
sided upper 100% tolerance limit is then given by: 

|0, UCLx (6.71)

Similarly, for a one-sided lower tolerance interval, the first step is to com-
pute the one-sided lower (1 )100% confidence limit for , which we will 
denote by LCL.  The one-sided lower 100% tolerance limit is then given 
by: 

1 | ,LCLx (6.72)

Finally, for a two-sided tolerance interval, the first step is to compute the 
two-sided (1 )100% confidence limits for , which we will denote by LCL
and UCL.  The two-sided 100% tolerance limit is then given by: 

1 1
| |

2 2

,
LCL UCL

x x (6.73)

Although there are several ways to compute the confidence limits for ,
ENVIRONMENTALSTATS for S-PLUS uses the exact method when computing 

-content tolerance limits for a Poisson distribution. 
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Example 6.9:  An Upper Tolerance Interval for Benzene Concentrations 

Based on an example in USEPA (1992c, p. 40), Example 5.26 in Chapter 
5 discusses creating a one-sided upper 95% confidence interval for the 95th

percentile of benzene concentrations, based on observations from six back-
ground wells, with the idea that this limit will be used as a threshold value 
for concentrations observed in downgradient monitoring wells (i.e., if the 
concentration at a downgradient well exceeds this limit, this indicates there 
may be contamination in the groundwater).  This is the “Hot-Measurement 
Comparison,” and as already discussed above, there are some major prob-
lems with this technique. 

Creating a one-sided upper 95% confidence interval for the 95th percen-
tile is equivalent to creating a one-sided upper -content tolerance interval 
with 95% coverage and an associated 95% confidence level.  The data are 
shown in Table 5.2, and in ENVIRONMENTALSTATS for S-PLUS they are 
stored in the data frame epa.92c.benzene1.df.  Nondetect values are 
reported as “<2.”  Of the 36 values, 33 are nondetects.  Following Gibbons 
(1987, p. 574), USEPA (1992c, p. 36) assumes that these data can be mod-
eled as having come from a Poisson process.  The three detected values rep-
resent a count of the number of molecules of benzene observed out of a 
much larger number of water molecules.  The 33 nondetect values are also 
assumed to represent counts, where the count must be equal to 0 or 1, since 
they are recorded as “<2” ppb.  Following USEPA (1992c), for this example 
we will set all of the values of the nondetects to 1. 

For this data set, the estimated mean is 1.94 and the one-sided upper -
content tolerance limit with coverage 95% and confidence level 95% is 5.  
As we stated in Example 5.23, these data do not appear to follow a Poisson 
distribution too well. 

Menu

To produce the one-sided upper -content tolerance interval with cover-
age 95% and associated confidence level 95% for the benzene concentrations 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

1. In the Object Explorer, highlight new.epa.92c.benzene1.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure new.epa.92c.benzene1.df is selected. 
5. In the Variable box, select new.Benzene.
6. Click on the Interval tab. 
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7. Under the Distribution group, for Type, make sure the Parametric
button is selected, and in the Distribution box, select Poisson.

8. Under the Tolerance Interval group, for Coverage Type select the 
Content button, for TI Type select upper, in the Coverage (%) box 
type 95, and in the Confidence Level (%) box type 95.

9. Click OK or Apply.

Command 

To produce the one-sided upper -content tolerance interval with cover-
age 95% and associated confidence level 95% for the benzene concentrations 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(new.epa.92c.benzene1.df)

tol.int.pois(new.Benzene, coverage=0.95, 

cov.type="content", ti.type="upper", 

conf.level=0.95)

detach()

Nonparametric Tolerance Intervals 

So far we have discussed how to construct tolerance intervals assuming 
the background data come from a normal, lognormal, or Poisson distribution.  
You can also construct tolerance intervals assuming other kinds of paramet-
ric distributions (e.g., Hahn and Meeker, 1991; Nelson, 1982) but we will not 
discuss these here.  You can also construct tolerance intervals without mak-
ing any assumption about the distribution of the background data, except that 
the distribution is continuous.  These kind of tolerance intervals are called 
nonparametric tolerance intervals.

The form of a nonparametric tolerance interval is exactly the same as for 
a nonparametric prediction interval (see Equations (6.42) to (6.48)).  Let C
be a random variable denoting the coverage of a nonparametric tolerance in-
tervals.  Wilks (1941) showed that the distribution of C follows a beta distri-
bution with shape parameters v u and w+u when the unknown distribution 
is continuous, where u denotes the rank of the lower tolerance limit, v de-
notes the rank of the upper tolerance limit, and w is defined in Equation 
(6.44).

Nonparametric -Expectation Tolerance Intervals 

As stated earlier in this chapter, a -expectation tolerance interval with 
coverage 100% is equivalent to a prediction interval for k = m = 1 future 
observation with associated confidence level 100% (see the previous sec-
tion Nonparametric Prediction Intervals). For a -expectation tolerance in-
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terval, the expected coverage is simply the mean of a beta random variable 
with shape parameters v u and w+u, which is given by: 

1

v u
E C

n
(6.74)

For example, a one-sided upper tolerance limit using the maximum value re-
sults in an expected coverage of n/(n+1).

Nonparametric -Content Tolerance Intervals 

For a -content tolerance interval, if the coverage C =  is specified, then 
the associated confidence level (1 )100% is computed as: 

1 1 ; ,I v u w u (6.75)

where I(x; a, b) denotes the cumulative distribution function of the 
beta distribution with shape parameters a and b evaluated at x.  Similarly, if 
the confidence level associated with the tolerance interval is specified as 
(1 )100%, then the coverage C =  is computed as: 

, ,v u w ux (6.76)

where xp,a,b denotes the pth quantile of the beta distribution with shape pa-
rameters a and b.

Example 6.10:  Using an Upper Tolerance Limit vs. a Simultaneous Upper 
Prediction Limit to Determine Contamination at Compliance Wells 

Based on an example in USEPA (1992c, pp. 55 56), Example 5.27 in 
Chapter 5 discusses creating a one-sided upper confidence interval for the 
95th percentile of copper concentrations, based on observations from three 
background wells, with the idea that this limit will be used as a threshold 
value for concentrations observed in two compliance wells (i.e., if any con-
centrations at the compliance wells exceed this limit, this indicates there may 
be contamination in the groundwater).  This is the “Hot-Measurement Com-
parison,” and as already discussed above there are some major problems 
with this technique.  Creating a one-sided upper confidence interval for the 
95th percentile is equivalent to creating a one-sided upper -content tolerance 
interval with 95% coverage.  In this example, we will compare the results of 
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using a one-sided upper tolerance limit vs. using a one-sided simultaneous 
upper prediction limit. 

The data are shown in Table 5.19, and in ENVIRONMENTALSTATS for 
S-PLUS they are stored in the data frame epa.92c.copper2.df.  Note 
that 15 out of the 24 observations at the background wells are nondetects re-
corded as “<5.”  Observations at the three background wells were taken 
monthly over a period of 8 months.  Observations at the two compliance 
wells were taken only for the last 4 months of sampling.  To implement a si-
multaneous prediction interval with this data set, we have to decide what rule 
to use (k-of-m, California, or Modified California) and whether to assume 
the prediction interval applies only within each month or across all 4 months.  
As stated earlier in this chapter in the section Simultaneous Prediction Inter-
vals, current regulations prohibit evaluating false positive risks over more 
than one monitoring event, so our simultaneous prediction interval has to ac-
count for r = 2 compliance wells and controls the FWFPR within a single 
month but not over several months.  On the other hand, if any resamples are 
required, the time between resamples may need to be at least a month (de-
pending on the flow-rate of the groundwater).  In practice, we would also 
need to take into account the number of constituents that are being monitored 
each month (nc) and adjust the required confidence level of the simultaneous 
prediction interval accordingly. 

Using the maximum value of 9.2 ppb at the background wells as the up-
per tolerance limit yields a 95% -content tolerance interval with an associ-
ated confidence level of only 71%.  If we wanted to create a 95% -content 
tolerance interval with associated confidence level 95%, we would need n =
59 background observations (see Chapter 8). 

Using the maximum value of 9.2 ppb at the background wells as the up-
per simultaneous prediction limit for the r = 2 compliance wells yields pre-
diction intervals with associated confidence levels of 99.9%, 98.9%, and 
99.8% for the 1-of-3, California (with m = 3), and Modified California plans, 
respectively.  Using these prediction limits, Well 4 in Month 8 indicates pos-
sible contamination, but all three plans require resampling, so we cannot 
conclude anything for the given data set since no data are shown beyond 
Month 8. 

As we stated earlier, the method based on the upper tolerance limit 
should never be used because we do not know how to control the Type I er-
ror rate.  Using a simultaneous prediction interval allows us to control the 
Type I error rate at a specified level. 

Menu

To produce the nonparametric one-sided upper -content tolerance inter-
val with coverage 95% and associated confidence level 71% for the copper 
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concentrations using the ENVIRONMENTALSTATS for S-PLUS pull-down 
menu, follow these steps. 

1. In the Object Explorer, highlight epa.92c.copper2.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.copper2.df is selected. 
5. In the Variable box, select Copper.
6. In the Subset Rows with box, type Well.type=="Background".
7. Click on the Interval tab. 
8. Under the Distribution group, for Type, select the Nonparametric

button. 
9. Under the Tolerance Interval group, for Coverage Type select the 

Content button, for Supply select the Coverage button, for TI Type 
select upper, in the Coverage (%) box type 95, and in the Lower 
Bound box type 0.

10. Click OK or Apply.

To produce the simultaneous one-sided upper prediction intervals for the r =
2 compliance wells, follow these steps. 

1. In the Object Explorer, highlight epa.92c.copper2.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

3. For Data to Use, make sure the Pre-Defined Data button is selected. 
4. In the Data Set box, make sure epa.92c.copper2.df is selected. 
5. In the Variable box, select Copper.
6. In the Subset Rows with box, type Well.type=="Background".
7. Under the Results group, in the Conf Level Sig Digits box type 7.
8. Click on the Interval tab. 
9. In the Distribution/Sample Size section, set the Type button to Non-

parametric.
10. Under the Prediction Interval section, check the Simultaneous box, 

in the # Future Obs box type 3, in the Min # Obs PI Should Contain 
box type 1, and in the # Future Sampling Occasions box type 2.  In 
the Rule box select k of m, in the PI Type box select upper, and in 
the Lower Bound box type 0.

11. Click OK or Apply.

The above steps produce information for the 1-of-3 plan.  To produce infor-
mation for the California plan with m = 3, Step 10 above becomes: 
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10. Under the Prediction Interval section, check the Simultaneous box, 
in the # Future Obs box type 3, and in the # Future Sampling Occa-
sions box type 2.  In the Rule box select CA, in the PI Type box se-
lect upper, and in the Lower Bound box type 0.

Finally, to produce information for the Modified California plan, Step 10 
above becomes: 

10. Under the Prediction Interval section, check the Simultaneous box, 
and in the # Future Sampling Occasions box type 2.  In the Rule box 
select Modified CA, in the PI Type box select upper, and in the 
Lower Bound box type 0.

Command 

To produce the one-sided upper -content tolerance interval with cover-
age 95% and associated confidence level 71% for the copper concentrations 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(epa.92c.copper2.df)

tol.int.npar(Copper[Well.type=="Background"],

coverage=0.95, cov.type="content", ti.type="upper", 

lb=0)

To produce the simultaneous one-sided upper prediction intervals for the r =
2 compliance wells, type these commands. 

pred.list.1.of.3 <- pred.int.npar.simultaneous( 

Copper[Well.type=="Background"], k=1, m=3, r=2, 

rule="k.of.m", lb=0, pi.type="upper") 

print(pred.list.1.of.3, conf.cov.sig.digits=7) 

pred.list.CA <- pred.int.npar.simultaneous( 

Copper[Well.type=="Background"], m=3, r=2, 

rule="CA", lb=0, pi.type="upper") 

print(pred.list.CA, conf.cov.sig.digits=7) 

pred.list.Modified.CA <- pred.int.npar.simultaneous( 

Copper[Well.type=="Background"], r=2, 

rule="Modified.CA", lb=0, pi.type="upper") 

print(pred.list.Modified.CA, conf.cov.sig.digits=7) 

detach()
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Parametric vs. Nonparametric Tolerance Intervals 

As with nonparametric prediction intervals, nonparametric tolerance in-
tervals can easily handle nondetect data.  On the other hand, sample size re-
quirements are larger than for parametric tolerance intervals. 

CONTROL CHARTS 

Control charts are a graphical and statistical method of assessing the per-
formance of a system over time (Montgomery, 1997; Ryan, 1989).  They 
were developed in the 1920s by Walter Shewhart, and have been employed 
widely in industry to maintain process control (e.g., manufacturing a part for 
a car, airplane, or computer to within certain specifications).  In the context 
of groundwater monitoring, they have been suggested as an alternative to 
prediction or tolerance limits for monitoring constituent concentrations at 
compliance wells when enough historical data are available at each compli-
ance well to establish reliable background values for each well (USEPA, 
1989b, pp. 7-1 to 7-12; USEPA, 1992c, pp. 75 79; Gibbons, 1994,  
pp. 160 168; ASTM, 1996). 

We will explain Shewhart control charts, cumulative summation 
(CUSUM) charts, and combined Shewhart-CUSUM control charts.  All of 
these procedures assume the observations at a particular compliance well are 
independent and follow a normal distribution with some constant mean 
and standard deviation .  Of course, the mean and standard deviation can 
vary from well to well.  USEPA (1989b, p. 7 12) and ASTM (1996) suggest 
using a minimum of at least n = 8 historical observations to estimate the 
background mean  and standard deviation .  If any substantial seasonal 
variability is present, you will need to take observations over at least 2 years 
in order to identify the seasonal pattern and remove it from the observations. 

Shewhart Control Charts 

The basic idea of a Shewhart control chart is to plot the observations over 
time and compare them to established upper and/or lower control limits that 
are based on historical data (Montgomery, 1997, Chapter 5; Gibbons, 1994, 
p. 161; Ryan, 1989, Chapters 5 and 6).  For the simplest Shewhart control 
chart, once a single observation falls outside the control limit(s), this is an 
indication that the process is “out of control” and needs to be investigated.  
The forms of a Shewhart upper control limit (UCL) and lower control limit 
(LCL) for a single observation are: 

UCL L (6.77)
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LCL L (6.78)

(Montgomery, 1997, p. 135).  In practice, the true mean  and standard de-
viation  are rarely known, but instead must be estimated from historical 
data.  Letting x  and s denote the sample mean and standard deviation from 
the historical data, the upper and lower control limits then become: 

UCL x Ls (6.79)

LCL x Ls (6.80)

which are exactly the same forms as a one-sided upper and one-sided lower 
prediction limit with K = L (see Equations (6.10) and (6.11)).  In industrial 
applications, we usually want the observations to stay within both of the 
bounds, that is, to stay less than the UCL and greater than the LCL.  The con-
stant L is often set to L = 3, and then the UCL and LCL are called “3-sigma 
control limits” (Montgomery, 1997, p. 134).  In the case of known values of 

 and , L = 3 corresponds to the 99.87 percentile of the standard normal 
distribution, so if the process is “in control” then each single observation has 
a probability of 99.74% of staying within both of the bounds. 

For groundwater monitoring, we are almost always interested in only 
one-sided control limits.  Usually, we want the observed values of a constitu-
ent at a compliance well to stay below the UCL (which is based on back-
ground data).  Sometimes, however, we may want the observed values to 
stay above the LCL (e.g., for pH).  USEPA (1989b, p. 7-8; 1992c, p. 78) rec-
ommends setting L = 4.5.  Assuming the mean and standard deviation are es-
timated with n = 8 background observations, using L = 4.5 corresponds to a 
one-sided 95% prediction interval for the next k = 50 observations (using the 
exact method for prediction intervals), or to a one-sided 99.81% prediction 
interval for the next k = 1 observation.  Hence, for each sampling occasion, 
for one particular compliance well and one particular constituent, if you use 
a Shewhart control chart with L = 4.5, the probability of incorrectly declar-
ing contamination when in fact it is not present is only 1 0.9981 = 0.0019.  
On the other hand, the constant L is not adjusted for the number of compli-
ance wells (r) nor the number of constituents being monitored (nc), so for 
each sampling occasion, the FWFPR is around 

FWFPR 1 0.9981 cr n (6.81)
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As we stated earlier in this chapter, the number of compliance wells can be 
as large as 150, and the number of constituents monitored can vary from 5 to 
62 or more, so the FWFPR can be very close to 100%. 

CUSUM Control Charts 

Shewhart control charts are a good device to detect sudden changes in the 
process being monitored.  To detect a gradual trend in the process, Page 
(1954) proposed using Cumulative Summation (CUSUM) charts (Montgom-
ery, 1997, Chapter 7; Gibbons, 1994, pp. 161 163; Ryan, 1989, p. 105).  As 
its name suggests, a CUSUM chart involves cumulative sums.  For the ith

future sampling occasion, the ith one-sided upper cumulative sum iS  and 

one-sided lower cumulative sum iS  are given by: 

1max 0,i i iS z k S (6.82)

1max 0,i i iS z k S (6.83)

where max[a,b] denotes the maximum of a and b,

0 0 0S S (6.84)

i
i

x x
z

s
(6.85)

and k denotes a positive reference value that must be set by the user and cor-
responds to half the size of a linear trend (in units of standard deviations) 
deemed worthy of detecting quickly.  USEPA (1989b, p. 7-7) recommends 
using k = 1 (i.e., it is important to detect a trend of two standard deviations 
quickly).  With a CUSUM chart, you declare a process “out of control” when 
the upper cumulative sums are greater than some pre-specified upper deci-
sion bound (also called the decision interval) denoted h, or the lower cumu-
lative sums are less than –h.  For groundwater monitoring, we usually are 
only interested in the behavior of the upper cumulative sums.  USEPA 
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(1989b, p. 7-7) recommends setting h = 5, while ASTM (1996) recommends 
setting h = 4.5 to make it easy to plot the Shewhart and CUSUM plots on the 
same graph. 

So what are the cumulative sums measuring?  If the process is “in con-
trol” so that all future observations come from a normal distribution with a 
fixed mean  and standard deviation , then the quantity zi in Equation 
(6.85) is approximately distributed as a N(0, 1) random variable and is 
“bouncing around” 0, so the quantity zi k in Equation (6.82) is “bouncing 

around” k, and therefore the ith upper cumulative sum iS  will tend to 

bounce around 0.  If the process is “out of control” and the future observa-
tion xi comes from a normal distribution with mean i, where i > , then 
zi is bouncing around some positive number approximately equal to 
( i )/ , and zi k is bouncing around some number approximately equal 
to [( i )/ ] k.  If the i’s are large enough, then eventually the upper 
cumulative sums will start taking on positive values, start increasing over 
time, and eventually become larger than the upper decision bound h.

The upper cumulative sums defined in Equation (6.82) are “standard-
ized” upper cumulative sums based on the standardized z-values defined in 
Equation (6.85).  Rather than plotting the standardized upper cumulative 
sums over time and comparing them to the upper decision bound h, you can 

plot the unstandardized upper cumulative sums (here denoted iU ) and com-

pare them to the unstandardized upper decision bound hU.  The unstandard-
ized upper cumulative sums and decision bound are given by: 

i iU x S s (6.86)

Uh x h s (6.87)

The FWFPR based on using CUSUM charts is rather difficult to com-
pute.  As for Shewhart control charts, however, the constants k and h associ-
ated with a CUSUM chart are not adjusted for the number of compliance 
wells (r) nor the number of constituents being monitored (nc), so for each 
sampling occasion, the FWFPR can be quite close to 100%. 

Combined Shewhart-CUSUM Control Charts 

USEPA (1989b, pp. 7-1 to 7-12; 1992c, pp. 75 79), Gibbons (1994,  
pp. 160 168), and ASTM (1996) all recommend using combined Shewhart-

© 2001 by CRC Press LLC



CUSUM control charts for groundwater monitoring in order to detect both 
sudden large releases and smaller gradual releases.  This requires choosing 
the control chart parameters L (for the Shewhart control chart) and k and h
(for the CUSUM control chart).  As already stated, USEPA (1989b, p. 7-7) 
recommends using L = 4.5, k = 1, and h = 5, based on the recommendations 
of Lucas (1982) and Starks (1988).  Using both Shewhart and CUSUM con-
trol charts will increase the FWFPR for each sampling occasion beyond the 
FWFPR obtained using just one of these kinds of control charts. 

Control Charts vs. Prediction Limits 

Control charts are sometimes recommended as an alternative to predic-
tion limits because besides providing objective decision rules for determin-
ing the presence of outliers and/or trend that may indicate contamination, 
they allow you to look at the observations at each well over time and get a 
feel for the data, possibly detecting outliers and/or trends by eye (e.g., 
USEPA, 1989b, 1992c).  Plotting is not restricted to control charts, however.  
You can just as easily make plots of the observations over time for each well 
and add a line showing a prediction limit instead of a control limit. 

More importantly, unlike simultaneous prediction limits, confidence lev-
els associated with CUSUM and combined Shewhart-CUSUM control charts 
are hard to determine, and EPA guidelines do not account for adjusting the 
control chart parameters to account for the number of compliance wells and 
the number of constituents monitored during each sampling event (Gibbons, 
1994, p. 164; ASTM, 1996, p. 12; Davis, 1998c).  ASTM (1996) suggests 
several possible modifications to control charts by allowing resampling and 
updating background data in order to attempt to control the FWFPR on each 
monitoring occasion.  Davis (1998c) performed simulation studies to deter-
mine the number of monitoring occasions (run lengths) that would occur be-
fore contamination was mistakenly declared at at least one compliance well 
for at least one constituent when in fact no contamination had occurred at 
any of the wells for any of the constituents.  He found that control charts 
yield average run lengths (ARLs) much smaller than average run lengths as-
sociated with simultaneous prediction limits.  Although some of the modi-
fied procedures suggested in ASTM (1996) yield average run lengths compa-
rable to simultaneous prediction limits, the power of these procedures to de-
tect contamination is not adequate.  We therefore recommend using simulta-
neous prediction limits instead of control charts. 

Example 6.11:  Shewhart and CUSUM Control Charts for Nickel 
Concentrations

Table 6.6 displays nickel concentrations (ppb) in groundwater sampled at 
a compliance well over two separate 8-month periods in 1995 and 1996.  In 
ENVIRONMENTALSTATS for S-PLUS, these data are stored in the data frame 
epa.98.nickel2.df.  The first year (1995) is considered the baseline 
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period, and the second year is considered the compliance period.  The prob-
ability plot for the baseline data indicates there is no evidence that these data 
deviate grossly from a normal distribution.  The sample mean and standard 
deviation based on the baseline data are 25.1 and 11.5 ppb. 

Month Baseline Period (1995) Compliance Period (1996) 
1 32.8 19.0 
2 15.2 34.5 
3 13.5 17.8 
4 39.6 23.6 
5 37.1 34.8 
6 10.4 28.8 
7 31.9 43.7 
8 20.6 81.8 

Table 6.6  Nickel concentrations (ppb) at a compliance well 

Figure 6.8 displays the plot of the observations from the compliance pe-
riod (1996) vs. time, along with both the upper and lower Shewhart control 
limits based on the baseline data with L = 4.5.  In this figure, the eighth 
month is above the upper control limit and indicates an “out of control” con-
dition. 
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Figure 6.8 Shewhart control chart for the compliance period nickel data, based on 

using the baseline period data to establish background 
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Figure 6.9 displays the plot of the standardized upper and lower cumula-
tive sums vs. time, along with the standardized CUSUM upper and lower de-
cision bounds (h and –h, here denoted UDB and LDB) based on the baseline 
data with k = 1 and h = 5.  None of the cumulative sums indicates an out of 
control condition. 
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Figure 6.9 Standardized CUSUM control chart for the compliance period nickel 

data

Menu

In the current version of S-PLUS 2000 you cannot create the Shewhart or 
CUSUM control charts for the nickel data using the S-PLUS menu because 
the menu version of control charts requires more than one observation per 
month. 

Command

To create the Shewhart control chart for the nickel data using the S-PLUS

Command or Script Window, type these commands. 

attach(epa.98.nickel2.df)

qcc.baseline <- qcc(Nickel[Period=="Baseline"], 

type="xbar",

std.dev=sd(Nickel[Period=="Baseline"]),

labels=Month[Period=="Baseline"])
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shewhart(qcc.baseline,

newdata=Nickel[Period=="Compliance"], nsigmas=4.5,

labels=Month[Period=="Compliance"])

Note that in the call to the function shewhart(), the argument nsigma
corresponds to the constant L.

To create the CUSUM chart, type these commands. 

cusum(qcc.baseline,

newdata=Nickel[Period=="Compliance"],

decision.int=5, se.shift=2, 

labels=Month[Period=="Compliance"])

detach()

Note that in the call to the function cusum(), the argument deci-
sion.int corresponds to the upper decision bound h, and the argument 
se.shift corresponds to 2k (that is, twice the value of the reference value 
k).

SUMMARY

Any activity that requires comparing new values to “background” or 
“standard” values creates a decision problem:  if the new values 
greatly exceed the background or standard value, is this evidence of 
a true difference (i.e., is there contamination)? 
Any rule you make to choose between deciding “Contamination” vs. 
“No Contamination” will result in instances when you make the cor-
rect decision and in instances when you make a mistake. 
Assuming contamination is not present, declaring contamination is 
present when it is not is called a Type I error or false-positive, and 
declaring contamination is absent when it is really present is called a 
Type II error or false-negative.
One way to come up with an objective decision rule to decide 
whether there is contamination or not is to base it on some kind of 
statistical interval or test. 
You can use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to create 
prediction intervals, simultaneous prediction intervals, tolerance in-
tervals, and control charts. 
For monitoring several chemical constituents in groundwater at sev-
eral compliance wells, simultaneous prediction intervals are the best 
way to control the facility-wide false positive rate (FWFPR) and at 
the same time maintain adequate power to detect contamination. 
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 Using a tolerance interval for a compliance-to-background compari-
son is inappropriate because the Type I error rate increases with the 
sample size at the compliance well or site. 

 Control charts do not perform as well as simultaneous prediction 
limits in terms of controlling the false positive and false negative 
rates over time. 

EXERCISES

6.1. Consider the copper data shown in Table 3.14 of Exercise 3.7 in 
Chapter 3.  In ENVIRONMENTALSTATS for S-PLUS these data are 
stored in the data frame epa.92c.copper1.df.

a. Create a normal probability plot by combining the data 
from both background wells to determine whether these 
data may be adequately modeled with a normal distribu-
tion. 

b. Assume there is no substantial spatial or temporal vari-
ability in the copper concentrations.  Also, assume the 
data at the compliance well will be tested monthly, and 
use the background well data to create a one-sided upper 
95% prediction interval for the next k = 6 future observa-
tions, and compare the data from the compliance well to 
the upper prediction limit.  Is there any evidence of con-
tamination based on this method? 

c. Plot the compliance well data vs. time, and add a horizon-
tal line at the upper prediction limit to the plot. 

d. Now assume there are r = 10 compliance wells and nc =
20 constituents being monitored on each sampling occa-
sion.  Create a one-sided upper 95% simultaneous predic-
tion interval based on the 1-of-3 rule, and compare the 
data from the compliance well to the upper prediction 
limit. 

e. Add a horizontal line at the upper simultaneous prediction 
limit to the plot you created in part c above. 

f. Compute a one-sided upper 95% -content tolerance in-
terval with associated confidence level 95% based on the 
background data, and compare the data from the compli-
ance well with the upper tolerance limit. 

g. Add a horizontal line at the upper tolerance limit to the 
plot you created in part c above. 

h. Explain the difference between the upper prediction limit, 
the upper simultaneous prediction limit, and the upper 
tolerance limit.  What does each limit assume? 
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6.2. Repeat parts b-h of Exercise 6.1 using nonparametric prediction 
and tolerance intervals.  For part b, does the confidence level of 
the prediction interval achieve 95%?  For part d, does the confi-
dence level of the simultaneous prediction interval achieve 
1 (0.05/20)  100% = 99.75%?  For part f, if you set the coverage 
at 95% does the associated confidence level achieve 95%?  What 
do you need to do to attain the desired confidence levels? 

6.3. Using the copper data, create control limits for a combined Shew-
hart-CUSUM control chart using the background data, then plot 
the compliance well data vs. time along with the control limits.  Is 
there any evidence of contamination based on this method? 

6.4. Table 6.7 below displays concentrations of trichloroethylene (ppb) 
in groundwater from three background wells and one compliance 
well.  Sampling was done monthly for 6 months, with observa-
tions taken at the background wells for all 6 months and observa-
tions taken at the compliance well the last 4 months.  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the 
data frame tce.df.

a. Assume there is no substantial spatial or temporal vari-
ability in the trichloroethylene concentrations.  Use the 
background well data to create a one-sided upper non-
parametric prediction interval for the next k = 4 future 
observations, and compare the data from the compliance 
well to the upper prediction limit.  Is there any evidence 
of contamination based on this method? 

b. What are the confidence level and Type I error rate asso-
ciated with the prediction interval you computed in part 
a?  If you wanted to increase the confidence level associ-
ated with the prediction interval, what would you have to 
do? 

c. Now assume there are r = 20 compliance wells and nc =
30 constituents being monitored on each sampling occa-
sion.  Create one-sided upper simultaneous prediction in-
tervals based on the 1-of-3 rule, the California rule with m
= 3, and the Modified California rule.  Compare the data 
from the compliance well to these upper prediction limits. 

d. What are the confidence levels and FWFPRs associated 
with the simultaneous prediction intervals you created in 
part c?  If you wanted to achieve a FWFPR of 5% for 
each sampling occasion, what would the confidence levels 
of the prediction intervals have to be? 
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 Background Wells Compliance 
Well 

Month Well 1 Well 2 Well 3 Well 4 
1  <5   7  <5  
2  <5   6.5  <5  
3   8  <5  10.5     7.5 
4  <5   6  <5    <5 
5   9  12  <5     8 
6  10  <5   9    14 

Table 6.7  Trichloroethylene concentrations (ppb) in groundwater at background 

and compliance wells 

6.5. Compute a one-sided upper -content nonparametric tolerance in-
terval for trichloroethylene concentrations using the data from the 
background wells in Table 6.7. 

a. If the coverage of this tolerance interval is set to 95%, 
what is the associated confidence level? 

b. What would you have to do to increase the associated 
confidence level of the tolerance interval? 

c. Why is it a bad idea to use tolerance intervals for compli-
ance-to-background comparisons? 
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7 HYPOTHESIS TESTS 

COMPARING GROUPS TO STANDARDS
AND ONE ANOTHER

In Chapters 2 and 6, we introduced the idea of the hypothesis testing 
framework.  In Chapter 6 we discussed three tools you can use to make an 
objective decision about whether contamination is present or not:  prediction 
intervals, tolerance intervals, and control charts.  In this chapter, we provide 
a full discussion of the statistical hypothesis testing framework, discuss the 
relationship between confidence intervals and formal hypothesis tests, and 
discuss hypothesis tests to make inferences about a single population and 
compare two or more populations. 

THE HYPOTHESIS TESTING FRAMEWORK 

We introduced the hypothesis testing framework back in Chapter 2.  Our 
first example involved deciding whether to wear a jacket or not, and our de-
cision depended on our belief about whether it would rain that day (Table 
2.1).  Our second example involved deciding whether a site or well is con-
taminated or not (Table 2.2).  Table 7.1 below reproduces Table 2.2.  In this 
case, the null hypothesis is that no contamination is present. 

Reality

Your Decision No Contamination Contamination 

Contamination
Mistake: 

Type I Error 
(Probability = )

Correct Decision 
(Probability = 1 )

No Contamination Correct Decision 
Mistake: 

Type II Error 
(Probability = )

Table 7.1  Hypothesis testing framework for deciding on the presence of  

contamination in the environment when the null hypothesis is  

“no contamination” 

In Step 5 of the DQO process (see Chapter 2), you usually link the prin-
cipal study question you defined in Step 2 with some population parameter 
such as the mean, median, 95th percentile, etc.  For example, if the study 
question is “Is the concentration of 1,2,3,4-tetrachlorobenzen (TcCB) in the 
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soil at a Cleanup site significantly above background levels?” then you may 
decide to reformulate this question as “Is the average concentration of TcCB 
in the soil at the Cleanup site greater than the average concentration of TcCB 
in the soil at a Reference site?” 

A hypothesis test or significance test is a formal mathematical mecha-
nism for objectively making a decision in the face of uncertainty, and is usu-
ally used to answer a question about the value of a population parameter.  A 
two-sided hypothesis test about a population parameter  (theta) is used to 
test the null hypothesis 

0 0:H (7.1)

versus the two-sided alternative hypothesis 

0:aH (7.2)

where H0 (pronounced “H-naught”) denotes the null hypothesis that the true 
value of  is equal to some specified value 0 (theta-naught).  A lower one-
sided hypothesis test is used to test the null hypothesis 

0 0:H (7.3)

versus the lower one-sided alternative hypothesis 

0:aH (7.4)

and an upper one-sided hypothesis test is used to test the null hypothesis 

0 0:H (7.5)

versus the upper one-sided alternative hypothesis 

0:aH (7.6)

In environmental monitoring, we are almost always concerned only with 
one-sided hypotheses, such as “The average concentration of TcCB in the 
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soil at the Cleanup site is less than or equal to 2 ppb,” or “The average value 
of pH at the compliance well is greater than or equal to 7.”  We rarely con-
sider two-sided hypothesis tests. 

Hypotheses tests are usually based on a test statistic, say T, which is 
computed from a random sample from the population.  If T is “too extreme,” 
then we decide to reject the null hypothesis in favor of the alternative hy-
pothesis.  For example, suppose we are interested in determining whether the 
true mean of a distribution is less than or equal to some hypothesized value 
0 vs. the alternative that the true mean is bigger than 0.  This is simply the 

one-sided upper hypothesis given in Equations (7.5) and (7.6) with  re-
placed by .  We can use Student’s t-statistic, which we will discuss in more 
detail later in this chapter, to test this hypothesis.  Student’s t-statistic is a 
scaled version of the sample mean minus the hypothesized mean: 

0x
t

s n
 (7.7)

Since the sample mean is an unbiased estimator of the true mean , if the 
true mean is equal to 0, then the sample mean is “bouncing around” 0 and 
the t-statistic is “bouncing around” 0.  The distribution of the t-statistic under 
the null hypothesis is shown in Figure 5.9 in Chapter 5 for sample sizes of  
n = 2, 5, and .  On the other hand, if the true mean  is larger than 0, then 
the sample mean is bouncing around , the numerator of the t-statistic is 
bouncing around 0, and the t-statistic is bouncing around some positive 
number.  So if the t-statistic is “large” we will probably reject the null hy-
pothesis in favor of the alternative hypothesis.  

Parametric vs. Nonparametric Tests 

For a parametric test, the test statistic T is usually some estimator of 
(possibly shifted by subtracting a number and scaled by dividing by a num-
ber), and the distribution of T under the null hypothesis depends on the dis-
tribution of the population (e.g., normal, lognormal, Poisson, etc.).  For a 
nonparametric or distribution-free test, T is usually based on the ranks of 
the data in the random sample, and the distribution of T under the null hy-
pothesis does not depend on the distribution of the population. 

For example, for a two-sample t-test (see below), the test statistic is a 
scaled version of the difference between the two sample means, and both 
populations are assumed to be normally distributed.  For the Wilcoxon rank 
sum test (see below), the test statistic is the sum of the ranks in the first sam-
ple, and the distribution of this statistic under the null hypothesis does not 
depend on the distribution of the two populations. 
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Type I and Type II Errors (Significance Level and Power) 

As stated above, a hypothesis test involves using a test statistic computed 
from data collected from an experiment to make a decision.  A test statistic is 
a random quantity (e.g., some expression involving the sample mean); if you 
repeat the experiment or get new observations, you will often get a different 
value for the test statistic.  Because you are making your decision based on 
the value of a random quantity, you will sometimes make the “wrong” 
choice.  Table 7.2 below illustrates the general hypothesis testing framework; 
it is simply a generalization of Table 7.1 above. 

Reality

Your Decision H0 True H0 False 

Reject H0
Mistake: 

Type I Error 
(Probability = )

Correct Decision 
(Probability = 1 )

Do Not Reject H0 Correct Decision 
Mistake: 

Type II Error 
(Probability = )

Table 7.2  The framework of a hypothesis test 

As we explained in Chapter 2, statisticians call the two kinds of mistakes 
you can make a Type I error and a Type II error.  Of course, in the real 
world, once you make a decision, you take an action (e.g., clean up the site 
or do nothing), and you hope to find out eventually whether the decision you 
made was the correct decision.  For a specific hypothesis test, the probability 
of making a Type I error is usually denoted with the Greek letter  (alpha) 
and is called the significance-level or -level of the test.  This probability is 
also called the false positive rate.  The probability of making a Type II error 
is usually denoted with the Greek letter  (beta).  This probability is also 
called the false negative rate.  The probability 1  denotes the probability of 
correctly deciding to reject the null hypothesis when in fact it is false.  This 
probability is called the power of the hypothesis test. 

Note that in Table 7.2 above the phrase “Do Not Reject H0” is used in-
stead of “Decide H0 is True.”  This is because in the framework of hypothe-
sis testing, you assume the null hypothesis is true unless you have enough 
evidence to reject it.  If you end up not rejecting H0 because of the value of 
your test statistic, you may have unknowingly committed a Type II error; 
i.e., the alternative hypothesis is really true, but you did not have enough 
evidence to reject H0.

A critical aspect of any hypothesis test is deciding on the acceptable val-
ues for the probabilities of making a Type I and Type II error.  This is part of 
Step 6 of the DQO process.  The choice of values for  and  is a subjec-
tive policy decision.  The possible choices for  and  are limited by the 
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sample size of the experiment (usually denoted n), the variability inherent in 
the data (usually denoted ), and the magnitude of the difference between 
the null and alternative hypothesis (usually denoted  or ).  Conventional 
choices for  are 1%, 5%, and 10%, but these choices should be made in the 
context of balancing the cost of a Type I and Type II error.  For most hy-
pothesis tests, there is a well-defined relationship between , , n and the 
scaled difference /  (see Chapter 8).  A very important fact is that for a 
specified sample size, if you reduce the Type I error, then you increase the 
Type II error, and vice-versa. 

P-Values 

When you perform a hypothesis test, you usually compute a quantity 
called the p-value.  The p-value is the probability of seeing a test statistic as 
extreme or more extreme than the one you observed, assuming the null hy-
pothesis is true.  Thus, if the p-value is less than or equal to the specified 
value of  (the Type I error level), you reject the null hypothesis, and if the 
p-value is greater than , you do not reject the null hypothesis.  For hypothe-
sis tests where the test statistic has a continuous distribution, under the null 
hypothesis (i.e., if H0 is true), the p-value is uniformly distributed between 0 
and 1.  When the test statistic has a discrete distribution, the p-value can take 
on only a discrete number of values. 

To get an idea of the relationship between p-values and Type I errors, 
consider the following example.  Suppose your friend is a magician and she 
has a fair coin (i.e., the probability of a “head” and the probability of a “tail” 
are both 50%) and a coin with heads on both sides (so the probability of a 
head is 100% and the probability of a tail is 0%).  She takes one of these 
coins out of her pocket, begins to flip it several times, and tells you the out-
come after each flip.  You have to decide which coin she is flipping.  Of 
course if a flip comes up tails, then you automatically know she is flipping 
the fair coin.  If the coin keeps coming up heads, however, how many flips in 
a row coming up heads will you let go by before you decide to say the coin 
is the two-headed coin? 

Table 7.3 displays the probability of seeing various numbers of heads in a 
row under the null hypothesis that your friend is flipping the fair coin.  (Of 
course, under the alternative hypothesis, all flips will result in a head and the 
probability of seeing any number of heads in a row is 100%.)  Suppose you 
decide you will make your decision after seeing the results of five flips, and 
if you see T = 5 heads in a row then you will reject the null hypothesis and 
say your friend is flipping the two-headed coin.  If you observe five heads in 
a row, then the p-value associated with this outcome is 0.0312; that is, there 
is a probability of 3.12% of getting five heads in a row when you flip a fair 
coin five times.  Therefore, the Type I error rate associated with your deci-
sion rule is 0.0312.  If you want to create a decision rule for which the Type I 
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error rate is no greater than 1%, then you will have to wait until you see the 
outcome of seven flips.  If your decision rule is to reject the null hypothesis 
after seeing T = 7 heads in a row, then the actual Type I error rate is 0.78%.  
If you do see seven heads in a row, the p-value is 0.0078. 

# Heads in a Row (T) Probability (%) 
1     50 
2     25 
3     12.5 
4      6.25 
5      3.12 
6      1.56 
7      0.78 
8      0.39 
9      0.20 
10      0.10 

Table 7.3  The probability of seeing T heads in a row in T flips of a fair coin 

For this example, the power associated with your decision rule is the 
probability of correctly deciding your friend is flipping the two-headed coin 
when in fact that is the one she is flipping.  This is a special example in 
which the power is equal to 100%, because if your friend really is flipping 
the two headed coin then you will always see a head on each flip and no mat-
ter what value of T you choose for the cut-off, you will always see T heads 
in a row.  Usually, however, there is an inverse relationship between the Type 
I and Type II error, so that the smaller you set the Type I error, the smaller 
the power of the test (see Chapter 8). 

Relationship between Hypothesis Tests and Confidence Intervals 

Consider the null hypothesis shown in Equation (7.1), where  is some 
population parameter of interest (e.g., mean, proportion, 95th percentile, etc.).  
There is a one-to-one relationship between hypothesis tests concerning  and 
a confidence interval for this parameter.  A (1 )100% confidence interval 
for  consists of all possible values of  that are associated with not rejecting 
the null hypothesis at significance level .  Thus, if you know how to create 
a confidence interval for a parameter, you can perform a hypothesis test for 
that parameter, and vice-versa.  Table 7.4 shows the explicit relationship be-
tween hypothesis tests and confidence intervals. 

Whenever you report the results of a hypothesis test, you should almost 
always report the corresponding confidence interval as well.  This is because 
if you have a small sample size, you may not have much power to uncover 
the fact that the null hypothesis is not true, even if there is a huge difference 
between the postulated value of  (e.g., 0  5 ppb) and the true value of 
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(e.g., = 20 ppb).  On the other hand, if you have a large sample size, you 
may be very likely to detect a small difference between the postulated value 
of  (e.g., 0  5 ppb) and the true value of  (e.g., = 6 ppb), but this dif-
ference may not really be important to detect.   Confidence intervals help 
you sort out the important distinction between a statistically significantly 
difference and a scientifically meaningful difference.

Test
Type 

Alternative  
Hypothesis

Corresponding  
Confidence Interval 

Rejection Rule 
Based on CI 

Two-sided 0         Two-sided 
[LCL, UCL]

LCL > 0  or
UCL < 0

Lower  < 0            Upper 
[ , UCL]

  UCL < 0

Upper  > 0            Lower 
[LCL, ]

  LCL > 0

Table 7.4  Relationship between hypothesis tests and confidence intervals 

OVERVIEW OF UNIVARIATE HYPOTHESIS TESTS 

Table 7.5 summarizes the kinds of univariate hypothesis tests that we will 
talk about in this chapter.  In Chapter 9 we will talk about hypothesis tests 
for regression models.  We will not discuss hypothesis tests for multivariate 
observations.  A good introduction to multivariate statistical analysis is John-
son and Wichern (1998). 

One-Sample Two-Samples Multiple Samples 
Goodness-of-Fit   
Proportion Proportions Proportions 
Location Locations Locations 
Variability Variability Variability 

Table 7.5  Summary of the kinds of hypothesis tests discussed in this chapter 

GOODNESS-OF-FIT TESTS 

Most commonly used parametric statistical tests assume the observations 
in the random sample(s) come from a normal population.  So how do you 
know whether this assumption is valid?  We saw in Chapter 3 how to make a 
visual assessment of this assumption using Q-Q plots.  Another way to verify 
this assumption is with a goodness-of-fit test, which lets you specify what 
kind of distribution you think the data come from and then compute a test 
statistic and a p-value. 
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A goodness-of-fit test may be used to test the null hypothesis that the 
data come from a specific distribution, such as “the data come from a normal 
distribution with mean 10 and standard deviation 2,” or to test the more gen-
eral null hypothesis that the data come from a particular family of distribu-
tions, such as “the data come from a lognormal distribution.”  Goodness-of-
fit tests are mostly used to test the latter kind of hypothesis, since in practice 
we rarely know or want to specify the parameters of the distribution. 

In practice, goodness-of-fit tests may be of limited use for very large or 
very small sample sizes.  Almost any goodness-of-fit test will reject the null 
hypothesis of the specified distribution if the number of observations is very 
large, since “real” data are never distributed according to any theoretical dis-
tribution (Conover, 1980, p. 367).  On the other hand, with only a very small 
number of observations, no test will be able to determine whether the obser-
vations appear to come from the hypothesized distribution or some other to-
tally different looking distribution. 

Tests for Normality 

Two commonly used tests to test the null hypothesis that the observations 
come from a normal distribution are the Shapiro-Wilk test (Shapiro and 
Wilk, 1965), and the Shapiro-Francia test (Shapiro and Francia, 1972).  The 
Shapiro-Wilk test is more powerful at detecting short-tailed (platykurtic) and 
skewed distributions, and less powerful against symmetric, moderately long-
tailed (leptokurtic) distributions.  Conversely, the Shapiro-Francia test is 
more powerful against symmetric long-tailed distributions and less powerful 
against short-tailed distributions (Royston, 1992b; 1993).  These tests are 
considered to be two of the very best tests of normality available 
(D’Agostino, 1986b, p. 406). 

The Shapiro-Wilk Test 

The Shapiro-Wilk test statistic can be written as: 

2
2

1 1

( )
n n

i ii
i i

W a x x x (7.8)

where x(i) denotes the ith ordered observation, ai is the ith element of the  
n 1 vector a, and the vector a is defined by: 

1 1 1T T Ta m m mV V V (7.9)
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where T denotes the transpose operator, and m is the vector of expected val-
ues and V is the variance-covariance matrix of the order statistics of a ran-
dom sample of size n from a standard normal distribution.  That is, the val-
ues of a are the expected values of the standard normal order statistics 
weighted by their variance-covariance matrix, and normalized so that 

1Ta a .  It can be shown that the W-statistic in Equation (7.8) is the same 

as the square of the sample correlation coefficient between the vectors a and 
x():

2
,W r a x (7.10)

where

1

2 2

1 1

( )

,

( ) ( )

n

i i
i
n n

i i
i i

x x y y

r x y

x x y y

(7.11)

(see Chapter 9 for an explanation of the sample correlation coefficient). 
Small values of W yield small p-values and indicate the null hypothesis of 

normality is probably not true.  Royston (1992a) presents an approximation 
for the coefficients a necessary to compute the Shapiro-Wilk W-statistic, and 
also a transformation of the W-statistic that has approximately a standard 
normal distribution under the null hypothesis.  Both of these approximations 
are used in ENVIRONMENTALSTATS for S-PLUS.

The Shapiro-Francia Test 

Shapiro and Francia (1972) introduced a modification of the W-test that 
depends only on the expected values of the order statistics (m) and not on the 
variance-covariance matrix (V):

2
2

1 1

( )
n n

i ii
i i

W b x x x (7.12)
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where bi is the ith element of the vector b defined as: 

Tb m m m (7.13)

Several authors, including Ryan and Joiner (1973), Filliben (1975), and 
Weisberg and Bingham (1975), note that the W'-statistic is intuitively 
appealing because it is the squared sample correlation coefficient associated 
with a normal probability plot.  That is, it is the squared correlation between 
the ordered sample values x() and the expected normal order statistics m:

2 2
, ,W r b x r m x (7.14)

Weisberg and Bingham (1975) introduced an approximation of the Sha-
piro-Francia W'-statistic that is easier to compute.  They suggested using 
Blom scores (Blom, 1958, pp. 68 75; see Chapter 3) to approximate the ele-
ments of m:

2

2
1

2

1

,

( )

n

i i
i
n

i
i

c x

W r c x

x x

(7.15)

where ci is the ith element of the vector c defined by: 

Tc m m m (7.16)

1
3
8
1
4

i

i
m

n
(7.17)
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and  denotes the standard normal cdf.  That is, the values of the elements of 
m in Equation (7.13) are replaced with their estimates based on the usual 
plotting positions for a normal distribution (see Chapter 3). 

Filliben (1975) proposed the probability plot correlation coefficient 
(PPCC) test that is essentially the same test as the test of Weisberg and Bing-
ham (1975), but Filliben used different plotting positions.  Looney and 
Gulledge (1985) investigated the characteristics of Filliben’s PPCC test us-
ing various plotting position formulas and concluded that the PPCC test 
based on Blom plotting positions performs slightly better than tests based on 
other plotting positions.  The Weisberg and Bingham (1975) approximation 
to the Shapiro-Francia W’-statistic is the square of Filliben’s PPCC test sta-
tistic based on Blom plotting positions.  Royston (1992c) provides a method 
for computing p-values associated with the Weisberg-Bingham approxima-
tion to the Shapiro-Francia W'-statistic, and this method is implemented in 
ENVIRONMENTALSTATS for S-PLUS.

The Shapiro-Wilk and Shapiro-Francia tests can be used to test whether 
observations appear to come from a normal distribution, or the transformed 
observations (e.g., Box-Cox transformed) come from a normal distribution.  
Hence, these tests can test whether the data appear to come from a normal, 
lognormal, or three-parameter lognormal distribution for example, as well as 
a zero-modified normal or zero-modified lognormal distribution. 

Example 7.1:  Testing the Normality of the Reference Area TcCB Data 

In Chapter 3 we saw that the Reference area TcCB data appear to come 
from a lognormal distribution based on histograms (Figures 3.1, 3.2, 3.10, 
and 3.11), an empirical cdf plot (Figure 3.16), normal Q-Q plots (Figures 
3.18 and 3.19), Tukey mean-difference Q-Q plots (Figures 3.21 and 3.22), 
and a plot of the PPCC vs.  for a variety of Box-Cox transformations (Fig-
ure 3.24).  Here we will formally test whether the Reference area TcCB data 
appear to come from a normal or lognormal distribution. 

Assumed  
Distribution Shapiro-Wilk (W) Shapiro-Francia (W’)
Normal 0.918  (p=0.003) 0.923  (p=0.006) 
Lognormal 0.979  (p=0.55) 0.987  (p=0.78) 

Table 7.6  Results of tests for normality and lognormality for the Reference area 

TcCB data 

Table 7.6 lists the results of these two tests.  The second and third col-
umns show the test statistics with the p-values in parentheses.  The p-values 
clearly indicate that we should not assume the Reference area TcCB data 
come from a normal distribution, but the assumption of a lognormal distri- 
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bution appears to be adequate.  Figure 7.1 and Figure 7.2 show companion 
plots for the results of the Shapiro-Wilk tests for normality and lognormality, 
respectively.  These plots include the observed distribution overlaid with the 
fitted distribution, the observed and fitted cdf, the normal Q-Q plot, and the 
results of the hypothesis test. 

Menu

To perform the Shapiro-Wilk test for normality using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight the data frame 
epa.94b.tccb.df.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>GOF Tests>One Sam-
ple>Shapiro-Wilk.  This will bring up the Shapiro-Wilk GOF Test 
dialog box. 

3. For Data to Use, select Pre-Defined Data.  For Data Set make sure 
epa.94b.tccb.df is selected, for Variable select TcCB, and in the 
Subset Rows with box type Area=="Reference".  In the Distribu-
tion box select Normal.

4. Click on the Plotting tab.  Under Plotting Information, in the Sig-
nificant Digits box type 3, then click OK or Apply.

To perform the Shapiro-Wilk test for lognormality, repeat the above steps, 
but in Step 3 select Lognormal in the Distribution box.  To perform the 
Shapiro-Francia tests, repeat the above procedure, but in Step 2 make the 
menu selection EnvironmentalStats>Hypothesis Tests>GOF Tests>One 
Sample>Shapiro-Francia.

Command 

To perform the Shapiro-Wilk tests using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)

TcCB.ref <- TcCB[Area=="Reference"] 

sw.list.norm <- sw.gof(TcCB.ref) 

sw.list.norm

sw.list.lnorm <- sw.gof(TcCB.ref, dist="lnorm") 

sw.list.lnorm

To plot the results of these tests as shown in Figure 7.1 and Figure 7.2, type 
these commands. 

plot.gof.summary(sw.list.norm, digits=3) 
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plot.gof.summary(sw.list.lnorm, digits=3) 

To perform the Shapiro-Francia tests, type these commands. 

sf.list.norm <- sf.gof(TcCB.ref) 

sf.list.norm

sf.list.lnorm <- sf.gof(TcCB.ref, dist="lnorm") 

sf.list.lnorm

To plot the results of the Shapiro-Francia tests, type these commands. 

plot.gof.summary(sf.list.norm, digits=3) 

plot.gof.summary(sf.list.lnorm, digits=3) 

detach()

Testing Several Groups for Normality 

Current regulations for monitoring groundwater at hazardous and solid 
waste sites usually require performing statistical analyses even when there 
are only small sample sizes at each monitoring well.  As we noted above, 
goodness-of-fit tests are not very useful with small sample sizes; there is 
simply not enough information to determine whether the data appear to come 
from the hypothesized distribution or not.  Gibbons (1994, p. 228) suggests 
pooling the measures from several upgradient wells to establish “back-
ground.”  Due to spatial variability, the wells may have different means and 
variances, yet you would like to test the assumption of a normal distribution 
for the chemical concentration at each of the upgradient wells. 

Wilk and Shapiro (1968) suggest two different test statistics for the prob-
lem of testing the normality of K separate groups, using the results of the 
Shapiro-Wilk test applied to random samples from each of the K groups.  
Both test statistics are functions of the K p-values that result from performing 
the test on each of the K samples.  Under the null hypothesis that all K sam-
ples come from normal distributions, the p-values represent a random sample 
from a uniform distribution on the interval [0,1].  Since these two test statis-
tics are based solely on the p-values, they are really meta-analysis statistics 
(Fisher and van Belle, 1993, p. 893), and can be applied to the problem of 
combining the results from K independent hypothesis tests, where the hy-
pothesis tests are not necessarily goodness-of-fit tests. 

The test based on normal scores uses the test statistic G given by 

1

1 n

i
i

G G
K

(7.18)
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where

1
i iG p (7.19)

 denotes the cdf of the standard normal distribution, and pi denotes the p-
value from the goodness-of-fit test for the ith group.  Under the null hy-
pothesis that all K samples come from normal distributions, each normal 
score Gi represents a random variable from a standard normal distribution, 
and so the distribution of G also follows a standard normal distribution.  Un-
der the alternative hypothesis that at least one of the K groups does not come 
from the hypothesized distribution, the p-values for the groups that do not 
come from the hypothesized distribution will tend to be small, so the corre-
sponding normal scores for those p-values will be small, and G will tend to 
be small.  Hence, the null hypothesis is rejected if G is “too small,” so the p-
value for this test statistic is given by: 

p G (7.20)

Wilk and Shapiro (1968) suggest creating normal probability plots of the 
normal scores in Equation (7.19) as an additional aid in determining whether 
all of the groups come from the same kind of distribution. 

The test based on chi-squared scores uses the test statistic C given by 

1

n

i
i

C C (7.21)

where

1
2 1 2 logi i iC F p p (7.22)

and F  denotes the cdf of a chi-squared distribution with  degrees of free-
dom.  Under the null hypothesis that all K samples come from normal distri-
butions, each chi-squared score Ci represents a random variable from a chi-
squared distribution with 2 degrees of freedom, and so the distribution of C
follows a chi-squared distribution with 2K degrees of freedom.  Under the al-
ternative hypothesis that at least one of the K groups does not come from the 
hypothesized distribution, the p-values for the groups that do not come from 
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the hypothesized distribution will tend to be small, so the corresponding chi-
squared scores for those p-values will be large, and C will tend to be large.  
Hence, the null hypothesis is rejected if C is “too large,” so the p-value for 
this test statistic is given by: 

21 Kp F C (7.23)

Just as for the normal scores statistic, you can look at chi-squared probability 
plots of the chi-squared scores in Equation (7.22) as an additional aid in de-
termining whether all of the groups come from the same kind of distribution. 

Wilk and Shapiro (1968) note that the probability plots based on the 
normal scores in Equation (7.19) and the chi-square scores in Equation 
(7.22) are equivalent.  The two overall test statistics G and C, however, are 
different measures.  Based on simulations, Wilk and Shapiro (1968) found 
that G and C perform similarly for highly skewed non-normal alternatives, 
although C is more sensitive to symmetric long-tailed alternatives and G is 
more sensitive to finite range alternatives. 

Example 7.2:  Group Test of Normality for Arsenic Concentrations 

The guidance document USEPA (1992c, p. 21) contains observations of 
arsenic concentrations (ppm) collected over 4 months at six monitoring 
wells.  These data are displayed in Table 7.7 and are stored in the data frame 
epa.92c.arsenic1.df in ENVIRONMENTALSTATS for S-PLUS.  Figure 
7.3 displays the observations for each well, and Figure 7.4 displays the log-
transformed observations.  Here we will use the Shapiro-Wilk group test to 
test the null hypotheses that the observations at each well represent a sample 
from some kind of normal or lognormal distribution, but the population 
means and/or variances may differ between wells. 

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 
1
2
3
4

22.9
 3.09 
35.7
 4.18 

 2.0 
 1.25 
 7.8 
52

  2.0 
109.4
  4.5 
  2.5 

 7.84 
 9.3 
25.9
 2.0 

24.9
 1.3 
 0.75 
27

 0.34 
 4.78 
 2.85 
 1.2 

Table 7.7  Arsenic concentrations (ppm) from groundwater monitoring wells 

(USEPA, 1992c, p. 21) 

Null Hypothesis Normal Scores (G) Chi-Squared Scores (C)
Normal  -2.62 (p=0.004)   30.2 (p=0.003) 
Lognormal  -0.59 (p=0.28)   14.1 (p=0.29) 

Table 7.8  Results of Shapiro-Wilk group tests for the arsenic data 
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Figure 7.3 Arsenic concentrations (ppm) by well 

Log-Transformed Arsenic Concentrations by Well
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Figure 7.4 Log-transformed arsenic concentrations by well 
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Figure 7.5 Normal Q-Q plot of the normal scores used in the group Shapiro-Wilk 

goodness-of-fit test for normality of the arsenic concentrations 
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Table 7.8 displays the results of the normal scores and chi-squared scores 
tests for the null hypotheses of normality and lognormality.  Figure 7.5 and 
Figure 7.6 display the normal Q-Q plots of the normal scores for each of the 
hypotheses.  There is clear evidence that the concentrations do not come 
from normal distributions, but the assumption of lognormal distributions ap-
pears to be adequate. 

Menu

To compute the Shapiro-Wilk group test statistics and create the compan-
ion probability plot using the ENVIRONMENTALSTATS for S-PLUS pull-down 
menu, follow these steps. 

1. In the Object Explorer, find and highlight the data frame 
epa.92c.arsenic1.df.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>GOF Tests>Group> 
Shapiro-Wilk.  This will bring up the Shapiro-Wilk Group GOF 
Test dialog box. 

3. In the Data Set box, make sure epa.92c.arsenic1.df is selected.  In 
the Variable box select Arsenic, and in the Grouping Variable box 
select Well.  In the Distribution box, make sure Normal is selected. 

4. Click on the Plotting tab.  Under Plot Type select the Gi Q-Q but-
ton, then click OK or Apply.

This creates the results for the test of a normal distribution.  To create the re-
sults for the test of a lognormal distribution, in Step 3 select Lognormal in 
the Distribution box. 

Command 

To compute the Shapiro-Wilk group test statistics and create the compan-
ion probability plot using the ENVIRONMENTALSTATS for S-PLUS Command 
or Script Window, type these commands. 

attach(epa.92c.arsenic1.df)

sw.list <- sw.group.gof(Arsenic, Well) 

sw.list

plot(sw.list, plot.type="Gi Q-Q") 

sw.log.list <- sw.group.gof(Arsenic, Well, 

dist="lnorm")

sw.log.list

plot(sw.log.list, plot.type="Gi Q-Q") 

detach()
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Tests for Other Kinds of Distributions 

Three other commonly used goodness-of-fit tests are the Kolmogorov-
Smirnov goodness-of-fit test (Zar, 1999, p. 475), the chi-square goodness-of-
fit test (Zar, 1999, p. 462), and the probability plot correlation coefficient 
(PPCC) goodness-of-fit test (Filliben, 1975; Vogel, 1986).  All of these tests 
are available in S-PLUS and/or ENVIRONMENTALSTATS for S-PLUS (see the 
help files).  Here, we will give a brief explanation of how these tests work.  
You can look at the help files to get more detailed information and see ex-
amples. 

The Kolmogorov-Smirnov goodness-of-fit test lets you test whether a set 
of observations comes from a specified theoretical distribution based on 
looking at the maximum vertical distance between the empirical cdf for the 
observations and the cdf for the hypothesized theoretical distribution.  The 
test also lets you test whether two sets of data appear to come from the same 
distribution by looking at the distance between the two empirical cdfs. 

The chi-square test requires you to group the observations into bins (just 
as you have to do to create a histogram).  Once the observations are grouped, 
you can count the observed number of observations in a group and compare 
this number with the “expected” number of observations in that group based 
on the hypothesized distribution (for example, for a normal distribution, you 
do not expect to see too many observations in a group that is more than two 
standard deviations away from the mean).  The chi-square statistic is based 
on adding up the squares of the differences between the observed and ex-
pected number of observations. 

The probability plot correlation coefficient (PPCC) test is based on the 
sample correlation coefficient for the Q-Q plot.  The sampling distribution of 
this test statistic does not depend on the distribution parameters, only on the 
type of distribution (e.g., normal, lognormal, extreme value, etc.)  For tests 
other than testing for the normal distribution, the sampling distribution of 
this test statistic must be simulated.  Vogel (1986) provides a table of empiri-
cal percentage points for the distribution of the PPCC test statistic based on 
the null hypothesis that the data come from an extreme value distribution. 

Outlier Tests 

Tests for outliers are closely related to goodness-of-fit tests.  An outlier
can be defined as an observation that is “far away” from the rest of the ob-
servations.  Outliers can occur in one-dimensional space (one variable) or 
multi-dimensional space (several variables).  Outliers are valuable sources of 
information and should never be discarded without thorough investigation.  
There are at least three possible causes for an outlier to show up in a set of 
observations: 
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The outlier is actually not a valid value, but rather the result of a 
measurement or coding error. 
The outlier is associated with a different population than the popula-
tion that the rest of the data were drawn from.  If this is the case, you 
need to figure out how you ended up sampling from a different 
population.  For example, maybe a different laboratory analysis was 
used on the physical sample associated with the outlier. 
The outlier is a valid value from the same population as the other ob-
servations, and you have simply come up with a “rare event” in your 
sample. 

Each of the above three possibilities needs to be investigated to determine 
how to handle outliers.  A data set that does not conform to a pre-conceived 
distribution (e.g., normal) is no reason for deleting or ignoring outliers.  In 
fact, the hole in the ozone layer over Antarctica that was discovered in the 
mid-1980s might have been discovered sooner, but the software used to col-
lect and manage the Nimbus-7 satellite ozone observations included an algo-
rithm to flag low-level “outliers” in the data (Stolarski et al., 1986).  In cases 
where there is no reason to delete outliers and a transformation does not 
seem to force the data to conform to the normality assumption of standard 
parametric estimation and testing, nonparametric and robust methods should 
be used. 

An outlier test is used to determine whether one or more observations in 
a data set really come from a different distribution than the rest of the obser-
vations.  Several outlier tests have been proposed over the years, and Barnett 
and Lewis (1995) present a thorough discussion of these tests.  Gibbons 
(1994, chapter 13) and Gilbert (1987, chapter 15) also discuss some of these 
tests.  One simple way to test for outliers is to perform a goodness-of-fit test 
with and without the suspected outliers. 

TEST OF A SINGLE PROPORTION 

One of the simplest hypothesis tests concerns the value of the proportion 
p from a binomial distribution (i.e., the probability of “success”).  The two-
sided and one-sided hypotheses about the proportion are given in Equations 
(7.1) to (7.6) above, with  replaced by p.  We assume that our observations 
x1, x2, …, xn are independent observations from a B(1, p) distribution.  
Then the test statistic for the binomial test is simply the number of observed 
“successes”:

1

n

i
i

x x (7.24)
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Under the null hypothesis that p = p0, the test statistic x has a B(n, p0) dis-
tribution.  For a two-sided alternative hypothesis (Equation (7.2)), the p-
value is computed as: 

0 0, ,p-value Pr Prn p  n pX n m X m (7.25)

where Xn,p denotes a random variable that follows a B(n, p) distribution and 
m is defined by: 

max ,m x n x  (7.26)

For a one-sided lower alternative hypothesis (Equation (7.4)), the p-value is 
computed as: 

0,p-value Pr n pX x  (7.27)

and for a one-sided upper alternative hypothesis (Equation (7.6)), the p-value 
is computed as: 

0,p-value Pr n pX x  (7.28)

Example 7.3:  Comparing Ozone Concentrations to a Standard 

Figure 7.7 below displays daily maximum ozone concentrations (ppb) at 
ground level recorded between May 1 and September 30, 1974 at a site in 
Yonkers, New York.  In S-PLUS these data are stored in a list called ozone,
which has two components called yonkers and stamford.  These data 
are discussed in Chambers et al. (1983) and presented in an appendix  
(p. 346).  They are also discussed in Cleveland (1993, p. 148).  Although 
there should be 153 observations, there were a total of 21 days for which no 
measurements were available either at the Yonkers site and/or the Stamford 
site, so only 132 values are stored in the list ozone.  Chambers et al. (1983, 
p. 346) present the original time series, including the days with missing val-
ues at each site.  In ENVIRONMENTALSTATS for S-PLUS, the full data set, in-
cluding missing values, is stored in the multivariate calendar time series 
ozone.orig.cts.
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Daily Maximum Ozone Concentrations
in Yonkers, New York
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Figure 7.7 Daily maximum ozone concentrations (ppb) in Yonkers, New York  

between May 1 and September 30, 1974 

When these ozone measurements were taken, the U.S. Federal standard 
for ozone required that the concentration should not exceed 120 ppb more 
than 1 day per year at any particular station.  This was a deterministic air 
quality standard that ignored the inherent variability in air quality data.  As 
noted in Chapter 1, however, the ozone standard has changed to account for 
inherent variability in the data.  For this example, we will test the null hy-
pothesis that the probability p that the daily maximum ozone exceeds 120 
ppb is less than or equal to 1/365 (0.27%) vs. the one-sided upper alternative 
that p is greater than 1/365.  This is the same as testing the null hypothesis 
that the expected number of days exceeding 120 ppb within a 1-year period 
is 1.  Ott (1995, Chapter 4) discusses a slightly different model for ozone ex-
ceedance.

There were 2 days out of 148 days with recorded data for which the 
ozone concentration was above 120 ppb.  This yields an estimated probabil-
ity of exceedance of 2/148 = 1.35%.  Under the null hypothesis that the true 
probability of exceeding 120 ppb on any given day is 1/365, the probability 
of seeing at least 2 days out of 148 over 120 ppb is 6.3%.  Therefore, the p-
value is 0.063.  Figure 7.8 displays the distribution of the number of ex-
ceedances out of 148 days under the null hypothesis.  The sum of the areas 
of the histogram bars for all numbers greater than or equal to 2 is equal to the 
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p-value.  Depending on what we choose for our Type I error rate (e.g., 10%, 
5%, 1%, etc.), we may or may not reject the null hypothesis that p = 1/365 = 
0.0027.  The lower 95% confidence interval for p (see Chapter 5) is  
[0.0024, 1], which includes p = 1/365, whereas the lower 90% confidence 
interval for p is [0.0036, 1], which does not include p = 1/365. 

We need to add several caveats to this example.  First of all, our “sam-
ple” of days does not span the whole year, yet there is probably important 
seasonal variability in the ozone concentrations.  Second, our sample of days 
does not span more than 1 year, and there may be important year-to-year 
variability as well.  Third, the binomial test assumes our observations are 
independent of one another.  This is probably not a valid assumption with 
time series data collected close together in time.  We will revisit this data set 
in Chapter 11 when we discuss analyzing time series data. 
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Figure 7.8 Distribution of number of days out of 148 exceeding 120 ppb under the 

null hypothesis that the true probability of exceeding 120 ppb on any 

given day is 1/365 

Menu

To perform the binomial test using the S-PLUS pull-down menu, follow 
these steps. 
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1. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>Counts and Proportions>Binomial 
Test.  This will bring up the Exact Binomial Test dialog box. 

2. Under the Data group, in the No. of Successes box type 2, and in the 
No. of Trials box type 148.

3. Under the Test Hypotheses group, in the Hypothesized Proportion 
box type 1/365, and in the Alternative Hypothesis box select 
greater.

4. Click on OK or Apply.

Command

To perform the binomial test using the S-PLUS Command or Script Win-
dow, type this command. 

binom.test(x=

sum(ozone.orig.cts[,"yonkers"] > 120, na.rm=T),

n=sum(!is.na(ozone.orig.cts[,"yonkers"])), p=1/365, 

alternative="greater")

TESTS OF LOCATION 

A frequent question in environmental statistics is “Is the concentration of 
chemical X greater than Y units?”  For example, in groundwater assessment 
(compliance) monitoring at hazardous and solid waste sites, the concentra-
tion of a chemical in the groundwater at a downgradient well must be com-
pared to a groundwater protection standard (GWPS).  If the concentration is 
“above” the GWPS, then the site enters corrective action monitoring.  As an-
other example, soil screening at a Superfund site involves comparing the 
concentration of a chemical in the soil with a pre-determined soil screening 
level (SSL).  If the concentration is “above” the SSL, then further investiga-
tion and possible remedial action is required.  Determining what it means for 
the chemical concentration to be “above” a GWPS or an SSL is a policy de-
cision:  the average of the distribution of the chemical concentration must be 
above the GWPS or SSL, or the 95th percentile must be above the GWPS or 
SSL, or something else.  Often, the first interpretation is used. 

Table 7.9 displays six kinds of tests for location, along with the parame-
ter the test is concerned with, the statistic the test is based on, and the as-
sumptions of the test.  The term “IID” stands for independent and identically 
distributed (i.e., independent observations from the same distribution).  Note 
that for tests that assume a normal or symmetric distribution, the median is 
the same as the mean.  We will discuss each of these tests below. 
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Test Name Test on Based on Assumptions 
Student’s t-Test Mean (Median) Estimated 

Mean 
IID observations 
from a normal  
distribution

Fisher’s
Randomization
Test

Mean (Median) Permuting 
Signs of
Observations

IID observations
from a symmetric  
distribution

Wilcoxon
Signed Rank 
Test

Mean (Median) Permuting 
Signs of
Ranks

IID observations
from a symmetric  
distribution

Chen’s
Modified t-Test 

Mean Estimated 
Mean and 
Skew 

IID observations 
from a skewed dis-
tribution

Sign Test Median Signs of  
Observations

IID observations 

Bootstrap
Confidence
Intervals

Any Kind of  
Location (Mean, 
Median, etc.) 

Bootstrap
Confidence
Intervals

IID observations 

Table 7.9  Six tests for location 

Student’s t-Test 

One of the most commonly used statistical tests is Student’s t-test to test 
whether the mean of a distribution is equal to a specific value.  The two-
sided and one-sided hypotheses you can test are given in Equations (7.1) to 
(7.6), with  replaced by .  Student’s t-statistic is simply the difference be-
tween the sample mean and hypothesized mean, scaled by the estimated 
standard deviation of the sample mean: 

0x
t

s n
(7.29)

In this formula, x  denotes the sample mean and s denotes the sample stan-
dard deviation (see Equations (5.7), (5.50), and (5.76) in Chapter 5).  The 
“degrees of freedom” associated with this statistic are n 1, since we have to 
estimate the population standard deviation with s.

In order to use Student’s t-test, the following assumptions must hold: 

1. The observations all come from the same normal distribution. 
2. The observations are independent of one another. 

Under the null hypothesis that the true mean is equal to 0, the t-statistic in 
Equation (7.29) bounces around 0 and follows a Student’s t-distribution with 
n 1 degrees of freedom (Johnson et al., 1995, p. 362; Fisher and van Belle, 
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1993, p. 143; Sheskin, 1997, Chapter 2; Zar, 1999, pp. 92 93).  The first re-
quirement is not as important as the second one.  Several authors have inves-
tigated the behavior of Student’s t-test under various deviations from normal-
ity and found that the test is fairly robust (i.e., the true Type I error rate is 
close to the assumed Type I error rate) to departures from normality (Zar, 
1999, p. 95).  On the other hand, positive or negative correlation between the 
observations can greatly affect the Type I error rate (Millard et al., 1985). 

For a two-sided alternative hypothesis (Equation (7.2)), the p-value is 
computed as: 

1Pr np t t  (7.30)

where t  denotes a random variable that follows Student’s t-distribution with 
 degrees of freedom.  For a one-sided lower alternative hypothesis (Equa-

tion (7.4)), the p-value is computed as: 

1Pr np t t  (7.31)

and for a one-sided upper alternative hypothesis (Equation (7.6)), the p-value 
is computed as: 

1Pr np t t  (7.32)

Figure 7.9 illustrates how the two-sided p-value is computed based on a 
sample size of n = 10 when the observed value of the statistic is t = 2.  In 
this figure, the p-value is equal to the combined area of the two shaded re-
gions.  If we were testing the one-sided upper hypothesis (Equations (7.5) 
and (7.6)), then the p-value would be equal to the area of the shaded region 
on the right-hand side. 

Confidence Interval for the Mean Based on Student’s t-Test 

Based on the relationship between tests of hypothesis and confidence in-
tervals (see Table 7.4), we can construct a confidence interval for the popula-
tion mean based on Student’s t-statistic.  The formulas for the two-sided and 
one-sided confidence intervals were presented in Chapter 5 (Equations (5.78)  
to  (5.80)). 
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Two-Sided p-Value When t=2 and n=10
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Figure 7.9 Computation of the two-sided p-value (area of the shaded regions) for 

the one-sample t-test based on a test statistic of t = 2 and a sample 

size of n = 10 

Example 7.4:  Testing Whether the Mean Aldicarb Concentration is above 
the MCL 

The guidance document USEPA (1989b, p. 6-4) contains observations of 
aldicarb at three compliance wells.  These data are displayed in Table 7.10 
below and are stored in the data frame epa.89b.aldicarb1.df in 
ENVIRONMENTALSTATS for S-PLUS.

Month Well 1 Well 2 Well 3 
Jan 
Feb 
Mar 
Apr

19.9
29.6
18.7
24.2

23.7
21.9
26.9
26.1

 5.6 
 3.3 
 2.3 
 6.9 

Table 7.10 Aldicarb concentrations (ppb) at three compliance wells, from USEPA 

(1989b, p. 6-4) 

The Maximum Contaminant Level (MCL) has been set at 7 ppb.  For each 
well, we will test the null hypothesis that the average aldicarb concentration 
is less than or equal to the MCL of 7 ppb versus the alternative hypothesis 
that the average concentration is bigger than 7 ppb. 
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For each of the three wells, Table 7.11 displays the sample means, sam-
ple standard deviations, t-statistics and their associated p-values, and the 
one-sided lower 99% confidence intervals for the true average concentration.  
We see that the average concentrations at Wells 1 and 2 are significantly 
greater than 7 ppb (p < 0.01), but the average concentration at Well 3 is not 
significantly different from 7 ppb. 

Well
Sample  
Mean 

Sample  
SD t (p-value) Lower 99% CI 

1    23.1   4.9  6.5 (0.004)  [11.9 , ]
2    24.6   2.3 15.4 (0.0003)  [19.5 , ]
3     4.5   2.1 -2.4 (0.95)  [-0.25, ]

Table 7.11 Results of testing whether the true average aldicarb concentration is 

above the MCL of 7 ppb using Student’s t-test 

Menu

To test the null hypothesis that the true average aldicarb concentration at 
Well 1 is less than or equal to 7 ppb using Student’s t-test and the S-PLUS

pull down menu, we have to first create a new data frame that splits the ob-
servations at each well into separate columns (we will call it 
new.epa.89b.aldicarb1.df).  To create this new data frame, follow 
these steps. 

1. In the Object Explorer find and highlight the data frame 
epa.89b.aldicarb1.df.

2. On the S-PLUS menu bar, make the following menu choices:   
Data>Restructure>Unstack.  This will bring up the Unstack Col-
umns dialog box. 

3. Under the From group, in the Data Set box, make sure 
epa.89b.aldicarb1.df is selected, and in the Columns box select 
Aldicarb.

4. Under the Row Grouping group, in the Type box make sure Group
Column is selected and in the Group Column box select Well.

5. Under the To group, in the Data Set box type 
new.epa.89b.aldicarb1.df.

6. Click on OK.  A data window entitled new.epa.89b.aldicarb1.df 
should appear. 

7. In the data window, right click on the first column and select Proper-
ties.  In the Name box, type Well.1.Aldicarb, then click OK.  Re-
peat this for the second and third columns, renaming them 
Well.2.Aldicarb and Well.3.Aldicarb, respectively. 

8. Exit the data window.  Do not save the changes to a file. 
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To test the null hypothesis that the true average aldicarb concentration at 
Well 1 is less than or equal to 7 ppb, follow these steps. 

1. In the Object Explorer find and highlight the data frame 
new.epa.89b.aldicarb1.df.

2. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>One Sample>t Test.  This will bring 
up the One-sample t Test dialog box. 

3. In the Data Set box, make sure new.epa.89b.aldicarb1.df is se-
lected, and in the Variable box select Well.1.Aldicarb.

4. In the Mean Under Null Hypothesis box, type 7 and in the Alterna-
tive Hypothesis box select greater.

5. In the Confidence Level box, type 0.99, then click OK or Apply.

To test the null hypothesis for Wells 2 and 3, repeat the above steps, but in 
Step 3 select Well.2.Aldicarb or Well.3.Aldicarb in the Variable box. 

Command 

To test the null hypothesis that the true average aldicarb concentration at 
a well is less than or equal to 7 ppb using Student’s t-test and the S-PLUS

Command or Script Window, type these commands. 

attach(epa.89b.aldicarb1.df)

t.test(Aldicarb[Well=="1"], alternative="greater", 

mu=7, conf.level=0.99) 

detach()

This will produce the results for Well 1.  To produce the results for Wells 2 
and 3, replace Well=="1" with Well=="2" or Well=="3".

Testing the Mean of a Lognormal Distribution 

In Chapter 5 in the section Confidence Interval for the Mean of a Log-
normal Distribution we explained that you cannot produce a confidence in-
terval for the mean of a lognormal distribution by computing a confidence 
interval for the mean based on the log-transformed observations and then 
exponentiating the confidence limits (in fact, this produces a confidence in-
terval for the median of the lognormal distribution).  Similarly, suppose we 
want to test a hypothesis about the mean of a lognormal distribution, for ex-
ample the null hypothesis and upper one-sided alternative given in Equations 
(7.5) and (7.6), where  denotes the mean of the lognormal distribution.  You 
might be tempted to perform a t-test by computing the sample mean of the 
log-transformed observations and comparing this sample mean with 
log( 0).  The results of this t-test, however, apply to the hypothesis that 
the median of the lognormal distribution is less than or equal to 0, not the 
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mean.  To perform a hypothesis test concerning the mean of a lognormal dis-
tribution, you must create a confidence interval for the mean (using one of 
the methods described in Chapter 5) and reject or not reject the null hypothe-
sis based on the relationship between confidence intervals and tests of hy-
potheses (Table 7.4). 

Fisher’s Randomization (Permutation) Test 

In 1935, R.A. Fisher introduced the idea of a randomization test (Manly, 
1997, p. 91; Efron and Tibshirani, 1993, Chapter 15), which is based on try-
ing to answer the question:  “Did the observed pattern happen by chance, or 
does the pattern indicate the null hypothesis is not true?”  A randomization 
test works by simply enumerating all of the possible outcomes under the null 
hypothesis, then seeing where the observed outcome fits in.  A randomiza-
tion test is also called a permutation test, because it involves permuting the 
observations during the enumeration procedure (Manly, 1997, p. 3). 

In the past, randomization tests have not been used as extensively as they 
are now because of the “large” computing resources needed to enumerate all 
of the possible outcomes, especially for large sample sizes.  The advent of 
more powerful desktop PCs and software has allowed randomization tests to 
become much easier to perform.  Depending on the sample size, however, it 
may still be too time consuming to enumerate all possible outcomes.  In this 
case, the randomization test can still be performed by sampling from the 
randomization distribution, and comparing the observed outcome to this 
sampled permutation distribution. 

For a one-sample location test, Fisher proposed using the test statistic 

1

n

i
i

T y (7.33)

where

0i iy x (7.34)

and 0 denotes the hypothesized value of the population mean (Manly, 1997, 
p. 96).  The test assumes all of the observations come from the same distri-
bution that is symmetric about the true population mean (hence the mean is 
the same as the median for this distribution).  Under the null hypothesis that 
the true mean is 0, the yi’s are equally likely to be positive or negative.  
Therefore, the permutation distribution of the test statistic T consists of enu-
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merating all possible ways of permuting the signs of the yi’s and computing 
the resulting sums.  For n observations, there are 2n possible permutations of 
the signs, because each observation can either be positive or negative. 

For a one-sided upper alternative hypothesis (Equation (7.6)), the p-value 
is computed as the proportion of sums in the permutation distribution that are 
greater than or equal to the observed sum T.  For a one-sided lower alterna-
tive hypothesis (Equation (7.4)), the p-value is computed as the proportion of 
sums in the permutation distribution that are less than or equal to the ob-
served sum T.  For a two-sided alternative hypothesis (Equation (7.2)), the p-
value is computed by using the permutation distribution of the absolute value 
of T (i.e., |T|) and computing the proportion of values in this permutation 
distribution that are greater than or equal to the observed value of |T|.

Confidence Intervals Based on Permutation Tests 

Based on the relationship between hypothesis tests and confidence inter-
vals (see Table 7.4), it is possible to construct a two-sided or one-sided 
(1 )100% confidence interval for the mean  based on the one-sample 
permutation test by finding the value(s) of 0 that correspond to obtaining a 
p-value of  (Manly, 1997, pp. 17 19, 97).  A confidence interval based on 
the bootstrap however (see Chapter 5), will yield a similar type of confi-
dence interval (Efron and Tibshirani, 1993, p. 214). 

Example 7.5:  Testing Whether the Mean Aldicarb Concentration is above 
the MCL Using Fisher’s Randomization Test 

In this example we will repeat the analysis in Example 7.4 but we will 
use Fisher’s randomization test instead of Student’s t-test.  In this case, we 
have 0 = 7 ppb.  Table 7.12 lists the 16 possible permutations of the signs 
of the yi’s for Well 1, along with the corresponding sums.  The observed 
sum of the yi’s for Well 1 is T = 64.4, and the p-value for the one-sided up-
per alternative that the true mean is greater than 7 ppb is p = 1/16 = 0.0625.  
Figure 7.10 displays the permutation distribution of the sums of the yi’s for 
Well 1.  For Wells 2 and 3, the observed sums are T = 70.6 and T = 9.9, and 
the corresponding p-values are p = 0.0625 and p = 1. 

Menu

To perform Fisher’s one-sample randomization test for the aldicarb data 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

1. In the Object Explorer find and highlight the data frame 
epa.89b.aldicarb1.df.
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Permutation of Signs for
(Observations – 7) 

Sum

-12.9  -22.6  -11.7  -17.2 -64.4 
 12.9  -22.6  -11.7  -17.2 -38.6 
-12.9   22.6  -11.7  -17.2 -19.2 
 12.9   22.6  -11.7  -17.2   6.6 
-12.9  -22.6   11.7  -17.2 -41 
 12.9  -22.6   11.7  -17.2 -15.2 
-12.9   22.6   11.7  -17.2   4.2 
 12.9   22.6   11.7  -17.2  30 
-12.9  -22.6  -11.7   17.2 -30 
 12.9  -22.6  -11.7   17.2 -4.2 
-12.9   22.6  -11.7   17.2  15.2 
 12.9   22.6  -11.7   17.2  41 
-12.9  -22.6   11.7   17.2  -6.6 
 12.9  -22.6   11.7   17.2  19.2 
-12.9   22.6   11.7   17.2  38.6 
 12.9   22.6   11.7   17.2  64.4 

Table 7.12 All possible permutations of the signs of the yi’s for Well 1 aldicarb data 
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2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>One 
Sample>Permutation Test.  This will bring up the One-Sample 
Permutation Test dialog box. 

3. For Data to Use make sure the Pre-Defined Data button is selected, 
in the Data Set box make sure epa.89b.aldicarb1.df is selected, in 
the Variable box select Aldicarb, and in the Subset Rows with box 
type Well=="1".

4. In the Mean Under Null Hypothesis box, type 7 and in the Alterna-
tive Hypothesis box select greater.  For Test Method select the Ex-
act button, then click OK or Apply.

This will produce the results for Well 1.  To test the null hypothesis for Wells 
2 and 3, repeat the above steps, but in Step 3 in the Subset Rows with box 
type Well=="2" or Well=="3".

Command 

To perform Fisher’s one-sample randomization test for the aldicarb data 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(epa.89b.aldicarb1.df)

Well.1.list <- 

one.sample.permutation.test(Aldicarb[Well== "1"], 

alt="greater", mu=7, exact=T) 

plot(Well.1.list)

detach()

This will produce the results for Well 1.  To produce the results for Wells 2 
and 3, replace Well=="1" with Well=="2" or Well=="3".

Wilcoxon Signed Rank Test 

The Wilcoxon signed rank test is exactly the same test as Fisher’s one-
sample permutation test, except instead of permuting the signs of the yi’s de-
fined in Equation (7.34), the Wilcoxon signed rank test permutes the signed 
ranks of the absolute values of the yi’s (Conover, 1980, p. 280; Fisher and 
van Belle, 1993, p. 310; Hollander and Wolfe, 1999, p. 36; Lehmann, 1975, 
p. 123; Sheskin, 1997, p. 83; Zar, 1999, p. 165).  That is, the test statistic T is 
given by: 

1 1

n n

i i i
i i

T R sign y Rank y (7.35)
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where

1, 0

0, 0

1, 0

x

sign x x

x

(7.36)

As for the general one-sample permutation test, the Wilcoxon signed 
rank test assumes all of the observations come from the same distribution 
that is symmetric about the true population mean (hence the mean is the 
same as the median for this distribution).  Under the null hypothesis that the 
true mean is 0, the yi’s are equally likely to be positive or negative, hence 
the sum of the signed ranks (T) bounces around 0.  The permutation distribu-
tion of the test statistic T consists of enumerating all possible ways of per-
muting the signed ranks and computing the resulting sums. 

If we let R+ denote the sum of the positive signed ranks and R- denote the 
sum of the negative signed ranks, then it can be shown that 

1

2

n n
R R (7.37)

Most textbooks and software packages describe the Wilcoxon signed rank 
test in terms of one of these two statistics, rather than the statistic T defined 
in Equation (7.35).  S-PLUS bases the test on R+.

Because the test statistic R+ is based on the ranks of the observations, the 
permutation distribution of R+ does not have to be computed for each new set 
of observations.  Instead, the permutation distribution can be easily tabulated 
for distinct sample sizes.  In S-PLUS, the permutation distribution is tabulated 
for sample sizes up to n = 25.  If ties are present, then the permutation distri-
bution depends on the number of tied groups (e) and the number of ties 
within each group.  In this case, S-PLUS uses a normal approximation to the 
permutation distribution of R+ (see below). 

Wilcoxon suggested that observations that yield yi’s equal to 0 should be 
discarded before computing the test statistic and permutation distribution, 
but Pratt suggested leaving these observations in.  A study by Conover 
showed that each method is more powerful then the other in different situa-
tions (Conover, 1980, p. 288).  S-PLUS does not discard observations that 
yield yi’s equal to 0.  If these are present, a normal approximation to the 
permutation distribution is used (see below). 
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For “large” values of n (e.g., n > 25), a normal approximation to the dis-
tribution of R+ (or R-) can be used to determine the p-value.  The following 
quantity is approximately distributed as a standard normal random variable 
under the null hypothesis: 

R

R

R
z 

 
(7.38)

where

0 01 1

4R
n n  n  n

 (7.39)

0 0  02

3

1

1 2  1  1 2  1

24

1

48

R

e

j j
j

n n  n  n  n  n

t t

(7.40)

where n0 denotes the number of differences equal to 0 (i.e., yi = 0), e de-
notes the number of groups of ties, and tj denotes the number of ties in the 
jth group of ties (Lehmann, 1975, p. 130; Zar, 1999, p. 167).  A continuity 
correction may be used (Sheskin, 1997, p. 90; Zar, 1999, p. 168). 

Confidence Interval for the Mean (Median) Based on the Signed Rank 
Test

Based on the relationship between hypothesis tests and confidence inter-
vals (see Table 7.4), we can construct a confidence interval for the popula-
tion mean (median) based on the signed rank test.  Conover (1980,  
pp. 288 290), Holland and Wolfe (1973, pp. 33 38), and Lehmann (1973, 
pp. 175 185) describe the Hodges-Lehmann estimate of the population me-
dian and this method of constructing confidence intervals for the median. 
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Example 7.6:  Testing Whether the Mean Aldicarb Concentration is above 
the MCL Using the Wilcoxon Signed Rank Test 

In this example we will repeat the analysis in Example 7.4 and Example 
7.5, but we will use the Wilcoxon signed rank test.  We want to determine 
whether the mean aldicarb concentration is greater than the MCL of 7 ppb.  
Table 7.13 displays the statistics and p-values (in parentheses) based on Stu-
dent’s t-test, Fisher’s permutation test, and the Wilcoxon signed rank test.  In 
this case, the Wilcoxon signed rank test yields essentially the same results as 
the permutation test. 

Test Well 1 Well 2 Well 3 
Student’s t  6.5 (0.004) 15.4 (0.0003) -2.4 (0.95)
Permutation 64.4 (0.0625) 70.6 (0.0625) -9.9 (1) 
Signed Rank 10   (0.0625) 10   (0.0625)  4   (1) 

Table 7.13 Statistics and p-values for testing whether the true average aldicarb 

concentration is above the MCL of 7 ppb 

Menu

To perform the Wilcoxon signed rank test for the aldicarb data using the 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find the data frame 
new.epa.89b.aldicarb1.df you created earlier and highlight it. 

2. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>One Sample>Wilcoxon Signed 
Rank Test.  This will bring up the One-sample Wilcoxon Test dia-
log box. 

3. In the Data Set box, make sure new.epa.89b.aldicarb1.df is se-
lected, and in the Variable box select Well.1.Aldicarb.

4. In the Mean Under Null Hypothesis box, type 7 and in the Alterna-
tive Hypothesis box select greater, then click OK or Apply.

To test the null hypothesis for Wells 2 and 3, repeat the above steps, but in 
Step 3 select Well.2.Aldicarb or Well.3.Aldicarb in the Variable box. 

Command 

To perform the Wilcoxon signed rank test for the aldicarb data using the 
S-PLUS Command or Script Window, type these commands. 

attach(epa.89b.aldicarb1.df)

wilcox.test(Aldicarb[Well== "1"],

alternative="greater", mu=7) 

detach()
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This will produce the results for Well 1.  To produce the results for Wells 2 
and 3, replace Well=="1" with Well=="2" or Well=="3".

Chen’s Modified t-Test 

Student’s t-test, Fisher’s one-sample permutation test, and the Wilcoxon 
signed rank test all assume that the underlying distribution is symmetric 
about its mean.  Chen (1995b) developed a modified t-statistic for perform-
ing a one-sided test of hypothesis on the mean of a skewed distribution.  Her 
test can be applied to the upper one-sided hypothesis (Equations (7.5) and 
(7.6) with  replaced by ) in the case of a positively skewed distribution, or 
to the lower one-sided hypothesis (Equations (7.3) and (7.4) with  replaced 
by ) in the case of a negatively skewed distribution.  Since environmental 
data are usually positively skewed, her test would usually be applied to the 
case of testing the one-sided upper hypothesis. 

The test based on Student’s t-statistic of Equation (7.29) is fairly robust 
to departures from normality in terms of maintaining Type I error and power, 
provided that the sample size is sufficiently large.  In the case when the un-
derlying distribution is positively skewed and the sample size is small, the 
sampling distribution of the t-statistic under the null hypothesis does not fol-
low a Student’s t-distribution, but is instead negatively skewed.  For the test 
against the one-sided upper alternative in Equation (7.6), this leads to a Type 
I error smaller than the one assumed and a loss of power (Chen, 1995b,  
p. 767).  Similarly, in the case when the underlying distribution is negatively 
skewed and the sample size is small, the sampling distribution of the t-
statistic is positively skewed.  For the test against the lower alternative in 
Equation (7.4), this also leads to a Type I error smaller than the one assumed 
and a loss of power. 

In order to overcome these problems, Chen (1995b) proposed the follow-
ing modified t-statistic that takes into account the skew of the underlying dis-
tribution: 

2 2 3
2 1 2 4 2t t a t a t t (7.41)

where

3
1 3
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Note that the numerator in Equation (7.42) is an estimate of the skew of the 
underlying distribution and is based on unbiased estimators of central mo-
ments (see Chapter 5).  For a positively skewed distribution, Chen’s modi-
fied t-test rejects the null hypothesis in favor of the upper one-sided alterna-
tive if the modified t-statistic in Equation (7.41) is too large.  For a nega-
tively skewed distribution, Chen’s modified t-test rejects the null hypothesis 
in favor of the lower one-sided alternative if the modified t-statistic is too 
small. 

Chen (1995b) performed a simulation study in which she compared her 
modified t-statistic to a critical value based on the normal distribution (z-
value), a critical value based on Student’s t-distribution (t-value), and the av-
erage of the critical z-value and t-value.  Based on the simulation study, 
Chen (1995b) suggests using either the z-value or average of the z-value and 
t-value when n (the sample size) is small (e.g., n  10) or  (the Type I er-
ror) is small (e.g.,  0.01), and using either the t-value or the average of 
the z-value and t-value when n  20 or  0.05.  ENVIRONMENTALSTATS for 
S-PLUS returns three different p-values:  one based on the normal distribu-
tion, one based on Student’s t-distribution, and one based on the average of 
these two p-values.  This last p-value should roughly correspond to a p-value 
based on the distribution of the average of a normal and Student’s t random 
variable. 

Confidence Interval for the Mean Based on Chen’s t-Test 

Because of the relationship between hypothesis tests and confidence in-
tervals (see Table 7.4), you can compute a one-sided confidence interval for 
the true mean  based on Chen’s modified t-test.  Unfortunately, the test of 
the upper one-sided hypothesis (Equations (7.5) and (7.6) with  replaced by 

) for a positively skewed distribution yields a lower one-sided confidence 
interval, but we are often interested in obtaining a one-sided upper 
confidence interval. 
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Example 7.7:  Testing Whether the Mean Chromium Concentration is be-
low an SSL 

In Example 5.19 in Chapter 5 we introduced a set of 15 observations of 
chromium concentrations (mg/kg) (see Table 5.5).  Here, we will use Chen’s 
modified t-test to test the null hypothesis that the average chromium concen-
tration is less than or equal to 100 mg/kg vs. the alternative that it is greater 
than 100 mg/kg.  The estimated mean, standard deviation, and skew are 175 
mg/kg, 319 mg/kg, and 3.6, respectively.  The modified t-statistic is equal to 
1.56, the p-value based on the normal distribution is 0.06, and the lower 95% 
confidence interval is [96.9, ).

Menu

To perform Chen’s modified t-test for the chromium data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight the vector 
epa.92d.chromium.vec.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>One 
Sample>t-Test for Skewed Data.  This will bring up the One-
Sample t-Test for Skewed Data dialog box. 

3. For Data to Use select the Pre-Defined data button, and in the Data 
Set box and Variable box make sure epa.92d.chromium.vec is se-
lected.

4. In the Mean Under Null Hypothesis box, type 100, in the Alternative 
Hypothesis box select greater, in the Confidence Level (%) box 
type 95, and in the CI Method box select z, then click OK or Apply.

Command 

To perform Chen’s modified t-test for the chromium data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

chen.t.test(epa.92d.chromium.vec, mu=100) 

Sign Test 

The sign test (Conover, 1980, p. 122; Fisher and van Belle, 1993, p. 308; 
Hollander and Wolfe, 1999, p. 60; Lehmann, 1975, p. 120; Sheskin, 1997,  
p. 125; Zar, 1999, p. 110) tests the null hypothesis that the median of the  
distribution, here denoted , is equal to some specified value 0.  This test 
only requires that the observations are independent and that they all come 
from one or more distributions (not necessarily the same ones) that all have 
the same population median.  The test statistic T is simply the number of ob- 
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servations that are greater than 0.  Under the null hypothesis, the distribu-
tion of T is a binomial random variable with parameters n = n and p = 0.5.  
Usually, however, cases for which the observations are equal to 0 are dis-
carded, so the distribution of T is taken to be binomial with parameters n = r
and p = 0.5, where r denotes the number of observations not equal to 0.

For a two-sided alternative hypothesis (Equation (7.2)), the p-value is 
computed as: 

,0.5 ,0.5Pr Prr rp X  r m X  m (7.45)

where Xr,p denotes a random variable that follows a B(r, p) distribution and 
m is defined by: 

max ,m T r T  (7.46)

For a one-sided lower alternative hypothesis (Equation (7.4)), the p-value is 
computed as: 

,0.5Pr mp X T  (7.47)

and for a one-sided upper alternative hypothesis (Equation (7.6)), the p-value 
is computed as: 

,0.5Pr mp X T  (7.48)

It is obvious that the sign test is simply a special case of the binomial test 
with p0 = 0.5 (see the earlier section Test of a Single Proportion). 

Confidence Interval for the Median Based on the Sign Test 

Based on the relationship between hypothesis tests and confidence inter-
vals (see Table 7.4), we can construct a confidence interval for the popula-
tion median based on the sign test (e.g., Hollander and Wolfe, 1999, p. 72; 
Lehmann, 1975, p. 182).  It turns out that this is equivalent to using the for-
mulas for a nonparametric confidence intervals for the 0.5 quantile given in 
Chapter 5 (Equations (5.154), (5.157), and (5.159)). 
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Example 7.8: :  Testing Whether the Median Chromium Concentration is 
below an SSL 

Again consider the chromium data of Example 5.19 in Chapter 5 and 
Example 7.7 above.  Here, we will use the sign test to test the null hypothesis 
that the median chromium concentration is less than or equal to 100 mg/kg 
vs. the alternative that it is greater than 100 mg/kg.  The estimated median is 
110 mg/kg.  There are 8 out of 15 observations greater than 100 mg/kg, the 
p-value is equal to 0.5, and the lower 94% confidence limit is 41 mg/kg.  The 
confidence limit for the median is based on the nonparametric method of 
constructing confidence intervals for quantiles discussed in Chapter 5. 

Menu

To perform the sign test for the chromium data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight the vector 
epa.92d.chromium.vec.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>One 
Sample>Sign Test.  This will bring up the Sign Test dialog box. 

3. For Data to Use select the Pre-Defined data button, and in the Data 
Set box and Variable box make sure epa.92d.chromium.vec is se-
lected.

4. In the Median Under Null Hypothesis box, type 100, in the Alterna-
tive Hypothesis box select greater, and in the Confidence Level (%) 
box type 95, then click OK or Apply.

Command 

To perform the sign test for the chromium data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

sign.test(epa.92d.chromium.vec, mu=100,

alternative="greater")

Tests Based on Bootstrapped Confidence Intervals 

Because of the relationship between hypothesis tests and confidence in-
tervals (see Table 7.4), you can construct a bootstrap confidence interval for 
the mean or median or any other population quantity to test a null hypothesis 
concerning that quantity (Efron and Tibshirani, 1993, p. 214).  Unlike Stu-
dent’s t-test, Fisher’s randomization test, and the Wilcoxon signed rank test, 
tests based on bootstrapped confidence intervals do not require the assump-
tion that the underlying population is symmetric.  Also, unlike Chen’s modi-
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fied t-test for skewed distributions, you can obviously produce any kind of 
confidence interval (two-sided, lower, or upper). 

Example 7.9:  Testing Whether the Mean Chromium Concentration is  
below an SSL Using a Bootstrap Confidence Interval 

Again consider the chromium data of Example 5.19 in Chapter 5 and 
Example 7.7 above.  Here, we will use a bootstrap confidence interval for the 
mean to test the null hypothesis that the mean chromium concentration is 
less than or equal to 100 mg/kg vs. the alternative that it is greater than 100 
mg/kg.  The estimated mean is 175 mg/kg.  Figure 5.12 displays the boot-
strap distribution of the sample mean for the chromium data.  Table 7.14 dis-
plays the 90%, 95%, and 99% lower and upper confidence bounds for the 
population mean based on the BCa bootstrap distribution.  The one-sided 
upper test of hypothesis is based on the one-sided lower confidence limit.  
Since the 90% lower confidence limit is 98.8 and is less than 100 mg/kg, the 
p-value for the test of hypothesis is greater than 0.1. 

Limit Type 90% 95% 99% 
Lower  98.8  90.8  77.8 
Upper 348 418 508 

Table 7.14 One-sided lower and upper BCa bootstrap confidence limits for mean 

chromium concentration 

Menu

To produce the confidence limits shown in Table 7.14 using the S-PLUS

pull-down menu, follow these steps. 

1. In the Object Explorer, highlight epa.92d.chromium.vec.
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Resample>Bootstrap.  This will bring up the Bootstrap 
Inference dialog box. 

3. In the Data Set box, make sure epa.92d.chromium.vec is selected.  
In the Expression box, type mean(epa.92d.chromium.vec).

4. Click on the Options tab.  In the Number of Resamples box, type 
2000.  In the Random Number Seed box, type 47.  (Note:  This is 
done just so that your results match the ones in this example.  Leav-
ing this box blank or explicitly supplying a different seed may yield 
very slightly different confidence limits.) 

5. Click on the Results tab.  In the Percentiles Levels box, type c(0.01,
0.05, 0.1, 0.9, 0.95, 0.99).  Click OK or Apply.
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Command

To produce the confidence limits shown in Table 7.14 using the S-PLUS

Command or Script Window, type these commands. 

chromium.boot.list <-

bootstrap(data=epa.92d.chromium.vec,

statistic=mean(epa.92d.chromium.vec), B=2000, 

seed=47)

summary(chromium.boot.list,

probs=c(1, 5, 10, 90, 95, 99)/100)) 

To produce the plot of the bootstrap distribution for the mean of chromium 
shown in Figure 5.12, type this command. 

plot(chromium.boot.list)

Comparing the Performance of Tests of Location 

Kempthorne and Doerfler (1969) compared the performance of Student’s 
t-test, the one-sample permutation test, the Wilcoxon signed rank test, and 
the sign test.  The study involved simulating observations from eight differ-
ent distributions, and the sample sizes considered ranged from n = 3 to n =
8.  They concluded that the one-sample permutation test performed the best 
overall, that the Wilcoxon signed rank test should only be used for computa-
tional convenience (a moot matter in the age of statistical software), and that 
the sign test should never be used.  It is important to note, however, that all 
but one of the distributions used in the study was symmetric.  When the un-
derlying distribution is highly positively skewed and the sample size is 
small, the true Type I error rates of the t-test, one-sample permutation test, 
and Wilcoxon signed rank test are highly inflated relative to the assumed 
Type I error rates (which was the motivation for Chen to develop her modi-
fied t-test), whereas the Type I error rates for Chen’s modified t-test and the 
sign test are maintained at their assumed level. 

For large sample sizes, Conover (1980, p. 291) and Hollander and Wolfe 
(1999, pp. 104 105) present the asymptotic relative efficiencies e (i.e., the 
relative powers for a fixed sample size) of the t-test, Wilcoxon signed rank 
test, and sign test compared to each other, assuming a normal, uniform, or 
double exponential distribution.  The Wilcoxon signed rank test is almost as 
powerful as the t-test under the normal distribution (e = 3/ = 0.955), as 
powerful as the t-test for the uniform distribution (e = 1), and more powerful 
than the t-test for the double exponential distributions (e = 1.5).  The sign 
test is less powerful than the t-test for the normal and uniform distributions 
(e = 2/ = 0.637 and e = 1/3 = 0.333), but more powerful for the double ex-
ponential distribution (e = 2).  Unfortunately, these results have little use in 
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environmental statistics, since the underlying distribution is usually posi-
tively skewed. 

The sign test concerns the median, while Chen’s modified t-test concerns 
the mean.  The test based on bootstrap confidence limits can be used to test 
the mean, median, or any other location parameter. 

TESTS ON PERCENTILES 

The section Estimates and Confidence Intervals for Distribution Quan-
tiles (Percentiles) in Chapter 5 discusses how to create confidence intervals 
for quantiles for a normal, lognormal, or Poisson distribution, as well as a 
nonparametric method to create confidence intervals under any kind of con-
tinuous distribution.  Based on the relationship between hypothesis tests and 
confidence intervals (see Table 7.4), you can perform a test of hypothesis 
concerning a particular percentile based on any of these methods for con-
structing confidence intervals. 

Example 7.10  Testing a Hypothesis about the 95th Percentile of 
Aldicarb Concentrations 

In Example 5.24 in Chapter 5, we discussed data on aldicarb concentra-
tions from three groundwater monitoring compliance wells.  In that example, 
the permit established an ACL of 50 ppm that could not be exceeded more 
than 5% of the time.  Therefore, our null hypothesis is: 

0 0.95: 50H x   (7.49)

and our alternative hypothesis is: 

0.95: 50aH x  (7.50)

where xp denotes the pth percentile of the distribution.  In this example, we 
will assume that the distribution of concentrations at each of the three com-
pliance wells is normal.  The last row of Table 5.15 displays the one-sided 
lower 99% confidence limits for the 95th percentile.  Since all of these confi-
dence limits are less than 50 ppm, we know that the p-values associated with 
each of the hypothesis tests are all bigger than 0.01.  For any particular well, 
if we want to know whether the p-value is larger than some specified value 

*, we need to construct a lower (1 *)100% confidence limit for the 95th

percentile.  If this lower confidence limit is less than 50 ppm, then we know 
the p-value is larger than *.
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TESTS ON VARIABILITY 

Just as you can perform tests of hypothesis on measures of location 
(mean, median, percentile, etc.), you can do the same thing for measures of 
spread or variability.  Usually, we are interested in estimating variability only 
because we want to quantify the uncertainty of our estimated location or per-
centile.  Sometimes, however, we are interested in estimating variability and 
quantifying the uncertainty in our estimate of variability (for example, for 
performing a sensitivity analysis for power or sample size calculations), or 
testing whether the population variability is equal to a certain value.  There 
are at least two possible methods of performing a hypothesis test on variabil-
ity:

Perform a hypothesis test for the population variance based on 
the chi-squared statistic, assuming the underlying population is 
normal. 
Perform a hypothesis test for any kind of measure of spread as-
suming any kind of underlying distribution based on a bootstrap 
confidence interval. 

The procedure for the second method was already explained in the context of 
testing a hypothesis on the location of a distribution in the section Tests 
Based on Bootstrapped Confidence Intervals.  In the rest of this section we 
will explain the first method. 

Test on Variance Based on the Chi-Square Statistic 

The two-sided and one-sided hypotheses on the population variance that 
you can test are given in Equations (7.1) to (7.6), with  replaced by 2.  In 
Chapter 5 we discussed creating a confidence interval for the population 
variance of a normal distribution, and we noted in Equation 5.81 that the 
quantity 

2
2

2

1n s
(7.51)

(where s2 denotes the sample variance) follows a chi-square distribution 
with n 1 degrees of freedom, assuming the underlying observations come 
from a normal distribution.  Thus, under the null hypothesis 

2 2
0 0:H (7.52)
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the quantity 

2
2

2
0

1n s
(7.53)

follows a chi-square distribution with n 1 degrees of freedom. 
For a one-sided upper alternative (Equation (7.6)), you reject the null hy-

pothesis if 2 is “too large,” and the p-value is computed as: 

2 2
1PrU np (7.54)

where 2  denotes a random variable that follows the chi-square distribution 

with  degrees of freedom (Fisher and van Belle, 1993, pp. 115 119; 
Sheskin, 1997, Chapter 3; Zar, 1999, p. 112).  For a one-sided lower alterna-
tive (Equation (7.4)), you reject the null hypothesis if 2 is “too small,” and 
the p-value is computed as: 

2 2
1PrL np (7.55)

For a two-sided alternative hypothesis (Equation (7.2)), you reject the null 
hypothesis if 2 is “too small” or “too large,” and the p-value is computed as: 

2 min ,L Up p p (7.56)

As we stated earlier, Student’s t-test is fairly robust to departures from 
normality (i.e., the Type I error rate is maintained), as long as the sample size 
is reasonably “large.”  The chi-square test on the population variance, how-
ever, is extremely sensitive to departures from normality.  For example, if the 
underlying population is skewed, the actual Type I error rate will be larger 
than assumed. 

Example 7.11:  Testing the Variance of Log-Transformed TcCB  
Concentrations 

We saw in Example 5.16 that the estimated mean and standard deviation 
for the log-transformed Reference area TcCB data are about –0.62 and 0.47 
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log(ppb).  The estimated variance is 0.22.  Suppose we want to test the null 
hypothesis that the variance of the population of all log-transformed observa-
tions is no greater than 0.2 log(ppb).  In this case, the chi-square statistic is 
50.4 with 47 1 = 46 degrees of freedom, and the p-value is 0.30, so we 
would not reject the null hypothesis. 

Menu

To perform the chi-square test using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer highlight new.epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   
3. EnvironmentalStats>Hypothesis Tests>Compare Samples>One 

Sample>Chi-Square Test on Variance.  This will bring up the 
One-Sample Chi-Square Test on Variance dialog box. 

4. For Data to Use, make sure the Pre-Defined Data button is selected. 
5. In the Data Set box, make sure new.epa.94b.tccb.df is selected. 
6. In the Variable box, select log.TcCB.
7. In the Subset Rows with box, type Area=="Reference".
8. In the Hypotheses section, in the Variance Under Null Hypothesis 

box type 0.2, and in the Alternative Hypothesis box select greater.
9. Click OK or Apply.

Command 

To perform the chi-square test using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)

var.test(log(TcCB[Area=="Reference"]),

alternative="greater", sigma.squared=0.2) 

detach()

COMPARING LOCATIONS BETWEEN TWO GROUPS:  
THE SPECIAL CASE OF PAIRED DIFFERENCES 

As we discussed in Chapter 1, one of the tenets of the scientific method 
is that ideally subjects in the “control group” are identical to subjects in the 
“treatment group” except for the fact that the subjects in the “treatment 
group” are exposed to some supposed causal mechanism.  A frequently used 
device to try to approach this ideal is the concept of blocking, in which ob-
servations are taken in pairs.  For example, if we want to determine whether 
a new anti-wrinkle cream is more effective than Brand X, we could perform 
an experiment in which each subject applies the new cream to either his or 
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her right hand and applies Brand X to the other hand.  When we use pairing, 
we can determine whether an effect exists by looking at the differences in the 
paired observations (e.g., right-hand vs. left-hand) and performing a one-
sample test of location on these paired differences. 

Example 7.12:  Testing for a Difference in Ozone Concentrations 
between Two Cities 

Consider the ozone concentrations measured in Stamford, Connecticut, 
and Yonkers, New York that we introduced in Example 7.3.  Figure 7.11 dis-
plays a histogram of the daily differences in ozone concentrations at these 
two sites on the days for which measurements were available at both sites. 
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Figure 7.11 Relative frequency histogram of daily differences in ozone concentra-

tions between Stamford and Yonkers 

It is fairly obvious from this figure that if we test the null hypothesis that 
the average difference in concentrations between the two sites is 0 ppb vs. 
the alternative that it is greater than 0, we will get a significant result.  The 
observed distribution of the paired differences looks slightly positively 
skewed, but this may have just been a chance occurrence based on the par-
ticular time period we are looking at.  Table 7.15 displays the results of vari-
ous tests.  All of the tests yield a p-value that is essentially 0.  What is more 
informative, as usual, is a confidence interval for the mean difference (note, 
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however, that the sign test and the associated confidence interval concern the 
median, not the mean). 

Test
Statistic
(one-sided p-value) 

95% Lower CI for 
Mean of Differences 

Student’s Paired t      13.0 (0) [31, ]
Permutation   4,616   (0)  
Signed Ranks       9.6 (0)  
Chen’s Modified 
Paired t 

     22.2 (0) [31, ]

Paired Sign     122   (0) [23, ]
Bootstrap CI [31, ]

Table 7.15 Results of testing whether the mean difference in ozone concentration 

between Stamford and Yonkers is different from 0 

We should note here that we are taking the differences between two time 
series, so we should not automatically assume that the differences represent 
independent observations (although taking differences usually does decrease 
the magnitude of serial correlation compared to the magnitude of serial cor-
relation in the original time series).  We will talk more about these data in 
Chapter 11 when we discuss dealing with time series data in detail. 

Menu

To perform the above paired sample tests using the pull-down menu, find 
the list ozone in the Object Explorer and highlight it.  Follow the menu se-
lections listed below.  The Data Set should be ozone, the first variable should 
be stamford, the second variable should be yonkers, and the Alternative 
Hypothesis should be greater.

Student’s Paired t-Test.  Make the following menu choices:  
Statistics>Compare Samples>Two Samples>t Test.  Under 
Type of t Test, select the Paired t button. 
Permutation Test.  Make the following menu choices:  Envi-
ronmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>Permutation Tests>Locations.  Under Type of Test, 
select the Paired button. 
Wilcoxon Signed Rank Test.  Make the following menu choices:  
Statistics>Compare Samples>Two Samples>Wilcoxon Rank 
Test.  Under Type of Rank Test, select the Signed Rank button. 
Chen’s Modified Paired t-Test.  Make the following menu 
choices: EnvironmentalStats>Hypothesis Tests>Compare 
Samples>Two Samples>Paired t-Test for Skewed Data.
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Paired Sign Test.  Make the following menu choices:  Envi-
ronmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>Paired Sign Test.
Test on Bootstrapped Confidence Interval.  Make the following 
menu choices:  Statistics>Resample>Bootstrap.  In the Ex-
pression box, type mean(stamford-yonkers).

Command

To perform the above paired sample tests using the Command or Script 
Window, type these commands. 

attach(ozone)

t.test(stamford, yonkers, alternative="greater", 

paired=T)

perm.test.list <- 

two.sample.permutation.test.location(stamford,

yonkers, alternative="greater", paired=T) 

plot(perm.test.list)

wilcox.test(stamford, yonkers, alternative="greater", 

paired=T)

chen.t.test(stamford, yonkers, alternative="greater", 

paired=T)

sign.test(stamford, yonkers, alternative="greater", 

paired=T)

boot.list <- bootstrap(data=ozone,

statistic=mean(stamford-yonkers), B=2000, seed=47) 

summary(boot.list)

plot(boot.list, xlab="Stamford – Yonkers (ppb)", 

main=paste("Bootstrap Distribution of the ",

"Average Paired Differences\n",

"for the ozone Data", sep="")) 

detach()

COMPARING LOCATIONS BETWEEN TWO GROUPS 

In the section Tests of Location, we discussed comparing chemical con-
centrations to a fixed standard.  Another frequent question in environmental 
statistics is “Is the concentration of chemical X in Area A greater than the 
concentration of chemical X in Area B?,” where Area B is usually a “back-
ground” or “reference” area, and Area A is a potentially contaminated well 
or site.  For example, in groundwater detection monitoring at hazardous and 
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solid waste sites, the concentration of a chemical in the groundwater at a 
downgradient well must be compared to “background.”  If the concentration 
is “above” the background then the site enters assessment monitoring.  As 
another example, soil cleanup at a Superfund site may involve comparing the 
concentration of a chemical in the soil at a “cleaned up” site with the concen-
tration at a “background” site.  If the concentration at the “cleaned up” site is 
“greater” than the background concentration, then further investigation and 
remedial action may be required.  Determining what it means for the chemi-
cal concentration to be “greater” than background is a policy decision:  you 
may want to compare averages, medians, 95th percentiles, etc. 

Table 7.16 displays six kinds of tests to compare “location” between two 
groups, along with the parameter the test is concerned with, the statistic the 
test is based on, and the assumptions of the test.  We will discuss each of 
these tests below.  For all of these tests, we will assume there are n1 observa-
tions from group 1 and n2 observations from group 2.  We will denote the 
observations from group 1 by  

111 12 1, , , nx x x (7.57)

and the observations from group 2 by  

221 22 2, , , nx x x (7.58)

For a two-sample test for a difference in locations, a two-sided test tests 

vs.0 0 0: :aH H (7.59)

where  denotes the true difference in the measures of location for the two 
groups: 

1 2 (7.60)

The quantity 0 denotes the hypothesized difference in the measures of loca-
tion (usually, 0 = 0), 1 denotes the measure of location for group 1, and 2

denotes the measure of location for group 2 (e.g., population mean, popula-
tion median, etc.).  Similarly, the one-sided lower test tests 
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vs.0 0 0: :aH H (7.61)

and the one-sided upper test tests 

vs.0 0 0: :aH H (7.62)

Test Name 
Test on
Difference  
between … 

Based on Assumptions

Student’s t-Test Means  
(Medians)

Estimated Means 
for Each Group 

IID observations from 
a normal distribution, 
with a possibly shifted 
mean for one group 

Fisher’s
Randomization
Test

Means 
or
Medians 

Permuting Group 
Assignments of the 
Observations

IID observations, with 
possibly shifted mean 
or median for one 
group

Wilcoxon
Rank Sum Test 

Medians 
(Means) 

Permuting the 
Ranks of the
Observations

IID observations, with 
possibly shifted me-
dian for one group 

Linear Rank Test Medians 
(Means) 

Permuting a
Function of the 
Ranks of the
Observations

IID observations, with 
possibly shifted me-
dian for one group 

Quantile Test Quantiles Permuting the 
Ranks of the
Observations in 
the Tail 

IID observations, with 
possibly shifted upper 
(or lower) tail for one 
group

Bootstrap
Confidence
Intervals

Any Kind of 
Location

Bootstrap
Confidence
Intervals

IID observations 
within each group.
Distributions of the 
two groups do not 
have to be the same 

Table 7.16 Six kinds of tests to compare differences in locations between two 

groups

Student’s Two-Sample t-Test 

One of the most commonly used statistical tests to compare two groups is 
Student’s two-sample t-test to compare the mean of group 1 ( 1) with the 
mean of group 2 ( 2).  The two-sided and one-sided hypotheses you can test 
are given in Equations (7.59) to (7.62), with  replaced by  in Equation 
(7.60).  Intuitively, the test statistic should be based on the differences in the 
sample means.  If we assume the underlying distributions for the two groups 
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are normal, and that the two distributions have the same standard deviation 
, then under the null hypothesis the quantity 

1 2

1 2 0

x x

x x
z (7.63)

where

1

1 1
1 1

1 n

i
i

x x
n

(7.64)

2

2 2
2 1

1 n

i
i

x x
n

(7.65)

1 2

2 2
2 2

1 2 1 2

1 1
x x

n n n n
(7.66)

follows a standard normal distribution.  The quantity in Equation (7.66) is 
the variance of the difference in the sample means, and the denominator in 
Equation (7.63) is the standard deviation of the difference in the sample 
means (regardless of whether the underlying distributions are normal). 

The statistic z in Equation (7.63) is of little use in practice because we 
usually do not know the value of the population standard deviation .  Stu-
dent’s two-sample t-statistic simply replaces the true standard deviation 
with an estimate of the standard deviation: 

1 2

1 2 0

ˆx x

x x
t (7.67)

where
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1 2

2 2

1 2

1 1
ˆ ˆx x

n n
(7.68)

2 2
1 1 2 22 2

1 2

1 1
ˆ

1 1
p

n s n s
s

n n
(7.69)

1
2 2
1 1 1

1 1

1
( )

1

n

i
i

s x x
n

(7.70)

2
2 2
2 2 2

2 1

1
( )

1

n

i
i

s x x
n

(7.71)

The degrees of freedom associated with the t-statistic are: 

1 2 2n n (7.72)

Note that the pooled estimate of variance in Equation (7.69) is simply a 
weighted average of the two individual estimates of variance for each group, 
weighted by the degrees of freedom associated with each group.  The p-
values associated with Student’s two-sample t-test are computed as shown in 
Equations (7.30) to (7.32), with the n 1 degrees of freedom replaced by 
n1+n2 2 degrees of freedom. 

In order to use Student’s two-sample t-test, the following assumptions 
must hold: 

1. The observations are normally distributed. 
2. The means may differ between the two groups, but the variances are 

the same, therefore the two distributions have the exact same shape. 
3. The observations are independent of one another. 

These assumptions can be written mathematically as follows: 
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1 1 1 1

2 2 2 2

, 1,2, ,

, 1,2, ,

i i

j j

X i n

X j n

(7.73)

where the error terms 1i and 2i come from a normal distribution with mean 
0 and standard deviation .  You can verify assumption 1 by creating a nor-
mal Q-Q plot for each group (see Chapter 3), and performing a goodness-of-
fit test.  You can verify assumption 2 by creating a two-sample Q-Q plot:  
plot the quantiles for group 2 vs. the quantiles for group 1.  As we stated in 
Chapter 3, if the two groups have the same shape and dispersion, and differ 
only by a shift in location, then the two-sample Q-Q plot should fall on a line 
parallel to the 0-1 line.  On the other hand, if the two groups differ greatly in 
variances, then the Q-Q plot should fall on a line with a slope that is different 
from 1.  You could also perform a hypothesis test to test whether the two 
variances are the same before implementing the t-test (see the section 
Comparing Variability between Several Groups below), but this test is much 
more sensitive to nonnormality than the t-test is, so this two-step approach is 
not recommended (Zar, 1999, p. 129). 

Under the null hypothesis that the true difference in the means is equal to 
0, the t-statistic in Equation (7.67) bounces around 0 and follows a Stu-

dent’s t-distribution with n1+n2 2 degrees of freedom (Fisher and van Belle, 
1993, p. 154; Sheskin, chapter 8; Zar, 1999, p. 125).  The above assumptions 
are listed in increasing order of importance.  Several authors have investi-
gated the behavior of Student’s two-sample t-test under various deviations 
from these assumptions and found that the test is fairly robust (i.e., the true 
Type I error rate is close to the assumed Type I error rate) to departures from 
normality or when the variances of the two underlying distributions are not 
equal, especially for moderate to large sample sizes with approximately 
equal sample sizes in each group (Zar, 1999, p. 127).  On the other hand, 
positive or negative correlation between the observations can greatly affect 
the Type I error rate (Millard et al., 1985).  Helsel and Hirsch (1992, p. 128) 
note that the t-test is adversely affected by outliers and cannot be easily ap-
plied to data with censored observations. 

Modification for Differences in Variances 

The case where the population variances differ between the two groups is 
called the “Behrens-Fisher problem.”  As we already stated, the t-test is 
fairly robust to modest deviations from this assumption, but if there is a 
gross difference in the variances (e.g., a difference of four-fold is serious; 
Johnson and Wichern, 1998, p. 311), then the Type I error rate will be af-
fected.  In this case, a modified from of the two-sample t-test can be used.  
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This modified form is sometimes called Welch’s t-test (Zar, 1999, p. 128) 
and sometimes called Satterthwaite’s t-test (USEPA, 1996a, p. 3.3-2). 

If we know the population standard deviation for group 1, 1, and the 
population standard deviation for group 2, 2, then the formula for the vari-
ance of the difference in the sample means (Equation (7.66)) becomes 

1 2

2 2
1 22

1 2
x x n n

(7.74)

Since we do not know the values of 1 and 2, the form of the t-statistic is 
the same as before (Equation (7.67)), except the estimate of the variance of 
the difference in the sample means (Equation (7.68)) is replaced by: 

1 2

2 2
1 22

1 2

ˆx x
s s

n n
(7.75)

and the associated degrees of freedom are given by: 

22 2
1 2

1 2

4 2 4 2
1 1 2 2

1 21 1

s s

n n

s n s n

n n

(7.76)

It is important to decide whether it makes sense to focus on a possible 
difference in location between the two groups if you already know there is a 
difference in the variances.  If the difference in variances is due to the fact 
that both underlying populations are skewed, then you may wish to consider 
performing the test on the log-transformed observations. 

Comparing the Means of Log-Transformed Data 

Environmental data are often positively skewed, so in these cases we 
know the normality assumption of the t-test is not satisfied.  If we are willing 
to assume the observations from each group come from lognormal distribu-
tions, then we could perform the two-sample t-test on the log-transformed 
observations, but we need to be clear about what we are testing.  Recall from 
Chapter 4 that if  is the mean of the distribution of the log-transformed ob-
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servations, then e  is the median of the distribution of the untransformed ob-
servations.  Since, the null hypothesis 

0 1 2 0:H (7.77)

is equivalent to the null hypothesis 

1 2 0
0 :H e e (7.78)

and this null hypothesis is equivalent to the null hypothesis 

1
0

2
0 :

e
H e

e
(7.79)

the two-sample t-test performed on the log-transformed observations is test-
ing a hypothesis about the ratio of the medians.  Note that the null hypothe-
sis of equal means for the distributions based on the log-transformed obser-
vations (H0: 1 2 = 0) corresponds to the null hypothesis of equal medi-

ans for the lognormal distributions (H0: 1e = 2e ).
On the other hand, the t-test requires that the variances of the underlying 

distributions of the log-transformed observations are the same, which implies 
that the coefficient of variation is the same for the two underlying lognormal 
distributions (see Equation (4.33) of Chapter 4).  If you are willing to assume 
the two lognormal distributions have the same coefficient of variation, then 
the two-sample t-test performed on the log-transformed observations is test-
ing a hypothesis about the ratio of the means.  To show this, let 1 and 2

denote the means of the lognormal distributions for groups 1 and 2.  Then 

2
1 1

2 22

2
1

22

e

e

e

e
(7.80)

where 2 denotes the common variance for the distributions of the log-
transformed observations (see Equation (4.32) of Chapter 4).  In this case, 
the null of hypothesis of equal means for the distributions of the log-
transformed observations is the same as the null hypothesis of equal means 
for the lognormal distributions. 
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Confidence Interval for the Difference in Means Based on Student’s t-Test 

Based on the relationship between hypothesis tests and confidence inter-
vals (see Table 7.4), we can construct confidence intervals for the difference 
between the means ( = 1 2) based on Student’s t-statistic.  The formulas 
for these intervals are very similar to the formulas for the one-sample case.  
The two-sided (1 )100% confidence interval is given by: 

1 2

1 2

1 2  ,1 2

1 2  ,1 2

ˆ ,

ˆ

x x

x x

x x t

x x t

(7.81)

where the quantity 
1 2

ˆx x  and the degrees of freedom  depend on whether 

you are willing to assume equal variances between groups.  The one-sided 
upper (1 )100% confidence interval is given by: 

1 21 2  ,1 ˆ, x xx x t (7.82)

and the one-sided lower (1 )100% confidence interval is given by: 

1 21 2  ,1 ˆ ,x xx x t (7.83)

If you are computing confidence intervals based on log-transformed observa-
tions, then you can exponentiate the confidence limits to create confidence 
limits for the ratio of the medians, and in the case of a constant coefficient of 
variation, confidence limits for the ratio of the means. 

Example 7.13:  Comparing Sulfate Concentrations between a Background 
and Compliance Well 

Table 7.17 lists sulfate concentrations (ppm) observed in groundwater at 
a background and downgradient well.  In ENVIRONMENTALSTATS for S-PLUS

these data are stored in the data frame sulfate.df.  We will use Student’s 
two-sample t-test to test the null hypothesis that the average sulfate concen-
tration at the two wells is the same vs. the alternative hypothesis that the av-
erage sulfate concentration at the downgradient well is larger than the aver-
age concentration at the upgradient well. 
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Year Month Background Downgradient 
1995 Jan 560

 Apr 530
 Jul 570 600 
 Oct 490 590 

1996 Jan 510 590 
 Apr 550 630 
 Jul 550 610 
 Oct 530 630 

Table 7.17 Sulfate concentrations (ppm) at a background and downgradient well 

The estimated background mean and standard deviation are 536.3 and 
26.7 ppm, and the estimated downgradient mean and standard deviation are 
608.3 and 18.3 ppm.  The t-statistic is 5.66 with 12 degrees of freedom, and 
the one-sided p-value is 5 10-5.  The 99% one-sided lower confidence in-
terval for the difference between the two means is [37.9, ].  Thus, if you 
decide on a 1% significance level, then you would reject the null hypothesis 
that the average concentration of sulfate is the same at the two wells in favor 
of the alternative hypothesis that the average concentration of sulfate is lar-
ger at the downgradient well. 

In general, for monitoring groundwater at hazardous and solid waste 
sites, you should not use t-tests or ANOVA (see below) to test for differences 
between background and downgradient wells.  Instead you should use simul-
taneous prediction limits (see Chapter 6). 

Menu

To perform Student’s two-sample t-test on the data shown in Table 7.17 
using the S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight sulfate.df.
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Compare Samples>Two Samples>t Test.  This will 
bring up the Two-sample t Test dialog box. 

3. For Data Set, make sure sulfate.df is selected.  For Variable 1 select 
Sulfate, for Variable 2 select Well.type, and check the box that says 
Variable 2 is a Grouping Variable.   

4. Under Alternative Hypothesis select less, and for Confidence Level 
type 0.99.  Click OK or Apply.

Command 

To perform Student’s two-sample t-test on the data shown in Table 7.17 
using the S-PLUS Command or Script Window, type these commands. 

attach(sulfate.df)
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t.test(Sulfate[Well.type=="Downgradient"],

Sulfate[Well.type=="Background"],

alternative="greater", conf.level = 0.99) 

detach()

Example 7.14:  Testing the Difference in Means between Areas for the 
Log-Transformed TcCB Data 

We saw in Chapter 3 that the TcCB concentration data looks positively 
skewed for both the Cleanup and Reference areas.  Figures 3.9, 3.10, 3.13, 
and 3.20 show the strip plots, histograms, boxplots, and two-sample Q-Q 
plot comparing the distributions of the log-transformed TcCB concentrations 
for the Cleanup and Reference areas.  All of these figures indicate that while 
there may or may not be a difference in means between the two areas, there 
is certainly a difference in variances.  Thus, if we perform a two-sample t-
test on the log-transformed data, we are testing a hypothesis only about the 
ratio of the medians, not the means. 

Here we will test the null hypothesis that the ratio of the median concen-
tration in the Cleanup area to the median concentration in the Reference are 
is 1 vs. that alternative that the ratio is greater than 1 (i.e., the median con-
centration in the Cleanup area is greater than the median concentration in the 
Reference area).  As we saw in Chapter 3, the estimated medians for the 
original TcCB data are 0.43 ppb in the Cleanup area and 0.54 ppb in the Ref-
erence area.  For the log-transformed data, the Cleanup area estimated mean 
and standard deviation are –0.55 and 1.36 ppb and the Reference area esti-
mated mean and standard deviation are –0.62 and 0.47 ppb.  The resulting t-
statistic is 0.35 with 122 degrees of freedom and an associated p-value of 
0.36.  The lower 99% confidence interval for the difference of the means is 
[ 0.41, ].  If we do not assume the variances are the same, then the t-
statistic is 0.43 with 102 degrees of freedom and an associated p-value of 
0.34, and the lower 99% confidence interval for the difference of the means 
is [ 0.33, ].  Thus, we would not reject the null hypothesis and would con-
clude that the median concentration of TcCB is the same in both areas. 

Menu

To perform Student’s two-sample t-test on the log-transformed TcCB 
data using the S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight new.epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Compare Samples>Two Samples>t Test.  This will 
bring up the Two-sample t Test dialog box. 
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3. For Data Set, make sure new.epa.94b.tccb.df is selected.  For Vari-
able 1 select log.TcCB, for Variable 2 select Area, and check the 
box that says Variable 2 is a Grouping Variable. 

4. Under Alternative Hypothesis select greater, and for Confidence 
Level type 0.99.  Click OK or Apply.

This will produce the results for the test that assumes equal variances.  To 
perform the test that does not assumed equal variances, in Step 3 above un-
check the box that says Assume Equal Variances. 

Command 

To perform Student’s two-sample t-test on the TcCB data using the 
S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)

t.test(log(TcCB[Area=="Cleanup"]),

log(TcCB[Area=="Reference"]),

alternative="greater", conf.level = 0.99) 

detach()

This will produce the results for the test that assumes equal variances.  To 
perform the test that does not assumed equal variances, include the argument 
var.equal=F in the call to t.test.

Two-Sample Permutation Tests 

The two sample permutation test is based on trying to answer the ques-
tion, “Did the observed difference in means or medians (or any other meas-
ure of location) happen by chance, or does the observed difference indicate 
that the null hypothesis is not true?”  Under the null hypothesis, the underly-
ing distributions for each group are the same, therefore it should make no 
difference which group an observation gets assigned to.  The two-sample 
permutation test works by simply enumerating all possible permutations of 
group assignments, and for each permutation computing the difference be-
tween the measures of location for each group (Manly, 1997, p. 97; Efron 
and Tibshirani, 1993, p. 202).  The measure of location for a group could be 
the mean, median, or any other measure you want to use.  For example, if the 
observations from Group 1 are 3 and 5, and the observations from Group 2 
are 4, 6, and 7, then there are 10 different ways of splitting these five obser-
vations into one group of size 2 and another group of size 3.  Table 7.18 lists 
all of the possible group assignments, along with the differences in the group 
means. 

In this example, the observed group assignments and difference in means 
are shown in the second row of Table 7.18.   For a one-sided upper alterna-
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tive (Equation (7.62)), the p-value is computed as the proportion of times 
that the differences of the means in the permutation distribution are greater 
than or equal to the observed difference in means.  For a one-sided lower al-
ternative hypothesis (Equation (7.61)), the p-value is computed as the pro-
portion of times that the differences in the means in the permutation distribu-
tion are less than or equal to the observed difference in the means.  For a 
two-sided alternative hypothesis (Equation (7.59)), the p-value is computed 
as the proportion of times the absolute values of the differences in the means 
in the permutation distribution are greater than the absolute value of the ob-
served difference in the means.  For this simple example, the one-sided up-
per, one-sided lower, and two-sided p-values are 0.9, 0.2 and 0.4,  
respectively. 

Group 1 Group 2 Mean 1 – Mean 2 
 3,4 5,6,7    -2.5 
 3,5 4,6,7    -1.67 
 3,6 4,5,7    -0.83 
 3,7 4,5,6     0 
 4,5 3,6,7    -0.83 
 4,6 3,5,7     0 
 4,7 3,5,6     0.83 
 5,6 3,4,7     0.83 
 5,7 3,4,6     1.67 
 6,7 3,4,5     2.5 

Table 7.18 All possible group assignments and corresponding differences in means 

In this simple example, we assumed the hypothesized differences in the 
means under the null hypothesis was 0 = 0.  If we had hypothesized a dif-
ferent value for 0, then we would have had to subtract this value from each 
of the observations in Group 1 before permuting the group assignments to 
compute the permutation distribution of the differences of the means.  As in 
the case of the one-sample permutation test, if the sample sizes for the 
groups become too large to compute all possible permutations of the group 
assignments, the permutation test can still be performed by sampling from 
the permutation distribution and comparing the observed difference in loca-
tions to the sampled permutation distribution of the difference in locations. 

Unlike the two-sample Student’s t-test, we do not have to worry about 
the normality assumption when we use a permutation test.  The permutation 
test still assumes, however, that under the null hypothesis, the distributions 
of the observations from each group are exactly the same, and under the al-
ternative hypothesis there is simply a shift in location (that is, the whole dis-
tribution of group 1 is shifted by some constant relative to the distribution of 
group 2).  Mathematically, this can be written as follows: 
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Value of Random Variable

C
um

ul
at

iv
e 

F
re

qu
en

cy

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group 2 Group 1

Figure 7.12 Probability density functions and cumulative distribution functions for 

groups 1 and 2, where the distribution of group 1 is shifted by 5 units 

relative to distribution of group 2 
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1 2  ,F t  F t  t  (7.84)

where F1 and F2 denote the cumulative distribution functions for group 1 
and group 2, respectively.  (If  > 0, this implies that the observations in 
group 1 tend to be larger than the observations in group 2, and if  < 0, this 
implies that the observations in group 1 tend to be smaller than the observa-
tions in group 2.)  Figure 7.12 displays this kind of location shift for = 5.  
Thus, the shape and spread (variance) of the two distributions should be the 
same whether the null hypothesis is true or not.  Therefore, the type I error 
rate for a permutation test can be affected by differences in variances be-
tween the two groups. 

Confidence Intervals Based on the Two-Sample Permutation Test 

It is possible to construct a confidence interval for the difference between 
the two means or medians (or any other measure of location) based on the 
two-sample permutation test by finding the value(s) of 0 that correspond to 
obtaining a p-value of  (Manly, 1997, pp. 17 19, 98).  As we stated earlier 
when we were talking about the one-sample permutation test for location, 
however, a confidence interval based on the bootstrap will yield a similar 
type of confidence interval (Efron and Tibshirani, 1993, p. 214). 

Example 7.15:  Testing the Difference between Areas for the TcCB Data 

In this example we will use the two-sample permutation test to test for a 
difference in means and a difference in medians between the Cleanup and 
Reference area for the TcCB data.  The observed mean concentrations of 
TcCB in the Cleanup and Reference areas are 3.9 and 0.6 ppb, respectively, 
yielding a difference of 3.3 ppb.  Figure 7.13 displays the permutation distri-
bution of the difference in the means based on sampling the permutation dis-
tribution 5,000 times.  The one-sided upper p-value for the alternative hy-
pothesis that the mean concentration in the Cleanup area is greater than the 
mean concentration in the Reference area is p = 0.021. 

The observed median concentrations of TcCB in the Cleanup and Refer-
ence areas are 0.43 and 0.54 ppb, respectively, yielding a difference of –0.11 
ppb.  Figure 7.14 displays the permutation distribution of the difference in 
the medians based on sampling the permutation distribution 5,000 times.  
The one-sided upper p-value for the alternative hypothesis that the median 
concentration in the Cleanup area is greater than the median concentration in 
the Reference area is p = 0.93. 
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Menu

To perform the two-sample permutation tests on the TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>Permutation Tests>Locations.  This will bring up the 
Two-Sample Permutation Test for Locations dialog box. 

3. For Data to Use, make sure Pre-Defined Data is selected.  For Data 
Set, make sure epa.94b.tccb.df is selected.  For Variable 1 select 
TcCB, for Variable 2 select Area, and check the box that says Vari-
able 2 is a Grouping Variable. 

4. For Type of Test make sure Two-Sample is selected, and for Test 
Parameter make sure Mean is selected. 

5. Under Alternative Hypothesis select greater, for Test Method make 
sure Sample Perm Dist is selected, and for Set Seed with type 47.
Click OK or Apply.

This will produce the results for the test of the difference in means.  To per-
form the test for the difference in medians, in Step 4 above for Test Parame-
ter select Median.

Command 

To perform the two-sample permutation tests on the TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.94b.tccb.df)

mean.list <- two.sample.permutation.test.location( 

TcCB[Area=="Cleanup"], TcCB[Area=="Reference"],

alternative="greater", seed=47) 

plot(mean.list)

median.list <- two.sample.permutation.test.location( 

TcCB[Area=="Cleanup"], TcCB[Area=="Reference"], 

fcn="median", alternative="greater", seed=47) 

plot(median.list)

detach()

The call to the argument seed simply lets you reproduce the figures as 
shown here.  If you use the default value of seed=.Random.seed, you 
may get slightly different looking figures. 
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Wilcoxon Rank Sum Test 

The Wilcoxon rank sum test (also called the Mann-Whitney test) is ex-
actly the same test as the two-sample permutation test for the difference in 
means, but it is based on the ranks of the observations instead of the observa-
tions themselves (Conover, 1980, p. 215; Fisher and van Belle, 1993, p. 315; 
Helsel and Hirsch, 1992, p. 118; Hollander and Wolfe, 1999, p. 106; Leh-
mann, 1975, p. 5; Sheskin, 1997, p. 181; Zar, 1999, p. 146).  Instead of look-
ing at the permutation distribution of the difference between the average 
ranks for each group, the equivalent test statistic that is used is the sum of the 
ranks for the first group: 

1 1

1
1 1

n n

i i
i i

W R Rank x (7.85)

As for the general two-sample permutation test, the Wilcoxon rank sum 
test assumes that under the null hypothesis, the distributions of the observa-
tions from each group are exactly the same, and under the alternative hy-
pothesis there is simply a shift in location (that is, the whole distribution of 
group 2 is shifted by some constant relative to the distribution of group 1; 
see Equation (7.84)).  While at first this may appear to imply that the shape 
and spread (variance) of the two distributions should be the same whether 
the null hypothesis is true or not, the requirement is not quite so strict.  Since 
the Wilcoxon rank sum test is based on the ranks of the observations, and 
ranks are preserved under monotonic transformations, the requirements for 
the Wilcoxon rank sum test are really that there must be some monotonic 
transformation of the observations (e.g., no transformation, log transforma-
tion, square-root transformation, etc.) such that the distributions of the trans-
formed observations are the same in shape and spread, but may differ by lo-
cation.  For example, if the distribution of group 1 is lognormal with mean 

= 5 and coefficient of variation = 1, and the distribution of group 2 is 
lognormal with mean = 10 and coefficient of variation = 1, then these 
two distributions obviously do not have the same standard deviation (the 
standard deviation is 5 for group 1 and 10 for group 2).  The distributions of 
the log-transformed observations, however, are both normal with the same 
standard deviation (see Equation (4.35) in Chapter 4).  Thus, the Wilcoxon 
rank sum test could be applied in this case. 

Some references suggest the Wilcoxon rank sum test is applicable even 
when the variances are different because the Type I error is not adversely af-
fected (e.g., USEPA, 1996a, p. 3.3-2; Zar, 1999, p. 129).  Strictly speaking, 
however, the Type I error level is not maintained when the two populations 
differ in dispersion or shape, unless there is some monotonic transformation 
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that yields two distributions with the same dispersion and shape (Hollander 
and Wolfe, 1999, p. 120).  On the other hand, unlike the t-test or the two-
sample permutation test based on differences in the means, the Wilcoxon 
rank sum test is unaffected by gross “outliers” because it is based on the 
ranks instead of the actual observations. 

Because the Wilcoxon rank sum test is based on the ranks of the observa-
tions, the permutation distribution of W does not have to be computed for 
each new set of observations, but instead can be easily tabulated for fixed 
sample sizes.  In S-PLUS, the permutation distribution is tabulated for sample 
sizes up to 49 in either or both groups.  If ties are present, the permutation 
distribution depends on the number of tied groups (e) and the number of ties 
within each group.  In this case, S-PLUS uses a normal approximation to the 
permutation distribution of W.

For “large” sample sizes (e.g., n1  10 and n2  10), a normal approxi-
mation to the distribution of W can be used to determine the p-value (Leh-
mann, 1975, p. 13).  The following quantity is approximately distributed as a 
standard normal random variable under the null hypothesis: 

W

W

W
z (7.86)

where

1

2W
n N

(7.87)
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The quantity e denotes the number of groups of ties, and tj denotes the 
number of ties in the jth group of ties (Lehmann, 1975, p. 20).  A continuity 
correction may be used (Sheskin, 1997, p. 187; Zar, 1999, p. 151). 

Confidence Interval for the Difference in Medians (Means) Based on the 
Wilcoxon Rank Sum Test 

Based on the relationship between hypothesis tests and confidence inter-
vals (see Table 7.4), we can construct a confidence interval for the difference 
between the population medians (means) of the two groups based on the 
Wilcoxon rank sum test.  Conover (1980, pp. 223 225), Helsel and Hirsch 
(1992, pp. 132 134), Holland and Wolfe (1973, p. 78), and Lehmann (1973, 
pp. 81 95) describe the Hodges-Lehmann estimate of the difference in the 
population medians and this method of constructing a confidence interval for 
this difference. 

Example 7.16:  Testing for a Difference between Areas for the TcCB Data 

In this example we will repeat the comparison we made in Example 7.15, 
but we will use the Wilcoxon rank sum test.  The permutation test based on 
the difference in the medians yielded a one-sided upper p-value of p = 0.93 
for the alternative hypothesis that the median concentration in the Cleanup 
area is greater than the median concentration in the Reference area.  Not sur-
prisingly, the Wilcoxon rank sum test yields a similar p-value of p = 0.88 
based on the normal approximation with the continuity correction 
(z= 1.17).

Menu

To perform the Wilcoxon rank sum test on the TcCB data using the 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Compare Samples>Two Samples>Wilcoxon Rank 
Test.  This will bring up the Two-sample Wilcoxon Test dialog box. 

3. For Data Set, make sure epa.94b.tccb.df is selected.  For Variable 1 
select TcCB, for Variable 2 select Area, and check the box that says 
Variable 2 is a Grouping Variable.  Under Alternative Hypothesis 
select greater, then click OK or Apply.

Command 

To perform the Wilcoxon rank sum test on the TcCB data using the 
S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df)
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wilcox.test(TcCB[Area=="Cleanup"],

TcCB[Area=="Reference"], alternative="greater") 

detach()

Linear Rank Tests for Shift in Location 

The Wilcoxon rank sum test is an example of a linear rank test.  A linear 
rank test can be written as follows: 

1

1
1

n

i
i

L a R (7.90)

where a() is some function and is called the score function.  A linear rank 
test is based on the sum of the scores for group 1.  For the Wilcoxon rank 
sum test, the function a() is simply the identity function.  Other functions 
may work better at detecting a small shift in location, depending on the 
shape of the underlying distributions.  See the ENVIRONMENTALSTATS for 
S-PLUS help file for two.sample.linear.rank.test for more in-
formation. 

Quantile Test for Shift in the Tail 

The tests we have considered so far (Student’s t-test, two-sample permu-
tation tests for a difference in location, the Wilcoxon rank sum test, and lin-
ear rank tests for shifts in location) are all designed to detect a shift in the 
whole distribution of group 1 relative to the distribution of group 2 (see 
Equation (7.84) and Figure 7.12).  Sometimes, we may be interested in de-
tecting a difference between the two distributions where only a portion of the 
distribution of group 1 is shifted relative to the distribution of group 2.  The 
mathematical notation for this kind of shift is 

1 2 31 ,F t F t F t t (7.91)

where  denotes a fraction between 0 and 1.  In the statistical literature, the 
distribution of group 1 is sometimes called a “contaminated” distribution, 
because it is the same as the distribution of group 2, except it is partially con-
taminated with another distribution.  If the distribution of group 1 is partially 
shifted to the right of the distribution of group 2, F3 denotes a cdf such that 

© 2001 by CRC Press LLC



Probability Density Functions for a Tail Shift

Value of Random Variable

R
el

at
iv

e 
F

re
qu

en
cy

0 10 20 30

0.
0

0.
05

0.
10

0.
15

0.
20

Group 2
Group 1

Cumulative Distribution Functions for a Tail Shift

Value of Random Variable

C
um

ul
at

iv
e 

F
re

qu
en

cy

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group 2
Group 1

Figure 7.15 Probability density functions and cumulative distribution functions for 

groups 1 and 2, where 25% of the distribution of group 1 has a median 

that is shifted by 15 units relative to the median of the distribution of 

group 2 

© 2001 by CRC Press LLC



3 2 ,F t  F t  t (7.92)

with a strict inequality for at least one value of t.  If the distribution of group 
1 is partially shifted to the left of the distribution of group 2, F3 denotes a cdf 
such that 

3 2 ,F t  F t  t (7.93)

with a strict inequality for at least one value of t.  Figure 7.15 illustrates the 
case where 25% of the distribution of group 1 has a median that is shifted by 
15 units to the right of the median of the distribution of group 2. 

The quantile test is a two-sample rank test to detect a shift in a proportion 
of one population relative to another population (Johnson et al., 1987).  Un-
der the null hypothesis, the two distributions are the same.  If the alternative 
hypothesis is that the distribution of group 1 is partially shifted to the right of 
the distribution of group 2, the test combines the observations, ranks them, 
and computes k, which is the number of observations from group 1 out of 
the r largest observations.  The test rejects the null hypothesis if k is too 
large.  The p-value is computed as 

1 1

r

i k

N r r N
p

n i i n
(7.94)

where N is defined in Equation (7.89).  The value of r can determined by 
choosing a target quantile q.  The value of r is smallest rank such that 

1

r
q

N
(7.95)

Note that because of the discrete nature of ranks, any quantile q’ such that 

1

1 1

r r
q

N N
(7.96)
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will yield the same value for r as the quantile q does.  Alternatively, you can 
choose a value for r, and the bounds on an associated quantile are then given 
by Equation (7.96). 

The optimal choice of q or r (i.e., the choice that yields the largest 
power) depends on the true underlying distribution of group 2 (with cdf F2),
the contaminating distribution (with cdf F3), and the mixing proportion .
Johnson et al. (1987) performed a simulation study and showed that the 
quantile test performs better than the Wilcoxon rank sum test and the normal 
scores test (a linear rank test) under the alternative of a mixed normal distri-
bution with a shift of at least 2 standard deviations in the contaminating dis-
tribution.  USEPA (1994b, pp. 7.17 7.21) showed that when the mixing pro-
portion  is small and the shift is large, the quantile test is more powerful 
than the Wilcoxon rank sum test, and when  is large and the shift is small 
the Wilcoxon rank sum test is more powerful than the quantile test.  Both 
USEPA (1994b) and USEPA (1996a) recommend employing both the Wil-
coxon test to test for a location shift and the quantile test to test for a shift in 
the tail. 

Example 7.17:  Testing for a Shift in the Tail of TcCB Concentrations 

Following Example 7.5 on pages 7.23 to 7.24 of USEPA (1994b), we will 
perform the quantile test for the TcCB data.  There are 77 observations from 
the Cleanup area and 47 observations from the Reference Area for a total of 
N = 124 observations.  The target rank is set to r = 9, resulting in a target 
quantile upper bound of q = 0.928.  Of the 9 largest observations, all 9 are 
from the Cleanup area, yielding a p-value of 0.01.  Hence, we would proba-
bly reject the null hypothesis that the distribution of concentrations of TcCB 
is the same in both areas in favor of the alternative hypothesis that the distri-
bution for the Cleanup area is partially shifted to the right compared to the 
distribution for the Reference area.  (Note that in Example 7.16, the Wil-
coxon rank sum test did not detect a difference between the Cleanup and 
Reference area concentrations.) 

Menu

To perform the quantile test on the TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight epa.94b.tccb.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>Quantile Test.  This will bring up the Two-Sample Quan-
tile Test dialog box. 

3. For Data to Use, make sure Pre-Defined Data is selected.  For Data 
Set, make sure epa.94b.tccb.df is selected.  For Variable 1 select 
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TcCB, for Variable 2 select Area, and check the box that says Vari-
able 2 is a Grouping Variable. 

4. Under Alternative Hypothesis select greater.  For Specify Target se-
lect the Rank button, and for Target Rank type 9, then click OK or 
Apply.

Command 

To perform the quantile test on the TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.94b.tccb.df)

quantile.test(TcCB[Area=="Cleanup"],

TcCB[Area=="Reference"], alternative="greater", 

target.r=9)

detach()

Tests Based on Bootstrap Confidence Intervals 

Because of the relationship between hypothesis tests and confidence in-
tervals (see Table 7.4), you can construct a bootstrap confidence interval for 
the difference in the means, medians, or any other measure of location to test 
a null hypothesis concerning this difference (Efron and Tibshirani, 1993,  
p. 214).  Unlike the Student’s t-test, two-sample permutation test, Wilcoxon 
rank sum test, or quantile test, tests based on bootstrapped confidence inter-
vals do not require the assumption that under the null hypothesis the underly-
ing populations are exactly the same in shape and dispersion. 

Permutation Tests vs. Tests Based on Bootstrap Confidence Intervals 

In Chapter 5 we constructed a two-sided 95% bootstrap confidence inter-
val for the difference in the mean concentration of TcCB in the Cleanup and 
Reference areas (see Figure 5.14):  [0.75, 13].  We computed this confidence 
interval by sampling with replacement from the observed Cleanup area data 
and sampling with replacement from the observed Reference area data.  On 
the other hand, the two-sample permutation test involves permuting all group 
assignments.  If we perform this test by sampling from the permutation dis-
tribution, then we sample all observations without replacement, but vary 
their group assignment. 

Example 7.18:  Testing for a Difference between Areas for the TcCB Data 

In this example we will repeat the comparisons we made in Example 
7.15, Example 7.16, and Example 7.17, but we will base our tests on boot-
strap confidence intervals.  For all of our tests, the null hypothesis is that the 
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parameter is the same in the Cleanup and Reference areas, and the alternative 
hypothesis is that the parameter is larger in the Cleanup area.  Table 7.19 
shows one-sided lower confidence limits for the difference between the 
means, medians, and 90th percentiles for the Cleanup and Reference area 
TcCB data.  For the difference between the medians, all of the lower confi-
dence limits are less than 0, so the corresponding p-value is larger than 10%.  
On the other hand, for the difference between the means and the difference 
between the 90th percentiles, the 99% lower confidence limits do not contain 
0, so the p-values are less than 1%. 

Parameter 90% 95% 99% 
Mean  1.36  0.96  0.55 
Median -0.21 -0.24 -0.29 
90th Percentile  0.46  0.35  0.19 

Table 7.19 One-sided lower BCa confidence limits for the difference between the 

Cleanup and Reference areas for three selected parameters 

Menu

To obtain the confidence intervals shown in Table 7.19 using the S-PLUS

pull-down menu, follow the steps shown in the section Nonparametric Con-
fidence Intervals for the Difference between Two Means or Two Medians in 
Chapter 5.  For the difference in the 90th percentiles, in Step 4, in the Expres-
sion box, type quantile(TcCB[Area=="Cleanup"], prob=0.9) -  
quantile(TcCB[Area=="Reference"], prob=0.9).  Also, after Step 8, click 
on the Results tab, and in the Percentile Levels box, type c(0.1, 0.05, 0.01).

Command 

To obtain the confidence intervals shown in Table 7.19 using the S-PLUS

Command or Script Window, follow the commands shown in the section 
Nonparametric Confidence Intervals for the Difference between Two Means 
or Two Medians in Chapter 5.  For the difference in the 90th percentiles, set 
the value of the statistic argument to  

statistic=quantile(TcCB[Area=="Cleanup"], prob=0.9) -

quantile(TcCB[Area=="Reference"], prob=0.9) 

Also, in the call to the summary function, include the argument  

probs = c(0.1, 0.05, 0.01) 
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COMPARING TWO PROPORTIONS 

Sometimes in environmental data analysis we are interested in determin-
ing whether two probabilities or rates or proportions differ from each other.  
For example, we may ask the question: “Does exposure to pesticide X in-
crease the risk of developing cancer Y?,” where cancer Y may be liver can-
cer, stomach cancer, or some other kind of cancer.  One way environmental 
scientists attempt to answer this kind of question is by conducting experi-
ments on rodents in which one group (the “treatment” or “exposed” group) is 
exposed to the pesticide and the other group (the control group) is not.  The 
incidence of cancer Y in the exposed group is compared with the incidence 
of cancer Y in the control group.  We will talk more about extrapolating re-
sults from experiments involving rodents to consequences in humans (and 
the associated difficulties) in Chapter 13 on Risk Assessment. 

In this case, we assume the observations from each group shown in Equa-
tions (7.57) and (7.58) come from a binomial distribution with size parame-
ter n = 1.  That is, the observations can only take on two possible values:  0 
(failure) or 1 (success).  In our rodent example, a “success” is the occurrence 
of cancer.  We are interested in whether the probability of “success” in group 
1 (p1) is the same as the probability of “success” in group 2 (p2).  The kinds 
of hypotheses we can test are shown in Equations (7.59), (7.61), and (7.62), 
where the parameter  denotes the differences in the two probabilities: 

1 2p p (7.97)

There are at least two ways of performing a hypothesis test to compare 
two proportions: 

Use Fisher’s exact test. 
Create a statistic based on the difference between the sample 
proportions, and compute the p-value based on a normal ap-
proximation. 

We will explain how to perform each procedure in the rest of this section. 

Fisher’s Exact (Permutation) Test 

In Equations (5.28), (5.30), (5.34), and (5.58) in Chapter 5 we showed 
that when the observations are from a B(1, p) distribution, the sample mean 
is an estimate of p.  Fisher’s exact test is simply a permutation test for the 
difference between two means from two different groups as described in the 
section Two-Sample Permutation Tests, where the underlying populations 
are binomial with size parameter n = 1, but possibly different values of p.
The null hypothesis is that the two proportions, p1 and p2, are the same (i.e., 
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= 0).  Fisher’s exact test is usually described in terms of testing hypotheses 
concerning a 2  2 contingency table (Fisher and van Bell, 1993, p. 185; 
Hollander and Wolfe, 1999, p. 473; Sheskin, 1997, p. 221; Zar, 1999,  
p. 543).  The probabilities associated with the permutation distribution can 
be computed by using the hypergeometric distribution (see Chapter 4). 

Example 7.19:  Testing Whether Exposure to Ethylene Thiourea Increases 
the Incidence of Thyroid Tumors in Rats 

Rodricks (1992, p. 133) presents data from an experiment in which dif-
ferent groups of rats were exposed to various concentration levels of ethyl-
ene thiourea (ETU), a decomposition product of a certain class of fungicides 
that can be found in treated foods.  In the group exposed to a dietary level of 
250 ppm of ETU, 16 out of 69 rats (23%) developed thyroid tumors, whereas 
in the control group (no exposure to ETU) only 2 out of 72 (3%) rats devel-
oped thyroid tumors.  If we use Fisher’s exact test to test the null hypothesis 
that the proportion of rats exposed to 250 ppm of ETU who will develop thy-
roid tumors over their lifetime is no greater than the proportion of rats not 
exposed to ETU who will develop tumors, we get a one-sided upper p-value 
of 0.0002.  Therefore, we conclude that the true underlying rate of tumor in-
cidence in the exposed group is greater than in the control group.  Figure 
7.16 displays the permutation distribution of the difference between the sam-
ple proportions, as well as the observed difference between the sample 
proportions. 

Menu

To perform Fisher’s exact test to compare the incidence of thyroid tumors 
between the exposed and unexposed groups of rats using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>Permutation Tests>Proportions.  This will bring up the 
Two-Sample Permutation Test for Proportions dialog box. 

2. For Data to Use, select Expression.  For Data Form, select # Succ 
and Trials.  For # Successes, type c(16,2).  For # Trials type 
c(69,72).  Under Alternative Hypothesis select greater.

3. Click OK or Apply.

Note that you can perform Fisher’s exact test using the S-PLUS pull down 
menu, but only two-sided p-values are computed. 

Command 

To perform Fisher’s exact test using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 
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Figure 7.16 Results of the two-sample permutation test (Fisher’s exact test) for the 

difference in the proportion of rats who develop thyroid tumors in the 

exposed and unexposed groups 

Num.Tumors <- c(16, 2) 

Sample.Sizes <- c(69, 72) 

prop.list <- two.sample.permutation.test.proportion( 

x=Num.Tumors, y=Sample.Sizes,

x.and.y="Number Successes and Trials",

alternative="greater")

prop.list

plot(prop.list)

Note that you can perform Fisher’s exact test using the S-PLUS function 
fisher.test, but only two-sided p-values are computed. 

Approximate Test Based on the Normal Approximation to the 
Binomial Distribution 

Another way to test whether two population proportions are equal (i.e., 
= 0) is to use a statistic based on the normal approximation to the binomial 

distribution: 
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(Fisher and van Belle, 1993, p. 187; Hollander and Wolfe, 1999, p. 459; 
Sheskin, 1997, p. 226; Zar, 1999, p. 556).  Under the null hypothesis that the 
two proportions are equal, the statistic z is approximately distributed as a 
standard normal random variable.  We can also test the more general hy-
pothesis 0 (where 0 0) with the following statistic: 

1 2
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z (7.102)

where

1 2

1 1 2 22
ˆ ˆ

1 2

ˆ ˆ ˆ ˆ1 1
ˆp p

p p p p

n n
(7.103)

(Sheskin, 1997, p. 229).  Note the similarity between Equations (7.102) and 
(7.67) and Equations (7.103) and (7.68). 
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A correction for continuity is usually suggested (e.g., Sheskin, 1997,  
p. 228; Zar, 1999, p. 556), in which case the quantity 

1 2

1 1 1

2 n n
(7.104)

is either subtracted from or added to the numerator, depending on whether it 
is positive or negative, respectively.  The square of the z-statistic in Equation 
(7.98) is equivalent to the chi-square statistic that is computed to test inde-
pendence in a 2  2 contingency table (Fisher and van Belle, 1993, p. 188; 
Sheskin, 1997, p. 226; Zar, 1999, p. 556). 

An approximate two-sided (1 )100% confidence interval for =
p1 p2, including the continuity correction, is given by: 

1 2

1 2

ˆ ˆ1 2 1 2
1 2

ˆ ˆ1 2 1 2
1 2

1 1 1
ˆˆ ˆ ,

2

1 1 1
ˆˆ ˆ

2

p p

p p

p p z
n n

p p z
n n

(7.105)

(Sheskin, 1997, p. 231; Zar, 1996, p. 556).  For the confidence interval, Zar 
(1999, p. 556) recommends using the formula in Equation (7.99) to compute 
the standard error of the difference of the proportions, while Fisher and van 
Belle (1993, p. 188) and Sheskin (1997, p. 231) recommend using the for-
mula in Equation (7.103).  The latter makes more sense because for the con-
fidence interval we are not assuming that the two proportions are equal. 

Example 7.20:  Comparing Incidence Rates of Thyroid Tumors in Rats 

In this example, we will again compare the incidence of thyroid tumors 
in rats exposed and not exposed to ETU as we did in Example 7.19, but here 
we will perform the approximate test.  As before, the estimated incidence 
rates are 23% and 3% for the exposed and unexposed groups.  The one-sided 
upper p-value is 0.0004 and a one-sided lower 95% confidence interval for 
the difference between the two incidence rates is [0.10, 1].  Hence, as before, 
we conclude that the incidence rate is higher in the exposed group than in the 
unexposed group. 
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Menu

To perform the approximate test to compare the incidence of thyroid tu-
mors between the exposed and unexposed groups of rats using the S-PLUS

pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>Two Samples>Counts and Propor-
tions>Proportions Parameters.  This will bring up the Proportions 
Test dialog box. 

2. Make the Data Set box blank.  For Success Variable, type c(16,2).
For Trials Variable, type c(69,72).  Under Alternative Hypothesis se-
lect greater, then click OK or Apply.

Command 

To perform the approximate test using the S-PLUS Command or Script 
Window, type these commands. 

Num.Tumors <- c(16, 2) 

Sample.Sizes <- c(69, 72) 

prop.test(Num.Tumors, Sample.Sizes,

alternative="greater")

COMPARING VARIANCES BETWEEN TWO GROUPS 

In this chapter so far, we have concentrated mostly on tests concerning 
locations and proportions.  Sometimes, we are interested in whether the vari-
ability is the same between two groups.  For example, if we send splits from 
field samples to two separate labs for analysis, we are not only interested in 
whether the labs generally agree on the estimated concentration in each 
physical sample, but also how variable the results are within each lab. 

If we are willing to assume the observations from both groups come from 
normal distributions, we can use the following statistic to test the null hy-
pothesis that the population variances of the two groups are the same: 

2
1
2
2

s
F

s
(7.106)

where 2
1s  and 2

2s  denote the sample variances from groups 1 and 2, respec-

tively.  Under the null hypothesis 2 2
0 1 2:H , the statistic F follows an 
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F-distribution with n1 1 and n2 1 degrees of freedom (Fisher and van 
Belle, 1993, p. 155; Sheskin, 1997, p. 161; Zar, 1999, p. 137).  Note that this 
statistic is bounded below by 0, since the sample variances are always 
greater than 0.  Figure 4.8 displays an F-distribution with 5 and 10 degrees of 
freedom. 

For the one-sided upper alternative hypothesis 2 2
1 2:aH , the p-

value is computed as: 

1 21, 1Pr n np F F (7.107)

where
1 2,F  denotes a random variable that follows an F-distribution with 

1 and 2 degrees of freedom.  For the one-sided lower alternative hypothe-

sis 2 2
1 2:aH , the p-value is computed as: 

1 21, 1Pr n np F F (7.108)

For the two-sided alternative hypothesis 2 2
1 2:aH  , the p-value is 

twice the p-value shown in Equation (7.107) when F is larger than the 50th

percentile of the 
1 2,1 1n nF  distribution, otherwise it is twice the p-value 

shown in Equation (7.108). 
A lower one-sided (1 )100% confidence interval for the variance ratio 

2 2
1 2  is given by: 

1 2

2 2
1 2

1, 1,1
,

n n

s s

F
(7.109)

where
1 2, ,pF  denotes the pth quantile of the F-distribution with 1 and 2

degrees of freedom.  An upper one-sided (1 )100% confidence interval for 
the variance ratio is given by: 
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1 2

2 2
1 2

1, 1,
0,

n n

s s

F
(7.110)

and a two-sided (1 )100% confidence interval for the variance ratio is 
given by: 

1 2  1 2

2 2  2 2
1 2  1 2

1, 1,1 2 1, 1, 2
,

n n  n n

s s  s s

F F
(7.111)

In the section Student’s Two-Sample t-Test we pointed out that in order 
to use Student’s two-sample t-test we must assume the two groups are nor-
mally distributed and have the same population variances.  We also pointed 
out that the two-sample t-test is fairly robust to departures from these as-
sumptions, especially for moderate to large sample sizes with approximately 
equal sample sizes in each group.  Some references suggest performing the 
F-test to make sure the two variances are the same before performing the 
two-sample t-test.  Just like the chi-square test on a single variance, however, 
the F-test for comparing variances, is extremely sensitive to the normality 
assumption, while the t-test is not.  Levene’s test (discussed later in this 
chapter) is more robust to deviations from normality. 

Example 7.21:  Comparing Variability in Manganese 
Concentrations between Two Wells 

The guidance document USEPA (1996a, p. 4.5-2) contains manganese 
concentrations at two different monitoring wells, which are displayed in 
Table 7.20 below and plotted in Figure 7.17.  The estimated sample vari-
ances are 9,076 and 12,125 (ppm2), and the F-statistic is 0.75 with 3 and 4 
degrees of freedom.  The two-sided p-value is 0.85, therefore we do not re-
ject the null hypothesis that the variability of manganese concentrations at 
the two wells is the same.  A two-sided 95% confidence interval for the vari-
ance ratio is [0.08, 11.3]. 

Well Manganese Concentrations (ppm) 
1  50   73  244  202 
2 272  171   32  250   53 

Table 7.20 Manganese concentrations at two different monitoring wells (USEPA, 

1996a, p. 4.5-2) 
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Figure 7.17 Strip plot of manganese concentrations at two different monitoring wells 

(USEPA, 1996a, p. 4.5-2) 

Menu

To perform the F-test for equal variances for the manganese concentra-
tions at the two monitoring wells using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight epa.96a.manganese.df.
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Compare Samples>Two 
Samples>F Test for Equal Variances.  This will bring up the Two-
Sample F Test for Equal Variances dialog box. 

3. For Data to Use, make sure Pre-Defined Data is selected.  For Data 
Set, make sure epa.96a.manganese.df is selected.  For Variable 1 
select Manganese, for Variable 2 select Well, and check the box 
that says Variable 2 is a Grouping Variable.  Click OK or Apply.

Command

To perform the F-test for equal variances using the S-PLUS Command or 
Script Window, type these commands. 

attach(epa.96a.manganese.df)

Manganese.1 <- Manganese[Well=="1"] 

Manganese.2 <- Manganese[Well=="2"] 

© 2001 by CRC Press LLC



var.test(Manganese.1, Manganese.2) 

detach()

THE MULTIPLE COMPARISONS PROBLEM 

So far we have discussed tests for one group (goodness-of-fit, test on a 
proportion, test on a location or percentile, and test on variance) and two 
groups (comparing two locations, proportions, or variances).  We have not 
yet considered the problem of testing the equality of several locations, pro-
portions, or variances.  Obviously, one way to do this is to perform all pair-
wise tests.  For example, if we want to test whether the average concentra-
tion of lead in the soil is the same at sites A, B, and C, we could perform 
three two-sample t-tests to compare A with B, A with C, and B with C.  A 
problem with this approach is that if we set the Type I error rate to 5% for 
each of the three tests, the probability that we incorrectly conclude there is a 
difference between at least two of the sites when in fact there is no difference 
between any of the sites is bigger than 5%. 

To see how this can happen, consider a simple example with a hypothesis 
test based on flipping a coin.  If the coin lands “heads,” reject the null hy-
pothesis, and if the coin lands “tails” do not reject the null hypothesis.  As-
suming the coin is fair (i.e., the probability of a head is ½), the probability of 
making a Type I error is ½.  Now suppose you perform two hypothesis tests.  
For each test, the Type I error rate is ½, but the probability of incorrectly re-
jecting at least one of the null hypotheses when in fact both are true is the 
probability of getting at least one head out of two tosses of the coin, which is 
¾.

For comparing three or more locations, we can initially avoid the prob-
lem of performing all pairwise comparisons by using parametric or non-
parametric one-way analysis of variance (ANOVA).  Similarly, for compar-
ing three or more proportions we can use the extension of Fisher’s exact test 
or the chi-square test, and for comparing three or more variances we can use 
Bartlett’s or Levene’s test.  All of these methods are discussed later in this 
chapter.  But if we reject the null hypothesis that all the means (or medians, 
proportions, variances, etc.) are equal, we would usually like to know which 
ones are different from one another and which are the same.  In this case, we 
are back to the problem of pairwise comparisons. 

Experiment-Wise Type I Error Rate 

If we perform k hypothesis tests, and the null hypothesis is true for all k
tests, the probability of incorrectly rejecting the null hypothesis for at least 
one of these tests is called the experiment-wise Type I error rate, here de-
noted *.  The Type I error rate  associated with an individual hypothesis 
test is sometimes called the comparison-wise Type I error rate (Milliken and 
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Johnson, 1992, p. 30).  In the special case when each of the tests is per-
formed with a comparison-wise Type I error rate of  and the outcomes of 
the tests are independent of one another, the experiment-wise Type I error 
rate * is easily computed because the number of false positives we will ob-
serve is a binomial random variable with size parameter k and probability 
parameter  (i.e., a B(k, ) random variable): 

* 1 1 k  (7.112)

Thus, the more hypothesis tests you perform, the greater the experiment-wise 
Type I error rate.  Figure 7.18 displays the experiment-wise Type I error rate 
as a function of the number of hypothesis tests for various values of the 
comparison-wise Type I error rate .
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Figure 7.18 Experiment-wise Type I error rate as a function of number of tests per-

formed and comparison-wise Type I error rate, assuming the test out-

comes are independent 

In general, the outcomes of the hypothesis tests you are interested in are 
usually not independent for at least two reasons: 

If you perform pairwise comparisons, these are not independent 
of one another because some of the same data are used in each 
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comparison.  For example, to compare site A to B and A to C, 
the same data from site A are used in both comparisons. 
Inherent temporal or spatial correlation may cause the results of 
several hypothesis tests to be correlated. 

Often, the best we can do is put an upper bound on the experiment-wise Type 
I error rate, which is simply the sum of the individual Type I error rates for 
each test.  This follows from a fundamental law of probability, which states 
that for two events E1 and E2, the probability that at least one of these events 
occurs is less than or equal to the sum of the probabilities of each event: 

1 2 1 2Pr Pr PrE E E E (7.113)

Multiple Comparisons and the Bonferroni Inequality 

The term multiple comparisons (also called simultaneous statistical in-
ference) refers to the situation where several hypothesis tests are performed 
simultaneously to answer the same question or several related questions 
(Miller, 1981a).  We have already discussed one example in environmental 
statistics extensively in Chapter 6 in the context of groundwater monitoring 
programs at a hazardous or solid waste sites.  In this context, the experiment-
wise Type I error rate is also called the facility-wide false positive rate 
(FWFPR).  Another example is contained in USEPA (1994b), which sug-
gests performing three different hypothesis tests (the Wilcoxon rank sum 
test, the quantile test, and a “hot-measurement” test) to compare soil chemi-
cal concentrations at a cleanup site with those in a reference area. 

As part of the DQO process (Chapter 2), it is important to be able to set 
the overall Type I error rate and power for a set of hypothesis tests in order 
to balance the costs of these two kinds of mistakes.  Several statistical meth-
ods have been proposed to deal with the problem of multiple comparisons 
(Miller, 1981a).  Probably the most common technique relies on the Bon-
ferroni inequality which, although theoretically crude, actually works quite 
well in many circumstances.  The Bonferroni procedure is based on the fun-
damental result shown in Equation (7.113) and simply sets = */k for each 
individual test, where k is the number of hypothesis tests being performed.  
Other parametric and nonparametric univariate techniques are also available, 
as well as techniques that rely on multivariate analysis. 

One of the major problems with standard multiple comparisons proce-
dures is the reduction in the power of the tests after controlling the experi-
ment-wise Type I error rate.  For example, if we want to perform 10 hy-
pothesis tests and maintain an experiment-wise Type I error rate of 0.05, the 
Bonferroni procedure sets the comparison-wise (individual) -levels to =
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0.005.  With such small individual -levels, any individual test will have a 
low probability of detecting a difference (change, contamination, etc.) unless 
the difference is very large.  As we already discussed in Chapter 6, in the 
context of groundwater monitoring, simultaneous prediction intervals with 
re-sampling take care of the multiple comparisons problem while at the same 
time yield adequate power for detecting contamination. 

COMPARING LOCATIONS BETWEEN SEVERAL 
GROUPS

Sometimes we are interested in comparing observations from several dif-
ferent groups to determine whether all of the groups could be considered to 
come from the same population.  For example, we may be interested in char-
acterizing the “background” concentration of lead, and we may have initially 
stratified our sampling area into three different sub-areas, and now we want 
to determine whether the distributions of lead concentrations in each of the 
three sub-areas are the same. 

One-way Analysis of Variance (ANOVA) is a commonly used statistical 
method to compare two or more groups simultaneously.  Parametric one-way 
ANOVA is an extension of the two-sample t-test.  It simultaneously com-
pares the sample means from each group, and assumes all of the groups fol-
low a normal distribution with the same variance, but possibly different 
population means.  Nonparametric one-way ANOVA (also called the 
Kruskall-Wallis test) is an extension of the Wilcoxon rank sum test.  It is the 
same as parametric ANOVA except it is based on the ranks of the observa-
tions (it compares the averages of the ranks from each group simultane-
ously), and assumes all of the groups follow the same distribution (not nec-
essarily normal) with the same amount of dispersion but possibly different 
medians.  Both parametric and nonparametric ANOVA are based on the idea 
that if the amount of variability between the sample means or medians is 
large relative to the amount of variability within each group, then this is 
good evidence that the population means or medians are not the same.  
Hence the name “Analysis of Variance.” 

USEPA (1989b, p. 5-5) recommends using ANOVA to simultaneously 
compare concentrations from several downgradient wells with background 
well concentrations for groundwater detection monitoring.  There are three 
main problems with this strategy.  First, ANOVA is used to determine 
whether there are any differences between any of the groups, whereas in 
groundwater detection monitoring we are only interested in whether a com-
pliance well differs from background, not whether it differs from another 
compliance well.  Second, the ANOVA may indicate a statistically signifi-
cant difference between monitoring wells which is simply a result of natural 
spatial variability rather than any influence from the hazardous or solid 
waste facility.  Third, because several constituents are usually monitored, 
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you need to perform an ANOVA for each constituent, and you must therefore 
somehow control the facility-wide false positive rate (FWFPR).  Both Gib-
bons (1994, p. 258) and Davis (1994) recommend against using ANOVA for 
groundwater detection monitoring (although Davis, 1994 recommends using 
ANOVA to estimate spatial and temporal components of variability; see 
Chapter 6).  For groundwater monitoring at hazardous waste sites, using si-
multaneous prediction intervals with re-sampling, as explained in Chapter 6, 
is a much better approach. 

Parametric ANOVA 

Suppose there are k groups and we want to compare the averages among 
the k groups.  Following the notation in Equations (7.57) and (7.58), we will 
let

1 2, , ,
ii i inx x x (7.114)

denote the ni observations from group i (i = 1, 2, …, k).  Also, we will let 
N denote the total sample size.  That is, 

1

k

i
i

N n (7.115)

Parametric ANOVA assumes the observations all come from normal 
distributions, with the same variance for each group but possibly different 
means.  Mathematically, these assumptions can be written as follows: 

,

1,2, ; 1,2, ,

ij i ij

i

X

i k j n

(7.116)

where the error terms ij come from a normal distribution with mean 0 and 
standard deviation .  We want to compare the k groups by testing the null 
hypothesis 

0 1 2: kH (7.117)
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against the alternative hypothesis that at least one of the group means differs 
from the others.  As we stated above, parametric one-way ANOVA is an ex-
tension of the two-sample t-test.  It simultaneously compares the sample 
means from each group, and assumes all of the groups follow a normal dis-
tribution with the same variance, but possibly different population means. 

To test the null hypothesis in Equation (7.117), we can use the following 
statistic:

2

2

ˆ

ˆ

between

within

F (7.118)

where

2
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(7.119)
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(7.120)
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In the above equations, the notation SS stands for “Sum of Squares”, DF
stands for “Degrees of Freedom,” and MS stands for “Mean Square.”  These 
are commonly used terms in analysis of variance (Helsel and Hirsch, 1992, 
p. 164; Fisher and van Belle, p. 427; Sheskin, 1997, pp. 336 338; Zar, 1999, 
pp. 178 189)

Looking at Equation (7.120), you can see that the denominator of the F-
statistic in Equation (7.118) is simply the pooled estimate of variance we 
used for two groups (shown in Equation (7.69)) extended to k groups.  This 
is a valid estimate of the population variance common to all groups, no mat-
ter whether the null hypothesis of equal means is true or not.  If the null hy-
pothesis is true, then the numerator of the F-statistic in Equation (7.118) is 
also a valid estimate of the population variance.  If, however, the null hy-
pothesis is not true, then the numerator is bouncing around something larger 
than the population variance and the F-statistic will tend to be larger than 1. 

Under the null hypothesis that all the means are equal, the F-statistic in 
Equation (7.118) follows an F-distribution with k 1 and N k degrees of 
freedom.  The p-value associated with the test is computed as: 

1,Pr k N kp F  F  (7.123)

Note that there is no one-sided vs. two-sided p-value associated with this 
test.  The p-value is inherently “two-sided” since the alternative hypothesis is 
that at least one of the means is different from the rest.  In fact, for the case 
when k = 2 groups, this test is equivalent to the two-sample t-test for testing 
the two-sided alternative shown in Equation (7.59) with = 1 2 and 0 = 
0.  As with the t-test, parametric ANOVA is fairly robust to departures from 
normality and unequal variances, especially if the sample sizes for each 
group are equal or nearly equal (Zar, 1999, p. 185). 

Example 7.22:  Comparing Fecal Coliform Counts between Seasons 

Lin and Evans (1980) reported fecal coliform measures (organisms per 
100 ml) from the Illinois River taken between 1971 and 1976.  Helsel and 
Hirsch (1992, p. 162) present a small subset of these data, which is shown in 
Table 7.21 below. 
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Summer Fall Winter Spring 
 100   65   28   22 
 220  120   58   53 
 300  210  120  110 
 430  280  230  140 
 640  500  310  320 
1600 1100  500 1300 

Table 7.21 Selected fecal coliform counts (organisms per 100 ml) from the Illinois 

River (from Lin and Evans, 1980; as presented in Helsel and Hirsch, 

1992, p. 162) 

Figure 7.19 displays a strip plot of these data along with the means and 
CVs for each season, and the mean for all of the seasons combined.  In this 
example, we would like to determine whether the mean fecal coliform count 
is the same between seasons.  Except for the Winter season, the data do not 
look normally distributed, but instead positively skewed.  (Of course since 
the observations are counts and therefore discrete, they cannot truly come 
from a normal distribution, which is continuous.  Since we are interested in 
comparing means using parametric ANOVA, however, we are mainly inter-
ested in making sure the observations in each group are approximately nor-
mal and that the variances are similar.)  The Shapiro-Francia test for normal-
ity (equivalent to the PPCC test) yields individual p-values of 0.04, 0.06, 0.6, 
and 0.005 for each season, and an overall group p-value of 0.003.  Thus, we 
probably do not want to assume these data can be modeled with a normal 
distribution. 

Figure 7.20 displays a strip plot of the log-transformed data, along with 
the means and standard deviations for each season (based on the log-
transformed data), and the mean for all of the seasons combined.  These data 
are more symmetric, and the Shapiro-Francia test for normality yields indi-
vidual p-values of 1, 1, 0.97, and 0.99 for each season, and an overall group 
p-value of 1 (of course, with such small sample sizes we can only detect 
gross deviations from normality).  In this example, we will use one-way 
ANOVA to test whether the mean concentrations of the log-transformed data 
are significantly different.  Based on our discussion in the section Comparing 
the Means of Log-Transformed Data, this is equivalent to testing whether the 
mean fecal coliform count is the same between all seasons, assuming we are 
willing to assume the coefficient of variation is the same for all four seasons. 

Looking at Figure 7.20, we can see that the variability between seasonal 
means is small compared to the variability with each season.  The one-way 
ANOVA performed on the log-transformed observations yields an F-statistic 
of 1.12 and a p-value of 0.36.  Therefore, we do not have sufficient evidence 
to reject the null hypothesis that the average log-transformed fecal coliform 
count differs between seasons, and thus we conclude that the average fecal 
coliform count does not differ between seasons either. 
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Fecal Coliform Count by Season
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Figure 7.19 Strip plot of the fecal coliform data, with group means (solid lines) and 

overall mean (dashed line) 

Log (Base 10) of Fecal Coliform Count by Season
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Figure 7.20 Strip plot of the log-transformed fecal coliform data, with group means 

(solid lines) and overall mean (dashed line) 
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Menu

To perform the one-way ANOVA on the log-transformed data using the 
S-PLUS pull-down menu, follow these steps. 

1. In the Object Explorer, find and highlight the data frame 
lin.and.evans.80.df.

2. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>k Samples>One-way ANOVA.
This will bring up the One-way Analysis of Variance dialog box. 

3. In the Data Set box lin.and.evans.80.df should be selected.  For 
Variable type log10(Fecal.Coliform).  For Grouping Variable select 
Season.  Click OK or Apply.

Command 

To perform the one-way ANOVA on the log-transformed data using the 
S-PLUS Command or Script Window, type these commands. 

attach(lin.and.evans.80.df)

aov.list <- aov(log10(Fecal.Coliform) ~ Season, 

data=lin.and.evans.80.df)

summary(aov.list)

detach()

Post-Test Multiple Comparisons 

If we had rejected the null hypothesis of equal means in the last example, 
we could have used one of several possible multiple comparisons procedures 
to determine which means differed from each other.  These procedures are 
explained in standard statistics textbooks that discuss ANOVA, including 
Fisher and van Belle (1993, Chapter 12), Helsel and Hirsch (1992,  
pp. 195 202), Milliken and Johnson (1992, Chapter 3), Sheskin (1997,  
pp. 339 369), and Zar (1999, Chapter 11).  See the S-PLUS documentation 
for instructions on how to implement these procedures. 

K-Sample Permutation Tests and Nonparametric ANOVA 

In the section Two-Sample Permutation Tests we explained how to per-
form a two-sample permutation test to compare two means.  This idea can be 
extended to comparing k samples (Manly, 1997, Chapter 7).  In the section 
Wilcoxon Rank Sum Test we pointed out that the Wilcoxon rank sum test is 
equivalent to a two-sample permutation test for the difference between the 
means based on the ranks.  Similarly, the Kruskal-Wallis test is the nonpara-
metric analogue of one-way parametric ANOVA and is based on the ranks of 
the observations (Conover, 1980, p. 229; Fisher and van Belle, 1993, p. 430; 
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Helsel and Hirsch, 1992, p. 159; Hollander and Wolfe, 1999, p. 190; Leh-
mann, 1975, p. 204; Sheskin, 1997, Chapter 17; Zar, 1999, p. 195).  The as-
sumptions of the Kruskal-Wallis test are the same as for parametric one-way 
ANOVA except that the underlying distributions for each group do not have 
to be normal. 

Based on the notation in Equation (7.114), we will let rij denote the rank 
of the jth observation in the ith group (i = 1,2,…,k; j = 1,2,…,ni),
where the ranking is based on combining the observations from all of the k
groups.  The Kruskal-Wallis test statistic H is given by: 
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Under the null hypothesis that the medians for all of the groups are the same, 
the averages of the ranks for each group should be similar so H should be 
“small.”  We reject the null hypothesis if H is too “large.” 

For “large” sample sizes (e.g., ni > 4), the p-value can be computed by 
approximating the distribution of the statistic H with a chi-square distribution 
with k 1 degrees of freedom.  In the case of ties in the ranks, the statistic H
is replaced with H’:
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g
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H
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(7.127)
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where m denotes the number of groups of ties, and tg denotes the number of 
ties in the gth group of ties. 

Example 7.23:  Comparing Median Fecal Coliform Counts between  
Seasons

Here we will repeat Example 7.22, except we will use the Kruskal-Wallis 
test to compare the median fecal coliform count between seasons.  The ob-
served seasonal medians are 365, 245, 175, and 125 organisms/100 ml.  The 
Kruskal-Wallis statistic is 2.69, which yields a p-value of 0.44 based on the 
chi-square distribution with 3 degrees of freedom.  Hence we conclude we 
do not have enough evidence to reject the null hypothesis that the median fe-
cal coliform count is the same between seasons. 

Menu

To perform the Kruskal-Wallis test using the S-PLUS pull-down menu, 
follow these steps. 

1. In the Object Explorer, find and highlight the data frame 
lin.and.evans.80.df.

2. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Compare Samples>k Samples>Kruskal-Wallis Rank 
Test.  This will bring up the Kruskal-Wallis Rank Sum Test dialog 
box.

3. In the Data Set box lin.and.evans.80.df should be selected.  For 
Variable select Fecal.Coliform.  For Grouping Variable select Sea-
son.  Click OK or Apply.

Command 

To perform the Kruskal-Wallis test using the S-PLUS Command or Script 
Window, type these commands. 

attach(lin.and.evans.80.df)

kruskal.test(Fecal.Coliform, Season) 

detach()

COMPARING PROPORTIONS BETWEEN SEVERAL 
GROUPS

Fisher’s exact test and the chi-square test for 2  2 contingency tables can 
be extended to tests on 2 k contingency tables to compare k proportions 
simultaneously (Conover, 1980, Chapter 4; Fisher and van Belle, 1993, 
Chapter 7; Helsel and Hirsch, 1992, Chapter 14; Sheskin, 1997,  
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pp. 209 255; Zar, 1999, Chapter 23).  See the S-PLUS documentation for in-
formation on how to perform these tests with S-PLUS.

COMPARING VARIABILITY BETWEEN SEVERAL 
GROUPS

Sometimes, we are interested in whether the variability is the same be-
tween k groups.  For example, if we send splits from field samples to k sepa-
rate labs for analysis, we are not only interested in whether the labs generally 
agree on the estimated concentration in each physical sample, but also how 
variable the results are within each lab.  In this section we will discuss two 
tests you can use to test whether the variances of k groups are the same (also 
called a test of homogeneity of variance):  Bartlett’s test and Levene’s test. 

We will use a more general model than the one that we used for paramet-
ric ANOVA:  we will assume the observations all come from normal distri-
butions, with possibly different means and possibly different variances for 
each group.  This is the same model as Equation (7.116), except that now the 
error terms ij are assumed to come from a normal distribution with mean 0 
and standard deviation i (i = 1,2,…,k).  We are interested in testing the 
null hypothesis 

2 2 2
0 1 2: kH (7.128)

versus the alternative hypothesis that at least one of the group variances is 
different from the others. 

In the section Parametric ANOVA we pointed out that ANOVA is fairly 
robust to departures from normality and homogeneity of variance, especially 
for moderate to large sample sizes with approximately equal sample sizes in 
each group.  For this reason, Zar (1999, p. 204) does not recommend that 
you perform a test of homogeneity of variance before performing a paramet-
ric ANOVA. 

Bartlett’s Test 

Bartlett’s test of the null hypothesis (7.128) is based on comparing the 
logarithm of the pooled estimate of variance with the sum of the logarithms 
of the estimated variances for each group.  The test statistic is given by: 

2 2
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k
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B N k s (7.129)
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Under the null hypothesis of equal variances, the statistic B is approximately 
distributed as a chi-square random variable with k 1 degrees of freedom 
(Zar, 1999, p. 202; USEPA, 1989b, p. 4-17).  The p-value is thus computed 
as:

2
1Pr kp B (7.130)

where 2  denotes a chi-square random variable with  degrees of freedom. 

A more accurate approximation to the chi-square distribution is obtained 
by dividing the statistic B by a correction factor: 

B
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C
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(Milliken and Johnson, 1992, p. 19; Snedecor and Cochran, 1989, p. 251; 
Zar, 1999, pp. 202 203).  Unlike Levene’s test (see the next section) Bart-
lett’s test is very sensitive to non-normality (Milliken and Johnson, 1992,  
p. 19; Zar, 1999, pp. 185, 204). 

Example 7.24:  Testing Homogeneity of Variance in Arsenic Concentra-
tions between Wells Using Bartlett’s Test 

Consider the arsenic concentrations of Example 7.2.  In that example we 
showed that the observations at each well data do not appear to come from 
normal populations, but a lognormal model seems to be adequate.  Here, we 
will perform Bartlett’s test on both the untransformed and log-transformed 
observations.  For the untransformed observations, Bartlett’s test yields a 
value of 21.1 (with correction) on 5 degrees of freedom and an associated p-
value of 0.0008.  Because these observations are highly skewed, Bartlett’s 
test is not recommended for the untransformed data.  For the log-transformed 
data, Bartlett’s test yields a value of 1.8 on 5 degrees of freedom and an 
associated p-value of 0.88. 
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Menu

To perform Bartlett’s test on the untransformed and log-transformed ob-
servations using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. In the Object Explorer, find and highlight the data frame 
epa.92c.arsenic1.df.

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Compare Samples>k 
Samples>Homogeneous Variances.  This will bring up the Test for 
Homogeneous Variances dialog box. 

3. Under Data to Use, select Pre-Defined Data.  In the Data Set box 
epa.92c.arsenic1.df should be selected.  For Response Variable se-
lect Arsenic.  For Grouping Variable select Well.  For Test select 
Bartlett, and make sure the Correct box is checked.  Click OK or 
Apply.

This will perform the test on the untransformed observations.  To perform 
the test on the log-transformed observations, modify Step 3 above as fol-
lows. 

3. Under Data to Use, select Expression.  In the Response Variable 
box type log(epa.92c.arsenic1.df$Arsenic).  In the Grouping Vari-
able box type epa.92c.arsenic1.df$Well.  For Test select Bartlett,
and make sure the Correct box is checked.  Click OK or Apply.

Command 

To perform Bartlett’s test on the untransformed and log-transformed ob-
servations using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, type these commands. 

attach(epa.92c.arsenic1.df)

var.group.test(Arsenic, groups=Well, test="Bartlett") 

var.group.test(log(Arsenic), groups=Well, 

test="Bartlett")

detach()

Levene’s Test 

Levene’s test of the null hypothesis (7.128) is based on computing abso-
lute deviations from the group mean within each group, then comparing 
these absolute deviations via a standard one-way analysis of variance (Mil-
liken and Johnson, 1992, p. 19; Snedecor and Cochran, 1989, p. 252; 

© 2001 by CRC Press LLC



USEPA, 1992c, p. 23).  The within-group absolute deviations are computed 
as:
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i k j n

(7.133)

Levene’s test is almost as powerful as Bartlett’s test when the underlying dis-
tributions are normal, and unlike Bartlett’s test it tends to maintain the as-
sumed -level when the underlying distributions are not normal (Snedecor 
and Cochran, 1989, p. 252; Milliken and Johnson, 1992, p. 22; Conover et 
al., 1981).  Thus, Levene’s test is generally recommended over Bartlett’s test. 

Example 7.25:  Testing Homogeneity of Variance in Arsenic Concentra-
tions between Wells Using Levene’s Test 

We will repeat Example 7.24, but we will use Levene’s test instead of 
Bartlett’s test.  For the untransformed observations, Levene’s test yields an 
F-statistic of 4.6 with 5 and 18 degrees of freedom and an associated p-value 
of 0.007.  For the log-transformed data, Levene’s test yields an F-statistic of 
1.2 with 5 and 18 degrees of freedom and an associated p-value of 0.36.  
Thus, we conclude that for the untransformed observations, the population 
variances are in fact different between the wells.  If we want to make infer-
ences based on the log-transformed observations, then we do not have 
enough evidence to reject the null hypothesis that the population variances 
(for the log-transformed observations) are the same between wells. 

Menu

To perform Levene’s test on the untransformed and log-transformed ob-
servations using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow the same steps as above for performing Bartlett’s test, except in Step 
3 for Test select Levene.

Command 

To perform Levene’s test on the untransformed and log-transformed ob-
servations using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, use the same commands as above for performing Bartlett’s test, ex-
cept set the test argument to var.group.test to test="Levene".
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SUMMARY 

 In Step 5 of the DQO process (see Chapter 2), you usually link the 
principal study question you defined in Step 2 with some population 
parameter such as the mean, median, 95th percentile, etc. 

 A hypothesis test or significance test is a formal mathematical 
mechanism for objectively making a decision in the face of uncer-
tainty, and is usually used to answer a question about the value of a 
population parameter. 

 Hypotheses tests are usually based on a test statistic, say T, which is 
computed from a random sample from the population.  A test statis-
tic is a random quantity  

 Because you make your decision based on the value of a random 
quantity, you will sometimes make the “wrong” choice.  Statisticians 
call the two kinds of mistakes you can make a Type I error (rejecting 
the null hypothesis when it is true) and a Type II error (not rejecting 
the null hypothesis when it is false).  See Table 7.2. 

 The probability of making a Type I error is usually denoted with the 
Greek letter  (alpha) and is called the significance-level or -level
of the test.  The probability of making a Type II error is usually de-
noted with the Greek letter  (beta).  The probability 1  denotes the 
probability of correctly deciding to reject the null hypothesis when in 
fact it is false.  This probability is called the power of the hypothesis 
test.

 The choice of values for  and  is a subjective, policy decision.
The possible choices for  and  are limited by the sample size of 
the experiment, the variability inherent in the data, and the magni-
tude of the difference between the null and alternative hypothesis.  If 
you reduce the Type I error, then you increase the Type II error, and 
vice-versa.

 The p-value is the probability of seeing a test statistic as extreme or 
more extreme than the one you observed, assuming the null hypothe-
sis is true.  The p-value is not the probability that the null hypothesis 
is true.  If the test statistic has a continuous distribution, then the p-
value is uniformly distributed between 0 and 1 if the null hypothesis 
is true.  If the null hypothesis is not true, then the p-value will tend to 
be “small.” 

 A (1 )100% confidence interval for  consists of all possible val-
ues of  that are associated with not rejecting the null hypothesis at 
significance level .  Thus, if you know how to create a confidence 
interval for a parameter, you can perform a hypothesis test for that 
parameter, and vice-versa (see Table 7.4). 

 In this chapter we presented hypothesis tests concerning proportions, 
locations, variability, and goodness-of-fit to a distribution. 
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EXERCISES

7.1. Consider the arsenic concentration data of Exercise 3.2 shown in 
Table 3.13 (stored in the data frame arsenic3.df in 
ENVIRONMENTALSTATS for S-PLUS).  Perform a Shapiro-Wilk 
goodness-of-fit test for normality on the data from the Back-
ground well. 

7.2. We considered the S-PLUS built-in data set halibut in Exercise 
3.4.  Perform a Shapiro-Wilk goodness-of-fit test for normality on 
both catch-per-unit-effort (CPUE) and biomass. 

7.3. Consider the nickel concentration data of Exercise 3.1 shown in 
Table 3.12 (stored in the data frame epa.92c.nickel1.df in 
ENVIRONMENTALSTATS for S-PLUS).

a. Plot the observations by well. 
b. Perform a Shapiro-Wilk group test for normality and log-

normality on these data, grouping the observations by 
well.

c. Plot the results of the goodness-of-fit tests. 

7.4. Consider the S-PLUS data set rain.nyc1, which contains an-
nual total New York City precipitation (inches) from 1869 to 
1957.  In Exercise 3.6 we looked at several Box-Cox transforma-
tions and computed the value of the PPCC.  Perform the PPCC 
goodness-of-fit test for normality for the original data and the 
transformed data, using the transformation you chose as the “best” 
in Exercise 3.6. 

7.5. The built-in data set quakes.bay in S-PLUS contains the loca-
tion, time, and magnitude of earthquakes in the San Francisco Bay 
Area from 1962 to 1981. 

a. Plot a histogram of these data. 
b. Try fitting a 3-parameter lognormal distribution to these 

data.  Plot the results of the Shapiro-Wilk goodness-of-fit 
test (observed with fitted distribution, observed with fitted 
cdf, normal Q-Q plot, etc.). 

c. Why does the 3-parameter lognormal model not work 
here? 

7.6. In Example 7.3 we constructed 90% and 95% lower confidence 
interval for the probability p of daily maximum ozone exceeding 
120 ppb.  Use ENVIRONMENTALSTATS for S-PLUS to construct 
these confidence intervals. 
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7.7. As an example of the robustness of the t-test to departures from 
normality, compare the results of the t-test and Chen’s modified t-
test using the data set rain.nyc1 to test the null hypothesis that 
the annual total rainfall in New York City is less than or equal to 
40 inches vs. the alternative that it is greater than 40 inches.  (Plot 
the data to get an idea of what it looks like.) 

7.8. As an example of how skewness can affect the results of the t-test, 
compare the results of the t-test and Chen’s modified t-test using 
the TcCB observations from the Cleanup area to test the null hy-
pothesis that the average TcCB concentration in the Cleanup area 
is less than or equal to 1 ppb vs. the alternative that it is greater 
than 1 ppb.  (Plot the data to get an idea of what it looks like.) 

7.9. For the one-sample Wilcoxon signed rank test, tabulate the distri-
bution of R+ for n = 2, 3, and 4, assuming there are no ties. 

7.10. Use the aldicarb data of Example 7.5 and Example 7.6 to show 
that the Wilcoxon signed rank test is really the same thing as the 
one-sample permutation test based on the signed ranks.  That is, 
for each well, create a vector that contains the signed ranks of the 
quantities (Aldicarb-7), then perform a one-sample permutation 
test for the null hypothesis that the population mean of these 
quantities is 0. 

7.11. In Example 7.13 we use the two-sample t-test to compare sulfate 
concentrations at a background and downgradient well.  The re-
sulting t-statistic is 5.66 with 12 degrees of freedom. 

a. Plot the pdf of a t-distribution with 12 degrees of freedom 
and add a vertical line at x = 5.66. 

b. Explain what part of this plot represents the p-value for 
the test of the null hypothesis that the average sulfate con-
centrations at the two wells are the same against the alter-
native hypothesis that the average concentration of sulfate 
at the downgradient well is larger than the average con-
centration at the background well. 

7.12. Consider the copper concentrations shown in Table 3.14 in Exer-
cise 3.7 and stored in the data frame epa.92c.copper1.df in 
ENVIRONMENTALSTATS for S-PLUS.  Use the t-test and Wilcoxon 
rank sum test to compare the data from the two background wells. 

7.13. Consider the Wilcoxon rank sum test to compare the locations of 
two groups.  Show that if you know the sum of the ranks of the 
observations in the first group, you can figure out the difference 
between the average ranks for the two groups.  This shows that 
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the sum of the ranks for the first group is an equivalent statistic to 
the difference between the average ranks. 

7.14. In Example 7.19 and Example 7.20 we compared the incidence of 
thyroid tumors in rats exposed and not exposed to ETU.  In the 
control group, 2 out of 72 (3%) rats developed thyroid tumors, 
and in the group exposed to a dietary level of 250 ppm of ETU, 16 
out of 69 rats (23%) developed thyroid tumors.  Suppose in the 
exposed group only 6 out of 69 (9%) developed thyroid tumors.  
Is this difference of 3% vs. 9% statistically significant?  Use both 
Fisher’s exact test and the approximate test. 

7.15. Consider the nickel concentration data of Exercise 3.1 shown in 
Table 3.12 (stored in the data frame epa.92c.nickel1.df in 
ENVIRONMENTALSTATS for S-PLUS).  Perform a test for variance 
homogeneity (between wells) for both the original and log-
transformed observations using both Bartlett’s and Levene’s test. 

7.16. Using the nickel data from the previous exercise, perform a para-
metric and nonparametric one-way ANOVA to compare the con-
centrations between wells.  Use both the original and log-
transformed data.  Do the results differ much for the original vs. 
log-transformed data? 
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8 DESIGNING A SAMPLING 
PROGRAM, PART II 

SAMPLE SIZE AND POWER

In Chapters 5 to 7 we explained various statistical methods for estimating 
parameters and performing hypothesis tests, for example, to decide whether 
soil at a Superfund site has been adequately cleaned up.  In all of these chap-
ters we concentrated on specifying the confidence level for a confidence in-
terval, or specifying the Type I (false positive) error rate for a hypothesis test 
(e.g., the probability of declaring a site is contaminated when in fact it is 
clean; see Tables 7.1 and 7.2 in Chapter 7).  In this chapter, we will talk 
about how you can determine the sample size you will need for a study.  If 
the study involves estimating a parameter, you will need to decide how wide 
you are willing to have your confidence intervals.  If the study involves test-
ing a hypothesis, you will need to decide how you want to balance the Type I 
and Type II error rates based on detecting a specified amount of change.  The 
tools we talk about in this chapter are used in Steps 6 and 7 of the DQO 
process (see Chapter 2) to specify limits on the decision error rates and in the 
iterative step of optimizing the design. 

DESIGNS BASED ON CONFIDENCE INTERVALS 

In Chapters 5 and 7 we discussed various ways to estimate parameters 
and create confidence intervals for the parameters.  In this section, we will 
discuss how you can investigate the trade-off between sample size, confi-
dence level, and the half-width of the confidence interval. 

Confidence Interval for the Mean of a Normal Distribution 

Equation (5.78) displays the formula for constructing a two-sided 
(1 )100% confidence interval for the population mean, assuming the ob-
servations come from a normal distribution.  The half-width of this confi-
dence interval (denoted h) is given by: 

1,1 2n
s

h t
n

(8.1)
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which depends on the sample size (n), the confidence level (1 ), and the 
estimated standard deviation (s).  Equation (8.1) can be rewritten to show 
the required sample size as a function of the half-width: 

2

1,1 2n
s

n t
h

(8.2)

(Zar, 1999, p. 105).  Because the quantity n appears in both sides of this 
equation, the equation must be solved iteratively. 

You can use formulas (8.1) and (8.2) to help you decide how many sam-
ples you need to take for a given precision (half-width) of the confidence in-
terval.  To apply these formulas, you will need to assume a value for the es-
timated standard deviation s.  The value you choose for s is usually based 
on a pilot study, a literature search, or “expert judgment.”  It is usually a 
good idea to use some kind of upper bound on s to ensure an adequate sam-
ple size. 

Example 8.1:  Design for Estimating the Mean of Sulfate Concentrations 

In Example 7.13 we estimated the mean and standard deviation of sulfate 
concentrations (ppm) at a background well as 536.3 and 26.7, respectively, 
based on a sample size of n = 8 quarterly samples.  A two-sided 95% confi-
dence interval for this mean is [514, 559], which has a half-width of 22.5 
ppm.  Assuming a standard deviation of about s = 30, if we had taken only 
four observations, the half-width of the confidence interval would have been 
about 48 ppm.  Also, if we want the confidence interval to have a half-width 
of 10 ppm, we would need to take n = 38 observations.  Figure 8.1 displays 
the half-width of the confidence interval as a function of the sample size for 
various confidence levels. 

Menu

To compute the half-width of the confidence interval assuming a sample 
size of n = 4 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Normal Mean>Compute.  This will bring up the Normal 
CI Half-Width and Sample Size dialog box. 

2. For Compute, select CI Half-Width, for Sample Type select One-
Sample, for Confidence Level(s) (%) type 95, for n type 4, and for 
Standard Deviation(s) type 30.  Click OK or Apply.
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Figure 8.1 The half-width of the confidence interval for the mean of background 

sulfate concentrations (ppm) as a function of sample size and confi-

dence level 

To compute the required sample size for a specified half-width of 10, follow 
the same steps as above, except for Compute select Sample Size, and for 
Half-Width type 10.

To create the plot shown in Figure 8.1, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Normal Mean>Plot.  This will bring up the Plot Normal 
CI Design dialog box. 

2. For X Variable select Sample Size, for Y Variable select Half-
Width, for Minimum X type 4, for Maximum X type 80, for Sam-
ple Type select One-Sample, for Confidence Level (%) type 99,
and for Standard Deviation type 30.

3. Click on the Plotting tab.  In the X-Axis Limits box type c(0, 80).
In the Y-Axis Limits box type c(0, 90).  Click Apply.

4. Click on the Model tab.  For Confidence Level (%) type 95.  Click 
on the Plotting tab, check the Add to Current Plot box, and for Line 
Type type 4.  Click Apply.

5. Click on the Model tab.  For Confidence Level (%) type 90.  Click 
on the Plotting tab, and for Line Type type 8.  Click OK.
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Command 

To compute the half-width of the confidence interval assuming a sample 
size of n = 4 using the ENVIRONMENTALSTATS for S-PLUS Command or 
Script Window, type this command. 

ci.norm.half.width(n.or.n1=4, sigma.hat=30) 

To compute the required sample size for a specified half-width of 10, type 
this command. 

ci.norm.n(half.width=10, sigma.hat=30) 

To create the plot shown in Figure 8.1, type these commands. 

plot.ci.norm.design(sigma.hat=30, range.x.var=c(4, 

80), conf=0.99, xlim = c(0, 80), ylim = c(0, 90), 

main="Half-Width vs. Sample Size for Confidence 

Interval for Mu\nWith Sigma.Hat=30 and Various 

Confidence Levels") 

plot.ci.norm.design(sigma.hat=30, range.x.var=c(4, 

80), conf=0.95, plot.lty=4, add=T) 

plot.ci.norm.design(sigma.hat=0.5, range.x.var=c(4, 

80), conf=0.90, plot.lty=2, add=T) 

legend(40, 60, c("99%", "95%", "90%"), lty=c(1, 4, 2), 

lwd=1.5)

Confidence Interval for the Difference between Two Means of 
Normal Distributions 

Equation (7.81) displays the formula for constructing a two-sided 
(1 )100% confidence interval for the difference between two population 
means, assuming the observations from each group come from normal dis-
tributions.  Assuming equal variances in each group, the half-width of this 
confidence interval is given by: 

1 2 2,1 2
1 2

1 1
n n ph t s

n n
(8.3)

Assuming equal sample sizes in each group (i.e., n1 = n2 = n), Equation 
(8.3) can be rewritten to show the required sample size in each group as a 
function of the half-width: 
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(8.4)

(Zar, 1999, p. 131).  As in the one-sample case, you must supply a value for 
the pooled estimate of standard deviation sp.

If the sample size for group 2 (n2) is constrained to a certain value, the 
required sample size for group 1 can be computed as: 

2
1

22

n n
n

n n
(8.5)

(Zar, 1999, p. 131).  If 2n1–n is less than or equal to 0, then either n2 must 
be increased, the half-width h must be increased, and/or the confidence level 
(1 )100% must be decreased. 

Example 8.2:  Design for Estimating the Difference in Sulfate 
Concentrations between a Background and Compliance Well 

In Example 7.13 we computed the sample means and standard deviations 
of sulfate concentrations in ground water at a background and compliance 
well (sampled quarterly) based on sample sizes of 8 and 6, respectively.  The 
background well mean and standard deviation were 536 and 26.7 ppm, and 
the compliance well mean and standard deviation were 608 and 18.3 ppm.  
The standard deviation based on the pooled estimate of variance is 23.6 ppm.  
The 95% confidence interval for the difference between the two means 
(compliance – background) is [44.3, 99.8] which has a half-width of 27.8 
ppm.  Assuming a standard deviation of about 25 ppm, if we had taken 10 
observations at each well, the half-width would have been about 23.5 ppm.  
Also, if we want the confidence interval to have a half-width of 10 ppm, we 
would need to take n1 = n2 = 50 observations (12.5 years of quarterly sam-
pling) at each well. 

Menu

To compute the half-width of the confidence interval assuming a sample 
size of n1 = n2 = 10 at each well using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Normal Mean>Compute.  This will bring up the Normal 
CI Half-Width and Sample Size dialog box. 
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2. For Compute, select CI Half-Width, for Sample Type select Two-
Sample, for Confidence Level(s) (%) type 95, for n1 type 10, for n2 
type 10, and for Standard Deviation(s) type 25.  Click OK or  
Apply.

To compute the required sample size for a specified half-width of 10 ppm, 
follow the same steps as above, except for Compute select Sample Size, and 
for Half-Width type 10.

Command 

To compute the half-width of the confidence interval assuming a sample 
size of n1 = n2 = 10 at each well using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type this command. 

ci.norm.half.width(n.or.n1=10, n2=10, sigma.hat=25) 

To compute the required sample size for a specified half-width of 10 ppm, 
type this command. 

ci.norm.n(half.width=10, sigma.hat=25, 

sample.type="two.sample")

Confidence Interval for a Binomial Proportion 

Equations (5.92) to (5.98) display formulas used to construct a two-sided 
(1 )100% confidence interval for a binomial proportion.  Equation (5.101) 
displays the formula based on the normal approximation, and Equation 
(5.103) displays the formula based on the normal approximation and conti-
nuity correction.  Using any three of these methods, you can compute the 
half-width of the confidence interval for a given sample size, or compute the 
required sample size given a specific half-width, as long as you specify an 
assumed value for the estimated proportion.  For example, using the normal 
approximation with the continuity correction (Equation (5.103)), the formula 
for the half-width (h) given the sample size (n) is: 

1 2
ˆˆ 1

2

pq
h z

n n
(8.6)

and the formula for the sample size given a specific half-width is: 

2
2
1 2 1 2ˆˆ ˆˆ2n z pq h z pq (8.7)
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where

ˆ ˆ1q p  (8.8)

Example 8.3:  Design for Estimating the Probability of a Nondetect 

In Example 5.22 we computed a confidence interval for the probability of 
observing a nondetect value for a benzene concentration in groundwater.  Of 
n = 36 past observations, 33 of these (about 92%) were nondetects, and the 
two-sided 95% confidence interval for the binomial proportion is [0.78, 
0.98].  The half-width of this interval is 0.1, or 10 percentage points.  As-
suming an estimated proportion of 90%, if we had taken only n = 10 obser-
vations, the half-width of the confidence interval would have been about 
0.22 (22 percentage points).  Also, if we want the confidence interval to have 
a half-width of 0.02 (two percentage points), we would need to take n = 914 
observations.  Figure 8.2 displays the half-width of the confidence interval as 
a function of the sample size for various confidence levels. 
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Figure 8.2 The half-width of the confidence interval for the probability of a non-

detect as a function of sample size and confidence level, assuming an 

estimated nondetect proportion of about 90% 
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Menu

To compute the half-width of the confidence interval assuming a sample 
size of n = 10 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Binomial Proportion>Compute.  This will bring up the 
Binomial CI Half-Width and Sample Size dialog box. 

2. For Compute, select CI Half-Width, for Sample Type select One-
Sample, for Confidence Level(s) (%) type 95, for n type 10, and for 
Proportion type 0.9.  Click OK or Apply.

To compute the required sample size for a specified half-width of 0.02, fol-
low the same steps as above, except for Compute select Sample Size, and 
for Half-Width type 0.02.

To create the plot shown in Figure 8.2, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Binomial Proportion>Plot.  This will bring up the Plot 
Binomial CI Design dialog box. 

2. For X Variable select Sample Size, for Y Variable select Half-
Width, for Minimum X type 10, for Maximum X type 200, for 
Sample Type select One-Sample, for Confidence Level (%) type 
99, and for Proportion type 0.9.

3. Click on the Plotting tab.  In the X-Axis Limits box type c(0, 200).  
In the Y-Axis Limits box type c(0, 0.3).  Click Apply.

4. Click on the Model tab.  For Confidence Level (%) type 95.  Click 
on the Plotting tab, check the Add to Current Plot box, and for Line 
Type type 4.  Click Apply.

5. Click on the Model tab.  For Confidence Level (%) type 90.  Click 
on the Plotting tab, and for Line Type type 8.  Click OK.

Command 

To compute the half-width of the confidence interval assuming a sample 
size of n = 10 using the ENVIRONMENTALSTATS for S-PLUS Command or 
Script Window, type this command. 

ci.binom.half.width(n.or.n1=10, p.hat=0.9, approx=F) 

To compute the required sample size for a specified half-width of 0.02, type 
this command. 

ci.binom.n(half.width=0.02, p.hat=0.9) 
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To create the plot shown in Figure 8.2, type these commands. 

plot.ci.binom.design(p.hat=0.9, range.x.var=c(10, 

200), conf=0.99, xlim=c(0, 200), ylim=c(0, 0.3), 

main="Half-Width vs. Sample Size for Confidence 

Interval for p\nWith p.Hat=0.9 and Various 

Confidence Levels") 

plot.ci.binom.design(p.hat=0.9, range.x.var=c(10, 

200), conf=0.95, plot.lty=4, add=T) 

plot.ci.binom.design(p.hat=0.9, range.x.var=c(10, 

200), conf=0.90, plot.lty=2, add=T) 

legend(100, 0.25, c("99%", "95%", "90%"), lty=c(1, 4, 

2), lwd=1.5) 

Confidence Interval for the Difference between Two Binomial 
Proportions 

For the two sample case, Equation (7.105) displays the formula used to 
construct a two-sided (1 )100% confidence interval for the difference be-
tween two binomial proportions.  You can compute the half-width of the 
confidence interval for given sample sizes, or compute the required sample 
size given a specific half-width, as long as you specify assumed values for 
both of the estimated proportions.  For example, the formula for the half-
width (h) given the sample sizes (n1 and n2) is: 

1 1 2 2
1 2

1 2 1 2

ˆ ˆ ˆ ˆ 1 1 1

2

p q p q
h z

n n n n
(8.9)

and the formula for the sample size for group 1 (n1) given a specific half-
width and ratio r = n2/n1 is: 

2
2 2 2

1 1 2 1 1

2

2 2
1 2 1 1

ˆ ˆ1 1
ˆ ˆ1 2 1

ˆ ˆ
ˆ ˆ

p q
n z p q h

r r r

p q
z p q

r

(8.10)
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Example 8.4:  Design for Estimating the Difference between Incidence 
Rates of Thyroid Tumors in Rats 

In Examples 7.19 and 7.20 we compared the incidence of thyroid tumors 
in rats exposed and not exposed to ethylene thiourea (ETU).  In the exposed 
group, 16 out of 69 rats (23%) developed thyroid tumors, whereas in the un-
exposed group only 2 out of 72 (3%) developed thyroid tumors.   

The two-sided 95% confidence interval for the difference between the in-
cidence rates (exposed – unexposed) is [0.08, 0.32], which has a half-width 
of 0.12, or 12 percentage points.  Assuming estimated incidence rates of 
about 20% and 5%, if we had used only n1 = n2 = 20 rats in each group, the 
half-width of the confidence interval would have been about 0.25 (25 per-
centage points).  Also, if we want the confidence interval to have a half-
width of 0.02 (two percentage points), we would need to use n1 = n2 =
2,092 rats in each group. 

Menu

To compute the half-width of the confidence interval assuming a sample 
size of n1 = n2 = 20 rats in each group using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Binomial Proportion>Compute.  This will bring up the 
Binomial CI Half-Width and Sample Size dialog box. 

2. For Compute, select CI Half-Width, for Sample Type select Two-
Sample, for Confidence Level(s) (%) type 95, for n1 type 20, for n2 
type 20, for Proportion 1 type 0.2, and for Proportion 2 type 0.05.
Click OK or Apply.

To compute the required sample size for a specified half-width of 0.02, fol-
low the same steps as above, except for Compute select Sample Size, and 
for Half-Width type 0.02.

Command 

To compute the half-width of the confidence interval assuming a sample 
size of n1 = n2 = 20 rats in each group using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type this command. 

ci.binom.half.width(n.or.n1=20, p.hat.or.p1.hat=0.2, 

n2=20, p2.hat=0.05) 

To compute the required sample sizes for a specified half-width of 0.02, type 
this command. 
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ci.binom.n(half.width=0.02, p.hat.or.p1.hat=0.2, 

p2.hat=0.05)

DESIGNS BASED ON NONPARAMETRIC 
CONFIDENCE, PREDICTION, AND TOLERANCE 
INTERVALS 

In Chapter 5 we discussed nonparametric confidence intervals, and in 
Chapter 6 we discussed nonparametric prediction and tolerance intervals.  In 
this section we will discuss how you can investigate the trade-off between 
sample size and confidence levels.  In general, there is a heavy price to pay 
for not making an assumption about the parent distribution of the observa-
tions:  required sample sizes for a specified confidence level are usually very 
large! 

Nonparametric Confidence Interval for a Quantile 

In Chapter 5 we discussed how to construct nonparametric confidence in-
tervals for a quantile (percentile) based on using order statistics.  Equations 
(5.154) to (5.160) show the formulas for the two-sided and one-sided confi-
dence intervals and their associated confidence levels.  Based on these for-
mulas, you can compute the required sample size for a specific confidence 
level, or the associated confidence level for a specific sample size.  Table 
5.18 displays sample sizes and associated confidence levels for a one-sided 
upper nonparametric confidence interval for the 95th percentile based on us-
ing the maximum value (the largest order statistic) as the upper confidence 
limit. 

Example 8.5:  Design for an Upper Bound on the 95th Percentile 

In Example 5.27 we computed a nonparametric upper confidence bound 
for the 95th percentile of copper concentration in groundwater at three back-
ground monitoring wells.  Out of n = 24 observations, the largest one was 
9.2 ppb.  The confidence level associated with the one-sided upper confi-
dence interval [0, 9.2] was only 71%.  If we had taken only n = 12 observa-
tions (four at each well), the associated confidence level would have been 
46%.  As we noted in Example 6.10, if we had wanted a confidence level of 
at least 95% we would have had to have taken n = 59 observations (about 20 
at each well). 

Menu

To compute the confidence level of the one-sided upper confidence inter-
val for the 95th percentile assuming a sample size of n = 12 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 
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1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Confidence In-
tervals>Nonparametric>Compute.  This will bring up the Non-
parametric CI Confidence Level and Sample Size dialog box. 

2. For Compute select Confidence Level, and for n type 12.  Click 
OK or Apply.

To compute the required sample sizes for a specified confidence level of 
95%, follow the same steps as above, except for Compute select Sample
Size, and for Confidence Level (%) type 95.

Command 

To compute the confidence level of the one-sided upper confidence inter-
val for the 95th percentile assuming a sample size of n = 12 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

ci.npar.conf.level(n=12, p=0.95, ci.type="upper") 

To compute the required sample size for a specified confidence level of 95%, 
type this command. 

ci.npar.n(p=0.95, ci.type="upper") 

Nonparametric Prediction Intervals 

In Chapter 6 we discussed how to construct nonparametric prediction in-
tervals based on using order statistics.  Equations (6.42) to (6.48) show the 
formulas for the two-sided and one-sided prediction intervals for the next k
out of m observations.  Equations (6.49) to (6.53) show the formulas for the 
confidence level associated with the nonparametric prediction interval.  
These formulas depend on k, m, which order statistics are used (usually the 
smallest and/or largest values are used), and the sample size (n).  Based on 
these formulas, you can compute the required sample size for a specific con-
fidence level, or the associated confidence level for a specific sample size.  
Table 8.1 shows the required sample size for a two-sided prediction interval 
for the next m future observations (k = m) for various values of m and re-
quired confidence levels, assuming we are using the minimum and maxi-
mum values as the prediction limits. 

Example 8.6:  Design to Detect TcCB Contamination at the Cleanup Site 

In Example 6.7 we compared using a tolerance interval and a prediction 
interval to determine whether there is evidence of residual TcCB contamina-
tion in the Cleanup area based on using the Reference area to calculate  
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Confidence  
Level (%) 

# Future  
Observations (m)

Required Sample 
Size(n)

   90       1      19 
       5      93 
      10     186 
   95       1      39 
       5     193 
      10     386 

Table 8.1  Required sample sizes for a two-sided nonparametric prediction interval 

for the next m observations 

“background.”  In that example, we assumed the Reference area data come 
from a lognormal distribution.  We also noted that the tolerance interval ap-
proach should never be used.  Here we will not make any assumption about 
the distribution of TcCB in the Reference area and we will determine how 
many observations we need to take in the Reference area to create a one-
sided upper prediction limit to encompass the next k = m = 77 observations 
(which we will take from the Cleanup area). 

If we want an associated confidence level of 95%, we will need to take n
= 1,463 observations!  Recall that if we are willing to make an assumption 
about the distribution of TcCB in the Reference area (e.g., lognormal), then 
there is no requirement on sample size in order to construct a 95% level pre-
diction interval for the next 77 observations (although an increasing sample 
size will decrease the magnitude of the upper prediction limit). 

Menu

To compute the required sample size to construct a one-sided upper non-
parametric prediction limit for the next k = m = 77 observations with a 
specified confidence level of 95% using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Prediction Inter-
vals>Nonparametric>Compute.  This will bring up the Nonpara-
metric PI Confidence Level and Sample Size dialog box. 

2. For Compute select Sample Size, for Confidence Level (%) type 
95, for # Future Obs type 77, for Min # Obs PI Should Contain type 
77.  Click OK or Apply.

Command 

To compute the required sample size to construct a one-sided upper non-
parametric prediction limit for the next k = m = 77 observations with a 
specified confidence level of 95% using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type this command. 
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pred.int.npar.n(m=77, pi.type="upper") 

Nonparametric Tolerance Intervals 

In Chapter 6 we discussed how to construct nonparametric tolerance in-
tervals based on using order statistics.  The form of a nonparametric toler-
ance interval is exactly the same as for a nonparametric prediction interval 
(see Equations (6.42) to (6.48)).  For a -content tolerance interval, Equation 
(6.75) shows the confidence level for a specified coverage, and Equation 
(6.76) show the coverage for a specified confidence level.  These formulas 
depend on which order statistics are used (usually the smallest and/or largest 
values are used), and the sample size (n).  Based on these formulas, you can 
compute the required sample size for a specific confidence level and cover-
age, the associated confidence level for a specific sample size and coverage, 
or the associated coverage for a specific sample size and confidence level.  
Table 8.2 shows the required sample size for a two-sided tolerance interval 
for various required confidence levels and coverages, assuming we are using 
the minimum and maximum values as the prediction limits. 

Confidence  
Level (%) Coverage (%) 

Required Sample 
Size(n)

   90      80      18 
      90      38 
      95      77 
   95      80      22 
      90      46 
      95      93 

Table 8.2  Required sample size for a two-sided nonparametric tolerance interval 

Example 8.7:  Design for an Upper Bound on the 95th Percentile 

In Example 8.5 we discussed required sample sizes for a one-sided upper 
nonparametric confidence interval for the 95th percentile.  We noted that to 
achieve a confidence level of at least 95% would require n = 59 observa-
tions.  Based on the relationship between confidence intervals for percentiles 
and tolerance intervals, this is the same thing as saying that to construct a 
one-sided upper tolerance interval with at least 95% coverage and a 95% 
confidence level requires a sample size of n = 59. 

Menu

To compute the required sample size for a specified confidence level of 
95% and coverage of 95% using the ENVIRONMENTALSTATS for S-PLUS pull-
down menu, follow these steps. 
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1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Tolerance Inter-
vals>Nonparametric>Compute.  This will bring up the Nonpara-
metric TI Confidence Level and Sample Size dialog box. 

2. For Compute select Sample Size, for Coverage (%) type 95, and for 
Confidence Level (%) type 95.  Click OK or Apply.

Command 

To compute the required sample size for a specified confidence level of 
95% and coverage of 95% using the ENVIRONMENTALSTATS for S-PLUS

Command or Script Window, type this command. 

tol.int.npar.n(coverage=0.95, ti.type="upper", 

conf.level=0.95)

DESIGNS BASED ON HYPOTHESIS TESTS 

In Chapter 7 we discussed various ways to perform hypothesis tests on 
population parameters (e.g., means, medians, proportions, etc.).  We also 
discussed the two kinds of mistakes you can make when you perform a hy-
pothesis test:  Type I and Type II errors.  In Chapters 6 and 7 we concen-
trated on maintaining the Type I error rate (significance level) at a pre-
specified value.  In this section, we will discuss how you can investigate the 
trade-off between sample size, Type I error, Type II error or power, and 
amount of deviation from the null hypothesis. 

Testing the Mean of a Normal Distribution 

In Equation (7.29) we introduced Student’s t-statistic to test the null hy-
pothesis H0: = 0 assuming the observations come from a normal (Gaus-
sian) distribution: 

0x
t

s n
 (8.11)

When the null hypothesis is true, the sample mean x  is bouncing around the 
true mean 0, so the t-statistic is bouncing around 0 (it follows a t-
distribution with n 1 degrees of freedom).  Figure 7.9 displays the distribu-
tion of this statistic for a sample size of n = 10 when the null hypothesis is 
true. 

Now suppose the null hypothesis is false and that the true mean  is some 
value different from 0.  We can rewrite the t-statistic as follows: 
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(8.12)

where

0  (8.13)

denotes the amount of deviation from the null hypothesis.  Looking at the 
second line of Equation (8.12), we see that under the alternative hypothesis 
Student’s t-statistic is the sum of a random variable that follows Student’s t-
distribution (with n 1 degrees of freedom) and a second random variable 
(because s is a random variable) that is bouncing around some positive or 
negative value, depending on whether  is positive or negative. 

As a concrete example, suppose we are interested in testing the null hy-
pothesis H0: = 20 against the one-sided alternative hypothesis H0:
using a significance level of 5%.  Our test statistic would be computed as: 

20

10

x
t

s
 (8.14)

and we would reject the null hypothesis if t > t9,.95 = 1.83.  Figure 8.3 
shows the distribution of the observations under the null hypothesis = 20 
and the particular alternative hypotheses = 21 assuming a standard devia-
tion of = 1.  Figure 8.4 shows the distribution of the t-statistic under the 
null and alternative hypotheses, along with the critical value 1.83.  When the 
null hypothesis is true, the area under the distribution curve of the t-statistic 
to the right of the critical value of 1.83 (cross-hatched area) is the Type I er-
ror rate, which we set equal to 5%.  When the alternative hypothesis is true 
and = 21, the area under the distribution curve of the t-statistic to the right 
of the critical value of 1.83 (single-hatched and cross-hatched area) is the 
power of the test, which in this case is about 90%. 

In general, when the null hypothesis is false, Student’s t-statistic follows 
a non-central t-distribution with non-centrality parameter given by: 
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Distribution of Observations
under Null and Alternative Hypotheses
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Figure 8.3 The distribution of the original observations under the null ( = 20) and 

alternative ( = 21) hypotheses, assuming a population standard devia-

tion of = 1 
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Figure 8.4 The distribution of Student’s t-statistic under the null ( = 20) and alter-

native ( = 21) hypotheses, assuming a population standard deviation of 

= 1 
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0n n (8.15)

(Johnson et al., 1995, pp. 508 510).  For the one-sided upper alternative hy-
pothesis H0: 0, the power of this test is given by: 

1,1

1,1

Pr

1 , 1,

n

n

Power t t

G t n

(8.16)

where G(x, , ) denotes the cumulative distribution function of the 
non-central t-distribution with  degrees of freedom and non-centrality pa-
rameter  evaluated at x.  For the one-sided lower alternative hypothesis H0:

0, the power of this test is given by: 

1,

1,

Pr

, 1,

n

n

Power t t

G t n

(8.17)

Finally, for the two-sided alternative H0: 0, the power of this test is 
given by:  

1, 2 1,1 2

1, 2

1,1 2

Pr Pr

, 1,

1 , 1,

n n

n

n

Power t t t t

G t n

G t n

(8.18)

Looking at Equations (8.15) to (8.18), we see that the power of the one-
sample t-test depends on the sample size (n), the Type I error rate ( ), and 
the relative deviation from the null hypothesis ( / ).  Often,  is called the 
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minimal detectable difference (MDD), and /  is called the scaled minimal 
detectable difference.

Example 8.8:  Design for Testing Whether the Mean Aldicarb 
Concentration is above the MCL 

In Example 7.4 we tested whether the mean aldicarb concentration in 
groundwater at three different monitoring wells was above a Maximum Con-
taminant Level (MCL) of 7 ppb.  The estimated standard deviations at each 
of the three wells were 4.9, 2.3, and 2.1 ppb, respectively.  Assuming a popu-
lation standard deviation of about 5 ppb, for n = 4 observations we have a 
power of only 14% to detect an average aldicarb concentration that is 5 ppb 
above the MCL (i.e., a scaled MDD of 1) if we set the significance level to 
1%.  Alternatively, we would need a sample size of at least n = 16 to detect 
an average aldicarb concentration that is 5 ppb above the MCL if we set the 
significance level to 1% and desire a power of 90%.  Figure 8.5 plots power 
as a function of sample size for a significance level of 1%, assuming a scaled 
minimal detectable difference of 1.  Figure 8.6 plots the scaled minimal de-
tectable difference as a function of sample size for a significance level of 
1%, assuming a power of 90%. 
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Delta/Sigma = 1 and Alpha = 0.01 (Upper One-Sided Alternative)

Figure 8.5 Power vs. sample size for a significance level of 1%, assuming a scaled 

minimal detectable difference of / = 1 
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Figure 8.6 Scaled minimal detectable difference vs. sample size for a significance 

level of 1%, assuming a power of 90% 

Menu

To compute the power to detect a scaled minimal detectable difference of 
1 assuming a sample size of n = 4 and a significance level of 1% using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Normal Mean>One- and Two-Samples>Compute.  This 
will bring up the Normal Power and Sample Size dialog box. 

2. For Compute select Power, for Sample Type select One-Sample,
for Alpha(s) (%) type 1, for n type 4, for Standard Deviation(s) type 
5, for Null Mean type 7, for Alternative Mean type 12, and for Al-
ternative select “greater”.  Click OK or Apply.

To compute the required sample size to detect a scaled minimal detectable 
difference of 1 assuming a significance level of 1% and a required power of 
90%, repeat Step 1 above, and replace Step 2 with the following: 

1. For Compute select Sample Size, for Sample Type select One-
Sample, for Alpha(s) (%) type 1, for Power(s) (%) type 90, for 
Standard Deviation(s) type 5, for Null Mean type 7, for Alternative 
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Mean type 12, and for Alternative select “greater”.  Click OK or 
Apply.

To produce the plot of power vs. sample size shown in Figure 8.5 follow 
these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Normal Mean>One- and Two-Samples>Plot.  This will 
bring up the Plot T-Test Design dialog box. 

2. For X Variable select Sample Size, for Y Variable select Power,
for Minimum X type 2, for Maximum X type 35, for Sample Type 
select One-Sample, check the Use Exact Algorithm box, for Alpha 
(%) type 1, for Standard Deviation type 5, for Null Mean type 7, for 
Alternative Mean type 12, and for Alternative select “greater”.

3. Click on the Plotting tab.  For X-Axis Limits type c(0,35), and for 
Y-Axis Limits type c(0,1).  Click OK or Apply.

To produce the plot of the scaled minimal detectable difference vs. sample 
size shown in Figure 8.6, repeat Step 1 above and replace Steps 2 and 3 with 
the following: 

2. For X Variable select Sample Size, for Y Variable select 
Delta/Sigma, for Minimum X type 2, for Maximum X type 15, for 
Sample Type select One-Sample, check the Use Exact Algorithm 
box, for Alpha (%) type 1, for Power (%) type 90, and for Alterna-
tive select “greater”.

3. Click on the Plotting tab.  For X-Axis Limits type c(0,15), and for 
Y-Axis Limits type c(0,40).  Click OK or Apply.

Command 

To compute the power to detect a scaled minimal detectable difference of 
1 assuming a sample size of n = 4 and a significance level of 1% using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

t.test.power(n.or.n1=4, delta.over.sigma=1, 

alpha=0.01, alternative="greater", approx=F) 

To compute the required sample size to detect a scaled minimal detectable 
difference of 1 assuming a significance level of 1% and a required power of 
90%, type this command. 

t.test.n(delta.over.sigma=1, alpha=0.01, power=0.9, 

alternative="greater", approx=F) 
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To produce the plot of power vs. sample size shown in Figure 8.5 type this 
command. 

plot.t.test.design(alpha=0.01, delta.over.sigma=1, 

range.x.var=c(2, 35), xlim=c(0, 35), ylim=c(0, 1), 

alternative="greater", approx=F) 

To produce the plot of the scaled minimal detectable difference vs. sample 
size shown in Figure 8.6 type this command. 

plot.t.test.design(y.var="delta.over.sigma",

alpha=0.01, power=0.9, range.x.var=c(2, 15), 

xlim=c(0, 15), ylim=c(0, 40), 

alternative="greater", approx=F) 

Testing the Difference between Two Means of Normal 
Distributions

In Equations (7.67) to (7.72) we introduced Student’s two-sample t-
statistic to test the null hypothesis H0: 1 2 = = 0 assuming the observa-
tions in groups 1 and 2 both come from normal distributions with the same 
standard deviation  and possibly different means.  Usually, 0 = 0, and we 
will assume that is the case here.  When the null hypothesis is true, the dif-
ference in the sample means 1 2x x  is bouncing around the difference be-

tween the population means 0 so the t-statistic is bouncing around 0 (it fol-
lows a t-distribution with n1+n2 2 degrees of freedom).  Now suppose the 
null hypothesis is false and that the difference between the population means 
 is some value different from 0.  In this case, the Student’s two-sample t-

statistic follows a non-central t-distribution with non-centrality parameter 
given by: 

1 2

1 2

n n

n n
(8.19)

(Johnson et al., 1995, pp. 508 510).  The formulas for the power of the two-
sample t-test for the one-sided upper, one-sided lower, and two-sided alterna-
tive hypotheses are the same as those for the one-sample t-test shown in 
Equations (8.16) to (8.18), except the formula for  is given in Equation 
(8.19) rather than Equation (8.15), and the degrees of freedom are n1+n2 2
instead of n 1.
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Example 8.9:  Design for Comparing Sulfate Concentrations between a 
Background and Compliance Well 

In Example 7.13 we compared the average sulfate concentration in 
ground water from a background and downgradient well based on n1 = 6 
quarterly observations at the downgradient well and n2 = 8 quarterly obser-
vations at the background well.  The estimated means were 608.3 and 536.3 
ppm, yielding a difference of 72.1 ppm.  The estimated standard deviations 
were 18.3 and 26.7 ppm, yielding a pooled standard deviation estimate of 
23.6 ppm.   

Assuming a population standard deviation of about 25 ppm for both the 
background and downgradient wells, if we took only four observations at 
each well, we would have a power of only 27% to detect an average sulfate 
concentration at the downgradient well that is 12.5 ppm above the average 
concentration at the background well (i.e., a scaled MDD of 0.5) if we set the 
significance level to 10%.  Alternatively, we would need sample sizes of at 
least n1 = n2 = 69 (over 17 years of quarterly monitoring) to detect an in-
crease in sulfate concentration at the downgradient well that is 12.5 ppb 
above the average at the background well if we set the significance level to 
10% and desire a power of 95%.  Finally, if we specify a significance level 
of 10%, a power of 95%, and sample sizes of n1 = n2 = 16 (4 years of quar-
terly monitoring), then the smallest increase in sulfate concentration we can 
detect at the downgradient well is 26.2 ppm (a scaled MDD of 1.05). 

Menu

To compute the power to detect a scaled minimal detectable difference of 
0.5 assuming a sample size of n1 = n2 = 4 and a significance level of 10% 
using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Normal Mean>One- and Two-Samples>Compute.  This 
will bring up the Normal Power and Sample Size dialog box. 

2. For Compute select Power, for Sample Type select Two-Sample,
for Alpha(s) (%) type 10, for n1 type 4, for n2 type 4, for Standard 
Deviation(s) type 25, for Mean 2 type 535, for Mean 1 type 547.5,
and for Alternative select “greater”.  Click OK or Apply.

To compute the required sample sizes to detect a scaled minimal detectable 
difference of 0.5 assuming a significance level of 10% and a required power 
of 95%, repeat Step 1 above, and replace Step 2 with the following: 

2. For Compute select Sample Size, for Sample Type select Two-
Sample, for Alpha(s) (%) type 10, for Power(s) (%) type 95, for 
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Standard Deviation(s) type 25, for Mean 2 type 535, for Mean 1 
type 547.5, and for Alternative select “greater”.  Click OK or Ap-
ply.

To compute the minimal detectable difference assuming a significance level 
of 10%, a power of 95%, and sample sizes of n1 = n2 = 16, repeat Step 1 
above, and replace Step 2 with the following: 

2. For Compute select Min. Difference, for Sample Type select Two-
Sample, for Alpha(s) (%) type 10, for Power(s) (%) type 95, for n1 
type 16, for n2 type 16, for Standard Deviation(s) type 25, for Mean 
2 type 535, and for Alternative select “greater”.  Click OK or Ap-
ply.

Command 

To compute the power to detect a scaled minimal detectable difference of 
0.5 assuming a sample size of n1 = n2 = 4 and a significance level of 10% 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type this command. 

t.test.power(n.or.n1=4, n2=4, delta.over.sigma=0.5, 

alpha=0.1, alternative="greater", approx=F) 

To compute the required sample sizes to detect a scaled minimal detectable 
difference of 0.5 assuming a significance level of 10% and a required power 
of 95%, type this command. 

t.test.n(delta.over.sigma=0.5, alpha=0.1, power=0.95, 

sample.type="two.sample", alternative="greater", 

approx=F)

To compute the scaled minimal detectable difference assuming a significance 
level of 10%, a power of 95%, and sample sizes of n1 = n2 = 16, type this 
command. 

t.test.scaled.mdd(n.or.n1=16, n2=16, alpha=0.1, 

power=0.95, alternative="greater", approx=F) 

Testing the Mean of a Lognormal Distribution 

We explained in Chapter 7 that to perform a hypothesis test on the mean 
of a lognormal distribution (denoted ) you have to create a confidence in-
terval for the mean and base the test on the relationship between hypothesis 
tests and confidence intervals (Table 7.4).  In particular, performing a one-
sample t-test on the log-transformed observations involves testing a hypothe-
sis about the median of the distribution, not the mean. 
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Although you cannot use Student’s t-test based on the log-transformed 
observations to test a hypothesis about the mean of a lognormal distribution 
( ), you can use the t-distribution to estimate the power of a test on  that is 
based on confidence intervals or Chen’s modified t-test if you are willing to 
assume the population coefficient of variation  stays constant for all possi-
ble values of  you are interested in, and you are willing to postulate possible 
values for .

First, let us rewrite the null and alternative hypotheses as follows.  The 
null hypothesis H0: = 0 is equivalent to: 

0
0

: 1H (8.20)

The three possible alternative hypotheses are the upper one-sided alternative 

0
: 1aH (8.21)

the lower one-sided alternative 

0
: 1aH (8.22)

and the two-sided alternative 

0
: 1aH (8.23)

Let  and  denote the population mean and standard deviation of the 
log-transformed observations (see Equations (4.32) to (4.35) for the relation-
ship between , , , and ).  By Equation (4.35), if the coefficient of varia-
tion  is constant, then so is the standard deviation of the log-transformed 
observations .  Hence, by Equation (4.32), the ratio of the true mean to the 
hypothesized mean can be written as: 
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which only involves the difference 0.  Thus, for given values of R and ,
the power of the test of the null hypothesis (8.20) against any of the alterna-
tives (8.21) to (8.23) can be computed based on the power of a one-sample t-
test with the scaled minimal detectable difference defined as follows: 

2

log

log 1

R
(8.25)

You can also compute the required sample size for a specified power, scaled 
MDD, and significance level, or compute the scaled MDD for a specified 
sample size, power, and significance level. 

Example 8.10:  Design for Comparing Soil Contaminant Concentrations to 
Soil Screening Levels 

The guidance document Soil Screening Guidance:  Technical Back-
ground Document (USEPA, 1996c, pp. 81 110) presents a strategy for 
screening soil for contamination.  The strategy involves taking a number of 
soil samples in an exposure area (EA; e.g., a ¼-acre lot), determining the 
contaminant concentration in each physical sample, and comparing the aver-
age concentration to a soil screening level (SSL).  If the true mean 
concentration  were known, the decision rule is: 

If  > SSL, investigate the site further for possible remedial action. 
If  SSL, “walk away” from the site; no further investigation is 
necessary.

To put the decision rule in the context of a hypothesis test, there are two pos-
sible null hypotheses: 

H0:  > SSL (the site is contaminated) 
H0:  SSL (the site is clean) 

USEPA (1996c) uses the first null hypothesis when describing a strategy in-
volving something called the Max test, and it uses the second null hypothesis 
when describing a strategy involving Chen’s modified t-test. 

For the present example, we will assume we will be using Chen’s modi-
fied t-statistic or a test based on a confidence interval for a lognormal mean.  
USEPA (1996c, p. 87) suggests the following error rates: 
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 Pr(Walk Away |  > 2 SSL) =  5% 
 Pr(Investigate  |  SSL/2) = 20% 

Figure 8.7 displays the design performance goal diagram based on these er-
ror rates. 

True Mean Contaminant Concentration
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Figure 8.7 Design performance goal diagram for the soil screening study 

Because the error rates are defined in terms of SSL/2 and 2 SSL, we will 
have to use the following null hypothesis and associated Type I and Type II 
error rates: 

 H0: 0=SSL/2 (the site is clean) 
 = Pr(Type  I Error) = Pr(Investigate  | 0)    = 20% 
 = Pr(Type II Error) = Pr(Walk Away |  > 4 0) =   5% 

Figure 8.8 illustrates one possible scenario in which SSL = 10 and the distri-
bution of contamination follows a lognormal distribution with a coefficient 
of variation of 2.  In this case, SSL/2 = 5 and 2  SSL = 20.  Note that the 
Type II error rate (or equivalently, the power) is defined for a ratio of R = 4, 
because (2  SSL)/(SSL/2) = 4. 
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Three Lognormal Distributions with CV=2
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Figure 8.8 Possible distribution of soil contamination (SSL = 10) 
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Figure 8.10 Power vs. concentration relative to SSL, assuming CV = 2, n = 6, and a 

Type I error rate of 20% 

Based on the null hypothesis and the specified Type I and Type II error 
rates and value for R, we can determine the required sample size for a speci-
fied coefficient of variation.  If we assume CV = 2, then the required sample 
is n = 6.  Figure 8.9 plots the power of the test vs. the ratio R = / 0 assum-
ing CV = 2 and a sample size of n = 6.  Comparing this figure with Figure 
8.7, you can see that we have met the design performance goal.  Figure 8.10 
plots the same thing as Figure 8.9, but re-labels the x-axis in terms of the 
SSL so it is easier to compare it with Figure 8.7. 

Note that we have performed power and sample size calculations for only 
one exposure area.  In practice, you will probably have to deal with multiple 
exposure areas and/or multiple chemicals, and therefore you will need to 
worry about the multiple comparisons problem.  USEPA (1996c, p. 129) 
notes that “Guidance for performing multiple hypothesis tests is beyond the 
scope of the current document.  Obtain the advice of a statistician ….” 

Menu

To determine the required sample size assuming CV = 2, a specified Type 
I error rate of 20%, and a specified power of 95% when R = 4 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

© 2001 by CRC Press LLC



1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Lognormal Mean>Compute.  This will bring up the 
Lognormal Power and Sample Size dialog box. 

2. For Compute select Sample Size, for Sample Type select One-
Sample, for Alpha(s) (%) type 20, for Power(s) (%) type 95, for 
Coefficient(s) of Variation type 2, for Null Mean type 1/2, for Alt. 
Mean type 2, and for Alternative select “greater”.  Click OK or 
Apply.

To create the power curve shown in Figure 8.9, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Lognormal Mean>Plot.  This will bring up the Plot T-Test 
Design for Lognormal Data dialog box. 

2. For X Variable select Ratio of Means, for Y Variable select 
Power, for Minimum X type 1, for Maximum X type 4, for Sample 
Type select One-Sample, check the Use Exact Algorithm box, for 
Alpha (%) type 20, for n type 6, for Coefficient of Variation type 2,
and for Alternative select “greater”.

3. Click on the Plotting tab.  For Y-Axis Limits type c(0,1).  Click 
OK or Apply.

Command 

To determine the required sample size assuming CV = 2, a specified Type 
I error rate of 20%, and a specified power of 95% when R = 4 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

t.test.lnorm.alt.n(ratio.of.means=4, cv=2, alpha=0.2, 

power=0.95, alternative="greater", approx=F) 

To create the power curve shown in Figure 8.9, type this command. 

plot.t.test.lnorm.alt.design(x.var="ratio.of.means",

y.var="power", range.x.var=c(1, 4), cv=2, 

n.or.n1=6, alpha=0.2, alternative="greater", 

approx=F, ylim=c(0,1)) 

To create the power curve shown in Figure 8.10, type this command. 

plot.t.test.lnorm.alt.design(x.var="ratio.of.means",

y.var="power", range.x.var=c(1, 4), cv=2, 

n.or.n1=6, alpha=0.2, alternative="greater", 

approx=F, ylim=c(0, 1), xaxt="n", 
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xlab="Concentration Relative to SSL",

main="Power vs. Concentration Relative to SSL") 

axis(side=1, at=c(1, 2, 4),

labels=c("SSL/2", "SSL", "2*SSL")) 

Testing the Difference between Two Means of Lognormal 
Distributions

In Chapter 7 we explained that to test the difference between two means 
of lognormal distributions, you can perform the two-sample t-test on the log-
transformed observations, as long as you are willing to assume the coeffi-
cient of variation  is the same for both groups (see Equations (7.77) to 
(7.80)).  In this case, the ratio of the means is given by: 

2
1 1

1 2
2

22

2
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22

e

e

e
R e

e
(8.26)

which only involves the difference 1 2.  Thus, for given values of R and ,
the power of the test of the null hypothesis of equal means against any one-
sided or two-sided alternative can be computed based on the power of a two-
sample t-test with the scaled minimal detectable difference defined as in 
Equation (8.25) and R defined as in Equation (8.26).  You can also compute 
the required sample sizes for a specified power, scaled MDD, and signifi-
cance level, or compute the scaled MDD for specified sample sizes, power, 
and significance level. 

Example 8.11:  Design for Comparing TcCB Concentrations in a 
Reference Area with Concentrations in a Cleanup Area 

In Example 7.14 we compared the means of the log-transformed TcCB 
concentrations in the Reference and Cleanup areas.  The sample mean and 
coefficient of variation for the (untransformed) Reference area data are 0.6 
ppb and 0.47, whereas the sample mean and coefficient of variation for the 
Cleanup area are 3.9 ppb and 5.1.  Obviously, in this case the assumption of 
equal coefficients of variation is suspect.  Suppose we want to design a sam-
pling program for another Reference and Cleanup area.  Here we will assume 
the CV is about 1, and we want to detect a two-fold difference between the 
Cleanup and Reference area with 95% power, assuming a 1% Type I error 
rate.  If we take equal samples in each area, we will need to take a total of n1
= n2 = 47 samples in each area. 
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Menu

To compute the required sample sizes assuming CV = 1, a significance 
level of 1%, and a power of 95% when R = 2 using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Lognormal Mean>Compute.  This will bring up the 
Lognormal Power and Sample Size dialog box. 

2. For Compute select Sample Size, for Sample Type select Two-
Sample, for Alpha(s) (%) type 1, for Power(s) (%) type 95, for Co-
efficient(s) of Variation type 1, for Mean 2 type 1, for Mean 2 type 
2, and for Alternative select “greater”.  Click OK or Apply.

Command 

To compute the required sample sizes assuming CV = 1, a significance 
level of 1%, and a power of 95% when R = 2 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type this 
command. 

t.test.lnorm.alt.n(ratio.of.means=2, cv=1, alpha=0.01, 

power=0.95, sample.type="two.sample", 

alternative="greater", approx=F) 

Testing the Difference between Several Means of Normal 
Distributions

In Equations (7.118) to (7.122) we introduced the F-statistic to test the 
null hypothesis H0: 1 2 … k assuming the observations in each of k
groups come from normal distributions with the same standard deviation 
and possibly different means.  When the null hypothesis is true, the F-
statistic in Equation (7.118) is bouncing around 1 and has an F-distribution 
with k 1 and N k degrees of freedom.  Now suppose the null hypothesis is 
false and that at least one of the means is different from the other k 1 means.  
In this case, the F-statistic follows a non-central F-distribution with non-
centrality parameter given by: 

2

1
2

( )
k

i i
i

n

(8.27)
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where

1

k

i
i

(8.28)

(Scheffé, 1959, pp. 38 39,62 65).  The power of the F-test is given by: 

1, ,1

1, ,1

Pr

1 , 1, ,

k N k

k N k

Power F F

H F k N k

(8.29)

where H(x, 1, 2, ) denotes the cumulative distribution function of 
the non-central F-distribution with 1 and 2 degrees of freedom and non-
centrality parameter  evaluated at x.

Example 8.12:  Design for Comparing Fecal Coliform Counts between 
Seasons

In Example 7.22 we used analysis of variance to compare fecal coliform 
counts (organisms per 100 ml) in the Illinois River between seasons, based 
on 6 years of quarterly samples (i.e., ni = 6 for each of the k = 4 seasons).  
In that example, the log-transformed counts appeared to follow the normality 
and equal variance assumptions better than the original count data.  The ob-
served means for the log-transformed count data for summer, fall, winter, 
and spring are 2.6, 2.4, 2.1, and 2.1, and the observed standard deviations are 
0.4, 0.4, 0.5, and 0.6. 

Suppose we want to design another sampling program.  If we assume the 
true population means of the log-transformed observations are 2.5, 2.5, 2.0, 
and 2.0, assume a population standard deviation of about 0.6, use a signifi-
cance level of 5%, and desire a power of 95% to detect a difference, we will 
need to take ni = 26 samples in each season (i.e., we will need observations 
from 26 years of quarterly sampling).  If we only use 6 years of sampling, 
then we will only achieve a power of about 31%. 

Menu

To compute the required sample sizes using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
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Tests>Normal Mean>k Samples>Compute.  This will bring up 
the ANOVA Power and Sample Size dialog box. 

2. For Compute select Sample Size, for Alpha (%) type 5, for Power 
(%) type 95, for Standard Deviation type 0.6, and for Means type 
c(2.5,2.5,2,2).  Click OK or Apply.

To compute the power assuming only 6 years of sampling, repeat Step 1 
above and replace Step 2 with the following: 

2. For Compute select Power, for Alpha (%) type 5, for Sample 
Size(s) type rep(6,4), for Standard Deviation type 0.6, and for 
Means type c(2.5,2.5,2,2).  Click OK or Apply.

Command 

To compute the required sample sizes using the ENVIRONMENTALSTATS

for S-PLUS Command or Script Window, type this command. 

aov.n(mu.vec=c(2.5, 2.5, 2, 2), sigma=0.6) 

To compute the power assuming only 6 years of sampling, type this com-
mand. 

aov.power(n.vec=rep(6,4), mu.vec=c(2.5, 2.5, 2, 2), 

sigma=0.6)

Testing a Binomial Proportion 

As we noted in Chapter 7, the test on the proportion p from a binomial 
distribution, where p denotes the probability of “success” in one trial, is 
based on the observed number of successes x out of n trials (see Equations 
(7.24) to (7.28)).  Note that x is one observed value of the random variable 
X, where X follows a B(n, p) distribution.  We will write the null hypothesis 
as

0 0:H p (8.30)

and the three possible alternative hypotheses are the upper one-sided alterna-
tive 

0:aH p (8.31)

the lower one-sided alternative 
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0:aH p (8.32)

and the two-sided alternative 

0:aH p (8.33)

For the upper one-sided alternative, the test rejects the null hypothesis 
(8.30) in favor of the alternative hypothesis (8.31) at level-  if x > q1 ,
where

1 0Pr |X q p (8.34)

(Conover, 1980, pp. 95 99; Zar, 1999, pp. 533 535).  Because of the dis-
crete nature of the binomial distribution, it is usually not possible to find a 
number q1  that satisfies Equation (8.34) for a user-specified value of .
Thus, given a user-specified value of , the exact test uses a critical upper 
value q1  such that 

1 * 0Pr | *X q p (8.35)

so the true significance level of the test is given by * rather than .
When the probability of success is equal to some value  that is different 

from 0, the power of the upper one-sided test is given by: 

1 * 0

1 * 0

Pr |

1 , ,

Power X q p

F q n

(8.36)

where

0 (8.37)

denotes the minimal detectable difference (MDD) and F(x, n, p) de-
notes the cumulative distribution function of a B(n, p) random variable 
evaluated at x.
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For the lower one-sided alternative, the test rejects the null hypothesis 
(8.30) in favor of the alternative hypothesis (8.32) at level-  if x q ,
where

* 0Pr | *X q p (8.38)

When the probability of success is equal to some value  that is different 
from 0, the power of the lower one-sided test is given by: 

* 0

* 0

Pr |

, ,

Power X q p

F q n

(8.39)

Finally, for the two-sided alternative, the test rejects the null hypothesis 
(8.30) in favor of the alternative hypothesis (8.33) at level-  if x q  or x
> q1- , where these quantities are defined in Equations (8.35) and (8.38) 
with * replaced with */2.  When the probability of success is equal to 
some value  that is different from 0, the power of the two-sided test is 
given by: 

* 2 0

1 * 2 0

* 2 0

1 * 2 0

Pr |

Pr |

, ,

1 , ,

Power X q p

X q p

F q n

F q n

(8.40)

Equations (8.36), (8.39), and (8.40) can also be used to determine the re-
quired sample size for a specified power, MDD, value of 0, and significance 
level, or to determine the MDD for a specified power, sample size, value of 
0, and significance level. 
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Example 8.13:  Design for Testing Whether the Probability of Exceedance 
is above a Standard 

In Example 7.3 we tested a hypothesis about the probability p that the 
daily maximum ozone exceeds a standard of 120 ppb.  The null hypothesis 
was that this probability is less than or equal to 1/365 (.00274) (which would 
result in an average of 1 day per year in which the standard is exceeded).  
Suppose we want to set the significance level to 5% and monitor for 1, 3, 6, 
or 12 months.  Table 8.3 displays the power of the one-sided test to detect a 
probability greater than 1/365 given that the true probability is 10 times as 
large (10/365 = 0.0274).  The table also shows that the true significance level 
is far less than the desired 5% for all of the sample sizes considered here.  
This problem is due to the fact that the value of p under the null hypothesis 
is very far from 0.5.  For values of p closer to 0.5, you should be able to at-
tain a significance level close to the one you desire for moderate to large 
sample sizes. 

Sample 
Size (n) 

Significance
Level (%) Power 

  30    0.3   20 
  90    2.6   71 
 180    1.4   87 
 365    1.9   99 

Table 8.3  Sample sizes, significance levels, and powers for the binomial test of 

the probability of daily maximum ozone exceeding 120 ppb 

Menu

To determine the power to detect a true daily probability of exceedance 
of 10/365 given a desired significance level of 5% and sample sizes of n =
30, 90, 180, and 365 days using the ENVIRONMENTALSTATS for S-PLUS pull-
down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Binomial Proportion>Compute.  This will bring up the Bi-
nomial Power and Sample Size dialog box. 

2. For Compute select Power, for Sample Type select One-Sample,
for Alpha(s) (%) type 5, for n type c(30,90,180,365), for Null Pro-
portion type 1/365, for Alt. Proportion type 10/365, and for Alterna-
tive select “greater”.  Click OK or Apply.

Command 

To determine the power to detect a true daily probability of exceedance 
of 0.0274 given a desired significance level of 5% and sample sizes of n =
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30, 90, 180, and 365 days using the ENVIRONMENTALSTATS for S-PLUS Com-
mand or Script Window, type this command. 

prop.test.power(n.or.n1=c(30, 90, 180, 365), 

p.or.p1=10/365, p0.or.p2=1/365,

alternative="greater", approx=F) 

Testing for the Difference between Two Binomial Proportions 

In Chapter 7 we discussed two ways to test for a difference between two 
binomial proportions:  use Fisher’s exact test or use an approximate test 
based on the normal approximation to the binomial distribution (see Equa-
tions (7.98) to (7.104)).  We will write the null hypothesis as 

0 1 2:H p p (8.41)

and the three possible alternative hypotheses are the upper one-sided alterna-
tive 

1 2:aH p p (8.42)

the lower one-sided alternative 

1 2:aH p p (8.43)

and the two-sided alternative 

1 2:aH p p (8.44)

For the approximate test, the test statistic z defined in Equation (7.98) is ap-
proximately distributed as a standard normal random variable under the null 
hypothesis. 

For the upper one-sided alternative, the approximate test rejects the null 
hypothesis (8.41) in favor of the alternative hypothesis (8.42) at level-  if z
z1- .  When the two proportions are not equal, the power of the upper one-

sided test (without using the continuity correction) is given by: 
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where Z denotes a standard normal random variable, (x) denotes the 
cumulative distribution function of the standard normal distribution 
evaluated at x, and 

1 2p p (8.46)

1 2

1 1 2 2
ˆ ˆ

1 2

1 1
p p

p p p p

n n
(8.47)

For the lower one-sided alternative, the test rejects the null hypothesis 
(8.41) in favor of the alternative hypothesis (8.43) at level-  if z z .
When the two proportions are not equal, the power of the lower one-sided 
test (without using the continuity correction) is given by: 
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Finally, for the two-sided alternative, the test rejects the null hypothesis 
(8.41) in favor of the alternative hypothesis (8.44) at level-  if z z  or z
z1- .  When the two proportions are not equal, the power of the two-sided 

test (without using the continuity correction) is given by: 
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z

(8.49)

Looking at Equations (8.45) to (8.49), we see that the power of the two-
sample z-test for binomial proportions depends on the sample sizes (n1 and 
n2), the Type I error rate ( ), the deviation from the null hypothesis ( ), and 
the true proportions p1 and p2.  These equations can be modified to incorpo-
rate the continuity correction. 

Example 8.14:  Design for Comparing the Incidence Rates of Thyroid 
Tumors in Rats 

In Examples 7.19 and 7.20 we compared the incidence of thyroid tumors 
in rats exposed and not exposed to ethylene thiourea (ETU).  In the exposed 
group, 16 out of 69 rats (23%) developed thyroid tumors, whereas in the un-
exposed group only 2 out of 72 (3%) developed thyroid tumors.  Suppose we 
are going to design another study with n1 = n2 = 60 rats in each group.  If 
we assume the baseline tumor incidence rate in the unexposed group is about 
5%, and we want to use a significance level of 5%, the power to detect an in-
cidence rate of 20% in the exposed group (an increase of 15 percentage 
points) is about 72% (based on using the continuity correction).  Also, if we 
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desire a power of 95%, the smallest increase in incidence rate we can detect 
with this power is about 24 percentage points (i.e., an incidence rate of 29% 
in the exposed group).  Finally, if we want to be able to detect an increase of 
15 percentage points with 95% power, we would need to use sample sizes of 
n1 = n2 = 116 rats in each group. 

Figure 8.11 plots the minimal detectable difference vs. sample size (for 
each group) assuming a baseline incidence rate of 5%, a significance level of 
5%, and a power of 95%.  Note that if we want to be able to detect an in-
crease in incidence of 10 percentage points (0.1 on the y-axis; i.e., an inci-
dence rate of 15% in the exposed group), we would need a sample size of 
over 200 animals in each group. 

Sample Size (n1 and n2)

(p
1 

- 
p2

)
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Delta vs. Sample Size for Two-Sample Proportion Test with
p2=0.05, Power=0.95, and Alpha=0.05 (Upper One-Sided Alternative)

Figure 8.11 Minimal detectable difference between incidence rates vs. sample size 

(for each group), assuming a 5% baseline incidence rate, 5% signifi-

cance level, and 95% power (using continuity correction) 

Menu

To compute the power to detect an incidence rate of 20% in the exposed 
group assuming an incidence rate of 5% in the unexposed group, a signifi-
cance level of 5%, and sample sizes of 60 rats in each group using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
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Tests>Binomial Proportion>Compute.  This will bring up the Bi-
nomial Power and Sample Size dialog box. 

2. For Compute select Power, for Sample Type select Two-Sample,
for Alpha(s) (%) type 5, for n1 type 60, for n2 type 60, for Propor-
tion 2 type 0.05, for Proportion 1 type 0.2, and for Alternative select 
“greater”.  Click OK or Apply.

To compute the minimal detectable difference assuming an incidence rate of 
5% in the unexposed group, a significance level of 5%, a power of 95%, and 
sample sizes of 60 rats in each group, repeat Step 1 above and replace Step 2 
with the following. 

2. For Compute select Min. Difference, for Sample Type select Two-
Sample, for Alpha(s) (%) type 5, for Power(s) (%) type 95, for n1 
type 60, for n2 type 60, for Proportion 2 type 0.05, and for Alterna-
tive select “greater”.  Click OK or Apply.

To compute the required sample size in each group in order to detect a dif-
ference of 15 percentage points assuming an incidence rate of 5% in the un-
exposed group, a significance level of 5%, and a power of 95%, repeat Step 
1 above and replace Step 2 with the following. 

2. For Compute select Sample Size, for Sample Type select Two-
Sample, for Alpha(s) (%) type 5, for Power(s) (%) type 95, for Ra-
tio (n2/n1) type 1, for Proportion 2 type 0.05, for Proportion 1 type 
0.2, and for Alternative select “greater”.  Click OK or Apply.

To create the plot of MDD vs. sample size (for each group) shown in Figure 
8.11, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Binomial Proportion>Plot.  This will bring up the Plot Bi-
nomial Test Design dialog box. 

2. For X Variable select Sample Size, for Y Variable select Delta, for 
Minimum X type 20, for Maximum X type 400, for Sample Type 
select Two-Sample, for Alpha (%) type 5, for Power (%) type 95,
for Proportion 2 type 0.05, and for Alternative select “greater”.
Click OK or Apply.

Command 

To compute the power to detect an incidence rate of 20% in the exposed 
group assuming an incidence rate of 5% in the unexposed group, a signifi-
cance level of 5%, and sample sizes of 60 rats in each group using the 
ENVIRONMENTALSTATS for S-PLUS Command or Scrip Window, type this 
command. 
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prop.test.power(n.or.n1=60, p.or.p1=0.2, n2=60, 

p0.or.p2=0.05, alpha=0.05, 

sample.type="two.sample", alternative="greater") 

To compute the minimal detectable difference assuming an incidence rate of 
5% in the unexposed group, a significance level of 5%, a power of 95%, and 
sample sizes of 60 rats in each group, type this command. 

prop.test.mdd(n.or.n1=60, n2=60, p0.or.p2=0.05, 

alpha=0.05, power=0.95, sample.type="two.sample", 

alternative="greater")

To compute the required sample size in each group in order to detect a dif-
ference of 15 percentage points assuming an incidence rate of 5% in the un-
exposed group, a significance level of 5%, and a power of 95%, type this 
command. 

prop.test.n(p.or.p1=0.2, p0.or.p2=0.05, alpha=0.05, 

power=0.95, sample.type="two.sample", 

alternative="greater")

To create the plot of MDD vs. sample size (for each group) shown in Figure 
8.11, type this command. 

plot.prop.test.design(x.var="n", y.var="delta", 

alpha=0.05, power=0.95, p0.or.p2=0.05, 

sample.type="two.sample", alternative="greater") 

Testing for Contamination Using Parametric Prediction Intervals 

In Chapter 6 we discussed prediction intervals for normal, lognormal, 
and Poisson distributions, and in Examples 6.1, 6.2, and 6.7 we showed how 
you can construct a prediction interval for the next k “future” observations 
(or means or sums) based on background data and then compare these k “fu-
ture” observations (or means or sums) at a downgradient well or from a 
cleanup site with the prediction interval to decide whether there is evidence 
of contamination.  (If any of the k observations fall outside the prediction in-
terval, then this is evidence of contamination.)  In this section, we will dis-
cuss how to compute power and sample sizes for this kind of test assuming a 
normal or lognormal distribution. 

Formulas for prediction intervals based on a normal distribution are 
shown in Equations (6.9) to (6.11).  Davis and McNichols (1987) show that 
the power of the test based on a prediction interval for k future observations, 
assuming a normal distribution, is given by: 
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1Power p  (8.50)

where p is defined in Equation (6.54), and in this case m = k and r = 1.  The 
power of this test depends on the background sample size (n), the number of 
future observations (k), the Type I error rate ( ) (because the constant K de-
pends on  as well as n and k), and the scaled minimal detectable difference 
( / ).  (In the case when k = 1, this test is equivalent to a two-sample t-test 
with n1 = n and n2 = k = 1.)  This equation for power can also be used to de-
termine the required sample size for a specified power, significance level, 
scaled MDD, and number of future observations.   

Example 8.15:  EPA Reference Power Curve for Groundwater Monitoring 

In Chapter 6 we gave examples of using prediction intervals and simulta-
neous prediction intervals to monitor groundwater at hazardous and solid 
waste sites.  At the 1991 US Environmental Protection Agency Statistics 
Conference, EPA introduced the concept of the “EPA Reference Power 
Curve” for groundwater monitoring (Davis and McNichols, 1994b, 1999; 
USEPA, 1992c, p. 65).  Any test procedure (e.g., a test based on simultane-
ous prediction limits) whose power curve (power vs. scaled MDD) compares 
adequately with the reference curve should be acceptable under regulation.  
In 1991, the reference power curve was deemed to be based on a parametric 
(normal) prediction interval for a single well and a single constituent assum-
ing a confidence level of 99% and a background sample size of n = 8.  The 
guidance document USEPA (1992c, p. 65) displays a reference power curve 
based on n = 16 background observations.  Davis and McNichols (1999) 
note that some states require monitoring after only n = 4 background obser-
vations have been collected.  Figure 8.12 displays the EPA reference power 
curve based on a background sample size of n = 8 observations. 

Menu

To compute the reference power curve using the ENVIRONMENTALSTATS

for S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Prediction Intervals>Normal>Plot.  This will bring up the 
Plot Normal PI Test Power Curve dialog box. 

2. For Confidence Level (%) type 99, for n type 8, for # Future Obs 
type 1, and for PI Type select “upper”.  Click OK or Apply.
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Command 

To compute the reference power curve using the ENVIRONMENTALSTATS

for S-PLUS Command or Script Window, type this command. 

plot.pred.int.norm.test.power.curve(n=8, k=1, 

conf.level=0.99)
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Power vs. Delta/Sigma for Normal Prediction Interval with
n = 8, k = 1 and Conf Level = 0.99 (Upper One-Sided PI)

Figure 8.12 U.S. EPA Reference Power Curve based on n = 8 background observa-

tions and a 99% prediction interval for k = 1 future observation 

Example 8.16:  Design for Comparing TcCB Concentrations in a 
Reference Area with Concentrations in a Cleanup Area 

In Example 6.7 we created a prediction interval for the next k = 77 ob-
servations of TcCB concentrations in the Cleanup area based on using the  
n = 47 observations from the Reference area.  The sample mean and coeffi-
cient of variation for the (untransformed) Reference area data are 0.6 ppb 
and 0.47, whereas the sample mean and coefficient of variation for the 
Cleanup area are 3.9 ppb and 5.1.  Obviously, in this case the assumption of 
equal coefficients of variation is suspect. 

Suppose we want to design a sampling program for another Reference 
and Cleanup area.  Here we will assume the CV is about 1, and we want to 
detect a 2-fold difference between the Cleanup and Reference area using a 
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5% Type I error rate.  Setting n = 47 and k = 77 yields a power of only 37%.  
Compare this with the results in Example 8.11 in which we found we needed 
only 47 observations in each area to achieve a power of 95% using the two-
sample t-test.  The t-test is more powerful than the test based on the predic-
tion interval in this case because we are looking for a shift in the mean, 
whereas the test based on the prediction interval is more powerful for detect-
ing a shift in the tail of the distribution (e.g., due to residual contamination). 

Menu

To compute the power assuming CV = 1, a significance level of 1%, n =
47, k = 77, and R = 2 using the ENVIRONMENTALSTATS for S-PLUS pull-
down menu, follow these steps. 

1. On the S-Plus menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Prediction Intervals>Lognormal>Compute.  This will 
bring up the Lognormal PI Test Power and Sample Size dialog box. 

2. For Compute select Power, for Confidence Level (%) type 95, for n 
type 47, for # Future Obs type 77, for Coefficient(s) of Variation 
type 1, for Null Mean type 1, for Alt. Mean type 2, and for PI Type 
select “upper”.  Click OK or Apply.

Command 

To compute the power assuming CV = 1, a significance level of 5%, n =
47, k = 77, and R = 2 using the ENVIRONMENTALSTATS for S-PLUS Com-
mand or Script Window, type this command. 

pred.int.lnorm.alt.test.power(n=47, k=77, 

ratio.of.means=2, cv=1, pi.type="upper", 

conf.level=0.95)

Testing for Contamination Using Parametric Simultaneous 
Prediction Intervals 

In Chapter 6 we discussed simultaneous prediction intervals as a method 
to control the facility-wide false positive rate (FWFPR) of mistakenly declar-
ing contamination is present when it is not when monitoring groundwater at 
several wells (r) for several constituents (nc).  The formulas for simultane-
ous prediction intervals based on a normal distribution are exactly the same 
as for standard prediction intervals (Equations (6.9) to (6.11)), except that K
is computed differently.  For the k-of-m rule, Equation (6.54) is used to com-
pute K by setting p equal to the desired confidence level and assuming / =
0.  For the California and Modified California rules, Equations (6.56) and 
(6.57) are used, respectively.  Once K has been computed, the power of the 
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test based on a simultaneous prediction interval can be computed using 
Equation (8.50), where p is defined in Equation (6.54), (6.56), or (6.57), de-
pending on which rule is being used, and /  can be set to some arbitrary 
value. 

Equations (6.54), (6.56), and (6.57) assume that the mean on all r future 
sampling occasions (e.g., at all r wells) is shifted by the same amount .  In 
Example 8.15 we noted that the U.S. EPA reference power curve is based on 
assuming contamination is present at only one well.  We can modify the 
power calculation to specify that the mean is shifted for only a subset of the 
r future occasions (wells).  In this case, the value of K is computed as before 
based on assuming that / = 0 and that there are r future sampling occa-
sions, but to compute the power the value of p is then computed using this 
value of K and assuming r = rshifted, where rshifted r.

Davis and McNichols (1999) display power curves based on both para-
metric and nonparametric simultaneous prediction intervals for each of the 
three rules (k-of-m, California, and Modified California).  Power curves for 
the nonparametric prediction intervals were derived via Monte Carlo simula-
tion.  When the assumptions of the parametric simultaneous prediction inter-
vals are met, the power of the nonparametric simultaneous prediction inter-
vals is only slightly less than the power of its parametric counterpart. 

For the k-of-m rule, Davis and McNichols (1987) give tables with “opti-
mal” choices of k (in terms of best power for a given overall confidence 
level) for selected values of m, r, and n.  They found that the optimal ratios 
of k to m (i.e., k/m) are generally small, in the range of 15 to 50%.  Davis 
(1998a) states that if the FWFPR is kept constant, then the California rule of-
fers little increased power compared to the k-of-m rule, and can actually de-
crease the power of detecting contamination.  The Modified California Rule 
has been proposed as a compromise between a 1-of-m rule and the California 
rule.  For a given FWFPR, the Modified California rule achieves better 
power than the California rule, and still requires at least as many observa-
tions in bounds as out of bounds, unlike a 1-of-m rule. 

As we noted in Chapter 6, Davis and McNichols (1999) caution that sta-
tistically significant spatial variability is almost ubiquitous in groundwater 
monitoring data for which the proportion of nondetects is low enough that 
you can measure spatial variability fairly well.  In such cases, standard nor-
mal simultaneous prediction intervals are not valid since they assume the 
population standard deviation  is the same at all monitoring wells.  In 
Chapter 6 we noted that in such cases Davis and McNichols (1999) recom-
mend using well-specific simultaneous prediction intervals (i.e., r = 1 for 
each well) and using the Bonferroni inequality to set the per-constituent and 
well significance level to /(r nc).
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Example 8.17:  Design for Comparing Constituent Concentrations 
between Background and Compliance Wells 

In Example 6.4 we computed simultaneous upper prediction limits for ar-
senic concentrations based on the n = 12 observations at the background 
well shown in Table 6.2 assuming various numbers of compliance wells (r).
In this example, we will assume there are r = 10 compliance wells and 7 
other constituents being monitored, for a total of nc = 8 constituents.  We 
want the FWFPR set to 5%, so using the Bonferroni inequality we set the 
per-constituent significance level to = 0.05/8 = 0.00625, which means we 
desire a confidence level of (1 0.00625)100% = 99.375%.  Figure 8.13 
shows the power curve for this design for detecting contamination for a sin-
gle constituent for a single well based on the 1-of-3 rule, along with the EPA 
reference power curve that was displayed in Figure 8.12. 

Note that initially the power curve based on the simultaneous prediction 
interval lies below the EPA reference power curve.  This will usually happen 
if you want to control the overall Type I error over all r monitoring wells 
and all nc constituents being tested, because the EPA reference power curve 
is based on testing only one constituent at one well.  In Figure 8.13, the 
power curve crosses the EPA reference power curve at a scaled MDD of 
about 2. 
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Using k-of-m Rule with n = 12, k = 1, m = 3, r = 10
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Figure 8.13 EPA reference power curve and power curve for the test based on a 

normal simultaneous prediction interval using the 1-of-3 rule, assuming 

r = 10 compliance wells, nc = 8 constituents, and a FWFPR of 5% 
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Menu

To compute the power curve for the test based on the simultaneous pre-
diction interval shown in Figure 8.13 using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Hypothesis 
Tests>Prediction Intervals>Normal>Plot.  This will bring up the 
Plot Normal PI Test Power Curve dialog box. 

2. For Confidence Level (%) type 99.375, for n type 12, check the 
Simultaneous box, for # Future Obs type 3, for Min # Obs PI 
Should Contain type 1, for # Future Sampling Occasions type 10,
for Rule select k.of.m, for # Shifted type 1, and for PI Type select 
“upper”.  Click Apply.

To add the EPA reference power curve to the plot, make the following 
changes to the open dialog box. 

3. Uncheck the Simultaneous box, for Confidence Level (%) type 99,
for n type 8, for # Future Obs type 1, and for PI Type select “up-
per”.  Click on the Plotting tab, check the Add to Current Plot box, 
and for Line Type type 4.  Click OK or Apply.

Command 

To compute the power curve for the test based on the simultaneous pre-
diction interval shown in Figure 8.13 using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type this command. 

plot.pred.int.norm.simultaneous.test.power.curve(n=12,

k=1, m=3, r=10, rule="k.of.m", pi.type="upper", 

conf.level=1-0.05/8, r.shifted=1, n.points=20) 

To add the EPA reference power curve and legend to the plot, type these 
commands. 

plot.pred.int.norm.test.power.curve(n=8, k=1, 

conf.level=0.99, n.points=20, add=T, plot.lty=4) 

legend(0.5, 1, c("Simultaneous", "EPA Reference"), 

lty=c(1, 4), lwd=1.5) 

Testing for Contamination Using Nonparametric Simultaneous 
Prediction Intervals 

Earlier in this chapter we discussed how to compute sample size and con-
fidence levels for nonparametric prediction intervals.  In this section we will 
extend that discussion to nonparametric simultaneous prediction intervals. 
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In Chapter 6 we discussed how to construct nonparametric simultaneous 
prediction intervals based on using order statistics.  Equations (6.60) to 
(6.62) show the formulas for the confidence level associated with a one-
sided upper nonparametric simultaneous prediction interval for the k-of-m,
California, and Modified California rule, respectively.  These formulas de-
pend on k, m, the number of future observations (r), which order statistic is 
used (v; usually the largest or second to largest value is used), and the sam-
ple size (n).  Based on these formulas, you can compute the required sample 
size for a specific confidence level, or the associated confidence level for a 
specific sample size. 

Example 8.18:  Design for Comparing Constituent Concentrations 
between Background and Compliance Wells, Part II 

Here we will follow Example 8.17 and assume there are r = 10 compli-
ance wells and nc = 8 constituents.  We want the FWFPR set to 5%, so as be-
fore using the Bonferroni inequality we set the per-constituent significance 
level to = 0.05/8 = 0.00625, which means we desire a confidence level of 
(1 0.00625)100% = 99.375%.  Table 8.4 shows required sample sizes for 
various values of m for each of the three kinds of rules, assuming that we are 
using the maximum value as the upper prediction limit. 

Rule
# Future  

Observations (m)
Required Sample 

Size(n)

1-of-m       1   1,590 
      2      55 
      3      20 

CA       3      78 
      4      95 

Modified CA       4      28 

Table 8.4  Required sample sizes for a one-sided upper nonparametric simultane-

ous prediction interval based on the maximum value, assuming r = 10 

compliance wells, nc = 8 constituents, and a FWFPR of 5% 

Menu

To compute the required sample sizes shown in Table 8.4 for the 1-of-m
rule using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow 
these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Sample Size and Power>Prediction Inter-
vals>Nonparametric>Compute.  This will bring up the Nonpara-
metric PI Confidence Level and Sample Size dialog box. 
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2. For Compute select Sample Size, for Confidence Level (%) type 
99.375, check the Simultaneous box, for # Future Obs type 1:3, for 
Min # Obs PI Should Contain type 1, for # Future Sampling Occa-
sions type 10, for Rule select k.of.m, and for PI Type select “up-
per”.  Click OK or Apply.

To compute the required sample sizes for the California rule, follow Steps 1 
and 2 above, except for Rule select CA and for # Future Obs type 3:4.  To 
compute the required sample size for the Modified California rule, follow 
Steps 1 and 2 above, except for Rule select Modified CA.

Command 

To compute the required sample sizes shown in Table 8.4 for the 1-of-m
rule using the ENVIRONMENTALSTATS for S-PLUS Command or Script Win-
dow, type this command. 

pred.int.npar.simultaneous.n(k=1, m=1:3, r=10, 

rule="k.of.m", pi.type="upper",

conf.level=1-0.05/8)

To compute the required sample sizes for the California rule, type this com-
mand. 

pred.int.npar.simultaneous.n(m=3:4, r=10, rule="CA", 

pi.type="upper", conf.level=1-0.05/8) 

To compute the required sample size for the Modified California rule, type 
this command. 

pred.int.npar.simultaneous.n(r=10, rule="Modified.CA", 

pi.type="upper", conf.level=1-0.05/8) 

OPTIMIZING A DESIGN BASED ON COST 
CONSIDERATIONS 

So far in all of our discussions of sampling design, we have avoided the 
issue of cost.  Quite often, the available sample size for a study is entirely 
determined by budget.  This situation, however, does not excuse the people 
responsible for the study from considering the effectiveness of the design!  If 
the budget only allows for a total of 10 observations at a background and as-
sessment site, and the power of detecting the kind of difference you are in-
terested in detecting is less than adequate (e.g., 50% or less), you should 
think about increasing the budget, figuring out ways to decrease the inherent 
variability, or simply not do the study in the first place.  In the two subsec-
tions below, we will discuss examples of how to incorporate costs into the 
sampling design process. 
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Trading off Cost and Sample Size to Minimizing the Variance of 
the Estimated Mean for a Stratified Random Sampling Design 

In Chapter 2 we discussed stratified random sampling designs.  Equation 
(2.5) shows the formula for the estimator of the mean over all strata, and 
Equation (2.9) shows the formula for the variance of this estimator.  Cochran 
(1977, pp. 96 99) and Gilbert (1987, pp. 50 52) show how to minimize this 
variance if you know the variability within each stratum and the cost of tak-
ing a sample within each stratum.  Cochran assumes the following cost func-
tion: 

0
1

L

h h
h

C c c n (8.51)

where C denotes the total cost, c0 denotes a fixed overhead cost, and ch de-
notes the cost per sampling unit within the hth stratum.  In this, case the op-
timal number of samples to take in the hth stratum is given by: 
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(8.52)

Note that if the cost of sampling is the same in each stratum and the variance 
is the same in each stratum, then Equation (8.52) yields proportional alloca-
tion.  In general, however, proportional allocation is not optimal.  The for-
mula above shows that you should take more samples in the hth stratum if it 
is larger than other strata, has more variability than other strata, and/or sam-
pling is cheaper than in other strata (Cochran, 1977, p. 98). 

In order to use Equation (8.52), besides knowing the variability and cost 
per sampling unit within each stratum (which usually requires a pilot study), 
you need to have a pre-specified value of n, the total sample size.  If the cost 
is fixed, then n is given by: 
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(8.53)
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and if the variance of the stratified mean (Equation 2.9 in Chapter 2) is fixed 
at V, then n is given by: 
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(8.54)

Trading off Cost and Sample Size to Maximize the Power of 
Detecting a Change 

Millard and Lettenmaier (1986) discuss optimal sampling designs in the 
context of detecting change.  They use a standard analysis of variance model 
that allows for sampling at multiple stations both before and after some event 
(e.g., operation of a power plant) that may cause a change in the level of the 
response variable (e.g., density of benthic organisms).  The model also al-
lows for seasonal and other auxiliary effects.  The sampling cost is assumed 
to be the sum of a fixed initial cost plus components for the number of sam-
pling occasions, the number of stations sampled per occasion, and the num-
ber of replicates taken at each station on each sampling occasion.  They 
show how to optimize the design by maximizing the power to detect a speci-
fied change given a fixed cost, or minimizing the cost given a specified 
power to detect a specified change. 

SUMMARY 

Steps 6 and 7 of the DQO process (see Chapter 2) require specifica-
tion of acceptable limits on decision error rates (i.e., probabilities of 
Type I and II errors) and optimization of the sampling design.  The 
statistical methods discussed in this chapter allow you to compute 
decision error rates as well as sample size requirements for confi-
dence intervals and hypothesis tests. 
Parametric confidence intervals based on the normal distribution de-
pend on sample size(s), the estimated standard deviation, and the 
confidence level.  You can use formulas presented in this chapter to 
help you decide how many samples you need to take for a given pre-
cision (half-width) of the confidence interval. 
To apply the formulas for parametric confidence intervals, you need 
to assume a value for the estimated standard deviation s.  The value 
you choose for s is usually based on a pilot study, a literature search, 
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or “expert judgment.”  It is usually a good idea to use some kind of 
upper bound on s to ensure an adequate sample size. 
Parametric hypothesis tests on a mean or difference between two 
means involve four quantities:  sample size(s), Type I error, Type II 
error (or equivalently, power), and the scaled minimal detectable dif-
ference.  You can use the formulas presented in this chapter to de-
termine one of these quantities given the other three. 
Nonparametric confidence, prediction, and tolerance intervals are 
based on order statistics from the sample.  You can use the formulas 
presented in this chapter to determine confidence levels for a speci-
fied sample size or vice-versa. 
In the context of confidence, prediction, and tolerance intervals, in 
general, there is a heavy price to pay for not making an assumption 
about the parent distribution of the observations:  required sample 
sizes for specified confidence levels usually are very large.  On the 
other hand, nonparametric hypothesis tests are often almost as pow-
erful as their parametric counterparts when the normal distribution 
assumption is adequate, and more powerful when the normal distri-
bution assumption is not met. 
For groundwater monitoring at hazardous and solid waste sites, the 
U.S. EPA has promulgated the concept of the “EPA Reference Power 
Curve,” which in 1991 was deemed to be based on a parametric 
(normal) prediction interval for a single well and a single constituent 
assuming a confidence level of 99% and a background sample size 
of n = 8. 
We noted in Chapter 6 that simultaneous prediction limits are the 
preferred method of handling the problem of testing for contamina-
tion from multiple constituents at multiple wells on each sampling 
occasion.  The formulas presented in this chapter allow you to de-
termine the power of using parametric simultaneous prediction inter-
vals, given a specified overall Type I error rate (FWFPR).  The 
power of nonparametric prediction intervals is usually only slightly 
less than that of parametric prediction intervals. 
Given an equation to model the cost of a sampling design, you can 
optimize the design to yield the minimum variance of the mean or 
maximum power to detect change for a fixed cost, or minimize the 
cost for a specified variance of the mean or power to detect a change. 

EXERCISES

8.1. Using the built-in data set halibut in S-PLUS, estimate the 
mean catch per unit effort (CPUE) and create a 95% confidence 
interval.  Assuming a standard deviation of about 50, what is the 
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required sample size for a confidence interval with a half-width of 
about 20?  10?  5? 

8.2. Consider the copper data shown in Table 3.14 of Exercise 3.7 in 
Chapter 3.  Combine the data from Wells 1 and 2, and compute 
the pooled estimate of standard deviation allowing for different 
means for the background and compliance well data. 

a. Based on this estimate of standard deviation, how many 
samples are required at the background and compliance 
wells in order to achieve a confidence interval half-width 
of 5 ppb? 

b. Repeat part a above, but assume the background well 
sample size if fixed at n2 = 12. 

8.3. Sometimes when the results of an opinion poll are reported, the 
results are qualified by a statement something like the following:  
“53% of those polled said they were willing to pay higher taxes to 
enforce stricter environmental standards.  These results are accu-
rate to within three percentage points.”  Assuming this statement 
means that the 95% confidence interval for the estimated propor-
tion has a half-width of three percentage points, determine how 
many people must have been polled.  Assume the estimated pro-
portion is about 50%. 

8.4. In Examples 7.19 and 7.20 we tested whether there was a signifi-
cant difference in the incidence of thyroid tumors between rats 
exposed and not exposed to ethylene thiourea (ETU).  The ob-
served incidence was 16/69 (23%) in the exposed group and 2/72 
(3%) in the unexposed group.  Suppose we want to create a confi-
dence interval for the difference in the incidence rates.  How 
many rats would have to be in each group if we want the half-
width of the confidence interval to be 0.05?  Assume the inci-
dence rates in the exposed and unexposed groups are about 20% 
and 5%, respectively. 

8.5. Consider Example 8.9 again and the design calculations for a two-
sample t-test to compare sulfate concentrations at an upgradient 
and downgradient well. 

a. Create a plot of power vs. sample size assuming a signifi-
cance level of 5% and a scaled MDD of 1. 

b. Create a plot of power vs. scaled MDD assuming n1 = n2
= 16 and a significance level of 5%.  Add the EPA refer-
ence power curve to this plot. 
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8.6. Using the halibut data set and without assuming a particular prob-
ability distribution, estimate the 95th percentile of the exploitable 
biomass and try to create a 99% one-sided upper confidence in-
terval.  How many observations are required to compute such a 
confidence interval for the 95th percentile? 

8.7. In the United States, there are about 2.3 million deaths per year, 
and of these deaths approximately 23% are attributed to cancer 
(see www.census.gov/statab/www).  When deciding on acceptable 
levels for contaminants in the environment, the U.S. EPA often 
uses a standard that exposure to the chemical should not increase 
a person’s lifetime risk of dying from cancer by more than 1 in 1 
million (1  10 6).  Using the null hypothesis that the probability 
of dying from cancer is H0: p = 0.23, what is the power of 
detecting a minimal detectable difference of = 1  10 6 for a 
one-sided upper alternative hypothesis, assuming a significance 
level of 5% and sample size of n = 2,300,000? 

8.8. Using the information in Problem 8.7, determine a two-sided 95% 
confidence interval for the true probability of dying from cancer 
assuming a sample size of n = 2,300,000 and an observed number 
of deaths from cancer of x = 529,000 (23% of 2,300,000).  What 
is the half-width of this confidence interval, in terms of percent-
age points? 

8.9. Consider Exercise 8.5 again.  Now assume there are r = 20 moni-
toring wells and nc = 10 constituents being monitored.  Plot power 
vs. scaled MDD based on using simultaneous prediction intervals, 
assuming n = 16 and that you are controlling the FWFPR at 5% 
by using the Bonferroni inequality.  Add the EPA reference power 
curve.
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9 LINEAR MODELS 

CORRELATION, REGRESSION, CALIBRATION AND
DETECTION LIMITS, AND DOSE-RESPONSE MODELS

Often in environmental data analysis we are interested in the relationship 
between two or more variables.  For example, hydrologists often use models 
to predict sediment load or chemical concentration in a river or stream as a 
function of the flow.  Air quality analysts model ozone or particulate concen-
tration as a function of other meteorological factors such as humidity, radia-
tion, wind speed, temperature, etc.  In Chapter 3 we discussed graphs for 
looking at the relationships between two or more variables.  In this chapter 
we will discuss ways to model these relationships.  We will postpone discus-
sion of the special case of looking at the relationship between a variable and 
how it behaves over time until Chapter 11 on Time Series Analysis. 

COVARIANCE AND CORRELATION 

The covariance between two random variables X and Y is defined as: 

, ,x y  x  yCov X Y E X Y (9.1)

where x and y denote the means of X and Y, respectively.  The covariance 
measures how X and Y deviate from their average values as a pair.  Figure 
9.1 shows a picture indicating the sign (positive or negative) of the cross-
product (X x)(Y y) for each quadrant, where the quadrants are defined 
by the intersection of the lines x = x and y = y.  If Y tends to be above its 
average when X is above its average, and Y tends to be below its average 
when X is below its average, then the covariance is positive.  Conversely, if 
Y tends to be below its average when X is above its average, and Y tends to 
be above its average when X is below its average, then the covariance is 
negative.  If knowing that X is above or below its average gives us no infor-
mation on the odds that Y is above or below its average, then the covariance 
is 0. 

It can be shown that 
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Figure 9.1 Sign of the cross-product (X x)(Y y)

x y x yE X Y E XY (9.2)

Also, when X and Y are independent, it can be shown that 

x yE XY E X E Y (9.3)

so when X and Y are independent the covariance is 0.  Note that the covari-
ance between a random variable X and itself is the same as the variance of X.
That is: 

2
,

2

,x x x

x

Cov X X E X

Var X

(9.4)
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The covariance between X and Y can range from -  to , depending on 
the variances of X and Y.  The correlation between X and Y, usually denoted 
with the Greek letter  (rho), is the covariance between X and Y scaled by the 
product of their respective standard deviations: 

,,
, x y

x y

Cov X Y
Cor X Y

Var X Var Y
(9.5)

(Draper and Smith, 1998).  The correlation between two random variables is 
unitless and always lies between 1 and 1.  Note that the correlation between 
a variable and itself is 1. 

Figure 9.2 shows four examples of relationships between two random 
variables X and Y with varying correlations.  Each of these graphs was con-
structed by taking a random sample of 20 (X,Y) pairs from a bivariate popu-
lation with a known correlation. 
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Figure 9.2 Four examples of correlation between two random variables X and Y

based on samples of n = 20 paired observations 
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Estimating Covariance and Correlation 

The covariance between two random variables X and Y can be estimated 
using either the unbiased or method of moments estimator.  The unbiased es-
timator is given by: 

,
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i

x y
n

 (9.6)

and the method of moments estimator uses the multiplier 1/n instead of 
1/(n 1).  Based on the definition of correlation in Equation (9.5), it is easy 
to see that the estimate of correlation or sample correlation, usually denoted 
r, is simply the estimate of covariance divided by the product of the esti-
mated standard deviations of X and Y.  The estimator of correlation based on 
the unbiased estimators of covariance and variance is exactly the same as the 
estimator based on the method of moments estimators of covariance and 
variance:
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(9.7)

(Draper and Smith, 1998, p. 41; Zar, 1999, p. 378).  Figure 9.2 displays the 
estimated correlations for each of the four examples. 

Example 9.1:  Correlation between Ozone Concentrations in Two 
Locations 

In Example 7.3 of Chapter 7 we introduced the ozone data set, which 
contains daily maximum ozone concentrations (ppb) at ground level re-
corded between May 1 and September 30, 1974 at sites in Yonkers, New 
York and Stamford, Connecticut.  Figure 9.3 displays a scatterplot of the 
concentrations in Stamford vs. the concentrations in Yonkers.  The estimated 
correlation between these measurements is r = 0.87. 
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Figure 9.3 Maximum daily ozone concentrations in Stamford, CT vs. those in 

Yonkers, NY 

Menu

To compute the correlation between the ozone concentrations using the 
S-PLUS pull-down menu, follow these steps. 

1. Find the data set ozone in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Data Summaries>Correlations.  This will bring up the 
Correlations and Covariances dialog box. 

3. For Data Set select ozone, for Variables select <All>, Under Statis-
tic, for Type select Correlations.  Click OK or Apply.

Command 

To compute the correlation between the ozone concentrations using the 
S-PLUS Command or Script Window, type this command. 

cor(ozone)
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Five Caveats about Correlation 

Although correlation is a useful measure and is intuitively appealing, its 
simplicity can mask more complex relationships.  The following five caveats 
about correlation are based on cautions in Chambers et al. (1983, pp. 76 79)
and Helsel and Hirsch (1992, pp. 209 210): 

 Correlation is a measure of the linear association between two ran-
dom variables.  A small absolute value of correlation does not imply 
two random variables are unrelated; two random variables may be 
strongly related in a curvilinear way and have a low level of correla-
tion (see the upper left-hand plot in Figure 9.4). 

 Sample correlation is affected by “outliers.”  In the upper right-hand 
plot of Figure 9.4, there is no true underlying relationship between 
the x- and y-values for the 19 values in the lower left-hand part of 
the scatterplot, but the one outlier forces a sample correlation of r =
0.7 for all 20 values. 

 Sample correlation cannot account for complex relationships.  For 
example, in the lower left-hand plot of Figure 9.4 the sample correla-
tion is negative (r = 0.08), while the sample correlation for each 
individual line is r = 1! 

 Sample correlation depends on the range of the variables.  The 
relationship between two random variables may stay the same over a 
wide range of values for X and Y, but the estimated correlation will 
be smaller if the X values are confined to a limited range vs. looking 
at X values on a broader range.  The lower right-hand plot of Figure 
9.4 displays a subset of the ozone concentrations shown in Figure 
9.3.  In Figure 9.4 we have restricted the Yonkers ozone concentra-
tions to lie between 60 and 80 ppb.  Here the estimated correlation is 
r = 0.41, but for the full data set it is r = 0.87. 
Correlation does not imply cause.  In some instances, two variables 
are correlated because one variable directly affects the other.  For 
example, precipitation causes runoff and affects stream flow (Helsel 
and Hirsch, 1992).  In other cases, two variables are correlated be-
cause they are both related to a third variable.  For example, if you 
take a sample of cities and plot the number of crimes committed an-
nually vs. the number of places of worship you may very well see a 
positive correlation.  Of course both of these variables depend on the 
population of the city.  Finally, two variables may exhibit correlation 
just by chance, with no immediate explanation as to why they do.  
As Helsel and Hirsch (1992, p. 210) state, “Evidence for causation 
must come from outside the statistical analysis – from the knowledge 
of the process involved.” 
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These caveats make it clear that you should never report just an estimate of 
correlation without looking at the data first! 
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Figure 9.4 Four examples of the danger of reporting sample correlation without 

plotting the data 

Confidence Intervals and Tests for Correlation 

Zar (1999, Chapter 19) discusses how to create confidence intervals for 
the population correlation coefficient.  To test the null hypothesis that the 
population correlation  is equal to 0, you can use the statistic: 

21

2

r
t

r

n

(9.8)

which follows a Student’s t-distribution with n 2 degrees of freedom under 
the null hypothesis (Sheskin, 2000, p. 766; Zar, 1999, p. 381).  This test as-
sumes the X and Y variables follow normal distributions, or that for each X
value the Y values come from a normal distribution, with possibly different 
means for each value of X but the same variance over all X values.  Devia-
tions from the normality or homogeneity of variance assumption can affect 
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the Type I error of this test (Zar, 1999, p. 380).  In such cases, you probably 
want to consider using data transformations (see the subsection Using Trans-
formations later in this chapter). 

Example 9.2:  Testing for Significant Correlation in the Ozone Data 

In this example we will test the null hypothesis that the correlation be-
tween the Yonkers and Stamford ozone data is 0 vs. the one-sided alternative 
that the correlation is greater than 0.  The computed t-statistic is 20.5 based 
on 130 degrees of freedom, yielding a p-value of essentially 0.  Note that the 
assumption of equal variability among the Stamford concentrations for each 
fixed value of Yonkers concentrations is suspect; the Stamford observations 
show more scatter for larger values of Yonkers ozone concentrations (see 
Figure 9.3). 

Menu

In the current version of S-PLUS 2000 (Release 2), you cannot test the 
significance of the correlation using the S-PLUS pull-down menu except by 
performing a simple linear regression analysis (see the section Simple Linear 
Regression below). 

Command 

To test the significance of the correlation between the Yonkers and Stam-
ford ozone concentrations using the S-PLUS Command or Script Window, 
type this command. 

cor.test(ozone$yonkers, ozone$stamford, 

alternative="greater")

Other Measures of Monotonic Correlation 

The estimator of correlation shown in Equation (9.7) is called Pearson’s 
product-moment correlation coefficient.  Two other commonly used estima-
tors of correlation are the Spearman rank correlation coefficient or Spear-
man’s rho (Conover, 1980, p. 252; Hollander and Wolfe, 1999, p. 394; 
Sheskin, 2000, p. 863; Zar, 1999, p. 395), and Kendall’s tau (Conover, 1980, 
p. 256; Hollander and Wolfe, 1999, p. 363; Sheskin, 2000, p. 881).  Unlike 
the Pearson product-moment correlation coefficient, which only measures 
linear association, Spearman’s rho and Kendall’s tau are more general meas-
ures of any kind of monotonic relationship between X and Y.  Also, both of 
these latter measures are based on ranks and are therefore not as sensitive to 
outliers. 
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 Spearman’s Rho 

Spearman’s rank correlation coefficient is simply the Pearson product-
moment correlation coefficient based on the ranks of the observations in-
stead of the observations themselves (where ranking is done separately 
within the X’s and within the Y’s): 
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In Equation (9.9), 
ix

R  denotes the rank of xi and 
iy

R  denotes the rank of 

yi.  Conover (1980, p. 456), Hollander and Wolfe (1999, p. 732), Sheskin 
(2000, p. 962) and Zar (1999, pp. App116 App118) give tables of critical 
values of rs that can be used to test the null hypothesis of independence be-
tween X and Y.  As an alternative, you can employ the t-statistic of Equation 
(9.8) using rs, which provides a reasonably good approximation as long as 
the sample size is greater than 10 (Sheskin, 2000, p. 868).  Some references 
suggest using the test statistic: 

1 Sz n r (9.10)

which is approximately distributed as a standard normal random variable un-
der the null hypothesis (Hollander and Wolfe, 1999, p. 395), but this ap-
proximation requires a sample size anywhere from 25 to 100 (Sheskin, 2000, 
pp. 868, 879). 

Kendall’s Tau 

Kendall (1938, 1975) proposed a test for the hypothesis that the X and Y
random variables are independent based on estimating the following quan-
tity:

1 2 1 22 Pr 0 1X X Y Y (9.11)

The quantity in Equation (9.11) is called Kendall’s tau, although this term is 
more often applied to the estimate of  (see Equation (9.12) below).  If X and 
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Y are independent, then = 0.  Furthermore, for most distributions of inter-
est, if = 0 then the random variables X and Y are independent.  (It can be 
shown that there exist some distributions for which = 0 and the random 
variables X and Y are not independent (Hollander and Wolfe, 1999, p. 364)). 

Note that Kendall’s tau is similar to a correlation coefficient in that 1
 1.  If X and Y always vary in the same direction, that is if X1 < X2 always 

implies Y1 < Y2, then = 1.  If X and Y always vary in the opposite direction, 
that is if X1 < X2 always implies Y1 > Y2, then = 1.  If > 0 this indicates 
X and Y are positively associated, and if < 0 this indicates X and Y are 
negatively associated. 

Kendall’s tau can be estimated by: 
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(Conover, 1980, pp. 256 260; Gibbons, 1994, Chapter 9; Gilbert, 1987, 
Chapter 16; Helsel and Hirsch, 1992, pp. 212 216; Hollander and Wolfe, 
1999, Chapter 8).  Note that the quantity S defined in Equation (9.13) is 
equal to the number of concordant pairs minus the number of discordant 
pairs.  Hollander and Wolfe (1999, p. 364) use the notation K instead of S,
and Conover (1980, p. 257) uses the notation T.

The null hypothesis of independence between the two random variables 
X and Y (H0: = 0) can be tested using the S statistic defined above.  Tables 
of critical values of S for small samples are given in Hollander and Wolfe 
(1999, pp. 724 731), Conover (1980, pp. 458 459), Gilbert (1987, p. 272), 
Helsel and Hirsch (1992, p. 469), and Gibbons (1994, p. 180).  The large 

© 2001 by CRC Press LLC



sample approximation to the distribution of S under the null hypothesis is 
given by: 

S E S
z

Var S
(9.15)

where

0E S (9.16)
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n n n
Var S (9.17)

Under the null hypothesis, the quantity z defined in Equation (9.15) is 
approximately distributed as a standard normal random variable.  Both 
Kendall (1975) and Mann (1945) show that the normal approximation is 
excellent even for samples as small as n = 10, provided that the following 
continuity correction is used: 

1
, 0

0 , 0

1
, 0

S
S

Var S

z S

S
S

Var S

(9.18)

In the case of tied observations in either the X’s or Y’s, the formula for 
the variance of S given in Equation (9.17) must be modified as shown in 
Equation (9.19) below.  In this equation, g denotes the number of tied groups 
in the X observations, ti is the size of the ith tied group in the X observa-
tions, h is the number of tied groups in the Y observations, and uj is the size 
of the jth tied group in the Y observations.  In the case of no ties in either the 
X or Y observations, Equation (9.19) reduces to Equation (9.17). 
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Example 9.3:  Testing for Independence in the Ozone Data 

Using the Stamford and Yonkers ozone data, Spearman’s rho is equal to 
0.88, yielding a t-statistic of 21.2 with 130 degrees of freedom.  Kendall’s 
tau is equal to 0.70, yielding a z-statistic of z = 11.95.  Both of the associated 
one-sided p-values are essentially 0. 

Menu

In the current version of S-PLUS 2000 (Release 2), you cannot test the 
significance of Spearman’s rho or Kendall’s tau using the S-PLUS pull-down 
menu. 

Command 

To test the significance of Spearman’s rho and Kendall’s tau for the 
Yonkers and Stamford ozone concentrations using the S-PLUS Command or 
Script Window, type these commands. 

cor.test(ozone$yonkers, ozone$stamford, 

alternative="greater", method="spearman") 

cor.test(ozone$yonkers, ozone$stamford, 

alternative="greater", method="kendall") 
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Note:  For the test of Spearman’s rho, ENVIRONMENTALSTATS for S-PLUS

uses the t-statistic of Equation (9.8), while S-PLUS uses the z-statistic of 
Equation (9.10). 

SIMPLE LINEAR REGRESSION 

In Chapter 3 we looked at the relationship between ozone concentration 
and daily maximum temperature taken in New York based on 111 daily ob-
servations taken between May and September 1973.  Figure 3.25 displays 
the scatterplot of ozone vs. temperature.  If we are interested in modeling the 
relationship between ozone and temperature, one of the simplest models we 
can use is a simple straight line fit.  Figure 9.5 displays the scatterplot along 
with a fitted line.  In this section we will discuss how you calculate this fitted 
line and decide whether you need to somehow make your model better. 
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Figure 9.5 Scatterplot of ozone vs. temperature with fitted line 

Mathematical Model 

Simple linear regression assumes we have two variables X and Y, and 
that the relationship between X and Y can be expressed as follows: 

0 1Y X (9.20)
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where 0 denotes the intercept of the line, 1 denotes the slope of the line, 
and  denotes a random variable with a mean of 0 and a standard deviation of 

.  That is, for a fixed value of X, say X*, the average or expected value of Y
is given by 0+ 1 X

*.  Mathematically, this is written as: 

*
* *

0 1| 
|

Y X
E Y  X  X  X  (9.21)

where the vertical line | is interpreted to mean “given.”  Also, for this fixed 
value of X, the Y values are bouncing around the mean with a standard devia-
tion of .  Figure 9.6 illustrates these assumptions based on sampling 20 Y
observations for each fixed value of X.

X

Y

Illustration of Linear Regression Assumptions
(Sample of 20 Y Observations for Each Fixed Value of X)

Figure 9.6 Illustration of the assumptions of linear regression 

In the model shown in Equation (9.20), the variable Y is often called the 
response variable and the variable X is often called the predictor variable.
The names dependent and independent variable are also often used to de-
note Y and X, but we avoid this terminology here to avoid confusion with the 
meaning of the term independent as applied to independent random  
variables. 
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Fitting the Line 

The most common way to estimate the intercept and slope parameters of 
Equation (9.20) is to use a technique called least squares (Draper and Smith, 
1998, Chapter 1; Zar, 1999, Chapter 17).  This technique finds the fitted line 
that minimizes the sum of the squared vertical distances between the ob-
served values of Y and the “predicted” values of Y based on the fitted line.  
Figure 9.7 illustrates this idea. 

X

Y

Illustration of Least Squares Fitting Method
(Sum of Squared Vertical Distances is Minimized)

Figure 9.7 Illustration of the idea behind the least squares method of fitting a 

straight line 

Mathematically, the technique of least squares finds the estimated values 
of 0 and 1 that minimize the following quantity: 

2

1

2

0 1
1

ˆ( )

ˆ ˆ
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i i
i

n

i i
i

RSS y y

y x

(9.22)
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where RSS stands for “Residual Sum of Squares.”  A residual is simply the 
observed value of Y minus its predicted value; so the ith residual is defined 
as:

ˆi i ir y y (9.23)

Thus, the technique of least squares minimizes the sum of the squared re-
siduals.  It can be shown that the formulas for the estimated slope and inter-
cept are given by: 

1
1

2

1

ˆ

( )

n

i i
i

n

i
i

x x y y

x x

(9.24)

0 1
ˆ ˆy x (9.25)

(Draper and Smith, 1998, pp. 24 25; Zar, 1999, pp. 328, 330).  Based on 
Equations (9.20) and (9.25), we can write: 

0 1 1
ˆ ˆ ˆŶ X y X x (9.26)

which shows that the fitted line contains the point ,x y .  Also, if the pos-
tulated model includes just an intercept and assumes a slope of 0 (i.e., 1 = 0 
so X is assumed to have no influence on Y), then the estimated intercept and 
fitted value of Y is simply the mean of the Y observations. 

This method of fitting a straight line via least squares is commonly 
known as linear regression.  Sir Francis Galton introduced this term in 1885 
when he was describing the results of analyses he had performed looking at 
the relationship between the seed size of parents and offspring in plants, and 
the relationship between the heights of parents and offspring in humans 
(Draper and Smith, 1998, p. 45).  Galton found that the seed size of offspring 
did not tend to resemble their parents’ seed size, but instead “regressed to-
wards mediocrity”:  If parents had larger than normal seeds, the seeds of the 
offspring tended to be smaller than those of their parents; if parents has 
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smaller than normal seeds, the seeds of the offspring tended to be larger than 
those of their parents.  So if you fit a straight line to a plot of offspring seed 
size vs. parent seed size, the slope of the line would be less than 1.  Galton 
found a similar phenomenon in the heights of humans.  The term linear re-
gression now refers to the general practice of fitting linear models via least 
squares.

Example 9.4:  Fitting a Straight Line to the Ozone Data 

The formula for the fitted straight line shown in Figure 9.5 is given by: 

ˆ 147.6 2.4O T (9.27)

That is, the intercept is –147.6 and the slope is 2.4.  So the fitted straight line 
relationship between ozone and temperature says that for every 1 degree in-
crease in temperature, ozone increases by 2.4 ppb. 

Menu

To estimate the regression parameters of the straight line fitted to the 
ozone data using the S-PLUS pull-down menu, follow these steps. 

1. Find environmental in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set select environmental, for Dependent select ozone,
and for Independent select temperature.  In the Save As box type 
ozone.fit.  Click OK or Apply.

To reproduce Figure 9.5 using the pull-down menu or toolbars, follow these 
steps.

1. On the S-PLUS menu bar, make the following menu choices:   
Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column Linear should be highlighted.  Under 
the Plot Type column select Fit-Linear Least Squares and click 
OK.  (Alternatively, left-click on the 2D Plots button, then left-
click on the Linear Fit button.) 

2. The Curve Fitting Plot dialog box should appear.  For Data Set se-
lect environmental, for x Columns select temperature, for y Col-
umns select ozone, then click OK or Apply.
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Command 

To estimate the regression parameters of the straight line fitted to the 
ozone data using the S-PLUS Command or Script Window, type these com-
mands. 

ozone.fit <- lm(ozone ~ temperature, 

data=environmental)

ozone.fit

To reproduce Figure 9.5, type these commands. 

x <- environmental$temperature 

y <- environmental$ozone 

plot(x, y, xlab="Temperature (degrees F)",

ylab="Ozone (ppb)") 

abline(ozone.fit)

title(main=paste("Scatterplot of Ozone vs. 

Temperature", "with Fitted Line", sep="\n")) 

Hypothesis Test for the Significance of the Regression 

In Equation (9.20), if we set the slope to 0 (i.e., 1 = 0) then there is no 
assumed relationship between Y and X; knowing the value of X does not help 
us predict what the value of Y will be.  In this case, the best predictor of Y is 

y = E(Y), the average value of Y, and indeed if we minimize the residual 
sum of squares assuming 1 = 0 we find that the estimated intercept is the 
sample mean.  To test whether the variable X is really helping us to predict 
the value of Y, we need to test the null hypothesis H0: 1 = 0.  To test this 
hypothesis, we have to make some kind of assumption about the distribution 
of the random error term  in Equation (9.20).  The most common assump-
tion is that the errors, the deviations of the Y’s from their expected values 
(how the Y’s bounce around the line at a fixed value of X), come from a 
normal distribution. 

The variance of the estimator of slope is given by: 
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(9.28)
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To test the significance of the slope, we can use the t-statistic 
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s x x

(9.29)

where

ˆ
2

RSS
s

n  
(9.30)

This t-statistic follows a Student’s t-distribution with n 2 degrees of free-
dom under the null hypothesis (Draper and Smith, 1998, p. 36; Zar, 1999, pp. 
336 337).  The results of testing the significance of a regression model are 
often presented in terms of an analysis of variance table.  See Draper and 
Smith (1998) and Zar (1999) for details. 

Example 9.5:  Testing the Significance of the Straight Line Fit to the 
Ozone Data 

In the previous example we showed that the estimated slope of the line 
fitted to the ozone data shown in Figure 9.5 is equal to 2.4.  The estimated 
standard error of the slope is 0.24, so the t-statistic for this fit is 2.4/0.24 = 10 
based on 111 2 = 109 degrees of freedom.  This yields a two-sided p-value 
of essentially 0, so we would reject the null hypothesis that the slope of the 
regression line is 0. 

Menu

To test the significance of the straight line fit using the S-PLUS pull-down 
menu, follow the same steps as in Example 9.4.  The report window contains 
the estimated slope and intercept, along with their standard errors, associated 
t-statistics, and p-values. 

Command 

To test the significance of the straight line fit using the S-PLUS Command 
or Script Windows, follow the same steps as in Example 9.4 to produce the 
object ozone.fit, then type the following command. 

summary(ozone.fit)
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Relationship between Linear Regression and Correlation 

It can be shown that  
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(9.31)

where r is the sample correlation coefficient defined in Equation (9.7) 
(Draper and Smith, 1998, p. 42; Zar, 1999, p. 381).  Also, the t-statistic de-
fined in Equation (9.8) to test the significance of the correlation is identical 
to the t-statistic in Equation (9.29) to test the significance of the regression. 

Confidence Intervals for the Slope, Intercept, Mean Value, and 
Line

Equation (5.87) shows a general formula for a two-sided confidence in-
terval for some parameter  based on the t-distribution.  In general, this for-
mula is approximate and relies on the Central Limit Theorem for its validity.  
In the case of the estimated slope for a line, this formula is exact because the 
distribution of the estimated slope is normal when the error terms are as-
sumed to be normal.  The two-sided (1 )100% confidence interval for the 
slope is given by: 

1 1
ˆ ˆ1 2,1 2 1 2,1 2

ˆ ˆˆ ˆ,n nt t (9.32)

where
1
ˆˆ  is defined in Equation (9.29).  You can also construct confidence 

intervals for the intercept; see Draper and Smith (1998, p. 38). 
Often, one of the major goals of regression analysis is to predict a future 

value of the response variable given a known value of the predictor variable.  
Equation (9.26) shows the equation for the predicted mean value of Y given 
a fixed value of X.  To construct a confidence interval for this predicted mean 
value using Equation (5.87), we need to know the variance of the predicted 
mean value: 
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(Draper and Smith, 1998, p. 80) and the formula for the estimator of this 
variance:
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where s is defined in Equation (9.30).  Thus, the two-sided (1 )100% con-
fidence interval for the mean value of Y given X = X* is given by: 

* *2,1 2 2,1 2ˆ ˆ| |
ˆ ˆˆ ˆ,

Y Y
n nX X

Y t Y t (9.35)

Just as we can plot the fitted line, we can connect all of the lower confi-
dence limits over the range of X and all of the upper confidence limits over 
the range of X to produce lower and upper confidence limits for the line.  
Technically, however, the formula in Equation (9.35) is a confidence interval 
for the mean of Y for one fixed value of X.  To create simultaneous confi-
dence curves for the line over the range of X, the critical t-value tn-2,1- /2 in 
Equation (9.35) has to be replaced with [2F2,n-2,1- ]1/2 (Draper and 
Smith, 1998, p. 83; Miller, 1981a, p. 111): 

*2, 2,1 ˆ |
ˆ ˆ2

Y
n X

Y F (9.36)
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Example 9.6:  Confidence Intervals for the Ozone Data 

Figure 9.8 displays a plot of ozone vs. temperature, along with the fitted 
line and 95% upper and lower simultaneous confidence bands.  For the spe-
cific temperature of 70o, the predicted value of ozone is 23 ppb, and the 95% 
confidence intervals for the mean value of ozone is [17, 29] ppb.  For a tem-
perature of 90o, the predicted value is 72 ppb and the 95% confidence inter-
val is [65, 79]. 
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with Fitted Line and Simultaneous 95% Confidence Bands

Figure 9.8 Ozone vs. temperature with fitted line and 95% simultaneous confi-

dence bands 

Menu

To compute the predicted values and the 95% confidence intervals for the 
mean value of ozone given temperatures of 70o and 90o using the S-PLUS

pull-down menu, we first need to create a new data frame with a single col-
umn called temperature and two rows:  70 in the first row and 90 in the 
second row.  We will call this data frame New.Temperature.  To create this 
data frame, follow these steps. 

1. On the S-PLUS tool bar, click on the New button, select Data Set
and click OK.

2. In row 1 of column 1 type 70, and in row 2 of column 1 type 90.
Right click on the top of column 1, choose Properties, and in the 
Name box type temperature.  Close the data frame and do not save 
the changes to a file. 
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3. In the Object Explorer, rename the data frame New.Temperature.

To compute the predicted values and 95% confidence intervals, follow these 
steps.

4. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

5. For Data Set select environmental, for Dependent select ozone,
and for Independent select temperature.

6. Click on the Predict tab.  For New Data select New.Temperature,
check the Predictions box, and check the Confidence Intervals box.  
Click OK or Apply.

To create the scatterplot with the fitted line and confidence bands shown 
in Figure 9.8, follow the same steps shown in Example 9.4 to create Figure 
9.5, but modify Step 2 as follows: 

2. The Curve Fitting Plot dialog box should appear.  For Data Set se-
lect environmental, for x Columns select temperature, for y Col-
umns select ozone.  Click on the By Conf Bound tab.  For level 
type 0.95, and for Style select the 4th line down, then click OK or 
Apply.

Note:  The confidence bands created via the S-PLUS menu are not simultane-
ous confidence bands based on Equation (9.36), but rather individual confi-
dence bands based on Equation (9.35). 

Command 

To compute predicted values and the 95% confidence intervals for the 
mean value of ozone given temperatures of 70o and 90o using the S-PLUS

Command or Script Windows, follow the same steps as in Example 9.4. to 
produce the object ozone.fit, then type the following commands. 

predict.list <- predict(ozone.fit, 

newdata=data.frame(temperature=c(70,90)), se.fit=T) 

pointwise(predict.list, coverage=0.95) 

To create the scatterplot with the fitted line and simultaneous confidence 
bands shown in Figure 9.8, type the same commands shown in Example 9.4 
to create Figure 9.5, but omit the call to the title function and add the fol-
lowing commands. 

new.x <- seq(min(x), max(x), length=100) 

predict.ozone <- predict(ozone.fit, 

newdata=data.frame(temperature=new.x), se.fit=T) 
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ci.ozone <- pointwise(predict.ozone, coverage=0.95, 

simultaneous=T)

lines(new.x, ci.ozone$lower, lty=4) 

lines(new.x, ci.ozone$upper, lty=4) 

title(main="Scatterplot of Ozone vs. Temperature\nwith 

Fitted Line and Simultaneous 95% Confidence Bands") 

Note:  In ENVIRONMENTALSTATS for S-PLUS the function pointwise has 
been modified to take the argument simultaneous so you can specify 
whether you want non-simultaneous (Equation (9.35)) or simultaneous 
(Equation (9.36)) confidence limits. 

Prediction and Tolerance Intervals 

In Chapter 6 we discussed how to construct a prediction interval for the 
next value of an observation (as opposed to constructing a confidence inter-
val for the mean of the population).  We can do the same thing under the lin-
ear model of Equation (9.20) using Equation (5.87).  The formula for the 
variance of an estimated single future observation is given by: 
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and the formula for the estimator of this variance is given by: 
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where s is defined in Equation (9.30).  Thus, the two-sided (1 )100% pre-
diction interval for a single future observation given X = X* is given by: 
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Y t  Y  t  (9.39)

(Miller, 1981a, p. 115).  We can connect all of the lower prediction limits 
over the range of X and all of the upper prediction limits over the range of X
to produce lower and upper prediction limits for future observations; this is 
what is usually done in practice.  Technically, however, the formula in Equa-
tion (9.39) is a prediction interval for a single future observation for one
fixed value of X.

Miller (1981a, p. 115) gives a formula for simultaneous prediction inter-
vals for k future observations.  If we are interested in creating an interval 
that will encompass all possible future observations over the range of X with 
some specified probability however, we need to create simultaneous toler-
ance intervals.  A formula for such an interval was developed by Lieberman 
and Miller (1963) and is given in Miller (1981a, p. 124): 

*2, 2,1 2 1 2ˆ 2|
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Y

n X
n

n
Y F  s z  (9.40)

Example 9.7:  Prediction Intervals for the Ozone Data 

Figure 9.9 displays a plot of ozone vs. temperature, along with the fitted 
line, 95% upper and lower confidence bands, and 95% upper and lower 
(non-simultaneous) prediction bands.  For the specific temperature of 70o,
the predicted value of ozone is 23 ppb, and the 95% prediction interval is 
[ 25, 71] ppb.  For a temperature of 90o, the predicted value is 72 ppb and 
the 95% prediction interval is [24, 120].  These intervals are much wider 
compared to the confidence intervals for the average value of ozone com-
puted in Example 9.6.  Also, the prediction interval for a temperature of 70o

includes negative values, which are impossible to observe.  This is a reflec-
tion of the amount of variability in the observations, and the poor fit of our 
model (see the next section Regression Diagnostics). 
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Figure 9.9 Ozone vs. temperature with fitted line, 95% confidence bands, and 95% 

prediction bands 

Menu

In the current version of S-PLUS 2000 Release 2, you cannot compute 
prediction limits for a linear model from the menu. 

Command 

To compute predicted values and the 95% prediction intervals for ozone 
given temperatures of 70o and 90o using the S-PLUS Command or Script 
Windows, follow the same steps as in Example 9.4. to produce the object 
ozone.fit, then type the following commands. 

predict.list <- predict(ozone.fit, 

newdata=data.frame(temperature=c(70,90)), se.fit=T) 

pointwise(predict.list, coverage=0.95, individual=T) 

To create the scatterplot with the fitted line, confidence bands, and prediction 
bands shown in Figure 9.9, type the same commands shown in Example 9.4 
to create Figure 9.5, but omit the call to the title function and add the fol-
lowing commands. 

new.x <- seq(min(x), max(x), length=100) 
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predict.ozone <- predict(ozone.fit, 

newdata=data.frame(temperature=new.x), se.fit=T) 

ci.ozone <- pointwise(predict.ozone, coverage=0.95) 

lines(new.x, ci.ozone$lower, lty=4) 

lines(new.x, ci.ozone$upper, lty=4) 

pi.ozone <- pointwise(predict.ozone, coverage=0.95, 

individual=T)

lines(new.x, pi.ozone$lower, lty=8) 

lines(new.x, pi.ozone$upper, lty=8) 

title(main="Scatterplot of Ozone vs. Temperature\nwith 

Fitted Line and 95% Confidence and Prediction 

Bands")

Note:  In ENVIRONMENTALSTATS for S-PLUS the function pointwise has 
been modified to take the argument individual so you can specify 
whether you want a confidence interval for the mean (individual=F) or 
a prediction interval for an individual observation (individual=T).

A Caution about Extrapolation 

In the previous sections we discussed how to fit a straight line, test for 
the significance of the slope and intercept, and create confidence and predic-
tion intervals.  These discussions all assumed that the model shown in Equa-
tion (9.20) is correct and applied in the range of values we observed for the 
predictor variable.  Although it is tempting to use regression models to pre-
dict future values of the response variable for values of the predictor variable 
outside its observed range, there is no way to statistically assess the validity 
of these predicted values, although sometimes common sense or knowledge 
of the physical process will indicate the predicted values are nonsense.  For 
example, in Example 9.4 we showed that the fitted line relating ozone to 
temperature had an intercept of 147.6.  That is, when the temperature is  
0o F, the model predicts an observed value of ozone of 147.6 ppb, an 
impossible value.  The observed values of temperature are between 57o and  
97o F, and that is the only range of temperature values we can use to predict 
ozone with the linear model and still be able to validly indicate our uncer-
tainty in these predictions. 

REGRESSION DIAGNOSTICS 

Our discussions of estimating the slope and intercept, confidence inter-
vals for the mean value, and prediction intervals for individual observations 
have all been based on the following assumptions (Helsel and Hirsh, 1992,  
p. 225): 

© 2001 by CRC Press LLC



1. The linear relationship postulated between the response variable Y
and the predictor variable X shown in Equation (9.20) is correct. 

2. The set of n observed (X, Y) pairs used to fit the model are represen-
tative of the population. 

3. The error terms in the model represented by  in Equation (9.20) 
come from a distribution with an average value of 0 and a constant 
standard deviation of .  Furthermore, the distribution of the error 
terms does not depend on the value of the predictor variable X.

4. The error terms are independent of one another. 
5. The error terms come from a normal distribution. 

These assumptions are listed in more or less decreasing order of importance.  
To fit the model (i.e., estimate the slope and intercept) and produce a pre-
dicted value for a given value of X, you only need assumptions 1 and 2.  To 
compute confidence or prediction intervals, or perform hypothesis tests, you 
need all five assumptions. 

Several statistical and graphical procedures have been developed to help 
you check the assumptions of linear regression, and these tools are classified 
under the topic of regression diagnostics (e.g., Draper and Smith, 1998, 
Chapters 2 and 8).  In this section we will discuss diagnostic plots, summary 
statistics, and the use of transformations. 

Diagnostic Plots 

Figure 9.10 displays six kinds of regression diagnostic plots based on the 
linear model relating ozone to temperature.  We will discuss the meaning and 
interpretation of each of these plots below. 

Residuals vs. Fitted Values (row 1, column 1).  If the linear model 
of Equation (9.20) is appropriate, then the residuals should be bounc-
ing around 0 and there should not be any kind of marked pattern to 
the plot, since the variance of the errors is supposed to be constant.  
For the ozone linear fit this plot displays both curvilinearity and sev-
eral “outliers.”  The curvilinearity indicates that a straight line model 
is too simple.  The outliers indicate that the assumption of a constant 
variance is suspect. 
Square-Root of Absolute Value of Residuals vs. Fitted Values
(row 1, column 2).  This plot is similar to the first, but may be more 
helpful in detecting deviations from the assumption of a constant 
variance in the errors.  If the error variance is constant, there should 
not be a marked pattern; if the error variance increases or decreases 
with the fitted values of Y, then you will see a pattern that looks a bit 
like a megaphone.  For the ozone linear fit, there appears to be more 
variability for larger values of ozone. 
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Figure 9.10 Six kinds of regression diagnostic plots for the linear model relating 

ozone to temperature 
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 Observed vs. Fitted Values (row 2, column 1).  Ideally, this plot 
should show points bouncing very closely about the 0-1 line.  For the 
ozone linear fit, both the curvilinearity and “outliers” are apparent. 

 Normal Q-Q Plot of Residuals (row 2, column 2).  This plot is used 
to determine the validity of the assumption that the errors come from 
a normal distribution.  For the ozone linear fit, several larger obser-
vations fall off of the line, indicating that the normality assumption 
is suspect. 

 Residual-Fit Spread (r-f) Plot (row 3, column 1).  This plot is 
really two plots.  The first plot is the quantile (empirical cdf) plot of 
the fitted values (centered by their mean).  The second plot is the 
quantile plot of the residuals.  (Note that these quantile plots have 
the x- and y-axes reversed compared to the way quantile plots are 
presented in Chapter 3.)  The point of creating these two plots is to 
compare the spread between the two plots.  If your fitted model is 
doing a good job, the spread of the fitted values should be much 
greater than the spread of the residuals.  For the ozone linear fit, the 
spread is about the same in both plots, indicating our model is not 
too good. 

 Cook’s Distances (row 3, column 2).  Cook’s distance is a measure 
of how the fitted value or slope coefficient changes if you leave one 
of the observations out of the fit (Draper and Smith, 1998,  
pp. 211 212).  Observations that do not greatly affect the fitted 
model have small Cook’s distances, while observations that greatly 
affect the fitted model have large Cook’s distances.  For the ozone 
linear fit, observation 77 (temperature = 81o, ozone = 168 ppb) has a 
relatively large Cook’s distance.  Observations with large Cook’s 
distances are often called high-leverage points.  These are not nec-
essarily “bad” observations, they simply exert a large influence on 
the fitted model.  Observations with large Cook’s distances are usu-
ally associated with values of the predictor variable that are “far 
away” from the average value of the predictor variable. 

Example 9.8:  Creating Diagnostic Plots for the Ozone Simple Regression 
Model 

This example explains how to create the diagnostic plots shown in Figure 
9.10.

Menu

To create the regression diagnostic plots for the linear model based on the 
ozone data using the S-PLUS pull-down menu, follow these steps. 

© 2001 by CRC Press LLC



1. On the S-PLUS menu bar, make the following menu choices: 
Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

2. For Data Set select environmental, for Dependent select ozone,
and for Independent select temperature.

3. Click on the Plot tab.  Under Plots, check all but the last box.  Un-
der Options, uncheck the Include smooth box.  Click OK or Apply.

Command 

To create the regression diagnostic plots for the linear model based on the 
ozone data using the S-PLUS Command or Script Window, type this com-
mand. 

plot(ozone.fit)

The R2 Summary Statistic and Hypothesis Tests 

A summary statistic that is often quoted to summarize the results of a re-
gression is called R2 (R-squared) or the coefficient of determination and is 
given by: 

2

2 1

2

1

ˆ

1 1

n

i i
i
n

i
i

y y
RSS

R
SST

y y

(9.41)

where SST denotes the Sum of Squares Total.  The Sum of Squares Total is 
simply the Residual Sum of Squares for the linear model that has just an 
intercept (i.e., the slope is equal to 0; 1 = 0).  If the linear model with a 
slope and intercept is better than the model with just an intercept, then RSS
(the Residual Sum of Squares) should be small compared to SST, and 
therefore R2 should be close to 1.  (Note:  RSS SST.)  For the ozone linear 
fit, R2 = 0.49. 

For the case of a simple linear model with one predictor variable, it can 
be shown that the square of the sample correlation coefficient given in Equa-
tion (9.7) is the same as R2 (Draper and Smith, 1998, pp. 42 43).  Just as we 
have seen that the sample correlation coefficient is inadequate to fully de-
scribe the relationship between two variables, the summary statistic R2 is in-
adequate to describe how well a linear model works. 
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Using Transformations 

There are two approaches to improving a model fit:  transform the Y
and/or X variable, and/or use more predictor variables.  We will discuss the 
first approach in this section and the second approach in the section Multiple 
Regression later in this chapter. 

We are already familiar with the idea of using a transformation on the 
data in order to improve how well the data fit our pre-conceived model.  For 
example, in Chapters 3 we discussed using Box-Cox transformations to de-
cide what kind of transformation to use to make the observations look like 
they come from a normal distribution.  Often in environmental data analysis 
we assume the observations come from a lognormal distribution and auto-
matically take logarithms of the data. 

If regression diagnostic plots indicate that a straight line fit is not ade-
quate, but that the variance of the errors appears to be fairly constant, you 
may only need to transform the predictor variable X or perhaps use a quad-
ratic or cubic model in X.  On the other hand, if the diagnostic plots indicate 
that the constant variance and/or normality assumptions are suspect, you 
probably need to consider transforming the response variable Y.  Data trans-
formations for linear regression models are discussed in Draper and Smith 
(1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228 229).

Example 9.9:  Transforming the Ozone Data 

In Chapter 3 we discussed how to compute “optimal” Box-Cox transfor-
mations based on the probability plot correlation coefficient (PPCC), the 
Shapiro-Wilk goodness-of-fit statistic, or the log-likelihood function.  For 
linear models, you can compute “optimal” transformations of the response 
variable based on looking at the residuals from the fit.  Figure 9.11 shows a 
plot of the PPCC for the residuals from the ozone linear model vs. various 
values of the transform power , where the ozone concentrations were trans-
formed prior to the fit.  Based on this plot, it looks like using a log-
transformation ( = 0) should improve the fit.  The power that produces the 
largest PPCC is about 0.2.  As we explained in Chapter 3, the S-PLUS built-
in data set air contains exactly the same variables as environmental,
except that the cube-root of ozone ( = 1/3) is used instead of the raw values 
of ozone.  Figure 9.12 shows the regression diagnostic plots based on model-
ing the cube-root of ozone as a linear function of temperature.  Although the 
normal Q-Q plot for the residuals looks much better, the r-f plots indicate 
that the model can still be improved.  Figure 3.27 shows that a loess smooth 
indicates a curvilinear instead of a linear relation.  We will talk about how to 
fit a quadratic or higher order model later in this chapter in the section 
Polynomial Regression with One Predictor Variable. 
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Figure 9.11 Probability plot correlation coefficient (PPCC) vs. Box-Cox transform 

power ( ) based on the residuals from the linear fit of the transformed 

ozone as a function of temperature 

Menu

To create the plot of the PPCC vs. the transform power  for the ozone 
linear fit using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, fol-
low these steps. 

1. Find the object ozone.fit in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices: 

EnvironmentalStats>EDA>Box-Cox Transformations.  This will 
bring up the Box-Cox Transformations dialog box. 

3. For Data to Use select Linear Models, in the Linear Model box se-
lect ozone.fit, then click OK or Apply.

To create the regression diagnostic plots for the linear model specifying the 
cube-root of ozone as a function of temperature, follow the same steps as in 
Example 9.8 but use the data set air instead of environmental.  Also, in the 
Save As box type cr.ozone.fit.
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Command 

To create the plot of the PPCC vs. the transform power  for the ozone 
linear fit using the ENVIRONMENTALSTATS for S-PLUS Command or Script 
Window, type these commands. 

boxcox.list <- boxcox(ozone.fit) 

plot(boxcox.list, plot.type="Objective vs. lambda") 

To create the linear model with the cube-root of ozone as a function of tem-
perature and then create the regression diagnostic plots, type these com-
mands. 

cr.ozone.fit <- lm(ozone ~ temperature, data=air) 

plot(cr.ozone.fit)

Problems with Predicting on the Original Scale 

As we stated in Chapter 3, a big problem with dealing with transformed 
observations is that it is usually not so easy to translate results back to the 
original scale unless we are only concerned with quantiles or prediction lim-
its.  Also, in the case of linear models, using transformations changes the na-
ture of the underlying model.  For example, if we decide to use the log-
transformed observations, then our mathematical model is: 

0 1lnW Y X (9.42)

which implies that the model on the original scale is: 

0 1
0 1exp XY X e e e (9.43)

so the errors are multiplicative on the original scale, not additive. 
If you specify an “exponential model” like Equation (9.43) and ask for 

the predicted value of Y at a specific value of X = X*, most statistics pro-
grams (including S-PLUS) will use Equation (9.42) to fit the model and then 
give you 

*
*ˆ ˆexp |

X
Y W X X (9.44)
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This predicted value is an estimate of the median value of Y at X = X*, not 
the mean value of Y at X = X*.  Similarly, confidence intervals produced will 
be confidence intervals for the median of Y, not the mean.  Cohen et al. 
(1989) discuss various methods for estimating the mean of Y for an exponen-
tial model.  They recommend using the minimum variance unbiased estima-
tor, which is an extension of the estimator shown in Equation (5.54). 

CALIBRATION, INVERSE REGRESSION,  
AND DETECTION LIMITS 

Determining the concentration of a chemical in a soil, water, or air sam-
ple is a very complex process that involves many steps.  Also, we showed in 
Figure 1.2 that several steps are involved just to get the physical sample to 
the lab in the first place!  Table 9.1 shows a list of some qualifiers commonly 
used by analytical chemists to report results.  These qualifiers are related to 
the sources of variability shown in Figure 1.2 up to and including the catego-
ries Sample Receipt and Storage at Laboratory, Sample Work Up, and Sam-
ple Analysis.  Within the Sample Analysis category, one of the sources of 
variability is labeled Calibration Error.  See Keith (1996) for more informa-
tion and details on sources of variability from field sampling, transport, and 
laboratory analysis. 

Qualifier Meaning 
J Result is of limited use due to discrepancies in holding times, blank 

analyses, duplicate analyses, spike analyses, or laboratory contamina-
tion problems 

L (Formerly known as “trace”); result is of limited use because it is be-
tween the instrument/method detection limit and the contract detec-
tion/quantitation limit 

N Result probably acceptable but is just outside the calibration range or 
the recovery is just outside the specification range 

R Results are unusable due to discrepancies in analytical tech-
nique/protocol, improper calibration, outside calibration range, outside 
specified recovery windows, or blunder 

U Reading was below instrument detection limit (inorganics), or method 
detection limit (organics) 

Table 9.1  Commonly used analytical laboratory qualifiers 

Almost always the process of determining concentration involves using 
some kind of machine that produces a signal, and this signal is related to the 
concentration of the chemical in the physical sample.  The process of relat-
ing the machine signal to the concentration of the chemical is called calibra-
tion.  Once calibration has been performed, estimated concentrations in 
physical samples with unknown concentrations are computed using inverse
regression.  The uncertainty in the process used to estimate the concentration 
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may be quantified with decision, detection, and quantitation limits.  We will 
discuss each of these topics in this section. 

Linear Calibration and Inverse Regression 

A simple and frequently used calibration model is a straight line: 

0 1S C  (9.45)

where S denotes the signal of the machine, C denotes the true concentration 
in the physical sample, 0 denotes the intercept, 1 denotes the slope, and 
denotes the error term, which is assumed to follow a normal distribution with 
mean 0 and standard deviation .  Note that the average value of the signal 
for a blank (C = 0) is the intercept 0.  Figure 9.13 displays an example of a 
calibration line. 

Concentration (C)

S
ig

na
l (

S
)

0

0

Example of a Calibration Line

Figure 9.13 Idealized calibration line where the intercept and slope are known 

In a typical setup, a small number of samples (e.g., n = 6) with known 
concentrations are measured and the signal is recorded.  A sample with no 
chemical in it, called a blank, is also measured.  (You have to be careful to 
define exactly what you mean by a “blank.”  A blank could mean a container 
from the lab that has nothing in it but is prepared in a similar fashion to con-
tainers with actual samples in them.  Or it could mean a field blank:  the con-
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tainer was taken out to the field and subjected to the same process that all 
other containers were subjected to, except a physical sample of soil or water 
was not placed in the container.)  Usually, replicate measures at the same 
known concentrations are taken.  (The term “replicate” must be well defined 
to distinguish between for example the same physical samples that are meas-
ured more than once vs. two different physical samples of the same known 
concentration.)  Once the calibration line is fit, samples with unknown con-
centrations are measured and their signals are recorded.  In order to produce 
estimated concentrations, you have to use inverse regression to map the sig-
nals to the estimated concentrations.  Figure 9.14 illustrates the idea of in-
verse regression. 
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Figure 9.14 Idea of inverse regression 

If a straight line model is used for the calibration, then Equation (9.45) 
can be rewritten to produce the following formula for the estimated concen-
tration: 

0 1
ˆ ˆĈ S (9.46)

(Draper and Smith, 1998, p. 83).  There is uncertainty in the estimated con-
centration Ĉ  because: 
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1. We do not know the true values of the slope 1 and intercept 0.
2. Even if we did know the true values of the slope and intercept, there 

is uncertainty relating the observed signal S to the true concentra-
tion C because of the error terms in the model in Equation (9.45). 

We can quantify the uncertainty in the estimated concentration by combining 
inverse regression with prediction limits for the signal S.  Using Equation 
(9.39) or (9.40), the lower and upper prediction limits CL and CU for the con-
centration given an observed signal S can be found (Draper and Smith, 1998, 
pp. 83 86; Hubaux and Vos, 1967).  Figure 9.15 illustrates the process based 
on two-sided 99% non-simultaneous prediction limits. 
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Figure 9.15 Constructing confidence limits for the true concentration 

In practice, only the point estimate Ĉ  is reported (along with a possible 
qualifier as shown in Table 9.1) without confidence bounds for C.  This is 
most unfortunate because it gives the impression that there is no error asso-
ciated with the reported concentration.  Indeed, both the International Or-
ganization for Standardization (ISO) and the International Union of Pure and 
Applied Chemistry (IUPAC) recommend always reporting both the estimated 
concentration and the uncertainty associated with this estimate (Currie, 
1997).
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Example 9.10:  Fitting a Calibration Line to Cadmium Data 

Table 9.2 lists calibration data for cadmium at mass 111 that appeared in 
Gibbons et al. (1997b) and were provided to them by the U.S. EPA.  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the data frame 
epa.97.cadmium.111.df.  Figure 9.16 displays a plot of these data 
along with the fitted calibration line and 99% non-simultaneous prediction 
limits.  An observed signal of 60 results in an estimated value of cadmium of 
59.97 ng/L and a confidence interval of [53.83, 66.15]. 

Concentration 
(C)

Signal (S)

     0   0.88   1.57   0.70   0.80   0.54   1.83   1.34 
    10  10.17  11.13  11.66  10.80  11.11  11.95  11.14 
    20  19.97  20.28  23.20  22.12  18.01  24.83  21.10 
    50  54.78  49.00  51.92  49.00  54.75  50.25  50.03 
   100  97.06  94.60 102.54 101.09  99.20  93.71 100.43 

Table 9.2  Method 1638 ICPMS data from U.S. EPA for cadmium at mass 111 

(ng/L) (as shown in Gibbons et al., 1997b, p. 3730) 
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Figure 9.16 Cadmium 111 data with fitted calibration line and 99% non-simultaneous 

prediction limits 

© 2001 by CRC Press LLC



Menu

In the current version of S-PLUS 2000 Release 2, you cannot compute 
prediction limits for a linear model from the menu.  Also, in the current ver-
sion of ENVIRONMENTALSTATS for S-PLUS you cannot perform inverse pre-
diction from the menu. 

Command 

To produce the plot shown in Figure 9.16 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

Cadmium <- epa.97.cadmium.111.df$Cadmium 

Spike <- epa.97.cadmium.111.df$Spike 

calibrate.list <- calibrate(Cadmium ~ Spike, 

data=epa.97.cadmium.111.df, max.order=1) 

newdata <- data.frame(Spike = seq(min(Spike), 

max(Spike), len=100)) 

pred.list <- predict(calibrate.list, newdata=newdata, 

se.fit=T)

pointwise.list <- pointwise(pred.list, coverage=0.99, 

individual=T)

plot(Spike, Cadmium, ylim=c(min(pointwise.list$lower), 

max(pointwise.list$upper)),

xlab="True Concentration (ng/L)",

ylab="Observed Concentration (ng/L)") 

abline(calibrate.list, lwd=2) 

lines(newdata$Spike, pointwise.list$lower, lty=8, 

lwd=2)

lines(newdata$Spike, pointwise.list$upper, lty=8, 

lwd=2)

title("Calibration Line and 99% Prediction Limits\nfor 

US EPA Cadmium 111 Data") 

To estimate cadmium concentration based on a signal of 60 ng/L and com-
pute confidence limits for the concentration based on 99% non-simultaneous 
prediction limits, type this command. 

inverse.predict.calibrate(calibrate.list, obs.y=60, 

intervals=T, coverage=0.99, individual=T) 
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Caveats about Calibration Lines and the Measurement Process 

There are several issues to consider when developing a calibration line 
and computing confidence bounds for the concentration. 

 Figure 9.15 assumes that the linear model is appropriate.  Some-
times a curvilinear model (e.g., a quadratic or higher order model) 
is more appropriate. 

 Also, the model assumes a constant variance across the range of 
concentrations.  This assumption is usually not met.  Figure 9.17 
displays diagnostic plots for the calibration model that was fit in 
Example 9.10 using the cadmium 111 data.  The top two plots and 
Figure 9.16 clearly indicate that the assumption of a constant vari-
ance is not met. 
The confidence bounds for the concentration (C) shown in Figure 
9.15 are based on non-simultaneous prediction intervals for the sig-
nal (S).  You could instead base the confidence bounds for the con-
centration on simultaneous prediction intervals or tolerance inter-
vals. 
Sometimes the instrument producing the signal is hard-wired to re-
port a value of 0 for a signal that is negative or less than the deci-
sion limit (see the section Decision, Detection, and Quantification 
Limits below).  This practice destroys important and useful infor-
mation about variability at blank and near-zero concentrations and 
biases the fit of the calibration line. 
Although a physical sample may have a known concentration or 
amount of chemical, the process used to prepare the sample for 
measurement may involve losing some of the chemical.  This is 
measured by the percent recovery associated with the preparation 
process.  The percent recovery may change with concentration, 
which will bias the fit of the calibration line. 
The physical samples with known concentrations used to create the 
calibration line may not contain the full matrix of material that is 
associated with the physical samples from the field (this is almost 
always the case with blanks), and therefore the results of the cali-
bration may not really be applicable to the physical samples with 
unknown concentrations that you want to measure. 

The complexity of measuring chemical concentrations in a physical sample 
cannot be overemphasized.  In the next section we describe some more com-
plicated statistical models for fitting a calibration line. 
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Figure 9.17 Diagnostic plots for the linear calibration line for cadmium 111 
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Linear Calibration Models with Nonconstant Variance 

One commonly used model for linear calibration assumes that the stan-
dard deviation of the error terms is proportional to the amount of chemical 
present or to the average value of the signal (i.e., the coefficient of variation 
is constant).  This model appears to work well to describe calibration lines 
computed based on using physical samples with non-negligible known con-
centrations.  The problem with this model is that it implies the standard de-
viation decreases to 0 as the average value of the signal decreases to 0, which 
of course does not happen in practice (Rocke and Lorenzato, 1995).  Instead, 
the standard deviation usually appears to be constant for blank and near-zero 
concentrations (Rocke and Lorenzato, 1995).  Rocke and Lorenzato (1995) 
therefore suggested combining these two models into one: 

0 1S C e (9.47)

The only difference between the model described in Equation (9.47) and the 
one described in Equation (9.45) is that the term e  has been added.  The 
variable  is assumed to follow a normal distribution with a mean of 0 and a 
standard deviation of .  In this model, the standard deviation is relatively 
constant at near-zero concentrations (approximately equal to ), and propor-
tional to the average value of the signal at higher concentrations.  Rocke and 
Lorenzato (1995) explain how to use maximum likelihood estimation to es-
timate the parameters of their model and create prediction limits for the sig-
nal S.  These prediction limits can then be used with inverse regression to 
compute a confidence interval for the true concentration C given an observed 
signal S.  Programs to fit the model of Equation (9.47) are available on the 
World Wide Web at http://handel.cipic.ucdavis.edu/~dmrocke. 

Gibbons et al. (1997a) discuss an approximation to the Rocke and Loren-
zato’s model and explain a weighted least-squares algorithm to fit it.  Zorn et 
al. (1997) discuss a more general model in which the standard deviation is 
allowed to vary with the concentration (or average signal) but no constraints 
are placed on how it varies.  They show how to use weighted least-squares to 
fit the model. 

Decision, Detection, and Quantification Limits 

Perhaps no other topic in environmental statistics has generated as much 
confusion or controversy as the topic of detection limits.  After decades of 
disparate terminology, ISO and IUPAC provided harmonized guidance on 
the topic in 1995 (Currie, 1997).  Intuitively, the idea of a detection limit is 
simple to grasp:  the detection limit is “the smallest amount or concentration 
of a particular substance that can be reliably detected in a given type of sam-
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ple or medium by a specific measurement process” (Currie, 1997, p. 152).  
Unfortunately, because of the exceedingly complex nature of measuring 
chemical concentrations, this simple idea is difficult to apply in practice. 

Detection and quantification capabilities are fundamental performance 
characteristics of the Chemical Measurement Process (CMP) (Currie, 1996, 
1997).  In this subsection we will discuss some currently accepted definitions 
of the terms decision, detection, and quantification limits.  For more details, 
the reader should consult the following references:  Hubaux and Vos (1970), 
Glaser et al. (1981), Clayton et al. (1987), Massart et al. (1988), Porter et al. 
(1988), Lambert et al. (1991), Osborne (1991), Singh (1993), Clark and 
Whitfield (1994), Currie (1995, 1996, 1997), Gibbons (1995), Rocke and 
Lorenzato (1995), Davis (1997), Gibbons et al. (1997a,b; 1998), Kahn and 
White (1997), Kimbrough (1997), Zorn et al. (1997), Spiegelman (1997), 
and Kahn et al. (1998). 

The idea of a decision limit and detection limit is directly related to cali-
bration and can be framed in terms of a hypothesis test, as shown in Table 
9.3.  The null hypothesis is that the chemical is not present in the physical 
sample (i.e., H0: C = 0).

Reality

Your Decision H0 True (C = 0) H0 False (C > 0)

Reject H0
(Declare
Chemical Present) 

Mistake: 
Type I Error 

(Probability = )
Correct Decision 

(Probability = 1 )
Do Not Reject H0
(Declare
Chemical Absent) 

Correct Decision 
Mistake: 

Type II Error 
(Probability = )

Table 9.3  Hypothesis testing framework for decision and detection limits 

Ideally, you would like to minimize both the Type I and Type II error rates.  
Just as we use critical values to compare against the test statistic for a hy-
pothesis test, we need to use a critical signal level SD called the decision
limit to decide whether the chemical is present or absent.  If the signal is less 
than or equal to SD we will declare the chemical is absent, and if the signal is 
greater than SD we will declare the chemical is present. 

First, suppose no chemical is present (i.e., the null hypothesis is true).  If 
we want to guard against the mistake of declaring that the chemical is pre-
sent when in fact it is absent (Type I error), then we should choose SD so that 
the probability of this happening is some small value .  Thus, the value of 
SD depends on what we want to use for  (the Type I error rate), and the true 
(but unknown) value of  (the standard deviation of the errors assuming a 
constant standard deviation) (Massart et al., 1988, p. 111).  Figure 9.18 dis-
plays the distribution of the signal S when the true concentration is 0 and 
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shows that the decision limit is the (1 )100th percentile of the distribution.  
Note that the decision limit is on the scale of and in units of the signal S.

Distribution of Signal at 0 Concentration
and Definition of Decision Limit

Signal

R
el

at
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cy

0
S

D

Figure 9.18 Distribution of the signal (S) at zero concentration (C = 0) and definition 

of the decision limit SD

Distribution of Signal at 0 Concentration
and at Detection Limit
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Figure 9.19 Distribution of the signal (S) at zero concentration (C = 0) and at the 

detection limit (C = CDL)
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Now suppose that in fact the chemical is present in some concentration C
(i.e., the null hypothesis is false).  If we want to guard against the mistake of 
declaring that the chemical is absent when in fact it is present (Type II error), 
then we need to determine a minimal concentration CDL called the detection 
limit (DL) that we know will yield a signal less than the decision limit SD
only a small fraction of the time ( ).  Figure 9.19 displays the distribution of 
the signal S when the true concentration C is 0 and when the true concentra-
tion is equal to the detection limit CDL.  Note that the detection limit is on the 
scale of and in units of the concentration C.

In practice we do not know the true value of the standard deviation of the 
errors ( ), so we cannot compute the true decision limit.  Also, we do not 
know the true values of the intercept and slope of the calibration line ( 0 and 

1), so we cannot compute the true detection limit.  Instead, we usually set 
=  and estimate the decision and detection limits by computing prediction 

limits for the calibration line and using inverse regression.  Figure 9.20 dis-
plays this method of estimating the decision and detection limits.  Compar-
ing this figure to Figure 9.15, we see that the estimated detection limit D̂LC

corresponds to the upper confidence bound on concentration given that the 
signal is equal to the estimated decision limit D̂S .  Currie (1997) discusses 

other ways to define the detection limit, and Glaser et al. (1981) define a 
quantity called the method detection limit.

Concentration (C)

S
ig

na
l (

S
)

0

Upper P
rediction Band

Lower P
rediction Band

^ S
D

^
C

DL

Estimating the Decision and Detection Limits

Figure 9.20 Graphical illustration of estimating the decision limit SD and detection 

limit CDL
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The quantification limit is defined as the concentration C at which the 
coefficient of variation (also called relative standard deviation or RSD) for 
the distribution of the signal S is some small value, usually taken to be 10% 
(Currie, 1968, 1997).  In practice the quantification limit is difficult to esti-
mate because we have to estimate both the mean and the standard deviation 
of the signal S for any particular concentration, and, as we have said, usually 
the standard deviation varies with concentration.  Variations of the quantifi-
cation limit include the quantitation limit (Keith, 1991, p. 109), minimum 
level (USEPA, 1993), and alternative minimum level (Gibbons et al., 1997). 

Example 9.11:  Finding the Decision and Detection Limit Based on the 
Cadmium 111 Data 

Using the cadmium 111 data of Example 9.10, the decision limit is 7.68 
(in units of the signal) and the detection limit is 12.36 ng/L based on using 

= = 0.01 and a model that assumes a constant variance.  Of course we al-
ready pointed out that the assumption of constant variance is incorrect and a 
model like Rocke and Lorenzato’s should be used instead. 

Menu

In the current version of S-PLUS 2000 Release 2 and 
ENVIRONMENTALSTATS for S-PLUS you cannot compute decision and detec-
tion limits from the menu. 

Command 

To compute the decision and detection limits for the cadmium 111 data 
using the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
follow the steps in Example 9.10 to create the object calibrate.list,
then type these commands. 

pred.list <- predict(calibrate.list, 

newdata=data.frame(Spike=0), se.fit=T) 

decision.limit <- pointwise(pred.list, coverage=0.99, 

individual=T)$upper

detection.limit <- 

detection.limit.calibrate(calibrate.list)

Caveats about Decision, Detection, and Quantification Limits 

We have illustrated decision and detection limits based on a single set of 
observations.  Of course, if the process of taking measurements of known 
concentrations is repeated, the observed signals will be different, even if it is 
the same chemist using the same machine on the same day using the same 
standards.  Because of all of the sources of variability that go into producing 
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a single signal, the definitions of decision, detection, and quantification lim-
its must include the general circumstances under which the measurements 
are taken (e.g., only for one chemist in one lab on one day vs. several chem-
ists in several labs over several days).  Kimbrough (1999) points out that re-
quired performance characteristics for the Chemical Measurement Process 
should be based on the Data Quality Objectives of the particular project, and 
cites the U.S. EPA Office of Drinking Water’s Minimum Reporting Level as 
an example.  Ideally, the data user should always have a clear understanding 
of what the chemist means by a value reported as “below detection limit.” 

MULTIPLE REGRESSION 

In Example 9.4 we fit a model that used temperature to predict the value 
of ozone.  The diagnostic plots of Figure 9.10 revealed that this model did 
not fit the usual assumptions of regression (e.g., errors that are normally dis-
tributed with a constant variance).  In Example 9.9 we tried modifying this 
model by using the cube-root of ozone instead of ozone.  The diagnostic 
plots in Figure 9.12 showed that while this model did a better job of satisfy-
ing the assumptions on the errors, we still were not doing very well at pre-
dicting ozone.  This is not surprising because Figure 3.27 shows that a loess 
smooth indicates a curvilinear instead of a linear relation, and also the physi-
cal process that produces ozone at ground level involves several factors that 
cannot be measured by temperature alone.  Multiple regression is the exten-
sion of simple regression from the one-predictor-variable model shown in 
Equation (9.20) to two or more predictor variables.  In this section we will 
discuss both polynomial regression and general multiple regression. 

Polynomial Regression with One Predictor Variable 

The general model for polynomial regression with one predictor variable 
is given by: 

2
0 1 2

p
pY X X X (9.48)

where p is some integer greater than or equal to 2.  This model may be used 
as an alternative to or in conjunction with attempting to transform Y and/or X
to induce linearity. 

When fitting a model of this form, you have to decide on the order of the 
model (i.e., the value of p).  One way to do this is based on your knowledge 
of the process.  Another way to do this is informally by fitting a model that is 
linear, then quadratic, then cubic, etc., and inspecting regression diagnostic 
plots for each fit.  A more formal method is to use the partial F-test.  The 
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partial F-test tests the null hypothesis that adding (or deleting) a particular 
term (or terms) does not substantially improve the fit of the model.  For ex-
ample, if our current model is a polynomial of order r, and we want to test 
whether adding a term of order r+1 will help, the null and alternative hy-
potheses are formally written as: 

0 1 0 1 2: 0 |r rH (9.49)

1 0 1 2: 0 |a r rH (9.50)

That is, the null hypothesis is that given that we are using a polynomial of 
order r as our model, the coefficient for the term of order r+1 is equal to 0 
vs. the alternative that is it not equal to 0. 

The general form of the partial F-statistic is: 

0 0a a

a a

RSS RSS
F

RSS
(9.51)

where RSS0 and RSSa denote the residual sums of squares (see Equation 
(9.22)) under the null and alternative hypotheses, respectively, and 0 and a

denote the degrees of freedom under the null and alternative hypotheses.  If 
the model under the alternative hypothesis is much better than the one under 
the null hypothesis, then the residual sums of squares under the alternative 
model should be substantially smaller than the residual sums of squares un-
der the null model, and so the F-statistic should be large.  On the other hand, 
if the alternative model is no better than the null model, then the residual 
sums of squares should be fairly similar and the F-statistic should be small. 

Under the null hypothesis, the partial F-statistic follows an F-distribution 
with ( 0 a) and a degrees of freedom.  For the particular null and alterna-
tive hypotheses shown in Equations (9.49) and (9.50), we have: 

0 1n r (9.52)

2a n r (9.53)
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An even more general formal method of deciding on a model involves 
using stepwise regression (Draper and Smith, 1998, pp. 335 339; Zar, 1999, 
p. 433) in which terms are added sequentially, but each time a new term is 
added partial F-tests are performed to determine whether other terms may be 
discarded. 

Example 9.12:  Fitting a Polynomial Regression Model to the Ozone Data 

In Example 9.4 we fit a simple linear regression model relating ozone to 
temperature.  Diagnostic plots in Figure 9.10 revealed that the assumption of 
a straight line is not adequate and neither is the assumption of a constant 
variance.  In Example 9.9 we transformed the response variable and modeled 
the cube-root of ozone as a linear function of temperature.  Diagnostic plots 
for this fit shown in Figure 9.12 revealed that although the assumption of 
constant variance is probably adequate, we can still probably do a better job 
of predicting the cube-root of ozone.  This is not surprising since we saw in 
Figure 3.27 that a loess smooth indicates a curvilinear instead of a linear re-
lation.  In this example we will try modeling the cube-root of ozone as a 
quadratic and then a cubic function of temperature. 

The quadratic model relating the cube-root of ozone to temperature is 
given by: 

1 3  2ˆ 5.56 0.14 0.0013O T T (9.54)

and the cubic model is given by: 

1 3  2  3ˆ 25.4 0.93 0.012 0.00045O T T T (9.55)

The partial F-test comparing the simple linear model with the quadratic 
model yields an F-statistic of 6.3 on 1 and 108 degrees of freedom with an 
associated p-value of 0.01, indicating that the quadratic term is significant.  
On the other hand, the partial F-test comparing the quadratic model with the 
cubic model yields an F-statistic of 0.76 on 1 and 107 degrees of freedom 
with an associated p-value of 0.39, indicating that the cubic term does not 
substantially help to predict the cube-root of ozone. 

Figure 9.21 displays the diagnostic plots for the quadratic fit.  Although 
adding the quadratic term decreases the hint of curvilinearity in the residual 
plots, the r-f plot indicates that we still are not doing a very good job of pre-
dicting ozone. 

© 2001 by CRC Press LLC



Fitted : temperature + temperature^2

R
es

id
ua

ls

2.5 3.0 3.5 4.0 4.5 5.0

-1
0

1
2

34
23

77

fits

sq
rt

(a
bs

(R
es

id
ua

ls
))

2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
4

0.
8

1.
2 34

23

77

Fitted : temperature + temperature^2

oz
on

e

2.5 3.0 3.5 4.0 4.5 5.0

1
2

3
4

5

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
0

1
2

34
23

77

Fitted Values

0.0 0.4 0.8

-1
0

1
2

Residuals

0.0 0.4 0.8

-1
0

1
2

f-value

oz
on

e

Index

C
oo

k'
s 

D
is

ta
nc

e

0 20 40 60 80 100

0.
0

0.
05

0.
10

0.
15

77

79

17

Figure 9.21 Diagnostic plots for the quadratic model relating the cube-root of ozone 

to temperature 
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Menu

To fit the quadratic model and produce diagnostic plots, follow these 
steps.

1. Find air in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices: 

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set select air, for Save As type cr.ozone.fit2, then click 
on the Create Formula button. 

4. For Choose Variables select ozone then click on the Response but-
ton so that ozone~1 shows up in the Formula box.  Next, for 
Choose Variables select temperature then click on the Main Ef-
fect: (+) button, and then click on the Quadratic: (x^2) button.  
The Formula box should now read 
ozone~temperature+temperature^2.  Click on OK.

5. Click on the Plot tab.  Under Plots, check all but the last box.  Un-
der Options, uncheck the Include smooth box.  Click OK or Apply.

To fit the cubic model and produce diagnostic plots, follow the same steps as 
above, but in Step 3 in the Save As box type cr.ozone.fit3, and in Step 4 
click on the Cubic: (x^3) button after you click on the Quadratic: (x^2)
button. 

To compare the simple linear model with the quadratic model using the 
partial F-test, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices: 
Statistics>Compare Models.  This will bring up the Compare 
Models dialog box. 

2. For Model Objects, select cr.ozone.fit and cr.ozone.fit2 (use 
CTRL-Click to select cr.ozone.fit2 after you’ve selected 
cr.ozone.fit).  For Test Statistic check the F box, then click OK or 
Apply.

To compare the quadratic model with the cubic model, follow the same steps 
as above, but in Step 2 select cr.ozone.fit2 and cr.ozone.fit3.

Command 

To fit the quadratic and cubic models and produce diagnostic plots, type 
these commands. 

cr.ozone.fit2 <- lm(ozone ~ temperature + 

temperature^2, data=air) 

plot(cr.ozone.fit2)
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cr.ozone.fit3 <- lm(ozone ~ temperature + 

temperature^2 + temperature^3, data=air) 

plot(cr.ozone.fit3)

To compare the simple linear model with the quadratic model, type this 
command. 

anova(cr.ozone.fit, cr.ozone.fit2) 

To compare the quadratic model with the cubic model, type this command. 

anova(cr.ozone.fit2, cr.ozone.fit3) 

Several Predictor Variables 

The general model for multiple regression with several predictor vari-
ables is given by: 

0 1 1 2 2  p pY X X  X (9.56)

where X1, X2, …, Xp denote the p predictor variables.  Note that the model 
for polynomial regression in Equation (9.48) is a special case of multiple re-
gression where Xi= Xi.  Multiple regression is used to model or predict a re-
sponse variable using two or more predictor variables that are believed to be 
related to the response variable.  The choice of predictor variables to use is 
usually dictated by the purpose of the model.  If the purpose of the model is 
to explain a physical phenomenon (e.g., how stream flow is affected by pre-
cipitation, geography, etc.), then usually the predictor variables are chosen 
based on your knowledge of the subject matter.  On the other hand, if the 
purpose of the model is to simply come up with a good way to predict future 
values of the response variable, then several possible predictor variables may 
be available and chosen as candidates for the model based on exploratory 
data analysis.  The topic of multiple regression is expansive and has a long 
history.  A good reference is Draper and Smith (1998). 

Example 9.13:  Using Stepwise Regression to Model the Ozone Data 

As we stated earlier, the physical process that produces ozone at ground 
level involves several factors that cannot be measured by temperature alone.  
Besides temperature, the air data frame in S-PLUS includes information on 
radiation (langleys) and wind speed (mph).  Figure 9.22 displays the scatter-
plot matrix for these variables (note that this figure differs from Figure 3.34 
because in the current figure we are using the cube-root of ozone, not ozone 
itself).
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Figure 9.22 Scatterplot matrix for the variables in the air data frame 

In Chapter 3 we created cloud, contour, surface, and multi-panel condi-
tioning plots to look at ozone, temperature, and wind speed simultaneously.  
In this example, we will simply perform a stepwise regression to determine a 
model to use to predict the cube-root of ozone.  We will use radiation, 
temperature, and wind as candidate predictor variables (i.e., R, T, and W),
along with their quadratic terms (i.e., R2, T2, and W2) and their possible 
interactions (i.e., RT, RW, TW, and RTW).  We can start with the simplest 
model that includes only the intercept and use forward stepwise regression, 
or we can start with the full model that includes all of the candidate predictor 
variables and use backward stepwise regression.  For this example, both 
methods happen to yield the same final model: 

1 3  2

2 2

ˆ 6 0.00014 0.079 0.26 0.000013

0.00069 0.0084 0.000089

O R T W R

T W  RT

(9.57)

Figure 9.23 displays the diagnostic plot associated with this model.  The re-
sidual plots look much nicer than for the previous models we considered in 
Example 9.9 and Example 9.12.  Cleveland (1994) discusses other models 
for these data based on loess. 
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Figure 9.23 Diagnostic plots for the multiple regression model relating the cube-root 

of ozone to radiation, temperature, and wind speed 
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Note:  Unlike most statistics programs which by default use the partial F-
test to do stepwise regression, S-PLUS uses something called the Akaike In-
formation Criterion (AIC).  The built-in version of stepwise regression in 
S-PLUS, however, does not use the standard definition of the AIC and also 
can yield models with squared or higher order terms of a predictor variable 
in the model without the predictor variable itself in the model.  You should 
therefore use the stepwise regression procedure available in the MASS li-
brary (Venables and Ripley, 1999) that comes with S-PLUS.  To attach this li-
brary, choose File>Load Library from the S-PLUS menu and select MASS.

Menu

To perform the stepwise regression and create the diagnostic plots using 
the S-PLUS pull-down menu, follow these steps (make sure the MASS library 
has been loaded).  First we have to create the model with all of the candidate 
predictor variables in it. 

1. Find air in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices: 

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set select air, for Save As type cr.ozone.fit.full, then 
click on the Create Formula button. 

4. For Choose Variables select ozone then click on the Response but-
ton so that ozone~1 shows up in the Formula box.  Next, for 
Choose Variables select radiation, temperature and wind (use 
Shift-Click), then click on the Main + Interact.: (*) button, and 
then click on the Quadratic: (x^2) button, then click on OK.  Click 
on OK or Apply.

Now we can perform the stepwise regression. 

5. On the S-PLUS menu bar, make the following menu choices: 
MASS>StepAIC.  This will bring up the StepWise Model Fitting 
dialog box. 

6. For Initial Object Name type cr.ozone.fit.full.  For Save As type 
cr.ozone.fit.stepwise.  For Stepping Direction choose backward.  
Click OK or Apply. 

To produce the diagnostic plots for the final model, you have to manually 
create it again using Statistics>Regression>Linear.  Once you have speci-
fied the formula for the model, click on the Plot tab, and check the boxes for 
the plots you want.  Under Options, you may want to check or uncheck the 
Include smooth box.  Click OK or Apply.
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Command 

To perform the stepwise regression and create the diagnostic plots using 
the S-PLUS Command or Script Window, type this command (make sure the 
MASS library has been loaded). 

cr.ozone.fit.full <- lm(ozone ~ radiation + 

temperature + wind + radiation^2 + temperature^2 + 

wind^2 + radiation*temperature + radiation*wind + 

temperature*wind + radiation*temperature*wind, 

data=air)

cr.ozone.fit.stepwise <- stepAIC(cr.ozone.fit.full, 

direction="backward")

plot(cr.ozone.fit.stepwise)

DOSE-RESPONSE MODELS:  REGRESSION FOR 
BINARY OUTCOMES 

In Chapter 13 we will talk about human health risk assessment, which 
involves estimating the amount of exposure to a chemical and estimating the 
relationship between exposure to the chemical and possibly increased 
chances of developing cancer or some other disease.  One of the key compo-
nents of risk assessment is something called the dose-response curve which 
describes the relationship between exposure to a known amount of chemical 
and the observed outcome in a group of test animals (e.g., mice, rats, etc.).  
Often the outcome is the number or proportion of animals that developed the 
disease at each dose level.  Table 9.4 and Figure 9.24 display the results of 
an experiment in which different groups of rats were exposed to various con-
centration levels of ethylene thiourea (ETU), a decomposition product of a 
certain class of fungicides that can be found in treated foods (Graham et al., 
1975; Rodricks, 1992, p. 133).  In this experiment, the outcome of concern 
was the number of rats that developed thyroid tumors. 

Dose
(ppm/day) 

Number That 
Developed 

Tumors

Number in 
Dose Group 

Proportion
That Developed

Tumors
    0       2      72     0.03 
    5       2      75     0.03 
   25       1      73     0.01 
  125       2      73     0.03 
  250      16      69     0.23 
  500      62      70     0.89 

Table 9.4  Dose-response data for ETU experiment (Graham et al., 1975) 
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Observed Dose-Response for ETU Data
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Figure 9.24 Dose-response data for ETU experiment (Graham et al., 1975) 

Models for Binary Outcomes 

The simple linear regression model of Equation (9.20) assumes that the 
response variable Y follows a normal distribution for a specified value of the 
predictor variable X.  Obviously, when the outcome is binary (did the animal 
develop a tumor or not?) the distribution of Y follows a binomial distribu-
tion, not a normal distribution.  In this case, the expected value of Y for a 
given value of X, Y|X, is the probability of observing the outcome (e.g., de-
veloping a tumor) for that value of X and must lie between 0 and 1.  Looking 
at Equation (9.21) we see that using the conventional linear regression model 
does not guarantee this. 

A commonly used general model for binary outcomes is based on the fact 
that the value of a cumulative distribution function (cdf) must always lie be-
tween 0 and 1: 

*

*

*
|

*
0 1

|
Y X

X

E Y X X

p F X
(9.58)
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where F denotes the cdf of some probability distribution (Piegorsch and 
Bailer, 1997, p. 313).  Two commonly used cdfs are the standard normal cdf: 

2 21

2

x
tF x  x  e  dt

x

(9.59)

and the standard logistic cdf: 

1
,

1 x
F x  x

e
(9.60)

The above two models are usually called the probit and logit (or logistic) 
models. 

Looking at Equations (9.58) to (9.60), you can see that both of these 
models imply that there is some non-zero probability of observing the re-
sponse even at a dose of X = 0.  An alternative model that guarantees a prob-
ability of 0 at a dose of 0 is based on the Weibull cdf: 

1

*

*

0
1 exp

X

X
p (9.61)

The three models for dose-response curves discussed above are called 
tolerance distribution models because they are based on the idea that each 
organism possesses an intrinsic tolerance level to the toxic stimulus, and 
when this level is exceeded the organism responds (Piegorsch and Bailer, 
1997, p. 313).  Other models include mechanistic models and time-to-
response models (Hallenbeck, 1993, p. 65). 

Example 9.14:  Fitting a Logistic Model to the ETU Data 

In ENVIRONMENTALSTATS for S-PLUS, the data shown in Table 9.4 are 
stored in the data frame graham.et.al.75.etu.df.  Figure 9.25 dis-
plays the observed data along with the fitted model, and Figure 9.26 displays 
the diagnostic plots from this fit.  See the S-PLUS documentation for an 
explanation of how to interpret the diagnostic plots for logistic regression. 
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Observed Dose-Response for ETU Data
with Fitted Logistic Curve
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Figure 9.25 Observed dose-response ETU data with fitted logistic curve 
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Figure 9.26 Diagnostic plots from the logistic fit 
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Menu

To fit the logistic model, produce summary statistics for the fit, and cre-
ate diagnostic plots using the S-PLUS pull-down menu, follow these steps. 

1. Find graham.et.al.75.etu.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices: 

Statistics>Regression>Logistic.  This will bring up the Logistic 
Regression dialog box. 

3. For Data Set select graham.et.al.75.etu.df, for Weights select n,
for Dependent select proportion, for Independent select dose, and 
for Save As type etu.fit.

4. Click on the Plot tab.  Under Plots check all of the boxes.  Then 
click OK or Apply.

Command 

To fit the logistic model, produce summary statistics for the fit, and cre-
ate diagnostic plots using the S-PLUS Command or Script Window, type 
these commands. 

etu.fit <- glm(proportion ~ dose, 

data=graham.et.al.75.etu.df, family=binomial, 

weights=n)

summary(etu.fit)

plot(etu.fit)

OTHER TOPICS IN REGRESSION 

Logistic and probit regression models are special examples of general-
ized linear models (GLMs).  Generalized linear models were developed to 
handle regression in cases where the response variable is not assumed to fol-
low a normal distribution, but rather a particular other kind of distribution 
such as binomial, Poisson, or gamma (McCullagh and Nelder, 1989).  The 
general form of a GLM is: 

0 1 1|

| |

p pg E Y X X X

Var Y X V E Y X

(9.62)

where g denotes the link function,  denotes the dispersion parameter, and 
V denotes the variance function.  In the case where g is the identity function 
and the function V is identically 1 at all values, the GLM reduces to the stan-
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dard multiple regression model of Equation (9.56) (in this case the dispersion 
parameter = 2).  For the logistic model, looking at Equations (9.58) and 
(9.60) you can see that the link function is: 

1 log
1

p
g p F p

p
(9.63)

and looking at Equation (4.40) you can see that the dispersion parameter is 1 
and the variance function is: 

1V p p p (9.64)

Generalized additive models (GAMs) are an extension of generalized lin-
ear models in that they allow the predictor variables to be nonparametric 
smooths such as loess smooths or splines.  See Hastie and Tibshirani (1990), 
Venables and Ripley (1999), and the S-PLUS documentation for more infor-
mation on GLMs and GAMs. 

Other kinds of models we have not discussed in this chapter include 
nonlinear models, tree models, and robust models.  See Venables and Ripley 
(1999) and the S-PLUS documentation for more information. 

SUMMARY 

Correlation is a measure of the association between two variables.  
Positive or negative correlation between two variables does not im-
ply these two variables are directly related by some causal mecha-
nism (i.e., “correlation does not imply cause”). 
The Pearson product-moment correlation is a measure of linear as-
sociation and is affected by outliers.  Spearman’s rho and Kendall’s 
tau are more general measures of any kind of monotonic relation-
ship; they are based on ranks and are not as sensitive to outliers. 
A simple linear regression model assumes the response variable is a 
linear function of the predictor variable plus some error.  The error is 
usually assumed to follow a normal distribution with a mean of 0 
and a constant standard deviation. 
A linear regression model is usually fit using the method of least 
squares.  It is then possible to create confidence intervals for the 
slope, intercept, mean value, and the line, as well as create prediction 
and tolerance intervals. 
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Diagnostic plots help you determine deviations from the model as-
sumptions. 
Transformations of the response and/or predictor variable(s) are 
sometimes useful to help satisfy the model assumptions. 
Determining the concentration of a chemical in a physical sample 
involves using a calibration line and inverse regression.
The decision limit and detection limit are related to the Type I and 
Type II errors of a hypothesis test in which the null hypothesis is that 
the chemical is not present and the alternative hypothesis is that the 
chemical is present. 
Multiple regression involves two or more predictor variables. 
Models for a binary response include the logistic and probit model.  
These models are often used to create dose-response curves.

EXERCISES

9.1. Using the data in environmental, plot the relationship be-
tween ozone and temperature, then compute the correlation.  Re-
peat these steps for the data in air.  Why are the results different 
even though the names of the variables are the same? 

9.2. Repeat the last exercise, but compute Spearman’s rho instead of 
the Pearson product-moment correlation.  Do the results based on 
the data in environmental differ from the results based on the 
data in air?  Why or why not? 

9.3. Using the data in air, perform a significance test on the correla-
tion between ozone and temperature based on the Pearson prod-
uct-moment estimator.  Repeat using Spearman’s rho, then Kend-
all’s tau. 

9.4. Plot the duration times vs. the waiting times for the data from Old 
Faithful contained in the data frame geyser.  Perform a signifi-
cance test on the correlation between waiting time and duration 
based on Spearman’s rho.  Does the sign (positive vs. negative) of 
the correlation seem to make sense?  Why or why not? 

9.5. Look at the gasoline consumption data in the data frame 
fuel.frame and look at the help file for these data. 

a. Plot Mileage vs. Weight.  Fit a regression (possibly poly-
nomial) model to these data.  Look at the diagnostic plots. 

b. Fit a simple linear regression to these data, then determine 
an “optimal” Box-Cox transformation to make to Mileage 
to satisfy the assumption of normally distributed errors. 
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c. Plot Fuel vs. Weight.  Fit a regression (possible polyno-
mial) model to these data.  Look at the diagnostic plots. 

d. Discuss the pros and cons of the two different models you 
created in parts a and c.

9.6. Create a matrix scatterplot for the data in fuel.frame.  Deter-
mine the “best” model for predicting Mileage (miles/gallon) as a 
function of one or more of the other predictor variables (excluding 
Fuel).

9.7. Repeat the last exercise but use Fuel as the response variable and 
exclude Weight as a predictor variable. 
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10 CENSORED DATA 

DEALING WITH "BELOW DETECTION LIMIT" DATA

In the last chapter we discussed calibration and detection limits.  Often in 
environmental data analysis values are reported simply as being “below de-
tection limit” along with the stated detection limit (e.g., USEPA, 1992c,  
p. 25; Porter et al., 1988).  A sample of data contains censored observations
if some of the observations are reported only as being below or above some 
censoring level.  Although this results in some loss of information, we can 
still use data that contain nondetects for graphical and statistical analyses.  
Statistical methods for dealing with censored data have a long history in the 
field of survival analysis and life testing (Bain and Engelhardt, 1991; 
Kalbfleisch and Prentice, 1980; Lee, 1980; Miller, 1981b; Nelson, 1982; 
Parmar and Machin, 1995).  In this chapter, we will discuss how to create 
graphs, estimate distribution parameters, perform goodness-of-fit tests, com-
pare distributions, and fit linear regression models using censored data. 

CLASSIFICATION OF CENSORED DATA 

There are four major ways to classify censored data:  truncated vs. cen-
sored, left vs. right vs. double, single vs. multiple (progressive), and cen-
sored Type I vs. censored Type II (Cohen, 1991, pp. 3 5).  Most environ-
mental data sets with nondetect values are either Type I left singly censored 
or Type I left multiply censored. 

Truncated vs. Censored 

A sample is left truncated (also called truncated on the left) if only val-
ues above a known truncation point T are reported or used.  The number of 
observations falling below T and their actual values are unknown or ignored.  
A sample is right truncated (also called truncated on the right) if only values 
below a known truncation point T are reported or used. 

A sample of N observations is left singly censored (also called singly 
censored on the left) if c observations are known only to fall below a known 
censoring level T, while the remaining n (n = N c) uncensored observations 
falling above T are fully measured and reported.  A sample of N observations 
is right singly censored (also called singly censored on the right) if c obser-
vations are known only to fall above a known censoring level T, while the 
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remaining n uncensored observations falling below T are fully measured and 
reported. 

Left vs. Right vs. Double 

The definitions of left truncated, right truncated, left censored, and right 
censored are given above.  A sample is doubly truncated if it is truncated 
both on the left and the right.  A sample is doubly censored if it is censored 
both on the left and the right. 

Single vs. Multiple (Progressive) 

A sample is singly truncated (e.g., singly left truncated) if there is only 
one truncation point T.  A sample is singly censored (e.g., singly left cen-
sored) if there is only one censoring level T.

A sample is multiply truncated or progressively truncated (e.g., multiply 
left truncated) if there are several truncation points T1, T2, ..., Tp, where T1 < 
T2 < ... < Tp.  A sample is multiply censored or progressively censored (e.g., 
multiply left censored) if there are several censoring levels T1, T2, ..., Tp,
where T1 < T2 < ... < Tp.

Type I vs. Type II Censoring 

A censored sample has been subjected to Type I censoring if the censor-
ing level(s) is(are) known in advance, so that given a fixed sample size N, the 
number of censored observations c (and hence the number of uncensored 
observations n) is a random outcome.  Type I censored samples are some-
times called time-censored samples (Nelson, 1982, p. 248).  A censored 
sample has been subjected to Type II censoring if the sample size N and 
number of censored observations c (and hence the number of uncensored 
observations n) are fixed in advance, so that the censoring level(s) are ran-
dom outcomes.  Type II censored samples are sometimes called failure-
censored samples (Nelson, 1982, p. 248). 

Examples of Different Kinds of Censored Data Sets 

We have already come across a few data sets with censored observations.  
The following examples include some of these data sets as well as others 
from life testing and survival analysis. 

Example 10.1:  Type I Left Singly Censored Data 

The benzene data presented in Table 5.2 represent type I left singly cen-
sored data with a single censoring level of 2 ppb.  There are N = 36 observa-
tions, with c = 33 censored observations and n = 3 uncensored observations.  
The arsenic data presented in Table 6.4 have a single censoring level of 5 
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ppb, with N = 20, c = 9, and n = 11.  Table 10.1 presents artificial TcCB 
concentrations based on the Reference area data shown in Table 3.2.  For this 
data set, the concentrations of TcCB less than 0.5 ppb have been recoded as 
“<0.5,” so there is a single censoring level of 0.5 ppb, with N = 47, c = 19, 
and n = 28.  In ENVIRONMENTALSTATS for S-PLUS these data are stored in  
Modified.TcCB.df.

TcCB Concentrations (ppb) 
 <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5 
 <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5 
 <0.5   <0.5   <0.5    0.5    0.5    0.51   0.52   0.54 
  0.56   0.56   0.57   0.57   0.6    0.62   0.63   0.67 
  0.69   0.72   0.74   0.76   0.79   0.81   0.82   0.84 
  0.89   1.11   1.13   1.14   1.14   1.2    1.33 

Table 10.1 Modified Reference area TcCB concentrations (see Table 3.2) 

Example 10.2:  Type I Left Multiply Censored Data 

Table 10.2 displays copper concentrations ( g/L) in shallow groundwater 
samples from two different geological zones in the San Joaquin Valley, Cali-
fornia (Millard and Deverel, 1988).  The alluvial fan data include four differ-
ent detection limits and the basin trough data include five different detection 
limits.  Table 10.3 displays zinc concentrations ( g/L) from the same study 
for which there are two different detection limits.  Table 10.4 displays 56 sil-
ver concentrations ( g/L) from an interlab comparison that include 34 values 
below one of 12 detection limits (Helsel and Cohn, 1988). 

Zone Copper ( g/L)
Alluvial Fan  <1  <1  <1  <1   1   1   1   1   1   2   2 

  2   2   2   2   2   2   2   2   2   2   2 
  2   2   2   2   2   2   2   2   3   3   3 
  3   3   3   4   4   4  <5  <5  <5  <5  <5 
 <5  <5  <5   5   5   5   7   7   7   8   9 
<10 <10 <10  10  11  12  16 <20 <20  20  NA 
 NA  NA 

Basin Trough  <1  <1   1   1   1   1   1   1   1  <2  <2 
  2   2   2   2   3   3   3   3   3   3   3 
  3   4   4   4   4   4  <5  <5  <5  <5  <5 
  5   6   6   8   9   9 <10 <10 <10 <10  12 
 14 <15  15  17  23  NA 

Table 10.2 Copper concentrations in shallow groundwater in two geological zones 

(Millard and Deverel, 1988) 
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Zone Zinc ( g/L)
Alluvial Fan  <3   5   7   8   9 <10 <10 <10 <10 <10 <10 

<10 <10 <10 <10 <10 <10 <10 <10 <10  10  10 
 10  10  10  10  10  10  10  10  10  10  10 
 10  10  10  10  10  10  10  11  11  12  17 
 18  19  20  20  20  20  20  20  20  20  20 
 20  20  20  20  20  23  29  30  33  40  50 
620  NA 

Basin Trough  <3   3   3   4   4   5   5   6   8 <10 <10 
<10  10  10  10  10  10  11  12  12  13  14 
 15  17  17  20  20  20  20  20  20  20  20 
 20  20  20  25  30  30  30  30  40  40  40 
 50  50  60  60  70  90 

Table 10.3 Zinc concentrations in shallow groundwater in two geological zones 

(Millard and Deverel, 1988) 

Silver Concentrations ( g/L)
 <0.1  <0.1   0.1   0.1  <0.2  <0.2  <0.2   <0.2    0.2 
 <0.3  <0.5   0.7   0.8  <1    <1    <1     <1     <1
 <1    <1    <1    <1    <1     1     1      1      1.2 
  1.4   1.5  <2     2     2     2     2     <2.5    2.7 
  3.2   4.4  <5    <5    <5    <5     5     <6    <10
<10   <10   <10   <10    10   <20   <20    <20    <25
 90   560 

Table 10.4 Silver concentrations from an interlab comparison (Helsel and Cohn, 

1988)

Example 10.3:  Type I Left Singly Truncated 

If, in Example 10.1 above, the benzene concentrations reported as “<2” 
were eliminated from the sample completely, leaving only the three uncen-
sored observations and no indication of how many observations were ex-
cluded, this would constitute a type I left singly truncated sample. 

Example 10.4:  Type I Right Singly Censored 

This kind of sample frequently occurs in life testing experiments.  For 
example, a set of N electronic components may be put “on-line” all at the 
same time.  During the experiment, the time until failure is noted for each 
component.  After a given time period T (e.g., 10 days) the experiment is 
terminated, even though not all of the components have failed by this time.  
For the components that have not failed, it is known only that their time until 
failure is greater than T.
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Example 10.5:  Type II Right Singly Censored 

If we use the same set up as in Example 10.4, but terminate the experi-
ment after n of the N components have failed, this produces a type II right 
singly censored sample. 

Example 10.6:  Type I Right Multiply Censored 

This kind of sample frequently occurs in survival studies.  A number of 
people are enrolled over the course of the entry period (e.g., 2 years) in a 
study of a new drug therapy whose purpose is to prolong the life of termi-
nally ill patients.  Individuals are assigned to the treatment or control group, 
and are periodically seen until the study ends, until they die, or until they 
stop coming for check ups (drop out of the study).  At the end of the study, 
information is available on survival times:  when or if individuals died dur-
ing the study.  Since not everyone entered the study at the same time, the 
survivors are censored at different censoring levels, and so are the people 
who dropped out of the study. 

GRAPHICIAL ASSESSMENT OF CENSORED DATA 

In Chapter 3 we discussed several ways of creating graphs for a single 
variable, including histograms, quantile (empirical cdf) plots, and probability 
(Q-Q) plots.  When you have censored data, creating a histogram is not nec-
essarily straightforward (especially with multiply censored data), but you can 
create quantile plots and probability plots, as well as determine “optimal” 
Box-Cox transformations. 

Quantile (Empirical CDF) Plots for Censored Data 

In Chapter 3 we explained that a quantile plot (also called an empirical 
cumulative distribution function plot or empirical cdf plot) plots the ordered 
data (the empirical quantiles) on the x-axis vs. the estimated cumulative 
probabilities (or plotting positions) on the y-axis.  Various formulas for the 
plotting positions were shown in Equations (3.20) to (3.26) and Table 3.7.  
When you have censored data, the formulas for the plotting positions must 
be modified.  For right-censored data, various formulas for the plotting posi-
tions are given by Kaplan and Meier (1958), Nelson (1972), and Michael and 
Schucany (1986).  For left-censored data, formulas for the plotting positions 
are given by Michael and Schucany (1986) and Hirsch and Stedinger (1987). 

When you have Type I left-censored data with only one censoring level, 
and all of the uncensored observations are larger than the censoring level, the 
computation of the plotting positions is straightforward because it is easy to 
order the uncensored observations.  Table 10.5 illustrates this situation.  
When you have one or more uncensored observations with values less than 
one or more of the censoring levels, then the computation of the plotting po-
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sitions becomes a bit trickier.  Table 10.6 illustrates this situation.  The help 
file for ppoints.censored in ENVIRONMENTALSTATS for S-PLUS gives a 
detailed explanation of the formulas for the plotting positions for censored 
data. 

Observation

Blom
Plotting
Position Observation

Michael-
Schucany 
Plotting
Position

    1  0.12     <4   0.5 
    2  0.31     <4   0.5 
    5  0.5      5   0.5 
   10  0.69     10   0.69 
   15  0.88     15   0.88 

Table 10.5 Plotting positions for uncensored and singly censored data 

Observation

Blom
Plotting
Position Observation

Michael-
Schucany 
Plotting
Position

    1  0.12     <4   0.64 
    2  0.31     <4   0.64 
    5  0.5      5   0.64 
   10  0.69    <14   0.88 
   15  0.88     15   0.88 

Table 10.6 Plotting positions for uncensored and multiply censored data 

Example 10.7:  Empirical CDF Plots of the Silver Data 

Figure 10.1 displays the empirical cdf plot for the silver data shown in 
Table 10.4.  This plot indicates the data are extremely skewed to the right.  
This is not surprising since looking at the data in Table 10.4 we see that all of 
the observations are less than 25 g/L except for two that are 90 and 560 

g/L.  Figure 10.2 displays the quantile plot based on the log-transformed 
observations.  In both of these plots, the upside-down triangles indicate the 
censoring levels of observations that have been censored. 

Menu

To create the quantile plot for the silver data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find helsel.cohn.88.silver.df in the Object Explorer. 
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Empirical CDF Plot for Silver
(Method of Michael-Schucany)
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Figure 10.1 Empirical cdf plot of the silver data of Table 10.4 

Empirical CDF Plot for Log(Silver)
(Method of Michael-Schucany)
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Figure 10.2 Empirical cdf plot of the log-transformed silver data of Table 10.4 
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2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Censored Data>EDA>CDF Plot>Empirical 
CDF.  This will bring up the Plot Empirical CDF for Censored Data 
dialog box. 

3. The Data Set box should display helsel.cohn.88.silver.df.  For Vari-
able select Ag and for Censor Ind. select Censored.  Click on the 
Options tab, and check the Include Censored Values box, then click 
OK or Apply.

To create the quantile plot for the log-transformed silver data, repeat the 
above steps but in Step 3 for Variable select log.Ag.

Command 

To create the quantile plots for the silver data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(helsel.cohn.88.silver.df)

ecdfplot.censored(Ag, Censored,

xlab="Ag (microgram/L)", main="Empirical CDF Plot 

for Silver\n(Method of Michael-Schucany)", 

include.cen=T)

ecdfplot.censored(log.Ag, Censored,

xlab="log [Ag (microgram/L)]", main="Empirical CDF 

Plot for Silver\n(Method of Michael-Schucany)", 

include.cen=T)

detach()

Example 10.8:  Comparing the Empirical CDF of Silver to a Lognormal 
CDF

Figure 10.3 compares the empirical cdf of the silver data with a log-
normal cdf, where the parameters for the lognormal distribution are esti-
mated from the data (see the section Estimating Distribution Parameters later 
in this chapter).  Figure 10.4 compares the log-transformed silver data with a 
normal distribution.  Both plots show the lognormal distribution appears to 
provide an adequate fit to these data. 

Menu

To create the plot in Figure 10.3 using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. Find helsel.cohn.88.silver.df in the Object Explorer. 
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Empirical CDF for Ag (Censored; solid line)
with Fitted Lognormal CDF (dashed line)
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Figure 10.3 Empirical cdf of the silver data with a fitted lognormal distribution 

Empirical CDF for log(Ag) (Censored; solid line)
with Fitted Normal CDF (dashed line)
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Figure 10.4 Empirical cdf of the log-transformed silver data with a fitted normal dis-

tribution
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2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Censored Data>EDA>CDF Plot>Compare 
Two CDFs.  This will bring up the Compare Two CDFs for Cen-
sored Data dialog box. 

3. The Data Set box should display helsel.cohn.88.silver.df.  For Vari-
able 1 select Ag and for Censor Ind. 1 select Censored.  Under the 
Distribution Information Group, make sure that the Estimate Pa-
rameters box is checked.  For Distribution select Lognormal.

4. Click OK or Apply.

To create the plot in Figure 10.4 follow the same steps as above, but in Step 
2 for x Variable select log.Ag and for Distribution select Normal.

Command 

To create the plot in Figure 10.3 and Figure 10.4 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(helsel.cohn.88.silver.df)

cdf.compare.censored(Ag, Censored, 

distribution="lnorm", xlab="Ag (microgram/L)") 

cdf.compare.censored(log(Ag), Censored, 

distribution="norm", xlab="log [Ag (microgram/L)]") 

detach()

Example 10.9:  Comparing the Empirical CDF of Copper between Two 
Geological Zones 

Figure 10.5 compares the empirical cdf of copper concentrations from the 
alluvial fan zone with those from the basin trough zone using the data shown 
in Table 10.2.  This plot shows that the two distributions are fairly similar in 
shape and location. 

Menu

To create the plot in Figure 10.5 using the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu, follow these steps. 

1. Find millard.deverel.88.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>EDA>CDF Plot>Compare 
Two CDFs.  This will bring up the Compare Two CDFs for Cen-
sored Data dialog box. 

3. For Compare Data select Other Data.  The Data Set box should dis-
play millard.deveral.88.silver.df.  For Variable 1 choose Cu, for 
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Censor Ind. 1 choose Cu.censored, for Variable 2 choose Zone,
check the Variable 2 is a Grouping Variable box, then click OK or 
Apply.

Empirical CDF for Cu.AF (Censored; solid line)
with Empirical CDF for Cu.BT (Censored; dashed line)
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Figure 10.5 Empirical cdf’s of copper concentrations in the alluvial fan and basin 

trough zones 

Command 

To create the plot in Figure 10.5 using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(millard.deverel.88.df)

Cu.AF <- Cu[Zone=="Alluvial.Fan"] 

Cu.AF.cen <- Cu.censored[Zone=="Alluvial.Fan"] 

Cu.BT <- Cu[Zone=="Basin.Trough"] 

Cu.BT.cen <- Cu.censored[Zone=="Basin.Trough"] 

cdf.compare.censored(Cu.AF, Cu.AF.cen, "left", Cu.BT, 

Cu.BT.cen, "left") 

detach()
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Q-Q Plots for Censored Data 

In Chapter 3 we explained that a probability or quantile-quantile (Q-Q) 
plot plots the ordered data (the empirical quantiles) on the y-axis vs. the cor-
responding quantiles from the assumed theoretical probability distribution on 
the x-axis, where the quantiles from the assumed distribution are computed 
based on the plotting positions.  As for empirical cdf plots, when you have 
censored data, the formulas for the plotting positions must be modified. 

Example 10.10:  Comparing Arsenic Data to a Normal Distribution 

Figure 10.6 shows the normal Q-Q plot for the background well arsenic 
data shown in Table 6.4, where the data from all of the background wells 
have been combined.  This plot indicates that the normal distribution appears 
to provide an adequate fit to these data. 

Normal Q-Q Plot for Arsenic[Well.type == "Background"]
(Censored Data)

Quantiles of Normal(mean = 0, sd = 1)
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Figure 10.6 Normal Q-Q plot for the singly censored background well arsenic data 

of Table 6.4 

Menu

To create the Q-Q plot for the background well arsenic data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find epa.92c.arsenic2.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>EDA>Q-Q Plot.  This will 
bring up the Q-Q Plot for Censored Data dialog box. 
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3. The Data Set box should display epa.92c.arsenic2.df.  For Variable 
1 choose Arsenic, for Censor Ind. 1 choose Censored, in the Subset 
Rows with box type Well.type=="Background", and for Distribu-
tion select Normal.

4. Click on the Plotting tab.  Click on the Add a Line box to select this 
option.  Click OK or Apply.

Command 

To create the Q-Q plot for the background well arsenic data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(epa.92c.arsenic2.df)

qqplot.censored(Arsenic[Well.type=="Background"],

Censored[Well.type=="Background"], add.line=T) 

detach()

Example 10.11:  Comparing the Singly Censored TcCB Data to a 
Lognormal Distribution 

Figure 10.7 shows the normal Q-Q plot for the log-transformed TcCB 
data shown in Table 10.1.  This plot indicates that the lognormal distribution 
appears to provide an adequate fit to these data.  This is not surprising since 
we already saw in Figure 3.19 that a lognormal distribution provides a good 
fit to the original data. 

Menu

To create the Q-Q plot for the modified TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find Modified.TcCB.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>EDA>Q-Q Plot.  This will 
bring up the Q-Q Plot for Censored Data dialog box. 

3. The Data Set box should display Modified.TcCB.df.  For Variable 1 
choose TcCB, for Censor Ind. 1 select Censored, and for Distribu-
tion select Lognormal.

4. Click on the Plotting tab.  Click on the Add a Line box to select this 
option.  Click OK or Apply.

Command 

To create the Q-Q plot for the modified TcCB data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 
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attach(Modified.TcCB.df)

qqplot.censored(TcCB, Censored, distribution="lnorm", 

add.line=T)

detach()

Normal Q-Q Plot for Log [ TcCB ]
(Censored Data)
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Figure 10.7 Normal Q-Q plot for the log-transformed singly left-censored TcCB data 

of Table 10.1 

Example 10.12:  Comparing the Silver Data to a Lognormal Distribution 

Figure 10.8 shows the normal Q-Q plot for the log-transformed silver 
data shown in Table 10.4.  As in the case of the empirical cdf plot shown in 
Figure 10.3, this plot indicates that the lognormal distribution appears to 
provide an adequate fit to these data, although there is some suspect  
curvature.

Menu

To create the Q-Q plot for the silver data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find helsel.cohn.88.silver.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>EDA>Q-Q Plot.  This will 
bring up the Q-Q Plot for Censored Data dialog box. 
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3. The Data Set box should display helsel.cohn.88.silver.df.  For Vari-
able choose Ag, for Censor Ind. select Censored, and for Distribu-
tion select Lognormal.

4. Click on the Plotting tab.  Click on the Add a Line box to select this 
option.  Click OK or Apply.

Command 

To create the Q-Q plot for the silver data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(helsel.cohn.88.silver.df)

qqplot.censored(Ag, Censored, distribution="lnorm", 

add.line=T)

detach()

Normal Q-Q Plot for Log [ Ag ]
(Censored Data)
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Figure 10.8 Normal Q-Q plot for the log-transformed multiply censored silver data of 

Table 10.4 

Box-Cox Transformations for Censored Data 

In Chapter 3 we discussed using Box-Cox transformations as a way to 
satisfy normality assumptions for standard statistical tests, and also some-
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times to satisfy the linear assumption and/or the constant variance in the er-
rors assumption for a standard linear regression model (see Equations (3.30) 
and (3.31)).  We also discussed three possible criteria to use to decide on the 
power of the transformation:  the probability plot correlation coefficient 
(PPCC), the Shapiro-Wilk goodness-of-fit test statistic, and the log-
likelihood function.  This idea can be extended to the case of singly and mul-
tiply censored data (e.g., Shumway et al., 1989).  See the help files for  
boxcox.singly.censored and boxcox.multiply.censored in 
ENVIRONMENTALSTATS for S-PLUS for details. 

Example 10.13:  Determining the “Optimal” Transformation for the 
Modified TcCB Data 

Figure 10.9 displays a plot of the probability plot correlation coefficient 
vs. various values of the transform power  for the singly censored TcCB 
data shown in Table 10.1.  For these data, the PPCC reaches its maximum 
between about = 0 (log transformation) and = 0.5 (square-root transfor-
mation).  We saw a similar pattern for the original Reference area TcCB data 
in Figure 3.24, although in that figure the maximum appeared at about = 0. 
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Box-Cox Transformation Results:
PPCC vs. lambda for TcCB (Censored Data)

Figure 10.9 Probability plot correlation coefficient vs. Box-Cox transform power ( )

for the singly censored TcCB data of Table 10.1 
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Menu

To create the plot of the PPCC vs. the transformation power for the modi-
fied TcCB data using the ENVIRONMENTALSTATS for S-PLUS pull-down 
menu, follow these steps. 

1. Find Modified.TcCB.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>EDA>Box-Cox Transfor-
mations.  This will bring up the Box-Cox Transformations for Cen-
sored Data dialog box. 

3. For Data to Use make sure the Pre-Defined Data button is selected.  
The Data Set box should display Modified.TcCB.df.  For Variable 
choose TcCB, and for Censor Ind. select Censored, then click OK
or Apply.

Command 

To create the plot of the PPCC vs. the transformation power for the modi-
fied TcCB data using the ENVIRONMENTALSTATS for S-PLUS Command or 
Script Window, type these commands. 

attach(Modified.TcCB.df)

boxcox.list <- boxcox.singly.censored(TcCB, Censored) 

plot(boxcox.list, plot.type="Objective vs. lambda") 

detach()

ESTIMATING DISTRIBUTION PARAMETERS 

In Chapter 5 we discussed various methods of estimating distribution pa-
rameters, including the maximum likelihood estimator (MLE), method of 
moments estimator (MME), and minimum variance unbiased estimator 
(MVUE).  It is fairly straightforward to extend maximum likelihood estima-
tion to the case of censored data (e.g., Cohen, 1991; Schneider, 1986).  More 
recently, researchers in the environmental field have proposed alternative 
methods of computing estimates and confidence intervals in addition to the 
classical ones such as maximum likelihood estimation.   

Several authors have compared the performance of various estimators of 
the mean and standard deviation (based on bias and mean-squared error), in-
cluding El-Shaarawi (1989), El-Shaarawi and Esterby (1992), Gilliom and 
Helsel (1986), Gleit (1985), Haas and Scheff (1990), and Newman et al. 
(1989).  In practice, however, it is better to present a decision maker with a 
confidence interval for the mean or a joint confidence region for the mean 
and standard deviation, rather than rely on a single point-estimate of the 
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mean.  Since confidence intervals and regions depend on the properties of 
the estimators for both the mean and standard deviation, the results of studies 
that simply evaluated the performance of the mean and standard deviation 
separately cannot be readily extrapolated to predict the performance of vari-
ous methods of constructing confidence intervals and regions.  Furthermore, 
for several of the methods that have been proposed to estimate the mean 
based on Type I left-censored data, standard errors of the estimates are not 
available, making it problematic to construct confidence intervals (El-
Shaarawi and Dolan, 1989). 

Very few studies have been done to evaluate the performance of methods 
for constructing confidence intervals for the mean or joint confidence re-
gions for the mean and standard deviation based on censored data.  Schmee 
et al. (1985) studied Type II censoring for a normal distribution and noted 
that the bias and variances of the maximum likelihood estimators are of the 
order 1/N, and that the bias is negligible for N = 100 and as much as 90% 
censoring.  (If the proportion of censored observations is less than 90%, the 
bias becomes negligible for smaller sample sizes.)  For small samples with 
moderate to high censoring, however, the bias of the MLEs causes confi-
dence intervals based on them to be too narrow (so the associated hypothesis 
tests have inflated Type I errors).  Schmee et al. (1985) provide tables for ex-
act confidence intervals for sample sizes up to N = 100 that were created 
based on Monte Carlo simulation.  Schmee et al. (1985) state that these ta-
bles should work well for Type I censored data as well. 

Shumway et al. (1989) evaluated the coverage of 90% confidence inter-
vals for the mean that were constructed from Type I left singly censored 
data.  They used a Box-Cox transformation to induce normality, computed 
the MLEs based on the normal distribution, then computed the mean in the 
original scale.  They considered three methods of constructing confidence in-
tervals:  the delta method, the bootstrap, and the bias-corrected bootstrap.  
Shumway et al. (1989) used three parent distributions in their study:  Nor-
mal(3, 1), the square of this distribution, and the exponentiation of this dis-
tribution (i.e., a lognormal distribution).  Based on sample sizes of 10 and 50 
with a censoring level at the 10th or 20th percentile, they found that the delta 
method performed quite well and was superior to the bootstrap method. 

In this section, we will discuss various methods for estimating distribu-
tion parameters for the normal and lognormal distribution and constructing 
confidence intervals for the mean based on left singly and multiply censored 
data. 

Notation

Before discussing various methods for estimating distribution parame-
ters, we need to introduce some notation.  We will start with the left singly 
censored case, and then discuss the multiply censored case. 
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Notation for Left Singly Censored Data 

Let x1, x2, …, xN denote N observations from some distribution.  Of 
these N observations, assume n (0 < n < N) of them are known and c of them 
are censored below (left-censored) at some fixed censoring level T.  Then 

N n c (10.1)

Let x(1), x(2), …, x(N) denote the “ordered” observations, where now 
“observation” means either the actual observation (for uncensored observa-
tions) or the censoring level (for censored observations).  If a censored ob-
servation has the same value as an uncensored one, the censored observation 
should be placed first.  Thus, 

1 2 cx x x T (10.2)

Notation for Left Multiply Censored Data 

Again, let x1, x2, …, xN denote N observations from some distribution.  
Of these N observations, assume n (0 < n < N) of them are known and c of 
them are censored below (left-censored) at fixed censoring levels 

1 2 kT T T (10.3)

where k  2.  Let cj denote the number of observations censored below cen-
soring level Tj (j = 1, 2,…, k) so that

1

k

j
j

c c (10.4)

As before, let x(1), x(2), …, x(N) denote the “ordered” observations, where 
now “observation” means either the actual observation (for uncensored ob-
servations) or the censoring level (for censored observations).  If a censored 
observation has the same value as an uncensored one, the censored observa-
tion should be placed first.  Finally, let  (omega) denote the set of n sub-
scripts in the “ordered” sample that correspond to uncensored observations. 
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Normal Distribution 

In this section we will discuss various methods for estimating the mean 
and standard deviation of a normal distribution and constructing a 
confidence interval for the mean. 

Estimation for Singly Censored Normal Data 

Table 10.7 displays a list of estimation methods for Type I singly left-
censored data assuming a normal distribution, along with references for 
these methods.  All of these methods are explained in detail in the help file 
for enorm.singly.censored in ENVIRONMENTALSTATS for S-PLUS.

Method References 
MLE Cohen (1959, 1991) 
Bias-Corrected MLE Saw (1961b)  

Schneider (1986)
Haas and Scheff (1990) 
Bain and Engelhardt (1991) 

Q-Q Regression
(Probability Plot) 

Nelson (1982) 
Gilbert (1987) 
Hass and Scheff (1990) 
Travis and Land (1990) 
Helsel and Hirsch (1992) 

Q-Q Regression
with Censoring Level 

El-Shaarawi (1989) 

Impute with Q-Q Regression 
(NR)

Hashimoto and Trussell (1983) 
Gilliom and Helsel (1986) 
El-Shaarawi (1989) 

Impute with Q-Q Regression 
with Censoring Level
(Modified NR) 

El-Shaarawi (1989) 

Impute with MLE
(Modified MLE) 

El-Shaarawi (1989) 

Iterative Impute  
(Fill-In With Expected Values) 

Gleit (1985) 

Half Censoring Level Gleit (1985) 
Hass and Scheff (1990) 
El-Shaarawi and Esterby (1992) 

Table 10.7 Estimation methods for Type I left singly censored data assuming a 

normal distribution 

MLE

For left singly censored data, the general maximum likelihood equation 
for any distribution with parameter vector  is given by: 
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i c

N
L x F T f x

c
(10.5)

where f and F denote the pdf and cdf of the population, respectively.  That 
is, the likelihood is product of (1) the probability of c observations out of N
being less than T and (2) the product of the values of the pdf evaluated at the 
uncensored observations.  In the case of a normal distribution, we have: 

, (10.6)

t
f t (10.7)

t
F t (10.8)

where  and  denote the pdf and cdf of the standard normal distribution, re-
spectively.  Cohen (1959, 1991) shows that the MLEs of  and  are the so-
lutions to two simultaneous equations. 

Bias-Corrected MLE 

For censored data, the maximum likelihood estimates of  and  are bi-
ased.  The bias tends to 0 as the sample size increases, but it can be consider-
able for small sample sizes, especially in the case of a large percentage of 
censored observations (Saw, 1961b).  Schmee et al. (1985) note that the bias 
and variances of the MLEs are of the order 1/N (see for example, Bain and 
Engelhardt, 1991), and that for 90% censoring the bias is negligible if N is at 
least 100.  (For less intense censoring, even fewer observations are needed.) 

The exact bias of each estimator is extremely difficult to compute.  Saw 
(1961b) however derived the first-order term (i.e., the term of order 1/N) in 
the bias of each estimator and proposed bias-corrected MLEs.  His bias-
corrected estimators were derived for the case of Type II singly censored 
data.  Schneider (1986, p. 110) and Haas and Scheff (1990) state that this 
bias correction should reduce the bias of the estimators in the case of Type I 
censoring as well. 
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Based on the tables of bias-correction terms given in Saw (1961b), 
Schneider (1986, pp. 107 110) performed a least-squares fit to produce com-
putational formulas for the bias-corrected MLEs for both right- and left-
censored data.  For left-censored data, the formulas are as follows: 

ˆ
ˆ ˆ

1
mle

bcmle mle B
N  

(10.9)

ˆ
ˆ ˆ

1
mle

bcmle mle B
N  

(10.10)

where

exp 2.692 5.493
1

n
B

N
(10.11)

2

0.312 0.859
1

n
B

N
(10.12)

Note that the formulas and example given in Gibbons (1994, pp. 191 193)
are incorrect. 

Quantile-Quantile Regression 

This method is usually called the Probability Plot method in the literature 
(Nelson, 1982, Chapter 3; Gilbert, 1987, pp. 134 136; Helsel and Hirsch, 
1992, p. 361).  In the case of no censoring, it is well known (e.g., Nelson, 
1982, p. 113; Cleveland, 1993, p. 31) that for the standard normal Q-Q plot 
the intercept and slope of the fitted least-squares line estimate the mean and 
standard deviation, respectively.  For example, the intercept and slope of the 
fitted line in Figure 3.19 estimate the mean and standard deviation of the log-
transformed Reference area TcCB data. 

For complete (no censoring) data, the quantile-quantile regression esti-
mates of  and  are found by computing the least-squares estimates in the 
following linear model: 
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1
i iix p  (10.13)

where pi denotes the plotting position associated with the ith largest value 
and is defined by 

2 1
i

i a
p

N a  
(10.14)

a is a constant such that 0  a  1, and  denotes the cumulative distribution 
function (cdf) of the standard normal distribution.  Usually, Blom plotting 
positions are used (i.e., a = 0.375). 

This method can be adapted to the case of left singly censored data as 
follows.  Plot the n uncensored observations against the n largest normal 
quantiles, where the normal quantiles are computed based on a sample size 
of N, as in Figure 10.6.  Then fit the least-squares line to this plot, and esti-
mate the mean and standard deviation from the intercept and slope, respec-
tively.  That is, use Equations (10.13) and (10.14), but use i = (c+1),
(c+2), ..., N.

This method is discussed by Haas and Scheff (1990).  In the context of 
lognormal data, Travis and Land (1990) suggest exponentiating the predicted 
50th percentile from this fit to estimate the geometric mean (i.e., the median 
of the lognormal distribution). 

Quantile-Quantile Regression with Censoring Level 

This is a modification of the Quantile-Quantile Regression method and 
was proposed by El-Shaarawi (1989) in the context of lognormal data.  El-
Shaarawi’s idea is to include the censoring level and an associated plotting 
position, along with the uncensored observations and their associated plot-
ting positions, in order to include information about the value of the censor-
ing level T.  For left singly censored data, the modification involves adding 

the point 1
,cp T  to the plot before fitting the least-squares line. 

Imputation with Quantile-Quantile Regression 

This method involves using the Quantile-Quantile Regression method to 
fit a regression line (and thus initially estimate the mean and standard devia-
tion), and then imputing the values of the c censored observations by pre-
dicting them from the regression equation.  The final estimates of the mean 
and standard deviation are then computed using the usual formulas for the 
sample mean and standard deviation (see Equations (5.7) and (5.50)) based 
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on the observed and imputed values.  For left-censored data, the imputed 
values of the censored observations are computed as: 

1ˆ ˆˆ qqreg qqreg iix p (10.15)

for i = 1, 2, ..., c.
This is the NR method of Gilliom and Helsel (1986, p. 137).  In the con-

text of lognormal data, this method is discussed by Hashimoto and Trussell 
(1983), Gilliom and Helsel (1986), and El-Shaarawi (1989), and is referred 
to as the LR or Log-Probability Method. 

Imputation with Quantile-Quantile Regression with Censoring Level

This is exactly the same method as Imputation with Quantile-Quantile 
Regression except that the Quantile-Quantile Regression with Censoring 
Level method is used to fit the regression line.  In the context of lognormal 
data, this method is discussed by El-Shaarawi (1989), which he denotes as 
the Modified LR Method. 

Imputation Using Maximum Likelihood 

This is exactly the same method as Imputation with Quantile-Quantile 
Regression except that the maximum likelihood method is used to compute 
the initial estimates of the mean and standard deviation.  In the context of 
lognormal data, this method is discussed by El-Shaarawi (1989), which he 
denotes as the Modified Maximum Likelihood Method. 

Iterative Imputation with Quantile-Quantile Regression

This method is similar to the Imputation with Quantile-Quantile Regres-
sion method but iterates until the estimates of the mean and standard devia-
tion converge.  The algorithm is: 

1. Compute the initial estimates of  and  using the Imputation with 
Quantile-Quantile Regression method.  (Actually, any suitable esti-
mates will do.) 

2. Using the current values of  and  and Equation (10.15), compute 
new imputed values of the censored observations. 

3. Use the new imputed values along with the uncensored observations 
to compute new estimates of  and  based on the usual formulas for 
the sample mean and standard deviation. 

4. Repeat Steps 2 and 3 until the estimates converge. 

This method is discussed by Gleit (1985), which he denotes as the Fill-In 
with Expected Values method. 
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Setting Censored Observations to Half the Censoring Level 

This method involves simply replacing all the censored observations with 
half the detection limit, and then computing the mean and standard deviation 
with the usual formulas.  This method is discussed by Gleit (1985), Haas and 
Scheff (1990), and El-Shaarawi and Esterby (1992).  This method is not rec-
ommended.  In particular, El-Shaarawi and Esterby (1992) show that these 
estimators are biased and inconsistent (i.e., the bias remains even as the 
sample size increases). 

Confidence Intervals for the Mean for Singly Censored Normal Data 

Table 10.8 displays a list of methods for constructing confidence inter-
vals for the mean for Type I left singly censored data assuming a normal dis-
tribution, along with references for these methods.  All of these methods are 
explained in detail in the help file for enorm.singly.censored in 
ENVIRONMENTALSTATS for S-PLUS.

Method Reference 
Normal Approximation Cohen (1991) 
Normal Approximation
Using Covariance 

Schneider (1986) 

Bootstrap Efron and Tibshirani (1993) 

Table 10.8 Methods for constructing confidence intervals for the mean for Type I 

left singly censored data assuming a normal distribution 

Normal Approximation 

Equations (5.86) and (5.87) give general formulas for a confidence inter-
val for a population parameter, assuming the distribution of the estimator of 
the parameter is approximately normal.  We can use either of these formulas 
to construct an approximate confidence interval for the mean when we have 
left singly censored data by simply plugging in the estimated mean and stan-
dard error of the mean.  If we want to use the formula in Equation (5.87), 
however, we have to decide on the value of the degrees of freedom, which 
we can think of as the assumed sample size (say m) minus 1. 

For the maximum likelihood estimators, the standard deviation of the 
MLE of  is estimated based on the observed or expected inverse of the 
Fisher Information matrix.  For left-censored data, Cohen (1959; 1991,  
pp. 25 26) gives formulas for the asymptotic variances and covariance of the 
MLEs of  and .

For the bias-corrected MLE, we can use the bias-corrected MLE of  as 
the pivot point for the confidence interval and we can estimate the standard 
error of this estimate by using the estimated standard error of the MLE of .
The true standard error of the bias-corrected MLE of  is necessarily larger 
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than the standard error of the MLE of  (although the differences in the vari-
ances goes to 0 as the sample size gets large).  Hence in theory this method 
of constructing a confidence interval leads to intervals that are too narrow for 
small sample sizes, but these interval should be better centered about the true 
value of .

For other estimators, the standard deviation of the estimated mean may 
be assumed to be approximated by  

ˆ
ˆ

ˆ
m
 (10.16)

where, as already noted, m denotes the assumed sample size (e.g., the number 
of uncensored observations).  This is simply an ad-hoc method of construct-
ing confidence intervals and is not based on any published theoretical results. 

Normal Approximation Using Covariance  

This method was proposed by Schneider (1986, pp. 191 193) for the 
case of Type II censoring, but is applicable to any situation where the esti-
mated mean and standard deviation are consistent estimators and are corre-
lated.  In particular, the MLEs of  and  are correlated under Type I censor-
ing as well. 

Bootstrap 

As explained in Chapter 5, you can use the bootstrap to construct confi-
dence intervals for any population parameter.  In the context of Type I left 
singly censored data, this method of constructing confidence intervals was 
studied by Shumway et al. (1989). 

Example 10.14:  A Monte Carlo Simulation Study of Confidence Interval 
Coverage for Singly Censored Normal Data 

Table 10.9 displays the results of a Monte Carlo simulation study of the 
coverage of two-sided approximate 95% confidence intervals for the mean 
based on using various estimators of the mean and using the normal ap-
proximation method of constructing the confidence interval.  For each Monte 
Carlo trial, a set of observations from a N(3, 1) distribution were generated, 
and all observations less than the censoring level were censored.  If there 
were less than three uncensored observations, this set of observations was 
not used.  If none of the observations was censored, the usual method of con-
structing a confidence interval for the mean was used (Equation (5.78)).  For 
each combination of estimation method, sample size, and censoring level, 
1,000 trials were performed. 
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Estimation
Method 

Sample 
Size 

Censoring
Level
(Percentile) 

Root
Mean 
Squared 
Error (%) 

Coverage
(%) 

MLE  10   20   34   95 (z) 
   50   35   95 (z) 
 20   20   24   96 (z) 
   50   30   97 (z) 

Bias-Corrected MLE  10   20   37   96 (z) 
   50   47   96 (z) 
 20   20   24   97 (z) 
   50   35   98 (z) 

Q-Q Regression  10   20   34   96 (t) 
   50   45   93 (t) 
 20   20   24   96 (t) 
   50   32   95 (t) 

Q-Q Regression
with Censoring Level  10   20   32   97 (t) 

   50   36   95 (t) 
 20   20   24   97 (t) 
   50   30   95 (t) 

Impute with
Q-Q Regression  10   20   34   96 (t) 

   50   45   92 (t) 
 20   20   24   96 (t) 
   50   32   94 (t) 

Impute with
Q-Q Regression
with Censoring Level  10   20   33   96 (t) 

   50   37   95 (t) 
 20   20   24   96 (t) 
   50   30   95 (t) 

Impute with MLE  10   20   33   96 (t) 
   50   35   96 (t) 
 20   20   24   96 (t) 
   50   30   96 (t) 

Iterative Impute   10   20   32   95 (t) 
   50   40   87 (t) 
 20   20   23   95 (t) 
   50   29   90 (t) 

Half Censoring Level  10   20   37   95 (z) 
   50   46   99 (z) 
 20   20   27   96 (z) 
   50   43   96 (z) 

Table 10.9 Results of Monte Carlo simulation study based on Type I left singly cen-

sored data from a N(3, 1) parent distribution 
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The results in Table 10.9 show that the various estimators behave fairly 
similarly and fairly well in terms of root mean squared error and confidence 
interval coverage, except for the Iterative Imputation and Half Censoring 
Level methods, which do not perform as well.  Note that some of the confi-
dence intervals were constructed using the z-statistic (Equation (5.86)) and 
some were constructed using the t-statistic (Equation (5.87)). 

Example 10.15:  Estimating the Mean and Standard Deviation of 
Background Well Arsenic Concentrations 

Table 10.10 displays various estimates of and confidence intervals for the 
mean of the background well arsenic data shown in Table 6.4.  For these 
data, there are N = 18 observations, with c = 9 of them censored at 5 ppb.  
The estimates of the mean range from 5.1 to 6.5 ppb, and the estimates of the 
standard deviation range from 2.8 to 4.4 ppb.  Both of the confidence inter-
vals based on Schneider’s (1986) method include 0, an impossible value! 

Estimation
Method 

Estimated
Mean, Sd 

CI
Method 

CI

MLE 5.3, 4.0 Normal  
Approximation ( z)

[ 2.3, 8.3] 

Normal  
Approximation
with Covariance 

[-0.7, 8.2] 

Bias-Corrected 
MLE

5.1, 4.4 Normal  
Approximation ( z)

[ 1.6, 8.6] 

Normal  
Approximation
with Covariance 

[-2.7, 8.3] 

Q-Q Regression 6.0, 3.4 Normal  
Approximation ( t)

[ 3.4, 8.7] 

Q-Q Regression
with Censoring 
Level

5.8, 3.6           " [ 3.1, 8.6] 

Impute with
Q-Q Regression 

6.0, 3.3           " [ 3.5, 8.6] 

Impute with Q-Q 
Regression with 
Censoring Level

5.9, 3.5           " [ 3.2, 8.5] 

Impute with 
MLE

5.5, 3.9           " [ 2.5, 8.5] 

Iterative Impute  6.5, 2.8           " [ 4.3, 8.7] 
Half Censoring 
Level

5.6, 3.5           " [ 2.9, 8.2] 

Table 10.10 Estimates of the mean and standard deviation, and confidence intervals 

for the mean for the background well arsenic data of Table 6.4 
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Menu

To compute estimates of the mean and standard deviation and construct a 
confidence interval for the mean for the background well arsenic data using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find epa.92c.arsenic2.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Estimation>Parameters.
This will bring up the Estimate Distribution Parameters for Censored 
Data dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display epa.92c.arsenic2.df.  For Variable select Arsenic, for Cen-
sor Ind. Select Censored, in the Subset Rows with box type 
Well.type=="Background", for Distribution select Normal, and 
for Estimation Method select mle.

4. Under the Confidence Interval section check the Confidence Interval 
box, for CI Type select two-sided, for CI Method select nor-
mal.approx, for Confidence Level (%) type 95, for Pivot Stat. select 
z, then click OK or Apply.

The above steps compute MLEs and base the confidence interval on the nor-
mal approximation using the z-statistic.  To use a different estimation method 
change the value of Estimation Method in Step 3, to use a different method 
to construct the confidence interval change the value of CI Method in Step 4, 
and to use the t-statistic instead of the z-statistic for Pivot Stat. select t in 
Step 4. 

Command 

To compute estimates of the mean and standard deviation and construct a 
confidence interval for the mean for the background well arsenic data using 
the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type 
these commands. 

attach(epa.92c.arsenic2.df)

enorm.singly.censored(

Arsenic[Well.type=="Background"],

Censored[Well.type=="Background"], method="mle", 

ci=T, ci.method="normal.approx", 

pivot.statistic="z")

The above command computes MLEs and bases the confidence interval on 
the normal approximation using the z-statistic.  To use a different estimation 
method change the value of the argument method; to use a different method 
to construct the confidence interval change the value of the argument 
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ci.method, and to use the t-statistic instead of the z-statistic set the argu-
ment pivot.statistic="t".

Estimation for Multiply Censored Normal Data 

Table 10.11 displays a list of estimation methods for Type I multiply left-
censored data assuming a normal distribution, along with references for 
these methods.  All of these methods are explained in detail in the help file 
for enorm.multiply.censored in ENVIRONMENTALSTATS for S-PLUS.

Method References 
MLE Cohen (1963, 1991) 
Q-Q Regression
(Probability Plot) 

Extension from
singly censored case 

Impute with Q-Q Regression Helsel and Cohn (1988) 
Half Censoring Level Helsel and Cohn (1988) 

Table 10.11 Estimation methods for Type I left multiply censored data assuming a 

normal distribution

MLE

For left multiply censored data, the general maximum likelihood equa-
tion for any distribution with parameter vector  is given by: 

1 2
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(10.17)

where

1 2 1 2

!

! ! ! !k k

N N

c c c n c c c n
(10.18)

denotes the multinomial coefficient, and f and F denote the population pdf 
and cdf, as in Equation (10.5).  In the case of a normal distribution, , f, and 
F are defined in Equations (10.6) to (10.8).  Cohen (1963, 1991) shows that 
the MLEs of  and  are the solutions to two simultaneous equations. 
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Quantile-Quantile Regression 

This method is an extension to multiply censored data of the Quantile-
Quantile Regression method for singly censored data.  The estimates of 
and  are found by computing the least-squares estimates for the model 
shown in Equation (10.13) using the uncensored observations and their asso-
ciated plotting positions (i.e., i ).  The formulas that can be used for the 
plotting position are an extension to the one for singly censored data shown 
in Equation (10.14).  (See the ENVIRONMENTALSTATS for S-PLUS help file 
for ppoints.censored for details on the formulas.) 

Imputation with Quantile-Quantile Regression 

This method is an extension to multiply censored data of the Imputation 
with Quantile-Quantile Regression method for singly censored data.  The 
imputed values of the c censored observations are computed using Equation 
(10.15), where i .  This method was developed in the context of log-
normal data by Helsel and Cohn (1988) using the formulas for plotting posi-
tions given in Hirsch and Stedinger (1987) and Weibull plotting positions. 

Confidence Intervals for the Mean for Multiply Censored Normal Data 

Table 10.12 displays a list of methods for constructing confidence inter-
vals for the mean for Type I left multiply censored data assuming a normal 
distribution, along with references for these methods.  All of these methods 
are explained in detail in the help file for enorm.multiply.censored
in ENVIRONMENTALSTATS for S-PLUS.

Method Reference 
Normal Approximation Cohen (1991) 
Bootstrap Efron and Tibshirani (1993) 

Table 10.12 Methods for constructing confidence intervals for the mean for Type I 

left multiply censored data assuming a normal distribution 

Example 10.16:  Estimating the Mean and Standard Deviation of Log-
Transformed Silver Concentrations 

We saw in Example 10.8 and Example 10.12 that the silver data of Table 
10.4 appear to be adequately described by a lognormal distribution.  Table 
10.13 displays estimates of and confidence intervals for the mean of the log-
transformed silver data based on using the normal approximation with the z-
statistic.  In this case all of the methods yield similar estimates and confi-
dence intervals. 
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Estimation
Method 

Estimated
Mean, Sd 

CI

MLE -1.0, 2.4 [-2.0, -0.1] 
Q-Q Regression -1.2, 2.5 [-2.2, -0.1] 
Impute with
Q-Q Regression 

-1.1, 2.3 [-2.1, -0.2] 

Table 10.13 Estimates of the mean and standard deviation, and confidence intervals 

for the mean for the log-transformed silver data of Table 10.4 

Menu

To compute estimates of the mean and standard deviation and construct a 
confidence interval for the mean for the log-transformed silver data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find helsel.cohn.88.silver.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Estimation>Parameters.
This will bring up the Estimate Distribution Parameters for Censored 
Data dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display helsel.cohn.88.silver.df.  For Variable select log.Ag, for 
Censor Ind. Select Censored, for Distribution select Normal, and 
for Estimation Method select mle.

4. Under the Confidence Interval section check the Confidence Interval 
box, for CI Type select two-sided, for CI Method select nor-
mal.approx, for Confidence Level (%) type 95, for Pivot Stat. select 
z, then click OK or Apply.

The above steps compute MLEs and base the confidence interval on the nor-
mal approximation using the z-statistic.  To use a different estimation method 
change the value of Estimation Method in Step 3, to use a different method 
to construct the confidence interval change the value of CI Method in Step 4, 
and to use the t-statistic instead of the z-statistic for Pivot Stat. select t in 
Step 4. 

Command 

To compute estimates of the mean and standard deviation and construct a 
confidence interval for the mean for the log-transformed silver data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

attach(helsel.cohn.88.silver.df)
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enorm.multiply.censored(log(Ag), Censored, 

method="mle", ci=T, ci.method="normal.approx", 

pivot.statistic="z")

The above command computes MLEs and bases the confidence interval on 
the normal approximation using the z-statistic.  To use a different estimation 
method change the value of the argument method; to use a different method 
to construct the confidence interval change the value of the argument 
ci.method, and to use the t-statistic instead of the z-statistic set the argu-
ment pivot.statistic="t".

Lognormal Distribution 

In Chapter 4 we explained two different ways to parameterize the log-
normal distribution:  one based on the parameters associated with the log-
transformed random variable and one based on the parameters associated 
with the original random variable (see Equations (4.32) to (4.35)).  If you are 
interested in characterizing the log-transformed random variable, you can 
simply take the logarithms of the observations and the censoring levels, treat 
them like they come from a normal distribution, and use the methods dis-
cussed in the previous section (this is what we did in Example 10.16 for the 
silver data).  Often, however, we want an estimate of the mean and a confi-
dence interval on the original scale.  In this section we will discuss various 
methods for estimating the mean and coefficient of variation of a lognormal 
distribution and constructing confidence intervals for the mean. 

Estimation for Singly Censored Lognormal Data 

Table 10.14 displays a list of estimation methods for Type I left singly 
censored data assuming a lognormal distribution, along with references for 
these methods.  All of these methods are explained in detail in the help file 
for elnorm.alt.singly.censored in ENVIRONMENTALSTATS for 
S-PLUS.

MLE

For the case of complete (no censored) data, the MLEs of the mean ( ),
coefficient of variation ( ), and standard deviation ( ) of a lognormal distri-
bution are shown in Equations (5.44) to (5.46).  These estimators are func-
tions of the MLEs of the mean ( ) and standard deviation ( ) for the log-
transformed random variable.  In the case of censored data, you use the same 
equations to compute the MLEs of , , and , but of course the MLEs of 
and  are now based on the equations relevant to left singly censored data. 
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Method References 
MLE Extension to Cohen (1959, 1991) 
Quasi MVUE Gilliom and Helsel (1986) 

Newman et al. (1989) 
Bias-Corrected MLE El-Shaarawi (1989) 
Impute with Q-Q Regression 
(LR)

Hashimoto and Trussell (1983) 
Gilliom and Helsel (1986) 
El-Shaarawi (1989) 

Impute with Q-Q Regression 
with Censoring Level
(Modified LR) 

El-Shaarawi (1989) 

Impute with MLE
(Modified MLE) 

El-Shaarawi (1989) 

Half Censoring Level Gleit (1985) 
Hass and Scheff (1990) 
El-Shaarawi and Esterby (1992) 

Table 10.14 Estimation methods for Type I left singly censored data assuming a log-

normal distribution 

Quasi Minimum Variance Unbiased Estimator (QMVUE) 

The maximum likelihood estimators of the mean ( ) and variance ( 2)
are biased.  Even for complete (uncensored) samples these estimators are bi-
ased, as we noted in Chapter 5.  The bias tends to 0 as the sample size in-
creases, but it can be considerable for small sample sizes.  (Cohn et al., 1989 
demonstrate the bias for complete data sets.) 

For the case of complete samples, the minimum variance unbiased esti-
mators (MVUEs) of  and 2 were derived by Finney (1941) and are dis-
cussed in Gilbert (1987, pp. 164 167) and Cohn et al. (1989).  The formulas 
for these estimators are shown in Equations (5.54) and (5.55) in Chapter 5.  
These estimators are based on the MVUEs of the mean ( ) and variance ( 2)
for the log-transformed random variable.  For Type I left singly censored 
samples, the quasi minimum variance unbiased estimators (QMVUEs) of 
and 2 are computed using the same equations, but the MLEs for  and 2

based on censored data are used. 
This is apparently the LM method of Gilliom and Helsel (1986, p. 137) 

(it is not clear from their description on page 137 whether their LM method 
is the straight MLE method or the QMVUE method).  This method was also 
used by Newman et al. (1989, p. 915, equations 10 and 11). 

Bias-Corrected MLE 

This method was derived by El-Shaarawi (1989) and can be applied to 
complete or censored data sets.  For complete samples, the exact relative bias 
of the MLE of the mean  is given as: 
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For the case of complete or censored data, El-Shaarawi (1989) proposed the 
following “bias-corrected” maximum likelihood estimator: 

ˆ
ˆ

ˆ
mle

bcmle
mleB

(10.20)

where

2
11 12 22

1ˆ ˆ ˆ ˆˆ ˆexp 2
2

mle mle mleB V V V (10.21)

and V denotes the asymptotic variance-covariance of the MLEs of  and .

Imputation with Quantile-Quantile Regression 

This is exactly the same method as was discussed for the normal distribu-
tion earlier, except the observations and censoring levels are log-transformed 
prior to fitting the Q-Q regression model (Equation (10.15)), and once the 
log-transformed censored observations have been imputed they are trans-
formed back (by exponentiating) prior to computing the sample mean and 
standard deviation based on the usual formulas.  This method is discussed by 
Hashimoto and Trussell (1983), Gilliom and Helsel (1986), and El-Shaarawi 
(1989), and is referred to as the LR (Log-Regression) or Log-Probability 
Method. 

Imputation with Quantile-Quantile Regression Including the Censoring 
Level

This is a modification of the previous method that simply includes the 
(log-transformed) censoring level in the fit to the Q-Q regression model.  El-
Shaarawi (1989) denotes this method as the Modified LR (MLR) Method. 
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Imputation with Maximum Likelihood 

This is exactly the same method as Imputation with Quantile-Quantile 
Regression, except imputed values are computed based on the maximum 
likelihood estimates of  and  instead of the estimates based on the quan-
tile-quantile regression. This method is discussed by El-Shaarawi (1989), 
which he denotes as the Modified Maximum Likelihood (MML) Method. 

Confidence Intervals for the Mean for Singly Censored Lognormal Data 

Table 10.15 displays a list of methods for constructing confidence inter-
vals for the mean for Type I left singly censored data assuming a lognormal 
distribution, along with references for these methods.  All of these methods 
are explained in detail in the ENVIRONMENTALSTATS for S-PLUS help file for 
elnorm.alt.singly.censored.

Method Reference 
Normal Approximation 
Based on Moment Estimators 
Normal Approximation
Based on Delta Method 

Shumway et al. (1989) 

Normal Approximation 
Based on Cox’s Method 

El-Shaarawi (1989) 

Bootstrap Efron and Tibshirani (1993) 

Table 10.15 Methods for constructing confidence intervals for the mean for Type I 

left singly censored data assuming a lognormal distribution 

Normal Approximation Based on Moment Estimators 

Equations (5.86) and (5.87) give general formulas for a confidence inter-
val for a population parameter, assuming the distribution of the estimator of 
the parameter is approximately normal.  We can use either of these formulas 
to construct an approximate confidence interval for the mean when we have 
left singly censored data by simply plugging in the estimated mean and stan-
dard error of the mean.  If we want to use the formula in Equation (5.87), 
however, we have to decide on the value of the degrees of freedom, which 
we can think of as the assumed sample size (say m) minus 1. 

In order to use Equation (5.68) or (5.87) we need to plug in the standard 
error of the mean.  The standard deviation of the estimated mean may be as-
sumed to be approximated by 

ˆ
ˆ

ˆ
m

(10.22)
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where, as already noted, m denotes the assumed sample size.  This is simply 
an ad-hoc method of constructing confidence intervals and is not based on 
any published theoretical results. 

Normal Approximation Based on the Delta Method 

For the maximum likelihood estimator of , we can use the delta method 
to compute the standard error of the mean (Shumway et al., 1989).  This 
method should also work approximately for the QMVUE and the Bias-
Corrected MLE.  The delta method yields 

ˆ ˆˆ a V a (10.23)

where V denotes the variance-covariance matrix of the MLEs of  and , and 
a is a vector with the following elements: 

2

2

ˆ
ˆexp

2

ˆ
ˆ ˆexp

2

a (10.24)

Normal Approximation Based on Cox’s Method 

This method was proposed by El-Shaarawi (1989) and is an extension of 
the method derived by Cox and presented in Land (1972) for the case of 
complete data.  The standard error of the mean is estimated by: 

2
ˆ 11 12 22

ˆ ˆ ˆˆ ˆ ˆ2V V V  (10.25)

Example 10.17:  A Monte Carlo Simulation Study of Confidence Interval 
Coverage for Singly Censored Lognormal Data 

Table 10.16 displays the results of a Monte Carlo simulation study of the 
coverage of one-sided upper approximate 95% confidence intervals for the 

© 2001 by CRC Press LLC



mean based on using various estimators of the mean and methods of con-
structing the confidence interval. 

Estimation
Method 

Sample 
Size 

Censoring
Level
(Percentile) CI Method 

Coverage
(%) 

MLE  10   20 Delta   85 
   50   91 
 20   20   87 
   50   93 
 10   20 Cox   92 
   50   96 
 20   20   93 
   50   97 

QMVUE  10   20 Delta   83 
   50   90 
 20   20   84 
   50   92 
 10   20 Cox   90 
   50   95 
 20   20   92 
   50   96 

Bias-Corrected MLE  10   20 Delta   80 
   50   84 
 20   20   84 
   50   87 
 10   20 Cox   90 
   50   94 
 20   20   91 
   50   95 

Impute with
Q-Q Regression  10   20 

Normal
Approx   78 

   50   89 
 20   20   80 
   50   90 

Impute with
Q-Q Regression
with Censoring Level  10   20 

Normal
Approx   78 

   50   89 
 20   20   80 
   50   90 

Table 10.16 Results of Monte Carlo simulation study based on Type I left singly cen-

sored data from a lognormal parent distribution with mean = 10 and 

CV = 2 
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For each Monte Carlo trial, a set of observations from a lognormal distri-
bution with a mean of = 10 and a coefficient of variation of = 2 were 
generated, and all observations less than the censoring level were censored.  
If there were less than three uncensored observations, this set of observations 
was not used.  Table 10.17 and Table 10.18 display what methods were used 
in the case when there were no censored observations.  For each combination 
of estimation method, sample size, and censoring level, 1,000 trials were 
performed.  All confidence intervals were constructed using the t-statistic 
(Equation (5.87)). 

Censored Method Complete Method 
MLE MLE 
Quasi MVUE MVUE 
Bias-Corrected MLE MVUE 
Impute with Q-Q Regression MMUE 
Impute with Q-Q Regression 
with Censoring Level 

MMUE

Table 10.17 Estimation methods used in the Monte Carlo simulation study when 

there were no censored observations 

Censored Method Complete Method 
Delta Parkin et al. 
Cox Cox 
Normal Approximation Normal Approximation 

Table 10.18 Confidence interval methods used in the Monte Carlo simulation study 

when there were no censored observations 

Estimation
Method 

Sample 
Size 

Censoring
Level
(Percentile) Bias RMSE

MLE  10   20     1     8 
   50     9   206 
 20   20     1     5 
   50     1     7 

Quasi MVUE  10   20     0     5 
   50     0     7 
 20   20     0     4 
   50     0     5 

Bias-Corrected MLE  10   20    -2     5 
   50    -3     5 
 20   20     0     4 
   50     1     4 

Table 10.19 Bias and root-mean squared error of various estimators of the mean for 

a lognormal distribution based on the Monte Carlo study 
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Based on the results in Table 10.16, it looks like using either the MLE, 
QMVUE, or bias-corrected MLE to estimate the mean and using Cox’s 
method to construct the confidence interval will provide reasonably good 
coverage.  Looking at Table 10.19, however, we see that based upon the bias 
and root-mean squared error, the MLE should be avoided for small sample 
sizes with moderate to heavy censoring.   

You should note that this Monte Carlo simulation always used an under-
lying lognormal distribution, so we have not investigated robustness to de-
partures from this assumption.  Helsel and Cohn (1988) performed a Monte 
Carlo simulation study in which they used lognormal, contaminated log-
normal, gamma, and delta (zero-modified lognormal) parent distributions, 
created multiply censored data, and looked at bias and RMSE.  They rec-
ommend using the Impute with Q-Q Regression estimator if you are not sure 
that the underlying population is lognormal. 

Example 10.18:  Confidence Interval for the Mean of the Reference Area 
TcCB Concentrations Based on Singly Censored Data 

In Example 5.18 we computed two-sided 95% confidence intervals for 
the mean TcCB concentration (ppb) in the Reference area assuming the data 
come from a lognormal distribution (see Table 5.4).  There are n = 47 uncen-
sored observations in this data set.  The modified TcCB data shown in Table 
10.1 include c = 19 censored observations.  Table 10.20 displays two-sided 
95% confidence intervals for the mean based on these left singly censored 
data.  Except for the confidence interval based on the Half Censoring Level 
method, all of these confidence intervals are very similar and similar to the 
ones based on the complete data as well. 

Estimation Method Confidence Interval 
Method 

Confidence Interval 

MLE  Cox    [0.51, 0.73] 
Quasi MVUE "    [0.50, 0.73] 
Bias-Corrected MLE "    [0.50, 0.73] 
Impute with
Q-Q Regression 

Normal  
Approximation

   [0.49, 0.71] 

Impute with
Q-Q Regression
with Censoring Level 

"    [0.49, 0.71] 

Impute with MLE "    [0.50, 0.71] 
Half Censoring Level "    [0.43, 0.68] 

Table 10.20 Two-sided 95% confidence intervals for the mean TcCB concentration in 

the Reference area based on left singly censored data 
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Menu

To compute estimates of the mean and coefficient of variation and con-
struct a confidence interval for the mean for the modified TcCB data using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find Modified.TcCB.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Estimation>Parameters.
This will bring up the Estimate Distribution Parameters for Censored 
Data dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Modified.TcCB.df.  For Variable select TcCB, for Censor 
Ind. Select Censored, for Distribution select Lognormal, and for 
Estimation Method select mle.

4. Under the Confidence Interval section check the Confidence Interval 
box, for CI Type select two-sided, for CI Method select cox, for 
Confidence Level (%) type 95, for Pivot Stat. select t, then click OK
or Apply.

The above steps compute MLEs and base the confidence interval on Cox’s 
method using the t-statistic.  To use a different estimation method change the 
value of Estimation Method in Step 3, to use a different method to construct 
the confidence interval change the value of CI Method in Step 4, and to use 
the z-statistic instead of the t-statistic for Pivot Stat. select z in Step 4. 

Command 

To compute estimates of the mean and coefficient of variation and con-
struct a confidence interval for the mean for the modified TcCB data using 
the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type 
these commands. 

attach(Modified.TcCB.df)

elnorm.alt.singly.censored(TcCB, Censored, 

method="mle", ci=T, ci.method="cox", 

pivot.statistic="t")

The above command computes MLEs and bases the confidence interval on 
Cox’s method using the t-statistic.  To use a different estimation method 
change the value of the argument method; to use a different method to con-
struct the confidence interval change the value of the argument 
ci.method, and to use the z-statistic instead of the t-statistic set the argu-
ment pivot.statistic="z".
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Estimation and Confidence Intervals for the Mean for Multiply Censored 
Lognormal Data 

All of the methods of estimation for singly censored lognormal data 
shown in Table 10.14 and all of the methods of constructing confidence in-
tervals shown in Table 10.15 can be extended to the case of multiply cen-
sored data.    These methods are explained in detail in the help file for 
elnorm.alt.multiply.censored in ENVIRONMENTALSTATS for 
S-PLUS.

Example 10.19:  Estimating the Mean Silver Concentration 

In Example 10.16 we estimated and computed confidence intervals for 
the mean of the log-transformed silver concentration population.  In this ex-
ample we will do the same thing for the untransformed population.  Table 
10.21 displays estimates of and confidence intervals for the mean of the sil-
ver concentrations.  We see that in this case different methods yield wildly 
different estimates of the mean and coefficient of variation.  This is probably 
due to the large amount of censoring (61%) and because looking at Table 
10.4 we see that all of the observations are less than 25 except for the two 
“outliers” of 90 and 560 (essentially one and two orders of magnitude greater 
than all of the other observations).  The various methods of estimation will 
behave differently for different kinds of data with large “outliers.” 

Estimation
Method 

Estimated
Mean, CV 

95% CI 

MLE  6, 16 [0.2 , 204] 
Quasi MVUE  5,  8 [0.1 , 173] 
Bias-Corrected MLE  1, 16 [0.01,  46] 
Impute with
Q-Q Regression 

13,  6 [0   ,  46] 

Half Censoring Level 14,  5 [0   ,  47] 

Table 10.21 Estimates of the mean and coefficient of variation, and 95% confidence 

intervals for the mean using the silver data of Table 10.4 

Menu

To compute estimates of the mean and coefficient of variation and con-
struct a confidence interval for the mean for the silver concentrations using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find helsel.cohn.88.silver.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Estimation>Parameters.
This will bring up the Estimate Distribution Parameters for Censored 
Data dialog box. 
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3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display helsel.cohn.88.silver.df.  For Variable select Ag, for Censor 
Ind. Select Censored, for Distribution select Logormal, and for Es-
timation Method select mle.

4. Under the Confidence Interval section check the Confidence Interval 
box, for CI Type select two-sided, for CI Method select cox, for 
Confidence Level (%) type 95, for Pivot Stat. select t, then click OK
or Apply.

The above steps compute MLEs and base the confidence interval on Cox’s 
method using the t-statistic.  To use a different estimation method change the 
value of Estimation Method in Step 3, to use a different method to construct 
the confidence interval change the value of CI Method in Step 4, and to use 
the z-statistic instead of the t-statistic for Pivot Stat. select z in Step 4. 

Command 

To compute estimates of the mean and coefficient of variation and con-
struct a confidence interval for the mean for the silver concentrations using 
the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type 
these commands. 

attach(helsel.cohn.88.silver.df)

elnorm.alt.multiply.censored(Ag, Censored, 

method="mle", ci=T, ci.method="cox", 

pivot.statistic="t")

The above command computes MLEs and bases the confidence interval on 
Cox’s method using the t-statistic.  To use a different estimation method 
change the value of the argument method; to use a different method to con-
struct the confidence interval change the value of the argument 
ci.method, and to use the z-statistic instead of the t-statistic set the argu-
ment pivot.statistic="z".

Other Distributions 

Methods for estimating distribution parameters for other distributions in 
the presence of censored data are discussed in Cohen (1991).  In 
ENVIRONMENTALSTATS for S-PLUS you can use the pull-down menu or 
command line functions to estimate the rate parameter of the Poisson distri-
bution in the presence of censored data.  See the help files for the functions 
epois.singly.censored and epois.multiply.censored for 
details. 
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ESTIMATING DISTRIBUTION QUANTILES 

In this section we will discuss how to estimate and construct confidence 
intervals for distribution quantiles (percentiles) based on censored data. 

Parametric Methods for Estimating Quantiles 

In Chapter 5 we discussed methods for estimating and constructing con-
fidence intervals for population quantiles or percentiles.  For a normal distri-
bution, the estimated quantile and confidence interval are functions of the es-
timated mean and standard deviation (Equations (5.138) to (5.141)).  For a 
lognormal distribution, they are functions of the estimated mean and stan-
dard deviation based on the log-transformed observations (Equations (5.142) 
to (5.146)). 

In the presence of censored observations, we can construct estimates and 
confidence intervals for population percentiles using the same formulas as 
for complete data, but to estimate the mean and standard deviation we have 
to use the formulas that are appropriate for censored data.  It is not clear how 
well the methods for estimating and constructing confidence intervals for 
population percentiles behave in the presence of censored data.  This is an 
area that requires further research. 

Example 10.20:  Estimating and Constructing an Upper Confidence Limit 
for the 95th Percentile of the Background Well Arsenic Concentrations 

In Example 10.10 we saw that the combined background well arsenic 
data shown in Table 6.4 appear to be adequately modeled by a normal distri-
bution.  In Example 10.15 we saw that the estimated mean and standard de-
viation are about 5 and 4 ppb, respectively, based on the MLEs.  Using these 
estimates, the estimated 95th percentile is 11.8 ppb, and a one-sided upper 
99% confidence limit for this percentile is 16.9 ppb. 

Menu

To compute an estimate of and construct an upper 99% confidence limit 
for the 95th percentile of the background well arsenic concentrations using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow the same 
steps as in Example 10.15 to estimate the mean and standard deviation, but 
in Step 4, uncheck the Confidence Interval box and in the Save As box type 
estimation.list.  Then follow these next steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Quantiles.  This will bring up 
the Estimate Distribution Quantiles dialog box. 

2. For Data to Use select Expression.  In the Expression box type es-
timation.list.  In the Quantile(s) box type 0.95.
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3. Under the Confidence Interval group check the Confidence Interval 
box.  For CI Type select upper.  For CI Method select exact.  For 
Confidence Level (%) type 99.  Click OK or Apply.

Command 

To compute an estimate of and construct an upper 99% confidence limit 
for the 95th percentile of the background well arsenic concentrations using 
the ENVIRONMENTALSTATS for S-PLUS Command or Script Window type 
these commands. 

attach(epa.92c.arsenic2.df)

estimation.list <- enorm.singly.censored( 

Arsenic[Well.type=="Background"],

Censored[Well.type=="Background"], method="mle", 

ci=F)

eqnorm(estimation.list, p=0.95, ci=T, ci.type="upper", 

conf.level=0.99)

detach()

Nonparametric Methods for Estimating Quantiles 

We saw in Chapter 5 that nonparametric estimates and confidence inter-
vals for population percentiles are simply functions of the ordered observa-
tions (Equations (5.151) to (5.160)).  Thus, for left censored data, you can 
still estimate quantiles and create one-sided upper confidence intervals as 
long as there are enough uncensored observations that can be ordered in a 
logical way (see Example 5.27). 

PREDICTION AND TOLERANCE INTERVALS 

In this section we will discuss how to construct prediction and tolerance 
intervals based on censored data. 

Parametric Methods for Prediction and Tolerance Intervals 

In Chapter 6 we discussed methods for constructing prediction and toler-
ance intervals.  For a normal distribution, the prediction and tolerance inter-
vals are functions of the estimated means and standard deviations (Equations 
(6.9) to (6.11)).  For a lognormal distribution, they are functions of the esti-
mated mean and standard deviation based on the log-transformed  
observations. 

In the presence of censored observations, we can construct prediction and 
tolerance intervals using the same formulas as for complete data, but to esti-
mate the mean and standard deviation we have to use the formulas that are 
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appropriate for censored data.  It is not clear how well the methods for con-
structing prediction and tolerance intervals behave in the presence of cen-
sored data.  This is an area that requires further research. 

Example 10.21:  Using an Upper Tolerance Limit vs. an Upper Prediction 
Limit to Determine Contamination at a Cleanup Site Based on Singly 
Censored TcCB Data 

In Example 6.7 we compared a one-sided upper tolerance limit with a 
one-sided upper prediction limit based on using the Reference area TcCB 
data and assuming a lognormal distribution.  The tolerance limit was a 95% 

-content tolerance limit with associated confidence level of 95%.  The pre-
diction limit was for the next k = 77 observations with associated confidence 
level of 95%.  Table 10.22 compares these limits based on the complete data 
set vs. those based on the singly censored data set shown in Table 10.1.  In 
this case there is very little difference between the limits based on the com-
plete data vs. those based on the censored data. 

Limit Complete Data Censored Data 
Tolerance    1.42      1.38 
Prediction    2.68      2.51 

Table 10.22 Comparison of one-sided upper tolerance and prediction limits based on 

complete and singly censored TcCB data 

Menu

To compute the one-sided upper 95% -content tolerance limit with as-
sociated confidence level 95% using the ENVIRONMENTALSTATS for S-PLUS

pull-down menu, follow these steps. 

1. Find Modified.TcCB.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Estimation>Parameters.
This will bring up the Estimate Distribution Parameters for Censored 
Data dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Modified.TcCB.df.  For Variable select TcCB, for Censor 
Ind. Select Censored, for Distribution select Lognormal, and for 
Estimation Method select mle.

4. Under the Confidence Interval section uncheck the Confidence In-
terval box, in the Save As box type estimation.list, then click OK.

5. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Tolerance Intervals.  This will 
bring up the Tolerance Interval dialog box. 
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6. For Data to Use select Expression.  In the Expression box type es-
timation.list.

7. Click on the Interval tab.  Under the Distribution group, for Type 
select Parametric, and for Distribution select Lognormal.  Under 
the Tolerance Interval group, for Coverage Type select Content, for 
TI Type select upper, for Coverage (%) type 95, and for Confidence 
Level (%) type 95.  Click OK or Apply.

To compute the one-sided upper prediction limit, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Estimation>Prediction Intervals.  This will 
bring up the Prediction Interval dialog box. 

2. For Data to Use select Expression.  In the Expression box type es-
timation.list.

3. Click on the Interval tab.  Under the Distribution/Sample Size 
group, for Type select Parametric and for Distribution select Log-
normal.  Under the Prediction Interval group, uncheck the Simulta-
neous box, for # Future Obs type 77, for PI Type select upper, for PI 
Method select exact, and for Confidence Level (%) type 95.  Click 
OK or Apply.

Command 

To compute the one-sided upper 95% -content tolerance limit with as-
sociated confidence level 95% using the ENVIRONMENTALSTATS for S-PLUS

Command or Script Window type these commands. 

attach(Modified.TcCB.df)

estimation.list <- elnorm.singly.censored(TcCB, 

Censored, method="mle", ci=F) 

tol.int.lnorm(estimation.list, coverage=0.95, 

cov.type="content", ti.type="upper", 

conf.level=0.95)

To compute the 95% one-sided upper prediction limit for the next k=77
observations, type these commands. 

pred.int.lnorm(estimation.list, k=77, method="exact", 

pi.type="upper", conf.level=0.95) 

detach()

Nonparametric Prediction and Tolerance Intervals 

We saw in Chapter 6 that nonparametric prediction and tolerance inter-
vals are simply functions of the ordered observations (Equations (6.42) to 

© 2001 by CRC Press LLC



(6.48)).  Thus, for left censored data, you can still estimate quantiles and cre-
ate one-sided upper confidence intervals as long as there are enough uncen-
sored observations that can be ordered in a logical way (see Example 6.3 and 
Example 6.10). 

HYPOTHESIS TESTS 

In this section we will discuss how to perform hypothesis tests in the 
presence of censored data. 

Goodness-of-Fit Tests 

In Chapter 5 we showed that the Shapiro-Francia goodness-of-fit statistic 
can be written as the square of the sample correlation coefficient between the 
ordered observations and the expected values of the normal order statistics 
(Equation (7.14)).  In practice we use an approximation to the true expected 
values of the normal order statistics based on Blom plotting positions, so that 
the Shapiro-Francia goodness-of-fit statistic is the square of the probability 
plot correlation coefficient (Equations (7.15) to (7.17)), and is therefore 
equivalent to the goodness-of-fit test based on the probability plot correlation 
coefficient (the PPCC test).  Similarly, the Shapiro-Wilk goodness-of-fit sta-
tistic can be written as the square of the sample correlation coefficient be-
tween the ordered observations and the expected values of the normal order 
statistics weighted by their variance-covariance matrix (Equation (7.10)). 

Using these formulations, Royston (1993) extended both the Shapiro-
Francia (PPCC) and Shapiro-Wilk goodness-of-fit tests to the case of singly 
censored data by computing these statistics based on the uncensored obser-
vations, similar to the way we explained how to construct a Q-Q plot for sin-
gly censored data earlier in this chapter in the section Q-Q Plots for Cen-
sored Data.  Royston (1993) provides a method of computing p-values for 
these statistics based on tables given in Verrill and Johnson (1988).  (For de-
tails, see the help files for sw.singly.censored.gof and 
sf.singly.censored.gof in ENVIRONMENTALSTATS for S-PLUS.)  Al-
though Verrill and Johnson (1988) produced their tables based on Type II 
censoring, Royston’s (1993) approximation to the p-value of these tests 
should be fairly accurate for Type I censored data as well. 

The PPCC test is also easily extendible to the case of multiply censored 
data, but it is not known how well Royston’s (1993) method of computing p-
values works in this case.  See the ENVIRONMENTALSTATS for S-PLUS help 
file for ppcc.norm.multiply.censored.gof for details. 

We noted in Chapter 7 that goodness-of-fit tests are of limited value for 
small sample sizes because there is usually not enough information to distin-
guish between different kinds of distributions.  This also holds true even for 
moderate sample sizes if you have censored data, as the next example shows. 
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Example 10.22:  Testing the Normality of the Singly Censored Reference 
Area TcCB Data 

In Example 7.1 we showed that goodness-of-fit tests on the Reference 
area TcCB data indicated that the normal distribution was not appropriate, 
but that a lognormal distribution appeared to adequately model the data.  In 
this example we will perform the same tests but use the modified TcCB data 
of Table 10.1.  The Shapiro-Wilk test for normality yields a p-value of 0.34 
and the test for lognormality yields a p-value of 0.28.  Figure 10.10 and 
Figure 10.11 show companion plots for the tests for normality and lognor-
mality, respectively.  Compare these figures to Figure 7.1 and Figure 7.2.  
We see that unlike the case with complete data in Example 7.1, here censor-
ing 40% of the observations leaves us unable to distinguish between a nor-
mal and lognormal distribution. 

Menu

To perform the Shapiro-Wilk test for normality using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find Modified.TcCB.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Hypothesis Tests>GOF 
Tests>Shapiro-Wilk.  This will bring up the Shapiro-Wilk GOF 
Test for Censored Data dialog box. 

3. For Data to Use, select Pre-Defined Data.  For Data Set make sure 
Modified.TcCB.df is selected, for Variable select TcCB, and in 
Censor Ind. select Censored.  In the Distribution box select Normal.

4. Click on the Plotting tab.  Under Plotting Information, in the Sig-
nificant Digits box type 3, then click OK or Apply.

To perform the Shapiro-Wilk test for lognormality, repeat the above steps, 
but in Step 3 select Lognormal in the Distribution box. 

Command 

To perform the Shapiro-Wilk tests using the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window, type these commands. 

attach(Modified.TcCB.df)

sw.list.norm <- sw.singly.censored.gof(TcCB, Censored) 

sw.list.norm

sw.list.lnorm <- sw.singly.censored.gof(TcCB, 

Censored, dist="lnorm") 

sw.list.lnorm
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To plot the results of these tests as shown in Figures 10.10 and 10.11, type 
these commands. 

plot.gof.censored.summary(sw.list.norm, digits=3) 

plot.gof.censored.summary(sw.list.lnorm, digits=3) 

detach()

Hypothesis Tests on Distribution Parameters and Quantiles 

In Chapter 7 we noted the one-to-one relationship between confidence in-
tervals for a population parameter and hypothesis tests for the parameter (see 
Table 7.4).  You can therefore perform hypothesis tests on distribution pa-
rameters and quantiles based on censored data by constructing confidence in-
tervals for the parameter or quantile using the methods discussed in this 
chapter. 

Nonparametric Tests to Compare Two Groups 

In Chapter 7 we discussed various hypothesis tests to compare locations 
(central tendency) between two groups, including the Wilcoxon rank sum 
test, linear rank tests, and the quantile test.  In the presence of censored ob-
servations, you can still use the Wilcoxon rank sum test or quantile test as 
long as there are enough uncensored observations that can be ordered in a 
logical way.  For example, if both samples are singly censored with the same 
censoring level and all uncensored observations are greater than the censor-
ing level, then all censored observations receive the lowest ranks and are 
considered tied observations.  Actually you can use the Wilcoxon rank sum 
test even with multiply censored data as we will now discuss. 

We stated in Chapter 7 that the Wilcoxon rank sum test is a particular 
kind of linear rank test (see Equation (7.90)).  Several authors have proposed 
extensions of the Wilcoxon rank sum test to the case of singly or multiply 
censored data, mainly in the context of survival analysis (e.g., Breslow, 
1970; Cox, 1972; Gehan, 1965; Mantel, 1966; Peto and Peto, 1972; Prentice, 
1978).  Prentice (1978) showed how all of these proposed tests are exten-
sions of a linear rank test to the case of censored observations.  As for the 
case of complete data, different linear rank tests use different score func-
tions, and some may be better than others at detecting a small shift in loca-
tion, depending upon the true underlying distribution. 

Prentice and Marek (1979), Latta (1981), and Millard and Deverel (1988) 
studied the behavior of several linear rank tests for censored data.  See the 
help file for two.sample.linear.rank.test.censored in 
ENVIRONMENTALSTATS for S-PLUS for details. 
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Example 10.23:  Comparing Copper Concentrations between Two 
Geological Zones 

In Example 10.9 we compared the empirical cumulative distribution 
functions of copper concentrations in the alluvial fan and basin trough zones 
(see Table 10.2 and Figure 10.5).  The plot indicates the distributions of con-
centrations are fairly similar.  The two-sample linear rank test based on nor-
mal scores and a hypergeometric variance yields a p-value of 0.2, indicating 
no significant difference. 

Menu

To perform the two-sample linear rank test to compare copper concentra-
tions using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow 
these steps. 

1. Find millard.deverel.88.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Censored Data>Hypothesis Tests>Com-
pare Two Samples.  This will bring up the Compare Two Samples 
for Censored Data dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display millard.deveral.88.silver.df.  For Variable 1 choose Cu, for 
Censor Ind. 1 choose Cu.censored, for Variable 2 choose Zone, and 
check the Variable 2 is a Grouping Variable box.  For test select 
normal.scores.2 and for variance select hypergeometric, then click 
OK or Apply.

Command 

To perform the two-sample linear rank test to compare copper concentra-
tions using the ENVIRONMENTALSTATS for S-PLUS Command or Script Win-
dow, type these commands. 

attach(millard.deverel.88.df)

Cu.AF <- Cu[Zone=="Alluvial.Fan"] 

Cu.AF.cen <- Cu.censored[Zone=="Alluvial.Fan"] 

Cu.BT <- Cu[Zone=="Basin.Trough"] 

Cu.BT.cen <- Cu.censored[Zone=="Basin.Trough"] 

two.sample.linear.rank.test.censored(Cu.AF, Cu.AF.cen, 

Cu.BT, Cu.BT.cen, test="normal.scores.2", 

var="hypergeometric")

detach()
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Regression 

Methods for fitting linear regression models in the presence of singly and 
multiply censored response observations have been developed in the fields of 
econometrics and life testing (e.g., Amemiya, 1985, Chapter 10; Meeker and 
Escobar, 1998).  In econometrics, these are sometimes called Tobit models 
(Amemiya, 1985, p. 360).  In S-PLUS  you can fit such models using the 
function censorReg.  Also, SLIDA (S-PLUS Life Data Analysis) is a col-
lection of S-PLUS functions that is a companion to Meeker and Escobar 
(1998) and is available at http://www.public.iastate.edu/~stat533/slida.html. 

A NOTE ABOUT ZERO-MODIFIED DISTRIBUTIONS 

In Chapter 4 we discussed zero-modified distributions and noted that 
they have sometimes been used to model environmental data with non-
detects.  In this case, the nondetects are assumed to actually be 0 values; that 
is, nondetects are set to 0.  Methods for estimating distribution parameters 
and quantiles and performing goodness-of-fit tests for these kinds of distri-
butions are available in ENVIRONMENTALSTATS for S-PLUS, but we do not 
recommend using them to model environmental data that contain nondetects. 

SUMMARY 

 Censored data can be classified as truncated vs. censored, left vs. 
right vs. double, singly vs. multiply, and Type I vs. Type II.  Most 
environmental data sets with nondetect values are Type I left singly 
or multiply censored. 

 You can use quantile (empirical cdf) plots and Q-Q plots to compare 
censored data with a theoretical distribution or compare two  
samples. 

 Censored data have been studied extensively in the field of life test-
ing and survival analysis.  Several methods exist for estimating dis-
tribution parameters, creating confidence intervals, and performing 
hypothesis tests based on censored data. 

EXERCISES

10.1. Create a plot of the empirical cdf for the background well arse-
nic data of Table 6.4 and compare it with the cdf of a normal 
distribution. 

10.2. Create a plot of the empirical cdf for the singly censored TcCB 
data of Table 10.1 and compare it with the cdf of a normal dis-
tribution. 
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10.3. Create a plot of the empirical cdf for the singly censored TcCB 
data of Table 10.1 and compare it with the cdf of a lognormal 
distribution. 

10.4. Consider the multiply censored zinc concentrations shown in 
Table 10.3. 

a. Compare the empirical cumulative distributions functions 
for the alluvial fan and basin trough zones. 

b. Use a two-sample linear rank test to test the equivalence 
of these two distributions. 

10.5. Create normal and lognormal Q-Q plots for the alluvial fan cop-
per data of Table 10.2.  Do the same thing for the basin trough 
data. 

10.6. Determine appropriate Box-Cox transformations (if any) for the 
copper data of Table 10.2 for each geological zone. 

10.7. Create normal and lognormal Q-Q plots for the alluvial fan zinc 
data of Table 10.3.  Do the same thing for the basin trough data. 

10.8. Determine appropriate Box-Cox transformations (if any) for the 
zinc data of Table 10.3 for each geological zone. 

10.9. Consider the silver data of Table 10.4.  Determine an appropri-
ate Box-Cox transformation (if any) for these data. 

10.10. Compare different estimators of the mean and CV for the singly 
censored TcCB data of Table 10.1 assuming these data follow a 
lognormal distribution. 

10.11. Estimate the 90th percentile of the silver concentrations based on 
the data of Table 10.4.  Create a 95% confidence interval for this 
percentile.  Use different methods of estimation and compare 
your results. 

10.12. Compute a 99% prediction interval for the next k = 4 arsenic 
concentrations based on the arsenic data of Table 6.4. 

10.13. Perform goodness-of-fit tests on the alluvial fan and basin 
trough copper data of Table 10.2 and create companion plots. 

10.14. Perform goodness-of-fit tests on the alluvial fan and basin 
trough zinc data of Table 10.3 and create companion plots. 

10.15. Perform goodness-of-fit tests on the silver data of Table 10.4 
and create companion plots. 
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11 TIME SERIES ANALYSIS 

HOW ARE THINGS CHANGING OVER TIME? 

Classical statistical methods for constructing confidence intervals and 
performing hypothesis tests are based on two critical assumptions:  that the 
observations are independent of one another and that they come from the 
same population (probability distribution).  Parametric methods add the third 
assumption that the observations come from a particular probability distribu-
tion, usually the normal distribution.  Of these three assumptions, the most 
important one (in terms of maintaining the assumed confidence or signifi-
cance level) is the first one, the assumption of independent observations 
(e.g., Millard et al., 1985). 

Environmental data are often collected sequentially over time (e.g., air 
quality data, groundwater monitoring data, etc.) or in close proximity in 
space (e.g., soil cleanup data).  When observations are collected sequentially 
over time or close together in space, the assumption of independent observa-
tions may not be valid.  This chapter discusses statistical methods for dealing 
with time series data, and the next chapter discusses methods for dealing 
with data collected in space.  In this chapter we will discuss how to plot time 
series data, define autocorrelation and autocorrelation plots, explain how to 
test for and model autocorrelation, and how to estimate and test for trend, as-
suming either independent or autocorrelated observations. 

CREATING AND PLOTTING TIME SERIES DATA 

A time series is simply a set of observations collected sequentially over 
time.  The observations may have been collected on a regular basis (e.g., 
monthly, weekly, daily, hourly, etc.) or on an irregular basis.  It is quite 
common for time series data to contain missing values, so that a “regular” 
time series becomes an “irregular” time series.  There are several ways you 
can create time series objects in S-PLUS from both the menu and the com-
mand line (see the S-PLUS documentation for details). 

A time series plot is simply a plot of the observations on the y-axis vs. 
the times (or sequence in which) they were collected on the x-axis.  Figure 
7.7 in Chapter 7 is a time series plot of daily maximum ozone concentrations 
in Yonkers, New York between May 1 and September 30, 1974.  Note that 
this time series contains several missing values. 

As another example, recall from Chapters 3 and 9 that S-PLUS contains 
two built-in data frames called air and environmental that contain ob-

© 2001 by CRC Press LLC



servations on ozone (ppb for environmental, ppb1/3 for air), solar ra-
diation (langleys), temperature (degrees Fahrenheit), and wind speed (mph) 
for 111 days between May 1 and September 30, 1973.  Since there are 153 
days in this time period, there are obviously missing values in this time se-
ries as well, but the air and environmental data frames do not include 
the dates the data were collected.  These data are discussed in Chambers et 
al. (1983) and presented in an appendix (pp. 347 349).  They are also dis-
cussed in Cleveland (1993, 1994).  Chambers et al. (1983) present the origi-
nal time series for all 153 days.  In ENVIRONMENTALSTATS for S-PLUS, the 
full data set is stored in the multivariate calendar time series environ-
mental.orig.cts.  Figure 11.1 shows a time series plot of the ozone 
data and Figure 11.2 shows a time series plot of the temperature data for all 
153 days.  Note that the ozone data contain missing values. 

As a final example, Figure 11.3 displays average monthly CO2 concentra-
tions (ppm) recorded on Mauna Loa, Hawaii between January 1959 and De-
cember 1990.  In S-PLUS, these data are stored in the time series object co2.
The original data contained missing values, but for the data stored in co2
missing values were imputed by a linear interpolation scheme (see the 
S-PLUS help file for co2).

Daily Ozone Concentrations in New York (1973)
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Figure 11.1 Daily ozone concentrations (ppb) between May 1 and September 30, 

1973, in New York 
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Daily Maximum Temperature in New York (1973)

Date

T
em

pe
ra

tu
re

 (
de

gr
ee

s 
F

)

60
70

80
90

May Jun Jul Aug Sep

Figure 11.2 Daily maximum temperature (degrees Fahrenheit) between May 1 and 

September 30, 1973, in New York 

Monthly Average CO  Concentrations at Mauna Loa
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Figure 11.3 Average monthly CO2 concentrations (ppm) on Mauna Loa, Hawaii be-

tween January 1959 and December 1990 
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Menu

To produce the ozone time series plot shown in Figure 11.1 using the 
S-PLUS pull-down menu or toolbar, follow these steps. 

1. Find environmental.orig.cts in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Graph>2D Plot.  This will bring up the Insert Graph dialog box.  
Under the Axes Type column, Linear should be highlighted.  Un-
der the Plot Type column, select Line Plot and click OK.  (Alterna-
tively, left-click on the 2D Plots button, then left-click on the Line
button.) 

3. The Line/Scatter Plot dialog box should appear.  The data set box 
should display environmental.orig.cts.  In the y Columns box, se-
lect ozone, then click OK.

To produce the temperature time series plot shown in Figure 11.2, repeat the 
above steps, but use the variable temperature.  To produce the CO2 time se-
ries plot shown in Figure 11.3, repeat the above steps, but use the data set 
co2 and specify co2 as the variable as well. 

Command 

To produce the ozone time series plot shown in Figure 11.1 using the 
S-PLUS Command or Script Window, type these commands. 

ts.plot(environmental.orig.cts[, "ozone"], 

xlab="Date", ylab="Ozone (ppb)", xaxt="n", 

main="Daily Ozone Concentrations in New York 

(1973)", lwd=3) 

date.ticks <- dates(paste(5:9, 1, 73, sep="/")) 

axis(1, at=date.ticks, 

labels=as.character(months(date.ticks)))

To produce the time series plot shown in Figure 11.2, type these commands. 

ts.plot(environmental.orig.cts[, "temperature"], 

xlab="Date", ylab="Temperature (degrees F)", 

xaxt="n", main="Daily Maximum Temperature in New 

York (1973)", lwd=3) 

date.ticks <- dates(paste(5:9, 1, 73, sep="/")) 

axis(1, at=date.ticks, 

labels=as.character(months(date.ticks)))

To produce the time series plot shown in Figure 11.3, type these commands. 
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tsplot(co2, xlab="Year", ylab="CO2 (ppm)", 

main="Monthly Average CO2 Concentrations at Mauna 

Loa", lwd=3) 

Note that tsplot (as opposed to ts.plot) is not a typographical error.  
The object co2 is an “old-style” time series object, so you should use 
tsplot to plot it. 

AUTOCORRELATION 

In Chapter 9 we defined the correlation between two random variables X
and Y in Equation (9.5).  We also defined the sample (estimated) correlation 
coefficient in Equation (9.7).  We saw that correlation is a measure of how X
and Y vary together about their respective means.  For example, we saw in 
Example 9.1 that ozone concentrations in Yonkers and Stamford are posi-
tively correlated, so that when ozone is above its mean in Yonkers it is more 
likely to above its mean in Stamford as well.  Autocorrelation (also called 
serial correlation) is simply a measure of how a random variable X varies 
over time relative to past observations of X.  For example, we would not be 
surprised to find that if the ozone concentration at 1 P.M. is above the daily 
average ozone concentration, then is it very likely that the ozone concentra-
tion at 2 P.M. is also above the daily average as well. 

Here we will assume we are taking observations on a random variable X
at equally spaced times (e.g., once per hour, day, week, month, etc.), and we 
will let Xt denote the random variable at time t.  Following Equation (9.5), 
the lag-1 autocorrelation for the time series is defined as: 

1
1

1

1 1 1
2

0

,

t t

t t

t t

t X

E X X

Var X Var X

Cov X X

Var X

(11.1)

where  and X denote the mean and standard deviation of X, and 1 denotes 
the lag-1 autocovariance (Box and Jenkins, 1976, pp. 27 28).  In general, the 
lag-k autocorrelation (k = 0, 1, 2, 3, …) is defined as: 

2
0

,t t k k k
k

Xt t k

Cov X X

Var X Var X
(11.2)
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In both of the above equations, we are assuming the time series is stationary,
which means the average (mean) and standard deviation remain constant 
over time, and also that the value of the lag-k autocorrelation does not de-
pend on what starting point we choose in the series. 

As in the case of correlation between two separate variables, autocorrela-
tion must lie between –1 and 1.  Note that the lag-0 autocovariance is equal 
to the variance and the lag-0 autocorrelation is equal to 1.  For values of k
greater than or equal to 1, the autocorrelation lies strictly between –1 and 1: 

1 1 , 1,2,3,k k  (11.3)

If observations are independent of one another, then all lag-k covariances 
and autocorrelations are 0 for values of k greater than or equal to 1. 

A Simple Model for Autocorrelation:  The AR(1) Process 

One of the simplest models for autocorrelation is the first order autore-
gressive model, also denoted as the AR(1) model:

1t t tX X  (11.4)

where  denotes the overall mean of the time series,  (phi) denotes the lag-1 
autocorrelation, and t denotes an error term with mean 0 and constant stan-
dard deviation .  The error terms, also sometimes called the random inno-
vations, are assumed to be independent of each other.  If the lag-1 correlation 

 is positive, then if an observation is above the mean value , the next ob-
servation is more likely to also be above the mean value  compared to the 
case when the observations are independent.  If the lag-1 correlation  is 
negative, then if an observation is above the mean value , the next observa-
tion is more likely to be below the mean value  compared to the case when 
the observations are independent.  Note that if the lag-1 correlation  is equal 
to 0 then the observations are independent of one another.  Figure 11.4 dis-
plays an example of n = 100 observations from an AR(1) process with a lag-
1 autocorrelation of = 0.8, and Figure 11.5 displays an example with =

0.8.
For an AR(1) process with a lag-1 autocorrelation of , the following 

property holds (Box and Jenkins, 1976, p. 57): 

, 0,1,2,k
k k (11.5)
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Example of an AR(1) Process with phi=0.8
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Figure 11.4 Example of an AR(1) process with a lag-1 autocorrelation of 0.8 

Example of an AR(1) Process with phi=-0.8
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Figure 11.5 Example of an AR(1) process with a lag-1 autocorrelation of 0.8
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Menu

In the current version of S-PLUS 2000 you cannot easily simulate time se-
ries models from the menu. 

Command

To produce the simulated AR(1) process shown in Figure 11.4 using the 
S-PLUS Command or Script Window, type these commands. 

set.seed(27)

series.ar.0.8 <- 

2 * arima.sim(n=100, model=list(ar=0.8)) + 20 

To produce the simulated AR(1) process shown in Figure 11.5 type these 
commands. 

set.seed(55)

series.ar.neg.0.8 <- 

2 * arima.sim(n=100, model=list(ar=-0.8)) + 20 

The Autocorrelation Function (ACF) 

A plot of the lag-k autocorrelation vs. k is called the autocorrelation 
function (ACF), and sometimes called the correlogram (Box and Jenkins, 
1976, p. 30).  Figure 11.6 displays the ACF for an AR(1) process with a lag-
1 autocorrelation of 0.8, and Figure 11.7 displays the ACF for an AR(1) 
process with a lag-1 autocorrelation of –0.8 (see Equation (11.5)). 

ACF for an AR(1) Process with phi=0.8
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Figure 11.6 Autocorrelation function (ACF) for an AR(1) process with a lag-1 auto-

correlation of 0.8 
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ACF for an AR(1) Process with phi=-0.8
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Figure 11.7 Autocorrelation function (ACF) for an AR(1) process with a lag-1 auto-

correlation of 0.8

Estimating Autocorrelation 

Although there are several methods for estimating autocorrelation, one of 
the most commonly used estimators for the lag-k autocorrelation is the Yule-
Walker estimator given by: 
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(11.6)

(Box and Jenkins, 1976, p. 32).  This method of estimation is analogous to 
the method of estimating the correlation between two random variables X
and Y shown in Equation (9.7) in Chapter 9, except here we are estimating 
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the correlation between the series {X1+k, X2+k, …, Xn} and the lag-k version 
of this series {X1, X2, …, Xn-k,}.

Table 11.1 displays the true and estimated lag- k autocorrelations for the 
AR(1) time series shown in Figure 11.4 for the first five lags.  Box and Jen-
kins (1976, p. 33) recommend having at least n = 4 k observations if you 
want to estimate the lag-k autocorrelation. 

Lag
True

Autocorrelation 
Estimated

Autocorrelation 
1      0.8        0.75 
2      0.64        0.60 
3      0.51        0.43 
4      0.41        0.27 
5      0.33        0.18 

Table 11.1 True and estimated autocorrelations for the time series shown in Figure 

11.4 

Sample Autocorrelation Function (SACF) and Lag Plots 

Instead of looking at tables of estimated autocorrelations, it is easier to 
look at plots.  A plot of the estimated lag-k autocorrelation vs. k is called the 
sample autocorrelation function (SACF), or the estimated correlogram.
Figure 11.8 displays the SACF for the AR(1) process of Figure 11.4 and 
Figure 11.9 displays the SACF for the AR(1) process of Figure 11.5.  Com-
pare these figures with the true ACF shown in Figure 11.6 and Figure 11.7. 
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SACF for Series of Figure 11.4

Figure 11.8 The sample autocorrelation function (SACF) for the AR(1) process of 

Figure 11.4 
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Figure 11.9 The sample autocorrelation function (SACF) for the AR(1) process of 

Figure 11.5 
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Figure 11.10 Lag plots for the AR(1) process of Figure 11.4 

As we discussed in Chapter 9, correlation is a measure of the linear asso-
ciation between two random variables, or in the case of time series analysis, 
a time series and a lag of the time series.  Besides looking at plots of the 
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SACF, you can also look at plots of the time series vs. the lag-k time series.  
Figure 11.10 displays lag plots for the first 4 lags of the AR(1) process of 
Figure 11.4. 

Menu

To compute and plot the estimated autocorrelations for the time series of 
Figure 11.4 using the S-PLUS pull-down menu, follow these steps. 

1. Find series.ar.0.8 in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Time Series>Autocorrelations.  This will bring up the 
Autocorrelations and Autocovariances dialog box. 

3. The Data Set box should display series.ar.0.8.  In the Variable box 
type series.ar.0.8, then click OK or Apply.

To produce the same thing for the time series of Figure 11.5, repeat the 
above steps but use the data set series.ar.neg.0.8.

To produce the lag plots of Figure 11.10, follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
Statistics>Time Series>Lag Plot.  This will bring up the Lag Plot 
dialog box. 

2. The Data Set box should display series.ar.0.8.  In the Variable box 
type series.ar.0.8, in the Lag box choose 4, in the Rows box choose 
2 and in the Columns box choose 2, then click OK or Apply.

Command 

To compute and plot the estimated autocorrelations for the time series of 
Figure 11.4 and Figure 11.5 using the S-PLUS Command or Script Window, 
type these commands. 

acf.list.0.8 <- acf(series.ar.0.8, plot=F) 

acf.plot(acf.list.0.8, lwd=3,

main="SACF for Series of Figure 11.4") 

acf.list.neg.0.8 <- acf(series.ar.neg.0.8, plot=F) 

acf.plot(acf.list.neg.0.8, lwd = 3,

main="SACF for Series of Figure 11.5") 

The lists acf.list.0.8 and acf.list.neg.0.8 contain several 
components, including the estimated autocorrelations.  You can also create 
the SACF by simply calling the acf function with plot=T.

To create the lag plots of Figure 11.10 , type this command. 

lag.plot(series.ar.0.8, lags=4, layout=c(2,2)) 
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Tests and Confidence Intervals for Autocorrelation 

There are several ways to test for the presence of serial correlation, in-
cluding simple tests for the presence of lag-1 or higher autocorrelation, and 
more involved methods that involve fitting a simple or complicated time se-
ries model and testing the significance of the parameters.  In this section we 
will briefly discuss two simple hypothesis tests for the presence of autocorre-
lation and we will explain a simple method for creating a confidence interval 
for the lag-1 autocorrelation. 

Test For Lag-k Autocorrelation Based on the Yule-Walker Estimate 

The null hypothesis is that the lag-k autocorrelation is 0 for all values of 
k greater than 0 (i.e., the time series is purely random).  For a specified value 
of k (e.g., k = 1), the three possible alternative hypotheses are the upper one-
sided alternative 

: 0a kH (11.7)

the lower one-sided alternative  

: 0a kH (11.8)

and the two-sided alternative 

: 0a kH (11.9)

Under the null hypothesis, the distribution of the Yule-Walker estimator 
of lag-k autocorrelation shown in Equation (11.6) is approximately normal 
with mean 0 and variance 1/n, assuming the time series is stationary with 
normally distributed errors (Box and Jenkins, 1976, pp. 34 35).  Thus, we 
can use the test statistic 

ˆ 0
ˆ

1
k

kz n
n

(11.10)

which is distributed approximately as a standard normal random variable un-
der the null hypothesis that the lag-k autocorrelation is 0.  For the case of a 
two-sided alternative, we would reject the null hypothesis at level  if 
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1 2ˆk z n  or 1 2ˆk z n  where zp denotes the pth

quantile of the standard normal distribution.  The horizontal dashed lines in 
Figures 11.8 and 11.9 are drawn at these values assuming a Type I error level 
of = 5%.  In both of these figures there are several estimated autocorrela-
tions beyond these critical values, so we would conclude that autocorrelation 
is in fact present in both the these time series.  You must be careful when in-
terpreting this kind of plot, however, because of the multiple comparisons 
problem:  in the case of no autocorrelation we would not expect all 19 esti-
mated autocorrelations of lag greater than 1 to fall within the dashed lines 
about 95% of the time.  The results of a Monte Carlo simulation study con-
firm this.  For 1000 trials, a random sample of 100 independent observations 
was generated for each trial and the lag-1 to lag-19 sample autocorrelations 
were computed.  At least one of the lag-1 to lag-3 autocorrelations fell out-
side the dashed lines 13.4% of the time, and at least one of the lag-1 to lag-
19 autocorrelations fell outside the dashed lines 50% of the time. 

Test for Lag-1 Autocorrelation Based on the Rank von Neumann Ratio 

The null distribution of the serial correlation coefficient may be badly af-
fected by departures from normality in the underlying process (Cox, 1966; 
Bartels, 1977).  It is therefore a good idea to consider using a nonparametric 
test for randomness if the normality of the underlying process is in doubt 
(Bartels, 1982). 

Wald and Wolfowitz (1943) introduced the rank serial correlation coeffi-
cient, which for lag-1 autocorrelation is simply Equation (11.6) with k = 1 
and the actual observations replaced with their ranks.  von Neumann et al. 
(1941) introduced a test for randomness in the context of testing for trend in 
the mean of a process.  Their statistic is given by: 
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(11.11)

which is the ratio of the sum of squared successive differences to the usual 
sum of squared deviations from the mean.  This statistic is bounded between 
0 and 4, and for a purely random process is symmetric about 2.  Small values 
of this statistic indicate possible positive autocorrelation, and large values of 
this statistic indicate possible negative autocorrelation.  Durbin and Watson 
(1950, 1951, 1971) proposed using this statistic in the context of checking 

© 2001 by CRC Press LLC



the independence of residuals from a linear regression model and provided 
tables for the distribution of this statistic.  This statistic is therefore often 
called the Durbin-Watson statistic (Draper and Smith, 1998, p. 181). 

The rank version of the von Neumann ratio statistic simply replaces the 
observations with their ranks and is given by: 
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where Rt denotes the rank of the tth observation (Bartels, 1982).  In the ab-
sence of ties, the denominator of this test statistic is equal to 
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The range of the RVN test statistic is given by: 

12 12
, 4

1 1n n n n
(11.14)

if n is even, with a negligible adjustment if n is odd (Bartels, 1982), so  
asymptotically the range is from 0 to 4, just as for the VN test statistic in 
Equation (11.11) above. 

For any fixed sample size n, the exact distribution of the RVN statistic 
above can be computed by simply computing the value of RVN for all possi-
ble permutations of the serial order of the ranks.  Based on this exact distri-
bution, Bartels (1982) presents a table of critical values for the numerator of 
the RVN statistic for sample sizes between 4 and 10.  Determining the exact 
distribution of RVN becomes impractical as the sample size increases.  For 
values of n between 10 and 100, Bartels (1982) approximated the distribu-
tion of RVN by a beta distribution over the range 0 to 4, and he shows that 
asymptotically RVN has a normal distribution with mean 2 and variance 4/n,
but notes that a slightly better approximation is given by using a variance of 
20/(5n + 7). 
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When ties are present in the observations and midranks are used for the 
tied observations, the distribution of the RVN statistic based on the assump-
tion of no ties is not applicable.  If the number of ties is small, however, they 
may not grossly affect the assumed p-value. 

Confidence Interval for Lag-1 Autocorrelation 

When lag-1 autocorrelation is present, the distribution of the estimated 
lag-1 autocorrelation is approximately normal with mean 1, assuming nor-
mally distributed errors.  The variance of the estimated lag-1 autocorrelation 
is approximately: 

2
1 1

1
ˆ 1Var

n
 (11.15)

(Box and Jenkins, 1976, p. 34).  Thus, an approximate 100(1 )% confi-
dence interval for the lag-1 autocorrelation is given by: 

2 2
1 1

1 1 2  1 1 2
ˆ ˆ1 1

ˆ ˆ,z z
n n

(11.16)

Example 11.1:  Testing for Serial Correlation in the New York 
Temperature Data 

In this example we will test the null hypothesis of no serial correlation in 
the daily maximum temperature data shown in Figure 11.2 using the test 
based on the Yule-Walker estimate of lag-1 autocorrelation.  Obviously there 
are monthly fluctuations in temperature, so if we perform the test on the raw 
data we would not be surprised if we find a statistically significant result.  
Here, we will perform the test both on the original data and what we will call 
the “monthly adjusted” data, which we will create by subtracting the 
monthly mean from each observation. 

Figure 11.11 displays the ACF for the original temperature data, and 
Figure 11.12 displays the ACF for the adjusted data (compare these figures 
to Figure 11.8).  Q-Q plots reveal that both the original temperature data and 
the adjusted data do not appear to deviate greatly from a normal distribution.  
The estimated lag-1 autocorrelation based on the original data is 0.81, yield-
ing a p-value of 0 and a 95% confidence interval of [0.72, 0.90].  For the ad-
justed data, the estimated lag-1 autocorrelation is 0.60, yielding a p-value of 
0 and a 95% confidence interval of [0.48, 0.73].  Thus, even for the adjusted 
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data, there is evidence of serial correlation in the temperature data.  This is 
not surprising; this says that if the temperature is above the monthly average 
on a particular day, it is more likely to be above (rather than below) the 
monthly average the next day as well. 
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Figure 11.11 Sample autocorrelation function for the New York temperature data 
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Figure 11.12 Sample autocorrelation function for the monthly adjusted New York 

temperature data 
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Menu

To perform the test of serial correlation for the temperature data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find environmental.orig.cts in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Serial Correlation.  This 
will bring up the Serial Correlation Test dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display environmental.orig.cts.  In the Variable box select tem-
perature, for Test Method choose AR(1) Y-W, then click OK or 
Apply.

In the current version of S-PLUS 2000 it is not possible to create the monthly 
adjusted data from the menu, but steps for doing this from the command line 
are given below.  To perform the test on the adjusted data, follow the same 
steps as for the raw data, but use the object temperature.adjusted instead of 
environmental.orig.cts.

Command 

To perform the test of serial correlation for the temperature data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

temperature <- environmental.orig.cts[,"temperature"] 

serial.correlation.test(temperature, test="AR1.yw") 

To perform the test on the adjusted data, type these commands. 

months.temperature <- as.character(months(dates( 

as.character(time(temperature)))))

temperature.adjusted <- unlist(sapply(split( 

temperature, months.temperature), scale, scale=F)) 

serial.correlation.test(temperature.adjusted,

test="AR1.yw")

Dealing with Missing Values 

The Yule-Walker estimator of the lag-k autocorrelation shown in Equa-
tion (11.6) does not allow for missing values.  There are two ways to deal 
with missing values when you are interested in assessing the presence of and 
accounting for serial correlation: 

Fill in the missing values with some kind of interpolation method.  
This was what was done for the Mauna Loa CO2 data. 
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 Assume a particular autoregressive or moving average model (see 
below) and use maximum likelihood estimation to estimate the 
model parameters.  Maximum likelihood estimation of time series 
parameters is discussed in standard textbooks on time series analy-
sis (e.g., Box and Jenkins, 1976) 

Example 11.2:  Estimating the Lag-1 Autocorrelation for the Ozone Data 

The ozone data shown in Figure 11.1 includes missing values, so we can-
not use the Yule-Walker Equation (11.6) to estimate autocorrelations.  In this 
example we will use maximum likelihood estimation to test the null hy-
pothesis of independent observations vs. the alternative that the observations 
come from an AR(1) process (assuming a constant mean and variance).  (Of 
course, we can do a better job of modeling these data by incorporating in-
formation on radiation, temperature, and wind speed; see Example 11.3).  As 
we did for the temperature data, we will perform the test based on the origi-
nal observations, and again for the “adjusted” data, which we will create by 
subtracting the monthly mean from each observation. 

Q-Q plots reveal that the raw ozone data are skewed, while the log-
transformed or cube-root-transformed observations appear to satisfy the as-
sumption of normality.  For the cube-root-transformed original data, the 
maximum likelihood estimate of lag-1 autocorrelation is 0.57, yielding a p-
value of 0 and a 95% confidence interval of [0.42, 0.72].  For the adjusted 
data, the estimate lag-1 autocorrelation is 0.42, yielding a p-value of 0 and a 
95% confidence interval of [0.25, 0.58].  As for the case of temperature, 
even the adjusted (transformed) ozone data display serial correlation. 

Menu

To perform the test of serial correlation for the ozone data using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find air.orig.cts in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Serial Correlation.  This 
will bring up the Serial Correlation Test dialog box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display air.orig.cts.  In the Variable box select ozone, for Test 
Method choose AR(1) MLE, then click OK or Apply.

As for the temperature data, it is not possible to create the adjusted ozone 
data from the menu, steps for doing this at the command line are given be-
low.  To perform the test on the adjusted data, follow the same steps as for 
the raw data, but use the object ozone.adjusted instead of air.orig.cts.
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Command 

To perform the test of serial correlation for the ozone data using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

cr.ozone <- air.orig.cts[,"ozone"] 

serial.correlation.test(cr.ozone, test="AR1.mle") 

To perform the test on the adjusted data, type these commands. 

months.cr.ozone <- as.character(months(dates( 

as.character(time(cr.ozone)))))

cr.ozone.adjusted <- unlist(sapply(split( 

cr.ozone, months.cr.ozone), scale, scale=F)) 

serial.correlation.test(cr.ozone.adjusted,

test="AR1.mle")

Effect of Autocorrelation on Confidence Intervals and Test 
Statistics

What if we decide that our observations do indeed exhibit autocorrela-
tion?  So what?  It turns out that ignoring autocorrelation can lead to incor-
rect confidence levels and Type I error rates (e.g., Millard et al., 1985).  Here 
we will consider the effect of autocorrelation on the confidence interval for 
the mean and the Type I error level of the one-sample t-test. 

We showed in Chapter 4 in Equation (4.27) that the variance of the sam-
ple mean is equal to the population variance divided by the sample size: 

2
2
xVar x

n
(11.17)

The above formula assumes the observations used to construct the sample 
mean are independent of one another.  When observations come from a time 
series and are autocorrelated, the variance of the sample mean becomes: 

2 1

1

2
1

n
X

k
k

Var x n k
n n

(11.18)
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where 2
X  denotes the variance of an individual observation (Lettenmaier, 

1976; Gilbert, 1987, p. 38).  For an AR(1) process with a lag-1 autocorrela-
tion of  (Equation (11.4)), it can be shown that the variance of an individual 
observation Xt is:

2
2

21
XVar X (11.19)

(Box and Jenkins, 1976, p. 58).  Thus, by Equations (11.5), (11.18), and 
(11.19), for an AR(1) process the variance of the sample mean is given by: 

2
2

2 2

2
1 11

1 1

n

nVar x
n

(11.20)

which for large sample sizes is approximately equal to 

2

2

1

1
Var x

n
(11.21)

For both a confidence interval for the mean and the one-sample t-test on 
the mean, the variance of the sample mean is estimated by estimating the 
variance of an individual observation and dividing by the sample size: 

2 2
2 ˆ
ˆ X
x

s

n n
(11.22)

and the average value of this estimator is the true variance for an individual 
observation divided by the sample size: 

2 2
2ˆ X
x

E s
E

n n
(11.23)
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Looking at the ratio 
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(11.24)

we see that the estimator s2/n of Equation (11.22) is a “good” estimator of 
the variance of the sample mean only when the lag-1 autocorrelation  is 0. 

Effect of Autocorrelation on Estimator of Variance of Sample Mean

Lag-1 Autocorrelation
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Figure 11.13 Approximate ratio of the true variance of the sample mean to the aver-

age value of its estimator as a function of the lag-1 autocorrelation 

Figure 11.13 plots this ratio as a function of the lag-1 autocorrelation.  
When the lag-1 autocorrelation is positive (  > 0), s2/n underestimates the 
true variance of the sample mean, so confidence intervals are too narrow and 
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the one-sample t-statistic is too large, resulting in an inflated Type I error.  
When the lag-1 autocorrelation is negative, s2/n overestimates the true vari-
ance of the sample mean, so confidence intervals are too wide and the one-
sample t-statistic is too small, resulting in a Type I error rate less than the 
assumed rate.  Both Lettenmaier (1976) and Gilbert (1987, p. 39) present 
sample size formulas to use in the presence of serial correlation. 

DEALING WITH AUTOCORRELATION 

So how do you deal with autocorrelation once you find it?  There are two 
(possibly overlapping) approaches: 

1. Eliminate autocorrelation by improving your model to account 
for more sources of variability. 

2. Use a simple or complicated time series model to perform your 
statistical analyses. 

Often, serial correlation can be reduced or eliminated by assuming seasonal 
effects, such as monthly or quarterly variations, by allowing for a trend (see 
the section Estimating and Testing for Trend later in this chapter), or by in-
corporating information from other covariates. 

Eliminating Autocorrelation by Incorporating Information from 
Other Covariates 

You can often eliminate serial correlation by incorporating information 
from other covariates.  This can be as simple as allowing for seasonal fluc-
tuations and/or incorporating an overall trend, or more complicated by using 
a regression model that incorporates several covariates.  In the example be-
low, we will fit a regression model to the ozone data we looked at earlier and 
then worry about whether there is serial correlation in the residuals from the 
fit.

Example 11.3:  Eliminating Autocorrelation from the Ozone Data 

In Example 11.2 we found evidence of serial correlation in the (trans-
formed) ozone data, but we ignored the available information on radiation 
( R), temperature ( T), and wind speed (W).  Figure 9.22 in Chapter 9 displays 
the observed relationship between the cube-root of ozone and the other three 
variables.  In Example 9.13 we found that an adequate model for predicting 
ozone (O) is given by: 

1 3
0 1 2 3

2 2 2
4 5 6 7

O R T W

R T W RT
(11.25)
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where i denotes the coefficient of the ith predictor variable and  denotes 
the error in the model.  Equation (9.57) shows the values of the estimated 
coefficients.  If we perform a test of serial correlation on the residuals from 
this fitted model, we find that the maximum likelihood estimate of lag-1 
autocorrelation is 0.12, yielding a p-value of 0.209 and a 95% confidence in-
terval of [ 0.06, 0.31].  Hence, once we take into account several sources 
that contribute to the variability of the ozone observations, the serial correla-
tion vanishes. 

Menu

To perform the test of serial correlation on the residuals of the linear 
model for ozone using the S-PLUS pull-down menu, we could use the model 
cr.ozone.fit.stepwise that we created in Example 9.13, but the data 
used to fit this model does not account for days with missing values.  There-
fore, we first have to construct the model based on the full time series data 
stored in air.orig.cts.  Because the modeling capabilities in S-PLUS do 
not work with calendar time series, we have to copy the contents of 
air.orig.cts to a data frame, say air.orig.df.  Currently, this can-
not be done from the menu, but the Command section below shows how to 
do this from the command line.  Once you have created air.orig.df,
create the linear model by fol-lowing these steps. 

1. Find air.orig.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set air.orig.df should be highlighted.  In the Formula box 
type ozone ~ radiation + temperature + wind + radiation^2 + 
temperature^2 + wind^2 + radiation*temperature.  In the Save 
As box type lm.cr.ozone, then click OK or Apply.

Once you have fit the model, follow these steps to test for serial correlation 
in the residuals. 

4. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Serial Correlation.  This 
will bring up the Serial Correlation Test dialog box. 

5. For Data to Use select Expression.  In the Expression box type re-
siduals(lm.cr.ozone), for Test Method choose AR(1) MLE, then 
click OK or Apply.

Command 

To perform the test of serial correlation using the S-PLUS Command or 
Script Window, type these commands. 
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air.orig.df <- as.data.frame(air.orig.cts) 

lm.cr.ozone <- lm(ozone ~ radiation + temperature + 

wind + radiation^2 + temperature^2 + wind^2 + 

radiation*temperature, data=air.orig.df, 

na.action=na.exclude)

serial.correlation.test(residuals(lm.cr.ozone),

test="AR1.mle")

Accounting for Autocorrelation in the Model 

The general model for multiple regression with one or more predictor 
variables is shown in Equation (9.56).  This model assumes the error terms 
(the ’s) are independent.  The p coefficients for this model are estimated us-
ing least squares, and the general formula in matrix notation is given by: 

1ˆ X X X Y (11.26)

where ˆ  denotes the p  1 vector of coefficients, Y denotes the n  1 vector 

of observations, X denotes the n p matrix containing the values of the p
predictor variables for each of the n observations, and X’ denotes the trans-
pose of X (Draper and Smith, 1998, pp. 135 136).  When the error terms are 
correlated, you should use generalized least squares to estimate :

1ˆ -1 -1X V X X V Y (11.27)

where V denotes the p p variance-covariance matrix of the error terms 
(Draper and Smith, 1998, pp. 221 222).  In practice the true values of the 
covariances are usually unknown and have to be estimated.  Example 11.5 
(later in this chapter) shows how to fit a parametric model for trend while 
accounting for correlated errors, and Example 11.7 shows how to do the 
same thing using a nonparametric model for trend. 

MORE COMPLICATED MODELS:  AUTOREGRESSIVE 
AND MOVING AVERAGE PROCESSES 

So far in our discussion of testing for and estimating serial correlation, 
we have restricted ourselves to the simple first-order autoregressive or AR(1) 
model shown in Equation (11.4).  A more complicated model is a pth order 
autoregressive process, also called an AR(p) process:
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1 1 2 2t t t

p t p t

X X X

X

(11.28)

where p  1 (Box and Jenkins, 1976, p. 51).  For p > 1, this model says that 
not only does the last observation help predict the value of the next observa-
tion, but also the 2nd to last, 3rd to last, and on up to the pth to last observa-
tion.  Another model used in time series analysis is the qth order moving av-
erage process, also called an MA(q) process:

1 1 2 2t t t t

q t q

X

(11.29)

where t, t-1, …, t-q are independent, identically distributed random vari-
ables with a constant mean of 0 and a constant variance (Box and Jenkins, 
1976, p. 52).  A mixed autoregressive-moving average process of order 
(p,q), also called an ARMA(p,q) process, combines both of these models: 

1 1 2 2

1 1 2 2

t t t

p t p t

t t q t q

X X X

X (11.30)

(Box and Jenkins, 1976, pp. 52 53).  Most textbooks on time series analysis 
discuss these models in detail, as well as methods you can use to assess what 
model appears to fit the data based on looking at the autocorrelation function 
(ACF) and partial autocorrelation function (PACF).  See Box and Jenkins 
(1976) and the S-PLUS documentation for details. 

ESTIMATING AND TESTING FOR TREND 

Modeling trend is just a special case of regression in which one of the 
predictor variables is time:  trend is the behavior of the response variable 
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over time.  In this section we will discuss tools you can use to estimate and 
test for trend in a time series. 

Parametric Methods for Trend Analysis 

The simplest parametric model for trend involves an intercept and a 
slope: 

0 1t t tY X  (11.31)

where 0 denotes the intercept, Xt = f(t) denotes some function of the time 
(e.g., the week, month, quarter, or year the tth observation was taken), 1 de-
notes the change in the mean of Y per unit of time (i.e., the trend), and t de-
notes the error at time t.  As in Chapter 9, we assume the errors are inde-
pendent and all come from a normal distribution with a constant mean of 0 
and a standard deviation of .  For this model, the test for trend is simply 
the test for whether 1 is significantly different from 0, and is based on the t-
statistic shown in Equation (9.29) in Chapter 9.  The confidence interval for 
the trend is the confidence interval for the slope, given in Equation (9.32).  
In some cases we may want to use a more sophisticated model for trend, for 
example by adding a quadratic term to Equation (11.31). 

Accounting for Seasonality and Other Covariates 

The simple regression model of Equation (11.31) can be modified to ac-
count for seasonality in the observations and/or information from other co-
variates.  (It should be noted that in the time series literature, variations in 
the data that occur with a cyclical pattern are referred to as “seasonal” ef-
fects, whether or not the variation is truly quarterly (Fall, Winter, Spring, 
Summer) or on some other time scale (e.g., monthly).)  The modification 
may be as simple as allowing for a quarterly or monthly effect, or a more 
complicated model that involves using the sine and/or cosine functions. 

Example 11.4:  Testing for Trend in Total Phosphorus at Station CB3.3e 

Figure 11.14 displays monthly estimated total phosphorus mass (mg) 
within a water column at station CB3.3e for the 5-year time period October 
1984 to September 1989 from a study on phosphorus concentration con-
ducted in the Chesapeake Bay (Neerchal and Brunenmeister, 1993).  In 
ENVIRONMENTALSTATS for S-PLUS these data are stored in the regular time 
series Total.P.rts and the data frame Total.P.df.
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Figure 11.14 Monthly estimated total phosphorus mass within a water column at  

station CB3.3e 
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Figure 11.15 Sample autocorrelation function for the residuals from the fitted linear 

model allowing for trend and seasonality in the total phosphorus data at 

station CB3.3e 
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These data display seasonal variation, so we need to account for this 
while testing for trend.  If we fit a model that allows for a different average 
value for each month as well as an annual linear trend, the estimated trend 
coefficient is –0.3 mg/year with a standard error of 0.1 and an associated p-
value of 0.01.  The 95% confidence interval for the trend is [ 0.51, 0.07].  
Diagnostic plots for the fit indicate that the observation for March 1985 is 
both an “outlier” and a “high-leverage” point.  Figure 11.15 displays the 
sample autocorrelation function plot for the residuals from this fit.  Neither 
the parametric nor nonparametric test indicates significant lag-1 autocorrela-
tion in the residuals of the fitted model. 

Menu

To fit the linear model that allows for separate monthly means and an an-
nual trend using the S-PLUS pull-down menu, follow these steps. 

1. Find Total.P.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set Total.P.df should be highlighted.  In the Formula box 
type CB3.3e ~ Month + Year.  In the Save As box type  
Total.P.CB3.3e.fit.

4. Click on the Results tab.  Under Saved Results, check the Residu-
als box, and type Total.P.CB3.3e.fit.residuals in the Save In box.  
Click OK or Apply.

To create the sample autocorrelation plot for the residuals from this fit, fol-
low these steps. 

5. Find Total.P.CB3.3e.fit.residuals in the Object Explorer. 
6. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Time Series>Autocorrelations.  This will bring up the 
Autocorrelations and Autocovariances dialog box. 

7. The Data Set box should display Total.P.CB3.3e.fit.residuals.  In 
the Variable box select residuals, then click OK or Apply.

To perform the parametric test for the presence of lag-1 autocorrelation in 
the residuals from this fit, follow these steps. 

8. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Serial Correlation.  This 
will bring up the Serial Correlation Test dialog box. 

9. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Total.P.CB3.3e.fit.residuals.  In the Variable box select 
residuals, for Test Method choose AR(1) Y-W, then click OK or 
Apply.
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To perform the nonparametric test, follow the same steps as above, but for 
Test Method choose Rank von Neumann.

Command 

To fit the linear model that allows for separate monthly means and an an-
nual trend using the S-PLUS Command or Script Window, type these com-
mands. 

Total.P.CB3.3e.fit <- lm(CB3.3e ~ Month + Year, 

data=Total.P.df)

summary(Total.P.CB3.3e.fit)

To create the sample autocorrelation plot for the residuals from this fit, type 
this command. 

acf(residuals(Total.P.CB3.3e.fit))

To perform the parametric and nonparametric tests for the presence of lag-1 
autocorrelation in the residuals from this fit, type these commands. 

serial.correlation.test(residuals(Total.P.CB3.3e.fit),

test="AR1.yw")

serial.correlation.test(residuals(Total.P.CB3.3e.fit),

test="rank.von.Neumann")

Accounting for Autocorrelation 

If we fit a regression model for trend and find that the residuals exhibit 
serial correlation, we need to account for this fact.  The example below gives 
an illustration. 

Example 11.5:  Testing for Trend in Total Phosphorus at Station CB3.1 

Figure 11.16 displays monthly estimated total phosphorus mass (mg) 
within a water column at station CB3.1.  If we fit a model that allows for a 
different average value for each month as well as an annual linear trend, the 
estimated trend coefficient is –0.63 mg/year with a standard error of 0.15 and 
an associated p-value of 0.0001.  The 95% confidence interval for the trend 
is [ 0.92, 0.33].  Diagnostic plots for the fit indicate that the variance of the 
errors appears to increase a bit with the size of the fitted values, so some 
transformation of the response variable (e.g., log) may be appropriate, but 
for the purpose of this example we will stick with the original data. 

Figure 11.17 displays the sample autocorrelation function plot for the re-
siduals from this fit.  Neither the parametric nor nonparametric test indicates 
significant lag-1 autocorrelation in the residuals of the fitted model, but the  
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Figure 11.16 Monthly estimated total phosphorus mass within a water column at  

station CB3.1 
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Figure 11.17 Sample autocorrelation function for the residuals from the fitted linear 

model allowing for trend and seasonality in the total phosphorus data at 

station CB3.1 
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SAFC indicates significant correlation at lag-2.  This is may very well be a 
matter of the multiple comparisons problem we discussed earlier, but for the 
purposes of this example we will assume the autocorrelation is real and re-fit 
the model allowing for an AR(2) process in the model errors.  In this case the 
estimated trend decreases very slightly to –0.56 mg/yr while the standard er-
ror increases to 0.23, and the associated p-value is 0.02.  The 95% confi-
dence interval for the trend becomes [ 1.03, 0.1]. 

Menu

To fit the linear model that allows for separate monthly means and an an-
nual trend using the S-PLUS pull-down menu, follow these steps. 

1. Find Total.P.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Regression>Linear.  This will bring up the Linear Re-
gression dialog box. 

3. For Data Set Total.P.df should be highlighted.  In the Formula box 
type CB3.1 ~ Month + Year.  In the Save As box type  
Total.P.CB3.1.fit.

4. Click on the Results tab.  Under Saved Results, check the Residu-
als box, and type Total.P.CB3.1.fit.residuals in the Save In box.  
Click OK or Apply.

To create the sample autocorrelation plot for the residuals from this fit, fol-
low these steps. 

5. Find Total.P.CB3.1.fit.residuals in the Object Explorer. 
6. On the S-PLUS menu bar, make the following menu choices:   

Statistics>Time Series>Autocorrelations.  This will bring up the 
Autocorrelations and Autocovariances dialog box. 

7. The Data Set box should display Total.P.CB3.1.fit.residuals.  In 
the Variable box select residuals, then click OK or Apply.

To perform the parametric test for the presence of lag-1 autocorrelation in 
the residuals from this fit, follow these steps. 

8. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Hypothesis Tests>Serial Correlation.  This 
will bring up the Serial Correlation Test dialog box. 

9. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Total.P.CB3.1.fit.residuals.  In the Variable box select re-
siduals, for Test Method choose AR(1) Y-W, then click OK or 
Apply.

To perform the nonparametric test, follow the same steps as above, but for 
Test Method choose Rank von Neumann.
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In the current version of S-PLUS 2000, it is not trivial to use the menu to 
fit a new model that allows for an AR(2) process in the model errors.  The 
menu selection Statistics>Time Series>ARIMA Models brings up the 
ARIMA Modeling dialog box, but there is no easy way to specify an inter-
cept in the model unless you already have a column of 1’s in the data frame 
(certainly not the usual case), and also the dialog does not properly handle 
predictor variables that are factors.  Also the results from this menu selection 
do not include the standard errors associated with the estimated regression 
coefficients.  You can, however, use the function gls at the command line, 
as explained below. 

Command 

To fit the linear model that allows for separate monthly means and an an-
nual trend using the S-PLUS Command or Script Window, type these com-
mands. 

Total.P.CB3.1.fit <- lm(CB3.1 ~ Month + Year, 

data=Total.P.df)

summary(Total.P.CB3.1.fit)

To create the sample autocorrelation plot for the residuals from this fit, type 
this command. 

acf(residuals(Total.P.CB3.1.fit))

To perform the parametric and nonparametric tests for the presence of lag-1 
autocorrelation in the residuals from this fit, type these commands. 

serial.correlation.test(residuals(Total.P.CB3.1.fit),

test="AR1.yw")

serial.correlation.test(residuals(Total.P.CB3.1.fit),

test="rank.von.Neumann")

To fit a new model that allows for an AR(2) process in the model errors, 
you can use the S+ function arima.mle:

Total.P.CB3.1.ar2.fit <- arima.mle(Total.P.df$CB3.1, 

model=list(order=c(2,0,0)),

xreg=model.matrix(Total.P.CB3.1.fit))

Unfortunately, arima.mle does not return the standard errors associated 
with the estimated regression coefficients.  You can, however, use the func-
tion gls from the NLME3 library that comes with S+2000 Release 2.  To at-
tach this library, choose File>Load Library from the S-PLUS menu and se-
lect nlme3.  After loading the NLME3 library, type these commands: 
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Total.P.CB3.1.gls.fit <- gls(CB3.1 ~ Month + Year, 

data=Total.P.df, correlation=corARMA(p=2)) 

summary(Total.P.CB3.1.gls.fit)

Nonparametric Methods for Trend Analysis 

If you are not willing to make the assumption that the errors in your 
model for trend follow a normal distribution, you can use nonparametric 
methods instead.  The Mann-Kendall test for trend (Mann, 1945) is based 
on the following test statistic: 

1

1 1

n n

j i
i j i

S sign Y Y (11.32)

where the sign function is defined in Equation (9.14).  This test statistic is 
exactly the same as the statistic S defined in Equation (9.13) that is used to 
compute Kendall’s tau statistic to test for the independence between two 
random variables X and Y (Kendall 1938, 1975), except here the X variable 
becomes time and is not needed in the equation because Xj is always bigger 
than Xi when j > i so (Xj-Xi) is always positive. 

The observations Y1, Y2, …, Yn are assumed to be in order with respect to 
time, but the times at which they were observed do not have to be evenly 
spaced.  Looking at Equation (11.32), you can see that every time an obser-
vation later in time is bigger than one taken earlier in time, a 1 is added to 
the sum.  Also, every time an observation later in time is smaller than one 
taken earlier in time, a 1 is added to the sum.  Hence, large values of S in-
dicate a positive trend, and small (negative) values of S indicate a negative 
trend.  Note that unlike the parametric case where we have to specify the 
form of the trend (e.g., linear, quadratic, exponential, etc.), the Mann-
Kendall test for trend tests for any kind of monotonic trend. 

Tables of critical values of S for small samples are given in Hollander 
and Wolfe (1999, pp. 724 731), Conover (1980, pp. 458 459), Gilbert 
(1987, p. 272), Helsel and Hirsch (1992, p. 469), and Gibbons (1994,  
p. 180).  To compute p-values, you can also use the large sample normal ap-
proximation to the distribution of S.  Under the null hypothesis of no trend, 
the statistic: 

S
z

Var S
(11.33)
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is approximately distributed as a standard normal random variable, where 

1 2 5

18

n n n
Var S (11.34)

In the case of tied observations, formula (11.34) is modified to: 
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j j j
j

n n n
Var S

u u u

(11.35)

where uj denotes the number of tied observations in the jth group of ties. 
Both Kendall (1975) and Mann (1945) show that the normal approxima-

tion is excellent even for samples as small as n = 10, provided that the 
following continuity correction is used: 

1
, 0

0 , 0
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, 0

S
S

Var S

z S

S
S

Var S

(11.36)

Although the Mann-Kendall test for trend is useful because you do not 
need to worry about the normality assumption, it is useful to have some kind 
of estimate of trend.  For the simple model of a linear trend shown in Equa-
tion (11.31), Theil (1950) proposed the following nonparametric estimator of 
the slope: 
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X XMedian (11.37)

This estimator is the median of all N estimates of slope formed by taking all 
possible pairs of observations and estimating the slope based on just these 
two points.  In the case of no ties in the X values, there are

1

2 2

n n n
N (11.38)

possible pairs of points. 
Sen (1968) generalized this estimator to the case where there are possibly 

tied observations in the X values.  In this case, Sen simply ignores the two-
point estimated slopes where the X’s are tied and computes the median based 
on the remaining N' two-point estimated slopes.  That is, Sen’s estimator is 
given by: 

1
ˆ

i j

j i

j ii j
X X

Y Y

X XMedian (11.39)

(Hollander and Wolfe, 1999, pp. 421 423).  It is interesting to note that if we 
modified the Theil-Sen estimator of slope to use the mean instead of the me-
dian, we would get the least squares estimate of slope. 

Conover (1980, p. 267) suggests the following estimator for the intercept: 

0 0.5 1 0.5
ˆ ˆY X (11.40)

where X0.5 and Y0.5 denote the sample medians of the X’s and Y’s, respec-
tively.  With these estimators of slope and intercept, the estimated regression 
line passes through the point (X0.5, Y0.5).

Theil (1950) and Sen (1968) also proposed methods to compute a confi-
dence interval for the true slope (see Hollander and Wolfe, 1999,  
pp. 424 426).  Gilbert (1987, p. 218) illustrates a simpler method than the 
one given by Sen (1968) that is based on a normal approximation.  Gilbert’s 
(1987) method is an extension of the one given in Hollander and Wolfe 

© 2001 by CRC Press LLC



(1999, p. 424) that allows for ties and/or multiple observations per time pe-
riod.  This method is valid for a sample size as small as n = 10 unless there 
are several tied observations. 

Let N’ denote the number of defined two-point estimated slopes that are 
used in Equation (11.39) above (if there are no tied X values then N’ = N),
and let 

1 21 1 1
ˆ ˆ ˆ, , ,

N
(11.41)

denote the N’ ordered slopes.  For Gilbert’s (1987) method, a 100(1 )%
two-sided confidence interval for the true slope is given by 

11 2
1 1
ˆ ˆ,

M M
(11.42)

where

1 2

N C
M (11.43)

2
2

N C
M (11.44)

1 2C z Var S (11.45)

Usually the quantities M1 and M2 will not be integers, in which case Gilbert 
(1987, p. 219) suggests interpolating between adjacent values. 

Accounting for Seasonality 

Hirsch et al. (1982) introduced a modification of the Mann-Kendall test 
for trend that allows for seasonality in observations collected over time.  
They call this test the seasonal Kendall test.  Their test is appropriate for 
testing for trend within each season when the trend is in the same direction 
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across all seasons.  Assuming there are p seasons, the seasonal Kendall sta-
tistic is simply the sum of the Kendall statistics for each season: 

1

p

j
j

S S (11.46)

To compute p-values, you can use the z-statistic of Equation (11.36), using 
S’ instead of S, where 

1

p

j
j

Var S Var S (11.47)

To estimate the overall slope, Hirsch et al. (1982, p. 117) suggest using 
the median of the p Theil-Sen estimates of slopes computed for each season 
(see Equation (11.39)).  Also, to estimate the overall intercept, you can use 
the median of the p estimates of intercept (see Equation (11.40)).  Gilbert 
(1987, pp. 227 228) extends his method of computing a confidence interval 
for the slope to the case of seasonal observations by using the same formulas 
as in Equations (11.41) to (11.45) but using all two-point estimated slopes 
from all seasons, and using S’ instead of S in Equation (11.45). 

Van Belle and Hughes (1984) suggest using the following statistic to test 
for heterogeneity in trend prior to applying the seasonal Kendall test: 

2 2 2

1

p

het j
j

z pz (11.48)

where zj denotes the z-statistic for the jth season computed without the con-
tinuity correction (Equation (11.33)), and 

1

1 p

j
j

z z
p

(11.49)

Under the null hypothesis of no trend in any season, the statistic defined 
in Equation (11.48) is approximately distributed as a chi-square random 
variable with p 1 degrees of freedom.  The continuity correction is not used 
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to compute the z-statistics since using it results in an unacceptably conserva-
tive test (van Belle and Hughes, 1984, p. 132).  Van Belle and Hughes (1984) 
imply that their heterogeneity statistic may be used to test the null hypothesis 
of the same amount of (possibly nonzero) trend in each season.  For this 
case, however, the distribution of the test statistic in Equation (11.48) is un-
known since it depends on the unknown true value of the trend.  The hetero-
geneity chi-square statistic of Equation (11.48) may be assumed to be ap-
proximately distributed as chi-square with p 1 degrees of freedom under the 
null hypothesis of equal trend in each season, but further study is needed to 
determine how well this approximation works. 

Example 11.6:  Testing for Trend in Total Phosphorus at Station CB3.3e 

In this example we will repeat our analyses of Example 11.4, but here we 
will use the nonparametric seasonal Kendall trend test to test for trend.  The 
van Belle-Hughes test for heterogeneity in trend between seasons is not sig-
nificant, with a p-value of 0.95.  The estimated trend coefficient is –0.23 
mg/year with an associated p-value of 0.006.  The 95% confidence interval 
for the trend is [ 0.36, 0.06].  Note that the estimated trend and lower con-
fidence limit for the trend are smaller in magnitude (absolute value) because 
the nonparametric test is not affected by the March 1985 outlier. 

Menu

To perform the nonparametric test for annual trend in the total phospho-
rus data and also allow for separate monthly effects using the 
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps. 

1. Find Total.P.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Trend Tests>Non-
parametric.  This will bring up the Nonparametric Trend Test dia-
log box. 

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Total.P.df.  In the Variable box select CB3.3e, check the 
Seasonal box, for Season select Month and for Year select Year,
then click OK or Apply.

Command 

To test for annual trend in the total phosphorus data and also allow for 
separate monthly effects using the ENVIRONMENTALSTATS for S-PLUS Com-
mand or Script Window, type these commands. 

attach(Total.P.df)

seasonal.kendall.trend.test(CB3.3e, Month, Year) 
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Accounting for Autocorrelation 

Hirsch and Slack (1984) introduced a modification of the seasonal Kend-
all test that is robust against serial dependence (in terms of type I error) ex-
cept when the observations have a very strong long-term persistence (very 
large autocorrelation) or when the sample sizes are small (e.g., less than 6 
years of monthly data).  This modification is based on a multivariate test in-
troduced by Dietz and Killeen (1981). 

In the case of serial dependence, the equation for Var(S’) (Equation 
(11.47)) must be modified as follows: 
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g h
g h g

Var S Var S

Cov S S

(11.50)

where Cov(Sg, Sh) denotes the covariance between the Kendall statistic 
for season g and the Kendall statistic for season h.  In order to compute p-
values for the seasonal Kendall test statistic when serial correlation is pres-
ent, we need estimates of the covariances 

,gh g hCov S S (11.51)

Let R denote the n x p matrix of ranks for the Y observations, where the 
Y’s are ranked within season: 
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(11.52)

where
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and nj denotes the number of (X,Y) pairs without missing values for season 
j.  By this definition, missing values are assigned the mid-rank of the non-
missing values.  Hirsch and Slack (1984) suggest using the following for-
mula, given by Dietz and Killeen (1981), in the case where there are no 
missing values: 
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For the case of missing values, Hirsch and Slack (1984) derive the following 
modification of Equation (11.54): 
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(11.56)

Technically, the estimates in Equations (11.54) and (11.56) are not cor-
rect estimators of covariance, because the model Dietz and Killeen (1981) 
use assumes that observations within a year (within a row of R) may be cor-
related, but observations between years (between rows of R) are independ-
ent.  Serial dependence induces correlation between all of the observations.  
In most cases, however, the serial dependence shows an exponential decay in 
correlation across time and so these estimates work fairly well.   

Hirsch and Slack (1984) performed a Monte Carlo study to determine the 
empirical significance level and power of their modified test.  For p = 12 

© 2001 by CRC Press LLC



seasons, they found their modified test gave correct significance levels for n
 10 as long as the lag-one autocorrelation was 0.6 or less, while the original 

test that assumes independent observations yielded highly inflated signifi-
cance levels. 

The seasonal and over-all estimates of slope and intercept can be com-
puted using the same methods as in the case of serial independence.  Also, 
the method for computing the confidence interval for the slope is the same as 
in the case of serial independence.  Note that the serial dependence is ac-
counted for in the term Var(S’) in Equation (11.45). 

Example 11.7:  Testing for Trend in Total Phosphorus at Station CB3.1 

In this example we will repeat our analyses of Example 11.5, but here we 
will use the nonparametric seasonal Kendall trend test to test for trend.  
Table 11.2 compares the results of the parametric and nonparametric tests 
both when we do not assume autocorrelation is present and when we do as-
sume it is present.  For all four approaches, the estimated trend is similar, but 
for the methods that incorporate autocorrelation the confidence interval for 
the trend is wider, and for the nonparametric test that incorporates autocorre-
lation the trend is not significant at the 0.10 level. 

Test Assumptions Trend and P-Value 95% CI 
Parametric,  

No Autocorrelation 
-0.63 (0.0001) [-0.92, -0.33] 

Parametric,  
Autocorrelation

-0.56 (0.02) [-1.03, -0.10] 

Nonparametric,
No Autocorrelation 

-0.56 (0.0002) [-0.87, -0.33] 

Nonparametric,
Autocorrelation

-0.56 (0.11) [-1.57,  0.20] 

Table 11.2 Comparison of results for trend tests on total phosphorus at station 

CB3.1

In Example 11.6 and Example 11.7 we are using data with “small” sam-
ple sizes because we have less than 10 years of data per season.  On the other 
hand, for these particular data there is not much difference in the estimated 
trend between the parametric and nonparametric tests nor between the tests 
that do and do not assume autocorrelation. 

Menu

To perform the nonparametric test for annual trend in the total phospho-
rus data, allow for separate monthly effects, and allow for autocorrelation us-
ing the ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these 
steps.

© 2001 by CRC Press LLC



1. Find Total.P.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Hypothesis Tests>Trend Tests>Nonpara-
metric.  This will bring up the Nonparametric Trend Test dialog 
box.

3. For Data to Use select Pre-Defined Data.  The Data Set box should 
display Total.P.df.  In the Variable box select CB3.1, check the 
Seasonal box, uncheck the Independent Obs box, and for Season 
select Month, then click OK or Apply.

Command 

To perform the nonparametric test for annual trend in the total phospho-
rus data, allow for separate monthly effects, and allow for autocorrelation us-
ing the ENVIRONMENTALSTATS for S-PLUS Command or Script Window, 
type these commands. 

attach(Total.P.df)

seasonal.kendall.trend.test(CB3.1, Month, 

independent.obs=F)

detach()

SUMMARY 

Classical statistical methods for constructing confidence intervals 
and performing hypothesis tests assume the observations are inde-
pendent.  Environmental data are often collected sequentially over 
time and therefore may not satisfy this assumption. 
A time series plot is simply a plot of the observations on the y-axis
vs. the times (or sequence in which) they were collected on the x-
axis.
Autocorrelation (also called serial correlation) is simply a measure 
of how a random variable X varies over time relative to past observa-
tions of X.
Two properties of a stationary time series are (1) the mean and stan-
dard deviation remain constant over time, and (2) the value of the 
lag-k autocorrelation does not depend on what starting point we 
choose in the series. 
One of the simplest models for autocorrelation is the first order 
autoregressive model, also denoted as the AR(1) model.  More com-
plicated models include p-order autoregressive models (AR(p) mod-
els), q-order moving average models (MA(q) models), and 
ARMA(p,q) models. 
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Three tools to graphically assess the presence of autocorrelation are 
the sample autocorrelation function (SACF), the sample partial auto-
correlation function (SPACF), and lag plots. 
There are several ways to test for the presence of autocorrelation, in-
cluding simple tests for lag-1 autocorrelation, as well as fitting com-
plicated ARMA models and testing for the significance of the model 
parameters. 
Ignoring autocorrelation leads to inflated type I errors and confi-
dence intervals that are too narrow in the case of positive serial cor-
relation. 
There are two ways to deal with autocorrelation:  (1) eliminate it by 
improving your model to account for more sources of variability, 
and/or (2) use a simple or complicated time series model to perform 
your statistical analyses. 
Modeling trend is just a special case of regression in which one of 
the predictor variables is time:  trend is the behavior of the response 
variable over time. 
To test for and estimate trend, you can use parametric regression 
models or nonparametric tests based on Kendall’s tau statistic. 

EXERCISES

11.1. Give an example of a time series from your experience.  Would 
it be reasonable to assume this time series is stationary? 

11.2. Give an example of a seasonal time series from your experience.  
If you seasonally adjusted the data would it be reasonable to as-
sume the time series is stationary? 

11.3. Generate a set of 30 independent observations from a normal 
distribution, then look at the sample autocorrelation function for 
these observations.  Do this 100 times to build up an internal 
“gestalt” of what the SAFC looks like when the observations are 
independent. 

11.4. Repeat Exercise 11.3 using different sample sizes. 

11.5. Repeat Exercises 11.2 and 11.3 using data from other distribu-
tions (e.g., lognormal, gamma, Weibull, etc.). 

11.6. Using the function arima.sim, generate observations from an 
autocorrelated and/or moving average process and look at the 
SAFC.  Do this 100 times. 

11.7. Do a simulation study on the Type I error of the one-sample  
t-test when the underlying observations come from an AR(1) 
process.  Vary the value of the lag-1 autocorrelation. 
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11.8. Repeat Exercise 11.7 but use the parametric test for trend that 
does not assume autocorrelation is present (i.e., the model based 
on Equation (11.31)). 

11.9. Repeat Exercise 11.8, but use the nonparametric test for trend 
that does not assume autocorrelation is present. 

11.10. Consider the model of Example 11.4.  Using the data from this 
example, fit a model that allows for quarterly variations (instead 
of monthly variations), as well as an annual trend.  Compare the 
model with quarterly variations with the model that allows for 
monthly variations using analysis of variance. 

11.11. Consider the Mauna Loa CO2 data shown in Figure 11.3.  Fit a 
model to these data that accounts for seasonality and trend.  Do 
the residuals from your model exhibit autocorrelation? 
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12 SPATIAL STATISTICS 

HOW ARE THINGS CHANGING OVER SPACE?

In Chapter 11 we discussed methods for dealing with data collected over 
time, including testing for trend and how to accommodate serial correlation.  
Environmental studies often generate data collected over space as well as 
time.  Sometimes we are interested not only in characterizing chemical con-
centrations in an area by simple summary statistics, but also by describing 
the spatial pattern of concentration.  Just as we fit models to describe 
changes in concentration over time, we can also fit models to describe 
changes in concentration over space.  In this chapter we will talk about sta-
tistical tools for dealing with spatial data. 

OVERVIEW:  TYPES OF SPATIAL DATA 

Spatial data can be classified by how the location associated with each 
observation is defined:  by a point (e.g., latitude and longitude of the loca-
tion) or by an area or region (e.g., King County, Washington, USA) (Cressie, 
1993; Kaluzny et al., 1998).  Point spatial data can be further subclassified 
by whether it is geostatistical or a spatial point pattern.  Geostatistical data
have point locations associated with them and usually one or more variables 
are measured at each location.  For example, data from an air quality moni-
toring network may include observations of ozone, particulate matter, tem-
perature, humidity, radiation, wind speed, and time of day for each monitor-
ing location.  Spatial point pattern data have point locations associated with 
them and the locations themselves are the variable of interest.  Often one of 
the main hypotheses of interest is whether the locations are random, clus-
tered, or regular.  For example, if suddenly several new cases of a type of 
cancer or infectious disease appear in a town or county, is this apparent 
“clustering” real or is it something that could reasonably happen by chance 
given the incidence rate of the disease for the country as a whole?  Lattice 
data are observations associated with an area or region, such as the vegeta-
tion index of a pixel on a remote-sensing image (regular lattice data) or the 
cancer rate within each county of a state (irregular lattice data).  Table 12.1 
summarizes the various classifications of spatial data. 

In this chapter we will use data on benthic characteristics collected at 
point locations to illustrate a few tools for spatial statistics that are available 
in S+SPATIALSTATS.  We will also discuss how to use S-PLUS for ArcView 
GIS, a link between S-PLUS and the geographical information system (GIS) 

© 2001 by CRC Press LLC



software package ArcView GIS.  More tools for spatial analysis are de-
scribed in the S+SPATIALSTATS User’s Manual.  General references for spa-
tial statistics include Arlinghaus (1996), Cliff and Ord (1981), Cox et al. 
(1997), Cressie (1993), David (1977), Davidson (1994), Diggle (1983), 
Haining (1993), Isaaks and Srivastava (1989), Journel and Huijbregts (1978), 
Kitanidis (1997), Kaluzny et al. (1998), and Ripley (1981).  A few references 
that deal specifically with spatial statistics and sampling chemicals in the en-
vironment include Burmaster and Thompson (1997), Ginevan and Splitstone 
(1997), and Qian (1997). 

Location Type Spatial Data Type  Examples 
Point Geostatistical Air quality at monitoring stations 

TcCB concentrations on a grid 
Benthic index at irregularly-spaced 
     sampling sites 

 Spatial Point Pattern Locations of bird nests 
Locations of cancer cases 

Areal (Regional) Lattice Number of cancer cases for a county 
Vegetation index for a pixel on a
     remote-sensing image 

Table 12.1 Classifications and examples of spatial data 

THE BENTHIC DATA 

The data frame benthic.df in ENVIRONMENTALSTATS for S-PLUS

contains data from the Long Term Benthic Monitoring Program of the 
Chesapeake Bay.  The data consist of measurements of benthic characteris-
tics and a computed index of benthic health for several locations in the bay.  
Sampling methods and designs of the program are discussed in Ranasinghe 
et al. (1992).  The United States Environmental Protection Agency (USEPA) 
established an initiative for the Chesapeake Bay in partnership with the 
states bordering the bay in 1984.  The goal of the initiative is the restoration 
(abundance, health, and diversity) of living resources to the bay by reducing 
nutrient loadings, reducing toxic chemical impacts, and enhancing habitats.  
USEPA’s Chesapeake Bay Program Office is responsible for implementing 
this initiative and has established an extensive monitoring program that in-
cludes traditional water chemistry sampling, as well as collecting data on liv-
ing resources to measure progress towards meeting the restoration goals. 

Sampling benthic invertebrate assemblages has been an integral part of 
the Chesapeake Bay monitoring program due to their ecological importance 
and their value as biological indicators.  The condition of benthic assem-
blages is a measure of the ecological health of the bay, including the effects 
of multiple types of environmental stresses.  Nevertheless, regional-scale as-
sessment of ecological status and trends using benthic assemblages are lim-
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ited by the fact that benthic assemblages are strongly influenced by naturally 
variable habitat elements, such as salinity, sediment type, and depth.  Also, 
different state agencies and USEPA programs use different sampling meth-
odologies, limiting the ability to integrate data into a unified assessment.  To 
circumvent these limitations, USEPA has standardized benthic data from 
several different monitoring programs into a single database, and from that 
database developed a Restoration Goals Benthic Index that identifies 
whether benthic restoration goals are being met. 

Table 12.2 lists the variables contained in the data frame benthic.df.
The data represent observations collected at 585 separate point locations 
(sites).  The sites are divided into 31 different strata, numbered 101 through 
131, each strata consisting of geographically close sites of similar degrada-
tion conditions.  The benthic index values range from 1 to 5 on a continuous 
scale, where high values correspond to healthier benthos.  Salinity was 
measured in parts per thousand (ppt), and silt content is expressed as a per-
centage of clay in the soil with high numbers corresponding to muddy areas. 

Variable Description (Units) 
Site.ID Site ID 
Stratum Stratum Number (101 131)
Latitude Latitude (degrees North) 
Longitude Longitude (negative values;  

                     degrees West) 
Index Benthic Index 
Salinity Salinity (ppt) 
Silt Silt Content (% Clay in Soil) 

Table 12.2 Description of variables in the data frame benthic.df

Example 12.1:  Visualizing the Benthic Data 

In Chapter 3 we discussed several tools for visualizing data.  Here, we 
will apply these tools to the benthic data.  Figure 12.1 displays a histogram 
of the benthic index and Figure 12.2 displays the quantile plot.  You can see 
that about 40% of the values are between 1 and 2, indicating poor benthic 
health.  Figure 12.3 displays the 585 sampling locations and Figure 12.4 dis-
plays a bubble plot, where the size of the plotting symbol is proportional to 
the value of the benthic index.  Because of the placement of the sampling lo-
cations, the bubble plot is difficult to interpret, but it looks like low values of 
the benthic index occur at the southern stations, and also between latitudes 
38.5 to 39 at longitude 76.4.  Figure 12.5 displays a contour plot of the ben-
thic index and Figure 12.6 displays a surface plot.  Here it is easier to see the
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Figure 12.3 Sampling locations for the benthic data 
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Figure 12.5 Contour plot of the benthic index values 
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areas of low index values.  Both of these plots are based on a loess smooth in 
three dimensions in which quadratic surfaces are fit locally within neighbor-
hoods of a point (we talked about loess smooths for scatterplots in Chapter 
3).

Command

See Chapter 3 for information on how to produce histograms, quantile 
plots, scatterplots, and bubble plots.  Here we will show you how to produce 
the contour and surface plots.  Note that both plots show only values within 
the convex hull of station locations where the index was measured. 

loess.fit <- loess(Index ~ Longitude * Latitude, 

data=benthic.df, normalize=F, span=0.25) 

lat <- benthic.df$Latitude 

lon <- benthic.df$Longitude 

Latitude <- seq(min(lat), max(lat), length=50) 

Longitude <- seq(min(lon), max(lon), length=50) 

predict.list <- list(Longitude=Longitude,

Latitude=Latitude)

predict.grid <- expand.grid(predict.list) 

predict.fit <- predict(loess.fit, predict.grid) 

index.chull <- chull(lon, lat) 

index.poly <- list(x=lon[index.chull], 

y=lat[index.chull])

inside <- points.in.poly(predict.grid$Longitude,

predict.grid$Latitude, index.poly) 

predict.fit[!inside] <- NA 

contour(Longitude, Latitude, predict.fit,

levels=seq(1, 5, by=0.5), labex=0.75,

xlab="-Longitude (degrees West)",

ylab="Latitude (degrees North)") 

title(main=paste("Contour Plot of Benthic Index", 

"Based on Loess Smooth", sep="\n")) 

persp(Longitude, Latitude, predict.fit,

xlab="-Longitude (degrees West)",

ylab="Latitude (degrees North)",

zlab="Benthic Index") 

title(main=paste("Surface Plot of Benthic Index", 

"Based on Loess Smooth", sep="\n")) 
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MODELS FOR GEOSTATISTICAL DATA 

In Chapter 11 we discussed models for time series data (data collected 
over time), including simple or multiple linear regression models.  Some-
times we explicitly included time as a predictor variable in the model (e.g., 
the linear trend model of Equation (11.31)) and sometimes we included vari-
ables in the model that vary with time without explicitly including time as a 
predictor variable (e.g., Equation (11.25)).  We can extend these same ideas 
to geostatistical data (data collected over space). 

Notation

With time series models we often use t as a subscript or variable to de-
note the time at which an observation was taken.  For example, Yt or Y(t)
may denote the observed value at time t.  For geostatistical data we will fol-
low the convention of Cressie (1993) and Kaluzny et al. (1993) and use s to 
denote the location, where 

,X Ys (12.1)

and (X, Y) denotes the Cartesian coordinates of the location.  The observa-
tion at location s is denoted by Z(s).  Sometimes we will use the notation: 

,i i i iZ Z Z X Ys (12.2)

A general form for a model for geostatistical data is given by: 

Z fW W (12.3)

where W denotes a vector of predictor variables such as the location variables 
X and Y and any other variables thought be important, f denotes some para-
metric or nonparametric function of the predictor variables, and  denotes the 
error term.  This model partitions spatial variation into large-scale variation, 
f(W), and small-scale variation, .  The small-scale variation reflects meas-
urement error and local fluctuations. 
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Parametric Models for Geostatistical Data 

Just as the simplest parametric model for a time trend involves fitting a 
straight line (Equation (11.31)), the simplest parametric model for a spatial 
trend involves fitting a plane: 

0 1  2i i i iZ X Y  (12.4)

where Z denotes the response variable, (X, Y) denotes the location, and i

denotes the error for the ith observation, assumed to have a mean of 0 and a 
constant standard deviation .  A more sophisticated model fits a quadratic 
surface:

0 1  2

2 2
3 4 5

i i i

i i  i i i

Z X Y

X Y  X Y

(12.5)

and in general, you can fit any kind of polynomial surface to describe 
changes in the response variable Z as a function of location.  You can also 
add other predictor variables to the model, and in fact adding other predictor 
variables to the model will probably change your model for spatial trend and 
may even make the trend disappear altogether, obviating the need for the lo-
cation variables (i.e., X and Y) as predictor variables in the model. 

Nonparametric Models for Geostatistical Data 

In Chapter 3 we explained the loess algorithm for fitting a smooth line to 
a scatterplot.  The idea of loess can be extended to three or more dimensions.  
In three dimensions, planar surfaces (Equation (12.4)) or quadratic surfaces 
(Equation (12.5)) are fit locally within neighborhoods of a point.  You can 
also include other variables besides (or instead of) location in the loess fit. 

Another nonparametric model for geostatistical data is based on Delau-
nay triangulation (Ripley, 1981; Venables and Ripley, 1999, pp. 437 438).
This is the algorithm used by the S-PLUS interp function and is called the 
“Bivariate” algorithm in the dialog boxes for contour, level, and surface 
plots. 

Example 12.2:  Quartic Surface vs. High-Order Loess Fit 

The loess model we used to construct the contour and surface plots in 
Figures 12.5 and 12.6 uses a span argument of 0.25 and uses up about 20  
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“equivalent number of parameters,” making it comparable to about a 5th or-
der parametric polynomial fit.  If we want to use a smoother surface, we can 
either increase the value of the span argument for the loess fit, or fit a lower 
order polynomial surface.  In this example, we will fit a 4th degree (quartic) 
polynomial surface.  Figures 12.7 and 12.8 display the contour and surface 
plots for this fit. 

Command

To fit the quartic surface using the S-PLUS Command or Script Window, 
type this command. 

poly4.fit <- lm(Index ~ poly(Longitude, Latitude, 4), 

data=benthic.df)

(Note:  You can also use the function surf.ls in the MASS library to fit 
polynomial surfaces.)  To create the contour and surface plots, follow the 
same commands as those shown in Example 12.1, except use poly4.fit
in place of loess.fit and modify the titles of the plots.  You will also 
need to explicitly call predict.gam to create predict.fit:

predict.fit <- predict.gam(poly4.fit, predict.grid) 

MODELING SPATIAL CORRELATION 

In Chapter 11 we noted that sometimes you can eliminate autocorrelation 
by incorporating information from other predictor variables (e.g., Example 
11.3), but that you should always be on the look out for correlated errors in 
time series data because of their effect on standard confidence intervals and 
hypothesis tests.  The same ideas apply to spatial data.  Observations close 
together in space will probably look more similar to one another than obser-
vations collected farther away from one another, so when you fit any kind of 
trend surface to these data, the errors from this model may be correlated.  
This section discusses tools you can use to model spatial correlation. 

Covariogram, Correlogram, and Variogram 

In Chapter 11 we defined the lag-k covariance and correlation in Equa-
tion (11.2).  These measure the covariance and correlation between two ob-
servations that are k units apart in time for a stationary time series (i.e., the 
time series has a constant mean and the covariance and correlation depend 
only on the lag k, not where you start in the time series). 

Extending this idea to spatial data, we might assume that the observations 
represent a snapshot from a random process over space.  Weak stationarity 
implies that the surface has a constant mean (so for the general model in 
Equation (12.3) assume for now that f(W) is a constant) and that the covari-
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ance between two observations depends only on the distance (and perhaps 
direction) between the locations of these observations (Kaluzny et al., 1998).  
The covariance is isotropic if it depends only on the distance between the lo-
cations and not on the direction: 

1 2,Cov Z Z C hs s (12.6)

where h denotes the distance (e.g., Euclidean distance) between location s1
and location s2 and C denotes some monotonic function bounded below by 0 
(it must also satisfy certain other properties as well).  The function C (or its 
estimate) is called the covariogram and is analogous to the autocovariance 
function for time series data.  The function: 

0

C h
h

C
(12.7)

is called the correlogram and is analogous to the autocorrelation function 
(also called the correlogram) for time series data. 

An estimator of the lag-k autocovariance for time series data is shown in 
Equation (11.6).  For spatial data, the estimate of covariance between two lo-
cations that are h units apart is given by: 

1ˆ
i j

N h

C h Z Z Z Z
N h

s s (12.8)

where N(h) denotes the set of all pairs of locations that are h units apart, 
|N(h)| denotes the number of pairs in this set, and Z  denotes the average 
of all of the observations at all locations (Cressie, 1993, p. 70).  When the 
data are unevenly spaced in two dimensions, this estimator is usually modi-
fied so that N(h) denotes the set of all pairs of locations that are at least h
units apart and no more than h+  units apart, where  (  > 0) is some toler-
ance parameter.  An estimator of correlation between two locations that are h
units apart is given by: 

ˆ
ˆ

ˆ 0

C h
h

C
(12.9)
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Rather than looking at covariograms and correlograms, people who deal 
with spatial data often use the variogram, which is defined as: 

1 2

1 2

1 22 ,

2 0  2

Var Z Z

Var Z Var Z

Cov Z Z

C C h  h

s s

s s

s s

(12.10)

The function 

0h C  C h (12.11)

is called the semivariogram, but some texts (including the S+SPATIALSTATS

User’s Manual) also refer to this as the variogram, which can cause a bit of 
confusion.  The empirical semivariogram is computed as: 

21ˆ
2 

i j
N h

h Z Z
N h

 s s  (12.12)

Figure 12.9 displays three examples of a theoretical covariogram, and 
Figure 12.10 displays the corresponding semivariograms.  These plots illus-
trate three properties of covariograms and semivariograms: 

Sill.  The sill is equal to the variance of the process, i.e., the co-
variance at distance h = 0. 
Range.  The range is the distance at which observations are no 
longer correlated.  The range may be finite or infinite. 
Nugget Effect.  The nugget effect represents micro-scale varia-
tion and/or measurement error. 

In these figures, the range is finite for examples 1 and 3 and infinite for ex-
ample 2.  There is a nugget effect in example 3, but none in examples 1 and 
2.
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Example 12.3:  Plotting the Empirical Covariogram and Semivariogram 
for the Benthic Data 

Figures 12.11 and 12.12 show the omnidirectional empirical covariogram 
and semivariogram for the benthic data.  Looking at Figure 12.12, we might 
guess a nugget effect of about 0.75, the sill to be at about 2.25 and the range 
to be about 0.7.  Both figures indicate the presence of spatial correlation, 
which is not surprising because these plots are based on the assumption of a 
constant average value over the area where the benthos was sampled, and we 
know from the loess fit shown in Figures 12.5 and 12.6 that this is not the 
case.  Figures 12.13 and 12.14 show the omnidirectional empirical 
semivariograms for the residuals from the quartic and loess fits to the benthic 
data, respectively.  Spatial correlation appears to be present in the residuals 
from the quartic fit, but once we remove the trend using the loess model, 
spatial correlation is no longer present. 

Menu

To create the omnidirectional empirical covariogram for the benthic in-
dex using the S+SPATIALSTATS pull-down menu, follow these steps. 

1. Find benthic.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Spatial>Empirical Variogram.  This will bring up the Empirical 
Variogram dialog box. 

3. The Data Set box should display benthic.df.  For Variable select 
Index, for Location 1 select Longitude, for Location 2 select Lati-
tude, for Type select covariogram, then click OK or Apply.

To create the empirical semivariogram, follow the same steps as above, but 
in Step 3 for Type select variogram and for Save As type vg.benthic.

Command 

To create the omnidirectional empirical covariogram and semivariogram 
for the benthic index using the S-PLUS Command or Script Window, type 
these commands. 

cg.benthic <- covariogram(Index ~

loc(Longitude, Latitude), data=benthic.df) 

plot(cg.benthic, main="Empirical Covariogram for

Benthic Index") 

vg.benthic <- variogram(Index ~

loc(Longitude, Latitude), data=benthic.df) 

plot(vg.benthic, main="Empirical Semivariogram for 

Benthic Index") 
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Figure 12.11 Empirical covariogram for the benthic index 
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Figure 12.12 Empirical semivariogram for the benthic index 

© 2001 by CRC Press LLC



Empirical Semivariogram for Quartic Residuals

distance

ga
m

m
a

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

Figure 12.13 Empirical semivariogram for the benthic quartic fit residuals 

Empirical Semivariogram for Loess Residuals
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Figure 12.14 Empirical semivariogram for the benthic loess fit residuals 
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To create the omnidirectional empirical semivariogram for the residuals from 
the quartic and loess fits, type these commands. 

vg.q.resid <- variogram(poly4.fit$residuals ~ 

loc(Longitude, Latitude), data=benthic.df) 

plot(vg.q.resid, main="Empirical Semivariogram for 

Quartic Residuals") 

vg.l.resid <- variogram(loess.fit$residuals ~ 

loc(Longitude, Latitude), data=benthic.df) 

plot(vg.l.resid, main="Empirical Semivariogram for 

Loess Residuals") 

Example 12.4:  Using Directional Semivariograms to Explore the Assump-
tions of Stationarity and Isotropy 

The empirical covariograms and semivariograms that we created in 
Example 12.3 assume the spatial process is stationary and that the spatial 
correlation is isotropic.  We can use directional semivariograms and 
semivariogram clouds to explore whether these assumptions appear to be 
valid for our data.  Figure 12.15 displays the empirical semivariogram for the 
benthic index for six difference directions.  Figures 12.16 and 12.17 show 
the same thing for the residuals from the quartic and loess fits. 
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Figure 12.15 Directional empirical semivariograms for the benthic index 

© 2001 by CRC Press LLC



0.0

0.5

1.0

1.5

2.0

0

0.0 0.2 0.4 0.6 0.8

22.5 45

0.0 0.2 0.4 0.6 0.8

67.5 90

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

112.5

distance

ga
m

m
a

Directional Empirical Semivariogram for Quartic Residuals
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Not surprisingly, the form of the semivariogram appears to be different 
for different directions based on the raw benthic index data (Figure 12.15).  
Differences in the semivariogram in different directions are caused by the 
presence of trend (which we already know is present) and/or anisotropy (dif-
ferent forms of spatial correlation in different directions).  Figure 12.16 indi-
cates that there may be some anisotropy in the residuals from the quartic fit. 

Menu

To create the directional empirical semivariograms for the benthic index 
using the S+SPATIALSTATS pull-down menu, follow these steps. 

1. Find benthic.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Spatial>Empirical Variogram.  This will bring up the Empirical 
Variogram dialog box. 

3. The Data Set box should display benthic.df.  For Variable select 
Index, for Location 1 select Longitude, for Location 2 select Lati-
tude, for Azimuth type c(0, 22.5, 45, 67.5, 90, 112.5), for Azimuth 
Tolerance type 11.25, for Type select variogram, then click OK or
Apply.

Command 

To create the directional empirical semivariogram for the benthic index 
using the S-PLUS Command or Script Window, type these commands. 

az <- c(0, 22.5, 45, 67.5, 90, 112.5) 

d.vg.benthic <- variogram(Index ~

loc(Longitude, Latitude), data=benthic.df,

azimuth=az, tol.azimuth=11.25) 

plot(d.vg.benthic, main="Directional Empirical 

Semivariograms for Benthic Index") 

To create the directional empirical semivariograms for the residuals from the 
quartic and loess fits, type these commands. 

d.vg.q.resid <- variogram(poly4.fit$residuals ~

loc(Longitude, Latitude), data=benthic.df,

azimuth=az, tol.azimuth=11.25) 

plot(d.vg.q.resid, main="Directional Empirical 

Semivariograms for Quartic Residuals") 

d.vg.l.resid <- variogram(loess.fit$residuals ~

loc(Longitude, Latitude), data=benthic.df,

azimuth=az, tol.azimuth=11.25) 
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plot(d.vg.l.resid, main="Directional Empirical 

Semivariograms for Loess Residuals") 

Example 12.5: Semivariogram Clouds for the Benthic Data 

A semivariogram cloud displays the distribution of the variance between 
points that are h units apart vs. the distance h.  By default, S+SPATIALSTATS

plots [Z(s1)-Z(s2)]2/2 vs. h, where h is the distance between s1 and 
s2.  For dense variogram clouds, you can use boxplots to display the distri-
butions for intervals of distance.  Semivariogram clouds are useful for identi-
fying outliers, trend, and non-constant variance.  If the spatial process has a 
constant mean and the errors have a constant variance, then the 
semivariogram cloud should look consistent across all distances.  Figure 
12.18 displays the semivariogram cloud for the benthic index.  Figure 12.19 
and Figure 12.20 show the same thing for the residuals from the quartic and 
loess fits, respectively. 

We do not expect to see any gross outliers in these data because the ben-
thic index is constrained to lie between 1 and 5.  Figure 12.18 shows that 
points closer to one another tend to look more like one another than points 
further away, which we already know because we know there is spatial trend 
in these data.  Like Figure 12.13, Figure 12.19 indicates that the quartic fit 
may still not have removed all of the local-scale trend in the data. 
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Figure 12.18 Semivariogram cloud for the benthic index 
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Figure 12.19 Semivariogram cloud for the quartic fit residuals 
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Figure 12.20 Semivariogram cloud for the loess fit residuals 
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Menu

To create the semivariogram cloud for the benthic index using the 
S+SPATIALSTATS pull-down menu, follow these steps. 

1. Find benthic.df in the Object Explorer. 
2. On the S-PLUS menu bar, make the following menu choices:   

Spatial>Variogram Cloud.  This will bring up the Variogram 
Cloud dialog box. 

3. The Data Set box should display benthic.df.  For Variable select 
Index, for Location 1 select Longitude, for Location 2 select Lati-
tude, for Plots check Box Plot, then click OK or Apply.

Command 

To create the semivariogram cloud for the benthic index using the S-PLUS

Command or Script Window, type these commands. 

vg.cld.benthic <- variogram.cloud(Index ~ 

loc(Longitude, Latitude), data=benthic.df) 

boxplot(vg.cld.benthic, main="Boxplots of Squared-

Difference Cloud for Benthic Index") 

To create the semivariogram clouds for the residuals from the quartic and 
loess fits, type these commands. 

vg.cld.q.resid <- variogram.cloud( 

poly4.fit$residuals ~ loc(Longitude, Latitude), 

data=benthic.df)

boxplot(vg.cld.q.resid, main="Boxplots of Squared-

Difference Cloud for Quartic Residuals") 

vg.cld.l.resid <- variogram.cloud( 

loess.fit$residuals ~ loc(Longitude, Latitude), 

data=benthic.df)

boxplot(vg.cld.l.resid, main="Boxplots of Squared-

Difference Cloud for Loess Residuals") 

Models for the Covariogram and Semivariogram 

Several models have been postulated for isotropic spatial correlation.  
These models can be written either in terms of the covariogram or the 
semivariogram.  Three common models are the exponential, Gaussian, and 
spherical (Kaluzny et al., 1998, p. 91; Venables and Ripley, 1999, p. 441).  
Figure 12.21 displays the covariograms and semivariograms for each of 
these three models.
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The exponential covariogram is given by: 

2 exp
h

C h
r

(12.13)

where 2 denotes the variance of the process (i.e., the sill; the covariance at 
distance h = 0), and r denotes a constant.  The Gaussian covariogram is 
given by: 

2
2 exp

h
C h

r
(12.14)

and the spherical covariogram is given by: 
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(12.15)

Note that the range for the exponential and Gaussian models is infinite, 
while for the spherical model it is equal to the constant r.  A nugget effect 
can be added to each of these models.  In this case, the covariogram is writ-
ten as: 

*
0 ,

,

C g h

C h

C h h

(12.16)

where g denotes the nugget effect, and  denotes the maximum distance up 
to which the nugget effect occurs. 
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Example 12.6:  Fitting Variograms to the Benthic Data 

In S+SPATIALSTATS there are two ways to fit theoretical variogram mod-
els:  by eye or by nonlinear least squares (Cressie, 1993, p. 97).  Figure 12.22 
shows the fitted variogram for the benthic index using the Gaussian model 
for covariance.  Figure 12.23 shows the fitted variogram for the residuals 
from the quartic model using the spherical model for covariance.  Note that 
the fit shown in Figure 12.22 is not really valid because we showed in Figure 
12.15 that the spatial correlation for the raw benthic index data does not ap-
pear to be isotropic. 

Menu

To fit the Gaussian variogram to the benthic index using the 
S+SPATIALSTATS pull-down menu, follow these steps. 

1. Find vg.benthic in the Object Explorer.  (You created this in 
Example 12.3). 

2. On the S-PLUS menu bar, make the following menu choices:   
Spatial>Model Variogram.  This will bring up the Model 
Variogram dialog box. 

3. The Variogram Object box should display vg.benthic.  For Func-
tion select Gaussian, check the Fit Parameters box, then click OK
or Apply.

Command 

To fit the Gaussian variogram to the benthic index data using the 
S+SPATIALSTATS Command or Script Window, type these commands. 

vg.benthic <- variogram(Index ~

loc(Longitude, Latitude), data=benthic.df) 

vg.benthic.fit <- variogram.fit(vg.benthic, 

fun=gauss.vgram)

plot(vg.benthic)

plot(vg.benthic.fit, add=T) 

title(main="Empirical and Fitted Gaussian 

Semivariogram\nfor Benthic Index") 

To fit the spherical variogram to the residuals from the quartic fit, type these 
commands. 

vg.q.resid <- variogram(poly4.fit$residuals ~

loc(Longitude, Latitude), data=benthic.df) 
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Figure 12.22 Fitted Gaussian variogram for the benthic index 
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vg.q.resid.fit <- variogram.fit(vg.q.resid,

param=c(range=0.4, sill=1.5,

nugget=0.75),fun=spher.vgram)

plot(vg.q.resid)

plot(vg.q.resid.fit, add=T) 

title(main="Empirical and Fitted Spherical 

Semivariogram\nfor Quartic Residuals") 

PREDICTION FOR GEOSTATISTICAL DATA 

Two common methods for predicting values at particular locations that 
take spatial correlation into account are generalized least squares and kriging 
(Venables and Ripley, 1999, chapter 14).  We will discuss each of these. 

Generalized Least Squares 

If the model for our geostatistical data is parametric (e.g., Equation (12.4) 
or (12.5)), we can use standard least squares to estimate the coefficients if we 
do not think the errors are correlated (see Equation (11.26)).  Once we have 
the estimated coefficients, we can predict values at any location by simply 
plugging in the location coordinates into the fitted model.  (Of course the 
caution we made in Chapter 9 against extrapolating outside the range of the 
predictor variable(s) applies to models for geostatistical data as well.)  Fig-
ures 12.7 and 12.8 were constructed by using standard least squares to fit a 
quartic model to the benthic index data, predicting values on a grid, and then 
displaying only those values within the convex hull defined by the observed 
longitudes and latitudes. 

If we think the errors are correlated, we need to use generalized least 
squares to estimate the coefficients (Equation (11.27)).  As we discussed in 
Chapter 11, generalized least squares requires you to specify or estimate the 
covariance between each observation.  You can use the function surf.gls
in the MASS library to fit a surface using generalized least squares. 

Kriging

For a parametric model that is fit using least squares or generalized least 
squares, the predicted value at any location is the fitted value f̂ W ; the 

predicted value of the error term  in Equation (12.3) is 0.  An alternative 
method of predicting values, called kriging, was developed in the early 
1960s by G. Matheron, who named this method after D.G. Krige, a South 
African mining engineer (Cressie, 1993, p. 106; Venables and Ripley, 1999, 
p. 439).  Universal kriging is a method of predicting values at any location 
where the  term is not assumed to be 0, but is instead predicted as well 
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(Venables and Riply, 1999, p. 493).  Ordinary kriging, usually just called 
kriging, assumes a constant trend surface, so it is usually performed on re-
siduals from a trend surface model. 

For any location s0, the (ordinary) kriging prediction of the response 
variable is given by: 

0
1

ˆ
n

i i
i

Z Zs s (12.17)

where

1

1
n

i
i

(12.18)

That is, the predicted value is simply a weighed average of all of the ob-
served values.  The weights 1, 2, …, n depend on the spatial correlation 
and can be written in terms of either the variogram or covariogram function 
(Cressie, 1993, pp. 122 123).

In terms of the covariogram, the weights are given by: 

1m1c (12.19)

where c is an n  1 vector with ith value 

0i ic C s s (12.20)

1 denotes an n  1 vector of 1’s, m is a scalar defined by 

1

1

1
m

1

1 1

c
(12.21)

and  denotes the n n variance-covariance matrix with ijth element 
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ij i jC s s (12.22)

and si-sj denotes the distance between locations si and sj.
In terms of the variogram, the weights are given by: 

* 1m1 (12.23)

where  is an n  1 vector with ith value 

0i is s (12.24)

m* is a scalar defined by 

1
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1
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(12.25)

and  denotes the n n matrix with ijth element 

ij i js s (12.26)

The variance of the predicted response, termed the kriging (or predic-
tion) variance, is given by 
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(12.27)

Fitting a model that incorporates spatial correlation using either general-
ized least squares or kriging can be an iterative process.  You can fit a sur-
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face without assuming spatial correlation is present, then look for spatial cor-
relation in the residuals.  You can then fit a new surface that incorporates 
spatial correlation, and based on the residuals from this new fit you may or 
may not want to change the specification of the surface and the spatial corre-
lation structure. 

Example 12.7:  Fitting a Quartic Surface to the Benthic Data Using 
Kriging 

Figure 12.24 displays the contour plot for the benthic index based on us-
ing a quartic model and universal kriging, assuming the spherical covariance 
function we fit to the residuals in Example 12.6.  Figure 12.25 displays the 
companion surface plot.  Comparing these figures to Figures 12.5 to 12.8, we 
see that the kriging model displays a lot more local variation than the loess 
or quartic model.  Figure 12.26 displays the contour plot of the standard er-
rors of the predictions, and Figure 12.27 displays the corresponding surface 
plot. 

Menu

In Version 1.5 of S+SpatialStats, you can only fit up to a 2nd order poly-
nomial (i.e., quadratic) surface with universal kriging.  Use the menu choices 
Spatial>Universal Kriging.

Command 

To fit the universal kriging model with the quartic trend surface using the 
S+SPATIALSTATS Command or Script Window, type these commands. 

krige.poly4.fit <- krige(Index ~

loc(Longitude, Latitude) + Longitude + Latitude + 

Longitude^2 + Longitude*Latitude + Latitude^2 + 

Longitude^3 + Longitude^2*Latitude +

Longitude*Latitude^2 + Latitude^3 + Longitude^4 + 

Longitude^3*Latitude + Longitude^2*Latitude^2 + 

Longitude*Latitude^3 + Latitude^4, data=benthic.df, 

covfun=spher.cov,

range=vg.q.resid.fit$parameters["range"],

sill=vg.q.resid.fit$parameters["sill"],

nugget=vg.q.resid.fit$parameters["nugget"])

To compute the predicted values on a 50  50 grid, type these commands. 

lat <- benthic.df$Latitude 

lon <- benthic.df$Longitude 

Latitude <- seq(min(lat), max(lat), length=50) 
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Figure 12.24 Contour plot of benthic index based on universal kriging using the quar-

tic polynomial model for surface trend and a spherical covariance func-

tion for spatial correlation 
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Figure 12.26 Contour plot of standard errors of predicted values 
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Figure 12.27 Surface plot of standard errors of predicted values 
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Longitude <- seq(min(lon), max(lon), length=50) 

predict.list <- list(Longitude=Longitude,

Latitude=Latitude)

predict.grid <- expand.grid(predict.list) 

predict.fit <- predict(krige.poly4.fit,

newdata=predict.grid, se.fit=T) 

To create the contour and surface plots, displaying only those values within 
the convex hull defined by the observed longitudes and latitudes, type these 
commands. 

index.chull <- chull(lon, lat) 

index.poly <- list(x=lon[index.chull], 

y=lat[index.chull])

inside <- points.in.poly(predict.grid$Longitude,

predict.grid$Latitude, index.poly) 

predict.fit[!inside, c("fit", "se.fit")] <- NA 

contour(Longitude, Latitude,

matrix(predict.fit$fit, 50, 50),

levels=seq(1, 5, by=0.5), labex=0.75,

xlab="-Longitude (degrees West)",

ylab="Latitude (degrees North)") 

title(main=paste("Contour Plot of Benthic Index", 

"Based on Universal Kriging", sep="\n")) 

persp(Longitude, Latitude,

matrix(predict.fit$fit, 50, 50), 

xlab="-Longitude (degrees West)",

ylab="Latitude (degrees North)",

zlab="Benthic Index") 

title(main=paste("Surface Plot of Benthic Index", 

"Based on Kriging", sep="\n")) 

To create the contour and surface plots of the standard errors of the predicted 
values, call contour and persp as above, but use 
predit.fit$se.fit instead of predict.fit$fit and change the 
names of the titles.  Also, in the call to contour, leave out the argument 
levels=seq(1, 5, by=0.5).

USING S-PLUS FOR ARCVIEW GIS 

ArcView  GIS software from Environmental Systems Research Institute 
(ESRI) Inc. is a geographic information system (GIS) that navigates complex 
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GIS databases and links them with user-supplied data.  It provides a platform 
to visualize, explore, query, analyze, and map the data, and provides tools to 
facilitate the preparation of presentations and reports.  S-PLUS for ArcView 
GIS from MathSoft Inc. is a link between ArcView GIS and S-PLUS that lets 
you share data and functionality between these two software tools.  You can 
access S-PLUS directly from ArcView to analyze and graph data stored in 
ArcView.  You can also export data from ArcView into S-PLUS, perform 
analyses, and import the results back into ArcView. 

The S-PLUS for ArcView GIS User’s Guide discusses several examples of 
exporting data from ArcView to S-PLUS and performing data analysis.  In 
this section we will give a brief explanation of ArcView GIS and the nomen-
clature associated with GIS objects, then we will show you how to import 
the benthic data from S-PLUS into ArcView and present the spatial locations 
in the context of a map. 

ArcView GIS Objects 

In ArcView geographic data (maps) are organized in tables.  A map 
showing the locations of roads, buildings, parks, rivers, etc., can be coded as 
a table with each row defining a specific geographic feature and the columns 
defining the attributes of that feature.  Some features such as buildings may 
be adequately represented by points, some such as roads and rivers may re-
quire lines, and others such as parks and lakes may require polygons. 

Clearly, whether or not a park is represented by a polygon or a point will 
depend on the level of detail (scale) of the map.  Similarly, the attributes 
listed for a feature will depend on the feature.  The attributes of a park might 
include the location of the park and the size of the park.  The attributes of a 
city might include the location, the size, and the population. 

ArcView manages geographic information in sets of related features and 
their attributes called themes.  A theme is simply a collection of all features 
of a particular type, for example all roads on that map or all building on that 
map.  The union of all of the themes makes up the entire table (GIS data 
base).  Themes do not have to be mutually exclusive sets of features.  For 
example, the set of all schools (one theme) is a subset of the set of all build-
ings (another theme). 

In ArcView, you can store all related maps, charts, and tables in a project.
When an existing project or a new (blank) project is opened in ArcView, 
icons for Views, Tables, Charts, Layouts, and Scripts are displayed (Figure 
12.28).  These are the basic components of a project: 

Views display themes as interactive maps.  Opening a view si-
multaneously displays the Table of Contents which shows what 
is available. 
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Tables display the tabular data of maps:  features are listed in 
the rows and attributes for a feature a listed in the columns. 
Charts are graphical representations of tabular data.  You can 
get charts from either views or tables by more clicks. 
Layouts are presentation-ready displays of views, tables, charts, 
and images.  They may be sent to the printer or integrated into 
presentation software. 
Scripts are programs (macros) written in ArcView’s program-
ming language called Avenue.

Figure 12.28 The top level ArcView GIS window 

Linking S-PLUS and ArcView GIS 

ArcView GIS augments its desktop capabilities by allowing other stand-
alone software tools to be available within its environment.  These are re-
ferred to as extensions.  S-PLUS for ArcView GIS is an ArcView extension.  
If you have successfully installed ArcView GIS, S-PLUS, and S-PLUS for 
ArcView GIS, then you can access S-PLUS from within ArcView. 

When you first start ArcView, if S-PLUS for ArcView has not yet been 
activated, then the ArcView Window will have the title “ArcView GIS Ver-
sion X.X,” where X.X denotes the version of ArcView you are running.  On 
the ArcView menu choose File>Extensions.  This will bring up the Exten-
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sions dialog box.  Scroll down until you find S-PLUS for ArcView GIS and 
check the box, then click OK.  Once S-PLUS for ArcView has been acti-
vated, the ArcView Window title changes to S-PLUS for ArcView GIS, and 
an additional menu with the title S-PLUS is added.  If you have 
S+SPATIALSTATS, you will also see a menu with the title Spatial Statistics.  
Now you are ready to use S-PLUS for ArcView GIS.  Note:  If you have more 
than one version of S-PLUS on your computer, you should start the version of 
S-PLUS you want to use with ArcView before you start ArcView. 

Importing Data from S-PLUS into ArcView 

In this section we will show you how to import the benthic data from 
S-PLUS into ArcView and display sampling locations in the context of a map 
built into ArcView.  We will assume you already have ArcView running and 
that the S-PLUS for ArcView GIS extension is active. 

Example 12.8:  Importing the Benthic Data into ArcView 

To import the benthic data from S-PLUS into ArcView, follow these steps. 

1. Make sure the ENVIRONMENTALSTATS for S-PLUS module is loaded 
in S-PLUS.  Copy the data frame benthic.df to the working di-
rectory.

2. On the ArcView menu bar, make the menu choice  
File>New Project, then click on the Tables icon. 

3. Make the menu choice S-PLUS>Import Point Theme from 
S-PLUS.  This will bring up the Import Point Theme dialog box. 

4. For Data Frame select benthic.df, for Column with X Coordinates 
select Longitude, for Column with Y Coordinates select Latitude,
for New Table and Theme Name type Benthos, then click OK.

5. The Locate View to Use window will pop up asking you to select a 
view.  The default is [Create a new view].  Click OK.

6. There is now a table called Benthos in your still-untitled project.  
Click on the Views icon and you will see a view called View1.  
Make the menu choice Project>Rename ‘View1’ and rename the 
view Sampling Locations.

7. Make the menu choice File>Save Project As.  This brings up the 
Save Project As dialog box.  For File Name type example.apr, then 
click OK.

Click on the Open button and the Sampling Locations window will pop up.  
If you click on the Benthos box the sampling locations will be displayed, as 
shown in Figure 12.29.  You can change the plotting characters by making 
the menu selection Theme>Edit Legend.  In this case we changed the point 
size of the symbol to 4. 
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Figure 12.29 The view displaying the sampling locations of the benthic data 

Example 12.9:  Plotting the Benthic Sampling Locations on a Map 

To plot the benthic sampling locations on a map, follow these steps. 

1. Make the menu choice View>Add Theme.  This will bring up the 
Add Theme dialog box. 

2. Browse to the directory ESRI HOME\esri\esridata\usa, where 
ESRI HOME denotes the directory where ESRI software is stored.  
Select the file States.shp (a shape file containing all of the state 
boundaries), and click OK. Check the States.shp box.  The Sam-
pling Locations view now has two themes:  States.shp and Benthos. 

If you want to store only the four states surrounding the Chesapeake Bay, 
follow these steps. 

3. Uncheck the Benthos theme box.  Click on the Zoom to Full Ex-
tent button, so that the view looks like what is shown in Figure 
12.30.

4. Click on the Zoom In button, then click on the eastern part of the 
map to enlarge it.  Click on the Select Feature button and use Shift-
click to simultaneously highlight the states Delaware, Maryland, 
West Virginia, and Virginia. 
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Figure 12.30 The view of the shape file States.shp 

Figure 12.31 The benthic sampling locations superimposed on the state boundaries 
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5. Make the menu choice Theme>Convert to Shapefile.  Call this file 
DEMDWVVA.shp.  In response to “Add shapefile as theme to the 
view?” click on Yes.  Make the menu choice Edit>Delete Themes
and click on Yes to delete States.shp from View 1. 

6. The Sampling Locations view now has two themes:  
Demdwvva.shp and Benthos.  Check the Demdwvva.shp box to 
display the four states, and click on the name Demdwvva.shp to ac-
tivate the option buttons.  Click on the Edit Legend button, and 
color the map white to show only the boundaries of the states sur-
rounding the Chesapeake Bay. 

7. Check the Benthos box to display the sampling stations.  The re-
sults should look like Figure 12.31. 

Once you have the data from S-PLUS  imported into ArcView, you can use 
the Charts icon to add graphics to the views. 

SUMMARY 

Spatial data can be classified as geostatistical data, spatial point pat-
tern data, or lattice data. 
A general form for a model for geostatistical data is the sum of 
large-scale variation plus small-scale variation (Equation (12.3)).  
The small-scale variation reflects measurement error and local  
fluctuations. 
Parametric models for geostatistical data use polynomials for the 
large-scale variation term and assume the small-scale variation fol-
lows a normal distribution.  Usually the polynomial involves the 
variables that determine location in space (e.g., latitude and  
longitude). 
Nonparametric models for geostatistical data include loess and local 
fitting based on Delaunay triangulation. 
The covariogram, correlogram, and semivariogram (often called 
the variogram) are three tools you can use to investigate the pres-
ence of and model spatial correlation.  There is a one-to-one rela-
tionship between the theoretical covariogram and semivariogram. 
The covariance is isotropic if it depends only on the distance be-
tween the locations and not on the direction. 
Three properties of covariograms and semivariograms are the sill,
the range, and the nugget effect.
Three common models for the covariogram and semivariogram are 
the exponential, Gaussian, and spherical. 
In S+SPATIALSTATS there are two ways to fit theoretical variogram 
models:  by eye or by nonlinear least squares. 
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Two common methods for predicting values at particular locations 
that take spatial correlation into account are generalized least squares 
and kriging.
Ordinary kriging assumes the large scale variation term is constant.  
For ordinary kriging, the predicted value is simply a weighed aver-
age of all of the observed values, where the weights depend on the 
assumed or estimated covariance function. 
Universal kriging fits both the large-scale variation term and the 
small-scale variation term simultaneously. 
S-PLUS for ArcView GIS is a link between ArcView GIS and S-PLUS

that lets you share data and functionality between these two software 
tools. 

EXERCISES

12.1. Use S+SPATIALSTATS to plot exponential, Gaussian, and spheri-
cal variogram models.  Vary the values of the sill, range, and 
nugget effect.  Are there cases where two or all three of these 
models can look very similar to each other? 

12.2. Use S+SPATIALSTATS to generate spatially correlated data, then 
plot the empirical variogram and compare it with the true under-
lying variogram. 

12.3. Perform a Monte Carlo simulation where for each Monte Carlo 
trial you generate spatially correlated data on a grid, then esti-
mate the mean and construct a 95% confidence interval for the 
mean based on assuming no spatial correlation is present.  What 
is the observed coverage of the 95% confidence interval?  Per-
form the experiment for various degrees of spatial correlation. 

12.4. Plot the empirical and directional empirical variograms for the 
salinity and silt variables that are part of the benthic data.  Com-
pare these plots to the empirical variogram of the benthic index. 

12.5. Look at contour and surface plots of the silt variable.  Try fitting 
parametric and nonparametric models for large-scale variation. 

12.6. Perform ordinary kriging for the silt variable, then perform or-
dinary kriging on the residuals from a model you fit in the pre-
vious exercise, or perform universal kriging. 

12.7. Create a pairwise scatterplot matrix to look at the relationship 
between benthic index, salinity, and silt.  Do you think either sa-
linity or silt may help predict benthic index? 
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13 MONTE CARLO SIMULATION AND 
RISK ASSESSMENT 

ATTEMPTING TO QUANTIFY UNCERTAINTY IN A
MATHEMATICAL MODEL

In the first 12 chapters of this book we have discussed several statistical 
tools for looking at data, modeling probability distributions, estimating dis-
tribution parameters and quantiles, constructing prediction and tolerance in-
tervals, comparing two or more groups, and modeling trend and spatial pat-
terns.  All of our examples have concentrated on assessing how much 
chemical is in the environment and comparing chemical concentrations to 
“background.”  But given that chemicals are in the environment, what hap-
pens when people or other living organisms are exposed to these chemicals? 

Of course, “chemicals” in the environment are part of our everyday lives:  
they are in the food we eat, the water we drink, the air we breathe.  Some are 
natural and others are synthetic, having been added either on purpose or as a 
by-product of a manufacturing process.  There is no doubt that the chemical 
revolution of the past century has improved our lives immensely.  But we 
have also learned that some chemicals that have improved some facet of our 
lives can also have devastating consequences upon our health and environ-
ment. 

Several government agencies are charged with evaluating the potential 
health and ecological effects of environmental toxicants.  Based on their as-
sessments, these agencies set standards for acceptable concentration levels of 
these toxicants in air, water, soil, food, etc.  The process of modeling expo-
sure to a toxicant and predicting health or ecological effects is termed risk
assessment.

Risk assessment is a process where science, politics, and psychology all 
intersect.  Not surprisingly, it is also a field full of controversy.  References 
discussing risk assessment and the concept of risk include Cothern (1996), 
Everitt (1999), Hallenbeck (1993), Laudan (1997), Lewis (1990), Lundgren 
and McMakin (1998), Molak (1997), Neely (1994), Rodricks (1992), Shaff-
ner (1999), Suter (1993), and Walsh (1996).  In this chapter, we will intro-
duce basic mathematical models used in risk assessment and talk about 
Monte Carlo simulation and probabilistic risk assessment. 
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OVERVIEW 

Human and ecological risk assessment involves characterizing the expo-
sure to a toxicant for one or several populations, quantifying the relationship 
between exposure (dose) and health or ecological effects (response), deter-
mining the risk (probability) of a health or ecological effect given the ob-
served level(s) of exposure, and characterizing the uncertainty associated 
with the estimated risk (Hallenbeck, 1993, p. 1).  Risk assessment is an 
enormous field of research and practice.  The merits and disadvantages of 
particular exposure models (including fate and transport models) and dose-
response models are not discussed in this chapter.  Several journals, text-
books, and web sites are dedicated to risk assessment.  Three standard texts 
include Hallenbeck (1993), Suter (1993), and Rodricks (1992).  Other refer-
ences are listed in the ENVIRONMENTALSTATS for S-PLUS help file Refer-
ences:  Risk Assessment. 

In the past, estimates of risk were often based solely on setting values of 
the input variables (e.g., body weight, dose, etc.) to particular point estimates 
and producing a single point estimate of risk, with little, if any, quantification 
of the uncertainty associated with the estimated risk.  More recently, several 
practitioners have advocated “probabilistic” risk assessment, in which the 
input variables are considered random variables, so the result of the risk as-
sessment is a probability distribution for predicted risk or exposure. 

Usually, the equation describing risk or exposure is so complicated that it 
is not feasible to determine the output distribution using analytical methods, 
so the distribution of risk or exposure is derived via Monte Carlo simulation.  
This chapter discusses the concepts of Monte Carlo simulation, sensitivity 
and uncertainty analysis, and risk assessment, and shows you how to use 
S-PLUS and ENVIRONMENTALSTATS for S-PLUS to perform probabilistic risk 
assessment. 

Note:  The ENVIRONMENTALSTATS for S-PLUS menus that deal with risk 
assessment were under construction at the time this book was being written.  
Therefore, many of the examples in this chapter show only how to use 
S-PLUS and ENVIRONMENTALSTATS for S-PLUS from the Command or Script 
Window.  See the ENVIRONMENTALSTATS for S-PLUS help file or User’s 
Manual for information on how to use the pull-down menus to duplicate the 
examples in this chapter. 

MONTE CARLO SIMULATION 

Monte Carlo simulation is a method of investigating the distribution of a 
random variable by simulating random numbers (Gentle, 1985).  Usually, the 
random variable of interest, say Y, is some function of one or more other 
random variables: 
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1 2, , , kY h X h X X X (13.1)

For example, Y may be an estimate of the median of a population with a 
Cauchy distribution, in which case the vector of random variables X repre-
sents k independent and identically distributed observations from some par-
ticular Cauchy distribution.  As another example, Y may be the incremental 
lifetime cancer risk due to ingestion of soil contaminated with benzene 
(Thompson et al., 1992; Hamed and Bedient, 1997).  In this case the random 
vector X may represent observations from several kinds of distributions that 
characterize exposure and dose-response, such as benzene concentration in 
the soil, soil ingestion rate, average body weight, the cancer potency factor 
for benzene, etc.  These distributions may or may not be assumed to be inde-
pendent of one another (Smith et al., 1992; Bukowski et al., 1995). 

Sometimes the input variables X1, X2, …, Xk are called input parameters.
This terminology can be confusing, however, since the input variables are of-
ten random variables and therefore have distribution parameters associated 
with their probability distributions (e.g., mean and standard deviation for a 
normally distributed input variable). 

Sometimes the distribution of Y in Equation (13.1) can be derived ana-
lytically based on statistical theory (Springer, 1979; Slob, 1994).  Often, 
however, the function h is complicated and/or the elements of the random 
vector X involve several kinds of probability distributions, making it difficult 
or impossible to derive the exact distribution of Y.  In this case, Monte Carlo 
simulation can be used to approximate the distribution of Y.  Monte Carlo 
simulation is often used in risk assessment, specifically in sensitivity and un-
certainty analysis. 

Monte Carlo simulation involves creating a large number of realizations 
of the random vector X, say n, and computing Y for each of the n realiza-
tions of X.  The resulting distribution of Y, or some characteristic of this dis-
tribution (e.g., the mean), is then assumed to be “close” to the true distribu-
tion or distribution characteristic of Y.  The adequacy of the approximation 
depends on a number of factors, including how well the mathematical rela-
tionship described in Equation (13.1) reflects the true relationship between Y
and X, how well the specified distribution of X reflects its true distribution 
(including any possible dependencies between the individual elements of X),
and how many Monte Carlo samples or trials (n) are created. 

Usually, Monte Carlo simulation involves generating random numbers 
from some specified theoretical probability distribution, such as a normal, 
lognormal, beta, etc.  When the simulation is done based on an empirical dis-
tribution, this is also called bootstrapping (Efron and Tibshirani, 1993), as 
we discussed in Chapter 5. 
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Vose (1996, p. 40) claims that the term “Monte Carlo” comes from the 
code name of an American project on the atom bomb during World War II, 
and not from the town of the same name in Monaco that is well known for its 
casinos.  This, however, begs the question of the origin of the code name.  
Gentle (1985, p. 612) notes that Monte Carlo simulation was used exten-
sively during World War II and immediately after during work on the devel-
opment of the atomic bomb.  He states that the name “Monte Carlo” dates 
from that time period and comes from the casino in Monaco with the same 
name.  Hayes (1993, p. 114) states that the modern form of Monte Carlo 
simulation was invented at Los Alamos shortly after World War II by 
Stanislaw Ulam while he was working on a problem of the diffusion of neu-
trons, and that the term Monte Carlo method is “named in honor of the well-
known generator of random integers (between 0 and 36) in the Mediterra-
nean principality.”  References that address the issues of how to properly 
perform and report the results of a Monte Carlo simulation study include 
Hoaglin and Andrews (1975), Law and Kelton (1991), Burmaster and 
Anderson (1994), and Vose (1996). 

Example 13.1:  Simulating the Distribution of the Sum of Two 
Normal Random Variables 

Suppose X1 and X2 are two independent standard normal random vari-
ables.  Then the distribution of  

1 2  1  2,Y h X X  X  X  (13.2)

is normal with a mean of 0 and a variance of 2 (see Equations (4.21) to 
(4.22)).  Suppose, however, that we do not know how to derive the distribu-
tion of Y.  We can use Monte Carlo simulation to investigate the shape of the 
distribution of Y, as well as compute characteristics of the distribution (e.g., 
mean, median, standard deviation, quantiles, etc.) 

Figure 13.1 displays the empirical and true distribution of Y, where the 
empirical distribution of Y was derived by using Monte Carlo simulation 
with 1,000 trials.  That is, for each trial, two random numbers from a stan-
dard normal distribution were generated and added together.  Figure 13.2 
displays the empirical distribution based on 10,000 trials along with the true 
distribution.  Table 13.1 displays some summary statistics for the two em-
pirical distributions and compares them with the true population values.  As 
we increase the number of Monte Carlo trials, the simulated distribution 
tends to get “closer” to the true distribution.  This is called the Law of Large 
Numbers, as discussed in Chapter 4. 
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Figure 13.1 Empirical and theoretical distribution of the sum of two independent  

N(0, 1) random variables based on 1,000 Monte Carlo trials 
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Figure 13.2 Empirical and theoretical distribution of the sum of two independent  

N(0, 1) random variables based on 10,000 Monte Carlo trials 
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Parameter
Empirical  

(1,000)
Empirical  
(10,000)

Population 
N(0, 2) 

Mean    0.05     0.00    0 
Standard Deviation    1.42     1.41    1.41 
  5th Percentile   -2.37    -2.33    2.33 
95th Percentile    2.42     2.31   -2.33 

Table 13.1 Comparison of empirical and population summary statistics 

Menu

To generate the empirical distribution of the sum of two independent 
standard normal random variables based on 1,000 Monte Carlo trials using 
the ENVIRONMENTALSTATS for S-PLUS pull-down menu follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Random Numbers>Multivariate>Normal.  This will 
bring up the Multivariate Normal Random Numbers dialog box. 

2. For Sample Size type 1000, for Set Seed with type 20, for Number 
of Vars type 2, uncheck the Print Results box, and for Save As type 
rmvnorm.mat.  Click OK.

3. Find rmvnorm.mat in the Object Explorer. 
4. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>Monte Carlo Simulation.  This will bring up 
the Monte Carlo Simulation dialog box. 

5. In the Data Set box select rmvnorm.mat, in the Expression box type 
Var.1+Var.2, and click OK or Apply.

To produce the empirical distribution based on 10,000 Monte Carlo trials, in 
Step 2 above for Sample Size type 10000.

Command

To generate the empirical distribution of the sum of two independent 
standard normal random variables based on 1,000 Monte Carlo trials using 
the S-PLUS Command or Script Window, type these commands. 

set.seed(20)

rmvnorm.mat <-rmvnorm(n=1000) 

y <- apply(rmvnorm.mat, 1, sum) 

or you can use the ENVIRONMENTALSTATS for S-PLUS functions simu-
late.mv.matrix and eval.expr:

rmvnorm.mat <-simulate.mv.matrix(n=1000, seed=20) 

y <- eval.expr(Var.1+Var.2, data=rmvnorm.mat) 
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To produce the empirical distribution based on 10,000 Monte Carlo trials, set 
n=10000 in the call to rmvnorm or simulate.mv.matrix.

GENERATING RANDOM NUMBERS 

A random number is a realization of a random variable, say X.  For many 
people, the term random number initially conjures up an image of somehow 
choosing an integer between a specified lower and upper bound (e.g., 1 and 
10), where each number is equally likely to be chosen.  In that case, the ran-
dom variable X is a discrete uniform random variable with probability den-
sity (mass) function given by: 

1
Pr ; 1, 2, ,10

10
f x X x x (13.3)

In general, a random number can be a realization of a random variable from 
any kind of probability distribution (e.g., uniform, normal, lognormal, 
gamma, empirical, etc.) 

Generating Random Numbers from a Uniform Distribution 

The S-PLUS function runif generates pseudo-random numbers from a 
(continuous) uniform distribution.  Uniform random number generation in 
S-PLUS is adapted from Marsaglia et al. (1973), which couples a multiplica-
tive-congruential generator with a feedback shift register.  References that 
discuss generating pseudo-random numbers include Kennedy and Gentle 
(1980), Rubenstein (1981), Ripley (1987), Law and Kelton (1991), Hayes 
(1993), and Barry (1996).  Venables and Ripley (1999, pp. 116 117) explain 
the S-PLUS pseudo-random number generator in detail. 

Pseudo-random number generators start with an initial seed, and then ap-
pear to generate random numbers, although these numbers are actually gen-
erated by a deterministic mechanism.  Each time a set of random numbers is 
generated, the value of the seed changes.  If you start with the same seed, 
you will get the same sequence of pseudo-random numbers.  You can use the 
S-PLUS function set.seed to set the seed of the random number generator.  
Also, S-PLUS and ENVIRONMENTALSTATS for S-PLUS dialog boxes for 
generating random numbers allow you to set the seed. 

The period of a random number generator is the number of random num-
bers that can be generated before the sequence repeats itself.  For most start-
ing seeds, the period of the random number generator in S-PLUS is 230

4,292,868,097  4.6 x 1018 (about 4.6 quintillion) (Venables and Ripley, 
1999, p. 117). 
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Generating Random Numbers from an Arbitrary Distribution 

The S-PLUS and ENVIRONMENTALSTATS for S-PLUS functions of the form 
rabb (where abb denotes the abbreviation of the distribution) generate ran-
dom numbers from several theoretical probability distributions.  For exam-
ple, the function rnorm generates random numbers from a normal distribu-
tion.  You can generate random numbers from the S-PLUS menu by selecting 
Data>Random Numbers, and you can generate random numbers from the 
ENVIRONMENTALSTATS for S-PLUS menu by selecting Environmental-
Stats>Probability Distributions and Random Numbers>Random Num-
bers.

To generate random numbers from a specified probability distribution, 
most computer software programs use the inverse transformation method 
(Rubenstein, 1981, pp. 38 43; Law and Kelton, 1991, pp. 465 474; Vose, 
1996, pp. 39 40).  Suppose the random variable U has a U[0,1] distribution, 
that is, a uniform distribution over the interval [0,1].  Let FX denote the cu-
mulative distribution function (cdf) of the specified probability distribution.  
Then the random variable X defined by: 

1
XX F  U (13.4)

has the specified distribution, where the quantity 1
XF  denotes the inverse of 

the cdf function FX.  Thus, to generate a set of random numbers from any 
distribution, all you need is a set of random numbers from a U[0,1] distribu-
tion and a function that computes the inverse of the cdf function for the 
specified distribution.  Figure 13.3 illustrates the inverse transformation 
method for a standard normal distribution, with U = 0.8.  In this case, the 
random number generated is -1(0.8) = 0.8416212. 

Latin Hypercube Sampling 

Latin Hypercube sampling, sometimes abbreviated LHS, is a method of 
sampling from a probability distribution (one random variable) or a joint 
probability distribution (several random variables) that ensures all portions 
of the probability distribution are represented in the sample.  It was intro-
duced in the published literature by McKay et al. (1979).  Other references 
include Iman and Conover (1980, 1982), and Vose (1996, pp. 42 45).  Latin 
Hypercube sampling is an extension of quota sampling, and when applied to 
the joint distribution of k random variables, can be viewed as a k-
dimensional extension of Latin square sampling, thus the name (McKay et 
al., 1979, p. 240). 
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Example of Inverse Transformation Method
for Standard Normal Distribution
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Figure 13.3 Example of the inverse transformation method of generating random 

numbers from a specified distribution 

Latin Hypercube sampling was introduced to overcome the following 
problem in Monte Carlo simulation based on simple random sampling 
(SRS).  Suppose we want to generate random numbers from a specified dis-
tribution.  If we use simple random sampling, there is a low probability of 
getting very many observations in an area of low probability of the distribu-
tion.  For example, if we generate n observations from the distribution, the 
probability that none of these observations falls into the upper 98th percentile 
of the distribution is 0.98n.  So, for example, there is a 13% chance that out 
of 100 random numbers, none will fall at or above the 98th percentile.  If we 
are interested in reproducing the shape of the distribution, we will need a 
very large number of observations to ensure that we can adequately charac-
terize the tails of the distribution (Vose, 1996, p. 40). 

Latin Hypercube sampling was developed in the context of using com-
puter models that required enormous amounts of time to run and for which 
only a limited number of Monte Carlo simulations could be implemented.  In 
cases where it is fairly easy to generate tens of thousands of Monte Carlo tri-
als, Latin Hypercube sampling may not offer any real advantage. 
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Algorithm for Latin Hypercube Sampling 

Latin Hypercube sampling works as follows for a single probability dis-
tribution.  If we want to generate n random numbers from the distribution, 
the distribution is divided into n intervals of equal probability 1/n.  A ran-
dom number is then generated from each of these intervals.  For k independ-
ent probability distributions, LHS is applied to each distribution, and the re-
sulting random numbers are matched at random to produce n random vectors 
of dimension k.

The three figures below illustrate Latin Hypercube sampling for a sample 
size of n = 4, assuming a standard normal distribution.  Figure 13.4 shows 
the four equal-probable intervals for a standard normal distribution in terms 
of the probability density function, and Figure 13.5 shows the same thing in 
terms of the cumulative distribution function.  Figure 13.6 shows how Latin 
Hypercube sampling is accomplished using the inverse transformation 
method for generating random numbers.  In this case, the interval [0,1] is di-
vided into the four intervals [0, 0.25], [0.25, 0.5], [0.5, 0.75], and [0.75, 1].  
Next, a uniform random number is generated within each of these intervals.  
For this example, the four numbers generated are (to two decimal places) 
0.04, 0.35, 0.70, and 0.79.  Finally, the standard normal random numbers as-
sociated with the inverse cumulative distribution function of the four uni-
form random numbers are computed. 

Four Equal-Probability Intervals
for a Standard Normal Distribution
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Figure 13.4 Four equal-probability intervals for a N(0, 1) distribution 
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Four Equal-Probability Intervals
for a Standard Normal Distribution
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Figure 13.5 Four equal-probability intervals for a N(0, 1) distribution 

Example of Latin Hypercube Sampling
with Four Equal-Probability Intervals

Random Number (x)

C
um

ul
at

iv
e 

F
re

qu
en

cy
 [ 

F
(x

) 
]

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 13.6 Visual explanation of generating four random numbers from a N(0, 1) 

distribution using Latin Hypercube sampling 
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Example 13.2:  Simple Random Sampling vs. Latin Hypercube Sampling 

Figure 13.7 displays a histogram of 50 observations based on a simple 
random sample from a standard normal distribution.  Figure 13.8 displays 
the same thing based on a Latin Hypercube sample.  You can see that the 
form of the histogram constructed with the Latin Hypercube sample more 
closely resembles the true underlying distribution. 

Menu

To generate the simple random sample used to create the histogram in 
Figure 13.7 using the ENVIRONMENTALSTATS for S-PLUS pull-down menu, 
follow these steps. 

1. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>Probability Distributions and Random 
Numbers>Random Numbers>Univariate.  This will bring up the 
Univariate Random Number Generation dialog box. 

2. For Sample Size type 50, for Set Seed with type 209, for Sample 
Method select Random, uncheck the Print Results box, and for 
Save As type x.srs.

To generate the Latin Hypercube sample used to create the histogram in 
Figure 13.8 follow the same steps as above, but in Step 2 for Sample Method 
select Latin Hypercube and for Save As type x.lhs.
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Figure 13.7 Results of simple random sampling from a N(0, 1) distribution 
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Figure 13.8 Results of Latin Hypercube sampling from a N(0, 1) distribution 

Command 

To generate the simple random sample and Latin Hypercube sample used 
to create the histograms in Figure 13.7 and Figure 13.8 using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

x.srs <- simulate.vector(50, seed=209) 

x.lhs <- simulate.vector(50, sample.method="LHS", 

seed=209)

Properties of Latin Hypercube Sampling 

Let Y denote the outcome variable for one trial of a Monte Carlo simula-
tion, and suppose Y is a function of k independent random variables as 
shown in Equation (13.1) above.  McKay et al. (1979) consider the class of 
estimators of the form 

1 2
1

1
, , ,

n

n i
i

T T Y T Y Y Y g Y
n

(13.5)

© 2001 by CRC Press LLC



where g is an arbitrary function.  This class of estimators includes the mean, 
the rth sample moment, and the empirical cumulative distribution function.  
Setting 

E T Y (13.6)

McKay et al. (1979) show that under LHS, T is an unbiased estimator of ,
and also, if h in Equation (13.1) is monotonic in each of its arguments and g
is monotonic, then the variance of T under LHS is less than or equal to the 
variance of T under SRS. 

Stein (1987) shows that the variance of the sample mean of Y under LHS 
is asymptotically less than the variance of the sample mean under simple 
random sampling whether or not the function h is monotonic in its argu-
ments.  Unfortunately, for most cases of LHS, the formula for the true vari-
ance of the sample mean is difficult to derive, and thus a good estimate of 
true variance is not available.  Using the usual formula of dividing the sam-
ple variance by the sample size will usually overestimate the true variance of 
the sample mean. 

Iman and Conover (1980) and Stein (1987) suggest producing several in-
dependent Latin Hypercube samples, say N, and for each Latin Hypercube 
sample computing the sample mean based on the n observations within that 
sample.  (They call this method replicated Latin Hypercube sampling.)  You 
can then estimate the variance of the sample mean by computing the usual 
sample variance of these N sample means.  Note that this method can be ap-
plied to any quantity of interest, such as the median, 95th percentile, etc. 

UNCERTAINTY AND SENSITIVITY ANALYSIS 

Uncertainty analysis and sensitivity analysis are terms used to describe 
various methods of characterizing the behavior of a complex mathemati-
cal/computer model.  The model in Equation (13.1) above is different from 
most conventional statistical models, where the form of the model is: 

Y h X (13.7)

(e.g., linear regression models, generalized linear models, nonlinear regres-
sion models, etc.).  In Equation (13.7), the vector X is assumed to be set or 
observed at fixed values, and for fixed values of X the response variable Y
deviates about its mean value according to the distribution of the error term 
.  This kind of model is useful when we are interested in the specific rela-

tionship between Y and X, and we want to predict the value of Y for a speci-
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fied value of X.  Furthermore, this kind of model is fit using paired observa-
tions of Y and X.

In Equation (13.1), Y is assumed to be observed without error, that is, the 
value of Y is deterministic for a set value of X.  The output variable Y, how-
ever, is a random variable because the input variables X1, X2, …, Xk are as-
sumed to be a combination of random variables and constant terms.  This 
kind of model is useful when we are interested in describing the distribution 
of Y taken over all possible (read as “reasonable and realistic”) combinations 
of the input variables.  Furthermore, paired observations of Y and X are usu-
ally not available to validate this kind of model, hence, there is some amount 
of unquantifiable uncertainty associated with this kind of model. 

Uncertainty analysis involves describing the variability or distribution of 
values of the output variable Y that is due to the collective variation in the 
input variables X (Iman and Helton, 1988, p. 72).  This description usually 
involves graphical displays such as histograms, empirical density plots, and 
empirical cdf plots, as well as summary statistics such as the mean, median, 
standard deviation, coefficient of variation, 95th percentile, etc. 

Sensitivity analysis involves determining how the distribution of Y
changes with changes in the individual input variables.  It is used to identify 
which input variables contribute the most to the variation or uncertainty in 
the output variable Y (Iman and Helton, 1988, p. 72).  Sensitivity analysis is 
also used in a broader sense to determine how changing the distributions of 
the input variables and/or their assumed correlations or even changing the 
form of the model affects the output (Thompson et al., 1992; Smith et al., 
1992; Cullen, 1994; Shlyakhter, 1994; Bukowski et al., 1995; Hamed and 
Bedient, 1997; USEPA, 1997). 

Important vs. Sensitive Parameters 

Two useful concepts associated with sensitivity analysis are important 
parameters (variables) and sensitive parameters (variables) (Crick et al., 
1987 as cited in Hamby, 1994, p. 137).  Sensitive parameters have a substan-
tial influence on the resulting distribution of the output variable Y, that is, 
small changes in the value of a sensitive parameter result in substantial 
changes in Y. Important parameters have some amount of uncertainty 
and/or variability associated with them and this variability contributes sub-
stantially to the resulting variability in the output variable Y.

Figure 13.9 below illustrate these two concepts for the simple case of 
three input variables.  The top plot is an example of an important variable.  
An important variable is always sensitive.  The middle plot is an example of 
a variable that is not sensitive, and hence not important.  The bottom plot is 
an example of a variable that is not important.  This variable may not be sen-
sitive (like the one in the middle plot), or it may be sensitive like the one in 
the top plot but it is not important because of its limited variability. 
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X1 Important (Thus Sensitive)

X1

Y

X2 Not Sensitive (Thus Not Important)

X2

Y

X3 Not Important

X3

Y

Figure 13.9 Three examples of the concept of important and sensitive parameters 
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Uncertainty vs. Variability 

The terms uncertainty and variability have specific meanings in the risk 
assessment literature that do not necessarily match their meanings in the sta-
tistical literature or everyday language.  The term variability refers to the in-
herent heterogeneity of a particular variable (parameter).  For example, there 
is natural variation in body weight and height between individuals in a given 
population.  The term uncertainty refers to a lack of knowledge about spe-
cific parameters, models, or factors (Morgan and Henrion, 1990; Hattis and 
Burmaster, 1994; Rowe, 1994; Bogen, 1995; USEPA, 1997, p. 10).  For ex-
ample, we may be uncertain about the true distribution of exposure to a toxic 
chemical in a population (parameter uncertainty due to lack of data, meas-
urement errors, sampling errors, systematic errors, etc.), or we may be uncer-
tain how well our model of incremental lifetime cancer risk reflects reality 
(model uncertainty due to simplification of the process, misspecification of 
the model structure, model misuse, use of inappropriate surrogate variables, 
etc.), or we may be uncertain about whether a chemical is even present at a 
site of concern (scenario uncertainty due to descriptive errors, aggregation 
errors, errors in professional judgment, incomplete analysis, etc.). 

We can usually reduce uncertainty through further measurement or study.  
We cannot reduce variability, since it is inherent in the variable.  Note that in 
the risk assessment literature, measurement error contributes to uncertainty; 
we can decrease uncertainty by decreasing measurement error.  In the statis-
tical literature, measurement error is one component of the variance of a ran-
dom variable.  Note that a parameter (input variable) may have little or no 
variability associated with it, yet still have uncertainty associated with it 
(e.g., the speed of light is constant, but we only know its value to a given 
number of decimal places). 

This meaning of the term “uncertainty” should not be confused with the 
term “uncertainty analysis” described above.  Uncertainty analysis character-
izes the distribution of the output variable Y.  The output variable Y varies 
due to the fact that the input variables are random variables.  The distribu-
tions of the input random variables reflect both variability (inherent hetero-
geneity) and uncertainty (lack of knowledge). 

Sensitivity Analysis Methods 

Sensitivity analysis methods can be classified into three groups:  one-at-
a-time deviations from a baseline case, factorial design and response surface 
modeling, and Monte Carlo simulation (Hamby, 1994).  Each of these kinds 
of sensitivity analysis is briefly discussed below.  For more detailed informa-
tion, see the section Sensitivity Analysis Methods in the help file Glossary:  
Uncertainty and Sensitivity Analysis in ENVIRONMENTALSTATS for S-PLUS.
Several studies indicate that using Monte Carlo simulation in conjunction 
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with certain sensitivity measures usually provides the best method of deter-
mining sensitivity of the parameters. 

One-at-a-Time Deviations from a Baseline Case 

These sensitivity analysis methods include differential analysis and 
measures of change in output to change in input.  Differential analysis is 
simply approximating the variance of the output variable Y at a particular 
value of the input vector X (called the baseline case) by using a first-order 
Taylor series expansion (Kotz and Johnson, 1985, Volume 8, pp. 646 647; 
Downing et al., 1985; Seiler, 1987; Iman and Helton, 1988; Hamby, 1994, 
pp. 138 139).  This approximating equation for the variance of Y is useful 
for quantifying the proportion of variability in Y that is accounted for by 
each input variable.  Unfortunately, the approximation is usually good only 
in a small region close to the baseline case, and the relative contribution of 
each input variable to the variance of Y may differ dramatically for differ-
ently chosen baseline cases.  Also, differential analysis requires the calcula-
tion of partial derivatives, which may or may not be a simple task, depending 
on the complexity of the input function h in Equation (13.1). 

Measures of change in output to change in input include the ratio of per-
cent change in Y to percent change in Xi (Hamby, 1994, pp. 139 140), the 
ratio of percent change in Y to change in Xi in units of the standard deviation 
of Xi (Hamby, 1994, p. 140; Finley and Paustenbach, 1994), the percent 
change in Y as Xi ranges from its minimum to maximum value (Hamby, 
1994, p. 140), and spider plots, which are plots of Y vs. percent change in Xi,
or Y vs. percentiles of Xi (Vose, 1996, pp. 282 283).

Factorial Design and Response Surface Modeling 

The concepts of factorial designs and response surfaces come from the 
field of experimental design (Box et al., 1978).  In the context of sensitivity 
analysis for computer models, n distinct values of the input vector X are cho-
sen (usually reflecting the possible ranges and medians of each of the k input 
variables), and the model output Y is recorded for each of these input values.  
Then a multiple linear regression model (a response surface) is fit to these 
data.  The fitted model is called the fitted response surface, and this response 
surface is used as a replacement for the computer model (Downing et al., 
1985; Iman and Helton, 1988; Hamby, 1994, p. 140).  The sensitivity analy-
sis is based on the fitted response surface.  The reason for using a response 
surface to replace the actual model output is that some computer models are, 
or used to be, very costly to run, whereas computing output based on a re-
sponse surface is relatively inexpensive. 

One way to rank the importance of the variables in the response surface 
is to simply compare the magnitudes of the estimated coefficients.  The esti-
mated coefficients, however, depend on the units of the predictor variables in 
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the model, so most analysts use standardized regression coefficients (Iman 
and Helton, 1988; Hamby, 1994, p. 146).  The standardized regression coef-
ficients are simply the coefficients that are obtained from fitting the response 
surface model based on the “standardized” output variable and the “standard-
ized” predictor (input) variables.  That is, for each variable, each observation 
is replaced by subtracting the mean (for that variable) from the observation 
and dividing by the standard deviation (for that variable). 

Weisberg (1985, p. 186) warns against using standardized coefficients to 
determine the importance of predictor variables because they depend on the 
range of the predictor variables.  So, for example, the variable X3 in Figure 
13.9 above may be very important but it has a very limited range.  In the 
context of sensitivity analysis for computer models, however, if the analyst is 
comfortable with assuming the range of input variables will not change ap-
preciably in the future, then standardized coefficients are an acceptable way 
to rank the importance of variables. 

Iman and Helton (1988) compared uncertainty and sensitivity analysis of 
several models based on differential analysis, factorial design with a re-
sponse surface model, and Monte Carlo simulation using Latin Hypercube 
sampling.  The main outcome they looked at for uncertainty analysis was es-
timating the cumulative distribution function.  They found that the models 
were too mathematically complex to be adequately represented by a response 
surface.  Also, the results of differential analysis gave widely varying results 
depending on the values chosen for the baseline case.  The method based on 
Monte Carlo simulation gave the best results. 

Monte Carlo Simulation 

Monte Carlo simulation is used to produce a distribution of Y values 
based on generating a large number of values of the input vector X according 
to the joint distribution of X.  There are several possible ways to produce a 
distribution for Y, including varying all of the input parameters (variables) 
simultaneously, varying one parameter at a time while keeping the others 
fixed at baseline values, or varying the parameters in one group while keep-
ing the parameters in the other groups at fixed baseline values.  Sensitivity 
methods that can be used with Monte Carlo simulation results include the 
following: 

Histograms, Empirical CDF Plots, Percentiles of Output.  A 
simple graphical way to assess the effect of different input vari-
ables or groups of input variables on the distribution of Y is to 
look at how the histogram and empirical cdf of Y change as you 
vary one parameter at a time or vary parameters by groups 
(Thompson et al., 1992).  Various quantities such as the mean, 
median, 95th percentile, etc. can be displayed on these plots as 
well.
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Scatterplots.  Another simple graphical way to assess the effect 
of different input variables on the distribution of Y and their re-
lationship to each other is to look at pair-wise scatterplots. 
Correlations and Partial Correlations.  A quantitative meas-
ure of the relationship between Y and an individual input vari-
able Xi is the correlation between these two variables, computed 
based on varying all parameters simultaneously (Saltelli and 
Marivoet, 1990; Hamby, 1994, pp. 143 144).  Recall from 
Chapter 9 that the Pearson product moment correlation meas-
ures the strength of linear association between Y and Xi, while 
the Spearman rank and Kendall’s tau correlation measures the 
strength of any monotonic relationship between Y and Xi.  Vose 
(1996, pp. 280 282) suggests using tornado charts, which are 
simply horizontal barcharts displaying the values of the correla-
tions.  Individual correlations are hard to interpret when some or 
most of the input variables are highly related to one another.  
One way to get around this problem is to look at partial correla-
tion coefficients.  See the section Sensitivity Analysis Methods 
in the ENVIRONMENTALSTATS for S-PLUS help file Glossary:  
Uncertainty and Sensitivity Analysis Methods for more  
information. 
Change in Output to Change in Input.  Any of these types of 
measures that are described above under the subsection One-at-
a-Time Deviations from a Baseline Case can be adapted to the 
results of a Monte Carlo simulation.  Additional measures in-
clude relative deviation, in which you vary one parameter at a 
time and compute the coefficient of variation (CV) of Y for each 
case (Hamby, 1994, p. 142), and relative deviation ratio, in 
which you vary one parameter at a time and compute the ratio of 
the CV of Y to the CV of Xi (Hamby, 1994, pp. 142 143).
Response Surface.  This methodology that was described above 
in the subsection Factorial Design and Response Surface Model-
ing can be adapted to the results of a Monte Carlo simulation.  
In this case, use the model input and output to fit a regression 
equation (possibly stepwise) and then use standardized coeffi-
cients to rank the input variables (Iman and Helton, 1988; Sal-
telli and Marivoet, 1990). 
Comparing Groupings within Input Distributions Based on 
Partitioning the Output Distribution.  One final method of 
sensitivity analysis that has been used with Monte Carlo simula-
tion is to divide the distribution of the output variable Y into two 
or more groups, and then to compare the distributions of an in-
put variable that has been split up based on these groupings 
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(Saltelli and Marivoet, 1990; Hamby, 1994, pp. 146 150; Vose, 
1996, pp. 296 298).  For example, you could divide the distri-
bution of an input variable Xi into two groups based on whether 
the values yielded a value of Y below the median of Y or above 
the median of Y.  You could then use any of the Trellis func-
tions to compare the distributions of these two groups, compare 
these distributions with a goodness-of-fit test, or compare the 
means or medians of these distributions with the t-test or Wil-
coxon rank sum test.  A significant difference between the two 
distributions is an indication that the input variable is important 
in determining the distribution of Y.

Uncertainty Analysis Methods 

A specific model such as Equation (13.1) with specific joint distributions 
of the input variables leads to a specific distribution of the output variable.  
The process of describing the distribution of the output variable is called un-
certainty analysis (Iman and Helton, 1988, p. 72).  This description usually 
involves graphical displays such as histograms, empirical distribution plots, 
and empirical cdf plots, as well as summary statistics such as the mean, me-
dian, standard deviation, coefficient of variation, 95th percentile, etc. 

Sometimes the distribution of Y in Equation (13.1) can be derived ana-
lytically based on statistical theory (Springer, 1979; Slob, 1994).  For exam-
ple, if the function h describes a combination of products and ratios, and all 
of the input variables have a lognormal distribution, then the output variable 
Y has a lognormal distribution as well, since products and ratios of log-
normal random variables have lognormal distributions.  Many risk models, 
however, include several kinds of distributions for the input variables, and 
some risk models are not easily described in a closed algebraic form.  In 
these cases, the exact distribution of Y can be difficult or almost impossible 
to derive analytically. 

The rest of this section briefly describes some methods of uncertainty 
analysis based on Monte Carlo simulation.  For more information on uncer-
tainty analysis, see the section Uncertainty Analysis Methods in the help file 
Glossary:  Uncertainty and Sensitivity Analysis in ENVIRONMENTALSTATS

for S-PLUS.

Quantifying Uncertainty with Monte Carlo Simulation 

When the distribution of Y cannot be derived analytically, it can usually 
be estimated via Monte Carlo simulation.  Given this simulated distribution, 
you can construct histograms or empirical density plots and empirical cdf 
plots, as well as compute summary statistics.  You can also compute confi-
dence bounds for specific quantities, such as percentiles.  These confidence 
bounds are based on the assumption that the observed values of Y are ran-
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domly selected based on simple random sampling.  When Latin Hypercube 
sampling is used to generate input variables and hence the output variable Y,
the statistical theory for confidence bounds based on simple random sam-
pling is not truly applicable (Easterling, 1986; Iman and Helton, 1991,  
p. 593; Stein, 1987).  Most of the time, confidence bounds that assume sim-
ple random sampling but are applied to the results of Latin Hypercube sam-
pling will probably be too wide. 

Quantifying Uncertainty by Repeating the Monte Carlo Simulation 

One way around the above problem with Latin Hypercube sampling is to 
use replicated Latin Hypercube sampling, that is, repeat the Monte Carlo 
simulation numerous times, say N, so that you have a collection of N empiri-
cal distributions of Y, where each empirical distribution is based on n obser-
vations of the input vector X.  You can then use these N replicate distribu-
tions to assess the variability of the sample mean, median, 95th percentile, 
empirical cdf, etc.  Obviously, this is a computer intensive process. 

A simpler process is to repeat the simulation just twice and compare the 
values of certain distribution characteristics, such as the mean, median, 5th,
10th, 90th and 95th percentiles, and also to graphically compare the two em-
pirical cdf plots.  If the values between the two simulations are within a 
small percentage of each other, then you can be fairly confident about char-
acterizing the distribution of the output variable.  Iman and Helton (1991) 
did this for a very complex risk assessment for a nuclear power plant and 
found a remarkable agreement in the empirical cdf’s.  Thompson et al. 
(1992) did the same thing for a risk assessment for incremental lifetime can-
cer risk due to ingestion or dermal contact with soil contaminated with  
benzene.

You may also want to compare the results of the original simulation with 
a simulation that uses say twice as many Monte Carlo trials (e.g., Thompson 
et al., 1992).  Barry (1996) warns that if the moments of the simulated distri-
bution do not appear to stabilize with an increasing number of Monte Carlo 
trials, this can mean that they do not exist.  For most risk models, however, 
the true distributions of any random variables involved in a denominator in 
Equation (13.1) are bounded above 0, so the moments will exist.  If a ran-
dom variable involved in the denominator has a mean or median that is close 
to 0, it is important to use a bounded or truncated distribution to assure the 
random variable stays sufficiently far away from 0. 

Quantifying Uncertainty Based on Mixture Distributions 

To account for the uncertainty in specifying the distribution of the input 
variables, some authors suggest using mixture distributions to describe the 
distributions of the input variables (e.g., Hoffman and Hammonds, 1994; 
Burmaster and Wilson, 1996).  For each input variable, a distribution is 
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specified for the parameter(s) of the input variable’s distribution.  Some au-
thors call random variables with this kind of distribution second-order ran-
dom variables (e.g., Burmaster and Wilson, 1996). 

For example we may assume the first input variable comes from a log-
normal distribution with a certain mean and coefficient of variation (CV).  
The mean is unknown to a certain degree, and so we may specify that the 
mean comes from a uniform distribution with a given set of upper and lower 
bounds.  We can also specify a distribution for the CV.  In this case, the 
Monte Carlo simulation can be broken down into two stages.  In the first 
stage, a set of parameters is generated for each input distribution.  In the sec-
ond stage, n realizations of the input vector X are generated based on this 
one set of distribution parameters.  This two-stage process is repeated N
times, so that you end up with N different empirical distributions of the out-
put variable Y, and each empirical distribution is based on n observations of 
the input vector X.

For a fixed number of Monte Carlo trials nN, the optimal combination of 
n and N will depend on how the distribution of the output variable Y changes 
relative to variability in the input distribution parameter(s) vs. variability in 
the input variables themselves.  For example, if the distribution of Y is very 
sensitive to changes in the input distribution parameters, then N should be 
large relative to n.  On the other hand, if the distribution of Y is relatively in-
sensitive to the values of the parameters of the input distributions, but varies 
substantially with the values of the input variables, then N may be small rela-
tive to n.

Caveat

An important point to remember is that no matter how complex the 
mathematical model in Equation (13.1) is, or how extensive the uncertainty 
and sensitivity analyses are, there is always the question of how well the 
mathematical model reflects reality.  The only way to attempt to answer this 
question is with data collected directly on the input and output variables.  Of-
ten, however, it is not possible to do this, which is why the model was con-
structed in the first place. 

For example, in order to attempt to directly verify a model for incre-
mental lifetime cancer risk for a particular exposed population within a par-
ticular geographical region, you have to collect data on lifetime exposure for 
each person and the actual proportion of people who developed that particu-
lar cancer within their lifetime, accounting for competing risks as well, and 
compare these data to similar data collected on a proper control population.  
A controlled experiment that involves exposing a random subset of a particu-
lar human population to a toxin and following the exposed and control group 
throughout their lifetimes for the purpose of a risk assessment is not possible 
to perform for several reasons, including ethical and practical ones.  Rod-
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ricks (1992) is an excellent text that discusses the complexities of risk as-
sessment based on animal bioassay and epidemiological studies. 

RISK ASSESSMENT 

This section discusses the concepts and practices involved in risk as-
sessment, and gives examples of how to use ENVIRONMENTALSTATS for 
S-PLUS to perform probabilistic risk assessment.  This information is also 
contained in the help file Glossary:  Risk Assessment. 

Definitions

It will be helpful to start by defining common terms and concepts used in 
risk assessment. 

Risk 

The common meaning of the term risk when used as a noun is “the 
chance of injury, damage, or loss.”  Thus, risk is a probability, since 
“chance” is another term for “probability.” 

Risk Assessment 

Risk assessment is the practice of gathering and analyzing information in 
order to predict future risk.  Risk assessment has been commonly used in the 
fields of insurance, engineering, and finance for quite some time.  In the last 
couple of decades it has been increasingly applied to the problems of predict-
ing human health and ecological effects from exposure to toxicants in the 
environment (e.g., Hallenbeck, 1993; Suter, 1993).  In this chapter, the term 
risk assessment is applied in the context of human health and ecological risk 
assessment. 

The basic model that is often used as the foundation for human health 
and ecological risk assessment is: 

perPrRisk Dose Effect Unit Dose (13.8)

That is, the risk of injury (the effect) to an individual is equal to the amount 
of toxicant the individual absorbs (the dose) times the probability of the ef-
fect occurring for a single unit of the toxicant.  If the effect is some form of 
cancer, the second term on the right-hand side of Equation (13.8) is often 
called the cancer slope factor (abbreviated CSF) or the cancer potency fac-
tor (abbreviated CPF). 

The first term on the right-hand side of Equation (13.8), the dose, is esti-
mated by identifying sources of the toxicant and quantifying their concentra-
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tions, identifying how these sources will expose an individual to the toxicant 
(via fate and transport models), quantifying the amount of exposure an indi-
vidual will receive, and estimating how much toxicant the individual will ab-
sorb at various levels of exposure.  Sometimes the dose represents the 
amount of toxicant absorbed over a lifetime, and sometimes it represents the 
amount absorbed over a shorter period of time. 

The second term on the right-hand side of Equation (13.8), the probabil-
ity of an effect (CSF or CPF), is estimated from a dose-response curve, a 
model that relates the probability of the effect to the dose received.  Dose-
response curves are developed from controlled laboratory experiments on 
animals or other organisms, and/or from epidemiological studies of human 
populations (Hallenbeck, 1993; Piegorsch and Bailer, 1997).  In Example 
9.14 we fit a dose-response curve for the probability that a rat develops thy-
roid tumors as a function of dose of ethylene thiourea (ETU). 

Risk assessment involves three major steps (Hallenbeck, 1993, p. 1; 
USEPA, 1995c): 

Hazard Identification.  Describe the effects (if any) of the toxi-
cant on laboratory animals, humans, and/or wildlife species, 
based on documented studies.  Describe the quality and rele-
vance of the data from these studies.  Describe what is known 
about how the toxicant produces these effects.  Describe the un-
certainties and subjective choices or assumptions associated 
with determining the degree of hazard of the toxicant. 
Dose-Response Assessment.  Describe what is known about the 
biological mechanism that causes the health or ecological effect.  
Describe what data, models, and extrapolations have been used 
to develop the dose-response curve for laboratory animals, hu-
mans, and/or wildlife species.  Describe the routes and levels of 
exposure used in the studies to determine the dose-response 
curve, and compare them to the expected routes and levels of 
exposure in the population(s) of concern.  Describe the uncer-
tainties and subjective choices or assumptions associated with 
characterizing the dose-response relationship. 
Exposure Assessment.  Identify the sources of environmental 
exposure to the population(s) of concern.  Describe what is 
known about the principal paths, patterns, and magnitudes of 
exposure.  Determine average and “high end” levels of expo-
sure.  Describe the characteristics of the population(s) that 
is(are) potentially exposed.  Determine how many members of 
the population are likely to be exposed.  Describe the uncertain-
ties and subjective choices or assumptions associated with char-
acterizing the exposure for the population of concern. 
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Once these steps have been completed, some form of Equation (13.8) is 
usually used to estimate the risk for a particular population of concern.  Both 
sensitivity analysis and uncertainty analysis should be applied to the risk as-
sessment model to quantify the uncertainty associated with the estimated 
risk.

Risk Characterization 

USEPA (1995c) distinguishes between the process of risk assessment and 
risk characterization.  Risk characterization is the summarizing step of risk 
assessment that integrates all of the information from the risk assessment, in-
cluding uncertainty and sensitivity analyses and a discussion of uncertainty 
vs. variability, to form an overall conclusion about the risk.  Risk assessment 
is the tool that a risk assessor uses to produce a risk characterization.  A risk 
characterization is the product that is delivered to the risk assessor’s client:  
the risk manager. 

Risk Management 

Risk management is the process of using information from risk charac-
terizations (calculated risks), perceived risks, regulatory policies and stat-
utes, and economic and social analyses in order to make and justify a deci-
sion (USEPA, 1995c).  If the risk manager decides that the risk is not accept-
able, he or she will order or recommend some sort of action to decrease the 
risk.  If the risk manager decides that the risk poses minimal danger to the 
population of concern, he or she may recommend that no further action is 
needed at the present time. 

Because the risk manager is the client of the risk assessor, the risk man-
ager must be involved in the risk assessment process from the start, helping 
to determine the scope and endpoints of the risk assessment (USEPA, 
1995c).  Also, the risk manager must interact with the risk assessor through-
out the risk assessment process, so that he or she may take responsibility for 
critical decisions.  The risk manager, however, must be careful not to let non-
scientific (e.g., political) issues influence the risk assessment.  Non-scientific 
issues are dealt with at the risk management stage, not the risk assessment 
stage.

Risk Communication 

USEPA (1995c) defines risk communication as exchanging information 
with the public.  While the communication of risk from the risk assessor to 
the risk manager is accomplished through risk characterization, the commu-
nication of risk between the risk manager (or representatives of his or her 
agency) and the public is accomplished through risk communication.  The 
risk characterization will probably include highly technical information, 
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while risk communication should concentrate on communicating basic ideas 
of risk to the public. 

Building a Risk Assessment Model 

Building a risk assessment model involves all three steps outlined in the 
definition of risk assessment (hazard identification, dose-response assess-
ment, and exposure assessment).  Once these steps have been completed, 
some form of Equation (13.8) is usually used to estimate the risk for a par-
ticular population of concern. 

The form of the two terms on the right-hand side of Equation (13.8) may 
be very complex.  Estimation of dose involves identifying sources of expo-
sure, postulating pathways of exposure from these sources, estimating expo-
sure concentrations, and estimating the resulting dose for a given exposure.  
Estimation of dose-response involves using information from controlled 
laboratory experiments on animals and/or epidemiological studies.  Given a 
set of dose-response data, there are several possible statistical models that 
can be used to fit these data, including tolerance distribution models, mecha-
nistic models, linear-quadratic-exponential models, and time-to-response 
models (Hallenbeck, 1993, Chapter 4). 

Probably the biggest controversy in risk assessment involves the extrapo-
lation of dose-response data from high-dose to low-dose and from one spe-
cies to another (e.g., between mice and humans).  Rodricks (1992) discusses 
these problems in detail.  A very recent example of this problem is the case 
of saccharin, which was shown in the late 1970s to produce bladder tumors 
in male rats that were fed extremely large concentrations of the chemical.  
These studies led the FDA to call for a ban on saccharin, but Congress 
placed a moratorium on the ban that was renewed periodically.  A little over 
two decades later, the National Institute of Environmental Health Sciences 
states that new studies show “no clear association” between saccharin and 
human cancer (The Seattle Times, Tuesday, May 16, 2000) and has taken 
saccharin off of its list of cancer-causing chemicals. 

Many risk assessment models have the general form 

per

1 2

Pr

, , , k

Risk Dose Effect Unit Dose

h X X X CPF

(13.9)

That is, the risk is assumed to be proportional to dose, and the dose term is a 
function of several input variables.  For example, USEPA (1991b, p. 2) uses 
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the following general equation for intake (here intake is equivalent to expo-
sure and dose): 

C IR EF ED
Intake

BW AT
(13.10)

where C is the chemical concentration, IR is the intake or contact rate, EF is 
the exposure frequency, ED is the exposure duration, BW is body weight, and 
AT is the averaging time (equal to exposure duration for non-carcinogens 
and 70 years for carcinogens). 

Usually, many of the input variables and sometimes the cancer potency 
factor (CPF) in Equation (13.9) are themselves assumed to be random vari-
ables because they exhibit inherent heterogeneity (variability) within the 
population (e.g., body weight, fluid intake, etc.), and because there is a cer-
tain amount of uncertainty associated with their values.  The choice of what 
distribution to use for each of the input variables is based on a combination 
of available data and expert judgment. 

Example 13.3:  Cancer Risk from PCE in Groundwater 

McKone and Bogen (1991) present a risk assessment model for lifetime 
cancer risk from exposure to perchloroethylene (PCE) in groundwater in 
California.  In order to estimate dose, they estimated the concentration of 
PCE in California water supplies, identified three pathways of exposure (in-
gestion of tap water, indoor inhalation from tap water, and dermal contact 
from bathing and showering), estimated concentrations and absorption rates 
for each pathway, and estimated actual dose based on exposure concentration 
for each pathway.  To estimate the cancer potency factor (CPF), McKone and 
Bogen (1991) used eight rodent-bioassay data sets and a multistage dose-
response extrapolation model.  They assumed the input variables for dose 
and the CPF follow certain probability distributions, and they present two 
point estimates of risk (using the mean value of each input variable and the 
95th percentile of each input variable) as well as a distribution of risk based 
on a Monte Carlo simulation. 

Example 13.4:  Incremental Lifetime Cancer Risk from Ingesting Soil 
Contaminated with Benzene 

Thompson et al. (1992) present a simplified case study of a risk assess-
ment for incremental lifetime cancer risk (ILCR) for children (ages 8 to 18) 
ingesting soil contaminated with benzene.  They use the following model: 
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ILCR Dose CPF

Cs SIngR RBA DpW WpY YpL CF

BW DinY YinL

CPF

(13.11)

Symbol Variable Name Units Distribution 
Point  
Estimate

Cs Benzene
Concentration

mg/kg Lognormal 
(0.84, 0.77) 

  3.39 

SingR Soil Ingestion Rate mg/dy Lognormal 
(3.44, 0.80) 

 50 

RBA Relative
Bioavailability 

  1 

DpW Exposure
Days per Week 

dy/wk    1 

WpY Exposure
Weeks per Year 

wk/yr   20 

YpL Exposure
Years per Life 

yr/life   10 

CF Conversion Factor kg/mg    1 x 10-6

BW Average Body Weight kg Normal 
(47, 8.3) 

 47 

DinY Days in a Year dy/yr  364
YinL Years in a Lifetime yr/life   70 
CPF Cancer Potency Factor (kg dy)/mg Lognormal 

(-4.33, 0.67) 
  0.029 

Table 13.2 Description of terms in Equation (13.11) (Thompson et al., 1992) 

Table 13.2 explains what the input variables are and their assumed distri-
butions.  In this table, the normal distribution is parameterized by its mean 
and standard deviation, and the lognormal distributions are parameterized by 
the mean and standard deviation of the log-transformed random variable.  
The point estimates for the four input variables with associated probability 
distributions, benzene concentration (Cs), soil ingestion rate (SIngR), aver-
age body weight (BW), and cancer potency factor (CPF) are, respectively, the 
95% upper confidence limit for the mean, the 72nd percentile, the mean, and 
the 88th percentile.  Thompson et al. (1992) used the model in Equation 
(13.11) (along with a model for ILCR due to dermal contact with the soil) to 
demonstrate how to use Monte Carlo simulation to perform risk assessment. 
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Point Estimates of Risk 

USEPA (1989c, pp. 6-4 to 6-5) states that 

Actions at Superfund sites should be based on an estimate of the rea-
sonable maximum exposure (RME) expected to occur under both cur-
rent and future land-use conditions.  The reasonable maximum expo-
sure is defined here as the highest exposure that is reasonably ex-
pected to occur at a site.  RMEs are estimated for individual path-
ways.  If a population is exposed via more than one pathway, the 
combination of exposure pathways also must represent an RME.  … 
The intent of the RME is to estimate a conservative exposure case 
(i.e., well above the average case) that is still within the range of pos-
sible exposures. 

In the context of estimating the exposure term of a risk assessment model, 
the document further specifies that 

Each intake variable in the equation has a range of values.  For Super-
fund exposure assessments, intake variable values for a given path-
way should be selected so that the combination of all intake variables 
results in an estimate of the reasonable maximum exposure for that 
pathway. ... Under this approach, some intake variables may not be at 
their individual maximum values but when in combination with other 
variables will result in estimates of the RME. 

(USEPA, 1989c, p. 6-19).  The document then goes on to suggest using the 
95% upper confidence limit of the mean for exposure concentration, the 95th

or 90th percentile for contact rate, the 95th percentile for exposure frequency 
and duration, and the average body weight over the exposure period 
(USEPA, 1989c, pp. 6-19, 6-22).  This guidance is intended to yield an esti-
mate of risk that is both “protective and reasonable.”  USEPA (1991b, p. 2) 
reiterates these suggestions. 

The above type risk estimate is a “conservative” point estimate of risk.
This type of estimate of risk has been frequently criticized for the following 
reasons:

There is no way of assessing the degree of conservatism in this 
kind of estimate (Thompson et al., 1992). 
The input variables may be set to a specific combination that 
will rarely, if ever, occur in reality (Thompson et al., 1992). 
Traditional sensitivity analyses (one-at-a-time-deviations from 
the baseline case) are meaningless for this baseline case since 
many of the input variables are already at or close to their 
maximum values (Thompson et al., 1992). 
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This estimate of risk is often larger by one or several orders of 
magnitude than the 95th percentile of the population risk 
(McKone and Bogen, 1991; Burmaster and Harris, 1993; Cul-
len, 1994). 

Probabilistic Risk Assessment 

Because of the shortcomings of point estimates of risk, most practitioners 
in the field of risk assessment now advocate presenting not only the results 
of points estimates but also the whole distribution of risk and the characteris-
tics of this distribution (Eschenroeder and Faeder, 1988; McKone and 
Bogen, 1991; Thompson et al., 1992; Burmaster and Harris, 1993; Finley 
and Paustenbach, 1994; Smith, 1994; McKone, 1994).  Presenting the distri-
bution of the output variable (risk in this case) and characterizing this distri-
bution is in fact the definition of uncertainty analysis (Iman and Helton, 
1988). Probabilistic risk assessment is simply uncertainty analysis applied 
to a risk assessment model that assumes some of the input variables in the 
model are random variables.

Sometimes the distribution of risk can be derived analytically for simple 
models (Springer, 1979; Slob, 1994).  Usually, however, the distribution of 
risk must be derived by Monte Carlo simulation.  We will give a specific ex-
ample later in this chapter. 

Guidelines for Conducting and Reporting a Probabilistic Risk 
Assessment

Because of the complexity of probabilistic risk assessment, it is impor-
tant to carefully conduct the risk assessment, document exactly how the risk 
assessment was performed, and effectively communicate the results.  Hoag-
lin and Andrews (1975) suggest certain procedures to follow when reporting 
the results of a Monte Carlo simulation.  More recent references specific to 
probabilistic risk assessment include Burmaster and Anderson (1994), Vose 
(1996, Chapter 12), and USEPA (1997).  The following guidelines are based 
on these last three references. 

Conducting a Probabilistic Risk Assessment 

1. Identify the purpose and scope of the risk assessment, and define the 
endpoints. 

2. Create a model or several models for the risk assessment based on 
the three steps outlined in the definition of risk assessment (hazard 
identification, dose-response assessment, and exposure assessment).  
Document the assumptions of each model. 

3. Conduct preliminary sensitivity analyses to determine if structural 
differences (different models) have substantial effects on the output 
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distribution (in both the region of central tendency and the tails).  
For a given model, determine which input variables contribute the 
most to the variability of the output distribution.  If warranted, de-
termine the effects of changing the shape of the input distributions 
and/or accounting for correlations between the input variables 
(Smith et al., 1992; Bukowski et al., 1995; Hammed and Bedient, 
1997).

4. Simplify the Monte Carlo simulation by setting unimportant input 
variables (determined from the previous step) to fixed values. 

5. Develop distributions for important input variables based on avail-
able data and expert judgment.  Document the sources of the data 
sets and what assumptions were used to derive the input distribu-
tions.  Perform goodness-of-fit tests and graphical assessments of 
goodness-of-fit. 

6. Quantify and distinguish between the variability and uncertainty in 
the input parameters.  For important input parameters, it may be nec-
essary to gather additional data to reduce uncertainty. 

7. Perform the Monte Carlo simulations, always recording the random 
number seeds.  Perform sensitivity analyses to determine which vari-
ables or group of variables contribute substantially to the variability 
of the output variable (e.g., exposure or risk).  Distinguish between 
variability and uncertainty in the input parameters (one way to do 
this is to model the input distributions as mixture distributions; see 
Hoffman and Hammonds, 1994 and Burmaster and Wilson, 1996). 

8. Verify the numerical stability of the Monte Carlo simulation results 
by performing at least two simulations (using different starting ran-
dom seeds, of course) or dividing the simulation into non-
overlapping sub-sequences and comparing results. 

Presenting the Results of a Probabilistic Risk Assessment 

1. Taylor the document to the client.  Results presented to a risk man-
ager will include many technical details that are usually omitted for 
presentations to the general public.  Results presented to a risk man-
ager should be detailed enough so that the risk assessment may be 
independently duplicated and verified. 

2. Use a tiered presentation style.  Put the question and results up front, 
put details in appendices. 

3. Use both a histogram and empirical cumulative distribution function 
plot to present the distribution of risk on one page, using identical 
horizontal scales for each plot.  On each plot, identify the mean, the 
95th percentile, and the point estimate of risk based on established 
regulatory guidance.  Accompany these plots with a table of sum-
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mary statistics (e.g., minimum, 5th percentile, median, mean, 95th

percentile, and maximum). 
4. Present and explain the model.  Include all equations, describe all 

terms and their units of measure, and, where appropriate, include 
schematic diagrams documenting the structure of the model.  Outline 
model assumptions and shortcomings.  Document references for the 
model. 

5. Document how each input distribution was selected, including 
sources of any relevant data sets.  Include results of goodness-of-fit 
tests and graphical assessments of goodness-of-fit.  Also discuss the 
relative contributions of uncertainty and variability for each input 
distribution.  For each input distribution, present a plot of the prob-
ability density function and cumulative distribution function on one 
page, using identical horizontal axes for each plot.  Indicate the loca-
tion of the mean on each plot.  Also include a table of relevant statis-
tics for the input distribution, including the minimum, 5th percentile, 
median, mean, 95th percentile, and maximum. 

6. Discuss the results of sensitivity and uncertainty analyses, including 
the effects of changing the shape of input distributions and/or includ-
ing correlations among the input variables, as well as analyses that 
separate uncertainty from variability. 

7. Document the software that was used to perform the Monte Carlo 
simulation, and present the name and statistical quality (i.e., the pe-
riod) of the random number generator used by the software. 

Case Study:  Risk Assessment for Benzene-Contaminated Soil 

In this section we will give an abbreviated example of performing a risk 
assessment based on Thompson et al.’s (1992) model for incremental life-
time cancer risk (ILCR) for children ingesting soil contaminated with ben-
zene.  The model is described in Equation (13.11) and Table 13.2.  A more 
detailed analysis is presented in the ENVIRONMENTALSTATS for S-PLUS

User’s Manual and in the ENVIRONMENTALSTATS for S-PLUS help file Glos-
sary:  Risk Assessment – Using ENVIRONMENTALSTATS for S-PLUS for Prob-
abilistic Risk Assessment. 

Point Estimates of Exposure and Risk 

Using the point estimates of the input variables shown in Table 13.2, the 
point estimates of exposure and risk are about 3  10-8 mg/(kg d) and 8 
10-10, respectively, so the point estimate for incremental lifetime cancer risk 
is about 8 in 10 billion. 
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Command 

To compute the point estimates of exposure and risk using the S-PLUS

Command or Script Window, type the following commands.  First we will 
create a function called exposure.fcn to model exposure, and then we 
will create a function called ilcr.fcn to model incremental lifetime can-
cer risk.  Finally, we will plug in the points estimates of the input variables. 

exposure.fcn <- function(Cs, S.Ing.R, BW, RBA=1, 

DpW=1, WpY=20, YpL=10, CF=1e-006, DinY=364, 

YinL=70) { 

  (Cs * S.Ing.R * RBA * DpW * WpY * YpL * CF) / 

  (BW * DinY * YinL) 

}

ilcr.fcn <- function(Cs, S.Ing.R, BW, CPF, RBA=1, 

DpW=1, WpY=20, YpL=10, CF=1e-006, DinY=364, 

YinL=70) { 

  exposure.fcn(Cs=Cs, S.Ing.R=S.Ing.R, BW=BW,

    RBA=RBA, DpW=DpW, WpY=WpY, YpL=YpL, CF=CF,

    DinY=DinY, YinL=YinL) * CPF 

}

exposure.pt.est <- exposure(Cs=3.39, S.Ing.R=50, 

BW=47)

ilcr.pt.est <- ilcr(Cs=3.39, S.Ing.R=50, BW=47, 

CPF=2.9e-2)

Characterizing the Distributions of the Input Variables 

Figures 13.10 and 13.11 display the hypothesized probability density 
function and cumulative distribution function for the benzene concentration 
in the soil (Cs).  In both of these figures we have added a vertical line to in-
dicate the value of the mean.  (Note that we must use Equation (4.32) to 
compute the mean of the distribution since it has been parameterized in 
terms of the mean and standard deviation of the log-transformed random 
variable.)  The minimum, 5th percentile, median, 95th percentile, and maxi-
mum of the distribution are:  0, 0.7, 2.3, 8.2, and .  You can create pdf and 
cdf plots and compute population quantiles for the other three input variables 
that have associated distributions as well (i.e., for SingR, BW, and CPF).

Menu

See Chapter 4 for examples on how to use the ENVIRONMENTALSTATS for 
S-PLUS pull-down menu to plot probability density functions, plot cumula-
tive distribution functions, and compute quantiles of a distribution. 
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Figure 13.10 Assumed pdf for benzene concentration in soil 
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Figure 13.11 Assumed cdf for benzene concentration in soil 
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Command 

See Chapter 4 for examples on how use the ENVIRONMENTALSTATS for 
S-PLUS Command or Script Window to plot probability density functions, 
plot cumulative distribution functions, and compute quantiles of a distribu-
tion.  Here we will show you how to create the pdf and cdf plots and add the 
line showing the value of the mean.  To create the pdf plot, type these com-
mands. 

pdfplot(dist="lnorm", param.list=list(meanlog=0.84, 

sdlog=0.77), right.tail.cutoff=0.005, xlab="Benzene 

Concentration (mg/kg)", main="Assumed PDF for 

Benzene Concentration") 

avg <- exp(0.84 + (0.77^2)/2) 

f.avg <- dlnorm(avg, 0.84, 0.77) 

segments(avg, par("usr")[3], avg, f.avg) 

points(avg, f.avg, pch=16, cex=1.25*par("cex")) 

mtext("Mean", side=1, at=avg) 

To create the cdf plot, type these commands. 

cdfplot(dist = "lnorm", param.list=list(meanlog=0.84, 

sdlog=0.77), right.tail.cutoff=0.005, xlab="Benzene 

Concentration (mg/kg)", main="Assumed CDF for 

Benzene Concentration") 

F.avg <- plnorm(avg, 0.84, 0.77) 

segments(avg, par("usr")[3], avg, F.avg) 

points(avg, F.avg, pch=16, cex=1.25*par("cex")) 

mtext("Mean", at=avg, side=1) 

Simulating Risk 

Figure 13.12 displays the empirical probability distribution function (i.e., 
the histogram) of incremental lifetime cancer risk based on performing a 
Monte Carlo simulation using the model in Equation (13.11) and the speci-
fied probability distributions and point estimates shown in Table 13.2.  
Figure 13.13 displays the empirical cumulative distribution function.  In both 
of these plots we have identified the mean and 95th percentile of the simu-
lated distribution, along with the point estimate of risk. 

Note that all four variables with assumed probability distributions (Cs,
SingR, BW, and CPF) are assumed to be independent of each other in this 
model.  In reality, soil ingestion rate is probably positively correlated with 
body weight.  The ENVIRONMENTALSTATS for S-PLUS function simu-
late.mv.matrix allows you to specify rank correlations between varia- 
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Figure 13.12 Simulated probability density function of ILCR 
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Figure 13.13 Simulated cumulative distribution function of ILCR 
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bles, but both Smith et al. (1992) and Bukowski et al. (1995) show that for 
many circumstances the shapes of the chosen input probability distributions 
have much more effect on the resultant distribution of risk than does includ-
ing or excluding correlations between the input variables. 

Command 

To produce the simulated distribution of ILCR using the 
ENVIRONMENTALSTATS for S-PLUS Command or Script Window, type these 
commands. 

input.matrix <- simulate.mv.matrix(10000, 

distributions = c(Cs      = "lnorm",

                  S.Ing.R = "lnorm",

                  BW      = "norm",

                  CPF =     "lnorm"),

param.list = list( 

  Cs      = list(meanlog =  0.84, sdlog = 0.77), 

  S.Ing.R = list(meanlog =  3.44, sdlog = 0.80), 

  BW      = list(mean    = 47,    sd    = 8.3), 

  CPF     = list(meanlog = -4.33, sdlog = 0.67)), 

cor.mat = diag(4), seed = 47) 

simulated.ilcr <- eval.expr(ilcr.fcn(Cs, S.Ing.R, BW, 

CPF), data = input.matrix) 

To computed the mean and 95th percentile of the simulated distribution, type 
these commands. 

ilcr.avg <- mean(simulated.ilcr) 

ilcr.95.pct <- quantile(simulated.ilcr, 0.95) 

To plot the histogram of the simulated distribution and add the mean, point 
estimate, and 95th percentile, type these commands. 

hist(simulated.ilcr, nclass = 500, prob = T,

xlim=c(0, 3e-9), xlab="Incremental Lifetime Cancer 

Risk (ILCR)", ylab="Relative Frequency", 

main="Empirical PDF of Simulated ILCR") 

abline(v=ilcr.avg)

abline(v=ilcr.95.pct)

abline(v=ilcr.pt.est)

box()

mtext("Mean", at=ilcr.avg) 

mtext("95%", at=ilcr.95.pct) 
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mtext("Pt Est", at=ilcr.pt.est) 

To plot the empirical cdf of the simulated distribution and add the mean, 
point estimate, and 95th percentile, type these commands. 

ecdfplot(simulated.ilcr, xlim = c(0, 3e-9), 

xlab="Incremental Lifetime Cancer Risk 

(ILCR)",main="Empirical CDF of Simulated ILCR") 

abline(v=ilcr.avg)

abline(v=ilcr.95.pct)

abline(v=ilcr.pt.est)

mtext("Mean", at=ilcr.avg) 

mtext("95%", at=ilcr.95.pct) 

mtext("Pt Est", at=ilcr.pt.est) 

Sensitivity Analysis 

As discussed earlier in this chapter, there are several methods of perform-
ing sensitivity analysis for risk assessment.  For this example here, we will 
simply look at the change in distribution of incremental lifetime cancer risk 
as we let one input variable vary and keep the other variables fixed at their 
point estimates (shown in Table 13.2).  Figure 13.14 displays the original 
histogram for ILCR, along with the four others produced by varying only 
average body weight (BW), benzene concentration in soil (Cs), soil ingestion 
rate (SIngR), or cancer potency factor (CPF) one at a time.  Similar plots 
appear in Thompson et al. (1992). 

Based on these figures, you can see that average body weight (BW) has 
the smallest effect on the variability of ILCR compared to the other three in-
put variables.  Also, the bulk of the distribution based on varying any of the 
other three variables is below the point estimate of risk, with the cancer po-
tency factor (CPF) having the greatest influence. 

Command 

To produce the simulated distribution of ILCR where only average body 
weight (BW) is varied using the S-PLUS Command or Script Window, type 
these commands. 

hist(ilcr.fcn(Cs=3.39, S.Ing.R=50,

BW=input.matrix[, "BW"], CPF=0.029), nclass=100, 

prob=T, xlim=c(0, 3e-9), xlab="Incremental Lifetime 

Cancer Risk (ILCR)", ylab="Relative 

Frequency",main="Simulated ILCR Varying BW") 

abline(v = ilcr.pt.est) 
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Figure 13.14 Sensitivity analysis for the model for ILCR 
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box()

mtext("Pt Est", at=ilcr.pt.est) 

To produce the other histograms, type the same commands but subscript the 
appropriate column from input.matrix.

Uncertainty Analysis 

As discussed earlier in this chapter, there are several methods of perform-
ing uncertainty analysis for risk assessment.  We have already presented the 
simulated distribution of incremental lifetime cancer risk in Figures 13.12 
and 13.13.  The two-sided nonparametric 95% confidence interval for the 
median ILCR is [1.6, 1.7]  10-10, and for the 95th percentile it is [1.3, 1.5] 
10-9.  Figure 13.15 compares the empirical cumulative distribution of ILCR 
based on this simulation with a second simulation.  As you can see, the two 
simulated distributions are virtually identical. 

Empirical CDF of ILCR for
Simulation 1 (Solid Line) and Simulation 2 (Dashed Line)
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Figure 13.15 Comparison of the empirical cdf of ILCR based on two separate simula-

tions with 10,000 Monte Carlo trials 

We could also run another simulation with an increased number of Monte 
Carlo trials, and/or use mixture distributions for the input variables and com-
pare the results with our original simulation.  Both of these methods of un-
certainty analysis are illustrated in the ENVIRONMENTALSTATS for S-PLUS

help file and User’s Manual. 
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SUMMARY 

Human and ecological risk assessment involves characterizing the 
exposure to a toxicant for one or several populations, quantifying the 
relationship between exposure (dose) and health or ecological effects 
(response), determining the risk (probability) of a health or ecologi-
cal effect given the observed level(s) of exposure, and characterizing 
the uncertainty associated with the estimated risk. 
In the past, estimates of risk were often based solely on setting val-
ues of the input variables (e.g., body weight, dose, etc.) to particular 
point estimates and producing a single point estimate of risk, with 
little, if any, quantification of the uncertainty associated with the es-
timated risk.  More recently, several practitioners have advocated 
“probabilistic” risk assessment, in which the input variables are con-
sidered random variables, so the result of the risk assessment is a 
probability distribution for predicted risk or exposure. 
Most risk assessment models follow the form of Equations (13.1) 
and (13.9), where the output variable (risk or exposure) is a function 
of several input variables, and some or all of the input variables are 
considered to be random variables. 
Uncertainty analysis involves describing the variability or distribu-
tion of values of the output variable that is due to the collective 
variation in the input variables.  This description usually involves 
graphical displays such as histograms, empirical density plots, and 
empirical cdf plots, as well as summary statistics such as the mean, 
median, standard deviation, coefficient of variation, 95th percentile, 
etc.
Sensitivity analysis involves determining how the distribution of the 
output variable changes with changes in the individual input vari-
ables.  It is used to identify which input variables contribute the most 
to the variation or uncertainty in the output variable.  Sensitivity 
analysis is also used in a broader sense to determine how changing 
the distributions of the input variables and/or their assumed correla-
tions or even changing the form of the model affects the output. 
Variability refers to the inherent heterogeneity of a particular vari-
able (parameter).  For example, there is natural variation in body 
weight and height between individuals in a given population.  Un-
certainty refers to a lack of knowledge about specific parameters, 
models, or factors.  We can usually reduce uncertainty through fur-
ther measurement or study.  We cannot reduce variability, since it is 
inherent in the variable. 
Sensitivity analysis methods include one-at-a-time deviations from a 
baseline case, factorial design and response surface modeling, and 
Monte Carlo simulation. 
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Uncertainty analysis methods include describing the empirical dis-
tribution of risk, repeating the simulation using a different set of ran-
dom numbers, and using mixture distributions. 
An important point to remember is that no matter how complex the 
mathematical model in Equation (13.1) or (13.9), or how extensive 
the uncertainty and sensitivity analyses, there is always the question 
of how well the mathematical model reflects reality.  The only way 
to attempt to answer this question is with data collected directly on 
the input and output variables. 

EXERCISES

13.1. Suppose five independent random variables have standard nor-
mal distributions.  The sum of the squares of these random vari-
ables has a chi-square distribution with 5 degrees of freedom, 
but suppose you do not know this.  Use Monte Carlo simulation 
to generate a simulated distribution.  Plot the histogram and 
overlay the true theoretical distribution. 

13.2. Simulate the distribution of the product X1X2, where X1 is nor-
mal with mean 10 and standard deviation 2, and X2 is lognormal 
with mean 10 and CV 2. 

13.3. Simulate the distribution of ILCR based on Thompson et al.’s 
(1992) model based on n = 100; 500; 1,000; and 5,000 Monte 
Carlo trials.  Compare the results of the simulated distributions 
and sensitivity analyses. 

13.4. Find a risk assessment model in the environmental literature and 
reproduce the results. 

13.5. Find tables or references that list annual number of deaths by 
cause in the United States (or your country). 

a. Which category accounts for the most deaths? 
b. Has the death rate due to cancer (all forms) increased, de-

creased, or stayed relatively constant over the past 5 
years?  10 years?  20 years?  50 years? 

c. Rank the risk of dying for the following modes of trans-
portation:  airplane, train, automobile, bus, boat, etc.  
Now find a table that gives you the actual risks.  Are you 
surprised?  Were your rankings close to the truth?  If not, 
what do you think influenced your rankings? 
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13.6. When a government agency or the media reports that exposure 
to a particular chemical increases the risk of developing cancer 
by some specific number (e.g., 1 in 1 million), how accurate do 
you think this number is?  What questions would you ask the 
person who came up with this number? 

13.7. This exercise asks you to compare risks and think about the psy-
chology of risk perception. 

a. What is the estimated risk of developing lung cancer dur-
ing your lifetime from smoking cigarettes (say one pack 
of cigarettes/day or some other specified amount)? 

b. What is the estimated risk of dying from cancer or some 
other complication due to radiation exposure from a nu-
clear power plant (given that you live “close” to a nuclear 
power plant)? 

c. What is the estimated risk of dying in an auto accident 
over the course of a lifetime? 

d. Why do you think people are more concerned with dying 
from radiation leakage from a nuclear power plant than 
with dying in an auto accident or dying from the effects of 
smoking (given that you smoke), even though the risk of 
the first is much smaller than the risk of the latter two? 
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