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Preface 

Hydrology pertains to the scientific study of water, especially its movement in 
relation to land. In nature, water may exist in three states ~ solid, liquid, and 
vapour. Water is distributed unevenly; and it is in constant motion in the form 
of clouds, water vapour, as well as surface water bodies, such as rivers and 
groundwater. We are surrounded by water in all directions. 

Various hydrologic processes, such as precipitation, evaporation, 
evapotranspiration, surface runoff, infiltration, and groundwater flow are 
important parameters for quantifying the movement and availability of water 
resources at a given site. For example, many hydraulic structures require 
information about the design flood which cannot be estimated without an in- 
depth knowledge of hydrology. Similarly, for food production, it is necessary 
to measure the crop water requirement for a proper planning of available water 
resources. Measuring evaporation from ground surface would be an uphill 
task unless one has a strong background in hydrology. 

About the Book 
Over the years, the groundwater level has declined significantly in many parts 
of India, and there is a growing concern over how to utilize the groundwater in 
an efficient way. The causes of declining groundwater level, its consequences 
and remedies, combined with the knowledge of groundwater balances, play a 
significant role in hydrology. These issues form the core subject matter of this 
book. 

There are textbooks dealing with various topics related to hydrology. 
However, considering the present requirements regarding applied hydrology 
for emerging field problems, these books lack the much-needed rigour. 
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Engineering Hydrology is a step forward towards fulfilling the present-day 
needs of graduating engineers. 

Content and Coverage 
The book comprises eleven chapters, of which the first seven chapters deal 
with surface water hydrology, while the remaining deal with groundwater 
hydrology. 

Chapter 1 deals with the fundamental topics of hydrology - water resources, 
hydrological cycle, water availability, and water balance. 

Chapter 2 contains a detailed discussion about the elements of hydrologic 
cycle which comprises precipitation, infiltration, evaporation, and runoff. 
Stream flow measurements techniques are also discussed in this chapter. 

Chapter 3 covers hyetographs and unit hydrograph derivation used for design 
flood computations as well as techniques to develop S-curves that are used to 
make hydrograph applications more flexible. It also covers a few popular 
conceptual models used for flood hydrograph derivations. 

Chapter 4 deals with simulation and synthetic methods in hydrology. 
Advanced topics, such as Monte Carlo simulation and generation of random 
numbers using different distributions have been discussed in this chapter. 

Chapter 5 throws light into the intricate details of rainfall-runoff relationships 
and different methods of flood routing. 

Chapter 6 discusses statistical methods in hydrology. This chapter covers 
different types of distribution, error analysis, handling of data, and prediction 
of certain hydrologic processes with a certain degree of accuracy. 

Chapter 7 contains an exhaustive discussion on flood frequency analysis. 
Different methods of parameter estimation including the probability of weighted 
moments (L-moments) are covered in this chapter. 

Chapter 8 covers the fundamentals of groundwater flow. It also provides a 
basis for understanding the hydraulics of flow through porous media. 

Chapter 9 deals with well hydraulics including abstraction of water not 
only from individual wells but also from a well field. 

Chapter 10 includes the significance and applicability of groundwater 
budgeting. A keen effort has been made to enable the students to perform 
basic computations related to groundwater budgeting. 

Chapter 11 introduces the use of numerical methods to deal with situations 
where analytical solutions are not feasible. The functionalities of Visual 
MODFLOW, the widely used software to calculate groundwater budgeting, 
are discussed in this chapter. 
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All the chapters contain a variety of examples, which will motivate the 
students towards practical applications. With such a wide coverage of concepts 
which form the part of this textbook, it is expected that the students will be 
better equipped to address various engineering problems related to hydrology. 

C.S.P. OJHA 
R. BERNDTSSON 

P.K. BHUNYA 
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CHAPTER 

a 
Hydrology and 

Water Kesources 

1.1 INTRODUCTION 

The objective of this chapter is to give an easily comprehensible introduction 
to hydrology and water balance calculations for engineering students and 
practitioners. The text has been compiled in order to give a holistic view of the 
water environment, ie., hydrology seen as the water carrier in nature with 
human influence. The main hydrological components are treated with simple 
calculation methods to quantify water balances and mass transport. 

Water is a chemical union between hydrogen and oxygen. Water is unique 
in the sense that it can exist in three phases at almost the same temperature: 
solid state (ice), liquid, and gas (water vapour). On Earth, about 2/3  of the 
surface is covered by water and about 1/3 by land. Water is a prerequisite for 
all known forms of life. A biological cell is usually made up of at least 70% 
water. Humans contain 55-60% water by weight (men about 60% and women 
about 5 5%). 

1.1.1 Importance of Water 
Water is a basic, natural resource for agriculture and industry. Water has always 
been intimately linked with human development, and its role is considered 
crucial for the transition of men from hunters to farmers. The earliest known 
human civilizations were developed at places having stable and regular access 
to water, e.g., the Nile valley, the Euphrates and Tigris, and the Indus valley. 
The river water provided water supply, food, fertile sediments, and easy 
transportation. Later, the water became a prerequisite for industrial development 
through the production of hydropower (mills, steam engines, etc.) and 
transportation routes. Consequently, for both agriculture as well as industry, 
water has become a key component as a natural resource, energy producer, 
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solvent, and transporter. In many developed countries, people have constant 
access to water of good quality, and water is an indispensable component of 
clean outdoor environment. Water has, however, many other societal functions, 
and in many arid (dry) and semi-arid countries, lack of water is a limiting 
factor for economic and social development. 

Water is a prerequisite for life, but it also creates many problems. Water- 
borne diseases (malaria, bilharzia, etc.), floods, as well as droughts cause 
innumerable casualties in excess of those due to all other disasters. About 
1.2 billion people have to drink unhygienic water. This results in 5 million 
deaths every year. Proper management of water is, therefore, related not only 
to drinking water and a clean outdoor environment, but also to developments 
in public health, and social and economic development. Thus, the study of 
water is strongly interdisciplinary because all major societal areas and scientific 
disciplines are related to utilization of water resources. 

1.1.2 Human Influence 
Hydrology is associated with the circulation of water in nature and the human 
influence on this system. The water transport can be conceptualized as a 
combination of the natural circulation in an exterior system and an inner man- 
made system where humans tap water from the outer system and return it back 
after shorter or longer use, unfortunately quite polluted. In the natural water 
system, changes occur slowly (except in cases of natural disaster). The human 
influence, however, is now so large that even the exterior system is being 
affected significantly. Acidification of water resources and global warming 
are glaring examples of the damaging effect of human influence on nature. 
The entire water and energy system, with its exterior natural part and 
inner human-regulated part, is extremely complex and difficult to analyze. 
Figure 1.1 shows the two components and the transport of water from the 
natural system to and within a typical human community (after Anderberg, 
1994). To supply the community’s residents with water, a water supply source 
is connected to a water treatmentplant. Consequently, water is taken from the 
natural system to the man-made water system. The water supply sources are 
open water reservoirs such as a large river or a lake. 

1.1.3 Civic Use 
However, the water supply can also come from groundwater, through a drilled 
or dug well. To secure a continuous supply, a reservoir is built that helps to 
even out seasonal differences in water availability, e.g., long dry periods during 
surnmer and snow melt and high flows during spring. A reservoir can be built 
by damming up a river in a suitable location so that an artificial lake is created. 

From the reservoir, water is taken to the treatmentplant where it is properly 
treated in order to make the water drinkable. After treatment, the water is sent 
through pipes to households and consumers. However, problems may arise 
because the use of water is extremely variable during the day. The quantity of 
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Precipitation 

Reservoir 

Hydropower, flood 
control, irrigation 

Lake 

Recreation, 
ecological 

values 

Fig. 1.1 Circulation of water through an exterior natural and an inner 
man-modified system (afler Anderberg, 1994) 

water used in households and industry during the night-time is relatively low; 
but water usage peaks, especially during morning and evening hours. To cope 
with such large daily variations, a short-term reservoir, usually a water tower, 
is built somewhere in between the consumer household and the treatment plant. 
The objective of the water tower is to keep as much water stored as is needed 
to cope with temporary consumption peaks without changing the production 
rate of the treatment plant. From the water tower, water is then distributed to 
consumers. Because the water is under constant pressure (from the water stored 
in the tower), continuous flow is provided to the water taps. The quantity of 
water consumed for drinking and cooking is considerably less in comparison 
to the quantity used for washing (rinsing soap, detergents, and washing powder), 
and flushing waste from the kitchen, toilet, and bathroom. 

Water used in the kitchen, toilet, and bathroom is discharged from the 
buildings through common pipes. If the polluted water is discharged directly 
to the recipient (such as lakes and rivers) without treatment, it usually leads to 
serious deterioration of the ecological life in the water body. At the same time, 
the water becomes more or less unusable for downstream residents. Nowadays, 



4 Engineering Hydrology 

the polluted water is usually treated in a sewage treatment plant before it is 
lead to the recipient. However, along with the sewage water from households 
and industry, storm-water (rain water from impermeable areas such parking 
lots, roofs, etc) also goes to the treatment plant in combinedsewerpipes (which 
have sewage and storm-water in the same pipes). This is especially the case 
for the older central areas of cities built before the 1960s. Cities that are built 
after 1960s sometimes have separated sewerpipes (sewage water and storm- 
water in different pipes) instead, which direct the sewage water to the treatment 
plant and storm-water directly to the recipient without any treatment. Manholes 
and drains, which collect storm-water and lead it to recipients in order to avoid 
flooding problems after heavy rainfall, can be seen along the paved streets in 
some cities. However, storm-water, which has flushed off roofs, parking lots, 
and streets, can often carry quite a large pollution load from petrol, oil, heavy 
metals, sediments, etc. If a heavy rainfall occurs during a period of heavy 
water consumption in households and industry, the combined sewer system 
(sewage and storm-water in the same pipes) can be flooded and the polluted 
water may have to be discharged directly to the recipient without treatment 
(combined sewer overflow) in order to avoid serious flooding. 

1.1.4 Environmental Fallout 
Water is also used for other purposes. A major water consumer is agriculture. 
About 80% ofthe global water consumption is used in agriculture and irrigation 
of crops. To feed the human population, cereals and vegetables must be 
produced; and fertilizers, pesticides, and herbicides are to be used to keep the 
insects from destroying the crops. Heavy rainfall and irrigation water can then 
flush the soil and transport the fertilizers and pollutants such as nitrogen (N) 
andphosphorous (P) to nearby streams and lakes. Eventually, these will be 
transported to the sea, resulting in eutrophication, algae, and pollutant problems. 

Evaporation occurs from water surface (and even from land surface). 
Precipitation closes the hydrological cycle. The evaporation mainly transports 
pure water, so substances in runoffaccumulate in the sea, either as sediments 
in the sea bottom or as dissolved matter in the sea water. Precipitation forms 
runoff, and we are back to where we, began in the water supply and reservoir. 
The reservoir is a simple construction where the water is dammed by concrete 
obstruction in the water course itself (dam building). The water level upstream 
from the dam can then be regulated by releasing more or less water through 
gates or over a variable dam crest level. The difference in height between the 
upstream and the downstream water level can also be used to generate electricity 
in a hydropower plant. Reservoirs can be exclusively built for hydropower 
production, or they can combine this function with the control of water supply, 
irrigation, and/or flood protection. 

As mentioned above, the total water system is very complex. If the objective 
is to improve the water environment, this cannot be achieved by improving the 
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situation only in a part of the total system. The continuous circulation of water 
means that all parts are connected in one way or another. The water quality is 
affected by all the components related with the system. Problems in hydrologic 
engineering therefore cannot be solved without regarding the entire system. 

The hydrological circulation and transportation of water as depicted in 
Fig. 1.1 also helps to envisage how a pollutant may be transported. Water 
itself is the most important transporter of chemical substances as well as 
biological organisms. Thus, knowledge about the hydrological circulation and 
transportation of water will empower us to stop potential pollutants from 
contaminating the system. With suitable assumptions, it is also possible to 
make predictions about the future of a pollutant. This may be a frequently 
done task for the hydrologic engineer. 

1.2 HYDROLOGICAL CYCLE 

The hydrological cycle is the most important carrier of water, energy, and 
matter (chemicals, biological material, sediments, etc), locally and globally 
(Fig. 1.2). The hydrological cycle acts like an enormous global pump that is 
driven mainly by two forces; solar energy and gravitation pull. Humans have 
ingeniously utilized this global and free pump to get irrigation water and to 
draw power from the enormous amount of energy that this cycle represents. 

Precipitation 
over the sea 

Fig. 1.2 
The incoming solar energy forces water to evaporate from both land and 

sea. Much of this vapour condensates and falls directly over the sea surface 
again (globally about 7/8 ofthe rainwater falls over the oceans). The remainder 
of the rainwater falls over land (globally about US), and it falls asprecipitation 
(rainfall, snow, andor hail). This forms runoffas creeks, rivers, and lakes on 

The hydrological cycle (after Bonnier World Map, 1975) 
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the soil surface. A major part, however, infiltrates through the soil surface and 
forms soil water (water in the upper soil layers above the groundwater table, also 
called the unsaturatedzone) that may laterpercolate (deeper infiltration) down 
to the groundwater (groundwater zone also called the saturated zone) level. 

In the ground, water can also be taken up by plant roots, and evaporate into 
the atmosphere through transpiration (evaporation through the plant leaves 
by plant respiration) or by direct evaporation from the soil. The total evaporation 
from both soil and plants is called evapotranspiration. 

1.2.1 Carrier for Pollutants 
The global cycle of water transports different types of chemical, biological, 
and sediment matter. Finally, these may be deposited in the sea because this is 
the lowest point in the system. If the release point for these constituents is 
known, it is often possible to predict the transport path by studying the local 
hydrology in the area. This is due to the fact that the pollutant often follows 
the same path as the water. However, chemical and/or biological transformation 
may also affect the pollutant. 

Humans influence and change the general hydrological cycle to a great 
extent. Activities in the landscape directly affect the different components of 
the hydrological cycle. The chemical content of different hydrological parts is 
also increasingly affected by various activities such as industry, agriculture, 
and city life. Yet, the total amount of water on earth is constant. Water is 
neither created nor is disappearing from earth. However, the content of various 
biological and chemical elements can fluctuate, depending on the location of 
the hydrological cycle (Fig. 1.3). 

1.2.2 Turnover Time 
Only a fraction of the total water volume is fresh water (about 2.7%). And, a 
major part (2/3) of this fresh water is located around the poles as ice and 
glaciers. The total amount of fresh water resources is consequently limited, 
and desalination of seawater is still an expensive process. The water contained 
in different components (shown in Fig. 1.3) is continuously exchanged due to 
the constant movement of water. 

The theoretical turnover time indicates the average time that it takes for the 
water volume to be exchanged once. For some components, e.g., water in rivers 
and atmosphere, the turnover time is very short, about one week (Table 1.1). 
This also indicates the theoretical transport time for pollutants released in 
various parts of the water cycle. A pollutant that accumulates on the glacial 
ice would theoretically surface again after about 8000 years (Table 1.1). A 
pollutant released in the atmosphere or a river would be flushed out after about 
a week. However, the average turnover is theoretical, and assumes that the 
pollutants are not adsorbed or transformed by biological and geological media 
through which they are transported. In any case, the turnover time can give a 
rough estimation in order to understand transport velocities in different parts 
of the hydrological cycle. 
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Ice caps and glaciers I 24 

Atmosphere (0.001%) 

Lakes, rivers, etc. (0.009%) 

1.7 8000 

Groundwater, soil water (0.62%) 

Lakes 

Ice caps and glaciers (2.04%) 

0.3 0.02 10 

Fig. 1.3 The global distribution of water in different hydrological parts 
(a f e r  Bonnier World Map, 1975) 

Surface water 

Table 1.1 Average turnover time for water in different hydrological parts 

0.001 0.0001 1 week 

Hydrological part I Volume (lo6 km3) I 96 I Turnover time bear) I 
Oceans I 1370 I 94.2 I 3000 I 
Groundwater I 60 I 4.1 I 5000 I 

Soil water I 0.1 I 0.006 I 1 I 
Atmosphere I 0.01 I 0.001 I 1 week I 

Consequently, the turnover time may give a rough but general idea of how 
quickly a water particle may travel through a water body. This can be compared 
to a more detailed picture as seen in Table 1.2. The table shows typical velocities 
by which a water molecule or a pollutant travelling with the same speed as 
water may travel. Note that these values are based on approximation. Large 
variations may be expected, depending on the hydrological situation, the 
hydraulic conductivity of the geologic medium, etc. 
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Soil water (vertical) 

Table 1.2 Typical average velocity for a water molecule 

- 1-3 miyear 
Moraine close to soil surface 1-10 miday 

I Water body I Soil type I Water molecule velocity I 

1 m depth 0.1 miday 
Deep 0.01 miday 

Humans interact with the natural hydrological system by diverting water 
for different activities. A major part of this water, about 80% on a global scale, 
is used for irrigation and production of agricultural products. The remaining 
20% is used for industrial needs and domestic water supply. Figure 1.4 shows, 
in a schematic way, how water is used in households. It is seen that for a rich 
and developed country, a very small part (about 3%) is used for direct 
consumption (drinking water and cooking).The remaining part is used for 
sanitation purpose. For a poor country in the developing world, average per 
capita water consumption may be only 20 liters a day. The UN recommends 
that people need a minimum of 50 liters of water a day for drinlung, washing, 
cooking, and sanitation. 

Creek 
River 

Industrialized country, 220 Vday 

Cracked bed rock 0-10 miday 
- 0.1 m/s = 10 kmiday 

1 m/s = 100 W d a y  - 

Developing country, 20 I/day 

Fig. 1.4 Domestic water consumption (afcer Bonnier World Map, 1975) 

1.3 CLIMATE AND WATER AVAILABILITY 

As mentioned earlier, the global influx of solar energy is the main driving 
force of the hydrological cycle. The greater the influx of solar energy, the 
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more water can evaporate over a specific area. And greater the evaporation, 
greater will be the water available for precipitation. The great effect of the 
solar influ is modified by the general atmospheric circulation. Winds from 
ocean bring moist air to land where 
precipitation occurs. Evaporation also 
occurs from land. The major influx of 
solar energy occurs along the equator 

dicular to the soil surface at the equator. 
At higher latitudes, the solar influx falls 
at an oblique angle to the soil surface 
and over a larger area and thus brings Solar inJux (radiation) 
less energy. 

The moist air at the equator is warmed up by the solar influx, and due to 
density differences, a strong vertical uplift of the air occurs. This phenomenon 
is called convection. Convection is the result of the rising of expanding warm 
air of less density as compared to the surrounding cooler and denser air. The 
rising air parcels induce the flow of fresh air from the sides replacing the 
rising air. This gives rise to a general global atmospheric flow that, to a great 
extent, distributes air and precipitation over the entire globe. 

Due to the rotation of earth, this general global atmospheric pattern is split 
up into six smaller atmospheric cell systems (Fig. 1.6). The whole system is, 
however, driven by the equatorial solar influx of energy. The friction between 
the cells (the cells are moving approximately as six inter-connected cogwheels) 
drives the circulation from the equator to the polar areas. 

(Fig. 1.5). The solar influx falls perpen- Earth 

Fig. 

Humid 

Fig. 1.6 The global atmospheric circulation with six main 
cell systems (Arrows indicate cell rotation 
direction) (after Whipple, 1984) 
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The atmospheric flow moving over ground surface can potentially take up 
moisture. When moisture in the air is driven up in to the upper part of the cells, 
the air is cooled off and precipitation may occur. Cooler air can hold less 
moisture as compared to warn air. The air in the upper part of the cell is then 
driven down again to the lower part of the cell. This air, however, does not 
contain any moisture. In tum, these down-tuming cell areas with no moisture 
can explain much of the dry areas of the globe. The equator area as well as the 
tropics of Cancer and Capricorn have a large excess of precipitation. Areas 
where the dry cell air is descending to the ground contain the great deserts of 
the world: the Sahara and Taklamakan in the northern hemisphere and the 
deserts of Australia in the southern hemisphere. Further up towards the poles, 
the cells again bring rising moist air that precipitates over the temperate areas 
(e.g., northern Europe, North America, and southern South America). These 
areas have an excess of precipitation. However, this general precipitation 
pattern, is modified by local precipitation mechanisms. 

The precipitation and therefore the availability of water also vary for different 
time scales. In general, precipitation and temperature may vary in the same 
manner. Higher the temperature, higher would be the evaporation (provided 
that there is water to evaporate). The precipitation at a single location is, 
however, difficult to predict because it depends on local conditions and local 
wind systems that modify the general large-scale atmospheric circulation. This 
also makes it very difficult to predict how precipitation will look after a hundred 
years from now. Figure 1.7 shows an example of how the monthly precipitation 

Precipitation (&month) 

Time (year) 

Fig. 1.7 Monthly precipitation in Lund, Sweden, between 1750 and 
2000 
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has looked in Lund, Sweden, for the last 250 years. It is rather evident that the 
monthly precipitation can vary widely between 0 to 200 mrn per month. At the 
same time, it is difficult to see if there is any long-term trend (general increase 
or decrease with time). 

In general, the temperature and also the precipitation pattern are governed 
by both atmospheric and oceanic circulation. In short, the total energy balance 
over a specific area decides the general climate. 

1.4 WATER BALANCES 

The basis for availability and general transportation of water and pollutants 
for a specific area is called the water balance or mass balance equation or 
continuity equation. The water balance equation, in general, stipulates that all 
inflow minus all outflow to an area during a certain time period must be equal 
to the storage changes. 

I - 0 = dSfdt (1.1) 
where, I is all inflow, 0 is all outflow, and dS is storage changes that occurred 
during time period dt. For a specific area and a specific time period, the water 
balance equation can be written as: 

P ~ Q ~ E = AS (1-2) 
where, 

P = precipitation 
Q = runoff 
E = evaporation 

AS = change in storage 
Usually, the unit for water balance is &time ( e g ,  &month or &year). 

But, it can also be expressed in volume (for a specific period) or volume per 
time. The change in water storage (AS) will modify the total water storage (S) 
of the area. All the water that enters or leaves an area can be represented by 
these terms. 

The precipitation (P) is the amount of water that falls as rain, snow, andor 
hail. The runoff or discharge (Q) is the water that appears as surface water 
such as water in creeks, rivers, andor lakes. The evaporation (E) can usually 
not be seen, but after condensation of the water vapour, we see the water as 
cloud drops. The total evaporation includes both evaporation from soil and 
water surfaces as well as transpiration from plants. The change in storage (AS) 
can be many things. It may be water that does not go directly as runoff. This 
may be snow andor ice. It can also be infiltrating water that will appear as 
delayed runoff, andor water that will percolate to the groundwater table, andor 
water that will evaporate a little later. 
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1.4.1 Role of Water Balance Equation 
The water balance equation is used for many basic analyses of water availability 
in an area, e.g., to find out how much water is available that can be used for 
drinking purpose or irrigation. This part is usually constituted by Q, i.e., runoff. 
The components of the water balance equation look different for different 
climatic conditions. It is logical that the total evaporation in warm areas is 
much larger as compared to cooler areas. Figure 1.8 shows, in a schematic 
way, an example of water balances for three different types of climatic 
conditions. 

As seen in Fig. 1.8, the storage term (AS) is missing. This is due to the fact 
that for average values over longer time periods (e.g., several years) or over 
periods corresponding to multiples of a year, the storage is more or less likely 
to be constant. Thus, storage changes will be close to zero. We can, therefore, 
write the water balance equation as: 

P - Q - E =  0 (1-3) 
This simplifies the calculations because there is one term less to determine 
when, for example, estimating available water (Q) for an area. The reason 
why the storage term can be assumed zero for longer periods is examplified in 
Fig. 1.9. When looking at the storage term of the water balance for a typical 
area over several years, it is usually noticed that it behaves in a periodic manner 
with a frequency equal to one year. That is, the typical period is one year and 
it is seen over many one-year periods that the change in storage is approximately 

Tropical rain 
forest (Equator) 

Arid area (Tropic Temperate area 
of Cancer) (High latitude) 

P = 3600 &year 
E = 1800 &year 
Q = 1800 &year 

P = 500 &year 
E = 400 mdyear 
Q = 100 &year 

P = 800 &year 
E = 400 mdyear 
Q = 400 &year 

Fig. 1.8 Example of water balances for three different types of climatic 
conditions 
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Y 
Q 

Fig. 1.9 The storage term (AS) co-varies withprecipi- 
tation and runoff in a cyclical manner over 
the year 

A 

h 
zero. This means that in water balance calculations involving a minimum of a 
one-year period, the storage term can be assumed to be zero (AS = 0). 

1.4.2 Catchment Area 
Water balances are usually calculated for a specific area, which is called the 
catchment area (also called as drainage basin, discharge area, precipitation 
area, and watershed). A catchment is defined as the area upstream from a 
certain point in the water course that contributes to flow when precipitation 
falls. The size of the catchment depends on where this point is located in the 
stream and its topography or altitude situation. 

In general, water flows from upper-lying areas to lower-lying areas in the 
catchment due to gravity. The area of the catchment is determined by the water 
divide (Fig. 1.10). The water divide is constituted by hills and peaks in the 
landscape over which the water cannot flow. Consequently, the catchment is 
completely surrounded by the water divide on all sides. All precipitation that 
falls within the catchment border (water divide) will tend to flow towards the 
lowest-lying point of the area which is the outflow point for the entire catchment. 
Some water, however, will infiltrate into the ground and become soil water or 
groundwater and be transported very slowly to the outflow point. Some water 
will never reach the outflow point because of evaporation. But, water reaching 
the outflow point must have come from the area within the catchment border. 
Consequently, other material and constituents transported by water, such as 
pollutants and nutrients that could come in contact with the water, will also 
reach the outflow point. 
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~ River Discharge point from 
catchment 

Fig. 1.10 The water divide surrounds the catchment area and is  defined 
by the topographical pattern 

From a topographical map (map with altitude levels) as in Fig. 1.10, the 
catchment area for a certain point in a stream can be determined. By following 
the altitude levels on the map, i.e., the highest points in the landscape (e.g., 
hills or mountain ridges) upstream from the point, one will eventually come 
back to the starting point, but on the other side of the water course. The water 
divide will always run perpendicular to the altitude levels on the map over the 
high peaks and ridges. 

Usually, an outflow point is chosen so that it coincides with a location where 
water level or discharge measurement is performed. Once the catchment area 
is defined, it is possible to determine water balances for the area upstream 
from the discharge point. It is usually assumed that the water divide for the 
surface water coincides with the groundwater divide. This is usually the case; 
however, for some geological situations, (Fig. 1.1 l), the underground material’s 
hydraulic conductivity (rate ofpermeability) can result in some discrepancies. 
For hydrologic engineering calculations it is often assumed in a relevant way 
that both surface water and groundwater follow the same water divide. 
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(b) 

River Catchment area 

Bedrock 

Soil surface 

Groundwater table 

Annual average dischaTe 
(m3/s) 

Fig. 1.11 Example of a geo,,gical situation when the surface water divide 
does not coincide with the groundwater divide, (a) shows the 
case when the surface water and groundwater divide coincide, 
and (b) shows the case when the surface water and ground- 
water  divide do not coincide ( the underlying bedrock 
determines the groundwater divide instead) (Source: Grip and 
Rodhe 1991) 

Jenisej 
Mississippi 
Orinoco 

The world’s largest catchment is the Amazonas in South America (Table 1.3). 
Every 5th second, 1 Mm3 of water is discharged into the Atlantic from this 
gigantic river. This represents 20% of all the world’s freshwater discharge 
from land areas. The largest river in India is the Brahmaputra with an average 
discharge of almost 20,000 m3/s. 

Table 1.3 The largest rivers in the world with catchment areas 

2,590,000 17,400 
3,221,400 17,300 

880,600 17,000 
Lena 
Parana 
St. Lawrence 
Irrawaddv 

Amazon 7,180,000 220,000 
Kongo 4,O 14,500 39,600 
Yangtze 1,942,500 22,000 
Brahmaputra 935,000 19,800 t Ganges 1,059,300 18,700 

2,424,200 15,500 
2,305,100 14,900 
1,289,800 14,200 

429.900 13.600 
Ob 
Mekong 

2,483,800 12,500 
802,900 1 1,000 
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dm3/s 
dm3/skm2 

1.4.3 Hydrological Data 
To do a more detailed hydrological and environmental study, it is usually 
necessary to divide larger catchments into sub-catchments (smaller runoff 
catchments within the larger ones). This is done in the same way as above by 
defining smaller areas delimited by smaller water divides. In doing so, a more 
detailed picture can be obtained about water and environment problems of 
specific areas. Hydrological information can usually be found in national 
weather, hydrological, geological, and environmental surveys. Also, regional 
centers for water supply, hydropower, and/or irrigation usually keep 
hydrological data records. However, hydrological data can often be found at 
research centers, universities, river basin organizations, and various kinds of 
NGOs as well. Using this information, it is possible to find catchment discharge 
and use it, for example, to estimate the available water resources or pollutant 
transport. 

Table 1.4 shows an example of a typical discharge statistics from a catchment. 
This type of information is typically necessary in order to estimate availability 
of water resources, the size of reservoirs, flood estimation, pollutant transport, 
etc. From the table, it is seen that the discharge is given both as dm3/s and in 
dm3/(s h2), i.e., runoff per unit area (h2) within the catchment. It is also 
possible to see the duration of a specific flow (i.e., how many days per year), 
expressed in % of the total time that a certain runoff value is exceeded. This 
information is needed in order to decide the size of a reservoir to prevent 
flooding. Different minimum and maximum values (for different years and 
different months) for runoff are also given in the same table. This type of 
information is useful to determine if a certain organism with specific flow 
requirements would be able to survive in the water course (e.g., during dry 
summer months). 

Table 1.4(a) Example of discharge statistics that can be used to solve water 
resources problems 

Maximum Mean Minimum Duration 

max mean max mean min mean min 1% 50% 75% 95% 

3208 1573 477 287 159 23 8.0 1612 119 46 21 
62 30 9.2 5.5 3.1 0.45 0.15 31 2.3 0.880.40 

dm3/s!un2 

days/year 

Table 1.4tbI Mean duration of runoff 1965-1990 

0.5 1 2 3 4 5 6 8 10 15 20 25 50 75 100 150 200 

334 252 195 165 149 136 119 87 66 38 14 6 0 - - - - 
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Table 1.4(c) Monthly and annual values of discharge and max and min values 
for the year in dm3/s 

Hydrologic information can also be published as maps of water balances for 
each month or average values as isolines (line joining points of equal values), 
e.g., isohyets (line joining points of equal precipitation on a map) for 
precipitation as exemplified in Fig. 1.12. The figure shows average precipitation 
in India. From maps like these, it is possible to get a quick overview of the 
water balance on an average for different areas in the country. 

1.4.4 Role of Hydrological Engineer 
Typical tasks of a hydrological engineer may be to estimate how much water 
or quantity of a specific pollutant is at hand at a specific location and time. 
This is an unusually concrete and specific question. More commonly, the 
contractor may provide the hydrological engineer with information on how to 
improve the flood situation or water environment in an area. To do this, the 
hydrological engineer has to create a logical map of what is governing the 
water environment of that particular area. Probably, first of all, the hydrological 
data and the land use information of the area have to be gathered. How much 
is the quantity of water and pollutants that enters and leaves the area? The 
hydrological engineer must find an answer to this question. 

To solve this task, there is a set of commonly used calculation methods and 
techniques. These are mainly empirical methods, i.e., methods based on 
observations of water and material flows at various locations (usually not the 
specific location, one is interested in) during shorter or longer periods. These 
observations can be used to estimate the specific water and material balances 
for the area in question under given assumptions. The calculation methods are 
thus more or less based on physical quantities (conceptually imitating reality) 
and therefore be interpreted with great care. Most calculation techniques are 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct N O ~  Dec Year Max Min 
~~~~~~~~~~~~~~~~ 

196.5 411 311 17.5 222 369 166 77 37 72 36 66 604 212 1182 8 
1966 46.5 622 8.51 1181 883 370 12.5 106 139 118 130 74.5 477 2028 72 
1967 8.50 903 790 689 38 217 92 54 62 98 106 4.54 390 1706 21 
1968 1135 889 6.59 4.57 213 53 78 32 28 80 2.52 230 341 22.56 21 
1969 316 472 238 279 463 199 76 54 46 23 118 3.5 191 736 21 
1970 34 26 599 214C 71.5 211 29 43 69 68 261 724 411 3208 20 
1971 302 668 4.52 488 119 119 7.5 33 21 24 43 8.5 199 1.518 21 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

1972 57 124 372 533 283 238 100 5 8  3.5 16 44 57 1.59 1034 8 
1973 70 302 500 409 263 96 46 4.5 32 30 2.5 29.5 17.5 848 8 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

1974 713 743 354 95 45 34 35 22 37 106 SO8 1012 307 1512 21 
197.5 107t 750 453 632 286 110 SO 47 48 54 55 52 299 1274 34 
Mean 494 528 495 648 367 165 71 48 54 59 146 390 287 3208 8 

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ 

-- - - ------ ------ 
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Fig. 1.12 Precipitation isohyets in mm/year in India 
(Source: Indian Meteorological Department 2007) 

built upon simplifications of natural processes. It is, therefore, not evident that 
more or less general calculation techniques are valid for the specific area in 
question. 

The most important task for the hydrological engineer is not to calculate 
some numbers for the above area but to interpret these numbers for the 
contractor. The interpretation is dependent upon what assumptions were made 
before the calculations, the degree of simplification, and the amount of 
background information acquired for the specific location. 

Hydrological engineering can be said to be a typically empirical (based on 
observations in nature) science and not an exact science. This is obvious when 
numbers have to be estimated for water volumes entering an area under study. 
At the same time, typical questions from a contractor regarding hydrological 
problems are: (i) amount of pollutants, (ii) duration of flooding, (iii) frequency 
of flood, etc. Due to this, it is almost impossible to give any exact answers. 
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It is more important to try to give a reasonable interval for the answer to the 
questions. Primarily, all hydrological calculations should be seen as a method 
toJind a reasonable order of magnitude and/or internal and not a single number 
to falsely represent an absolute correct answer because this does not exist. 

The calculation methods in this text book are commonly used techniques 
that a hydrological engineer may use to solve practical problems. None of 
these methods give correct and definitive answer. Instead, every calculation 
must be complemented by assumptions made in the calculations. 

Studying hydrology as an engineering subject means the emphasis is put on 
solving practical engineering problems involving different hydrological and 
environmental issues. The problem-solving also involves other aspects as listed 
below. 

0 Engineers often have to solve problems that are not well-defined by the 
contractor. Thus, more often than not, the engineer has to help himself or 
herself to formulate the correct questions. This involves finding the correct 
information or data which are required to solve the problem. For this reason, 
several assumptions and clarifications have to be made before the actual 
problem-solving can start. Each problem is therefore dependent on the 
starting assumptions that were made from the beginning, and these have 
to be clearly stated for every solution of a problem. The same problem 
may have several solutions depending on what assumptions were made. 

0 All engineering calculations and especially those involving hydrology, 
include uncertainties and errors. For this reason, all solutions to a problem 
should be given with an uncertainty interval. Especially, it is necessary to 
point out what factors can affect the final results. Calculations in 
hydrological and environmental problem-solving must not be given with 
unnecessary high (or low) numerical accuracy. 

The components of the water balance are often given in different units 
depending on what part ofthe balance is in question. For example, precipitation 
is given in &day, &month, or &year; while runoff is usually given in 
I/s, dm3/s, dm3/(s km2), m3/s, m3/month, m3/year, etc. When working with the 
water balance equation of a specific area, it is important to use the same unit in 
the equation. Some examples on how to use the water balance to solve some 
typical basic problems are discussed below. 

SUMMARY 

In this chapter, the basics of hydrology and the water balance and its components 
have been discussed. The water balance equation is the mass balance of water 
for a particular catchment. It states that all inflows of water to the catchment 
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area minus all outflows from the catchment area during a certain time period 
must be equal to storage changes inside the catchment. For average values 
over longer periods, the storage change term may be set to zero. 

The catchment is defined by the water divide and the area upstream fi-om a 
certain point in the water course that contributes to flow when precipitation 
falls. The water divide may not always be the same for surface water and 
groundwater. In such cases, an error may be introduced in the water balance 
estimation. Hydrological information may be obtained from national and 
regional hydrological, meteorological, geological, and environmental surveys 
and agencies. Also, research institutes, universities, and NGOs may be able to 
provide usehl hydrological information and data. 

SOLVED EXAMPLES 

Example 1.1 
above has a catchment area of 200 ha. What is the average runoff? 

Solution 
From Table 1.4(a), mean value of average characteristic discharge 

A sub-catchment within the Blue River Basin in Table 1.4 

= 5.5 dm3/(s km2) 
= (5.5/103) m3/(s km2) 

Sub-catchment area = 200 ha = 200 x lo4 m2 = 200 x lop2 km2 
Mean runoff = characteristics value of discharge x sub-cathchment area 

= (5.5/103) m3/(s km2) x 200 x lop2 km2 
= 0.011 m3/s 

Example 1.2 The average runoff from the sub-catchment contains about 
0.2 mg/l phosphorous. What is the annual transport of phosphorous from the 
sub-catchment? 

Solution 
From Example 1.1, we have: 
Mean runoff = 11 x lop3 m3/s 
Transport of phorphorous with mean runoff = 0.01 1 m3/s x 0.2 mg/l 

= 0.01 1 m3/s x (0.2/10p3) mg/m3 
= 2.2 mg/sec 

Annual transport = 365 x 24 x 60 x 60 x 2.2 
= 6.94 x lo7 mg = 69.4 kg 

Example 1.3 Two rainfall events, in close succession, fall over a catchment. 
After the first rainfall of 24 111111, a total runoff of 11 rnrn was observed. The 
second rainfall was measured at about 14 rnrn. How large a runoff can be 
expected after the second rainfall? 
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Rainfall 1 ; P I =  24 mm 

Rainfall 2; P2 = 14 mm 
Q l =  11 mm 

Q2=?  

Solution 
It has to be assumed that the two rainfalls were evenly distributed over the 
entire catchment. Under this assumption, the runoff from 24 mm becomes 
11 mm from the first rainfall. This means that 13 mm “disappeared” on the 
way to the outflow point, i.e., this water either infiltrated andor evaporated. 

A simple way to solve this problem is to use the concept of runoflcoeficient. 
The runoff coefficient, (c), is defined as runoff divided by precipitation for a 
specific precipitation event (c = Q/P), i.e., for the first rainfall, c becomes 
11/24 = 0.46. 

This means that from the first rainfall, just 46% was transformed into direct 
runoff. By assuming that the runoff coefficient is constant, i.e., no large changes 
will occw for losses such as infiltration and evaporation (the rain falls close in 
time and thus probably the physical conditions may be assumed to be the same 
for both rainfalls), we can put: 

c = Q,/P,= Q2/P2 
Q2 = (c x P2) = 0.46 x 14 = 6.4 mm 3 

Answer Runoff from the second rainfall will be about 6.4 mm. 

Example 1.4 For a catchment with an area 20 km2, an average precipitation 
of 732 &year and a total evaporation of 550 &year have been observed 
during a 10-year period. Within the catchment, there is an old waste dump; 
and at the discharge point, high phosphorous (P) contents have been found, 
0.25 mg/l of P. What is the annual mass transport of phosphorous in the water 
out from the catchment? 

P = 732 &year 
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Solution 
The water balance for the catchment is: 

P - E - Q = A S  
In this case, the storage term S may be assumed to be zero because the 

Consequently, the water balance for the catchment is: 
calculations are made for average values (10 years). 

P = E + Q  
Q = P - E  = 732 - 550 = 182 &year Or, 

It has to be assumed that the concentration measurement of phosphorous is 
representative for the entire 1 O-year period, and this corresponds to 0.25 mg/L P. 
The runoff is transformed from &year to m3/s by multiplying with the total 
catchment area. 
Thus, the runoff becomes: 

Q = 182 mm/year x 20 km2 
= (1 82 x 1 Op3 m/year) x (20 x 1 06) m2 
= (3640 x lo3) m3/year = 3.64 x lo6 m3/year 

Let us transform this quantity to I/s. 
Q = 3.64 x lo6 m3/ (365 x 24 x 60 x 60)s 

= 3.64 x lo6 m3/(31.54 x 106)s 
= 0.115 m3/s = 115 I/s 

This is consequently the average runoff every second for the 1 O-year period. 
Now, we can calculate the transport of phosphorous that discharges in the 
water from the catchment during one year. 

Q x C = 115 I/s x 0.25 mg/l = 28.75 mg/s 

= 28.75 mg/s x (60 x 60 x 24 x 365) s/year 
= 907 kg/year 

The phosphorous transport per year is 

This is probably not an exact figure, but we may assume the order of 
magnitude of phosphorous transport is about 900 kg/year. 
Answer The phosphorous transport out from the catchment is about 
900 kglyear. 

Example 1.5 A lake has an area of 15 km2. Observation of hydrological 
variables during a certain year has shown that: 

P = 700 mm/year 
Average inflow Qin = 1.4 m3/s 
Average outflow Qout = 1.6 m3/s 
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Assume that there is no net water exchange between the lake and the 
groundwater. Determine the evaporation during this year. 

Solution 
(C inflows to the lake - C outflows from the lake) = change in volume 

(P + Qin) - (E + QouJ = 

In this case, observations have been made covering a full year. Consequently, 
it may be assumed that the storage changes occurring over a year is following 
a regular sinus curve (see Fig. 1.9). The storage changes over one year can 
thus be assumed as zero. (AS = 0) 

(P + Qin) - (E + QouJ = 0 
E = P +  Q i n p  Qout 

If we use mm as a common unit over the lake, then 
P=700mm 
Qin = 1.40 x 3600 x 24 x 365A5.0 x lo6 = 2943.4 mm 
Qout = 1.60 x 3600 x 24 x 365A5.0 x lo6 = 3363.8 mm 
E = 700 + 2943.4 3363.8 = 279.6 mm 

Answer The evaporation from the lake during the year is about 280 mm. 

Example 1.6 A pipe for discharging storm-water from a parking lot (area = 

2500 m2) in an urban area is to be constructed. The maximum rainfall that can 
occur is assumed to have an intensity of 60 d h r .  Determine the corresponding 
discharge (m3/s) and the dimension (diameter) of the pipe if the water velocity 
in the pipe is assumed to be 1 m / s .  

Solution 
Urban areas behave differently regarding infiltration and evaporation as 
compared to rural areas. 

In urban areas, a large proportion of the land is often made impermeable 
(asphalt, roofs, etc). It is usually assumed that no infiltration can occur through 
an asphalted parking lot. Similarly, no evaporation can occur through this 
surface even though water on top of the surface may be evaporated. 

Since no infiltration occurs through the surface, no losses through infiltration 
will occur. The runoff occurring on impermeable surfaces also occurs rather 
quickly, so that evaporation losses may be assumed zero. 

If the discharge Q is assumed to run off instantly from the rainfall, the 
average discharge from the parking lot having an area of 2500 m2 during an 
hour is: 

Q = P x A = (60 x lop3) x 2500/3600 = 0.042 m3/s 
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If the velocity v = 1 d s ,  then the cross-sectional area A,  becomes: 
A ,  = Q/v = (0.042 m3/s)/( 1 d s )  = 0.042 m2 
A ,  = n x (D/2)2, where D is the diameter of the pipe 
D = 2 x (0.042/n)0,5 = 0.23 m 3 

Answer The diameter of the pipe has to be at least 0.23 m. 

Example 1.7 The evaporation from a lake is to be calculated by the water 
balance method. Inflow to the lake occurs through three small rivers A, B, and 
C. The outflow occurs through river D. Calculate the evaporation from the 
lake surface during summer (May-August) if the water level was at +571.04 m 
on May 1 and +571.10 m on August 3 1. The lake surface area is 100 h2. The 
precipitation P during the period was 100 111111. Average inflows and outflow 
are given below. 

River Catchment (krn2) Q, average (rn3/s) 

17.0 
- I 45.0 

Solution 
Assuming that no other inflows or outflows (e.g., exchange with groundwater) 
are occurring than the ones stated above, we can define the water balance for 
the lake as: 

(Qin + P) - (Qout + E )  = S 
In this example, it will be convenient to use the common unit, d t i m e  = 

The total inflow from rivers to the lake during this period is: 
&(May-Aug); May-August = 123 days 

Qin = (15.0 + 20.0 + 17.0) x (123 x 24 x 3600)/(100 x lo6) = 5.526 m 

P = 0.100 m 
Q, = 45 x (123 x 24 x 3600)/(100 x lo6) = 4.782 m 

AS = 571.10 - 571.04 = 0.060 m 

Inserting the calculated data in the water balance equation gives: 

(5.526 + 0.100) - (4.782 + E )  = 0.060 
3 E = 5.526 + 0.100 - 4.782 - 0.060 = 0.784 m 

Answer Evaporation during this period was 784 111111. 
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Example 1.8 A lake has a surface area of 7.0 x lo5 m2. During a given 
month, the mean inflow to the lake was 2.5 m3/s. The increase in stored lake 
volume was observed to be 6.5 x lo5 m3. Precipitation during the same month 
was 250 mrn and evaporation was 420 111111. Calculate the outflow fi-om the 
lake for the same month. 

Solution 
We must assume that all the major inflows and outflows are known. Specifically, 
we need to assume that the exchange between groundwater and lake water is 
insignificant. 
The water balance equation is: 

(Qin + PI - (Qout + E> = A s  
In this equation, Qin= 2.5 m3/s, P = 250 111111, E = 420 111111, AS = 6.5 x lo5 m3, 

lake area A = 7.0 x lo5 m2, Qo, = ? 
Therefore, outflow from the lake becomes: 

3 6 0 0 x 2 4 ~ 3 0  
[(0.250 - 0.420) x (7.0 x lo5)] 

(3600 x 24 x 30) Q, = 2.5 + 

Qout = 2.5 0.046 0.251 = 2.20 m3/s 

Answer The outflow during this month is 2.2 m3/s. 

Example 1.9 A retention reservoir is located so that all runoff fiom upstream 
catchment area passes through the reservoir according to the given schematic 
figure. The catchment area (reservoir not included) is 100 ha. The reservoir 
area is 1.0 ha. Infiltration through the bottom and sides of the reservoir is 
negligible. The discharge out from the reservoir is regulated at a constant 
Q = 0.045 m3/s. Mean precipitation in July is 178 mm and mean inflow to the 
reservoir during the same month is 95000 m3. Mean evaporation fiom the lake 
surface in the month of July is 3.1 &day. 
(a) What is the average July runoff coefficient? (c = Q/P) 
(b) In July 199 1, precipitation was slightly higher than normal, P = 220 mm. 

What is the total inflow expected to the reservoir for this specific month? 
(c) What is the expected change in water level of the reservoir during this 

month? 

I Catchment 
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Solution 
(a) The average runoff coefficient is: 

c = Q/P = Qin/P = 95000 / (0.178 x 100 x lo4) = 0.53 
(b) Here, we have to assume that the average runoff coefficient is also valid 

for the month of July, 199 1. 
Then, inflow to the reservoir becomes: 

Q. = c x P = 0.53 x 220 = 116.6 mm 
By multiplying this height with the area of the catchment, we convert the 
inflow to a volume. 

0.1166 x 100 x lo4 = 116600 m3 
(c) By using a water balance for the reservoir, AS will be calculated. 

(Qin + PI - (Qout + E> = A s  
Here, Qin = 95000 m3, P = 220 mm, Qou, = 0.045 m3/s, and 

E = 3.1 &day 
This gives: 

AS = (95000 + 0.220 x 10000) - [(0.045 x 3600 x 24 x 3 1) 

AS = 97200 - (120528 - 9610) = -13718 m3 
+ (0.0031 x 31 x lOOOO)] 

The change in storage is negative indicating that the water level in the 
reservoir will decrease. 
The decrease in water level is: 

13718/10000 = 1.37 m 
Answer (a) The runoff coefficient is c = 0.53, (b) the inflow to the reservoir 
during July, 1991 is 116600 m3, and (c) the reservoir level will decrease by 
1.37 m. 

Example 1.10 The average annual precipitation in a 3000 ha large catchment 
is 1200 mm. The corresponding value for actual evapotranspiration is 
600 mm. 
(a) What will be the average annual runoff from the catchment? 
(b) A way to reduce nutrient and pollutant transport in runoff may be to create 

biological ponds where physical and biological processes reduce the 
nutrient content. The recommended turnover time for such a pond is about 
two days. Estimate the needed area for such a pond if half of the runoff 
from the above catchment is to be treated. 

(c) Typical nutrient concentration in runoff water from the above catchment 
is 5-10 mg N/L and 0.1-0.3 mg P,,,/L. Calculate the nitrogen and 
phosphorous transport in kg/year fi-om this catchment. 
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Solution 
(a) As we are using average values over several years, we may estimate the 

average runoff according to: 
P - E = Q  
1200 - 600 = 600 d y e a r  

(0.6 x 3000 x 104)/(365 x 24 x 3600) = 0.57 m3/s 

3 

This gives: 

as an average discharge from the catchment during one year. 

The needed area is: 
(2 x 0.5 x 0.57) x (365 x 24 x 3600) = 1798 x lo4 m2 

(c) The annual transport will be between (5-10 x 0.57 x lo3 x 365 x 24 x 
3600) mg N and between (0.1-0.3 x 0.57 x lo3 x 365 x 24 x 3600) mg P 
per year. 
This gives about 90-180 x lo3 kg N and about 180&5400 kg P,, per 
year. 

Answer (a) The discharge is 0.57 m3/s, (b) the area necessary is about 1800 
ha, and (c) about 9&180 x lo3 kg N and about 180&5400 kg P,, per year. 

Example 1.11 
lake and the inflow/outflow from the lake depending on time. 

Solution 
To analyse the relationship, a general water balance for the lake can be used. 
The water balance during inflow/outflow will have the following appearance. 

(b) Assume an average depth of the pond, e.g., 1 m. 

Derive a general relationship between the water level in a 

I - 0 = dS/dt 
where, I and 0 are inflow and outflow, respectively; and dS is the temporary 
storage of water in the lake during the time, dt. 

The storage (dS) depends mainly on the geometry of the lake, i.e., how 
deep and long/wide it is. In principle, the water stored is equal to: 

dS = A(z) dz 
where, A(z) is the surface area of the lake, and dz is the change in depth of the 
lake. Due to the fact that the lake geometry is an unknown variable, we need to 
assume water-covered area A(z) as a function of the water depth (z)  in a reference 
point. This gives: 

A(z) dz = ( I  - 0) dt 
dzldt = ( I  - 0) / A(z) 

dz1d.t = [Qin(t) - Qout(t)I/[A(z(t)l 

3 

3 

Answer dzldt = [Qin(t) - Qout(t)]/A(z(t). 
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Example 1.12 Discuss how urbanization will affect the water balances and 
pollutant transport. 

Discussion 
Urbanization directly affects the runoff part of the water balance through 
decreasing infiltration, depending on the degree of impermeable surfaces of 
the area. Thereby, evaporation processes will be affected due to the fact that 
evaporation will occur only fi-om wetted, impermeable surfaces. Thus, usually 
the runoff component increases greatly in terms of peak value and volume. 

Urban areas also create heat islands and an increasing amount of dust 
particles, affecting precipitation amounts positively. Urban areas generate 
different types of pollutants as compared to rural areas. Typical pollutants 
from urban areas are heavy metals, suspended solids, oil, grease, etc. 

Example 1.13 Evaporation losses from a reservoir can be estimated using 
the water balance method. Identify the necessary components to quantify this 
approach. How can the components be estimated andor measured to calculate 
the actual evaporation? 

Discussion 
The general water balance equation reads E = P - Q - AS. The rainfall is 
observed using a rain gauge. Losses of the groundwater can be quantified by 
observing groundwater table. Runoff in rivers is observed by water level and 
current meter, to and from the lake. Storage changes are determined by 
observing the lake water level. 

Example 1.14 The water balance equation is often used to estimate average 
available runoff. Discuss the uncertainties and potential errors involved in 
such an approach. 

Discussion 
The available runoff is often determined using the water balance over a longer 
period of time. Thus, runoff is determined as the difference between average 
precipitation minus average evapotranspiration. This means that any error or 
uncertainty in the average precipitation and evapotranspiration carries over to 
the estimated runoff. For example, ifthe precipitation gauge is not representative 
for the area (may be located in a valley in a mountainous catchment), the 
gauge will probably underestimate the areal precipitation. 

EXERCISES 

Exercise 1.1 The evaporation is to be estimated from a lake, and therefore, a 
pan evaporimeter has been placed close to the lake. The water level is observed 
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11 
12 

every morning, and then water is added to the pan if the water level comes 
close to 175 111111. Determine the daily potential evaporation for the first 5 days 
if the pan overestimates the real evaporation by Ereal = 0.70 

61.5 35.6 23 31.0 33.2 
57.0 37.7 24 32.0 32.3 

Answer The corrected evaporation is: 2.2, 1.8, 3.2,4.4, and 4.6 mm. 

Exercise 1.2 The following series of precipitation and runoff has been 
observed for a large catchment in northern Europe (P:  mm/month; 
Q: d m o n t h ,  area = 46,830 km2 with 18.6% lake area) during January 1995- 
December 1996. 
(a) How did the actual evaporation vary during the period? (Tips: calculate 

(b) Comment on the results. 
the evaporation using the water balance for every month.) 

Hint: 
The water balance gives occasional negative values. This depends on the fact 
that the storage effect cannot be disregarded. Especially during winter when 
snow fall may occur, water is temporarily stored in the catchment. 

Day Rainfall Water level Day Rainfall Water level 

1 0.0 203.2 8 0.3 192.4 
2 5.8 205.9 9 0.0 187.6 
3 14.2 217.5 10 0.0 182.8 
4 1.3 214.3 11 0.0 178.3 
5 0.3 208.3 12 0.3 200.9 
6 0.0 201.7 13 0.0 195.6 
7 0.5 196.7 14 0.5 190.1 

(mm) (mm) (mm) (mm) 

Month P Q Month P Q 
1 32.5 26.6 13 25.5 35.4 
2 30.0 30.7 14 19.5 36.5 
3 42.0 31.1 15 52.0 35.2 
4 55.5 34.7 16 48.5 39.2 
5 37.5 33.7 17 17.0 38.5 
6 67.0 34.0 18 63.5 38.7 
7 35.5 31.6 19 127.5 38.5 
8 148.5 28.8 20 79.5 35.5 
9 84.5 30.4 21 61.5 34.1 
10 28.5 32.5 22 56.0 32.4 
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I 2 I 0.5 I 5 I 

Exercise 1.3 During a month, five rainfall events are recorded in a forest 
area. The potential evaporation for the forest is about 0.5 d h r .  The forest 
also has a local storage (the canopy acts as a storage that can adsorb water up 
to 0.05 cm) of about 0.05 cm. The potential evaporation acts on this storage. 

I 3 I 1 I 4 I 
I 4 I 2 I 24 I 
I 5 I 0.2 I 2 I 

Rain amount (cm) duration (hr) Rain amount (cm) I duration (hr) 

1 
2 
3 
4 
5 

down to 

1 7 
0.5 5 
1 4 
2 24 
0.2 2 

Answer Assuming an empty “canopy storage” from the beginning, Q becomes 
0.6,0.2,0.75,0.75, and 0.1 cm. Thus, approximately 50% of the rain can pass 
through the canopy down to the soil surface. 

1 

Exercise 1.4 A shallow circular pond of 2 m depth and radius of 50 m is 
having a water depth of 0.5 m. The concentration of phosphorous in pond is 
2 mg/l. If the pond received an annual precipitation of 100 111111, what is the 
change in the total phosphorous concentration? Assume no phosphorous 
consumption in the pond and concentration of phosphorous in rainwater is 
zero. Neglect any losses due to seepage or evaporation of water. 
Answer 1.66 mg/l 
Exercise 1.5 Show the monthly variation of phosphorous concentration in 
the pond of Exercise 1.4 for the following monthly precipitation and evaporation 
data. 

I I 

1 7 

Month 

Evaporation 
(&month) 

12 

Sept Oct Nov Dec #$ 
OBJECTIVE QUESTIONS 

1. What is the total amount of fi-esh water on earth in per cent of total water 
volume? 
(a) 0.001% (b) 0.1% (c) 2.7% (d) 10% 

2. What is the approximate water velocity of water flow in a river? 
(a) 0.01 d s  (b) 0.1 m / s  (c) 1 d s  (d) 5 m / s  
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3. What is the average domestic water consumption in a developed country? 
(a) 220 Vday (b) 20 Vday (c) 540 Vday (d) 1000 Vday 

4. What is the average turnover time for water in ice caps and glaciers? 
(a) 50 years (b) 2000 years (c) 10,000 years (d) 8000 years 

5. Convection is 
(a) Infiltration of water 
(c) Radiation of energy 

(b) Uplift of air 
(d) Plant respiration 

6. The major climatic areas of the earth are mainly determined from 
(a) Location of south and north pole 
(b) Global atmosperic flow 
(c) Ocean currents 
(d) Planetary orbits 

7. The water divide determines the 
(a) Catchment boundaries 
(b) Division between wastewater and drinking water 
(c) Areas collecting stormwater in a city 
(d) Division between water and snow in a snowpack 

8. Which is the river basin with the largest discharge on earth? 
(a) The Amazon (b) The Ganga (c) Mississippi (d) Donau 

9. Empirical means 
(a) Approximative (b) Theoretical 
(c) Obeying physics (d) Observation based 

10. How many people die every year due to water-borne deseases and 
pollutants? 
(a) 5 million (b) 0.5 million (c) 25 million (d) 10 million 
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CHAPTER 

Elements of 
Hydrologic Cycle 

2.1 INTRODUCTION 

The objective of this chapter is to give an easily comprehensible overview of 
the hydrologic cycle with all the elements and their interconnected relationships. 
In general, precipitation is the driving component of the hydrologic cycle. 
After precipitation has fallen over the catchment, a number of losses or 
abstractions from the total precipitation volume occur through several processes. 
The more important ones are described below. 

Interception is the process by which precipitation wets leaves and branches 
of trees and vegetation. Some of this water will evaporate back to the atmosphere 
and some water will follow the branches towards the soil surface. At the soil 
surface, water may injiltrate. Some of this infiltrated water willpercolate deeper 
to the groundwater table. Infiltrated water may also evaporate from the upper 
soil sections, or water may be taken up by plant roots, and transpiration will 
occur through photosynthesis. The remaining water that is found at the 
catchment discharge point is usually termed surface runoff or discharge. This 
water in general contains both, water directly related to the precipitation event, 
and water drained from the groundwater table. For availability reasons, this 
water together with groundwater is generally regarded as potential water 
resource(s) that can readily be used as water supply or other types of human 
use. 

Following is a more detailed description of how to estimate or calculate the 
various abstractions so as to be able to arrive at the surface runoff volume. 
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2.2 PRECIPITATION MECHANISMS 

Precipitation is a summarizing term for atmospheric water that is deposited 
on ground, such as rainfall, drizzle, snow, and hail. 

A common unit for precipitation is mm per time unit ( e g ,  mdhour,  
mrdday, mrdmonth, &year). The unit indicates that the height of water is 
assumed to be evenly distributed over an area (usually a catchment). Then, 
1 mm precipitation corresponds to 1 l/m2 or 0.001 m3/m2 (1 mm distributed 
over 1 m2). 

2.2.1 Condensation 
The global annual average precipitation has been estimated at about 900 mm 
over sea and 670 mm over land (National Encyclopedia, 1996). As mentioned 
in the previous chapter, there is an extreme variation of water occurrence in 
different parts of the Earth depending mainly on the general atmospheric 
circulation. The largest recorded annual precipitation was 26,000 mm in 
Cherrapunji in northern India during the period 1860-61. The highest 
precipitation observed during one minute (3 1.2 mm) was in Maryland, USA. 
For desert areas, the annual precipitation is usually about 50-200 mm. For 
precipitation to form, three simultaneous conditions are required, i.e., access 
to water vapour, condensation nuclei, and cooling of the moist air mass. 
Consequently, for precipitation to form, the water vapour in the air must be 
transformed to liquid drops. This is done by the presence of condensation nuclei. 

A condensation nucleus is a microscopic dust particle that water vapour 
can precipitate on and create water droplets. These water droplets are in order 
of size (radius) less than 20 x lop6 m (Fig. 2.1). For this to occur, however, 
cooling of the air mass is also required, i.e., cooler air can hold less water as 
compared to a warmer air mass. 

Water &oplet with Condensation nucleus 
condensation nucleus 

Fig. 2.1 Comparison of size order of rain drops ('1 mm), water droplets 
(< 0.02 mm), and condensation nuclei (< 0.001 mm) 
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2.2.2 Convection 
Large cities generally create a local heat island around the urban area. This 
means that local convection is formed by hot air rising upwards and thus cools 
off (adiabatic cooling). Urban areas also generate air pollutant particles that 
may act as condensation nuclei and contribute to generate larger amounts of 
precipitation in these areas. 

Local convection consequently means that small volumes of moist air heat 
up due to the solar influx or some other kind of local warming mechanism. 
Due to the heating, the air volume will expand and thus a decrease in density. 
The decreasing density means that the lighter air volumes will be lifted upwards 
in the atmosphere where it is cooler and then precipitation occurs. 

Local convection is a way for an air mass to cool off and thereby form 
precipitation. Another way for moist air masses to cool off is frontal lifting. 
This mechanism is put in to work when a warm front meets a cold front in an 
atmospheric system. Due to the fact that the warm air in the warm front has a 
lower density than the cold air, the warm air is forced upwards on top of the 
cold front (Fig. 2.2). This also induces cooling. A third precipitation mechanism 
is when the wind forces the warm air up along and above a mountain ridge. 
Also, the air mass is forced upwards, into a cooler atmosphere. This is called 
orographic lifting (Fig. 2.2). 

Local convection Frontal lifting Orographic lifting 

Fig. 2.2 Three common causes of cooling of warm moist air and precipitation 

The orographic lifting suggests that there is often a topographic (altitude) 
dependence for precipitation pattern in the landscape. An example of this is 
shown in Fig. 2.3. Areas at higher altitudes, thus, receive larger precipitation 
amounts. Due to the effects of general wind direction, the leeward side of a 
mountain will receive much less precipitation as compared to the windward 
side for the same altitude. 

2.3 MEASUREMENT OF PRECIPITATION 

Precipitation is the driving component in the hydrological cycle. Without 
precipitation, there is no runoff, evaporation, or groundwater recharge. Due to 
this, it is important to make reliable precipitation observations, e.g., in water 
balance calculations. Precipitation is usually observed at many locations in 
important catchments. Precipitation is also fairly easy to observe. 
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Fig. 2.3 Example of topographic dependence of precipitation. The 
f i l l  line shows a theoretical linear equation fitted to the 
annual precipitation data us. altitude 

Usually, a standard precipitation gauge consisting of a bucket-type collector 
is located at a specific height over the ground surface and read manually once 
a day. A common standard gauge has an opening of about 200 cm2 and a 
surrounding windscreen (see Fig. 2.4). The windscreen is put around the gauge- 
opening to reduce errors due to wind. The stronger the wind, the stronger the 
deflection of rain, particularly snow. The gauge is emptied once a day (usually 
8:30 am) and the content is measured with a specifically designed measuring 
glass. If there is ice or snow in the gauge, it has to be melted before measuring. 

2.3.1 Short-term Measurement 
Often, it is necessary to have a shorter-period observation than one day of 
precipitation. This is needed to estimate flooding risks in catchments. Also, in 
urban catchments, short intensive rainfall showers have a tendency to wash 

J 

Fig. 2.4 Standard precipitation gauge consis- 
ting of a bucket-type collector and a 
windscreen 
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off accumulated pollutants from streets, parking lots, roofs, etc. Typical 
pollutants are oil, heavy metals, and other toxic substances. 

To estimate the amount of pollutants transported by the surface water from 
precipitation, it is necessary to measure precipitation down to minute values. 
For such observations, non-recording gauges are not suitable. Instead, automatic 
or recording precipitation gauges are used. When short-term measurements of 
precipitation are done, usually some type of automatic gauge is used. A cornrnon 
type of gauge used for such measurements is the so-called tipping bucket gauge. 
This gauge contains a balancing bucket or a small container that tips as soon 
as half of the bucket is full (see Fig. 2.5). When the bucket tips, the water is 
emptied and the movement is registered automatically. The number of tips per 
unit time consequently corresponds to a known amount of water, which can be 
expressed in d m i n u t e .  

A 

Fig. 2.5 

2.3.2 Error Analysis 
All hydrological observations, including precipitation measurements, contain 
errors and uncertainties. The error in precipitation observations depends on 
the size and type of the gauge, the wind speed, whether the precipitation is 
constituted by rainfall or snow, the size and distance of shielding buildings 
and trees, reading mistakes, etc. The sum of all these errors will in turn carry 
over to a corresponding error in the water balance calculations. 

In general, observational errors can be divided into random and systematic 
errors. Random errors may be less important and also more difficult to quanti@. 
Systematic errors resulting from an unrecorded change in gauge location or 
shielding effect from trees or buildings from a certain date can be revealed 

Tipping bucket rain gauge 
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with the help of a double mass curve. This technique will reveal if precipitation 
observations coming fi-om a certain gauge are statistically homogeneous (if 
data belong to the same statisticalpopulation) as compared to other gauges in 
a certain area. The double mass analysis is done by comparing accumulated 
values (daily, monthly, or annual) of precipitation (c Px) for a certain gauge X 
to the accumulated values of the mean for all other gauges in the same 
population (ZP,,, ). Figure 2.6 gives an example of such an analysis. 
According to the figure, the investigated rainfall gauge appeared to behave in 
a similar way in relation to other gauges in the area from 1991 to 1997. From 
1998, however, the precipitation amounts suddenly decreased in a systematic 
way for gaugeX, suggesting that the rainfall climate suddenly changed, perhaps 
due to shielding by an object near the gauge. 

If a systematic error is confirmed for the gauge in the field, the change in 
slope of the curve after 1998, as shown in Fig. 2.6, can be used to correct the 
precipitation values. This test can be repeatedly performed for all gauges for a 
first quality check of the precipitation data. 

Accumulated annual 
rainfall (WX) (&year) 

2000 

1600 

1200 

800 

0 600 1200 1800 2400 3000 

Accumulated mean annual rainfall (Wmean) 

Fig. 2.6 Example of a double mass curve analysis. The X-am's displays 
mean annual rainfall for a group of gauges. The Y-axis displays 
the annual rainfall at station X, one of the gauges in the group of 
gauges for a quantitaitve quantity check. 

2.3.3 Other Types of Measurement 
Precipitation intensity can vary greatly during short periods of time and fi-om 
one place to another. Consequently, it is difficult to get an areal estimate of 
precipitation if the number of gauges in an area is small. The problem according 
to the above is to calculate areal precipitation values based on the point 
measurements that the gauges represent. The collection area of the gauge is 
very small as compared to the area that the gauge is supposed to represent. 



Elements of Hydrologic Cycle 39 

Therefore, some technique is needed to generalise the point measurements to 
areal estimates to be valid for. The areal estimates of precipitation are needed 
in order to be able to calculate water balances for the catchment. The simplest 
way to estimate areal values from point measurements is to calculate the 
arithmetic mean of all gauges within the catchment according to: 

PA=ZPi /n=(PI+P2+P3+ ....+ P,)/n (2.1) 
where, PA is the areal precipitation, Pi is the individual value for each 
precipitation gauge, and n is the number of precipitation gauges in the 
catchment. In this method, only those gauges which are inside the catchment 
border are used. The averaging method works rather well if the gauges are 
evenly distributed over the area. If the gauges have an uneven distribution, it 
would be better to use a method that weighs a representative area around each 
gauge. Such a method is called the Thiessen method. 

PA = EPiUi/A = (PIUl + P2a2 + P3a3 + .... + P,a,)/A (2.2) 
In this method, each gauge is given a representative area (ai) of the total 

catchment area (A)  that is assumed to reflect the average precipitation over the 
entire catchment. The method of dividing each partial area to respective gauge 
is exemplified in Fig. 2.7. This method also utilizes gauges outside the 
catchment border. 

In case of snow storage in a catchment, it is useful to calculate the amount 
of water the snow represents. This calculation helps to estimate the spring 
flood. A common technique is to estimate the snow depth and snow density in 
the catchment using a snow tube. The snow tube is a simple device consisting 
of a long tube that can be used to sample snow different locations in a catchment. 
The sampled snow is weighed, and with diameter of the snow tube and height 
of the snow pack, the density of snow can be estimated. The snow water 
equivalent can be determined according to: 

(2.3) - 
%now - mwater 

where, msnow and mwater are the weight of snow and water, respectively, in 
kg/m2. Substituting m for density times volume (height) gives: 

(2.4) 
- 

hsnow x Psnow - hwater x Pwater 

where, hsnow and hwater are depth of snow and the depth of the water equivalent, 
respectively, in metre; and psnow and pwater are the density of snow and water, 
respectively (pwater = 1000 kg/m3). Therefore, 

A simple way to calculate continuous melt from snow is to use the degree-day 
method. This is an empirical equation suggesting that the relationship is not 
physical, merely a statistical method and thereby the units in the left and right 
part of the equation do not coincide. 

(2.5) - 
hwater - hsnow x Psnow/1000 
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First, connect all gauges Pl-P4 
with help lines. These help lines 
should not cross. Also gauges 
outside the catchment border 
should be included. Help lines connecting all gauges 

Mark the middle point of each help 
line. From this point, a perpendicular 
line is drawn until it connects to other Ic 
lines. The lines now divide the 
catchment into areas that can be 
related to each gauge. 

I 

Dividing lines making an area 
associated with each gauge 

The total catchment is now divided in 
to representative sub-areas 1 4  that 
can be associated to each gauge 
P1-P4. By measuring each sub-area and 
dividing it with the total catchment area, 
weight coefficients can be calculated to 
estimate an areally weighted value. 

The catchment is now divided 
according to the Thiessen method 

Fig. 2.7 Division of catchment area according to Thiessen method 
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The snow melt is calculated as: 
S =  (0.1 + 0.12 x P +  0.8 x a x  v) T +  2.0 

where, S = snow melt (mrdday) 
P = rainfall (mrdday) 
a = constant which is equal to about 0.3 for forest and 1 .O for open terrain 
v = wind speed ( d s )  
T = temperature (“C) 

Due to the fact that the precipitation is much easier to observe as compared 
to runoff, the precipitation data are used to establish precipitation statistics for 
different time periods, which is consequently used to estimate runoff fi-om 
various types of precipitation. 

2.3.4 Precipitation Statistics 
Precipitation statistics are usually used in three important parameters; 
(1) rainfall average intensity, (2) rainfall duration, and (3) rainfall return 
period. The meaning of average intensity and duration is depicted in Fig. 2.8. 
The figure shows the average rainfall intensity versus time. The rainfall intensity 
variation with time is also called a rainfall hyetograph. The rainfall hyetograph 
is usually shown as a bar chart. 

Rainfall intensity 
( w m i n )  

Rainfall intensity 
variation 

Avi - intc 
erage rainfall 
msity i 

tr Duration (min) 

Fig. 2.8 Definition of average rainfall intensity (i) and duration (tJ 

The intensity of a rainfall (amount of rainfall per unit time) is highly 
dependent on the type of rainfall, e.g., thundershower or slow winter rain. But 
irrespective of the type and time of rainfall, a mean intensity and duration of 
every rain can be defined independently. 

The duration is simply the time fi-om the start until the end of the rainfall 
with an average intensity for this time. The return period is how often a certain 
type of rainfall intensity occurs. A rainfall with one-year return period occurs, 
on an average, just once a year. A rainfall with 10-year return period is so 
large that it occurs, on an average, just once in 10 years. It is also possible to 
express return period in terms of probability according to: 

p =  1IR (2.7) 
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where p is the probability and R is the return period. The probability of a 
certain rainfall, with a return period of 10 years, to occur during one specific 
year is 1/10 = 0.1. The probability for this rainfall to occur once in a 10-year 
period is 1.0. 

The above statistical information for a certain area can be summarised with 
the help of an intensity-duration-frequency diagram. Figure 2.9 shows, in a 
schematic way, how such a diagram may look. Using this diagram, it is possible 
to determine the typical intensity of a rainfall of certain duration and return 
period (frequency). The diagram can be used to design (determine the size and 
appearance) various types of water structures, such as pipes and reservoirs. 
Usually, small water structures are designed according to a smaller return period 
rainfall, e.g., five-year rainfall; while larger structures may be designed with 
100-year or even 10,000-year return period rainfall. 

Average intensity 
( d m i n )  

\ 
Large return period (frequency) 

Small return period (frequency) 
7 

Duration 
(min) 

Fig. 2.9 Schematic of intensity-duration-frequency (IDF) 
diagram for a specific region 

The number and type of rain gauges for a specific catchment depend upon 
the purpose and the use of precipitation data for that specific location. It is 
possible to calculate the number of rainfall gauges necessary in an area to 
keep a certain permissible error in mean precipitation estimation. The following 
equation can be used for this purpose. 

N = [(tlLc1/2 x s)/(x - P)I2 (2.8) 
where, N = minimum number of rainfall gauges needed 

tlLd2 = tabulated Student’s t-distribution at the chosen probability level 
(e.g., 0.05) 
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s = standard deviation of rainfall amounts 
x - ,u = the relative error margin (p is the true mean to be estimated 

The expression (x - ,u)2 can be replaced by (0.1 x m), where m is the mean 
value of the amount of rainfall and 0.1 denotes 10% error margin. The World 
Meteorological Organization (WMO) gives general recommendations 
regarding the minimum rain gauge density for various climates and 
topographical settings. It is recommended that for small mountainous islands, 
the minimum density of gauges should be 1 gauge per 25 h2, about 250 h2 
per gauge for mountainous areas in general, and about 575 h2 per gauge 
elsewhere in temperate, Mediterranean, and tropical climates. 

2.4 INFILTRATION 

within the limits +x and -x) 

Precipitation that inJiltrates through the ground surface creates soil water; and 
if not evaporated, it maypercolate further down to the groundwater table. Soil 
water is the water that is found between the soil surface and the groundwater 
table. This is called the soil water zone or the unsaturatedzone. The unsaturated 
zone indicates that the pores in the soil are not saturated with water. Instead, 
the zone is a mix between soil particles, water, and gas-filled pores. Similarly, 
below the groundwater table, the soil is saturated with water, and hence it is 
called the saturated zone. 

In general, vertical transport processes dominate in the unsaturated zone 
and horizontal transport processes in the saturated zone. However, large 
deviations occur from this general rule due to variation in topography and 
complex geological material. The soil and geological structure determine how 
quickly and what way the water will go once it has infiltrated through the soil 
surface. In the upper soil layers, a major part of the water may evaporate if 
there is energy available for this. Also, water may be taken up by plant roots 
and then transported to the atmosphere through transpiration. Water can also 
be transported upwards in the soil from the groundwater table through capilla y 
forces. In general, it is the gravitation that determines the water movement in 
both the soil water and the groundwater zone. Thereby, the topography or the 
altitudinal characteristics of the area decide much of the water movement. 

2.4.1 Transport Patterns 
Depending on small topographical variations, groundwater can have different 
directions in the landscape. Shallow (young groundwater) and deep (old) 
groundwater at the same location can have different directions depending on 
small-scale and large-scale topography. Consequently, the age of groundwater 
and topography at different scales determine the general transport pattern. 
Shallow groundwater may also flow back to the swface water system, especially 
in low-lying areas. Typical areas where this phenomenon occurs are 
topographical depressions, such as marshy areas, bogs, etc. These areas are 
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generally called outfow areas. Areas where surface water generally infiltrates 
are called inflow areas, e.g., topographical peaks, such as hills and slopes. 

2.4.2 Measurement of Infiltration 
The speed at which water infiltrates through the soil surface is vital because it 
has considerable effect on surface water occurrence and is thus strongly 
connected to the local environment and ecology. Measurement of the infiltration 
speed of ponded water (flooding conditions) can be done using a ring 
inJiltrometer (Figs. 2.10 and 2.11). 

J 
Fig. 2.10 Ring infiltrometer f o r  measuring the infiltration 

capacity 

Fig. 2.11 Infiltration through a double ring infiltrometer 

The ring infiltrometer usually consists of a 15 cm diameter steel cylinder 
that is open at both ends. The infiltrometer is pushed into the soil to about 
10 cm depth. Thereafter, water is ponded inside the cylinder to about 5 cm 
water depth. This level is kept constant by adding fresh water continuously 
during the infiltration. The amount of added water is measured every minute 
and recorded as inJiltration capacity. Usually, a second larger cylinder is pushed 
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into the ground around the smaller one with the same water level in order to 
avoid errors due to horizontal flow. By definition, infiltration capacity concerns 
vertical flow only. Infiltration is measured only in the inner cylinder. Usually, 
the infiltration capacity is high at the beginning of experiments due to dry soil 
conditions. After some time, however, the infiltration curve levels out and 
becomes almost constant. The starting and ending value ofmeasured infiltration 
is called initial and final infiltration capacity respectively. The Horton 
infiltration equation can be used to describe infiltration of ponded water. 

f ( t)  =A. + K -J;.>e+ (2.9) 
where, f, = infiltration capacity at t = 0 (dry soil conditions; I11ITl/hT) 

J;, = final infiltration capacity (mm/hr) 
k = constant determining how quickly the infiltration capacity 

t = time (hr) 
decreases (hr-') 

To calculate the totally infiltrated amount ofwater in mm., Eq. (2.9) is integrated 
from 0 to t. 

1 

jfct) dt = F(t) = f ,  t + ~ f o - f c  (1- e l  -kt (2.10) 
k 0 

Equation (2.10) gives the accumulated infiltration in mm after a specified 
time. Both Eq. (2.9) and (2.10) presume continuous ponding of water, i.e., a 
constant head of water on top of the soil. Equations (2.9) and (2.10) are 
exemplified in a schematic way in Fig. 2.12. The observations by ring 
infiltrometer can be used to calibrate the three parameters in Eqs. (2.9) and 
(2. lo), to describe the infiltration process in time. 

2.5 EVAPORATION AND TRANSPIRATION 

Evaporation is the general term for describing water release from ground and 
water surfaces to the atmosphere. This includes evaporation hom plants 
(transpiration) and the direct evaporation from soil andor water surfaces 
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(evaporation). A summarizing name for both evaporation and transpiration is 
evapotranspiration. 

Evapotranspiration from an area is governed by the amount of energy that 
is available to transform water from liquid to gas. The amount of water that 
can theoretically evaporate (water is not a limiting factor, e.g., water can 
evaporate from a free water surface) is called potential evaporation. The 
evaporation that takes place when water is a limiting factor, e.g., when soil 
surface is only partially saturated, is called actual evaporation. Similar 
nomenclature can be applied to evapotranspiration. The actual evaporation is 
usually estimated by establishing a water balance for the area. The other 
components in the water balance must be known. Often, other components of 
the water balance are not known in which case evaporation has to be calculated 
or measured. 

In general, two major factors govern the amount of water that can evaporate 
from a surface: wind and temperature. The temperature shows how much energy 
is available to transform the water in liquid form to gas form. At a specific 
temperature, the atmosphere over the ground or the water surface can hold a 
specific amount of water vapour, which is called saturated vapour pressure, 
e,. The evaporation rate (E)  will then be proportional to the difference in actual 
vapour pressure (e,) and saturated vapour pressure (e,). 

E = c (e, ~ e,) (2.11) 
where, c is a constant. This relationship is called Dalton P evaporation law. 
The presence of wind transports the evaporated water away and replaces it by 
dry air. If (e, ~ e,) > 0,  condensation will take place. 

For shorter periods, it is necessary to use calculation methods to estimate 
evaporation. This can be done by the Penman method. This method was 
developed to determine the potential evapotranspiration (ETP) of a specific 
area, depending on its climatic and meteorological conditions. The Penman 
equation is a combination of energy balance and wind transfer, which reads: 

ETP = (A H, + E,y)/(A + y)  (2.12) 
where, ETP = daily potential evapotranspiration ( d d a y )  

A = slope of the saturation vapour pressure vs. temperature curve at 

H, = net radiation ( d d a y )  (Refer Table 2.2) 
y= the psychrometric constant (0.49 rnm Hg/"C) 

H, =Ha (1 - r)(a + b n/N) - OT; (0.56 - 0.092 &)(O. 10 + 0.90 n/N) 
(2.13) 

where, Ha = incident solar radiation outside the atmosphere on a horizontal 

mean air temperature (mm Hg/"C) 

H, is estimated from the following equation. 

surface ( d d a y ;  Table 2.3) 
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Plant covered ground surface 
Bare ground surface 
Water surface 
Snow 

r = albedo of the surface giving the reflection at soil surface of incoming 

a = constant equal to 0.29 cos 4, 4 = latitude 
b = constant approximately equal to 0.52 
n = actual duration of bright sunshine (hourdday) 
N = maximum possible duration of bright sunshine (hours/day; 

0 = Stefan-Boltzmann constant 
T, = mean air temperature in OK, i.e., (273 + "C) 
e, = actual mean vapour pressure in the air (mm Hg) 

E, = 0.35 (1 + u,/160) (e,  ~ e,) 

where, u2 = mean wind speed at 2 m above the ground (ladday) 
e, = saturated vapour pressure in the air (mm Hg) (Refer Table 2.2) 

The albedo (r) can be estimated according to the type of surface (Table 2.1). 

Table 2.1 Typical albedo values (reflection of incoming energy) for different 
surface types 

Type of surface I The albedo (r) may vary between 

energy (Table 2.1) 

Table 2.4) 

E, is calculated according to 
(2.14) 

0.15-0.25 
0.05-0.45 
0.05 
0.45-0.95 

Table 2.2 gives saturated vapour pressure values of water depending on the 
temperature. 

Table 2.2 Saturated vapour pressure of water (eJ, and slope of saturation 
vapour pressure vs. temperature A 

(Contd.) 

Temperature Saturated vapour Slope of saturation vapour 
("C) pressure e, pressure vs. temperature A 

(mm Hgl (mm/"C) 

0 4.58 0.30 
5.0 6.54 0.45 
7.5 7.78 0.54 
10.0 9.21 0.60 
12.5 10.87 0.71 
15.0 12.79 0.80 
17.5 15.00 0.95 
20.0 17.54 1.05 
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40" 
50" 

(Contd.) 

Table 2.3 gives values of H, (mean solar radiation outside the atmosphere 
on a horizontal surface; &day) and Table 2.4 gives the mean monthly values 
of possible sunshine hours, N. 

9.6 10.7 11.9 13.2 14.4 15.0 14.7 13.8 12.5 11.2 10.0 9.4 
8.6 10.1 11.8 13.8 15.4 16.4 16.0 14.5 12.7 10.8 9.1 8.1 

Table 2.3 Mean solar radiation outside the atmosphere on a horizontal 
surface, H ,  (mm/day) 

50" I 3.6 I 5.9 I 9.1 112.7 I 15.4 116.7 I 16.1 I 13.9 110.5 I 7.1 14.3 I 3.0 

Table 2.4 Mean monthly possible sunshine hours, N (hrs/day) 

In order to calculate ETP according to Penman, the values of n, e,, u2, 
mean air temperature, and r are needed as local values. These can usually be 
obtained fi-om observations at the nearest climatic station. All other variables 
and constants can be estimated fi-om the tables given. According to Penman, 
ETP may represent potential evaporation as well as potential evapotranspiration, 
in practical applications. 

22.5 20.44 1.24 
25.0 23.76 1.40 
27.5 27.54 1.61 
30.0 31.82 1.85 
32.5 36.68 2.07 
35.0 42.8 1 2.35 
37.5 48.36 2.62 
40.0 55.32 2.95 

North 
Latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0" 14.5 15.0 15.2 14.7 13.9 13.4 13.5 14.2 14.9 15.0 14.6 14.3 
10" 12.8 13.9 14.8 15.2 15.0 14.8 14.8 15.0 14.9 14.1 13.1 12.4 
20" 10.8 12.3 13.9 15.2 15.7 15.8 15.7 15.3 14.4 12.9 11.2 10.3 
30" 8.5 10.5 12.7 14.8 16.0 16.5 16.2 15.3 13.5 11.3 9.1 7.9 
40" 6.0 8.3 11.0 13.9 15.9 16.7 16.3 14.8 12.2 9.3 6.7 5.4 

~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

North 
Latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0" 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 
10" 11.6 11.8 12.1 12.4 12.6 12.7 12.6 12.4 12.2 11.9 11.7 11.5 
20" 11.1 11.5 12.0 12.6 13.1 13.3 13.2 12.8 12.3 11.7 11.2 10.9 
30" 10.4 11.1 12.0 12.9 13.7 14.1 13.9 13.2 12.4 11.5 10.6 10.2 

~~~~~~~~~~~~ 

~~~~~~~~~~~~ 

~~~~~~~~~~~~ 

~~~~~~~~~~~~ 
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In most cases, the soil surface is not water saturated; in other words, water 
is a limiting factor for the evaporation process. In such cases, actual evaporation 
will be less than its potential, and a further calculation step is necessary to 
arrive at the actual evaporation. In general, the actual evaporation from the 
soil surface will depend on capacity of the soil to hold water. The actual 
evaporation will be equal to the potential evaporation as long as water is not a 
limiting factor for the evaporation process. However, when the water surface 
is not saturated, the capacity of the soil to transport water to the surface will be 
the determining factor for the evaporation process. Figure 2.13 shows this 
general behaviour for two different types of soil. 

I Actual evaporationPotentia1 evaporation (%) 

Fig. 2.13 Variation of actual evaporation with 
soil moisture content 

In general, sandy soils have a small capillary rise; and thus as soon as the 
soil surface becomes unsaturated, evaporation will quickly decrease with soil 
moisture content. On the other hand, clayey soils, due to a finer soil texture 
(soil particle size), have a large capillary rise and may transport water from 
large depths to the soil surface. Hence, with decreasing saturation, the actual 
evaporation drops slowly as compared to the sandy soil. Another contributing 
factor is that the clayey soils have largerporosity (void volume) as compared 
to sandy soils, and they may contain larger amounts of water. 

It is also possible to measure the potential evaporation from a free water 
surface by a pan-evaporimeter (Fig. 2.14). However, the pan-evaporimeters 
often overestimate the potential evaporation. This is because the much smaller 
water volume in the pan easily heats up to a warmer temperature as compared 
to the surrounding soil and therefore evaporates more than a larger water body. 
To overcome this problem, pan-evaporimeters have to be corrected by 
multiplying with a pan correction coefficient. 

The actual evaporation from soil during short periods of time can be 
measured by a Zysimeter. A lysimeter consists of an earth filled container that 
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Water surface Soil surface 

Fig. 2.14 Schematic of two types of pan-evaponmeter; (i) buried and 
(ii) above soil surface. The pan-evaponmeter above soil surface 
has the largest pan correction coefficient. 

can be weighed, and the percolating water can be collected at the bottom. 
Usually, lysimeter observations are combined with rainfall gauge observations. 
Thereby, it is possible to establish a water balance for the soil in the lysimeter. 
The advantage of lysimeters is that it is also possible to include the transpiration 
term in the observations by keeping representative plants in the lysimeter soil. 
Information on evaporation and climatic data are usually available at the national 
meteorological agency. 

2.6 SURFACE RUNOFF 

Surface runoff, discharge, or stream flow is usually defined as visible water on 
the ground, i.e., the surface water. This may include ponds, brooks, creeks, 
rivers, lakes, reservoirs, etc. Surface water is valuable for water supply and 
environmental concerns. For example, a lake is a natural water reservoir that 
can be used for water supply as well as irrigation. 

All surface runoffwater (and groundwater) is in constant movement towards 
the sea (usually the lowest point). However, the flow of water gets obstructed 
due to infiltration; also a major volume of water, depending on the season, 
gets lost into the atmosphere through evaporation. Groundwater and soil water 
are oRen in a dynamic relationship with the surface water. Groundwater may 
be drained back to the surface water depending on water levels around the 
lake and/or river. This is partly a seasonal phenomenon as seen in Fig. 2.15. 
When the groundwater level is lower than the lake or river water level, a 
significant amount of water may be transported from the lake or river to the 
surrounding groundwater. This usually occurs during summer and winter, due 
to long dry periods. During spring and autumn, with heavy rainfall and slow 
evaporation, the groundwater level becomes higher than the river water level, 
and the groundwater is drained into the river. 

The intensive drainage of natural land in urban areas has considerably 
decreased the residence time of water; and thereby pollutants are more or less 
flushed through the system without the possibility of sedimentation or being 
reduced by plant uptake or other kinds of biological transformation. In 
hydrological sense, drainage means that the flow has changed fi-om a slow 
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Fig. 2.15 (a) Infiltration to the groundwater from a river or lake and (b) 
outflow of groundwater to a river or lake (Knutsson and 
Morfeldt, 1973; Geol. Survey of Canada, 1967). Situation (a) 
shows a typical dry period when water can infiltrate into the 
groundwater. Situation (b) shows a typical wet period when 
water can be drained into the river or lake. 

process with low peak flows to a quick runoff process with high peaks. Urban 
areas are usually efficiently drained through underground stormwater system 
pipes. Runoff occurs quickly from asphalted and other impermeable areas. 
Almost no water can infiltrate, and the amount of water evaporated is less due 
to the rapid runoff. The water volume transported increases due to less 
evaporation and short runoff time. The result is a runoff hydrograph with a 
short time to peak after rainfall, a large peak runoff, and a large runoff volume. 
This is shown schematically in Fig. 2.16. 

In comparison to urban areas, the amount of water infiltrated and evaporated 
is more in drained agricultural areas. Therefore, the time to peak is longer, and 
the peak flow is smaller as is the total runoff volume. In contrast to urban 
areas, the runoff is a slow process through wetlands and the naturally 
meandering water course. The slow runoff also contributes to a rich biodiversity 
and good pollution reduction through sedimentation and biological processes. 
Slow runoff also means more wetland and ponds and lakes. Water passing 
through a wetland or lake will be naturally treated to some extent through 
biological processes and sedimentation. A theoretical residence time ( Tresid) 

for the water passing through a lake or any type of water body can be calculated 
by comparing the total inflow of water (CQinflow) with the total lake volume 
(vake) .  Assuming that as much water flows out as flows in, i.e., storage effects 
are ignored) the residence time in the lake for the water becomes 

Tresid = v a k e /  'Qinflow (2.15) 
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Discharge 
A 

Time 

Fig. 2.16 Schematic of how drainage of developed lands changes 
the runoff hydrograph afcer a rainfall event 

Correct evaluation of the amount of discharge is important because it has 
its effects on water supply, irrigation, generation of hydropower, and 
environment. An indirect way to measure discharge is to observe the water 
level in the river or creek. The discharge (Q) is a function of the water level (h). 
According to Fig. 2.17, Q, =f(h,) ,  Q2 =f(h2), Q3 =f(h3), ... where Q, > Q2 > Q3. 

Water surface 

Fig. 2.17 Relationship between discharge in a 
water course and interconnected water 
level. The figure shows a water-filled 
transect of the water course at different 
water levels with corresponding 
discharges 
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The functionfih) is usually exponential which can be easily observed by 
plotting observed Q against h (Fig. 2.18). This relationship is called stage- 
runoff or stage-discharge curve. Then, a theoretical equation for Ah) can be 
adapted to the points, usually of the type: 

(2.16) 
where, a and b are constants, h is the water level (m), and Q is the discharge 
(m3/s). The theoretical curve is adapted to the observations by changing the 
values of a and b, a calibration of the theoretical model given by Eq. (2.16). 

Q(h) = f ( h )  = a x hb 

Water level h 

Discharge Q * (m3/s> 

Fig. 2.18 Example of the relationship Q = f(h), 
discharge (or runofj against water level. 
The dots represent observed disharge at 
different water levels. 

The measured values in Fig. 2.18 come from observations of discharge at 
different water levels. Often, this is done by the current meter method. A current 
meter is a device which is used to measure water velocity by putting it into the 
water at different depths (see Fig. 2.19). In principle, the current meter consists 
of a propeller that rotates in relation to the water velocity. The velocity from 
the current meter is determined along different representative sections of the 
wet water course transect. The water velocity will vary depending on different 
locations in this transect. The highest velocity is obtained in the middle of the 
transect, close to the surface. Due to friction, the velocity decreases towards 
the bottom and the edges. The different representative sections ai (m2) and 
corresponding velocities vi ( m / s )  can be weighted to give a total representative 
average velocity for the whole wet transect area. 

The total discharge (m3/s) is calculated by multiplying the representative 
sections ai with their corresponding velocities vi, and dividing the total by the 
whole wet transect area A. 

Q(h)estimated = za iv i /A  = (alvl + a2v2 + a3v3 + ... + a,v,)/A (2.17) 
The resulting Q(h)estim,ted corresponds to a point in Fig. 2.18 that can be 

used to calibrate the theoretical curve. 
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1 
Fig. 2.19 Rodheldportable current meter manufactured 

by  Hydro-Bios Intern. Ltd. Co. 

For smaller water courses, such as brooks and creeks, it is difficult to use 
water current meter; instead, a measuring weir, e.g., the V-shaped weir is used 
(Fig. 2.20). Just upstream from the weir, a water level gauge registers the 
water level above the lowest point in the weir. It is possible to use a similar 
equation as in Eq. (2.16); but as the geometry of the V-shaped weir is known, 
a better discharge estimation can be achieved. 

V-shaped weir 

Water level h 
over weir crest I 

Fig. 2.20 Schematic of a V-shaped sharp-crested weir 

In many cases, it is necessary to calculate the runoff from individual rainfall 
events. A hydrograph analysis is then applied to determine the relationship 
between the time sequence of rainfall and the runoff. The variation of runoff 
or discharge along the time axis is called the runoffhydrograph. The 
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corresponding rainfall variation is called rainfall hyetograph. Together with 
these variables, the chemical contents [e.g., lead (Pb) or biological oxygen 
demand (BOD,)] in the runoff can also be analyzed, as apollutograph. These 
variables are displayed in Fig. 2.2 1. Note that different variables have different 
units, but their time scale remains unchanged. 

Fig. 2.2 1 Definition of important analysis tools in catchment 
hydrology, hyetograph P(t), hydrograph Q(t), and 
pollutograph C(t) 

Apart from the direct runoff which is directly related to a rainfall event, 
there is another factor that contributes to the total discharge from a catchment 
area. Usually, there is a diffuse flow of water infiltrating from the surrounding 
area even if there is no rainfall. This type of flow is called baseflow. The base 
flow varies according to season and size of the catchment. The source of base 
flow is the water from prior rainfalls that have infiltrated into the soil. The 
infiltrated groundwater slowly gets drained into the river. We can thus define 
the total runofffrom a catchment as: 

(2.18) 
where direct runoff @direct) corresponds to that part of the rainfall that is not 
lost through any catchment losses, such as interception, infiltration, andor 
evapotranspiration. We can call this rainfall, the effective rainfall Peffective. The 
effective rainfall must be equal to the direct runoff. 

(2.19) 
Corresponding to Eq. (2.18), we can define the losses for the total rainfall that 
do not contribute to direct runoff as @index. 

The @index denotes an average loss from the total rainfall (Ptotal) during the 
rainfall event, in mrn per time. Note that the above equations indicate volumes 
of water for a specific time period. While using these equations, it is important 

Qtotal= Qdirect + Qbase flow 

- 
Qdirect - ‘effective 

‘total = ‘effective -k @index (2.20) 
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Qtotal 
(m3/s) 

to use the same units. Figure 2.22 shows the relation among runoff, catchment 
losses, and total rainfall. 

In order to calculate direct runoff, the base flow is subtracted from the total 
runoff. There are different ways in which the base flow can be subtracted. The 
simplest way is to assurne a constant base flow (Fig. 2.22). However, it is also 
possible to separate the base flow by a straight line from where discharge 
begins to increase to a selected point on the recession limb of the hydrograph 
(Fig. 2.23). This point may be chosen as the point of greatest curvature near 
the lower end of the recession part of the hydrograph. 

Qtotal= Q direct + Qbase flow 

Baseflow + 

Time (hr) 

+ 

Fig. 2.22 Example of observed rainfall and runoff and relationship 

that for the equations units of P and Q need to be the same). 
among Ptotal, Peflective, @index, Qtotal, Qbasepow, and Qdirect hate 

Fig. 2.23 Two ways of separating base flow 
from total discharge 
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SUMMARY 

Precipitation is the driving force behind the hydrological cycle. The great 
variation in space and time for the precipitation means that this variation will 
carry over to other hydrological cycle components. Similarly, there are 
difficulties to observe various hydrological components with great accuracy. 
Consequently, all hydrological and water balance calculations have to be based 
on the fact that the hydrological observations contain a varying degree of 
uncertainties and errors. It is, for example, not uncommon that areal 
precipitation estimates contain errors of 1-5%. Similarly, error and uncertainty 
levels for discharge observations may be 5-20%. Thus, all hydrological 
calculations will also be affected by these uncertainties and errors. 

Indicating a high degree of numerical accuracy in the calculations that are 
based on uncertain observations is a serious flaw. It is important that all 
engineering calculations and solutions openly present these uncertainties. 
Therefore, it is often much better to give hydrological calculation results as an 
interval instead of a single numerical value. 

SOLVED EXAMPLES 

Example 2.1 A catchment with an areaA = 100 km2, has four rainfall gauges 
(P, ~ P4) according to the figure. Use the rainfall data in the table to determine 
the areal rainfall over the catchment. 

Rainfall Rainfall 

15.0 

(a) Use the arithmetic averaging method to calculate areal rainfall. 
(b) Use the Thiessen method to calculate areal rainfall. 

Solution 
(a) The averaging method gives (10.0 + 5.0 + 15.0)/3 = 10.0 111111. 

The P, gauge is not included since it is outside the catchment border. 
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(b) The Thiessen method gives representative areas according to the figure 
below. 
Estimation of sub-areas for every gauge gives approximately P,: 15%, 
P2: 30%, P3: 35%, and P4: 20% of the total area. 
This gives (25.0 x 0.15) + (10.0 x 0.30) + (5.0 x 0.35) + (15.0 x 0.20) = 

11.5 111111. 

Example 2.2 A catchment has a total area of 5 ha. Snow sampling with 
snow tube has been made at three points according to the below figure and the 
following snow depths and densities were found. 

Point A: h, = 30 cm, p, = 150 kg/m3 
Point B: hB = 20 cm, pB = 175 kg/m3 
Point C: h,  = 15 cm, p, = 225 kg/m3 

Estimate the runoff from the catchment when all the snow melts. 

Q=? 

Solution 
First, the water equivalent has to be calculated for the snow. The sampling 
points appear to be rather evenly distributed over the catchment area and thus 
we may take an average of all the measurements directly (an alternative would 
have been to apply the thiessen method to the measuring points). The average 
becomes: 
Average depth of snow: 
Average density of snow: 

(30 + 20 + 15)/3 = 21.7 cm 
(150 + 175 + 225)/3 = 183.3 kg/m3 
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Then, we use Eq. (2.5) to calculate the water equivalent: 
hwater- - h,,,, x p,,,,/1000 = (0.217 m x 183.3 kg/m3)/(1000 kg/m3) = 40 mm 

Now, we know how much water the snow pack corresponds to. This water 
may be assumed to be evenly distributed over the 5 ha catchment area. We 
don’t know how much water will infiltrate and/or evaporate during the 
snowmelt. We therefore have to make some assumptions. We also do not know 
how long the snow will take to melt. We may, however, assume that 2 1 cm of 
snow could perhaps melt off in about 3 days. 

The soil is probably frozen, so most likely, very little water could infiltrate. 
Because it is winter, maybe the evaporation will not be so large. Consequently, 
we may perhaps assume no losses. This assumption may be said to correspond 
to the security principle, e.g., if the calculations concern flood risks, we assume 
that in the worst case all water will runoff 

The runoff becomes: 
Q = (0.04 m x 50000 m2)/(3 x 24 x 60 x 60 s) = 0.0077 m3/s 

Under the given assumptions, the runoff will be, on an average, about 
0.0077 m3/s over a period of 3 days. 

Example 2.3 A parking lot with an area of 2000 m2 in a city is drained to a 
small water course without subsequent treatment. It is suspected that heavy 
metal pollutants may affect the biological life in the water. Therefore, some 
sampling of the water is done and high lead concentrations are found, about 
0.10 mg/l on an average. The authorities want to determine how much lead 
could be transported to the water course instantaneously during a 1 O-year period, 
e.g., in connection with a heavy summer rain when the flow in the river is 
slow. The average annual precipitation for the area is 700 mm and IDF- 
relationships for a nearby area shows that the 10-year rainfall is 55 I/(s.ha). 

Solution 
The parking lot has an asphalted surface. Because of this, it can be assumed 
that no infiltration occurs. Also, since runoff occurs quickly after rainfall, it 
may be assumed that little evaporation takes place. Consequently, we may put 
P =  Q. 

We need to know the amount of rainfall to calculate the runoff. When we 
have the runoff, we can multiply it with the average concentration of lead to 
get the total lead transport. 

This has to be done under the assumption that the concentration is constant 
and not dependent on the type of rainfall. We know the maximum rainfall 
amount during the 10-year period. We need to assume that the nearby area’s 
IDF-relationship is also valid for our area. We also need to assume a suitable 
duration for a 10-year rainfall. Let us assume one hour duration for a 10-year 
rainfall. This appears to be a suitable duration for a summer rain. 

This gives the following runoff: 
Q = 55 I/(s.ha) x 0.2 ha = 11 I/s 
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We assumed that the rain occurs for one hour and since the parking lot is 
small, we can assume that the runoff also occurs for one hour. The total water 
volume then becomes: 

Qvol = 11 I/s x 60 x 60 s = 39600 I 

q e a d  = 0.1 mg/l x 39600 I = 3960 mg = 3.96 g =: 4 g 
The amount of lead in this water volume is: 

Consequently, a maximum of about 4 g can be transported out of the parking 
lot during one rainfall event. This, however, does not say anything about the 
continuous transport of lead from all other rainfalls during the 10-year period. 
We know that the annual average precipitation is about 700 &year. (Also, 
evaporation and infiltration are assumed to be negligible.) Therefore, the total 
runoff from the parking lot during the 10-year period is given by: 

QlO.year = 10 x 0.70 m x 2000 m2 = 14000 m3 = 14000000 I 
This gives a total lead content of 

q e a d  

That is, the long-term transport of lead from the parking lot is about 350 times 
larger than the instantaneous runoff from the largest rainfall during the period. 

= (0.1 mg/l) x 14000000 I = 1400000 mg = 1400 g 

Example 2.4 Over a period of two days, (50 + 50) mm rain fell over a 
catchment (A = 50 km2). The runoff in the water course draining the area was 
Q = 0 at the start of rainfall; and over six days, Q,,, = 2 m3/s; and thereafter 
Q = 0 again. Answer the below questions: 
(a) How large were the losses from the total precipitation (in mm)? 
(b) How large was the effective rainfall (in mm)? 
(c) What is the value of @index (in &day)? 

Solution 
To best understand the problem, let us plot the prerequisites! 

I 0 1 2 3 4 5 6  Time (days) 
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Timc(min) 

Q (k) 

(a) The effective rainfall is equal to the direct runoff. From the prerequisites, 
it is seen that the runoff was zero just before the rainfall. Therefore, the 
base flow can be assumed to be zero. 
The direct runoffbecomes: 2 m3/s x 6 x 24 x 60 x 60 s = 1.0368 x lo6 m3 
Therefore, the effective rainfall per unit area is given by: 
1.0368 x lo6 m3 / (50 x lo6 m2) = 0.0207 m = 20.7 mm 

(b) The total losses were Ptotal - PeEective = (100 - 20.7) mm = 79.3 mm 
(c) (bindex is (79.3 / 2) &day, i.e., 39.7 &day 

0 30 60 90 120 150 180 210 240 270 300 330 360 
5.0 43.3 158.3 464.8 694.4 1154.5 1001.2 847.5 694.7 311.5 158.3 81.7 5.0 

Example 2.5 Runoff (I/s) according to the below table was observed from a 
500 ha large catchment after a total rainfall of 10 mm for a period of 30 min. 
What was the effective rainfall in mm? What were the losses? 

Solution 
Q according to the above table corresponds to the total runoff, i.e., 

The total rainfall was 10 mm that corresponds to Ptotal = PeEective + (bindex. 

Once we have &irect, we can calculate Peffective. 
Therefore, we first have to subtract the base flow from the total flow 

according to the table below. We assume a constant base flow of 5 I/s. Having 
done this, we know that we have the direct runoff resulting from the effective 
rainfall. To calculate the effective precipitation, we have to add all direct runoff 
and then multiply it with the total runoff time to get the direct runoff in m3. 
This volume can then be divided by the total catchment area to get the direct 
runoff equal to the effective rainfall in mm. 

According to the table below, the total direct runoff volume becomes: 
5555.5 I/s x 30 min = 5555.5 I/s x 30 x 60 s = 9999.9 m3 (i.e., about 10000 m3). 
The total direct runoff divided by the total catchment area gives the effective 
rainfall, i.e., 10000 m3/(500 x lo4 m2) = 0.002 m = 2 mm. 

That is, the effective rainfall was 2 mm. Consequently, the total losses were 
8 mm. 

Qtotal= Qdirect + Qbase flow. 

(Contd.) 

7ime (min) Qtotar (11s) Qtotar - Q b a e  (11s) Qmean 0's) 

0 5.0 0.0 - 

30 43.3 38.3 19.2 
60 158.3 153.3 95.8 
90 464.8 459.8 306.6 
120 694.4 689.4 574.6 
150 1 154.5 1149.5 919.5 
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Time (min) 
Appliedwater(m1) 

(Contd.) 

0-10 10-20 2&30 3 0 4 0  40-50 50-60 60-70 70-80 80-90 
105 69 50 39 33 30 28 27 27 

I 180 I 1001.2 I 996.2 I 1072.9 I 
I 210 I 847.5 I 842.5 I 919.4 I 
I 240 I 694.7 I 689.7 I 766.1 I 
I 270 I 311.5 I 306.5 I 498.1 I 
I 300 I 158.3 I 153.3 I 229.9 I 
I 330 I 81.7 I 76.7 I 115.0 I 
I 360 I 5.0 I 0.0 I 38.4 I 

Example 2.6 To determine the infiltration capacity of a soil, the following 
experiments were made with a ring infiltrometer having a diameter D = 20 cm. 
Water was applied in order to maintain a constant water level inside the ring. 
(a) Calculate the infiltration capacity, accumulated infiltration, and determine 

the parameters in the Horton equation with the help of the observations 
given in the following table: 

(b) Use the results in (a) to calculate effective rainfall from 45 mm rain during 
a period of 30 min. 

Solution 
(a) Theareaoftheringis0.10x0.10x3.14=0.0314m2; 1 m l =  1 x 10-6m3. 

The amount of applied water = 105 x m3/0.0314 m2 = 3.3 mm/min, 
as an average for the first 10 min. 

By plotting these infiltration capacities in the middle of each time interval 
in a diagram extrapolation givesf, = 0.46 mm/min (for t = O ) , f ,  = 0.086 
d m i n  (for t > 80 min). 

Time 
(min) 

G10 
1 G20 
2&30 
3 M O  
4&50 
5 M O  
6&70 
7&80 
8&90 

Applied water 
(ml) 

105 
69 
50 
39 
33 
30 
28 
27 
27 

Infiltration 
capaciv f(t) 

(mmhin) 

0.334 
0.220 
0.159 
0.124 
0.105 
0.095 
0.089 
0.086 
0.086 

Accumulated 
infiltration F(t) 

3.34 
5.54 

7.13 
8.37 
9.42 
10.37 
1 1.26 
12.12 
12.98 

(mm) 
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By putting these parameters in the Horton equation: 
A0 =f, + (fo -f,> epkt 
At) = 0.086 + (0.46 - 0.086) epkt 
At) = 0.086 + 0.374 epkt 
f ( t )  = 0.159 and t = 25 
0.159 = 0.086 + 0.374 epkx25 
0.073 = 0.374 epk 25 

0.1952 = epk 25 

ln(O.1952) = -k x 25 

k =  1.63373125 
k = 0.065 min-'. 

-1.63373 = -k x 25 

Testing a few other points on the curve gives an average, k = 0.062 min-' 
(b) The rainfall supplies, on an average, 45/30 = 1.5 mtdmin of water to the 

soil surface. When compared to the infiltration capacity in the above table, 
it is seen that the average rainfall is always larger than the infiltration 
capacity for the first 30 min. Consequently, the Horton assumption of 
continuous flooding is fulfilled. 

Accumulated infiltration for the first 30 min is 7.13 mm. 
Consequently, (45 ~ 7.13) mm gives 37.87 mm as the effective rainfall. 

Example 2.7 A 15 mm rainfall is recorded over a small catchment according 
to the table below. Infiltration tests in the area have given the following Horton 
equation parameters: 

f, = 27 mm/br, f, = 6 d h r ;  k =  3.5 hr. 

I Erne Rainfall intensity 
(hr) (rnrnlhr) 

0.00-0.25 I 40 I 
0.25-0.50 I 3 I 
0.50-0.75 I 12 I 
0.75-1.00 I 16 

(a) Calculate the infiltration capacity as a function of time. It is assumed that 

(b) Can the Horton equation be applied to calculate infiltration for this rainfall 
the soil surface is always ponded with water. 

event? 

Solution 
The infiltration capacity is given by:At) = 6 + (27 - 6)ep3.5t I11ITl/hT 
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llme 
(hr) 

0.00-0.25 
0.25-0.50 
0.50-0.75 
0.75-1 .OO 

The respective infiltration capacities for the given time durations are 
calculated in the table below. (For the first time-step 0-0.25 hr; average 
infiltration is (27 +f(0.25 hr))/2 = (27 + 12.8)/2 = 19.9 mm 

Infiltration capaciw Rainfall intensiw 
(mm/hr) (mm/hr) 

19.9 30 
11.6 2 
6.7 10 
8.2 15 

Example 2.8 Calculate the potential evapotranspiration using Penman's 
method, for a location with the following available local hydrometeorological 
data: 
Latitude: 28" 4' N 
Altitude: 230 m amsl 
Average monthly temperature: 20°C (November) 
Average relative humidity: 75% 
Average sunshine hours per day: 9 hrs 
Average wind velocity at 2 m above ground: 85 W d a y  
Surface cover: Plant-covered ground 

Solution 
For an average temperature of 20"C, A = 1.05 mm/"C and e, = 17.54 mm Hg. 

(Refer Table 2.2) 
For a latitude of 28" 4' N and November, Ha = 9.506 mm water per day. 

(Refer Table 2.3) 
For a latitude of 28" 4' N and November, N = 10.7 hrs per day; 
and n/N = 9/10.7 = 0.84. (Table 2.4) 
Further: 

e, = e, x 75% = 17.54 x 0.75 = 13.16 mm Hg 
a = 0.29 cos 4 = 0.29 x cos(28" 4') = 0.2559 
b = 0.52 

= 2.01 x lop9 mm/day 
T, = 273 + 20°C = 293 K 

From the above table, it can be observed that the average rainfall intensity 
always exceeds the average infiltration capacity, except for the time duration 
0.25-0.50 hr. During this period, infiltration capacity is larger than rainfall 
intensity and thus the water surface is not ponded, and hence the prerequisite 
of the Horton equation is not fulfilled. 
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0 .  T: = 

r = 0.25 
Applying Eq. (2. 

2.01 x lop9 x 2934 = 14.814 

3) gives: 
H, = Ha (1 - r) (a + b n/N) - 0 T: (0.56 - 0.092 &) (0.10 + 0.90 n/N) 

x (0.56 - 0.092 413.16) x (0.10 + 0.9 x 0.84) 
H,= 9.506(1 - 0.25) x (0.2559 + 0.52 x 0.84) - 14.814 

= 4.939 - 2.869 = 2.07 mm H 2 0  per day 
Applying Eq. (2.14) gives: 

E, = 0.35 (1 + u2/160) (e, - e,) 
E, = 0.35 (1 + 85/160) (16.50 - 13.16) = 1.78 mm H20  per day 

Applying Eq. (2.12) gives: 
ETP= (A  H, + Ea y) / (A  + y) 

ETP = (1.05 x 2.07) + (1.78 x 0.49)/(1.05 + 0.49) = 2.59 mm H 2 0  
per day. 

Example 2.9 A catchment has an area equal to 1 km2 and a runoff coefficient 
of 0.8. A 10 mm rainfall is recorded, evenly over the catchment area. 
(a) How much runoff volume can be expected out of the catchment from this 

rainfall? 
(b) Samples are taken from the runoff and these are found to contain an average 

of 10 mg/l nitrogen. What is the expected amount of nitrogen to be 
transported out of the catchment in case of a rainfall of 20 mm? 

Solution 
(a) If the catchment has a runoff coefficient of 0.8, it means that 80% of the 

rainfall runs off directly Consequently, from a 10 mm rainfall, 8 mm will 
form the direct runoff. 
8 mm corresponds to: 0.008 x 1.0 x lo6 = 8000 m3 
The expected runoff is 8 mm or 8000 m3. 

rainfall, runoff will be equal to 20 x 0.8 = 16 mm. 
This corresponds to: 0.016 x 1.0 x lo6 = 16000 m3 
Assuming that the sampling from the 10 mm rainfall is also representative 
for the 20 mm rainfall, the nitrogen transport in direct runoff from the 
20 mm rainfall becomes: 
10 x lop6 kg / (lop3 m3) x 16000 m3 = 0.010 x 16000 kg = 160 kg N. 

(b) Assuming that the same runoff coefficient can be used for the 20 mm 

Example 2.10 A community has hired you to make a hydro-ecological 
investigation of a 4.8 ha large catchment area to improve the ecology by 
designing artificial wetlands. The following hydrograph (total runoff in m3/s 
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every 10 min) depicts a 15 mm uniform rainfall over the catchment that was 
recorded over a period of 10 min. Determine the following: 
(a) How large was the base flow? 
(b) How much was the direct runoff in m3? 
(c) What was the effective rainfall in mm? 
(d) How large were the losses in mm? 
(e) How large was the runoff coefficient? 
(f) What was the water balance for this rainfall event? 

0.20 

0.18 

0.16 

0.14 

h 0.12 

v 0.10 

3 0.08 

0.06 

0.04 

0.02 

0.00 

r/l . 
-a 
% 

0 10 20 30 40 50 60 
Time (min) 

From water sampling, it is found that there is nitrogen leakage from the 
area. Analyses indicate that water leaving the area, on an average, has a content 
of about 20 mg N per litre runoff 
(a) How much nitrogen can be expected out from the area in runoff for a 

design rainfall of 100 mm? 
(b) By designing a series of ponds and a wetland, the community hopes that 

the area’s hydrology and ecology will improve. After these changes, how 
do you think the runoff hydrograph will change? 

Solution 
(a) By assuming a constant base flow, this can be estimated to 0.01 m3/s. 
(b) See the table below: 
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According to the above table, the sum of Q,,, for the first 40 min is 
0.40 m3/s. Thus, the volume of direct runoff in m3 is: 

Qdirect = 0.40 m3/s x 10 x 60 s = 240 m3 
The effective rainfall is equal to the direct runoff. 
Hence, Peffective = 240 m3/(4.8 x lo4 m2) = 0.005 m = 5.0 mm 
The total losses were: 15 ~ 5 = 10 mm 
The runoff coefficient is Q/P = 5/15 = 0.33 
The water balance P = Q + E (losses); P = 15 mm, Q = 5 mm, and 
E (losses) = 10 mm. 
Assuming the same runoff coefficient of 0.33, the direct runoff from a 
100 mm rainfall would be 33.3 mm. Then the volume of direct runoff will 
be: 0.0333 m x 4.8 x lo4 m2 = 1600 m3 
This water is expected to contain 20 mg N per litre. The total nitrogen 
transport from 100 mm rainfall would then become: 

20 x lop6 kg/(10p3 m3) x 1600 m3 = 0.020 x 1600 kg = 32 kg N. 
By designing an artificial wetland with ponds, the runoffwill be delayed 
and the peak runoffwill be lower. Possibly, more evaporation will occul; 
thereby decreasing the total runoffvolume. Exactly how the shape of the 
hydrograph will look after the introduction of ponds will depend on the 
detailed flow conditions. 

Example 2.11 A heavy rainfall event in a catchment lasted 12 hours and a 
total of 55 mm of rain was recorded during this period. The direct runoff 
corresponding to this rainfall was 30 mm. 
(a) Calculate @index. 

(b) During another rainfall event in the same catchment, 20 mm of rainfall 
was recorded during the first 6 hours and 10 mm during the following 6 
hours. Calculate the losses according to the @index method [use the calculated 
@index from 

Rme Qtotar Qtotar - base flow Q m m  
(min) (m3/s) (m3/s) (m3/s) 

0 0.010 0 0 
10 0.110 0.10 0.05 
20 0.110 0.10 0.10 
30 0.2 10 0.20 0.15 
40 0.0 10 0 0.10 
50 0.010 0 0 

Sum 0.40 - - 
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Solution 
(a) In this case, the @index can be calculated as follows: 

(b) The loss during each period is the lowest value of either (i) the rainfall or 
(ii) @ x t, where t is the duration of the time period. 

During the first 6 hours, the rainfall was equal to 20 111111, and the losses 
were @ x t = 2.1 x 6 = 12.6 mm. During the following 6 hours, the rainfall 
was equal to 10 mm, and the losses were @ x t = 2.1 x 6 = 12.6 mm. 

Consequently, the rainfall was less than the potential losses and only 10 
mm were lost. Thus, the loss was 12.6 mm during the first 6 hours and 10 
mm during the following 6 hours. The total loss was 22.6 111111. 

@iindex=(P-Q)lt=(55 -30)/12=2.1 mm/hr 

Example 2.12 The Horton infiltration equation At) describes how the 
infiltration capacity (mm/hr) for the soil is changing with time as the soil 
becomes wetter. The accumulated infiltrated water (in mm) can be calculated 
using the integral offit), i.e., F(t). 

At) = f ,  + (f, - f , P  

fo - fc (1 - e-kt ) F(t) =f, t  + ~ 

k 
where, f, = initial infiltration capacity of dry soil (mm/hr) 

f ,  = final infiltration capacity when the soil has become saturated soil 

k = time constant (hrp') 
(-1 

Note that the Horton equation is only valid forponding conditions. 
In a specific soil, the following parameters are known: 

f, = 35 ( d h r )  

f ,  = 6 ( d h r )  
k = 2 (hr-') 

(a) What is the infiltration capacity after 15,30, and 60 min? 
(b) How much water has infiltrated after 15, 30, and 60 min? 

Solution 
(a) By inserting the above parameter values into the Horton equation, the 

infiltration capacity becomes: 
At) =A15 min) =A0.25 hr) = 6 + (35 - 6) ep2" 0.25 

A0.25 hr) = 6 + 29 e4.5 = 6 + 2911.649 = 23.6 mm/hr. 
Corresponding calculation gives f(30 min) = 16.7 mm/hr and f(60 min) = 

9.9 mm/hr. 
(b) By inserting the above parameter values in to the Horton equation, the 

accumulated infiltration becomes: 
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F(t) = F(15 min) = F(0.25 hr) = 6 x 0.25 + [(35 - 6)/2] x (1 - ep2 0.25 1 
F(0.25 hr) = 6 x 0.25 + [(35 - 6)/2] x (1 - ep2 0.25) = 1.5 + 14.5 x 

Corresponding calculation gives f(30 min) = 12.2 mrn and f(60 min) 
= 18.5 mrn. 

(1 - 0.606) = 7.2 111111. 

Example 2.13 A catchment has an area, A = 2.26 h2. Find the @index for a 
given rainfall event according to the table given below. Given, the direct runoff 
volume is 5.6 x lo4 m3. 

I 0-2 I 7.1 

I 5-7 I 5.6 

I 10-12 I 1.5 

Solution 
For the entire 12 hr period, the direct runoff was: 

The total rainfall was: 
&irect = (5.6 X lo4 m3)/2.26 h2 = 0.02478 m = 24.8 Illlll 

Ptotal = (2 x 7.1) + (3 x 11.7) + (2 x 5.6) + (3 x 3.6) + (2 x 1.5) 
= 74.3 mm 

The losses were: 
Ptotal - Peffective = 74.3 - 24.8 = 49.5 mm 

This means that the average loss rate was 49.5/12 = 4.13 mm/hr. 
However, during the time period 7-12 hr, the rainfall intensity was lower 

than 4.13 d h r ,  which implies that the actual loss rate during this period was 
less than the @index. 

In practical terms, there was no runoff during this period. Hence, the total 
runoff must have occurred between 0-7 hr with a total direct runoff equal to 
24.8 111111. 
The total rainfall during this period (0-7 hr) was: 

Ptotal = (2 x 7.1) + (3 x 11.7) + (2 x 5.6) = 60.5 ~lllll 

The total losses during this period were: 

This gives an average loss rate = 35.7/7 = 5.10 mm/hr. The rainfall intensity is 
always larger; therefore, @index = 5.10 Illlll/hT. 

Ptotal - losses = 60.5 - 24.8 = 35.7 mm 
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Example 2.14 From a hydrologic viewpoint, a catchment can be described 
as a system that transforms input (precipitation) to output (runoff). Mention 
some (maximum five) important factors that influence this transformation. 
Describe how and why these factors influence the output. 

Discussion 
Catchment geometry influences the time to peak and the total length of the 
runoff hydrograph. The longer the total length of water courses, the longer the 
runoff time and the hydrograph will be. 

Antecedent conditions in the catchment affect the total losses that occur in the 
catchment. If a long and dry period precedes a rainfall-runoff event, then more 
losses will occur as compared to the situation wherein the antecedent period 
was wet. These conditions also affect the base flow from the catchment. 

The catchment geomorphology has a considerable effect on runoff conditions 
and total water balance. If soil and bedrock consist of highly pervious material, 
large volumes of water will be infiltrated and thus much water will be stored 
underground. On the other hand, if surface cover is impervious to a great extent; 
then the runoff will be quick with less loss, greater runoff volume, and shorter 
time to peak. 

Surface cover and use of catchment: Plant cover and human use greatly 
influence the runoff conditions. The runoff conditions depend on whether the 
catchment falls under natural, agricultural, or urban area. The most important 
aspect that alters the runoff conditions is how well the catchment is drained. 

Lake percentage of catchment area: The number of lakes and the total area 
occupied by the lakes in relation to the total catchment area greatly influence 
the runoff. A lake is a temporary storage that tends to delay runoff. The greater 
the lake percentage, the greater will be the storage effects. 

Example 2.15 
(a) What is potential evapotranspiration? How does it affect the water 

(b) What is arealprecipitation? Why is its importance? 
(c) What is unsaturated zone? How does it affect the hydrologic circulation? 

Discussion 
(a) Potential evapotranspiration denotes the maximum possible sum of 

evaporation and transpiration from an area, when water is not a delimiting 
factor. Actual evapotranspiration will equal potential evapotranspiration 
as long as the soil surface is saturated with water. When water is a delimiting 
factor for the evapotranspiration process, i.e., when the soil surface is no 
longer saturated with water, properties of the soil and ground will determine 
the actual evapotranspiration. Properties like capillary rise, texture and 
structure of the soil, and type of plants will then determine how much 

balance? 
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water will evaporate and transpire through plants. In general, more the 
potential evapotranspiration, greater is the water loss and less is the runoff 
volume. 

(b) The areal precipitation has to be determined essentially from the point 
measurements that the precipitation gauges represent. Areal precipitation 
estimations are used in all kinds of hydrological calculations, such as water 
balances, runoff estimations, water availability, flood risk estimations, etc. 

(c) The unsaturated zone is the soil section between the soil surface and the 
groundwater table. The term ‘unsaturated’ indicates that the pores and 
void volume in the soil are not saturated with water. Instead, the zone 
contains water, gas, and soil material. The unsaturated zone has a large 
effect on runoff and evaporation processes in the catchment. Surface water 
may infiltrate through the soil surface to the unsaturated zone and further 
percolate down to the groundwater table. 

Example 2.16 The water circulation in a lake may be studied by the water 
balance. Establish a water balance for a lake (note: no numeric values or 
calculations). 
(a) How can you estimate or measure the different components of the water 

(b) If you want to calculate the phosphorous mass balance for the lake, what 
balance for the lake? 

other information do you need besides the water balance? 

Discussion 
(a) The average water balance for a lake may be given as: P = Q + E, where P 

is the average precipitation, Q is the average sum of all inflows minus all 
outflows, and E is the average evaporation. P can be measured by 
precipitation gauges; all inflows and outflows in water courses need to be 
measured by continuous water level readings together with stage-discharge 
relationships; and E can be calculated from the water balance. 

It may be assumed that no significant inflow or outflow via groundwater 
is occurring. Usually, this is a seasonal phenomenon that can be ignored 
for average long-term values. Outflow and/or inflow via groundwater may, 
however, be observed through groundwater level observations around the 
lake. 

(b) To establish phosphorous mass balances through transport in water, 
concentrations of different parts of the water balance are needed. All parts 
of the water balance have to be used, except for evaporation which does 
not contribute significantly to phosphorous transport. Also, transport via 
groundwater may be assumed negligible. 

Example 2.17 
(a) Stormwater (b) Sewage water 
(c) Soil water 

Explain the following briefly: 

(d) Storage term of the water balance 
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Discussion 
(a) Stormwater is the term for runoff and surface water in urban areas. 

Essentially, this water is rainwater but the stormwater is often polluted by 
typical urban pollutants, such as heavy metals, oil, etc. The stormwater is 
usually led to the recipient without prior treatment. 

(b) Sewage water is the collective name for the water coming from urban 
uses, such as kitchen, bath, toilets, washing clothes and dishes. It may be 
led to water treatment plants in separated (separated from stormwater) or 
combined (combined with stormwater) sewers. 

(c) Soil water is water in the unsaturated zone between soil surface and 
groundwater table. 

(d) The storage term denotes temporary storages in snow, ice, lakes, soil, 
groundwater, etc., that need to be considered in the water balance for time 
periods shorter than one year. 

Example 2.18 A lake is a usually a natural water reservoir that is continuously 
replenished by water from the inflow, such as rivers and other water courses. 
Depending on the residence time that this water spends in the lake, pollutants 
in the water may either undergo natural biological treatment and/or 
sedimentation. 
(a) If the residence time increases, how will the pollutants be affected in the 

lake water? 
(b) If you know the total inflow of water to the lake and the total lake volume, 

what can you say about the theoretical residence time? 
(c) If you want to measure the inflow to the lake with the help of a water level 

gauge, what kind of information and/or measurements do you need? 

Discussion 
(a) If the residence time increases, it means that the water is spending a longer 

time in the lake. This increases the chances that natural biological treatment 
processes have enough time to decompose pollutants in the water and 
also that pollutants may sediment. 

(b) The theoretical residence time will be the total lake volume divided by the 
total inflow of water to the lake. 

(c) You need a stage-discharge curve that relates the water level in the river to 
the discharge in m3/s. The stage-discharge curve can be established by 
plotting the observed water level versus the discharge. Consequently, the 
discharge has to be estimated, e.g., with a current meter for representative 
sections of the water course. By plotting the observed water levels with 
the estimated discharges, a theoretical relationship can be established. 
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Example 2.19 The rapid drainage of agricultural areas and urban areas during 
the last few hundred years have dramatically changed the hydrological 
conditions of large areas. Try to give examples of how these changes have 
modified the following: 

(b) transport of nutrients and pollutants 
(c) biodiversity 

Discussion 
(a) The total water balances have been changed by increasing the speed at 

which the water is discharged. The drainage has meant that water is more 
rapidly transported to the sea. Thereby, evaporation and the residence time 
of water have decreased. The runoff hydrograph has become shorter in 
time, with larger peaks, and larger runoff volume. This has also increased 
the flood risks to a major extent. 

(b) Since the residence time has decreased, natural biological processes have 
less time to treat the water naturally. Also, pollutants have less time to 
sediment if the discharge is occurring more quickly. Pollutants are flushed 
out from surfaces in agricultural and urban areas, thereby increasing the 
pollution load of the sea. 

(c) The biodiversity has changed in relation to fewer occurrences of natural 
wetland and ponddlakes. Also, less variation in surface use has meant 
less variation in species. 

(a) hydrology 

Example 2.20 A newly graduated hydrologic engineer is to investigate why 
the community’s groundwater supply varies so much during the year. It is 
extremely cold and there is much snow on ground when the engineer goes out 
to have a look at the groundwater wells in the area. The engineer finds that the 
water levels are all very low. In a well, not far from a small river, it is noticed 
that the water level is much lower than in the river. 
(a) How can it be explained that the groundwater level is lower than that of 

the river? 
(b) If the engineer had been out during other seasons (spring, summer, autumn), 

what could the relationship between water levels in the river and 
groundwater have looked like? Try to draw figures. 

(c) The engineer suspects that the storage term in the water balance plays a 
key role in the explanation. What is the storage term and how does it vary 
for different seasons? 

Discussion 
(a) See Fig. 2.15. During long, dry summers andlor snow-rich cold winters, 

there is no water that can replenish the groundwater. Consequently, due to 
evapotranspiration, the groundwater level may be lowered. Compared to 
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stream water levels (the stream may be fed by water from the upper parts 
of the catchment with more precipitation and/or glacial melt), the 
groundwater level may be lower, and thus water is transported out of the 
stream to the groundwater. 

(b) During wet periods with less evaporation, the situation may be reversed, 
e.g., autumn and spring periods. 

(c) Probably much water is stored as groundwater during autumn and spring. 
This storage decreases during summer and winter. 

EXERCISES 

Exercise 2.1 
(a) The probability for a 1 OO-year return rainfall to occur during an individual 

year is 0.01. 
(b) 1 I/(s . ha) is the same as 0.36 mm/hr. 
(c) Direct runoff plus base flow gives the total runoff. 
(d) In combined sewage pipes, stormwater and sewage water are discharged 

(e) For longer time periods (years), the storage term of the water balance can 

(f) Thiessen method is a way to calculate the areal values from point values. 
(g) The reason why the water velocity decreases towards the bottom and the 

(h) The index describes how much water percolates to the groundwater during 

(i) Frontal lifting often results in a precipitation increase with altitude. 

State whether the following statements are correct or not. 

together. 

be ignored. 

sides of the wet transect of a water course is friction. 

runoff. 

Answer 
(a) Correct 
(c) Correct 
(e) Correct 
(g) Incorrect 

(b) Correct 
(d) Correct 
(f) Correct 
(h) Incorrect 

Exercise 2.2 The water balance for a lake can be used to explain lake water 
level variations. For a specific lake, it rained 40 mm in a month. At the same 
time, the evaporation from the lake was 20 111111. The only inflow to the lake 
was equal to 3000 m3, and the only outflow from the lake was through another 
river which was equal to 4000 m3. During this month, the lake water level 
increased by 10 111111. Calculate the area of the lake. What assumptions are 
necessary? 



Elements ofHydrologic Cycle 75 

Answer 
The lake area is 30 ha. Other inflows and outflows such as groundwater flow 
must be ignored. 

Exercise 2.3 A quadratic catchment area has its four corners in the following 
(x, y )  coordinates; (0, 0), (1000, 0), (0, lOOO), and (1000, 1000) with both x 
and y in metres. Two rain gauges are located in the area. Gauge A has the 
coordinates (500, 500), and gauge B has the coordinates (1 100, 500). During 
a rainfall, 100 mm were recorded in gauge A and 0 mm in gauge B. 
(a) Calculate the areal rainfall over the catchment using arithmetic average 

(b) What would be the areal rainfall if Thiessen method is used? 
(c) During a previous rainfall, a runoff coefficient of 0.8 was recorded. What 

(d) What is the expected rainfall in (b)? 
(e) Observed mass transport of phosphorous from the catchment was 100 kg. 

method. 

is the runoff expected for the rainfall in (a)? 

What was the concentration of phosphorous in the water? 

Answer 
(a) 1OOmm 
(b) 8Omm 

(d) 64mm 
(e) Between 1.25-1.56 g/m3 

(c) 80mm 

Exercise 2.4 (after Larsson 2000) The discharge from a catchment with an 
area A = 1000 ha, was measured during a rainfall event. The discharge values 
(m3/s) are given below for every 30 min, starting from the time 1O:OO. 
(a) Estimate the times for start and finish of the direct runoff. 
(b) What is the base flow? 
(c) What is the volume corresponding to the direct runoff? 
(d) What is the effective rainfall? 

Q = 4.9, 4.7, 4.5, 7.3, 11.8, 17.2, 21.1, 25.5, 29.7, 32.4, 32.2, 30.9, 
28.7,26.2,23.3,20.5, 18.0, 15.7, 13.8, 12.3, 11.1, 10.0,9.1, 8.4,7.7, 
7.2,6.7,6.3,5.9,5.5,5.2,4.9,4.6,4.4,4.1,3.9,3.7,3.5,3.4,3.2,3.0 

Answer 
(a) 11 :OO-02:30 
(b) about 4.5 m3/s if a constant base flow is assumed 
(c) 511560m3 
(d) Peffective = 5 1 mm 
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Stage (m) 

1 
2 
3 
4 

6.25 

Exercise 2.5 Using Eq. (2.14), obtain a and b for the following observed 
pairs of stage (m) and discharge (m3/s). 

Dischavge (m3/s) 

5 
7.1 
8.7 
10 

12.5 

Answer a = 5 ,  b = 0.5 

OBJECTIVE QUESTIONS 

1. Orographic lifting results in 
(a) Topographical dependence of precipitation 
(b) Lifting of soil surface after freezing 
(c) Higher ocean water level 
(d) A warmer climate 

2. A precipitation gauge without windscreen as compared to a gauge with 
windscreen records 
(a) Less precipitation amount 
(c) Same amount of rainfall 

(b) More snow precipitation 
(d) Areal precipitation 

3 .  Snow water equivalent shows 
(a) The depth of snow 
(b) Ratio snow/rainfall in precipitation 
(c) Climatic area in cold areas 
(d) The amount of water in a snow pack 

4. The Thiessen method is used to 
(a) Estimate convective part of rainfall 
(b) Estimate areal precipitation 
(c) Calculate wind correction for rainfall 
(d) Divide catchment into sub-catchments 

5.  What is the probability that a 100-year flood occurs in a single year? 
( 4  0 (b) 0.001 (c) 0.01 (d) 1.0 

6. 1 rnm water on an area represents 
(a) I g/m2 (b) 10 kg (c) 1 mrn/m2 (d) 1 dm3/m2 
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7. Horton equation is used to estimate 
(a) Amount of evaporation 
(c) Soil water content 

8. A higher albedo means 
(a) Higher reflection 
(c) Saturated surface 

(b) Infiltration 
(d) Runoff 

(b) Less reflection 
(d) Less snow 

9. Capillary rise will be largest in 
(a) Warmsoil (b) Sandy soil (c) Clayeysoil (d) Saturatedsoil 

10. A lysimeter measures 
(a) Actual evaporation (b) Potential evaporation 
(c) Transpiration (d) Penman evaporation 

11. A pollutograph shows the 
(a) Pollutant content in runoff 
(c) Pollution concentration in cities (d) Graph with unit kg/s 

(b) Pollutant reduction in soil 

12. Which of the following statements is wrong? 
(b) Qdirect = Qtotal ~ base flow 
(dl ‘total = ‘effective + Findex 

- 
(a) ‘effective - Qdirect 
(c) Base flow = AS 

13. Estimate the rate of evaporation in &day if saturated vapour pressure of 
water at 30°C is 3 1.82 mm of mercury and relative humidity is 35%. Use 
the value of constant 0.5 in Dalton’s law. 
(a) 5.67 (b) 8.70 (c) 10.34 (d) 12.45 

14. While measuring the velocity at a point in the flow cross-section of shallow 
streams having depth upto 3.0 m, the average velocity is taken as the 
velocity measured at: 
(a) Water surface 
(b) Bottom 
(c) 0.6 times the depth of flow below the water surface 
(d) Anywhere between the water surface to bottom of streams 

15. The relation between the stages G and discharge Q in a river is expressed 
as : 
(a) Q = C,(G + a)D (b) Q = C,(G - a)D 

[Note: C, and p are rating constants and a is a constant which represent 
the guage reading corresponding to zero diacharge] 
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CHAPTER 

3 
Hyetograph and 

Hydrograph Analysis 

3.1 INTRODUCTION 

Not all the rain that falls over a catchment contribute to the runoff volume at 
the catchment outlet. A part of it is lost and the remainder of the rainfall, 
termed excess rainfall, is the driving force causing runoff (or flow or discharge) 
at the outlet of the catchment (or basin). A good understanding of these factors 
that preclude rainfall from running off is necessary in order to fully use the 
capabilities of observed hydrographs. Much of the rain falling during the first 
part of a storm is stored on the vegetal cover as interception and in surface 
depressions (puddles) as depression storage. As the rain continues, the soil 
surface gets saturated and the water starts to run off towards the channel. Thus, 
the part of storm rainfall which does not appear either as infiltration or as 
surface runoff is known as surface retention. Interception due to vegetal cover 
is relatively unimportant in moderate-to-severe floods, though it may be 
considerable over a period of time. 

Almost immediately after the beginning of rainfall, the small depressions 
become full and overland flow begins. Some of the flows move towards larger 
depressions, while the major overland flows contribute to the streams. 
In$ltration is the phenomenon of water penetration from the ground surface 
to the sub-surface layers. By far, infiltration is the major contributing factor 
responsible for the water losses from rainfall which does not appear as runoff 
in the stream. Rainwater infiltrates through the soil surface once it exceeds the 
infiltration capacity of the soil. Thus, only excess rainfall will lead to runoff 
Concepts related to precipitation, effective precipitation, relevant losses, runoff 
and base-flow were briefly introduced in the previous chapter. Here, a detailed 
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coverage of hyetograph and hydrograph is considered with the main objective 
of estimating runoff, giving equal emphasis to single-storm as well as multiple- 
storm events. 

3.2 HYETOGRAPHS 

The graph that plots the rainfall over the basin along a time scale is called the 
hyetograph. Although a number of techniques are available for separating the 
losses from a rainfall hyetograph, the injltrution indices method is the simplest 
and the most popular technique used for this purpose. In hydrological 
calculations involving floods, it is convenient to use a constant value of 
infiltration rate (including all losses from the total rainfall hyetograph) for the 
duration of the storm. 

The average infiltration rate is called inJiltration index, and two types of 
indices are commonly used, they are: (i) &index and (ii) W-index. These indices 
account for infiltration and other losses. It basically involves a trial and error 
procedure, which does not differentiate between types of losses, e.g., 
interception, depression, and infiltration. Certain background on @-index along 
with its computations has already been provided in the preceding chapter. 
However, for clarifying distinction between @-index and W-index, both of these 
are explained below. 

3.2.1 @-Index 
The @-index or constant loss rate is defined as the rate of rainfall above which 
the rainfall volume equals the runoff volume (Fig. 3.1). Mathematically, the 
&index can be expressed as the average rainfall above which the rainfall volume 
is equal to the direct runoff volume. The @-index is derived from the rainfall 

Y 
,. 

4-index Total losses 
I 

*x 
Time (hr) 

Fig. 3.1 A generalized rainfall hyetograph showing 
$-index in relation to total rainfall 
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Time from start (hr) 
Incremental rainfall in each hour (cm) 

hyetograph which also helps to calculate the direct runoff volume. The 
@-value is found by treating it as a constant infiltration capacity. If the rainfall 
intensity is less than @, then the infiltration rate is equal to the rainfall intensity. 
However, if the rainfall intensity is greater than @, then the difference between 
rainfall and infiltration in an interval of time represents the direct runoff volume. 
The amount of rainfall in excess of the index is called excess rainfall. The 
@-index thus accounts for the abstraction of total losses and enables runoff 
magnitudes to be estimated for a given rainfall hyetograph. The example given 
below illustrates the calculation of @-index. 

Mathematically, the @-index can be expressed as: 

1 2 3 4 5 6 7 8  
0.4 0.9 1.5 2.3 1.8 1.6 1.0 0.5 

P - R  
@ =  1 (3.la) 

1, 

where, P = total storm precipitation (mm or cm) 
R = total direct surface runoff (mm or cm) 
t,= duration of the excess rainfall, ie., the total time in which the 

@ = uniform rate of infiltration ( d h r  or cm/hr) 
total intensity is greater than @ (in hours), and 

If antecedent precipitation conditions in the catchment is such that other losses 
due to interception, depression, and evaporation, etc. are considerable in the 
beginning of the storm, then these losses may have to be subtracted from the 
rainfall, before applying the uniform loss rate method (@-index) for computing 
the excess rainfall. Since infiltration accounts for majority of the water losses 
in heavy storms, the @-index method must be interpreted for all practical 
purposes as a constant infiltration capacity method. It is a well-known fact 
that the infiltration capacity decreases with time. Therefore, the @-index method 
is not that realistic due to varying infiltration capacity with time. It 
underestimates the infiltration for early rainfall and overestimates it for later 
rainfall. In addition, one does not know how to extrapolate the @-value 
determined for one storm to another storm. In spite of these drawbacks, this 
simple method is often used for computing the excess rainfall hyetograph. 
The derivation of @-index is simple, and the approach is described below with 
the help of two examples. 

Example 3.1 A storm with 10 cm precipitation produced a direct surface 
runoff of 5.8 cm in the equivalent depth unit. The time distribution of the 
storm is given in Table 3.l(a). Estimate the @-index of the storm and the excess 
rainfall hyetograph. 

Table 3.l(a) 
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Solution 

Time from start (hr) 
Excess rainfall (cm) 

Compute total infiltration, i.e., 
Total infiltration = Total rainfall - Direct surface runoff 

Assume duration of the excess rainfall (t,) is equal to the total duration 
of the storm for the first trial, i.e., t, = 8 hr 
Compute the trial value of @ as: 

= 10 - 5.8 = 4.2 cm 

1 2 3 4 5 6 7 8 
0 0.35 0.95 1.75 1.25 1.05 0.45 0 

Compare the above @ value with individual blocks of rainfall. The @ 
value makes the rainfall of the first hour and the eighth hour ineffective 
as their magnitudes are less than 0.525 cdhr .  Therefore, value oft, is 
modified. 
Assume t, = 6 hour in the second trial and modified value of total rainfall 
for 6 hour duration will be 10 ~ (0.4 + 0.5) = 9.1 cm 
Compute a modified value of infiltration, 
i.e., infiltration = 9.1 ~ 5.8 = 3.3 cm 
Compute second trial value of @, i.e., @ = 3.3/6= 0.55 cmlhr. 
This value of @ is satisfactory as it gives t, = 6 hr 
Calculate the excess rainfall, subtracting the uniform loss fiom each block. 
The excess rainfall hyetograph is given below: 

Time from start (hr) 
Incremental rainfall in each hour (cm) 

Table 3.l(b) Calculation of excess rainfall 

1 2 3 4 5 6 7 8  
0.56 0.95 1.9 2.8 2.0 1.8 1.2 0.61 

Note that the total excess rainfall = 5.8 cm = direct surface runoff (cm) 

Example 3.2 A storm with 12.0 cm precipitation produced a direct runoff of 
6.8 cm. The time distribution of the storm is given in Table 3.2(a). Estimate 
@-index. 

Solution 
Total infiltration = 12.0 - 6.8 = 5.2 cm 
Assume t, = duration of excess rainfall = 8 hr for the first trial. 
Then, @ = 5.218 = 0.65 c& 

But, this value of @ makes the rainfalls of the first hour and the eighth hour 
ineffective as their magnitude is less than 0.65 c&. Hence, the value oft, is 
required to be modified. 
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Time from start (hr) 
Excessrainfall(cm) 

Assume t, = 6 hr for the second trial. 
In this period: 

Infiltration = 12.0 - (0.56 + 061 + 6.8) = 4.03 
$ = 4.03/6 = 0.67 c d h r  

This value of $ is satisfactory as it gives t, = 6 hr. 

Table 3.2(b) Calculation of excess rainfall 
1 2 3 4 5 6 7 8 
0 0.28 1.23 2.13 1.33 1.13 0.53 0 

Total excess rainfall = 6.8 cm =total runoff. 

3.2.2 W-Index 
In an attempt to refine the $-index, the initial losses are separated from the 
total abstractions and an average value of infiltration rate (called the W-index) 
is calculated as given below: 

W=(P-R-I,)/t, (3.lb) 
where P = total storm precipitation (cm) 

R = total storm runoff (cm) 
I, = initial losses (cm) 
t, = duration of the excess rainfall (in hours), i.e., the total time in 

W = average rate of infiltration (cm/hr) 
which the rainfall intensity is greater than inJiltration capacity 

and 

Example 3.3 Determine $-index and W-index for a watershed SW-12 with 
an area of 100 km2. A rainfall with the specifications given in the following 
table occurred in the watershed. 

0.300 

The average flow measured at the outlet of the watershed was 100 m3/s. 
Assume the retention to be 10% of rainfall. 

Solution 
Total rainfall P = 0.150 + 1.205 + 0.75 = 2.105 cm 
Totalrunoff Q=(100m3/s) x(15Ox6Os)/(1OOx 106m2)=0.009m=0.9cm 
Total loss = 2.105 - 0.9 = 1.205 cm 
Total time T = 150/60 = 2.5 hr 



84 Engineering Hydrology 

1.500 I 0.7 

The estimated value of 4 is = 1.205/2.5 = 0.482 
Consider @initial = 0.7 cm /hr 
Net rainfall is obtained as follows: 

0.4 

Table 3.3 Calculation of excess rainfall 

Net rainfall in cm 
[(I) - (2)] x (duration of rainfall in hr) 

I 0.3 I 0.7 I 0 
I 1.205 I 0.7 I 0.505 

This shows that 4 = 0.7 c d h r  is acceptable. 
AS W=(P-R-I,)It ,  

2.105 - 0.9 - (0.2 x 2.105) 
= 0.52 cm/hr 

In the calculation, 20% of rainfall is taken as initial losses. 
1.5 Tndex = 

3.3 HYDROGRAPHS 

Design of structures, e.g., determining the height of a dam, spillway design, 
design of bridge culverts, sizing the capacity of outlet works, etc., require 
information about extreme magnitudes of floods. It requires quantitative 
information on both peak flows and time distribution of runoff or hydrographs. 
Thus, a hydrograph gives the temporal variation of flow at the outlet of the 
catchment or basin. 

The flow may be expressed in different units, e.g., in terms of discharge 
[L3/T], or depth of flow per unit time [L/T]. The hydrograph yields time 
distribution of runoff from the excess rainfall occurring over a catchment for 
any given event. The runoff is generally measured at a gauging site located at 
the outlet of a catchment. In India, systematic gauging records are maintained 
by Central Water Commission and different state agencies for most of the 
major and medium basins. 

The unit hydrograph theory proposed by Sherman (1 932) is primarily based 
on principle of linearity and time and space invariance. For the gauged 
catchments, unit hydrographs can be derived from the analysis of available 
rainfall-runoff records. The procedures used to derive a unit hydrograph depend 
on the type of storm, whether it is a single-period storm or a multi-period 
storm. Thunderstorms, generally being intense and of short duration, are treated 
as single-period storms. On the other hand, frontal storms of usually longer 
duration are treated as multi-period storms. 

A unit hydrograph converts the rainfall (excess rainfall) to runoff (direct 
surface runoff). For its derivation, the duration of the unit hydrograph is 
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generally taken as the duration of excess rainfall block. However, S-curve and 
superimposition methods can be utilized for deriving a unit hydrograph of 
desired duration. The former approach is more general than the latter, because 
the former approach changes the duration of available unit hydrograph to any 
duration length. 

This chapter includes description of unit hydrograph theory, its assumptions, 
and limitations; derivation of unit hydrograph and factors influencing its 
derivation, instantaneous unit hydrograph (IUH), S-curve, change of unit 
hydrograph duration, and derivation of average unit hydrograph. 

The unit hydrograph derived from an event usually differs from another 
unit hydrograph derived from a different event. There are two possible 
approaches available for the derivation of the representative unit hydrograph 
for a watershed. The first approach averages the unit hydrographs derived for 
various events using conventional arithmetic averaging. The second approach, 
however, accumulates various events as a collective unit and then derives a 
representative single unit hydrograph for the watershed. 

3.3.1 Definition of Unit Hydrograph 
A unit hydrograph (UH) is a hydrograph of direct surface runoff from a unit 
excess rainfall occurring in unit time uniformly over the catchment area. The 
excess rainfall (ER) excludes losses, i.e., hydrological abstractions, infiltration 
losses from total rainfall; and unit excess rainfall volume equalling 1 mm may 
be considered as a standard value since rainfall is usually measured in mm. 
However, in certain cases, UH is derived for 1 cm ER. The selection of unit 
time depends on the duration of storm and size of the catchment area. For 
example, for small catchments, periods of 1 or 2 hours can be assumed; and 
for larger catchments, 3,4 ,  6, or even 12 hours can be adopted. 

A unit hydrograph can be interpreted as a multiplier that converts excess 
rainfall to direct surface runoff. The direct surface runoff (DSRO) is the 
streamflow hydrograph excluding base-flow contribution. Since, a unit 
hydrograph depicts the time distribution of flows, its multiplying effect varies 
with time. In real-world application, the unit hydrograph is applied to each 
block of excess rainfall; and the resulting hydrographs from each block are 
added for computing direct surface runoff hydrographs, to which base-flows 
are fwther added to obtain total flood hydrographs. 

3.3.2 Unit Hydrograph Theory and Assumptions 
The unit hydrograph theory can be described using the following underlying 
assumptions: 
Constant Base Length Assumption 
The base of direct surface runoff (tB) corresponding to a rainfall amount of a 
given duration (7') is constant for a catchment and does not depend on the total 
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runoff volume. For example, if T is the duration of excess rainfall, the base 
length of the DSRO for all rainfall events of this duration is the same for all 
events and is equal to tB, as shown in Fig. 3.1. 
Proportional Ordinate Assumption 
For storms of same duration, the ordinate of DSRO at a time, i.e., Q(t) is 
proportional to the total volume of excess rainfall. Thus, Ql(t) = k PE1 and 
Q2(t) = k PE2, where Qi(t) is the ordinate of DSRO at any given time t for the ith 
storm having an excess rainfall volume of PEi, and k is proportionality constant. 
Similarly, the excess rainfall of another event, PE3, over a time period T is 
equal to Pm T. Therefore, at a given time t, the following proportionality holds. 

Figure 3.2 shows the surface runoff hydrographs for three different excess 
rainfall volumes of 10, 20, and 30 mm for the same unit period. The ratio of 
qlO:q20:q30 = 10:20:30 = 1:2:3. Thus, the ordinates of the DSRO produced 
by 60 mm excess rainfall will be 0.6 times the available 100 mm unit 
hydrograph. 

T T T  '\ ' 
/' ,/' ', '\. 

Fig. 3.2(a) Three different unit hydrographs with 
the same base but varying peaks 

Concurrent Flow Assumption 
The hydrograph of surface runoff that results from a particular portion of storm 
rainfall is not affected by the concurrent runoff resulting from other portions 
of the storm. In other words, the total hydrograph of surface runoff is the surn 
of the surface runoff produced by the individual portions of the excess rainfall. 
Figure 3.3 shows two hydrographs: one resulting from excess rainfall PE1 and 
another from the excess rainfall PE2. The DSRO (Q,) from the first excess 
rainfall (PE1) is not affected by the DSRO (Q2) from the second excess rainfall 
(PE2). The total DSRO is, therefore, the surn of Q, and Q2. 
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/-, Q30 

/' ' \ 

Fig. 3.2(b) Surface runoff hydrographs for three different 
excess rainfall volumes of same unit period 

Fig. 3.3 The total hydrograph resultingfiom consecutive storms 

Uniform Excess Rainfall in Time Assumption 
It is assumed that the excess rainfall is the result of constant intensity of excess 
rainfall, which is equal to the excess rainfall divided by time duration T. The 
assumption requires that: (i) the selected storm must be intense and of short 
duration, and (ii) the resulting hydrograph be of short time base and single 
peaked. 
Uniform Excess Rainfall in Space Assumption 
It is assumed that the intensity of excess rainfall is uniform over the whole 
catchment. For the validity of this assumption, the catchment considered should 
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be small. Therefore, the unit hydrograph theory is not applicable to large 
watersheds (more than 5000 sq. km). It can, however, be applied in components 
by subdividing the large watersheds. 

Time Invariance Assumption 
It is assumed that the unit hydrograph derived for a watershed does not vary 
with time. This principle holds when: (i) the physical characteristics of the 
watershed do not change with time and (ii) storm pattern and its movement do 
not change with time. 

3.3.3 Factors Affecting Unit Hydrograph Shape 
The factors affecting the shape of unit hydrograph are the rainfall distribution 
over the catchment and physiographic elements of the catchment, viz., shape, 
slope, vegetation, soil type, etc. 
Rain f a  11 Distribution 
A variation in the areal pattern of rainfall, rainfall duration, and time intensity 
pattern greatly affects the shape of the hydrograph. For example, a hydrograph 
resulting from a rainfall concentrated in the lower part of a basin, i.e., nearer 
to the outlet of the basin (gauging site) will have a rapid rise since most of the 
rainfall volume will reach the outlet in a short time. This yields a sharp peak 
and a rapid recession. On the other hand, rainfall concentrated in the upper 
part of the same basin will yield a slow rising and receding hydrograph having 
a broad peak. Therefore, it is natural that unit hydrographs developed from 
rainfall of different areal distributions will exhibit differing shapes. This is 
one reason why the unit hydrograph technique is restricted to small basins. 
Small basins generally have a uniform structure throughout, which reduces 
the difference between the shapes of two unit hydrographs of equal excess 
rainfalls having same duration but different areal extensions. 

For a given amount of runoff, the time base of the unit hydrograph increases 
and the peak lowers as the duration of rainfall increases. This means that two 
rainfall events having different intensities yield two different shapes of 
hydrographs. On large basins, changes in storm intensity should last for several 
hours to produce distinguishable effects on the hydrograph. The storage capacity 
of large basins tends to eliminate the effects of short time intensities and only 
major variations in the time intensity pattern is reflected in the hydrograph. 
On the other hand, on small basins, short bursts of excess rainfall lasting only 
for a few minutes may yield clearly defined peaks in the hydrographs. Thus, 
the effects of variation in the time intensity pattern can be lessened by selecting 
a short computational interval so that the variation in patterns from one 
computational interval to the next is not significant. 
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Physiography of the Catchment 
Physical characteristics of a watershed change with time due to man-made 
interfaces, change in vegetative cover, and degradation of soil surface due to 
changing physiographical effects. Due to this, the shape of the derived unit 
hydrograph also changes. Due to high velocity of flow, steep catchment slopes 
produce runoff peaks earlier than flatter slopes; consequently, giving rise to 
earlier hydrograph peaks than that of flatter slopes. Seasonal and long-term 
changes in vegetation or other causes, such as fire, also change the physical 
characteristics of the watershed. It resorts to developing a regional relationship 
between unit hydrograph parameters and existing basin characteristics, for 
deriving the unit hydrograph in the changed environment. 

3.3.4 Base-flow Separation 
The main objective while deriving a unit hydrograph (hereafter, we shall refer 
it as UH) is to establish a relationship between surface flow hydrographs and 
the effective rainfall. In other words, the response of the basin to any input 
such as rainfall (in this case) is established using the available rainfall-runoff 
(discharge) data. The surface flow hydrograph is obtained from the total storm 
hydrograph by separating the quick-response flow from the slow-response 
runoff. There are three methods available to separate the base flow. Some of 
these methods have already been introduced in the previous chapter. 
Method I 
This is the simplest method and is generally practiced by field engineers. In 
this method, the base-flow is separated by drawing a straight line from the 
beginning of the surface runoff to a point on the recession limb representing 
the end of direct runoff. In Fig. 3.4, point A represents the end of direct runoff, 
identified by the sharp end of direct runoff at that point; and point B marks the 
end of direct runoff. An empirical equation for the time interval of N days 
from the peak to the point B is given by: 

where, A = drainage area in km2, and N in days 
The value of N is approximate, and position of B should be decided by 
considering the number of hydrographs. 
Method 11 
In this method, base-flow existing prior to the commencement of the surface 
runoff is extended until it intersects with the ordinate drawn at the peak point 
C. This point is joined to point B by a straight line. The segments AC and CB 
demarcate the base-flow and surface runoff. This method is most widely used 
in engineering practises. 
Method 111 
In this method, the base-flow recession curve, after depletion of flood water, is 
extended backwards till it intersects with the ordinate at the point of inflection 

N = 0.83 (3-3) 
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Fig. 3.4(a) Schematic diagram showing various salient points 
used for base-flow separation 

(line EF in Fig. 3.4(a)). This method is realistic in situations where groundwater 
contributions are significant and reach the stream quickly. 

All the above methods of base-flow separation are arbitrary, and the selection 
of any of these methods is dependant on local practise and successful predictions 
achieved in the past. 

Example 3.4 
having an area of 450 km2 are given below: 

The ordinates of discharge for a typical storm of a catchment 

Table 3.4(a) Ordinates of discharge 

Find ordinates of the direct surface runoff hydrograph using straight-line 
technique for base-flow separation. 

Solution 
The computational steps involved are: 
(i) Plot the recession limb of the discharge hydrograph on a semilog graph 

paper, keeping time on arithmetic scale and discharge values on log scale. 

Erne Discharge Erne Discharge Erne Discharge 
(hrs) (rn3/s) (rn3/s) (m3/s) 

0 12 36 90 72 27 
6 15 42 75 78 22 
12 25 48 63 84 15 
18 75 54 45 90 13 
24 120 60 35 96 13 
30 110 66 30 102 13 
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(ii) Locate the recession point in the above plot. 
(iii) Draw a straight line from the rising point of the hydrograph to the recession 

limb of the hydrograph for base-flow separation. 
(iv) Subtract the base-flow ordinates from the corresponding discharge 

hydrograph ordinates to estimate direct surface runoff hydrograph 
ordinates. 

Table 3.4(b) shows the above computations. Here the base-flow ordinates, 
given in column (3) are subtracted from the discharge hydrograph ordinates, 
given in column (2). The resulting hydrograph ordinates known as direct surface 
runoff hydrograph ordinates are given in column (4). 

It can be seen from the above plotted hydrograph (Fig. 3.4(b)) that the storm 
hydrograph has a base-flow component. Using the straight line technique for 
base-flow separation, we can find the time interval (N  days) from the peak to 
the point B. 

0 1  I 

0 20 40 60 80 100 120 
Time (hr) 

Fig. 3.4(b) Baseflow separation 

Using Eq. (3.3): 
N = 0.83 

= 2.8165 days = 67.6 hrs 
N can be calculated by judgement. 

Beginning of DRH 
End of DRH t = 9 0 h r  
Peak t = 2 4 h r  

t = 0 

Hence, N = 90 -24 = 66 hr 

points A and B which demarcates the base-flow and surface runoff 
For convenience, N is taken as 66 hrs. A straight line is drawn between the 
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t (hrs.) 

0 
1 

(1) 

Table 3.4(b) Estimation of direct surface runoff 

Q (rn3/s) dQ/dt t (hrs.) Q (rn3/s) dQ/dt t (hrs.) t (hrs.) dQ/dt 

61.67 24 378 -20 49 138.88 -13.34 
63.67 2 25 356 -22 50 134.04 -12.92 

(2) (3) (1) (2) (3) (1) (2) (3) 

Example 3.5 The ordinates for discharge of a typical storm fiom a catchment 
having an area of 50 km2 are given below. Estimate the direct surface runoff 
and the volume of excess rainfall for the given event. 

Table 3.5(a) Estimation of direct surface runoff 

(Contd.) 

7ime Dischavge Hydrograph Base--ow Direct Surface 
( h e )  (m 3 4 )  (m 3 4 )  Runoff (m3/s) 
(1) (2. (3) (4) = (2) - (3) 
0 12 12 0 
6 15 12 3 

12 25 12 13 
18 75 12 63 
24 120 12 108 
30 110 12.5 97.5 
36 90 12.5 77.5 
42 75 12.5 62.5 
48 63 12.5 50.5 
54 45 12.5 32.5 
60 35 12.5 22.5 
66 30 12.5 17.5 
72 27 13 14 
78 22 13 9 
84 15.0 13 2 
90 13 13 0 
96 13 13 0 

102 13 13 0 

2 
3 
4 103.04 14.3 
5 146.04 43 
6 189.53 43.49 30 289.8 -7 55 96.55 -0.9 
7 224.56 35.03 31 280.03 -9.77 56 95.63 -1.56 
8 292.8 68.24 32 280.03 0 57 94.4 -0.92 

33 284.87 4.84 58 94.4 -1.23 9 389.3 96.5 

64.5 0.83 26 341.75 -14.25 51 120.6 4 .84  
~~ ~~~~ 

88.74 24.24 27 344.42 2.67 52 122.1 -13.44 
~~ ~~~~ 

28 339.1 -5.32 53 99.01 1.5 
29 296.8 42 .3  54 98.11 -23.09 

~~~~ ~~ 

~~~~ ~~ 

~~ ~~~~ 

~~ ~~~~ 

~~ ~~~~ 

-- 
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(Contd.) 

Solution 
The flood hydrograph for the above data is shown in Fig. 3.5. The peak of the 
hydrograph is at t = 14 hours and the peak discharge (Q,) is equal to 641.87 
m3/s. 

Column (3) shows the variation of slope of the hydrograph at different time 
ordinates. This is used to mark the point of inflection (Pi), which marks the 
change of hydrograph slope. dQldt changes from -24.9 to -2.9 at t = 20 hours. 

700 
G' 600 
"8 500 

400 
3 300 
$ 200 

0 

. 
v 

a 

b 100 
I 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 
Time (hr) 

1 

80 

Fig. 3.5 Flood hydrograph 

This is taken as the point of inflection. 

Therefore, point B (refer Fig. 3.5) is at t = 66 hours. The corresponding 
discharge at point B is 83.5 m3/s (marked bold in table). From the data, it can 
be seen that point A falls nearly at 3 hours. The ordinate of direct surface 
runoff hydrograph using the straight-line technique is given in Table 3.5(b). 

Using Eq. (3.3), N =  0.82 x 50°.2 = 1.81 days 

-- 
34 243.9 40 .97  59 88.75 0 

~~~~ 

10 419.9 30.6 
11 422.8 2.9 
12 480.4 57.6 36 214 -2.03 61 89.91 -0.05 

37 211.95 -2.05 62 89.91 1.21 13 617.6 137.2 
14 641.87 24.27 38 210 

~~ 

35 216.03 -27.87 60 88.7 -5.65 
~~~~ ~~ 

~~~~ ~~ 

~~~~ ~~ 

-1.95 63 87.56 0 
~~~~ ~~ 

15 569 -72.87 39 198.17 -11.83 64 86.75 -2.35 
40 196.51 -1.66 65 85.0 -3.81 16 514 -55 

17 487 -27 

~~ ~~~~ 

~~~~ ~~ 

41 194.6 -1.91 66 83.8 0.05 
~~~~ ~~ 

18 462.85 -24.15 42 190.3 4 . 3  67 82.7 0 
~~ ~~~~ 

19 450 -12.85 43 187.1 -3.2 68 82.7 -1.1 
20 425.1 -24.9 
21 422.2 -2.9 
22 412 -10.2 
23 398 -14 

~~ ~~~~ 

44 177.11 -9.99 69 82.7 0 
45 171.74 -5.37 70 81.61 0 

~~~~ ~~ 

~~~~ ~~ 

46 165.4 -6.34 71 73.83 -1.09 
47 165.14 -0.26 72 71.83 -7.78 
48 152.22 -12.92 

~~~~ ~~ 

~~~~ ~~ 
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t 
(hvs.) 

0 

Q DSRO t Q DSRO t Q DSRO 
(m3/s) (m3/s) (hvs.) (m3/s) (m3/s) (hvs.) (m3/s) (m3/s) 

61.67 - 24 378 294.2 49 138.88 68 
1 I 63.67 I - I 25 I 356 I 272.2 I 50 I 134.04 I 55.08 

5 
6 
7 
8 
9 

2 I 64.5 I - I 26 I 341.75 I 258 I 51 I 120.6 I 50.24 

146.04 62.24 29 296.8 213 54 98.11 15.21 
189.53 105.7 30 289.8 206 55 96.55 14.31 
224.56 140.8 31 280.03 196.2 56 95.63 12.75 
292.8 209 32 280.03 196.2 57 94.4 11.83 
389.3 305.5 33 284.87 201.1 58 94.4 10.6 

3 I 88.74 I 4.94 I 27 I 344.42 I 260.6 I 52 I 122.1 I 36.8 
4 I 103.04 I 19.24 I 28 I 339.1 I 255.3 I 53 I 99.01 I 38.3 

The summation of the DSRO is 10669 m3/s or 10669 x 3600 m3/hr. 

= 0.213 111111. This is the excess rainfall depth. 
In terms of depth, this is equal to (10669 x 3600)/(50 x lo6) = 0.000213 m 

3.3.5 Features of UH and Distribution Graph 
The distribution graph is a non-dimensional form of the unit hydrograph, 
generally available in percent form. The sum of all percentage values should 
be equal to 100. The main features of a unit hydrograph or a distribution graph 
are: 

It shows the time distribution of the discharge hydrograph of a watershed 
produced by a uniform excess rainfall of given depth. 

t Q DSRO t Q DSRO t Q DSRO 
(hvs.) (m3/s) (m3/s) (hvs.) (m3/s) (m3/s) (hvs.) (m3/s) (m3/s) 

~~~~~~~~~ 

0 61.67 - 24 378 294.2 49 138.88 68 
1 63.67 - 25 356 272.2 50 134.04 55.08 
2 64.5 - 26 341.75 258 51 120.6 50.24 
3 88.74 4.94 27 344.42 260.6 52 122.1 36.8 
4 103.04 19.24 28 339.1 255.3 53 99.01 38.3 
5 146.04 62.24 29 296.8 213 54 98.11 15.21 
6 189.53 105.7 30 289.8 206 55 96.55 14.31 
7 224.56 140.8 31 280.03 196.2 56 95.63 12.75 
8 292.8 209 32 280.03 196.2 57 94.4 11.83 
9 389.3 305.5 33 284.87 201.1 58 94.4 10.6 

10 419.9 336.1 34 243.9 160.1 59 88.75 10.6 
11 422.8 339 35 216.03 132.2 60 88.7 4.95 
12 480.4 396.6 36 214 130.2 61 89.91 4.9 
13 617.6 533.8 37 211.95 128.2 62 89.91 6.11 
14 641.87 558.1 38 210 126.2 63 87.56 6.11 
15 569 485.2 39 198.17 114.4 64 86.75 2.95 
16 514 430.2 40 196.51 112.7 65 85.0 1.2 
17 487 403.2 41 194.6 110.8 66 83.8 0 
18 462.85 379.1 42 190.3 106.5 67 82.7 
19 450 366.2 43 187.1 103.3 68 82.7 
20 425.1 341.3 44 177.11 93.31 69 82.7 
21 422.2 338.4 45 171.74 87.94 70 81.61 
22 412 328.2 46 165.4 81.6 71 73.83 
23 398 314.2 47 165.14 81.34 72 71.83 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

48 152.22 74.88 
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0 It transforms the excess rainfall to time-varying discharge at the outlet 
assuming a linear process. 

0 It represents the watershed characteristics by exhibiting the integrated effect 
of the surface features on the routing of the excess rainfall through the 
catchment. 

It is worth mentioning that the derivation of a unit hydrograph usually 
excludes records of moderate floods; and the principles of unit hydrograph 
can be applied for estimating the design flood, supplementing missing flood 
records, and short-term flood forecasting that is based on recorded rainfall. 

3.4 DERIVATION OF UH 

Unit hydrograph is extensively used in computation of surface runoffs resulting 
due to storm events. Similarly, for known direct runoffs and storm characteristics 
including magnitude and duration, unit hydrograph can be derived. In this 
section, we discuss the procedures to derive the unit hydrograph. 

3.4.1 

The unit hydrograph for a gauging station is derived from a single-period storm 
as follows: 

Conventional Method using Single-Peak Storm 

(i) Extract hydrographs for major floods from stream-flow records using 
observed gauge-discharge or rating curves. 

(ii) Separate base-flow from total hydrograph to produce direct surface runoff 
hydrograph. Compute the surface runoff volume Q in mm. In practice, 
floods of runoff volume greater than 20 mm are analysed. If records of 
higher floods are not available, lower flow values can also be used, but 
with caution. 

(iii) Examine the rainfall records available for the rain gauge stations in the 
catchment and compute average rainfall for the storm under investigation. 

(iv) Derive the hydrograph and the total average rainfall for the time period 
which corresponds to the desired unit period of the unit hydrograph. 

(v) Determine the loss rate subtracting the direct surface runoff from the 
total rainfall to estimate the excess rainfall in each of the unit periods. 

(vi) Since the unit hydrograph is a multiplying factor to convert excess rainfall 
to DSRO, the procedure for its derivation is as follows: 
0 Plot the surface runoff hydrograph. 
0 Determine the volume of excess rainfall, PE, in the single unit period. 

(PE also equals the volume of the direct surface runoff hydrograph 

0 Relate the value of PE to the unit volume of the unit hydrograph, QvH, 
QJ . 

as demonstrated in the following example. 
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Date 

Time 
(Hrs) 
DSRO 
(m3/s) 

It is important to understand precisely the term “unit volume of the unit 
hydrograph”. Normally, many textbooks use the word “unit hydrograph” to 
imply that it is due to 1 cm effective rainfall. This may not always hold good. 
Unit hydrograph may also imply that it is due to 1 rnm effective rainfall, or for 
that matter, any other unit, say 1 feet, 1 inch, etc. In this book, we use unit 
hydrograph in the sense that it is due to 1 rnm effective rainfall. 

If 1 mrn effective rainfall occurs uniformly over a catchment for a unit time, 
the volume of UH will be equal to (1 mm x area of catchment). If we divide 
this volume by the catchment area A ,  this will be just equal to 1 rnm (the unit 
used for effective or excess rainfall). Thus, the term “unit volume of unit 
hydrograph” implies that the volume under the UH is equal to one unit used 
for effective rainfall of one unit. 

June 15 June 16 June 17 

0600 1200 1800 M.N. 0600 1200 1800 M.N. 0600 1200 1800 M.N. 

10 500 1600 3500 5200 3100 1500 650 250 0 0 0 

Example 3.6 
to derive a unit hydrograph for 10 mm unit volume. 

Solution 
Give unit volume of unit hydrograph Q U H  = 10 111111, the proportionality factor 
F can be computed as: 

For a given PE of 22.5 111111, obtain proportionality factor ( F )  

Ordinates of the UH can be obtained by dividing the direct surface runoff 
hydrographs by F. Please note that unit volume of such UH will be equal 
10 mm. 

Example 3.7 
154 mm produces the following surface runoff hydrograph: 

A thunderstorm of 6-hr duration with the excess rainfall of 

Table 3.6(a) Data for Example 3.7 

Find the ordinates of a 6-hr UH of unit volume equal to 100 111111. 

Solution 
Since PE = 154 and QvH = 100 111111, the conversion factor F = 154l100 
= 1.54. 

The ordinates of unit hydrograph are computed dividing the direct surface 
runoff hydrograph ordinates by the conversion factor. The calculation of 6-hr 
unit hydrograph for the above storm is shown in Table 3.6(b). 
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June 17 

Table 3.6(b) Computation of 6-hr unit hydrograph 

0600 250 162 
1200 0 0 
1800 0 0 

Date runoff 6-hv 100 mm unit hydvogvaph 
(m3/s) 

June 15 
1800 1600 1039 
2400 3500 2272 

I 0600 I 
1200 

June 16 

I 2400 I 

5200 
3100 
1500 
650 

3377 
2013 
974 
422 

3.4.2 UH Derivation from a Multi-period Storm 
When a storm is of short duration and of fairly uniform intensity, the unit 
hydrograph can be derived by simply applying the single period storm 
technique. However, for a storm of long duration or a shorter one with variable 
intensity, the storm should be treated as consisting of a series of storms and the 
derivation of the unit hydrograph gets slightly more complicated. There are a 
number of methods to derive unit hydrographs from multi-period storms, but 
all are based on unit hydrograph theory as follows. 

Let Pei = intensity of excess rainfall (mm/hr), PEi = volume of excess rainfall 
(mm), Ui = ordinates of unit hydrograph (m3/sec), Qi = ordinates of direct 
surface runoff hydrograph (m3/sec), and i = an integer value for an ordinate. 
The underlying procedure of calculating the direct surface runoff hydrograph 
from a multi-period storm is described below. 

If Pei = rainfall rate ( d h r )  in period T, then PEi = volume of rainfall 
= Pei x T. For example, if Pei = 2 mm/hr and T = 2 hr, then PEi = 2 x 2 = 4 mm. 
To determine the direct surface runoff hydrograph fiom 4 mm of rainfall that 
occurred in 2 hrs, the 10 mm unit hydrograph of 2-hr duration having 7 unit 
periods (time base = 7 x 2 = 14 hrs) is used. Thus, 

(i) the base length of the direct surface runoff hydrograph for rainfalls in 
excess of 2-hr duration is 14 hr 

(ii) for a 10 mm unit hydrograph, the average runoff in the various periods 
for the first rainfall in excess of 4 mm is computed using the proportionality 
principle, as given below: 
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Q, = 0.4 x U, Q3 = 0.4 x U3 Qs = 0.4 x Us Q7 = 0.4 x U7 

Q2 = 0.4 X U2 Q4 = 0.4 X U4 Q6 = 0.4 X U6 

(iii) If PE2 = 4 d h r  (2nd period of rainfall) or PE2 = 4 X 2 = 8 111111, the 
ordinates for the second period of rainfall will be as follows: 

Q2 = 0.8 x U2, Q, = 0.8 x U,, and so on. 

It is to be noted that the excess rainfall in the second period is lagged by 
T = 2 hr. Thus, Q, of the second period of rainfall is added to the second 
period of runoff for first hydrograph ordinate. This principle continues for the 
third and subsequent rainfall values. The equations for the combined surface 
runoff can, therefore, be generalised as follows: 

Qi =PEI ui 
Q2 = PEI u2 + pE2 ui 

Q3 =PEI u3 +PE2 u2 +Pm ui 
Q4 = PEI u4 + pE2 u3 + ' E 3  u2 

Q5 = PEI u5 + pE2 u4 + ' E 3  u3 

Qs = p ~ l  u6 + pE2 us + ' E 3  u4 

Q7 = pE1 u7 + pE2 u6 + ' E 3  

Q , = O + P B U ~ + P E ~ U ~  
Q, = O +  O +PE3 U7 

All the following procedures used for deriving unit hydrographs from multi- 
period storms use the principles of proportionality and superposition. 
Method of Single Division 
This is basically a trial and error approach. The following procedure involves 
solving each of the above equations relating to the unit hydrograph ordinates, 
as shown in Fig. 3.6. For the first rainfall, both Q, and PEl are known; Q, from 
the surface runoff hydrograph and PE1 from the hyetograph excess rainfall. 

Qi Thus, Q, = P E 1  X u, or u1 = ~ 

pE 1 

For the second rainfall, Q2 is known from the hydrograph; and PE1,  U,, and 
PB are already known. 

Thus, the unit hydrograph ordinates (q. ) are computed. 
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Fig. 3.6 Unit hydrograph derivation from a multiperiod storm 

Since there are more equations than unknown values, the equations relating 
Q, and Q, to u6 and U,, respectively, may not be in balance. Therefore, it is 
necessary to apply an ‘averaging’ procedure. It involves calculation of U,, 
U2 ,..., U, from Q,, Q2 ,..., Q7 (forward run); and the calculation of U,, u6 ,..., U1 
from Q,, Q,, ...,Q, (backward run) as illustrated in Fig. 3.6 through a typical 
example. The unit hydrograph ordinates are then derived by ‘averaging’ the 
values of U,, U,, ..., U, computed from the two runs. The derived unit hydrograph 
is then checked for producing a hydrograph that compares well with the 
recorded hydrograph. This test is recommended in all unit hydrograph 
derivations. 

The direct surface runoff hydrograph computed using the above average 
unit hydrograph does not match satisfactorily with the observed direct surface 
runoff hydrograph. This deviation may be attributed to small errors in U,, U,, 
u6, and U,, which are the leading and trailing ordinates, respectively; and 
these values propagate in calculations of other ordinates. Computations rely 
more on U, and U, in forward run and U, and U, in backward run. Furthermore, 
it is possible that (i) the records of rainfall and runoff may not be representative 
for the actual situation, (ii) the unit hydrograph theory may not be applicable 
to the storm, and (iii) storms may not be uniformly distributed over the 
catchment. These circumstances create difficulties in derivation of unit 
hydrograph. 
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Least Squares Method 
As is evident in single division method, there are more equations than unknown 
values and the solution adopted depends on the selected set of equations. The 
least squares method is a statistical curve fitting procedure which yields a ‘line 
of best fit’. 

The basic principle of the least squares method lies in the fact that the line 
of best fit produces the best reproduction of the hydrograph, computed from 
the application of the unit hydrograph to the excess rainfall, as shown in 
Fig. 3.7. The developed unit hydrograph yields minimum deviation of the 
ordinates of the reproduced hydrograph from the ordinates of the actual 
hydrograph. 

Fig. 3.7 Goodness-of-fit of observed and computed 
hydrographs 

As this method involves a number of tedious computations to minimize the 
errors, it is not a practical proposition to carry out computations manually. The 
readily available computer packages can be employed. This method is suitable 
subject to the following criteria: 

0 the hydrograph represents the basin and storm characteristics, 
0 the rainfall and hydrograph ordinates are accurate, and 
0 the unit hydrograph theory is applicable to the catchment. 

If these criteria are not met, the ‘best fit’ unit hydrograph can assume any 
shape and may yield even negative ordinates. Therefore, it is necessary to 
stress that the derived unit hydrograph is more mathematical rather than just a 
representative of the characteristics of runoff peculiar to a particular catchment. 
Kuchment (1967) suggested a procedure for deriving a smooth unit hydrograph 
using a regularization factor determined by trial and error. 
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Collins9 Method 
This is a trial and error approach. Assume that the unit hydrograph has four 
ordinates, viz., U,, U2, U3, and U, corresponding to t values equal to T, 2T, 3T 
and 4T; and there are three periods of time T of excess rainfall, viz., PE1, PE2, 
and PE3 with Pn representing the maximum rainfall volume. The surface runoff 
ordinates are determined as described earlier in Section 3.2. It is to note that in 
the previous example, the unit hydrograph had 7 ordinates; whereas in this 
example, there are only 4 ordinates. It is not necessary that the unit hydrograph 
ordinates are at the same time interval as the excess rainfall. The following 
equations hold good for computations of Q, to Q4: 

Qi =PEI Ui 
Q2 = PEI U2 + P E ~  UI 
Q3 =PEI U3 + P E ~  U2 + P n  UI 
Q4 =PEI U4 + P E ~  U3 + p m  U2 

Computations for other Q values can be done in a similar manner. For a gauged 
catchment, a unit hydrograph can be derived using Collins’ method, according 
to the following steps: 

(i) Derive the flood hydrographs for major flood events from stream flow 

(ii) Estimate the direct surface runoff by separating the base-flow, using a 

(iii) Estimate the average rainfall hyetograph. 
(iv) Compute the effective rainfall hydrograph by separating the losses from 

the total rainfall hyetograph. 
(v) Ignore the terms in the equation that contain the maximum rainfall [PE2, 

termed PE 
(vi) Assume a first trial unit hydrograph, i.e., a set of U-values, which appears 

reasonable. To this end, use either constant value for unit hydrograph 
ordinates or single division procedure for the first estimate of unit 
hydrograph. The number of unit hydrograph ordinates can be determined 
using the following relation: 

Periods in unit hydrograph base = (Periods in direct surface runoff 
base - number of periods of excess rainfall blocks) + 1 

Arrange this set of values in Col. 3 of Table 3.7. 

records using rating curves. 

suitable approach, from the total hydrograph. 

(vii) Apply the initial trial unit hydrograph to all periods of excess rainfall 
except PE and determine the resulting hydrograph, as shown in 
Columns 2 through 4 of Table 3.7. 

(viii) Deduct the sum OfPEiUi from the actual direct surface runoff hydrograph 
ordinates, and estimate the runoff from the maximum rainfall P! 
as shown in Column 6 of Table 3.7. Retain only those values having the 
term PE as the resultant DSRO is the response of PE 



Time 
Period 

(1) 
0 

1 

2 

3 

4 
5 
6 

UI 

Table 3.7 Collins' method 

u2 u3 u4 

Excess 
rainfall 

(mm) 

p H  

p E 2  

Trial unit hydrograph (m3/s) 

(3) 

pEIuI I I I 

(4) 

pH u2 

Actual 
DSRO 
(m3/s) 

(5) 

Qo 
Qi  

Q2 

Q3 

Q4 

Q5 

Q6 

- 
U Adjusted 

- 
(m3/s) U 

I 

I 
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Divide the ordinates computed at step (viii) by PE and obtain another 
estimate of the unit hydrograph ordinates, as shown in Column 7. 
Compare the derived unit hydrograph ordinates (ui,) with the original 
trial ordinates (UJ.  
If the comparison is not satisfactory, take an average of the unit 
hydrograph ordinates of the first trial for computing unit hydrograph 
values for the second trial, as given below: 

- MU, + NU,, 
U =  M + N  

where, A4 = total excess rainfall (= PE1 + Pn + . . .) except PE (MAX), and 
N = PE (MAX). Equation (3.4) ensures that the trial ordinates of the unit 
hydrograph correspond to the unit runoff volume. Note that the unit runoff 
volume can be any multiple of 1 mm. The conversion factor (6 is applied 
as shown in Column 9 of Table 3.7. It is computed as follows: 

where, X q  is the sum of trial unit hydrograph ordinates, and X q C  is the 
sum computed unit hydrograph ordinates falling between the limits of 
PE influence. 
Repeat step (vii) to (xi) until the calculated unit hydrograph agrees with 
the trial unit hydrograph. The application is illustrated with the help of 
an example. 

Example 3.8 The excess rainfall and surface runoff ordinates for a storm of 
a typical catchment of 1,70,000 ha are given below. Derive a 6-hr 100 mm unit 
hydrograph using Collins’ method. 

Table 3.8 Data for Example 3.8 

Erne Period PEi 4i 
(rn3/s/6 hr) 

1 I 40 I 250 I 

Table 3.8 Data for Example 3.8 

~ 1:; ~ 1050 , 2050 
4350 
4150 i 

6 I I 2300 I 
7 I I 1070 I 
8 I I 450 I 
9 120 
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Solution 
Tables 3.9 and 3.10 present computations for two trials of unit hydrograph 
derivation using Collins’ method. 

In Table 3.9, number of direct surface runoff periods = 9 (6-hr periods) and 
rainfall periods = 3 (6-hr periods). 

Therefore, the total period of UH = (9 - 3) + 1 = 7 (6-hr periods). 
The first trial assumes a uniform unit hydrograph, determined as follows: 
Calculate total surface runoff (from volume under hydrograph) or by 

planimetering area. It is equal to 340 x lo6 m3. 
Since the catchment area = 170,000 ha = 1700 x lo6 m2, the unit runoff of 

1 mm corresponds to = 1700 x lo6 x lop3 (= 1.7 x lo6) m3. 
Therefore, unit runoff volume of 100 mm unit hydrograph will be equal to 

170 x lo6 m3, and 340 x lo6 m3 of direct surface runoff (DSRO) volume will 
correspond to 200 mm depth, which is equal to the sum of excess rainfall 
depths (40 mm + 60 mm + 100 mm). Thus, the DSRO volume and the volume 
of excess rainfall are perfectly matched. 

Since a unit hydrograph of 100 mm is to be developed, it is necessary that 
each value of excess rainfall be divided by 100. Thus, for PE1 = 40 mm, the 
result is 0.4; for PE2 = 100 mm, it is equal to 1 .O; and for PE3 = 60 mm, it is 0.6. 
It is to note that if the objective had been to develop a unit hydrograph of 
1 mm, all values of PE would have been unchanged. 

For the first trial, assume a uniform rectangular-shaped unit hydrograph. 
The magnitude of ordinates can be computed as Ui = 170 x 106/(42 x 3600) 
= 1 125 m3/sec. Having computed the trial values of the 100 mm unit hydrograph 
ordinates, steps (vii) through (xii) can be followed. 

The computations are shown in Table 3.9. In this table, Column 1 presents 
the time steps and Column 2 presents the excess rainfall values which are 
divided by 100 and the resulting values are shown in Column 3. Column 4 
presents the trial unit hydrograph ordinates and computations of direct surface 
runoff hydrograph from PE1 and PE2 values of Column 3. The respective sum 
of the ordinates which is the response of PE1 and PE2 is shown in Column 5. 
Column 6 presents the actual observed direct surface runoff and the difference 
of Column 6 and Column 5. Column 7 lists the values of Column 6 divided by 
PE which yields the ordinates of the 100 rnm unit hydrograph derived 
from only PE 

It is to note that the first negative value (Row 1 of Col. 7) is excluded 
because the effect O f P E ( m )  starts from second time-step onwards only. Since 
these ordinates deviate far from the trial values, rainfall weighted ordinate 
values are computed and presented in Column 8. 

Since M = PE1 + PE2 = 0.4 + 0.6 = 1.0 and N = 1.00, the division of values 
of Column 7 by 2 gives the values shown in Column 8. Here, it is necessary to 
check the sum of trial unit hydrograph ordinates, to verify whether or not it 



Table 3.9 Example of UH derivation using Collins’ method (Trial 1) 

Time 
Period 

Actual 
DSRO 
(m3/s) 

Adjusted 
U 
- 

Excess 
rainfall 

(mm) 

(2) 
40 

100 
60 

Excess 
rainfall 

100 mm 
UH 

f o r  

(3) 
0.4 
1 .oo 
0.60 

(9) = 8/F 
~ 

82 1 

(6) 
250 

1050 
2050 
4350 

1025 
3225 2175 

975 
4 2069 
5 I I I I 1125 4150 I 3025 I 2075 1974 
6 I I I 1125 2300 I 1175 I 1150 1094 
7 I 450 I 1125 1070 I -55 I 535 509 
8 450 I -225 I 450 425 
9 I I I 675 I 675 120 I ~ I 

Total 200 I I 8273 7870 
I I 7870 

I F =  1.05 



Table 3.10 Example of unit hydrograph derivation using Collins’ method (Trial 2) 

Eme 
Period 

Adjusted 
U 

~ 

- 
U 

(in3/,) 

8 
~ 

74 1 
852 

Trial 2 unit hydrograph (m3/s) 

4 

328.4 
~ 390 

429.6 ~ 827.6 

Excess 
rainfall 
(mm) 

2 

40 
100 
60 

Excess 
rainfall 

100 mm 
UH 

3 

0.4 
1 .OO 
0.60 

fo r  

Actual 
DSRO 
(m3/s) 

6 

250 
1050 
2050 

9 = 8/F 
~ 

729 

5 

328.4 
390.0 

1320.2 

7 
~ 

660 
729.8 838 

4 I I I 11374.6 I 4350 I 2975.4 2522 2480 
5 I I I 1241.41 ~ I 437.6 I I 11679.0 I 4150 I 2471.0 2223 2186 
6 I I I 11388.0 I 2300 I 912.0 1003 986 
7 I I I I I 656.4 I ~ I 171.2 I 827.6 I 1070 I 242.4 376 509 
8 I I I I I I 305.4 I ~ I 305.4 I 450 I 144.6 286 425 
9 1256.8 I 256.8 I 120 I 

Total 200 8003 7870 

F =  1.02 
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equals that of Column 8 values. The sum of trial ordinates is 7875 whereas the 
surn of values of Column 8 is 8273. Therefore, the conversion factor F is 
computed as 1.05, and the ordinates of Column 8 are divided by 1.05, and the 
resulting values are shown in Column 9. These values are the trial values for 
the second trial, as shown in Table 3.10. Figure 3.8 represents the unit 
hydrograph, derived using Collins’ method. 

Time (hr) 

Fig. 3.8 UHdenved using Collins’method 

3.4.3 Selection of Unit Time Period of UH 
The time period (7‘) should be determined using the following criteria: 

(i) It should be short enough to define the hyetograph and the hydrograph 
reasonably. 

(ii) It should be a simple fraction of 24 hour. Use of time periods that are not 
a whole fraction of 24 hours may not be used, for example, 5-hr, 7-hr, etc. 

(iii) Conventionally, a unit period of approximately 1/3 to 1/4 of the period of 
rise of the hydrograph is used. 

3.4.4 Instantaneous UH 
Given the excess rainfall amount, if the period of a unit hydrograph is reduced, 
peak flow magnitude of direct surface runoff hydrograph increases and the 
base length decreases. If the period of excess rainfall reduces to zero and the 
excess rainfall depth remains the same, the intensity of the excess rainfall 
reaches infinity. This corresponds to the instantaneous application of a sheet 
of water over the entire catchment area. This water drains off the basin through 
gravity, as shown in the instantaneous unit hydrograph (IUH) in Fig. 3.9. Thus, 
an IUH is purely a theoretical concept and represents the unit hydrograph 
derived fi-om the unit excess rainfall volume that occurred instantaneously. An 
IUH represents a characteristic of a catchment and is not affected by time 
duration. It is a useful tool in regional unit hydrograph studies. 
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I 

Fig. 3.9 Derivation of Instantaneous unit hydrograph 

IUH is a single-peaked hydrograph with a finite base width and its properties 
are as follows. 

1. 0 I u(t) I a positive value, for t > 0 
2. u(t) =o, for t I 0 
3 .  u(t) +o, a s t + -  

4. I u(t) dt = unit depth over catchment 
ca 

0 

3.5 S-CURVE 

An S-curve of T-hr unit hydrograph is the graph that results from 1/T intensity 
of excess rainfall which occurs for an infinite period, as shown in Fig. 3.10. 
The S-curve may be derived as follows: 

(i) Plot the unit hydrograph of unit volume at time t = 0. 
(ii) Plot the unit hydrograph successively lagged by T-hr. 
(iii) Add the ordinates of each unit hydrograph, taking the time lag into account. 
(iv) At time tb (base length of the first unit hydrograph), the above sum of 

ordinates reaches a constant value. 
(v) Plot the sum of the ordinates as ordinate and time as abscissa. It is an 

S-curve. Thus, the S-curve for the unit period T-hr is determined. 
Sometimes, the S-curve fluctuates in the region approaching a constant 
value. It is a problematic feature of the S-curve derivation. To avoid it, a 
curve of best fit through the points is drawn, for using the values derived 
fi-om the fitted curve. 

(vi) The maximum ordinate of the S-curve corresponds to the equilibrium 
discharge, and it is defined as: 
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Unit excess rainfall 1 cm in T hr 

Fig. 3.10 S-curve 

where, A is the catchment area (sq. km), QUH is the unit volume (mm), and 
T is the time duration of the unit hydrograph (hr). The derivation of 
S-curve from a given unit hydrograph is explained using the following 
example. 

Example 3.9 For a typical catchment, the ordinates of 6-hr UH of 10 mm 
volume are given below. If the equilibrium discharge is 16250 m3/s, compute 
the S-curve ordinates. 

Table 3.11 Data for Example 3.9 

Date 

June 15 0600 
0900 
1200 
1500 
1800 
2100 
2400 

Eme interval 

0 
3 
6 
9 

12 
15 
18 

6hl: 10mm UH 
(m3/s) 

0 
200 
500 

1000 
1600 
2400 
3500 

(Contd.) 
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(Contd.) 
June 16 0300 

0600 
0900 
1200 
1500 
1800 
2100 
2400 
0300 
0600 
0900 
1200 

21 
24 
27 
30 
33 
36 
39 
42 
45 
48 
51 
54 

4200 
5200 
4400 
3100 
2300 
1500 
1000 
650 
400 
250 
150 

0 

Solution 
The steps followed with reference to Table 3.7 are: 

(i) Enter the ordinates of 6-hr UH in Column 4. 
(ii) Lag the 6-hr UH by 6-hr, 12-hr, etc. till 54 hours, which is the time base 

(iii) Derive S-curve ordinates summing the values of Columns 5 through 13 

(iv) Plot the S-curve obtained at step (iii). 
(v) If the plotted S-curve shows hunting effect at the upper end, plot a best 

fit curve through these points. Figure 3.11 shows the smoothened S-curve. 
(vi) Read the discretized values of the S-curve, obtained at step (v), and enter 

in the table, as in Column 15. This is the S-curve of intensity 10/6 &. 
(vii) Multiply the ordinates of Column 15 by 6 to get the S-curve of intensity 

10 d h r ,  shown in Column 16. 

of the UH; and enter these values in Columns 5 through 13. 

at each time interval, as shown in Column 14. 

S-curve 

Time (hr) 

Fig. 3.1 1 Smoothed S-curve 
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3.5.1 Relation between S-Curve and UH 
There exists a simple relationship between the S-curve of a watershed and its 
unit hydrograph, as shown in Fig. 3.12, where S, is the time-varying S-curve 
for a continuous rain of i c& and S,, is the same curve shifted by Thr to the 
right. The difference in the ordinates of the two S-curves (Sand S,,) represent 
the ordinates of a hydrograph resulting due to excess rainfall depth of iT cm. 
Therefore, T-hr and d-mm unit hydrograph ordinates (U,) can be derived as: 

(3.7) 
d 
iT u, = -(st - st-,) 

If unit depth is equal to 1 mm and intensity (i)  of excess rainfall is 1 mmh, 
then 

st - st-, 
T 

u, = 

Fig. 3.12 S-curve and UH 

3.5.2 Relation between S-curve and IUH 
Since Ud (T, t )  = [d(S, - &,)/(iT)]; as T approaches zero, Ul(T, t )  approaches 
Ul(O, t), and Ud(T, t )  approaches (dS,/dt) (d/i). Here, Ul(O, t )  and Ud(T, t )  
represent 1-111111 and d-mm T-hr unit hydrographs, respectively. Thus, 

Or, alternatively, 

(3.10) 
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Fig. 3.13 S-curve and IUH 

If i = 1 and d = 1, the above equation reduces to 
t 

St= ju( t )dt  

3.5.3 Relation between UH and IUH 

0 
(3.11) 

The relationship between rCJH [u(t)] and T-hr UH [ U(T, t)], both of the same 
unit depth, can be derived using the two S-curves, as shown in Fig. 3.12. 
Note: here, the subscript (i) of U is dropped for convenience. 

t t-T 

0 0 
= j u ( t )d t  - u(t)dt  

= t r u ( t ) d t  

(3.12) 

(3.13) 
0 

which equals the area between the two S-curves. The T-hr unit hydrograph 
with a unit depth is given by: 

t 

j u(t>dt 
(3.14) 

Thus, a T-hr UH can be derived from an IUH. If the IUH is available, the 
ordinate of the T-hr unit hydrograph at the end of the time unit T is equal to the 
average ordinate of the instantaneous unit hydrograph over the T-hr period. 

T U(T, t )  = t-T 
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3.6 CHANGE OF UNIT PERIOD OF UH 

Having derived a unit hydrograph for a particular unit period (say, 6 hrs), one 
may want to change the time period and derive a new hydrograph. The following 
two methods are used for this purpose: 

1. Superimposition method, and 
2. S-curve method. 

3.6.1 Superimposition Method 
This method is suitable only when the new duration of the UH is an integer 
multiple of the given unit duration. For example, the given duration is 6 hr, 
and the hydrograph is to be converted to a 12-hr duration. In general, a unit 
hydrograph of 2T-duration can be derived from a UH of T-duration as follows: 

(9 

(ii) 

Add the ordinates of the T-hr UH to the ordinates of an identical UH 
lagged by T-hr. 
Divide the ordinates of the resulting hydrograph of step (i) by 2 to obtain 
a UH for unit duration of 2T. Figure 3.14 shows the conversion of a UH of 
T-duration to 2T-duration. 

Similarly, the UH of nT-duration, where n is an integer, can be derived by 
successive lagging of the T-duration unit hydrograph n times and then dividing 
the resulting hydrograph by n, as illustrated in the following example. 

Example 3.10 
UH of the same unit volume as of the 6-hr UH. 

The ordinates of 6-hr UH are given below. Derive a 12-hr 

Table 3.12 Data for Example 3.10 

Erne 6-hr UH 
(hr) (rn3/s) 

0 0 
3 200 
6 500 
9 1000 

12 1600 
15 2400 
18 3500 
21 4200 
24 5200 
27 4400 

Erne 6-hr UH 
(rn3/s) 

30 3100 
33 2300 
36 1500 
39 1000 
42 650 
45 400 
48 250 
51 150 
54 0 
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b l c m  l c m  

\ 

\ 
\ 
\ 
\ 
\ 
\ 

;\ , T-hr UH m, ~ 

\ 
\ 

0 T 2T 3T 4T 5T 6T 7T 8T 9T 
Time (hr) 

A 2T-hrUH 
Ordinate = (A+B)/2 

Time (hr) 

Fig. 3.14 Change of unit period of UH 

Solution 
With reference to Table 3.13, the computational steps are: 

(i) Enter the ordinates of 6-hr UH in Column 2. 
(ii) Lag the 6-hr UH by 6-hr and enter these values in Column 3.  
(iii) Add the respective ordinates of Columns 2 and 3.  The resulting hydrograph 

ordinates are shown in Column 4. 
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Time 

(m3/s) 
(hrs) 

(iv) Divide the ordinates of the hydrograph derived from step (iii) by 2 to 
compute UH of 12-hr duration. The ordinates of this UH are given in 
Column 5. 

6-hr UH UH Superimposed 12-hr UH 
ordinates ordinates lagged by hydrograph (m3/s) 

(m3/s) 6-hr 
(m3/s) 

Table 3.13 Derivation of 12-hr UH from 6-hr UH 

33 
36 
39 

2300 4400 6700 3350 
1500 3100 4600 2300 
1000 2300 3300 1650 

- 0 1  0 1  I 0 1  0 
- 3 I 200 I I 200 I 100 

6 I 500 I 0 I 500 I 250 
9 I 1000 I 200 I 1200 I 600 

12 I 1600 I 500 I 2100 I 1050 
15 I 2400 I 1000 I 3400 I 1700 
18 I 3500 I 1600 I 5100 I 2550 
21 I 4200 I 2400 I 6600 I 3300 
24 I 5200 I 3500 I 8700 I 4350 
27 I 4400 I 4200 I 8600 I 4300 
30 I 3100 I 5200 I 8300 I 4150 

42 I 650 I 1500 I 2150 I 1075 
45 I 400 I 1000 I 1400 I 700 

250 250 
150 150 

60 

3.6.2 S-Curve method 
This is a more general method than the method of superimposition. After having 
derived the S-curve of unit (or some other) intensity (for example, 1 d h r )  
from T-duration unit hydrograph, the unit hydrograph of T-duration can be 
obtained as follows: 

(i) Shift the S-curve by T hrs to obtain another S-curve, as shown in 
Fig. 3.15. 

(ii) Subtract another S-curve ordinate from the original S-curve. 
(iii) The difference between the two S-curves represent the unit hydrograph 

for time T with a unit volume equal to iT = T rnrn (as i = 1 d h r ) .  
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l h e  

(hr) 

Fig. 3.15 Changing UH duration using S-curve method 

S-curve l h e  S-curve 
hydrograph (hr) hydrograph 
ordinates ordinates 

(rn3/s) (rn3/s) 

(iv) To derive a 1 mm UH of duration T divide the difference of step (iii) 
by T. 

18 
21 

33600 48 97200 
47400 51 97380 

0 I 0 I 30 I 82800 
3 I 1200 I 33 I 88200 
6 I 3000 I 36 I 91800 

9 I 7200 I 39 I 94200 
12 I 12600 I 42 I 95400 
15 I 2 1600 I 45 I 96600 

24 I 62400 I 54 I 97500 

I I 97500 57 I 27 74400 



Hyetograph and Hydrograph Analysis 117 

39 
42 

45 
48 
51 
54 
57 

94200 91800 2400 800 
95400 94200 1200 400 
96600 95400 1200 400 
97200 96600 600 200 
97380 97200 180 60 
97500 97300 120 40 
97500 97500 0 0 

Solution 
With reference to Table 3.15, the computational steps are as follows: 

Enter the S-curve ordinates in Column 2. This S-curve is derived from 
6-hr UH used in Example 3.4 of S-curve derivation. 
Shift the S-curve by 3-hr and enter these values in Column 3. 
Subtract the two S-curves [Column (2) minus Column (3)] and enter these 
values in Column (4). This represents the UH of 3-hr duration with a unit 
volume equal to 3 cm. 
Compute the 3-hr UH of unit volume equal to 1 cm by dividing the 
hydrograph obtained from step (iii) by 3. The ordinates of the resulting 
UH are given in Column 5.  

Table 3.15 Derivation of 3-hr UH from 6-hr UH (S-curve method) 

T h e  S-curve ordinates of S-curve lag-ged 3-hr UH 
(hrs) excess rainfall by 3 hrs with 3-cm depth 

intensity 1 crn/hr (rn3/s) (rn3/s) 
(rn3/s) 

(1) (2) (3) (4) = (2) ~ (3) 
~ 0 0 0 

3 1200 0 1200 
6 3000 1200 1800 
9 7200 3000 4200 

12 12600 7200 5400 
15 2 1600 12600 9000 
18 33600 2 1600 12000 
21 47400 33600 13800 
24 62400 47400 15000 
27 74400 62400 12000 
30 82800 74400 8400 
33 88200 82800 5400 

36 91800 88200 3600 

3-hr UH 
of 3-ern depth 

(rn3/s) 

(5) = (4)/3 

0 
400 
600 

1400 
1800 
3000 
4000 
4600 
5000 
4000 
2800 
1800 
1200 
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120000 

m? 100000 
E - 80000 

5 60000 

.s 40000 

20000 

0 

n 

+ S-curve + S-curve lagged by 3-hr - 3-hr UH volume 3 cm -3-hr UH volume 1 cm 

0 
0 10 20 30 40 50 60 

Time (hr) 

Fig. 3.16 UH derivation 

3.7 DERIVATION OF AN AVERAGE UH 

In practice, unit hydrographs derived from different rainfall-runoff events of a 
particular catchment differ significantly from one another. These unit 
hydrographs are averaged for computing a basin-representative average unit 
hydrograph. 

3.7.1 Graphical Method 
The graphical method (Wilson, 1974) of deriving an average UH can be applied 
by the following steps: 

(i) Plot the unit hydrographs derived from a number of individual events on 
a single plotting paper. 

(ii) Mark a point such that it corresponds to the average peak discharge 
ordinates and average time to peak, as shown in Fig. 3.17. 

(iii) Draw an average unit hydrograph such that it passes through the average 
peak point, has unit volume, and generally conforms to the characteristic 
shapes of the individual unit hydrographs. Some trials for adjusting the 
ordinates of the derived unit hydrograph may be required for preserving 
the volume. 

3.7.2 Statistical Method 
The statistical approach characterizes unit hydrographs by their shapes, and 
the shapes are described by volume, mean, coefficient of variation, skewness, 
and peakedness. These five parameters are termed as shape factors. It is to 
note that the volume and mean, however, represent the scale and location 
characteristics of a distribution (or unit hydrograph), respectively. The steps 
for using shape factors for determining an average unit hydrograph are described 
below. 
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Average time to peak - tP-I 

Time (hr) + 

Fig. 3.17 Averaging UH by the graphical method 

(i) Calculate the values of shape factors for each derived unit hydrograph 
and average them. Averaging based on median values minimizes the effect 
of outliers. 

(ii) The values of shape factors of each unit hydrograph are investigated and 
that unit hydrograph is selected the parameters of which closely match 
with the average value of the parameters. 

(iii) The unit hydrograph derived fiom step (ii) represents the average unit 
hydrograph for the catchment. 

Further details on statistical methods are given in Chapter 4. 

3.8 CONCEPTUAL MODELS 

The conceptual models occupy an intermediate position between the fully 
physical approach and empirical black-box analysis. Such models are 
formulated on the basis of a relatively small number of components, each of 
which is a simplified representation of one process element in the system being 
modeled. The purpose of this breakdown is primarily to enable the runoff 
from catchments to be estimated using standard parameters together with actual 
data. A detailed discussion of two popular conceptual models, i.e., Nash model 
and Clark's model are discussed below. 

3.8.1 Nash Model 
The derivation of the Nash KJH is described using the unit impulse function 
theory. Let I, Q, and S represent the rainfall, runoff (discharge), and storage 
capacity of a basin at any arbitrary time t; then the following water balance 
equation holds: 
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I - Q = dS/dt 
Since for any time-invariant system S = KQ (refer Chapter 5),  

Or 
Or 
By multiplying the factor e@lK) to both sides of the above equation, we have: 

dS/dt = K(dQ/dt) 
I = Q + K(dQ/dt) 
dQ/dt + Q/K = I/K 

&(QetfK) = (I/K)etfK dt 
This means: 

Qet'K = (I/K)letiK dt 
Or Qet'lK = + A 

where A is the integration constant which can be derived as follows: 
At t = 0, Q = 0, therefore A = -I(e)(-"fl = I 

For I=  1, Q = 1 -ePtfK 
This equation gives the unit impulse, i.e., the output for given unit input 
( I  = 1). The Q in the equation represents the ordinates of the S-hydrograph 
when there is a continuous input of I = 1. 

Or Q = 1(1 - e-""> 

Therefore, the IUH can be computed by deriving the equation as: 
-tlK 

q(t) = dQ(t)/dt = -- 
-e 

K 

Fig. 3.18 Concept of Nash Model 

If there are n reservoirs in series, and there is an input of unit rainfall occurring 
within a small time, i.e., At + 0, the output forms the ordinates q(t) of an IUH. 

For the first reservoir, the output ql( t )  = - K .  This forms the input to the 

second reservoir, therefore, the output fi-om second reservoir is: 

- e-tfK 

q2(t) = (-e-t'K/K>(I - ept'/K> 
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l h e  
(hrs) 

In a similar way, the output from the nth reservoir is derived in form of a gamma 
distribution function as follows: 

Excess rainfall Direct surface 
(mm) runof (m3/sec) 

This is the Nash model. Table of r(n) is given in Appendix-I. Explicit estimation 
of Nash parameters is also explained in Chapter 4. 
Computational steps for deriving V H  by Nash Model 
The following steps are involved for deriving the unit hydrograph by the Nash 
Model using the rainfall-runoff data of a particular storm: 

(i) Obtain mean rainfall values at each computational interval taking the 

(ii) Estimate direct surface runoff separating the base-flow from the discharge 

(iii) Estimate the excess rainfall hyetograph separating the loss from total 

(iv) Estimate the first and second moment of effective rainfall hyetograph 

(v) Estimate the first and second moment of direct surface runoff hydrograph 

(vi) Find out the parameters n and K using the values of moments obtained 

(vii) Estimate the unit hydrograph of duration T hours using Nash model. 

weighted mean of the observed values at different stations. 

hydrograph using one of the base-flow separation techniques. 

rainfall hyetograph. 

about the origin. 

about the origin. 

from step (iv) and (v). 

I 0  0 
1 6  I 40.209 I 250 I 
I 12 I 100.209 I 1050 I 
I 18 I 60.209 I 2050 I 
I 24 I 0 I 4350 I 
I 30 0 4150 I I,, 

120 

Example 3.12 The ordinate of excess rainfall hyetograph and direct surface 
runoff hydrograph for a storm of typical catchment of the size 1700 sq. km. 
are given below. Find the Nash model parameters. 

Table 3.16 Data for Example 3.12 
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Solution 
(i) First and second moment of effective rainfall: 

- - (40.209 x 3) + (100.209 x 9) + (60.209 x 15) 
40.209 + 100.209 + 60.209 

M 
C xiti' 

&ffx= + 
C xi 
i=l 

- - [40.209 x (3)2] + [100.209 x (9)2] + [60.209 x (15)2] 
40.209 + 100.209 + 60.239 

(ii) First and second moment of direct surface runoff 
$T+T+1 N 

ti. C (T + T+Jtir 

c (T + T+1> 

- i=l - 
2 

lMfY = i=l N 

i=l $* i=l 

250 (250 + 1050) + (1050+ 2050) 15 
2 2 

= -x3+ 
2 

+ (2050 + 4350) 21 + (4350+4150) x27 

(4150 + 2300) 33  + (2300 + 1070) 39 
2 2 

2 2 
+ 

(1070 + 450) 45 + (450+120) x 51 + ~ 120 x 57 
2 2 2 

+ 
250 (250 + 1050) + (1050 + 2050) + (2050 + 4350) 

2 2 2 2 
,Mj .  = -+ 

(4350+4150) + (4150+2300) + (2300+ 1070) 
2 2 2 

+ 
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(1070+ 450) + (450 + 120) (120) +- 2 2 2 + 

-~ 435720 = 27.595 hr 15790 
- 

To compute second moment, ti is to be replaced by square of ti in the 
above expression, i.e., 

250 (250 + 1050) 92+ (1050 + 2050) 152 
2 2 ~ x 32+ 2 

(2050+ 4350) 212+ (4350+ 4150) 272+ (4150+ 2300) 332 
2 2 2 + 

120 2 +-x57 2 

(iii) Solve the following equations to get the parameters n and K. 
nK = ,M’y - 2Mfx 
n(n + 1)K2 + 2nK,Mfx = 2M’y - ,Mfx 

where ,Mfx = 9.598 hour and 2Mfx = 109.785 h o d  
,M’y = 27.395 hour, and 2M’y = 852.572 hour2 
nK = 27.595 - 9.598 = 17.997 
n (n+l) K2 + 2 n K x 9.598 = 852.572 -109.785 
n (n+l) K2 +19.196 n K =  742.787 
( T Z K ) ~ + T Z K ~ +  19.196nK=742.787 
(17.997)2 + 17.997 K +  (19.196 x 17.997) = 742.787 
323.892 + 17.997 K + 345.470 = 742.787 
17.997 K = 73.425 
K = 4.08 

.. 
and 

(iv) Compute the IUH using n and K. The procedure to convert IUH into 
S-curve or unit hydrograph is already explained. The procedures used to 
compute moments in case of rainfall and runoff are illustrative only and 
can be used interchangeably. Please check if estimates of n and K will be 
sensitive to the use of a particular procedure of computing moment and 
if so, up to what extent? 
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3.8.2 Clark’s Method 
Similar to Nash model discussed in previous section, Clark’s method routs the 
time-area histogram to derive an IUH. The time area diagram is developed for 
an instantaneous excess rainfall over a catchment and represents the relationship 
between the areas that contributes to the runoff at the outlet versus the time of 
travel. It is assumed that the excess rainfall first undergoes pure translation by 
a travel time-area histogram, and the attenuation is attained by routing the 
results of the above through a linear reservoir at the outlet. The details are 
discussed below. 
Time-Area Curve 
The time of concentration is the time taken for a droplet of water to travel 
from the upper boundary of a catchment to the outlet point. This is generally 
computed using empirical formulae which relate the time of concentration to 
geomorphological parameters of the catchment. In gauged areas, the time 
interval between the end of the excess rainfall and the point of inflection of the 
resulting surface runoff provides a good way of estimating t, from known 
rainfall-runoff data. In simple terms, the total catchment area drains into the 
outlet in t, hours. 

First, the catchment is drawn using a toposheet map, and then the points on 
the map having equal time of travel, (say, t,, hr where t,, < t,), are considered 
and located on a map of the catchment. The t,, is calculated using the length of 
stream, length of centroid of the area from the outlet, average slope, and the 
area (from empirical equations). Subsequently, a line is joined to all such points 
having same t lo to get an isochrones (or runoff isochrones). These are shown 
in an example below. 

To make this procedure simple, one can start with selection of the longest 
water course. Then, its profile plotted as elevation versus distance from the 
outlet; the distance is then divided into Nparts and the elevations ofthe subparts 
measured on the profile transferred to the contour map of the catchment. 

The areas between two isochrones denoted as A , ,  A,, . . ., A,,, are used to 
construct a travel time-area histogram. If an excess rainfall of 1 cm occurs 
instantaneously and uniformly over the catchment area, this time-area histogram 
represents the sequence in which the volume of rainfall will be moved out of 
the catchment and arrive at the outlet. For example, a sub-area of A ,  km2 
represents a volume of A ,  km2 x 1 cm = A ,  x lo4 (m3) moving out in time 

Atlc = hours. Clark routed this time-area diagram through a linear reservoir 
which he assumed to be hypothetically available at the outlet to provide the 
requisite attenuation. 
Routing 
The linear reservoir at the outlet is assumed to be described by S = KQ, where 
K is the storage time constant. The continuity equation can be written as: 

N 
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Or K = -Q,/(dQ/dt)I (3.15) 
where, suffix ‘i ’ refers to the point of inflection, and K can be estimated from 
a known surface runoff hydrograph of the catchment. The K can also be 
estimated from the data on the recession limb of the hydrograph. Knowing 
K of the linear reservoir, the inflows at various times are routed by the 
Muskingum method. The Muskingum equation can be written as: 

(3.16) 
where, x is known as the weighting factor. For a linear reservoir, value of x = 0. 

The inflow rate between an inter-isochrones area of A,, km2 with a time 
interval At,, hr is: 

S = K[xI+ (1 - x)Q] (for details, refer Chapter 5) 

A, x lo4 Alc 
3600(Atc) At1 c 

= 2.78 ~ (m3/s) I =  

The Muskingum routing equation can be written as: 

Q2 = CoI2 + CiIi + C2Q1 

C, = (0.5 Atc)@+ 0.5 Atc) 
C, = (0.5 Atc)@+ 0.5 Atc) 
C2 = ( K -  0.5 Atc)@+ 0.5 Atc) 

(3.17) 

where 

i.e., C, = C,. Also, since the inflows are derived from the histogram, I ,  =I2  for 
each interval. Thus, Eq. (3.17) becomes: 

(3.18) 

Routing of the time-area histogram by Eq. (3.18) gives the ordinates of IUH 
for the catchment. Using this KJH, any other D-hr UH can be derived. 

Q2 = 2CJi + C2Q1 

The computational steps involved in Clark’s model are as follows: 
Make first estimate of Clark‘s model parameters, t, and R, from the excess 
rainfall hyetograph and direct surface runoff hydrograph. 
Construct the time-area curve, taking the t, value obtained from step (i), 
using the procedure described. 
Measure the area between each pair of isochrones using planimeter. 
Plot the curve of time versus cumulative area. Note that the abscissa is 
expressed in percent oft,. Tabulate increments between points that are at 
computational interval At apart. 
Route the inflow using Eqs. (3.17) and (3.18) to get KJH ordinates. 
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Time 
(W 
Area 
(h2) 

(vi) Compute the unit hydrograph of the excess rainfall duration using the 
given equation: 

UHi = l /n  [0.5Uip, +U,p,+l + ........ Uip, + 0.5 Ui]  

n = DIAt, and D is duration of the UH. where, 

1 2 3 4 5 6 7 8 

10 23 39 43 42 40 35 18 

Example 3.13 Clark’s model parameters, t, and R, derived fi-om a short- 
duration storm excess rainfall hyetograph and direct swEace runoff hydrograph, 
are 8 and 7.5 hours respectively for a typical catchment of area 250 h2. The 
ordinates of time-area diagram are: 

Derive a 2-hr UH using Clark’s model. 

Solution 
Computational steps are: (Ref. Table 3.17) 

(9 

(ii) 

(iii) 

Convert the units of inflow using the equation: Ii = Kai I At 
where ai = the ordinates of time-area curve in m2 

Ii = the ordinates of the same time-area curve in m3/s 
K = conversion factor 
At = computational interval (hours; 1 hour in this example) 

If the volume under the time-area curve is taken equivalent to 1 cm excess 
rainfall, then the conversion factor K would be: 

Therefore, the above equation may be written as: 
Ii = 2.778 aill = 2.778 ai 

Compute the routing coefficent (c> using the following equation: 

c= At - =0.125 
R + 0.5At - 7.5 + 0.5 

:. 1 - C = 1 - 0.125 = 0.875 

Route the time-area curve obtained from step (i); (see Columns 3,4 and 
5 )  

u i = c I i + ( l - c )  ui-1 
Ui = 0.125 Ii + 0.875 U,. - 1 

where U, = the ith ordinate of lLTH in m3/s. 
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(iv) Compute 2-hr unit hydrograph (see Column 6). 
Hi = l / n  [0.5Uip, +Uipn+l +. . .. . ... Uipl +0.5 U , ]  

For this example: 
D = 2 hours 
t = 1 hour 

1 
2 

.*. UHi= - (0.5 Uip, + U,.-, + 0.5Ui] 

See Table 3.17 for the detailed computation. 

Table 3.17 Clark's model computation 

Erne 
( h d  

(1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 

Time area 
diagram 

(km z, 
(2) 

0 

0.125 I, = 2.78 

(m3/s) 

0.875 X Co@) 
x 0.125 x Col(2) (in3/,) 

0 I 0  

Col (3) + (4) 
IUH ordinates 

(m3/s) 

(5) 

0 
10 I 3.5 I 3.5 

8.0 I 3.1 I 11.1 
39 I 13.5 I 9.7 I 23.2 
43 I 14.9 I 20.3 I 35.2 
42 I 14.6 I 30.8 I 45.4 
40 13.9 39.6 53.5 
35 12.1 46.8 58.9 
18 I 6.2 I 51.4 I 57.6 
0 1  0 I 50.5 I 50.5 

0 I 44.1 I 44.1 

0 I 38.6 I 38.6 
0 1  0 I 33.8 I 33.8 

0 I 29.6 I 29.6 
0 I 25.9 I 25.9 

0 1  0 I 22.7 I 22.7 

SUMMARY 

2-hr UH 
ord; 1 

(m '/s) 

0.875 
4.525 I 

12.225 
23.175 
34.750 
44.875 
52.825 
57.225 
56.150 
50.675 
44.325 
38.775 
33.950 
29.725 

26.025 

In this chapter, an attempt has been made to introduce the concept of hydrograph 
analyses. Understanding of different terms like Unit Hydrograph, lLTH and 
S-curve is very relevant in this context. While analysis of single storm runoff 
is relatively simpler than that of complex storm runoff, one is often confronted 
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Time (hr) 
QUH (m3/s) 

with analysis of complex storms. From the analysis of single runoff storm 
hydrograph, based on application of Z-transform, it is also possible to identify 
hyetograph and unit hydrograph. However, such an approach has not been 
included here. A catchment normally has different orders of streams, and for a 
given channel network, geomorphological instantaneous unit hydrograph 
(GKJH) can be derived using known catchment characteristics. One can also 
use synthetic approaches to develop unit hydrograph. 

0 1 2 3 4 
0 3 2 1 0 

SOLVED EXAMPLES 

Erne 
(in '/s, 

Example 3.14 In a catchment, the following 1 -hr UH due to 1 mm effective 
rainfall is known: 

UH Qdimct 
(in '/s, 

nine 
(m3/s) 

0 
1 
2 
3 
4 
5 

UH Qdir-ectl Qdirect2 Qdirect total 
(in 3 4  (m3/s) (m3/s) 

0 0 0 
3 15 0 15 
2 10 30 40 
1 5 20 25 
0 0 10 10 
0 0 0 

) 
15 

4 0 0 

(b) We need to obtain two DRHs corresponding to 5 mm and 10 mm effecvtive 
rainfall. Columns 3 and 4 show these at 1 -hr lag. 

(a) Estimate the direct runoff if the effective rainfall during 1-hr is 5 mm. 
(b) Estimate the direct runoff if the effective rainfall is 5 mm during the first 

hour and 10 mm during the second. 

Solution 
(a) UH ordinates need to be multiplied by 5 because effective rainfall is 5 mm. 
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Tid (hr) 

Q m i  (m3/s> 

0 1 2 3 4 5 
0.1 0.1 2.50 1.30 0.25 0.1 

Solution 
(a) Base flow constant = 0.1 m3/s 

The direct runoff ends when the flow follows the recession curve. This point 
can be found when the flow follows a straight line in a lin/log plot. Thus, the 
base flow increases from ( t  = 2, Q = 0.1) to ( t  = 4, Q = 0.25), after the point 
Q = Qbasc 

Example 3.16 A catchment in Egypt experiences a long period without rain. 
The discharge in the river which drains the catchment is 100 m3/s 10 days 
after the long period without rain, and 50 m3/s after another 30 days. What 
flow can be expected to occur on day 120 if there is no rainfall during this 
period? 

Solution 
The recession can normally be assumed to follow an exponential function 
given by: 

Data given: 
Q = Q, epkt 

t = 10 days, 
t = 40 days, 

100 = Qo epkl0 

Q = 100 m3/s 
Q = 50 m3/s 

Applying the above function, we have: 

50 = Q e+40 
0 

Example 3.15 During and after a rainfall event, the following discharge 
was measured in a river. Plot the hydrograph both in linear/linear and linear/ 
log scale. 
(a) What was the base flow if it can be assumed to be constant? 
(b) What was the base flow if it can be assumed to follow the recession curve? 



Time 
(min) 
Discharge 
(m3/s) 

(a) Total volume of runoff is given above. 
Totally, 1 rnrn effective rain has fallen over the catchment. 
Thus, the area can be calculated by 54900/0.001= 5.49 x lo7 m2 = 54.9 h2 

(b) The given hydrograph has a duration of 30 min and is valid for an intensity 
of 2 InmAlr. 
Add two hydrographs multiplied by 5 with a 30 min lag between the 
hydrographs. 

0 15 30 45 60 75 90 105 120 135 150 

0 4.5 10 12.5 11 9 6.5 4 2.5 1 0 
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Therefore, 100/50 = e +40k 
30k 2 = e  

k = 0.023 1 
For t = 120 days: 

- AOk + 120k = ,80k = 6 347 
Q40/Q120 - 

Q120 = 50/6.347 = 7.9 m3/s 
Answer Flow after 120 days would be 7.9 m3/s. 

Example 3.17 
(a) What is the size of the catchment area? 
(b) Calculate and plot the hydrograph for a 60 minute rain with an effective 

Given below are the discharge values for a 30-min UH. 

intensity of 10 Illlll/hT. 

Solution 

Eme Discharge 
(rnin) (rn '/s) 

0 0 
15 4.5 
30 10 
45 12.5 
60 11 
75 9 
90 6.5 

105 4 
120 2.5 
135 1 
150 0 

0 
4050 
9000 

11250 
9900 
8100 
5850 
3600 
2250 
900 

0 
Sum = 54900 
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Rme 
(min) 

UH 2 mmhv U H x S  U H x S  Sum 
(m 3 4  (m3/s) (m3/s) (m 3 4  

0 1  0 I 0  I I 

180 

15 I 4.5 I 22.5 I I 22.5 

0 0 

45 I 12.5 I 62.5 I 22.5 I 85 

Time 
(W 
Discharge 
(m3/s) 

60 I 11 I 55 I 50 I 105 

0 1 2  3 4 5 6  7 8 9 1 0 1 1  

0 1 5.5 12.4 15.4 13 9.6 6.2 3.05 0.9 0.1 0 

75 I 9 I 45 I 62.5 I 107.5 
90 I 6.5 I 32.5 I 55 I 87.5 
105 I 4 I 20 I 45 I 65 
120 I 2.5 I 12.5 I 32.5 I 45 
135 I 1 1 5  I 20 I 25 
150 I 0 I 0  I 12.5 I 12.5 

165 I I 1 5  I 5 

Solution 
The measured runoff can be described by the sum of three unit hydrographs 
scaled to the rainfall intensity @. 

Subtract the @-index from the rainfall intensities to get the effective rainfall. 
(a) For the first hour, 

effective rainfall = 17 mrn - 12 mm = 5 rnm 
For the second hour, 

effective rainfall = 22 mrn - 12 mm = 10 rnm 
For the third hour, 

effecitve rainfall = 14 mrn - 12 mm = 2 rnm 
(b) Columns (2), ( 3 )  and (4) are the multiplied values of UH ordinates with 

the effective rainfalls of 5 mm, 10 mrn and 20 rnm respectively. The values 
are placed at 1-hr lag. 

Example 3.18 A catchment received a continuous rainfall for 3 hours. The 
rain is distributed in time with 17 mm during the first hour, 22 mm during the 
second hour, and 14 mm during the final hour. 
#-index is 12 mtnlhr and the measured hydrograph is given below. 
(a) Find the l-hr UH. (Assume the base flow to be constant.) 
(b) What is the time base (duration) and the lag-time between the maximum 

rainfall and the maximum flow of the hydrograph? 
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uH2 
uH3 
uH4 

Column (5) will be the sum of the values in columns (2), ( 3 ) ,  and (4). 
This implies 

5UHO=O 
5UH1+ 10 UHO = 1 

(5.5 - 10 X 0.2 - 0)/5 0.7 
1 
0.8 

(12.4 - 10 X 0.7 - 2 X 0.2)/5 
(15.4 - 10 X 1 - 2 X 0.7)/5 

5 UH2 + 10 UH1= 2 UHO = 5.5 

uH5 
uH6 
uH7 
uH8 
uH9 
u H l 0  

and so on. 
The solution of these equations is given in the following table. 

(13 - 10 X 0.8 - 2 X 1)/5 
(9.6 - 10 X 0.6 - 2 X 0.8)/5 

0.6 
0.4 
0.2 
0.05 
0 
0 

(6.2 - 10 X 0.4 - 2 X 0.6)/5 

(0.9 - 10 X 0.05 - 2 X 0.2)/5 
(0.1 - 10 X 0.2 X 0.05)/5 

(3.05 - 10 X 0.2 - 2 X 0.4)/5 

I I Solving for UH, 

I uH0 I 015 I 0 1 
I uH1 I 115 I 0.2 1 

l3me 5 x U H  1OxUH 2 xUH 
(hr) (m 3 4  (m3/s) (m3/s) 

0 5 x UHO 
1 5xUH1 10 x UHO 
2 5xUH2 10 x UH1 2 x UHO 
3 5xUH3 10 x UH2 2 x UH1 
4 5xUH4 10 x UH3 2 x UH2 
5 5xUH5 10 x UH4 2 x UH3 
6 5xUH6 10 x UH5 2 x UH4 
7 5xUH7 10 x UH6 2 x UH5 
8 5xUH8 10 x UH7 2 x UH6 
9 5xUH9 10 x UH8 2 x UH7 
10 5xUH10 10xUH9 2xUH8 
11 5 x U H l l  10 x UHlO 2xUH9 

Sum 
(m 3 4  

0 
1 

5.5 
12.4 
15.4 
13 
9.6 
6.2 

3.05 
0.9 
0.1 
0 
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EXERCISES 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

Explain UH theory with its basic assumptions and applications. 

Describe the governing factors affecting the shape of the unit hydrograph. 
How is the UH different fi-om the distribution graph? 

Describe the methods of UH derivation from rainfall-runoff data of an 
event. 

In Question 3, how is the conventional method advantageous over other 
methods? If the available rainfall-runoff data correspond to multi-period 
storms, which methods are suitable for deriving a UH of the desired 
duration? 

Describe Collins’ method. State the reasons for the occurrence of 
oscillating ordinates in the recession limb of the derived UH. What are 
the procedures followed to do away with the oscillating ordinates? 

Describe the methods of single division and least squares for deriving a 
UH and discuss their advantages and disadvantages. 

What are the unit period and volume of the UH? State the theory for 
changing the unit volume of the UH of a specific duration. 

Describe IUH and S-curve hydrograph and their relationship. How are 
these related with the UH? 

What is superimposition method and how is it advantageous over the 
S-curve method? 

3.10 Discuss various methods of averaging unit hydrographs. 

3.11 A thunderstorm of 1-hr duration with 20 mm excess rainfall volume 
resulted in the following direct surface runoff (DSRO) hydrograph at 
the outlet of the catchment. Find out the UH of 1 mm excess rainfall 
volume and 1-hr duration. 

(Contd. ) 

Erne DSRO Erne DSRO 
(k) (rn 3 4  (k) (rn3/s) 

0 0 12 91.6 
1 61.0 13 61.4 
2 3 14.6 14 40.6 
3 561.0 15 26.4 
4 673.4 16 17.0 
5 645.0 17 11.0 
6 584.2 18 7.0 
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475.0 ;_: 365.4 
269.8 

10 192.8 22 1 .o 
11 134.4 

3.12 The excess rainfall hyetograph and the direct surface runoff hydrograph 
ordinates for an event of Godavary basin Sub-zone 3f (bridge no. 807/1) 
are given below. The catchment area is 824 sq. km. Determine 1 -hr UH 
of 1 mm volume using Collins’ method. 

3.13 The ordinates of a 2-hr UH for a catchment (area = 824 sq. km) are given 
below. Determine 1-hr UH using S-curve method. 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

11 

Excess Rainfall DSRO 7ime DSRO 
(mm) (in3/,) (W (m '/s) 

3.58 0 12 91.6 
4.07 61.0 13 61.4 
2.54 3 14.6 14 40.6 

561.0 15 26.4 
673.4 16 17.0 
645.0 17 11.0 
584.2 18 7.0 
475.0 19 4.4 
365.4 20 2.8 
269.8 21 1.6 
192.8 22 1 .o 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 134.4 

llme UH coordinates llme UH coordinates 
0%) (m '/s) 0%) (m '/s) 

1 1.53 13 3.83 
2 9.39 14 2.55 
3 21.89 15 1.68 
4 30.86 16 1.09 
5 33.46 17 0.70 
6 3 1.23 18 0.45 
7 26.48 19 0.29 
8 21.01 20 0.18 
9 15.88 21 0.11 
10 11.57 22 0.07 
11 8.18 23 0.03 
12 5.65 
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T (days) 
Q (m3/s) 

0 1 2 3 4 5 
2 5 10 8 4 2 

3.14 The ordinates of 1-hr UH for a catchment (area = 824 sq. km) are given 
below. 

Rme UH coovdinates Rme UH coovdinates 
(hv) (m ’/.) hv (m ’/.) 

1 3.05 12 4.58 
2 15.73 13 3.07 
3 28.05 14 2.03 
4 33.67 15 1.32 
5 32.25 16 0.85 
6 29.21 17 0.55 
7 23.75 18 0.35 
8 18.27 19 0.22 
9 13.49 20 0.14 
10 9.64 21 0.08 
11 6.72 22 0.05 

(a) Determine the 5’-curve hydrograph for the excess rainfall of unit 
intensity (1 d h r ) .  

(b) Find out the ordinates of 2-hr UH (1 mm) using 5’-curve and 
superimposition methods. 

(c) Discuss the advantages of using superimposition method over the 
5’-curve method for the given problem. State the circumstances under 
which the superimposition method fails. 

3.15 A catchment (area = 300 km2) receives an uniform rainfall of 30 mm in 
one day. During thenext few days, the discharge is observed in the river 
that drains the catchment. The readings are given in the following table. 

The base-flow is assumed constant Qba,, = 2 m3/s during the discharge 
period. 

(a) How much was the direct runoff during the period (answer in m3/s)? 
(b) How much was the total direct runoff during the period (answer in 

(c) How much was the total losses for the rainfall (answer in mm)? 
(d) What was the maximum discharge in the water course during the 

Answer 
(a) 3, 8, 6 and 2 m3/s or an average of 4.75 m3/s 
(b) 4.75 = 4 = 24 = 3600/300 = lo6 m = 5.5 mm 
(c) 24.5 mm (d) 10 m3/s 

mm)? 

period? 
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OBJECTIVE QUESTIONS 

1. The inflection point on the recession side of the hydrograph indicates the 
end of 
(a) Base flow 
(c) Overland flow (d) Rainfall 

(b) Direct runoff 

2. The concept of unit hydrograph was first introduced by 
(a) Dalton (b) Sherman 
(c) Horton (d) Thiessen 

3. UH is the graphical relation between the time distributions of 
(a) Total rainfall and total runoff 
(b) Total rainfall and direct runoff 
(c) Effective rainfall and total runoff 
(d) Effective rainfall and direct runoff 

4. The word “unit” in unit hydrograph refers to the 
(a) Unit depth of runoff 
(b) Unit duration of the storm 
(c) Unit base period of the hydrograph 
(d) Unit area of the basin 

5. The range of the area of the basin where the unit hydrograph is applicable 
is 
(a) 200 hectar-5000 km2 
(c) 100 km2-5000 km2 

(b) 100 hectar-10000 km2 
(d) 250 km2-7500 km2 

6. The basic principles of unit hydrograph theory are 
(a) Principle of superposition 
(c) Both (a) and (b) 

(b) Principle of time invariance 
(d) None of these 

7. The S-curve hydrograph is the summation of the 
(a) Unit hydrograph 
(c) Effective rainfall hyetograph 

(a) Estimate the peak flood flow of a basin resulting from a given storm 
(b) Develop synthetic unit hydrograph 
(c) Convert the UH of any given duration into a UH of any other desired 

(d) Derive the UH from complex storms 

(a) Centroid of the rainfall diagram and the peak of the hydrograph 
(b) Beginning and end of direct runoff 

(b) Total runoff hydrograph 
(d) Base-flow recession curve 

8. The S-curve hydrograph is used to 

duration 

9. The lag-time of the basin is the time interval between the 
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(c) Beginning and end of effective rainfall 
(d) Inflection points on the rising and recession limbs of the hydrograph 

10. The direct runoff hydrograph of a basin can be approximated as a triangle 
with a base period of 90 hr and a peak flow of 230 m3/sec during the lSth 
hour. If the area of the basin is 1863 km2, what is the depth of runoff 
indicated by the hydrograph? 
(a) 1 cm (b) 2 cm (c) 5 cm (d) lOcm 

11. The 6-hr UH of a basin can be approximated as a triangle with a base 
period of 40 hr and peak ordinate of 150 m3/s. Then the area of the basin 
is 
(a) 2160km2 (b) 1080km2 (c) 540km2 (d) 1280km2 

12. The peak discharge in 2-hr and 4-hr UHs of a basin occurs at t ,  and t2. 
What can you infer from this information? 
( 4  t,= t2 (b) t,> t2 (c) t ,< t2 (d) t,<=t2 

13. The 4-hr and 8-hr UH of a basin having the same base period is plotted. 
Which of the following statement is true? 
(a) The peak discharge at 4th hr is greater than Sth hr 
(b) The peak discharge at Sth hr is greater than 4th hr 
(c) Both the peak occurs at the same time 
(d) None of the above 

14. A 6-hr storm produced rainfall intensities of 7, 16,20, 14,8, and 5 mm/hr 
in successive one hour intervals over a basin of 1000 sq km. The resulting 
runoff is observed to be 2600 ha. m. Determine @-index for the basin. 
(a) 8mm/hr (b) 9mm/hr (c) lOmm/hr (d) 11 mm/hr 

15. In an 8-hr storm, the total depth of precipitation is 80 mm. Total storm 
runoff is 55 mm. Losses due to depression storage and interception is 
5mm. Find out the W-index. 
(a) 2.0mm/hr (b) 2.5 mm/hr (c) 3.0mm/hr (d) 4.0 mm/hr 
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CHAPTER 

4 
Simulation and 

Synthetic Methods 
in Hydrology 

4.1 INTRODUCTION 

Why should we use simulation in hydrology? What is wrong with conventional 
techniques which have been in use for many years? Doesn’t simulation require 
a lot more data? Doesn’t it cost more and take more time? Is it really worthwhile 
to use computer simulation when we have so little data? The answer to the 
first question is specific, not only to hydrology but also to all other fields 
which necessitates experimental data to validate a system or to authenticate 
the outcome of certain experiments. Many a time, we find ourselves in situations 
when we cannot build a model that depicts the original object of our interest in 
the laboratory, e.g., a river channel, a watershed, or a reservoir system. In such 
situations, we try to fit a model in our laboratory by compressing or sizing the 
original scales of the object. Such a model is called aprototjpe which is 
compressed to a size that fits in our laboratory. This is called scaling or model 
simulation. This is about the simulating behaviour of physical models, but in 
hydrology, we more often resort to mathematical models as has been discussed 
in Chapter 1. In such situations, we try to build models which replicate the 
behaviour of the system which assists the analyst to record the response of the 
system to different conditions that may be imposed on it or that may occur in 
the hture. 

There might be a scenario when we do not have sufficient data to proceed 
with certain analysis, or we may face some situation wherein measurement of 
actual data is difficult. For example, the depth of water in a river channel 
during high-flood events or the height of water rise in an ocean during an 
event like the tsunami or a high-flood event coupled with cyclone is difficult 
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to measure. Similarly, routine measurement of gauge data in a remote hilly 
watershed is difficult. It is inaccessible and the cost of experiments and 
maintenance are high. In such situations, data generated using simulations is 
the sole alternative to augment the data shortage. 

Hence, in simple terms, simulation is the process of duplicating the behaviour 
of an existing or proposed system. It consists of designing a model of the 
system and conducting experiments with this model, either for better 
understanding of the functioning of the system or for evaluating various 
strategies for its management. It must be noted that simulation is a statistical 
experiment, and hence its output must be tested with suitable statistical tests. 

4.2 TRADITIONAL ANALYSIS VS. HYDROLOGIC 
SIMULATION 

Prior to the development of simulation, a number of techniques were used in 
hydrology to arrive at the estimates of flow when no observed values existed. 
These procedures utilized approximations because the work had to be done 
with pencil and paper, and it was not possible to deal in detail with the problem 
and expect a solution within a reasonable time. Classical methods resorted to 
simplification of procedures. For example, in the unit hydrograph technique 
for constructing a graph of streamflow, it was assumed that flow rate was in 
linear proportion to runoff volume. This assumption conveniently permits 
superposition of runoff from several storm increments. This is not absolutely 
correct; however, in watersheds where large flood plains exist, the errors may 
be very large. The computer permits a much more detailed calculation using 
kinematic routing which relies on the actual stream cross-sections and the 
theory of flow in channels. Similarly, in estimating the runoff produced due to 
a rainfall event, relatively simple relationships were employed. The most 
complex of these relationships used parameters, such as time of year, an 
antecedent precipitation index, and the duration of rain in a statistically derived 
relationship. By contrast, simulation allows the continuous calculation of soil 
moisture, infiltration, and the movement of moisture in overland flow to the 
stream. A detailed computation represents the actual physical processes 
realistically, and consequently provides a more reliable basin for extrapolation 
in time or space. 

Preliminary research at Stanford University around 1960 had indicated that 
it was feasible to write a computer program which would simulate hydrologic 
processes and compute streamflow from rainfall data. This instigated the 
development of simulation techniques in hydrology. The concept of infiltration 
which is the heart of continuous simulation was first proposed by Horton in 
1933. Similarly, the routing to construct the runoff hydrograph was first 
introduced by Zoch in 1934. The idea of continuous soil moisture accounting 
was suggested by Linsley and Ackermann in 1942. Slowly, the basic concepts 
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of computer simulation were recognized as preferable approaches to hydrologic 
analysis, long before the computational ability was available. 

4.3 ISSUES OF DATA AND COST 

The comments above offer many reasons why simulation is preferred over 
conventional methods. However, simulation techniques are expensive and 
difficult to implement. Simulation requires input of a considerably larger 
quantity of data than is normally used in most conventional hydrologic studies. 
Even in case of conventional studies, an equal volume of data is usually 
reviewed, but due to the constraints of manual computation, only selected data 
(much less than 10% of the available data) items are actually used. It is a 
relatively simple matter to get the required streamflow and rainfall data fi-om 
responsible federal agencies on magnetic tape. 

It is often implied that one should use approximate methods because of the 
restrictions posed by limited data. However, there is nothing about approximate 
methods that makes better use of the limited data, and most approximate 
methods have been demonstrated to be highly unreliable. There are many 
techniques which can be used to adapt the limited data to simulation. By careful 
use of a simulation program, data of poor quality can be checked, missing 
records can be completed, and a considerable extension of the record can be 
made. The most critical data for simulation are the rainfall data. Without rainfall 
data, it is impossible to carry out a simulation study. 

Simulation techniques cannot compete with the use of empirical formulae 
for computation of design flows on the basis of time and cost, but they can 
easily compete with conventional methods, such as rainfall-runoff relations 
and unit hydrographs. Usually, it takes less time to develop necessary data for 
simulation than to develop the desired estimates. Meanwhile, one simulation 
run will provide an abundance of data which can answer many hydrologic 
problems. Although the data from the run may not be required in all its detail 
for a study of flood flows, it may subsequently have considerable value in 
dealing with streamflow volumes or minimum flows. If one wishes to explore 
the effect of changing vegetal cover on the watershed, or increasing the amount 
of urban land use, or other possible land use changes, this is easily done with 
simulation. Using conventional methods, it would be difficult, if not impossible, 
to estimate the effect of such changes. 

4.4 MONTE CARL0 SIMULATION 

A popular simulation technique that is fi-equently used nowadays is Monte 
Curlo simulation. The technique was initially developed for managing troops 
and ammunitions during World War 11. The name “Monte Carlo” is inspired 
fi-om the city Monte Carlo, USA, famous for gambling where a wheel was 
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used to generate random numbers. The scheme is aimed at estimating stochastic 
or deterministic parameters based on random sampling. The advantage of this 
technique lies in the fact that the time element is not a pertinent factor, e.g., 
evaluation of multiple integration, solving for the parameters of a nonlinear 
complex equation, matrix inversions, etc. Design of real-world systems is 
generally based on observed historical data. For example, the observed 
streamflow data are used in checking the robustness of flood frequency analysis 
methods in return period flood quantile estimation, parameter estimation 
methods for conceptual models, historical traffic data is used in design of 
highways, observed data are used in design of customer services, etc. However, 
the historical records are not enough in most cases, and the observed pattern 
of data is not likely to repeat exactly. The performance of a system critically 
depends on the extreme values of input variables, and the historical data may 
not contain the entire range of input variables. There are many instances when 
a flood with peak value has crossed a gauging site without the notice of the 
observer or a peak exceeding the historical record enters a reservoir without 
being taken into account by the observer. In such cases, the design for extreme 
events becomes faulty. 

The conclusion that can be drawn from the above examples is that one does 
not get a complete picture of the system performance and risks involved when 
actual historical data are absent in evaluation. Thus, for instance, the planner 
cannot determine the risks of a designing system because this requires a very 
large sample of data which are not commonly available. For many systems, 
some or all inputs are random, system parameters are random, initial conditions 
as well as boundary condition(s) may also be random in nature. The probabilistic 
properties of these parameters are known. For such systems, simulation 
experiments are conducted using a set of inputs which are synthetically 
(artificially) generated. While generating inputs, it is ensured that the statistical 
properties of the random variables are preserved. Each simulation experiment 
with a particular set of inputs gives an answer. When many such experiments 
are conducted with different sets of inputs, a set of answers is obtained. These 
answers are statistically analyzed to understand or forecast the behaviour of 
the system. This approach is known as Monte Carlo simulation. 

The main steps of Monte Carlo simulation are: 

1. Generating the inputs 
2. Developing a prototype of the system 
3. Running the model using the inputs generated at (1) 
4. Assembling different set of input-output samples 
5.  Conducting goodness-of-fit test or other statistical tests to verifL the results 

obtained at (4) 
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4.4.1 

In simulation, many events appear to occur at random or to involve attributes 
whose values must be assigned randomly. This is because most of the 
simulations are based on knowledge expressed as general or historical 
relationships. For example, in many situations, the duration of event is known 
to lie in a fixed range or the respective formula involves a term that varies 
fi-om 0 to 1. These variables may be assigned by a probability density function 
(PDF) or some discretefunctions. For these reasons, one of the requirements 
of any computer system is to have some facility for generating random numbers. 

Nearly all modern compilers have built-in routines to generate uniformly 
distributed random numbers between 0 and 1. The most popular random number 
generation method is the congruence method. To start the process, a number 
known as seed is input to the equation which gives a random number. This 
number is again input to the equation to generate another number, and so on. 
When this process is repeated n times, n random numbers are obtained. The 
recursive equation that is commonly used to generate random numbers in the 
linear congruential generator (LCG) is given as: 

Random Numbers having Uniform Distribution 

Ri = (aRip ,  + 6)  (modulo d) (4- 1) 
where, Ri is the integer variable; and a, 6 ,  and dare positive integer constants 
which depend on the properties of the computer. The word ‘modulo’ denotes 
that the variable to the left of this word is divided by the variable to the right 
(in this case d), and the remainder is assigned the value Ri. The desired uniformly 
distributed random number is obtained as Ri ld. The initial value of the variable 
(R,) in Eq. (4.1) is called the seed. It is to note that the properties ofthe generated 
numbers may depend on the values of constants a, 6, and d. The value of 
constant a needs to be sufficiently high; low values may not give good results. 
Constants b and d should not have any common factors. The positive integers 
R, a, b, and c are chosen such that d > 0, a < d, and b < d. 

Example 4.1 Generate a sequence of four random numbers using Eq. (4.1). 
Assume seed as zero, and assume suitable values of a, b, and d as per the 
criteria given above. 

Solution 
Let a = 2, b = 3 ,  d =10 and R,= 0 (Please note that d > 0, a < d, and b < d) 

R,=O 
R ,  = [(2 x 0) + 3 ) ]  mod 10 = 3 
R, = [(2 x 3 )  + 3 ) ]  mod 10 = 9 
R, = [(2 x 9) + 3 ) ]  mod 10 = 1 
R, = [(2 x 1) + 3 ) ]  mod 10 = 5 

Similarly, there is additive congruential generator (ACG) and quadratic 
congruential generator (QCG). 
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Algorithm for ACG is: 

Rj= [RjPl + RjJ mod (m) (4.2) 
To extend a series with 1,2,4,  8, and 6 with the same initial values of above 
example, 

R,= 1 
R,=2 
R,=4 
R,= 6 
R5-8 
R,= [R5 + R,] mod (10) = 7 

Algorithm for QCG is: 

R,+I = [R, (R, + 111 mod (m) (4-3) 
Pseudo random number (PRN) is useful for generating numbers in the range 
of 0-1. Since these algorithms of random number generation are deterministic, 
the generated numbers can be duplicated again. Therefore, these numbers are 
not random in a strict sense and are calledpseudo random numbers. 

A good random number generator should produce uniformly distributed 
numbers that don’t have any correlation with each other, and it should be able 
to exactly reproduce a given stream of random numbers. Besides, a good 
random number generator is fast and consumes less memory space. It is also 
required that the generator should be capable of generating several separate 
streams of random numbers. 

Let Xn+l = [a]; a = lop c X ,  (4-4) 
where, [a] = [lop c X,] denotes the fractional part of a, p is the number 
of digits of pseudo random number, c is the constant multiplier such that 

It has been established that c = 10-” [200 A f B],  where A is a non-negative 
integerandBisanynumberfrom{3,11,13,19,21,27,29,37,53,59,61,67, 
69, 77, 83, 91}. The seed for PRN is denoted by Xo and is equal to 10-f’ k, 
where k is any integer not divisible by 2 or 5 such that 0 < k < 1OP. 

Example 4.2 Using Eq. (4.2) and a seed value of 0.33, generate a sequence 
of four random numbers containing fractions up to two digits. Consider A = 0 
andB= 11. 

Solution 
Let xo = 0.33, A = 0, and B = 11. For generating fi-actions up to two digit, 
p=2,whichmeansc= lop2 [11.0] =O.ll.  
Therefore, xo = 0.33 

(0 < c < 1). 

x1 = [ 100 (0.1 1) (0.33)] = 0.63 
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Please note that the product of 100,0.11, and 0.33 is 3.63. However, we have 
to consider only the fractional part for obtaining x2 
Thus, x2 = [ 100 (0.11) (0.63)] = 0.93 

x3 = [ 100 (0.11) (0.93)] = 0.23 
x, = [ 100 (0.11) (0.23)] = 0.53 

Thus, the generated sequence of random numbers is 0.63,0.93,0.23, and 0.53. 
The main disadvantage of this method is that it is slow. Hence, for general 

purpose simulating systems, random number generators are used which may 
incorporate a large number of PRN generators, each producing one sequence. 
A variety of statistical tests, such as Frequency tests, Serial test, Kolmogrov- 
Smirnov test, and Run test are conducted to check the validity of these random 
number generators. Some of these tests are included in later chapters. 

4.4.2 Transformation of Random Numbers 
All the generators used thus far are designed to generate uniformly distributed 
random numbers following a uniform distribution. Any form of input data 
used in a system shall have certain statistical properties and a certain probability 
distribution. Therefore, our task is to convert these uniformly distributed random 
numbers such that they follow the desired probability distribution. The variables 
involved may either be continuous or discrete random variables. Methods to 
generate random variate that follow a given distribution are described next. If 
the inverse form of a distribution can be easily expressed analytically, then 
inverse transformation is the simplest method. If an analytical expression for 
the inverse of the concerned distribution is not known, special algorithms are 
employed to efficiently generate numbers with such a distribution. The 
meanings of continuous and discrete distributions are explained in detail in 
Section 4.5. 

4.4.3 Inverse Transformation Method 
The inverse transformation technique is used to transform a standard uniform 
variate into any other distribution. It is particularly useful when the distribution 
is empirical. Suppose we wish to generate a PRN from a distribution given by 
F(x), where F satisfies all the properties of a cumulative distribution function 
(CDF). To achieve this, first a uniformly distributed random number xi in the 
range [0, I] is generated. Thereafter,Xcan be generated applying the following 
formula: 

X =  F-' (x) (4.5) 
where, F-' is the inverse of the CDF of the random variable x. This method is 
also known as the inverse transformation method. It is useful when the inverse 
of the CDF of the random variable can be expressed analytically. This is a 
simple and computationally efficient method. However, it can be used for only 
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those distributions whose inverse form can be easily expressed. The following 
examples will clarify the application of direct and inverse transformation 
methods in simulations or data generation. 

Example 4.3 The standard uniform random variables are given as: 0.102 1, 
0.2 162, and 0.762 1. Transform these into a distribution given by the following 
relation: 

F(x) = 

Solution 

0 for ( x < O )  
x for (O<x<1/4) 

3x+1 
for (1/4 < x < 2) 7 

1 for (x>2) 

for (0 < a < 1/4) 
{ a  (7a - 1)/3 for (1/4 < a  < 1) 

F-'(a) = 

or,  ~ ' ( 0 . 1 0 2 1 )  = 0.1021 
F'(0.2162) = 0.2162 
F'(0.7621) = 1.4449 

4.5 GENERATION OF RANDOM NUMBERS 

Random numbers can be generated using discrete as well as continuous 
distributions. For some distributions, random variables can be expressed as 
functions of other random variables that can be easily generated. This property 
can be exploited for generation of random variables. For instance, the gamma 
distribution is nothing but the sum of exponential distributions. The generation 
of random numbers using discrete as well as continuous distribution is as 
follows; 

4.5.1 Using Discrete Distributions 
Poisson distribution, binomial distribution, negative binomial distribution, 
Bernoulli distribution, geometric distribution and hypergeometric distribution 
pertain to class of discrete distributions. Generations of random numbers which 
follow these distributions are often of interest to hydrologists. Generation of 
Poisson Distributed Random Numbers is explained here. Generation of random 
numbers using all other types of distribution can be done similarly. 

To generate Poisson distributed random numbers, cumulative distribution 
function of the Poisson-distribution is used along with uniformly distributed 
random numbers. Values of uniformly distributed random numbers are used in 
place of CDF to get corresponding variate. Such variates will be random 
numbers having Poisson-distribution. 
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X 

F 

Example 4.4 Corresponding to a uniformly distributed random number 0.14, 
obtain a Poisson distributed random number having Poisson-distribution with 
a = 2.5. 

0 1 2 3 4 
0.0821 0.2873 0.5438 0.7576 0.8912 

Solution 
The CDF of the Poisson-distribution is given by: 

For x = 0, F(0) = e-2.5 (2.5)'/(0!) = 0.082085 
For x =  1, F(1)= [e-2.5 (2.5)'/(0!)] + [e-2.5 (2.5)'/(1!)] 

= 0.082085 + 0.2052 = 0.2873 
Similarly, F(2), F(3) and F(4) are computed as shown in Table 4.1 

Table 4.1 Generation of Poisson distributed variates 

4.5.2 Using Continuous Distributions 
In this section, random numbers generation using continuous distribution such 
as normal distribution, exponential distribution, gamma distribution, 
generalized extreme value distribution, and generalized pareto distribution are 
explained. 
4.5.2.1 Normally Distributed Random Numbers 
Normally, distributed random numbers are obtained fiom uniformly distributed 
random numbers after applying transformation. Two methods, namely 
(i) Box-Muller method, and (ii) method based on central limit theorem, are 
used for this purpose. 

Box-MuZZer Method Box-Muller method requires the prior generation of 
two series (X, and X,) rectangular distributed (0, 1) random numbers. These 
are then transformed to normally distributed series (Y, and Y,) by the following 
equation: 

Y, = [-2 Log, X,] ' I2 cos (2.nX2); and Y2 = [-2 Log, X,] ' I2 sin (2.nX2) 

(4.7) 
The values Y, and Y2 are normally and independently distributed with zero 
mean and unit variance. 

For a standard uniform random number u = 0.14, the Poisson-distributed 
number x = 1. It is to note from Table 4.1 that for F greater than 0.082 1 and up 
to 0.2873, x =l. 
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Method Based on Central Limit Theorem The central limit theorem states 
that under certain very broad conditions, the sum of a sequence of independent 
random variables approximates a normal distribution, irrespective of the 
distribution of the random variables in the sequence. The larger the number of 
random variables making up the sum, the better is the normal approximation. 
In particular, the central limit theorem holds good when the independent random 
variables summed are sampled fi-om a rectangular distribution. The values xl, 
x2,. . .xn are therefore generated from a rectangular distribution over the interval 
(0, l), and the quantity y is then calculated by: 

y = XI + ~2 . . .+ xn - 0.5n (4.8) 
If n = 12, then the distribution of the values ofy closely approximates a normal 
distribution with zero mean and unit variance. These random numbers are also 
represented by N(0, 1). The normally distributed random numbers with zero 
mean and unit variance, N(0, l), can be transformed to normally distributed 
random numbers with any mean p and variance 02, ie., N(p, 02) as follows: 

zi = p + oyi 

where, zi is N(p,  o2 ) andyi is N(0, 1). 

Example 4.5 Consider the standard uniform random numbers as: (0.1602, 
0.1124, 0.7642, 0.4314, 0.6241, 0.9443, 0.8121, 0.2419, 0.3124, 0.5412, 
0.6212, and 0.0021). Using these numbers, obtain a normal variate having a 
mean of 25 and variance 9. 

Solution 
Adding the 12 standard uniform random numbers gives y = 5.5675 
This number is from a normal distribution with mean = 6 and variance = 1 
The corresponding standard normal number is z = y  - 6 = -0.4325 
Now, transformation of this to N(25, 9) is done by: 

x = p + oz= 25 + 3(-0.4325) = 23.7025 

4.5.2.2 Exponential Distributed Random Numbers 
Exponential function is invertible and this facilitates computations of random 
numbers having exponential distribution. For this purpose, CDF of exponential 
function is equated to uniformly distributed random number and the variate x 
is obtained. 

Example 4.6 Generate exponential distributed variates for a given specified 
parameter a = 1.5 for the following exponential distribution: 
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F 

x 

F(x) = 1 - exp -- L :I 

0.310 0.790 0.874 0.539 0.367 0.161 0.883 0.032 0.522 0.340 0.075 0.486 0.831 

0.557 2.343 3.113 1.161 0.686 0.264 3.225 0.049 1.108 0.623 0.116 0.997 2.667 

(4.9) 

4.5.2.3 Gamma-Distributed Random Numbers 
As Gamma distribution is the sum of exponentially distributed functions, the 
following expression can be written for a variable x following a gamma 
distribution with parameters (k, A) 

k 
x =  E X i  

i = l  
(4.11) 

where, x1 , x2, . . . , xk are independent exponentially distributed random variables 
with parameter A; and xi is given by: 

xi = -ln(ui)/A (4.12) 
The procedure to generate gamma-distributed random variate following this 

method consists of generating random variate that follows exponential 
distributions having parameter A. Now, k such variates are added to obtain one 
gamma distributed variate. The inverse transform method can be used to 
generate exponentially distributed random variates. We first generate a 
uniformly distributed random number u in the range [0, 13. Using it, a random 
variate that follows the exponential distribution with parameter A can be 
obtained. 

Example 4.7 Generate gamma-distributed random variates with parameters 
(4,O.S). Assume four uniformly distributed random numbers, u l ,  u2, u3, u4 as 
0.5371, 0.1814, 0.6193, and 0.1319. 

Solution 
F(x) is the CDF corresponding to the PDF of exponential distribution function. 
F(x) takes a value in the range of 0 to 1. 
Equation (4.9) can be transformed to the following form: 

(4.10) 
The values of exponential distributed variates (x) are calculated substituting 
the generated F in Eq. (4.10) as shown in the following table. 

x = (-a) In[ l-F(x)] 

Table 4.2 Generation of exponential distributed random variates x 

It is to note that F also represents uniformly distributed random numbers. 
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Solution 
Corresponding to four uniformly distributed random numbers, the 
corresponding exponentially distributed random variates with parameter 
i l = O . 8  willbe0.777,2.134,0.599,and2.532. 
Therefore, the gamma-distributed random number is: 

l 4  
j = l  

x = - [-ln(u,)] = 0.777 + 2.134 + 0.599 + 2.532 = 6.042 (4.13) 

4.5.2.4 Generalized Extreme Value (GEV) Distributed 
Random Numbers 

These distributions find application in describing series of maximum or 
minimum values from a set of data. For example, if maximum annual flood is 
recorded at a site for 20 years, one has a set of 20 such data. Such a series will 
be suited to analysis using GEV distribution which has the following CDF: 

(4.14) 

where, x represents the extremes to be analysed, a is the scale parameter, K is 
the shape parameter, and 5 is the location parameter. The case K= 0 corresponds 
to the Gumbel distribution and is also known as Type I EV distribution, 
Type I1 and I11 EV distributions correspond to K less than or greater than zero. 

The above equation of GEV distribution is transformed to a form which 
gives x as: 

(4.15) 

The procedure of generating random numbers having GEV distribution is 
straightforward. Substituting for F as uniformly distributed random number 
will give random variate x, conforming to GEV distribution. 

Example 4.8 Compute the GEV variates using the parameters: K = - 0.1, 
a = 100, and 5 = 25. The sequence of uniformly distributed random numbers 
is given in Table 4.3. 

Solution 
In Table 4.3, F values represent uniformly distributed random numbers. 

the values of x are calculated, which are shown in the following Table. 
Substituting the values of F in Eq. (4.15) and using the given parameters, 
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F 

x 

Table 4.3 Generation of GEV random variates 
0.592 0.250 0.890 0.810 0.508 0.409 0.564 0.920 0.010 0.162 0.881 0.031 0.704 

91.709 -7.135 264.8 193.501 64.737 36.263 82.321 307.014 -116.6 -33.134 254.48 -92.082 135.381 

4.5.2.5 GP Distributed Random Numbers 
Similar to GEV distributions, random numbers conforming to generalized 
Pareto (GP) distribution can be easily computed as CDF is invertible. GP 
distribution was developed to describe the distribution of wealth among 
individuals. Needless to say that certain individuals are very rich while some 
are poor, and the difference between the wealth of a rich and a poor man is too 
big. The same situation may also arise in hydrology. For example, one may 
encounter very large variation in flows. Here, the objective is not to describe 
this variation in detail. Rather, emphasis is given to generate random variate. 
A typical GP distribution [Lama et al. (2006)l for variate x can be represented 
as follows. 

(4.16a) 

F&) = 1 - exp(-y) (4.16b) 

In Eq. (4.16b), F&) is the CDF for the GP distribution. The values of 
GP-distributed variates, x, are calculated by transforming the above equation, 
and taking x to the left hand side as: 

a 
K 

x= '+ -  {1-(1-F)"} (4.17) 

GP-distributed random numbers can be generated using uniformly distributed 
random numbers in place of F in Eq. (4.17). 

Example 4.9 Compute the GP-distributed variates for the following 
parameters: a = 2, 5 = 0, and K = 0.2. Uniformly distributed random numbers 
are given in the first row of Table 4.4. 

Solution 
Corresponding to F = 0.303, a = 2, and K = 0.2, Eq. (4.17) gives 

x = (2/0.2) { 1- (1 - 0.303)0.2} 
On substituting the values of F in Eq. (4.17), the values of x are calculated as 
shown in Table 4.4. 
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F 

x 

Table 4.4 Generation of GP random variates 
0.303 0.479 0.842 0.483 0.959 0.110 0.724 0.823 0.895 0.355 0.335 0.210 0.591 

0.696 1.222 3.085 1.236 4.72 0.23 2.269 2.927 3.628 0.839 0.783 0.46 1.637 

4.6 SIMULATION OF SYSTEMS WITH RANDOM INPUTS 

Often, hydrologists confront situations where data regarding hydrologic 
variables, such as precipitation, runoff, and stream flows are limited. For a 
better planning of water resources, it is necessary to extend these data. Here, 
an insight into generation of additional data is provided. 

4.6.1 Generation of Annual Flows 
The annual flows generally exhibit persistence, i.e., the tendency of high flows 
to follow high flows, and low flows to follow low flows. The generation of 
annual flow sequences depends whether the persistence is present or absent in 
historic record. For judging the presence of persistence, turning point test or 
Anderson’s correlogram test may be used. 

Persistence Absent Case When persistence is absent in historic flow record, 
i.e., the annual flows are random, the alternate annual flow sequence may be 
generated using the probability distribution of annual flows. Generally, annual 
flows follow normal distribution. The procedure for generating normally 
distributed random number has been explained in the earlier section. The 
following steps summarize the procedure for generating synthetic sequences 
of annual flows. 

(i) Plot the historic sequence of annual flows as a histogram, and decide the 

(ii) Estimate the parameters of the distribution. 
(iii) Sample from this distribution to obtain the generated sequence. 

Persistence Present Case When the annual flows exhibit dependence, the 
flows are generated using either auto-regressive (AR) models or auto-regressive 
integrated moving average (ARIMA) models. These models along with turning 
point test or AndersonS correlogram test can be found in any textbook on 
Stochastic Hydrology. 

4.6.2 Generation of Monthly Stream Flows 
Monthly stream flows are used for deciding capacity of the reservoir and 
planning water resources. Over the past three to four decades, a number of 
models have been developed to generate monthly flows. These models can 
be broadly classified into two categories, namely (i) univariate, and 
(ii) multivariate. 

theoretical distribution to be used to represent them. 
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Univariate models are used when synthetic sequence of flows is required at 
one particular site, and the cross-correlation properties with flows are not 
required to be preserved at other sites. In this category, there are basically two 
models, namely (i) Univariate Thomas-Fiering Model, and (ii) Disaggregation 
process-based models. 

Multivariate models are used when it is necessary to generate simultaneous 
sequences of several hydrological variables or simultaneous sequences of a 
hydrological variable at many sites. Multivariate models are important as water 
resources planning are concerned with determining the size and operation of 
not one but several reservoirs. In such cases, the use of univariate models for 
generating synthetic flows at each site of interest is limited, because the flows 
of various sites tend to be interdependent. The following are some of the models 
in this category: (i) Bi-variate Thomas-Fiering model, (ii) Multi-site 
Disaggregation models, (iii) Multivariate Matalas model, and (iv) HEC- 4 
model. 

The present section covers Thomas-Fiering model and its modified forms 
to deal with negative flows and zero flows in the generated data. The model 
requires generation of normally distributed random numbers. 
4.6.2.1 Thomas-Fiering Model  
The method of Thomas and Fiering implicitly allows for the periodicity 
observed in the monthly discharge data. The method is based on AR( 1) model 
and is used when month-to-month correlation structure is non-stationary. In 
its simplest form, this method uses twelve linear regression equations. If twenty 
years of monthly flows are available, then all the January and December flows 
are abstracted, and January flows are regressed upon December flows. Similarly, 
February flows are regressed upon January flows, and so on for each month of 
the year. Using the Thomas-Fiering notation, the model may be written as 
follows: 

(4.18) 

In Eq. (4.1 S), Qi and Qi+ I are the discharges during the ith and (i  + l)th months, 
respectively; Qj+ , Qj are the mean monthly discharges during the (i+l)th 
andjth months, respectively, within a repetitive annual cycle of 12 months; 
Zi is a random normal variate with zero mean and unit variance; and sj are 
the standard deviations of discharges in the (i+l)th andjth months, respectively; 
r j  is the correlation coefficient between flows in thejth and (i+l)th months; and 
bj is the regression coefficient for estimating discharge in the (i+l)th month 
fi-om thejth month and is given by: 

bj = r j  x (sj + l)/sj (4.19) 

2 112 
Qi+ I ~ Qj+ 1 = bj[Qi ~ Q j  1 + ZisJ + 1(1- r j  1 

- - 
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The method should be used with caution if fewer than twelve years of data 
are available. When the Thomas-Fiering model is fitted to monthly stream 
flows, it may be found that values in the generated sequence are sometimes 
negative. The negative flows in the generated data may be avoided if the model 
is fitted either to log-transformed or square root transformed data. Once the 
flows are generated, antilog or square of flows is taken. R. T. Clarke, in his 
book Mathematical Models in Hydrology, has given a computer program for 
fitting the Thomas-Fiering model. 

Generation of Monthly Flows having Zero Flow It is sometimes necessary 
to generate synthetic discharge sequences for streams having no discharge 
during the dry season. The procedure to be adopted in such cases is described 
below: 

Suppose, we have N years of data record for each month j (j = 1 , 2,. . . , 12) of 
the year. If ni is the number of years (out of N) for which the flow is not zero, 
then compute Pi as Pi = niIN. 

1. Calculate the mean monthly flow and the variance of flows for each 

2. Fit a Thomas-Fiering model to those successive pairs of months for which 

3 .  Generate synthetic sequences of monthly flows as follows: 

month j .  

flow is not zero. 

(a) For month j ,  choose a pseudo-random number, having a rectangular 
distribution over (0, 1). If this number is less than Pi (but greater than 
zero), then flow is to occur in month j ;  otherwise zero flow. 

(b) If no flow is to occur in month j ,  repeat the steps for month (j + 1). 
(c) If flow is to occur in month j ,  and it is the first month of the year for 

which flow is to occur, then select a pseudo-random normal variate 
for a distribution with mean and variance equal to the mean monthly 
flow and variance of flows for month j .  

(d) If flow is to occw in jth month and flow has also occurred in (j - l)th 
month, then use the regression equation of the Thomas-Fiering model 
to obtain the flow for jth month. 

Example 4.10 For a tributary, the mean monthly flow, standard deviation 
of the (j + l)th month, and correlation of the j and (j+l)th month are given in 
Table 4.5. Develop equations for monthly flow generation. 
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5 
6 
7 
8 
9 
10 

Table 4.5 Mean monthly flow, standard deviation of (j + l)th month, and 
correlation of j* and (j+l)* month 

19 11.7 0.555 9.73 3.567 
84 75.2 0.498 65.21 0.587 

215 88.7 -0.073 88.46 0.09 
187 112.1 0.537 94.57 0.178 
75 37.2 0.602 29.70 0.550 
70 34 0.741 22.83 1.853 

1 I 12 I 8.6 I 0.413 I 7.83 I 0.355 I 

12 

2 I 7.9 I 7.4 I 0.98 I 1.47 I 0.967 I 

20.3 10.3 0.266 9.93 0.03 

3 I 7.3 I 7.3 I 0.991 I 0.98 I 0.991 I 
4 I 9.1 I 7.3 I 0.762 I 4.73 I 1.221 I 

11 I 71.4 I 85 I 4.072 I 84.78 I 4.009 I 

Solution 
The general form of Thomas-Fiering model is: 

2 112 
Q , + i -  Qj+i = e j [ Q i -  QjI+ZiSj+i[1-7j> 1 

where, bi = ri x (Si+l)/Si 
Regression equations for 4 months to generate the monthly flows are: 

Qj,, - 12 = 0.355 [Qd,, - 20.31 + 7.832, 
Qf,b - 7.9 = 0.83 
ern, - 7.3 = 0.98 [ Q f b  - 7.91 + 0.9772, 
Qapr - 9.1 = 0.76 [em, - 7.31 + 4.7272, 

[Qj,, - 121 + 1.4722, 

If the sequences of random normal variates are: 2.289, -0.445, -1.2,0.83, and 
Qde, = 20.3 m3/s, then the flow values for the month of January, February, 
March, and April are: 29.9, 22.1, 20, and 22.7 m3/s, respectively. Similar 
regression equations for other months can be generated. 

4.7 DEVELOPING SYNTHETIC UNIT HYDROGRAPHS 

Most of the available methods for derivation of synthetic unit hydrograph (SUH) 
involve manual, subjective fitting of a hydrograph through the data points. 
Because cumbersome trials are involved, the generated unit hydrograph is 
often left unadjusted for unit runoff volume. In last few decades, the use of 
probability distribution functions in developing SUH has received much 
attention because of its similarity with unit hydrograph properties. In this 
section, the potentials of two-parameter gamma distribution to derive SUH 
shall be discussed. Simple formulae will be derived using analytical and 
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numerical schemes to compute the distribution parameters, and their validity 
will be examined using an example. Before moving onto the application of 
PDFs in deriving synthetic unit hydrographs, the existing popular techniques 
used for the same purpose are discussed. 

4.7.1 Snyder's Method 
Snyder (1 938) used three parameters to describe the hydrograph, using data 
from the catchments of Appalachian Highlands. These are lag-to-peak, tL,; 
peak discharge, Qp; and base time, tB; as shown in Fig. 4.1. 

Discharge 

0.5 Qp I I 1 4 5 , \  eP 

Fig. 4.1 Elements of a synthetic unit hydrograph 

Empirical relationships were suggested by Snyder to estimate these 

(4.20) 
(4.21a) 
(4.22) 

where, L is the length of the main stream from the outlet to the catchment 
boundary in miles, LcA is the distance from the outlet to a point on the stream 
nearest to the centroid of the catchment in miles, CT is a coefficient that depends 
upon units and basin characteristics (it varies from 1.8 to 2.2 for FPS unit and 
from 1.32 to 1.65 for SI units), Cp is also a coefficient that depends upon units 
and basin characteristics (it varies from 0.56 to 0.69), A is the area of the 
catchment in square miles, tLp is in hrs, Qp is in ft3/s, and tB  is in hrs. 

It is necessary to exercise caution with the use of units of involved 
parameters. If SI unit is followed, coefficients in the empirical equations need 
to be adjusted. For example, if SI unit is used, Eq. (4.21a) becomes: 

(4.21b) 

parameters using following equations: 

tLp= CT (L  LC. )0'3 

Q, = 640 C, A I tLp (FPS unit) 
tB  = 72 + 3 tLp 

Qp = 2.778 Cp A I tLp (SI unit) 
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Here, A is in km2 and Qp is in m3/s. Equations (4.20) to (4.22) are valid for 
excess rainfall of standard duration TSD (hr) equal to tLp 15.5. In case, excess 
rainfall duration T is not equal to TSD = tp h . 5 ,  the time to peak needs to be 
adjusted using Eq. (4.23), as shown below: 

(4.23) 
where, tpR is the revised lag-time in hours and T is the actual rainfall duration. 
It is to note that the revised time to peak will correspond to Qp. These relations 
provide a complete shape to the SUH. Since the base length of the hydrograph 
obtained is always greater than 3 days, Snyder’s method is applicable to fairly 
large catchments only. Similar to Eq. (4.22), empirical expressions are given 
by Langbein et al. (1 947), Taylor and Schwarz (1 952), and Gray (1 96 1) among 
others. 

Linsley et al. (1958) revised the equation of time-to-lag (or peak) given by 
Eq. (4.20) as follows: 

tpR = tLp + (T- TsD)/~ 

‘Lp = ‘T( FJ LCA (4.24) 

where n is a coefficient for a region. This equation can be transformed to the 
following form as: 

(4.25) 
Available observed hydrographs in a region are used to calculate the coefficient 

Empirical expressions for the time base can be generalized as: 
CT 

tB = T +  a Ab (4.26) 
where, a and b are the coefficient and the exponent, respectively; and A is the 
area of the catchment in km2. 

According to Linsley et al. (1975), a = 0.8 and b = 0.2. The US Army Corps 
of Engineers used this approach with added empirical expressions for W,, and 
W,, (in hr) as functions of qp = QAA in m3/s/km2, which represent the width of 
UH at OSQ, and 0.75Qp, respectively as: 

W50 = 5.6/(qp)1.08 (4.27) 
W,, = 3.21/(qp)1.08 (4.28) 

In literature, the coefficient values in Eqs. (4.27) and (4.28) are also reported 
differently. In place of 5.6,5.87 is also used. However, the ratio between W,, 
and W,, remains 1.75. To take care of variation in coefficient values, it has to 
be ensured that the area under the UH is 1. It is to note further that coefficients 
CT and Cp may also vary over a range of 10 times and Snyder’s method may 
give reasonable flood estimates by deriving the relations for these coefficients 
in the region of interest. 
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Synthetic unit hydrograph for an ungauged watershed can be derived by 
determining the Snyder coefficients for the adjoining gauged watershed by 
comparing its derived unit hydrograph from observed data with that computed 
by Snyder’s method. The values of Snyder’s coefficients so obtained can then 
be applied to ungauged watershed to determine the unit hydrograph. 

Example 4.11 The Snyder’s parameters for a catchment are given as: 
Cp = 0.65, C,= 1.5, L = 25 km, L,  (distance from the outlet to a point on the 
stream, nearest to the centroid of the catchment in miles) = 12 km, and catchment 
area A = 1295 km2. Using Snyder’s method, develop a 2-hr UH for the 
catchment. 

Solution 
Time-to-peak of the UH, computed using Eq. (4.20) is: 

tLp = 1.5 x (25 x 15)0.3 = 8.877 hr 
Therefore, time of standard excess-rainfall duration, 

TSD= 5.5 8.877 = 1.614 hr 

Since, T s D  # T (= 2 hr.), Eq. (4.23) is used to calculate the adjusted time-lag, 
i.e., 

2.0- 1.614 
t p ~  = 8.877 + [ ) = 8.973 hr 

2.778 x 0.65 x 1295 
8.973 

= 260.6 m3/sec 

QP = 

260.6 
1295 

qp = ~ = 0.201 m3/s/km2 

Using Eqs (4.27) and (4.28), 

W5,=31.67hrs; W,,= 18.157hrs 

tB is calculated using Eq. (4.22) as equal to 72 + (3 x 8.877) = 98.63 hr. A 
smooth curve is drawn through these points to get a UH. This is shown in 
Fig. 4.2. 

Example 4.12 In a hydrological homogeneous region, i.e., where the food 
producing mechanisms are similar for all the catchments, observed catchment 
characteristics are as follows: 
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Catchment No. 

1 
2 
3 
4 
5 

Fig. 4.2 UH using Snyder’s method 

Table 4.6 

tLp in hrs. log (tLJ log [ L c A / f i ]  
28 1.447 4.649 
34 1.531 4.680 
24 1.380 4.132 
22 1.342 3.913 
18 1.255 4.234 

159 

Compute the value of CT for this region. 

Solution 
Prepare Table 4.7 using Table 4.6 and plot a graph between Col ( 3 )  and 
Col(4) 

Table 4.7 Computations for CT 

Catchment No. tLP L LCA S 
(hrs) (hrs) (miles) (miles) (W 

1 28 23 1 116 0.6 
2 34 229 96.3 0.46 
3 24 161 7 0  0.83 
4 22 148 57 1.03 
5 18 123 60 0.43 

Figure 4.3 shows log ( L  LcA /f i) and log (tLJ on Xand Y axis, respectively. 
Fitting a straight line to the scattered points, the coefficients of the best-fit line 
equation gives the value of n and C, as follows: 
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1 -  
0.8 - 

0.6 - 

0.4 - 

0.2 - 

1.8 - 
1.6 - 
1.4 - 
1.2 - 

Catchment 
No. 

1 
2 
3 
4 
5 

y = 0.2298~ + 0.398 
R2 = 0.5385 

:+ + 

A in tLp in hrs. Q, inft3/s 

986 28 1101 
700 34 496 
430 24 417 
354 22 40 1 
336 18 301 

Sq. miles 

Fig. 4.3 Best$t-line between log-transformed (LL,/&) and tLp 
values 

C, = ( = 2.5 and n = 0.2298 

These are the computed regional parameters of Eq. (4.32). The coefficients 
can be used to calculate lag time-to-peak of a unit h drograph where no 
data is available, e.g., if the catchment has ( L  LcA / /- S )  value of 3.1, then 
tLp = 2.5 x (3.1)0.2298 = 3.242 hours. 

Example 4.13 In a hydrological homogeneous region, i.e., where the food 
producing mechanisms are similar for all the catchments, observed catchment 
characteristics are as follows: 

Compute the value of C,. 

Solution 
Taking log-transform of Eq (4.25), we have: 

log (Q,) = log (C,) + log (640A/tL,) 
Using the given data and following the same procedure as above, the 

best-fit-line between log (640 Ah,) and log (Q,) is shown in Fig. 4.4. 
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Catchment No. tLp in hrs. log (QJ 

1 28 3.042 
2 34 2.695 
3 24 2.620 
4 22 2.603 
5 18 2.479 

y = 1.4705~ - 3.3776 
3 3.000 R2 = 0.8505 

2 2.500 

2.000 
4.000 4.100 4.200 4.300 4.400 

log (640A/t,) 

log (640A/tLJ 

4.353 
4.120 
4.059 
4.013 
4.077 

Fig. 4.4 Best-fit-line between log-transformed 
(640A/tLp) and Q, values 

From the best-fit-line equation Cp = 10-3.3 = 0.0005. It is to be noted that this 
value is catchment specific. 

4.7.2 SCS Method 
SCS method is also known as Soil Conservation Service method. The SCS 
method is widely used for estimating floods on small to medium sized ungauged 
drainage basins. In this method, the shape of SUH is determined from an average 
dimensionless Q/Qp versus t/tp hydrograph, as given in Table 4.10. 

4- 2.67 t, - 
Fig. 4.5 SCS triangular hydrograph 
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Table 4.10 SCS dimensionless UH values of US. Dept. of Agriculture (1957) 

The time-to-peak (t,) and peak discharge (Q,) are computed, respectively, as: 
(4.29) 

and Qp = 484 AVIt, (4.30) 
where, tLp is the lag-time (hr) from centroid of rainfall to peak discharge Q,, T 
is the duration of rainfall (hour), Q, is in ft3/s, A is the area in square miles, tp 
is in hour, and Vis in inches. Vis the volume estimated from the rainfall which 

can be described as the net excess rainfall, i.e., Q,tB, tB is the base length of 
the hydrograph and is assumed equal to 2.67tP. 

The lagtime (tL,) from the centroid of rainfall excess to the peak of the unit 
hydrograph is assumed to be 0.6 t,, where t, is the time of concentration. In SI 
units, with Q, in m3/s, basin size in km2, and Vin mm; the coefficient 484 in 
Eq. (4.30) is replaced by 0.208. The lag-time (tL,) in Eq. (4.29) is given by: 

tp = TI2 + tLp 

1 

(4.3 1) 

where, I is the length to divide in feet, S is the average slope in percent, and So 
is the potential maximum retention derived from curve number (CN) in inches 
as: 

(4.32) 
The value of CN can be derived from National Engineering Handbook 
(NEH-4) tables (SCS, 1957), utilizing land use, soil type, hydrologic condition, 

So = (lOOO/CN) - 10 

t/tp Q/Qp t/tp Q/Qp 

0 0 1.5 0.66 
0.1 0.015 1.6 0.56 
0.2 0.075 1.8 0.42 
0.3 0.16 2 0.32 
0.4 0.28 2.2 0.24 
0.5 0.43 2.4 0.18 
0.6 0.6 2.6 0.13 
0.7 0.77 2.8 0.098 
0.8 0.89 3 0.075 
0.9 0.97 3.5 0.036 
1 1 4 0.018 

1.1 0.98 4.5 0.009 
1.2 0.92 5 0.004 
1.3 0.84 5.5 0.002 
1.4 0.75 6 0 
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AMC 

and antecedent moisture condition of the watershed. The Soil Conservation 
Service Curve Number (SCS-CN) method uses the concept of Antecedent 
Moisture Condition (AMC) into three types: AMC I, a dry condition; AMC 11, 
an average condition; and AMC 111, a wet condition. Depending on the total 
5-day antecedent rainfall (cm), Table 4.11 provides a basis for classification of 
AMC. 

Total 5-day antecedent rainfall (cm) 

Dormant season I Growing: season 

111 

I I I Less than 1.3 I Less than 3.6 I 

More than 2.8 More than 5.3 
I I1 I 1.3 to2.8 I 3.6 to 5.3 I 

Hydrologic Soil group 

A 

Minimum infiltration rate (inch&) 

0.30-0.45 

Vegetation condition 

Heavily grazed and no mulch or plant cover on less than 
% of the area. 
Not heavily grazed and plant cover on less than % to % 
of the area 
Lightly grazed and plant cover on more than % of the area 

I B I 0.15-0.30 I 

Hydrologic condition 

Poor 

Fair 
Good 

I C I 0.05-0.15 I 
I D I 0-0.05 I 

CN also depends on hydrologic conditions which are based on vegetation. 
Depending on the extent and characteristics of vegetal cover, Table 4.13 lists 
the classification used by SCS in computation of CN. 

Table 4.13(a) Classification of hydrologic condition for woods 

I Vegetation condition I Hydrologic condition I 
Heavily grazed or regularly burned. Litter, small trees, and 
brush are destroyed Poor I 
Grazed but not burned. Some litter exists, but these woods 
not protected. Fair I 

Table 4.11 Antecedent soil moisture condition (AMC) 

Similarly, depending on the minimum infiltration rate, hydrologic soil group 
are of four types, as shown in Table 4.12. 

Table 4.12 Description of hydrologic groups 

Protected from grazing and litter and shrubs cover the soil. Good 

Table 4.13(b) Classification of hydrologic condition for native pasture 
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Grass cover on 50% to 75% of the area 

Table 4.13(c) Classification of hydrologic condition for Open spaces, lawns, 
parks, golf courses, etc. 

Fair 

I Vegetation condition I Hydrologic condition I 
I Grass cover on 75% or more of the area I Good I 

Land use Hydrologic I y:~'yD 
description condition 

Pasture Poor 68 
~ Fair 

~ 49 Good 39 

79 
69 
61 

86 
79 
74 

89 
84 
80 

Woods or Forest land 

Open spaces, lawns, parks, golf courses 

Poor 
Fair 
Good 
Good 
Fair 

45 
36 
25 
39 
49 

~ 

66 
60 
55 
61 
69 

~ 

77 
73 
70 
74 
79 

~ 

83 
79 
77 
80 
84 

For a given catchment, an average value of CN can be obtained. For example, 
if in a catchment of area A, a part of it, say A,, has CN number as CN, and 
(A - A ,) has CN number as CN,, the average CNavg is: 

With known Qp, tp, and the specified dimensionless UH, an SUH can be derived. 
A word of caution is necessary here regarding the use of SCS method. One 
has to check the method against observed flood data in each region where the 
method is applied. 

Example 4.14 Compute the area-weighted curve number for a hypothetical 
watershed of two type of soils covering 500 sq. miles and 300 sq. miles and 
exhibiting curve number 60 and 45, respectively. Slope of watershed is 0.6% 
and hydraulic length of watershed is 10,000 ft. Net rainfall is 2 inches during 
the rainfall of 6 hr. Compute the parameters of the SCS triangular hydrograph. 

Solution 
The area-weighted CN is: 

CNavg = CN,(A,/A) + CN,[(A -A,)/A)] (4.33) 

= 54.3 = 54 
50Ox60+3OOx45 

500 + 300 
CN = 

For known hydrologic conditions, land use and hydrologic soil group, 
Table 4.14 lists CN values for Antecedent Moisture Condition 11. It is to note 
that CN values also differ with AMC type. 

Table 4.14 Runoff curve numbers for hydrologic cover complexes 
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Potential maximum retention (So) is calculated from Eq. (4.32) as: 

1000 
54 

So= ~ - 10=8.518 

The lag-time can be computed from Eq. (4.3 1) as: 

= 5.213 hr 
- 10000°~8 (8.518 +1 )0'7 

19OO(0.6) 0.5 
tLp - 

Time to peak is can be computed using Eq.(4.29) as: 

6 
2 

tp = - + 5.213 = 8.213 hr 

Base length of the hydrograph can be computed as: 
tB = 2.67 tp = 2.67 x 8.213 = 21.92 hr 

The ratio of Peak discharge to volume of runoff can be computed using 
Eq. (4.30). 

484 x 800 

= 94289.54 ft3/s 

' p =  8.213 

The hydrograph is shown in Fig. 4.6. 

\ 

-8.213 hr+-13.707-1 

Fig. 4.6 SCS triangular hydrograph 

In reality, the shape of hydrograph cannot be a triangle. So, one can get a 
more precise hydrograph using Table 4.10 by multiplying the value of Qp with 
Q/Qp and t/tp with tp to plot the SCS hydrograph. The values in Table 4.10 are 
also sensitive to different t/tp values, as indicated by SCS. For detail, one can 
refer to comprehensive tables provided by SCS. Table 4.10 represents only the 
average variation between Q and t. 
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4.7.3 Geomorphological Instantaneous Unit Hydrograph 

Figure 4.7 shows a typical catchment along with a network of streams of 
different orders. Order 1 stream is the starting stream. When two lSt order 
streams meet, the resultant stream is said to be of order 2. The order of a 
stream will not change unless a stream of same order joins. For example, if a 
lSt order stream meets a 2nd order stream, the resultant stream will remain as a 
2nd order stream only. When two 2nd order streams join, the resultant stream is 
of order 3. 

In Fig. 4.7, as the highest order stream is of 3rd order, such a catchment is 
also known as a order 3 catchment. It is to note that each stream irrespective of 
its order has a corresponding area from which the flow is contributed to it. 
Similarly, each stream order has a certain length associated with it. Of course, 
in a catchment, the number of streams of different orders will vary. 

(GIUH) Model 

Fig. 4.7 Third-order basin 

To obtain IUH from catchments with a given pattern of stream network, 
normally three geomorphic parameters RA, RB, and RL representing the area ratio, 
bifurcation ratio, and the length ratio are obtained. These are represented as: 

(4.34) 
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(4.35) 

(4.36) 

where, Ni is the number of streams of order i, Li is the mean length of streams 
of order i, and Ai is the mean area of the basin of order i. 

The GIUH model, proposed by Rodriguez-Iturbe and Valdes (1 979), can 
be interpreted as the PDF of the water travel times within the catchment, i.e., 

(4.37) 
All paths 

where, q(t) is the runoff ordinate of the IUH at any given time t , f . ( t )  is PDF of 
the total path travel times within the catchment, and P(s) is the probability that 
a water droplet will follow the specific paths. Rodriguez-Iturbe and Valdes 
assumed the form of the PDF of total path travel times to be an exponential 
function. 

&(t) = Ki & K i t )  (4.38) 
where, Ki is the mean travel time in channels of order i, and can be approximated 
by: 

Ki = vIL, (4.39) 
where, v is the 'characteristic velocity', assumed constant throughout the 
network; and Li is the average length of streams of order i. 

A simplified procedure based upon two assumptions: (i) the shape of the 
IUH is taken to be triangular, and therefore fully specified by its peak, qp, tp, 
and tB [TI; and (ii) the rate of excess rainfall is essentially constant throughout 
its duration. Under these conditions, relationships between the peak runoff 
and the time-to-peak of the GUH versus R A ,  R B ,  RL (which are area, bifurcation, 
and length ratios, respectively), and VL-' have been derived through regression 
analysis. These are given as follows: 

1.3 1v 
q p =  * 

Q L  
(4.40) 

(4.41) 

where, Q is the order of the basin, 8 represents the slope of the line qp (hr-') 
versus v (ds), L, is the scale variable in km, tp is in hr, qp is expressed in 
terms of depth of flow volume for unit time per unit excess rainfall [L T' L-'I. 

tB = 2/qp (4.42) 
tp and tB are expressed in hours, v in km/hr, and L is in km. 
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The product of Eqs. (4.40) and (4.41) yields a dimensionless term p = qp tp, 
given as: 

qp tp = 0.58 (RB/RA)O'~~ (R30.05 (4.43) 
It is clear fi-om Eq. (4.43) that p depends only on the catchment character- 

istics. 

Example 4.15 For a third-order catchment, obtain the GIUH from the 
following data: L, = 33.6 km, RA = 4.844, RB=4.215, and R, = 2.775. Assume 
v=2m!s. 

Solution 
Using the data in Eqs (4.41) and (4.42), we have: 

qp = O.O5(l/hr), tp = 4.65 hr7 and qp tp = 0.232 
With the known values of qp 'tp and tb7 the ordinates of the triangular GWH 
can be obtained. 

4.7.4 Two-Parameter Gamma Distribution for IUH 
In general, a triangular shape of GlLTH may not hold good. Based on the concept 
of n-linear reservoirs of equal storage coefficient (K) ,  Nash and Dooge (1959) 
derived the instantaneous unit hydrograph in terms of a gamma function as 
given below: 

(4.44) 

Here, n and K define the shape of WH and q is the depth of runoff per unit 
time per unit effective rainfall expressed in h-'. The mean and variance are 
described as: 

,u=nK; 0 2 = n K 2  (4.45) 
Equation (4.44) is used for deriving SUH from known n and K. Chow (1964) 
relates n and K as: 

(4.46) 
Defining a non-dimensional parameter p as a product of qp and tp, Eqs. (4.44) 
and (4.46) are combined into the following simpler form: 

K = tJ(n - 1) 

(4.47) 

Equation (4.47) can be solved using Sterling's formula (Abramowitz and 
Stegun, 1964) expanding the gamrna function as: 

= (e-x>(X- 1/2)(2~)1/2 I+-+-- 1 1 139 571 ...) ( 1 2 ~  288x2 5 1 8 4 0 ~ ~  - 2 4 8 8 3 2 0 ~ ~  
(4.48) 

where, x + in larg (x)l < z 
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Substituting (n-1) by x in Eq. (4.47), and considering the first two terms of 
Eq. (4.48) for deriving r(x), Eq. (4.47) leads to the following form: 

& (4.49) xx e-X& 

e-x xx J G J ~ )  4- P =  
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Assuming (1 + A) = (1 + &) , the above equation can be simplified as 

follows: 

(4.50) 

which, on further simplification, can be written in the form of roots of a 
quadratic function as: 

n - 1 + z p 2 + p , , / m  (4.5 1) 

A simple numerical procedure was used by Bhunya et al. (2003) to get an 
approximate solution of Eq. (4.47) given as: 

n = 5.53 p'.75 + 1.04 
n = 6.29 p'.998 + 1.157 for (p2  0.35) (4.52) 

These equations were derived using numerical simulation and optimization. 
For known values of qp and tp, n and K can be obtained. With known n and K, 
Eq. (4.44) can be used to generate a more realistic IUH shape in preference to 
a triangular one. The procedure to obtain SUH from an IUH is described in 
the preceding chapter. Bhunya et al. (2003) assumed that an IUH can be 
approximated as UH of unit duration. It is to note that for short durations, KJH 
can be approximated as UH. However, it may be advisable to check the validity 
of such assumptions under specific situations. 

for (0.01 < p < 0.35) 

SUMMARY 

In hydrological analysis, one is frequently confronted with a situation where 
synthetic data has to be generated. In this context, use of random numbers is a 
prerequisite. With this in view, a variety of random number generators have 
been used. 

The importance and application areas of simulation are discussed in this 
chapter. Use of simulation has been increasing in many hydrological 
investigations, Through a detailed analysis of rainfall-runoff in a catchment, 
ways to derive unit hydrographs of varying durations were the focus in the 
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preceding chapter. However, one faces the situations where due to paucity of 
data on rainfall-mnoff, other methods of hydrograph derivation are needed. 
Such approaches which can cope well with limited amount of data are also 
described herein. We have also covered the specific approaches adopted in 
different countries and regions for synthetic unit hydrograph generation. 

EXERCISES 

4.1 What are the methods available for random number generation? Write 

4.2 Explain the procedure of deriving synthetic hydrograph using Snyder's 

4.3 What is the necessity of Monte Carlo simulation in hydrology? 
4.4 What is GIUH? Consider a test catchment and apply GIUH. 
4.5 Assuming xo = 0.14, A = 0, B = 11, generate five real number fractions 

up to two digit. (Hint: p = 2, which means c = lop2 [ 11 .O] = 0.11) 
[Ans. 0.54, 0.94, 0.34, 0.74, 0.141 

4.6 Suppose the standard uniform random variables are given as: 0.231, 

appropriate algorithms for generating the same. 

method. 

0.132, and 0.61 1. Transform them into a distribution given by: 

( x  < 0) 

(x ' 2) 

F(x) = ( x  + 1)/3 (0 < x < 2) 

[Ans. 2.437, 2.65, 1.8621 
4.7 It is required to generate a random number applying Poisson distribution 

with A= 2. Suppose we have already generated standard uniform random 
numbers, such as: 0.516, 0.918, 0.40, and 0.13. Using the procedure 
given in Example 4.4, generate four Poisson variates. 

6' 
[Hint: Fp ' (a )  = 3/(a+l) for (0 < a < 2); 1 for (a > 2)] 

[Ans. 2,4, 1, 01 
4.8 Generate five numbers using the exponential distribution function whose 

CDF is given by: 
r 7 

F(x) = 1 - exp -- I 1x31 

(Hint: generate random number and substitute for F to estimate x . )  
4.9 Derive a synthetic unit hydrograph using gamma distribution. The salient 

points of the UH like qp and tp may be obtained fi-om GKJH model. 
Compare the UH with SCS method. The following geomorphological 
data may be used: L = 32 km, RA = 3.844, R, = 3.415, RL = 2.225. 
Assume v = 2 m!s. 
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4.10 Derive a synthetic unit hydrograph using GIUH method using the data 
given in the previous question. 

4.11 What do you feel is the best method for deriving a UH under no data 
availability situations? Give appropriate reasons to justify your answer. 
What are the advantages of GIUH over two-parameter gamma 
distribution methods? 

OBJECTIVE QUESTIONS 

1. The word seed in generating the random numbers in the linear congruential 
generator (LCG) is 
(a) Initial number 
(c) Any number 

(b) Final number 
(d) None of these 

2. A good random number generator 
(a) Should produce uniformly distributed numbers that don’t have any 

(b) Should be fast 
(c) Should not require large memory 
(d) All of the above 

correlation with each other 

3. Let a = 3, b = 4, d = 20, and R, = 0. The random numbers generated are 
( 4  1 ,2 ,3 ,4  (b) 4 ,8 ,2 ,6  (c) 2 ,4 ,6 ,8  ( 4  1 ,3 ,5 ,7  

4. Among the following which one is used as a random number generators 
(a) Linear congruential generator 
(b) Additive congruential generator 
(c) Quadratic congruential generator 
(d) All of the above 

5.  Snyder’s synthetic unit hydrograph is applicable to 
(a) Small catchments 
(c) Moderate size catchments 

(b) Large catchments 
(d) Catchments of any size 

6. Basin lag is the time dfference between the 
(a) Rainfall and runoff of two basins 
(b) Excess rainfall and surface runoff 
(c) Centroid of excess rainfall and surface runoff 
(d) None of the above 

7. Which idare the parameter(s) that Snyder used to describe the hydrograph 
using data fiom the catchments of Appalachian Highlands? 
(a) Lag-to-peak (b) Peak discharge 
(c) Base time (d) All of these 
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8. Using Snyder’s synthetic hydrograph, calculate the basin lag in hours if 
the length of the main stream from the outlet to the catchment boundary is 
5 miles, and the distance from the outlet to a point on the stream nearest to 
the centroid of the catchment is 3 miles. Assume coefficient is 2. 
(a) 4.0 (b) 4.5 (c) 5.0 (d) 6.0 

9. Which is not a synthetic unit hydrograph? 
(a) Snyder’s method (b) SCS method 
(c) Gray method (d) IUHmethod 

10. SCS method assumes the hydrograph of 
(a) Triangular shape 
(c) Parabolic shape 

11. Gray method is based on 

(b) Circular shape 
(d) Any shape 

(a) Incomplete beta distribution 
(b) Incomplete gamma distribution 
(c) Incomplete alpha distribution 
(d) None of the above 
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CHAPTER 

5 
Rainfall-Runoff 

Relationships and 
Flood Routing 

5.1 INTRODUCTION 

Many processes that are of interest from a hydrologic point of view are often 
difficult to observe routinely and unambiguously. Streamflow measurement is 
one such variable that can only be measured at a gauging site of a basin with 
some confidence. However, from a broader perspective, major river basins or 
catchments, especially in developing countries like India, have been gauged 
for determination of hydrological variables, while medium and small size 
catchments are mostly ungauged. Several major catchments in different parts 
of the country still remain ungauged; and in some catchments, the existing 
gauging networks are being discontinued due to economic constraints, lack of 
regular manpower, and inaccessible reasons. Thus, there is a need for methods 
that can be utilized for realistic estimation of such hydrological variables in 
ungauged catchments. 

One of the popular methods is to make use of the available rainfall-runoff 
data to develop a relationship and use the same for extrapolating the rainfall 
series to generate runoff. These relationships, at times, are used for 
homogeneous regions where flood-producing patterns are similar. In this 
chapter, we will discuss how and why these relationships are developed. While 
such relationships are useful to estimate mean flood, a more rigorous approach 
is often needed which involves routing of runoffs at different levels of a 
catchment to produce a flood hydrograph at the outlet of a catchment. In such 
an approach, runoff from different sub-catchments needs to be routed through 
a network of channels. With this in view, concepts of routing are also covered 
here. 
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5.2 DEVELOPMENT OF RAINFALL-RUNOFF 
RELATIONSHIPS 

One may often need to develop such relationships in case the existing 
approaches may not hold good. In this section, we will review the existing 
approaches and develop procedures to establish new relationships. In many 
real field problems, stream flow records are short or rarely available, and in 
such cases, they need to be extended. 
In general, the following data situations or scenarios are encountered: 
(i) long-term precipitation record along with a streamflow data for a few 

(ii) long-term precipitation record is available at the site along with 

(iii) only precipitation record at the site is available; and 
(iv) no record of any kind is available. 
All these cases require a mathematical method that can be used for the available 
data and extend the streamflow series. A common method is to use simple 
models based on linear regression, which will be discussed in the following 
pages. To emphasize the importance of developing rainfall-runoff relationships, 
we begin with the existing approaches. 

5.2.1 Existing Approaches 
These fall into two categories. In the first, the objective is to compute total 
runoff using total rainfall in a given time. In the second type, the emphasis is 
to compute only peak value of runoff 
5.2.1.1 
Variety of methods to relate total runoff and rainfall are available in India 
alone. Many of these are empirical in nature and these tend to be linear or non- 
linear relationships. Here, we discuss only two methods, viz., SCS method 
and Khosla's method because of their relevance and adaptability at a larger 
scale. 

SCS Method SCS method relates the direct runoff Q with the rainfall P as 
follows: 

years at the site are available; 

precipitation and streamflow data for a few years at a neighboring site; 

Total runoff in relation to total rainfall 

when P 2  I,; So 2 (I, +F') ( p -  
Q =  P - I ,  +so 
F = P -I,  - Q (5.2) 

where, I, is initial abstractions, So is storage potential of soil, and F is the 
infiltration. The empirical relation I, = 0.2S0 is the best approximation and 
thus, Eq. (5.1) converts to: 

( P  - 0.2s0)2 
= P + O.SSO (5.3) 
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T(OC> 
L m  

Khosla's Formula Khosla's formula relates the runoff and rainfall through 
an empirical relationship which is applicable for catchments of both India and 
USA. Generation of synthetic runoff data from historical rainfall and 
temperature data is also possible from the Khosla's formula. The relationship 
for monthly runoff is: 

R, = P, - L, (5.4a) 
L, = O.48Tm for (T, > 4.5"C) (5.4b) 

where, R, is monthly runoff in cm and R, 2 0, P, is monthly rainfall in cm, 
L, is monthly losses in cm, and T, is mean monthly temperature of the 
catchment in "C. For T, 5 4.5"C, the loss L, with mean monthly temperature 
is shown in Table 5.1. 

4.5 -1 4 . 5  
2.17 1.78 1.52 

1. The peak rate of runoff is a function of the average rainfall rate during the 
time of concentration, which is the time taken for the water to reach at the 
outlet from the farthest point of the catchment. 

2. Rainfall intensity is constant during the rainfall. 

Peak runoff Q, from a catchment of area (A) for a given rainfall intensity (i) 
can be computed using: 

In Eq. (5.5), C is a runoff coefficient representing surface characteristics and 
ranges between 0 and 1. It is to note that for an impervious surface, C equals 1. 
Sometimes, drainage areas consist of more than one area of different drainage 
characteristics. Under such conditions, 

Qp = CAi for ( t  2 t,) (5.5) 

112 

Q P = i c C j A j  (5.6) 
j = l  

Table 5.1 Variation of monthly loss with mean 
monthly temperature of the catchment 

5.2.1.2 Relationships for Peak Runoff Computations 
Any precipitation event over a catchment may lead to occurrence of a runoff 
which varies with time. In addition to knowing the total runoff, hydrologists 
are also interested to know the peak runoff, as it is the peak runoff which may 
act as a precursor to a flood. Here, we cover rational approach and empirical 
approaches for peak runoff computations 

Rational Approach The rational method is developed in mid-nineteenth 
century. The rational approach considers the following 
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In Eq. (5.6), m is the number of sub-catchments, Qp is peak discharge in m3/s, 
C is coefficient of runoff, it is the mean intensity of precipitation in mm/hr 
for a duration equal to timiof concentration t, and an exceedence probability 
p ,  A is drainage area in h2. To estimate t,, some empirical formulae are listed 
in Table 5.2. 

Table 5.2 List of formulae to estimate time of concentration t, 
(Source: Subramanya, 2003) 

I Name of formula l3me of Concentration Comments 

t ,  is time of concentration in hours, 
CtL and n are basin constants, 
L = basin length in h, L, is the distance 
along the main water course from 
gauging station to a point opposite the 
watershed centroid in h, S is the basin 
sloDe 
t ,  is time of concentration in minutes, 
L is maximum length oftravel ofwater 
(m), s is the slope of catchment 

It is to note that for estimation of peak runoff, duration of rainfall must be 
equal to or greater than the time of concentration. In case of non-availability 
of rainfall data, rainfall-frequency duration relationship for the given catchment 
area can be used. As per this relationship, the rainfall intensity corresponding 
to a duration t, and return period T can be expressed as: 

where, a, b, c, and m are constants. It is to note that a, b, c, and m are catchment 
specific. The peak runoff corresponding to the occurrence of precipitation for 
a time equal to or greater than time of concentration is also termed as peak 
flood. Further details on rational method including variability of runoff 
coefficient (9 can be had from Chow et al. (1 988). The functional form given 
by Eq. (5.7) is not unique. 

Empirical Relationships The empirical relationships are generally applicable 
for a particular region where the relationships are developed by taking into 
account the effect of data of that region. In all other areas, it can give best 
approximate values. Table 5.3 shows some of the empirical relations developed 
for Indian conditions. 
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Table 5.3 List of formulae to estimate peak discharge for Indian conditions 
(Source: Subramanya, 2003) 

Temp (“C) 
Rainfall(cm) 
Monthlylosses 

Name of formula 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 
8 10 15 24 30 35 32 30 30 22 15 10 
2 1 0 0 1 8 25 30 10 4 1 1 

3.84 4.8 7.2 11.52 14.4 16.8 15.36 14.4 14.4 10.56 7.2 4.8 

Dickens’ Formula (1 865) 
(For North-Indian plain, 
Central India, coastal 
Andhra, and Orissa) 

Runoff (cm) 

Ryves Formula (1 884) 
(For Tamil Nadu and parts 
of Karnataka and Andhra 
Pradesh) 

0 0 0 0 0 0 9 . 6 4 1 5 . 6 0  0 0 0 

Inglis Formula (1930) 
(For Western Ghat in 
Maharastra) 

Peak discharge 

Qp = CgA314 

Qp = CR A2I3 

124A 
Q p =  J Z i G  

Comments 

Dickens’ constant C, varies from 
6-30, Qp = maximum flood 
discharge (m3/s), A is the catchment 
area (km2); C, = 6 for North-Indian 
plain, 11-14 for North-Indian hilly 
regions, 14-28 for Central India, 
22-28 for Coastal Andhra and Orissa 
Ryves coefficient CR = 6.8 for areas 
within 80 !an from east coast, 8.5 for 
areas which are 80-160 !un from east 
coast, and 10.2 for limited areas near 
hills 

Q, =maximum flood discharge (m3/s), 
A is the catchment area (km2) 

Example 5.1 
of 50. Estimate the net rainfall in cm using SCS method. 

Solution 
Potential maximum retention for the catchment is: 

A 20 cm storm occurred for 6 hrs in a catchment having a CN 

1000 
50 

so = ~ ~ 10 = 10 

Considering I, = 0.2S0, the net rainfall is: 

(20 - 0.2 x 
= 11.57 cm ’= 20 + 0.8 x 10 

Example 5.2 For a catchment in India, the mean monthly rainfall and 
temperature is given in Table 5.4. Calculate the annual runoff and the annual 
runoff coefficient by Khosla’s formula. 

Solution 

Table 5.4 Mean monthly rainfall and temperature for Example 5.2 

I 
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Annual runoff = 9.64 + 15.6 = 25.24 cm 
Annual rainfall = 83cm 

Annual runoff - 25.24 = o.304 
Annual rainfall - 83 

Annual runoff coefficient = 

Example 5.3 
area of 50 h2 by using empirical formula for the following regions. 
(i) Catchment located in Western Ghat, Maharastra 
(ii) Catchment located in coastal Andhra and Orissa 
(iii) Catchment located in Tamil Nadu region 

Solution 
(i) For Western ghat, Maharastra, Inglis formula is used to calculate peak 

Estimate the maximum flood flow for a catchment having an 

discharge. 

124 x 50 
= 797.76 m3/sec 

(ii) If the catchment is located in coastal Andhra and Orissa, Dickens’ formula 
is used. Assume Dickens’ constant as 25. 

Qp = 25 x 5O3I4 = 470.07 m3/sec 
(iii) If the catchment is located in Tamil Nadu region, Ryve’s formula is used. 

Using Ryve’s constant as 8.5: 

Qp = 8.5 x 5O2I3 = 115.51 m3/sec 
It is to note that there is lot of variability in estimation of Qp for the same size 
of catchment area and each region has a different relationship. If such 
relationships are not available at a given site, development of new rainfall- 
runoff relationships become very important. 

5.2.2 Linear and Nonlinear Rainfall-Runoff Relationship 
In case of linear regression, a statistical correlation between observed monthly 
rainfall and monthly runoff is established. The relationship is then plotted in a 
log-log graph for each month. In the next step, a straight line is fitted using the 
linear relationship as follows: 

Q = a P - C  (5.8) 
where, Q = runoff in 111111, cm, or feet; P = rainfall in 111111, cm, or feet; C is a 
coefficient to be determined that accounts for losses; and a is a reduction factor 
which accounts for losses such as interception, depression storage, etc. The 
following example shows the application of this method. 



180 Engineering Hydrology 

Month 

P(cm) 
Q(cm) 

Example 5.4 
Table 5.5. Derive a linear P-Q relationship using this data. 

Data of monthly rainfall and runoff are available, as shown in 

Table 5.5 Data for Example 5.4 

1 2 3 4 5 6 7 8 9 

4 40 30 25 20 15 10 5 50 

0.2 9 5 4.5 2.5 2 1 0.5 14 

Month 

P-Po 

Q(cm) 

Solution 
The plot between P and Q is shown in Fig. 5.1. Also, the best-fit line is shown 
along with its equation. 

1 2 3 4 5 6 7 8 9 

2.8 38.8 28.8 23.8 18.8 13.8 8.8 3.8 48.8 

0.2 9 5 4.5 2.5 2 1 0.5 14 

Fig. 5.1 Linefitted to the data of Example 5.4 

The fitted relationship is obtained using EXCEL spreadsheet which reads: 
Q = 0.2813 P -  1.9206 

When the rainfall and runoff data do not follow a linear fit, then the following 
relationship is used. 

Q, = K (P, - Po)” (5.9) 
where, K and IZ are constants, and Po is the initial loss. The following example 
shows the application of this method. 

Example 5.5 
Table 5.6. Assume Po as 1.2 cm. 

Table 5.6 Data for Example 5.5 

Develop a nonlinear P-Q relationship using the data given in 
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Solution 
An EXCEL spreadsheet is used to develop the equation for the given data, as 
follows: 

lOg(Q) = 1.368 log ( P -  Po) - 1.2449 
This can be transformed to: 

Q = 0.0568 (P - l.2)'.368 

Fig. 5.2 Line fitted to the transformed logarithmic 
data of Example 5.5 

It can be observed that goodness-of-fit, i.e., R has increased from 0.94 in 
linear model to 0.98 in case of the nonlinear model. 

A better rainfall-runoff relationship is obtained by accounting for the effect 
of preceding month's rainfall using the following relationship: 

(5.10) Q, = a + b P, + c PtPl 

Q, = Volume of flow in the tth month, 
P, = Rainfall in the fh month, 
PIPl = Rainfall in ( t  ~ l)th month, 
a = Constant (always a negative quantity to account for the initial 

losses), and b and c are constants which are non-negative and 
less than one. 

where, 

Example 5.6 The monthly mean rainfall of a basin for the month of June 
and July are given in Table 5.6 along with the corresponding runoff for July. 
Use the available data for the period 1980-89 to develop a rainfall-runoff 
relationship and estimate the runoff for the years 1990 and 199 1. 
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Year 

Table 5.7 Calculations of Example 5.6 

Monthly rainfall Monthly runoff Estimated using 
in m3 x lo3 in mm 

June I July July Eq. (5.10 a) I Eq. (5.10 b) 

1980 I 296 I 385 I 1304 I 766.461 I 1101.615 
1981 I 136 I 493 I 1030 I 1127.894 I 1022.487 
1982 I 217 I 427 I 770 I 907.0182 I 1027.053 
1983 I 180 I 445 I 652 I 967.257 I 986.895 
1984 I 182 I 446 I 1172 I 970.6036 I 995.249 
1985 I 104 I 273 I 227 I 391.6418 I 249.487 
1986 I 118 I 393 I 805 I 793.2338 I 662.107 
1987 I 104 I 467 I 991 I 1040.882 I 857.483 
1988 I 112 I 272 I 222 I 388.2952 I 267.233 
1989 I 230 I 328 I 756 I 575.7048 I 750.717 
1990 I 211 I 234 I ~ I 261.1244 I 406.531 
1991 I 323 I 553 I ~ I 1328.69 I 1698.597 

Solution 
As the objective is to compute runoff for the years 1990 and 1991, the same 
can be achieved by calibrating the runoff and rainfall data given in Table 5.3. 
To estimate runoff, two types of relationships have been calibrated. The first 
type of relationship is given by Eq. (5.10 a). 

(5.10a) 

The second type of relationship is a multiple linear relationship involving 
input variables as the rainfall data for the months of June and July. This 
relationship is given by Eq. (5.10 b). 

(5.10b) 

Qj,,, = 4 2  1.983 + 3.346 Pjuly, 
Correlation coefficient (R2) = 0.53 17 

Qju1,=-877.535 + 2.613 Pjune+ 3.134PjU1, 
Correlation coefficient (R2) = 0.75 

The estimated mean flow for the years 1990 and 199 1 are shown in Table 5.7. 

5.2.3 Extension of Stream Flow Record 
At many sites in our country, the long-term data required for the design and 

planning of water resources projects are not available. The only options 
available for the hydrologist are to: 

1. extend the short-term data somehow, or 
2. generate the data with the properties of observed historical data. 
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Station-I 

Some popular methods used under such circumstances are: 

1. Double-mass curve method 
2. Correlation with catchment areas 
3. Regression analysis between the flows at base and index stations 

Double-mass CuweMethod The steps followed in this method are as follows: 

1. Plot the cumulative stream flow of the base station under consideration 
and the index station on a graph. 

2. The slope of the double-mass curve gives the relation of the stream flows 
at two stations. 

Cumulative annual 
jlow at Station-2 

(Mm3) 

The following example illustrates this method. 

Example 5.7 Stream flow data for two stations are given in Table 5.8. 
Determine the annual flow for 1987 and 1988 at Station-2 using the double- 
mass curve method. 

Table 5.8 Annual streamflow data at two stations 

1980 I 94 I 54 I 94 I 54 
1981 I 82 I 43 I 176 I 97 
1982 I 45 I 23 I 22 1 I 120 
1983 I 20 I 10 I 241 I 130 
1984 I 26 I 16 I 267 I 146 
1985 I 43 I 24 I 310 I 170 
1986 I 90 I 50 I 400 I 220 
1987 I 110 I I I 
1988 I 86 I I I 

Solution 
Table 5.8 shows the calculations for cumulative values of annual flow values 
at stations 1 and 2. 

For example, in 1981, cumulative value for Station-1 is 94 + 82 = 176; in 
1982, it is 176 + 45 = 221; and so on. 

The cumulative values of annual flows at stations 1 and 2 are used to plot 
the graph in Fig. 5.3. The equation of the straight line fit is: 

Q(Station-2) = 0.5435 Q(Station-1) + 1.1556 ; R2 = 0.9993 
This derived equation is used to calculate annual flow values in 1987 and 

1988 as: 
Q(Station-2 in 1987) = 0.5435 x (110) + 1.1556 = 60.94 
Q(Station-2 in 1988) = 0.5435 x (86) + 1.1556 = 47.89 
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0 1  
0 50 100 150 200 250 300 350 400 450 

Cumulative annual flow at station l(h4m3) 

Fig. 5.3 Cumulative annualflow values 

Correlation with Catchment Areas 
Q, = Qi (AJAiY (5.11) 

where, Q is the flow values and A is the catchment area, and a is a coefficient 
which is generally taken as 0.75. It may be noted here that the area unit does 
not have any effect on the final outcome of Q. 

For example, if monthly flow at station-1 is Q,  = 100 Mm3, area of 
catchment-1 is A ,  = 500 km2, and area of catchment-2 is A, = 50 km2; then 
monthly flow at Station-2 is: 

Q, = (Q,) (A,/AJ = 59.46 Mm3 

Regression Analysis between Flows at Base and Index Stations 
If Q, is dependent variable and Qi is independent variable, then: 

Q, = a + bei (5.12) 
where, a and b are regression coefficients and can be obtained by using linear 
regression analysis. 

5.3 FLOW DURATION CURVES 

Flow duration curves are useful for estimating available water resources for 
different uses, such as hydropower generation, study of the flood control, 
computing the sediment load and dissolved solid load of a stream, design of 
the drainage system, comparing the adjacent catchments with a view to extend 
streamflow data, planning of water resources engineering projects, etc. They 
also reflect the nature of the streams. Whenever adequate lengths of records 
are available, the flow duration may be developed, analysing the available 
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Over the year storage projects 
Complex systems involving 
combination of above 

flow records at the site. The length of data required for the development of 
flow duration curves depends upon the type of scheme, type of development, 
and variability of inputs. General guidelines regarding the minimum length of 
data required for some of the projects are given below in Table 5.9. 

Table 5.9 Guidelines for the minimum length of data required for flow 
duration curves 

40 yrs. 
Depending upon the predominant 
element 

I C p e  of Project I Minimum length of data I 
I Diversion project I 10 yrs. I 
I Within the year storage projects I 25 yrs. I 

The above guidelines are only illustrative and not exhaustive. Sometimes 
the rainfall records are available for a long period; however, the runoff records 
are available for a short period. In such a situation, the rainfall-runoff 
relationships may be developed based on the available rainfall-runoff records 
for the concurrent period. Then, these relationships are used to generate the 
long-term runoff records corresponding to the available long-term rainfall 
records. Often, all such data are not generally available, and it becomes 
necessary to use data of nearby site(s) also. Considering these aspects, the 
data requirements for major water resources projects may be summarized as: 

(a) Streamflow data of the desired specific duration (daily, weekly, monthly, 
etc.) at the proposed site for at least 40 to 50 years, or 

(b) Rainfall data of specific duration for at least 40 to 50 years for rain gauge 
stations influencing the catchment of the proposed site as well as streamflow 
data of specific duration at the proposed site for the last 5 to 10 years, or 

(c) Rainfall data of specific duration for the catchment of the proposed site 
for the last 40 to 50 years and flow data of the specific duration and 
concurrent rainfall data of the existing work on a nearby river or located 
at upstream or downstream of the proposed site for the last 5 to 10 years 
or more; provided orographic conditions of the catchment at the works 
are similar to that of the proposed site. 

In case the flow data are disturbed because of construction of water resources 
projects upstream of the gauging site, the operational data such as reservoir 
regulation which include the outflows from spillway and releases for various 
uses is required. If the flow data time series consists of the records for the 
period prior as well as after the construction of the structure, the flow series is 
considered to be non-homogeneous. Necessary modifications have to be made 
to the records in order to make them homogeneous. 
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For the development of flow duration curve and computation of dependable 
flows for ungauged catchments, some important catchment and climatic 
characteristics are required. The catchment characteristics are derived from 
the toposheet covering the drainage area of the catchment. The basic statistics 
such as mean and standard deviation of the rainfall data represent the 
climatological characteristics. 

5.3.1 Development of Flow Duration Curves 
Case 1 
For gauged catchments, if the available data correspond to situation (a), as 
discussed, the flow duration curves from daily flow data may be developed in 
the following steps: 

(i) Choose a constant width class interval (ci) such that about 25 to 30 classes 

(ii) Assign each day’s discharge to its appropriate class interval. 
(iii) Count the total number of days in each class interval. 
(iv) Cumulate the number of days in each class interval to get the number of 

days above the lower limit of each class interval. 
(v) Compute the probabilities of exceedence dividing the quantities obtained 

from step (iv) by the total number of days in the record (for example, 
365 if one year record is considered for the construction of flow duration 
curve). 

(vi) Multiply the probabilities of exceedence obtained from step (v) by 100 
to get percentage exceedence. 

(vii) Plot the probabilities of exceedence in percentage against the 
corresponding lower bound of class interval on linear graph paper. 
Sometimes the flow duration curve better approximates to a straight line 
if lognormal probability paper is used in place of linear graph paper. 

are formed. 

Case 2 
In case the data items are not sufficient enough to define the class intervals, 
the flow duration curves (from monthly flow data or any other duration larger 
than ‘daily’) may be developed in the following steps: 

(i) Arrange the flow data in descending order 
(ii) Assign the probability of exceedences to each data item obtained from 

step (i) using the Weibull plotting position formula: 

p =  ~ x 100 
N + l  (5.13) 

Here, m = 1 for the highest flow values, and N is the number of data items 
(or variate). 
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Note: If the flow duration curve is required to be linearized on normal 
probability paper or lognormal probability paper, the probability of 
exceedences may be assigned using Blom b plottingposition formula: 

x 100 
m - 0.375 
N + 0.250 

P =  (5.14) 

(iii) Plot the ranked flow values against the probabilities of exceedence 
(computed using Eq. 5.13) on linear graph paper to get the flow duration 
curve. 
Note: Use normal probability paper if the required dependable flow (or 
probability of exceedence) is to be extrapolated. Try to fit either normal 
distribution or lognormal distribution in order to linearize the flow duration 
curve. Here the probabilities of exceedence may be computed using 
Eq. (5.14) for the purpose ofplotting. Fitting of other theoretical frequency 
distribution may also be tried. 

Case 3 
If limited runoff data and long series of rainfall data are available for site, the 
steps are: 

(i) Develop the rainfall-runoff relationship for the specific duration utilizing 

(ii) Compute the long-term flow data of the specific duration using the 

(iii) Develop the flow duration curve using the procedure stated in Case 1 or 

the available data for the concurrent period. 

developed relationship at step (i) and long-term available rainfall data. 

Case 2. 

Case 4 
If no data is available, then the following steps may be used for the development 
of the flow duration curves. 

(i) Develop the rainfall-runoff relationship for the existing site for the specific 
duration, analyzing the available rainfall-runoff records of concurrent 
periods. 

(ii) Develop the flow duration curve using the procedure described either in 
Case 1 or Case 2. 

(iii) Divide the flow values of flow duration curve by the catchment area of 
the existing project site. 

(iv) Multiply the flow values obtained from step (iii) by the catchment area of 
the proposed site for which the flow duration curve is required to be 
developed. 
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Class interval 
(TCM) 

Example 5.8 Develop a flow duration curve for a streamflow data given in 
first two columns of Table 5.1O.The daily flow data are tabulated in eight class 
intervals of 50 TCM (thousand cubic metres). 

No. of days flow in Cumulative no. Probability offlow in the class 
each class interval of days interval equaled or exceeded 

Table 5.10 Daily flow at the proposed site for 36 years 

> 350 
300-350 

2 2 5.405 
3 5 13.513 

250-300 
200-250 
150-200 

2 7 18.918 
3 10 27.027 
4 14 37.837 

100-150 I 5 I 19 I 51.351 
50-100 I 7 I 26 I 70.270 
0-50 I 10 I 36 I 97.297 

Solution 
Total number of days, N = 36 
Considering the first data in Col. (3), m = 2 

First entry in Col. 4 = 100[2/(36+1)] = 5.405. This way, all the entries are 
completed in Column 4. 

A plot of data pairs (350, 5.405), (300, 13.513) ... (50, 70.27) is shown in 
Fig. 5.4. As marking of Q with zero is not possible, a very small value of Q as 
1 m3/s is taken corresponding to a Pp value of 97.297 and the same is shown in 
Fig. 5.4. 

As the data in the first column is in descending order, Columns 1 and 4 are 
used to develop Fig. 5.4. 

1000 

v1 . 
100 

E i! 
.z 10 n 

1 
1 10 100 
Percentage time indicted discharge is equalled or exceeded 

Fig. 5.4 Flow duration curve 
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Catchment-1 

24 

Example 5.9 Mean monthly flows along with catchment area and length of 
stream for 5 catchments in a homogeneous region are given in Table 5.11. 
Obtain dependable flows with different probabilities in an ungauged catchment 
of the region having a catchment area of 1000 km2 and stream length equal to 
60 km. 

Table 5.11(a) Mean monthly flows in m3/s 

Catchment-2 Catchment-3 Catchment-4 Catchment-5 

17 9 21 11 

'4 (h2) 
L (W 
Q,,,,,(m3/s) 

14 I 22 I 17 I 29 I 22 

Catchment-I Catchment-2 Catchment-3 Catchment-4 Catchment-5 

450 520 1034 546 475 
50 53 65 57 43 

38.66 40.3 72.35 68.7 54.8 

18 I 23 I 23 I 33 I 32 
35 I 37 I 54 I 65 I 41 
37 I 23 I 68 I 132 I 33 
46 I 56 I 143 I 156 I 76 
67 I 69 I 243 I 123 I 78 
100 I 112 I 116 I 98 I 198 
57 I 58 I 98 I 78 I 76 
32 I 44 I 56 I 45 I 44 
22 I 13 I 23 I 33 I 34 
12 I 10 I 17 I 11 I 10 

Table 5.11(b) Catchment characteristics 

1. 
2. 
3 .  

4. 

5. 

6. 

Mean flow of each catchment is calculated and given in Table 5.1 l(b). 
Q/Q,,, is calculated for each catchment. 
Arrange all the Q/Q,,, value in descending order in an excel spreadsheet. 
Determine the probability of the Q/Q,,, value being equaled or exceeded. 
Determine the best fitting curve of the graph between probability of 
Q/Qmean value being equaled or exceeded vs Q/Qmean and determine the 
value of R2. 
Determine the value of Q/Qmean for different probability which is shown 
in Table 5.11(c). 
Multiply the value of Q,,,, for ungauged catchment for different 
probability to get the discharge for ungauged catchment which is shown 
in Table 5.11(d). 
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4 

3.5 

3 

2.5 s 
4 2  
6 

1.5 

1 

0.5 

0 

55.31 

y = -0.9618 ln(x) + 4.1343 
R2 = 0.9922 

90 

0 20 40 60 80 100 120 
Probability (%) of Q/Qmm being equalled or exceeded 

18.58 

Fig. 5.5 Flow in relation toprobability of non-exceedence 

Table 5.11 (c) Value of Q/Q,, for different probability 

P (%) Q’Qmc, 

0.7629 
0.4134 
0.2563 

To get the flow duration curve for the ungauged catchment, the values of 
Table 5.1l(b) are used to develop the following relationship 

It is to note that R2 is not very high and we consider this only for  illustrative 
purposes. 

Q,,, for the ungauged catchment = 1.72(1000)0~5(60)0~07 = 72.44 m3/s. 
Multiplying Q,,, obtained above with the values of Q/Q,,, in Table 5.11 (c) 
gives the dependable flows for various probabilities as shown in Table 5.11(d). 

0.5 0.07 em,,= 1.72A L , R2=0.6 

Table 5.11(d) Value of discharge for different probability for ungauged 
catchment 

P (%) 
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Return period (0 
(Years) 

300 
100 
5 
3 
2 

1.5 

Example 5.10 Derive a flow duration curve for a catchment having 350 km2 
area having no runoff data fi-om the regional analysis. Use the Regional formula: 
X,= [35.46 - 12.41 (1/T) 0.323] whereA is the area of catchment, Tis the 
return period in year for occurrence of a flood of magnitude X,. 

Solution 
Use regional formula to prepare Table 15.2. 

Table 5.12 Computational results 

Probability of equaled or Discharge (X,) 
exceeded (“A) (m3/s) 

0.33 792.062 
1 .o 772.2542 

20.0 664.0603 
30.33 632.7564 
50.0 603.9583 

66.67 581.1 137 

Usii 
plotted, as shown in Fig. 5.6. 

0.1 1 10 100 
Percentage of discharge equalled or exceeded 

Fig. 5.6 Flow duration curve for Example 5.10 

5.4 FLOOD ROUTING 

Flood routing is a technique of determining the flood hydrograph at a section 
of a river by utilizing the data of flood flow at one or more upstream sections. 
The two broad categories of routing are reservoir routing and channel routing. 
The difference between these two is that in the reservoir routing, the water 
surface slope is zero; while in channel routing, it is a non-zero value. In this 
section, we will be concentrating only on channel routing. 
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5.4.1 Channel Routing 
In channel routing, the flood hydrograph at various sections of the reach is 
predicted by considering a channel reach and an input hydrograph at the 
upstream end. Information on the flood-peak attenuation and the duration of 
high-water levels obtained by channel routing is of utmost importance in flood- 
forecasting operations and flood-protection works. As the flood wave moves 
down the river, the shape of the wave gets modified due to various factors, 
such as channel storage, resistance, lateral addition or withdrawal of flows, 
etc. Flood waves passing down a river have their peaks attenuated due to friction 
if there is no lateral inflow. The addition of lateral inflows can cause a reduction 
of attenuation or even amplification of a flood wave. 

A variety of routing methods are available, and they can be broadly classified 
into two categories as: (i) hydrologic routing, and (ii) hydraulic routing. 
Hydrologic routing methods essentially employ the equation of continuity. 
Hydraulic methods, on the other hand, employ the continuity equation together 
with the equation of motion of unsteady flow. 
5.4.1.1 Basic Equations 
In open channel hydraulics, the passage of a flood hydrograph through a channel 
is classified as gradually varied unsteady flow. In all hydrologic routing, the 
equation of continuity is used. The equation of continuity states that the rate of 
change of storage is the difference between the inflow and outflow rate. 

Let I = inflow rate, Q = outflow rate, and S = storage capacity of the reservoir. 
The continuity equation in the differential form for the reservoir is given by: 

I & Q =  - dS 
dt 

(5.15) 

Alternatively, in a small time interval (At), the difference between the total 
inflow and total outflow in a reach is equal to the change in storage in that 
reach. 

Let 7 = average inflow in time At, Q = average outflow in time At, and 
AS = change in storage. 

F A t -  Q A t = A S  (5.16) 
S, with subscripts where, 

1 and 2 to denote the beginning and end of time interval At. 
Therefore, Eq. (5.16) can be written as: 

= ( I ,  + 12)/2, Q = (Q,  + Q2)/2, and AS = S2 

(5.17) 

The time interval (At) should be sufficiently short so that the inflow and outflow 
hydrographs can be assumed to be straight lines in that time interval. Further, 
At must be shorter than the time of transit of the flood wave through the reach. 
In the differential form, the equation of continuity for unsteady flow in a reach 
with no lateral flow is given by: 
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(5.18) 

where, u = velocity of flow, and h = depth of flow 

the momentum equation as: 
The equation of motion for a flood wave is derived from the application of 

(5.19) 

where, So = channel bed slope, and S’= slope of the energy line. The continuity 
equation [Eq. (5.16)] and the equation of motion [Eq. (5.19)] are used in hydraulic 
channel routing. 
5.4.1.2 Storages in the Channel 
Prism Storage It is the volume that would exist if uniform flow occurred at 
the downstream depth, i.e., the volume formed by an imaginary plane parallel 
to the channel bed drawn at the outflow section of water surface (see Fig. 5.7). 

Wedge Storage It is the wedge-like volume formed between the actual water 
surface profile and the top surface of the prism storage (see Fig. 5.7). 

outflow 

Fig. 5.7 Storage in a channel reach 

At a fixed depth at a downstream section of a river reach, the prism storage 
is constant while the wedge storage changes from a positive value at an 
advancing flood to a negative value during a receding flood. The prism storage 
(S,) is similar to a reservoir and can be expressed as a function of the outflow 
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discharge, Sp =f<Q). The wedge storage can be accounted for by expressing it 
as S, =f<l ) .  The total storage in the channel reach can then be expressed as: 

(5.20) 
where, K and x are coefficients, and rn is a constant exponent. It has been 
found that the value of rn varies from 0.6 for rectangular channels to about 1 .O 
for natural channels. 
5.4.1.3 Muskingum Equation 
Using m = 1.0, Eq. (5.20) reduces to a linear relationship for S in terms of I 
and Q as: 

S=K[xI+ (1 -x)Q] (5.21) 
and this relationship is known as the Muskingum equation. In this, the parameter 
x is known as weighting factor and it takes a value between 0 and 0.5. It 
accounts for the storage portion of the routing. When x = 0, the storage is only 
the function of discharge and Eq. (5.2 1) reduces to: 

S = K Q  (5.22) 
Such storage is known as linear storage or linear reservoir. When x = 0.5, 
both the inflow and the outflow become equally important in determining the 
storage. 

The coefficient K is known as storage-time constant and has the dimensions 
of time. It is a function of the flow and channel characteristics. It is 
approximately equal to the time of travel of a flood wave through the channel 
reach. 

Estimation of K and x Figure 5.8 shows a typical inflow and outflow 
hydrograph through a channel reach. Note that the outflow peak does not occur 
at the point of intersection of the inflow and outflow hydrographs. Using the 
continuity equation [Eq. (5.23)], the increment in storage at any time t and 
time element At can be calculated. 

S = K [x I" + (1 -x) p ]  

At 
(I1 + 12) (5.23) 

Summation of various incremental storage values enables to find the channel 
storage S vs. time relationship as shown in Fig. 5.8. 

If an inflow and outflow hydrograph set is available for a given reach, values 
of S at various time intervals can be determined by the above equation. By 
choosing a trial value of x, values of S at any time t are plotted against 
corresponding [XI + (1 - x)Q] values. If the value of x is chosen correctly, a 
straight-line relationship as given by Eq. (5.14) will result. However, if an 
incorrect value of x is used, the plotted points will trace a looping curve. 

By trial and error, a value of x is chosen so that the data describe a straight 
line (Fig. 5.8). The inverse slope of this straight line will give the value of K. 
Normally, for natural channels, the value of x lies between 0 and 0.3. For a 
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Fig. 5.8 Hydrographs and storage in  channel routing 

given reach, the values of x and K are assumed to be constant. A calibration 
can be performed with several flood events to arrive at constant values of x 
and K for a particular reach. 

Example 5.11 
in a river reach. Estimate the values of K and x applicable to this reach. 

The following inflow and outflow hydrographs were observed 

Table 5.13 Data of Inflow and outflow hydrographs for Example 5.11 

Solution 
Using a time increment At = 6 hr, the calculations are performed in a tabular 
manner as shown in Table 5.14. The incremental storage ASand Sare calculated 
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in columns 6 and 7, respectively. It is advantageous to use the units [(m3/s) x hr] 
for storage terms. 

As a first trial, x = 0.35 is selected and the value ofxl+ (1 -x)Q] is evaluated 
(column 8) and plotted against S in Fig. 5.9. Since a looped curve is obtained, 
further trials are performed with x = 0.30. It is seen from Fig. 5.9 that for 
x = 0.3, the plot describes a straight line. Hence, x = 0.3 is taken as the 
appropriate value for the reach. From Fig. 5.9, K = 9.314 hr. 

Table 5.14 Determination of K and x 
I At = 6 hr Storage in (m3/s) x hr 

Erne I Q (I-Q) Average AS = Co1.5 S = ZAS [ X I  + (l-x)Q]rn3/s 
(hr) (rn3/s) (m3/s) (1-Q) x At (m3/s x hr) 

(rn3/s x hr) x = 0.35 x = 0.30 
~~~~~ 

1 2 3 4  5 6 7 8 9 

0 20 20 0 0 20.0 20.0 
~~~~~ 

~~~~~ 

30.0 180.0 - - - -~  
6 80 20 60 180.0 41.0 38.0 

~~~~~ 

110.0 660.0 
~~~~~ 

12 210 50 160 840.0 106.0 98.0 
~~~~~ 

125.0 750.0 
~~~~~ 

18 240 150 90 1590.0 181.5 177.0 
~~~~~ 

52.5 315.0 
~~~~~ 

24 215 200 15 1905.0 205.25 204.5 
~~~~~ 

-12.5 -75.0 
~~~~~ 

30 170 20 -40 1830.0 196.0 198.0 
~~~~~ 

4 7 . 5  -285.0 
~~~~~ 

36 130 185 -55 1545.0 165.75 168.5 
~~~~~ 

4 0 . 0  -360.0 
~~~~~ 

42 90 55 -65 1185.0 109.5 135.5 
~~~~~ 

4 2 . 5  -375.0 
~~~~~ 

48 60 120 -60 810.0 99.0 102.0 
~~~~~ 

-52.5 -315.0 
~~~~~ 

54 40 85 -45 495.0 69.25 71.5 
~~~~~ 

-36.0 -216.0 
~~~~~ 

60 28 55 -27 279.0 45.55 46.9 
~~~~~ 

-17.0 -102.0 
~~~~~ 

66 16 23 -7 177.0 20.55 20.9 
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Fig. 5.9 Determination of K and x for a channel reach 

5.4.1.4 M u s k i n g u m  Method  of Rout ing  
The Muskingum method of flood routing was introduced by McCarthy and 
his colleagues (U.S. Army Corps of Engineers, 1960) in connection with the 
flood control studies of the Muskingum River Basin in Ohio, U.S.A. Since its 
development, this method has been widely used in river engineering practice. 

For a given channel reach, the change in storage can be calculated by 
selecting a routing interval At and using the Muskingum equation, as given 
below: 

(5.24) 
where, subscripts 1 and 2 refer to the conditions before and after the time 
interval At. The continuity equation for the reach is: 

5’2 - Si =Kb(I2 - 11) + (1 - 4 (Q2 - QJl 

From Eqs. (5.24) and (5.25), Q, is evaluated as: 

Q2 = Cd2 + CiIi + C2Q1 

-Kx + 0.5At 
K - K x  + 0.5At 

where, C, = 

Kx + 0.5At c, = 
K - K x  + 0.5At 

K - K x  - 0.5At 
K - K x  + 0.5At 

c, = 

(5.25) 

(5.26) 

(5.27a) 

(5.27b) 

(5.27~) 

Note that C, + C, + C2 = 1.0. Therefore, Eq. (5.26) can be written in a general 
form (for the nth time step) as: 

(5.28) Q, = Cd,  + Ci4-i + C2Qn-1 
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Time(hr) 
Inflow(m3/s) 

Equation (5.28) is known as Muskingum Routing Equation, and it provides a 
simple linear equation for channel routing. For best possible results, the routing 
interval At should be chosen such that K > At > 2Kx. 

If At < 2 Kx, the coefficient C, will be negative. Generally, negative values 
of coefficients are avoided by choosing appropriate values of At. 

To use the Muskingum equation to route a given inflow hydrograph through 
a reach, the values of K and x for the reach and the value of the outflow Q, 
from the reach at the start are needed. The procedure is as follows: 

0 12 24 36 48 60 72 84 96 108 120 132 144 
40 65 165 250 240 205 170 130 115 85 70 60 54 

Knowing K and x, select an appropriate value of At. 
Calculate C,, C,, and C,. 
Calculate Q,, using the initial conditions I , ,  Q,, and I, at the end of the 
first time step At. 
The outflow calculated in step (c) becomes the known initial outflow for 
the next time step. Repeat the calculations for the entire inflow hydrograph. 

Example 5.12 Route the following hydrograph through a river reach for 
which K = 22.0 hr and x = 0.25. At the start of the inflow flood, the outflow 
discharge is 40 m3/s. 

Solution 
Since K = 22 hr and 2Kx = 2 x 22 x 0.25 = 11 hr, At should be such that 
2 2 h r > A t > l l h r .  
In the present case, At = 12 hr is selected to suit the given inflow hydrograph 
ordinate interval. 
Using Eq. (5.20), the coefficients C,, C,, and C, are calculated as: 

0.5 =0.0222 - -22 x 0.25 + 0.5 x 12 
C -  

- 22 - 22 x 0.25+0.5 x 12 - 22.5 

11*5 =0.511 - 22 x 0.25 + 0.5 x 12 
22 - 22 x 0.25 + 0.5 x 12 - 22.5 c, = 

22 - 22 x 0.25 - 0.5 X 12 10.5 
= 0.466 - 

22 - 22 x 0.25 + 0.5 x 12 - 22.5 c, = 

For the first time interval (0 to 12 hr), 
I ,  = 40.0 
I, = 65.0 
Q, = 40.0 

C, I ,  = 20.44 
C, I, = 1.443 
C, Q, = 18.64 
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120 

132 

144 

From Eq. (5.19), Q, = C, I, + C, I ,  + C, Q, = 40.52 m3/s 
The procedure is repeated for the entire duration of the inflow hydrograph. 

The computations are done in a tabular form as shown in Table 5.16. By plotting 
the inflow and outflow hydrographs, the attenuation and peak lag are found to 
be 35 m3/s and 2 1 hr, respectively. 

Table 5.16 Muskingum method of routing (At = 12 hr) 

70 107.144 
1.332 35.77 49.929 

60 87.03 1 
1.198 30.66 40.556 

54 72.414 

rime (hr) I (m3/s) 0.0222 I2 0.511 I, 0.466 Q, Q (m3N 
(1) (2) (3) (4) (5) (6) (sum of col. 

0 40 40.00 
1.433 20.44 18.64 

12 65 40.52 

3,4 and 5) 

3.663 33.215 18.882 
24 165 55.76 

5.55 84.315 25.984 
36 250 115.849 

5.328 127.75 53.985 
48 240 187.063 

4.551 122.64 87.171 
60 205 214.362 

3.774 104.755 99.892 
72 170 208.421 

2.886 86.87 97.124 
84 130 186.88 

2.553 66.43 87.086 
96 115 156.069 

1.887 58.765 72.728 
108 85 133.38 

1.554 43.435 62.155 

5.4.2 Reservoir Routing 
The passage of flood hydrograph through a reservoir is an unsteady flow 
phenomenon. The equation of continuity is used in all hydrologic routing 
methods as a primary equation. According to this equation, the difference 
between the inflow and outflow is equal to the rate of change of storage, i.e., 

(5.29) I - Q = dS/dt 
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Peak lag = 21 hr 

Peak attenuation = 35 m3/s 

Time (hr) 

Fig. 5.10 Variation of inflow and outflow discharge 

where, I = inflow to the reservoir, Q = outflow from the reservoir, S = storage 
in the reservoir, and t = time. 

For the sake of clarity, it is necessary to introduce the frequently used terms, 
e.g., translation and attenuation characteristics of the flood wave propagation. 
The translation is taken as the time difference between the occurrence of inflow 
and outflow peak discharge, and the attenuation as the difference between the 
inflow and outflow peak discharge. Using the peak discharge for the outflow 
hydrograph, the attenuation and the translation are computed as: 

Attenuation = (Injlow peak discharge) ~ (OutJow peak discharge) 
Translation = (Time-to-peak of injlow) ~ (Time-to-peak of outJow) 

Over a small time interval At, the difference between total inflow and total 
outflow in the reach is equal to the change in storage in that reach. Hence, 
Eq. (5.29) can be written as: 

I, At ~ Q, At = AS (5.30) 
where, I,, Q,, and AS denote average inflow, average outflow, and change in 
storage during time period At, respectively. 
5.4.2.1 Routing Techniques 
The reservoirs can be either controlled or uncontrolled. The controlled 
reservoirs have spillways with gates to release water at the time of need. The 
uncontrolled reservoirs are those whose spillways are not controlled by gate 
operation. Reservoir routing requires the relationship among the reservoir 
elevation, storage, and discharge to be known. This relationship is a function 
of the topography of the reservoir site and the characteristics of the outlet 
facility. It is important to establish the relationship among elevation, storage, 
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and discharge as a single function; because topography of the reservoir is 
susceptible to change which will consequently affect the elevation-discharge 
characteristics. McCuen (1989) has discussed this aspect in detail. 

Using the basic Eq. (5.29), several methods have been developed for routing 
a flood wave through a reservoir, namely: (i) Mass Curve Method, (ii) Pulse 
Method, (iii) Modified Pulse Method, (iv) Wisler-Brater Method, (v) Goodrich 
Method, (vi) Steinberg Method, and (vii) Coefficient Method. However, we 
will keep our discussion limited to Mass Curve Method and Modified Pulse 
Method. 

A brief description of each of these methods follows. The schematic 
representation of reservoir routing is given in Fig. 5.11. 

Input 

t 

" 

System 

V 

output 
4 

Q k I l  
s l I l  t 

Fig. 5.11 Schematic representation of reservoir routing 

Mass Curve Method This is one of the most versatile methods of reservoir 
routing, various versions of which include: (i) direct, (ii) trial and error, and 
(iii) graphical technique. Here, the trial-and-error version is described in detail. 
For solution by trial-and-error method, Eq. (5.30) can be rewritten as: 

(5.3 1) 
where, M is the accumulated mass inflow, and V is the accumulated mass 
outflow. 

A storage-discharge relationship and the mass curve of inflow should be 
plotted before obtaining trial-and-error solution. Necessary adjustments are 
made to show zero storage at the beginning elevation and, correspondingly, 
spillway discharge is obtained. The following steps are involved in trial-and- 
error solution: 

M2 ~ (V, + Q, At) = S2 

(a) A time is chosen and At is computed. Mass inflow is also computed. 
(b) Mass outflow is assumed. As a guideline, it is a function of accumulated 

(c) Reservoir storage is computed by deducting mass outflow from mass 

(d) The instantaneous and average spillway discharges are calculated. 

mass inflow. 

inflow. 
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(e) Outflow for the time period At is computed by multiplying At with average 
discharge. Then, the mass outflow is computed. 

(0 Finally, computed mass outflow is compared with assumed mass outflow. 
If the two values agree within an acceptable degree of accuracy, then the 
routing is complete. If this agreement is not acceptable, then another mass 
outflow is assumed and the above procedure is repeated. 

Modified Pulse Method The basic law used in modified pulse method states: 
The inflow minus outflow is equal to the rate of change in storage. This is also 
referred to as the Storage-Indication method. 
Assuming I, = ( I ,  + 12)/2, Q, = (Q, + Q2)/2, and AS = S2 - S,, Eq. (5.30) is 
written as: 

(5.32) 
where, subscripts 1 and 2 denote the beginning and end of time interval At, 
and Q may incorporate controlled discharge as well as uncontrolled discharge. 
Here, the time interval At must be sufficiently small so that the inflow and 
outflow hydrographs can be assumed to be linear in that time interval. Further, 
At must be shorter than the time of transit of flood wave through the reservoir. 
Separating the known quantities from the unknown ones and rearranging: 

(5.3 3 a) 
Or (5.3 3b) 
Here, the known quantities are I ,  (inflow at time l), I, (inflow at time 2), Q, 
(outflow at time l), and S, (storage in the reservoir at time 1); and the unknown 
quantity are S, and Q,. Since one equation with two unknown parameters 
cannot be solved, one must have another relation that relates storage S, and 
outflow Q. 

As the outflow from the reservoir takes place through the spillway, the 
discharge passing through the spillway can be conveniently related with the 
reservoir elevation which, in turn, can be related to the reservoir storage. Such 
a relationship is invariably available for any reservoir. Also, it can be computed 
from the following relation: 

where, Q is the outflow discharge (m3/s), c d  is the coefficient of discharge 
(1.70 in metric unit), L is the length of spillway (m), and Hi s  the depth of flow 
above the spillway crest (m). 

Thus, the left side of Eq. (5.33) contains the known terms and the right side 
terms are unknown. The inflow hydrograph is known. The discharge Q, which 
may pass through the turbines, outlet works, or over the spillway, is also known. 
The uncontrolled discharge goes freely over the spillway. It depends upon the 
depth of flow over the spillway and the spillway geometry. Further, the depth 
of flow over the spillway depends upon the level of water in the reservoir. 

( I ,  + I2)At/2 ~ (Q, + Q2)At/2 = S, ~ S, 

( I ,  + I,) + (2S,/At ~ Q,) = (2S,/At + Q,) 
(I ,  + I,) At /2 + (S,  ~ Q, At/2) = (S, + Q2 At/2) 

Q = cd L (5.34) 
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Elevation 
(m) 

Therefore, S = S (Y) 
Q=Q(q (5.35) 

where, Y represents the water surface elevation. The right side of Eq. (5.33a) 
can be written as: 

2S/At + Q =f(Y) (5.36) 
Adding the crest elevation with the depth of flow, the elevation for which 
storage in the reservoir is known can be computed. Therefore, one can develop 
a relation between storage and outflow. This storage outflow relation is used 
to develop the storage indication [(2S/At) + Q] vs. outflow relation. To develop 
this relation, it is necessary to select a time interval such that the resulting 
linearization of the inflow hydrograph remains a close approximation of the 
actual nonlinear (continuous time varying) shape of the hydrograph. For 
smoothly rising hydrographs, a minimum value of tJAt = 5 is recommended, 
in which tp is the time to peak of the inflow hydrograph. In practice, a computer 
aided calculation would normally use a much greater ratio (tAAt), say 10 to 20. 

In order to utilize Eq. (5.33), the elevation storage and elevation-discharge 
relationship must be known. Before routing, the curves of (2S/At f Q) vs. Q 
are constructed. The routing is now very simple and can be performed using 
the above equation. 

The computations are performed as follows. At the starting of flood routing, 
the initial storage and outflow discharge are known. In Eq. (5.32), all the terms 
in the left hand side are known at the beginning of time step At. Hence, the 
value of (S, + Q2 At/2) at the end of the time step is calculated by Eq. (5.33). 
Since the relation S = S(h) and Q = Q(h) are known, (S, + Q2 Atl2) will enable 
one to determine the reservoir elevation and hence the discharge at the end of 
the time step. This procedure is repeated to cover the full inflow hydrograph. 

Storage Outjlow discharge 
(106 m3) (m3/s) 

~ 

Example 5.13 
relationships: 

A reservoir has the following elevation, discharge, and storage 

Table 5.17 Reservoir data for Example 5.13 

I 101.00 I 4.550 I 0 I 
I 101.50 I 4.575 I 15 I 
I 102.10 I 4.880 I 31 I 
I 102.50 I 5.284 I 52 I 
I 103.00 I 5.927 I 86 I 
I 103.50 I 6.370 I 120 I 
I 103.75 I 6.527 I 127 I 
I 104.00 I 6.856 I 140 I 
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Time (hrs.) 
Discharge(m3/s) 

When the reservoir level was at 101.50 m, the following flood hydrograph 
entered the reservoir. 

0 6 12 18 24 30 36 42 48 54 60 66 72 
12 22 57 85 70 52 41 33 21 15 14 12 11 

101.00 
101.50 
102.10 

Route the flood, and obtain the outflow hydrograph and the reservoir elevation- 
time curve for the flood passage. 

Solution 
The time step used for the hydrograph is taken for the analysis, i.e., At = 6 hr 
The elevation-discharge (S  + Q At/2) is prepared as follows: 

At = 6 x 3600 = 216000 = 0.0216 x lo6 sec 

4.550 0 4.55 
4.575 15 4.737 
4.880 31 5.2148 

Table 5.19 Calculations of elevation versus (S + Q At/2) 

104.00 

S + Q At/2 

6.856 140 I 8.368 

I 102.50 I 5.284 I 52 I 5.8456 
I 103.00 I 5.927 I 86 I 6.855 
I 103.50 I 6.370 I 120 I 7.666 
I 103.75 I 6.527 I 127 I 7.898 

The plot showing elevation vs. (S+ QAt/2) is shown inFig. 5.12. Figure 5.13 
shows the variation of elevation with outflow. 

I 4.5 5.5 6.5 7.5 8.5 9.5 
S + (Q At/2) Mm3 

Fig. 5.12 Plot showing Elevation us. (S + Q A t / 2 )  
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104.5 - 

Fig. 5.13 Plot showing elevation us. outflow 

At the start of the elevation when the flood wave enters the reservoir, the 
outflow discharge is 15 m3/s and S = 4.575 Mm3. 
Therefore, ( S -  Q At/2), = 4.575 - (15 x 0.0216)/2 = 4.413 Mm3. 

Using this initial value of (S-  Q At/2), Eq. (5.33b) is used to get (5’ + Q At/2). 

s+@ = ( I , + I ) - +  At ( s-- ”p”), ( 2 1 ,  2 2  

= (12 + 22) x (0.0216/2) + 4.413 
= 4.7802 

From Fig. 5.12, the water surface elevation corresponding to (S  + Q At/2), 
= 4.7802 is 101.55 m and from Fig. 5.13, the outflow discharge Q2 
corresponding to elevation 101.55 m is 16.33 m3/s. For the next time step, 

(S - Q At /2)2 = (S + Q At / 2), of the previous step - Q2 At 
=4.7802 - (16.33 x 0.0216) 
= 4.4274 Mm3 

( S + y ) 3  =(12+13)Z+ At [ s-- Q:)2 

= (22 + 57) x 0.0216/2 + 4.4274 
= 0.8532 + 4.4274 
= 5.2806 

From Fig. 5.12, the water surface elevation corresponding to (S + Q At/2), 
= 5.2806 is 102.14 m andfiomFig.5.13,the outflow discharge Q3 corresponding 
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to elevation 102.14 m is 33.1 m3/s. Use of similar sequence of computations 
will enable outflow discharge coniputatioiis at the remaining time steps. 

Table 5.20 Calculations related to Example 5.13 

Figures 5.14 and 5.15 show the variation of inflow, outflow, and reservoir 
elevation (level of water surface) with time.. From Fig. 5.14, it can be seen 
that peak lag and peak attenuation are 7 hr and 12 m3/s, respectively. 

QAt I At S -  ~ S+ ~ Elevation Q QAt 2 2 
- - 

nme ImjlowL I 

~~- 
2 3 4 5 6 7 8 

12 101.5 15 
~~~ 

1 

0 
~~~ 

17 0.3672 4.413 4.7802 
~~~ 

22 101.55 16.33 
~~~ 

6 
39.5 0.8532 4.4274 5.2806 

57 102.14 33.1 
~~~ 

12 
71 1.5336 4.565 6.0986 

85 102.62 60.16 
~~~ 

18 
77.5 1.674 4.80 6.474 

70 102.81 73.08 
~~~ 

24 
61 1.3176 4.895 6.2126 

~~~ 

52 102.68 62.24 
~~~ 

30 
46.5 1.0044 4.825 5.83 

~~~ 

41 102.49 51.5 
~~~ 

36 
37 0.7992 4.7176 5.5168 

~~~ 

33 102.31 42.0 
~~~ 

42 
27 0.5832 4.61 5.19 

~~~ 

21 102.07 30.2 
~~~ 

48 
18 0.3888 4.537 4.925 

~~~ 

15 101.73 22.36 
~~~ 

54 
14.5 0.3132 4.442 4.755 

~~~ 

14 101.52 15.64 
~~~ 

60 
13 0.2808 4.417 4.697 

~~~ 

12 101.39 11.7 
~~~ 

66 
11.5 0.2484 4.444 4.692 

~~~ 

72 11 101.37 11.1 
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.f Timelag=7lx 

* 
0 10 20 30 40 50 60 70 80 

Time (hr) 

Fig. 5.14 Variation of inflow and outflow discharge 
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Fig. 5.15 Variation of reservoir elevation with time 

SUMMARY 

Rainfall-runoff relationship is generally nonlinear in nature and may vary from 
place to place. It may be useful to compile such relationships and study their 
merits and demerits. In recent years, a lot of work on representation of such 
nonlinearity has also been reported. 

Runoff leads to flood, and it is important to understand the propagation of 
flood. Flood routing is a useful means of studying this propagation. Flood 
routing in open channels is considered using the Muskingum approach. It is 
possible to extend this approach to a channel network which is typically 
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Time (hr) 
Inflow(m3/s) 

encountered at a catchment scale. To route flow in such situations, flow at 
each junction has to be computed. This may include adding routed outflow 
fi-om a channel or a series of secondary channels joining at the junction. 

0 2 4 6 8 10 12 14 16 
15 25 40 75 125 185 235 215 160 

EXERCISES 

Time (hr) 
Inflow(m3/s) 

5.1 

5.2 

5.3 

5.4 
5.5 

5.6 
5.7 

5.8 
5.9 

5.10 

18 20 22 24 26 28 30 
105 75 60 45 30 20 10 

Why is double-mass curve method used? Explain the detailed procedure 
of this method. 
What is a flow duration curve? Explain the detailed procedure to plot 
the flow duration curve. 
Define routing. What are the methods of routings? Explain these methods 
in detail. 
What do you understand by prism storage and wedge storage? 
Explain the procedure of estimating coefficients K and x in Muskmgum 
method of flood routing. 
Write an algorithm for the Muskingum method of flood routing. 
For an assumed inflow hydrograph and channel dimensions, write a 
program using Muskingum method to generate outflow hydrograph at a 
prescribed section. 
What is the utility of mass curve method? 
What is the difference between reservoir routing and channel routing? 
Route the following flood hydrograph through a stream using 
Muskingum method. The initial outflow discharge is 10 (m3/s). The 
Muskingum coefficient are K= 6 hr and x = 0.3. 

OBJECTIVE QUESTIONS 

1. In reservoir routing, the storage is a function of 
(a) Inflow discharge 
(c) Both (a) and (b) 

(b) Outflow discharge 
(d) None of these 

2. In channel routing, the storage is a function of 
(a) Inflow discharge 
(c) Both (a) and (b) 

(b) Outflow discharge 
(d) None of these 
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3 .  The flow of a river during a flood is a 
(a) Gradually varied steady flow 
(c) Rapidly varied unsteady flow 

(b) Gradually varied unsteady flow 
(d) Uniform flow 

4. If the outflow from a storage reservoir is uncontrolled, the peak of the 
outflow hydrograph will occur 
(a) After the point of intersection of the inflow and outflow curves 
(b) Before the point of intersection of the inflow and outflow curves 
(c) At the point of intersection of the inflow and outflow curves 
(d) At any point 

(a) Inflow discharge 
(c) Both (a) and (b) 

(a) Inflow discharge 
(c) Both (a) and (b) 

5.  The prism storage is a function of 
(b) Outflow discharge 
(d) None of these 

(b) Outflow discharge 
(d) None of these 

6. The wedge storage is a h c t i o n  of 

7. The total storage in the channel reach can be expressed as 
(a) ~ = r n [ x F + + 1 - ~ ) @ 1  (b) S = K [ X I M + ( ~ - X ) ~ ]  
(c) S = K [ x v + ( l - x ) I M ]  (d) S = rn [ x @ + ( 1  -x) I"] 

8. In a linear reservoir 
(a) Storage is directly proportional to the discharge 
(b) Storage is inversely proportional to the discharge 
(c) There is no relation between the storage and discharge 
(d) None of the above 

9. The Muskingum method of flood routing is a 
(a) Hydrologic storage routing 
(b) Hydrologic channel routing 
(c) Hydraulic method of flood routing 
(d) Both (a) and (b) 

(a) Continuity equation 
(c) Energy equation 

10. The hydrologic routing method uses 
(b) Momentum equation 
(d) All of these 

1 1 .  In Muskingum method of routing, the sum of three coefficients C, + C, + C, 
is equal to 
(a) 0.5 (b) 1 (c) 2 ( 4  3 

12. In Muskingum method of routing, the routing interval At should be chosen 
such that 
(a) K>2Kx>At  (b) 2Kx>K>At  
(c) K>At>2Kx  (d) At<2Kx 
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13. For natural stream channels, the value of the Muskingum parameter x will 
generally be 
(a) Equal to 0 
(c) Equal to 0.5 

(b) Equal to 1 
(d) Between 0 and 0.3 
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CHAPTER 
H- 

Hydrologic 
Statistics 

6.1 INTRODUCTION 

Statistical analyses in hydrology can be classified into two categories- 
univariate and multivariate. Problems dealing with the data of a single random 
variable fall under the category of univariate analysis. The univariate analysis 
helps identify the statistical population, from which the sample measurements 
are derived, and future occurrences of the random variable are predicted based 
on the assumed population. In analyses of multivariable data with more than 
one variable, the functional form of the inherent relationship is derived. The 
linear regression analysis is generally used to develop the suitable linear form 
of multiple variable models. Here, a dependent variable takes the values caused 
by variations in one or more independent or predictor variables. Such models 
are found to be of great use in hydrological prediction. Development of rainfall 
runoff relationship has been considered in the preceding chapter. However, 
one needs to know various statistical terms relevant to any regression 
relationship. 

(a) define some of the important terms of statistical and probabilistic 

(b) describe measures of location, dispersion, and symmetry of both grouped 

(c) describe standard errors of mean, standard deviation, and coefficient of 

(d) describe performance evaluation measures including normal reduced 

(e) describe the detailed procedures for deriving linear and multiple regression 

The objective of this chapter is to: 

hydrology; 

and ungrouped data; 

skewness; 

variate, chi-square, student’s t-distribution, and F-distribution, and 

relationships. 
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6.2 SAMPLE STATISTICS 

The following terms are generally used in statistical hydrology. 
Sample data: A sample consists of the data derived fi-om the observation of an 
event. 
Population: A population can be defined as a combination of infinite number 
of discrete samples. 
Random events: Those events whose occurrences are not affected by their 
earlier occurrences are called random events. 
Probability densityfunction (PDF): It is the probability of occurrence of an 
event. 
Cumulative densityfunction (CDF): It is the probability of non- of the event. 
Probability paper: It is a special graph paper on which the ordinate usually 
represents the magnitude of the variate, and the abscissa usually represents the 
probability P or the return period T. Scales of the ordinate and the abscissa are 
taken such that the plotted distribution is close to a straight line. 
Plottingposition: It refers to the probability assigned to a data point. 

In any analysis of statistical data in general and hydrologic data in particular, 
it is important to determine the basic properties of data. The sample mean and 
variance are the most important statistical characteristics of a dataset. The 
sample statistics provides, in general, the basic information about the variability 
of a given data set about its mean. 
The commonly used sample characteristics include: 

(i) the central tendency or the value around which all other values are clustered, 
(ii) the spread of sample values about the mean, 

(iii) the asymmetry or skewness of the frequency distribution, and 
(iv) the flatness of the frequency distribution. 

6.3 MEASURES OF STATISTICAL PROPERTIES 

Some of the important statistical measures of location include the following: 

(i) Mid-range It is the average of the minimum and maximum values of the 
sample (or population). 

Mid-range = (minimum value + maximum value)/2 

(ii) Dispersion or Variation The important measures of dispersion or variation 
include: 

Range: It is the difference between the maximum and the minimum values. 
Range = maximum value - minimum value 

Interquartile Range: It is defined as I, -I,, where I ,  is the value separating the 
lowest quarter of the ranked data fi-om the second quarter. In other words, 
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Month 
Rainfallinmm 

interquartile range is between 25% and 75% of cumulative fi-equency values 
and contains 50% of the values. 

Mean Deviation: Dispersion about the arithmetic mean is the mean deviation. 
Thus, 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 
12 10 5 1 2 8 15 25 22 15 12 12 

N 
E (Xi - 

i = O  

N 
Mean deviation = 

where, xi is the ith data point, X is the mean of all data points, and Nis the total 
number of data points in a sample. 

Variance (S2):  It represents the dispersion about the mean. Expressed 
mathematically as, 

N c (Xi - XI2 

Standard deviation (9: An unbiased estimate of standard deviation (9 of the 
population can be derived from the sample data and it is given as the square 
root of the variance. 

N 

i = l  
s = [ l/(N- 1) c (Xi - T)2]1’2 

CoefJicient of variation (Cv): The coefficient of variation is a dimensionless 
dispersion parameter and is equal to the ratio of the standard deviation to the 
mean. 

Cv=SIX (6-4) 
This coefficient is extensively used in hydrology, particularly as a 
regionalization parameter. 

12 +10+5 +1+ 2 +8  +15 +25 +22 +15 +12 +12 
12 

Mean rainfall X = 

= 11.58 rnm 

Example 6.1 The monthly rainfall (in rmn) records at a station for a year are 
given in table below. Find the mean rainfall, variance, standard deviation and 
coefficient of variation. 
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(12 - 1 1.5q2 + (10 - 1 1.5q2 + (5 - 1 1.5q2 + (1 - 1 1.5q2 
+(2-11.58)2+(8-11.58)2+(15-11.58)2+(25 -11.58)2 
(22 -11.58), +(15 -11.58), +(12 -11.58), +(12 -11.58), 

12 -1 
0.1764 + 2.4964 + 43.2964 + 11 1.9364 
+ 91.7764 + 12.8164 + 11.6964 + 180.0964 
+108.5764+11.6964+0.1764+0.1764 1 

Variance s2 = 

11 
- - I 
= 52.26 

Standard deviation S = 7.229 
Coefficient of variation = 7.229A1.58 = 0.624 
Discussion: Range and mean deviation are of the same dimension as the original 
data. Variance is of squared dimension and, therefore, cannot be directly 
compared with the data; instead, standard deviation is used. In many samples 
of hydrological data, especially in flood hydrology, the largest sample value 
may be much larger than the second largest value. In such situations, range 
may not better represent the scatter in whole data. Though mean deviation is a 
good measure of spread, its handling is not easy in mathematical statistics due 
to its absolute sign, and so is the case with interquartile range though it describes 
the spread well. Since variance can be used conveniently, it has a prominent 
place in statistical hydrology. 

(iii) Symmetry If data are symmetrically displaced about the mean, the 
measure of symmetry is equal to zero. On the other hand, if these are displaced 
more to the right of the mean than those on the left, then, by convention, the 
asymmetry is positive; and it is negative for otherwise asymmetry. 

Interquartile measure of asymmetry (IJ: It is defined as: 

where I,, I,, and I, are the lower, median, and upper quartiles, respectively. 
Third central moment (Md: The third moment of sample data about the mean 
is given by: 

The commonly used measures of asymmetry are: 

= 113 ~ 121 ~ 111 ~ 121 (6.5) 

If data are symmetrical, M3 = 0; it is positive or negative otherwise. 
Skewness coefficient (CJ: It is a non-dimensional measure of asymmetry of 
the frequency distribution fitted to the data. Its unbiased estimate is given by: 
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Skewness coefficient is an important indicator of the symmetry of distribution 
fitted to data points. Symmetrical frequency distributions exhibit a very low 
value of sample skewness coefficient C,, whereas asymmetrical frequency 
distributions show a positive or negative value. Smaller value of C, implies 
more closeness of the distribution to the normal distribution, because C, = 0 
for normal distribution. The third central moment having the dimension of the 
cube of the variable is not of direct use, as described above. On the other hand, 
C, does not suffer from this limitation and is, therefore, generally preferred. 

(iv) Peakedness or Flatness The peakedness or the flatness of the frequency 
distribution near its center is measured by kurtosis coefficient (C&, which is 
expressed as: 

N 

i=l  
N* c (xi - x14 

(N - 1)(N - 2)(N - 3) s4 
c k  = 

The excess coefficient (E) defined as: E = c k  ~ 3 ,  is a variant of C,. Positive 
E-values indicate a frequency distribution to be more peaked around its center 
than the normal distribution. Such a frequency distribution is known as 
leptokurtic. On the other hand, negative values of E indicate that a given 
frequency distribution is more flat around its center than the normal. These are 
calledplutykurtic distributions. Normal distribution is knows as mesokurtic. It 
is worth emphasizing that the use of c k  is not much popular in statistical 
hydrology. 

(v) Maxima or Minima Maxima or minima refer to data extremes or extreme 
values of data, whether high or low. These data are commonly used in frequency 
analyses, for they are taken to be independent of each other or random data. It 
is also for the reason that the data observed for an event sometimes exhibit 
dependence. Examples of sample data extremes include annual maximum peak 
flood series, annual low-flow series for a specific duration, and so on. 

Example 6.2 
Example 6.1 

Solution 

Determine the skewness coefficient for the data given in 

(12-11.58)3+(10-11.58)3+(5-11.58)3 
+ (1 - 1 1 .5q3 + (2 - 11 .5q3 + (8 - 1 1 .5q3 
+ (15 -11.5q3 + (25 -11.5q3 + (22 - 11.5q3 
+(15-11.58)3+(12-11.58)3+(12-11.58)3 

(12 - 1)(12 - 2)(7.229)3 
c s =  12x I 



216 Engineering Hydrology 

0.074 - 3.9443 - 284.8903 - 1184.2871 
- 879.2179 - 45.8827 + 40.00 + 2416.8936 

11 x 10 x 377.77 
+ 1 13 1.366 + 40.00 + 0.074 + 0.074 

= 12x 

= 0.355 
Exercise: Compute kurtosis coefficient for the data given in Example 6.1. 

6.4 STANDARD ERRORS 

Statistical characteristics, such as mean and standard deviation, derived from 
a short period of sample record represent only an estimate of the population 
statistic. The reliability of such estimates can be evaluated from their standard 
errors (SE). It is of common experience that there exists a probability of about 
68% that the population statistic lies within one standard error of the value 
estimated from the available (or sample) data. The standard errors of commonly 
used mean, SE( X), standard deviation, SE(S); as given below. 

SE(X) = S / f i  

SE(S) = S/,/(2N) (6.10) 

Example 6.3 
data given in Example 6.1. 

Solution 
Given, S = 7.229 and n = 12 

Using Eq (6.9), SE of mean = 2 = 2.086 

Compute standard error of mean and standard deviation of the 

7 229 
J12 

Using Eq. (6. lo), SE of standard deviation = ~ 7'229 - - 1.475 42x12 

6.5 

Grouped data are graphically presented as histograms or cumulative histograms 
of frequency (or relative frequency or probability). A frequency table is prepared 
first. The range of the data variable is divided into a number of intervals of 
convenient size, and the frequency (f) of the variable is derived for each 
interval. It is noted that if the class interval is very large, the table will become 
compact, but it will lose detail. On the other hand, if the interval is too small, 
the table may become too bulky to handle. Therefore, an optimal choice of 
the class interval is important in statistical analyses. 

GRAPHICAL PRESENTATION OF GROUPED DATA 
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The following two criteria are generally used in practice. According to 
Brooks and Carruthers (1953), the number of classes are taken greater than 
five times the logarithm of the total number of data points: i.e., 

number of classes > 5 log (number of values) 
According to Charlier and Bortkiewicz, (1947), the size of the class interval 

(w) can be taken as one-twentieth of the difference between the maximum and 
the minimum values: i.e., 

where, w is the size of class interval. The number of classes generally vary 
from 15-25. 

w = (maximum value - minimum value)/20 

In steps, the frequency table can be prepared as follows: 

(i) Order the values of variable (x) in increasing or decreasing order of 

(ii) Determine the size (w) and number (NC) of the class interval using the 

(iii) Divide the ordered observations x into NC intervals (or groups). 
(iv) Determine the frequency (n)  of each class interval by counting the 

(v) Determine the corresponding relative frequencies (nlN) for all NC 

(vi) Compute the cumulative relative frequency F for each class interval. 

magnitude. 

above guidelines. 

observations that fall within the respective intervals. 

intervals. 

These approximate the probabilities as: 

F =  F (X < X )  if order is increasing 
Or, F = F ( x > X )  if order is decreasing 
where, x is a random variable, andXis its value at any point. It is to note 
that many textbooks use Xas a random variable and x as its value. In this 
chapter, [XI is also used as a matrix of x-values. 

(vii) Prepare plots of relative frequencies or cumulative relative frequencies 
on simple graph papers, taking the group interval as abscissa, and the 
relative frequencies or cumulative relative frequencies as ordinate. 

It is to note that in the preceding chapter, the section on flow-duration curve 
involves use of the steps mentioned here. 

6.6 STATISTICS OF GROUPED DATA 

The sample statistics mean (m,), variance (m,), coefficient of skewness (m,), 
and coefficients ofkurtosis (m4) are derived from the grouped data, respectively, 
as : 

m, = 

NC 

i=1 
z A xi 

zA 
NC 

i=1 

(6.11) 
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NC m3 = 

i = l  
NC 

i = l  

m4 = 

Z h  

(6.12) 

(6.13) 

(6.14) 

where, xi is the mid-value of the ith class interva1,x is the number of values (n)  
in the ith class, and N is the total number of values. Mean represents the first 
moment about origin; variance, the second moment of the grouped data about 
the mean; skewness, the third moment about the mean; and kurtosis, the fourth 
moment about the mean. 

It is to note that standard deviation is the square root of the variance, and 
coefficient of variation is the ratio of standard deviation and mean of the grouped 
data. 

6.7 PROBABILITY DISTRIBUTIONS 

A distribution is an attribute of a statistical population. If each element of a 
population has a value of X,  then the distribution describes the constitution of 

population through its X-values. It reveals the following: 

whether X-values are too large or too small, and their location on the axis; 
whether the data are bunched together or spread out, and whether or not 
they are symmetrically disposed on the X-axis (these information can also 
be derived by mean, standard deviation, and skewness); 
whether the relative frequency or proportion of various X-values in the 
population similar to a histogram; and 
whether the relative frequency or probability, P, (x < X ) ,  that the an element 
x drawn randomly from the population will be less than a particular value 
o f X  

When population is sufficiently large, the histogram of its X-values prepared 
using a very small class interval can be replaced by a smooth curve. The area 
enclosed between any two vertical ordinates yields the relative frequency or 
probability of X-values between those ordinates. Such an interpretation leads 
to the description of relative frequency distribution as probability distribution, 
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and the curve describing the distribution is called aprobability density function 
(PDF) whose cumulative function is known as the distribution function. In 
flood frequency analysis, the sample data is used to fit probability distribution, 
which in turn is used to extrapolate recorded events and design events either 
graphically or analytically by estimating the parameters of the distribution. 

6.7.1 Continuous Probability Distribution 
A number of frequency distributions are available in literature. Some of the 
distributions commonly used in hydrology and water resources are: normal, 
lognormal (two- and three-parameters), extreme value type-I (Gumbel or EVl), 
Pearson type-111, log-Pearson type-111, general extreme value (GEV), gamma, 
and exponential distributions. The probability density functions, cumulative 
density functions, and other properties of some of the commonly used 
theoretical frequency distributions are described below. 
(i) Normal Distribution 
The normal distribution is one of the most important distributions in statistical 
hydrology. This is a bell-shaped symmetrical distribution having coefficient 
of skewness equal to zero. The normal distribution enjoys unique position in 
the field of statistics due to central limit theorem. This theorem states that 
under certain broad conditions, the distribution of the sum of random variables 
tends to a normal distribution irrespective of the distribution of random 
variables, as the number of terms in the sum increases. The PDF and CDF of 
the distribution are given as: 

P.D.F.:f(x) = ~ 1 exp [ - +(?PI 
0 6  

(6.15) 

(6.16) 

(x - PFL) In terms of reduced variate: z = ~ 

Using mean of reduce variate equal to zero and standard deviation of reduce 
variate equal to 1, Eqs. (6.15) and (6.16) become: 

0 

P.D.F.:~(z) = zexp(-z2/2) 1 
(6.17) 

(6.18) 
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Z 

0.25 
0.5 
1 .o 
1.2 
1.5 
2.5 

Example 6.4 From a mean monthly rainfall data of 10 years, the mean is 
65mm and standard deviation is 7.0. Find the percentage of magnitude of rainfall 
which is: 
(a) between 70 mm and 80 mm 
(b) at least 80 mm 
Assume that the rainfall data are normally distributed. Use Appendix I1 to find 
the value of variate z. 

Solution 

(a) z, = (70 - 65)/7 = -0.71 

Here (0 < z1 < z2); therefore, 
~2 = (80 - 65)/7 = 2.14 

P(70IxI80)=P(0.71 I z I 2 . 1 4 )  
= F(2.14) - F(0.71) = 0.9838 - 0.7612 = 0.2226 

That is, approximately 22.26% of rainfall occurred having a magnitude 
range of 70 mm to 80 111111. 

z1 = (90 - 65)/7 = 3.57 (b) 
Here 0 < zl; therefore, 

That is, approximately 0.02% of rainfall occurred having a magnitude of 
at least 90 mm. 

P(x 2 90) = P(z 2 3.57) = 1 - F (3.57) = 1 - 0.9998 = 0.0002 

Swamee and Rathie Abvamowitz and Stegun 

0.5903 0.5986 
0.6886 0.6916 
0.8488 0.841 1 
0.8924 0.8847 
0.9380 0.9332 
0.9919 0.9936 

Example 6.5 

(a) Approximation proposed by Swamee and Rathie, 2007: 

(b) Approximation proposed by Abramowitz and Stegun, 1965: 

Compute F(z) for z values of 0.25, 0.5, 1.0, 1.2, 1.5, and 2.5. 
Use the following approximations of F(z): 

F(Z) = [exp(-1.7255 z 1~1O.l~) + I]-' 

1 B = -[ 1 + 0.196854 IzI + 0.115 194 1zI2 + 0.000344 1zI3 + 0.0195271~?]-~ 
2 

F(z) = 
B for (z<O) I 1-B for(z20)  

Solution 
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Exercise: Obtain F(z) using the values given in Appendix I1 and compute the 
percentage error. 

(ii) Lognormal Distribution (Two-parameter) 
The causative factors for many hydrologic variables act multiplicatively rather 
than additively; and so, the logarithms of these variables which are the product 
of these causative factors follow the normal distribution. 

Ify = In (x) follows normal distribution, then x is said to follow lognormal 
distribution. The PDF and CDF of the distribution are given as: 

1 P.D.F.: f(x) = (6.19) 

where, pL = mean of logarithms of x, and oL = standard deviation of ln(x). 
Using mean and standard deviation of the reduced variate, 0 and 1 respectively; 
Eqs. (6.19) and (6.20) become: 

(6.21) 

(6.22) 

Swamee and Rathie (2007) approximated the lognormal distribution as given 
below. 

where, pg is the geometric mean. 

Example 6.6 

Solution 

If xl, x2, x,, . . . x, are log distributed, show that pL = ln(pg) 



222 Engineering Hydrology 

Exercise: Compute F(z) for 10 random numbers using Eq. (6.22) and compare 
it with the approximations proposed by Swamee and Rathie (2007). 

(iii) Pearson type-III Distribution 
Pearson type-I11 (PT3) distribution is a three-parameter distribution. This is 
also known as gamma distribution with three parameters. The PDF and CDF 
of the distribution are given as: 

(6.24) 

(6.25) 

In this distribution, u, P and yare also known as location, scale and shape 
parameters, respectively. 

In terms of reduced variate: z = ~ 

X - U  

P 
1 (z)'-' -2 P.D.F.: f ( z )  = - e 

IPI T(Y) 
(6.26) 

(6.27) 

(iv) Exponential Distribution 
Exponential distribution is a special case of Pearson type-I11 distribution 
wherein the shape parameter y= 1. The PDF and CDF are given as: 

C.D.F.: F(x) = 1 - exp ~ "'1 
(6.28) 

(6.29) 

In Eqs. (6.28) and (6.29), u = location parameter, and P = scale parameter. 

In terms of reduced variate: z = ~ 

x - u  

P 
P.D.F.: f ( z )  = e-' (6.30) 
C.D.F.: F(z) = 1 - e-' (6.3 1) 

(v) General Extreme Value Distribution 
The PDF and CDF of the distribution are given below: 
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k = shape parameter. 
If k = 0, it leads to EV-I distribution, 

it leads to EV-11 distribution, 
it leads to EV-I11 distribution. 

k < 0, 
k > 0, 

(vi) Log-Pearson Type-Ill (LP3) Distribution 
If y = In (x) follows Pearson type-I11 distribution, then x is said to follow 
log-Pearson type-I11 distribution. In 1967, the U.S. Water Resources Council 
recommended that LP3 distribution should be adopted as the standard flood 
frequency distribution by all U.S. federal government agencies. The PDF and 
CDF of the distribution are given as: 

(6.34) 

X 

C.D.F.: F(x) = If(.) dx (6.35) 

In Eqs (6.34) and (6.35), u = location parameter, P = scale parameter, and 
y = shape parameter. 

h X - U  In terms of reduced variate: z = ~ 

P 

U 

z 
C.D.F.: F(z)  = If(.) dz 

0 

(6.36) 

(6.37) 

(vii) Gamma Distribution 
It is a special case of PT3 distribution. The PDF and CDF are expressed as: 

(x )Y- 'e -X 'P  
P.D.F.: f(x) = 

PYI-(Y) 

n (x)'-' -nip 

0 P T Y )  
dx e C.D.F.: F(x) = I 

(6.38) 

(6.39) 

In Eqs. (6.38) and (6.39), P = scale parameter, and y = shape parameter. 
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X In terms of Gamma reduced variate: z = - 
P 

(6.40) 

(6.41) 

(viii) Gumbel Extreme Value Type-I (EV1) Distribution 
One of the most commonly used distributions in flood frequency analysis is 
the double exponential distribution (also known as Gumbel distribution or 
extreme value type-I or Gumbel EV1 distribution). The PDF and CDF of the 
distribution are given below. 

P.D.F.: f(x) = 

C.D.F.: F(x) = e (6.43) 
X - U  In terms of reduced variate: z = ~ 

P 
P.D.F.: f ( ~ )  = e-' - ( e - z )  

c.D.F.: ~ ( z )  = e F Z  

(6.44) 

(6.45) 

Example 6.7 
value distribution. 

Solution 
Using the different values of x, find the value off(x) using Eq. (6.42). Make 
the value of u twice by keeping a as constant. Plot the values of x vs. f(x). 
From the Fig. 6.1, it can be concluded that by changing the location parameter 
u from 0.18 to 0.36 and keeping shape parameter P = 0.26 constant, the peak 
value is shifted to right side. 

Show the effect of location parameter in the Gumbel extreme 

Example 6.8 Find out the value of the reduced variates for EV1 distribution 
corresponding to probability of non-exceedence of 0.30 from Appendix 11. 

Solution 
For EVl distribution, the reduced variate corresponding to probability of 
non-exceedence of 0.3 can be obtained as: 

0.30 = ,-(e-') 

z = -In [-ln (0.30)] = -0.186 
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1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

o u = 0.18, p=0.26 
A u = 0.36, 4= 0.26 

I 0  0.2 0.4 0.6 0.8 1 

Fig. 6.1 Effect of location parameter in the Gumbel extreme 
value distribution 

Exercise: Examine the effect of shape parameter p in GEV distribution. 

22s 

6.7.2 Discrete Probability Distributions 
The use of discrete probability distributions is restricted generally to those 
random events for which the outcome can be described as a success or a failure. 
Discrete probability distribution is useful for those experiments wherein only 
two mutually exclusive events exist. Furthermore, successive trials are 
independent and the probability of success remains constant from one trial to 
another. Binomial and Poisson distributions are commonly used in discrete 
probability distribution analyses. 
(i) Binomial distribution 
The binomial distribution is based on the binomial theorem which states- 
probability of exactly r successes in n trials is: 

(6.46) 

where, P,, = probability of a random hydrologic event of a given magnitude 
and exceedence occurring r times in n successive years, p = probability of 
exceedence of a single event, q = probability of non-exceedence or failure 
which is equal to (1 - p ) ,  r = number of exceedencehccesses, and n = total 
number of events. 

The assumptions for binomial distribution are the same as for Bernoulli 
trials, which, for example, are based on tossing of a coin or drawing a card 
fi-om a pack. Bernoulli trials operate under three conditions: 
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(i) the outcome of any trial can be two mutually exclusive events only, i.e., 

(ii) successive trials are independent; and 
(iii) probabilities are stable. 

any trial can have either success or failure, true or false; 

The application of Eq. (6.46) can also be explained as follows: 

(i) The probability of an event of exceedence occurring z times in n 
successive years will be: 

P " Y  
- n! 

pz,n - z !  (n - z)!  
(6.47) 

(ii) The probability of the event not occurring at all in n successive years 

P o , n = q n = ( l  -p)" (6.48) 
(iii) The probability of the event occurring at least once in n successive years 

(6.49) 

will be: 

will be: 
p1 = 1 - qn = 1 - (1 -p>" 

Example 6.9 A maximum l-day rainfall depth of 300 mm at a station shows 
a return period of 50 years. Determine the probability of l-day rainfall depth 
equal to or greater than 300 mm occurring (a) once in 14 successive years, 
(b) twice in 10 successive years, and (c) at least once in 25 successive years. 

Solution 
Here, 
Probabilities for the given three cases can be determined as follows: 

Case (a): 

P = 1/50 = 0.02 

n = 14 and r = 1 

Therefore, Pl, 14 = 14! (0.02)' (0.98)13 
l! (14 - l)! 

= 14 x 0.02 x 0.7093 = 0.2153 
Case (b): n = 10 and r = 2 

Therefore, P2, = 2 r  lo! (0.02)2 (0.98)' . (10 - 2)! 

-~ - lox  x (0.02)2 x (0.98)' = 0.0153 2 

Case (c): From Eq. (6.49), P, = 1 - (1 - 0.02)25 = 0.3965 
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(ii) Poisson Distribution 
It is sometimes difficult to compute the binomial distribution for large values 
of n. If n is large (> 30) andp is small (< O.l),  then the binomial distribution 
tends to behave as Poisson distribution which is defined as: 

(6.50) 

where, A =  n p.  Conditions for this approximation are: 

(i) the number of events is a discrete integer, 
(ii) two events cannot coincide, 

(iii) the mean number of events in unit time is constant, and 
(iv) events are independent. 

Binomial random variable is a count of the number of successes in certain 
number of trials whereas the negative binomial distributed variable is literally 
opposite of that; wherein the number of successes is predetermined, and the 
number of trials is random. 
(iii) Negative Binomial Distribution 
The negative binomial distribution is the probability of having to wait 
X (= r + k - 1) trials to obtain (r - 1) successes, and a success in (r + k) trials. 
Ifx has a NB distribution with parametersp and r, the probability mass function 
is given by: 

(r > 0) and (0 I p  I 1) (6.5 1) 

In Eq. (6.51), p is the constant probability of a success in any independent 
trial. P(x = r) gives the probability that the variable x is equal to r. Because at 
least r trials are required to get r successes, the range of Eq. (6.5 1) is from r to 
00. In a special case where r is equal to 1 , the negative binomial random variable 
becomes a geometric random variable. The probability that there is no flood in 
n years of record is obtained by making r = 1 in Eq. (6.5 1) as: 

P[(r- 1 ) = 0 ] =  ( ; ) ( l -p)”P(l  -p)kp (6.52) 

Equation (6.52) gives the probability of no success in (r + k - 1) trials. 

6.8 PROBABILITY FUNCTIONS FOR HYPOTHESIS 
TESTING 

Probability functions hequently used for hypothesis testing in hydrologic 
analyses include the following distributions: normal, student’s t-distribution, 
chi-square, and F-distributions. The last three are primarily used to statistically 
test a hypothesis of concern. The normal distribution is, however, used for 
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both prediction of the variable and testing. This testing is based on the derivation 
of critical values, derivable from generally available tables. 

6.8.1 Normal Distribution 
For normal distribution, the PDF and CDF are derived in Section 6.7.1. It is to 
be noted that p and c represent the population parameters of the distribution. 
The best estimates of p and c for the sample data are taken as the sample X 
and the standard deviation (9, respectively. Thus, for computing the probability 
based on sample statistics, X and S are substituted for p and 0, respectively. It 
is possible to compute probabilities by integrating the PDF over a range of 
x-values; however, since there exist an infinite number of values of X and S 
for the infinite number of samples in the population, it is rather impossible to 
integrate numerically. It can, however, be circumvented by transformation of 
the random variable x, as follows. 

If the random variable x has a normal distribution, a new random variable z 
can be defined as: 

(6.53) 

where, z is the standardized variate or normal reduced variate with mean and 
standard deviation of 0 and 1, respectively. This transformation enables PDF 
to be expressed as a function of z, which is called the standard normal 
distribution. 

Probabilities can be computed using Appendix 11. In this table, z-values 
down the left margin are incremented by 0.1 and by 0.0 1 across the top. The 
corresponding F(z) value is also listed in the table and can be used to compute 
probability of z lying within any interval of z. While adopting these values, 
one should make use of symmetric nature of normal distribution about z = 0. 

6.8.2 Chi-square Distribution 
Let zl, z2, z3 . . ., zk be normally and independently distributed random variables, 
with mean p = 0 and variance c2 = 1. Then, the random variable x2  
(= z: + zi  + z3 +... + z;) has the following PDF: 2 

(6.54) 

, otherwise 
which is called as chi-square distribution with k degrees of freedom and can 
be abbreviated as x: . The mean and variance of the x: distribution are ,u = k 
and c2 = 2k. It is to note that the chi-square random variable is non-negative, 
and the probability distribution is skewed to the right. As k increases, the 
distribution becomes more symmetric, and as k + 00, the limiting form of the 
chi-square distribution behaves like normal distribution. 
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The chi-square p) distribution is similar to t-distribution in that it is a 
function of a single parameter n, which denotes the degrees of freedom. At the 
same time, it differs from t-distribution in that the distribution is not symmetric. 
The table of chi-square values (Appendix IV) is identical in structure to the 
table for t-distribution (Appendix 111), with n down the left margin, the 
probability across the top, and ?-values in the table. For example, for 
11 degrees of freedom and 5% of the area at the left tail, 2 varies from 0 to 
4.575. For 17 degrees of freedom, there is aprobability of 0.025 tha t2  will lie 
between 30.19 1 and 00. 

6.8.3 Student’s t-Distribution 
Let z - N(0,l) and v be a chi-square random variable with k degrees of freedom. 
If z and v are independent, then the random variable t is given by: 

Z t =  - J.ll. 
The PDF of the random variable is: 

This is called as t-distribution with k degrees of freedom. It is abbreviated as 
tk The student’s t-distribution is also a symmetric distribution, similar to the 
normal distribution. However, it has only one parameter, v, which represents 
degrees of freedom. This parameter controls the spread of t-distribution. Thus, 
the structure of the table of t-values (Appendix 111) slightly differs from the 
normal table. In Appendix 111, the value of v is given at the left margin, and the 
probability at the right tail of the distribution is given across the top. 

For example, for v = 7 and a probability of 0.05, the t-value is 1.895. Since 
t-distribution is symmetric, 5% of the area at the left tail is to the left of a 
t-value of -1.895 for v = 7. As a result, for 5% of the area (2.5% at each tail), 
critical t-values are -2.365 and 2.365 for v = 7. It is noted that for v >30, the 
normal distribution is generally used in place of t-distribution. 

6.8.4 F-Distribution 
Let w and y be independent chi-square random variables with u and v degrees 

of freedom, respectively. Then the ratio’= ~ has the following probability 

density function: 

wlu 

Y lv 
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This is called as F-distribution with u degrees of freedom in the numerator and 
v degrees of freedom in the denominator. It can be abbreviated as Fu,v. 

The F-distribution is a function of two parameters, rn and n, and these are 
tabulated in Appendix V. The value of F corresponding to the appropriate 
probability in the right tail of the distribution can be derived from this table. 
For example, if m = 10 and n = 20, there is 5% chance that F will be greater 
than 2.35. It is noted that the table is not symmetric. For m = 20 and n = 10, the 
critical value for 5% area in the right tail is 2.77. Thus, the values of rn and n 
must not be switched. 

Example 6.10 Estimate the value of location parameter (u )  and scale 
parameter ( p )  for the density function given below. 

[$ otherwise 

(u I x I p) 
f ( x > =  P - u  

Solution 
The first moment or mean of the distribution is: 

ca 

iu1 = I X f ( 4  dx 
-U 

= Ex(+ P - u  

= ( l)fx P - u  dx 

= (&)[ $Iu P 

- - p2-u2 - p + u  
2 ( p - u ) -  2 

The second moment about the mean is variance, and it can be determined as 
follows: 

c2 = p, ~ (pl)2, where p, is the second moment about the origin. 
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where, a and p are the two unknowns. By solving the two equations, we can 
find out the value of a and p. After solving, we get: 

6.9 STATISTICAL ANALYSIS FOR LINEAR REGRESSION 

The simple linear form of the equation is: 
Y = a + b X  

where, a and b are regression coefficients, computed respectively, as: 
n 
C (xi - (T - V )  
i=l  b =  

i;(xi-x)2 
i=l  

and a = y - b F  

i Yi 
i = l  i = l  where, j7 = ~ and X = ~ 

n n 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

6.9.1 Best-fit Evaluation Criteria 

(a) Coe&ient of determination (3): It describes the extent of best-fit and is 
expressed as: 

(6.61) 

(b) Coefficient of correlation (r): It is the square root of the coefficient of 
determination (3): 

(c) Efficiency (EFF): The efficiency of the best-fit is given as: 

S2 EFF= 1 - - 
sy” 

Z ( Y i  - where, S2 = 
(n  - 2) 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

where, ji is the computed value ofyi, and n is the total number of data points 
(xi, Yi). 
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(d) Standard error (SE): Standard errors of the estimated regression coefficients 
a and b are computed, respectively as: 

112 

SE, = S (t + ('I2 2 ]  
C ( X j  - X) 

(6.66) 

(6.67) 

where, SE, and SEb are standard errors of coefficients a and b, respectively. 
Square of standard errors in Eqs. (6.66) and (6.67) will give variance of the 
parameters a and b. 

(e) ConJidence interval: The confidence interval for a is given as: 

I,= a - t  SEa 1-- , (n-2) ( 2) 

and for 6, it is given as: 

lb= b - t  sEb 

ub= b + t  sEb 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

where, 1, and 1, denote lower confidence limits of a and b, respectively; u, and 
ub denote upper confidence limits of a and b, respectively; a is the confidence 
level; and t represent t-values corresponding to (1 ~ a /2) confidence 

1-- , (n-2) ( 9 
limits and (n  ~ 2) degrees of freedom. 

The requisite t-values can be obtained from the table given in Appendix I11 
by referring to the column corresponding to - and (n ~ 2). In many textbooks, 

e.g., Hines et al. (2003), expressions are available for 100 (1 - a) % confidence 
interval. Thus, the t-value will correspond to 5 and ( n  - 2) also, as the t- 

distribution is symmetric about zero. 
can also be substituted in 

a 
2 

2 

For describing the confidence interval, t ,  
~ ( n - 2 )  

place of t in view of the symmetric distribution (Hines et al., 2003). 
1-- , (n-2) ( 2) 

Thus, the upper 5% of the t-distribution with 10 degrees of fi-eedom is t0.05, 

= 1.812. Similarly, the lower-tail point to.95, = 1.812. 
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6.9.2 Test of Hypothesis 
To test whether regression equation is acceptable, regression coefficients a 
and b are utilized to compute t-statistics and these are subjected to test of 
hypothesis. Hypothesis tests are of following types: H,, and H. In test H,, the 
concern is to test whether a parameter is equal to true value. In case, H, is 
rejected, H holds good. We use notations H, and Hb to represent hypothesis H 
for regression parameters a and b. 

Hypothesis H,: a = a. versus Ha: a # a. is tested by computing: 
(6.72) 

where, H, is the null hypothesis, and represents a statement of equality (=). 
The alternate hypothesis (H,) is a statement of inequality which can be either 
one sided (< or >) or two sided (#). 

t = (a - ao)/SEa 

H, is rejected if I t I > t 
1 - - , ( n - 2 )  ( 3 

The t-statistic for 6, is given by tb = (b - bo)/sEb 

Hypothesis H,: b = 6, is tested by computing: 
t = (b  - bo)/sEb (6.73) 

H, is rejected if I t I > t 
1 - - , ( n - 2 )  ( 3 

Normally, a. and 6, are assumed as zero in hypothesis testing related to linear 
regression. This helps in computing t. It is to note that a. and 6, will not 
always be zero. 

Hypothesis H,: b = 0 can be tested by computing: 
t = (b  - o)/sEb 

H, is rejected if 

(6.74) 

, and 
l - - , ( n - 2 )  ( 

( 4  I t l>  t 

(b) the regression equation explaining a significant amount of variation in Y. 

Example 6.11 Using the data of mean monthly rainfall given in Example 6.1, 
can we conclude that mean rainfall is 12 111111. Assume the level of significance 
is 0.05. 

Solution 
Even though the sample mean is less than the hypothesized mean of 12 111111, 
the monthly rainfall exceeded 4 times 12 111111. Thus, one sided alternative 
hypothesis is considered. 
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H,: Mean = 12 rnm 

HA : Mean > 12 rnm 
a = 0.05 

From Example 6.1, we know that sample mean = 11.58, S = 7.229, and n =12. 

= -0.2012 11.58 - 12.0 
t =  

7.229Ifi 

Degreeoffi-eedomv=n-1=12-1=11 
For v =11 and a =0.05, t, =1.796 (See Appendix 111) 
Since t, > t,  H, is accepted. Acceptance of null hypothesis indicates rejection 
of alternate hypothesis. The test indicates that the true mean is likely to be 
12 mm rather than some value significantly greater than 12 mm. 

6.9.3 
The lower and upper confidence intervals are expressed, respectively, as: 

Confidence Intervals for Line of Regression 

(6.75) 

(6.76) 

where, L and U represent lower and upper confidence limits, respectively and 

(6.77) j k  = a + bXk 

112 
and SEA = S [ i +  (xk - x)2 ] 

c (X i  - x)2 yk 
(6.78) 

which is the standard error of F k  . 

6.9.4 Confidence Intervals of Individual Predicted Values 
Confidence intervals of individual predicted values ofy are given as: 

L’ = j k  - S E A  t 
Yk (1-;), (rr-2)  

(6.79) 

(6.80) 

(6.8 1) 

The above statistical analysis for the linear regression is illustrated below. 
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Year 

Precipitation 

(mm) 

Runoff(mm) 

Example 6.12 
corresponding runoff data were observed in the month of July: 

For a typical catchment, the following precipitation and 

Table 6.1 Year-wise precipitation and runoff values 
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 

42.39 33.48 47.67 50.24 43.28 52.60 31.06 50.02 47.08 47.08 40.89 37.31 37.15 40.38 45.39 41.03 

13.26 3.31 15.17 15.50 14.22 21.20 7.70 17.64 22.91 18.89 12.82 11.58 15.17 10.40 18.02 16.25 

(a) Develop a linear rainfall-runoff relationship using the above data. 
(b) How much variation in runoff is accounted for by the developed 

(c) Compute 95% confidence interval for regression coefficients. 
(d) Test the hypotheses that (i) the intercept is equal to zero, and (ii) the tangent 

(e) Calculate 95% confidence limits for the fitted line. 
(Q Calculate 95% confidence interval for an individual predicted value of 

(g) Comment on the extrapolation of the developed linear relationship. 

Solution 
(a) Assume the form of linear equation is: Y = a + bX, where Y is the runoff, 

Xis the rainfall, and a and b are regression coefficients. The coefficients 
can be determined using Eqs (6.58) and (6.59). 

relationship? 

is equal to 0.500. 

the dependent variable. 

n c (Xi - X>@i - 7) 

c (Xi - x)2 
i=l - - 369'432 = 0.648 

570.0559 
b =  

i=l 

and a = 7 -by  = 14.63 - (0.648 x 42.94) = -13.1951 
Thus, the regression equation is: Y = -13.1951 + 0.648 X. 

coefficient of determination ( r 2 )  as: 
(b) The variation in Y accounted by the regression is determined using the 

r2 = [c (Xi - XXYi - 7>12 
c (Xi - XI2 c (Yi - YI2 
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r2 = 0.66 also implies that the regression equation explains 66% of 

The coefficient of correlation (r) can be given by the square root of (r2) 

and can be computed as: r = 2/066 = 0.81. It is noted that r2  can vary 
between 0 and 1, whereas r can vary from -1 to +l. 

(c) The 95% confidence interval for coefficients a and b is determined as 
follows: 

variation of Y. 

(i) Compute the standard error of the regression equation as: 

S2 = C(y,- ji)2/(n - 2) = (123.7)/(16 - 2) = 8.83 
=$ S=2.97 

(ii) Compute standard error of a using Eq. (6.66): 

=2.97 ( -+ 1 4 2 . 9 4 ~ 4 2 . 9 4 ) ~ ’ ~  

= 5.39 
(iii) Compute standard error of b (SE,) using Eq. (6.67): 

16 570.0559 

= 0.124 

(iv) Compute t from t-table (Appendix 111) for a = 0.05 and 
1-- , ( n - 2 )  ( 

n = 16. It is equal to 2.145. 
(v) Compute 95% confidence interval for a using Eqs (6.68) and (6.69). 

I,= a - t  SE, 

u,= a + t  SE, 

(1 - ;), (n- 2 )  

=-13.1951 - (2.145 x 5.39) = 24.76 

1-- , ( n - 2 )  

=-13.1951 + (2.145 x 5.39)=-1.63 
(vi) Similarly, compute 95% confidence interval for b using Eqs. (6.70) 

and (6.71). 

l b =  b - t  SEb = 0.648 - (2.145 X 0.124) = 0.38 
(1 - $), ( n  - 2) 

u b =  b + t  SEb = 0.648 + (2.145 X 0.124) = 0.91 (1 - ;), (n - 2 )  
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(d) In the assumed linear relation: Y = a + bx where a is the intercept, and b 
is the tangent the first hypothesis is tested for case (i) that a = 0 versus 
a # 0 (or H,: a = 0 versus a # 0). To this end, the t-statistic is computed: 

t = (a - ao)/SE, = (-13.1951 - 0.0)/5.39 =-2.44 

Note that a. = 0. Then, determine the critical t-value for a = 95% and 
n = 16, which is equal to 2.145, as computed in step c (iv). 

Since It1 > t (= to.975, 14), reject H,: a = 0. It implies that a 
1-- , ( n - 2 )  ( 

cannot be equal to zero. 
Similarly, the hypothesis H,: b = 0.5 versus a # 0.5 can be tested as 
(Eq. 6.73): 

t = (b ~ bo)/SEb = (0.648 ~ 0.5)/0.124 = 1.193 

which is less than to.975, 14 (= 2.145). H,: b = 0.5 cannot be rejected. 
The above tests imply that the intercept is significantly different from 

zero whereas b is not significantly different from 0.5. The significance of 
the overall regression can be evaluated by testing H,: b = 0 by computing 
t for 6, = 0, which comes out to be 5.184. Since this value of 5.184 is 
greater than the above critical t-value of 2.145, the hypothesis H,: b = 0 is 
rejected. 

(e) The 95% limits for the regression line are computed in the following steps: 

Compute the standard error 8 as (Eq. 6.78): 

112 

lli2 
Thus, the lower and upper limits can be given by Eqs. (6.75) and (6.76), 
respectively, as: 

U = jyk + SEjk t ( 1-- 2) , ( n - 2 )  

The numerical values of these limits for different values of x are given in 
Table 6.2. 
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Table 6.2 Computation of lower and upper limits for the fitted line 

U 

15.87 
11.48 
19.72 
21.87 
16.44 
23.91 
10.47 
21.68 
19.25 
19.25 
14.98 
13.16 
13.09 
14.70 
17.93 
15.06 

(f) The computation of 95% confidence limits for individual predicted 

(i) Compute the standard error of individual predicted values as 
Y-values can be performed as follows: 

(Eq. 6.81): 

1 (xk - 42.94)2 
= 2 . 9 7 ~  1+-+ [ 16 570.0559 

(ii) Compute 95% confidence limits for individual predicted Y-values as 
(Eqs. 6.79 and 6.80): 

= (-13.1951 + 0.648 ~ k )  

x 2.145 I,, (xk - 42.94)2 
570.0559 

v = j k  -SEjkt 
I-- , ( n - 2 )  ( 

= (-13.1951 + 0.648 ~ k )  

],, ~ 2 . 1 4 5  
(xk - 42.94)2 

570.0559 

X 

42.39 
Y 

13.26 
Y k  

14.27 

L 

12.67 
33.48 3.31 8.50 5.52 
47.67 15.17 17.69 15.66 
50.24 15.50 19.36 16.85 
43.28 
52.60 

14.22 
21.20 

14.85 
20.89 

13.25 
17.86 

31.06 7.70 6.93 3.39 
50.02 17.64 19.22 16.75 
47.08 22.91 17.31 15.38 
47.08 
40.89 
37.31 

18.89 
12.82 
11.58 

17.31 
13.30 
10.98 

15.38 
1 1.62 
8.79 

37.15 15.17 10.87 8.66 
40.38 10.40 12.97 11.24 
45.39 
41.03 

18.02 
16.20 

16.21 
13.39 

14.50 
1 1.72 
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The computed numerical values for the lower and upper limits are 
shown in Table 6.3. 

Table 6.3 Computation of lower and upper limits for the fitted line 

(g) The extrapolation of a regression equation beyond the range of x used in 
estimating a and b are generally discouraged for two reasons. First, the 
confidence interval of a fitted line increases as x-values increase beyond 
their mean; secondly the relation between Y and X may be nonlinear, 
whereas a linear relation is fitted for the prescribed range of x-values. 

6.10 MULTIPLE LINEAR REGRESSION 

When a hydrological variable depends on more than one independent variable, 
the prediction model can be developed using the multiple regression approach. 
Forms of Equation 
The linear form of equations is given as: 

Yl = P1 x1,1+ P2 x1,2 + . . . + Pp x1,p 

Y2 = P1 x2,1+ P2 x2,2 + . . . + Pp x2,p 

Yn = P1%, 1 + P2 xn, 2 + . . . + Pp x n , p  

y.= p .  x. 

....................................... 

where, yi is the ith observation on the dependent variable. 
P 

j = l  
J Z B J  

(6.82) 

(6.83) 

X Y 3.k L’ U’ 

42.39 13.26 14.27 7.71 20.83 
33.48 3.31 8.50 1.47 15.52 
47.67 15.17 17.69 1 1.02 24.37 
50.24 15.50 19.36 12.52 26.20 
43.28 14.22 14.85 8.29 21.40 
52.60 21.20 20.89 13.84 27.93 
31.06 7.70 6.93 -0.35 14.21 
50.02 17.64 19.22 12.39 26.04 
47.08 22.91 17.31 10.66 23.96 
47.08 18.89 17.31 10.66 23.96 
40.89 12.82 13.30 6.72 19.88 
37.31 11.58 10.98 4.25 17.70 
37.15 15.17 10.87 4.14 17.61 
40.38 10.40 12.97 6.38 19.56 
45.39 18.02 16.21 9.63 22.80 
41.03 16.20 13.39 6.81 19.97 
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in whichp is the number of independent variables. In matrix notation, 
(Y>,x1= ( 3 7 n x p  <P),,l (6.84) 

Regression Coefficients 
The vector P which represents the set of regression coefficient values is 
computed using the matrix operation in the following relationship: 

(6.85) 

where, XT is transpose of the matrix X of size (n x p ) .  
Correlation Matrix of the Independent Variables 
The correlation among the independent variables is necessary in order to have 
a better prediction equation for dependent variable. This correlation matrix is 
computed as: 

Let Zz, I = (4, I - XJ)/S, (6.86) 

where, FJ and SI are mean and standard deviation of the j“ independent variable, 
respectively. 

z = [Zz,,1 (6.87) 

So, the correlation matrix is: 

R = -  ZTZ = [R,,J 
n-1  

(6.88) 

where, R ,  is the correlation between the ith and j“ independent variables. R is 
a symmetric matrix since R ,  = Ri, , 
Coefficient of Determination 
The statistic “coefficient of determination’’ is defined as the proportion of the 
total variability in Y, as explained by the regression model. This statistic, denoted 
by R2, is defined by: 

(6.89) 
Here, pT is the transpose of vector p, and YT is the transpose of vector Y. In case 
of multiple regression, the word “coefficient of determination” is also referred 
as “coefficient of multiple determination”. 
Coefficient of Correlation 
The coefficient of correlation is defined as the square root of the coefficient of 
determination. It is denoted by R. 
Efficiency (EFF) 
The efficiency of the fitted regression model is defined as: 

R~ = (pTxT Y -  nF2)/(YT Y -  n F 2 )  

EFF= 1 - - S2  (6.90) 
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where, S2 = C(y,  - jji )2/(n - p )  

s; = C(y,  - Y)2/(n - 1) 

Inferences on Regression Coefficients 

(i) Standard errors SP, of pi: 
Let C = X T X ,  then 

C-' = ( X T  X)-' and Var(j3,) = Cf'S2 

where, Cz? is the ith diagonal element of (X'X)-'. 

(6.91) 

(6.92) 

(6.93) 

Therefore, Sp', = Cf'S2 (6.94) 

(ii) Confidence intervals on pi: 

sP, 
L = & t  

1-- , ( n - 2 )  ( 2)  P ,  

sP, 
u = & + t  

1-- , ( n - 2 )  ( 2) P, 

(iii) Test of hypothesis concerning pi: 
Hypothesis H,: pi = Po versus H: pi f p, is tested by computing: 

Pi - Po t =  ~ 

sP, 

(6.95) 

(6.96) 

(6.97) 

H, is rejected if I t I > t 
I-- 1 ( n - p )  ( 2)  

(iv) Test of hypothesis that the ith independent variable is not contributing 
significantly in explaining the variation in the dependent variable. 

Hypothesis H,: b, = 0 versus H: b f 0 is tested by computing: 

(6.98) 

H i s  accepted if I t I > t 

In such a situation, it is advisable to delete the ith independent variable 
fi-om the model. 

It can be noted that once the multiple regression equation is developed for a 
given input and output matrix, the steps involved in defining the confidence 
interval for regression coefficients as well as regression line are very much 
similar to the approach adopted in case of simple regression. Therefore, 
Example 6.12 also provides a basis for carrying out necessary computations in 
this case. 

( I - - ,  2)  ( n - p )  
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Qp 

I 
A 

Example 6.13 The following table shows the value of peak discharge Q, for 
a catchment area A and rainfall intensity I respectively. Develop a multiple 
regression model for Qp as a linear function of catchment area A and rainfall 
intensity I. 

23 45 44 64 68 62 
3.2 4.6 5.1 3.8 6.1 7.4 
12 21 18 32 24 16 

Solution 
Let the linear relationship be represented as 

Q, = a + bI+ cA 
Consider: 

x= 

1 3.2 12' 
1 4.6 21 
1 5.1 18 
1 3.8 32 
1 6.1 24 
1 7.4 16 

and Y =  

23 
45 
44 
64 
68 
62 

Using the equation ( P ) 3 x 1  = [ ( x ' > 3 x 6 ( x > 6 x 3 1 ~ k 3  ( x T ) 3 x 6  ( y ) 6 x 1  and 
performing the matrix operations, we get the value of coefficients a, 6 ,  c as: 

1 -27.082 
7.847 
1.882 

Thus, the regression equation is y = -27.082 + 7.847 I + 1.882 A 

Using the equation R2 = (P'X' Y - n r 2 ) / ( Y T  Y - n Y 2 )  where n = 6 and 

r = 51, we get the value of R2 as 0.9775. 

SUMMARY 

The hydrological processes such as rainfall, snowfall, floods, or droughts, are 
usually investigated by analysing their records of observation. Hydrologists 
use statistical methods to analyse the records. The reliability of hydrological 
estimates is further evaluated by statistical measures. In hydrologic analysis, 
sometimes it is important to determine the statistical properties of the hydrologic 
data. Therefore, knowledge of statistical analysis of inputs and outputs 
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Year 

Precipitation 
(mm) 
Ear 

Precipitation 
(mm) 

(hydrologic data) is necessary to appreciate both, the limitations and accuracy 
of hydrologic analysis. 

In many cases, theoretical analyses are used to formulate a methodology 
(model), but it is made operational only after hydrological analysis under 
statistical fi-amework. Thus, statistical methods are essential for collecting, 
organizing, summarizing, and analysing the quantitative hydrological 
information. 

This chapter covered the presentation and analysis of both, grouped data 
and continuous data, using probability distribution to represent the probability 
of occurrence of a random variable. We discussed a variety of discrete and 
continuous probability distribution functions including the parameter estimation 
procedures. In the last section, the statistical hypothesis testing tool for making 
decisions about descriptive statistics of a random variable (mean and variance) 
is discussed, which includes the use of t-distribution and chi-square distributions 
for making statistical inferences. The chapter concludes with a discussion on 
regression analysis, which helps to represent a dataset with an equation, and 
tests their reliability using different statistical criteria. 

1 2 3 4 5 6 

142.39 133.48 147.67 125.24 143.28 152.6 

7 8 9 10 11 12 

130.15 150.02 147.08 129.08 140.89 137.31 

EXERCISES 

6.1 (a) What do youunderstand by ‘skewness’? What is the basic difference 

(b) If a distribution has a long tail on the left side, then is it positive or 
between positive and negative skewness? 

negative skewed? 

6.2 For a rain gauge station, the annual precipitation data for 12 years were 
recorded. 

Find the probability that: 
(a) the annual precipitation in any year will be less than 130 rnrn; 

Ans. 0. I67 
(b) the annual precipitation in any year will be greater than 140 rnrn; 

Ans. 0.583 
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(c) the annual precipitation in any year will be greater than 140 mm 
and less than 130 mm; Ans. 0.250 

(d) there will be three successive years of precipitation less than 
130 111111. (Assume that the annual precipitations are independent.) 

Ans. 0.005 

6.3 Calculate the mean and standard deviation of the precipitation data given 
Ans. (i) 139.93 mm (ii) 8.89 mm 

6.4 For the precipitation data given in Problem 6.2, find: 

in Problem 6.2. 

(a) standard error of mean, SE( X) 
(b) standard error of deviation, SE(S) Ans. (i) 2.566 (ii) 1.815 

6.5 Determine the probability of rainfall depth equal to or greater than 
1000 mm occurring 
(a) once in 5 successive years, 
(b) twice in 10 successive years, and 
(c) at least once in 5 successive years, 
(d) not at all in 5 years. 

Assume that the rainfall depth of 1000 mm has a 1 00-years return period. 
Ans. (a) 0.048 (b) 0.0042 (c) 0.049 (d) 0.951 

6.6 The following table shows the annual maximum peak flow rate (m3/s) 
records at a gauging site of a stream for 30 years. 

Arrange the peak flow rates as grouped data, and find: 
(a) n-lean ( m J  
(b) variance (m2) 
(c) coefficient of skewness (m3) 
(d) coefficient of kurtosis (m4) 

6.7 For the data given in Problem 6.6, find: 
(a) standard error of mean SE( X) 
(b) standard deviation, SE(S) 

Year 1 2  3 4 5 6 7 8 9 10 
Peak 
flowrate 100 121 125 130 150 132 165 185 124 160 
Year 11 12 13 14 15 16 17 18 19 20 
Peak 
flowrate 356 374 385 198 251 354 175 190 174 142 
Year 21 22 23 24 25 26 27 28 29 30 
Peak 
flowrate 121 125 214 322 151 204 302 311 288 304 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 
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6.8 Draw the histogram and the cumulative histogram for the data given in 

6.9 Use Poisson distribution to find the probability of fewer than 
Ans. 0.0203 

6.10 For two catchments, the following runoff data were obtained at the outlet: 

Problem 6.6. 

3 occurrences of a 20-year storm in a 150-year period. 

(i) Develop a simple linear rainfall-runoff model. 
Ans. X, = 5.341+ 0.7985 X, 

(ii) Estimate goodness-of-fit criteria for the model developed in terms 
O f  

(a) Coefficient of determination (3) 
(b) Coefficient of correlation (r)  
(c) Efficiency (EFF) 
(d) Standard error (9 

Ans. (a) 0.7668 (b) 0.8757 (c) 50.86 (d) 2.17 

OBJECTIVE QUESTIONS 

1. Probability density function is 
(a) Mean of the event 
(b) Standard deviation of the event 
(c) Probability of occurrence of an event 
(d) None of the above 

2. Coefficient of variation is the 
(a) Ratio of the mean to the standard deviation 
(b) Ratio of the standard deviation to the mean 
(c) Ratio of the square root of the standard deviation to the mean 
(d) Product of the standard deviation and the mean 

3. Variance represents the 
(a) Dispersion about mean 
(c) Dispersion about mode 

(b) Dispersion about medium 
(d) None of these 

X,(mm) 13.26 3.31 15.17 15.5 14.22 21.2 7.7 17.64 22.91 18.89 

X,(mm) 16.97 11.20 20.39 22.06 17.55 23.58 10.63 22.91 21.01 21.01 
12.82 11.58 15.17 10.4 18.02 16.25 9.93 11.94 14.58 16.85 

17.0 14.68 14.57 16.67 16.91 14.09 10.63 12.64 15.28 17.55 
20.59 17.7 12.68 11.2 13.92 8.05 7.44 16.83 6.17 22.51 

X,(mm) 21.29 20.4 15.32 13.9 16.62 10.75 10.14 19.53 8.87 25.21 

~~~~~~~~~~ 

~~~~~~~~~~ 

xxmm) ~~~~~~~~~~ 

x,(mm) ~~~~~~~~~~ 

xxmm) ~~~~~~~~~~ 
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4. Skewness coefficient is 
(a) An indicator of symmetry of the distribution fitted to data points 
(b) Measure of asymmetry of the fi-equency distribution fitted to the data 
(c) Both (a) and (b) 
(d) None of the above 

5.  “Skewness coefficient is equal to zero” indicates 
(a) Normal distribution 
(c) Gaussian distribution 

(b) Binomial distribution 
(d) Gumbel distribution 

6. Kurtosis coefficient measures the 
(a) Peakedness orthe flatness of the fi-equency distribution at the beginning 
(b) Peakedness or the flatness of the frequency distribution near its centre 
(c) Peakedness or the flatness of the fi-equency distribution at the end 
(d) All of the above 

7. Excess coefficient is defined as 
(a) Kurtosis coefficient - 1 
(c) Kurtosis coefficient - 3 

(b) Kurtosis coefficient - 2 
(d) Kurtosis coefficient - 4 

8. Positive excess coefficient indicates 
(a) LEPTOKURTIC distribution 
(c) PLATYKURTIC distribution 

9. Negative excess coefficient indicates 
(a) LEPTOKURTIC distribution 
(c) PLATYKURTIC distribution 

(b) MESOKURTIC distribution 
(d) None of these 

(b) MESOKURTIC distribution 
(d) None of these 

10. Normal distribution is known as 
(a) LEPTOKURTIC (b) MESOKURTIC 
(c) PLATYKURTIC 

11. Standard deviation is the 

(d) None of these 

(a) Square of the variance 
(b) Square root of the variance 
(c) Square of the coefficient of variance 
(d) Square root of the coefficient of variance 

12. Pearson type-I11 distribution 
(a) Is a three parameter distribution 
(b) Is also known as gamma distribution with three parameters 
(c) Both (a) and (b) 
(d) None of the above 

13. Exponential distribution is a special case of Pearson type-I11 distribution 
when the shape parameter, 
(a) Y = 0 (b) Y = 1 (c) Y = 2  (d) Y = O0 
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14. Probability functions used for hypothesis testing in hydrologic analyses 
include the 
(a) F-distributions (b) student t-distributions 
(c) Chi-square distributions 

(a) Mean of non-exceedence of the event 
(b) Median of non-exceedence of the event 
(c) Probability of non-exceedence of the event. 
(d) None of the above 

(d) All of these 

15. Cumulative density function is the 
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CHAPTER 

7 
Flood Frequency 

Analysis 

7.1 INTRODUCTION 

There are numerous problems in hydrology wherein the data mostly contains 
measurements on a single random variable. Hence, univariate analysis and 
univariate estimation are important keys to solve hydrological problems. The 
objective of univariate analysis is to analyse measurements on the random 
variable, which is called sample information; and identify the statistical 
population from which we can reasonably expect the sample measurements to 
have come from. After the underlying population has been identified, one can 
make probabilistic statements about the future occurrences of the random 
variable; this represents univariate estimation. It is important to remember that 
univariate estimation is based on the assumed population and not the sample; 
the sample is used only to identify the population. 

Hydrologic processes, such as rainfall, snowfall, floods, droughts, etc. are 
usually investigated by analysing their records of observations. Many 
characteristics of these processes may not represent definite relationship. For 
example, if annual instantaneous peak discharges of a river are plotted, then a 
rather erratic graph would be obtained. The variation of peak discharge from 
one year to another cannot be explained by fitting a definite relationship, which 
we call as deteministic relationship. In hydrologic analysis, the annual peak 
discharge is considered to be a random variable. Probability and statistical 
methods are employed for analysis of random variables. In this chapter, some 
elementary probability distributions are presented, which are used for frequency 
analysis in hydrology. 

In order to have meaningful estimates from flood frequency analysis, the 
following assumptions are implicit. 
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0 The data to be analysed describe random events. 
0 The data is homogeneous. 
0 The population parameters can be estimated from the sample data. 
0 It is of good quality. 

If the data available for analysis do not satisfy any of the listed assumptions, 
then the estimates are not considered reliable. Moreover, the data should be 
(i) relevant, (ii) adequate, and (iii) accurate. For flood frequency analysis, either 
annual flood series or partial duration series may be used. 

In general, an array of annual peak flood series may be considered as a 
sample of random and independent events. The non-randomness of the peak 
series will increase the degree of uncertainty in the derived frequency 
relationship. Various tests are available to check the randomness of the peak 
flow data. The annual maximum flood series can generally be regarded as 
consisting of random events as the mean interval of each observed flood peak 
is 1 year. However, in case data is used for partial duration series analysis, 
then independence among the data is doubtful. The peaks are selected in such 
a way that they constitute a random sample. 

The term ‘relevant’ means that the data must deal with the problem. For 
example, if the problem is of the duration of flooding, then the data series 
should represent the duration of flows in excess of some critical value. If the 
problem is of interior drainage of an area, then the data series must consist of 
the volume of water above a particular threshold. 

The term ‘adequate’ primarily refers to the length of data. The length of 
data primarily depends upon variability of data; and hence, there is no guideline 
for the length of data to be used for frequency analysis. 

The term ‘accurate’ primarily refers to the homogeneity of data and accuracy 
of the discharge figures. The data used for analysis should not have any effect 
of man-made changes. Changes in the stage discharge relationship may render 
stage records non-homogeneous and unsuitable for frequency analysis. It is 
therefore preferable to work with discharges; and if stage frequencies are 
required, then most recent rating curve is used. 

Watershed history and flood records should be carefully examined to ensure 
that no major watershed changes have occurred during the period of record. 
Only those records, which represent relatively constant watershed conditions, 
should be used for frequency analysis. The fundamental terms related to 
statistics are explained in Chapter 6. In the following section, some of the 
popular methods used in flood frequency analysis are explained with suitable 
examples. 



250 Engineering Hydrology 

Distributions 

7.2 METHODS OF PARAMETER ESTIMATION 

Recommended plotting 
position formula 

Form of the plotting position 
1 formulae F (X Ix) = 1 - - 
T 

Parameter estimation is important in flood frequency analysis. Any set of flood 
occurrences can be described using some statistical distribution. Statistical 
distribution may be mathematically represented through functional relationships 
which may contain a set of parameters. Some of these distributions have been 
described in preceding chapters. There are four well-known parameter 
estimation techniques, viz.: 

0 Graphical method, 
0 Frequency factor method, 
0 Method of moments, and 
0 Method of probability weighted moments and L-moments. 

7.2.1 Graphical  Method  
In graphical method of parameter estimation, the variate under consideration 
is regarded as a function of a reduced variate of a known distribution. The 
steps involved in the graphical method are as follows: 

Normal and Lognormal 
Gumbel EV-I 

Any distribution 
PT3 and LP3 

Blom 
Gringo rt o n 

(i - 0.375)/(N + 0.25) 
(i - 0.4)/(N + 0.12) 

Weibull i/(N + 1) 
Cunnane (i - 0.4)/(N + 0.2) 

[‘i’ indicates the rank number. i = 1 for the smallest observation, and i = N for the largest 
observation, when flood series is arranged in ascending order.] 

The reduced variates for normal and lognormal distributions are computed 
with the help of the table given in Appendix 11. For Gumbel (EV-I) distribution, 
the reduced variates are computed using the relationships given in Chapter 6. 
In case of Pearson type-I11 and log-Pearson type-I11 which are three-parameter 

(i) Arrange the variates of annual maximum flood series in ascending order 
and assign different ranks to individual variates. 

(ii) Assign plotting positions to each of the variates. The plotting position 
formula may be used depending upon the type of distribution being fitted. 
The recommended plotting position formulae for normal, lognormal, 
Gumbel EV-I, Pearson type-111, and log-Pearson type-I11 distributions 
are given in Table. 7.1 

(iii) Estimate the reduced variates for the selected distribution corresponding 
to different plotting positions, which represent the probability of non- 
exceedence. 

Table 7.1 Commonly used unbiased plotting position formulae 
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distributions, different sets of reduced variates are obtained for different 
coefficients of skewness. Graphical method is not widely used nowadays. 
However, to illustrate its application in parameter estimation, an example using 
Gringrorton plotting position formula is given here. Let the relation among xT 
(discharge corresponding to a return period T), location parameter u, and scale 
parameter P be of the type: 

X T  =u+PYT (7.1) 
For Gumbel distribution, 

For two discharges xT1 and x, corresponding to return period Tl and T2, let yT 
be yTl and y,. Thus, 

xT1 = p +YTlP (7-3) 
xn = iu +Y,P (7-4) 

From Eqs. (7.3) and (7.4), 

P =  xT1 - xT2 = slope of straight line 
( Y T l - Y T 2 )  

(7.5a) 

u = xT corresponding to yT = 0 (7.5b) 

Example 7.1 The annual maximum series of a certain gauge and discharge 
site are given below. Table 7.2(a) shows the ranks of the AMS in descending 
order. Estimate the flood and the parameters for a return period of 1000 years 
using Gringrorton plotting position formula. 

Table 7.2(a) 

m 42 m 42 m 42 
1 2294 11 1095 21 675 
2 1880 12 915 22 467 
3 1850 13 889 23 467 
4 1700 14 869 24 392 
5 1500 15 867 25 371 
6 1466 16 860 26 325 
7 1395 17 792 27 288 
8 1366 18 720 28 212 
9 1175 19 693 29 170 

10 1100 20 675 30 120 
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3 
4 

Solution 

212 0.08499 1.092888 18 889 0.583 2.398089 
288 0.11819 1.134036 19 915 0.6162 2.605536 

Table 7.2(b) Calculation of recurrence interval T using Gringrorton plotting 
position formula 

9 
10 

1 I 120 I 0.01859 I 1.018945 I 16 I 867 I 0.5166 12.068681 

467 0.28419 ~ 24 1395 0.7822 4.591463 
675 0.31739 1.464981 25 1466 0.8154 5.417266 

2 I 170 I 0.05179 I 1.054622 I 17 I 869 I 0.5498 12.221239 

15 860 0.48339 1.935733 30 2294 0.9814 53.78571 

5 I 325 I 0.15139 I 1.178404 I 20 I 1095 I 0.6494 12.852273 
6 I 371 I 0.18459 I 1.226384 I 21 I 1100 I 0.6826 13.150628 
7 I 392 I 0.21779 I 1.278438 I 22 I 1175 I 0.7158 13.518692 
8 I 467 I 0.25099 I 1.335106 I 23 I 1366 I 0.749 13.984127 

11 I 675 I 0.35059 I ~ I 26 I 1500 I 0.8486 16.605263 
12 I 693 I 0.38379 I 1.622845 I 27 I 1700 I 0.8818 18.460674 
13 I 720 I 0.41699 I 1.715262 I 28 I 1850 I 0.915 111.76563 
14 I 792 I 0.45019 I 1.818841 I 29 I 1880 I 0.9482 119.30769 

Using Eq. (7.2), 
For T =  53.78, y T =  3.9756 
For T =  1.018945, yT=-1.3825 

Using Eq. (7.5a), 

(2294 - 120) 
[3.9756 - (-1.3825)] 

slope = p = = 405.74 

Corresponding to yT = 0, intercept u = 688.0 m3/s 
From Fig. 7.1, it can be seen that after extending the straight line, the 1000 
year return flood comes to be 3800 m3/s. 

For i =  1, (1 - 1/T) = (1 -0.44) /(30 + 0.12) = 0.01859. Therefore, T =  1.018945. 
Similarly, return periods for all the discharge can be determined. Since the 

discharge values are in ascending order, the lower rank of a discharge is taken 
into account where repetition of discharge has taken place. 

The graph is plotted on a Gumbel probability paper between Q and T. In 
Gumbel probability paper, the graph will always be a straight line because 
there exists a linear relationship between return period T and discharge Q. 
Reduced variate values are shown below the scale of return period. 



Flood Frequency Analysis 

5.0 

4.5 

4.0 0 $ 3.5 

8 3.0 
s 

253 

- - 

- - 

- - 

- - 

-2 -1 0 1 2 3 4 5 6 7  
Reduced variate 

Fig. 7.1 Gumbel probability paper using Gnngrorton plotting 
position formula 

Example 7.2 Estimate u and p in the previous example by considering the 
following plotting position formula T = (N + l)h, where N is the sample size 
and i is the order of flood arranged in descending manner. 

Solution 
Table 7.3 contains the necessary computations and Fig. 7.2 shows the plot of 
xT versus reduced variate. 

Table 7.3 

( N  + 1) ( N  Rank Q (rn3/s) ~ Rank Q (rn3/s) ~ (N+l )  Rank Q (rn3/s) ~ 

1 2294 31 11 1095 2.818 21 675 1.4762 
2 1880 15.5 12 915 2.583 22 467 - 

3 1850 10.33 13 889 2.384 23 467 1.3478 
4 1700 7.75 14 869 2.214 24 392 1.2916 
5 1500 6.2 15 867 2.067 25 371 1.24 
6 1466 5.166 16 860 1.9375 26 325 1.1923 
7 1395 4.428 17 792 1.823 27 288 1.1481 
8 1366 3.875 18 720 1.722 28 212 1.1071 
9 1175 3.444 19 693 1.6315 29 170 1.0689 

10 1100 3.1 20 675 - 30 120 1.0333 

i i i 
~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 

~~~~~~~ 
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Recurrence internal in T (years) 
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-2.0 -1.0 0 1 2 3 4 5 6 7  
Reduced variate 

Fig. 7.2 Gumbelprobability paper using Weibullplottingposition 
formula 

Using Eq. (7.2), 
For T =  31, y,= 3.4176 and 

For T =  1.033, y,=-l.234 
Using Eq. (7.5a), 

(2294 - 120) = 467.36 slope = f i  = 
[3.4176 - (- 1.234)] 

Corresponding to y ,  = 0, intercept u = 682.0 m3/s 
From Fig. 7.2, it can be seen that after extending the straight line, the 1000 

year return flood comes to be 4200 m3/s. 
It is to note that plotting position formula influences estimates of model 

parameters. Thus, one has to be careful in selecting a plotting formula for a 
particular distribution. 
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Log-Pearson type-I11 

distribution 

7.2.2 Frequency Factor 
Similar to Eq. (7. l), a general frequency equation proposed by Chow (1964), 
and applicable for different distributions, is in the following form: 

XT= m KTs (7.6) 
where, xT = magnitude of the different peak flood series, or magnitude of the 
flood at the required return period T; KT = frequency factor corresponding to 
xT; rn and s = mean and standard deviation of the population, respectively, 
which would be replaced by the sample statistics. The similarity between Eqs. 
(7.1) and (7.6) is evident. Table 7.4 provides expressions to determine KT for 
certain probability distributions. 

Table 7.4 Frequency factor for different distributions 

KT = z + (z2 - l)k + 1 (z3 - 6z)P - (2 - l)k3 + zk4 + 1 K5 
where k = 816 and g is skewness 

3 3 

112 
Normal distribution 

2.515517 +0.802853w+0.010328w2 
1 +1.432788w+0.189269w2+0.001308w3 

z = w -  

K T = z  

EV-I distribution 1 KT=-*(,,772+hk(&)]} 

Example 7.3 
of 100 years using normal distribution and EV-I distribution. 

Solution 
Normal distribution 

Calculate the frequency factor for an event with a return period 

T = 100 years, p = 1/100 = 0.01 

112 

w =  [ln($]] 

112 

= [ln[&]] 

= 3.034 
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2.5 155 17 + 0.802853~ + 0.010328 w2 
1 + 1.432788w+O.189269w2 +O.O01308d 

Z = W -  

2.515517 + (0.802853 x3.034) 
+ [0.010328 x (3.034) '1 

1 + (1.432788 x 3.034) +[0.189269 x(3.034) '1 
+ [0.001308 x (3.034)3] 

= 3.034 - 

= 2.325 

EV-I distribution 

KT= -~ 0.5772+In "1 7c 

= 3.136 

h ( q  100-1 J 

7.2.3 M e t h o d  of M o m e n t s  (MOM) 
The method of moments makes use of the fact that if all the moments of a 
distribution are known then everything about the distribution is known. For all 
the distributions in common usage, four moments or fewer are sufficient to 
specify all the moments. For instance, two moments, the first together with 
any moment of even order are sufficient to specify all the moments of the 
normal distribution, and therefore the entire distribution. Similarly, in 
Gumbel EV-I distribution, the first two moments are sufficient to specify all 
the moments and hence the distribution. For Pearson type-I11 distribution three 
moments are sufficient, always taken as the first three, to specify all the 
moments. In these cases, the number of moments needed to specify all the 
moments and hence the distribution equals the number of parameters. 

This method is dependent on the assumption that the distribution of variate 
values in the sample is representative of the population distribution. Therefore, 
a representation of the former provides an estimate of the later. Given that the 
form of the distribution is known or assumed, the distribution that the sample 
follows is specified by its first two or three moments calculated from the data. 
Table 7.5 provides relationships between model parameters and moments for 
a variety of distributions. 
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Table 7.5 Probability distribution parameters in relation to sample moments 

Distribution Pvobability Density Function Range Equation of 
pavametevs in tevms 
of the sample moments 

Exponential x 2 O  a =  x 

Ixtreme value 
type-I 

u = X - 0.57728 (-w < 

x < w) 

Gamma x 2 0  

Normal u = x ,  o = s x  

Lognormal 

u = x - S X h ,  Pearson 
type-I11 

x 2 u  

Log-Pearson 
type-I11 

u = y - s y f i  lnx 2 u 

Table 7.5 does not include other GEV distributions. Stedinger et al. (1993) 
have given MOM estimators for three types of GEV distributions. 

Parameter Estimates  using MOM for GEV Distribution 

F(q) = exp [ -exp ( -- ‘;‘)I fory=O (7.8) 

where, q is the flood exceedence value, u is a location parameter, p is a scale 
parameter, and yis the shape parameter. The range of the variable, q, depends 
on the sign of y 
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When yis negative (g > 1.1369), then the variable q can take values in the 
range of [(u + P/.i, < q < -1 which make it suitable for flood frequency analysis. 

When yis positive, then the variable q becomes upper bounded; and for 
y = 0, the distribution reduces to two-parameter extreme value type-I or 
Gumbel's distribution. The MOM estimators of the GEV parameters are given 
by Stedinger et al., (1993) as: 

(7.10) 

where, sign is '+' or '-' depending upon the value of y-estimate, and g is the 
skewness. 
Parameter  Es t imates  using MOM for Generalized Pareto (GP) 
Distribution 
The GP distribution introduced by Pickands (1 979, has the following CDF: 

(7.12) 

where, P is the scale parameter, u is the location parameter, and yis the shape 
parameter. For y= 0, exponential distribution is obtained as a special case. For 
y I 0, the range of u is (u I q I -) and for y 2  0 the upper bound exists: 
u I q I (u + P/y) .  The parameter estimates of the GP distribution using MOM 
estimation method are given in the following relations: 

2(1- y)(l + 2yy2 
g =  (1+3y) (7.13) 

Given the skewness of the AMS data, ycan be computed numerically. The 
other parameters are then obtained as follows: 

P = o [ ( l  +y)2(1 +2y)]ll2 (7.14) 

(7.15) 

where, p and o are the mean and standard deviation, respectively. 
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Example 7.4 Estimate the parameters using method of moments for the given 
data in Example 7.1 considering GEV distribution and GP distribution. 

Solution 
Parameter Estimates for GEV Distribution 
Using the given data, the following statistics are calculated: 

Mean Q = 919.6 m3/s 

Standard deviation (0) = 561.88 m3/s 

Skewness coefficient (‘g) = 0.6348 
Using skewness coefficient g and Eq. (7.1 l), one can estimate yto decide the 
type of GEV distribution. 

Skewness coefficient (‘g) for AMS is 0.6348. 

Using the equation given by Stedinger et al., (1993), the value of yis computed 
as 0.10083 using the method of iteration. 

Equation (7.10) yields P/o = 0.8743. 

The value of (r which is the standard deviation of AMS data is 561.88 m3/s, 
therefore P = 491.3 1 m3/s. 
Hence, using Eq. (7.9), we have: 

491.31 x [r(i.i0083) - 11 
0.10083 

u = 919.6 + 

= 680.91 m3/s 
Thus, the parameters estimated using method of moments u, p, and yare 680.91, 
491.31, and 0.10083, respectively. 

Parameter Estimates for GP Distribution 
Skewness coefficient (‘g) for AMS is 0.6348. 
Using Eq. (7.13), the value of yis computed as 0.456 using the method of 
iteration. 

Using P = o[(l + ~ ) ~ ( 1  + 2y)I1l2 = 561.SS[(1.456)2 (1 + 2 x 0.456)I1l2 
= 1131.22 m3/s 

u =p-PPl(l + y )  = 919.6 - [1131.22/1.456] 
= 142.66 m3/s 
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7.2.4 Probability Weighted Moment (PWM) and Linear (L) 
Moments 

Greenwood et al. (1 979) introduced the method of probability weighted moment 
(PWM) and showed its usefulness in deriving explicit expressions for 
parameters of distributions whose inverse forms x = x(F) can be explicitly 
defined. If PDF be denoted by F = F(x) = P[XI x], then PWMs are the moment 
of the function x(F); and they are expressed as: 

1 

Mij, k E[xiFJ (1 - F ) k ]  = [x(F)’ FJ(1 - F ) k  dF (7.12) 
0 

It can be shown that, 

(7.13) 

where, Mi,.i, k is the PWM of the order of i, j ,  and k; and E is the expectation 
operator. Mi, o, represents the conventional moment about the origin of 
order i. These can than be related to the distribution parameters and the resultant 
relation may be a simpler structure than the conventional moments and the 
parameters. For example, the parameters of Gumbel EV-I distribution using 
PWMs are as follows: 

(7.14) 

(7.15) 

x ( F )  = u - P In[-ln ( F ) ]  

Mi,.i, = 

1 
[u - P In(-ln F)Ii Fi (1 - F)’ dF 

0 
1 1 

= j [u F ~ I ~ F  - j p h - l n  F ) ] ~  ~i d~ (7.16) 
0 0 

- u l n ( l + j ) + &  
- - + p  

1 +  j 1 +  j 
(7.17) 

where, E = Euler’s constant = 0.5772 
Ml,O,O = + PE (7.18) 

ln(2) + E 
Ml,I,O = ; + P [  2 ] 

Solving Eqs. (7.18) and (7.19): 

(7.19) 

(7.20) 

and u = Ml,o,o - 0.5772 P (7.21) 
L-moments are linear combination of order statistics which are robust to outliers 
and are unbiased for small samples, making them suitable for flood fi-equency 
analysis, including identification of distribution and parameter estimation 
(Hosking, 1990, Hosking and Wallis, 1997). L-moments are identified as linear 
combination of probability weighted moment (PWM) 



Flood Frequency Analysis 261 

q y , 0  = P, =EV[F(x)IY} (7.22) 
where, F(x) is the cumulative distribution function of x. When r = 0, Po is the 
mean. The first four L-moments expressed as linear combination of PWMs 
are: 

4 = P o  (7.23a) 

n, = 2 P1- P o  (7.23b) 
= P2 - P1+ P O  (7.23~) 

a, = 20 p3 - 30 p2 + 12 p1 - p o  (7.23d) 
Landwehr et al. (1979) recommends the use of biased estimates of PWMs and 
L-moments, since such estimates often produce quintile estimates with lower 
root mean square error than unbiased alternatives. Nevertheless, unbiased 
estimators are preferred in moment diagrams for goodness-of-fit for less bias 
and are invariant when the data is multiplied by a constant. Unbiased estimates 
of PWMs for any distribution can be computed as follows: 

l n  b, = - z X, 
,=I 

b,  = kl[ ( (n  - j )  ]x, 
j=1 n>(n -1) 

n - 2  (n - j ) (n  - j  - 1) 

n - 3  (n  - j ) (n  - j  - l)(n - j  - 2) 

j = l  n(n -l)(n -2) 1 xJ b,= z[ 

j = l  n(n - l)(n - 2)(n - 3) 1 xJ b,= z[ 

(7.24a) 

(7.24b) 

(7.24~) 

(7.24d) 

where, xi represents the ordered streamflow with x1 as the largest streamflow 
and x, as the smallest. The L-moment ratios which are used for expressing the 
parameter estimates are expressed as: 

L-coefficient of variation (z) = A, 
L-skewness (z,) = A3/A2 

and L-kurtosis (z,) = A4/A, 
The sample estimates of L-moments are calculated by replacing b,, b,, b,, and 
b, for Po, P,, P,, and P2 in Eq. (7.23). So, the parameters of Gumbel EV-I 
distribution in the above example can be written in terms of L-moment as 
follows: 

p = &/log 2 
u = a, - 0.5772p 

The relationship equations between sample moment parameters and population 
parameter estimation for different distributions using L-moment are given in 
Hosking and Wallis (1997). Although the theory and application of L-moment 
parallels those of conventional moment, there are certain advantages of 
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L-moment. Since sample estimators of L-moments are always a combination 
of ranked observations, they are subjected to less bias than ordinary product 
moments. This is because ordinary product moments require squaring and 
cubing, giving greater weight to observations far from the mean resulting in 
bias. 
Parameter Estimates using PWM Method for GEV Distribution 
The PWM estimators for GEV distribution are given by Hosking et al., (1985) 
as: 

2 
(r3 + 3) - ln(2)/ln(3) y= 7.859~ + 2 . 9 5 5 4 ~ ~  ; c = 

(7.25) 

(7.26) 

(7.27) 

Parameter Estimates using PWM Method for GP Distribution 
Similarly, the parameter estimates by the PWM method is given by Hosking 
and Wallis (1997) as follows: 

y = (1 - 3z3)/(1+ z3); p = h ( i  + y)(2 + y); u = a, - h ( 2  + y) 
(7.28) 

where, z3 is the L-skewness, A, and are the first and second L-moments for 
the sample data. Hosking and Wallis (1997) have given the PWM estimator 
equations as follows: 

(7.29) Y = (4 - 4 0 Y h  - 2 P = (1 + Y)(4 - 40)  

where, Ai are the L-moments, which are defined for y> -1. 

Example 7.5 Estimate the parameters using probability weighted moments 
for the given data in Example 7.1 considering GEV distribution and GP 
distribution. 

Solution 
Parameter estimates using GE V distribution 

Table 7.6 Calculation of probability weighted moments 

(Contd.) 

Rank Q (m3/s) b, b2 b3 Rank Q (m3/s) b, b2 b3 
~~~~~~~~~~ 

1 2294 76.467 76.467 76.47 16 860 13.839 6.425 2.86 
2 1880 60.506 58.345 56.18 17 792 11.834 5.072 2.07 
3 1850 57.414 53.313 49.36 18 720 9.931 3.901 1.44 
4 1700 50.805 45.361 40.32 19 693 8.762 3.129 1.04 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 
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(Contd.) 

Thus, the parameters estimated using probability weighted moments u, P, and 
yare 705.0,476.20, and 0.03617, respectively. 

Parameter estimates using GP distribution 

(1-323) = [1 -(3 xO.147)]/(1.147)=0.487 Y= 
(1 + 7 3 )  

P = h(1 + y)(2 + y) = 320.63 (1.487) (2.487) = 1185.74 m3/s 
u = A, - h ( 2  + y) = 919.6 - 320.63 (2.487) = 122.19 m3/s 

5 1500 43.103 36.946 31.47 20 675 7.759 2.494 0.74 
6 1466 40.441 33.220 27.07 21 675 6.983 1.995 0.52 
7 1395 36.879 28.977 22.54 22 467 4.294 1.074 0.24 
8 1366 34.543 25.907 19.19 23 467 3.757 0.805 0.15 
9 1175 28.362 20.259 14.26 24 392 2.703 0.483 0.07 

10 1100 25.287 17.159 11.44 25 371 2.132 0.305 0.03 
11 1095 23.914 15.373 9.68 26 325 1.494 0.160 0.01 
12 915 18.931 11.494 6.81 27 288 0.993 0.071 0.00 
13 889 17.371 9.926 5.51 28 212 0.487 0.017 0.00 
14 869 15.982 8.562 4.44 29 170 0.195 0.000 0.00 
15 867 14.948 7.474 3.60 30 120 0.000 0.000 0.00 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

~~~~~~~~~~ 

620.118 474.713 387.516 

First of all, the probability weighted moments are calculated using Eq. (7.24) 
and the calculations are shown in Table 7.6. From the table, the summation of 
the values in columns (3), (4), and (5) gives the values of b,, b,, and b,, 
respectively; and b, is the mean of AMS. The L-moments are calculated as 
under. 

A, = b, = 919.6 

& = 2 b,  ~ b, = 320.63 

A, = 6 b, ~ 6 b,  + b, = 47.17 

A4 = 20 b, ~ 30 b, + 12 b,  ~ b, = 30.75 

2, = a,/& = 0.147 

Therefore, c = [2/(2, + 3)] ~ [ln(2)/ln(3)] = [2/(3.147)] ~ 0.6309 = 0.00459 

y= 7.859~ + 2.9554~~ = 0.03617 

= 476.20 m3/s 320.63 x0.03617 P =  
r(1 + 0.03617)(1 -2 -0.0361’3 
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7 . 3  RETURN PERIOD FLOOD ESTIMATION 

A flood of certain magnitude is expected to occur after a certain recurrence 
interval. Expected or average value of this recurrence interval is also known 
as return period. Given the flood records at any site, it is of interest to compute 
the magnitude of floods which correspond to different return periods. One 
possible and most widely used approach is to identify the particular statistical 
distributions, and use these to predict a flood of desired return period. In this 
section, we discuss the use of different statistical or probabilistic distributions 
in return period flood estimation. 

7.3.1 Normal Distribution 
The parameters of the normal distribution, p and o, which describe the 
characteristics of the given set, are computed as: 

(7.30) 

l(7.31) 

After computing the parameters, p and o, the T-year flood estimates can be 
obtained using the normal distribution. The steps are: 

Compute X and s from the sample data. X and s provide estimates for p 
and o. 
Compute the probability of non-exceedence using the relation: 

(7.32) 
Compute the normal reduced variate (z,) from the statistical table, 
corresponding to the probability of non-exceedence computed in 
step (2). 
Estimate the flood for T-year recurrence interval using the following 
equation: 

F(x <x> = 1 ~ 1/T 

x,=p+oz, (7.33) 

Example 7.6 Using the data given in Example 7.1, estimate the flood for a 
return period of 1000 years using the formula given by Swamee and Rathie 
(2007) for normal distribution. 

If the data follows normal distribution, then according to Swamee and Rathie 
(2007): 

-0.6144[-ln(T - 1)]1’1.12 
-0.6144[ln(T - 1)]1’1.12 

for (1 I T 52)  
for (T 2 2) 

k =  { 
X - P  k =  ~ 

o 
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Solution 
Since T = 1000 years, using the formula given above k = 3.449 

Using the formula k = ~ - , where p = 919.6 and s = 561.8827, the value of 

flood discharge is equal to x = 3.449 x 561.8827 + 919.6 = 2857.53 m3/s. 

7.3.2 Lognormal Distribution (Two parameter) 
In lognormal two-parameter distribution, the variates are transformed to the 
log domain by taking logarithm of each variate, and then the mean and standard 
deviation of the transformed series are computed. The flood at required 
recurrence interval can be computed in the following steps after fitting the 
lognormal distribution with the sample data. 

0 

(i) Transform the original series ofpeak flood data into log domain by takmg 
logarithm of each variate to base e. 

(ii) Compute the mean ( j )  and the standard deviation (s,) from the log- 
transformed series. 7 ands, provide estimates for py and o,, respectively. 

(iii) Compute the probability of non-exceedence for the given recurrence 
interval (T). 

(iv) Compute the normal reduced variate (zT) corresponding to the probability 
of non-exceedence computed in step (3). 

(v) Estimate the flood for T-year recurrence interval in log domain using the 
following equation: 

Y T = P y + P y z T  (7.34) 
(vi) Transform the estimated T-year flood in original domain by computing 

its exponent, i.e., 
XT = exP(YT) (7.35) 

Example 7.7 
data follow lognormal distribution for the data given in Example 7.1. 

Solution 
Since p, = 6.60 and oy = 0.743 
Probability of non-exceedence, F(z) = 1 - 1/1000 = 0.999 

Estimate 1000-years floods assuming that the peak discharge 

zT= 3.10 for T =  1000 years 

Y T = P y + o y z T  

ylooo = 6.60 + (0.743 x 3.10) = 8.9033 

xlooo = (e)ylooo = ( e = 7356.2 m3/s 
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10 
20 

7.3.3 Gumbel’s Extreme Value Type-I Distribution 
The relationship between the parameters and the statistical moments of the 
data are given by the following equations: 

(7.36) JSO P =  7 
u =/A - 0.450 (7.37) 

The population statistics, /A and o would be replaced by the sample statistics, 
X and s, respectively. The step-by-step procedure for computing the T-year 
flood using EV-I distribution is given below: 

N O  1 2 3 4 5 6 7 8 9 

0.4952 0.4996 0.5035 0.507 0.51 0.5128 0.5157 0.5181 0.5202 0.522 
0.5236 0.5252 0.5268 0.5283 0.5296 0.5309 0.532 0.5332 0.5343 0.5353 

Compute mean ( X ) and standard deviation (s) from the sample. X and s 
provide estimates for p and O, respectively. 
Compute the parameters, u and P, using Eqs. (7.36) and (7.37). 
Compute the probability of non-exceedence corresponding to T-year 
recurrence interval. 
Compute the EV-I reduced variate bT) using the relationship: 

(7.38) 

Estimate T-year recurrence interval flood using the EV-I distribution as 
follows: 

xT= + PYT 
Sample Size Correction 
To estimate frequency factor, Chow (1964) has given the frequency 
which is given in Table 7.4. Literature does indicate that frequency 
depends upon the sample size (Subramanya, 1984, Raghunath, 2007). 

YT - Yn KT= ~ 

Sn 

xT= /A + OK, 

(7.39) 

factor 
factor 

where, /A and o are mean and standard deviation respectively, y,  = reduced 
mean and s, = reduced standard deviation which is a function of sample size. 
As N + 00, y,  = 0.577 and s, = 1.2825. Tables 7.7 and 7.8 give the values of 
reduced mean and reduced standard deviation as per the sample size, 
respectively. 

Table 7.7 Reduced mean (y,) in Gumbel EV-I distribution 

(Contd.) 
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80 
90 
100 

(Contd.) 

1.1938 1.1945 1.1953 1.1959 1.1967 1.1973 1.1980 1.1987 1.1994 1.2001 
1.2007 1.2013 1.2020 1.2026 1.2032 1.2038 1.2044 1.2049 1.2055 1.2060 
1.2065 

Table 7.8 Reduced standard deviation (sn) in Gumbel EV1 distribution 

Example 7.8 
assuming that the peak discharge data follow Gumbel’s EV-I distribution. 

Solution 
Since p = 919.6 

Using the data given in Example 7.1, estimate 1000-years floods 

O= 561.8827, and 
a = 0.7797 x o = 0.7797 x 561.8827 = 438.09 
u = p  ~ 0.450 
u = 919.6 - (0.45 x 561.8827) = 666.75 

y,=-In [ In- A] 
ylooo = -In [In (1000/999)] = 6.907255 

xloo0 = 666.75 + (438.09 x 6.907255) = 3692.75 m3/s 
XlOOO = + PYIOOO 

30 0.5362 0.5371 0.5380 0.5388 0.5396 0.5402 0.5410 0.5418 0.5424 0.5430 
40 0.5436 0.5442 0.5448 0.5453 0.5458 0.5463 0.5468 0.5473 0.5477 0.5481 
50 0.5485 0.5489 0.5493 0.5497 0.5501 0.5504 0.5508 0.5511 0.5515 0.5518 
60 0.5521 0.5524 0.5527 0.5530 0.5533 0.5535 0.5538 0.5540 0.5543 0.5545 
70 0.5548 0.5550 0.5552 0.5555 0.5557 0.5559 0.5561 0.5563 0.5565 0.5567 
80 0.5569 0.5570 0.5572 0.5574 0.5576 0.5578 0.5580 0.5581 0.5583 0.5585 
90 0.5586 0.5587 0.5589 0.5591 0.5592 0.5593 0.5595 0.5596 0.5598 0.5599 
100 0.56 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

N O  I 2 3 4 5 6 7 8 9 

10 0.9496 0.9676 0.9833 0.9971 1.0095 1.0206 1.0316 1.0411 1.0493 1.0565 
20 1.0628 1.0696 1.0754 1.0811 1.0864 1.0915 1.0961 1.1004 1.1047 1.1086 
30 1.1124 1.1159 1.1193 1.1226 1.1255 1.1285 1.1313 1.1339 1.1363 1.1388 
40 1.1413 1.1436 1.1458 1.1480 1.1499 1.1519 1.1538 1.1557 1.1574 1.1590 
50 1.1607 1.1623 1.1638 1.1658 1.1667 1.1681 1.1696 1.1708 1.1721 1.1734 
60 1.1747 1.1759 1.1770 1.1782 1.1793 1.1803 1.1814 1.1824 1.1834 1.1844 
70 1.1854 1.1863 1.1873 1.1881 1.1890 1.1898 1.1906 1.1915 1.1923 1.1930 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 
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Consideration of sample size 
p = 919.6, O= 561.8827, 
ylooo = -In [ln(l000/999)] = 6.907255 
ForN= 30,y, = 0.5362 ands, = 1.1124 
K,= (6.907255 - 0.5362)/1.1124 = 5.7273 
xlooo = 919.6 + (561.8827 x 5.7273) = 4137.67 m3/s 

It is to note that estimation of return flood is influenced by the sample size. 

7.3.4 Pearson Type-I11 (PT-111) Distribution 
PT-I11 distribution is a three-parameter distribution. Therefore, three moments 
are needed for computing the parameters. Mean, standard deviation, and 
skewness computed from the sample data describe the measures for the first 
three moments of the sample data. The following steps are usually involved in 
computing the T-year flood using the PT-I11 distribution. 

(i) Compute the mean, p and standard deviation O. Compute the coefficient 
of skewness, g ,  from the sample using the following equation: 

(7.40) 

(ii) Compute the probability of exceedence for the given recurrence interval, 
T, which equals to 1/T. 

(iii) Estimate the frequency factor (K,) from the table corresponding to the 
computed coefficient of skewness Cg) and the probability of exceedence. 

(iv) Estimate T-year flood using the equation: 
x , = p +  OK, (7.41) 

Example 7.9 
assuming that the peak discharge data follow PT-I11 distribution. 

Solution 
Since p = 919.6 

Using the data given in Example 7.1, estimate 1000-years floods 

p = 561.8827, and 
g = 0.634 

Probability of exceedence = 1/1000 = 0.001 
Frequency factor, K, = 4.00 (using table given in Appendix VI) 

X, = p + OK, 

= 919.6 + (561.8827 x 4.00) 
= 3 172.35 m3/s 



Flood Frequency Analysis 269 

7.3.5 Generalized Extreme Value (GEV) Distribution 
The L-moment estimators A,, &, A,, and 7, are obtained by unbiased estimators 
of the first three PWMs. The maximum likelihood estimators are determined 
numerically using a modified Newton-Raphson algorithm (Hosking et al., 
1985). The return period flood is given as: 

1/T (7.42) 

Example 7.10 Using the data of Example 7.1 estimate the flood for a return 
period of 1000 years using (i) method of moments, and (ii) PWM considering 
both GEV and GP distributions. 

Solution 

Using MOM 
From Example 7.4, the parameters estimated using method of moments u, p, 
and yare 680.91, 491.31, and 0.10083, respectively. Using these parameter 
values in Eq (7.42): 

p[1- (-logF)Y] 
q ( T )  = u + 

Y 

491.31[1- (-10gO.999)~~'~~*~] 
0.10083 

q ( T )  = 680.91 + 
= 3321.14 m3/s 

Using P WM 
From Example 7.5, the parameters estimated using probability weighted 
moments u, p, and yare 705.0,476.20, and 0.03617, respectively. Using these 
values of the parameters in Eq (7.42), we get: 

476.2[1- ( -10gO.999)~.~~~'~]  
0.036 17 

q ( T )  = 705.0 + 
= 3920.27 m3/s 

7.3.6 Generalized Pareto (GP) Distribution 
The return period flood is given as follows: 

q ( T )  = u + P[l-(l-F)Y1 ; F = l - l / T  (7.43) 
Y 

Example 7.11 Estimate the flood for a return period of 1000 years using 
(i) method of moments and (ii) PWM using GP distributions using the data 
given in Example 7.1. 
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Solution 

Using MOM 
From Example 7.4, the parameters estimated using method of moments u, p, 
and yare 142.66, 1131.22, and 0.456, respectively. Using these values of the 
parameters in Eq. (7.43), we get: 

F = 1 - (1/1000) = 0.999 

1131.22[1- (1- 0.999)0.456] 
q ( T )  = 142.66 + 

0.456 
= 251.7 m3/s 

Using P WM 
From Example 7.5, the parameters estimated using probability weighted 
moments u, p, and yare 122.19, 1185.74, and 0.487, respectively. Using these 
values of the parameters in Eq (7.43), we get: 

1185.74[1- (1 - 0.999)0.487] 
0.487 

q(T) = 122.19 + 
= 2472.74 m3/s 

7.4 ESTIMATION OF FLOOD DISCHARGE FOR A 
CONFIDENCE INTERVAL 

It is oRen of interest to estimate confidence interval for a predicted return 
flood. The procedure to estimate confidence interval involves the following 
steps. 

1. Compute standard error (S,) for a given distribution as given below. 

For normal distribution 

For extreme value type-1 

(7.44) 

(7.45) 

where, KT is the fi-equency factor. 

2. Compute flood discharge for a particular confidence limits as the formula 
given below. Table 7.9 provides the value offc) for a particular confidence 
interval. 
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c(%)  
Ac) 

Confidence Limits 

where, Ac) is the function of confidence probability. 

Table 7.9 Determination of f ( c )  for a particular confidence interval 

xconf = xT *Ac) sE (7.46) 

50 68 80 90 95 99 
0.674 1.0 1.282 1.645 1.96 2.58 

Example7.12 Data covering a 50 years for a river at a station yielded: mean 
= 5000 m3/s and standard deviation = 1200 m3/s. Using Gumbel's method, 
estimate the flood discharge for T = 250 years. What are the 95% and 80% 
confidence limits for this estimate? 

Solution 
F(z) = 1 ~ 1/250 = 0.996 

Using the formula K, = -~ "( 0.5772 + In [ In ( ~ T' 2 we have: 
7-c 

K, = -&{0.5772 7-c 
+ ln[ ln (&)I) 

= 3.853 
xT= p + K,o= 5000 + 3.853 x 1200 = 9624.15 m3/s 

Calculation of standard error 

SE = 1200 -(1+1.1396 ~ 3 . 8 5 3  +1.1 ~ 3 . 8 5 3  2> = 790.2 [ :0 r2 
For c = 95 %,f(c)  = 1.96 
xg5% = 9624.15 f (1.96 x 790.92) = 11174.35 m3/s and 8073.94 m3/s 
xs0% = 9624.15 f (1.282 x 790.92) = 10638.1 m3/s and 8610.19 m3/s 

7.5 REGIONAL FLOOD FREQUENCY ANALYSIS 

The purpose of frequency analysis is to estimate the design flood for desired 
recurrence interval, assuming the sample data follow a theoretical frequency 
distribution. It is assumed that the sample data is a true representative of the 
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population. It is generally seen that a minimum of 30 to 40 years of records are 
needed in order to carry out flood frequency analysis to the at-site data for 
estimating the floods in extrapolation range, somewhat within the desired 
accuracy. 

In case the length of records is too short, it represents inadequate data 
situation; then at-site flood frequency analysis fails to provide the reliable and 
consistent flood estimates. Under inadequate data situation, regional flood 
frequency curves together with at-site mean provides more reliable and 
consistent estimates of floods. For ungauged catchments, the regional flood 
frequency analysis approach is the only way to estimate the flood for a desired 
recurrence interval, for which a regional relationship between mean annual 
peak flood and catchment characteristics is developed along with the regional 
frequency curves. 

7.5.1 Index-Flood Method 
Basically, the index-flood method (Dalrymple, 1960) extrapolates statistical 
information of runoff events for flood frequency analysis from gauged 
catchments to ungauged catchment in the vicinity having similar catchments 
and hydrologic characteristics. Given below are the sequential steps which are 
to be followed to estimate return period flood using index-flood method. 

(i) Select the gauged catchments within the region having similar 

(ii) Determine the base period to be used for the study. 
(iii) Establish the flood frequency curve prepared with the ranked annual 

series and estimate the corresponding plotting position using Gringortan 
plotting formula. 

characteristics to the ungauged catchment. 

(iv) Q,= 2.33 yr (annual mean flood) is estimated using EV-I parameters. 
(v) Establish the relationship between the mean annual flood and the basin 

area. 
(vi) Rank the ratios of floods of selected return periods to the mean annual 

flood at each site and for a given return period, obtain the ratio of flood 
(having return period T )  to mean annual flood for each site. 

(vii) For N sites, there will be Nvalues of such ratios for a given return period. 
(viii) Use these ratios to compute median flood ratio for each of the selected 

return period and multiply each median flood ratio by the estimated mean 
annual flood of the ungauged catchment, and plot these values versus 
recurrence interval on Gumbel probability paper. 

The curves obtained in the last step are the flood frequency curves for ungauged 
catchments. 
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Catchment 

Example 7.13 Flood fi-equency analysis for five homogeneous catchments 
provides the following estimates for mean annual flood and 50-year return 
flood. 

Mean annualflood I 50-year return flood 

D 

I A I  20 I 100 I 

50 170 

I B I  35 I 150 I 

E 

I C I  25 I 120 I 

10 90 

I D 1  3.4 I 

An ungauged catchment which is having similar characteristics to catchments 
A to E is having a mean annual flood of 40 m3/s. Estimate the 50-year return 
flood for the ungauged catchment. 

Solution 

Table 7.11 Solution table for Example 7.13 

Catchment 

A 
B 
C 

Ratio of 50-year return flood to mean annualflood 

5 
4.285 
4.8 I 

9.0 

Thus, median value of ratio of 50-year return flood to mean annual flood = 4.8 
As the mean annual flood for ungauged catchment = 40 m3/s 
The 50-year return flood for ungauged catchment = 40 x 4.8 = 192 m3/s 

7.5.2 M e t h o d  of L-Moments  
The following sequential steps are followed: 

(i) Test regional homogeneity for the selected gauged catchments using the 
procedure described by Dalrymple (1960), and discard the catchments 
which are not homogeneous. 

(ii) Arrange the flood series, and compute L-moments. 
(iii) Let the L-moments are Al,i, &,i, h,i, A4,? where i is the index of sites. At 

(iv) The total data of all the site is N where N is equal to E n i  where m is the 

(v) Scale each of the linear moments by multiplying with the ratio njN. 
(vi) Sum all such scale 

each site i, the no. of records of flood data are ni. 

number of sites. i=l 

and this gives the mean annual flood. 
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(vii) Normalize the mean annual flood so that it becomes unity. In other words 
assurne the mean flood is unity. This implies aggregated value of A, is 1. 

(viii) Corresponding to A, = 1, obtain & and A,. Use these A values to estimate 
PDF parameters. 

(ix) Use PDF or CDF with the known parameters to compute a flood of return 
period T such that the mean of such computed return period floods is 
unity. 

(x) Multiply the flood in step (ix) with the mean annual flood of ungauged 
catchment. The product is the magnitude of the flood of ungauged 
catchment having return period T. 
To explain steps (i) to (x), an example is provided here. 

Example 7.14 For North Cascades drainage basin, the lengths and L-moment 
ratios for 19 sites are given in Table 7.12. Estimate regional parameters 
assuming that PT-I11 distribution fits well to the given data. 

Table 7.12 Summary statistics of North Cascades precipitation data 
(Source: Hoskings and Wallis, 1997) 

The regional normalized average mean, L-CV, L-skewness are: A, = 1, z = 0.11029, 
z, = 0.027859 

n 1 1  z z3 Col (2)x Col(3) x Col(4) x 
Col (1)/1378 Col(1)/1378 Col(1)/1378 

~~~ 

98 19.69 0.1209 0.0488 1.400305 0.008598 0.003471 
59 62.58 0.0915 0.0105 2.679405 0.003918 0.00045 
90 40.85 0.1124 0.0614 2.667997 0.007341 0.00401 
61 46.05 0.1032 0.0417 2.038498 0.004568 0.001846 

~~~ 

~~~ 

~~~ 

~~~ 

65 45.02 0.0967 -0.0134 2.123585 0.004561 -0.00063 
86 31.04 0.1328 4.0176 1.937184 0.008288 -0.001 1 

~~~ 

~~~ 

78 80.14 0.1008 0.0943 4.536226 0.005706 0.005338 
72 41.31 0.1143 0.0555 2.158433 0.005972 0.0029 
67 30.59 0.1107 0.0478 1.487322 0.005382 0.002324 
99 32.93 0.1179 0.0492 2.365798 0.00847 0.003 53 5 
49 17.56 0.1308 0.094 0.624412 0.00465 1 0.003343 

~~~ 

~~~ 

~~~ 

~~~ 

61 69.52 0.11 19 -0.0429 3.077446 0.004953 -0.0019 
~~~ 

69 47.65 0.1018 0.0435 2.385958 0.005097 0.002178 
73 102.5 0.1025 0.0182 5.429971 0.00543 0.000964 

~~~ 

~~~ 

70 52.41 0.1054 -0.0224 2.662337 0.005354 -0.00114 
~~~ 

66 79.7 0.1174 0.0124 3.817271 0.005623 0.000594 
~~~ 

59 44.64 0.1115 -0.0346 1.911292 0.004774 -0.00148 
~~~ 

74 58.66 0.1003 0.0446 3.150102 0.005386 0.002395 
82 39.02 0.1046 0.0128 2.321945 0.006224 0.000762 
Sum 941.86 Avg. Avg. Avg. 

~~~ 

~~~ 

=1378 a, = 48.775 7 = 0.11029 7, = 0.027859 
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Solution 
For the data of Table 7.12, it is reported that PT-I11 distribution gives close 

fit to the regional average L-moments. Thus, it is of interest to estimate 
parameters of PT-I11 distribution. 

To estimate these parameters, we use the following set of equations given 
by Hoskings and Wallis (1 997): 

1 + 0.29062 I z + 0. 1882z2 + 0 . 0 4 4 2 ~ ~  
(7.47) 

(i 5 123 I < 1) 
0.360672 - 0 . 5 9 5 6 7 ~ ~  + 0 . 2 5 3 6 1 ~ ~  

1 - 2.788612 + 2 . 5 6 0 9 6 ~ ~  - 0 . 7 7 0 4 5 ~ ~  

where, z = 3 4 ~ ~ ) ~  

We find, 

Using the value of z in Eq (7.47), the value of p = 136.811 

Using the value of p in Eq (7.48), the parameters are obtained as p = 1.0, 
(r= 0.1196, andg = 0.1709 

[Hint: Using skewness value and recurrence interval, determine K, and thus 
xT= 1 + K, 0. For 50-year return flood, K, = 2.143. 

Thus, x, = 1.2563. If the mean annual flood of ungauged catchment is Q 
m3/s, then the 50-year return flood for the ungauged catchment will be 1.2563Q 
m3/s.] 

z = 3z  (0.027859)2 = 0.00731479 

7.6 RISK AND RELIABILITY CONCEPTS 

Basic questions to be answered in design are as follows: 
1. Why should we do risk analysis? 
2. What should be the return period for which the structure should be 

3. What is the risk involved when we design a structure having a design life 

4. How much risk is permissible? 

7.6.1 Risk Analysis Parameters 
If this design event has a return period of T years and a corresponding annual 
probability of exceedence ofp, then: 

designed? 

of n years for a T-year return period flood? 
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1 
P =  

The probability of non-occurrence in any one year is: 
q = 1 - -  1 

T 
The probability of non-occurrence in n years is: 

q =  (1- +)n 

(7.49) 

(7.50) 

(7.51) 

Hence, the probability that Xwill occur at least once inn years, i.e., the risk of 
failure R is: 

R = l - ( l -  +)n 

where, n is the design life of the structure. 

(7.52) 

Example 7.15 What will be the risk involved for a hydraulic structure having 
a design life of 100 years if it is designed for: (i) 50-year return period flood, 
and (ii) 1000-year return period flood? 

Solution 
(i) n = 100 years, T = 50 years, and the risk (R) involved may be computed by 

Eq. (7.52) as: 

100 

R = 1 - (1 - &) 
= 0.867 = 86.7% 

(ii) n = 100 years, T = 1000 years, and the risk involved is: 

= 0.095 = 9.5% 

Table 7.13 Return periods associated with various degrees of risk and 
expected design life 

(Contd. 

Expected Design Life Riskyo ~~~~~~~~ 

2 S 10 15 20 25 so 100 

2.00 4.02 6.69 11.0 14.9 18.0 35.6 72.7 75 
3.43 7.74 11.9 22.1 29.4 36.6 72.6 144 50 
4.44 10.3 20.1 29.9 39.7 49.5 98.4 196 40 

30 6.12 14.5 28.5 42.6 56.5 70.6 140 281 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 
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(Contd.) 

Based on the risk acceptable, the return period for which the structure should 
be designed can be ascertained. 

Example 7.16 
his design of a critical underpass drain if he is willing to accept only: 
(i) 10% risk that the flooding will occur in the next 5 years? 
(ii) 20% risk that the flooding will occur in the next 2 years? 

Solution 
(i) The risk involved (R)  is 0.10 and n = 2 years. Substituting these values in 

What is the return period that a highway engineer must use in 

the following equation: 

R = 1 ~ (1 - + ) n  

Or, T = 48.1 years 

This means that there is 10% chance that a 48.1-year flood will occur 
once or more in the next 5 years. 

(ii) The risk involved (R)  is 0.20 and n = 2 years. 

0 .20=1- 1-- ( 3 
Or, T = 9.47 years 

It shows that there is a chance of 20% that a flood corresponding to a 
return period of 9.47 years will occur in the next 2 years. These values 
may also be read from the Table 7.13. 

7.46 17.9 35.3 52.6 70.0 87.4 174 348 25 
9.47 22.9 45.3 67.7 90.1 112 224 449 20 

12.8 31.3 62.0 90.8 123 154 308 616 15 
19.5 48.1 95.4 142 190 238 475 950 10 
39.5 98.0 195 292 390 488 976 194 5 

2 99.5 248 496 743 990 1238 2475 4950 
1 198 498 996 1492 1992 2488 4975 9953 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 
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7.7 BINOMIAL DISTRIBUTION 

The Binomial distribution is a discrete distribution and is based on the Binomial 
theorem which states that probability of exactly x successes in n trials is: 

n! q = l - p  
where, (:)= x!(n - x)! ' 

(7.53) 

(7.54) 

p = probability of exceedence/success 
q = probability of non-exceedence/failure 
x = number of exceedence/successes 
n = total number of events 

The assumptions for binomial distribution are same as those for Bernoulli 
trials. Tossing a coin and drawing a card from a pack are the common examples 
of Bernoulli trials which operate under the following three conditions: 

(i) Any trial can have success or failure (not both), true or false, rain or no 

(ii) Successive trials are independent. 
(iii) Probabilities are stable. 

rain. 

Binomial distribution is valid under the above three conditions. 

Example 7.17 If a dam is having a project life of 50 years, then what is the 
probability that a flood with a return period of 100 years will occur (i) once, 
and (ii) twice during the life of the dam? 

Solution 
(i) Given, n = 50 years, T = 100 years, andp = probability of exceedence 

1 1  
T 100 

Here, p = - = ~ = 0.01 

= (1 -p) = (1 - 0.01) = 0.99 
x= 1 
~1 -X = 50 - 1 =49 

P(1) = (':) (0.01)' (0.99)49 

- - 50! (0.01)' (0.99)49 1!(49)! 
= 0.306 = 30.6% 
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(ii) Given, n = 50 years, T = 100 years, and x = 2 
n -x = 50-2  =48 

P(2) = (’2”) (0.01)2(0.99)48 

= 0.0756 = 7.56% 
This means that there is a 30.6% chance that a 100-year return period 
flood will occur once during the project life, and the chances of its twice 
occurrence is 7.55%. 

7.8 POISSON DISTRIBUTION 

The terms of binomial expansion are a little inconvenient to compute for large 
numbers. If n is large (> 30) andp is small (< 0. l), then binomial distribution 
tends to Poisson distribution. 

axe-’ P(x) = ~ 

X! 
where, A =  n p  
The conditions for this approximation are: 

(i) The number of events is discrete. 
(ii) Two events cannot coincide. 

(iii) The mean number of events in unit time is constant. 
(iv) Events are independent. 

Example 7.18 Solve Example 7.16 using Poisson distribution. 

Solution 
n = 5 0  and p =  1/100 

1 
(50 x A) e-(50/100) 

(i) P(l) = = 0.303 = 30.3% 
l!  

2 
( 5 0 x 6 )  e- (50/ 100) 

(ii) P(2) = = 0.0758 = 7.58% 
2! 

(7.55) 

The results obtained by Binomial distribution and Poisson distribution are 
almost same. 



280 Engineering Hydrology 

Highway crossroad drainage 
0 4 0 0  ADT* 

400-1700 ADT 
170&5000ADT 

5000 ADT 
Airfields 

Storm drainage 
Levees 

7.9 DESIGN FREQUENCIES 

The designer is generally concerned with the return period for which the 
structure should be designed. The design frequencies shown in Table 7.4 are 
typical of levels generally encountered in minor structure design (Viessman 
et al., 1977). 

Probable Maximum Flood (PMP) Probable maximum flood is the flood 
caused by probable maximum precipitation. Probable maximum flood is 
generally obtained using unit hydrograph and rainfall estimates of the PMP. 

Standard Project Floods (SPF) Standard project flood is the flood caused 
by standard project storm which is generally obtained from a survey of severe 
storms in the general vicinity of the drainage basin or severe storms experienced 
in meteorologically similar areas. 

Table 7.14 Minor structure design frequencies 

10 0.1 
10-25 0.1-0.04 

25 0.04 
50 0.02 
5 0.2 

2-1 0 0.5-0.1 
2-5 05-0.02 
5-50 0.20-0.02 

Type of Minor Structures I Return Period (in T years) I Frequency (f' = +] I I 

Impoundment danger 
potential 

Failure damage 

*Average Daily Traffic 

- 

(Acve-feet) 

50,000 

1000-50,000 

Category 

cft.) Loss of life 

60 Considerable 

40-100 Possible but 
small 

Major 

Intermediate 

Minor 

Storage I Height I Potential 

1000 

~ 50  none 
Damage 

Excessive or 
as a matter of 
policy 
- 

Of same 
magnitude as 
cost of dam 

Spillway design 
flood 

Probable 
maximum 
flood (a) 
Standard project 
flood Ib) 
5&100 years 
occurrence 
interval 
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Minor dams with storage less than 6000 ha.m. 

Table 7.16 Frequency of return period advocated by IBS code 

1 oo* 

Structure 

(a) Free board 
(b) Items other than free board 
River Training Works (Calculation of Scour) 
Water way of bridges 

Return Period of 
design flood (years) 

500+ 
50-100 
50-loo@ 

50 

I Barrages and pick up weirs I I 

* IS 5477 - Method of fixing capacities of reservoirs-Part IV 
+ IS 6966 - Criteria for hydraulic design of barrages and weirs 
@ IS 3408 - Criteria for river training works for barrages and weirs in alluvium 

In case of spillways for major and medium reservoirs with storage capacities 
of more than 6000 ha.m., designing is generally done for the probable maximum 
flood which is the physical upper limit of the flood in the catchment. 

Table 7.17 CWC, India recommends the following design frequencies 

Structure I Return period 
Major dam with storage more than 
50,000 acre feet 
Permanent barrages and minor dams with 
storage less than 50,000 acre feet 
Pick up weirs 
Canal aqueducts: 
(a) Waterways 
(b) Foundations and freeboard 

Probable maximum flood or frequency not 
less than once in 100 years 
Standard project flood or 100 year flood 
whichever is higher 
50-100 years 

5C100 years 
5C500 years 

7.10 

Two approaches commonly used for probabilistic analysis of extreme flood 
magnitudes are based on annual maximum series (AMS) and partial duration 
series (PDS). The AMS model considers the annual maximum flood of each 
year in a series that has as many elements as there are years in the data record. 
In contrast, the PDS model considers all flood peaks above a certain threshold 
level. Clearly, in PDS model, more than one flood per year may be included; 
hence, it is also referred as peak over threshold (POT) method. For this reason, 
PDS models are used for flood frequency analysis (FFA) where the flood record 
is short. 

In the limit, when the threshold is increased, recurrence interval of large 
events computed using AMS and PDS models tend to converge. The methods 
followed for formulating these models are quite different; e.g., an AMS model 

PEAK OVER THRESHOLD (POT) MODELS 
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uses a cumulative distribution function (CDF) to model the exceedences, 
whereas the PDS model uses two probabilistic models: (a) one for the 
probability of occurrence of peaks above a threshold, and (b) the CDF, for 
modelling the flood exceedences. Thus, for a fixed size of observation years, 
the sample size in PDS method is a random variable. We shall consider the 
approach that is employed in formulation of such a model (Madsen et al. 1997). 

7.10.1 Models for PDS Analysis 
In PDS model, all peak events above a threshold level are considered, and the 
number of these occurrences (x) in a given year is assumed to follow Poisson 
distribution having the probability mass function: 

; r = 0 , 1 , 2 ,  ... (7.56) 

where, P(x = r) is the probability of r events in a year, p is the average number 
of threshold exceedences. For n number of observed exceedences in N years, 
p is equal to nlN, however, Eq. (7.56) is true as long as the flood peaks are 
independent. For Poisson distribution, PWM estimations and the population 
estimate of p is given by: 

e-pp'" P(x = .) = - 
r !  

n 
iu= (7.57) 

The mean and variance of r are defined as follows: 
E(r) = p = n/N = Var(r) = o2 ; (n  2 5 )  (7.58) 

For p > 5, the distribution of r is symmetrical, and it asymptotically approaches 
a normal distribution (Stark and Woods, 1986). For no flood exceedences to 
occur in a given year, substituting r = 0 in Eq. (7.56), the following is obtained. 

(7.59) 

which is the PDF of an exponential distribution. The cumulative mass function 
of Eq. (7.56) for N years is given by: 

F = l - p C @  ; (N>O) (7.60) 
Assume that a threshold level qo is chosen, corresponding to a mean annual 
number of exceedences of Poisson distribution p ;  then at any higher threshold 
(q  > qo), the number of exceedences r' is Poisson distributed with the following 
parameter (Flood Studies Report, 1975): 

(7.61) 
Since F(q) I 1, it follows that (p' I p ) ,  i.e., the truncated mean of exceedences 
above the new threshold q decreases, which is quite obvious. 

The AMS model used for determination of T-year return period flood [q(T)] 
requires identification of a statistical distribution so as to obtain the [q(T) - r] 
relationship in explicit form. 

P' = P[l - F(q)l 



Flood Frequency Analysis 283 

If n floods exceed qo in N years of record in PDS, the average rate of 
occurrence is p = n/N. Consequently, the flood which has a return period T’ 
sampling units in this PDS has a return period of approximately T = T’/p 
years. Thus, the PDS method uses two probabilistic models: 

(a) one for the probability of occurrence (PA) for p exceedences in each year, 

(b) the statistical distribution Ffi,y of the maximum of n exceedences, where 
and 

Y = 4 -40. 

The probability of annual maxima is obtained using the CDF, computed using 
the total probability theorem (Shane and Lynn, 1964) as: 

(7.62) 
r=O 

If Pfi follows Poisson distribution, and Ffi,y follows an exponential distribution 
= 1 - exp [+q - q0)/P] with parameter P, then 

(7.63) 

F(q) given by Eq. (7.63) is the Gumbel or EV-I distribution that is widely used 
in FFA. From Eq. (7.63), the following PDS model can be obtained. 

q(T) = 40 + Pun ( 4 1  + PYT (7.64) 

where, yT = -In [-ln( 1 - l/T)] is the Gumbel reduced variate. 

Since the T-year return period is defined as the average interval of time within 
which the magnitude of q of the flood event will be equaled or exceeded once, 
the POT model should be preferred over the AMS model for estimating the 
q-Trelationship. Thus, a comparison of the AMS and PDS model is of practical 
interest. 

Example 7.19 The daily flow records of a catchment were available for 
18 years. From the data record, all the flow values crossing a threshold of 
40 m3/s are given in Table 7.18 These thresholds are to be used to develop a 
PDS model using Poisson distribution (PD) for counting the peaks exceeding 
the threshold and exponential distribution (ED) is to be used for modelling the 
exceedences. Use the derived PDSPD-ED model to find the 50-year return 
period flood. Assume mean exceedences @) = 3. 
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Rank (i) 

1 
2 

Q (m3/s) F yi Rank (i) Q (m3/s) F Yi 
276.92 0.991 4.659 31 63.36 0.483 0.660 
237.5 0.974 3.635 32 63.36 0.466 0.628 

3 I 136.35 I 0.957 I 3.140 I 33 I 62.95 I 0.449 I 0.596 

5 
6 
7 

4 I 131.35 I 0.940 I 2.810 I 34 I 62.95 I 0.432 I 0.566 
124.04 0.923 2.562 35 62.54 0.415 0.537 
118.12 0.906 2.364 36 61.31 0.399 0.508 
116.38 0.889 2.199 37 61 0.382 0.481 

11 
12 
13 

8 I 114.07 I 0.872 I 2.057 I 38 I 61 I 0.365 I 0.454 

96.04 0.821 1.722 41 59.3 0.314 0.377 
93.58 0.804 1.632 42 59 0.297 0.352 
91.91 0.788 1.549 43 57.32 0.280 0.329 

9 I 109.54 I 0.855 I 1.932 I 39 I 61 I 0.348 I 0.427 

15 
16 
17 

10 I 97.61 I 0.838 I 1.822 I 40 I 59.3 I 0.331 I 0.402 

90.91 0.754 1.401 45 55 0.246 0.283 
86.92 0.737 1.335 46 55 0.229 0.261 
85.94 0.720 1.273 47 54.23 0.212 0.239 

20 
21 
22 

14 I 90.91 I 0.771 I 1.472 I 44 I 56.15 I 0.263 I 0.305 

81.12 0.669 1.106 50 52.35 0.162 0.176 
80.17 0.652 1.056 51 51.61 0.145 0.156 
80.17 0.635 1.009 52 51.61 0.128 0.137 

25 
26 
27 

18 I 84.96 I 0.703 I 1.214 I 48 I 54.23 I 0.196 I 0.218 

70.61 0.585 0.878 55 50.14 0.077 0.080 
67.57 0.568 0.839 56 49.78 0.060 0.062 
67.14 0.551 0.800 57 49.06 0.043 0.044 

19 I 82.07 I 0.686 I 1.159 I 49 I 54.23 I 0.179 I 0.197 

23 I 78.3 I 0.618 I 0.963 I 53 I 51.24 I 0.111 I 0.118 
24 I 71.94 I 0.601 I 0.920 I 54 I 50.87 I 0.094 I 0.099 

28 I 67.14 I 0.534 I 0.763 I 58 I 49.06 I 0.026 I 0.027 
29 I 65.45 I 0.517 I 0.728 I 59 I 48 I 0.009 I 0.010 
30 I 64.61 I 0.500 I 0.693 I I I 1 

Solution 
Mean of the partial duration series (4 )  = Mean of the data in Column (2) 
= 82.23 m3/s. 

N =  (No. of years of AMS data) x ,u = 3 x 18 = 54 

That means the threshold (qo) from the table is equal to 50.87 m3/s (marked as 
bold in the Table). 

By MOM estimation: p = N (  4 - qo)/(N - 1) = 3 1.95 m3/s 

Hence, q (50y) = 50.87 + 31.95 [In (3)] + 31.95y5, = 210.3 m3/s. 
b 5 0  =-In {-ln (1 - 1/50)} = 3.91 
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350 
275 

SUMMARY 

50 
25 

In this chapter, different methods of flood parameter estimation have been 
discussed. Flood estimation using normal, lognormal, Pearson type, 
log-Pearson, and Gumbel distribution have been explained in detail. For 
designing any hydraulic structure, flood fi-equency analysis and risk factor 
and reliability of the structure in frequency analysis are generally considered. 
All these areas have been covered in this chapter. 

The designer is generally concerned with the return period for which the 
structure should be designed. Depending on the available data at any site, it is 
possible to fit a suitable probability distribution function. Subsequently, this 
function can be used to estimate flood of an assumed return period. Use of 
PDS models is also highlighted. Using such models, all flood peaks above a 
certain threshold level can be analysed. This approach can be more useful 
when the data on annual maximum flood is limited. 

EXERCISES 

Find out the amount of peak flood corresponding to 100-years return 
period. Ans. 384.76 m3/s 

7.2 A bridge is to be constructed over a river for a design flood of 
500 m3/s. The mean and the standard deviation for annual flood series 
are 250 m3/s and 100 m3/s, respectively. Calculate the return period 
corres-ponding to this design flood using Gumbel method. 

Ans. 44.47 years 

7.3 Let the probability of rainfall occurrence on any day in the month of 
May is 0.3. If you are wishing a no-rainfall 7-day period as you are 
planning for a 7-day study tour, (i) find the probability that the rainfall 
will not occur in these 7 days; (ii) find the probability of 1 rainy day 
during these 7 days. Ans. (i) 0.0824 (ii) 0.2471 

7.4 What would be the return period of a design storm to be used for the 
design of a hydraulic structure? Let there be a probability of 25% that 
the storm will occur in the next 25 years. Ans. 87.40 years 
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7.5 The return period ( T )  and risk of failure (R)  are related as: 

R = 1 - (1 - $r 
where, n is the number of years. Plot a graph between R and T for 
n = 10,25,50, 100, and 150. 

(i) Observe the nature of the graphs. 
(ii) Find the risk of failure that a 50-year flood will occur at least once 

Ans. 0.183 or 18.3% 

7.6 A stream has the flood peaks of 1200 m3/s and 1060 m3/s for the return 
periods of 100 and 50 years, respectively, using Gumbel method for a 
dataset spanning 30 years. Find (i) mean and standard deviation; and 
(ii) flood peak corresponding to a return period of 500 years. 

Ans. 425.85 m3/s, 257.24 m3/s, 1523.7 m3/s 

7.7 The mean, standard deviation, and coefficient of skewness of 
log-transformed annual maximum peak flood series of a typical gauging 
site are given below: 

in the next 10 years. 

Mean (m3/s) 700.25 
Standard deviation (m3/s) 255.6 MIjl Coefficient of skewness 

Estimate 100-year floods assuming that the peak discharge data follow 
EV-I distribution. Assume the peak discharge follows other distributions 
and compare their results. Ans. 1501.97 m3/s 

7.8 Using Poisson distribution, find: (i) the probability that a 6-year flood 
will occur 7 times in a period of 20 years, (ii) the probability that it will 
not occur at all, and (iii) how many floods of this magnitude will occur 
on an average during 20 years? Compare the results with those obtained 
from binomial distribution. Ans. (i) 0.0322 (ii) 0.0358 (iii) 0 3.33 

7.9 Suppose you are going to design a check dam for a flood having a return 
period of 100 years. What are the risks that you are going to accept for 
flooding to occur in the next 5 years? Ans. 0.049 

7.10 A temporary dam is to be built to protect a 5-year construction activity 
for a hydroelectric power plant. If the dam is designed to withstand 
25-year flood, determine the risk that the structure will be overtopped: 
(i) at least once in the 5-year construction period, and (ii) not at all 
during the 5-year period. Ans. (i) 0.185 (ii) 0.815 
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OBJECTIVE QUESTIONS 

1. Which is not a parameter estimation technique? 
(a) Graphical method 
(c) Method of moments 

(b) Least squares method 
(d) None of these 

2. For normal and lognormal distribution, the recommended plotting position 
formula is 
(a) Blom (b) Gringorton 
(c) Cunnane (d) None of these 

3. Coefficient of correlation is 
(a) Equal to the coefficient of determination 
(b) Square root of the coefficient of determination 
(c) Cubic root of the coefficient of determination 
(d) None of the above 

4. The relationship between the return period ( T )  and the probability of 
exceedence (p) is 

(a) p =  1 - T  1 
(b) P =  

(c) T =  1 - p  (d) None of these 

5. A dam is having a project life of 50 years. What is the probability of flood 
that does not exceed having a return period of 100 years? 
(a) 0.01 (b) 0.99 
(c) 0.9 (d) None of these 

6. What is the return period that a designer must use in a dam design if 
he/she is willing to accept: (i) only 5% risk that the flooding will occur in 
the next 25 years. 
(a) 100 (b) 250 (c) 487 (d) 500 

7. For an annual flood series arranged in decreasing order of magnitude, the 
return period for a magnitude listed at position m in a total of N entries is 
(a) m/N (b) m/(N + 1 )  (c) ( N +  l)/m (d) N/(m + 1 )  

8. Probable maximum flood is 
(a) An extremely large flood 
(b) The flood caused by probable maximum precipitation 
(c) Standard project flood 
(d) All of the above 
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9. As per the CWC recommendation, in the design of permanent barrages 
and minor dams with storage capacity of less than 50,000 acre feet, the 
return period is considered as 
(a) Probable maximum flood 
(b) Standard project flood 
(c) Standard project flood or 100-year flood, whichever is higher 
(d) None of the above 

10. The regional flood frequency analysis approach is used to estimate the 
flood 
(a) For gauged catchment 
(c) Both (a) and (b) 

(b) For ungauged catchment 
(d) None of these 
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CHAPTER 

8 
Principles of 

Groundwater Flow 

8.1 INTRODUCTION 

Groundwater has been a popular resource of water in many tropical countries. 
Groundwater is easy to extract, and it remains well protected from the hazards 
of pollution that the surface water has to put up with. However, situations 
wherein we have encountered overexploitation of groundwater resources are 
not uncommon. Lack of detailed knowledge about the basics of groundwater 
is the primary reason why we have not been able to use groundwater resources 
to their full extent. Thus, there is a growing emphasis on groundwater 
management. 

In this chapter, we intend to cover the basics of groundwater which includes 
a description of the potential, the flow from higher potential to lower potential 
by Darcy’s law along with its application. Some of the preliminary terms related 
to groundwater are also defined. The basic equations of groundwater flow for 
steady and unsteady saturated flow are derived. An insight into solutions of 
the groundwater flow equations is also provided for a variety of flow conditions. 

8.2 MECHANICAL ENERGY AND FLUID POTENTIAL 

The flow always occurs from higher potential quantity to lower potential 
quantity, the nature of the physical phenomena notwithstanding. These potential 
quantities differ from process to process. For example, heat flows from higher 
temperature to lower temperature, and current flows from higher voltage to 
lower voltage; temperature and voltage being the potential quantities. The 
difference of the potential quantity per unit distance between two places is 
known as the potential gradient. As the potential gradient increases, the rate 
of flow increases. 
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Hubbert (1 940) defines potential as “a physical quantity, capable of 
measurement at every point in a flow system, whose properties are such that 
flow always occurs from regions in which the quantity has higher values to 
those in which it has lower values, regardless in the direction of space”. 
According to classical definition, potential is work done during the flow process. 

The groundwater also flows from higher to lower fluid potential. 
Groundwater flow is a mechanical process; forces driving the fluid must 
overcome the frictional forces between porous media and the fluid. This 
indicates that some energy is lost during the flow process. That energy is 
converted into thermal energy. “Work” is defined as the mechanical energy 
per unit mass, required to move a fluid from point z = 0 to point z.  

Since the physical quantity (fluid potential) satisfies both Hubbert’s 
definition and classical definition, 

Fluid potential is mechanical 
energy per unit mass = Work done to 
move unit mass 

Figure 8.1 shows an arbitrary 
standard state; at elevation z = 0, 
pressure p = po ,  where p o  is 
atmospheric pressure. 

Our aim is to calculate the work 

Elevation z 
Pressurep 
Velocity v 
Density p 
Volume V 

Elevation z = 0 
Pressurep =PO 
Velocityv = 0 
Densityp =PO 
Volume VO 

mvL w2 = ~ 

2 
3. Work done to raise the fluid pressure frompo top. 

p V  dP P 
w 3 =  j V d p = m j - d p = m j -  

m P Po Po Po 

The fluid potential (the mechanical energy per unit mass, m = 1) is sum of 
the above three works, i.e., loss in potential energy, loss in kinetic energy, and 
loss in pressure energy. 

Our aim is to calculate the work 
required to lift the unit mass of the 
fluid of density po and volume Vo from 
point z = 0 to point Z. Fluid potential 
is the mechanical energy per unit 
mass. Fluid potential at z = (fluid 
potential at datum) + (work done from z = 0 to point z )  

Fig. 8.1 calculation of mechanical 
energy of unit mass  of 
fluid 

The work done to move a unit mass of water has three components. 
1. Work done to lift the mass from elevation z = 0 to elevation z. 

w1 =mgz (8-1) 
2. Work done to accelerate the fluid from velocity v = 0 to velocity v. 
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So, we have: 

v2 dp 
@ =  gz+-+- 

2 P  
(8.4) 

The velocity term is not important for groundwater flow because the 
velocities are extremely low. So, the second term can be neglected. Density is 
constant for incompressible fluid. So, the above equation can be simplified to 
give: 

P - P o  @=gz+ ~ 

P 

8.3 FLUID POTENTIAL AND HYDRAULIC HEAD 

Datumz=O 

Fig. 8.2 Manometer showing hydraulic head 

Figure 8.2 shows a manometer. Let po be the atmospheric pressure. The fluid 
pressure p at point P is given by: 

P = Pga + Po (8-6) 
where it is the height of the liquid column above point P. 

From Fig. 8.2, 

i t = h - z  (8-7) 

P = Pdh -4 +Po (8.8) 

Substituting the value of it in Eq. (8.6), we have: 

Substituting Eq. (8.8) in Eq. (8.5): 

[ P d h  - z )  +Pol - Po @=gz+ 
P 

Or @=gh (8.9) 
Equation (8.9) shows the relationship of the fluid potential and hydraulic 

head. Since acceleration due to gravity (g) is constant, the hydraulic head and 
the fluid potential (4) at any point P in a porous medium are perfectly correlated. 
Therefore, the hydraulic head (h) is suited as potential function and is also 
used in groundwater flow. 
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Normally, the atmospheric pressure is assumed as zero. The idea is to work 
in gage pressures (i.e., pressures with respect to atmospheric pressure). Thus, 
one can also write: 

$l=gz+ p =gh 
P 

P h = z +  - 
Pg 

or 

(8.10) 

(8.11) 

Using Eq. (8.6), Eq. (8.11) reduces to: 
h = z + i l  (8.12) 

Equation (8.12) shows that the hydraulic head is sum of the elevation head 
and the pressure head. 

8.4 DARCY’S LAW 

In the year 1856, Henry Darcy, a French hydraulic engineer, conducted the 
experiments in vertical homogeneous sand filter. He was investigating the flow 
of water through sand. In his experimental setup, Darcy had used a vertical 
cylinder. But, the Darcy’s law can be understood by using an inclined cylinder. 

Fig. 8.3 Experimental apparatus to demonstrate 
Darcy’s law 

In Fig. 8.3, we have shown an inclined circular cylinder of cross-section A. 
The cylinder is filled with sand. It is fitted with a pair of manometers, separated 
by a distance AZ. Water is entered into the cylinder at a known rate Q [L3/T]. It 
is allowed to flow through the cylinder for some time such that all the pores 
are filled with water, and the rate of flow at the outlet is equal to rate of flow at 
the inlet (Q). An arbitrary datum is set at an elevation z = 0. 

z,, 2, = Elevation of intake of manometers from the datum 
h,, h, = Elevation of water levels of manometers from the datum 
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From this experiment, Darcy has concluded that the rate of flow (Q) is: 

(i) directly proportional to the cross-sectional area, Q 0~ A 
(ii) directly proportional to the difference of heads between the two points, 

Q 0~ (hi -hJ  

(iii) inversely proportional to the length between the two points, Q 0~ 

Therefore, Darcy’s law can be written as: 

Or v = - K ( g )  

Q where, Ah = h, - h, and v = - 
A 

Or, in differential form: 

(8.13) 

(8.14) 

(8.15) 

dh 
dl 

Equation (8.15) can be further simplified by putting - = i 

v = Ki (8.16) 
where, K is a constant of proportionality known as the hydraulic conductivity 

[L/T], h is known as the hydraulic head [L], - or i is known as the hydraulic 

gradient, and v is known as the specific discharge or Darcy’s velocity [L/T]. 
The part of the cross-sectional area of the soil column, A, is occupied by 

solid matrix, and the remaining part is void. Actual flow of water takes place 
through the void. Since the specific discharge, v, considers the total cross- 
sectional area A, the Darcy’s velocity is not equal to the actual velocity of flow 
through the pores. Due to the irregular pore geometry, the actual velocity of 
flow varies from point to point. So, the term “pore velocity” is defined as the 
actual velocity of water in the porous medium, and it is expressed as: 

dh 
dl 

V - _  
rl “act - (8.17) 

where, vaCt = actual velocity of the flow, and 77 = volumetric porosity 
The parameter hydraulic conductivity, K, in Darcy’s law is a function of 

both fluid property and property of porous medium. By conducting the Darcy’s 
experiment for different types of fluids of density and dynamic viscosity for 
a constant hydraulic gradient, it can also be observed that: 
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1 (i) v 0~ d2 (ii) v 0~ pg (iii) v 0~ - 
iu 

where, d = mean grain diameter. 

Incorporating these three relationships, Darcy 's law can be written as: 

Cd2pg dh 
iu dl 

v =  (8.18) 

where, C is a constant of proportionality. 

Comparing Eq. (8.18) with the original Darcy's equation (Eq. 8.15), it can be 
inferred that: 

(8.19) 

In Eq. (8.19), and are function of the fluid, and Cd2 is a function of the 
medium. 

If we define k = Cd 2 ,  Eq. (8.19) can be written as: 

K =  ~ k p g  
P 

(8.20) 

The parameter, k, is known as the intrinsicpermeability. The unit of k is m2 
or cm2. The unit of intrinsic permeability can also be written as "darcy". 
1 darcy = 9.87 x lop9 cm2. 

Example 8.1 In a Darcy's experiment, water of viscosity 0.879 x lop3 Ns/m2 
flows through a soil having hydraulic conductivity 0.01 cm/sec. Calculate 
intrinsic permeability of the soil. 

Solution 
Specific weight of water = pg = 9810 N/m3 = 9.81 x lop3 N/cm3 
Hydraulic conductivity = 0.01 c d s e c  
Viscosity of water = 0.879 x lop3 Ns/m2 = 8.79 x lop8 Ns/cm2 
We know that: 

Kiu k=  ~ 

Pg 

Example 8.2 Groundwater flows through an aquifer with a cross-sectional 
area of 1.0 x lo4 m2 and a length of 1500 m. Hydraulic heads are 300 m and 
250 m at the groundwater entry and exit points in the aquifer, respectively. 
Groundwater discharges into a stream at the rate of 1500 m3/day. What is the 
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hydraulic conductivity of the aquifer? If the porosity of the material is 0.3, 
what is the pore velocity of water? 

Solution 

Darcy’s velocity: v = 

Hydraulic gradient: - - dl - 1500 

Hydraulic conductivity: K = -~ - ~ = 4.5 d d a y  

= 1500 = 0.15 d d a y  
A lo4 

dh - 300-250 =0.0333 

V 0.15 
dhldl - 0.0333 

v 0.15 
q 0.3 Pore velocity of water: vact = - = ~ = 0.5 d d a y  

8.4.1 Heterogeneity and Anisotropy 
Hydraulic characteristics usually vary either spatially or in different directions 
within a geologic formation. The hydraulic characteristics are hydraulic 
conductivity, permeability, etc. If these hydraulic characteristics vary spatially, 
then the geologic formation is known as heterogeneous; otherwise it is known 
as homogeneous. 

For example: 

K(x,y ,  4 = c 
K(x,y ,  4 f c 

Formation is homogeneous. 
Formation is heterogeneous. 

Here, K is the hydraulic conductivity; x ,  y ,  and z are the hydraulic 
characteristics; and C is a constant. 

If these hydraulic characteristics vary with the direction of measurement at 
a point, then the geologic formation is known as anisotropic at that point; 
otherwise it is known as isotropic at that point. 

For example: 
K, = Ky = K, 
K, # Ky # K, 

Formation is isotropic. 
Formation is anisotropic. 

I Isotropy Anisotropy 

Fig. 8.4 Property of isotropic and 
anisotropic aquifer 
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8.4.2 Generalization of Darcy’s Law 
It is necessary to generalize the one-dimensional form of Darcy ’s law presented 
in Eq. (8.15). Generally, in a layered structure of soil, the resistance to flow in 
vertical and horizontal directions is not equal. So, in that case, the soil medium 
is said to be anisotropic. The Darcy’s law can be represented for anisotropic 
aquifer as follows: 

(8.21) 
Here, v is Darcy’s velocity vector, and K is the hydraulic conductivity matrix 
tensor. 

v =  vxZ+vyj +v,k (8.22) 

v = -K grad (h) = -K V h 

A *  

K,  K q  Kxz 

In three dimensions, the Darcy’s velocity vector can be represented as: 

(8.23) 

(8.24) 

(8.25) 

If the principal direction of anisotropy coincides with x, y,  z axes, then: 
K = K  = K  = K  = K  = K  = O  

yx xz zx yz zy 

With this, Darcy’s velocities in three dimensions for anisotropic media can be 
represented as: 

ah 

ah 

v,=K,- ax 

aY 

az 

V ,  = K, - 

ah 
V ,  = K, - 

(8.26) 
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8.4.3 Range of Validity of Darcy’s Law 
Darcy’s law is a linear law; however, this law may not hold good in certain 
situations. To identify such situations, the Reynolds number is used as the 
criterion for determining the range of validity of Darcy’s law. Reynolds number 
is a dimensionless number which is defined as the ratio of inertia to the viscous 
force. The Reynolds number for flow through porous media is defined as: 

R = -  Vd 
“ 2 )  

(8.27) 

where, v = average velocity (not pore velocity), v = kinematic viscosity of the 
fluid, and d= representative length of grains (mean grain diameter). Sometimes, 
d,,, the diameter such that 10 percent by weight of the grains are smaller than 
that diameter, is taken as representative grain diameter. 

Darcy’s law is not valid when the Reynolds number exceeds the range of 
1 to 10. One has to be carefd about the value of d being used in defining 
Reynolds number. Limits of applicability of Darcy’s law will differ with the 
use of d,, or d5,. Usually, with the use of an average diameter-based Reynolds 
number, limit of applicability of Darcy’s law is considered to be less than or 
equal to unity. It will be a useful exercise to perform an experiment on 
verification of Darcy’s law and identify the conditions for its validity. 

The relation between hydraulic gradient (i) and velocity (v)  for fully turbulent 
flow can be represented as: 

(8.28) -i = av + bv2 
where, a and b are positive constants. 
Solving v from Eq. (8.28), we get: 

112 
- v =  --+ a Ja2-4b i  - 

2b 2b 

For a constant hydraulic gradient, the velocity as well as specific capacity 
of a well, resulting from turbulent flow condition, is less than the velocity 
resulting from laminar flow condition. 

Example 8.3 A fully penetrating well with radius rw in a confined aquifer is 
located at the centre of a circular groundwater basin having constant head 
boundary condition at the outer periphery. The well is recharged maintaining 
a constant head at the well face. Find the recharge rate per unit rise at the well 
face considering: (i) flow is laminar, (ii) flow is turbulent. 

Solution 
Under steady state flow condition, at any radial distance (r)  from the well, the 
radial flow is given by: 

Q = 2nrIDv, 
where, D = thickness of aquifer, and v, = radial Darcy’s velocity. 
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(i) Consider the flow is laminar. So, the relation between hydraulic gradient 
( i )  and velocity (v) for laminar flow can be represented as: 

-i = av 

dh 
dr  

Substituting the value of v in Q = 2mfDv,, and using i = - , we get: 

Integrating and applying the boundary conditions, h(r,) = h,  and 
h(R) = h, 

h , -h  R -  -"ln(:) 2 n D  

(ii) Considering the flow is turbulent, the relation between hydraulic gradient 
( i )  and velocity (v) for fully turbulent flow can be represented as: 

-i = av + bv2 
From Eq. 8.29: 

-a 
2b 2 b  

v,,= -+ 
Incorporating v,, in the above equation and simplifying it, we have: 

Integrating and applying the boundary conditions, h(r,) = h,  and 
h(R) = h, 

The first part of head loss is due to turbulence, and second part is due to 
viscous resistance. 

8.5 GRADIENT OF HYDRAULIC HEAD 

We have seen earlier that the fluid flows from the regions of higher hydraulic 
head to the regions of lower hydraulic head, i.e., there must be difference in 
hydraulic head so that flow will occur. The difference in hydraulic head per 
unit distance is known as the hydraulic gradient. 

(8.30) 

where, h,  and h, are the hydraulic heads at points 1 and 2,  respectively; and 
A1 = distance between the points. 
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8.5.1 Relationship of Groundwater Flow Direction to 
Hydraulic Gradient 

Figure 8.5 shows three wells, A, B, and C. Our aim is to find out the direction 
of groundwater flow. 

I B B 

C 
(h = 170 m) 

C 
(h = 170 m) 

Fig. 8.5 Determination offlow direction 

To find out the direction of groundwater flow, first of all, we should know 
the hydraulic heads of the three wells. 

1. With the help of piezometer, measure the hydraulic head in three wells. 
The hydraulic heads of three wells should not be equal. 

2. Consider hydraulic heads of two wells are equal. In Fig. 8.5(a), we have 
shown that the hydraulic head of A and B are equal. In such a case, draw a 
line perpendicular to AB through C. Let it be D. If the hydraulic head of C 
is greater than the hydraulic head of A and B, then the flow will occur 
from C to D. 

3.  Consider the hydraulic heads are different at the three wells. In Fig.. 8.5(b), 
we have shown that: 

hc> hA > hB 
where hc, hA , and hB are hydraulic heads of wells C, A, and B, respectively. 
Locate another point E in between B (lowest head) and C (Highest head), 
such that the hydraulic head at E will be equal to hydraulic head at A 
(intermediate head). Draw a line between A and E and another line through 
C, intercepting the line AE. The flow occurs in the direction from C to D. 

8.6 AQUIFER 

An aquifer is the saturated, permeable, geological formation or group of 
formations which contains, transmits, and yields significant quantity of water. 
The flow in the aquifer is mainly horizontal, and the source of water is mainly 
through infiltration. 
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Pumping Well 
G. L. 

\\\\\\\\\\\\\\\\\ 

(a) Confined aquifer 
Impermeable Impermeable 

(b) Leaky or semi-confined aquifer 

G. L. 

Aquifer 

Datum _ _ _ _ _ _ _ _ _ _ _ _ _ _  

surface 
K,,Ky,Ss, sy* f 

\\\\\\\\\\\\\\\\\ 
Impermeable 

(c) Unconfined aquifer (d) Water table aquifer 

Fig. 8.6 Different types  of aquifer 

Aquifers can be classified as: (i) confined aquifer, (ii) semi-confined aquifer, 
and (iii) unconfined aquifer. These aquifers are schematically shown below in 
Fig. 8.6. 

A confined aquifer or artesian aquifer is underlain and overlain by 
impermeable layer, so that water is under pressure like conduit flow. The 
piezometric surface is above the confining layer (Fig. 8.6 a). In a leaky or a 
semi-confined aquifer, there is a leakage from overlain or underlain aquitard 
into the aquifer, which is due to the difference of piezometric heads in the 
aquifer and the aquitard. In other words, the aquitard is not fully impervious, 
i.e., it is semi-impervious (Fig. 8.6 b). Unconfined or water table aquifer is 
one in which the groundwater has a free surface open to the atmosphere. The 
upper surface zone is called groundwater table or water table (Fig. 8.6 c and d). 

8.6.1 Stratification 
If the aquifer consists of different strata with different hydraulic conductivities, 
and flow is occurring parallel to the strata; then equivalent hydraulic 
conductivity of aquifer is given by: 
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i K~ B~ 
K,= 1 

n 
(8.3 1) 

2 Bi 
1 

where, Bi = width of ith stratum, Ki = hydraulic conductivity of ith stratum, 
K, = equivalent hydraulic conductivity, and n = number of strata. 

If the flow is occurring normal to the strata, then equivalent hydraulic 
conductivity of aquifer is: 

i L i  
K,= 

where, L = length of each stratum. 

(8.32) 

Example 8.4 A confined aquifer has 3 layers. The bottom layer consists of 
coarse sand of thickness 4.0 m, having hydraulic conductivity of 0.01 cdsec.  
The middle layer consists of fine sand of thickness 3.0 m, having hydraulic 
conductivity of 0.002 cm/sec. The top layer consists of gravel of 4.0 m having 
hydraulic conductivity of 2.0 cm/sec. Calculate the equivalent hydraulic 
conductivity of the confined aquifer if (i) the flow is along the stratification, 
and (ii) the flow is normal to the stratification. 

Solution 
(i) If the flow is along the stratification, then the equivalent hydraulic 

conductivity of the confined aquifer is: 

iKiBi - (4x100)x0.01+(3 x100) x0.002 +(4x100) x2 K,= 1 - 
400 + 300 + 400 24 

1 

4 + 0.6 + 800 
1100 

= 0.73 15 c d s e c  - - 

(ii) If the flow is normal to the stratification, then the equivalent hydraulic 
conductivity of the confined aquifer is: 

i L i  - (4x100) +(3 x100) +(4 x100) - 1 
Ke= 

1 

= 5.783 x lop3 cm/sec - 1100 - 

40,000 + 1,50,000 + 200 
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Formation 

Clay 
Sand 
Gravel 
Sand stone 
Shale 
Lime stone 

8.6.2 Porosity 
The porosity of the aquifer is the ratio of the volume of voids to the total 
volume of the aquifer material. The soil mainly contains silt, sand, rockpebbles, 
or clay. The porosity depends on the shape, size, and the packing of the grain 
size. Porosity is a measure of water-bearing capacity of the formation, and all 
this water cannot be released by gravity or pumping from wells. 

Porosity (96) Specific yield (96) 
45-55 1-10 
3 5 4 0  10-30 
3 0 4 0  15-30 
10-20 5-15 
1-10 0.5-5 
1-10 0.5-5 

(8.33) 

Example 8.5 In a field test, a tracer took 8 hours to travel between two 
observation wells which are 56 m apart. The difference in water table elevations 
in these well were 0.7 m. The volume of the void of the aquifer is 30% of the 
total volume of the aquifer. Calculate the hydraulic conductivity and intrinsic 
permeability of the aquifer. Viscosity of water is 0.995 x lop3 Ns/m2. 

Solution 
Since it is a tracer test, it records the actual velocity of water. 

56 loo = 0.1945 c d s e c  8 x 3600 
Actual velocity of water = vact = 

As volume of the void of the aquifer is 30% of the total volume of the 
aquifer, porosity of the aquifer is 30%. 

Darcy's velocity = ?pact = 0.3 x 0.1945 = 0.0583 c d s e c  

dh 0 7  
dl 56 

Hydraulic gradient = - = A = 0.0125 

Hydraulic conductivity = K = ~ - ~ 0'0583 = 4.664 c d s e c  dhldl - 0.0125 
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Material 

Loose clay 
Stiff clay 
Loose sand 
Dense sand 
Dense sandy gravel 

Fissured and jointed rock 

Specific weight of water = pg = 9810 N/m3 = 9.81~10-~ N/cm3 
Viscosity of water = 0.995 x lop3 Ns/m2 = 9.95 x lops Ns/cm2 

Bulk modulus of elasticity 
E, (Iv/crn2) 

100-500 
1000-10,000 
1000-2000 
5000-8000 

lo4 to 2 x lo4 

1.5 X lo4 to 3 X lo5 

K p  4.664 x 9.95 x lo-' = 4.73 10-5 cm2 Intrinsic permeability = k = ~ = 
Pg 9.81 x 10-~ 

8.6.3 Compressibility of aquifers 
Compressibility is the inverse of modulus of elasticity. 

Changein strain - d& 
Changeinstress d o  

Compressibility = -- (8.35) 

water be P. 
Compressibility of water is defined as: 

dv,lv, p =  -~ 
da 

By conservation of mass: 
p v, = constant 

Differentiating Eq. (8.37), we get: 

Substituting Eq. (8.38), Eq. (8.36) reduces to: 
pdv, + v,dp = 0 

dPlP P =  dp 

dP Pdp= - 
P 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

(8.40) 
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Let po be the atmospheric pressure and po be the fluid density at pressure po. 
Integration of Eq. (8.40) between limitspo top for dp and po to p for dp gives: 

P d p  
P l d P ' S p  

Po Po 

[P(P-Po 11 P = Poe 

(8.41) 

(8.42) 
For an incompressible fluid, j3 = 0. So, p = po = constant. 
Compressibility of Porous Medium 
Let the change in total volume of porous medium be dVl, the total volume of 
porous medium be V ,  = (volume of solids + volume of voids), change in effective 
stress be do,, and compressibility of porous medium be a. 
Compressibility of porous medium is defined as: 

(8.43) 

The compression of the porous medium is governed by three mechanisms: 

1.  compression of water 
2. compression of grains 
3.  rearrangement of the soil grain 

Assume that soil grains are incompressible. So, when a stress o is applied 
to a saturated geological formation, part of the stress is borne by the fluid and 
part of the stress is borne by the grains of the porous medium. The effective 
stress is the stress borne by the grains of the porous medium. 

o = o e + p  (8.44) 
Let do be the increase in stress. Therefore, 

d o =  do, + dp (8.45) 
Many of the subsurface flow 

problems generally do not involve the 
changes in stress. So, d = 0. Therefore, 

This indicates that when fluid 
pressure increases, the effective stress 
decreases with the same amount of 
effective stress. So, rearrangement of 
sand grain and volumetric deformation 
are caused due to the change in 
effective stress and are controlled by 
the fluid pressure. 

do, = -dp 

I Total stress CT 

Fig. 8.7 Diagram showing the 
total stress, effective 
stress, and fluid 
pressure 
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Substituting p = pgq, the effective stress will be: 
do, = -pgdq = -pgdh 

[Since q = h - z and z being constant] 

(8.46) 

8.7 AQUIFER PROPERTIES 

To understand the flow through aquifers, it is relevant to know aquifer 
properties. Speicific storage, storativity, transmissivity, and hydraulic diflbsivity 
are extensively used terms related to aquifer properties. Certain properties, 
such as porosity and compressibility have been addressed in preceding section. 

8.7.1 Specific Storage 
The volume of water released from unit volume of a saturated aquifer under 
unit change in head is known as spec@ storage. 

In Fig. 8.8, we have shown a confined aquifer. Consider that a unit decline 
of hydraulic head is occurred due to the pumping of well. Due to decrease in 
head, the fluid pressure (p) decreases and the effective stress (o,) increases. 
Therefore, the compaction of aquifer and the expansion of water are due to the 
decrease in head. The total volume of water released due to decrease in head 
comprises the value of water released due to: 
1. compaction of aquifer 
2. expansion of water 

Amount of water produced due to the compaction of aquifer = 

dVw = -dV, = a! V ,  do, (8.47) 

Since do, = -pgdh 

dVw = a! V ,  p g  (8.48) 
Amount of water produced due to the expansion of water = 

dVw = -P V, dp 

dp = p g d q  = p g dh 
dh = -1 and V, = qV, 
dVw = PqPg V, (8.50) 

Specific storage = Amount of water produced due to (compaction of aquifer 
+ expansion of water) 

ss=PgV,(a+77P) (8.51) 

S ,=pg(a+ 77P) (8.52) 

(8.49) 
[Since q = hz, and z being constant] 
[where q = porosity] 

But 
Since 

With V, = 1, 

The dimension of specific storage is [L-'I. 
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- - - - - - - 

Unit decline of 

surface I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I - -  

8.7.2 Storativity 

Potentiometric surface mf?-- 

Confining stratum 

Aquifer 

Fig. 8.8 Representation of storativity in a 
confined aquifer 

The volume of water released from storage per unit surface area of aquifer 
per unit decline in the component of hydraulic head normal to that surface is 
known as storativity. 

S =  
Volume of water 

Unit area x Unit head change 

The storativity, also known as storage coefficient, and specific storage are 
related as: 

S=S,b (8.53) 
where, S is the storativity, S, is the specific storage, and b is the thickness of 
confined aquifer. 
Using Eqs. (8.52) and (8.53), 

S = p g b ( a +  17P) (8.54) 

Storativity is dimensionless. In most confined aquifers, the values fall in 
the range between 0.00005 and 0.005. For unconfined aquifers, the storativity 
or storage coefficient is the same as specific yield and may range between 
0.05 and 0.30. 

Example 8.6 A confined aquifer has a thickness of 25 m and a porosity of 
30%. If the bulk modulus of elasticity of water and the formation material are 
2.12 x lo5 N/cm2 and 5000 N/cm2, respectively, calculate the storage coefficient. 

Solution 
Bulk modulus of elasticity of water = E, = 2.12 x lo5 N/cm2 
Compressibility of water = P = l/E, = 4.717 x lop6 cm2/N 
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Bulk modulus of formation = E, = 5000 N/cm2 
Compressibility of water = a = 1/E, = 2.0 x lo4 cm2/N 
Specific weight of water = pg = 9.81 x lop3 N/cm3 
Specific storage = S, = p g(a + qp) 

= 9.81 x lop3 [(2.0 x lo4) + (4.717 x lop6 x 0.3)] 
= 1.976 x lop6 /cm 

Storage coefficient = S, b = 1.976 x lop6 x 2500 = 4.94 x lop3 

8.7.3 Transmissivity 
The ability of movement of water through an aquifer is described by the term 
transmissivity. It is measured across the vertical thickness of an aquifer. 

T =  bK (8.55) 
The dimension of transmissivity is [L2/T]. SI unit of transmissivity is m2/day. 

8.7.4 Hydraulic Diffusivity 
The hydraulic diffusivity is defined as the ratio of transmissivity and storativity. 

(8.56) 

Example 8.7 
is along the stratification in Example 8.4. 

Solution 
Transmissivity = (4 x 100) x 0.01 + (3 x 100) x 0.002 + (4 x 100) x 2.0 

Calculate the transmissivity of the confined aquifer if the flow 

= 4 + 0 . 6 + 8 0 0  
= 804.6 cm2/sec 

8.8 EQUATION OF GROUNDWATER FLOW 

There are two types of equations of groundwater flow: transient saturated flow 
and transient unsaturated flow. For transient saturated flow, Darcy 's law 
combined with the equation of continuity, results into equations for groundwater 
flow. Transient unsaturated flow is considered in Chapter 10. 

8.8.1 Mass  Conservation Equation 
In Fig. 8.9, we have shown a control volume of dimensions 6x, 6y, 6z, centered 
at point P(x, y,  z). Our objective is to derive a conservation of mass equation 
which implies: 
Mass inflow rate - mass outflow rate = change of mass storage with time 
Rate of flow of mass entering the face ABCD is: 

(8.57) 
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Fig. 8.9 Control volume for conservation of mass 

Rate of flow of mass leaving the face AIBICIDl is 

(8.58) 

The net mass rate of flow being retained in the control volume along x-axis 
is 

= Mass inflow rate ~ mass outflow rate 

pvxdydz - ~ a(pvx) - dx dy dz]  - [ pvxdydz + ~ a(PVx) - dx dydz] (8.59) ax 2 ax 2 

Similarly, the net gain of mass per unit time along y-axis will be 

(8.60) 

(8.61) 

And, the net gain of mass per unit time along z-axis will be 

(8.62) - - -~ a(pvz) dx dy dz 
az 

Therefore, the total net gain of mass per unit time is 

(8.63) 

The change in mass of the control volume per unit time will be 

- - a(p ‘) dx dy dz (8.64) 
at 
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Dividing both sides of Eq. (8.65) by the volume (dx dy dz) of the element, 
and taking the limit as dx, dy, dz approaches zero, the continuity equation at a 
point (centre of the control volume) becomes: 

(8.66) 

Equation (8.66) is known as the mass conservation equation for transient 
flow in a saturated porous medium. 

8.8.2 
The mass conservation equation for transient flow in a saturated porous medium 
is given in Eq. (8.66). The terms on the right-hand side of Eq. (8.66) can be 
written as: 

Flow Equation for Transient State Saturated Flow 

(8.67) 

(8.68) 

- 377 = a = Aquifer compressibility (8.69) 
JP 

aP 
- ‘ P P  aP 

(where p is fluid compressibility) (8.70) 

Substituting Eqs. (8.69) and (8.70), Eq. (8.68) becomes: 

(8.71) 

But, pg (a  + qp) = S, = specific storage andp = pgh, therefore Eq. (8.66) 
becomes: 

(8.72) 

(2) - p  ~ +vx - (2 )  , and since the term p ~ is much greater d(PVX 1 
ax As - - (2) 

than vx( g) , one can neglect vx (g) . Taking this into consideration using 

Darcy’s law in Eq. (8.72) leads to: 
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(8.73) 

Equation (8.73) is the flow equation for transient state flow through saturated 
anisotropic porous medium. 

Particular Cases 
1. For transient flow in homogeneous and isotropic medium, Eq. (8.73) 

reduces to: 

(8.74) 

2. For steady flow of incompressible fluids (p  = constant), Eq. (8.73) reduces 
to: 

(8.75) 

3. Equation (8.75) is the flow equation for steady, anisotropic, saturated, 
homogeneous, porous medium. For an isotropic homogeneous medium, 

K = K  = K  = K  
x Y =  

With this, Eq. (8.75) reduces to flow equation for steady state flow through 
an isotropic saturated homogeneous porous medium. 

(8.76) 

Equation (8.76) is also known as Laplace equation. 

8.9 

In Fig. (8. lo), we have shown a well in a confined aquifer. Let Q be the rate of 
discharge of the well, and b be the thickness of the aquifer. Consider the 
cylindrical section of the well having inner and outer radii r and (r + dr), 
respectively. Let the hydraulic gradient across the cylindrical section of 

infinitesimal thickness dr be - . 

RADIAL FLOW OF CONFINED AQUIFER 

ah 
ar 

The discharge through a cylindrical section having thickness dr is given by 
Darcy’s law as: 

Q = -2m b K- ah 
ar 

(8.77) 

Differentiating Eq. (8.77) with respect to ar, we get: 

(8.78) 



312 Engineering Hydrology 

Fig. 8.10 Flow through the cylindrical 
section of a confined aquifer 

The change in storage within the cylindrical section is due to the volumetric 
rate of release of water in storage corresponding to rate of decrease of head. 

ah = 2 z r d r S -  
at at 

(8.79) 

Discharge through the cylindrical section of thickness dr  = dr  [ ar 1 must 
be equal to change in storage. 

Dividing both sides by 2mbK, we get: 

1 ah a2h +-=-- S ah 
r ar ar2 bK at 
_- 

Putting T = bK, where T = transmissivity, Eq. (8.81) reduces to: 

_- 

(8.80) 

(8.81) 

(8.82) 

Equation (8.82) is the flow equation in a confined aquifer in radial coordinate. 
For steady radial flow, Eq. (8.82) reduces to: 

(8.83) 
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8.10 DUPUIT ASSUMPTIONS 

In Fig. 8.1 1, we have shown an 
unconfined aquifer. In an 
unconfined aquifer, water table 
is the upper boundary which 
acts as a flow line. Since water 
table is a flow line, the tangent 
to this flow line at every point 
gives the specific discharge, 
which is given by Darcy’s law. 

Z 

A 

v = -K [$) (8.84) Lig. 8.11 Phreatic surface in an 
unconfined aquifer 

where, K = hydraulic conductivity. 
Along the water table, surface pressure head = 0. So, hydraulic head, h = z. 

v = -K( 2) = -K sin 8 (8.85) 

dh dz Since 8 is very small, Dupuit used tan 8 = ~ instead of sin 8 = ~ The 
dl dl . 

assumption of 8 being small also means that equipotential surfaces are vertical. 
This indicates that flow becomes horizontal. But in actual case, equipotential 
surfaces are never vertical. 
Thus, Dupuit assumed the following: 
1. Flow is horizontal. 
2. Hydraulic gradient line does not vary with depth. It is equal to slope of the 

free surface. 
Based on this assumption, the specific discharge can be expressed by: 

(8.86) 

8.11 UNCONFINED FLOW WITH RECHARGE 

In Fig. 8.12, we have shown an unconfined aquifer having recharge of water 
at a rate R m3/sec/m2 of area due to the infiltration. Our aim is to derive the 
flow equation for the recharge condition in an unconfined aquifer. 

Rate of flow of mass entering face ABCD =pv,hdy 

Rate of flow of mass leaving the face AIBICID, 

(8.87) 

(8.88) 
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Fig. 8.12 Unconfined f lows with recharge 

The net mass rate of flow being retained in the element: 
= mass inflow rate ~ mass outflow rate 

=pv,h dy- [ a(Pvx dy) dx + pv, h dy ] ax 

dx 
(8.89) 

Similarly, the net gain of mass per unit time in the element along y-axis will 
be: 

(8.90) 

Since there is recharge in z-direction, the net inflow into the element in 
z-direction will be 

= p R d x d y  (8.91) 
Therefore, the total net gain of mass per unit time is: 

1 d(pv, hdy) dx + a(PV, 
dy + p R  dx dy ax ay 

(8.92) 

For steady, incompressible flow, the total net gain of mass per unit time is 
zero. 
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Therefore, 

(8.93) 

(8.94) 

Making use of Dupuit assumption and invoking Eq. (8.86), Eq. (8.94) reduces 
to: 

(8.95) 

Equation (8.95) is the flow equation for unconfined aquifer with recharge. 

Particular Case 
If there is no recharge, R = 0 and Eq. (8.95) reduces to: 

a2h2 a2h2 -+-=o 
ax2 ay2 

(8.96) 

Equation (8.96) is the steady, incompressible flow equation for unconfined 
aquifer. 

8.12 SOLUTION TO FLOW EQUATIONS 

The methods to solve groundwater flow problems comprise the following: 

0 Understanding the physical problem 
0 Replacement of the physical problem by an equivalent mathematical 

0 Solution to the mathematical equation applying the technique of 

0 Interpretation of the results in relation to physical problem 

equation 

mathematics 

The groundwater flow equations presented above have infinite number of 
solutions as they do not provide any information unless solved. To get a 
particular solution from these many solutions, some additional information is 
needed which may include: 

0 Geometry of the domain 
0 Values of all relevant parameters 
0 Initial condition 
0 Boundary condition 

First of all, initial conditions and boundary conditions are determined, either 
fi-om available information in the field or fi-om past experience. 



316 Engineering Hydrology 

Let us consider a flow domain D. 
In three-dimensional coordinates 
system, it is bounded by a surface S, 
as shown in Fig. 8.13. 

In two dimensions, it is bounded 
by a curve C. Sometimes, unbounded 
domain is also considered, i.e., flow 
domain is imagined to extend to 
infinity. 

Consider h (hydraulic head) 
= dependent variable = h(x, y ,  z, t). 
We have to specify our initial and 
boundary conditions in terms of h. 
Initial condition is the assigned value 
of h at all points within the domain 
at initial time t = 0. 

Fig. 8.13 A 3-Oflow domain 
enclosed by a surface 
(S) with an outward 
normal (n) 

h = f ( x ,  y ,  z, 0) for all points x, y ,  z inside D. 
There are three types of boundary conditions encountered in flow through 

porous media. 

0 Dirichlet boundary condition 
0 Neumann boundary condition 
0 Cauchy boundary condition 

In Dirichlet boundary condition, the hydraulic head h is assigned for all 
points of the boundary. This can be written as: 

h =fix, y,  z, t) on surface S, where f is a known function. 

In Neumann boundary condition, the flux normal to boundary surface is 
assigned for all points. This can be written as: 

qn =fix, y,  z, t) on boundary surface S 
where, n is an outward normal to the boundary; and f is a known function. 

Cauchy boundary condition is a mixed boundary condition. If there are two 
domains separated by a relatively thin semi-pervious layer, then Cauchy 
boundary condition is applied. 

Km q n  = M [h(x, y ,  Z, t) - hm(x, y ,  Z, t)l 
where, qn is the component of the specific discharge q, normal to the surface S, 

Km is the hydraulic conductivity of the boundary, 
A4 is the thickness of the boundary, 
h is the hydraulic head in the considered domain, and 
hm is the hydraulic head in the external domain. 
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An example of the application of Cauchy boundary condition is the stream 
aquifer interaction. 

To calculate the value of the hydraulic head h, we have to solve the governing 
flow equation subject to initial and boundary conditions. There are three 
methods to solve such type of problems. 

1. Analytical methods 
2. Graphical methods 
3 .  Numerical methods 

8.12.1 Solution by analytical methods 
Analytical method is superior to other methods. The advantage of this method 
is that the solution can be applied to different values of inputs and parameters. 
But, the disadvantage is that the parameters cannot be presented in the form of 
analytical solution in case of heterogeneous soil or irregular aquifer boundaries. 
This method can be applied to simple one- or two-dimensional cases of well 
hydraulics, steady flow to confined and unconfined aquifer, etc. Some of the 
cases are illustrated here. 
Steady Flow in a Confined Aquifer 
In Fig. 8.14, we have shown a confined aquifer of uniform thickness. 

Ground surface 

-- -- - -- - 

Impermeable 

Confined 
aquifer 

Piezometric 
surface I 

.X 
Impermeable 

Fig. 8.14 Steadyflow in a confined aquifer 

Let v be the velocity of groundwater in the x-direction, and h be the hydraulic 
head. For steady and one-dimensional flow, Eq. (8.76) of groundwater flow 
reduces to: 

(8.97) 
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Actual water table Computed water 
A table 

.. -. --. ---_ --_ 

h 
i\ 

i 

The given boundary conditions are: 
h = h, at x = 0, and 
h = hfat x = 1 

The solution to the above equation is: 
h = C,x + C2 

where, C, and C2 are constants of integration. 

Substituting the boundary condition of Eq. (8.98a) in Eq. (8.99), we will get: 

(8.98a) 
(8.98b) 

(8.99) 

C2 = h, (8.100) 
Substituting the boundary conditions of Eq. (8.98b) and Eq. (8.100) in 
Eq. (8.99), we will get: 

t 
hf 

hf -h c, = ~ I 
Substituting Eqs. (8.100) and (8.101) in Eq. (8.99): 

x h = h, + (hf- h,) - 1 

(8.101) 

(8.102) 

Equation (8.102) indicates that the variation of head h is linear for the 
confined aquifer. The variation of piezometric surface is linear, as shown in 
Fig. 8.13, which also contains piezometers. It is noted that there is no abstraction 
of water taking place from piezometers. 
Steady Flow in an Unconfined Aquifer 
In Fig. 8.15, we have shown an unconfined aquifer. Since water table is a flow 
line, direct analytic solution is impossible in an unconfined aquifer. 

Ground surface 

I x = o  .X 
Impermeable 

Fig. 8.15 Steadyflow in an unconfined aquifer 
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Based on Dupuit assumption, the specific discharge can be expressed as: 

The discharge per unit width (q) can be represented as: 

dh q=Kh-  dx 
The given boundary conditions are: 

h = h, at x =  0, and 
h = hf at x = 1 

Integrating Eq. (8.104), we get: 

qx=-K - + C  

Putting the boundary condition of Eq. (8.105) in Eq. (8.107), we get: 

C= K[%] 

(8.103) 

(8.104) 

(8.105) 
(8.106) 

(8.107) 

(8.108) 

Putting the boundary condition of Eq. (8.106) and Eq. (8.108), Eq. (8.107) 
reduces to: 

K 2 

21 
q = -(hi -hf) 

Equation (8.109) indicates that the water table is parabolic. 

(8.109) 

Example 8.8 In an area underlain by an unconfined aquifer having hydraulic 
conductivity of 30 &day, the distance between observation wells located on 
the banks of a canal and drain is 3.0 km and heads recorded in them are 60m 
and 50m above impermeable base. Calculate the quantity of seepage into the 
drain. 

Solution 
h, = 60 m, hf = 50 m, 1 = 1500 m, K=30 &day 

The quantity of seepage into the drain is given by Eq. (8.88). 
K 30 

q = %(@ - h;) = 3ooo (602 - 502) = 5.5 m3/day per metre 

8.12.2 Solution by Graphical methods 
Graphical methods have been in use much before the advent of computers. 
Field engineers still prefer to use graphical methods. However, it must be 
realized that these methods are only approximate. 
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F l o w  Lines and F l o w  Net 
A flow line is an imaginary line drawn in a flow field such that a tangent 
drawn at any point on this line represents the direction of the specific discharge 
vector, v. From this definition, it is clear that there can be no flow across a flow 
line. The flow lines indicate the path followed by a particle of water. 

The equation of a flow line is 
v x d s = O  (8.1 10) 

where ‘x’ denotes cross product. 
ds = dx + j d y  = element of length along the stream line 

In Cartesian coordinates, the equation of flow line can be written as: 
(8.11 1) 

F l o w  net in Homogeneous and Isotropic Media 
The Laplace equation for two dimensional flows through a homogeneous 
isotropic medium is: 

vydx ~ v,dy = 0 

(8.112) 

A flow net is a graphical solution of Laplace 
equation for two dimensions, given in 
Eq. (8.112). The plot of flow lines and 
equipotential lines for specified boundary 
conditions is known as f low net. The 
equipotential lines are the contour of equal 
head. 

In Fig. 8.16 we have shown a flow net. The 
area between two flow lines is known as 
stream tube. Our aim is to calculate the 
discharge in a flow system. 

Flow lines 

fl\ 

Equipotential 
lines 

Fig. 8.16 Diagram 
showing the 
flow net 

Discharge in a flow system = (Discharge in a single stream tube) x 
(no. of stream tubes) 

Let us consider flow through the region ABCD. 
Let the loss of hydraulic head between AJ3 and CD be dh, the distance 

between two flow lines be ds, the distance between two equipotential lines be 
dl, total no of flow lines in the whole system be nP total no of head drop in the 
whole system be nd 

(8.11 3 )  
The discharge across this region (considering unit depth) is: 

Total head loss in the whole system be H =  n,dh 

(8.1 14) dh 
dl 

dq =K-  (ds x 1) 

The discharge across any plane within the stream tube is also equal to dq 
under steady state condition. 
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If ds = dl (square flow net), then Eq. (8.1 14) becomes: 
dq=Kdh  (8.11 5 )  

The total discharge in the whole system is equal to discharge in a single 
stream tube multiplied by number of stream tubes. 

Q = K d h n f  
But, fi-om Eq. (8.113): 

H dh = - 
nd 

Using Eq. (8.117), Eq. (8.116) reduces to: 

(8.1 16) 

(8.1 17) 

(8.118) 

Example 8.9 In a flow net analysis, the number of flow line is 18 and the 
number of hydraulic head drop is 6. Flow is occurring in a medium having 
hydraulic conductivity 0.05 cdsec  and head loss is 30 m. Calculate the average 
discharge. 

Solution 
The average discharge is: 

18 
6 

= 0.05 x (30 x 100) x - = 450 cm3/sec 

Properties of F l o w  Net 
For homogeneous and isotropic media, the properties of the flow net are: 
1. Flow lines and equipotential lines must intersect at right angles. 
2. Equipotential lines must meet impermeable boundaries at right angles. 

It should be further noted that in case of earth dam, surface of seepage 
develops at the downstream. It is neither a stream line nor an equipotential 
line. Similarly, in case of vertical recharge taking place and approaching towards 
a water table, the water table is neither a streamline nor an equipotential line 
despite the presence of atmospheric pressure everywhere on the water table. 
Refraction of F l o w  Lines 
In Fig. 8.17, we have shown a heterogeneous system in which a stream tube is 
passing fi-om a formation of lower hydraulic conductivity Kl to a formation of 
higher hydraulic conductivity K2. In such condition, the flow lines refract when 
they cross fi-om one medium to another medium. In groundwater, refi-action 
obeys tangent law. 
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Fig. 8.17 Reffaction offlow lines at a geologic bounda y 

Let 8, = angle made by the flow lines to vertical, 8, = refracted angle of 
flow lines to vertical after passing through a region of change of hydraulic 
conductivity, the distance between two equipotential lines in the region where 
hydraulic conductivity is K, be dl,, the distance between two equipotential 
lines in the region where hydraulic conductivity is K2 be dl,, the distance 
between two flow lines in the region where hydraulic conductivity is K, be a, 
the distance between two flow lines in the region where hydraulic conductivity 
is K2 be c, the horizontal distance between two flow lines be 6,  head drop 
across the distance dl, be dh,, and head drop across the distance d1, be dh,. 
For steady flow, the inflow Q, must be equal to Q,. 

From Darcy's law: 

From Fig. 8.17, it can be shown that: 
a = b cos 8, 

c = b cos 8, 

dl1 sin 8 - - '-  b 

Using Eqs. (8.120) to (8.123), Eq. (8.119) becomes: 

K tan 8, 1-- - 
K, tan 8, 

(8.1 19) 

(8.120) 
(8.121) 

(8.122) 

(8.123) 

(8.124) 

Equation (8.124) is the tangent law for the refi-action of groundwater flow 
lines in heterogeneous media. We can find out the refi-acted angle 8, if we 
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know the hydraulic conductivity of two regions and angle of incidence of flow 
lines. 

8.12.3 Solution by Numerical Methods 
Nowadays, numerical methods are practically major tool for solving large scale 
groundwater forecasting problems. In this method, the governing equation is 
solved by numerically using various methodologies and techniques. The most 
used methodologies are: 

1. Finite difference method 
2. Finite volume method 
3 .  Finite element method 

Out of these, the finite difference method is widely used to solve a variety 
of groundwater flow problems. A detailed coverage to use of finite difference 
method is given in Chapter 11. 

SUMMARY 

In this chapter, the preliminary terms related to groundwater have been defined. 
Darcy’s law and its range of validity have been explained. The governing 
equations of groundwater flow for different cases have been derived. Flow 
towards wells is also briefly discussed to give an idea about the radial flow 
equations. More on radial flow is included in next chapter. 

An attempt has been made to solve the groundwater flow equation 
analytically in different types of aquifer, and information has been given 
regarding different methods of numerical solution. Also, the graphical method 
of solution has been explained. It is expected that this chapter will provide 
necessary background for a better understanding of the subsequent chapters. 

EXERCISES 

8.1 Differentiate and explain (a) homogeneous and non-homogeneous 
(b) isotropy and anisotropy. 

8.2 Explain the different types of aquifers. 

8.3 Derive the groundwater flow equation for saturated (a) steady flow 

8.4 Explain the procedure to find out the direction of groundwater flow 

(b) unsteady flow. 

with a suitable example. 
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C 

8.5 Define and explain following terms. 
(a) Transmissibility (b) Storativity 
(c) Compressibility (d) Specific storage 
(e) Hydraulic diffusivity 

8.6 Derive the equation for steady flow of groundwater in a (a) confined 
aquifer (b) unconfined aquifer. 

8.7 Derive the relation between the hydraulic conductivity of soil and angle 
made by flow lines when flow occurs through a heterogeneous 
formation. 

189 18 

8.8 Discuss briefly about flow net and its importance. 

8.9 A tracer took 15 hr to travel from well A to B which are 120 m apart. 
The difference in their water table elevation was 0.9m. The porosity of 
the aquifer is 30%. Calculate (a) hydraulic conductivity, and (b) intrinsic 
permeability. 

8.10 A confined stratified aquifer has a total thickness of 15 m and is made 
up of 3 layers. The bottom layer of thickness 4.5m has a hydraulic 
conductivity of 25dday. The middle layer of thickness 4.5m has a 
hydraulic conductivity of 35 mlday. The top layer has a hydraulic 
conductivity of 40 &day. 
Calculate the equivalent hydraulic conductivity of the confined aquifer, 
(i) if the flow is along the stratification, (ii) if the flow is normal to the 
stratification. Also, calculate the transmissivity of the confined aquifer, 
if the flow is along the stratification. 

8.11 A confined aquifer is 30m thick and 1 km wide. The heads of two 
observations well located 500 m apart are 50 m and 28 m. The hydraulic 
conductivity of the aquifer is 25dday. Calculate the total daily flow 
through the aquifer. 

8.12 Three wells A, B, and C tap the same horizontal aquifer. The distances 
AB =1100 m and BC = 800 m. The well B is exactly south of well A and 
well C lives to the west of well B. The following are the ground surface 
elevation and depth of water below the ground surface in the three wells. 

Suvface elevation I I (metevsabovedatum) 
I A l  184 I 12 I 
I B I  180 I 6 I 
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8.13 Two parallel rivers, A and B, are separated by a heterogeneous aquifer 
at a separation distance of 2000 m. The bottom one is having a width of 
15 m and hydraulic conductivity of 20 d d a y  and the top one having the 
hydraulic conductivity of 35 dday .  Heads recorded in them are 40 m 
and 25 m above impermeable base. Estimate the seepage discharge per 
unit length from river A to river B. 

8.14 Solve the previous question 8.13 when a rainfall of 10 I11ITl/hT occurs in 
the area between the rivers. Assume a suitable time for rainfall 
occurrence. 

8.15 In a flow net analysis of heterogeneous system, it has been found that 
flow lines are crossing from a medium having hydraulic conductivity 
of 40 mlday to another medium having hydraulic conductivity of 
25 dday.  Angle made by the flow line to vertical before refracting was 
30°. Calculate the refraction angle of flow lines after passing the medium. 

OBJECTIVE QUESTIONS 

1. The unit of transmissivity is 
( 4  &day (b) m2/sec (c) m.day (d) Imensionless 

( 4  (b) m2/sec (c) m.day (d) Dimensionless 

3. The hydraulic conductivity of a confined aquifer having thickness of 5 m 
is 10 dday.  Determine the value of transmissivity in m2/day. 

2. The unit of storativity is 

(a) 2 (b) 50 (c) 10 ( 4  0 

4. Hydraulic diffusivity is defined as (S = storativity, T= transmissivity, 
S, = specific storage) 
(a) SIT (b) SIK (c) KIS ( 4  KISS 

5. In confined aquifers, the range of storativity is 
( 4  0-1 (b) 0.05-0.5 
(c) 0.005-0.05 (d) 0.005-0.00005 

6. Compressibility is defined as 
(a) Ratio of strain to stress 
(c) Equal to effective stress 

(b) Inverse of modulus of elasticity 
(d) Both (a) and (b) 

7. The relation between void ratio and porosity is 

77 
1-77 

(a) e =  ~ 

e 
(b) 77 = l+e 

(c) q = e ( l  + e )  (d) both (a) and (b) 
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8. The range of the void ratio of soil is 

9. A geologic formation is said to be heterogeneous when 
( 4  0-1 (b) 0-2 (c) 0-3 (dl 0-4 

(a) The hydraulic conductivity is independent of direction of measurement 

(b) The hydraulic conductivity is independent ofposition within a geologic 

(c) The hydraulic conductivity varies with the direction of measurement 

(d) The hydraulic conductivity is dependent of position within a geologic 

at a point in a geologic formation 

formation 

at a point in a geologic formation 

formation 

10. A geologic formation is said to be anisotropy when 
(a) The hydraulic conductivity is independent of direction of measurement 

(b) The hydraulic conductivity is independent ofposition within a geologic 

(c) The hydraulic conductivity varies with the direction of measurement 

(d) The hydraulic conductivity is dependent on position within a geologic 

at a point in a geologic formation 

formation 

at a point in a geologic formation 

formation 

11. The hydraulic head is defined as the summation of 
(a) Elevation head and velocity head 
(b) Pressure head and velocity head 
(c) Elevation head and pressure head 
(d) Elevation head, pressure head and velocity head 

12. For an aquifer, a zone of 800 sq km is bounded by confined aquifer of 
20 m thick. The average maximum and minimum piezometric level 
variation range is between 6-15 m. Taking storage coefficient as 0.001, 
calculate the annual rechargeable groundwater storage from the area. 
(a) 6.0Mm3 (b) 7.0Mm3 (c) 7.2Mm3 (d) 7.5Mm3 

13. Calculate the discharge per unit width of a barrage if the difference of 
head between upstream and downstream water level is 12 m and coefficient 
of permeability is 0.9 cdsec.  There are 25 flow lines and 40 equipotential 

(a) 6.75 m2/sec 
(c) 0.0675 m2/sec 

14. If at the foundation of the reservoir hydraulic conductivity in horizontal 
and vertical direction are 50 d d a y  and 5 dday.  Determine the equivalent 
hydraulic conductivity. 
(a) 15.81 d d a y  (b) 3.162 d d a y  (c) 10.0 d d a y  (d) 45 d d a y  

drops. 
(b) 0.675 m2/sec 
(d) 0.00675 m2/sec 
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15. The actual velocity of water flowing in a medium is observed as 
0.25 cdsec.  The porosity of the medium is 0.30. Determine the Darcy’s 
velocity. 
(a) 1.2 c d s e c  (b) 0.83 c d s e c  (c) 0.075 c d s e c  (d) 0.05 c d s e c  
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CHAPTER 

Well 
Hydraulics 

9.1 INTRODUCTION 

Wells are used for abstraction of water from aquifers. In regions having 
significant decline in groundwater level, wells are also used to recharge the 
aquifers. Depending on the diameter of the well, these can be called as small- 
diameter well (diameter up to 1 m) or large-diameter well (usually having 
diameter above 1 m). Wells of very small diameter (say up to 0.3 m) are also 
known as borewell. In rural India as well as in regions having hard rocks, 
large-diameter wells are common. 

If the well is being used for abstraction of water, it is also called as pumping 
well or abstraction well. However, if the well is being used for recharge, it is 
known as rechal;qe well. If the well is being used only for measurements, it is 
also known as monitoring or observation well. 

Todd (2004) presents several classifications of wells which also include the 
classification based on the method of digging a well. Abstraction of water 
from a well may lead to lowering of groundwater level (in case of unconfined 
aquifer) or piezometric levels (in case of confined aquifers) if the rate of 
replenishment from the aquifer is less than the rate of abstraction. Usually, the 
recharge from the aquifer is not instantaneous to replenish the decline of water 
level in the well and often, the drawdown or decline of the groundwater level 
continues in the well and its vicinity. 

The drawdown is maximum in the well and reduces as one moves away 
from the well, unless interference effects get pronounced due to presence of 
other wells. The decline of water level in the well is a matter of concern. 
Excessive abstraction of groundwater has resulted in lowering of water table 
by more than 150 m in certain parts of India. Lowering of water table means 
higher investment on pumping costs. A good knowledge of well hydraulics is 
indispensable for optimum abstraction from wells. 
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9.2 DRAWDOWN DUE TO ABSTRACTION 

To compute drawdown in and around the abstraction well, knowledge of the 
following is essential: 

(i) Type of well-borewell or large-diameter well 
(ii) Type of aquifer-confined, unconfined, or semi-confined 

(iii) Extent of penetration of the well into the aquifer--fully penetrating or 

(iv) Number of aquifers contributing water to the well-single or multiple 
(v) Rate of abstraction-constant or variable with time 

(vi) Presence of recharge (river, canal, etc.) or barrier boundaries 
(vii) Presence of other abstraction wells 
(viii) Presence of laterals in abstraction wells 
(ix) Variation in aquifer properties in and around the well-consideration of 

(x) Variation in the thickness of the aquifer in the region of influence 

partially penetrating 

homogeneity as well as heterogeneity of aquifer properties 

This list provides only an idea about the type of situations which can be 
encountered. To provide an insight into the computations of drawdown, only a 
few specific conditions corresponding to steady as well as transient abstraction 
are considered. 

9.2.1 Steady Abstraction 
Abstraction from wells may not necessarily be steady. In fact, maintaining 
steady abstractions requires a certain amount of control over the regulating 
valves located above the delivery pipe. In this section, three typical cases of 
steady abstraction are considered. They are: 

(i) Steady abstraction from a fdly penetrating borewell located in a confined 
aquifer, and leading to an unsteady state of drawdown in and around the 
well, 

(ii) Steady abstraction from a -fully penetrating borewell located in a confined 
aquifer, and leading to a steady state of drawdown in and around the 
well, and 

(iii) Steady abstraction from a fully penetrating borewell located in an 
unconfined aquifer, and leading to a steady state of drawdown in and 
around the well. 

Case 1 
Figure 9.1 represents this case. The basic assumptions applicable to this case 
are given in the following list: 

(i) The aquifer medium is homogeneous and isotropic. 
(ii) The aquifer thickness is constant. 
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(iii) Darcy's equation is valid, i.e., flow is within Darcy's range. 
(iv) The fluid and the medium are incompressible. 
(v) There is no vertical component of flow. 

(vi) The well is fully penetrating. 
(vii) The pumping rate is constant. 

tQ G.L. 

- I  + 
\\\\\\\\\\\\\\' 

G.L.-Ground Line 
P.S.-Piezometric 

Surface P.S. v __-- __--  
t - . - - - - - $ h z  

,''fhl I 

+ 
\\\\\\\\\\\\\\ 

Fig. 9.1 Abstraction from a confined aquifer using a borewell 

Let H be the height of initial piezometric level measured w.r.t. the confined 
aquifer bottom. For a given drawdown or drop in piezometric level by s, the 
height of the piezometric level will reduce by s. Let the new height be h = H -  s. 
If S and Tare storage coefficient and transmissivity of the confined aquifer, 
Boussinesq's equation for unsteady state in (x, y ,  z )  coordinates can be written 
as : 

As flow towards the well is radial, in (r, 0, z)  coordinates, Eq. (9.1) can be 
rewritten as: 

Invoking the assumption of flow being horizontal, 

Since the flow is radially symmetric, 

Thus, Eq. (9.2) further simplifies to: 
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Equation (9.5) was solved by Jacob by treating the well as a sink of constant 
strength and infinitesimal diameter, and subject to the following boundary 
conditions: 

H(r, 0) = H for (t = 0) (9.6a) 
H = H a s ( r + m )  for( t20)  (9.6b) 

lim r -  =- 
r-0 ( ?) 2!T (9.6~)  

Solution of Eq. (9.5) subject to Eq. (9.6) leads to the following distribution of 
drawdown s with r and t, i.e., 

r2S where, u = - 4Tt (9.7a) 

Using a series expansion of exponential term and integrating, the well function 
W(u) can be represented as: 

- 0.57721 6 - In u + u - ~ u2 + ~ u3 - ~ u4 +...I (9.8) 2 x 2 !  3x3! 4 x 4 !  

For (u < O.Ol), Jacob approximated Eq. (9.7) as: 

S = [-0.577216 - In u] (9-9) 4zT 
An algebraic approximation of W(u) was given by Swamee and Ojha (1 990a) 
as: 

W ( u )  = 

(9.10) 
For different values of u, this well function will generate nearly the same value 
of W(u) as given in reported tabular solution (Walton, 1970). The maximum 
error in approximation is limited to 1%. 

Example 9.1 Compute W(u) for the given values of u, (a) u = 0.004, and 
(b) u = 0.089. Use Jacob’s approximation as well as Swamee and Ojha 
approximation. 

Solution 
(a) As u < 0.01, using Jacob’s approximation, 
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W(u) = [-0.577216 - In (u)] = 4.944 
Using the algebraic approximation of W(u) given in Eq. (9.10), 

(for c, = 0.561459) 
= 4.96028 

(b) As u > 0.01, using Jacob’s approximation, 

-0.577216-lnu+u-- u2 +--- u3 u4 +...I 
2 x 2 !  3x3! 4 x4! 

= 1.9289 
Using the algebraic approximation of W(u) given in Eq. (9. lo), 

(for c1 = 0.561459) 
= 1.93364 

Example 9.2 In case of radial unsteady flow towards a pumping well located 
in a confined aquifer having transmissivity of 360 m2/day and storage coefficient 
of 2.1 x lo4, two monitoring wells are placed 50 m and 100 m apart fiom the 
pumping well with a constant discharge of 900 m3/day. Find the drawdowns at 
two different monitoring wells after half an hour of pumping? 

Solution 
Given, T = 360 m2/day = 0.25 m2/min 

Q = 900 m3/day = 0.625 m3/min 
rl = 50 m 
r2= 100 m 
t=30min 

s= 2.1 x lo4 

In case of unsteady state flow towards wells in a confined aquifer, 

(q)2 s (50 )~  x (2.1 ~ 1 0 ~ ~ )  

(r2 12 s (i00)2 x (2.1 ~ 1 0 - 4 )  

= 0.0175 - - u1= ~ 

4 Tt 4 x (0.25) x30 

= 0.07 - - u2= ~ 

4 Tt 4 x (0.25) x30 
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Let the drawdowns at monitoring wells be s1 and s2. 

From Eq. (9.8), 

s = ~ Q [ - 0.5772 16 - In( u)  + u - ~ u2 + ~ u3 - ~ u4 +...I 
4 z T  2x2!  3 x3! 4 x4! 

Substituting for u1 and 

s1 = 0.6935 m 
And s2 = 0.4278 m 

u2 in Eq. (9.8): 

Case 2 
The assumptions applicable to Case 1 are equally valid in this case too. As the 
drawdown in and around the abstraction well attains a steady state: 

ah - = o  
at 

With the attainment of steady state, Eq. (9.5) converts into: 

+ $ ( r $ )  = O  

As (r f 0) in the domain of interest, one can also write Eq. (9.12) as: 

gr$) = o  
Integration of Eq. (9.13) w.r.t. r leads to: 

ah 
ar 

r -  =cl 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

In Eq. (9.14), c1 is a constant. From Eq. (9.6c), c1 = Q42.T). Further integration 
of Eq. (9.14) w.r.t. r leads to: 

At (r = r,), h = h, 

Substituting Eq. (9.16) in Eq. (9.15): 

(9.15) 

(9.16) 

(9.17) 

Equation (9.17) provides the distribution of drawdown around the abstraction 
well when a steady state of the cone of depression has been obtained. 
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Example 9.3 A fully penetrating artesian well of 0.3 m diameter was pumped 
with a constant rate of 1800 m3/day under a steady state condition. If the 
transmissivity of the aquifer is 0.145 m2/min and the drawdown observed in 
the well is 8.92 m, find the radius of influence of the well. 

Solution 
Given: 

1800 m3/min Q = 1800 m3/day = ~ 

24 x 60 
T =  0.145 m2/min, h - h, = 8.92 m, and r, = 0.3 m 

Using h - h, = ~ l n  - 
2% [;) 
f 1800 ) 
(mJ 

2x7cxX.145 h(&) 
8.92 = 

Or r =  199.8m 

Case 3 
Figure 9.2 represents Case 3. The basic assumptions remain same as for 
Cases 1 and 2. It should be noted that in case of unconfined flow, the term SIT 
is replaced by S,IK with S, as the specific yield. 

For a steady state of drawdown, Eqs. (9.11) to (9.14) still hold good. One 
can proceed in a similar way, starting from Eq. (9.11). However, c1 needs to be 
expressed as: 

Q c1 = ~ 

27cKh (9.18) 

Replacement of Tas Kh can be noted here. Here, Kis the hydraulic conductivity. 
In case of confined aquifer, transmissivity (T) can be expressed as Kb where b 
is the thickness of the confined aquifer. However, in case of unconfined aquifer, 
T must be expressed as Kh, as it is the width (h)  of the unconfined aquifer 
through which the flow is taking place. 

Coupling of Eqs. (9.14) and (9.18) leads to: 

(9.19) 

Integrating both sides of Eq. (9.19) between the limits h = h, at r = r, and 
h = head at any distance r, 

(9.20) 

Equation (9.20) can be used to compute drawdown around the well. 
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Ground surface 

Fig. 9.2 Abstraction from an unconfined aquifer using a borewell 

Example 9.4 A fully penetrating well of diameter 0.3 m is located in an 
unconfined aquifer of saturated depth 45 m. If the drawdown in the well is 
15 m for the discharge of 1200 m3/day and the radius of influence is 300 m, 
compute hydraulic conductivity? 

Solution 
Given: 

diameter = 0.3 m 
rw = 0.15 m 
h = 4 5 m  
h w = 3 0 m  
Q = 1200 m3/day 
r = 3 0 0 m  

From Eq. (9.20): 

Q 
Z(h2 - G) Or K =  

(1200 m2/day) K =  
7~[(45 m)2 - (30 m)2] 

Or K = 2.5807 &day 
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9.2.2 Transient Abstraction 
As discussed earlier, drawdown in and round the well can also be computed in 
case of transient abstraction. A perusal of Cases 1 to 3 as discussed above also 
implies that steady state of drawdown is not relevant because under transient 
abstraction, the drawdown will generally be under an unsteady state. 
Case 4 
(Transient abstraction from a fully penetrating borewell located in a 
confined aquifer and leading to an unsteady state of drawdown in and 
around the well) 

To explain the drawdown development around a well under transient 
abstraction, Case 1 is considered as the basis. Application of the concepts 
presented here is possible in different scenarios, as drawdown is proportional 
to abstraction. 

For computation of drawdown under transient abstraction, the following 
steps are to be followed: 

(a) Obtain drawdown due to a pulse (a constant abstraction of unit magnitude 

(b) Represent a given sequence of abstractions as a linear combinations of 

(c) Superimpose drawdowns of each of the pulses of different magnitudes 

for a unit time step) 

such pulses 

and durations 

The stated abstraction pattern can also be represented as shown in Fig. 9.3. 

Y 

I 

Fig. 9.3 Representation of abstraction pattern 

Step 1: To obtain drawdown (sdt) due to a unit abstraction for a unit time dt, 
starting at t = 0, Eq. (9.21) can be used. 

(9.21) 

Equation (9.21) consists of two terms. First term represents the drawdown due 
to a unit abstraction up to time t. The second term represents the recovery of 
drawdown due to a unit recharge beginning at time ( t  - dt). The resultant of 
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such an abstraction and recharge combination is a unit abstraction for a time 
step dt. Equation (9.21) can be used as the basis to obtain drawdowns of other 
pulses beginning at other times. 

Step 2: Any unsteady abstraction Q(t) can be assumed as a combination of 
pulses of varying magnitude and unit duration. Any convenient unit of time 
can be considered as a time step. For better accuracy, smaller time steps, such 
as 5, 10, 15, 30, and 60 minutes are preferable. One should ascertain that the 
results are not sensitive to the selection of step size. A few trials are enough to 
decide the appropriate step size. 

Step 3: The drawdown due to a unit pulse beginning at t = 0 to dt can be 
obtained from Eq. (9.21). Similarly, drawdown due to pulses beginning at 
(n  dt) and lasting up to ( n  + 1)dt can be obtained. Here, n may vary from 1 to 
the total number of time steps during the abstraction period. The resultant 
drawdown is the sum of drawdowns due to all the pulses constituting Q(t). 

Example 9.5 An abstraction borewell located in a confined aquifer is 
subjected to the following abstraction pattern: (a) abstraction at rate Q for a 
time tp and (b) zero abstraction for (t  > tp). Obtain the drawdown variation 
with time when the abstraction is stopped. 

Solution 
Using Eq. (9.7), drawdown s1 due to abstraction beginning at t = 0 is given as: 

Similarly, the drawdown s2 due to negative abstraction beginning at t = tp is 
given as: 

Thus, the resultant drawdown (s) is: 
for (0 I t I t,) s =sl 

And s = s1 + s2 for ( t  > tp) 
The situation depicted in this example is very cornmon as the abstraction 
continues only for a limited time. After the abstraction ceases, there is a gradual 
restoration of the original water level due to replenishment fi-om the aquifer. 

9.3 DRAWDOWN DUE TO ABSTRACTION FROM 
MULTIPLE WELLS 

One of the underlying assumptions in analysis of abstraction from a single 
well is that, it is located in an infinite aquifer and thereby its performance is 
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not influenced by any other source or sink. In nature, such an ideal situation is 
very rare. Wells are located very close to rivers or water bodies so that they 
can get replenished from these sources. Whenever, a well is located near a 
recharge boundary or barrier boundary, the drawdown expression for single 
well will not hold good. 

Another cornmon scenario is that, there can be several wells located in a 
particular region. In certain wells, such a situation is very comrnon where a 
series of borewells can be observed. Each land owner or farmer will normally 
have his own borewell or tubewell. These wells are dug many times without 
much planning as a result of which optimum utilization of groundwater is not 
achieved. 

To achieve optimum utilization of groundwater, drawdown computations 
for multiple wells are important. To provide an insight into drawdown 
computations in the presence of a hydrogeological boundary, following cases 
are considered. 

9.3.1 Abstraction Well near a Recharge Boundary 
Figure 9.4(a) shows an abstraction well near a recharge boundary. The pattern 
of stream or flow lines and equipotential lines is also shown in the figure. 

Pump well 

B 
3 0 

e 

Equipotential 
lines 

Flow lines 

Fig. 9.4 (a) Abstraction well near a recharge bounda y 
(Source: Sharma and Chawla, 1977) 

As abstraction from the well begins, the cone of depression starts developing; 
and it may reach the recharge boundary after sometime. Irrespective of the 
progression of cone, the drop in the level at the boundary will always be zero. 
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Abstraction well Image recharge well 

Fig. 9.4(b) Representation of image 
recharge well 

Consideration of observation taken only from a single well will indicate 
that, there is some drawdown at the recharge boundary. However, in reality, 
the drawdown is zero. Thus, to get zero drawdown, a certain amount of 
replenishment of water level has to be brought in. This is intelligently done by 
bringing in another well which is recharging in nature and is located on the 
other side of the boundary. It is noted that the recharge well has to be on the 
other side of the boundary. The recharge well is also known as image well 
despite its reverse nature. 

Thus, Fig. 9.4(a) is replaced by Fig. 9.4(b) for analysis. The drawdown at 
any point in the flow domain is simply the algebraic sum of the drawdowns 
due to abstraction as well as its image well, which is a recharge well. 

For a confined aquifer with no recharge, applying Jacob’s equation, the 
drawdown (s) at any given time (t)  and at any distance (r) ,  can be expressed 
as : 

4zT 

2.25 T t 2.3 Q log[+] where, C= ~ 

S 
Or s = -  

47cT 

The drawdown (s,) at the well face due to the pumping 
well can be expressed as: 

Further simplification of this expression leads to: 

s,= -log(?] 2.3 Q 
27cT 

well and the image 

where, a is the distance between the pumping well and the recharge boundary. 
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Example 9.6 A well of 30 cm diameter is pumped at the rate of 1900 lpm. 
The well is located at a distance of 110 m fi-om a recharging canal. Find out the 
drawdown in the well if the transmissivity of the aquifer is 0.015 m2/sec. 

Solution 
Given: 

Q = 1900 lpm, rw = 15 cm, a = 110 m, and T =  0.015 m2/sec 

2.3 Q 
2nT 

s, = 2.476 m 

9.3.2 Abstraction Well near a Barrier Boundary 
Figure 9.5 shows an abstraction well near a barrier boundary. Unlike recharge 
boundary, the drawdown at the barrier boundary may exist. However, as the 
flow cannot take place at the barrier boundary, such a situation is possible 
only when the drawdown on both sides of the boundary is equal. To achieve 
this, an equivalent drawdown has to be introduced on the other side of the 
boundary. This is made possible by placing another abstraction well at the 
same distance on the other side of the boundary. 

Thus, Fig. 9.5(a) is replaced by Fig. 9.5(b). 

Pump well 

Fig. 9.5(a) Abstraction well near a bam'er boundary 
(Source: Sharma and Chawla, 1977) 
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&&!- h a g e  abstraction well 

Fig. 9.5(b) Representation of image 
abstraction well 

Figure 9.5 can be used to write the expressions of drawdown at any 
observation well. The drawdown at the barrier boundary which is located at a 
distance of d fi-om pumping well and image abstraction well, as shown in Fig. 
9.5(b), will record a drawdown which is two times of the drawdown caused by 
the pumping well had there not been a barrier boundary. 

9.3.3 Well Interference 
Let us consider a system of three wells A ,  B, and C. Let us assume that A is 
located at the origin, and B and C are located at (xb, Yb) and (xc, yc), respectively. 
Let the wells A ,  B, and C operate for a time t with abstraction rates QA, Q,, and 
Q,; and let the drawdowns of the three wells be s,, sb, and sc, respectively. 
Then, the drawdown so at a point 0 with coordinates (xo, yo) can be expressed 
as : 

(9.22) 
L 

From Eq. (9.22), it can be seen that the drawdown at point 0 is the sum of the 
drawdowns due to the wells A ,  B, and C. 

Equation (9.22) provides a basis to compute the drawdown at either of the 
wells. The drawdown at well A will not only be due to the drawdown caused 
by abstraction of discharge Q A  fi-om well A,  but it will also be influenced by 
the drawdown at well A due to abstractions exerted by wells B and C. Thus, 
drawdown at well A of radius rw can be written as: 

(9.23) 
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In the absence of wells, B and C, the second and third terms of Eq. (9.23) will 
be zero. Due to the presence of the wells, B and C, the magnitude of S, is 
increased. This effect of change in the magnitude of S, because of the presence 
of other wells in the cone of depression is also called as interference efect. 

The process of drawdown computations can be adapted for any well field. 
It is not necessary that all the wells in the region will only be borewells. Analysis 
of well fields consisting of borewells and large-diameter wells is also possible 
using the superposition principle (Sahu, 1989). 

9.4 PUMPING TESTS 

Pumping tests are essential to know the aquifer parameters. The main objective 
of a pumping test is to test the response of aquifers when they are subjected to 
certain excitation, either in the form of abstraction or recharge. Prior to 
execution of pumping tests, the following factors must be considered. 

(i) Selection of site 
(ii) Design of pumping and observation well 

(iii) Well spacing 
(iv) Duration of pumping test 
(v) A set of measurements 

Selection of site 
Before selecting a site, it is important to know the geological and hydrological 
conditions of the test site. The subsurface lithology and aquifer geometry are 
also helpful in interpretation of pump test data. A preliminary estimate of 
transmissivity can also be done from surface lithology and aquifer thickness. 

The presence of river, lake, or any other hydrological boundary plays an 
important role because of stream aquifer interaction. Pumping tests are avoided 
near highway or railway track because of water level fluctuations. 
Design considerations of pumping and observation well 

(i) The pumping test includes a pumping well and at least one monitoring 

(ii) The pumping well diameter should be at least 150 111111, so that an electric 

(iii) The pumping well should be bored to the complete thickness of the 

(iv) The monitoring well should also penetrate the same depth as that of the 

(v) The length and position of a screen can affect the amount of drawdown. 
(vi) The pumped water should be conveyed and discharged at a distance of 

well. 

pump can be easily installed. 

aquifer, so that partial penetration can be avoided. 

pumping well. 

200 m away from the pumping well. 
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Well spacing 
In case of confined aquifer, the distance of monitoring well fi-om the pumping 
well can be up to 200 to 250 m. In case of unconfined aquifer, the cone of 
depression is comparatively small and monitoring well should be within a 
distance of 100m. In case of high transmissivity, monitoring well can be put 
further away and vice versa in case of low transmissivity. 
Duration of pumping test 
The duration of pumping test depends on type of the aquifer. The duration of 
constant rate pumping test in confined, leaky confined, and unconfined aquifers 
could be about 24 hr, 20 hr, and 72 hr, respectively (Kmesman and de Ridder, 
1990). 
Set of measurements 
Measurements for groundwater levels and measurement of well discharge are 
very important to be observed during pumping test. Initial drawdown is very 
fast so the water level observations should be made at an interval of 0.5-1 min 
for the first 10 minutes of pumping. The time intervals can be increased by 2, 
5, and 10 minutes and later the time interval can be in hours. ARer the pumping 
is stopped, the initial rate of recovery is very fast so the initial water level 
measurement can be taken at shorter time intervals and later, the time intervals 
can be increased. Well discharge can be measured using different types of 
weirs, circular orifice weir being the most common (Discroll, 1986). Nowadays, 
well discharge can also be measured using electronic discharge meters. 

9.5 ESTIMATION OF AQUIFER PARAMETERS 

There are various approaches to estimate aquifer parameters. The parameters 
can be estimated using time-drawdown data of (i) abstraction phase, and 
(ii) recovery phase. Some of the popular approaches and the steps involved in 
determining the parameters are discussed in the following pages. 
The approaches that use time-drawdown data of abstraction phase are: 

(i) Graphical approach 
(ii) Analytical approach 

(iii) Combination of graphical and semi-analytical approach 
(iv) Optimization-based approach 

9.5.1 Graphical Approach 
Use of graphical approaches has been very common for estimation of aquifer 
parameters. Algebraic approximations of many well functions are still not 
available. Thus, this approach is the oldest one in terms of its application. The 
application of this approach is explained for Case 1 which deals with unsteady 
state drawdown situation of a well, located in a confined aquifer. 
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Using Eqs. (9.7) and (9.7a): 

log s = log W(u) + log ~ [ 2 T ]  

log - =logu+log  
t t 2  1 

(9.24) 

(9.25) 

With this background, the steps involved in this approach, also known as type- 
curve matching method, were suggested by Theis. The steps are as follows: 

(i) A type curve is drawn plotting log [ W(u)] versus log (u). 
(ii) A data curve is drawn between log (s) versus log (?/t). Same scale has 

to be maintained in drawing the curves in steps 1 and 2. 
(iii) The data curve is superimposed on the type curve and the sheet is moved 

so as to keep the axes parallel to each other, and the best-fit position is 
obtained. 

(iv) A point is chosen on the best-matching segment of the two curves. The 
values of s, (r2/ t ) ,  u, and W(u) corresponding to the selected match point 
are obtained from the graph. 

(v) Transmissivity is computed as: 

Q T =  ~ W ( U )  
4zs 

(vi) Storage coefficient is computed as: 

(9.26) 

(9.27) 

(Contd. 

U 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
~~~~~~~~ 

x 1 0.219 0.049 0.013 0.0038 0.0011 0.00036 0.00012 0.000038 0.000012 
~~~~~~~~ 

x lo-' 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26 
x 4.04 3.35 2.96 2.68 2.47 2.30 2.15 2.03 1.92 
x 6.33 5.64 5.22 4.95 4.73 4.54 4.39 4.26 4.14 
x lo4 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44 
x 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74 
x 13.24 12.55 12.14 11.85 11.63 11.45 11.29 11.16 11.04 
x 15.54 14.85 14.44 14.15 13.93 13.75 13.60 13.46 13.34 
x 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65 
x 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95 
x lo-'' 22.45 21.76 21.35 21.06 20.84 20.66 20.50 20.37 20.25 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 

~~~~~~~~ 
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(Contd.) 

10 

I 1.00 E-04 1.00 E-03 1.00 E-02 1.00 E-01 1.00 E+OO 
U 

Fig. 9.6 Type curve showing variation of W(u) us. u 

Example 9.7 A pump test was conducted with a constant discharge of 2.90 
m3/min. The observation well was located at a distance of 19.20 m. Estimate T 
and S using the time-drawdown data given in Table 9.2. 

Table 9.2 Time-drawdown data 

(Contd. 

--------- 
x lo-" 24.75 24.06 23.65 23.36 23.14 22.96 22.81 22.67 22.55 
x 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86 
x 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16 
x 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46 
x 10 l 5  33.96 33.27 32.86 32.58 32.35 32.17 32.02 31.88 31.76 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

~~~~~~~~~ 

--------- 

i"me since pumping began Drawdown i"me since pumping began Drawdown 
(min) (4 (min) (4 

0 0.0000 25 0.8809 
0.5 0.3596 30 0.9083 
1 0.4298 35 0.9296 
1.5 0.4785 40 0.9449 
2 0.5090 45 0.9693 
2.5 0.5394 50 0.9906 
3 0.5608 55 1.0089 
3.5 0.5791 60 1.0150 
4 0.6096 70 1.0211 
4.5 0.6309 80 1.0302 
5 0.6401 90 1.0363 
6 0.6706 100 1.0363 
7 0.6888 110 1.0424 
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8 
9 

10 
12 
16 
18 
20 

(Contd.) 

0.7102 120 1.0516 
0.7254 135 1.0607 
0.7407 150 1.0668 
0.7742 165 1.0820 
0.8108 180 1.0942 
0.8209 210 1.1003 
0.8504 217 Pump stopped 

1 .o 
0.7 

Solution 
The steps are as follows: 

(i) A type curve is plotted between u versus W(u) on log-log graph. 
(ii) A data curve is plotted between (r2/t) versus s on log-log graph. 

(iii) The data curve is matched with the type curve, keeping x and y axes 

(iv) From the matching zone a point is selected and corresponding values of 
parallel; and a matching zone is determined. 

s, (r2/t), u, and W(u) are determined from the matching point. 

0.5 1 2 5 10 20 50 100 200 

I I 

HIP. Y:I I iinP mirim n n n  nnfn riiriw snniiiinn fnP mnfrn nninf 

For the match point at A,  
W(u) = 3.4, u = 0.02, t = 2.2 min, s = 0.5182 m 

Given, Q = 2.90 m3/min 
r = 19.20 m 

Therefore, T =  -W(u) Q = 1.515 m2/min 
47cs 

s= ~ 4Ttu = 7.238 x lo4 
..2 And 
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9.5.2 Analytical Approach 
This approach is applicable to cases 2 and 3. With known pairs of (r, h),  and 
(rw, hw), T can be evaluated using Eq. (9.7) for a confined aquifer; whereas K 
can be evaluated using Eq. (9.20) in case of an unconfined aquifer. Examples 
9.3 and 9.4 illustrate the use of analytical approach. 

9.5.3 Combination of Graphical and Semi-analytical 
Approach 

Plotting a type curve is time consuming and is subject to error due to human 
judgement. To avoid this, Jacob used approximation of well function, as given 
in Eq. (9.9) for the situation depicted in Case 1. His analytical approach is 
based on Eqs. (9.7) and (9.9) which leads to: 

s = L[-0 .577216  4nT -In 

Using time drawdown pairs (s,, t,) and (s2, t2): 

(9.28) 

(9.29) 

It is noted that a change in drawdown As = s2 ~ s1 takes place in a time 
A (log t )  = log (t2 / t J .  [Note: ln(t) = 2.303 log t] Here, ln(t) is logarithm on 
exponential base, whereas log refers to logarithm on base 10. 

Equation (9.29) is also used to find an estimate of t  at which drawdown s is 
still zero. We know that at t = 0, s is zero. However, Eq. (9.29) also provides a 
value oft ,  say at t = to at which s is zero. Using Eq. (9.28) and solving for 
s = 0 leads to: 

2.257 T to 
S =  (9.30) 

r L  
With this background, the steps involved in Jacob’s method are as follows: 

(i) A graph is plotted between drawdown versus time on a semi-log graph. 

(ii) From the semi-log graph, let the drawdown be s1 for t ,  = 10 min, and s2 
Time is represented on a logarithmic scale. 

for t2 = 100 min. 
Hence, As = s2 - s1 for A(1og t )  = 1 

(iii) Using this value of As, T is computed using Eq. (9.27). 
(iv) From the graph in Step 1, the value of to is obtained at s = 0. For this 

purpose, the linear plot is extended to intersect the time axis. The 
intersected value of time is to. S is calculated using the value of to in 
Eq. (9.27). 
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In Jacob’s method, the transmissivity T and S are determined by the following 
formulae, 

2.3 Q 
4nAs 

T =  ~ 

2.25 T to 
r2 

S =  

where, to is time intercept on zero drawdown. 

Example 9.8 Using Jacob’s method, obtain S and T for a given aquifer at 
Patmangalam, Tamil Nadu, India. The time-drawdown data is given in Table 
9.3 for which the observation well is 12.3 m from the production well (Source: 
Raghunath, H.M.). 

Table 9.3 Time and drawdown data 

Erne t (min) 

1 
2 
3 
4 
6 
8 

10 
14 
18 

Drawdown s (m) I Erne t (min) 

0.24 I 22 
0.24 I 28 
0.28 I 35 
0.32 I 45 
0.37 I 55 
0.41 I 65 
0.45 I 80 
0.49 I 100 
0.51 120 

Drawdown s (m) 

0.53 
0.54 
0.57 
0.64 
0.65 
0.68 
0.69 
0.74 
0.76 

Solution 
The steps are as follows: 

(i) A graph is plotted between drawdown versus time on a semi-log graph. 

(ii) From the semi-log graph, let the drawdown be s, for t ,  = 10 min, and s2 
Time is represented on a logarithmic scale. 

for t2 = 100 min. 
fis =s2 -sl = 0.73 - 0.43 = 0.3 m 

(iii) Using Jacob’s method, Tand S are determined by the following formulae, 

T =  ~ 2‘3 = 1008 m2/day 
4 nAs 

2.25Tt0 - 
- 0.0037 s= ~ 

r2 
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9.5.4 Optimization-based Approach 
Jacob's method of parameter estimation is simple. However, it suffers from 
the limitation that the well argument u has to be less than 0.1. Many a time, 
this is not so, and the computed values of S and T do violate this assumption. 
Further, Jacob's method involves graphical plotting, which is a cumbersome 
and time-consuming process. 

To overcome the drawbacks of Jacob's method, Swamee and Ojha (1990a) 
developed a full range of approximation for the well h c t i o n ;  and suggested a 
procedure in which an error function, based on observed and computed 
drawdowns for any assumed pair of S and T, has to be minimized by variations 
of S and Tin a certain feasible range. 

Using Eqs. (9.7) and (9.10): 

(9.3 1) 
For a set of S and T values, the error in ith observation is: 

(9.32) 

where, ui = r2( &) (and si is observed at ti) (9.33) 

The sum of square of errors overemphasizes large errors that are associated 
with the later part of the pump test. S and T can be obtained by varying them so 
that the sum of square of errors for the entire dataset is minimized. Thus, the 
data will not be properly used for the initial part of the pump test. To use the 
entire dataset to its full effect, the proportionate error (ei) is considered instead 
of the errors themselves. 

e . =  - 4 (9.34) 
' si 

To determine aquifer parameters, summation of a criteria functionf(ei) has to 
be minimized. 

(9.35) 
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Several criteria functions have been proposed hom time to time. The most 
common among them is a square function. 

Aei) = (ei12 (9.36) 
The criteria function given in Eq. (9.36) is popularly known as the least square 
method which was introduced by Gauss in 1768. Another criteria function for 
fiei) is an absolute function. 

By varying S and Tin a feasible range, several values of F can be obtained. 
The value of S and Tat which F is minimum will be the correct estimate of S 
and T. 

Aei) = lei1 (9.37) 

Example 9.9 In Table 9.2, the observed drawdown at t = 2 min is 0.5090 m. 
Use the following data to compute drawdown, and estimate the percentage 
error in the computed drawdown. 

S =  7.238 x lo4 
T =  1.515 m2/min 
r = 19.2 m 
Q = 2.90 m3/min 

Also, estirnateflq) as per Eq. (9.36). 

Solution 

4Ttu s= ~ 

r2 

4 x 1.515 x 2 x u 
(19.2)2 

Or 7.238 x lop4 = 

3 u = 0.0220 
3 W(u) =3.346 

From the equation, T = ~ W(u), we have: Q 
47cs 

s = 0.50968 m 
Hence, percentage error 

x 100 
- Observed drawdown - Computed drawdown 

= 0.13359 

- 

Observed drawdown 
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Unsolved: Obtain F, as per Eq. (9.35) using the given in Table 9.2. Study the 
effect of varying T and S values. Comment whether the use of S and T, as 
considered in Example 9.9, is the best choice. 

There are some other approaches which are used to estimate aquifer 
parameters. These include computations of time derivatives of drawdown and 
estimating the time at which time derivative of drawdown becomes zero. 
Aquifer parameters are obtained using this time at which time derivative of 
drawdown is zero [Singh (2000)l. Another approach which estimates aquifer 
transmissivity using specific capacity is described here. The idea of presenting 
this is also to introduce widely used term of specific capacity. 

9.5.5 Estimating Aquifer Transmissivity using Specific 
Capacity 

Specific capacity is a widely used term in well hydraulics. It is defined as the 
ratio of abstraction discharge Q to drawdown s, in the well. For a steady 
abstraction from a fully penetrating borewell located in a confined aquifer and 
leading to a steady state of drawdown in and around the well, specific capacity 
Csp can be computed as follows. 

Using Eq. (9.17), for r = R with R as the radius of influence where h 
approaches H (the original depth of piezometric surface) 

Thus, 

(9.38) 

(9.39) 

From Eq. (9.39), invariance of specific capacity with time is apparent for steady 
state. It also indicates that the aquifer transmissivity is related with specific 
capacity. This has provided motivation for relating T with specific capacity. 
For example, Huntley et al. (Singhal and Gupta, 1999) proposed: 

1.18 

T =  A(:) (9.40) 

where, the value of A is 0.12 if both T and (Q/s,) are expressed in m2dayp'. In 
this case, it is assumed that the well loss is negligible, which will underestimate 
the transmissivity value in alluvial aquifers. Normally, Tvalues estimated from 
specific data are greater than those obtained from aquifer tests. To appreciate 
this, one has to realize that the drawdown computed using aquifer response at 
(r = r,) is not necessarily equal to the drawdown in the well. As the water 
enters into the well, it may encounter additional flow resistance as it is flowing 
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through the well screen. In addition, turbulent flows may occur near the well. 
Therefore, the piezometric surface drops further. 

The drop in piezometric surface occurs due to (i) headloss resulting from 
laminar flow in the formation, also known as formation loss, (ii) headloss due 
to turbulent flow in the zone close to the well face, (iii) headloss through the 
well screen, and (iv) headloss in the well casing. The drawdown s, in the well 
is also expressed using the following relationship. 

(9.41) 
In Eq. (9.41), B is also known as coefficient of formation loss, and the term 
BQ accounts for headloss resulting from laminar flow in the formation. The 
second term (CQ") collectively represents the headlosses due to factors (ii) to 
(iv), as described above. C represents a well loss coefficient and n may vary 
from 1 to 2, although higher values of n are also reported. 

Using Eq. (9.41), one can express C,, as: 

s, = B Q + CQ" 

1 
B + CQn-l 

c,, = (9.42) 

From Eq. (9.42), one can see that a plot of sJQ versus Q will be a straight line 
and having slope as C for n = 2. Similarly, the intercept at Q = 0 will give B. 
Thus, with B and C being known, it is also possible to compute specific capacity 
with a priori assumption of n = 2. 

If the s,/Q versus Q plot is not linear for n = 2, either the plots have to be 
attempted for different n values or B, C, and n have to be obtained so that the 
error between computed s, using Eq. (9.41) and observed drawdown is 
minimized. 

It is also important to realize the difference between two expressions of 
specific capacity, as given by Eqs. (9.39) and (9.42). Equation (9.39) only 
considers the formation loss. Here, no well loss is considered. If we neglect 
well loss component in Eq. (9.42), C,, will be equal to 1/B. 

The specific capacity which is computed by ignoring the well loss is also 
known as theoretical specijk capacity. The ratio of specific capacity for the 
observed drawdown to theoretical specific capacity is also known as well 
efficiency ( qwell). 

(9.43) 

It is to note that in Eq. (9.43), s, given by Eq. (9.41) needs to be used. A high 
specific capacity indicates an efficient good yielding well. 

The difference of the piezometric surface at the outer periphery of the well 
(as one approaches towards well from aquifer side) and the actual level in the 
well is also called seepageface in large-diameter wells. It is to note that seepage 
face and well loss are not same. 
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In case of large-diameter wells and in the absence of any well casing, seepage 
face may be same as well loss under a steady state situation. The purpose of 
introducing seepage face is to indicate how it leads to similar expressions of 
drawdown in the case of a large-diameter well. 

Ojha and Gopal (1999) observed that the seepage face (j9 is related with the 
entrance velocity of flow into the well (va as: 

The values of exponent n were found to range from 1 to 2. Thus, if the seepage 
face is considered, Eq. (9.38) will modify to: 

f = 4 V f ) "  (9.44) 

s,= -In - +.(Vf)" 
2fT  (t) (9.45) 

As v,is expressible in terms of Q, Eq. (9.45) can also be expressed as: 
(9.46) 

In Eq. (9.46), C, Q is known as formation loss and C, Q" is known as well 
loss. Normally, n as 2 is adopted in the literature which may not always hold 
good. Thus, if the well loss is ignored, a smaller value of s, is being used in 
Eq. (9.40); and thus, T is overestimated. 

s, = C,Q + C,Q" 

Example 9.10 A 0.3 m diameter well completely penetrating an infinite 
artesian aquifer is pumped at the rate 60 m3/hour. The transmissivity and the 
storativity of the aquifer are 600 m2/day and 0.0004, respectively. Assuming a 
well loss coefficient C, of 0.5 min2/m5 and index n = 2, find the specific capacity 
of the pumping well after 1 day of pumping. [Hint: Take care of units] 

Solution 
As s, = C, Q + C, 

2.3Q 2 25Tt 
47cT (r,), s s,= -log [ ~ ' ]+GQ" 

Given: 
r = 0.15 m 
Q = 60 m3/hr = 1 m3/min = 1/60 m3/s 
T = 600 m2/day = 25 m3/hr = 0.006944 m3/s 
C, = 0.5 min2/m5 = 1800 s2/m5 

C, Q " ~ = 1800 s2/m5 x 1/60 m3/s 
= 30 s/m2 
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= 0.0040757 m2/s Thus, e= 1 
2.25 x 600 x 1 ) + ,,I 

log ( 2.3 
sw [ 4X(o.006944) (0. 15)2(0.0004) 

Unsolved: Study the effect of varying t on specific capacity computation. 

9.5.6 Coupling of Steady and Unsteady State Relationships 
Beginning with an appropriate value of radius of influence (between 50 to 
200 m), steady state equation [Eq. (9.17)] is used to estimate Tusing first-time 
drawdown pair of unsteady state case. This value of Tis substituted in second- 
time drawdown pair to compute radius of influence. A successive application 
of this process leads to different estimates of transmissivity. As time increases, 
the transmissivity values progressively tend towards a constant value. With 
this value of T, one can use drawdown at later stages for which T has been 
stabilized to compute storage coefficient S. 
The advantages of using this approach are: 

(i) No graphical construction is involved, 
(ii) The values of S and T obtained can be used further for tuning aquifer 

parameters in optimization approach, and 
(iii) The search range of S and Tis considerably reduced, which significantly 

enhances the efficiency of parameter estimation using optimization 
procedures. 

Aquifer parameters are also estimated using time-drawdown data of recovery 
phase. When the pumping is discontinued, flow from aquifer towards the well 
still continues. As a result, water level in the abstraction well keeps on rising 
and drawdown in the well at the time of closure of pumping starts decreasing. 
If the time-drawdown observations are recorded during recovery period, these 
can also be utilized to estimate aquifer parameters. 

If the abstraction continues only for a time t,, for (t  > t,), the process of 
recovery of drawdown will take place. Under the assumption that aquifer 
properties do not change after the abstraction ceases, one can write the following 
expression to calculate drawdown for (t  > t,). 

Using Jacob’s approximation of well function, Eq. (9.47) simplifies to: 

(9.47) 

(9.48) 

From a semi-logarithmic plot between s and t/(t - t,), an intercept of s for one 
log cycle of t/(t - t,) is noted, and this is used in Eq. (9.48) to estimate T. 
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Example 9.11 A production well, fully penetrating an artesian well, is pumped 
at a constant rate of 2 100 m3/day. If the transmissivity and the storage coefficient 
be 0.145 m2/min and 4 x lo4, obtain the drawdown at a distance of 3 m after 
1 hour of pumping. 

Solution 
Given: 

r = 3 m and t = 1 hour 

y 2 s  32 x 4 x 1 0 - ~  u= -= = 0.000103 4 x 0.145 x 60 x 1 4Tt 

3 W(u)=8.62 

3 s =  - W(u) =6.9 m 
4nT 

Example 9.12 Three tubewells of 25 cm diameter each are located at the 
three vertices of an equilateral triangle of side 100 m. Each tubewell penetrates 
fully in a confined aquifer of thickness 25 m. Assume the radius of influence 
for these wells and the coefficient of permeability of aquifer as 300 m and 
40 mlday, respectively. 
(i) Calculate the discharge when only one well is discharging under a 

depression head of 3 m. 
(ii) What will be the percentage change in the discharge of this well, if all 

three wells were to pump such that the depression head is 3 m in all the 
wells? 

Solution 

(i) When only one well is pumping at steady state 
Given: 

s = 3 m, rw = 0.125 m, R = 300 m, K = 40 &day, and 
b = 2 5 m  
T = K b =  1000m2/day 

s =  "-I.(:) 2nT 

Q = 242 1.82 m3/day 

(ii) When all the three wells are pumping at steady state 
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where, r* = (rll x r12 x r13)1’3 

rll = 0.125 m, r12 = r13 = 100 m, and st = 3 m 

Q = 1875.25 m3/day 

2421.82 - 1875.25 = 22.57 
2421.82 

3 Percentage reduction in discharge = 

Example 9.13 A pumping well of diameter 30 cm is being pumped at the 
rate of 2240 lpm. The incremental drawdown observed in an observation well 
located at 15 m from the pumping well corresponding to one log cycle is 
0.35 m. Obtain transmissivity of the aquifer using Jacob’s method. 

Solution 

s =  -log(+) 2.3Q 2 25Tt 
47cT r S  

2.3 Q 
47cT 

AS = - A(l0g t )  

Given: 
A(1og t )  = 1, As = 0.35 m, and Q = 2.240 m3/min 

3 T= 1686.24 m2/day 

Example 9.14 Show that for a given aquifer, the time of occurrence of equal 
drawdown in different observation wells vary directly as the squares of the 
distances of the observation wells fiom the pumping wells. 

Solution 
Let there be two observation wells at distances rl and r2 from the pumping 
well. Using Jacob’s approximation of the well function, one can write the _ _  
following expressions for drawdown s1 
time t ,  and t2. 

2.303 Q 2.25 T tl 
s1 = ~ 

47cT 

Similarly, 

and s2 in these observation wells at 

t2 which is the desired result. From s1 = s2, we get ~ = ~ 

tl 

(512 (r2I2’ 
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SUMMARY 

Considering the importance of well hydraulics, an exposure to some of the 
commonly used situations of abstraction has been provided in this chapter. 
Principle of superposition can be used to obtain resultant drawdown in a variety 
of situations including the presence of multiple wells, and the abstraction well 
being located near the recharge or barrier boundary. 

To project the effect of abstraction in and around the abstraction well, various 
approaches which are used to estimate aquifer parameters are described. 
Keeping pace with the modern developments, much emphasis is placed to 
estimate aquifer parameters using error minimization approaches. 

Knowledge of aquifer parameters may be helpful in computing the 
drawdown in a well or well field and in estimating the maximum safe yield of 
a well or a well field which also equals the capacity of aquifer to supply water 
without continuous lowering of the water table or piezometric surface. 
Therefore, if the abstraction from an aquifer is replenished by some recharge, 
either from a rainfall or other means, excessive lowering of groundwater levels 
can be certainly avoided. 

EXERCISES 

9.1 An abstraction well and a recharge well are situated at a distance r apart. 
Assume that these are fully penetrating a confined aquifer having 
formation constants T and 5’. Identify the conditions leading to 
interference among these wells. 

9.2 Define image well. Draw the pattern of drawdown curve resulting from 
an abstraction well, placed at an equal distance from a barrier boundary 
and a recharge boundary. 

9.3 Define and explain the well loss. How is well loss related to specific 
capacity of the well? 

9.4 Derive an expression for drawdown due to steady abstraction from a 
fully penetrating borewell located in a confined aquifer and leading to 
an unsteady state of drawdown in and around the well. 

9.5 Prepare a summary of new approaches developed in literature to estimate 
aquifer parameters for a situation described in Problem 9.4. 

9.6 Study the effect of using minimization of square of errors, absolute of 
average percentage error, and cutoff error concept of Swamee and Ojha 
(1990) in estimation of aquifer parameters. 
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9.7 An observation well of 40 cm diameter located at 40 m from a river is 
pumped for 15 hrs at a rate of 2580 lpm. The drawdown in the observation 
well is given in the table below. Determine the aquifer constant. 

9.8 What will be the drawdown after (i) 1 day, and (ii) 5 days, if the pumping 
has to be continued for 10 days in Problem 9.7? 

9.9 If the average error in the drawdowns in the observation well of 
Problem 9.7 is 1%, determine the aquifer constant and compare it with 
the result of Problem 9.7. 

9.10 There are four wells, viz. A, B, C, D of 20 cm diameter each on four 
sides of a square having sides of 20 m. Pumping has been started at a 
rate of 2500 lpm from another well of 20 cm which is located at the 
centre of the square. Storage coefficient ofthe aquifer is 0.005. Determine 
the drawdowns of the four wells, A, B, C, and D. Transmissibility of the 
aquifer is 1800 lpdm.  

9.11 A production well has been discharging at a constant rate for 8 years. A 
recharge boundary is located at a distance of 12 km from the well. The 
transmissibility and storage coefficient of the aquifers are 1500 l p d m  
and 0.0005, respectively. Compute the percentage of the well yield from 
the source of recharge. 

OBJECTIVE QUESTIONS 

1. The maximum safe yield of a well is the capacity of the aquifer to supply 
water 
(a) Without causing a continuous lowering of the water table 
(b) Without causing a continuous lowering of the piezometric surface 

llme (t, in min, Dvawdown in the llme (t, in min, Dvawdown in the 
since pumping observation since pumping observation 

began well, in (min) began well, in (min) 

15 0.716 180 0.838 
30 0.732 210 0.844 
45 0.753 240 0.860 
60 0.771 300 0.866 
75 0.783 390 0.875 
90 0.792 480 0.881 

110 0.802 600 0.884 
130 0.814 720 0.890 
150 0.826 900 0.893 
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(c) Is limited to the rate at which groundwater is replenished by rainfall 
(d) All of these 

2. Dimension of transmissivity is 
(a) [MoLoTp'] (b) [MoL2Tp1] (c) [MoL'Tp'] (d) [M 0 0 0  L T ] 

(a) [MoLoTp'] (b) [Mp'Lp'Tp'] (c) [MoLp'Tp'] (d) [M 0 0 0  L T ] 
3. Dimension of storage coefficient is 

4. If Tis transmissivity and b is the width of aquifer, the hydraulic conductivity 
K is 
(a) K = T x  b (c) K =  Tlb (c) K =  T +  b (c) K = T - b  

5.  An artesian aquifer is one in which 
(a) Underground water is at atmospheric pressure 
(b) Water table serves as upper surface of zone of saturation 
(c) Water is under pressure between two impervious data 
(d) None of the above 

6. The basic assumptions applicable to pumping tests are 
(a) The aquifer medium is homogeneous and isotropic; and thickness is 

(b) Darcy's equation is valid, and the fluid and medium are incompressible 
(c) No vertical component of flow; the well is fully penetrating; and the 

(d) All of the above 

constant 

pumping rate is constant 

7. When abstraction from a well begins, the cone of depression starts 
developing; and in case of the recharge boundary, the drawdown at the 
recharge boundary is 
(a) Less than the abstraction well (b) Greater than the abstraction well 
(c) Zero (d) None of these 

8. What will be the drawdown at mid-point in steady state condition of a 
pumping well and a recharging well, given that pumping and recharging 
rates are same? Assume the drawdown in pumping well as s. 
(a) 2s (b) 0.5s (c) s (d) zero 

9. In Example 8.15, obtain S if the drawdown s = 0.45 m at the observation 
well after 5 minutes. 
(a) 3.04 x lop3 

10. For a pumping well, tapping an unconfined aquifer flow, Dupuit's 
assumption holds good when 
(a) Stream lines are converging, and two-dimensional flow condition 

(b) 3.04 x lop5 (c) 5.69 x lop3 (d) 5.69 x lop5 

prevails 
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1 (TOP) 
2 (Bottom) 

(b) Stream lines are diverging, and radial flow condition prevails 
(c) Stream lines are parallel, and radial flow condition prevails 
(d) None of the above 

11. An aquifer of aerial extent 50 km2 is overlain by two strata with the 
following details: 

10 m 0.40 mlday 
20 m 0.25 mlday 

I Strata 1 Thickness 1 Hydraulic conductivity I 

The transmissivity of aquifer is 
(a) 10.57 m2/day 
(c) 8.57 m2/day 

(b) 9.57 m2/day 
(d) None of these 

12. In case of well interference between two tubewells 
(a) The spacing between two tubewells should be considered 
(b) The radius of influence with safe margin should be considered 
(c) The pumping rate of two tubewells should be considered 
(d) All the above are considered 

13. Specific capacity indicates 
(a) Productivity of both aquifer and well 
(b) Productivity of aquifer 
(c) Productivity of well 
(d) None of the above 

14. A plot of s, versus Q yields a straight line. The intercept and slope of this 
line indicate 
(a) Specific capacity and well loss 
(b) Specific capacity and formation loss 
(c) Formation loss coefficient and well loss coefficient 
(d) None of the above 

15. The specific capacity is not constant but decreases 
(a) With increasing Q 
(c) Does not depend on Q 

(b) With decreasing Q 
(d) None of these 

16. In case of specific capacity computations, the drawdown in the pumping 
well is 
(a) Equal to formation loss 
(b) Equal to well loss 
(c) Sum of formation loss and well loss 
(d) None of the above 
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17. Fluctuations in groundwater level are caused by 
(a) Pumping well in the vicinity 
(b) Earthquake, change in atmospheric pressure 
(b) Both (a) and (b) 
(b) None of the above 

18. Assumptions in Theis equation are 
(a) Homogeneous, isotropic aquifer of uniform saturated thickness 
(b) Discharge of well is constant, radius of well is infinitesimal, and radial 

(c) Both (a) and (b) 
(d) None of the above 

flow with no entrance loss 

a a a  
ax ay aZ 19. For unsteady flow, where V = - + - + - , and h is the head causing 

flow; 

(a) V2h  = O  S ah (b) V 2 h =  -- 
T at 

(c) Both (a) and (b) (d) None of these 

20. In case oftwo parallel boundaries, two image planes are considered, which 
leads to 
(a) Two sets of images 
(c) Nine sets of images 

(b) Four sets of images 
(d) Infinite sets of images 
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CHAPTER no 
Subsurface 

Water 

10.1 INTRODUCTION 

In Chapters 8 and 9, the focus has been primarily on the basics of groundwater 
and well hydraulics. This chapter covers subsurface water in greater detail. 
Not all subsurface water is groundwater. If a hole is dug, moist or even saturated 
soil may be encountered. As long as this water does not seep freely into the 
hole, it is not groundwater. True groundwater is reached only when the water 
begins to flow into the hole. Since air in the hole is at atmospheric pressure, 
the groundwater pressure must be at least equal to or more than the atmospheric 
pressure if it has to flow into the hole. Similarly, the pressure of subsurface 
water that does not flow into the hole must be less than the atmospheric pressure. 
Thus, what distinguishes groundwater from rest of the subsurface water is: its 
pressure is greater than atmospheric pressure. Since groundwater moves freely 
under the force of gravity into the wells, it is also called free water or 
gravitational water. 

The zone between the ground surface and the top of the groundwater is 
called the vadose zone or unsaturated zone. Water in this zone (very little in 
dry climates) is held by soil particles or other underground material which can 
absorb water due to capillary action. While this water is still able to move 
within the vadose zone, it cannot move out of the zone into wells or other 
places that are exposed to atmospheric pressure. Aquifer and vadose zones are 
basically porous media that store and transmit water; but the major factor that 
differentiates vadose zone from aquifer is its inability to yield water. Clays 
and other unconsolidated materials may compress or expand, depending on 
whether groundwater is withdrawn or added. In order to quantify these 
processes, physical properties of vadose zone have often been expressed in 
terms of a number of parameters. 
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Having recognized these aspects, groundwater is classified as either 
saturated or unsaturated. Surface tension and gravity are the driving forces 
for unsaturated groundwater flow. Knowledge of unsaturated groundwater flow 
is very important in various aspects of groundwater hydrology, viz: 

(a) soil water movement in the upper unsaturated zone above the groundwater 

(b) evaporation at the land surface and rainfall, and 
(c) infiltration within soil structures, such as dikes and levees. 

table, 

As groundwater hydrology is defined as the science of occurrence, 
movement, and distribution of water below the ground surface; knowledge of 
vadose zone is very much needed. The present chapter deals with vadose zone 
and its related topics, such as soil moisture and the governing equations of 
flow through unsaturated media along with recharge estimation. Also, when 
the groundwater rises, it occupies a part of previously existing unsaturated 
zone; and when it falls, it extends the existing unsaturated zone. For this reason, 
the subject of groundwater balance is included here. (Groundwater budget) 

10.2 POROSITY AND WATER CONTENT 

The subsurface water is soaked in by the openings in rock or soil. That portion 
of the soil which is not occupied by solids is known as “voids, interstices, 
pores, or pore space”. Effective porosity may be defined as the porosity due to 
interconnected pores that can be filled with and emptied of water. Henceforth, 
whenever porosity is used, effective porosity will be assumed. The pore space 
is of fundamental importance to the study of subsurface water, since it serves 
as conduits for water. The pores are usually characterized by their shape, size, 
irregularity, and distribution. 

The total unit volume of a soil (VT) can be 

of voids occupied by air (V,). Then, the 

thought as a sum of the volume of solids (V,) 
and the volume of voids (V,) as shown in 
Fig. 10.1. Further, the volume of voids V,, 
can be divided into two portions; volume of 
voids occupied by water ( V,) and the volume 

porosity (q )  of a soil is defined as the ratio 
of volume of voids and the total volume, i.e., 

(10.1) 

vw 

- 

v, vl ‘1 
Fig. 10.1 Three-phase soil 

system v v  vw + v, 
VT VT 

q = - =  ~ 

The water content (6) is defined as the ratio of volume of water V, present in 
a soil and the total volume. 
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(10.2) 

If all the voids are occupied by water, then the soil is said to be fully saturated. 
In saturated condition, Vw becomes V,, and 8 becomes q. 

The ratio of volume of water to volume of voids is defined as the degree of 
saturation (9, i.e., 

(10.3) 

Using Eqs. (10.1), (10.2), and (10.3), it can be shown that: 
8=Sq (10.4) 

Whenever field soil samples are collected, the soil moisture is reported as the 
ratio of weight of water in the sample and the dry weight of the sample; and 
this ratio is called the dvy weight moisture fraction (JV). 

(10.5) 

where, Ww is the weight of water in the sample, and W, is the dry weight of the 
sample. 

Dry weight soil moisture fraction (JV) and the water content (8) are related 
as : 

8= y b w  (10.6) 
where, yb is the bulk specific weight of the dry soil. Also, yb is related to the 
specific weight of the soil particles ('ys) by the following relation: 

% = ~ 4 (10.7) 

Ww W =  -= 
Wd weight of dry sample 

(weight of wet sample) - (weight of dry sample) 

Example 10.1 A wet soil sample has a volume of 470 cm3 and a weight of 
798 gm. The dry weight is 740 gm, and the specific weight of the soil particles 
is 2.66. Determine the porosity, soil moisture fraction, water content, and degree 
of saturation. 

Solution 
weight of dry sample 

yb = volume of the sample x weight of sample water 

740 gm 
470 cm3 (1 gdcm3)  

= 1.57 - - 

Solving for porosity (q )  from Eq. (10.7), we get: 

q =  1-1/6=1-. 57 - - 1 - 0.59 = 0.41 
Y S  2.66 
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Soil depth (mm) 
0-250 

798 - 740 
= 0.078 

740 
From Eq. ( 1 0 3 ,  soil moisture fraction W = 

From Eq. (10.6), water content 8 = yb W = 1.57 x 0.078 = 0.122 = 12.2% 

From Eq. (10.4), degree of saturation S = - = 
e o 122 

= 0.298 
17 0.41 

Y h  W 
1.35 0.15 

Example 10.2 The following data is collected fi-om the soil moisture zone 
of a field site. Calculate the volume of water available in the entire soil profile. 

Soil depth (mm) 

250 
250 
350 
250 

Yb W 9 Volume of water (mm) 

1.35 0.15 0.2025 50.625 
1.55 0.2 0.3 1 77.5 
1.45 0.16 0.232 81.2 
1.50 0.13 0.195 48.75 

I 250-500 I 1.55 I 0.20 I 
I 500-850 I 1.45 I 0.16 I 
I 850-1100 I 1.50 I 0.13 I 

Solution 
The water content (8) in each layer is computed using Eq. (10.6). The volume 
of water in each layer is computed by multiplying 8 with the layer thickness. 

Example 10.3 The soil core was drawn with a core sampler having an inside 
dimension of 5 cm diameter and 15 cm length from a field, 2 days after the 
irrigation event when the soil water was near field capacity. The weight of the 
core sampler with fresh soil sample was 1.95 kg and the weight of the same on 
oven drying was 1.84 kg. The empty core sampler weighed 1.4 kg. Calculate 
the (a) bulk density of the soil, (b) water holding capacity of the soil in YO on 
volume basis, and (c) depth of water held per metre depth of soil. 

Solution 
Weight of the moist soil core = 1.95 ~ 1.4 = 0.55 kg 
Weight of oven-dried soil core = 1.84 - 1.4 = 0.44 kg 
Therefore, soil water content = (0.55 - 0.44)/0.44 = (0.1 U0.44) x 100 = 25% 
(a) Volume of soil core = 7c 3 h = 294.64 cm3 

(b) Water holding capacity of the soil 
Therefore, the bulk density = (0.44 x 1000)/294.64 = 1.5 1 gm/cm3 

= (soil water content on weight basis) x (bulk density) 
= 25 % x 1.51 
= 37.75 Yo 

(c) Water holding capacity of the soil per meter depth of soil = 37.75 cm 
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10.3 MEASUREMENT OF SOIL WATER 

Numerous techniques have been developed for measuring soil moisture 
content (6) in the soil profile. Soil water content can be determined by the 
following two methods: 

(1) Direct method, and 
(2) Indirect method. 

10.3.1 Direct Method 
Direct method is based on measurements of soil moisture by experimental 
means. Here, the output of experiment is soil moisture and is obtained directly. 
Gravimetric Method 
The gravimetric method of soil water determination is the most standard method 
to which all other methods are compared. This method requires a simple 
equipment, but it is time-consuming and involves destructive procedure. This 
method consists of the following steps: 

(i) Soil samples are collected, weighing in between 100 and 200 gm. 
(ii) The soil samples are put in a container of known weight and sealed 

(iii) Then, the samples are taken to the lab and opened, put in an oven and 

(iv) After drying, the samples are weighed again. 
(v) The moisture content on a weight basis is the difference between wet 

and dry weights divided by dry weight. 

airtight. 

dried at 105 "C until all the water has evaporated. 

10.3.2 Indirect Methods 
In case of indirect methods, experiments produce outputs which need to be 
converted into soil moisture using some additional relationship or equations, 
as explained below. 
Time-Domain Reflectometry 
This method is very useful in the field to make continuous measurements on 
the same area. There has been a rapidly growing interest in non-radioactive 
methods to determine soil water content using geophysical properties of the 
soil. One of these methods, time domain reflectometry (TDR), is based on 
measuring the dielectric constant of soil. Topp et al. (1 980), who first proposed 
the method for soil water investigations, showed that the dielectric constant of 
soil is dependent primarily upon the water content through a nearly universal 
calibration equation that is very insensitive to the soil type. Most soil minerals 
have a dielectric constant of less than 5, whereas water has an exceptionally 
high dielectric constant of about 78. Thus, the water content variations should 
be easily detectable fi-om measured variations in dielectric constants. 
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To measure the dielectric constants in situ using TDR requires determining 
the propagation velocity of an electromagnetic wave through the soil. The 
velocity of travel along the transmission lines is described by the following 
equation: 

v =  C I - J K c l d  
where, c is the propagation velocity of an electromagnetic wave in free space 
(3  x 10' m/s), and Kud is the apparent dielectric constant. The velocity is 
determined by dividing twice the length of the transmission line by the duration 
of travel. Since v and c are known, Kad can be easily derived from the above 
equation. Then, one can use the generic calibration equation given below, to 
compute the water content: 

6 = -0.053 + 0.029 Kud - [(5.5 x lo4) (KUJ2 + [(4.3 x 10-6)(Kud)3] 

It is to note that water content is not measured directly. The velocity of 
electromagnetic energy through soil is measured from the above experiment. 
Using the relations given above, the soil moisture content can be obtained 
Neutron Probe 
When a source of fast neutrons is placed in a medium of moist soil, the emitted 
neutrons collide with the nuclei of the medium, thereby losing energy. Neutrons 
that have been slowed down are called thermal or slow neutrons. The ability 
of the nuclei in the moist soil medium to reduce the speed of neutrons varies 
considerably, but the ability of the soil nuclei is less compared to hydrogen. 
Therefore, the presence of more hydrogen nuclei in the soil will slow down 
more emitted neutrons (emitted from the source), and a greater number of 
slow neutrons will be concentrated near the neutron source. If the soil medium 
surrounding the neutron source is low in soil moisture (which means that the 
soil medium is also low in hydrogen nuclei), then the cloud of slow neutrons 
surrounding the neutron sources will be less dense compared to soil medium 
of higher moisture content. The manufacturers of neutron probe equipment 
furnish a calibrating curve that relates neutron count rate to volumetric soil 
moisture content (6).  
Frequency Domain Reflectrometry 
Like time domain reflectometry, frequency domain reflectrometry (FDR) is a 
non-nuclear method to determine in situ soil water content from the dielectric 
properties. FDR is a borehole logging technique in which the sensor, comprised 
of two conductive electrodes separated by an insulating spacer, is lowered in a 
boring lined with non-conductive plastic casing (thin-walled polyvinyl 
chloride). The sensor establishes a resonating electromagnetic field, the 
frequency of which depends upon the dielectric constant of the soil. The water 
content is determined through calibration with the apparent dielectric constant. 
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10.4 VERTICAL DISTRIBUTION OF SUBSURFACE 
WATER 

The occurrence of subsurface water below the ground surface may broadly be 
divided into two zones: 

(1) Zone of aeration, and 
(2) Zone of saturation. 

In zone of aeration, soil pores are partly filled with water and partly with air. In 
zone of saturation, all the soil pores are filled water under hydrostatic pressure. 

10.4.1 Zone of Saturation 
The saturated zone extends from the upper surface of saturation down to 
underlying impermeable rock; as shown in Fig. 10.2. In the absence of overlying 
impermeable layer, water table or phreatic surface becomes the upper surface 
of zone of saturation. The water table or phreatic surface is defined as the 
surface where the water pressure equals atmospheric pressure. The water table 
appears as the level at which the water stands in a penetrating well. The water 
appearing in the zone of saturation is termed as groundwater. The pressure in 
the zone of saturation is always more than or equal to atmosphere pressure. 

Ground surface 

aeration 

Zone of saturation 

Impermeable rock 
Porosity 

Moisture content (0) O Pressure 

Fig. 10.2 Vertical distribution of subsurface water 

10.4.2 Zone of Aeration 
In the zone of aeration, vudose water (gravitational water or free water) occurs. 
This zone is further classified into three zones: (i) soil water zone, (ii) vadose 
zone, and (iii) capillary zone, as shown in Fig. 10.2. 
Soil Water Zone 
Soil water zone extends fi-om the ground surface down through the major root 
zone. It is the zone which encompasses the roots and its thickness depends on 
the type of vegetation. Water in the soil water zone exists at less than saturation 
except temporarily when excess water reaches the ground surface as rainfall 
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or irrigation. Since the soil water zone contains the plant roots, agriculturists 
and soil scientists have studied soil moisture distribution and movement 
extensively in this zone. 
Vadose  Zone or Unsa tura ted  Zone 
The vadose zone extends from the bottom of soil water zone to the upper 
surface of the capillary zone (Fig. 10.2). The thickness of vadose zone may 
vary from few centimeters to more than 100 m depending upon the depth of 
water table. This zone acts as a connection between the soil water zone near 
the ground surface and the zone of saturation. The pressure in the unsaturated 
zone is less than atmospheric (negative). This reflects the fact that water in the 
unsaturated zone is held in the soil pores under surface tension forces. The 
negative pressures in the unsaturated zone are usually determined with 
tensiometers. In principle, a tensiometer consists of a porous cup attached to 
an airtight, water filled tube. The porous cup, when inserted into the soil at the 
desired position, comes in contact with the soil water and reaches hydraulic 
equilibrium. The process involves the passage of water through the porous 
cup from the tube into the soil. The vacuum created at the top of the airtight 
tube is a measure of the pressure in the soil. The pressure is usually measured 
by a vacuum gage attached to the tube. 
Capi l la ry  Zone  
The capillary zone, also called capillary fringe, 
extends from the water table up to the height of 
capillary rise of water. The water is held in the 
capillary zone due to surface tension forces. In 
capillary fringe, the pores are saturated, but the 
pressure is less than atmospheric. If a soil pore 
could be considered as a capillary tube, the 
capillary rise h, (Fig. 10.3) can be derived from 
the equilibrium between surface tension of water 
and the weight of water raised. 

Fig. 10.3 capillay rise 
in a capilla y 
tube 

= 2zrz cos il (10.8) 1 Component of surface tension 
force in vertical direction 

Here, z is surface tension, r is radius of the capillary tube, and il is angle of 
contact between the meniscus and the wall of the tube. 

Weight of water raised 

where, yw is the specific weight of water. 

= zr  h, yw 
in the capillary tube 1 (10.9) 
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Material 

Fine Gravel 
Very Coarse Sand 
Coarse Sand 
Medium Sand 
Fine Sand 
Silt 
Silt 

Equating Eqs. (10.8) and (10.9) for equilibrium, we have: 
he = 2nr zcos A =  n 3  he yw 

Grain Size (mm) Capillav Rise (cm) 

5-2 2.5 
2-1 6.5 

1 4 . 5  13.5 
0.5-0.2 24.6 
0.2-0.1 42.8 

0.1-0.05 105.5 
0.05-0.02 200 

( 1 0.1 0) 

It follows from Eq. (10.10) that the capillary rise will vary inversely with the 
radius of capillary tube or the pore size. Table 10.1 presents the measurements 
of capillary rise in unconsolidated materials. 

Table 10.1 Capillary rise in samples of unconsolidated materials (Lohman, 
1972) 

10.5 EQUATION OF UNSATURATED FLOW 

The equation governing the unsaturated flow through a soil can be obtained 
by combining Darcy’s law with the continuity equation. This section describes 
the development of equations for (i) unsteady state unsaturated flow, and 
(ii) steady state unsaturated flow. 

Consider an elemental control volume of 
length dx, dy, and dz in co-ordinate directions 
as shown in Fig. 10.4. 

Let P be the centre of the elemental volume, 
and let h and 0 be the hydraulic head and the 
moisture content in the elemental volume, 
respectively. Also, let u, v, and w be the Darcy 
velocities at P in x, y ,  and z directions, Fig. 10.4 Elemental 
respectively. control volume 

Volume of water entering 

lemental volume in time dt 
the face ABCD to the frome (dy dz) dt (10.11) 

Volume of water leaving from 
the face EFGH out of the 
elemental volume in time dt 
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Net volume of water entering 
the elemental volume in 1 = 2 (dx dy dz) dt 
x-direction in time dt 

(10.13) 

Net volume of water entering 
the elemental volume in 1 = $ (dx dy dz) dt 
y-direction in time dt 

(10.14) 

Net volume of water entering 
the element volume in 
z-direction in time dt 

1 = 2 (dx dy dz) dt (10.15) 

Net volume of water I 
} = [ -& - * - *) (dx dy dz) dt (10.16) entering the elemental 

volume in all directions ax ay az 
in time dt 1 

If 
to the imbalance in the inflows and outflows, then 

is the change in the moisture content in the control volume in time dt due 

} = (30) (dx dy dz) Change in storage in the 
elemental volume in time dt (10.17) 

From the equation of continuity, the change in storage in time dt must be equal 
to the net inflows in time dt. Thus, equating Eqs. (10.16) and (10.17) and 
simplifying, we have: 

(10.18) 

The Darcy velocities, u, v, and w, are related to the hydraulic head (h) as follows: 

(10.19) 

where, k,, ky, and k, are the unsaturated hydraulic conductivities in x, y, and z 
directions, respectively. 

Substituting the values of u, v, and w from Eq. (10.19) into Eq. (10.1 8), we 
have: 

(10.20) 

The total head (h) is the sum of pressure head ( y) and the elevation head (z). 
Since the velocity is very small, velocity head is neglected. 

h = y + z  (10.21) 
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Substituting for h in Eq. (10.20), we have: 

(10.22) 

Equation (10.22) is also known as Richards ’ equation. Equation (10.22) is the 
governing equation for three-dimensional unsaturated flow in a soil. 
Equation (10.22) is nonlinear in nature as the unsaturated hydraulic 
conductivities K (kx, ky, and k,) and the water content (8) are functions of the 
pressure head ( y). Further, it has been observed experimentally that (8 - y) 
relationship is hysteretic; it has a different shape when soils are wetting than 
when they are draining (Poulovassilis 1962). The variation of moisture content 
8 and hydraulic conductivity K with pressure head y was studied by Brooks 
and Corey (1 964) and Van Genuchten (1 980). 

10.5.1 Brooks and Corey Relationships 
Brooks and Corey (1964), after laboratory tests of many soils, found that the 
pressure head can be expressed as a logarithmic function of effective saturation 
S, and proposed the following relation. 

(10.23) 

where, yb is the bubbling pressure, il is the pore-size index, and S, is the effective 
saturation defined as: 

8 - 8, s,= ~ 

8 s  - 8, 
(10.24) 

where, 8, is saturated water content, and 8, is the residual water content. 8, is 
generally taken as the porosity (q)  of the soil. 8, is the water content of the soil 
after it has been thoroughly drained. 
They also proposed the following relationship between K and y. 

(10.25) 

for (v/ ’ vb) 

where, Ksat is the saturated hydraulic conductivity of the soil. 

10.5.2 Van Genuchten Relationships 
The main disadvantage of the Brooks and Corey relationship is the discontinuity 
in the relationship at y b .  Van Genuchten (1980) proposed an exponential 
relationship which overcomes the limitation of Brooks and Corey relationship. 
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The relationship is as follows: 

(10.26) 

for (y > 0) 

where, a and n are unsaturated soil parameters with rn = 

effective saturation as defined earlier. 

He also presented the following relationship between K and S, as: 

K =  sat ( s e > 1 / 2  [ 1 - (1 - ( s e )  l / m  } m ] (10.27) 

10.5.3 Rawls and Brakensiek approach 
Let c be % clay (5 < % < 60), s as % sand (5 < % < 70), and @ = porosity 
(volume fraction). One can use regression equations developed by Rawls and 
Brakensiek (1 982) to compute a variety of parameters. 
Brooks-Corey Bubbling Pressure 

h, = exp [5.3396738 + 0.1845038(c) - 2.48394546(@) 
- 0.00213853(~)~ - 0.04356349(s)(@) 
- 0.61745089(~)(@) + 0.00143598(s2)(@2) 
- 0.00S55375(c2)(q?) - 0.00001282(s2)(c) 
+ 0.00895359(c2)(@) - 0.00072472(s2)(@) 
+ 0.0000054(c2)(s) + 0.50028060(@2)(s) 
+ 0.50028060 (@2)(c)] 

Brooks-Corey Pore-size Distribution Index 

A =  exp [-0.7842831 + 0.0177544(s) - 1.062498(@) 
- 0.00005304(s2) - 0.00273493(c2) + 1.11134946(G2) 
- 0.03088295(s)(@) + 0.00026587(s2)(q?) 
- 0.006 10522(~~)(@~) - 0.00000235(s2)(c) 
+ 0.00798746(c2)(@) - O.O0674491(q?>(c)] 

Brooks-Corey Residual Water Content (volume fraction) 

6, = [-0.0182482 + 0.00087269(s) + 0.00513488(~) 
+ 0.02939286(@) - 0.00015395(c2) - 0.0010827(s)(@) 
- 0.0001S233(c2)(@2) + 0.00030703(c2)(@) 
- O.O023584(q?)(C)] 
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Soil 
Clay 

Brooks-Corey Effective Saturation 
0 =  [0.01162 - 0.001473(~) - 0.002236(~) + 0.98402(@) 

+ 0.0000987(c2) + 0.03616(s)(@) - 0.010859(c)(@) 
-0.00096(c2)(@) - 0.0024372(@)(s) 
+ 0.01 15395(@2)(c)] 

Saturated Hydraulic Conductivity 
K, = exp [19.52348(@) - 8.96847 - O.O28212(c) + 0.00018107(s)2 

- O.O094125(c) - S.395215(@2) + 0.077718(s)(@) 
- 0.00298(~~)(@~) - 0.019492(~~)(@~) 
+ 0.0000173(s2)(c) + 0.02733(c2)(@) + 0.001434(s2)(@) 
- 0.000003 5(c2)(s)] 

M (m-') rl Ksat ( d s e c )  0s 0, 
0.8 1.09 5.56 x 10-7 0.46 0.068 

5 .OOE-0 1 

4.50E-01- 

4.00E-01- 

3.50E-01 - 

3.00E-01- 

8 2.50E-01- 

2.00E-01 

1.50E-01 - 

l.OOE-01 - 

5.00E-02 - 

O.OOE+OO 

1 
I I I I I 

Fig. 10.5 I,U us. 8 f o r  clay 

Example 10.4 The relevant unsaturated soil parameters for clay are given in 
the table below. Plot the variation of water content (0) and the unsaturated 
hydraulic conductivity ( K )  as a function of pressure head (y) for y values 
ranging from -1000 cm to 0 cm. Use Van Genuchten relationships. 

Solution 
Water content 0 and unsaturated hydraulic conductivity K are computed using 
Eqs. (10.26) and (10.27). They are plotted in Figs. 10.5 and 10.6, respectively. 
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I I I I I 

1.OOE-00 

- l.OOE-O1 

- 1.00E-02 

- 1.00E-03 

- 1.OOE-04 2 

- 1.00E-05 w 

% 
- 1.00E-06 

- 1.00E-07 

- 1.00E-08 

1.00E-09 

h 
0 

% 

Fig. 10.6 w us. K for  clay 

10.6 GROUNDWATER RECHARGE ESTIMATION 

Groundwater recharge is the amount of water which reaches the water table, 
either by direct contact in the riparian zone (transitional area between the 
water and the surrounding lands) or by downward percolation through the 
overlying zone of aeration. Groundwater recharge estimation can be made 
using direct and indirect methods. In the direct method, tracers are used to 
obtain the estimate of recharge. This method is localized and its applicability 
to regional studies offer difficulties. The indirect methods used to estimate 
rates can be divided mainly into three groups [Sophocleous, 19911. 

1. Hydrometerologic and soil crop data processing to determine the soil 
moisture balance. In this method, the recharge is usually estimated as the 
remainder when the losses identified in the form of runoff and evaporation 
have been deduced from the precipitation. 

2. Hydrological data interpretation including analysis of water table 
fluctuations. In this method, the changes in seasonal water table level are 
utilized to estimate groundwater recharge. 

3 .  Soil physics measurements involving the estimation of water flux beneath 
the root zone using unsaturated hydraulic conductivity and hydraulic 
potential gradients. 

The third indirect method of estimating groundwater recharge is of relevance 
to this chapter. 
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Computation of Soil Water Flux 
The water flux (q) at any depth can be computed using Darcy's law, as: 

q =  - K [ E )  (10.28) 

where, K is the hydraulic conductivity, h is the hydraulic head, and z is the 
vertical coordinate. Neglecting the velocity head, the hydraulic head (h)  can 
be treated as the sum of pressure head ( y) and elevation head (z). 

h = y + z  (10.29) 
Substituting the value of h from Eq. (10.29) in Eq. (10.28), we obtain: 

(10.30) 

Soil water flux can be determined using either Eq. (10.28) or (10.30), given 
the measurements of pressure head (y) at different depths (z)  in the soil, and 
the relationship between hydraulic conductivity ( K )  and the pressure head (y) 
are known. 

Example 10.5 The data of hydraulic heads h and pressure heads y at two 
different depths are given at weekly intervals in the following table. For this 
soil, the relationship between hydraulic conductivity and the pressure head is 
K = 240(-y)p2.1 where K is in c d d a y  and y is in cm. Compute the daily soil 
moisture flux and the total groundwater recharge per unit area. 

Solution 
The average soil water flux between two measurement points 1 and 2 is written 
using Eq. (10.28) as: 

q12 = - k ( )  h1- h2 

z1- z2 
Considering point 1 is at 0.8 m and point 2 at 1.8 rq we have: 

Hence, z1 -z2 = -80 - (-180) = 100 cm 
z1 = -80 cm and z2 = -180 cm 

Week Hydraulic head h 
at 0.8 m (em) 

1 -140 
2 -165 
3 -135 
4 -140 
5 -125 
6 -100 
7 -120 
8 -110 

Hydraulic head h Pressure head w Pressure head w 
at 0.8 m (em) 

-23 5 -60 -55 
-240 -85 -50 
-240 -65 -60 
-240 -70 -65 
-230 4 5  -70 
-225 -25 -55 
-215 -3 0 -60 
-230 -3 0 -70 

at 1.8 m (em) at 1.8 m (em) 
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7 
8 

The hydraulic heads (h ,  and h2) and the pressure heads (y, and y2) at these 
depths are given. 

The hydraulic conductivity K varies with y, so the value corresponding to 
the average value of yvalues at 0.8 m and 1.8 m is used. 

The computations are as shown below: 

-120 -215 -30 -60 -45 0.081 95 -0.07695 
-110 -230 -30 -70 -50 0.06492 120 -0.07790 

The soils pores are completely filled 
with water and the moisture content e 
eauals the Dorositv n. 

Total flux = -0.4845 

The flux is negative because the water is flowing downward. 
Groundwater recharge per unit area in eight weeks = q x t 

= (-0.4845) ~8 x 7 
=-27.13 cm 

Soil water flux can be determined using either Eq. (10.28) or (10.30), given 
the required parameters are known. 
Exercise: Compute the groundwater recharge by computing K values 
corresponding to y, and y2 and taking average K. It is to note that average K is 
computed based on average y. 

The properties of zone of saturation and zone of aeration are summarized 
in the following table. 

0 The soil pores are partly filled with 
water and partly with air. The moisture 
content e is less than the porosity q. 

Zone of Saturation I Zone of Aeration 

The water pressure is more than 
atmospheric and the pressure head tyis 
=eater than zero. 

0 It occurs below the water table. 0 It occurs above the water table and 
above the capillary fringe. 

0 The water pressure is less than 
atmospheric and the pressure head tyis 
less than zero. 

The hydraulic conductivity is constant, 
and it does not depend on pressure 
head ty. 

0 The hydraulic conductivity k and the 
moisture content 8 are both functions 
of the pressure head ty. 

0 Piezometers are used to measure the 0 Tensiometers are used to measure the 
hydraulic head. hydraulic head. 
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10.7 GROUNDWATER BUDGETING 

The groundwater potential of an area depends mainly on geological features 
of that area. The existence of highly pervious or permeable rock indicate 
significant yield of water. The presence of fissures, joints, bedding planes, 
faults, shear zones and cleavages, solution cavities, etc. contribute to the 
perviousness of the rock. Weathered basalts and sand stones form a good source 
of water. The most important water yielding formations are unconsolidated 
gravels, sands, alluvium, lake sediment, glacial deposits, etc. So, if there is 
available information about the geology of the area, one can be aware of the 
possible potential or strength of the groundwater reservoirs. 

Due to limitations of water resources available and because of population 
explosion or poor rainfall, hydrologists all over the world are trying to utilize 
these groundwater reservoirs to their full extent. In certain locations, the 
groundwater levels have been depleting very fast. A groundwater level, let it 
be the water table of an unconfined aquifer or the piezometric surface of a 
confined aquifer, indicates the elevation up to which the water table will rise 
in a well. 

Essentially, a groundwater balance study is a mathematical representation 
of various types of inflows and outflows, which may help in deciding spatial 
and temporal variation of groundwater levels. Thus, models of groundwater 
balance may be numerous, depending on their use in quantifying different 
types of inflows and outflows. However, in this chapter, we restrict the class 
of models to the estimation of groundwater inflows and outflows. It is needless 
to emphasize that groundwater balance models are equally useful to the overall 
water balance of a watershed. 

10.7.1 Computation of Groundwater Flows 
The groundwater outflow for different seasons along the boundaries of the 
study area can be calculated using measured water levels and transmissivity 
estimates from pumping tests. To explain the computation of groundwater 
flow, a study area (Ojha, 1984) is considered as shown in Fig. 10.7. There are 
several borewells (BW) and dug wells or large-diameter wells (DW) in the 
study area. It also consists of a marshy land, which is formed due to standing 
water from waste water drain and lies in between DW1 and DW2. Based on 
pumping test analysis of several wells, it had been possible to estimate 
transmissivity. 

Referring to Fig. 10.7 and based on Darcy’s law, the net flow across the 
boundary is given by: 

t1 ah 

to c 

Net outflow = T - dldt an 
(10.3 1) 
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Ti=20m2/day- - +/+ - - - / z - 20 m2/day- I 

I 
TI = Load transmissivity at DW3 

Tz = Load transmissivity at BW5 

T3 = Load transmissivity at DWI 

T,= Load transmissivity at DW2 

Ts = Load transmissivity at BW4 

Fig. 10.7 Definition sketch for net outfow calculation 

where, the net outflow is calculated for the duration from to to t ,  days, I and n 
are directions along the boundary and normal to the boundary (n is the inward 
normal), h is the piezometric head, and T is the local transmissivity. Thus, to 
determine the groundwater level, contours have to be drawn for different 
periods. To achieve this, available groundwater level variations in different 
wells of the study area can be used. 

Exercise: Identify the inflow and outflow boundaries in Fig. 10.7. Ascertain 
whether there will be depletion in groundwater level. (Hint: Compute inflows 
and outflows for a feasible distribution of piezometric heads in and around the 
study area. Depletion will occur if total outflow is more than total inflow. 
Please remember that no other source of recharge is considered here.) 

10.7.2 Groundwater Balance Equation 
If a groundwater balance equation is written for a closed region for any specified 
period, then 

Total recharge = (Area x h, x S,) + (Area x Vp x f )  + Net outflow 
(10.32) 

where, h, is the average rise in water level in the region over the area in the 
specified period, Sy is the specific yield, 5 is the annual draft in the region for 
unit area, f is the proportion of the annual draft withdrawn in the specified 
period, and net outflow refers to groundwater outflow from the region. 

Equation (1 0.32) ignores evapotranspiration. However, if significant, it can 
be added to the right-hand side of Eq. (10.32). Under ideal conditions, 
Eq. (10.32) can be used to calculate specific yield, Sy, for periods in which no 
rainfall takes place. If recharge can be taken as zero during dry periods; the 
two components, i.e., pumping and net outflow can be calculated. The specific 
yield, Sy, can be calculated by equating the sum of these two components to 
the decrease in storage. These computations are done most conveniently in a 
tabular format, as shown in Table 10.2. 
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Total pumping (TP) over the period (m3) 
Average change in groundwater level over the period (m) 
Average change in groundwater storage (ACGWS) 

Net groundwater outflow (NGWO) for the period (m3) 

Table 10.2 Determination of recharge from rainfall 

TP 

hf  
ACGWS = (AH)(S,) Area 

NGWO 

I Peviod fmm) - (to) I A t  I 

Waste water recharge (WWR) in m3 
Recharge from rainfall (RR) over the study area (m3) 

WWR 
RR = (TP + ACGWS + 

NGWO) - WRR 

Example 10.6 Determine the net groundwater outflow if the total pumping 
is 1.5 m3 and the waste water recharge is 1.5 m3 over an area of 500 m2 during 
a certain period. The rainfall recorded during that period is 100 111111. Average 
rise in groundwater level over that period is 0.5 m. The specific yield of that 
aquifer is 0.05. 

Solution 
Average change in groundwater storage (ACGWS) 

= ( A m  (S,) 
= 0.5 x 0.05 x 500 
= 12.5 m3 

Since there is 100 mm rainfall during that period, recharge from rainfall (RR) 
= 0.1 x 500 = 50.0 m3 
Waste water recharge (WWR) = 1.5 m3 

Net groundwater outflow (NGWO) = [RR- (TP + ACGWS)] + WWR 
= [50.0 - (1.5 + 12.5)] + 1.5 
= 37.5 m3 

Exercise: Estimate the net groundwater outflow when average fall in 
groundwater level is 0.5 m. Other data remain same except the fact that there 
is a drop in groundwater level. (Hint: Consider AH as negative) 

Example 10.7 During a specific period, the average rise in water level in a 
region of 300 m2 is 0.7 m. Net groundwater outflow during that period is 
10 m3. There is 5cm of rainfall during that period. Total pumping during that 
period is estimated at 0.85 m3. Determine the specific yield of the aquifer. 

Solution 
Average change in groundwater storage (ACGWS) 

= RR + WRR- TP -NGWO 

= 4.15 m3 
= 300(0.05) + 0.0 - 0.85 - 10.0 
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Specific yield of the aquifer = ACGWS/(h, x area) 
= 4.15/(0.7 x 300) 
= 0.0197 

Example 10.8 During a specific period, the average rise in water level in a 
region of 400 m2 is 0.5 m. Specific yield of that aquifer is 0.08. Annual draft in 
that region is 0.25 m. Proportion of annual draft withdrawn in the specified 
period is 0.3, and net outflow from that region is 2.0 m3. Determine the total 
recharge. 

Solution 
Total recharge = (Area x h, x S’) + (Area x 5 x f )  + Net outflow 

= (400 x 0.5 x 0.08) + (400 x 0.25 x 0.3) + 2.0 
= 48.0 m3 

SUMMARY 

Declining groundwater levels have become a matter of great concern; however, 
hydrologists all over the world are making a constant headway towards finding 
better methods to utilize underground water resources. This chapter gives a 
broad overview of the factors responsible for receding underground water levels. 

In recent years, use of rainwater harvesting and other means of groundwater 
recharging, such as waste water flooding have become relevant. 

Regression relations pertaining to soil moisture must be used with caution 
as these are not extensively tested. The flow may not be idealized as one- 
dimensional in case of field problems. Use of numerical approaches may be 
adhered while dealing with real-field problems. 

Recharge from basins may also lead to development of groundwater mounds 
which are not covered in this chapter. However, a list of references provided 
herein is expected to motivate further reading. 

EXERCISES 

10.1 Define the following terms. 
(a) Porosity 
(b) Bulk unit weight 
(c) Water content 
(d) Degree of saturation 
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10.2 

10.3 

10.4 

10.5 

10.6 

10.7 

10.8 

10.9 

Describe soil as a three-phase system. 

How will you measure the moisture content of soil in a field? 

Derive Richards’ equation for the flow of water through unsaturated 
soil. 

Explain the relationships given by: (a) Van Genuchten, and (b) Brooks 
and Corey. 

Collect a soil sample fi-om your area and develop moisture versus head 
relationship. 

Derive the relationship among bulk unit weight, dry unit weight, and 
water content of the soil. 

A wet soil sample has a volume of 600 cm3 and a weight of 1450 gm. 
The dry weight is 1275 gm and the specific weight of the soil particles 
is 2.68. Determine the porosity, soil moisture fraction, water content, 
and degree of saturation. 

The following data is collected from the soil moisture zone of a field 
site. Calculate the volume of water available in the entire soil profile. 

Soil depth (mm) 

0-200 
200-450 

Bulk unit weight 

450-800 1.80 0.23 
800-1200 1.75 0.20 

10.10 Water in a circular tube filled with uniform soil takes x minutes to rise 

10.11 

10% of the maximum height of the capillary rise. How long will it take 
to reach the same height in the same tube if the soil particles are twice 
their present diameter? Assume the contact angle is zero and K varies 
directly with the square of the diameter of the soil particles. 

Determine the net groundwater outflow if the total pumping is 2.0 m3 
and waste water recharge is 1.5 m3 over an area of 600 m2 during a 
certain period. The rainfall recorded during that period is 200 111111. 
Average fall in groundwater level over that period is 0.3 m. Specific 
yield of the aquifer is 0.08. 

10.12 During a specific period, the average rise in water level in a region of 
600 m2 is 0.25 m. Specific yield of that aquifer is 0.05. Annual draft in 
that region is 0.25 m. Proportion of annual draft withdrawn in the 
specified period is 0.25 and the net outflow fi-om that region is 4.0 m3. 
Determine the total recharge. 
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Soil 
Sand 

10.13 The relevant unsaturated soil parameters are given below. 
a = 2.89 
Bubbling pressure = -50 cm 
Porosity = 0.374 
Effective porosity = 0.354 
Saturated hydraulic conductivity = 11.78 c& 

Plot the following graphs using Brooks-Corey relationships. 
(a) ty values ranging from -750 cm to 0 cm 
(b) Soil suction head (v) vs. effective saturation (S,) 
(c) Variation of water content (8) vs. pressure head (v) 
(d) Variation of water content (8) vs. the unsaturated hydraulic 

conductivity ( K )  

10.14 The relevant unsaturated soil parameters for sand are given below. Plot 
the variation of water content 8 versus the unsaturated hydraulic 
conductivity K as function of pressure head v, for I,Y values ranging 
from -1000 cm to 0 cm. Use van Genuchten relationships. Observe 
the trend and compare it with the soil parameters of clay plotted in 
Example 10.4. 

M (m-' rl Ksat ( d s e c )  0s 0, 

14.5 2.68 8.25 x 0.43 0.045 

- 
Week 

~ 

1 
2 
3 

~ 

~ 

Hydraulic head h 
at 0.6 m (em) 

-150 
-160 
-180 

I I 

Hydraulic head h 
at I .  5 m (em) 

-240 
-250 
-255 

Pressure head 
at 0.6 m (em) 

-6 5 
-75 
-75 

Pressure head tq 
at I .  5 m (em) 

-5 0 
-55 
-60 

4 I -165 I -255 I -70 I -60 I 
5 I -140 I -235 I -55 I -35 I 
6 I -165 I -245 I -45 I -55 I 
7 I -170 I -245 I -30 I -50 I 
8 I -180 I -250 I -60 I -55 I 
9 I -200 I -260 I -80 I -75 I 

10 I -210 I -265 I -100 I -90 I 
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OBJECTIVE QUESTIONS 

1. If water content and porosity of a soil are 0.345 and 0.4, respectively, 
what will be its degree of saturation? 
(a) 0.754 (b) 0.862 (c) 0.913 (d) 0.897 

soil is 470 cm3. Determine its porosity. 
(a) 0.188 (b) 0.085 (c) 0.4 (d) 0.3 

2. The water content of a fully saturated soil is 0.4 and the total volume of 

3. Determine the bulk specific weight of dry soil if specific weight of the 
soil particles is 2.70 and porosity of that soil is 0.38. 
(a) 1.553 (b) 1.674 (c) 1.695 (d) 1.638 

4. Determine the value of effective saturation of the soil if pressure head at a 
point is 1.5 m and van Genuchten soil parameters are: a = 14.5 m-' and 
n = 2.68. 
(a) 1.0 (b) 0.0056 (c) 0.001 (d) 1.5 

5. Determine the value of effective saturation of the soil at a point if saturated 
moisture content of the soil is 0.45 and residual moisture content of the 
soil is 0.037. Moisture content at that point at a particular time is 0.15. 
(a) 0.5 (b) 0.405 (c) 0.3015 (d) 0.2736 

6. The total head at a point, which is at 0.5 m, is 1.5 m. The total head at 
another point, which is at 1.3 m, is 2.9 m. The hydraulic conductivity of 
that soil is 7.9 dday.  Calculate the average soil water flux between the 
two points. 
(a) 13.825 (b) 12.543 (c) 15.87 (d) 11.897 

7. Determine the value of hydraulic conductivity if the saturated hydraulic 
conductivity is 7.23 dday ,  effective saturation is 0.05, and the soil property 
n = 2.0. 
(a) 0.215 (b) 0.235 (c) 0.255 (d) 0.275 

8. Calculate the specific yield of an aquifer if the average rise in water level 
in a region of 200 m2 is 0.55m and the average change in groundwater 
storage is 12.5 m3. 
(a) 0.135 (b) 0.113 (c) 0.146 (d) 0.158 

9. The total pumping over a specific period of time is 2.5 m3; waste water 
recharge is 0.5 m3; average change in groundwater storage is 5 m3; and 
recharge fi-om rainfall is 25 m3. Calculate the net groundwater outflow 
over the specified period of time. 
(a) 15.0 (b) 18.0 (c) 21.0 (d) 24.0 
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10. Phreatic surface is the surface where 
(a) Water pressure is equal to the atmospheric pressure 
(b) Water pressure is greater than the atmospheric pressure 
(c) Water pressure is less than the atmospheric pressure 
(d) None of the above 
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CHAPTER nn 
Numerical Modelling 
of Groundwater Flow 

1 1.1 INTRODUCTION 

We have discussed a number of analytical solutions that are being used for 
solving various groundwater problems. Even though these analytical solutions 
are exact solutions, they cannot be applied for problems involving complex 
boundaries and time-varying boundary conditions. 

However, in the real world, the aquifer geometry is irregular and the boundary 
conditions vary with time. In such situations, analytical solutions will be of 
little help and one has to resort to numerical techniques. Several types of 
numerical methods, such as: finite difference, finite element, finite volume, 
and boundary element methods have been widely used to solve groundwater 
flow problems. 

All numerical methods convert the governing differential equation into a 
set of linear or nonlinear algebraic equations. This system of equations can be 
solved using matrix algebra. The nature of conversion from differential form 
to algebraic form varies from one numerical method to another. For example, 
finite difference methods make use of Taylor Series approximation for 
conversion, while the finite element methods use basis functions for the same 
purpose. In this chapter,finite difference method will be discussed in detail to 
obtain solutions for different types of groundwater flow problems. 

1 1.2 FINITE DIFFERENCE METHOD 

Richardson (1910) introduced the finite difference method to calculate an 
approximate solution to partial differential equations. The purpose of this 
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chapter is to introduce the terminology involved in finite difference methods 
and apply these methods to solve a few simple problems. 

The basic philosophy of the finite difference method is to replace the 
derivatives at a point by a ratio of the changes in appropriate variables over a 
small but finite interval. These approximations are then used in place of 
derivatives in the governing equation which converts the differential equation 
into a system of algebraic equations. 

At first, we discuss the simplest finite difference scheme and progress to 
those more useful in solving groundwater flow problems. It is to be noted that 
finite difference methods make use of approximations. However, the resulting 
inaccuracies in the solution can be made negligibly small through proper use 
of the methods. 

1 1.3 FINITE DIFFERENCE APPROXIMATIONS 

Central difference approximation 

f(4 

f (x + 

, Forward difference 
approximation for dfldx at B f (4 

f (x ~ h.> Backward difference 
approximation for dfldx at B 

Fig. 11.1 Geometric interpretation of a finite difference 
approximation 

Consider a functionf(x), sufficiently smooth as shown in Fig. 11.1. Thenf(x) 
may be expanded in a Taylor series about x in the positive direction as: 

df 1 d2f 1 d3f f ( x  + AX) =f(x)  + -AX +  AX)^ +  AX AX)^ + ... (1 1.1) 
dx 2 !  dx2 3! &3 

Equation (1 1.1) can be solved €or - df as: 
dx 

(11.2) 
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The term O(Ax) denotes the remaining terms of the series. The term A is said to 
be of the order (Ax)", denoted as O(Ax)"; if a positive constant K, independent 
of Ax, exists such that IAl < q(Ax)"l. As a result, as I(Ax)"I + 0, A + 0. 

df The forward difference approximation of - is obtained by dropping the 
dx 

O ( h )  term in Eq. (1 1.2), i.e., 

(11.3) 

df Similarly, the backward difference approximation of - can be obtained by 

writing the Taylor series about x in the negative direction. 
dx 

df 1 d 2 f  1 d 3 f  
dx 2! d x 2  3! &3 

f(x-Ax)= f(x)- AX-++- (AX)~- - - (AX)~+- . .  (11.4) 

df Solving for - and dropping O ( h ) ,  the backward difference approximation 

for - is written as: 

dx 
df 
dx 

(11.5) 

df The central difference approximation of - is obtained by subtracting 

Eq. (1 1.4) from Eq. (1 1.1) and dropping O ( A X ) ~  term as: 
dx 

df - f (X + AX) - f (X - AX) 
d x -  2(Ax) 

(11.6) 

The central difference approximation is more accurate than forward and 
backward difference approximations, since it has a truncation error O ( A X ) ~ .  

The finite difference approximation for the second derivative - d 2 f  is 
dx2 

obtained by adding Eqs. (11.1) and (11.4), solving for - " and dropping 

O ( A X ) ~  as: 
dx2 

d 2 f  f (X - AX) - 2 f (x) + f (X + AX) -- - 
dx2 @XI2 

(11.7) 
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Approximations to higher-order derivatives can be obtained in a similar way. 
Since differential equations encountered in surface and subsurface flows are 
of second order, approximating to first and second-order derivatives are 
considered here. 

1 1.4 GEOMETRIC INTERPRETATION 

The geometric interpretation clarifies the ideas involved in the finite difference 
approximation. Figure 11.1 shows the slope at point B and its approximations 
by forward, backward, and central difference approximations. 

It is clear fiom Fig. 11.1 that the central difference scheme approximates 

- at B more accurately than forward and backward difference approximations. dx 
It can also be seen from Fig. 1 1.1 that the differences among approximations 
decrease with Ax. 

df 

1 1.5 FINITE DIFFERENCE SOLUTION OF 
l - D  GROUNDWATER FLOW EQUATION 

The finite difference approximations for the first and second derivatives were 
explained in the previous section. In the present section, these approximations 
are used to solve one-dimensional groundwater flow equation. 

hL 
h R  

Fig. 11.2 Conjined aquifer connecting t w o  
reservoirs 

Figure 11.2 shows an isotropic and homogeneous confined aquifer with 
transmissivity T and storage coefficient S connecting two reservoirs. The 
governing equation for one-dimensional groundwater flow in the aquifer is: 

T-=Sah a2h 
ax2 at 

The initial and boundary condiions are: 

h=h,, t = 0 ,  ( O I x I L )  

h=h,, t 2 0 ,  x=O 

h=h,, t 2 0 ,  x = L  

(11.8) 

(11.9) 
(1 1.lOa) 
( 1 1.1 Ob) 



Numerical Modelling of Groundwater Flow 391 

where, h is the piezometric head in the aquifer, h, is the initial piezometric 
head, and h, and h, are the water levels in left and right reservoirs, respectively. 

The first step in obtaining the finite difference solution is to superimpose a 
finite difference grid in the x-t plane as shown in Fig. 11.3. Each intersection is 
termed a node or a mesh point. 

I I I I I 
I I I I I 
I I I I I 
I I I I I 

iAx 

Fig. 11.3 Grid pattern explaining thejinite difference solution 

Let i denote the index in x direction and j denote the index in t direction. So, 
the co-ordinates of a mesh point is given by (xi, ti), where: 

x i = i A x ,  i = O ,  1 ,..., n 

and $ = j A t , j = O ,  1, ..., m 

Ax and At represent space and time increments, respectively. The piezometric 
head h at mesh point (xi, 9) is denoted h(x,tj) or simply hiti. 

1 1.6 EXPLICIT APPROXIMATION 

Consider the node PiJ as shown in Fig. 11.3. The finite difference approximation 
of space and time derivatives in Eq. (1 1 A), at node P can be written as: 

(11.11) 
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Equation (1 1.11) is a linear algebraic equation which can be solved for h,, 
as : 

(1 1.12) 

At the left and right boundaries, we have h,, = h, and h, = h,. Starting from 
t = 0 in Fig. 11.3, Eq. (1 1.12) is used to solve for h after the first time increment 
(i.e.,j = 1) since hiPl ,  ,, hi,,, hi+ 1, , are all known from the initial condition. 

Once the values of hi, are computed, the values of hi, (i.e., h values after 
two time increments) are computed using Eq. (1 1.12), since the values of hi, 
are already obtained from the previous solution. 

In this manner, the solution is marched forward in time. The scheme is called 
as “explicit” since the finite difference Eq. (1 1.12) provides an explicit solution 
for the unknown hi,j+l in terms of the known values hi-l, j ,  hi, j ,  and hi+l, i’ 

Since explicit scheme provides an explicit solution for the unknown, it is 
very easy to program such a scheme. However, the scheme has serious 
limitations and is not suitable in many applications. The main limitation of an 
explicit scheme is that the space and time increment Ax and At cannot be 
chosen independently in such a scheme. It has been shown analytically that 
the explicit scheme provides stable and meaningful results only when the 
following inequality is satisfied. 

1 s  At I  AX)^ 
2 T  

(1 1.13) 

The mathematical treatment needed to derive Eq. (1 1.13) is beyond the scope 
of this book. Equation (1 1.13) suggests that the time increment At cannot be 
chosen independently of Ax, which makes the scheme unsuitable for many 
applications. 

For the explicit scheme to be reas nably accurate, Ax must be kept small. 
Because At must be kept less than - - (Ax)2  the number of computations 

2 T  required to reach a time level m becomes extremely large. 

9s 

11.7 IMPLICIT APPROXIMATION FOR l - D  FLOW 
DOMAIN 

In contrast to the explicit approximation, in implicit approximation, the finite 
difference approximation of the space derivative at node P is written at the 
time level ( j  + 1) where the solution is sought. 

Accordingly, the finite difference approximation of Eq. (1 1 .S) is written as: 
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From Eq. (1 1.14), it can be seen that to solve for the unknown h,,,, one needs 
the values hiPIJ+, and which themselves are not known. As such, 
Eq. (1 1.14) is implicit in the sense that the solution h,+, at node i depends on 
the solutions hiPlj+, and at the adjacent nodes i-1 and i+ l .  

The solution at the unknown time level j + l  can be obtained by writing 
Eq. (1 1.14) at every node of the solution domain and assembling these equations 
in a matrix. Equation (1 1.14) is written in matrix form as: 

In Eq. (1 1.15), the row vector on the left hand side is the vector containing the 
coefficients, the second vector is the column vector of unknown piezometric 
heads at an unknown time level j + 1 , and right hand side vector contains the 
known term at the time level j. 

Matrix equations similar to Eq. (1 1.15) are written for every node, and these 
equations are assembled to form a system of algebraic equations which is 
written in matrix form as: 

A H = R  (1 1.16) 
where, A is an (n x n)  matrix containing the coefficients, H is the vector of 
unknown piezometric heads at the time level j + 1 , and R is the vector containing 
the known terms at the time level j. 

The algebraic system of Eq. (1 1.16) can be solved using matrix algebra to 
obtain H vector at the time level j +  1. Having solved for piezometric heads at 
time level j + l ,  these values can be used to obtain the piezometric heads at 
time level j+2. Similarly, the solution can be obtained up to the desired time 
level m. 

The implicit approximation looks more complicated than the explicit 
approximation. However, the main advantage of the implicit approximation is 
that the approximation is unconditionally stable, and as such the time increment 
At can be chosen independent of the space increment Ax. This leads to a 
considerable reduction in the number of computations required to reach time 
level m, thus saving the computation time. 

11.8 INCORPORATION OF BOUNDARY CONDITIONS 

The finite difference approximation in Eq. (1 1.15) is valid for all the interior 
nodes. For the boundary nodes, one has to write the equations representing the 
boundary condition. Usually, we come across two types of boundary conditions, 
namely 
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(i) Specified head boundary condition (also called Dirichlet type boundary 
condition) where one specifies the head value at the boundary as in 
Eqs. (11.10a) and (ll.lOb), and 

(ii) Specified flux boundary condition (also called Neumann type boundary 
condition) where one specifies the flux at the boundary. 

The nodal equations for the boundary nodes have to be modified accordingly 
before solving the system of algebraic Eq. (1 1.16). 
Specified Head Boundary Condition 
To incorporate such a condition described by Eq. (1 1. lOa), the coefficient 
matrix A and the right hand side vector R are modified. The diagonal term in 
the coefficient matrix A corresponding to the row representing the boundary 
node (in this case, the first row) is set to unity, while the off-diagonal terms are 
set to zero. 

In the right hand side vector R , the element corresponding to the Dirichlet 
node (in this case, the first element) is set to the specified head given by the 
boundary condition, i.e., h,. Similarly, the boundary condition as Eq. (1 1. lob) 
can also be incorporated by suitably changing the nodal equation of the last 
node. 
Specified Flux Boundary Condition 
Suppose that Eq. (1 1.1 Oa) is changed from specified head boundary condition 
to a specified flux boundary condition as: 

t 2 0, x = o  (1 1.17) 

where, q, is the specified flux at the left boundary. To incorporate Eq. (1 1.17) 
at the left boundary, an imaginary node is introduced slightly outside the domain 
at a distance Ax from the left boundary as shown in Fig. 11.4 with the spatial 
index of the node being 0. Let the piezometric head at this node be denoted as 
h ~ ,  j + l .  

The finite difference approximation of Eq. (1 1.17) is written as: 

(1 1.18) 

Equation (1 1.18) contains an unknown piezometric head at the imaginary 
node. To eliminate the peizometric head at the imaginary node, one needs an 
additional equation which is obtained by writing the finite difference equation 
at the left boundary treating the left boundary as an interior node as: 
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Fig. 11.4 Diagram showing  imaginary node  f o r  
specified flux boundary conditions 

(1 1.19) 

The nodal equation for the boundary node is obtained by eliminating h,, j + l  
from Eqs. (1 1.18) and (1 1.19) and bringing all the unknown terms to the left- 
hand side and known terms to the right-hand side. 

11.9 CRANK NICHOLSON SCHEME 

The Crank Nicholson scheme makes use of both explicit and implicit 
approximations and is unconditionally stable. The advantage of this scheme 
over the implicit approximation is that the truncation errors are minimized 
leading to a more accurate solution. 

In this scheme, the space derivate at any node is approximated as the average 
of explicit and implicit finite difference approximations. For a typical interior 
node i, the finite difference approximation of Eq. (1 1 .8) is written as: 

(1 1.20) 
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Rearranging Eq. (1 1.20) to bring all the unknown terms on the left-hand side 
and all the known terms on the right-hand side, we get: 

The matrix form of Eq. (1 1.2 1) can be written as: 

Matrix equations similar to Eq. (1 1.22) are written for every node and these 
equations are assembled to form a system of algebraic equations of the form 
as Eq. (1 1.16), which can be solved for the unknown piezometric heads at the 
time level j + 1. 

1 1.10 

As discussed earlier, implicit and Crank Nicholson schemes result in a system 
of algebraic equations which have to be solved to get the solution. A variety of 
methods such as Gaussian Elimination method, Gauss Siedel method, LU 
decomposition, and QR decomposition (Press et al., 2001) can be used to 
solve these algebraic equations. 

In this section, a simple method to solve the system of equations resulting 
from the finite difference approximation of one-dimensional groundwater flow 
problems is discussed. It can be seen that the coefficient matrix A resulting 
from the finite difference approximation is tri-diagonal in nature with elements 
being non-zero on the main diagonal, the upper, and the lower off-diagonals. 
The other elements are equal to zero. This is due to the fact that the finite 
difference approximation at a node has contributions only from the immediately 
adjacent two nodes. 

Due to the tri-diagonal nature of the coefficient matrix, a simple algorithm 
can be developed to solve the system equation by using the diagonal and off- 
diagonal elements in the solution. 

SOLUTION OF MATRIX EQUATIONS 
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L =  

11.11 SOLUTION OF TRI-DIAGONAL SYSTEM OF 
EQUATIONS 

Consider an (n  x n) tri-diagonal system of equations as shown in Eq. (1 1.23): 

- ... a1 0 0 0 

a2 a2 0 0 ... 0 

0 a3 a3 0 ... 0 

. . . . . .  
... 
... 

. . . .  
1 1 1 1 ... . . . .  
. . . .  . . . . . . .  . . . .  . . . .  

. . . . . .  0 0 an-1 an-1 0 

. . . . . . . . .  an an 0 0  
- 

A 
. . . . . .  ... c1 0 0 

a2 b2 c2 0 ... 0 
0 a3 & c3 ... 0 

... 

... 
. . . .  . . . . . . .  ... . . . .  . . . .  . . . . . . .  ... . . . .  

. . . . . .  an - 1  bn - 1  cn - 1  
0 0 

0 0  . . . . . . . . .  an an 

(1 1.23) 

where, A is the tri-diagonal coefficient matrix, His the column vector containing 
the unknown values, and R is the known right hand side matrix. The solution 
of Eq. (1 1.23) is as follows. 

First, the coefficient matrix A is written as a product of two (n x n)  matrices 
L and U. Here, L is a lower triangular matrix, and U is an upper triangular 

And U =  
. . . .  . . . . . . . . . . .  . . . .  . . . .  . . . . . . . . . . .  . . . .  

. . . . . .  0 0 0 1 P n - 1  

0 0  . . . . . . . . .  0 1  

(1 1.24) 

(1 1.25) 
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Since LU = A, we have the following relations: 
a, = b,  

(1 1.26) 
C .  p.= r 

' ai 
(i = 1,2, ...) n - 1) 

a, = b, - a, (i = 2, 3, . . ., n)  
Since a and p are known, the solution of Eq. (1 1.23) is obtained in two steps. 
Equation (1 1.23) is written as: 

A H = R  or LUH=R or L Y = R  ( 1 1.27) 
where, Y = UH. Since L is a lower triangular matrix, the system of equations 
LY = R is solved for Y as: 

5 - aiyi-1 

ai 
y .  = ( i=2,3,  ..., n)  (1 1.28) 

This is called the forward sweep. Since Y = UH and U is upper triangular, His 
obtained with a backward sweep as: 

hn =Yn 
hi=yi-Piyi+, ( i = n -  1,n-2,  ..., 1) (1 1.2 9) 

The algorithm is simple to use and needs the storing of only the non-zero 
elements of the coefficient matrix. 

1 1.12 FINITE DIFFERENCE SOLUTION OF 
2-D GROUNDWATER FLOW EQUATION 

Figure 1 1.5 shows an anisotropic and homogeneous confined aquifer ABCD 
with transmissivities T, and Ty in principal directions and storage coefficient S. 

hB I 

Fig. 11.5 Two-dimensional groundwaterflow 
in a rectangular confined aquifer 



Numerical Modelling of Groundwater Flow 399 

The aquifer is subject to different piezometric heads along its boundaries. 
The governing equation, initial, and boundary conditions are: 

a2h a2h ah T,-+T -=S- ax2 y a y 2  at 
(1 1.30) 

Suchthat h = h , ,  t = 0 ,  Olx lL , ,  O l y l L y  (11.3 1) 

h = h , ,  t 2 0 ,  x=O, 0 < y < L y  (1 1.32a) 

h = h,, t 2 0 ,  x=Lx, 0 < y < L y  (11.32b) 

h = h , ,  t 2 0 ,  y=O, O<y<L,  (1 1.32~) 

h = h ,  t 2 0 ,  y=L,, O l y l L ,  (1 1.32d) 

1 1.13 IMPLICIT APPROXIMATION FOR 2-D FLOW 
DOMAIN 

A finite difference grid is superimposed on the solution domain to obtain the 
finite difference approximations of the space and time derivatives in Eq. (1 1.30) 
as shown in Fig. 11.6. 

Fig. 11.6 Spatial finite difference discretization for two- 
dimensional groundwaterflow 
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- 
hi- l ,  j ,  k+l  

hi+l ,  j , k + l  

hi, j ,  k + l  

hi, j - 1 ,  k+ l  

h., z J + l , k + l  . - 

Let i denote the index in x-direction, j the index in y-direction, and k the 
index in t-direction, so that the coordinate of a mesh point is given by 
(xi, yj, tk ) ,  where: 

xi=&, (i=O, 1, ..., n)  

q=jAy,  ( j = O ,  1, ..., rn) 

and tk=kAt, (k= 0, 1, ..., p )  

Here, Ax and Ay are the space increments in x and y directions, respectively, 
and At is the time increment. 

The piezometric head h at mesh point (xi, yj , tk) is denoted h(xi,  yj , t,J or 
simply hi,i,k For an interior node Pixi,& in Fig. 11.6, the finite implicit difference 
approximation of Eq. (1 1.3 0) is written as: 

I hi- l ,  j , k + l - 2 h i ,  j , k + l + h i + l ,  j , k + l  
Tx,i, j 

I hi, j - 1 ,  k+l  - 2hi, j ,  k+l  + hi, j+l ,  k + l  

(AYI2 
+ Ty, i, j 

(1 1.33) I =s. . ( h i ,  j ,  k + i i  hi, j ,  k 
1 ,  J 

The solution at the unknown time level k + 1 can be obtained by writing 
Eq. (1 1.33) at every node of the solution domain and assembling these equations 
in a matrix. Equation (1 1.33) is written in matrix form as: 

=[-% hi , j ,  k ] (11.34) 

In Eq. (1 1.34), the row vector on the left hand side is the vector containing the 
coefficients, the second vector is the column vector of unknown piezometric 
heads at time level k + 1 and right hand side vector contains the known term at 
time level k. 
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Matrix equations similar to Eq. (1 1.34) are written for every node, and these 
equations are assembled to form a system of algebraic equations which is 
written in matrix form as: 

A H = R  (1 1.35) 

where, A is an (mn x mn) matrix containing the coefficients, His  the vector of 
unknown piezometric heads at the time level k + 1 and R is the vector containing 
the known terms at time level k. 

The algebraic system of Eq. (1 1.35) can be solved using matrix algebra to 
obtain Hvector at time step k + 1. Having solved for piezometric heads at time 
step k + 1, these values can be used to obtain the piezometric heads at time 
step k + 2. Similarly, the solution can be obtained up to the desired time stepp. 

1 1.14 ALTERNATING DIRECTION IMPLICIT METHOD 

Unlike the one-dimensional problem discussed earlier, the coefficient matrix 
A in Eq. (11.35) is not tri-diagonal in nature, and the algorithm for solving a 
tri-diagonal system of equations cannot be used as such for the solution of 
Eq. (1 1.35). With the use of Alternating Direction Implicit (ADI) Method, the 
coefficient matrix A in Eq. (1 1.35) can be made tri-diagonal in nature as 
discussed below. 

In ADI, the space derivative in one direction (say x-direction) is written at 
the time step k, where the solution is known; and the space derivative in the 
other direction (by-direction) is written at the time step k + 1, where the solution 
is sought. In such a formulation, the space derivative becomes explicit in 
x-direction and implicit in y-direction. 

1 1.15 EXPLICIT IN x AND IMPLICIT IN pDIRECTION 

For such an approximation, the implicit finite difference formulation of 
Eq. (11.30) is written as: 

I [ hi- l ,  j ,  k - + hi+l ,  j , k  
Txi, j 

I hi, j - 1 ,  k+ l  - 2hi, j ,  k+ l  + hi, j + l ,  k+ l  

(AYI2 
+ Ty,  i , j  
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Equation (11.36) contains three unknowns, namely hi,j-l,k+l , hi,j,k+l , hi,j+l,k+l 

and can be written in matrix form as: 

Finite difference equations similar to Eq. (1 1.37) can be written for all nodes 
of the ith column. Assembling all the nodal equations of the ith column, a 
system of algebraic equations is formed according to: 

(1 1.38) 

where, Ai is the coefficient matrix for the i th column, 4 is the vector containing 
unknown piezometric heads of all the nodes in the ith column, and Ri is the 
right hand side matrix for the ith column. 

Ai in Eq. (1 1.38) is tri-diagonal in nature and can be solved easily using the 
algorithm discussed in Section 1 1.1 1. Matrix equations similar to Eq. (1 1.3 8) 
can be written for all the columns starting from i = 1 to i = m and can be solved 
for unknown nodal piezometric heads in all the columns, thereby obtaining 
the piezometric heads at time level k + 1. 

To obtain the unknown piezometric heads at time k + 2  from the known 
values at time k + 1 , the direction in which the explicit and implicit 
approximations are written is interchanged, i.e., the space derivative is written 
implicitly at time level k +2 in x-direction and explicitly at time level k + 1 in 
y-direction. 

Ai Hi = Ri 

1 1.16 EXPLICIT IN IJ AND IMPLICIT IN %-DIRECTION 

For such an approximation, the implicit finite difference formulation of 
Eq. (11.30) is written as: 

hi-l, j ,  k + 2 -  2hi, j ,  k+2  + hi+l, j , k + 2  
Txi, j 

hi, j - 1 ,  k+ l  - 2hi, j ,  k+ l  + hi, j + l ,  k+ l  

(AYI2 
+ T y ,  i , j  

= si, j [ h i ,  j ,  k + 2 i t h i ,  j ,  k+ l  ( 1 1.3 9) 
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Equation (11.39) contains three unknowns, namely hi-lJ,k+2, h i ~ , k + 2 ,  hi+l,j,k+2 

and can be written in matrix form as: 

hi,j-l,k+l -2hi,j,k+l +hi,j+l,k+l 

(f!Y)2 
Si, j =[-T7 hi, j ,k+l  - Ty,i, j 1.40) 

Finite difference equations similar to Eq. (1 1.40) can be written for all the 
nodes of thejth row. Assembling all the nodal equations of thejth row results 
in a system of algebraic equations according to: 

(1 1.41) 

where, Ai is the coefficient matrix for thejth row, I$ is the vector containing 
unknown piezometric heads of all nodes in the j th row, and Ri is the right hand 
side matrix for the j th row. 

The Ai in Eq. (1 1.41) is tri-diagonal in nature and can be easily solved using 
the algorithm outlined in Section 11.11. Matrix equations similar to Eq. (1 1.4 1) 
can be written for all rows starting fiom j = 1 to j = n and can be solved for 
unknown nodal piezometric heads in all columns, thereby obtaining the 
piezometric heads at time k+2. In this manner, the solution can be obtained for 
the desired time p by writing implicit finite difference approximation in 
alternating directions during successive time steps. 

A .  H. = R. .I .I .I 

Example 11.1 A confined aquifer of length 100 m has a transmissivity of 
0.02 m2/min and a storage coefficient of 0.002. The initial piezometric head in 
the aquifer is 16 m. If the piezometric head at the right boundary drops to 
11 m. Compute the piezometric head in the aquifer as a function of space and 
time using explicit finite difference method. 

Solution 
The initial condition is hl , ,  = 16 m and the boundary conditions are hlo,l = 16 m 
andhlloo,t= 11 m 

The discretized groundwater flow equation for the explicit finite difference 
method (shown in Eq. 11.12) can be written as: 
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1 , 4  2 , 4  3 , 4  4 , 4  5 , 4  
1, 3 2, 3 3, 3 4, 3 5, 3 
1 ,2  2 ,2  3 ,2  4 ,2  5 ,2  
1, 1 2, 1 3, 1 4, 1 5, 1 

0 

0 

0 

0 

a - 

Let us divide the 100 m length aquifer into 6 grid nodes. 

100 
6-1 

Therefore, Ax = ~ = 20 m 

1 s  
2 T  

Since A t 5  --(Ax)2 

1 1  Therefore, At 5 - x - X (20)2 = 20 min 
2 10 

In Eq. (1 1.12), i is the grid number and j is the time. 

Take At =20 min 
i, = 20 i, = 40 m i, = 60 m i, = 80 m, and i, = 100 m 
j, = 20 min, j, = 40 min, j, = 60 min, j, = 80 min, andj, = 100 min 

At t = 0, h ,  = h, = h, = h, = h, = 16 m (initial condition) 

= 11 m (boundary condition) hl 
Now using Eq. (1 1.12), we can find out the head at different distance of the 
aquifer. 

t = 8 0  

t = 60 
t = 4 0  
t = 3 0  
t = O  
x = o  

x = 2 0  x = 4 0  x=60 x=80 x = 1 0 0  
For the first time step ( j  = 0), only grid 5 (i = 4) is affected. 

Take i = 4 , j  = 0 

20 
400 

= 1 0 ~  -(16-32 + l l ) +  16 

= 13.5 m 
Similarly, h,,, = h,,, = h,,, =16 m, and h5,, = l l m  (boundary condition) 
For the second time step ( j  = l), t + At = 40 min 
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Take i = 4, j  = 1 

= 10 x - 20 (16 - 27 + 11) + 13.5 
400 

= 13.5 m 
T a k e i = 3 , j = 1  

20 
'3, 2 = lo 3 ( ' 2 , 1  - 2h3,1 + '4,l) + '3,l 

20 
400 

= 14.75 m 

= 10 x - (16 ~ 32 + 13.5) + 16 

Similarly, h1,2 = h2,2 =16 m, and h5,2 = 11 m (boundary condition). 

For the third time step (j = 2), t + 2At = 60 min 
Take i = 2 , j  = 2 

20 
'2, 3 = lo -('1,2 ~ 2h2,2 + '3,2) + '2,2 202 

20 
400 

= 15.375 m 

= 10 x - (16 ~ 32 + 14.75) + 16 

Take i = 3 , j  = 2 

20 
'3, 3 = lo ('2,2 ~ 2h3,2 + '4,2) + '3,2 202 

20 
400 

= 14.75 m 
Similarly h, = 16 m, h4,3 =13.5 m and h5,3 = 11 m (boundary condition) 

For the fourth time step (j = 3), t + 3 At = 80 min 
Take i = 1 , j  = 3 

= 10 x - (16 ~ 29.5 + 13.5) + 14.75 

20 
400 

= 10 x - (16 - 32 + 15.375) + 16 

= 15.6875 m 
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Similarly, h2,4 =15.375 m, h3,4 =14.75 m, h4,4 =13.5 m, and h5,4 =11 m (boundary 
condition). We can proceed fwther increasing the time by At. 

Example 11.2 

Solution 
The discretized groundwater flow equation for implicit finite difference method 

Solve Example 11.1 using implicit finite difference method. 

can be written as: 

-~ T -  - 0'02 = 0.000025 
 AX)^ 2 x202 

Take i = l,j = 0 

0.000025 ho,l - 0.00015 hl, l  + 0.000025 h2,1 

0.000025 x 16 - 0.00015 hl , l  + 0.000025 h2,1 

-0.00015 hl , l  + 0.000025 h2 = -0.002 (1 1.42) 

= [O.OOOO25(ho,o - 2h1,o + h2,J - 0.0001 h1,0] 

= [0.000025(16 - 32 + 16) - 0.0001 x 161 

Take i = 2 , j  = 0 

0.000025 hl, l  - 0.00015 h2,1 + 0.000025 h3,1 
= [O.OOOO25(h1,-, - 2h2,o + h3,o) - 0.0001 h2,0] 

0.000025 h1,l- 0.00015 h2,l + 0.000025 h3,l 

= [0.000025(16 - 32 + 16) - 0.0001 x 161 

0.000025 h1,l- 0.00015 h2,1 + 0.000025 h3 1 =-0.0016 (11.43) 

Take i = 3 , j  = 0 
0.000025 h2,i- 0.00015 h3,i + 0.000025 h4,i 

= [0.000025(h2,0 - 2h3,, + h4,J - 0.0001 h,,,] 

0.000025 h2,i- 0.00015 h3,i + 0.000025 h4,i 

= [0.000025(16 - 32 + 16) - 0.0001 x 161 

0.000025 h2,1- 0.00015 h3,1 + 0.000025 h4 1 =-0.0016 (11.44) 
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Take i = 4 , j  = 0 
0.000025 h3,i- 0.00015 h4,1 + 0.000025 h5,1 

= [0.000025(h3,, - 2h4,, + h5,J - 0.0001 h,,,] 

0.000025 h3,i- 0.00015 h4,1 + 0.000025 x 11 
= [0.000025(16 - 32 + 162) - 0.0001 x 161 

0.000025 h3,i- 0.00015 h4 1 =- 0.001875 (11.45) 

There are four equations and four unknowns. This forms a tri-diagonal matrix 
that can be solved by Thomas algorithm. 

After solving the equations, we get: 
h l , l  = 16.0 m 
h,,, = 15.974 m 
h5,i = 11 m 

(boundary condition) 
h3,i = 15.852 m 
(boundu ry condition) 

h4,i = 15.142 m 

Similarly, we can proceed with increasing the time step further. 

Example 11.3 Solve the following set of equations. 

2x1 + 3x2 = 8.0 
x, +x2 + 2x3 = 9.0 
2x, +x3 + 4x4 = 23.0 
2x3 + 2x, + x5 = 19.0 
x4 +x5 = 9.0 

Solution 
Here, 

u2 = 1.0 u3 = 2.0 u4 = 2.0 u5 = 1.0 
b, = 2.0 b, = 1.0 b3 = 1.0 b, = 2.0 b5 = 1.0 

c, = 3.0 c2 = 2.0 c3 = 4.0 C, = 1.0 

r ,  = 8.0 r2 = 9.0 r3 = 23.0 r4 = 19.0 rs = 9.0 

After solving the above system of equations using the algorithm as explained 
in Section 11.11, we get: 

a , = 2 . 0  a2=-0.5 a3=9.0 a4=1.11 a5=0.1 
p1 = 1.5 p2 =-4.0 p3 = 0.444 p4 = 0.9 p5 = 0.0 
yl = 4.0 ~2 = -10.0 y3 = 4.778 y4 = 8.5 y5 = 5.0 

Now, after back substitution, we will get: 
XI = 1.0 X, = 2.0 ~3 = 3.0 ~4 =4.0 ~5 = 5.0 
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11.17 VISUAL MODFLOW AND PMWIN 

Visual MODFLOW is a three-dimensional finite-difference groundwater model 
that was first published in 1984 by USGS. It has a modular structure that 
allows it to be easily modified to adapt the code for a particular application. 

The modular structure of Visual MODFLOW consists of a Muin Progrum 
and a series of highly-independent subroutines called modules. The modules 
are grouped in sub-modules. Each sub-module deals with a specific feature of 
the hydrologic system which is to be simulated such as flow from rivers or 
flow into drains or with a specific method of solving linear equations which 
describe the flow system. The division of Visual MODFLOW into modules 
permits the user to examine specific hydrologic features of the model 
independently. 

Visual MODFLOW simulates steady and unsteady flow in an irregular flow 
system in which aquifer layers can be confined, unconfined, or a combination 
of both. Flow to wells, areal recharge, evapotranspiration, flow to drains, and 
flow through river beds, can be easily simulated. Aquifer conditions having 
different combinations of homogeneous, heterogeneous, isotropic and 
anisotropic soils can be simulated. Different types of boundary conditions can 
be specified to solve various types of groundwater flow problems. 

The groundwater flow equation is solved using the finite-difference 
approximation. The flow region is subdivided into blocks in which the medium 
properties are assumed to be uniform. In plan view, the blocks are made from 
a grid of mutually perpendicular lines that may be variably spaced. Model 
layers can have varying thickness. A flow equation is written for each block, 
called a cell. 

Several solvers are provided for solving the resulting matrix problem; the 
user can choose the best solver for the particular problem. Flow-rate and 
cumulative-volume balances from each type of inflow and outflow are 
computed for each time step. Initial conditions, hydraulic properties, and 
stresses must be specified for every model cell in the finite-difference grid. In 
addition to simulating groundwater flow, Visual MODFLOW can be used to 
solve solute transport equation and groundwater management problems. 

The PMWIN software is similar to Visual MODFLOW and is also freely 
available on Internet and contains many solved problems of practical 
significance. Stefan et al. (2006) had explained step-by-step application of the 
PMWIN software in solving a variety of groundwater flow problems. 
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SUMMARY 

In recent years, simulation and mathematical models have often been used to 
analyse groundwater systems. This chapter is useful to solve real field problems 
in groundwater flow using numerical methods. Since field experiments are 
difficult to perform, mathematical models play an important role to analyse 
the complex geometry ofthe aquifers. Consequently, an attempt has been made 
to analyse these complex mathematical models using different types of available 
numerical methods. Also, a brief discussion on available groundwater flow 
software has been included in this chapter. These software can be of great use 
to solve a variety of complex problems. 

EXERCISES 

11.1 A confined aquifer has a length of 1000 m, transmissivity of 
500 m2/day, and storage coefficient of 0.0002. The head is initially 
uniform at 20 m. The head increases to 50 m at the inlet boundary and 
to 40 m at the outlet boundary. Solve the one-dimensional transient 
groundwater flow equation using: 
(a) Explicit finite difference method 
(b) Implicit finite difference method 
(c) Crank Nicholson method 

How will your results be affected if At > --  AX)^ ? 1 s  
2 T  

11.2 For two-dimensional flow in an aquifer having a length of 1000 m and 
width of 800 m, find out the head at different points. The properties of 
the aquifer, initial conditions, and boundary conditions are given below. 

Transmissivity in x-direction = 500 m2/day 
Transmissivity in y-direction = 700 m2/day 
Storativity in x-direction = 0.0002 
Storativity in y-direction = 0.0002 

Initial condition: h = 60 m, t = 0,O I x I 1000 m, 0 I y I 800 m 
Boundary conditions: 

h=100m, t 2 0 ,  OIxIlOOOm, y=O 
h = 8 0 m ,  t 2 0 ,  OIxIlOOOm, y-800 
h = 7 0 m ,  t 2 0 ,  O I y I 8 0 0 m ,  x=O 

h = 9 0 m ,  t 2 0 ,  O I y I 8 0 0 m ,  x=100  
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11.3 Solve the following system of tri-diagonal equations. 
x1 +x2 = 6.0 
2x, +x2 + 3x3 = 26.0 

x3 + 4x4 + 2x5 = 20.0 
2x4 + x5 = 7.0 

~ 2 + ~ 3 + 3 ~ 4 = 1 3 . 0  

au a2u 
at ax2 

11.4 Solve the one-dimensional heat equation - = - 

Subject to initial conditions 

and the conditions u(0, t) = u(1, t)  = 0. 

11.5 Solve the two-dimensional heat equation 

7cx 7cy 
2 2  Subject to initial conditions u(x, y,  0) = sin -sin - , (0 I x I 1) and 

the conditions u(x, y ,  t )  = 0, t > 0 on the boundaries. Calculate results for 
one time step. 

11.6 Using PMWIN or MODFLOW 
A town is planning to increase its water supply by constructing a borehole 
in an unconfined aquifer consisting of sand and gravel (Fig. 11.7). The 
borehole is designed to pump constantly at a rate of 20,000 m3 day-’. 
However, the Society for the Preservation of the Green Swamp has 
presented an objection. The Society claims the pumping would 
“significantly reduce” the groundwater seepage to the swamp and 
threaten the swamp biohabitat. The town claims that the river and the 
groundwater divide, located somewhere near the centre of the valley 
would prevent any change in groundwater flow to the Green Swamp. 

Investigate the above problem by experimenting with different types 
of aquifer boundaries, under a condition of steady-state, to calculate 
groundwater flow and groundwater heads at the river and swamp 
boundaries. 

The hydraulic conductivity and specific yield are: 
K, = 50 d d a y  Ky = 50 &day K, = 5 d d a y  Sy = 0.1 
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Slate 
mountains 

Slate 
mountains 

Fig. 11.7 Bore hole in an unconjined aquifer 

OBJECTIVE QUESTIONS 

1. The criteria for the time increment for the successive iteration in an explicit 
finite difference scheme is 

1 s  
2 T  
1 T  
2 s  

(b) At I  AX)^ 

(d) At 2  AX)^ 

1 s  
2 T  
1 T  
2 s  

(a) At 2  AX)^ 

(c) At I  AX)^ 

2. A confined aquifer has a length of 200 m, transmissivity of 0.015 m2/min, 
and a storage coefficient of 0.002. The aquifer is divided into 101 nodes. 
What must be the time increment between two successive iterations to 
solve the one-dimensional transient groundwater flow equation using the 
explicit finite difference method? 
(a) At 20.26 min 
(c) A t I  15 min 

(b) A t I  0.26hr 
(d) Any value can be taken 
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3.  Determine the value of x inf(x) = epx corresponding to the first four terms 
of the Taylor series about x, = 0 and rounding error to be less than lop6. 
(a) 0.01 (b) 0.06 (c) 0.03 (d) 0.1 

4. In the previous question, determine the number of terms to be used in the 
Taylor series approximation to restrict the rounding off error to lop''. 
(a) I 1 0  (b) I 7  (c) I 1 4  (d) = 10 

5.  To convert the governing equation fiom differential form to algebraic form, 
finite element method uses 
(a) Taylor series approximation 
(c) Basis function 

(b) Euler method 
(d) All of these. 

6. Crank Nicholson scheme uses 
(a) Explicit approximation 
(c) Both (a) and (b) 

(b) Implicit approximation 
(d) None of these. 

7. In Crank Nicholson scheme 
(a) Roundoff errors are minimized (b) Truncation errors are minimized 
(c) Both (a) and (b) (d) None of these 

8. In implicit approximation 
(a) The approximation is unconditionally stable and At can not be chosen 

(b) The approximation is unconditionally stable and At can be chosen 

(c) The approximation is unstable and At can not be chosen independent 

(d) The approximation is unstable and At can be chosen independent of 

independent of the space increment Ax 

independent of the space increment Ax 

of the space increment Ax 

the space increment At 

9. If the value of head is given in the boundary, the boundary condition is 
called as 
(a) Dirichlet type (b) Neumanntype 
(c) Cauchytype (d) All of these 

10. In the Neumann type of boundary condition, at the boundary node 
(a) The value of head is known 
(c) Both (a) and (b) 

(b) Flux is known 
(d) None of these. 
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APPENDIX 

1.02 
1.04 
1.06 
1.08 
1.10 
1.12 

Gamma 
Function 

0.988844 1.36 0.890185 1.70 0.908639 
0.978438 1.38 0.888537 1.72 0.912581 
0.968744 1.40 0.887264 1.74 0.916826 
0.959725 1.42 0.886356 1.76 0.921375 
0.951351 1.44 0.885805 1.78 0.926227 
0.943590 1.46 0.885604 1.80 0.931384 

I 1.00 I 1.000000 I 1.34 I 0.892216 I 1.68 I 0.905001 I 

I I I I I 

1.14 I 0.936416 I 1.48 I 0.885747 I 1.82 I 0.936845 
I 1.16 I 0.929803 I 1.50 I 0.886227 I 1.84 I 0.942612 I 
I 1.18 I 0.923728 I 1.52 I 0.887039 I 1.86 I 0.948687 I 
I 1.20 I 0.918169 I 1.54 I 0.888178 I 1.88 I 0.955071 I 
I 1.22 I 0.913106 I 1.56 I 0.889639 I 1.90 I 0.961766 I 
I 1.24 I 0.908521 I 1.58 I 0.891420 I 1.92 I 0.968774 I 
I 1.26 I 0.904397 I 1.60 I 0.893515 I 1.94 I 0.976099 I 
I 1.28 I 0.900718 I 1.62 I 0.895924 I 1.96 I 0.983743 I 
I 1.30 I 0.897471 I 1.64 I 0.898642 I 1.98 I 0.991708 I 
I 1.32 I 0.894640 I 1.66 I 0.901668 I 2.00 I 1.000000 I 
Note:r(n+ 1) = n r ( n )  

r (6.4) = r (5.4 + I) 5.4 r (5.4) 
= 5.4 x 4.4 x 3.4 x 2.4 x I .4 x r (1.4) 
= 240.833 
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