

Alfresco for Administrators

A fast-paced administrator's guide to Alfresco
from the administration, managing, and high-level
design perspectives

Vandana Pal

BIRMINGHAM - MUMBAI

Alfresco for Administrators

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1250416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-503-2

www.packtpub.com

www.packtpub.com

Credits

Author
Vandana Pal

Reviewers
Johnny Gee

Piergiorgio Lucidi

Giuseppe Urso

Commissioning Editor
Dipika Gaokar

Acquisition Editor
Rahul Nair

Content Development Editor
Mayur Pawanikar

Technical Editor
Anushree Arun Tendulkar

Copy Editor
Safis Editing

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Vandana Pal is a software engineer and author. She currently works as senior
consultant at CIGNEX Datamatics.

She has extensive experience working with Enterprise Digital Asset Management
and Content Management Systems. She has worked with various deployments of
Alfresco in various domains, such as media, finance, and healthcare, for different
organizations across the world. She has hands-on experience working with
architecture design, performance tuning, security implementation, integration,
and the orchestration of complex workflows in Alfresco.

She has more than 7 years of experience in software engineering. Her journey in this
field began when she started working with different open source technologies and
found them interesting. She holds a bachelors of engineering degree in information
technology from Gujarat University, India.

Vandana has also coauthored Alfresco 4 Enterprise Content Management Implementation.

I am grateful to Packt for providing this opportunity. I appreciate
the guidance and help provided by Mayur Pawanikar while writing
the book. Finally, I would like to thank my parents for always
supporting and motivating me.

About the Reviewers

Johnny Gee is the Director of Process Automation Solutions at Flatirons Solutions,
Inc. In his role, he is responsible for architecting case management solutions for
multiple clients across various industries. He has over 18 years of experience in the
design and implementation of the ECM system, with a proven record of successful
project implementations.

In addition to earning his undergraduate degree in aerospace engineering from the
University of Maryland, Johnny achieved two graduate degrees: one in aerospace
engineering from Georgia Institute of Technology and the other in information
systems technology from George Washington University.

Johnny is an EMC-proven professional specialist in the application and development
of content management, and he helped coauthor the EMC Documentum Server
Programming certification exam. He has been invited to speak at both EMC World
and Alfresco Summit.

Flatirons offers content lifecycle management solutions and services across a number
of industries. Its solutions include enterprise software along with consulting and
implementation services to help its clients identify, develop, and deploy the best
solutions suited to their needs.

Johnny was the technical reviewer of Martin Bergljung's Alfresco 3 Business Solutions
and Munwar Shariff's Alfresco 3 Web Content Management. He was also the technical
reviewer for Pawan Kumar's Documentum Content Management Foundations: EMC
Proven Professional Certification Exam E20-120 Study Guide.

Piergiorgio Lucidi works at Sourcesense as a technology master of enterprise
information management. Sourcesense is a European open source systems integrator,
providing consultancy, support, and other services for key open source technologies.

He is also an Alfresco Certified Instructor (ACI), Alfresco Certified Engineer (ACE),
and Alfresco Certified Administrator (ACA).

He works as a mentor, technical leader, and software engineer and has 12 years
of experience in the areas of enterprise content management (ECM), web content
management (WCM), business process management (BPM), and system integrations.
He is an expert at integrating EIM and ECM solutions in web applications as well as
portal applications.

He regularly contributes to the Alfresco community as a global forum moderator
and Alfresco wiki gardener, and during the Alfresco DevCon 2012 in Berlin, he was
named an Alfresco Community Star.

He contributes to the Apache Software Foundation as a mentor, PMC member,
and committer of Apache ManifoldCF, and he is the project leader of the CMIS,
Alfresco, and ElasticSearch connectors. He is a project leader and committer of
the JBoss community, and he contributed to some of the projects around the JBoss
Portal/GateIn platform.

He is a speaker at conferences dedicated to Java, Spring Framework, open source
products, and technologies related to the ECM and WCM world.

He is an author, technical reviewer, and affiliate partner at Packt Publishing.
He wrote the technical books Alfresco 3 Web Services and GateIn Cookbook.

As technical reviewer, he has also contributed to books such as Alfresco 3 Cookbook,
Alfresco Share, Alfresco 4 Enterprise Content Management, and Learning Alfresco Web
Scripts.

As an affiliate partner, he also writes book reviews on his website, Open4Dev
(http://www.open4dev.com/).

I would like to thank Packt Publishing for another great opportunity
to contribute to a project dedicated to the Alfresco platform.

http://www.open4dev.com/

Giuseppe Urso is a software engineer with more than 10 years of extensive work
experience in design and the agile development of service-oriented applications and
distributed systems based on Java SE and Java EE.

He works in the IT industry as a senior systems architect and Java developer,
handling responsibilities involving architecture design and the implementation
of several large-scale projects based on Alfresco ECM and Liferay Portal.

He is an Alfresco Certified Administrator (ACA) and committer on the Alfresco-SDK
project. His major areas of expertise include Amazon Web Services (AWS), Elastic
Compute Cloud (EC2) technologies, and Message-Oriented Middleware (MOM).

Giuseppe earned his master's degree in computer engineering from the University
of Salento, Italy. He is a licensed engineer and member of the professional engineers'
association called Ordine degli Ingegneri della Provincia di Lecce.

He was the technical reviewer of the book Liferay 6.x Portal Enterprise Intranets
Cookbook by Packt Publishing.

As an open source enthusiast, he share on Github, projects which make use of
Java Cryptography Architecture (JCA), Apache ActiveMQ and Amazon AWS
technologies (https://github.com/giuseppeurso-eu?tab=repositories).

He runs a personal blog at www.giuseppeurso.eu where he writes articles and
useful guidelines on Java, Alfresco, Liferay, and practices of GNU/Linux systems
administration.

https://github.com/giuseppeurso-eu?tab=repositories

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface vii
Chapter 1: Understanding Alfresco 1

Overview of Alfresco 1
Enterprise and open source 2
Scalable 2
Rich media support 3
Secured system 3
Highly extensible 3
External integration 3
Collaboration 4
Business process management 4
Cloud-based ECM 5
Search 5
Version control 5
Auditing 5

Alfresco architecture overview 6
Alfresco Share 6
Alfresco repository 7
Filesystem protocol (CIFS/WebDAV/FTP) 8
Database 8
Content store 8
Solr indexes 8

Business use cases of Alfresco 9
Alfresco as a document management solution 9
Alfresco as a record management solution 9
Alfresco for collaboration 10

Summary 11

Table of Contents

[ii]

Chapter 2: Setting Up the Alfresco Environment 13
Installing Alfresco using a wizard 13
Installing Alfresco manually on a Tomcat server 20
Installing Alfresco in JBoss 24
Installating AmP 29
Troubleshooting tips and best practices 30
Summary 31

Chapter 3: Alfresco Configuration 33
The basics of Alfresco configuration 33

Extending configuration files 34
Configuring subsystems in Alfresco 35

Extending the subsystem 36
Repository configuration 37

Configuring the database 37
Configuring the content store 38
Configuring the search functionality 39
Configuring Google Docs 39
Auditing 40
Configuring file servers 41

Configuring CIFS 42
Configuring FTP 43

Configuring the cloud sync service 43
Configuring e-mail 44

Outbound e-mail configuration 44
Inbound e-mail configuration 45
IMAP configuration 45

Summary 46
Chapter 4: Administration of Alfresco 47

Understanding the admin console 47
Alfresco standalone administration page 48

System summary 48
Consoles 49
E-mail services 53

General 54
License 55
Repository information 56
System settings 56

Repository services 57
Support tools 59
Directories 59
Virtual filesystems 60

Table of Contents

[iii]

Admin console in Alfresco Share 60
Application 61
Category Manager 61
Node Browser 62
Tag manager 66
Site Manager 67
Users 67
Group 71

Admin console in Alfresco Explorer 72
Activiti workflow console 74

Summary 77
Chapter 5: Search 79

Understanding Solr and Alfresco integration 80
Installing Solr 80
Understanding the Solr directory structure 84
Administration and monitoring of Solr 85

Understanding the Alfresco search admin console 85
Understanding the Solr admin console 87
Full re-indexing process in Solr 91

Troubleshooting Solr 91
Summary 93

Chapter 6: Permissions and Security 95
Overview of permissions and roles 95

Permissions 96
Roles 96

Authorizing users the use of content or space 98
Overview of the security model 100

Authentication subsystem 101
Authentication chain 101

LDAP configuration with Active Directory 102
Summary 105

Chapter 7: High Availability in Alfresco 107
Clustering Alfresco servers 107

Replicating a complete stack 108
Multi-tier architecture 109

Clustering Alfresco nodes 110
The backup and restore process 113

Performing a cold backup 114
Performing a hot backup 114
The restore process 115
Designing a disaster recovery system for Alfresco 115

Summary 117

Table of Contents

[iv]

Chapter 8: The Basics of the Alfresco Content Store 119
Understanding the content store architecture 120

Encrypted ContentStore 120
Enabling the encrypted ContentStore 121

Caching ContentStore 122
Configuring the caching of ContentStore 122

Alfresco S3 content store 124
Configuring the Alfresco S3 connector 124

Content store selector 125
Using the content store selector 125

Understanding the database schema 127
Schema of the alf_node table 127
Schema of the alf_node_properties table 128
Schema of the alf_child_assoc table 129
Schema of the alf_content_data table 129
Schema of the alf_content_url table 129

Understanding the content lifecycle in Alfresco 130
Creating content 130
Editing content 131
Archiving content 132
Deleting content 132

Summary 133
Chapter 9: maintenance and Troubleshooting 135

Understanding JmX in Alfresco 135
Enabling JMX and connecting to Alfresco through the JMX client 136
Server administration and monitoring via JMX 138

Understanding MBeans and configuration 139
Server maintenance and best practices 146

Understanding JVM settings 146
Maintenance of disk space 147
DB monitoring and tuning 148
Schedulers 149

Fetching audit records from Alfresco 150
Tips for troubleshooting the application 151
Summary 152

Table of Contents

[v]

Chapter 10: Upgrade 153
Understanding the Alfresco upgrade process 153

Choosing the upgrade path 154
Standard upgrade guidelines 154

Preparing a checklist 155
Setup and validation of the new environment 155
Data upgrade process 156
Solr upgrade process for Alfresco 5 157

Best practices and troubleshooting 159
Summary 159

Index 161

[vii]

Preface
This book focuses on the administration part of Alfresco. It also gives you a
high-level understanding of Alfresco and its capabilities from the perspective of
its architecture. This book provides you with details of how to administer and
troubleshoot problems in Alfresco. It also gives you an in-depth insight into
configuration, clustering, backup recovery, and maintenance. You thoroughly
understand Alfresco's repository structure and learn how to install, configure,
search, and administrate Alfresco.

What this book covers
Chapter 1, Understanding Alfresco, gives you a thorough understanding of Alfresco's
architecture and its features.

Chapter 2, Setting Up the Alfresco Environment, explains the various installation
processes of Alfresco in different application servers. It also provides details
of best practices and troubleshooting for the environment setup.

Chapter 3, Alfresco Configuration, explains the ways in which Alfresco can be
configured to suit business needs. It gives you a detailed understanding of
the different components of Alfresco and how they can be configured.

Chapter 4, Administration of Alfresco, explains how the Alfresco repository can be
administered. It provides you with detailed steps for the administration of the
repository and the functions it can perform. The chapter gives you a thorough
understanding of the administration console, users and group creation processes,
node browsers, and so on.

Chapter 5, Search, focuses on the search component of Alfresco. It will provide you
with a detailed insight into the installation, configuration, troubleshooting, and
maintenance of the search server Solr.

Preface

[viii]

Chapter 6, Permissions and Security, explores the details of the permissions required in
the Alfresco repository. It provides you with an understanding about the different
types of permissions and roles in Alfresco and how to integrate with different
third-party authentication tools.

Chapter 7, High Availability in Alfresco, explores the different ways in which the
Alfresco system can be made highly available. It covers the different methods of
clustering Alfresco and its backup and recovery process as well as troubleshooting
Alfresco's clustered environment.

Chapter 8, The Basics of the Alfresco Content Store, explains how Alfresco actually
stores content. The content life cycle is discussed in detail in this chapter as well
as the database structure in Alfresco.

Chapter 9, Maintenance and Troubleshooting, covers how to monitor and manage the
Alfresco system in production using JMX and other tools. It also provides details
about different ways to troubleshoot Alfresco. You will also learn about different
audit trails in Alfresco for the purpose of better administration.

Chapter 10, Upgrade, explains how Alfresco can be upgraded from one version to
another. It provides detailed steps in order to understand the process of upgrading.

What you need for this book
The hardware/software requirements are as follows:

• The Alfresco 5.x installer
• Tomcat
• JBoss
• A Windows/Linux operating system.

Who this book is for
The target audience includes users with a basic knowledge of content management
systems and those of you who want to understand Alfresco from an administration
perspective and a high-level design perspective.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation
of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Execute the downloaded .bin file."

A block of code is set as follows:

<module xmlns="urn:jboss:module:1.0"
name="org.alfresco.configuration">

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<resources>
 <resource-root path="."/>
</resources>

Any command-line input or output is written as follows:

sudo apt-get install mysql-server

sudo service mysql start|stop|status

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"There are two mode of installation: Easy and Advanced."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/Alfresco_for_Administrators_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com/sites/default/files/downloads/Alfresco_for_Administrators_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Alfresco_for_Administrators_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Understanding Alfresco
Alfresco is one of the leading open source enterprise content management systems
(ECM). For more details about ECM refer to the Wiki; https://en.wikipedia.org/
wiki/Enterprise_content_management. Alfresco allows you to manage content in
a simple and smart way. It provides enterprise solutions based on open standards,
and open source technologies for managing business critical content. As it is a very
stable player in the market and provides enterprise-level features and support,
Alfresco has been named Visionary by Gartner for five years in a row. Gartner is
a leading research company, which provides insight into technology; refer to
http://www.gartner.com/technology/about.jsp for more details about Gartner.

This chapter provides you with an introduction to Alfresco 5.x, its features, and its
benefits. It helps you to understand the main building blocks of Alfresco.

By the end of this chapter, you will have learned about:

• An overview of Alfresco
• Key features of Alfresco
• Alfresco architecture
• Using Alfresco for your ECM requirements

Overview of Alfresco
The Alfresco open source ECM system was founded by John Newton, co-founder of
Documentum, and John Powell, former COO of Business Objects, in 2005. Alfresco
is a very scalable and extensible solution. Alfresco comes in various flavors: Alfresco
Enterprise Edition, Alfresco Community Edition, and Alfresco in Cloud.

https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/Enterprise_content_management
http://www.gartner.com/technology/about.jsp

Understanding Alfresco

[2]

Alfresco Community Edition is only for small-scale development or research
purposes. It is not recommended for production systems as there are certain
functional differences. The Community version doesn't support clustering,
enterprise application servers such as WebLogic, enterprise databases such as Oracle,
encryption of content stores, advanced admin tools, advanced media management,
and so on. There is no Alfresco support provided for the Community version.
Alfresco Enterprise Edition is production-ready code. It has been load tested and
certified for use in production. The Enterprise build is fully supported by Alfresco.
Alfresco in Cloud is a SaaS (Software as a Service) version of Alfresco. More details
on this are given in later sections.

Refer to the following URL for more details about the differences between
Community and Enterprise versions:

https://wiki.alfresco.com/wiki/Enterprise_EditionAlfresco

Enterprise Edition has various unique features, which distinguish it from other
ECM systems.

Enterprise and open source
As Alfresco is built upon open source technologies, it reduces the cost of overall
software acquisition, development, and maintenance. Due to this open source model,
Alfresco can use the best open source technologies on the market and build a strong
system at a low cost. Alfresco provides a very cost-effective solution.

Scalable
Scalability is a very important aspect for any ECM system. For enterprise organizations
in fields such as media, healthcare, finance, and so on, the amount of content grows
exponentially, so scalability becomes an important parameter. As Alfresco is built
using open source standards and technologies, it provides a very scalable architecture.

Alfresco Enterprise can be deployed on any platform, and supports multiple
databases such as MySQL, Oracle, PostgreSQL, and so on. It also supports multiple
application servers such as Tomcat, JBoss, WebLogic, and so on. Each tier in an
Alfresco application can be deployed on a separate machine, which allows the
vertical scalability of the system. Alfresco supports a clustered environment, which
allows it to scale horizontally.

https://wiki.alfresco.com/wiki/Enterprise_EditionAlfresco

Chapter 1

[3]

Rich media support
ECM systems should support any type of content, regardless of application or
organization. Alfresco supports the storage and management of multiple types of
electronic content, from normal documents to any multimedia files. It provides
automatic extraction of the information from files, associates it as metadata with
content, and enables easy searching.

Secured system
Security and content protection is critical for any ECM system. Alfresco has a
very strong authentication and authorization model. It provides an out-of-the-box
database membership system; it can also be integrated with identity management
systems like LDAP and Active Directory (AD), and have centralized security and
single sign-on. Alfresco provides full access control on individual content to ensure
that security and business integrity is maintained. Access control can be set at the
folder level or individual content.

Highly extensible
Because of its open source model, Alfresco can be extended and customized as per
requirements. Organizations can have a trained in-house team to maintain and
customize Alfresco as per their needs.

External integration
Alfresco supports open standard protocols for integration with external systems.
Alfresco can be integrated with any Java-based portal, such as Liferay (https://
www.liferay.com/products/liferay-portal/overview) using the CMIS or
REST protocols.

CMIS is a standard open source protocol to allow a document management
repository to connect with a web application. It defines an abstract layer so the
web interface can connect with any repository. For more details, refer to https://
en.wikipedia.org/wiki/Content_Management_Interoperability_Services.

The REST protocol allows an external application to access the repository using
the HTTP protocol using the same HTTP verbs, such as GET, POST, and so on. For
more details, refer to https://en.wikipedia.org/wiki/Representational_
state_transfer.

https://www.liferay.com/products/liferay-portal/overview
https://www.liferay.com/products/liferay-portal/overview
https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

Understanding Alfresco

[4]

Alfresco provides integration with various scanning solutions, such as Ephesoft
or Kofax, which gives a complete end-to-end solution. It allows organizations to
perform document capture, extraction, classification, storage, and distribution
via a centralized environment.

For more details about Ephesoft and Kofax refer to these URLs:

• http://ephesoft.com/products

• https://en.wikipedia.org/wiki/Kofax

Collaboration
Nowadays, due to social media, collaboration has become very important for any
organization as part of ECM. Alfresco, as well as content management, also provides
a platform for collaboration between users internally and externally with full security
and control over content. Powerful tools such as blogs, wikis, forums, and so on are
provided within the Alfresco system to provide collaboration within teams.

Each project can have its own space for complete collaboration and the sharing
of content.

Alfresco supports the publishing of content to various social platforms such as
Twitter, Facebook, YouTube, SlideShare, and so on. It also provides Google Doc
integration, which allows users to have real-time collaboration.

Business process management
Efficient business processes are an integral part of any organization. Automation
of this process helps organizations to streamline processes, improve efficiency,
and reduce cost. In organizations where the review and approval process of any
document is very important, there would always be a need for these documents
to be moved and accessed effectively.

Alfresco provides the Java-based, highly configurable BPM engine Activiti (http://
www.activiti.org/). It also provides graphical tools so that less technical persons
can easily design the process flow, allowing the faster rollout of processes.

As Alfresco can be accessed by any supported browser or mobile device, users get
the flexibility to perform their tasks from anywhere.

Alfresco provides easy configurable rules, which can help to trigger and control this
business process in a smart way.

http://ephesoft.com/products
https://en.wikipedia.org/wiki/Kofax
http://www.activiti.org/
http://www.activiti.org/

Chapter 1

[5]

Cloud-based ECm
Alfresco provides a fully managed SaaS ECM solution, leveraging the power
of a cloud-based environment. Alfresco in Cloud is a ready-to-go Alfresco
implementation which requires no installation and minimal configuration by
customers. It allows full control over, and collaboration on, documents, similar
to what can be achieved by Alfresco deployed on-premises.

Alfresco also supports a hybrid model, where content can be synchronized from
your on-premises Alfresco to the cloud. This allows content to be always in sync and
easily available from any location. An Alfresco on-premises solution can be used for
long-term storage and compliance, and Alfresco in cloud can be used for sharing and
collaboration too.

Search
Finding the correct content within a system is very important for any content
management system. Alfresco provides searching with Apache Solr (http://
lucene.apache.org/solr). It provides full-text indexing of content, and metadata
indexing, which allows users to easily search and locate the content in the repository.
Alfresco also provides advanced search capabilities.

Alfresco also supports searches for archived content, users, and groups in
the system.

Version control
Maintaining all versions of a document is also a critical aspect of an ECM system.
Alfresco provides strong version management for documents. It maintains all the
version changes of a document and its associated metadata. Alfresco also has a
feature that allows you to revert a document to any version.

Auditing
Alfresco provides very strong auditing. Each and every action on content is captured
in an audit trail. This audit information can be easily retrieved and generated as
a report.

http://lucene.apache.org/solr
http://lucene.apache.org/solr

Understanding Alfresco

[6]

Alfresco architecture overview
Alfresco is the leading open source option for ECM. Alfresco architecture is designed
based on open standards JSR-170, JSR-168, and JSR-283. JSRs are industry standards
defined by the Java community for uniform repository access, using the Java
platform application programming interface. Refer to https://en.wikipedia.org/
wiki/Content_repository_API_for_Java for more details.

Alfresco supports pluggable aspect-oriented architecture. It is lightweight, modular,
and scalable.

The following is a high-level diagram of the Alfresco architecture:

Alfresco Share

Solr Indexes

File System

(WebDAV, CIFS,

FTP)

Mobile Application/

Portal

Content Store

(File System)

Alfresco Service

Alfresco Repository

Rest
WebDAV,

CIFS, FTP
Rest/CMIS

Solr Server

Database

Alfresco Share
This is the collaboration content management platform in Alfresco. It is built
on the Surf framework. The Surf framework was developed by Alfresco, but in
2009 Alfresco began working with Spring Source and announced the Spring Surf
Extension framework. Later on, both Spring Source and Alfresco were collectively
developed and are available as plugins in Spring MVC 3.x.

https://en.wikipedia.org/wiki/Content_repository_API_for_Java
https://en.wikipedia.org/wiki/Content_repository_API_for_Java

Chapter 1

[7]

Refer to the following links for more details:

• https://wiki.alfresco.com/wiki/Spring_Surf

• http://www.springsurf.org/

Alfresco Share simplifies document capturing and sharing, and the retrieval of data
for teams, resulting in better collaboration. This in turn increases the productivity of
teams and reduces the volume of e-mails.

Alfresco Share also provides advanced administrative tools. It supports module-
based extension, which supports the ability to remove, add, or modify any
component without changing any out-of-the box code.

Alfresco repository
This is the main core of Alfresco. Alfresco repository is a bundle of service
implementations based on the open standards of CMIS and JCR. This service
provides cutting edge content management features such as:

• Content storage
• Content retrieval
• Content modeling
• Query interface
• Access control
• Audit
• Versioning

These services provide a public interface based on REST/CMIS or Java JSR-170
protocol standards which allows the client application to communicate with the
repository. Alfresco Share communicates with the repository using the REST
interface.

The content repository is more than a normal database application, due to the level
of control over individual content it provides. Access to content is wrapped by a
security layer which prevents any unauthorized access. The fine-grained security
control requires a more complex approach than a traditional database application.

In Alfresco, the actual binary stream of content is located in the file system. The file
folder structure and reference to this binary stream is maintained in the database.

https://wiki.alfresco.com/wiki/Spring_Surf
http://www.springsurf.org/

Understanding Alfresco

[8]

Filesystem protocol (CIFS/WebDAV/FTP)
Access to content stored in a repository is very important for any ECM. Alfresco
supports various protocols, such as CIFS (Common Internet File System),
WebDAV, and FTP.

These protocols allow you to support the mapping of the same file folder structure
as the repository to a virtual filesystem. With these protocols, any tool that can
read and write a filesystem can read and write to an Alfresco repository. Users can
still use Alfresco as a locally mapped network filesystem. CIFS provides advanced
compatibility with the mapped operation system. With the CIFS protocol, Windows
users can use the Windows offline synchronization feature with an Alfresco
repository. These virtual filesystem protocols allow users to edit and view content
using their locally installed tools.

Database
The database holds all the content related information, such as metadata, content
association, content binary stream location reference, and folder structure. The
database also stores information related to users, workflow tasks, audits, and so on.

Alfresco supports various database vendors, such as MySQL, PostgreSQL, Oracle, and
so on. Oracle is only supported in Alfresco Enterprise Edition. Database schema and
more information will be covered in Chapter 8, The Basics of the Alfresco Content Store.

Content store
The content store is a term used for the filesystem location where the actual binary
stream of content is stored. In Alfresco, only the reference to the content is stored in
the database. The actual content is stored in a filesystem. This filesystem can be any
normal NAS or SAN mounted drive. This architecture allows Alfresco storage to
grow exponentially and makes Alfresco scalable.

Solr indexes
Searching is a very important aspect of any ECM system. Alfresco supports searches
using Apache Solr. All content, metadata, and permissions associated with content in
Alfresco are indexed in Solr, which allows fast searches and access to content stored
in a repository.

Solr can be bundled with Alfresco on the same machine, or it can be installed as a
separate tier. This design allows the horizontal scalability of the search tier. Alfresco
and Solr communicate with each other asynchronously.

Chapter 1

[9]

Business use cases of Alfresco
Alfresco as a true ECM system provides a simple and smart way to manage your
content. Alfresco provides various systems as solutions to support document
management, record management, collaboration, and so on, in order to solve
organizational challenges.

Alfresco as a document management solution
Alfresco can be used as a document management solution for any organization
where the documents are business critical, and storing and retrieving them
effectively is very important for the business. For example, contracts are very
important documents for many firms. All contracts can be stored in a central location
within Alfresco. Strong access control can be applied to each contract document,
so only authorized users can view/edit the contract.

Metadata information from the contract document can be extracted and indexed
in Alfresco, which allows users to search any contract easily. As Alfresco supports
full-text searches, users can search the contract document based on its content. The
versioning features of Alfresco can be leveraged to ensure that all the versions of
the contract are kept.

Alfresco provides a strong audit trail, so all the actions taken on the contract by any
user can be captured and an audit report can be generated from them very easily.

Alfresco also supports integration with various scanning and OCR solutions, such
as Ephesoft, so any paper contracts can be scanned, classified, and stored in the
repository.

For contracts, the review and approval process is very important. Alfresco has strong
business process management which can be leveraged to automate this process,
reduce the length of the approval cycle, and improve efficiency. As Alfresco can be
accessed from the Web, users can view documents and perform operations from
any location.

Alfresco as a record management solution
Alfresco record management is a great solution for any organization where
compliance is important. It is simple and very user-friendly. Users can adopt this
system easily.

Understanding Alfresco

[10]

It can be extended to create a single centralized repository to manage all kinds of
electronic records. Alfresco provides strong access control, so all records are secure.
The policies for record use, storage, and disposal can be easily defined with Alfresco
record management.

Alfresco record management is designed based on United States Department of
Defence 5015.2 record management standards.

With Alfresco, you can easily drag and drop records into the system. Business rules
can be defined to classify and mark them as records. A disposition policy can be
defined and automated, which includes the transfer of records or their complete
destruction after a given period. In addition to this, there is strong auditing that
captures all actions on the records.

Alfresco provides different reports that show recent records, records due for expiry,
records due for destruction, and records due for transfer.

Alfresco for collaboration
Alfresco can be used in collaboration solutions within an organization, along with
content management. For example, a marketing team can work on different projects.
Alfresco Share can be used as a collaboration platform. Each marketing project
can be created as a different space. Only members of that project can have access
to that space.

Teams can upload, share, and discuss content within this space. There are
dashboards which can be configured as per user needs to see the activity in the
project and notifications. Alfresco acts as a central repository to manage all
types of marketing documents.

Alfresco provides a feature for publishing content to any social platform, including
Twitter, SlideShare, and Facebook, which can be leveraged and content can be
published directly.

With Alfresco, content can be shared with external users in a secure and
controlled way.

For more case studies on Alfresco, you can refer to http://www.alfresco.com/
customers.

http://www.alfresco.com/customers
http://www.alfresco.com/customers

Chapter 1

[11]

Summary
Alfresco is one of the leading open source ECM systems. The key features of Alfresco
are security, stability, and a scalable architecture. Due to its open source model,
Alfresco can use the best open source technologies on the market and build a strong
system at a low cost. Alfresco provides a very cost effective solution.

Alfresco architecture is designed based on JCR open standards. It is lightweight,
modular, and scalable.

Alfresco can be used in the cloud, on-premises, or as a hybrid. The next chapter will
cover details about the installation of an Alfresco system on various platforms.

[13]

Setting Up the Alfresco
Environment

Alfresco provides users with a very flexible mechanism for installation. Alfresco can
be installed on any supported application server like Tomcat, JBoss, WebLogic, and
so on. Alfresco also supports various databases. Different components of Alfresco
can be separated out or installed together on the same machine, so you can pick your
package based on organization needs and do the setup.

In this chapter, we will cover the different installation processes of Alfresco:

• Understanding the installation process using the installer file with a
simple wizard

• Diving into detailed steps for the manual installation of Alfresco in Tomcat
• The installation process of Alfresco in the JBoss application server

Here, the main focus is on the installation process of Alfresco; we are not covering
topics related to the installation of databases or other components.

Installing Alfresco using a wizard
Alfresco provides users with different installer files for its setup based on the
different OS platforms. This installation file provides a complete package bundle
like Tomcat, Java, PostgreSQL, Solr, LibreOffice. It is a simple wizard-based process
for installation.

Setting Up the Alfresco Environment

[14]

Let's go through the installation process in detail:

1. The first step is to download the proper installer based on the operating
system required for Alfresco setup. Here, we are using the example of
the Windows 64 bit system. For Windows 64 bit, download alfresco-
enterprise-5.x.x.x-installer-win-x64.bin. Refer to https://
www.alfresco.com/services/subscription/supported-platforms
to identify the Alfresco supported platforms. Alfresco Enterprise can be
downloaded from https://myalfresco.force.com/support, but only
if you have Enterprise access. A 30 day trial version can be downloaded
from the Alfresco portal after submitting a form. A community version can
also be downloaded from the Alfresco portal or any public websites like
SourceForge.

2. Execute the downloaded .bin file. If you are on Linux make sure you have
granted executable permission to the installer file.

3. Select the appropriate language, as shown in the following screenshot:

4. There are two modes of installation: Easy and Advanced. The Easy mode
installs Alfresco with the default configuration. In Advanced mode, you
can specify port details for all required components. It's better to select the
Advanced mode.

https://www.alfresco.com/services/subscription/supported-platforms
https://www.alfresco.com/services/subscription/supported-platforms
https://myalfresco.force.com/support

Chapter 2

[15]

5. Let's select the advanced configuration. In the next window, you will get a
list of all the components required for installation. You can check or uncheck
the components based on your needs. For example, if you have installed
PostgreSQL independently, then uncheck PostgreSQL. If you uncheck, make
sure you can configure those properly after installation is complete.

Setting Up the Alfresco Environment

[16]

6. The next step is to provide the root folder name where Alfresco will be
installed, as shown in the following screenshot. You can browse and also
select a directory by using the browse icon next to the text box.

7. Later, we provide the database port number. If you already have another
instance of PostgreSQL running, you have to provide a different port
number. The default is set to 5432.

Chapter 2

[17]

8. In addition to database configuration, the Tomcat server also requires
port configuration for startup, shutdown, and SSL ports, as shown in the
screenshot below. By default, the text boxes are filled with the default values
as shown below. If you have any other application running on the same
ports, change the port appropriately. Also make sure that the ports you are
providing are open in your firewall.

9. Alfresco requires a remote RMI port configuration. By default, it is set to
50500, but if you have another Alfresco instance running on the same RMI
port, make sure this port is changed. Make sure this port is open through
your firewall. RMI means Remote Method Invocation, and certain Alfresco
services are exposed via RMI in Alfresco. This port is the RMI registry port,
which will be used by a remote client.

Setting Up the Alfresco Environment

[18]

10. Now, provide the admin credentials for the Alfresco repository. It is
important that you provide strong credentials, and make sure you
remember that.

11. If you have selected to install Libre office, you can configure the port for
Libre office.

12. This installation wizard sets up Alfresco as a Windows service. The last
step prompts you to select the startup option for service as either manual
or automatic. As the name suggests, automatic will start on reboot of the
machine and with manual, you need to start manually. In Windows, there
are two services created: one for PostgreSQL named alfrescoPostgreSQL,
and one for Tomcat named alfrescoTomcat. If you have multiple instances,
it will increment with a number.

Chapter 2

[19]

13. Once all configuration information has been provided, let the installation
start. Once installation is complete, it will show the finished dialog and will
also ask you to open the share console.

14. You can start and stop the Alfresco server using the service. If Alfresco is
installed in Linux and you cannot start it properly using the service, there is
an alternative way to manually start using the alfresco.sh file available in
the installation directory.

15. Log files are available under <Alfresco Installation Path>/tomcat/logs.
You can monitor logs for any error in the startup process.

16. Once Alfresco is installed, there are a set of directories created under the
installation path; here are some details about a few of them:

 ° solr4: This directory contains all the configuration for Solr.
 ° alf_data: This directory contains contentstore to store the binary

file of the repository and Solr indexes.
 ° tomcat: As the name suggests, this is the main Tomcat folder with all

the WAR files and configuration for Alfresco and Share.
 ° postgresql: This is the database folder for the PostgreSQL installed

using the setup wizard. Under the bin directory, you can use the
pgAdmin3.exe file to open the PostgreSQL user interface and connect
to the Alfresco database.

Setting Up the Alfresco Environment

[20]

17. If you are installing on Linux, make sure that the below set of libraries are
installed. Based on different flavors of Linux, the commands for installation
may vary:

 ° libfontconfig.so

 ° libSM.so

 ° libICE.so

 ° libXrender.so

 ° libXext.so

 ° libXinerama.so

Installing Alfresco manually on a
Tomcat server
We went through the process of using the wizard, which installs all the required
components and Alfresco as a bundle. Now if you want to install everything
manually, there are some different steps required.

The very first important step will be to find out the supported stack from Alfresco.
Based on the version number, decide the OS, JDK, Database, Tomcat, and other
component versions required for its installation. This supported stack for the latest
version of Alfresco is available on their website; https://www.alfresco.com/
services/subscription/supported-platforms.

Once you have the supported stack and decided on the version, prepare the server
for Alfresco installation:

1. Install the supported JDK, Database , Imagemagick, LibreOffice, Ghostscript,
and application server for Tomcat (assuming you are using this).

2. Based on the Alfresco support stack for Alfresco 5, we need Java 7 or Java8.
For example, if we need to install Java 7 on Linux OS, one way to do so
can be found in the steps listed below. You can also install Oracle JDK by
downloading and extracting the tar.gz file or rpm package. Download Java
7 at the following location: http://www.oracle.com/technetwork/java/
javase/downloads/jre7-downloads-1880261.html

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java7-installer

https://www.alfresco.com/services/subscription/supported-platforms
https://www.alfresco.com/services/subscription/supported-platforms
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

Chapter 2

[21]

Note: For installation in Linux, you need either root access or
sudo access on the server.

3. Once Oracle Java is installed, make sure the environment variable JAVA_
HOME is set correctly to point to the proper Java location. Verify the /etc/
environment file. Execute the command below to verify the Java version:
java -version

4. Now, we need to install the Tomcat server for Alfresco. Use the Linux
comment apt-get to install Tomcat7. This will install Tomcat7 under the
/var/lib/ directory as a service. To view the init script, check the file
/etc/init.d/tomcat7.
sudo apt-get install tomcat7

Make sure the JVM settings and JAVA_HOME is set correctly
for Tomcat by editing the file /etc/default/tomcat7.

sudo vi /etc/default/tomcat7

 ° Sample JVM settings:
JAVA_HOME=/usr/lib/jvm/java-6-oracle
JAVA_OPTS = -Xmx8g -XX:MaxPermSize=256m -
XX:+UseConcMarkSweepGC –server

 ° Start the service using the command below. Tomcat will be started
using the user tomcat7, which is a non-root user.
sudo service tomcat7 start

5. Libre office and other transformation tools can be installed in Linux by either
using the deb package or by using the .tar, .gz file.

6. Install the database as per the supported stack. Let's take the MySQL
database as an example. The apt-get command mentioned below is one
of the ways to install the MySQL server. This will install the MySQL server
as a service in Linux.
sudo apt-get install mysql-server
sudo service mysql start|stop|status

Setting Up the Alfresco Environment

[22]

7. Create a blank alfresco database and grant all permissions to the SQL user
on the database which will be used by Alfresco to connect to this database.
The same credentials will be used in a later step while configuring Alfresco.
Below is the sample SQL query snippet for creating an Alfresco database
and also for granting all privileges to the alfresco user.
Create database alfresco;
grant all on alfresco.* to 'alfresco'@'localhost' identified by
'alfresco' with grant option;
grant all on alfresco.* to 'alfresco'@'localhost.localdomain'
identified by 'alfresco' with grant option;

8. Now, once all the required components have been installed, let's proceed
with the Alfresco setup. Make sure that Tomcat is not running.

9. Download the Alfresco enterprise .zip bundle from Alfresco support.
10. Copy the proper JDBC connector library under the <Tomcat Home>/lib

directory. If you have a MySQL database, for Alfresco 5.0, you will require
the MySQL connector file mysql-connector-java-5.1.32-bin.jar.

11. Create shared/classes and the shared/lib directory under the Tomcat
home directory.

12. Configure conf/catalina.properties files in Tomcat to load the
shared/classes and shared/lib directory as all Alfresco extension files
will be placed in these directories. Add the shared.loader property in
the catalina.properties file as shown here:
shared.loader=${catalina.base}/shared/classes,${catalina.base}/
shared/lib/*.jar

13. Configure server.xml under the conf directory in Tomcat. Increase
the HTTP header size and encoding. The default header size won't
be sufficient for Alfresco. An encoding change is required to support
international characters while uploading, renaming, and other operations
from Alfresco Share.
Locate the Connector tag for server startup in Tomcat server.xml and
add/modify the two items below:
URIEncoding="UTF-8"
maxHttpHeaderSize="32768"

14. Extract the Alfresco .zip bundle downloaded in step 4 in the proper
installation directory. For example, your Tomcat server should be installed
under /opt/Alfresco/Tomcat. Extract the zip under /opt/Alfresco.

Chapter 2

[23]

15. Copy the .war file from web-server/webapps directory to the <Tomcat
Home>/webapps directory, assuming no other application is installed on this
Tomcat server.

16. Copy the files and directory in web-server/shared into
<Tomcat Home>/shared.

17. Configure the alfresco-global.properties.sample file in your Alfresco
extracted bundle under web-server/classpath to point to the correct
database and contentstore location. Remove the .sample extension. Below
is the list of important configurations to be changed. For more detail on
configuration, you can refer to Chapter 3, Alfresco Configuration and Chapter 4,
Administration of Alfresco. Copy the alfresco-global.properties file under
<TOMCAT_HOME>/shared/classes:
dir.root=<Full path for contentstore >
dir.keystore=<Full path for Keystore. This will be required
 for Solr. Make sure the keystore is pointing the
 location where it was extracted from zip bundle>
db.username=<Username of the SQL user setup in step 2>
db.password=<Password of the SQL user setup in step 2>
db.driver=<Driver information based on the database used>
db.url =<Full url for database connection>

18. Once Alfresco is installed, you have to generate the keystore for Solr and
configure it accordingly in the solr directory. For this, get the generate_
keystores.sh file from Alfresco support.

19. Once you have the .sh file, make sure ALFRESCO_HOME, SOLR_HOME,
JAVA_HOME, SOLR & REPO cert name are being set properly. Once all these
properties are configured, execute the script to generate the new keystore.
It will provide you with the status message and also the dir.keystore value
to be set in the alfresco-global.properties file.

20. Now start the Alfresco server and monitor the logs under the <Tomcat
Home>/logs directory. If you are starting the Alfresco server as a non-root
user in Linux, the application cannot listen on privilege ports; this can be
solved using iptables.

Setting Up the Alfresco Environment

[24]

Installing Alfresco in JBoss
The Alfresco application is supported in various application servers; one of the
supported platforms is JBoss. Installing Alfresco on JBoss requires some additional
steps to installing on Tomcat.

Similar to what we did for installing Alfresco in Tomcat, install JDK, the JBoss
application server, and the database based on the supported stack and follow the
steps below to deploy Alfresco in JBoss. Make sure JBoss is not running. Here, are
considering PostgreSQL database.

Refer to the JBoss installation and administration guide for more details on JBoss
at: https://access.redhat.com/documentation/en-US/JBoss_Enterprise_
Application_Platform/6.2/index.html

1. Download the alfresco-enterprise-ear-5.x.x.zip bundle from Alfresco
support and extract the .zip bundle under some temporary location; let's call
this directory ALFRESCO_TEMP_DEPLOYMENT for future reference. For example,
in Windows, if you have extracted Alfresco 5.0.3 within the C directory, the
full path will look something like this; C:\\ ALFRESCO_TEMP_DEPLOYMENT.
On extraction of the .zip file, you can see the directory structure as shown in
the screenshot below:

2. All configurations of Alfresco will go under modules of JBoss. Create a main
directory in <JBOSS_HOME>/modules/org/alfresco/configuration.

3. Create a module.xml file in this main directory with the code snapshot below:
<module xmlns="urn:jboss:module:1.0"
name="org.alfresco.configuration">
<resources>
 <resource-root path="."/>
</resources>
</module>

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.2/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.2/index.html

Chapter 2

[25]

4. Now copy all the files from ALFRESCO_TEMP_DEPLOYMENT/web-server/
classpath, which is in the temporary folder where the .zip file was
extracted, in the main directory created in step 2.

5. Configure the alfresco-global.properties.sample file under <JBOSS_
HOME>/modules/org/alfresco/configuration/main, as we did in a
similar way while deploying Alfresco in Tomcat. Remove the .sample
extension. Don't configure anything with the database at this point. You
can refer to the alfresco-global.properties file provided with the
chapter. Also make sure the dir.root command should point to the proper
contentstore location. Copy the alf_data directory from ALFRESCO_TEMP_
DEPLOYMENT to the location where the binary file will be stored.

6. Extract the alfresco-enterprise-5.x.x.war file located in the
ALFRESCO_TEMP_DEPLOYMENT directory created in step 1. You will have a set
of .war files and a META-INF directory. Within META-INF, make sure the file
jboss-deployment-structure.xml is set to the proper WAR configuration
location, as shown here. Make sure the highlighted sections are configured
properly, this is to link the configuration directory created in step 2 with the
.war files.
<jboss-deployment-structure>
<sub-deployment name="alfresco.war">
<dependencies>
<module name="org.alfresco.configuration" />
<module name="org.apache.xalan" />
</dependencies>
</sub-deployment>
<sub-deployment name="share.war">
<dependencies>
<module name="org.alfresco.configuration" />
</dependencies>
</sub-deployment>
</jboss-deployment-structure>

7. Assuming we are using a PostgreSQL database, create a directory, org/
postgresql/main, under the <JBOSS_HOME>/modules directory. Copy the
database connector .jar in the jboss module <JBOSS HOME>/modules/
org/postgresql/main directory. For a different database, refer to JBoss
configuration on the JBoss website.

Setting Up the Alfresco Environment

[26]

8. Create a module.xml file under the main directory for setting the PostgreSQL
.jar location, as shown in the code snapshot below. The PostgreSQL
connector .jar name should match with the one deployed in step 7.
<module xmlns="urn:jboss:module:1.0" name="org.postgresql">
 <resources>
 <resource-root path="postgresql-9.3-1102-jdbc41.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

9. Now you have to configure the Datasource subsystem to point to the correct
database and database connector location. Configure the standalone.xml
file located at <JBOSS Home>/standalone/configuration, as shown in
the code snapshot below. The highlighted sections show the details to be
configured. Make sure the connection URL and database credentials are
configured properly. The maximum pool size should be configured based
on the thread pool of the application server plus 75 more. If the thread pool
size for the application server is 100, the database max connection pool size
should be 175. Ensure your database is also configured accordingly. Refer to
the standalone.xml file provided with the chapter.
<datasource jndi-name="java:jboss/PostgresDS" pool-
name="jbossdatasource" enabled="true">
 <connection-url>jdbc:postgresql://localhost:5432/postgresdb</
connection-url>
 <driver>postgresql</driver>
 <pool>
 <min-pool-size>0</min-pool-size>
 <max-pool-size>20</max-pool-size>
 </pool>
 <security>
 <user-name>alfresco</user-name>
 <password>admin</password>
 </security>
 <validation>
 <valid-connection-checker class-name="org.
jboss.jca.adapters.jdbc.extensions.postgres.
PostgreSQLValidConnectionChecker"/>
 <exception-sorter class-name="org.jboss.jca.adapters.jdbc.
extensions.postgres.PostgreSQLExceptionSorter"/>
 </validation>
 </datasource>

Chapter 2

[27]

<drivers>
 <driver name="postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-
datasource-class>
 </driver>
</drivers>

10. Set enable-welcome-root="false" in the standalone.xml file in
<JBOSS Home>/standalone/configuration:
<subsystem xmlns="urn:jboss:domain:web:1.5" default-virtual-
server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-
binding="http"/>
 <virtual-server name="default-host" enable-welcome-root="false">
 <alias name="localhost"/>
 <alias name="example.com"/>
 </virtual-server>
</subsystem>

11. Unzip the alfresco.war file located in the temporary directory ALFRESCO_
TEMP_DEPLOYMENT created in step 6 on extraction of the .ear file. Modify the
jboss-context.xml file in WEB-INF to have the proper datasource jndi-
name reference created in step 9. Below is the highlighted code snapshot:
<resource-ref>
<res-ref-name>jdbc/dataSource</res-ref-name>
<jndi-name>java:jboss/PostgresDS</jndi-name>
</resource-ref>
<resource-ref>
<res-ref-name>jdbc/activitiIdGeneratorDataSource</res-ref-name>
<jndi-name>java:jboss/PostgresDS</jndi-name>
</resource-ref>

12. There are few issues with Java 8 and the Eclipse compiler for Java. To
resolve this issue, you have to install a few additional libraries. Follow
the steps below:

 ° Download the ECJ4.4 .jar file
 ° Update the ecj JAR location with the new .jar file name in <JBOSS

Home>/modules/system/layers/base/org/jboss/as/web/main/
module.xml

Setting Up the Alfresco Environment

[28]

13. The vaadin jar file also need to be updated, so copy the vaadin-
application-server-class-loader-workaround-1.0.1.jar from the
ALFRESCO_TEMP_DEPLOYMENT/web-server/lib directory to the extracted
alfresco.war file WEB-INF/lib created in step 11.

14. Make sure that proper memory is allocated to JBoss by configuring the
standalone.conf file located at <JBOSS Home>/bin.

15. Configure the standalone.xml file located at <JBOSS Home>/standalone/
configuration to set the proper URI encoding. Below is the code snapshot;
add this after the extension tag. Refer to the standalone.xml file provided
with this chapter.
<system-properties>
 <property name="org.apache.catalina.connector.URI_ENCODING"
value="UTF-8"/>
 <property name="org.apache.catalina.connector.USE_BODY_ENCODING_
FOR_QUERY_STRING" value="true"/>
</system-properties>

16. Disable the webservices module in JBoss by commenting out the listed
extension below and subsystem tags in the standalone.xml file located at
<JBOSS_HOME>/standalone/configuration.
 <extension module="org.jboss.as.webservices"/>

 <subsystem xmlns="urn:jboss:domain:webservices:1.2">
 ..
 </subsystem>

17. Enable Alfresco application logging by configuring standalone.xml.
A sample log snippet is to be added within
<subsystem xmlns="urn:jboss:domain:logging:1.3"> in the
standalone.xml file. Refer to the standalone.xml file provided with
this chapter.
<logger category="org.alfresco.repo.admin">
 <level name="INFO"/>
</logger>

18. Again, compress the extracted alfresco.war and alfresco-enterprise-
5.x.x.ear files to include the changes. Start the JBoss server.

Chapter 2

[29]

19. Open the JBoss Management console, add the Alfresco .ear file created in
step 17 in Runtime / Manage Deployments. Click the Enable button and
Alfresco will be deployed.

20. Monitor the logs file for any startup issues.

Installating AmP
Alfresco provides a clean mechanism to deploy extensions or patches on the existing
installation using the amp packages. AMP stands for Alfresco Module Package. Only
the changed files can be bundled together as an AMP, and each AMP is provided a
proper version number.

Setting Up the Alfresco Environment

[30]

Installing amp is very simple in Alfresco. Under the <Alfresco Home>/tomcat/bin
directory, there is an apply_amp sh or .bat file based on operating system.

1. Copy the amp file in the <Alfresco Home>/amps directory if the deployment
is for the Alfresco repository. If you need to deploy for Share, copy the amp in
the amp_share folder.

2. Stop Alfresco.
3. Execute the apply_amps script.
4. Start Alfresco once the amp package has been applied.

Troubleshooting tips and best practices
There are few things which administrators should take care of during installation of
the Alfresco server:

• Always make sure the software required for Alfresco installations are
verified against the Alfresco supported stack. If you have bought an Alfresco
subscription, it is recommended to raise a ticket with Alfresco support
to validate your software together with your Alfresco partner and the
architecture before installing it in your production environment.

• Based on your application needs, there should be enough memory allocated
on the server.

• I/O operation should be fast and validate your disk performance, and it
should be geographically near to the Solr instance. The filesystem used for
storing Solr indexes should have great performance and should be installed
in a local SSD or fiber connection.

• Validate your network; latency should not be high
• Alfresco uses many privileged ports like 25, 21, and so on. It is recommended

to manage the Alfresco application with a non-root user. Make sure there is a
proper redirection set, as the default privileged ports won't work.

• The clock speed of the Alfresco machine should be greater than 2.5 GHz
• Make sure your JVM is always tuned properly based on your application

requirements.
• Your database should be tuned and proper indexes should be created

for tables.

Chapter 2

[31]

• Make sure the Temp directory is allocated the proper size.
• The server DNS should be configured properly.
• The JVM and Alfresco installation directories should not contain spaces in

their names.
• Make sure the user starting the Alfresco service is granted proper permission

on the content store and Alfresco installation directory.

Refer to Day Zero Configuration Guide for more details about installation
validation and environment configuration at https://www.alfresco.com/
cmis/browser?id=workspace%3A//SpacesStore/006ee253-2a01-4e0e-b4e8-
7e74aaf5fbc7.

Summary
In this chapter, we covered the installation processes of Alfresco. Alfresco provides
a lot of flexibility during the installation process. You can either use the installer or
manually install all the components. We covered the steps for installing Alfresco in
the Tomcat and JBoss application servers. There are also a few tips for administrators
which should be kept in mind while installing Alfresco.

In the next chapter, we will dive into the configurations of Alfresco. We will see
various ways to configure the database, logging, and content store in Alfresco.

https://www.alfresco.com/cmis/browser?id=workspace%3A//SpacesStore/006ee253-2a01-4e0e-b4e8-7e74aaf5fbc7
https://www.alfresco.com/cmis/browser?id=workspace%3A//SpacesStore/006ee253-2a01-4e0e-b4e8-7e74aaf5fbc7
https://www.alfresco.com/cmis/browser?id=workspace%3A//SpacesStore/006ee253-2a01-4e0e-b4e8-7e74aaf5fbc7

[33]

Alfresco Configuration
For any system, how easy it can be configured and extended is very important.
Alfresco provides an easy configuration and extension mechanism. The components
of Alfresco such as its database, content store location, e-mail, authentication, and
so on, can very easily be configured based on business needs. Alfresco provides
different ways to extend and configure the system.

This chapter will provide you with an introduction on some ways to configure
Alfresco's different components and a few important configuration properties.

By the end of this chapter, you would have learned about the following:

• Understanding Alfresco configuration
• Different ways to configure Alfresco
• Steps to configure Alfresco's repository
• Understanding a subsystem

The basics of Alfresco configuration
Alfresco can be easily configured based on business needs. We can enable or disable
components based on certain requirements. Alfresco exposes its configuration in its
properties and an .xml file, which makes it easy configurable.

All the configuration files in Alfresco are in the <configroot> and
<configrootShare> directory, which are within the expanded Alfresco and Share
.war based on the application server it is deployed.

For Tomcat, these directories are:

• <TOMCAT_HOME>/webapps/alfresco/WEB-INF/classes/alfresco

• <TOMbCAT_HOME>/webapps/share/WEB-INF/classes/alfresco

Alfresco Configuration

[34]

The repository.properties file is one of the most important files which holds all
the important repository configurations for a database, content store, and index. This
file is moved to a JAR file in Alfresco 5.x.

Some of the important properties of Alfresco are:

• dir.*: This is the default configuration for the content store
• db.*: This is the default configuration for the database connection
• index.*: This is the default configuration related to indexes
• audit.*: This is the default configuration to turn the audit on or off as per

requirements

The .xml configuration files in <configroot> and <configShareRoot>, such as
web-client-config.xml and share-config.xml, are to configure the Alfresco Web
Client and Share. The Alfresco Web Client is deprecated from version Alfresco 5.x.

Other .xml files are to define spring beans and configuration for all the services of
the repository.

Extending configuration files
Core files should not be modified, so Alfresco provides an extension mechanism to
extend/modify the system.

Configurable property files can be extended in three ways:

1. Add and modify the property in the alfresco-global.properties file,
which is located at <TOMCAT_HOME>/shared/classes/.

2. Using JMX (Java Management Extensions), which will be discussed in
Chapter 9, Maintenance and Troubleshooting. JMX is Java-based technology
where different components of an application can be represented as MBeans
and be managed and monitored.

3. Using the Alfresco admin console, which is an independent secure page
that's separate from Alfresco's Web Client and Share. This will be discussed
in Chapter 4, Administration of Alfresco.

Option 1 would require a server restart for these changes to have effect, while option
2 and 3 can be done on the fly without a server restart.

Let's understand how a property can be modified using option 1. For example,
suppose you want to disable auditing in your repository, which is enabled by
default in repository.properties:

audit.enabled=true

Chapter 3

[35]

Now, add and modify the following below value in alfresco-global.properties
and restart the server. The audit will be disabled.

audit.enabled=false

To extend the .xml file, Alfresco also provides an extension directory. The location of
the extension folder in the Tomcat server is as follows:

• <TOMCAT_HOME>/shared/classes/alfresco/extension

• <TOMCAT_HOME>/shared/classes/alfresco/web-extension (this is for a
shared configuration extension)

You can create your own custom context.xml file and change the configuration for
defined beans.

This will overwrite the default value. There are various sample files provided in the
extension directory; you can refer to them for further explanation.

Configuring subsystems in Alfresco
Subsystems are individual components embedded within Alfresco. Independent
functionalities are wrapped as one subsystem, for example the search functionality is
wrapped as one of the subsystems in Alfresco. These packages have its own separate
Spring application context and configuration files, which allows them to take control
(start, stop, and configure) without affecting the main server. Multiple instances
can be created for each subsystem implementation.

Some of the main subsystems are:

• Search
• Fileserver
• Authentication
• Google Docs
• E-mail
• Audit

Each subsystem has a category and type:

• Category: This describes the functionality of a subsystem (for example, e-mail)
• Type: This refers to a name of a specific implementation of a subsystem. For

example, Authentication has various types of implementation such as LDAP,
and Kerberos. A subsystem with a single implementation defines default as
a type.

Alfresco Configuration

[36]

The default configuration of a subsystem is located at <install_folder>\tomcat\
webapps\alfresco\WEB-INF\classes\alfresco\subsystem\<category>\<type>.

For example, all the files for the Authentication subsystem of LDAP will be located
at <install_folder>\tomcat\webapps\alfresco\WEB-INF\classes\alfresco\
subsystem\Authentication\ldap.

Each subsystem directory mainly have the *-context.xml and *.properties
configuration files. These files will be loaded by the subsystem's application context.

A subsystem works as an abstract system hiding its implementation. In Alfresco, the
main server accesses the subsystem by mounting it. This is achieved with the help
of the declaration of bean with the ChildApplicationContextFactory class. An
instance of this class encloses the Spring application context of subsystems.

For example, the google docs subsystem is mounted to a main server using the
following bean definition in the bootstrap-context.xml (<install_folder>\
tomcat\webapps\alfresco\WEB-INF\classes\alfresco) file. The ID of the
bean is the category of the subsystem:

<bean id=""googledocs"" class=""org.alfresco.repo.management.
subsystems.ChildApplicationContextFactory"" parent=""abstractProperty
BackedBean"">
<property name=""autoStart"">
<value>true</value>
</property>
</bean>

You can have a folder with a name as the category within different subsystems, such
as <install_folder>\tomcat\webapps\alfresco\WEB-INF\classes\alfresco\
subsystem\googledocs

Extending the subsystem
To extend the subsystem, you can follow these steps as per your requirements:

• For the configuration of any subsystem properties, add your changes in the
alfresco-global.properties file at <install_folder>\tomcat\shared\
classes, or this can be done via JMX as well, which you will learn more
about in Chapter 9, Maintenance and Troubleshooting. After making changes
in the alfresco-global.properties file, restart Alfresco.

• In case you need a separate properties file for each subsystem, place your
properties file at <extension>/subsystems/<category>/<type>/<id>/*.
properties

Chapter 3

[37]

• Let's take an example of a Fileserver subsystem. It doesn't have multiple
implementations, so the type and ID of such a system is default. We place
our files at extension>/subsystems/fileServers/default/default/
custom-fileserver.properties.

• To extend any configuration, create a custom context file and place it at
<extension>/subsystems/<category>/<type>/<id>/*-context.xml.

• For a Fileserver subsystem, any configuration of beans would go into
<extension>/subsystems/fileServers/default/default/custom-
fileserver-context.xml.

Repository configuration
There are different components in Alfresco, such as a database, e-mail, search, audit,
and so on, each with its own configuration properties. The following section covers
details about all of these configurations.

Note that changes to these configurations would require a restart of the
Alfresco server.

Configuring the database
A database is one of the key attributes of Alfresco. It is generally configured at the
time of installation. Along with DB connection parameters, there are some tuning
parameters for database connection pooling. These parameters are based on a
repository's read/write operation. Alfresco supports multiple databases such as
MySQL, PostgreSQL, Oracle, and so on. Configuring a proper connection for a URL
allows for connection to the supported database.

Here are some important database properties. Add and modify the values of these
properties in the alfresco-global.properties file. Default settings are present
in the repository.properties file:

• db.name: The name of the database; by default, it is alfresco
• db.driver: The full, qualified name of the JDBC driver class; for the

PostgreSQL database, it is org.postgresql.Driver.
• db.url: The JDBC connection URL, for example, for a PostgreSQL

connection, it is jdbc:postgresql://localhost:5445/${db.name}.
• db.username: The username to connect to a database.
• db.password: The password to connect to a database.

Alfresco Configuration

[38]

• db.pool.initial: The number of connections to be kept open when the DB
connection pool is initialized.

• db.pool.max: The maximum number of connections that can be opened in
the DB connection pool; this is an important property to configure depending
on the type of database. It's value should be less than the max value set for
the database connection that's supported.

• db.pool.validate.query: The SQL query to validate whether a connection
is still alive. The value of this property changes based on the database type.
This property is useful to use along with other flags when testOnBorrow,
testonreturn is enabled. Here are the properties that control this flag:

 ° db.pool.validate.borrow=true

 ° db.pool.validate.return=false

Here are the properties related to evicting or abandoning a connection from the
connection pool:

• db.pool.evict.interval: The sleep interval in milliseconds between each
eviction process. By default, it is set to -1, which means disabled.

• db.pool.evict.idle.min: The idle time in milliseconds before a connection
can be evicted.

• db.pool.evict.validate: The flag required to validate a connection
before eviction.

• db.pool.abandoned.detect: The flag required to enable or disable the
detection of an abandoned connection.

• db.pool.abandoned.time: Time taken in milliseconds for an abandoned
connection to become eligible for removal.

• db.pool.abandoned.log: The flag required to log an abandoned connection.
If enabled, it will print in a log file when any abandoned connection
is removed.

Refer to http://commons.apache.org/proper/commons-dbcp/configuration.
html for more details about database connection pool configurations.

Configuring the content store
The content store in Alfresco is a filesystem location where binary files are stored.
Configuring it is very easy, but this should be done only at time of installation.

http://commons.apache.org/proper/commons-dbcp/configuration.html
http://commons.apache.org/proper/commons-dbcp/configuration.html

Chapter 3

[39]

Add and modify the following properties in alfresco-global.properties to
configure the content store:

dir.root=/mnt/data/alf_data<Specify the path of the Root directory
where contentstore would be created. Make sure it is always absolute
path>

dir.contentstore=${dir.root}/contentstore<Contenstore specific path.
dir.contentstore.deleted=${dir.root}/contentstore.deleted<File
location for deleted contentstore. Files purged from Alfresco system
are stored in this directory. You can specify a different path if you
want to keep this directory in different location.>

Alfresco also allows multiple content stores, and you can store documents in the
selected content store. More details about this are covered in Chapter 8, The Basics of
the Alfresco Content Store.

Configuring the search functionality
Alfresco 5.x supports only one search engine, Solr. Older versions of Alfresco used
to also support Lucene, which is now deprecated. Solr can be installed as embedded
within the Alfresco installation, or it can be installed on a separate instance.

Here are the three properties that you can add and modify in alfresco-global.
properties:

index.subsystem.name=solr4<Defines the search subsystem you want.
Values could be either solr4, solr, or none.>

dir.keystore=${dir.root}/keystore<This is the path of the certificate
keystore as alfresco and solr uses https connection to communicate.>

solr.port.ssl=8443 : <Solrapplication SSL port>

Further details on how to switch between different search subsystems, and
configuring and tuning Solr will be covered in Chapter 5, Search.

Configuring Google Docs
Google Docs is one of the subsystems in Alfresco. It allows users to edit documents
stored in Alfresco using Google Docs. Documents in Alfresco are checked out in
Google Docs and once edited, they are checked-in to Alfresco. There will be only a
single Google account used by all, so make sure you create a Google account that
can be configured in Alfresco.

Alfresco Configuration

[40]

Add and modify the following properties in the alfresco-global.properties
file from <TOMCAT_HOME>/webapps/alfresco/WEB-INF/classes/alfresco/
subsystems/googledocs/default/googledocs.properties and configure it
as per your needs:

googledocs.googleeditable.enabled=true<Flag to enable/disable the
Google docs>

googledocs.username <Google account username>

googledocs.password <Google account password>

You can also configure Google Docs using the mechanism that extends any
subsystem, as explained in the Configuring Subsystem in Alfresco section.

Auditing
Alfresco captures certain actions taken by a user on any node in the repository via an
audit mechanism. Using audit, trail administrators can identify which user viewed,
created, copied, or deleted content in the repository. Let's look at an example where
the Alfresco repository is being used to manage all the contracts of an organization.
It becomes critical to maintain a history of all the actions taken by users in the system
on these contracts from a security perspective. So, Alfresco should be configured to
enable this audit and the kind of data that needs to be audited.

Auditing in Alfresco can be easily configured based on requirements. You can
control the amount of data that you want to audit.

Here are the default settings from repository.properites located at <TOMCAT_
HOME>/webapps/alfresco/WEB-INF/classes/alfresco. To configure audit
properties, add and modify the required properties in alfresco-global.
properties:

audit.enabled=true < Flag to enable or disable the audit>

audit.alfresco-access.enabled=false<Configure it to enable the
audit alfresco-access application. This is alfresco default audit
application. This property need to be enabled which enables data
capture for audit>

audit.dod5015.enabled=false <This flag is for enabling audit for
records management module>

audit.filter.alfresco-access.default.enabled=true

Chapter 3

[41]

audit.filter.alfresco-access.transaction.user=~System;~null;.*
<This filters determines the user for whom you want to capture the
audit. Current default configuration audits all users activity except
System user>

audit.filter.alfresco-access.transaction.type=cm:folder;cm:conte
nt;st:site<This filter allows you to control the type of data to
audit. If you have custom type defined like org:contract for contract
documents, you can add those to capture audit for only certain types
of documents>

audit.filter.alfresco-
access.transaction.path=~/sys:archivedItem;~/ver:;.*<Filters out the
path of the transaction. Default configuration audits anything except
archived item>

You can change these filters as per your business needs to audit only certain amounts
of data.

Configuring file servers
The document stored in Alfresco can be accessed via a filesystem using CIFS/FTP with
the File Servers subsystem, which is one of the unique qualities of Alfresco. Alfresco
authenticated users can only retrieve documents using this protocol.

The File servers subsystem can be configured via alfresco-global.properties or
JMX. To configure XML files, use a standard extension mechanism for the subsystem.

The following are some generic filesystem properties you might need to change
based on your system needs.

Modify this property value if the name of the filesystem needs to be changed:

filesystem.name=Alfresco

Modify the following property value if the root directory where the filesystem
should open needs to be changed:

filesystem.storeName=${spaces.store}
filesystem.rootPath=${protocols.rootPath}

Alfresco Configuration

[42]

Configuring CIFS
The SMB/CIFS protocol is implemented based on a Java socket code, which
leverages Alfresco to use CIFS on any platform. The default settings use the JNI-
based implementation for Windows and a Java socket for Linux and other platforms.

Now, to configure CIFS based on your network and requirements, you need to add
and modify these properties in the alfresco-global.properties file. The default
settings are in <TOMCAT_HOME>/webapps/alfresco/WEB-INF/classes/alfresco/
subsystems/fileServers/default/file-servers.properties:

• cifs.enabled: This property enables or disables CIFS
• cifs.serverName: This should be a unique 16-character server name. If you

have multiple instances of Alfresco on the same machine, you need to have
different names. The default value is ${localname}A.

• cifs.domain: If a value is specified, it shows the domain/workgroup that
the server belongs to. By default, it takes the domain of the server.

• cifs.broadcast: This specifies a broadcast mask for a network.
• cifs.bindto: This is mainly required if you want to use CIFS on a Unix-

based platform. Specify the network adapter that it should be bound to. By
default, it is bound to all adapters.

• cifs.hostannounce: This is a flag that allows the CIFS server to be
announced in a local domain or workgroup.

• cifs.disableNativeCode: This property will only be effected on Windows. It
allows you to disable the use of a native JNI-based CIFS implementation. If you
deactivate JNI, you need to make some changes to the Windows configuration
for CIFS to work with a default Java socket-based implementation.

• cifs.sessionTimeout: The CIFS session timeout value in seconds. If no I/O
operation occurs within this specified interval, the server will terminate the
session. You can increase it as per the standard across all systems.

The following four properties are useful when you have your Alfresco server on
a Unix-based platform. CIFS needs access to privileged ports; for that, Alfresco
should be started as the root user. If this is not the case, then you have to configure
these properties for non-privileged ports. Set firewall rules to route the request from
privileged ports to non-privileged ones. There are a few firewall examples at http://
docs.alfresco.com/5.0/tasks/fileserv-CIFS-useracc.html for reference.
cifs.tcpipSMB.port=445

cifs.netBIOSSMB.sessionPort=139

cifs.netBIOSSMB.namePort=137

cifs.netBIOSSMB.datagramPort=138

http://docs.alfresco.com/5.0/tasks/fileserv-CIFS-useracc.html
http://docs.alfresco.com/5.0/tasks/fileserv-CIFS-useracc.html

Chapter 3

[43]

Configuring FTP
Alfresco also supports the FTP protocol for accessing content. To configure FTP,
either change the configuration in alfresco-global.properties or JMX. Alfresco
also supports secure FTPS.

To configure FTP, add and modify the following properties in the alfresco-
global.properties file from <TOMCAT_HOME>/webapps/alfresco/WEB-INF/
classes/alfresco/subsystems/fileServers/default/file-servers.
properties. Keep only the properties you want to configure; the unchanged
one will be referred to from the default settings.

ftp.enabled=true<Configure to enable or disable FTP server>

ftp.port=21<Port on which FTP server is listening for connection. Make
sure this port is open.>

ftp.bindto < Specify the network adapter server should bound to. By
default if kept blank it would bind to all network adapters>

Let's look at the settings for a secure FTP connection. All these settings are required
to enable FTPS. You need to specify the path, the passphrase for keyStore and
trustStore, and the type.

ftp.keyStore

ftp.keyStoreType

ftp.keyStorePassphrase

ftp.trustStore

ftp.trustStoreType

ftp.trustStorePassphrase

The following setting will force all sessions to be secured:

ftp.requireSecureSession=true

For more details, you can refer to the Alfresco wiki at https://wiki.alfresco.
com/wiki/File_Server_Subsystem_4.0.

Configuring the cloud sync service
Alfresco supports the hybrid model, which allows the synchronizing of content
between the on-premise setup to the Alfresco cloud. Selected documents can be
shared on the cloud for a broader audience to access. For enabling cloud sync, you
need to have Alfresco Enterprise and the Enterprise license with the Sync feature
enabled. Install your enterprise license and restart Alfresco server. The Sync to
Cloud action in Share will allow you to share the document on the cloud.

https://wiki.alfresco.com/wiki/File_Server_Subsystem_4.0
https://wiki.alfresco.com/wiki/File_Server_Subsystem_4.0

Alfresco Configuration

[44]

Alfresco doesn't support multiple identical instances of on-premise Enterprise
Alfresco to sync with the cloud. So, on the other instances, you need to disable
sync by setting the following property in alfresco-global.properties:

syncService.mode=OFF

sync.pushJob.enabled=false

sync.pullJob.enabled=false

Also, the server mode should be set to production on the main production server for
the hybrid sync cloud to work, as follows:

system.serverMode=PRODUCTION<On other server you can set value as TEST or
BACKUP>

Configuring e-mail
E-mail is one of the subsystems of Alfresco and supports both inbound and
outbound e-mails. Using the inbound e-mail subsystem, Alfresco can be used to
manage e-mails. E-mails can be stored in Alfresco like normal content, with the
e-mail body and attachments.

Outbound e-mail configuration
To configure the outbound e-mail subsystem , add and modify these properties
in alfresco-global.properties. The default settings are in <TOMCAT_HOME>/
webapps/alfresco/WEB-INF/classes/alfresco/subsystems\email\
OutboundSMTP.

mail.host= <Configure SMTP server of your network>
mail.port=<Proper SMTP port. Default port is 25>

<If authentication required then provide proper username and password>
mail.username=
mail.password =

mail.from.default=<Set proper default from email address. While
sending email from Alfresco from address is not present this default
value would be taken>

Alfresco also supports SMTPS; these properties need to be changed to enable it:

mail.smtps.auth=false

mail.smtps.starttls.enable=false

Chapter 3

[45]

Inbound e-mail configuration
In order to configure Alfresco as an inbound e-mail server, add the following
property to the alfresco-global.properties file and configure it as required. You
can remove any unmodified values. The default settings are present in the <TOMCAT_
HOME>/webapps/alfresco/WEB-INF/classes/subsystems/email/InboundSMTP/
inboundSMTP.properties file.

email.server.port= provide port of your email server(default 25)
email.server.domain= provide domain address of your email server
email.inbound.emailContributorsAuthority = group name that user
should be member of to be able to add email. Default value is EMAIL_
CONTRIBUTORS

Also, there are other settings in the file, such as blocked list and allowed list, which
can be configured as per your requirements.

IMAP configuration
Alfresco also supports connecting to a repository using the IMAP protocol. Users can
use IMAP e-mail clients such as Outlook and Thunderbird to connect to Alfresco.
Users can just drag and drop e-mails to the Alfresco repository.

To configure IMAP, add and modify the following properties in alfresco-global.
properties as per your requirements. The default settings are present in <TOMCAT_
HOME> /webapps/alfresco/WEB-INF/classes/alfresco/subsystems/imap/
default/imap-server.properties.

imap.server.enabled= <Set true to enable the IMAP. By default it is
disabled>
imap.server.host=x.x.x.x < Set server host address>
imap.server.folder.cache.size=10000 <Change this value if there are
large number of folders. Increasing this value would have an impact on
memory>

imap.mail.from.default=<Set proper default from email address>
imap.mail.to.default=<Set proper default to email address>

<Change this values if you want to change the rootimap folder path>
imap.config.home.store=${protocols.storeName}
imap.config.home.rootPath=${protocols.rootPath}
imap.config.home.folderPath=Imap Home

imap.server.port=143<Configure proper IMAP server port. And make sure
this port is open on server>

Alfresco Configuration

[46]

Alfresco also support IMAPS. Configure below property to enable it. Keystore used
by IMAPS should be defined in Java System properties.

imap.server.imaps.enabled=false
imap.server.imaps.port=993

Summary
Alfresco provides highly extensible architecture. It is easy to configure and extend
the system. Alfresco provides an extension file, alfresco-global.properties,
which is used to modify any configuration properties. There are extension
directories, where the configuration XML files are placed to extend it.

Important components in Alfresco are embedded as different subsystems. Subsystems
can also be extended by changing property files or via JMX.

In this chapter, we also learned about the important properties and files for the entire
subsystem and repository configuration.

The next chapter will cover details about administration in Alfresco and Share. It will
cover details about the Alfresco admin console and the workflow console.

[47]

Administration of Alfresco
For any Enterprise-level software, administration of your system is critical. Alfresco
provides a simple and user-friendly interface to administrate and configure
various important services. Users and groups can be very efficiently managed
by admin users.

This chapter provides you with an introduction on ways to administer Alfresco.

By the end of this chapter, you will have learned about:

• Understanding Alfresco Explorer and the Share admin console
• Groups and user creation
• Administration of workflow
• How to use Node Browser

Understanding the admin console
Alfresco provide three types of administration console:

• Alfresco standalone administration page.
• Admin console in Alfresco Share.
• Admin console in Alfresco Explorer. This Explorer is being completely

deprecated in Alfresco version 5.0, as some features are being made
available in Share now.

Administration of Alfresco

[48]

Alfresco standalone administration page
This is a standalone administration console in Alfresco, which allows you to
configure and manage the Alfresco repository. This console is available only in
the Enterprise version and is restricted to admin users. This interface is external
to Alfresco Explorer and Share.

Use the following URL to access the admin console. It will prompt for user
credentials. Provide admin user credentials to access it:

• http://<IP>:<Port>/alfresco/service/enterprise/admin

The landing page is the summary of all the configurations. There are various
configurations available in this console. Let's go through each of them in detail.

System summary
This is the landing page for the admin console. It provides details about all the
configurations of the repository such as JDK version, Alfresco path, file server, e-mail
configuration, auditing, content-store location, indexes, and users and groups in
the system.

The following snapshot shows the configuration details in the summary section.
System Information shows details about the server. The Indexing Subsystem
section shows which type of subsystem is enabled for searches. The Content
Stores section shows the path and size of contentstore.

Chapter 4

[49]

Consoles
The console section provides an interface to execute the commands to load the
message bundle, model files, and perform an operation on workflows. This section
is divided into three categories:

• Model and messages console
• Tenant console
• Workflow console

model and messages console
This console allows you to manage the models and message bundles. Alfresco
allows you to define custom content type and its schema in .xml configuration files,
which are called model files. Place the file in the extension directory and you can
load the changes into Alfresco. You can activate or deactivate the content model
via command execution:

1. Type help to get a list of all the commands.

2. For example, let's say the marketing team is your Alfresco repository, and
you need to categorize a brochures type of content so it can be filtered out
easily and you also require additional metadata such as published date and
who authorized the content. Here, we need to define a new custom content
type in the custom model file and deploy it in Alfresco. The following steps
are required to create a new content type named brochure.

Administration of Alfresco

[50]

3. Create customModel.xml. Here is a snippet of the code. A new content type
named brochure is created:
...
<types>
 <type name="custom:brochure">
 <title>Brochures</title>
 <parent>cm:content</parent>
 <properties>
 <property name="custom:publishedDate">
 <type>d:datetime</type>
 </property>
 <property name="custom:authorisedBy">
<type>d:text</type>
</property>
</properties>
</type>
</types>
..

4. Place this file in the Alfresco installation directory (<Alfresco_Home>/
tomcat/shared/classes/alfresco/extension).

5. Execute the following command in the model and messages console, this
would deploy the model and activate it:
deploy model alfresco/extension/customModel.xml

6. By default, the deployment model gets activated, if you want to deactivate
the model execute the following command:
deactivate model customModel.xml

In a similar way you can deploy and undeploy the message bundle.

Model files can be undeployed only if they are not used by any content.
In versions prior to Alfresco 5.0, this same feature is available as a repo
admin console (http://<IP>:<Port>/alfresco/faces/jsp/
admin/repoadmin-console.jsp).

Chapter 4

[51]

Tenant console
The tenant console allows you to administrate and manage the different tenants in
Alfresco. Alfresco supports multitenancy where a single instance of Alfresco can
be divided into different tenants. Each tenant is a logical partition representing
an independent instance of Alfresco. For end users it appears they are accessing
separate instances of Alfresco. Each tenant will have its own set of users, folders, and
content. Using this tenant console you can create, delete, enable, and disable tenants.
It also allows you to import and export content from tenants.

For example, if each department in your organization needs their content and users
completely separated, creating a different tenant for each department is one of the
ways to achieve this with a single instance of Alfresco.

To create a new tenant, execute the following command. This will create a tenant
named digitalmarketing.com and the admin user for this tenant will be joe1234.
Each tenant can have a different admin user:

create digitalmarketing.com joe1234

Execute the help command to see a list of all the available commands.

In the version prior to Alfresco 5.0 this feature is available by using the following URL:

• http://<IP>:<Port>/alfresco/faces/jsp/admin/tenantadmin-
console.jsp

Administration of Alfresco

[52]

Workflow console
This console allows you to manage and administer workflows using various
commands. You can deploy and undeploy workflows from the repository. Using
this console you can query the task details of any process in the workflow, start a
workflow, and other tasks.

Important commands from an administrator standpoint:

• To get a list of all the workflows that are completed or are in an in-flight
state, they can be retrieved using the following command. This command
takes time to execute when there are a large number of workflows:
show workflows all

• If you want to get a list of workflows of specific definitions, you can use the
following list of commands. For example, let's say we want to find the list of
all Review Approve workflows:

1. First, fetch the workflow definition list using the following command:
show definitions all

2. Set the definition ID in the console to execute a further command.
Here, we are taking an example of the Review Approve workflow,
which has an ID as activiti$activitiReview:1:8
use definition activiti$activitiReview:1:8

3. Now, execute the following command to fetch all the workflows for
this definition. The result of this command will provide the workflow
ID, description, start date, and definition name. The structure of any
workflow ID is activiti$<Numeric ID>.
show workflows.

The output obtained is shown here:
id: activiti$101 , desc: review the details and provide
comments , start date: Sun Jan 11 18:41:07 PST 2015 , def:
activiti$activitiReview

4. You can also get into more granular details such as task details of any
workflow instance, as each workflow would have different stages.
For example, for the workflow activiti$101, we want to get the
task details, so we need to execute the following set of commands:
use workflow activiti$101
show tasks

Chapter 4

[53]

The output obtained is shown here:
task id: activiti$145 , name: wf:activitiReviewTask ,
properties: 19

• This console is also useful to delete any specific in-flight workflows, all
workflows from the repository, and specific tasks of the workflow. For
example, we want to delete the workflow with the ID activiti$101,
so we need to execute the following command:
delete workflow activiti$101

• To delete all workflows from the repository, execute the following command.
Be very cautious when using this command:
delete all workflows

If you have a large number of workflows in the repository, this command
will slow down your system and may take a large amount of time to
execute.

In the version prior to Alfresco 5.0, this feature is available using the following URL:
http://<IP>:<port>/alfresco/faces/jsp/admin/workflow-console.jsp.

E-mail services
Alfresco provides two kinds of e-mail services: inbound and outbound e-mails.

Inbound e-mail services allows users to store their e-mails in Alfresco as content along
with attachments. Alfresco becomes a repository for e-mail storage. This Inbound
Email admin page allows you to enable or disable services and configure them as per
requirements. The following screenshot shows details about the configuration:

Administration of Alfresco

[54]

Outbound e-mails control all e-mails sent to users from the Alfresco repository.
This page allows you to configure and manage the SMTP server details. It also has
a Test Email section, which you can use to confirm whether the configurations are
correct and e-mails are being sent. The following screenshot shows details about
the configuration available:

As shown in the following screenshot, you can also send a test message to confirm
the configurations are working properly:

The configurations are the same as we learnt in Chapter 3, Alfresco Configuration.
With the admin console you can configure the service at runtime without
restarting Alfresco.

General
In this section, we will discuss the following topics:

• License
• Repository information
• System settings

Chapter 4

[55]

License
The Enterprise Edition of Alfresco needs a license for installation. This admin page
allows you to manage the license file. The license is not bound to the server, but it
restricts the number of users, amount of content, and type of support from Alfresco.

This page provides details such as valid date of license, usage information, clustering
support, content-store encryption, and cloud sync. By default, Alfresco provides a
30-day trial license as shown in the following screenshot:

The license file received from Alfresco has the extension .lic. You can upload the
license file to the Alfresco repository or copy it in the Alfresco installation path and
apply the license file as shown in the following screenshot. Once the license file is
installed successfully, the file extension will be changed to <license-name>.lic.
installed.

If there are new features enabled with the new license, an Alfresco server
restart is required.

Administration of Alfresco

[56]

Repository information
This section provides details about the repository such as unique ID, which is
important when communicating with the server using the CMIS protocol. It also
provides the version and build details of Alfresco. These details are required when
you need support from Alfresco or you are upgrading the repository.

System settings
These settings are for the repository and Share application configurations. There
are three sections: Alfresco Repository Settings, Server Settings, and Share
Application Settings:

• Alfresco Repository Settings shows the details about the repository port, IP
address, and protocol that can be used to communicate with the server. This
page does not allow you to change values, you can configure these values in
the alfresco-global.properties file.

• Server Settings allows you to configure the maximum number of users who
can use the system. You can also control the users who can only log in to
the system by configuring the user list in Allowed Users. If the admin user
who is setting this allowed users list does not enter their name in the list,
the system will automatically take that username in allowed users, and this
current user would not be locked out of the system. The username list in
the allowed users configuration should match with the username in the
Alfresco repository.

Chapter 4

[57]

• Share Application Settings section allows you to configure the IP address,
port, and protocol to access the Share application. As the Share application
can be installed independent to Alfresco, we can change the configuration of
the repository to point to a different Share instance. You can also configure
the group details who have access to all the public sites in Share.

Repository services
This section of the admin page allows you to configure various core services of the
Alfresco repository such as search, activity feed, replication, and so on.

Let's see details about each of the service configurations:

• Activities Feed: When enabled, this service allows all users in the Alfresco
repository to receive e-mails about their activities and the activity of the
people they are following. These feeds are the same as the My Activity
dashlet in Share. If enabled, you can configure the frequency of the feed to
be sent to users. The time duration of activities, such as only activities of the
past 10 days, should be sent in feeds and also control the number of activities.
Enable this service only when required and remember to time the feed
scheduler for when there is much less usage of the repository. By default,
this service should always be kept disabled as it will create an unnecessary
load on the system.

Administration of Alfresco

[58]

• Repository Server Clustering: This page just shows the details about
the clustering enabled/disabled and Cluster ID. More information about
clustering will be covered in Chapter 7, High Availability in Alfresco.

• Process Engines: Alfresco supports two workflow engines: Activiti and
jBPM. In this section you can enable/disable the workflow engine you
need. By default, Activiti is enabled and it is recommended to use this
engine only. This page also shows you the count of total workflow in-flight
and total tasks.

• Replication Service: One of the nice features in Alfresco is that it allows
you to replicate the content from one repository to another by defining
replication jobs. These jobs contain details about the target server, folders
to be copied, and timing of when this should be triggered. These jobs are
controlled by the Replication Service. You have to enable the Replication
Service using the setting Replication Enabled, before you can define your
jobs to replicate content. This section also allows you to define the permission
of the replicated content on the target repository, if Read Only Replication
is enabled, all content in the target repository would be Read Only.

• Search Service: Search Service is the backbone of the search in Alfresco.
Search Service talks to search engines such as Solr and Lucene. By default,
the Solr4 search engine is used since Alfresco v 5.0. This section allows
administrators to configure and manage search servers by configuring the IP
address, port, HTTP, and so on. You can also configure the backup location
and timings for Solr indexes. If Solr is embedded in Alfresco there is no
change required in default configurations. More details about search engines
and their monitoring will be covered in Chapter 5, Search.

• Subscription Service: In Alfresco Share, there is a functionality where a user
can follow other users in the repository and they can view activities about
other users. This is controlled by the Subscription Service. You have to enable
the Subscription Service if you want to allow users to follow each other and
view other users' activities. By default, this feature is enabled.

• Transformation Service: Alfresco supports transformation of content
in various file formats such as Word documents to PDF, image .jpeg to
.png, .pdf to .swf, and so on. These transformations are controlled by
various transformation services, which internally use various tools such as
Openoffice, ImageMagick, and SWF tools. This page allows you to control
and manage these transformation tools. It is recommended not to change
the default settings unless it is required.

Chapter 4

[59]

Support tools
These are some additional tools that help administrators get details about the
repository and help them in troubleshooting:

• Node Browser: This browser allows the administrator user to navigate
through the complete repository and view details about all nodes such
as folders, rules, users, system folders, and so on. Node Browser is a very
useful and important tool from an administration standpoint. More details
are covered in a later part of this chapter.

• Download JMX Dump: You can download the complete configuration
and system details of the Alfresco repository in a .zip file as shown in the
following screenshot. This file is very useful to the person troubleshooting
the system.

Directories
Alfresco users and groups can be managed internally or we can integrate it with
external directory servers such as LDAP, Active Directory, Kerberos, and so on.
You can synchronize all the users and groups from this external directory in
Alfresco. Note, no password information is stored in Alfresco if these external
directories are used for authentication.

You can configure the chain of these external directories for authentication and
synchronization. They would follow the same order as defined. This page allows
you to configure and synchronize these external directories with Alfresco.

We would see more details about this configuration in Chapter 6, Permissions
and Security.

Administration of Alfresco

[60]

Virtual filesystems
The content of Alfresco can be accessed as a virtual filesystem using CIFS/FTP. The
Alfresco server can also be used as an IMAP server, you can just drag and drop
e-mail content using this protocol. This page allows the administrator to configure
and control these virtual filesystems.

All the configuration properties for CIFS, FTP, and IMAP, which we learned in
Chapter 3, Alfresco Configuration, can have certain properties configured dynamically
using this page. You can enable or disable the filesystems without a server restart.

Admin console in Alfresco Share
Share was designed as a collaboration platform in Alfresco. But since Alfresco
version 5, on deprecation of Alfresco Explorer, Share is now the main interface for
accessing the Alfresco repository. Some of the repository and Share administration
operations are available using this admin console page.

To access the admin page in Share, follow these steps:

1. Log in to Alfresco Share http://<IP>:<port>/share using admin user
credentials or via a user who is part of the Alfresco_Administrator group.

2. Click on Admin Tools in the right-most action in the top panel, as shown in
the following screenshot. You will find various options to administer and
control the Share GUI and repository.

Chapter 4

[61]

You can also directly access this admin page using this URL:
http://<IP>:<port>/share/page/console/admin-console/
application.

Let's see in detail each of the administrative operations available.

Application
This section provides control to modify the theme of the Share user interface. There
are various default themes available in the drop-down menu, you can select any of
them and apply. Also, the logo on the page can be changed.

Select the theme and upload a logo, as shown in the following screenshot, and hit
Apply. Immediately the theme and logo will be changed.

Category manager
Any content in Alfresco can be associated with a category. This page allows you
to define new categories and manage existing ones. When you delete a category, it
removes all the subcategories and also removes the link to any content that these
categories were associated with.

Administration of Alfresco

[62]

Refer to the following screenshot, which shows details about how to manage
these categories:

Node Browser
Node Browser is a very important tool for administrators for monitoring and
troubleshooting purposes. This browser allows you to navigate through the complete
repository and view details about every single individual node in the repository,
either its folders, content, system folders, users, or groups. You can search content
using Solr by using search queries. It also allows the interface to do a full text search.

For an administrator, this would be the first page to look for content if you want to
troubleshoot a data issue in the repository.

Refer to the following screenshot for details about the Node Browser interface:

Chapter 4

[63]

Select Store drop-down list provides a list of stores available in Alfresco. In the
Alfresco repository, the content is divided among different states based on type and
state. Refer to the following screenshot for a full list of stores available.

Important ones are workspace://SpacesStore, as all the live content, folders, and
system folders are under this store. All the archived content is under archive://
SpacesStore.

user://alfrescoUserStore as the name suggests contains details about the users in
the repository.

Let's see a different way to search content in Alfresco using this Node Browser:

• If you know the node ID and store information of any asset in Alfresco, you
can easily find the node and its details using the noderef search option. Refer
to the following screenshot:

Administration of Alfresco

[64]

• Sometimes you don't know the node ID of the content and you want to
navigate to the store, so you can use the storeroot option. This would give
you the root node ID for the selected store and then you can navigate to that
complete store. Refer to the following screenshot, which shows the root node
ID for workspace://SpacesStore:

• Alfresco also supports a full text search. Use the fts-alfresco option and
provide the search text you are looking for. This would search for all the
content in the selected store within the repository that contains the search
term. Refer to the following screenshot:

• Using the lucene option you can search for content using the standard search
queries. Alfresco provides some additional queries such as PATH and TYPE.
Refer to the following screenshot to view details about the PATH query.
Various search query details are covered in Chapter 5, Search.

• The following are some of the useful search queries that come in handy:
 ° Search name of the content with a query such as, @cm\:name:"Name

of the content.
 ° Similarly you can search on any metadata of the content in the

repository.
 ° Search on type of content using a query such as, TYPE:"cm:folder".

Chapter 4

[65]

• The CMIS query can also be executed in Node Browser to fetch the asset from
the repository using the cmis-alfresco option.

• Once you get the search result, click on the node reference to view the details
of the node. This page provides metadata, aspect, type details, children,
permission, and a parent node reference. You can click on any children or
parent node reference to navigate further. The following is a snapshot of the
details page:

Administration of Alfresco

[66]

Tag manager
Content in Alfresco can be tagged by the user. All the tags in the repository can
be managed using this admin page. This tool also helps you to edit and delete the
tag name.

For example, imagine a user created a tag named marketing document and
associated it with thousands of documents. If later on we needed to update the tag
to marketing asset, instead of updating thousands of documents, we just need to
update the tag name using this page. All documents would have the updated tag.

The tag name in the search result has hyper links that would redirect to the
document library and list all the documents that are tagged with the selected tag. So,
if you find there is an unused tag, you can remove it from tag manager. This would
help in maintaining a clean system.

Refer to the following screenshot, which shows details about tag manager:

Chapter 4

[67]

Site manager
Users can create various public or private sites for collaboration. In earlier versions,
there was no easy way to manage all these sites. Now, with the new version, the
Site Manager tool helps administrators to keep full control and manage the sites
effectively. The following screenshot show various types of sites, and the admin
user is the Site Manager for all the sites:

Users
This page is the user administration of the repository. You can create, edit, or delete
users from Alfresco. Alfresco also provides a feature to import a list of users using
the .csv file.

Steps to create a new user in Alfresco
The following steps can be performed to create a new user in Alfresco:

1. Select Users in the admin tool in Share and click the New User button.
2. Fill in all the required details. You can also search for any group and add a

user to any group at user creation time.

Administration of Alfresco

[68]

3. Click Create User or Create and Create Another (if you want to create more
users). Refer to the following screenshot:

Best practice would always be to bind the users to a group, if you know which group
the user is going to be associated with.

Chapter 4

[69]

Steps to edit and delete a user
The following steps can be performed to edit/delete a new user in Alfresco:

1. Select Users in the Share admin tool.
2. Search for the user you want to edit. For example, the Joe Smith user that we

created lets us edit that user. The following screenshot shows details of the
user search:

3. Now click on user in the search result, this would redirect you to the details
page of the user. Click on Edit User or Delete User based on the operation
you want to perform.

Administration of Alfresco

[70]

4. Be cautious when you do perform a delete operation on a user, since it cannot
be restored. Delete User will remove the user from Alfresco completely. Edit
User directs you to a details page where you can add or remove a user from a
group, edit the password, and enable or disable the user account.

Chapter 4

[71]

Create multiple users using CSV File
The following steps can be performed to create multiple users in Alfresco:

1. Create a spreadsheet file with the .csv extension. Add a header as
mentioned in the following and in the same order. Place the values for each
of them. All fields are not mandatory:
User Name,First Name,Last Name,E-mail
Address,,Password,Company,Job Title,Location,Telephone,Mobile,Sky
pe,IM,Google User Name,Address,Address Line 2,Address Line 3,Post
Code,Telephone,Fax,Email

2. Open the Users page in Admin Tools.
3. Click on Upload User CSV file and browse for the .csv file created in step 1.

Click Upload File to upload the .csv file. Once users are created you can see
a list of users, and an e-mail will be sent to each individual user about their
account details.

Group
Groups are a logical way to group a set of users. Specific permissions on folders
or asset can be given to a group. So all the user members of that group will
automatically inherit the same permission. This provides a better way to manage
the security in the repository. If any user needs to be removed, just remove it from
the group and all permissions would be revoked. No need to remove the user from
tons of folders.

Always have a good naming convention for groups, so you can identify them easily.
For example, if you want to group all HR people who have admin rights on a set of
folders, name the group HR_Admin.

Once groups are created you cannot edit the name of the group. Only display names
can be modified.

In Alfresco, you can also create sub-groups beneath root groups. Parent group
permissions are automatically inherited by sub-groups. More details on permissions
will be discussed in Chapter 6, Permissions and Security.

Administration of Alfresco

[72]

Group management is a very easy process. There is a simple user interface to
perform this operation. Refer to the following screenshot for details:

Admin console in Alfresco Explorer
Alfresco Explorer is one of the web-client interfaces that provides document
management and administration capabilities. It is being deprecated from
Alfresco version 5.0.

Follow these steps to access the administrator console of Alfresco Explorer:

1. Log in to Alfresco Explorer (http://<ip>:<port>/alfresco) using your
admin credentials. You need to log in with an administrator username.
The default administrator username is admin. Any user that is part of the
Alfresco_Administrator group, will also have the same admin rights.
We will see in a later section of this chapter how to add users to groups.

Chapter 4

[73]

2. Click on the Administration Console icon in the upper-right corner of
the My Dashboard page. It opens the admin console options as shown in the
following screenshot:

Alfresco Explorer provides the following options of administration:

• Manage System Users: As the name suggests, this option allows you to
manage users of the repository. It allows you to create, modify, and delete
users. It also allows you to change a password for any user in the repository.
It is the same as what we covered in the Share user admin console. The only
difference here is you cannot add a user to a group while creating or editing
user information.

• Manage User Groups: As the name suggests, this is to manage groups in
Alfresco. Groups are a logical grouping of users and sub-groups. You can
create/delete groups, and add/remove users from groups.

• Category Management: In Alfresco you can categorize the content/folder
by associating them with any category. This section allows you to create/
delete different categories that can be associated with any space or content
in Alfresco.

Administration of Alfresco

[74]

• Import: This administrative action allows you to import information from
one repository to the same or another Alfresco repository. You can import
space, content, and its associated metadata in the same format from another
Alfresco instance.

• Export: This allows you to export the information from the Alfresco
repository. You can export space, content, and metadata in a specific format,
which can be easily imported in another, or the same, Alfresco instance.

• System Information: This section just provides details about the repository
and system information such as Tomcat path, Java, and HTTP session details.

• Node Browser: This browser allows you to navigate through the complete
repository. It also allows you to search any node based on the Node-ref or
search query. It is the same as what we saw in an earlier part of this book
in Share admin tools.

Activiti workflow console
Workflows in Alfresco use the Activiti engine. Activiti workflow also provides its
own workflow console to monitor and manage the workflows in Alfresco. This is a
very user-friendly interface to show details about workflows. This console shows
the list of workflows deployed and running process instance. It also shows all the
database tables used by Activiti.

Log in with Alfresco admin credentials using the URL; http://<IP>:<port>/
alfresco/activiti-admin to access the workflow console.

There are various pages to this workflow console. Let's go through each of them
in detail:

• Deployments: This section shows the list of deployed workflows. It shows
details of when the last deployment was done for each of the workflows. The
link is provided to access the process definition XML and diagram. It also
provides an option to upload a new process definition as a .zip or bpmn20.
xml file.

Chapter 4

[75]

• Deployed process definitions: This section shows details about the process
definitions in the repository. Process definitions, as the name suggests, define
the complete flow from start to end. Let's say for a simple Approve Reject
workflow, this process definition will define the start point, how many steps
are required in the process, and what the percentage of approval or rejection
before marking a final status of completion of the workflow should be.
Process instance is a running instance of process definitions. In simple terms,
like having a Java class and different objects of the same class. There can be
multiple process instances for the same definitions. The process instance will
be in a state at any point of time. You can see a complete process diagram
for each of the deployed process definitions in Alfresco, and if there are
any active process instances for that workflow, you will see the list of IDs.
As shown in the following diagram, there is a simple parallel review and
approve process diagram. There is one active workflow, which you can see in
the process instance section. Click on view to see the process instance details.

Administration of Alfresco

[76]

• Process instances: This page shows details about the active processes. You
can see there was an active workflow instance in the preceding diagram for
parallel review and process. When you click on view it takes you to the process
instance page with more details about the workflow. It shows the current state
in the process diagram. You can also delete the active process instance using
the delete action provided in the upper-right corner of the page.

• Database: This section shows all the database tables of Alfresco, which are
specifically for the Activiti workflow. It also shows the count and all the rows
of the data. This count will be useful to get the workflow statistic in Alfresco
during the upgrade process.

For more details about business processes you can refer to https://
en.wikipedia.org/wiki/Business_Process_Model_and_
Notation.

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation

Chapter 4

[77]

Summary
Alfresco provides a very easy user interface to administrate and monitor the
repository. This chapter helped you to understand about the various admin consoles
available, specific to the system. Standalone admin consoles are for configuring the
Alfresco system.

The Share admin console is used to manage users, groups, tags, categories, and sites.
It also allows you to change the look and feel of the Share interface.

Node Browser is one of the very important tools for admin and developers, which
allows users to look up any node and its details in the repository. Node Browser is a
really handy tool while troubleshooting Alfresco. Also a note here, there are certain
admin console changes in Alfresco v 5.1.

In the next chapter we will talk in detail about search engines in Alfresco. Details
such as how to manage them, configure them, and tune them will be discussed.

[79]

Search
The function of a search in any ECM system is to allow the user to search all
content in the repository which users have access to. Here, in Alfresco, search is
a combination of searching content along with permission control. In most ECM
systems, search is supported via a search engine. The responsibility of a search
engine is to index the content in the repository and provide the user with search
query capability to search content. Certain search engines work in a synchronized
way: content is indexed immediately as it enters the repository. In some search
engines, content is indexed in an asynchronized way.

One of the biggest features of Alfresco 5.x is search. The new Solr4 search engine was
introduced in the latest version of Alfresco. In the old version of Alfresco, it used to
have old versions of Solr and Lucene as its search engines. Alfresco allows users to
search any content they have access to in the repository. Alfresco supports both full
text and metadata searches.

We will cover the following topics in this chapter:

• Understanding Solr and Alfresco integration
• Configuring and managing Solr
• Troubleshooting Solr

Search

[80]

Understanding Solr and Alfresco
integration
Searching in Alfresco is supported via the Solr4 search engine. Solr4 works as a
standalone enterprise application. It is built in Java and uses lucene internally for
indexing. Solr extends the lucene library to add new features around it and make
it a standalone application. It exposes the REST API for searching and submitting
content for indexing. It supports the indexing of any data via JSON/XML/CSV or
binary. The search request is also supported by a HTTP Get request. Using HTTP,
GET data can be searched using Solr.

Solr4 can be installed as an integral application with Alfresco on the same application
server or it can be installed completely on a separate machine. The latest version of
Solr4 also supports the clustering and sharding of indexing.

There are various advantages of Solr:

• Scalable
• Better performance
• Allows Facet search and more accurate results
• Easy monitoring and administration
• Asynchronous indexing near to real time
• Compact disk formats
• Alfresco and Solr communicate with each other via HTTP asynchronously.

Solr polls Alfresco at certain intervals to fetch all transactional information for
indexing. This transactional data includes node information and permission
information. Solr also polls the data model from Alfresco to define the schema
for indexing. As you know, in Alfresco there are two stores: workspaceStore
(live content) and archiveStore (archived content). Solr creates different sets
of indexes for both stores and has different configurations for each of them.

Installing Solr
Solr can be installed via the Alfresco installation wizard within Alfresco. In this case,
both Alfresco and Solr will be in the same application server. By default, Solr4 will be
enabled. But if you are installing Alfresco in an application server other than Tomcat,
you have to install Solr4 separately on Tomcat. Also, as the indexing process is
memory- and CPU-intensive, it is always recommended to install Solr on a different
machine to Alfresco.

Chapter 5

[81]

Let's go through the steps to install Solr as an independent application on a
Tomcat server.

Before we dive into the detail, let's consider that ALFRESCO_HOME and SOLR_HOME are
two directories where Alfresco and Solr are installed. Both are installed in separate
Tomcat servers.

For example:

• ALFRESCO_HOME = /opt/alfresco

• SOLR_HOME = /opt/solr

The installation steps are as follows:

1. Install the Tomcat application based on the Alfresco supported platform.
Download the Tomcat core binary distribution from http://tomcat.
apache.org.Unpack the binary distribution so that it resides in the directory
<SOLR_HOME>/tomcat. Always go through the Alfresco-supported stack list
before deciding on the platform.

2. Download the Alfresco enterprise download ZIP bundle from the Alfresco-
supported stack and extract the bundle. Only valid Alfresco subscription
users can download the resources of the enterprise edition from the Alfresco
Customer Support portal. Another option is a 30 day trial version which
can be downloaded by submitting the online form.

3. Assuming Alfresco is already installed without Solr4, now copy the Solr4
directory from the extracted bundle under <SOLR_HOME>.

4. Copy the solr4.war file from <Extracted_Directory>/web-server/
webapps under <SOLR_HOME>/tomcat/webapps.

5. Copy the context.xml file from <SOLR_HOME>/solr4 to <SOLR_HOME>/
tomcat/conf/Catalina/localhost/solr4.xml.

6. Edit solrcore.properties in <SOLR_HOME>/solr4/workspace-
SpacesStore/conf/ and <SOLR_HOME>/solr4/archive-SpacesStore/
conf/ to point to the proper Alfresco server and index location. Modify the
following listed properties:

 ° data.dir.root=@@ALFRESCO_SOLR4_DATA_DIR@@< Make sure this
points to the directory where the index will be created. For example,
<SOLR_HOME>/alf_data/solr4/index>

 ° alfresco.host=localhost< Provide the host address of the
Alfresco server>

 ° alfresco.port=8080< Port on which Alfresco is running>

http://tomcat.apache.org.
http://tomcat.apache.org.

Search

[82]

 ° alfresco.port.ssl=8443

 ° alfresco.baseUrl=/alfresco

 ° alfresco.cron=0/15 * * * * ? *

7. Edit the solr4.xml file to make sure the environment variables are pointing
to the correct location. Sample entries are shown in the code snippet below.
You have to make sure this directory exists and the user starting the Solr
application has access to read and write to this directory:
<Environment name="solr/home" type="java.lang.String" value="/opt/
solr4" override="true"/>
<Environment name="solr/model/dir" type="java.lang.String"
value="/opt/solr4/alf_data/model" override="true"/>
<Environment name="solr/content/dir" type="java.lang.String"
value="/opt/solr4/alf_data/content" override="true"/>

8. As both Alfresco and Solr communicates via HTTPS trusted certificates, they
need to be installed on both servers for handshaking.

9. Copy the keystore directory from <Extracted_Directory>/alf_data on
both the Alfresco and Solr servers in the alf_data directory. Your folder
structure will look something like this <ALFRESCO_HOME>/alf_data/
keystore and <SOLR_HOME>/alf_data/keystore.

10. From a security standpoint, it is important to generate your own keys for
secure communication between Alfresco and Solr. There is already a script
provided: "generate_keystores.sh" file under the <ALFRESCO_HOME>/alf_
data/keystore directory.

11. Edit the generate_keystores.sh file and make sure the properties listed
below are set properly:
ALFRESCO_HOME – Home Directory of Alfresco. For example "/opt/
alfresco"

ALFRESCO_KEYSTORE_HOME – Keystore path in Alfresco , for example
"/opt/alfresco/alf_data/keystore"
SOLR_HOME – Directory path where solr is installed, for example "/
opt/solr/solr4"
JAVA_HOME – Java home location
REPO_CERT_DNAME – Provide proper repository certificate domain
name
SOLR_CLIENT_CERT_DNAME – Provide proper solr client certificate
domain name

Chapter 5

[83]

12. Execute the script on the Alfresco server and copy the same cert on the Solr
server under <SOLR_HOME>/alf_data/keystore. Also copy the Solr related
certificate under <SOLR_HOME>/solr4/workspace-SpacesStore/conf and
<SOLR_HOME>/solr4/archive-SpacesStore/conf.

13. Configure tomcat/conf/server.xml in both <ALFRESCO_HOME> and
<SOLR_HOME> for HTTPS connector port 8443, as shown in the following
code snippet. Make sure the keystorepass and truststorepass are set
to the password used during the keystore generation process:
<Connector port="8443" URIEncoding="UTF-8" protocol="org.apache.
coyote.http11.Http11Protocol" SSLEnabled="true" maxThreads="150"
scheme="https" keystoreFile="<ALFRESCO_HOME/SOLR_HOME> /
alf_data/keystore/ssl.keystore" keystorePass="kT9X6oe68t"
keystoreType="JCEKS" secure="true" connectionTimeout="240000"
truststoreFile="<ALFRESCO_HOME/SOLR_HOME>/alf_data/keystore/ssl.
truststore" truststorePass="kT9X6oe68t" truststoreType="JCEKS"
clientAuth="want" sslProtocol="TLS" allowUnsafeLegacyRenegotiation
="true" maxHttpHeaderSize="32768" />

14. Configure the Alfresco server identity in the Solr server by adding the line
below in the <SOLR_HOME>/tomcat/conf/tomcat-users.xml file. If you
have created a custom domain during the certificate generation process,
make sure this entry matches with REPO_CERT_DNAME:
<user username="CN=Alfresco Repository, OU=Unknown, O=Alfresco
Software Ltd., L=Maidenhead, ST=UK, C=GB" roles="repository"
password="null"/>

15. In a similar way, configure the Solr server identity in the Alfresco server by
adding the line below in the <ALFRESCO_HOME>/tomcat/conf/tomcat-users.
xml file. If you have created a custom domain during the certificate generation
process, make sure this entry matches with SOLR_CLIENT_CERT_DNAME:
<user username="CN=Alfresco Repository Client, OU=Unknown,
O=Alfresco Software Ltd., L=Maidenhead, ST=UK, C=GB"
roles="repoclient" password="null"/>

16. Configure the alfresco-global.properties file in <ALFRESCO_HOME>/
tomcat/shared/classes to point to the correct Solr server and keystore
directory. Add or edit the following set of properties:

 ° index.subsystem.name=solr4<Search Subsystem name. This
will remain as solr4>

 ° solr.host=localhost<Specify Solr host address>

 ° solr.port=8080<Solr Non SSL port>

 ° solr.port.ssl=8443<Solr SSL port>

 ° dir.keystore=${dir.root}/keystore<Alfresco keystore path
used for https communication with Solr>

Search

[84]

17. You can enable Solr in Alfresco via the admin console, as shown in the
following screenshot, or by using JMX:

18. Start the Alfresco and Solr server.

Understanding the Solr directory
structure
Once the Solr server is installed properly, there are various directories and files
which are important for an admin to understand from a proper maintenance and
configuration standpoint. There are two main directories under <SOLR_HOME>, one is
Solr4 which contains all the configuration for Solr, and another is alf_data/solr4,
which actually stores the indexes, models, and content fetched from Alfresco.

Let's go through the important files in detail. Considering everything under
<SOLR_HOME>:

• alf_data/solr4/model: This directory contains all the data models of
Alfresco. Solr pulls this information from the Alfresco server in certain
intervals for indexing purposes.

• alf_data/solr4/index: This directory has two sub-folders: workspace
and archive. Each folder stores indexes respective to each store.

• solr4: This directory contains the configuration related to indexing and
Alfresco communication. It contains two sub-directories for each store.
All configuration files are present for each store.

Chapter 5

[85]

• solr4/<store>/core.properties: This property defines the name of
the core.

• solr4<store>/conf/solrconfig.xml: This is the main Solr configuration
.xml file. All index, search, and facet related configuration is present in this
file. Edit this file only if you have a proper understanding of the impact of
the changes.

• solr4/<store>/conf/schema.xml: As the name suggests, this file contains
the schema of the fields defined for Alfresco.

• solr4/<store>/conf/solrcore.properties: This file contains important
configuration related to index location, Alfresco connection details, and SSL
certificate information.

Administration and monitoring of Solr
There are various methods to administrate and monitor the Solr server. You can use
either the Alfresco admin console to track the indexing status or the enable/disable
search service. Solr also has its own built-in admin page. The Solr admin page
provides full health indexes. Let's go through each of the different sections.

Understanding the Alfresco search admin
console
As covered in Chapter 4, Administration of Alfresco, Alfresco has its own admin
console. Within this admin console, there is a section named Search Service. It is
again divided into different sections in order to configure and monitor Solr. The
admin console can be accessed via http://<alfresco ip address>:<port>/
alfresco/s/enterprise/admin:

• Search Service: As shown in the following screenshot, it has a dropdown
with three values: Solr, Solr4, and No Index. Solr is the old Solr subsystem
and this should be enabled only during the upgrade process from older
versions of Alfresco. The Solr4 subsystem is the one, which should be
enabled by default. No Index turns off the search engine and all requests
for search is passed to the database:

Search

[86]

• Store Tracking Status: This section shows the Solr indexing tracking status
for both stores. It provides information about the last transaction indexed. In
Alfresco, all indexing is tracked via transaction. Each transaction refers to a
set of nodes in the repository updated during that transaction. As shown in
the following screenshot, it also shows the memory usage and disk usage
by Solr.

Chapter 5

[87]

• Backup Settings: This section allows the administrator to configure the
backup of Solr indexes for both stores. The administrator can provide the
backup location, scheduled backup time, and the number of backups to
be kept. This backup process will only be applicable if your Solr server is
installed within the Alfresco server.

Understanding the Solr admin console
Solr as a standalone application provides its own admin console. This admin console
has all the details related to Solr server and indexes. It shows you the full health of
the indexes. If Solr instances are clustered, this single browser-based admin page will
be helpful when tracking each of the nodes.

As the Solr server can only be accessed via HTTPS, you have to import the client
certificate in your browser before accessing the Solr admin page. In Firefox, navigate
to Options | Advanced | View Certificates. Click on Import under the Your
Certificate tab. Browse to the browser.p12 certificate located in <ALFRESCO_HOME>/
alf_data/keystore. Set the password as alfresco and save this certificate.

Search

[88]

Access the URL below from your browser, a prompt will appear regarding an
unsecured certificate, click on Add Exception and proceed. This will take you
to the main dashboard page, as shown in the following screenshot. Navigate to
http://<solr server ip address>:8443/solr4:

http://<solr server ip address>:8443/solr4

Chapter 5

[89]

This dashboard shows you the full statistics of the indexes. As you can see in the
preceding screenshot, it also shows you the index count for each of the cores. There
is also a summary report and FTS status report. One more important section is
Replication. If you set up a master and slave between multiple Solr nodes, this
section will show you the health status of each of the nodes.

On the left-hand side panel, there are more sections beneath Dashboard:

• Logging: This fetches the logs from the server log file and displays them in
your browser. You can also edit the log level for various classes.

• Core Admin: This is the administration panel for each of the cores in Solr.
For Alfresco, we have defined two cores: alfresco and archive. It allows
the admin user to rename cores, optimize indexes for each core, and add new
cores. Refer to the following screenshot:

• Thread Dump: This page allows you to take the thread dump of the Solr
server for analysis.

Search

[90]

• Core Selector: This is a dropdown, listing all the available cores. You
can individually administrate each core in Solr. Here, we have two cores:
alfresco and archive. Select alfresco and the Overview section will
show you details about that core, as shown in the following screenshot.
Overview is similar to Dashboard, but here, only details about the single
core are provided:

Chapter 5

[91]

Full re-indexing process in Solr
Full re-indexing in Solr is a very simple process. It cleans up all the current indexes,
models, and content in Solr and restarts the application. Here are the steps in detail:

• Identify the index location from solrcore.properties for each of the
cores. Generally, this file is located in <SOLR_HOME>/solr4/workspace-
SpacesStore/conf and <SOLR_HOME>/solr4/archive-SpacesStore/conf

• The index location is set in property data.dir.root.
• Stop the Solr server.
• Remove indexes for both cores.
• Delete models and content in the same directory.
• Restart the Solr server.

Catching up the indexing process with the latest transactions can take time,
depending on the repository size. If we clean up the indexes completely and restart,
users won't be able to search until then. A better solution is to set up a new Solr
instance, point it to the Alfresco server and start the crawling process. Once indexing
is complete, re-point Alfresco to the new Solr server.

Troubleshooting Solr
Solr provides various Rest APIs to troubleshoot and re-index Solr Indexes. Here is a
list of a few of them:

• Use the URL below to generate the health report of the Solr Indexes:
 ° https://localhost:8443/solr4/admin/

cores?action=REPORT&wt=xml

https://localhost:8443/solr4/admin/cores?action=REPORT&wt=xml
https://localhost:8443/solr4/admin/cores?action=REPORT&wt=xml

Search

[92]

• This will generate a report about the health of each of the cores. This
provides a count of total transactions, the last indexed transaction, and the
commit time. If there are duplicate indexes it will show you the details, and if
any transaction is not indexed, you can also identify that from this report. If
your repository size is large, this report will take some time to generate. You
can change the action to Summary to generate a summary report. Refer to the
screenshot below for a detailed report:

• Solr provides simple FIX action parameters to fix all the failed transactions
or un-indexed nodes. By executing the URL below, it will verify all the
transactions with the database and all the failed or un-indexed transactions
will be fixed:

 ° https://localhost:8443/solr4/admin/cores?action=FIX

https://localhost:8443/solr4/admin/cores?action=FIX

Chapter 5

[93]

• Administrators have the flexibility to delete or re-index a specific node,
transaction or ACL ID in the repository. There are two action parameters
available: PURGE to delete indexes and RE-INDEX to correct the indexes.
Refer the following two sample URLs:

 ° https://localhost:8443/solr4/admin/cores?action=PURGE&tx
id=3675&acltxid=503&nodeid=8765&aclid=988

 ° https://localhost:8443/solr4/admin/cores?action=REINDEX&
txid=1563&acltxid=234&nodeid=9087&aclid=238

Summary
In this chapter, we covered details about the search service in Alfresco. In Alfresco
5.x, searching is supported by the Solr4 search engine. There are various advantages
to this new search engine: it is scalable, robust, conducts a fast search, and its
performance is better. It polls Alfresco at certain intervals to track the new changes
and re-index the data. Solr4 uses an asynchronous mode of indexing. You can also
set up the replication of Solr servers via a master slave configuration. Solr4 provides
its own admin console for administrators to monitor and troubleshoot the health of
the server.

In the next chapter, we will cover details on permissions and roles in Alfresco. It will
also provide details about integration with third party central authentication tools
like LDAP.

https://localhost:8443/solr4/admin/cores?action=PURGE&txid=3675&acltxid=503&nodeid=8765&aclid=988
https://localhost:8443/solr4/admin/cores?action=PURGE&txid=3675&acltxid=503&nodeid=8765&aclid=988
https://localhost:8443/solr4/admin/cores?action=REINDEX&txid=1563&acltxid=234&nodeid=9087&aclid=238
https://localhost:8443/solr4/admin/cores?action=REINDEX&txid=1563&acltxid=234&nodeid=9087&aclid=238

[95]

Permissions and Security
In this chapter, we will discuss the permission and security model in Alfresco.
The security model in Alfresco is flexible and allows you to choose the internal or
external security model based on your organization setup via LDAP or the Active
Directory system. You will also learn how to gain granular access control on content
in the repository.

By the end of this chapter, you will have learned about:

• Understanding the security model
• The configuration of external security systems like LDAP and Active Directory
• Understanding permissions and roles

Overview of permissions and roles
The authorization of content in Alfresco is done by assigning users or groups (set
of users) specific roles on folders or content. Roles are groups of permissions. There
are a set of default roles available in Alfresco which we will learn about later in this
chapter. There is also the flexibility to customize and define your new roles.

Users or groups can have specific permissions on spaces. Subspaces can inherit
parent space permission. The Alfresco system is flexible enough that the subspaces
and content can have specific permissions set without inheriting any of the parent
space permissions.

Permissions and Security

[96]

Permissions
Access rights on any content or space can be defined in Alfresco by permission. Out of
the box, there are multiple permissions. Any content in Alfresco is a node connected to
other nodes using associations. By default, a space in Alfresco is a node (parent) that
allows you to create instances of child associations for other nodes (children).

Any authority, like users or groups, can be granted any kind of permission on any
node. Children of nodes inherit all the permissions from parents unless inheritance
is explicitly set to off. When combining the permissions of parents and children,
the highest permission takes precedence. The following are a few out of the box
permissions:

• ReadProperties: This permission provides you control of access rights
to read node metadata

• ReadChildren: This permission provides you control of access rights to fetch
children of any node

• ReadContent: This permission is specific to content control if the user is
allowed to read content

• WriteProperties: This permission provides you control of updating
node metadata

• WriteContent: This permission provides you control of updating content.
• DeleteNode: This permission grants you the delete rights of content
• DeleteChildren: This permission grants you the delete rights of children

of any node

All these permissions are defined in permissionDefinitions.xml, located at
<TOMCAT_HOME>/webapps/alfresco/WEB-INF/classes/alfresco/model.

In the latest version since Alfresco v 5.0, these files have been moved inside the
JAR file; alfresco-repository-5.0.jar.

Roles
Roles are a set of permissions. Out of the box, Alfresco supports five kinds of roles,
listed as follows:

• Consumer: This role is with minimal permission. As the name suggests, it
only grants read permissions to the user. Any user with the Consumer role
on a folder or content can just read content, properties, and children. So,
the Consumer role has three permissions grouped together: ReadChildren,
ReadContent, and ReadProperties.

Chapter 6

[97]

• Editor: This role has all the same rights as the Consumer role, plus write
permission. A user with the Editor role can edit properties of nodes and edit
the content of a node. Editor cannot upload new content.

• Contributor: As the name suggests, this role allows the user to upload
content in space. Contributor becomes owner of the content uploaded by
them and get full access rights to that content. So, Contributor can modify
only the content uploaded by them. If you change the ownership of content,
Contributor would not have any rights to edit the content. So, in short, the
contributor is Consumer plus AddChildren permission.

• Collaborator: This role is a combination of Editor and Contributor. So,
users with the Collaborator role can upload content and edit the content
uploaded by others in that space.

• Coordinator: This role is the most powerful one. It grants the user full rights
to the space. The user gets all the rights like an admin user on an assigned
space. Be very careful when you grant this role to users. Users can modify
permissions, delete nodes and children, upload content, create subspace,
create rules, and so on.

All these permissions are defined in permissionDefinitions.xml, located at
<TOMCAT_HOME>/webapps/alfresco/WEB-INF/classes/alfresco/model

In the latest version since Alfresco v 5.0, these files have been moved inside the
JAR file alfresco-repository-5.0.jar.

The following is an extract of the XML configuration for the Contributor role,
defined in the permissionDefinitions.xml file

<permissionGroup name="Contributor" allowFullControl="false"
 expose="true" >

 <includePermissionGroup permissionGroup="Consumer"
 type="cm:cmobject"/>
 <includePermissionGroup permissionGroup="AddChildren"
 type="sys:base"/>
 <includePermissionGroup permissionGroup="ReadPermissions"
 type="sys:base"/>

</permissionGroup>

If you want to create your custom role, you need to customize this .xml file. We are
not covering this in detail as that is more of a development job.

Permissions and Security

[98]

Authorizing users the use of content
or space
By now, you should know about the permissions and roles in Alfresco. In Chapter
4, Administration of Alfresco, we already learned about how users and groups are
created. Once these users and groups are created
in the repository, they need to be granted with specific access rights to spaces
and content.

In most organizations, you have various departments and subsections within each
department, as well as some people who belong to multiple departments.

For example, there are various teams like the HR team, recruitment team,
management team, and administration team. Now, some people in the HR team
would also be a part of the management team, and the recruitment team is a
sub-set of the HR team. So, to organize such a hierarchy, you create various
groups and subgroups.

Create a group in Alfresco named HR_Team, Management_Team, Administration_
Team, as shown in Chapter 4, Administration of Alfresco. Now create a subgroup
named Recruitment_Team under HR_Team as it is part of the HR group.

Create users and add them to the respective groups. Now your groups and users are
ready. You need to assign permissions to groups in their respective folders so they
have proper access.

Let's say that all users in the management team need permission on a folder named
Marketing. Follow the steps below to grant access to the users:

1. Log in to Share using the URL, http://<hostname:port>/share/.
2. Select Repository in the top tool bar, which will take you to the Document

Library page.
3. Navigate to the folder where you have to grant permission. For example,

here Marketing is the root directory, as shown in following screenshot. Select
the folder and in the More… menu, select Manage Permission, as shown in
the following screenshot:

http://<hostname:port>/share/

Chapter 6

[99]

4. Now, in the manage permission page, you can edit the currently assigned
permissions or invite new users or groups to the folder. Click the Add User/
Group button, search for the group or user you want to invite and click Add,
as shown in following screenshots:

Permissions and Security

[100]

5. Now, this user/group will be listed in the Locally Set Permissions table.
6. Now change the role based on the kind of permission you want to grant that

user/group by selecting the appropriate roles in the Role column.

7. At the top, there is a checkbox, Inherit Permissions, you can uncheck it if
you don't want any parent folder permissions to be inherited by your folder.
The Inherited Permissions table provides a list of permissions the selected
folder has from the parent folder.

8. Click Save to save your changes.
9. If you want to remove any permissions from the folder, click the Delete

button for the selected user/group, as shown in following screenshot,
and click Save.

In your folder hierarchy, if you are granting permission to a user at
nth level from the root directory, make sure the user at least has read
permissions on all the folders from the root directory to the nth level
folder. Either keep the inheritance on or explicitly invite users/groups to
all the folders. If permissions are not right in the complete tree, users will
not be able to navigate properly or retrieve the documents which they
have access to. Remember that you can set a role for specific content and
if a user has the right role, he can access the content directly with the node
reference without navigating the repository.

Overview of the security model
What we saw in earlier sections was that we have to create users and groups
manually and then invite them to their respective folders. If you have thousands of
users and you need to organize them in different groups based on your company
policy, this would be a very long process.

Chapter 6

[101]

Alfresco supports integration with external models like LDAP, AD, and so on. You
can use this central authentication to manage users and groups in Alfresco. You can
configure Alfresco to integrate with this centralized authentication security model
and all the users and groups from this system would be synchronized in Alfresco.

For authentication, this external system would also be used, so user credentials are
managed at a common location.

Alfresco also supports Single Sign On; you can log in into Alfresco with your
machine credentials.

Authentication subsystem
The authentication subsystem includes the complete implementation of various
security models. Here is the list of supported security models by Alfresco:

• alfrescoNtlm: This is the default authentication model where Alfresco user
credentials would be stored in the Alfresco database

• ldap: As the name suggests, this is LDAP authentication using an external
system like OpenLDAP

• ldap-ad: This refers to Active Directory authentication
• kerberos: This model is based on Kerberos authentication
• passthru: In this model, authentication is done via the Windows domain

server or external servers
• external: This is an external authentication system

Authentication chain
Many organizations have multiple authentication servers. So, there are requirements
where you need to integrate all the authentication systems with Alfresco. For that,
the authentication subsystem provides the chaining mechanism. One instance of
Alfresco can have more than one user source. However, the sequence in which these
user data sources are chained is important. Considering the usage of the Alfresco
database, an OpenLDAP server, and an AD server, when a user logs into the system,
Alfresco checks for authentication in the sequence defined here:

Alfresco NTLM LDAP 1 LDAP-AD

Permissions and Security

[102]

The authentication.chain property defined in the alfresco-global.properties
file specifies the authentication chain. The default authentication in chain is NTLM:

authentication.chain=alfrescoNtlm1:alfrescoNtlm < instance name : type
of authentication. It is same as like we create instance of any class
in Java>

Directory management in the Alfresco admin console shows the list of authentication
chains and also allows you to configure and add new authentication models in
the chain:

• http://<ipaddress:port>/alfresco/s/enterprise/admin/admin-
directorymanagement

LDAP configuration with Active Directory
Let's say there is a marketing firm which uses Alfresco for managing their content,
and all employees of the firm need to have access to Alfresco and use their common
organization credentials which are stored in LDAP AD. This would require
integration between Alfresco and LDAP AD. There are also a few external vendors
who would need access to specific content in the Alfresco system, so instead of
creating them in LDAP AD, they can be created internally within Alfresco. For this
model, we would require Alfresco default authentication and LDAP AD integration.

With Alfresco 5.0, this whole process of adding a new authentication mechanism in
a chain has become very easy. Now you can add any authentication, configure, test,
and also synchronize all users and groups on the fly.

Follow the steps below to configure LDAP AD in an authentication chain:

1. Log in to the Alfresco admin console using the following URL;
http://<ipaddress:port>/alfresco/s/enterprise/admin/admin-
directorymanagement. This would land you at the Directory Management
page. You should see a list of Authentications in the chain; by default,
alfrescoNtlm1 is already added in the chain.

2. In the Authentication chain section, provide an appropriate name for your
LDAP connection and select the type of authentication as LDAP. Click Add.
You need to click on Save and save the settings and after that, you should
see the Edit | Test options. Refer to the following screenshot:

Chapter 6

[103]

3. Click on Edit to configure the LDAP settings to point to the correct server
and provide synchronization details:

 ° Username format: Map the user ID entered by the user to pass
through LDAP; the %s is replaced with whatever the user types in as
their user ID on the login screen

 ° LDAP server URL: The name and port of your LDAP server; the
standard port for LDAP is 389

 ° Default administrator usernames: The administrator user that
connects to LDAP for authorization

 ° Security: Security protocol used by server
 ° Synchronization enabled: Enable this only if you want to

synchronize the users and groups from LDAP
 ° Security principal name: Principal account from which you can fetch

user information from AD
 ° Security principal credentials: Password for preceding principal

account
 ° Group query: LDAP query to fetch groups from LDAP
 ° Person query: LDAP query to fetch persons from Active Directory
 ° User search base : Specify the domain name from which you need

to synchronize the users

4. Using the Test option, verify that LDAP configuration is correct.
5. There are few common settings required for the synchronization of users

from LDAP which are under Synchronization Settings. This is common for
all security models in a chain.

Permissions and Security

[104]

The import Cron expression should be set to a time when the
system load is reduced.

6. If you want to manually trigger the sync process, click on the Run
Synchronize button.

CIFS doesn't support LDAP AD configuration through an authentication chain.
You need to configure pass-thru in an authentication chain. Edit the settings for
pass-thru. The authentication server is an important property which needs to be
configured as shown in the following screenshot.

Once pass-thru is configured, you can find it in the CIFS Authentication
dropdown. Select the appropriate authentication and click Save, as shown
in the following screenshot.

Chapter 6

[105]

Summary
Roles in Alfresco are groups of permissions. Users can be granted access rights to any
content or folder by assigning them specific roles. There are various out of the box
roles available in Alfresco like Consumer, Contributor, Editor, and Coordinator.
You can also customize and create custom roles. Alfresco supports various security
models like LDAP, Active Directory, and Kerberos to provide authentication from
a centralized directory.

In the next chapter, we will discuss ways to cluster the Alfresco server for
high availability.

[107]

High Availability in Alfresco
The high availability of any application is critical because of the global model of
organizations. Also, with high throughput, multiple servers are required to support
an application. This is where the clustering of nodes comes into the picture.

The typical requirements of high availability architectures are the following:

• Business continuity (up and running 24/7)
• Avoiding the single point of failure
• Hot backup
• Disaster recovery

In this chapter, we will discuss the ways of clustering in Alfresco and the backup
restore process that supports the high availability of Alfresco.

By the end of this chapter, you will have learned about:

• Clustering Alfresco servers
• The backup process of Alfresco
• The restore process of Alfresco

Clustering Alfresco servers
Clustering refers to collections of multiple nodes combined together in a server as a
single application to end users. With clustering, you can achieve scalability, server
redundancy, and performance improvement of the application.

High Availability in Alfresco

[108]

Let's consider a global financial organization that has multiple teams working for
it across the globe. Alfresco is used as an enterprise content repository to store all
the financial assets, like contracts. Now, these assets are very time-critical, and
therefore the contracts should be accessible to all teams working on it at any time.
There are thousands of users using the application, which also requires high server
performance. High throughput is required for the server for users accessing assets
in the system.

To satisfy these requirements, you will need to build a robust and highly available
system by creating a clustered environment of Alfresco so the load on the server can
be distributed. You also need a redundant and scalable environment so if one server
goes down, you have another server up and running. This allows users to access
the contracts from the application at any time. Moreover, you would have minimal
downtime for the application.

There are various ways in which you can divide the servers in multiple tiers as per
your requirements.

Replicating a complete stack
This approach is a straightforward approach where you create a replica of a
complete stack and enable the clustering in Alfresco. The database and content store
are being shared between all the nodes. Using a load balancer in front of this stack
allows requests to be divided among servers. You can use any load balancer like
Apache, Nginx, etc.

With this approach, if one node goes down, the other node is capable enough to
serve the request independently.

Load Balancer

Cluster

Database

Node 1

Share

Alfresco

Solr

Node 2

Share

Alfresco

Solr

Content Store

Chapter 7

[109]

As the database and content store are shared among the servers, they are single
points of failure. In addition to this, we have to manage the indexes in two Solr
instances. For this, we would need a proper backup for the database and content
store. More details on backup and restore will be covered later on in this chapter.

multi-tier architecture
Each component of Alfresco can be divided into multiple tiers like Share, Repository,
Database, and Solr. Use a load balancer to communicate between each tier. Share can
either talk to the Alfresco Repository using the load balancer or an individual server.
You can also have a common Solr server shared among all the nodes. Refer to the
clustering diagram below for a visualization.

The database and content store are shared among the servers. This approach
would be useful when you have to divide the load on the web-tier and increase the
throughput of the application. In addition, indexes are available on the common Solr
server, so there is no need to manage multiple instances. The Solr server can also be
clustered together, which allows for easy scalability of the server.

Load Balancer

Load Balancer

DB

Solr Server

Content
Store

Alfresco
Repository

Alfresco
Repository

Share Share

High Availability in Alfresco

[110]

Clustering Alfresco nodes
Now we will understand the process required to cluster Alfresco nodes. As Share
and Repository are different components, both require different configuration to
bring them into the cluster.

First, identify what kind of clustering approach is required. Set up each node and
make sure that each node as a single entity is working properly, such as being able
to connect to the database and content store. Now follow the steps below to set up
clustering between Alfresco nodes.

Step 1 – Share clustering
1. With Alfresco v 5.0, Hazelcast is used for clustering the web-tier nodes.

Hazelcast sends multicast messaging between share node instances. Enable
Hazelcast for Share.

2. Configure the custom-slingshot-application-context.xml file located at
<Tomcat_home>/shared/classes/alfresco/web-extension. The sample
file is already located in this location.

3. Rename the .sample file to a .xml file and uncomment the related Hazelcast
configuration. Refer to the sample code with the book.

4. Configure the interface IP address based on your network.
5. Make sure that your Share instance communicates with Alfresco, which

can either be via a load balancer or by hard-wiring the Alfresco instance in
the Share configuration. If a load balancer is used then it should maintain
a sticky session with the Alfresco instance.

Step 2 – repository clustering
1. Install and deploy Alfresco on multiple servers depending on the number of

nodes you need.
2. Configure alfresco-global.properties located at <Tomcat_home>/

shared/classes/ on all nodes to point to the same database. Refer to
Chapter 3, Alfresco Configuration, for configuring databases.

3. Make sure dir.root in the alfresco-global.properties file is pointing
to same content store on all nodes. Mount the content store file system on all
the nodes with the proper permission rights.

4. Set up the Solr instance and configure all Alfresco nodes to point to the
common Solr instance.

5. Verify each node by starting them so that all configurations are correct,
including Database, Solr, and Content Store. Once verified, stop the servers.

Chapter 7

[111]

6. Now configure the clustering related properties below in the alfresco-
global.properties file and restart all Alfresco nodes. Also make sure that
the default clustering port 5701 is open on all nodes:

 ° alfresco.cluster.enabled=true

Set this value to true to enable clustering, if you set it to false, this
node would not be part of clustering.

 ° alfresco.cluster.interface=10.208.*.*

This is the network interface to be used for clustering. You can define
a wildcard value, so the system will try to bind with all interfaces
having this IP address.

 ° alfresco.cluster.nodeType= Scheduler Server

Enter a human readable node name which helps to distinguish the
servers. It is mostly useful for nodes which are not part of cluster, but
which share the same database and content store.

 ° alfresco.hazelcast.password= clusterpasswd

Define the password used by clustered nodes to join or access the
hazelcast cluster. From a security standpoint, always configure
this property.

 ° alfresco.hazelcast.max.no.heartbeat.seconds=15

Configure the maximum node heartbeat timeout in seconds to
assume it is dead.

Steps for verifying clustering
1. Verifying clustering with Alfresco v5.0 is very easy. Log in to the Alfresco

Standalone Administration Page at http://<server_name>:<port>/
alfresco/service/enterprise/admin.

2. Navigate to the Repository Server section and Click Repository Server
Clustering. This page will provide you with the list of all cluster members.
Click Validate Cluster to validate that all configurations are correct.

Another way to manually verify clustering is by uploading and searching content
or a folder in the repository. Considering we have two Alfresco servers, NODE1 and
NODE2, in the clustered environment:

1. Log in to NODE1 and upload some content.
2. Now log into NODE2 and verify you are able to see the content.

http://<server_name>:<port>/alfresco/service/enterprise/admin
http://<server_name>:<port>/alfresco/service/enterprise/admin

High Availability in Alfresco

[112]

3. Search for uploaded content in NODE2 and verify you are able to search it.
4. Edit some metadata of the content or folder and verify that it has been

updated on the other node.

Troubleshooting clustering
Enable debug logs for the class files listed below to troubleshoot in more detail.
Make an entry in the log4j.properties file located at <Tomcat_home>/webapps/
alfresco/WEB-INF/classes and restart the server:

• log4j.logger.org.alfresco.enterprise.repo.cluster=info

This is the main package for clustering related classes.

• log4j.logger.org.alfresco.enterprise.repo.cluster.core.
ClusteringBootstrap=DEBUG

This provides detail about cluster startup, shutdown, whether it is disabled
or if the license is invalid.

• log4j.logger.org.alfresco.enterprise.repo.cluster.core.
MembershipChangeLogger=DEBUG

This provides details about the cluster members.

• log4j.logger.org.alfresco.enterprise.repo.cluster.cache=DEBUG

• log4j.logger.org.alfresco.repo.cache=DEBUG

This logs details about the cache of the server.

• log4j.logger.com.hazelcast=info

Enable this if logging is required for core hazelcast packages.

Setting up the Hazelcast mancenter dashboard
The Hazelcast mancenter is a standalone application which allows you to monitor
and manage all the servers using Hazelcast. This dashboard enables you to browse
through the cluster data structure and provides you with details about the cluster.
You can use this dashboard to get more details about the cluster node.

To set up this Hazelcast mancenter, follow these steps:

1. Install the Tomcat application server.
2. Download the Hazelcast mancenter WAR file and deploy in Tomcat.
3. Set up the data directory by adding the property below to the CATALINA_OPTS

environment variable:
-hazelcast.mancenter.home=/home/<tomcat_directory>/mancenter_data

Chapter 7

[113]

4. Configure the Alfresco server to use this mancenter by adding the properties
below in the alfresco-global.properties file. Make sure that from the
Alfresco server, this mancenter service is accessible:
alfresco.hazelcast.mancenter.enabled=true

alfresco.hazelcast.mancenter.url=http://<tomcat-

erveraddress>:<port>/mancenter

To get more details about the Hazelcast mancenter, refer to
http://hazelcast.com/products/management-center/.

The backup and restore process
For an application to be robust, a proper backup process for all data is very
important. Here, we will cover details about what steps are required for
backing up and restoring data in Alfresco.

Backups are required for the main critical components of Alfresco which hold the
data, as listed below.

• Database: You can use the database dump method based on the type of
database used for backup. There is a very good tool, Xtrabackup for MySQL,
using which, backing up a large database is trivial. Refer to http://www.
percona.com/software/percona-xtrabackup. As the repository size
grows, the DB size will be large, so an efficient and incremental backup
and restore strategy should be defined for the database.

• ContentStore (All Binary Files): Standard file system replication can be
used to back up the content store. An important point to note here is that as
your repository size grows, a full backup of the content store will become
a time consuming process. So, always plan for an incremental backup.
The frequency of content store backup is also very important as it will use
network bandwidth.

• Solr Indexes: Alfresco provides a backup scheduler to back up Solr indexes.
Perform a nightly backup for Solr indexes. You can define the backup time
for Solr indexes using the Alfresco admin console. Details about this can be
found in Chapter 5, Search.

• Alfresco Configuration: All installations and important configuration files
should also be backed up in regular intervals. So if the system crashes, it will
be very easy to set up the system again.

There are two methodologies of the backup process: cold and hot backup. Let's
understand the process details of each of them.

http://hazelcast.com/products/management-center/
http://www.percona.com/software/percona-xtrabackup
http://www.percona.com/software/percona-xtrabackup

High Availability in Alfresco

[114]

Performing a cold backup
As the name suggests, with this approach we need to stop the Alfresco server and
back up all the required components.

1. Stop the Alfresco Server.
2. Stop the Solr Server if it is not installed within Alfresco server.
3. Simultaneously, back up Solr Indexes, the content store and database.

For Solr Indexes and the content store, use a standard file system backup
process like rsync. For the database, use the standard database supported
backup mechanism.

4. Store this backup in the same place as a single package.

This approach will provide you with a clean backup but the problem is, it would
require the lengthy downtime of servers based on the repository size. It should only
be done when you have planned server maintenance. This is not the recommended
approach for regular backups.

Performing a hot backup
Here, backups are taken without stopping servers. Now, as you are taking a live
backup of data, the backup order below needs to be followed.

• Solr Indexes backup
• Database backup
• Content store backup

The reason for this sequence is to make sure that database integrity is maintained
with the content store. If you take the content store backup first, you have references
to content in the database which are not present in the content store.

For taking a live backup of Solr and the content store, you can use a standard
filesystem backup like rsync. Schedule a cron job in the operating system to backup
these files at regular intervals. Solr Indexes backup is also taken care of by Alfresco
by configuring the Solr backup properties in the Alfresco admin console.

In the case of databases, you can set up a master-slave for data replication. All the
data from the master would be replicated to the slave. The slave would need the
same amount of space as the master. You can also take the database dump at regular
intervals, but make sure the dump procedure you use doesn't lock the database.

Chapter 7

[115]

In addition to this, also take regular backups of the database at certain intervals, such
as nightly, for handling scenarios where users may delete nodes from the system
by mistake. With master-slave, if something is deleted in the master, it will also be
propagated to the slave. Backing up the database at certain intervals allows you
to go back to old copies in case it is required.

It is recommended to have a strong, well-thought-out backup strategy already
defined when you install the Alfresco application. Incremental backup at regular
intervals is a feasible method for big repositories, but at some point, as part of
maintenance, take a full backup of system.

The restore process
Take the latest backup copy of all three components (Database, Solr indexes, Content
store). All components should be from the same backup unit.

1. Stop the Alfresco server.
2. Restore the database from backup. Configure alfresco-global.

properties to point to the new restored database. Restoring the database
will be based on the backup strategy used and database vendor.

3. Copy Solr Indexes from backup. Make sure the data.dir.root property in
solrcore.properties is pointing to the new index folder. In Alfresco, there
are different Solr configuration files for the workspace and archive store,
so you have to restore both indexes in their respective directories.

4. Restore the Content Store and modify dir.root in alfresco-global.
properties to point to the new restored content store.

5. Restart the Alfresco server. Log in and verify that the restore worked properly.

Designing a disaster recovery system
for Alfresco
Disaster recovery is required for business continuity with the minimum application
downtime. For any critical application, the downtime of servers can be a big loss to
business. So, it is very important to set up disaster recovery servers. These servers
should be in a different location to where your production servers are.

For disaster recovery in Alfresco, you need to set up the complete Alfresco stack at
a different data center location. This secondary system will be on read only mode
or it will not be in a running state. This disaster recovery setup is different to the
clustering process.

High Availability in Alfresco

[116]

For setting up the disaster recovery of the Alfresco application, follow the steps
below.

1. Set up your application in a similar fashion to that of your production server.
Use the same hardware and same application stack.

2. This new disaster recovery server will not be in cluster mode with the
production server.

3. Now you need to set up replication for the database, content store, indexes,
and application configuration. Try to find the optimal replication plan based
on your repository size, growth rate, and read and write operations.

4. All of the components should be replicated on a regular basis so you can
recover data as close to production as possible. Here, an important point to
be considered is your network bandwidth and latency. As the servers will be
geographically scattered apart, network latency will become more important.

5. In case of production failure, turn on the DR server and configure it in
production. Configure the load balancer to redirect the request to a new server.
With this, you can get the servers up and running in minimal downtime. Users
can still use the application by the time you have recovered the system.

Here is a diagram of how your typical DR structure would be:

Production Server

Alfresco Node 1 DR Alfresco ServerAlfresco Node 2

Content Store

F
I
r
e
w
a
l
l

Disaster Recovery server

Database Content StoreDatabase

Chapter 7

[117]

Summary
The Alfresco server can be clustered together to have a more robust, scalable, and
highly available ECM server. Alfresco provides you with the flexibility to distribute
the nodes and cluster them in multiple tiers based on your requirements. Repository
and Share clustering is supported by Hazelcast. The Admin Console of Alfresco
provides you with details about all the clustered nodes and also allows admin
users to verify the clustering of nodes. Alfresco doesn't provide its own backup and
restore process, but we can use industry-standard filesystem and database backup
mechanisms to ensure a robust backup of your applications.

In the next chapter, we will talk about how Alfresco actually stores content. The
content lifecycle will also be discussed in detail. This chapter will also cover in
detail the important tables in the Alfresco database.

[119]

The Basics of the Alfresco
Content Store

Content is the heart of the ECM system. All functionalities and features of the ECM
system are surrounded by content. For the architecture and maintenance of the ECM
system, the understanding of the lifecycle of content in an ECM application is very
important. Once content gets inside the CMS application, it passes through different
phases, which is common in most standard ECM applications.

However, the storage mechanism of the content varies in different ECM applications.

In this chapter, we will understand, in detail, the lifecycle of content in Alfresco and
how these different phases impact different components of Alfresco. We will also try
to understand the Alfresco database schema.

By the end of this chapter, you will have learned about:

• The content lifecycle
• Content store types
• Alfresco database schema

Before going into detail about lifecycles, let's understand the content store and
database schema. We already covered indexes in Chapter 5, Search.

The Basics of the Alfresco Content Store

[120]

Understanding the content store
architecture
The content store controls the creation and deletion of binary content in the
filesystem. We have already covered a few details on this in earlier chapters. The
dir.root property in the alfresco-global.properties (<Tomcat_Home>/shared/
classes) file defines the root binary file storage location.

Let's, for example, examine the path specified in dir.root which is /mnt/alf_data.
Beneath this directory, there are two folders: contentstore and contentstore.
deleted, which will be created the first time Alfresco is started. Let's have a look
at the details of the folder:

• contentstore: All active and archive content is being stored here. Based
on content creation time, a directory hierarchy is created. All the files will
have a unique name and the .bin extension. Let's say there is a file named
Employee Handbook.doc being uploaded in Alfresco on January 20, 2015 at
10:50 A.M., then the file will be stored in /mnt/alf_data/contentstore/20
15/1/20/10/50/<unique name>.bin.

• contentstore.deleted: The orphaned content which is permanently
deleted by Alfresco is being moved to this directory by an orphan cleaner
scheduler. From this directory, files can be removed at any time using the
standard operating system remove command. For example, by executing the
rm /mnt/alf_data/contentstore.deleted/2015/1/23/13/34/xxxxx.bin
command.

This is the general architecture of a default content store. The default content store
is named FileContentStore. Based on this default content store, Alfresco also
provides various different types of content store. Here are a few details about each
type of content store.

Encrypted ContentStore
As the name suggests, the content is stored encrypted in the filesystem. All content is
encrypted with its unique key. This unique key is again encrypted with a master key
and is stored in the Alfresco database. The encrypted ContentStore was introduced
in version 5.0 of Alfresco . To enable the encrypted ContentStore, you will need a
license file, which has enabled content store encryption from Alfresco.

Chapter 8

[121]

Enabling the encrypted ContentStore
Here are the steps required to enable and configure the encrypted ContentStore.

1. Get the license file with encrypted ContentStore enabled. Install the new
license file using the admin console. Refer to Chapter 4, Administration of
Alfresco.

2. An RSA key needs to be generated in a new keystore using keytool.
A sample keytool command can be used to generate the master key.
keytool -genkey -alias key1 -keyalg RSA -keystore <master
keystore path> -keysize 2048

3. Configure the following properties in alfresco-global.properties to
enable content encryption. These properties can also be changed via JMX:

 ° filecontentstore.subsystem.name=encryptedContentStore

This will enable the encrypted content store

 ° cryptodoc.jce.keystore.type=

This is the keystore type for master keys like jceks

 ° cryptodoc.jce.keystore.path=

Provides the path of the keystore where the master key was
generated

 ° cryptodoc.jce.keystore.password=

Password for keystore

 ° cryptodoc.jce.key.aliases=

A comma separated list of all aliases of the master key

 ° cryptodoc.jce.key.passwords=

A comma separated list of all passwords for fetching the master key
from the keystore

 ° cryptodoc.jce.keygen.defaultSymmetricKeySize=

The size of the symmetric key size by default is 128 bit

4. The dir.root path specified in alfresco-global.properties remains
the same.

The Basics of the Alfresco Content Store

[122]

Once enabled, you cannot revert back to the normal ContentStore. Also,
if you are upgrading from an old version, only new content will be
encrypted. Old content will still remain un-encrypted. Be careful when
you choose the encrypted ContentStore. Multi-tenancy is not supported
with an encrypted store.

Caching ContentStore
Caching ContentStore works as a wrapper around any ContentStore to provide
caching and faster access of data. Caching ContentStore should be used with either
a slow disk, Amazon s3, or so on. If the normal content storage mechanism is slow,
set up the caching ContentStore around it. Don't use it around FileContentStore
if you have a fast disk.

Configuring the caching of ContentStore
Follow the steps below to configure the caching of ContentStore (assuming the
backing store is already configured).

1. Enable the caching-content-store-context.xml file located at
<ALFRESCO_HOME>/shared/classes/alfresco/extension by renaming it
from .sample to .xml.

2. Configure the context file as per your system requirements. Refer to the
bean ID cachingContentStore. Make sure the backingStore and quota
are configured properly. Quota can be standard quota or unlimited. With a
standard quota manager, you can control the disk usage of cached files:
<bean id="cachingContentStore"
class="org.alfresco.repo.content.caching.CachingContentStore"
init-method="init">
 <property name="backingStore" ref="backingStore"/>
 <property name="cache" ref="contentCache"/>
 <property name="cacheOnInbound"
 value="${system.content.caching.cacheOnInbound}"/>
 <property name="quota" ref="standardQuotaManager"/>
</bean>

Chapter 8

[123]

3. In the sample context file, the backingStore bean is referring to
FileContentStore. Change the bean definition based on the backing store
used. With FileContentStore, there is no use of caching. For example,
if you are using S3ContentStore (details about this content store will be
covered later on in this chapter) where caching is required, make sure the
backingStore is referring to the correct ContentStore, as shown in the
following sample code snippet:
<bean id="backingStore"
class="org.alfresco.integrations.s3store.TenantS3ContentStore">
 <constructor-arg>
 <value>${dir.contentstore}</value>
 </constructor-arg>
</bean>

4. Based on the context file configuration, add and modify the following
important properties in the alfresco-global.properties file. Default
values are set in the repostiory.properties file:

 ° dir.cachedcontent=${dir.root}/cachedcontent:

Change this value if you want the cached content in a different path
to the content root directory.

 ° system.content.caching.cacheOnInbound=true

This is the property to enable the caching of content while running
the write operation. That way, whenever content is read, it is already
in the cache.

 ° system.content.caching.maxDeleteWatchCount=1:

The number of times the file is observed as deleted before cleanup
from the cache.

 ° system.content.caching.contentCleanup.cronExpression=0 0
3

Specify the cron expression to clean up the cached content.
 ° system.content.caching.minFileAgeMillis=60000

Specify the minimum live time for the file before it is deleted from
the cache.

 ° system.content.caching.maxUsageMB=4096

This property is associated with a quota, the maximum amount of
disk space can be used for the cache.

 ° system.content.caching.maxFileSizeMB=0

Change this value if you want any limitations with the file size to be
maintained in the cache.

The Basics of the Alfresco Content Store

[124]

Alfresco S3 content store
This is a special content store which will be required only when the Alfresco instance
is on the Amazon cloud (EC2) (refer to https://en.wikipedia.org/wiki/Amazon_
Web_Services for more details). Alfresco provides this additional module to use
Amazon's Simple Storage Service (S3) for file storage. The Alfresco S3 content store
is slower than the standard FileContentStore, so you can use this in combination
with the caching ContentStore.

Configuring the Alfresco S3 connector
Follow these steps to configure the S3 connector:

1. Download the amp package for the S3 connector from Alfresco support.
2. Install this amp package using the Alfresco Module Package (AMP)

installation procedure.
3. Configure the following properties in the alfresco-global.properties file

 ° s3.accessKey=

Specify the access key for Amazon Web service identification.

 ° s3.secretKey=

Specify the Amazon web service secret key.

 ° s3.bucketName=

Specify the bucket name which will be used for content storage.
This bucket name should be unique.

4. Once the bucket name is defined, the same bucket can be used to
multipurpose. Define the contentstore and contentstore.deleted paths
using the same bucket name in the alfresco-global.properties file.
dir.contentstore=/AmazonBucketPath/contentstore
dir.contentstore.deleted=/AmazonBucketPath/contentstore.deleted

When upgrading from the local content store to S3, the content store
will not be supported by S3. It will corrupt the repository.

https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Amazon_Web_Services

Chapter 8

[125]

Content store selector
The content store selector provides users with a mechanism to bind content with
a specific content store. Alfresco provides the flexibility to have multiple content
stores, and you can decide what content needs to be stored in which store. This
is very useful in a scenario where you need to store different folder data in a
completely different store. You get the flexibility to place the less read, old content
to any slow disk and all new content to any fast disk.

Using the content store selector
Follow the steps mentioned here to enable the content store selector:

1. Create a content store selector context file in <Alfresco_home>/shared/
classes/alfresco/extension. A sample context file is provided with
support files of this book.

2. Define the store as you require by defining beans, as shown in the following
code sample:
<bean id="projectMarketingContentStore" class="org.alfresco.repo.
content.filestore.FileContentStore">
 <constructor-arg>
 <value>${dir.root}/storeProjectA</value>
 </constructor-arg>
</bean>

3. List all the store beans with a store name that will be visible in the user
interface in the storeSelectorContentStore bean. Take a look at the
sample code snippet:
<bean id="storeSelectorContentStore" parent="storeSelectorContentS
toreBase">
 <property name="defaultStoreName">
 <value>default</value>
 </property>
 <property name="storesByName">
 <map>
 <entry key="default">
 <ref bean="fileContentStore" />
 </entry>
 <entry key="projectMarketing">
 <ref bean="projectMarketingContentStore " />
 </entry>
 ...
 <bean>

The Basics of the Alfresco Content Store

[126]

4. Configure the eagerOrphanCleanup bean to map this list, so all this
additional content store can be cleaned up in the same fashion as the
default content store.

5. Set a proper scheduler cron expression for the system.content.
orphanCleanup.cronExpression property in alfresco-global.
properties.

6. Now restart Alfresco.
7. For Share, you need to enable the cm:storeSelector aspect and

cm:storeName, which is a property associated with this aspect.
Find the aspects tag in the share-config-custom.xml file located at
<ALFRESCO_HOME>/tomcat/shared/classes/alfresco/web-extension
and below the storeSelector aspect, add it in the list as shown in the
following code snippet:
<aspects>
 <!-- Aspects that a user can see -->
 <visible>
 ..
 <aspect name="cm:storeSelector" />
 </visible>
 ..
</aspects>

Also define the user-friendly name of the aspect in the slingshot.
properties file to be shown in the Share user interface.
 aspect.cm_storeSelector=Store Selector

8. Now apply this aspect to any content and set the storeName based on the
store you want the content to be in, for example if you want to store all
marketing documents in the projectMarketing store, set the storeName
value to projectMarketing as defined in the store selector bean. The file will
be copied from the default content store to the new content store. If no value
is specified in storeName, it takes the default. The file in the old content
store will remain as it is, but it will be marked as orphan so the cleanup
process can clean these documents.

Chapter 8

[127]

Understanding the database schema
Alfresco has its own standard database schema to store all its information. The
database is the heart of the whole CMS system.

External applications, apart from Alfresco, should not perform any write operations
in the Alfresco database directly. Always make sure you use the database for reading
only. This is a standard practice. Don't make any changes to any values in the
database. This schema is only required to understand Alfresco and troubleshoot.

As you know, everything in Alfresco is based around nodes, so the tables are
also named in the same pattern. The database schema of Alfresco is very easy to
understand. So, here we will not dive into all the tables, only a few important ones
will be covered.

Schema of the alf_node table
This table is the main primary reference of the node. This is the first table you will
always look for. All the node entries are present in this table. It captures primary
node information like UUID, created date, modified date, creator, transaction ID ,
permission information, and so on. Here are the details about some of the columns
of this table.

• id: This is the unique database ID for each node in Alfresco. This same ID is
being referenced in other tables.

• store_id: This ID refers to the unique ID from the alf_store table. This
ID signifies which store this node belongs to, like workspacesStore,
archivespacesStore, or usersStore, and so on.

• uuid: This is the unique node ID which is used in all the services and
interfaces that refer to this node. This UUID never changes for a node
as long as a node is present in the Alfresco system.

• transaction_id: This refers to the ID column in the alf_transaction
table. Any write operation in Alfresco is considered to be processed within
a transaction. Every node is part of a transaction. If you do a batch operation,
there is a possibility that all nodes will have the same transaction ID. While
indexing in Alfresco, based on these transaction IDs, all nodes are fetched
from the database and indexed in Solr. So, this transaction ID is also a very
important column.

• type_qname_id: This column is the foreign key reference ID from the alf_
qname table. It defines the type of node like content, folder, person, and so on.

The Basics of the Alfresco Content Store

[128]

• acl_id: This ID refers to the unique ID in the alf_access_control_list
table related to permission. Permission in Alfresco can be considered a map;
all this information is stored in a different table structure. acl_id will lead to
all permissions available on this node.

• auditor_creator: This column captures information about the user who
created this node.

• auditor_created: This column captures the time this node was created
in the system.

• auditor_modified: This column captures the time this node was modified.

Schema of the alf_node_properties table
This is another important table. As the name suggests, this table stores metadata
information about the node like its name, description, and content store path ID. All
the node references are stored in this table. This table could be a giant table; if you
have five properties for a node, there would be five rows in this table. As all
the information is tied to a unique node ID, it is very easy to fetch information
from the table.

Here is the list of a few important columns in this table:

• node_id: This column refers to the unique database ID of the node defined in
the alf_node table.

• actual_type_n: This column defines the property type.
• boolean_value: This column stores the values of any Boolean value

metadata of node.
• string_value: This column stores the values of any string valued metadata

of the node.
• long_value: If the metadata value is referring to some other table, the ID of

that table will be in this column. For example, the binary file location of an
asset is captured in different tables. The ID referring to that entry is stored
in this column.

• qname_id: This column stores the namespace and property name referring
to its ID in the alf_qname table.

Chapter 8

[129]

Schema of the alf_child_assoc table
This table stores all the parent-child association or peer-to-peer association
information. With this table, you can identify the child and parent of any node.

• parent_node_id: This column stores the unique node database ID referring
to the ID column of the alf_node table. As the name suggests, this would
represent the parent node ID.

• child_node_id: This column stores the unique node database ID referring to
the ID column of the alf_node table. This provides the node information of
the child under the associated parent node ID.

• child_node_name: This column stores the names of the children nodes.
• type_qname_id: This column specifies the type of the node.
• qname_ns_id: This column refers to the ID column of the alf_namespace

table.

Schema of the alf_content_data table
This table stores the mapping of node and binary file location. All the required
information related to binary content is stored in this table. Here is the information
about each of the columns:

• id: This column stores the unique row ID; this ID is being used to map
the node and binary content. The alf_node_properties file defining the
cm:content property will have this unique ID.

• content_url_id: This refers to the ID in the alf_content_url table. This ID
will lead to the actual path of content in the filesystem.

• content_mimetype_id: This column specifies the mime-type of the content,
which will be required for read-write operations on content.

• content_encoding_id: This column specifies the encoding of content.

Schema of the alf_content_url table
This table has the actual filesytem path information about the binary file. Here is the
information about each of the columns:

• id: This column stores the unique row ID. This same ID is a reference point
to fetch the URL information.

• content_url: This contains the actual filesystem location of the binary
file under the contentstore directory. A sample entry would be
store://2015/2/10/20/30/xxxx-xxxx-xxx.bin.

The Basics of the Alfresco Content Store

[130]

• content_size: This stores the specified size of the content.
• orphan_time: This column is very important. When content is permanently

deleted from the Alfresco system, this column will have orphan time. Based
on this time, the cleanup process cleans up all the orphaned content from
the filesystem.

Don't try to change values in a database directly unless you are certain
about the consequences. Even though you have to make changes, always
have a backup and rollback plan in place.

Understanding the content lifecycle
in Alfresco
All content in Alfresco has a lifecycle in its system. There are mainly two stages in
which content could be in any ECM system. Here are the following stages:

• Live state : It is referred to as workSpacesStore in Alfresco
• Archive state: It is referred to as archiveSpacesStore in Alfresco

When a user uploads content, it is in a live state. Users can do all sorts of operations
like edit, update, and change permissions while content is in an active state. On
deletion of content, users have the option to send the content to an archive state, and
keep it there for a specific duration and then have it removed completely from the
system or permanently deleted from Alfresco.

As we discussed in earlier chapters, Alfresco has three components: Database,
ContentStore, and Solr Indexes, which keep reference to all of the content within
the system. So, the content lifecycle mainly impacts these three components.

Let's go through, in detail, the content lifecycle and the impact of each action to these
components.

Creating content
On creation of content in Alfresco, it is stored in a live store, which is
workSpacesStore. All content has a binary file and its associated metadata.
Metadata and all its references are stored in Database. The binary file is stored in
ContentStore. For Search, all the required indexes are created in the Solr directory:

Chapter 8

[131]

content

Creation of Content in Alfresco

Binary Content in
ContentStore

Metadata, permission
and Full text Indexing

in Solr

Content Node
Id, Metadata,
Reference of

binary content

Editing content
Editing content in Alfresco could either mean editing the actual data of a document
or its associated metadata. If a user updates the content of Alfresco, a new binary
file is created in ContentStore and a reference to it is updated in Database. The
old binary file is marked as an orphan for removal from the system. Details about
the orphan lifecycle will be explained later on in the chapter. Solr indexes are also
updated if the content requires full indexing.

If only the metadata of a document is updated, the associated entry in the database
is modified. Also, old indexes are removed and new Solr indexes are created for the
updated metadata:

Update

Metadata and

Content Store

Reference

Create new Binary

Content in

ContentStore

Database

Solr Indexes

(workspacesStore)ContentStore

Delete old index and

create new index for

updated metadata

and full text indexing

Update Content in Alfresco

content

The Basics of the Alfresco Content Store

[132]

Archiving content
When a user deletes content from the live store, it is moved to the archive store.
In Alfresco, you can view all the archive content in the trash can. When content is
archived, the main reference table (alf_node) has new entries related to the archive
store. A new archive node ID is generated for the document and all metadata
references to it are associated with this new node ID. The old node ID is marked as
deleted. There is no impact to the binary file in ContentStore. Indexes are removed
from workspaceStore and created under archivespaceStore:

Change the node

store information

to archive. Insert

archive

metadata details

Delete the indexes

Database

Solr Indexes

workspacesStore

Solr Indexes

(archivespacesStore)

Create the index

related to content

in archive store

Archive Content in Alfresco

content

Deleting content
This is the phase when a user wants to delete the file from the system permanently.
When a user removes content from the trash can, content is permanently marked
for deletion. There is no rollback at this point. All metadata information is removed
from the database. Only one entry is present in the main reference table (alf_node),
which is marked for deletion. After 30 days, the entry from the database will also
be removed. The binary file is not marked for deletion immediately, but the content
location mapping in the database is marked as an orphan. After 14 days, the binary
file will be moved to the contentstore.deleted directory in the filesystem. The
amount of ContentStore protection in days is configurable. All the indexes are
removed completely when the file is deleted permanently:

Chapter 8

[133]

Move binary file from

contentstore to

contentstore.deleted

after 14 days

Delete Content in Alfresco

content

Database Database

Solr Indexes

archiveSpacesStore

Delete the indexes

Remove the database

entry from all tables

except alf_node. Mark

the row as delete. Mark

binary file reference

as orphan

Delete Entry

from Database

after 30 days

Post Processing After Permanent Delete

ContentStore

In Alfresco, everything is considered a node. What we have learned above about the
content lifecycle is mostly applicable to all types of nodes. But apart from content, we
also have folders, users, and groups in Alfresco. These special types of nodes have
some differences when compared to the content lifecycle.

Folders have the same lifecycle as content, with the only difference being it has no
reference to ContentStore. So, the ContentStore lifecycle is not applicable to folders.

Users and groups have the same lifecycle as folders but they cannot be archived in
Alfresco. Once deleted, they are permanently deleted from the system and there is
no rollback.

Summary
In this chapter, we covered details about the core components of Alfresco.
ContentStore and the database are the building blocks of Alfresco. These two
components form your full repository.

Alfresco provides you with various different types of ContentStore, like file storage,
an encrypted store, and a caching store. Based on the system design, we can use any
of them. Alfresco also provides you with the flexibility to define multiple stores and
content can be bound to their own specific stores.

We also discussed the database schemas of Alfresco and a few of the important
tables and their associations. Content in any ECM system has a lifecycle. Content
moves from live to archive and is then removed from the system. While going
through this phase, it impacts all core components.

In the next chapter, we will discuss the important tools and procedures required for
the maintenance and troubleshooting of Alfresco.

[135]

Maintenance and
Troubleshooting

Any application, once in production, requires constant monitoring and maintenance
to work efficiently. Alfresco as an application can be easily monitored using the
JMX interface. This interface is very handy for the system administrator to control
and configure applications at run-time without restarting the server. We will learn
about JMX configuration and how to use it in detail in this chapter. All applications
need some tuning to work as per the requirements. Various components of Alfresco
such as the database, thread connection, cache, and logger, need to be configured as
per the application.

In this chapter we will look in detail at the following topics:

• Understanding JMX in Alfresco
• Learning about server maintenance and best practices for it
• Understanding audits
• Various ways to tune the Alfresco application

Understanding JmX in Alfresco
JMX knowledge is very important for any system administrator of Alfresco. The
JMX technology is a standard part of the JAVA SE platform that provides a simple
way to manage applications, devices, and services. Server properties can be edited
and the logger can be enabled without restarting the application. There are various
open source tools available in the market such as JConsole, VisualVM, JMap, and
so on, which allow you to connect to the JMX interface of the application remotely.
JConsole is part of the JavaVM, it is an executable file located at JDK_HOME/bin.

Maintenance and Troubleshooting

[136]

Refer to https://docs.oracle.com/javase/tutorial/
jmx/overview/index.html for more details about JMX.

Enabling JmX and connecting to Alfresco
through the JmX client
To connect to the Alfresco MBean server via the JMX client, you have to do some
configuration to turn it on. MBean is a managed Java object and can represent a
device, an application, or any resource that needs to be managed. Only the JMX
client that supports JSR-160 can connect to the Alfresco MBean server.

Here are the steps to enable JMX in Alfresco:

1. Configure the property below to true in the alfresco-global.properties
file as follows:
alfresco.jmx.connector.enabled=true

2. After starting Alfresco, use a JMX client such as JConsole or VisualVM to
connect remotely with Alfresco JMX using the following JMX URL and
default credentials:
URL: service:jmx:rmi:///jndi/rmi://<Alfresco_Hostname>:50500/
alfresco/jmxrmi

User: controlRole

Password: change_asap

The default username and password for the JMX connection should be changed
immediately. Make sure you set a strong password:

https://docs.oracle.com/javase/tutorial/jmx/overview/index.html
https://docs.oracle.com/javase/tutorial/jmx/overview/index.html

Chapter 9

[137]

The following steps should be followed to change the password and set up proper
access for the user:

1. Create a file named alfresco-jmxrmi.password. This file will have the user
credentials for the JMX connection. Add a username and password as per
your organization's policy. Make sure you set a strong password:
monitorRole change_asap

controlRole change_asap

monitorRole change_asap

controlRole change_asap

2. Now a second file is required to be named alfresco-jmxrmi.access. This
file is required to define the access of the user. There are two kinds of access
you can provide: read-only, which will allow a user to only monitor the
application and read/write, which grants access to read and write MBean
attributes. The user can execute operations such as enabling the logger,
executing the scheduler, and so on.
monitorRolereadonly

controlRolereadwrite

monitorRole readonly

controlRole readwrite

3. Now copy this file to a location where only the application user has access,
as the JMX access password is in plain text in the file.

4. Add the jmx entry location in the alfresco-global.properties file:
alfresco.jmx.dir=<Location of JMX files>

5. You can also configure these values in JVM arguments:
-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.access.file=<access file path>

-Dcom.sun.management.jmxremote.password.file=<password file path>

-Dcom.sun.management.jmxremote.authenticate=true.

Maintenance and Troubleshooting

[138]

Server administration and monitoring via JmX
Alfresco exposes many MBeans to allow system administrators to monitor and
manage the application at runtime. When you connect via a JMX supported client
such as JConsole, VisualVM, and so on, the first thing that you will observe is the
CPU and memory utilization of the application. It gives you current statistics about
the application's performance. The CPU and memory are generally provided by
JVM. Refer to the following screenshot:

Chapter 9

[139]

The Thread tab provides you with details about the current thread in execution. You
can also investigate each thread. VisualVM also allows you to do sampling which
provides you with more details about which thread is taking more CPU time. These
tools can also enable thread dumping.

There is a tab named MBeans which has the list of all the beans and related
operations exposed by Alfresco and JVM. JConsole already provides this MBean
feature, if you are using VisualVM you might have to install the MBean plugin.
Let's go through the important one required by system administrators.

Each bean has attributes and operations. Attributes are read-only information exposed
by these beans. The Operations section exposes different actions to manipulate data
or trigger some actions. All beans are grouped into a different category

Understanding MBeans and configuration
Alfresco provides details about the server database, content store, user information,
schedulers, and so on. All the subsystems such as FileServerConfig, Search,
Google docs are also available for configuration via JMX. Refer to the following
screenshot.

• Authority:

This provides details about the total number of users and groups in Alfresco.
Select the Attributes section to view all the details.

• ConnectionPool:

This bean shows details about the database connection. The Attributes
section will provide details such as active connection, idle connection, initial
size of connection, and so on. If you want to see the connection stats in a
graph format, click on the value section for any of the fields.

Maintenance and Troubleshooting

[140]

• Operations:

This section allows you fetch more current information. For example the
getUrl method provides you with database connection information.
Similarly, other methods can be executed. This bean is mostly read-only;
it will not allow you to change any configuration settings.

• ContentStore:
This bean shows details about the file storage in Alfresco. The Attributes
section for each ContentStore will show the space used and the free space
available. It also shows the size of the temp directory configured for Alfresco.
Refer to the following screenshot:

Chapter 9

[141]

• DatabaseInformation:

This bean provide information related to the database used by the Alfresco
application. The Attributes section will provide details about the database
version, the driver details, and the user connected to the database.
As per the following screenshot there is one more additional section, the
SchemaExport. Using the dumpSchemaToXML operations, a user can export
the complete schema of the database in an .xml file.

Maintenance and Troubleshooting

[142]

• FileServerConfig:

This bean provides the status about the virtual filesystems, CIFS and FTP.
Either these file systems are enabled or disabled. You can directly enable/
disable any of the filesystems using the set operations as shown in the
following screenshot:

• Configuration:

As we learned in earlier chapters, Alfresco has the concept of a subsystem
to separate the important functionality as an individual entity. This
Configuration bean clubs all the Alfresco subsystem configuration such as
Audit, Google docs, Email, Transformers, and so on, together. Here you
can change the property related to each of the subsystems. Also there are
individual operation sections exposed which allow you to start and stop
any of the subsystems without impacting the Alfresco server.

Chapter 9

[143]

• GlobalProperties:

As the name suggests this is a read-only bean which provides details about
all the properties in Alfresco.

• RepoServerMgmt:

This bean provides details about user sessions. In Alfresco, for each user
session a unique ticket is created. This bean provides a count of active user
sessions and active ticket IDs. This is very helpful while grabbing the system
statistics for performance tuning. As per the following screenshot, use the
Operations available or the Attributes section to provide all the details.

• RepositoryDescriptor:

This provides details about the repository version. You can identify the
edition and the version of Alfresco. It also provides the version number of
the initially installed version. Initially installed and current version details
will differ if Alfresco is being upgraded from any older version.

Maintenance and Troubleshooting

[144]

• Schedule:

As the name suggest this bean provides details about all the schedulers
available in Alfresco. Schedulers are jobs which are executed at a specified
time. You can configure and execute any scheduler runtime in Alfresco. This
is a very important bean and so use this cautiously as you can trigger any
system schedulers at any point of time. As shown in the following screenshot
under MonitoredCronTrigger there is a list of scheduled jobs available
in Alfresco.
The Attributes section will show when the job is scheduled to be executed,
when it was executed, and other details. Operations have a bunch of get
methods and execute methods exposed. The get methods provide the same
details shown in the Attributes section. Using the execute method you can
trigger the job. The job will perform the same operation as it does normally.
The Attribute values tab can be seen by selecting Attributes:

Chapter 9

[145]

On selecting Operations, we see the Operation invocation tab:

• Log4j:

As the name suggests, this bean allows you to set a different log level for
any available class. This is very helpful while debugging. You can turn on
the logger for any class runtime in the production system and monitor
the logs. Once analysis is completed you can turn off the log or set it to
a minimum level.

Maintenance and Troubleshooting

[146]

As shown in the following screenshot, select Attributes and on the
right-hand side, edit the priority for the selected class. The priority can be
INFO, DEBUG, or WARN. Changes will have an immediate impact.

Server maintenance and best practices
To maintain any system and to make it perform in an optimal manner requires
some tuning as per the organization needs and load on the application. Different
components of Alfresco such as JVM, database, indexes, application thread, and
so on, need to be tuned as per the system needs. Default settings work with less
data sets.

Let's look at the different aspects of server maintenance and tuning.

Understanding JVm settings
Java memory and garbage collections settings are mainly associated with repository
usage. Based on the number of concurrent users using the system, the amount of
read/write operations will help you to decide the memory settings. As per Alfresco
it is recommended to use a 64 bit machine and JVM. A 32 bit machine will not
provide optimal performance. Also make sure the clock speed is above 2.5 Gz.

Chapter 9

[147]

A few important tips while tuning JVM include:

• Make sure the following settings are being set in JVM:
XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode -server

• Based on your usage properly set the X ms and X mx size. Make sure
XX:MaxPermSize is at least more than 128 MB.

• Make sure you reserve enough memory for OS and other operations. Also X
mx should not exceed the available RAM.

• For a normal production system, it is recommended to have 8 GB RAM for
Alfresco. Alfresco stores a lot of cache data in memory, so enough memory
allocation is required to have optimal performance.

• After tuning, validate the memory usage using JConsole and set parameters
as per the observation. Refer to the standard Java documentation to
tune JVM.

maintenance of disk space
Alfresco stores the binary file in a file system. So calculation of disk space is easy.
Calculate the average file size and the number of files your repository will have and
based on that you can decide the disk space to be used. Keep room for temporary
operations. If your application needs versioning, make sure you keep room for that.
Every version copy will create new content in the filesystem. So technically it will
double the size of disk space required.

From a hardware perspective, Alfresco does not have any specific recommendations,
but it is better to use a fast disk so the read/write operation will be faster. Always
monitor the I/O performance for the disk to make sure there is no bottleneck. Quite
often the time of disk I/O is the main reason for slow server performance. Threads
will be stuck waiting to read/write files.

From a maintenance perspective, the points below are the items a system admin
needs to take care with:

• Regularly monitor the I/O performance of the disk.
• Setup monitoring tools in your organization which can monitor the I/O

performance and network performance.
• Make sure the temporary files unused in the system are cleaned.

Maintenance and Troubleshooting

[148]

• Ensure that old log files are being archived and moved to other low end disks.
• Make sure content is being removed from the trash can as per the defined

policy. This will allow the orphan cleaner process to clean-up the data from
contentstore.

• Make sure that files in contentstore.deleted are being cleaned at regular
intervals which will give room for contentstore.

• Have a strong backup plan for copying contentstore. Make sure this copy
process does not overload your NAS and OS system.

• If you are using Lucene make sure the indexes are on a local disk. Carry out
regular full indexing/partial indexing based in some defined intervals on
index size. This will help to keep the data clean.

DB monitoring and tuning
The monitoring database is very critical for Alfresco applications. System
administrators need to make sure there is no deadlock and threads are not
getting stuck. Database performance plays an important role in overall
application performance.

From a maintenance and tuning perspective, system administrators need to take care
of the following aspects:

• Setup a standard DB monitoring tool based on the database used. Oracle
comes with its own monitoring tool. For MySQL you can use innodb to get
the stats.

• Tools should allow you to monitor the number of open connections, queries
being executing, provide statistics about the number of insert/update
queries, and it should also provide details about where the connections
are being opened.

• Use this tool regularly to monitor the database connections. If there are stale
connections try to troubleshoot the reason for that.

• Make sure the allowed DB connections are set as per system usage in
Alfresco. Let's assume the Alfresco db connection pool size is 40, then the
allowed db connection pool in the database should be higher. If you
have a clustered environment it will be double the value.

• The Alfresco db.pool.max should not be greater than the database
connection pool size. The application thread size should also be inline with
the allowed database connection. For example, in the Tomcat server.xml
file, conf has a configuration related to maxThreads. Configure this value
appropriately.

Chapter 9

[149]

• Refer to http://tomcat.apache.org/tomcat-7.0-doc/config/executor.
html.

• The DB should be provided with enough RAM and disk space. For the
normal standard Alfresco application provide around 4 GB of RAM to the
DB server.

• Also set up a tool which can monitor CPU and memory usage of the
database.

• The DB server should be on a separate machine from Alfresco.

Schedulers
Schedulers are background jobs which execute based on the specified schedule. In
Alfresco there are various application jobs and system cleanup jobs. Here we will
understand the list of scheduled jobs available and depending on the system needs
these schedulers can be turned on or off. Some schedulers have a CPU intensive-
operation which should always be executed at night when the system load is less.

Let's go through the important schedulers which are important for a system
administrator. A list of all the schedulers is also available via JMX which we
covered in previous sections about Alfresco:

• Content store cleaner:
This scheduler is to clean up the content store and move the orphan content
(that is, the binary files which are not refereed by any node in Alfresco) from
the contentstore to the contenstore.deleted directory. This scheduler
should always be executed when the system load is less. Once the content
is moved to the contentstore.deleted folder, the system admin can
manually remove the file from this directory.
Configure the following properties in alfresco-global.properties
to execute this scheduler. You can also manually trigger this scheduler
using JMX:
system.content.orphanProtectDays=14<Define how long the orphan
should be kept before it can be deleted>

system.content.orphanCleanup.cronExpression=0 0 4 ? <Cron
expression define the time of execution.Default is every 4>

http://tomcat.apache.org/tomcat-7.0-doc/config/executor.html
http://tomcat.apache.org/tomcat-7.0-doc/config/executor.html

Maintenance and Troubleshooting

[150]

• Node Service Cleanup:
This scheduler is responsible for cleaning-up the db entry of permanently
deleted nodes. Once any node is permanently deleted from Alfresco, there are
a few entries still present in the database as we learned in the previous chapter,
Chapter 8, The Basics of the Alfresco Content Store. By default this is configured
to execute daily at 9 P.M. You can change the timings by configuring the cron
expression in the bean nodeServiceCleanupTrigger via JMX.

• Temp File Cleaner:
This scheduler cleans the temporary file created in the application temp
directory. By default the scheduler executes every 30 minutes. There is no
need to change these values. You can change the timings via JMX.

Fetching audit records from Alfresco
In Alfresco all the actions performed by any user are audited and stored in the
Alfresco database. These records can be fetched any time by the admin user. There
is web-script exposed which can be used to fetch and delete the audit entries from
Alfresco. This can be only performed by admin users. We learned about audit
configuration in Chapter 3, Alfresco Configuration.

To fetch the audit records from Alfresco there is a get service exposed by Alfresco,
which can be found at the following URL.

• /alfresco/service/api/audit/query/{application}?fromId={fromId}
&toId={toId}&fromTime={fromTime}&toTime={toTime}&user={user}&fo
rward={forward}&limit={limit}&verbose={verbose}

The parameters involved are explained as follows:

• application: Audits are divided into different applications. By default
everything is under alfresco-access. So pass the application name as
alfresco-access.

• fromId&toId: If you know the audit ID number you can use these
parameters. Mostly you can skip them.

• fromTime&toTime: This passes the time in milliseconds to fetch the audit
record based on a specified duration.

• user: This parameter will allow you to fetch audit records for a specified
user.

• limit: This parameter will limit the number of audit records in response.
Make sure you use this parameter so that the system is not overloaded and
fetches a lot of audit records.

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=12dc0c54-aa48-cca8-d6a7-5440e56f738d

Chapter 9

[151]

• verbose: This parameter can be false/true. If true it will send more details in
the JSON response.

Alfresco also allows you to delete audit records. You can call the following POST
URL to delete the records, pass the application name, and duration of time for
which audit records need to be deleted:

• /alfresco/service/api/audit/clear/{application}?fromTime={fromT
ime}&toTime={toTime}

Use this service cautiously, as it will remove the audit records permanently from
the system. Also try to provide a small duration so that the system doesn't get
overloaded.

Tips for troubleshooting the application
The system admin should know a few Alfresco troubleshooting techniques. Let's
go through the common errors we see in Alfresco applications and the required
debug points:

• Alfresco system in read-only mode: The main reason for this exception is
license expiration. Make sure the license is valid and if required, update the
new license. If you have to restore the system from any backup and you see
this error make sure the license file is not corrupted.

• Context initialization failure: This error can happen when the database
and contentstore are not in sync. It is very important to have both of these
components in sync for Alfresco to work properly. Another reason for these
errors could be the permission on contentstore. The Alfresco application
user should have full access to contentstore.

• Degraded system performance: For troubleshooting this case, monitor the
CPU and memory usage of Alfresco. Also monitor the I/O performance
and database connection. This will help to isolate the cause of the slowness.
Try to a take few thread dumps to see more details about what operation is
currently being performed and where the threads are stuck.

Maintenance and Troubleshooting

[152]

Summary
In this chapter we covered details about JMX in Alfresco. An admin can monitor the
application and also configure Alfresco via JMX. There are different beans such as
Schedule, Database, Connection Pool, Logger, and so on which can be configured
without a system restart. We also covered important aspects from the server
maintenance perspective. There are monitoring tools required by the system
admin to control the database, disk, and applications.

This chapter also provided details about how an admin can easily fetch the audit
records from the system. This will also help to analyze whether unauthorized
activity has been performed.

In the next chapter we will discuss the upgrade process of Alfresco. We will go
through the step-by-step process to upgrade from one version of Alfresco to any
other version of Alfresco.

[153]

Upgrade
Alfresco releases new versions for new features, enhancements, and improvements
to the system. From time to time, it is necessary to upgrade to the latest version of
Alfresco. Upgrading is a process that involves moving all the data stored in the X
version of Alfresco to an updated Y version of Alfresco. It is always recommended
to move to the latest release; there are different paths for upgrading, which we will
cover in detail in this chapter.

We will cover the following topics in this chapter:

• The importance of choosing the correct path for the upgrade
• Understanding the upgrade process
• Troubleshooting and best practices for upgrading Alfresco

Understanding the Alfresco upgrade
process
Upgrading Alfresco is a multi-step process. Based on how customizations are done
and what new features available, you will need to first decide the target version of
Alfresco. Based on the currently installed version, there could be different paths
to upgrade it.

Upgrading involves moving all the content (database, content store, indexes) to a
new version of Alfresco, and any feature customization done in Alfresco needs to be
upgraded to make it compatible with the new system. The last step is to validate
the whole system and data.

Now let's go through each of the steps in detail.

Upgrade

[154]

Choosing the upgrade path
Alfresco's major versions are 2.x, 3.x, 4.x, and 5.x. 2.x is the oldest version and 5.0 is
the latest version available in Alfresco. Recently, Alfresco has stopped support for
any version older than 4.x.

The standard upgrade process is if your current Alfresco system version is 2.x, then
you cannot directly upgrade to 4.x or 5.0 as there are major functionality changes.
Alfresco recommends you go to an intermediate stable version before upgrading
to the final version.

Here are a few samples of upgrading Alfresco Enterprise versions:

• Current version is 2.x and target version is 5.0: Since you cannot directly
upgrade Alfresco to v5.0, you will first need to upgrade to a stable version
of Alfresco 3.x, then to 4.x, and finally you can upgrade to 5.0.
2.x -> 3.x-> 4.x -> 5.0

• Current version is 3.x and target version is 5.0: Again, here you need
to upgrade to 4.x first before you can upgrade to 5.0 as there are major
database changes. For example, there are index changes in version 5.0.

Before deciding on an upgrade path, it is very important to contact Alfresco Support
to get information about the complete upgrade path.

Also, before you choose the target version for the upgrade, there are a few important
points that need to be considered:

• Get a proper understanding of the new features and changes available in the
latest version of Alfresco. For example, Alfresco Explorer is deprecated in
v5.0, so if your end users are using Explorer, then you might only want to
upgrade to the latest stable 4.x version.

• Conduct an analysis of the effect of any customization done to the current
version of Alfresco.

• Decide your timeline for the upgrade process.

Standard upgrade guidelines
All upgrades have standard guidelines that need to be followed regardless of the
version you are upgrading to. Let's go through each of the steps in detail.

Chapter 10

[155]

Preparing a checklist
Analyzing the current system and the new, target upgraded system is very important
for the upgrade and for proper planning. The first step should be getting details
about the current infrastructure: type of environment, the amount of customization
done, important features used, data size, and so on.

The second step is to decide on the target upgrade version and understand all the
features that your current application will have and decide if there is an alternative.
Once the target version of Alfresco is selected, identify all software requirements and
environment details from Alfresco Support. For example, when you are upgrading to
the latest version of Alfresco, you might have to change the JDK version, application
server version, and other things. The system stack might also require changes: the
Solr version might need to be upgraded.

Prepare a checklist of the new system requirements and validation process.

Setup and validation of the new environment
Install the new Alfresco version on a separate server from the production system.
Refer to Chapter 2, Setting Up the Alfresco Environment, for the installation process.
Validate installation has been done correctly and has been documented.

If you have a distributed clustered environment, enable clustering and validate the
application is working as expected. Don't use production data yet, validate with
a blank database and content store first. For an Alfresco 5 clustering setup, refer to
Chapter 7, High Availability in Alfresco.

If your current Alfresco application has code customization or extensions deployed,
make sure all code is made compatible with the new version. Also, make sure all
configuration changes done on the old server are also configured properly on the
new Alfresco server.

Deploy all the customized code and configuration on the new Alfresco server and
perform a regression test. Make sure your existing application works properly with
the new version of Alfresco. All this validation is very important prior to upgrading.

Upgrade

[156]

Data upgrade process
Once you have validated that the new Alfresco server has been installed and
configured properly, it is time to actually upgrade the data. The following
steps need to be performed:

1. Take a backup of data from Production, which will be used for upgrade
purposes. You need to take a backup from the Database, ContentStore
repository, and indexes. This will be your snapshot of data which will be
upgraded to the latest version of Alfresco. Refer to the following properties
in their respective files to locate the data to be backed up:
dir.root=<Content store location. Property configured in alfresco-
global.properties>

db.url =<Database connection details. Property configured in
alfresco-global.properties>

data.dir.root=<Solr Index location. Propertyconfigured in
solrcore.properties for both workspace and archive indexes>

dir.indexes=<Lucene index path. Property configured in alfresco-
global.properties>

2. Restore the database ContentStore and indexes on a separate server. If we
keep the upgraded environment separate, then the production server can still
be used and will not be impacted.

3. As discussed in the installation and validation sections, once the new version
of the Alfresco server has been completely tested with customized code and
configurations, make sure the server has stopped.

4. Configure the following properties in the alfresco-global.properties
file to point to the restored production database and content store in step 2.
For details about database and content store configuration you can refer to
Chapter 3, Alfresco Configuration, and Chapter 8, The Basics of the Alfresco Content
Store. Make sure all your test data is wiped out in the new installation:
dir.root=<Restored content store location>

db.username=<Set correct alfresco database username>

db.password=<Alfresco database password>

db.name=<Database name>

db.url=<Full Database URL>

5. Point Solr indexes to the new restored indexes. Remove all the test data and
model files created in the new installation. Configure the following properties
for the Solr indexes in the alfresco-global.properties file. Also make sure
all the old Solr configuration are also copied to a new instance:
 index.subsystem.name= <Set proper subsystem name>

Chapter 10

[157]

6. Configure the following property in solrcore.properties to point to new
indexes for both the workspace and archive:
 data.dir.root=<Set the full path for the indexes>

7. If you are upgrading to Alfresco 5.0, there are a few additional steps required
to upgrade the Solr version, as Alfresco v5.0 uses Solr4. We will cover these
details later in the chapter.

8. If you are upgrading from Alfresco prior to version 4.x make sure the
following jbpm properties are set to true to enable the jbpm engine, because
in the latest version of Alfresco the workflow engine has been changed to
activity, and by default activity is enabled:
 system.workflow.engine.jbpm.enabled=true

9. Start the Alfresco server and monitor the logs. Log files will provide you with
details about the upgrade process. If you have a clustered environment, you
can configure all nodes with the same code and configurations. Start only one
node. Later on you can restart all the other nodes and all of them will have
upgraded data.

10. Once the upgrade is finished and the server starts properly, validate the
upgraded server.

11. If the server is validated properly and all goes well, you can switch over to
the new upgraded server and the old production server can be shut down. If
there is an issue with the new upgraded server, the old production server can
always be turned back on.

Solr upgrade process for Alfresco 5
Alfresco 5.x only supports Solr4. It doesn't support Lucene or older versions of Solr
any more. To completely upgrade to Alfresco 5, the system has to recalculate all the
indexes with the latest version. If the current system is using Lucene indexes, then
the system needs to be upgraded to Solr before we can upgrade to Solr4.

Let's go through the steps to upgrade Solr:

1. If the current repository is using Lucene indexes and is an older version prior
to Alfresco 4.x or on Alfresco 4.x, then you need to upgrade the system to
Alfresco 4.x. Set up a new Solr1 and configure Solr1 tracking to re-calcuate all
the indexes. For larger repositories this can be a long process.

2. Once your indexes are using Solr in Alfresco 4.x., the system is ready to
upgrade to Alfresco 5.

3. While you are upgrading Alfresco 4.x to Alfresco 5.0, you can still use the old
Solr and configure Solr4 to start tracking and recalculating the indexes.

Upgrade

[158]

4. During the upgrade process, copy all the Solr indexes from Alfresco 4 to the
new installation of Alfresco 5, as we discussed in the upgrade process. Also
make sure Alfresco 5 is running properly with the older version of Solr.

5. Once the upgrade is finished, set up the new Solr4 instance on a separate
server. It is not recommended to have both Solr and Solr4 on the same
machine as the indexing process will be heavy on memory and CPU
utilization. Refer to Chapter 5, Search, for Solr4 installation details.

6. Verify in the Alfresco admin console that the search subsystem is still set to
the older version of Solr.

7. Now configure solrcore.properties located in workspace-SpacesStore/
conf and archive-SpacesStore/conf in the new Solr4 installation to point
to the new Alfresco server and start tracking the indexes:
data.dir.root=<Index Directory location>

enable.alfresco.tracking=<Set to true to start the tracking>

alfresco.host=<Alfresco Server Host>

alfresco.port=<Alfresco Server Port>

alfresco.port.ssl=<Alfresco Server SSL Port>

alfresco.cron=<Cron expression to tracking Alfresco index>

8. You can monitor the indexing status of Solr4 using the JMX or by using the
following monitor service of Solr:
http://<Solr Server Host and Port>/solr4/admin/
cores?action=SUMMARY&wt=xml

9. Once Solr4 has indexed the complete repository, verify the report summary
count matches the node count in the repository. Switch the search subsystem
from Solr to Solr4 using Alfresco admin console or by configuring the
following property in the alfresco-global.properties file. Stop the
older Solr version:
index.subsystem.name=solr4

dir.keystore=<New solr certificate location>

solr.port.ssl=<Solr SSL port>

Refer to Chapter 5, Search, for details about troubleshooting
and accessing Solr Indexes.

http://<Solr Server Host and Port>/solr4/admin/cores?action=SUMMARY&wt=xml
http://<Solr Server Host and Port>/solr4/admin/cores?action=SUMMARY&wt=xml

Chapter 10

[159]

Best practices and troubleshooting
Upgrading Alfresco can be a long process, depending on the repository size. Here
are a few tips for administrators that will be helpful in the upgrade process:

• It is recommended to do a dry run of the upgrade process before starting the
upgrade process on production data.

• Set up proper monitoring for database server logs and the Alfresco server.
Alfresco log monitoring will help troubleshoot any issue faced while
upgrading. Database logs will help to troubleshoot if there is any problem
with upgrading the database.

• During the upgrade process Alfresco moves the data from the old schema
to the new database schema, which can take time depending on the size of
the repository.

• Proper regression of customized code with the new version of Alfresco server
is required.

• Monitor Solr indexes and do proper data verification.
• From a validation standpoint after upgrade, validate that you are able to

search all the existing content, users, and groups. Check that permissions
on folders are correct.

• Once the server has been upgraded, based on the performance of the server,
check if any tuning is required, for example, JVM settings, index tuning,
and so on.

Summary
In this chapter, we covered details about the process of upgrading Alfresco. The
Alfresco upgrade process is pretty straightforward; it is just matter of configuring
the system. The first step of the upgrade will analyze the system and decide the
final path of upgrade. Once the path is decided, set up the new server and validate
and start the upgrade process with production data. Make sure Solr indexes are
recalculated properly with the new Solr4 version in Alfresco 5.

[161]

Index
A
Active Directory (AD) 3
Activiti

reference link 4
workflow console 74-76

admin console, Alfresco Share
about 60, 61
application 61
Category Manager 61
group 71
Node Browser 62-65
Site Manager 67
tag manager 66
users 67

administration (admin) console
Activiti workflow console 74
Alfresco standalone administration page 48
directories 59
general section 54
in Alfresco Explorer 72
in Alfresco Share 60
repository services 57, 58
support tools 59
types 47
virtual filesystems 60

alf_child_assoc table
about 129
child_node_id column 129
child_node_name column 129
parent_node_id 129
qname_ns_id column 129
type_qname_id column 129

alf_content_data table
about 129
content_encoding_id column 129

content_mimetype_id column 129
content_url_id column 129
id column 129

alf_content_url table
content_size column 130
content_url column 129
id column 129
orphan_time column 130

alf_node_properties table
about 128
actual_type_n column 128
boolean_value column 128
long_value column 128
node_id column 128
qname_id column 128
string_value column 128

alf_node table
about 127
acl_id column 128
auditor_created column 128
auditor_creator column 128
auditor_modified column 128
id column 127
store_id column 127
transaction_id column 127
type_qname_id column 127
uuid column 127

Alfresco
about 1
and Solr integration 80
application, troubleshooting, tips 151
architecture overview 6
auditing 5
audit records, fetching 150, 151
business process management 4
business use cases 9

[162]

cloud-based ECM 5
collaboration 4
ContentStore 130
database 130
enterprise 2
external integration 3
highly extensible 3
installing, in JBoss 24-29
installing, manually in Tomcat

server 20-23
installing, wizard used 13-19
JMX 135
JMX, enabling 136, 137
open source 2
overview 1, 2
properties 34
reference link 2
rich media support 3
scalable 2
search 5
search admin console 85-87
secured system 3
Solr Indexes 130
subsystems, configuring 35
upgrade process 153
version control 5

Alfresco 5
Solr upgrade process 157, 158

Alfresco Community Edition 2
Alfresco configuration

about 33, 34
configuration files, extending 34, 35

Alfresco Enterprise
reference link 14

Alfresco Explorer
admin console 72-74

Alfresco in Cloud 1
Alfresco Module Package (AMP)

about 124
installing 29

Alfresco nodes, clustering
about 110
Hazelcast mancenter dashboard,

setting up 112, 113
repository clustering 110, 111
share clustering 110
troubleshooting 112

verification steps 111
Alfresco repository

about 7
features 7

Alfresco S3 content store
about 124
configuring 124

Alfresco servers
clustering 107, 108
complete stack, replicating 108, 109
multi-tier architecture 109

Alfresco Share
about 6
admin console 60, 61
reference link 7

Alfresco standalone administration page
about 48
consoles 49
e-mail services 53
reference link 111
system summary 48

Alfresco supported platforms
reference link 14

Alfresco wiki
reference link 43

Amazon cloud (EC2)
reference link 124

Amazon's Simple Storage Service (S3) 124
Apache Solr

reference link 5
Apache Tomcat 7

reference link 148
architecture overview

Alfresco repository 7
Alfresco Share 6
content store 8
database 8
Filesystem protocol

(CIFS/WebDAV/FTP) 8
reference link 6
solr indexes 8

audit records
fetching, from Alfresco 150, 151

authentication chain
about 101, 102
LDAP configuration, with Active

Directory 102-104

[163]

B
backup

cold backup, performing 114
for Alfresco configuration 113
for ContentStore (All Binary Files) 113
for database 113
for Solr Indexes 113
hot backup, performing 114, 115
process 113

best practices 30, 146, 159
business processes

reference link 76
business use cases

about 9
Alfresco, using for collaboration 10
document management solution 9
record management solution 9

C
caching ContentStore

about 122
configuring 122, 123

CIFS (Common Internet File System) 8
CMIS 3
consoles, Alfresco standalone

administration page
about 49
model and messages console 49, 50
tenant console 51
workflow console 52

content lifecycle, Alfresco
about 130
archive state 130
content, archiving 132
content, creating 130
content, deleting 132, 133
content, editing 131
live state 130

content store architecture
about 120
Alfresco S3 content store 124
caching ContentStore 122
contentstore 120
contentstore.deleted 120
content store selector 125

encrypted ContentStore 120
content store selector

about 125
using 125, 126

D
database 8
Database connection pool

reference link 38
database schema

about 127
alf_content_url table 129
of alf_child_assoc table 129
of alf_content_data table 129
of alf_node table 128

default settings, repository.properties
file 37, 38

E
e-mail configuration

about 44
IMAP configuration 45
inbound e-mail configuration 45
outbound e-mail configuration 44

encrypted ContentStore
about 120
enabling 121

enterprise content management systems
(ECM)

reference link 1
environment configuration

reference link 31
Ephesoft 4
errors, Alfresco application

context initialization failure 151
degraded system performance 151
system, in read-only mode 151

F
Facebook 4
file servers

CIFS, configuring 42
configuring 41
FTP, configuring 43

[164]

filesystem protocol (CIFS/WebDAV/FTP) 8
firewall examples

reference link 42

G
Gartner

reference link 1
General section, Alfresco standalone

administration page
about 54
license 55
repository information 56
system settings 56, 57

H
Hazelcast mancenter

about 112
reference link 113

I
installation validation

reference link 31

J
Java 7

reference link 20
Java Management Extensions (JMX)

about 34, 135
connecting, to Alfresco through JMX

client 136, 137
enabling 136
reference link 136
server, administering via 138, 139
server, monitoring via 138, 139

JBoss
about 13
Alfresco, installing 24-29
reference link 24

JConsole 135
JMap 135
JSRs

about 6
reference link 6

JVM
tuning, consideration 147

K
Kerberos 35
Kofax

about 4
reference link 4

L
LDAP 3, 35
Liferay

reference link 3
Lucene 148

m
MBeans

about 136-145
configuration 139-145

multi-tier architecture
about 109
Alfresco nodes, clustering 110

O
OpenLDAP 101

P
permission

DeleteChildren 96
DeleteNode 96
overview 95, 96
ReadChildren 96
ReadContent 96
ReadProperties 96
WriteContent 96
WriteProperties 96

properties, Alfresco
audit.* 34
db.* 34
db.pool.abandoned.detect 38
db.pool.abandoned.log 38
db.pool.abandoned.time 38

[165]

db.pool.evict.idle.min 38
db.pool.evict.interval 38
db.pool.evict.validate 38
dir.* 34
index.* 34

R
Remote Method Invocation (RMI) 17
repository configuration

about 37
audit 40
cloud sync service, configuring 43
content store, configuring 38, 39
database, configuring 37, 38
e-mail, configuring 44
file servers, configuring 41
Google Docs, configuring 39
search functionality, configuring 39

REST 3
restore process

about 115
disaster recovery system, building 115, 116

roles
about 96, 97
collaborator 97
consumer 96
contributor 97
coordinator 97
editor 97
overview 95

rsync 114

S
SaaS (Software as a Service) 2
security model

alfrescoNtlm 101
authentication chain 101
authentication subsystem 101
external 101
kerberos 101
ldap 101
ldap-ad 101
overview 100, 101
passthru 101

server maintenance
about 146
DB, monitoring 148, 149
DB, tuning 148, 149
disk space maintenance 147, 148
JVM settings 146
schedulers 149, 150

Share
reference link 98

SlideShare 4
Solr

admin console 87-89
administration 85
advantages 80
and Alfresco integration 80
directory structure 84
full re-indexing process 91
installing 80-83
monitoring 85
reference link 158
troubleshooting 91, 92
troubleshooting, reference link 93

Solr Indexes
about 8
reference link 91

standard upgrade guidelines
about 154
checklist, preparing 155
data, upgrading 156, 157
new environment, setting up 155
new environment, validating 155
Solr upgrade process, for Alfresco 5 157

subsystems, Alfresco
configuring 35, 36
extending 36, 37

T
Tomcat 13
Tomcat core binary distribution

reference link 81
Tomcat server

Alfresco, manual installation 20-23
troubleshooting

about 159
tips 30

Twitter 4

[166]

U
upgrade process

about 153
path, selecting 154
standard guidelines 154

user
authorizing, on content 98-100
authorizing, on space 98-100

users, Alfresco Share
about 67
creating, steps 67, 68
deleting, steps 69
editing, steps 69
multiple users, creating with CSV File 71

V
VisualVM 135

W
WebLogic 13
wizard

used, for installing Alfresco 13-20

X
Xtrabackup

reference link 113

Y
YouTube 4

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Alfresco
	Overview of Alfresco
	Enterprise and open source
	Scalable
	Rich media support
	Secured system
	Highly extensible
	External integration
	Collaboration
	Business process management
	Cloud-based ECM
	Search
	Version control
	Auditing

	Alfresco architecture overview
	Alfresco Share
	Alfresco repository
	Filesystem protocol (CIFS/WebDAV/FTP)
	Database
	Content store
	Solr indexes

	Business use cases of Alfresco
	Alfresco as a document management solution
	Alfresco as a record management solution
	Alfresco for collaboration

	Summary

	Chapter 2: Setting Up the Alfresco Environment
	Installing Alfresco using a wizard
	Installing Alfresco manually on a
Tomcat server
	Installing Alfresco in JBoss
	Installating amp
	Troubleshooting tips and best practices
	Summary

	Chapter 3: Alfresco Configuration
	The basics of Alfresco configuration
	Extending configuration files
	Configuring subsystems in Alfresco
	Extending the subsystem

	Repository configuration
	Configuring the database
	Configuring the content store
	Configuring the search functionality
	Configuring google docs
	Auditing
	Configuring file servers
	Configuring CIFS
	Configuring FTP

	Configuring the cloud sync service
	Configuring e-mail
	Outbound e-mail configuration
	Inbound e-mail configuration
	IMAP configuration

	Summary

	Chapter 4: Administration of Alfresco
	Understanding the admin console
	Alfresco standalone administration page
	System summary
	Consoles
	E-mail services

	General
	License
	Repository information
	System settings

	Repository services
	Support tools
	Directories
	Virtual filesystems
	Admin console in Alfresco Share
	Application
	Category Manager
	Node Browser
	Tag manager
	Site Manager
	Users
	Group

	Admin console in Alfresco Explorer
	Activiti workflow console

	Summary

	Chapter 5: Search
	Understanding Solr and Alfresco integration
	Installing Solr
	Understanding the Solr directory structure
	Administration and monitoring of Solr
	Understanding the Alfresco search admin console
	Understanding the Solr admin console
	Full re-indexing process in Solr

	Troubleshooting Solr
	Summary

	Chapter 6: Permissions and Security
	Overview of permissions and roles
	Permissions
	Roles

	Authorizing users the use of content
or space
	Overview of the security model
	Authentication subsystem
	Authentication chain
	LDAP configuration with Active Directory

	Summary

	Chapter 7: High Availability in Alfresco
	Clustering Alfresco servers
	Replicating a complete stack
	Multi-tier architecture
	Clustering Alfresco nodes

	The backup and restore process
	Performing a cold backup
	Performing a hot backup
	The restore process
	Designing a disaster recovery system
for Alfresco

	Summary

	Chapter 8: The Basics of the Alfresco Content Store
	Understanding the content store architecture
	Encrypted ContentStore
	Enabling the encrypted ContentStore

	Caching ContentStore
	Configuring the caching of ContentStore

	Alfresco S3 content store
	Configuring the Alfresco S3 connector

	Content store selector
	Using the content store selector

	Understanding the database schema
	Schema of the alf_node table
	Schema of the alf_node_properties table
	Schema of the alf_child_assoc table
	Schema of the alf_content_data table
	Schema of the alf_content_url table

	Understanding the content lifecycle in Alfresco
	Creating content
	Editing content
	Archiving content
	Deleting content

	Summary

	Chapter 9: Maintenance and Troubleshooting
	Understanding JMX in Alfresco
	Enabling JMX and connecting to Alfresco through the JMX client
	Server administration and monitoring via JMX
	Understanding MBeans and configuration

	Server maintenance and best practices
	Understanding JVM settings
	Maintenance of disk space
	DB monitoring and tuning
	Schedulers

	Fetching audit records from Alfresco
	Tips for troubleshooting the application
	Summary

	Chapter 10: Upgrade
	Understanding the Alfresco upgrade process
	Choosing the upgrade path
	Standard upgrade guidelines
	Preparing a checklist
	Setup and validation of the new environment
	Data upgrade process
	Solr upgrade process for Alfresco 5

	Best practices and troubleshooting
	Summary

	Index

