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Foreword

Time is central to life. We are aware of time slipping away, being used well or
poorly, or of having a great time. Thinking about time causes us to reflect on the
biological evolution over millennia, our cultural heritage, and the biographies of
great personalities. It also causes us to think personally about our early life or the
business of the past week. But thinking about time is also a call to action, since
inevitably we must think about the future — the small decisions about daily meetings,
our plans for the next year, or our aspirations for the next decades.

Reflections on time for an individual can be facilitated by visual representations
such as medical histories, vacation plans for a summer trip, or plans for five years of
university study to obtain an advanced degree. These personal reflections are enough
justification for research on temporal visualizations, but the history and plans of or-
ganizations, communities, and nations are also dramatically facilitated by powerful
temporal visual tools that enable exploration and presentation. Even more complex
problems emerge when researchers attempt to understand biological evolution, ge-
ological change, and cosmic scale events.

For the past 500 years circular clock faces have been the prime representation for
time data. These emphasize the twelve or 24-hour cycles of days, but some clocks
include week-day, month or year indicators as well. For longer time periods, time
lines are the most widely used, by historians as well as geologists and cosmologists.

The rise of computer display screens opened up new opportunities for time dis-
plays, challenging but not displacing the elegant circular clock face. Digital time
displays are neatly discrete, clear and compact, but make time intervals harder to
understand and compare. Increased use of linear time displays on computers has
come with new opportunities for showing multiple time points, intervals, and future
events. However, a big benefit of using computer displays is that multiple temporal
variables can be shown above or below, or on the same time line. These kinds of
overviews pack far more information in a compact space than was previously possi-
ble, while affording interactive exploration by zooming and filtering. Users can then
see if the variables move in the same or opposite directions, or if one movement
consistently precedes the other, suggesting causality.

vii
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These rich possibilities have payoffs in many domains including medical histo-
ries, financial or economic trends, and scientific analyses of many kinds. However,
the design of interfaces to present and manipulate these increasingly complex and
large temporal datasets has a dramatic impact on the users’ efficacy in making dis-
coveries, confirming hypotheses, and presenting results to others.

This book on Visualization of Time-Oriented Data by Aigner, Miksch, Schumann
and Tominski represents an important contribution for researchers, practitioners, de-
signers, and developers of temporal interfaces as it focuses attention on this topic,
drawing together results from many sources, describing inspirational prototypes,
and providing thoughtful insights about existing designs. While I was charmed by
the historical review, especially the inclusion of Duchamp and Picasso’s work, the
numerous examples throughout the book showed the range of possibilities that have
been tried — successes as well as failures. The analysis of the user tasks and inter-
action widgets made for valuable reading, provoking many thoughts about the work
that remains to be done.

In summary, this book is not only about work that has been done, but it is also a
call to action, to build better systems, to help decision makers, and to make a better
world.

University of Maryland, Ben Shneiderman
February 2011



Preface

Time is an exceptional dimension. We recognize this every day: when we are waiting
for a train, time seems to run at a snail’s pace, but the hours we spend in a bar with
a good friend pass by so quickly. There are times when one can wait endlessly for
something to happen, and there are times when one is overwhelmed by events oc-
curring in quick succession. Or it can happen that the weather forecast has predicted
a nice and sunny summer day, but our barbecue has to be canceled due to a sudden
heavy thunderstorm. Our perception of the world around us and our understanding
of relations and models that drive our everyday life are profoundly dependent on the
notion of time.

As visualization researchers, we are intrigued by the question of how this impor-
tant dimension can be represented visually in order to help people understand the
temporal trends, correlations, and patterns that lie hidden in data. Most data are re-
lated to a temporal context; time is often inherent in the space in which the data have
been collected or in the model with which the data have been generated. Seen from
the data perspective, the importance of time is reflected in established self-contained
research fields around temporal databases or temporal data mining. However, there
is no such sub-field in visualization, although generating expressive visual represen-
tations of time-oriented data is hardly possible without appropriately accounting for
the dimension of time.

When we first met, we had all already collected experience in visualizing time
and time-oriented data, be it from participating in corresponding research projects or
from developing visualization techniques and software tools. And the literature had
already included a number of research papers on this topic at that time. Yet despite
our experience and the many papers written, we recognized quite early in our col-
laboration that neither we nor the literature spoke a common (scientific) language.
So there was a need for a systematic and structured view of this important aspect of
visualization.

We present such a view in this book — for scientists conducting related research as
well as for practitioners seeking information on how their time-oriented data can be
visualized in order to achieve the bigger goal of understanding the data and gaining
valuable insights. We arrived at the systematic view upon which this book is based

ix
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in the course of many discussions, and we admit that agreeing on it was not such
an easy process. Naturally, there is still room for arguments to be made and for
extensions of the view to be proposed. Nonetheless, we think that we have managed
to lay the structural foundation of this area.

The practitioner will hopefully find the many examples that we give throughout
the book useful. On top of this, the book offers a substantial survey of visualization
techniques for time and time-oriented data. Our goal was to provide a review of
existing work structured along the lines of our systematic view for easy visual ref-
erence. Each technique in the survey is accompanied by a short description, a visual
impression of the technique, and corresponding categorization tags. But visual rep-
resentations of time and time-oriented data are not an invention of the computer age.
In fact, they have ancient roots, which will also be showcased in this book. A dis-
cussion of the closely related aspects of user interaction with visual representations
and analytical methods for time-oriented data rounds off the book.

We now invite you to join us on a journey through time — or more specifically on a
journey into the visual world of time and time-oriented data.

Vienna University of Technology & Wolfgang Aigner
University of Rostock, Silvia Miksch
February 2011 Heidrun Schumann

Christian Tominski
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Chapter 1
Introduction

Computers should also help us warp time, but the challenge here is
even greater. Normal experience doesn’t allow us to roam freely in
the fourth dimension as we do in the first three. So we’ve always
relied on technology to aid our perception of time.

Udell (2004, p. 32)

Space and time are two outstanding dimensions because in conjunction they repre-
sent four-dimensional space or simply the world we are living in. Basically, every
piece of data we measure is related and often only meaningful within the context
of space and time. Consider for example the price of a barrel of oil. The data value
of $129 alone is not very useful. Only if assessed in the context of where (space)
and when (time) is the oil price valid and only then is it possible to meaningfully
interpret the cost of $129.

Space and time differ fundamentally in terms of how we can navigate and per-
ceive them. Space can in principle be navigated arbitrarily in all three spatial dimen-
sions, and we can go back to where we came from. Humans have senses for perceiv-
ing space, in particular the senses of sight, touch, and hearing. Time is different; it
does not allow for active navigation. We are constrained to the unidirectional char-
acter of constantly proceeding time. We cannot go back to the past and we have to
wait patiently for the future to become present. And above all else, humans do not
have senses for perceiving time directly. This fact makes it particularly challenging
to visualize time — making the invisible visible.

Time is an important data dimension with distinct characteristics. Time is com-
mon across many application domains as for example medical records, business,
science, biographies, history, planning, or project management. In contrast to other
quantitative data dimensions, which are usually “flat”, time has an inherent se-
mantic structure, which increases time’s complexity substantially. The hierarchical
structure of granularities in time, as for example minutes, hours, days, weeks, and
months, is unlike that of most other quantitative dimensions. Specifically, time com-
prises different forms of divisions (e.g., 60 minutes correspond to one hour, while 24
hours make up one day), and granularities are combined to form calendar systems

W. Aigner et al., Visualization of Time-Oriented Data, 1
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_1,
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(e.g., Gregorian, Julian, business, or academic calendars). Moreover, time contains
natural cycles and re-occurrences, as for example seasons, but also social (often ir-
regular) cycles, like holidays or school breaks. Therefore, time-oriented data, i.e.,
data that are inherently linked to time, need to be treated differently than other kinds
of data and require appropriate visual and analytical methods to explore and analyze
them.

The human perceptual system is highly sophisticated and specifically suited to
spot visual patterns. Visualization strives to exploit these capabilities and to aid in
seeing and understanding otherwise abstract and arcane data. Early visual depictions
of time-series even date back to the 11th century. Today, a variety of visualization
methods exist and visualization is applied widely to present, explore, and analyze
data. However, many visualization techniques treat time just as a numeric parameter
among other quantitative dimensions and neglect time’s special character. In order
to create visual representations that succeed in assisting people in reasoning about
time and time-oriented data, visualization methods have to account for the special
characteristics of time. This is also demanded by Shneiderman (1996) in his well-
known task by data type taxonomy, where he identifies temporal data as one of seven
basic data types most relevant for information visualization.

Creating good visualization usually requires good data structures. However, com-
monly only simple sequences of time-value-pairs {(tp,vo), (f1,V1),...,(tn,vn)) are
the basis for analysis and visualization. Accounting for the special characteristics
of time can be beneficial from a data modeling point of view. One can use different
calendars that define meaningful systems of granularities for different application
domains (e.g., fiscal quarters or academic semesters). Data can be modeled and in-
tegrated at different levels of granularity (e.g., months, days, hours, and seconds),
enabling for example value aggregation along granularities. Besides this, data might
be given for time intervals rather than for time points, as for example in project
plans, medical treatments, or working shift schedules. Related to this diversity of
aspects is the problem that most of the available methods and tools are strongly
focused on special domains or application contexts. Silva and Catarci (2000) con-
clude:

It is now recognized that the initial approaches, just considering the time as an ordinal
dimension in a 2D or 3D visualizations [sic], are inadequate to capture the many charac-
teristics of time-dependent information. More sophisticated and effective proposals have
been recently presented. However, none of them aims at providing the user with a complete
framework for visually managing time-related information.

Silva and Catarci (2000, p. 9)

The aim of this book is to present and discuss the multitude of aspects which are
relevant from the perspective of visualization. We will characterize the dimension
of time as well as time-oriented data, and describe tasks that users seek to accom-
plish using visualization methods. While time and associated data form a part of
what is being visualized, user tasks are related to the question why something is
visualized. How these characteristics and tasks influence the visualization design
will be explained by several examples. These investigations will lead to a system-
atic categorization of visualization approaches. Because interaction techniques and
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analytical methods also play an important role in the exploration of and reasoning
with time-oriented data, these will also be discussed. A large part of this book is de-
voted to a survey of existing techniques for visualizing time and time-oriented data.
This survey presents self-contained descriptions of techniques accompanied by an
illustration and corresponding references on a per-page basis.

Before going into detail on visualizing time-oriented data, let us first take a look
at the basics and examine general concepts of information visualization.

1.1 Introduction to Visualization

Visualization is a widely used term. Spence (2007) refers to a dictionary definition
of the term: visualize — to form a mental model or mental image of something.
Visual representations have a long and venerable history in communicating facts and
information. But only about twenty years have passed since visualization became
an independent self-contained research field. In 1987 the notion of visualization in
scientific computing was introduced by McCormick et al. (1987). They defined the
term visualization as follows:

Visualization is a method of computing. It transforms the symbolic into the geometric,
enabling researchers to observe their simulations and computations. Visualization offers a
method for seeing the unseen. It enriches the process of scientific discovery and fosters
profound and unexpected insights.

McCormick et al. (1987, p. 3)

The goal of this new field of research has been to integrate the outstanding ca-
pabilities of human visual perception and the enormous processing power of com-
puters to support users in analyzing, understanding, and communicating their data,
models, and concepts. In order to achieve this goal, three major criteria have to be
satisfied (see Schumann and Miiller, 2000):

e expressiveness,
e effectiveness, and
e appropriateness.

Expressiveness refers to the requirement of showing exactly the information con-
tained in the data; nothing more and nothing less must be visualized. Effectiveness
primarily considers the degree to which visualization addresses the cognitive ca-
pabilities of the human visual system, but also the task at hand, the application
background, and other context-related information, to obtain intuitively recogniz-
able and interpretable visual representations. Finally, appropriateness involves a
cost-value ratio in order to assess the benefit of the visualization process with re-
spect to achieving a given task. While the value of a visual representation is not so
easy to determine (see Van Wijk, 2006), cost is often related to time efficiency (i.e.,
the computation time spent) and space efficiency (i.e., the exploited screen space).

Expressiveness, effectiveness, and appropriateness are criteria that any visualiza-
tion should aim to fulfill. To this end, the visualization process, above all else, has
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to account for two aspects: the data and the task at hand. In other words, we have to
answer the two questions: “What has to be presented?” and “Why does it have to be
presented?”’. We will next discuss both questions in more detail.

What? — Specification of the data

In recent years, different approaches have been developed to characterize data —
the central element of visualization. In their overview article, Wong and Bergeron
(1997) established the notion of multidimensional multivariate data as multivariate
data that are given in a multidimensional domain. This definition leads to a distinc-
tion between independent and dependent variables. Independent variables define
an n-dimensional domain. In this domain, the values of k dependent variables are
measured, simulated, or computed; they define a k-variate dataset. If at least one
dimension of the domain is associated with the dimension of time, we call the data
time-oriented data.

Another useful concept for modeling data along cognitive principles is the pyra-
mid framework by Mennis et al. (2000). At the level of data, this framework is based
on three perspectives (also see Figure 3.29 on p. 63): where (location), when (time)
and what (theme). The perspectives where and when characterize the data domain,
i.e., the independent variables as described above. The perspective what describes
what has been measured, observed, or computed in the data domain, i.e., the depen-
dent variables as described above. At the level of knowledge, the what includes not
only simple data values, but also objects and their relationships, where objects and
relations may have arbitrary data attributes associated with them.

From the visualization point of view, all aspects need to be taken into account:
The aspect where to represent the spatial frame of reference and to associate data
values to locations, the aspect when to show the characteristics of the temporal frame
of reference and to associate data values to the time domain, and the aspect what to
represent individual values or abstractions of a multivariate dataset. As our interest
is in time and time-oriented data, this book places special emphasis on the aspect
when. We will specify the key properties of time and associated data in Chapter 3
and discuss the specific implications for visualization in Chapter 4.

Why? — Specification of the task

Similar to specifying the data, one also needs to know why the data are visual-
ized and what tasks the user seeks to accomplish with the help of the visualization.
On a very abstract level, the following three basic goals can be distinguished (see
Ward et al., 2010):

¢ explorative analysis,
¢ confirmative analysis, and
» presentation of analysis results.
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Explorative analysis can be seen as undirected search. In this case, no a priori
hypotheses about the data are given. The goal is to get insight into the data, to
begin extracting relevant information, and to come up with hypotheses. In a phase of
confirmative analysis, visualization is used to prove or disprove hypotheses, which
can originate from data exploration or from models associated with the data. In
this sense, confirmative analysis is a form of directed search. When facts about
the data have eventually been ascertained, it is the goal of the presentation step to
communicate and disseminate analysis results.

These three basic visualization goals call for quite different visual representa-
tions. This becomes clear when taking a look at two established visualization con-
cepts: filtering and accentuation. The aim of filtering is to visualize only relevant
data and to omit less relevant information, and the goal of accentuation is to high-
light important information. During explorative analysis, both concepts help users
to focus on selected parts or aspects of the data. But filtering and accentuation must
be applied carefully, because it is not usually known which data are relevant or im-
portant. Omitting or highlighting information indiscriminately can lead to misinter-
pretation of the visual representation and to incorrect findings. During confirmative
analysis, filtering can be applied more easily as the data which is relevant, that is,
the data that contribute to the hypotheses to be evaluated are usually known. Ac-
centuation and de-accentuation are common means to enhance expressiveness and
effectiveness, and to fine-tune visual presentations in order to communicate results
and insight yielded by an exploratory or confirmative analysis process.

Although the presentation of results is very important, this book is more about
visual analysis and interactive exploration of time-oriented data. Therefore, we will
take a closer look at common analysis and exploration tasks. As Bertin (1983) de-
scribes, human visual perception has the ability to focus (1) on a particular element
of an image, (2) on groups of elements, or (3) on an image as a whole. Based on
these capabilities, three fundamental categories of interpretation aims have been in-
troduced by Robertson (1991): point, local, and global. They indicate which values
are of interest: (1) values at a given point of the domain, (2) values in a local re-
gion, or (3) all values of the whole domain. These basic tasks can be subdivided
into more specific, concrete tasks, which are usually given as a list of verbal de-
scriptions. Wehrend and Lewis (1990) define several such low-level tasks: identify
or locate data values, distinguish regions with different values or cluster similar data,
relate, compare, rank, or associate data, and find correlations and distributions. The
task by data type taxonomy by Shneiderman (1996) lists seven high-level tasks that
also include the notion of interaction with the data in addition to purely visual tasks:

e Overview: gain an overview of the entire dataset

e Zoom: zoom in on data of interest

* Filter: filter out uninteresting information

* Details-on-demand: select data of interest and get details when needed
¢ Relate: view relationships among data items

» History: keep a history of actions to support undo and redo

» Extract: allow extraction of data and of query parameters
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Yi et al. (2007) further refine the aspect of interaction in information visualiza-
tion and derive a number of categories of interaction tasks. These categories are
organized around the user’s intentions to interactively adjust visual representations
to the tasks and data at hand. Consequently, a show me prefaces six categories:

* show me something else (explore)

¢ show me a different arrangement (reconfigure)
» show me a different representation (encode)

¢ show me more or less detail (abstract/elaborate)
* show me something conditionally (filter)

¢ show me related items (connect)

The show me tasks allow for switching between different subsets of the analyzed
data (explore), different arrangements of visual primitives (reconfigure), and differ-
ent visual representations (encode). They also address the navigation of different
levels of detail (abstract/elaborate), the definition of data of interest (filter), and the
exploration of relationships (connect).

In addition to the show me categories, Yi et al. (2007) introduce three further
interaction tasks:

¢ mark something as interesting (select)
¢ let me go to where I have already been (undo/redo)
¢ let me adjust the interface (change configuration)

Mark something as interesting (select) subsumes all kinds of selection tasks, in-
cluding picking out individual data values as well as selecting entire subsets of the
data. Supporting users in going back to interesting data or views (undo/redo) is es-
sential during interactive data exploration. Adaptability (change configuration) is
relevant when a system is applied by a wide range of users for a variety of tasks and
data types.

As we have seen, the purpose of visualization, that is, the task to be accom-
plished with visualization, can be defined in different ways. The above mentioned
visualization and interaction tasks serve as a basic guideline to assist visualization
designers in developing representations that effectively support users in conduct-
ing visual data exploration and analysis. In Chapter 4 we will come back to this
issue and refine tasks with regard to the analysis of time-oriented data. The aspect
of interaction will be taken up in Chapter 5.

How? — The visualization pipeline

In order to generate effective visual representations, raw data have to be transformed
into image data in a data-dependent and task-specific manner. Conceptually, raw
data have to be mapped to geometry and corresponding visual attributes like color,
position, size, or shape, also called visual variables (see Bertin, 1983; Mackinlay,
1986). Thanks to the capabilities of our visual system, the perception of visual stim-
uli is mostly spontaneous. As indicated earlier, Bertin (1983) distinguishes three
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levels of cognition that can be addressed when encoding information to visual vari-
ables. On the first level, elementary information is directly mapped to visual vari-
ables. This means that every piece of elementary information is associated with
exactly one specific value of a visual variable. The second level involves abstrac-
tions of elementary information, rather than individual data values. By mapping the
abstractions to visual variables, general characteristics of the data can be communi-
cated. The third level combines the two previous levels and adds representations of
further analysis steps and metadata to convey the information contained in a dataset
in its entirety.

To facilitate generation of visual output at all three levels, a flexible mapping
strategy is required. Such a strategy has been manifested as the so-called visual-
ization pipeline, first introduced by Haber and McNabb (1990). The visualization
pipeline consists of the three steps (see Figure 1.1(a)):

1. filtering,
2. mapping, and
3. rendering.

The filtering step prepares the raw input data for processing through the remain-
ing steps of the pipeline. This is done with respect to the given analysis task and
includes not only selection of relevant data but also operations for data enrichment
or data reduction, interpolation, data cleansing, grouping, dimension reduction, and
others. Literally, the mapping step maps the prepared data to appropriate visual vari-
ables. This is the most crucial step as it largely influences the expressiveness and
effectiveness of the resulting visual representation. Finally, the rendering step gen-
erates actual images from the previously computed geometry and visual attributes.
This general pipeline model is the basis for many visualization systems.

— —
Raw Focus Geometric Image
Data Data Data Data

Filtering Mapping

(a) Original variant (adapted from Haber and McNabb, 1990).

— —
Raw Prepared Focus Geometric Image
Data Data Data Data Data

Data Analysis m L’[ Mapping JJ ’[ Rendering ]J

(b) Extended variant (adapted from dos Santos and Brodlie, 2004).

Fig. 1.1: The visualization pipeline.
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The basic pipeline model has been refined by dos Santos and Brodlie (2004) in
order to better address the requirements of higher dimensional visualization prob-
lems. The original filtering has been split up into two separate steps: data analysis
and filtering (see Figure 1.1(b)). The data analysis carries out automatic computa-
tions like interpolations, clustering, or pattern recognition. The filtering step then
extracts only those pieces of data that are of interest and need to be presented. In
the case of large high-dimensional datasets, the filtering step is highly relevant be-
cause displaying all information will most likely lead to complex and overloaded
visual representations that are hard to interpret. Because interests may vary among
users, tasks, and data, the filtering step has to support the interactive refinement of
filter conditions. Further input like the specific analysis task or hypothesis as well
as application specific details can be used to steer the data extraction process.

In an effort to formally model the visualization process, Chi (2000) built upon
the classic pipeline model and derived the data state reference model. This model
reflects the stepwise transformation of abstract data into image data through several
stages by using operators. While transformation operators transform data from one
level of abstraction to another, within stage operators process the data only within
the same level of abstraction (see Figure 1.2). This model broadens the capabili-
ties of the visualization process and allows the generation of visual output at all of
Bertin’s levels. Different operator configurations lead to different views on the data,
and thus, to comprehensive insight into the analyzed data. It is obvious that the se-
lection and configuration of appropriate operators to steer the visualization process
is a complex problem that depends mainly on the given visualization goal, which in
turn is determined by the characteristics of the data and the task at hand.

Value Stage Analytical Stage Visualization Stage View Stage
Operators Operators Operators Operators

Value Analytical Visualization View
Abstraction Abstraction
Data Visualization Visual Mapping
Transformation Transformation Transformation

Fig. 1.2: The data state reference model (adapted from Chi, 2000).

The previous paragraphs may suggest that the image or view eventually gener-
ated by a visualization pipeline is an end product. But that is not true. In fact, the
user controls the visualization pipeline and interacts with the visualization process
in various ways. Views and images are created and adjusted until the user deems
them suitable. Therefore, Card et al. (1999) integrate the user in their information
visualization reference model (see Figure 1.3).
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Data Visual Form User
Data Data » Visual ) )
Tables Abstraction s ]
Data Visual View
Transformations Mappings Transformations

t } }

Fig. 1.3: The information visualization reference model (adapted from Card et al., 1999).

Having introduced the very basics of interactive visualization, we now move on
to an application example. The goal is to illustrate a concrete visual representation
and to demonstrate possible benefits for data exploration and analysis.

1.2 Application Example

Our particular example is in the domain of medicine. A considerable share of physi-
cians’ daily work time is devoted to searching and gathering patient-related infor-
mation to form a basis for adequate medical treatment and decision-making. The
amount of information is enormous and disorganized, and physicians might be over-
whelmed by the information provided to them. Often, datasets comprise multiple
variables of different data types that are sampled irregularly and independently from
each other, as for example quantitative parameters (e.g., blood pressure or body
temperature) and qualitative parameters (e.g., events like a heart attack) as well as
instantaneous data (e.g., blood sugar measurement at a certain point in time) and
interval data (e.g., insulin therapy from January to May 2010). Moreover, the data
commonly originate from heterogeneous sources like electronic lab systems, hospi-
tal information systems, or patient data sheets that are not well integrated. Exploring
such heterogeneous time-oriented datasets to get an overview of the history or the
current health status of an individual patient or a group of patients is a challenging
task.

Interactive visualization is an approach to representing a coherent view of such
medical data and to catering for easy data exploration. In our particular example,
an active discourse of the physician via interaction with the visual representation is
of major importance since most static representations cannot satisfy task-dependent
information needs seamlessly. In addition to presenting information intuitively, aid-
ing clinicians in gaining new medical insights about patients’ current health status,
state changes, trends, or patterns over time is an important aspect.

VisuExplore is an interactive visualization tool for exploring a heterogeneous set
of medical parameters over time (see Rind et al., 2010 and — p. 231). VisuExplore
uses multiple views along a common horizontal time axis to convey the different
medical parameters involved. It is based on several well-known visualization meth-
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Fig. 1.4: Visualization of heterogeneous medical parameters of a diabetes patient.

ods, including line plots (< p. 153), bar graphs (— p. 154), event charts, and time-
lines (— p. 166), that are combined and integrated.

Figure 1.4 shows data of a diabetes patient over a period of two years and three
months between November 2006 and March 2009. Beneath a panel that shows pa-
tient master data, eight visualization views are visible.

A document browser is placed on top that shows icons for medical documents,
like for example diagnostic findings or x-ray images. In our example case, the doc-
ument browser contains progress notes, as at the very beginning of treatment the
physicians suspected renal failure. Next, a line plot with semantic zoom (see p. 112)
is present which shows blood glucose values. Colored areas below the line provide
qualitative information about normal (green), elevated (yellow), and high (red) value
ranges which makes this semantic information easy to read. Below that, another
line plot with semantic zoom functionality shows HbA 1c¢ (an indicator of a patient’s
blood glucose condition over the previous several weeks). In this case, more vertical
space is devoted to the chart, thus allowing more exact readings of the values. Still,
semantic information is added as color annotation of the y-axis, using small ticks to
indicate when the variable’s value crosses qualitative range boundaries (e.g., from
critically high to elevated, as shown in the screenshot via a horizontal line that is
colored red and yellow). Below the blood sugar values, there are two timeline charts
showing the insulin therapy and oral anti-diabetic drugs. Insulin is categorized into
rapid-acting insulin (ALT), intermediate-acting insulin (VZI), and a mixture of these
(Misch). Details about brand name or dosage in free text are shown as labels that
are located below the respective timeline. Oral anti-diabetic drugs are shown via an
event chart below. There are also free text details about oral diabetes medication.
The sixth view is a bar graph with adjacent bars for systolic and diastolic blood
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pressure. The bottom two views are line plots related to the body mass index (BMI)
and blood lipids with two lines showing triglyceride and cholesterol values.

This arrangement has been chosen because it places views of medical tests di-
rectly above views of the related medical interventions. The height of some views
has been reduced to fit on a single screen. This is possible because all information
that is relevant for the physician’s current task can still be recognized in this state.

The shown diabetes case is a 44-year-old patient with initially very high blood
sugar values. From the interactive visual representations, several facts about the pa-
tient can be inferred as illustrated by the following insights that were gained by a
physician using the VisuExplore system. The initially high blood sugar values were
examined in detail via tooltips and showed exact values of 428 mg/dl glucose and
14.8% HbAc. In addition, it can be seen in the bottom panel that blood lipid val-
ues are also high (256 mg/dl cholesterol, 276 mg/dl triglyceride). At the same time,
the body mass index shown above is rather low (20.1). From the progress notes
in the document browser it can be seen that the physician had the suspicion of a
nephropathy. But these elevated values are also signs of latent autoimmune diabetes
of adults, a special form of type 1 diabetes. After one month, blood sugar has im-
proved (168 mg/dl glucose) and blood lipids have normalized. The patient switched
to insulin therapy in a combination of rapid-acting insulin (ALT) and intermediate-
acting insulin (VZI). Since April 2007, the insulin dosage has remained stable and
concomitant medication is no longer needed. The patient’s overall condition has
improved through blood sugar management. Furthermore, the physician involved in
the case study wondered about the very high HbAlc value of 11.9% in November
2006 and why diabetes treatment had only started four months later.

VisuExplore’s interactive features allow physicians to get an overview of mul-
tiple medical parameters and focus on parts of the data. Physicians can add visu-
alizations with one or more additional variables. They may resize and rearrange
visualizations. Further, it is possible to navigate and zoom across the time dimen-
sion by dragging the mouse, by using dedicated buttons, or by selecting predefined
views (e.g., last year). Moreover, the software allows the selecting and highlight-
ing of data elements. Other time-based visualization and interaction techniques can
extend the system to support special purposes. For example, a document browser
shows medical documents (e.g., discharge letters or treatment reports) as document
icons (e.g., PDF, Word) that physicians can click on if they want to open the doc-
ument. VisuExplore integrates with the hospital information systems and accesses
the medical data stored there.

This example demonstrated that visual representations are capable of providing
a coherent view of otherwise heterogeneous and possibly distributed data. The inte-
grative character also supports interactive exploration and task-specific focusing on
relevant information.
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1.3 Book Outline

With the basics of visualization and an application example, we have set the stage
for the next chapters. Before going into detail about the contemporary visualization
of time and time-oriented data, some inspiring and thought-provoking historical de-
pictions and images from the arts are given attention in Chapter 2. The character-
istics of time and data for modern interactive visualization on computers are the
focus of Chapter 3. The actual visualization process, that is the transformation of
abstract data to visual representations, will be discussed in Chapter 4, taking into
account the key question words what, why, and how to visualize. In Chapters 5 and
6, we go beyond pure visualization methods and discuss cornerstones of interaction
and analytical methods to support exploration and visual analysis. A major part of
this book is devoted to a survey of existing information visualization techniques for
time and time-oriented data in Chapter 7. Throughout the book we use the — sym-
bol followed by a page number to refer the reader to a particular technique in the
survey. A final summary along with a discussion of open challenges can be found in
Chapter 8. Figure 1.5 provides a visual overview of the contents of the book.

Time & Time-Oriented Data Visualization Aspects

(Ch. 3) (Ch. 4)
011010010111
o1 1
1 0
00 0
0010718%0011 O

[/
[ VAL S

Historical Background A Survey of
(Ch. 2) « Visualization Techniques Conclusion
a . (Ch.7) (Ch.8)
Analytical Support Interaction Support
(Ch. 6) (Ch. 5)

Fig. 1.5: Visual overview of the contents of the book.

Please refer to the companion website of the book for updates and additional re-
sources including links to related material, visualization prototypes, and technique
descriptions: http://www.timeviz.net.
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Chapter 2
Historical Background

There is a magic in graphs. The profile of a curve reveals in a flash a
whole situation — the life history of an epidemic, a panic, or an era
of prosperity. The curve informs the mind, awakens the imagination,
convinces.

Henry D. Hubbard in Brinton (1939, Preface)

Long before computers even appeared, visualization was used to represent time-
oriented data. Probably the oldest time-series representation to be found in literature
is the illustration of planetary orbits created in the 10th or possibly 11th century (see
Figure 2.1). The illustration is part of a text from a monastery school and shows
inclinations of the planetary orbits as a function of time.

To broaden the view beyond computer-aided visualization and provide back-
ground information on the history of visualization methods, we present histori-
cal and application-specific representations. They mostly consist of historical tech-
niques of the pre-computer age, such as the works of William Playfair, Etienne-Jules
Marey, or Charles Joseph Minard.

Furthermore, we will take the reader on a journey through the arts. Through-
out history, artists have been concerned with the question of how to incorporate
the dynamics of time and motion in their artworks. We present a few outstanding
art movements and art forms that are characterized by a strong focus on represent-
ing temporal concepts. We believe that art can be a valuable source of inspiration;
concepts or methods developed by artists might even be applicable to information
visualization, possibly improving existing techniques or creating entirely new ones.

2.1 Classic Ways of Graphing Time

Representing business data graphically is a broad application field with a long tradi-
tion. William Playfair (1759-1823) can be seen as the protagonist and founding fa-
ther of modern statistical graphs. He published the first known time-series depicting

W. Aigner et al., Visualization of Time-Oriented Data, 15
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_2,
© Springer-Verlag London Limited 2011
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Fig. 2.1: Time-series plot depicting planetary orbits (10th/11th century). The illustration is part of
a text from a monastery school and shows the inclinations of the planetary orbits as a function of
time.

Source: Funkhouser (1936, p. 261). Used with permission of University of Chicago Press.

economic data in his Commercial and Political Atlas of 1786 (Playfair and Corry,
1786). His works contain basically all of the widely-known standard representation
techniques (see Figures 2.2, 2.3, 2.5, and 2.4) such as the pie chart, the silhouette
graph (— p. 175) , the bar graph (— p. 154), and the line plot (— p. 153).

In Figure 2.5 multiple heterogeneous time-oriented variables are integrated within
a single view: the weekly wages of a good mechanic as a line plot, the price of a
quarter of wheat as a bar graph, as well as historical context utilizing timelines (—
p. 166). Playfair himself credits the usage of timelines to Joseph Priestley (1733—
1804) who created a graphical representation of the life spans of famous historical
persons divided into two groups of Statesmen and Men of Learning (see Figure 2.6).
The usage of a horizontal line to represent an interval of time might seem obvious to
us nowadays, but in Priestley’s day this was certainly not the case. This is reflected
in the fact that he devoted four pages of text to describe and justify his technique
to his readers. A remarkable detail of Priestley’s graphical method is that he ac-
knowledged the importance of representing temporal uncertainties and provided a
solution to deal with them using dots. Even different levels of uncertainty were taken
into account, ranging from dots below lines to lines and dotted lines.

Even earlier than both Priestley and Playfair, Jacques Barbeu-Dubourg (1709—
1779) created the earliest known modern timeline. His carte chronographique
(Barbeu-Dubourg, 1753) consisted of multiple sheets of paper that were glued to-
gether and add up to a total length of 16.5 meters. A rare version of the chart is
available at Princeton University Library where the paper is mounted on two rollers
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Fig. 2.2: Image from Playfair’s Commercial and Political Atlas (1786) representing exports and
imports of Scotland during one year via a bar graph.
Source: Playfair and Corry (1786).
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Fig. 2.3: Image from Playfair’s Commercial and Political Atlas (1786) representing imports and
exports of England from 1700 to 1782 via a line plot. The yellow line on the bottom shows imports
into England and the red line at the top exports from England. Color shading is added between the
lines to indicate positive (light blue) and negative (red; around 1781) overall balances.

Source: Playfair and Corry (1786).
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Fig. 2.4: Silhouette graph used by William Playfair to represent the rise and fall of nations over
a period of more than 3000 years. A horizontal time scale is shown at the bottom that uses a
compressed scale for the years before Christ on the left. Important events are indicated textually
above the time scale. Countries are grouped vertically into Ancient Seats of Wealth & Commerce
(bottom), Places that have Flourished in Modern Times (center), and America (top).

Source: Playfair (1805). Adapted from Brinton (1914).
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Fig. 2.5: Information rich chart of William Playfair that depicts the weekly wages of a good me-
chanic (line plot at the bottom), the price of a quarter of wheat (bar graph in the center), as well as
historical context (timeline at the top) over a time period of more than 250 years.

Source: Playfair (1821).
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Fig. 2.6: Joseph Priestley’s chart of biography that portrays the life spans of famous historical

persons using timelines.
Source: Priestley (1765).

in a foldable case that can be scrolled via two handles (see Ferguson, 1991 for a
detailed description).

Another prominent example of a graphical representation of historical informa-
tion via annotated timelines is Deacon’s synchronological chart of universal his-
tory which was originally published in 1890 and was drawn by Edmund Hull (see
Figure 2.7). Various reprints and books extending the original historic facts to the
present and adaptations for specialized areas like for example inventions and explo-
rations can be found in the literature (e.g., Third Millennium Press, 2001).

Charles Joseph Minard created a masterpiece of the visualization of historical
information in 1861. His graphical representation of Napoleon’s Russian campaign
of 1812 is extraordinarily rich in information, conveying no less than six different
variables in two dimensions (see Figure 2.8). Tufte (1983) comments on this repre-
sentation as follows:

It may well be the best statistical graphic ever drawn.
Tufte (1983, p. 40)

The basis of the representation is a 2-dimensional map on which a band sym-
bolizing Napoleon’s army is drawn. The width of the band is proportional to the
army’s size; the direction of movement (advance or retreat) is encoded by color.
Furthermore, various important dates are plotted and a parallel line graph shows the
temperature over the course of time.
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Fig. 2.7: Parts of Deacon’s synchronological chart of universal history.
Source: Third Millennium Press (2001 ). © Third Millennium Press Ltd. Used with permission.
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Fig. 2.8: Napoleon’s Russian campaign of 1812 by Charles Joseph Minard (1861). A band visually

traces the army’s location during the campaign, whereby the width of the band indicates the size
of the army and the color encodes advance or retreat of the army. Labels and a parallel temperature

chart provide additional information.

Retrieved Feb., 2011.

Source: Adapted from http://commons.wikimedia.org/wiki/File:Minard.png;
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22 2 Historical Background

About 25 years after Minard portrayed Napoleon’s march to Moscow, the promi-
nent historic figure Florence Nightingale used a statistical graph to show numbers
and causes of deaths over time during the Crimean War. When Nightingale was sent
to run a hospital near the Crimean battlefields to care for British casualties of war,
she made a devastating discovery: many more men were dying from infectious dis-
eases they had caught in the filthy hospitals of the military than from wounds. By
introducing new standards of hygiene and diet, and most importantly, by ensuring
proper water treatment, deaths due to infectious diseases fell by 99% within a year.
Florence Nightingale tediously recorded mortality data for two years and created
a novel diagram to communicate her findings. Figure 2.9 shows two of these rose
charts. This representation is also called polar area graph and consists of circularly
arranged wedges that convey quantitative data. Unlike pie charts, all the segments of
rose charts have the same angle. Bringing the data in this form clearly revealed the
horrible fact that many more soldiers were dying because of preventable diseases
they had caught in hospital than from wounds sustained in battle. Not only this fact
was communicated, but also how this situation could be improved by the right mea-
sures; these can be seen from the left rose chart in Figure 2.9. Through this diagram,
which was more a call to action than merely a presentation of data, she persuaded
the government and the Queen to introduce wide-reaching reforms, thus bringing
about a revolution in nursing, health care, and hygiene in hospitals worldwide.
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Fig. 2.9: Rose charts showing number of casualties and causes of death in the Crimean War by
Florence Nightingale (1858). Red shows deaths from wounds, black represents deaths from acci-
dents and other causes, and blue shows deaths from preventable infectious diseases soldiers caught
in hospital. The chart on the right shows the first year of the war and the chart on the left shows the
second year after measures of increased hygiene, diet, and water treatment had been introduced.
Source: http://en.wikipedia.org/wiki/File:Nightingale-mortalityjpg; Retrieved Feb., 2011.
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A quite different approach to representing historical information is the illustra-
tion of the Cuban missile crisis during the Cold War by Bertin (1983). The di-
agram shows decisions, possible decisions, and the outcomes thereof over time
(see Figure 2.10). This representation is similar to the decision chart (— p. 159).
Chapple and Garofalo (1977) provided an illustration of Rock’n’Roll history shown
in Figure 2.11 that depicts protagonists and developments in the area as curved lines
that are stacked according to the artists’ percentage of annual record sales. The The-
meRiver™ technique (— p. 197) can be seen as further, more formal development

of this idea.
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vww.ebook3000.con)

1


http://www.ebook3000.org

2 Historical Background

e Rk L o ra TR et o WO g winb ot O T = e A
S oo BT e T R e L7 R o o8 e Eee e UGy
N Tl —— RO, e » R P M A
Totdung ) Sy S 9 A, T T N T — - __mn TH.!.m. 1 —THRa MR _ g
ey S S e e e e T TRy ey N e T4 0 ey ot Th e e
R S e T e e g e A GRS P A
oS Sosassm oo e D s A Ry e 120 ey o0 L M — ey
e NS S g U e e L BB A (o 3 T P B — ™
ust.ﬂﬂﬂ/ﬂUJMI// St TR e MM:%E.WSHT\\\\I\\:.\\\,M\I. R e
R — R ) S — v gt ) el YR ) =
B =S R e e gangsaads — — — e R R e ey

i
i
/

/
3

TSl

s = e, e -
T g gk R =
e T Wi et T}
A i ] W - — === w X

T oS Fop P 5 Lo =
Ef:_.sa...@/lé .:a&“ﬁuﬁw, T ———

e ey

. e R T T E
e ey v e T A
D R e M M e R ey S
RIS G R N G T oy gy e A B
R P — 7o) e  HODTTB0Ag » g VT8 e e U0 et 2e%) Ty °
3 a svonuon e T T s
S T e i wi gy o g PO = s D S e — o
o s e%a. PR R N T TR et g J et e 3 ..

S ST R 2 = —
o) TR T e — T e
P S T T S TTIL

.h/.iu..a P LAy Yo <o 5
R s 2
R o A
e o
%m& AT e U L

e €
X T O
¥ a T — )
= = \\§ e s N30U 0de

ot 2 g0 2ivys ue>-sad

= S " s
SIS = = T T 9%
P L B 2Py o X30Y
ey L

.b_‘ B

aejasen 333wy s whiker®

ot ey ven S — g W e =

0 e s P e Wddng” ( TN Sggan 5000w 604 o1
ooy, oM oot 7 sy & e "y i
L T T T T T RN & R W o 008 SXws OnSYs owroRTIR Tanos
P T B L g i arurn waon
9 s wﬂﬁﬁh\ pus gy uoutq Seaeg oy

e e % Jowwo30 Ay a1y Hanw) ‘ehnoq sty

Vel atdoa et 3 PRt 405

omeeaN I Divdes)
oreyesr 20an0 uirrop pue wne)
ortyesn smamy pue s ha
Nasep 00 36 o P ek
v o 2 51 TI0Y.N. X008

wq

[

o1 as winyy Suey
poeg mm iase

svoean

iag
SRR

u_mﬁz H_am_\q& go _@33:% m_x ‘.‘
_

percentage of annual record sales.

>

24

Rock’n’Roll history that depicts protagonists and developments in the area as curved

Fig. 2.11

lines that are stacked according to the artists
Source: Image courtesy of Reebee Garofalo.
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With the advance of industrialization in the late 19th and early 20th century, op-
timizing resources and preparing time schedules became essential requirements for
improving productivity. One of the main protagonists of the study and optimization
of work processes was Frederick Winslow Taylor (1856-1915). His associate Henry
Laurence Gantt (1861-1919) studied the order of steps in work processes and devel-
oped a family of timeline-based charts as intuitive visual representation to illustrate
and record time-oriented processes (see Figures 2.12 and 2.13). Widely known as
Gantt charts (— p. 167), these representations are such powerful analytical instru-
ments that they are used nearly unchanged in modern project management.

Other interesting representations of work-related data can be seen in Figures 2.14
and 2.15. A record of hours worked per day by an employee is shown in Figure 2.14.
It is interesting to note that both axes are used for representing different granulari-
ties of time, i.e., days on the horizontal axis and hours per day on the vertical axis.
Figure 2.15 employs a radial layout of the time and allows a reading on multiple lev-
els: the outer ring shows days without work and the inner rings show hours worked
during the day, whereas the green areas indicate night hours.
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Fig. 2.12: Progress schedule based on the graphical method of Henry L. Gantt. Different work
packages are shown as horizontal lines. Black lines indicate the planned timings; the actual quantity
of work done is shown below in red.

Source: Brinton (1939, p. 259).
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Fig. 2.15 An analysis of
working time and leisure time
in 1932. Uses a radial layout
of time and allows a read-
ing on multiple levels: the
outer ring shows days without
work and the inner rings show
hours worked during the day,
whereas the green areas indi-
cate night hours.

Source: Brinton (1939,

p. 251).

Fig. 2.16 Phillips curve. Un-
employment rate (horizontal
axis) is plotted against infla-
tion rate (vertical axis). Each
point in the plot corresponds
to one year and is labeled
accordingly. The markers of
subsequent years are linked to
create a visual trace of time.
Source: Adapted from Tufte
(1997, p. 60). Used with
permission of Graphics Press.
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28 2 Historical Background

A quite unique representation of economic data is the so-called Phillips curve —
a 2D plot based on an economic theory that shows unemployment vs. inflation in
a Cartesian coordinate system. In this representation, time is neither mapped to the
horizontal nor the vertical axis, but is rather shown textually as labeled data points
on the curve. This way, the dimension of time is slightly de-emphasized in favor of
showing the relationship of two time-dependent variables (see Figure 2.16). Each
year’s combination of the two variables of unemployment rate and inflation rate
leads to a data point in 2D space that is marked by the digits of the corresponding
year. The markers of subsequent years are connected by a line resulting in a path
over the course of time.

For representing positional changes within a set of elements, rank charts were
already introduced in early statistical publications (see Figure 2.17). Elements are
ordered according to their ranking and displayed next to each other in columns for
different points in time. The positional change of individual elements is emphasized
by connecting lines. This way, the degree of rank change is represented by the angles
of the connecting lines, thus making big changes in rank stand out visually by the
use of very steep lines.
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A remarkable representation of time-oriented information was created by Etienne-
Jules Marey (1830-1904) in the 1880s (see Figure 2.18). It shows the train sched-
ule for the track Paris to Lyon graphically. Basically, a 2D diagram is used which
places the individual train stops according to their distance in a list on the verti-
cal axis, while time is represented on the horizontal axis. Thus, horizontal lines are
used to identify the individual stops and a vertical raster is used for timing informa-
tion. The individual trains are represented by diagonal lines running from top-left to
bottom-right (Paris—Lyon) and bottom-left to top-right (Lyon—Paris), respectively.
The slope of the line gives information about the speed of the train — the steeper the
line, the faster the respective train is travelling. Moreover, horizontal sections of the
trains’ lines indicate if the train stops at the respective station at all and how long
the train stops. On top of that, the density of the lines provides information about
the frequency of trains over time. This leads to a clear and powerful representation
showing complex information at a glance while allowing for in-depth analysis of
the data. Similar representations have also been used for the Japanese Shinkansen
train line and the Javanese Soerabaja-Djokjakarta train line where the track’s terrain
profile is additionally shown.

Etienne-Jules Marey not only created the fabulous train schedule, but was also
very interested in exploring all kinds of movement. Born in 1830 in France, he was a
trained physician and physiologist. His interest in internal and external movements
in humans and animals, such as blood circulation, human walking, horse gaits, or
dragonfly flight, led to the decomposition of these movements via novel photog-
raphy and representation methods (see Figures 2.19, 2.20, and 2.21). This photog-
raphy method, which is called chronophotography, paved the way for the birth of
modern film-making at the end of the nineteenth century.

Today, Marey is still a valuable source of inspiration. Reason enough to speak
highly of him and his work:

Tirelessly, this brilliant visionary stopped the passage of time, accelerated it, slowed it down
to “see the invisible,” and recreated life through images and machines.
La maison du cinema and Cinematheque Francaise (2000)
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Fig. 2.18: Train schedule by Etienne-Jules Marey (19th century). Individual train stops are placed
according to their distance in a list on the vertical axis, while time is represented on the horizontal
axis (figure above is rotated by 90°). The individual trains are represented by diagonal lines running
from top-left to bottom-right (Paris—Lyon) and bottom-left to top-right (Lyon—Paris) respectively.
Source: Marey (1875, p. 260).
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Fig. 2.19 A person walking.
Studies of movement by
Etienne-Jules Marey (19th
century).

Source: Marey (1894, p. 61).

Fig. 2.20 Horse gaits. Studies
of movement by Etienne-Jules
Marey (19th century).
Source: Source: Marey (1894,
p. 188).

Fig. 2.21 Chronophotography.
A photo of flying pelican
taken by Etienne-Jules Marey
around 1882.

Source:
http://commons.wikimedia.org/
wiki/File:Marey_-_birds.jpg;
Retrieved Feb., 2011.
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32 2 Historical Background

In medicine, large amounts of information are generated which mostly have to
be processed by humans. Graphical representations which help to make this myr-
iad of information comprehensible play a crucial role in the workflow of healthcare
personnel. These representations range from the fever curves of the nineteenth cen-
tury (see Figure 2.22) and EEG time-series plots (see Figure 2.23) to information-
rich patient status overviews (see Figure 2.24). Especially the graphical summary
of patient status by Powsner and Tufte (1994) makes use of concepts such as small
multiples (— p. 236), focus+context (see p. 111), or the integration of textual and
graphical information. It manages to display information on a single page that would
otherwise fill up entire file folders and would require serious effort to summarize.

| khrals' o salis
= — : I .
W e EEEgvLaE
fatt HEL
wd Th S=E=== 529088
B = e v - AT
211: r‘_‘lf— ——1i1 i i i
(a) Fever chart. (b) Detail on rigor
(Fieberfrost).

Fig. 2.22: Fever charts created by Carl August Wunderlich (1870).
Source: Wunderlich (1870, p. 161, 167).
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(a) Overview. (b) Details.

Fig. 2.24: Graphical summary of patient status by Powsner and Tufte (1994). Concise summary of
patient information. Uses small multiples, focus+context, and integrates textual as well as graphical
information.

Source: Tufte (1997, p. 110-111). © Graphics Press. Used with permission.

Weather and climate are further well-known application areas dealing with time-
oriented data. Here, developments over time are of greater interest than single snap-
shots. Figure 2.25 shows the adaptation of an extremely information-rich illustra-
tion provided by the New York Times for more than 30 years to show New York
City’s weather developments for a whole year. Monthly and yearly aggregates are
displayed along with more detailed information on temperature, humidity, and pre-
cipitation. All in all, more than 2500 numbers are shown in this representation in a
very compact and readable form. An even earlier example of a visual representation
of the weather data of New York City is shown in Figure 2.26. Here, temperatures,
wind velocity, relative humidity, wind direction, and the weather conditions of a
single month (December, 1912) are displayed.
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Weather in 1980
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Fig. 2.25: Weather statistics for 1980. Aggregated values are displayed along with more detailed
information on temperature, humidity, and precipitation. Similar illustrations have been printed
annually by the New York Times for more than 30 years.

Source: Generated with the Protovis toolkit.
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Fig. 2.26: Record of the Weather in New York City for December, 1912. The bold line indicates
temperature in degrees Fahrenheit. The light solid line shows wind velocity in miles per hour. The
dotted line depicts relative humidity in percentage from readings taken at 8 a.m. and 8 p.m. Arrows
portray the prevailing direction of the wind. Initials at the base of the chart show the weather
conditions as follows: S, clear; PC, partly cloudy; C, cloudy; R, rain; Sn, snow.

Source: Brinton (1914, p. 93).
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2.2 Time in Visual Storytelling & Arts

Two disciplines that are seldom connected to time-oriented information are visual
explanations and visual storytelling. Although ubiquitously used in various forms
in daily life, they are rarely considered for visualizing abstract information. Visual
explanations are often used in manuals for home electronics, furniture assembly, car
repair, and many more (see Figures 2.28 and 2.29). Often, they are used to illustrate
stepwise processes visually to an international audience to support the often poorly
translated textual instructions. The stepwise nature conveys a temporal aspect and
might also be applied to represent abstract information. Even older than everything
we presented previously is the craft of storytelling, especially visual storytelling,
starting from caveman paintings and Egyptian hieroglyphs to picture books and
comic strips (see Figure 2.30). Time is the central thread that ties everything to-
gether in visual storytelling. Many interesting techniques and paradigms exist that
might be applicable to visualization in general (see for example Gershon and Page,
2001) as well as to the representation of time-oriented information in particu-
lar.

Comics The art of comics is often dubbed as visual storytelling over time or se-
quential art (a term used by Will Eisner) because temporal flows are represented in
juxtaposed canvases on a page. These descriptions already suggest that comics in-
corporate many concepts of time, while still retaining a static, 2-dimensional form.
Scott McCloud (1994) analyzed many of the methods and paradigms of comics,
concluding that powerful means of representing time, dynamics, and movement are
applied which differ from those applied in painting or photography. Comics allow
for the seamless representation of many temporal concepts that may be also ap-
plicable to visualization. Basically, the course of time is represented in comics via

IN LEARNING TO READ COMICS
ALL LEARNED TO PERCEIVE

TIME J‘PATIAL[Y FOR IN THE WORLD
OF COMICS, 7/ME AN JPACE
ARE ONVE AND THE SAM

A v

1
o;ll.;ll%llllaxl\‘full

Fig. 2.27: In learning to read comics we all learned to perceive time spatially, for in the world of
comics, time and space are one and the same.

Source: McCloud (1994, p. 100). © 1993, 1994 Scott McCloud. Reprinted with permission of
HarperCollins Publishers.
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oy ]

1. Rip off the 2. Remove 3. Cheer for
wrist band along protective foil your favorite!
the perforation. and fix around

your wrist.

Fig. 2.28: Visual explanation is used to illustrate stepwise processes.
Source: Adapted from Tomitsch et al. (2007).

January February March il ] August 1Sep:rmuer COclober | November ! December

Fig. 2.29: Life Cycle of the Japanese Beetle (Popillia japonica Newman).
Source: Newman (1965, p. 104—105). Reproduced from Tufte (1990, p. 43). Used with permission
of Graphics Press.

juxtaposition of panels. But the individual panels portray more than single frozen
moments in time and are more than photos placed side by side. Rather, single pan-
els contain whole scenes whose temporal extent may span from milliseconds to
arbitrary lengths (see Figure 2.31). Not only the content of a panel sheds light on
the length of its duration but also the shape of the panel itself can affect our per-
ception of time. Even more freedom in a temporal sense is given by the transition
from one panel to the next or by the space between panels, respectively (see Fig-
ure 2.32). Here, time might be compressed, expanded, rewound; deja vu’s might
be incorporated and much more. This also implies that comics are not just simply
linearly told stories. Comics are very versatile and much more powerful in incor-
porating time in comparison to paintings, photographs, and even film. Besides the
purely temporal aspect, motion is another important topic in comics. Several visual
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(a) Randall Munroe, xkcd — A Webcomic of Romance, Sarcasm, Math, and
Language.

Source: http://xkcd.com/338/; Retrieved Feb., 2011. Image courtesy of Randall
Munroe.

COME EXPLORE
THE FUTURE
WITH ME!

HMMM..
YOUVE WIGGLED
THE MOUSE, AND
STILL NOTHING
APPEARST

HANG ON A SEC...
LET ME GIVE

HEY, THAT FIXED
IT! THANKS GREG!

HTTP://REALLIFE.WEBPROVIPER.COM REAL LIFE @I999 GREG PEAN
(b) Greg Dean, RealLife — A daily online comic.

Source: http://www.reallifecomics.com/archive/991206.html; Created Dec. 6,
1999; Retrieved Feb., 2011. Image courtesy of Greg Dean.

Fig. 2.30: Comics where temporal flows are represented in juxtaposed canvases on a page.
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techniques, such as motion lines or action lines with additional effects like multiple
images, streaking effects, or blurring are applied (see Figure 2.33). In part, these
techniques are borrowed from photography. Recently, research work on generating
these comic-like effects from motion pictures has been conducted as for example in
Markovic and Gelautz (2006).

OH, HENRY/ WELL, IF

AAGH/, PUT THAT CAMERA OL' HENRY IS
SM/LE/ ) THAT FLASH AWAY, WILL GONNA HAVE MUCH
" ) 1s g1 moms, NIORE FUN, WE

MAY HAFTA HININA.,.
AWW, LOCK UP THE &
LETHIM N\ WWE Ceeiar />
BE, MOM., |— <7 SURE YOU
ve's Just L_Ceomeca?)—{ wANT 1o Move
HAVING 7\);@59?5‘

Fig. 2.31: A single comic panel contains more than a frozen moment in time.
Source: McCloud (1994, p. 95). © 1993, 1994 Scott McCloud. Reprinted with permission of
HarperCollins Publishers.

THE FEW CENTIMETERS

WHICH TRANSPORT US FROM
SECOND 70 SECOVD IN OVE
SEQUENCE COULD TAKE US A
HUYNDRED MILLION YEARS
IN ANOTHER.

Fig. 2.32: Transitions between panels Fig. 2.33: Techniques to represent movement in
might span intervals of arbitrary comics (motion lines, streaking, multiple images,
length. background streaking).

Source: McCloud (1994, p. 100). Source: McCloud (1994, p. 114). © 1993, 1994
© 1993, 1994 Scott McCloud. Scott McCloud. Reprinted with permission of
Reprinted with permission of Harper- HarperCollins Publishers.

Collins Publishers.
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Music & dance Music notes are a notation almost everybody is aware of, but it
is one which is rarely seen in conjunction with time-oriented information (see Fig-
ure 2.34). Nevertheless, music notes are clearly a visual representation of temporal
information — even more than that. A rich set of different symbols, lines, and text
constitute a very powerful visual language. Beat, rhythm, pitch, note length, paus-
ing, instrument tuning, and parallelism are the most important visualized parame-
ters. In fact, it is hard to imagine any other way of representing musical compositions
than via music notes. Related to that, special notations are used for recording dance
performances statically on paper (see Figure 2.35).

John Newton, 1779 AMAZING GRACE
™ | | —
— 1  ——— J T ——= * o 17 o
= e = ! 2 F = y — e T e
P [ Tl P 1
A -lmaz - ing |grace! How |sweet the [sound, That [saved a wretch like
e - e » & - ©
R = —E—3 ——
41 1 1 } T t i ! 1
| [ !
5 d . |
y C i 1 —-——_ ] i e —— - —
o6 - S (e F 2 2. 7 .
L R T T
me! I once was |[lost, but [now I'm |found, was|blind, but |now I |[see.
- s » - | [ =
D LR N » 1z 3 2.z e |2 %
1 1 7 — T T " 1 t -
I l [

Fig. 2.34: Music notation. A rich set of symbols, lines, and text visualizes beat, rthythm, pitch,
note length, pausing, instrument tuning, and parallelism.

Source:  http://commons.wikimedia.org/wiki/File:AmazingGraceFamiliarStyle.png;  Retrieved
Feb., 2011.
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Fig. 2.35: Dance notation. Used for recording dance performances statically on paper.
Source: Tufte (1990, p. 117). © 1990 Graphics Press. Used with permission.
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Movies One art form that is only touched upon briefly here, but which might also
offer interesting ideas for visualization, is film. We will present movies that exem-
plify how movie makers are able to transport highly non-linear stories in the tempo-
rally linear medium of film. These examples pertain to the plot of a film, and not to
filming or cutting techniques.

Run Lola Run' is a movie that presents several possible successions of events
sequentially throughout the film (compare branching time in Section 3.1.1). The
individual episodes begin at the same point in time and show different possible
strands of events.

The movie Pulp Fiction> comprises an even more complicated and challenging
plot. It is a collection of different episodes that are semantically as well as tem-
porally linked. Moreover, the movie ends by continuing the very first scene in the
movie, thus closing the loop.

A further example of the use of interesting temporal constellations in film is the
movie Memento®. The main character of the movie is a man who suffers from short-
term memory loss, who uses notes and tattoos to hunt for his wife’s killer. What
makes the storytelling so challenging is the fact that time flows backwards from
scene to scene (i.e., the end is shown at the beginning and the story progresses to
the beginning from there).

Music videos are also often used as an innovation playground where directors
can experiment with unconventional temporal flows such as the reverse narrative as
used in Coldplay’s The Scientist*.

Paintings A very interesting approach to overcoming the limitations of time can
be found in Renaissance paintings. Here, sequences of different temporal episodes
are shown in a single composition. Figure 2.36 for example shows a painting by
Masolino da Panicale that presents two scenes in the life of St. Peter within a single
scenery. While this method of showing different stages or episodes within a unifying
scenery was well understood by the people at that time (the Middle Ages), it might
not be as easily understood by a modern viewer. This technique provides evidence
for the following statement:

[...] paintings have always been able to capture more than a fleeting moment in time.
Crabbe (2003)

The beginning of the 20th century was characterized by new findings and break-
throughs in the natural sciences, especially in mathematics and physics, such as
Einstein’s theory of relativity. But not only the world of science was shaken by
these developments; artists also addressed these topics in their own way. Foremost
among these were the protagonists of the art movement of Cubism, who focused on
incorporating time in their artworks. They coined the term Four-dimensional Art.

! Run Lola Run (Lola rennt), written and directed by Tom Twyker, 1998.

2 Pulp Fiction, written by Quentin Tarantino et al., directed by Quentin Tarantino, 1994.
3 Memento, written by J. and C. Nolan, directed by Christopher Nolan, 2000.

4 The Scientist, recorded by Coldplay, music video directed by Jamie Thraves, 2001.
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Fig. 2.36: Masolino da Panicale, Curing the Crippled and the Resurrection of Tabitha (Brancacci
Chapel, S. Maria del Carmine, Florence, Italy), 1420s. Different stages or episodes of a single per-
son are shown within a unifying scenery.

Source: http://commons.wikimedia.org/wiki/File: Cappella_brancacci, Guarigione_dello_storpio_
e_resurrezione_di_Tabita_(restaurato), _Masolino.jpg; Retrieved Feb., 2011.

Fig. 2.37 Marcel Duchamp,
Nude Descending a Staircase
(No. 2), 1912. The dimen-
sion time is incorporated by
overlaying different stages
of a person’s movement.
(Philadelphia, Philadelphia
Museum of Art. Oil on can-
vas, 57 7/8 x 35 1/8° (147

x 89.2 cm). The Louise and
Walter Arensberg Collection,
1950. © VBK, Vienna 2010.)
Source: © 2010. Photo The
Philadelphia Museum of
Art/Art Resource/Scala, Flo-
rence.
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Fig. 2.38 Pablo Picasso, Por-
trait of Ambroise Vollard,
1910. Many different obser-
vations are composed and
partly overlaid to form a sin-
gle picture. (Moscow, Pushkin
Museum. © Succession Pi-
casso/VBK, Vienna 2010.)
Source: © 2010. Photo Scala,
Florence.

According to Volaric (2003), the first documented occurrence of time as the
fourth dimension appeared in Paris in 1910. As already mentioned, the concept of
the n-dimensional space in mathematics and physics inspired artists to think about
4D space. Figure 2.37 shows Marcel Duchamp’s painting Nude Descending a Stair-
case which incorporates the dimension of time in a very interesting way by over-
laying different stages of a person’s movement. Another example is Pablo Picasso’s
Portrait of Ambroise Vollard (see Figure 2.38), where many different observations
are composed and partly overlaid to form a single picture. The artists wanted to put
emphasis on the process of looking and recording over time (in contrast to taking a
photo). These new ways of bringing the fourth dimension into the static domain of
pictures are still a challenge to viewers today.

2.3 Summary

We have provided a brief review of relevant historical and application-specific visu-
alization techniques and representations of time in the visual arts. Our aim was to
provide an historical context for developments in this area and to present some ideas
from related areas that might act as a further source of inspiration for designing vi-
sualizations. Furthermore, this chapter has demonstrated the enormous breadth of
the topic which we are only able to cover in part.
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Readers interested in more information about historical representations of time-
oriented data and historical representations in general are referred to the wonderful
books of Tufte (1983, 1990, 1997, 2006), Wainer (2005), and Rosenberg and Grafton
(2010). Michael Friendly’s great work on the history of data visualization can be
studied in numerous articles such as (Friendly, 2008) as well as online in his Data
Visualization Gallery’ and the Milestones Project®. Additionally, interesting historic
facts related to time representations are discussed on the Chronographics Weblog’
of Stephen Boyd Davis.

Now, after setting the stage and considering various concepts and ideas from
related disciplines, we will narrow our focus and present a systematic view of the
visualization of time-oriented data. In this sense, we will first discuss important
aspects that make the handling of time and time-oriented data possible. Following
that, the visualization problem itself will be systematically explained and discussed.
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Chapter 3
Time & Time-Oriented Data

‘What, then, is time?
If no one asks me, I know what it is.
If I wish to explain it to him who asks, I do not know.

Saint Augustine (AD 354-430, The Confessions)

The fundamental phenomenon of time has always been of interest for mankind.
Many different theories for characterizing the physical dimension of time have been
developed and discussed over literally thousands of years in philosophy, mathe-
matics, physics, astronomy, biology, and many other disciplines. As reported by
Whitrow et al. (2003), a 1981 literature survey by J.T. Fraser found that the total
number of entries judged to be potentially relevant to the systematic study of time
reached about 65,000. This illustrates the breadth of the topic and the restless en-
deavor of man to uncover its secrets. What can be extracted as the bottom line across
many theories is that time is unidirectional (arrow of time) and that time gives order
to events.

The most influential theories for the natural sciences are probably Newton’s con-
cepts of absolute vs. relative time, and Einstein’s four-dimensional spacetime. New-
ton assumed an absolute, true, mathematical time that exists in itself and is not
dependent on anything else. Together with space, it resembles a container for all
processes in nature. This image of an absolute and independent dimension prevailed
until the beginning of the 20th century. Then, Einstein’s relativity theory made clear
that time in physics depends on the observer. Thus, Einstein introduced the notion of
spacetime, where space and time are inherently connected and cannot be separated.
That is, each event in the universe takes place in four-dimensional space at a location
that is defined by three spatial coordinates at a certain time as the fourth coordinate
(see Lenz, 2005). Both Newton’s notion of absolute time and Einstein’s spacetime
are concepts that describe time as a fundamental characteristic of the universe. In
contrast to that, the way humans deal with time in terms of deriving it essentially
from astronomical movements of celestial bodies or phenomena in nature is what
Newton called relative time.

W. Aigner et al., Visualization of Time-Oriented Data, 45
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_3,
© Springer-Verlag London Limited 2011
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The first signs of the systematic use of tools for dealing with time have been
found in the form of bone engravings that resembled simple calendars based on the
cycle of the moon. In this regard, the most fundamental natural rhythm perceived by
humans is the day. Consequently, it is the basis of most calendars and was used to
structure the simple life of our ancestors who lived in close contact with nature (see
Lenz, 2005). More complex calendars evolved when man settled into agricultural
communities, moving away from the life of a hunter-gatherer, and began to live
from agriculture. Until very late in human history, time was kept only very roughly.
Industrialization and urban civilization brought about the need for more precise,
regular, and synchronized overall timekeeping.

Today, the most commonly used calendric system is the Gregorian calendar. It
was introduced by Pope Gregory XII in 1582, primarily to correct the drift of the
previously used Julian calendar, which was slightly too long in relation to the as-
tronomical year and the seasons'. Apart from this calendric system, many other
systems are in use around the world, such as the Islamic, the Chinese, or the Jewish
calendars, or calendars for special purposes, like academic (semester, trimester, etc.)
or financial calendars (quarter, fiscal year, etc.).

In this book, we will not look at the physical dimension of time itself and its
philosophical background, how time is related to natural phenomena, or how clocks
have been developed and used. We focus on how the physical dimension of time
and associated data can be modeled in a way that facilitates interactive visualization
using computer systems. As a next step we are now going to examine the design
aspects for modeling time.

3.1 Modeling Time

First of all, it is important to make a clear distinction between the physical dimension
time and a model of time in information systems. When modeling time in informa-
tion systems, the goal is not to perfectly imitate the physical dimension time, but to
provide a model that is best suited to reflect the phenomena under consideration and
support the analysis tasks at hand. Moreover, as Frank (1998) states, there is noth-
ing like a single correct model or taxonomy of time — there are many ways to model
time in information systems and time is modeled differently for different applica-
tions depending on the particular problem. Extensive research has been conducted
in order to formulate the notion of time in many areas of computer science, includ-
ing artificial intelligence, data mining, simulation, modeling, databases, and more.
A theoretical overview which includes many references to fundamental publications
is provided by Hajnicz (1996). However, as she points out, the terminology is not
consistent across the different fields, and hence, does not integrate well with visu-
alization. Moreover, as Goralwalla et al. (1998) note, most research focuses on the
development of specialized models with different features for particular domains.

! Interestingly, much more precise calendars were known hundreds of years earlier in other cul-
tures, such as those developed by the Mayas and the Chinese.
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But apart from the many time models created for specific purposes and applications,
attempts have been made to capture the major design aspects underlying all specific
instances, as for example by Frank (1998), Goralwalla et al. (1998), Peuquet (1994,
2002), and Furia et al. (2010).

Here, we want to present the overall design aspects of modeling time, and not a
particular model. To do this, we will describe a number of major design aspects and
their features which are particularly important when modeling time. Application-
specific models can be derived from these as particular configurations.

3.1.1 Design Aspects

To define the design aspects relevant for time, we adapted the works of Frank (1998)
and Goralwalla et al. (1998), where principal orthogonal aspects are presented to
characterize different types of time. These aspects will now be described in detail.

Scale: ordinal vs. discrete vs. continuous As a first perspective, we look at time
from the scale along which elements of the model are given. In an ordinal time
domain, only relative order relations are present (e.g., before, after). For example,
statements like “Valentina went to sleep before Arvid arrived” and “Valentina woke
up after a few minutes of sleep” can be modeled using an ordinal scale. Note that
only relative statements are given and one cannot discern from the given example
whether she woke up before or after he arrived (see Figure 3.1). This might be
sufficient if only qualitative temporal relationships are of interest or no quantitative
information is available.

In discrete domains temporal distances can also be considered. Time values can
be mapped to a set of integers which enables quantitative modeling of time values
(e.g., quantifiable temporal distances). Discrete time domains are based on a small-
est possible unit (e.g., seconds or milliseconds as in UNIX time) and they are the
most commonly used time models in information systems (see Figure 3.2). Con-
tinuous time models are characterized by a possible mapping to real numbers, i.e.,
between any two points in time, another point in time exists (also known as dense
time, see Figure 3.3).

Examples of visualization techniques capable of representing the three types of
scale are the point and figure chart (see Figure 3.4) for an ordinal scale, tile maps
(see Figure 3.5 and — p. 178) for a discrete scale, and the circular silhouette graph
(see Figure 3.6 and — p. 175) for a continuous time scale.

Scope: point-based vs. interval-based Secondly, we consider the scope of the ba-
sic elements that constitute the structure of the time domain. Point-based time do-
mains can be seen in analogy to discrete Euclidean points in space, i.e., having a
temporal extent equal to zero. Thus, no information is given about the region be-
tween two points in time. In contrast to that, interval-based time domains relate to
subsections of time having a temporal extent greater than zero. This aspect is also
closely related to the notion of granularity, which will be discussed in Section 3.1.2.
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Fig. 3.1 Ordinal scale. Only
relative order relations are
present. At this level it is not
possible to discern whether
Valentina woke up before or
after Arvid arrived.

Fig. 3.2 Discrete scale.
Smallest possible unit is
minutes. Although Arvid ar-
rived and Valentina woke up
within the same minute, it
is not possible to model the
exact order of events.

Fig. 3.3 Continuous scale.
Between any two points in
time, another point in time
exists. Here, it is possible

to model that Arvid arrived
shortly before Valentina woke

up.

Fig. 3.4 Point and figure
chart. Visualization technique
tracking price and price direc-
tion changes. Uses an ordinal
time scale. o...positive price
change of a certain amount,
X ...negative price change of a
certain amount, l...begin/end
of a trading period.

Source: Adapted from Harris
(1999).

Price

300

208

296

294

292

290

288

286

284

282

280

3 Time & Time-Oriented Data

Arvid

gfc’}vo arrived
‘%O Valentina

woke up

Valentina
went to sleep

Arvid Valentina
arrived woke up

Valentina
went to sleep

OA)OOOOOO\O/O

N >
L Q
‘& Vv
Valentina Arvid Valentina

went to sleep arrived woke up

O (X >
N DO
Q> NN
q/. (l/
X
o X0
o/X X0
0 X 0 X 4] |
0/ X|0/X 0|X X [x/ox|o
Il o oXxo xo/xo |o
o/x/o X/0[x o
o/x/0/x X/ [x/o/X o
o [ox/o X0/ x/o o/Xx
oXol xox 0 X
0/X/0/ X/ 0/x/0[x o/X
X0 Xxo/xoXx 0 X
o/ x/o| o/xo o
o/x o/x
o o
Jan Feb Mar Apr



3.1 Modeling Time 49

Krems Ozone
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Fig. 3.5: Tile maps. Example shows average daily ozone measurements (scale: discrete, scope:
interval-based) over the course of three years.
Source: Adapted from Mintz et al. (1997) with permission of David Mintz.

Fig. 3.6 Circular silhouette
graph. Enables the repre-
sentation of time along a
continuous scale with a cyclic
arrangement. The represen-
tation emphasizes the visual
impression by filling the area
below the plotted line in order
to create a distinct silhouette.
This eases comparison when
placed side by side.

Source: Adapted from Harris
(1999).

For example the time value August 1, 2008 might relate to the single instant August
1, 2008 00:00:00 in a point-based domain, whereas the same value might refer to
the interval [August 1, 2008 00:00:00, August 1, 2008 23:59:59] in an interval-based
domain (see Figures 3.7 and 3.8).

Examples of visualization techniques capable of representing the two types of
scope are the TimeWheel (see Figure 3.9 and — p. 200) for a point-based domain
and tile maps (see Figure 3.5 and <— p. 178) for an interval-based time domain.
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00:00:00
Fig. 3.7 Time value “August | | 1 | | | |
1, 2008 in a point-based S D »F S I
domain. No information is ‘b'é\ %§\ p‘b %,QQ’ (b,QQ’ %’Q% %,0%
given in between two time Q Q QQ’ \) Q Q Q
points. DG S G S S
00:00:00 23:59:59

Fig. 3.8 Time value “August ! (| /[ | |
1, 2008” in an interval-based Q)Q 5‘:;\ 'Q" ,Qq/ ,Q(b Qb‘ 9@
domain. Each element covers q_{é\ %,Q/\ ‘b'o‘b ‘b’éb %,QQ’ Q{Q‘b %,th
a subsection of the time Q Q (\) Q Q Q Q

S QO S’ O QO O
domain greater than zero. vV Q'Q vy v v

Fig. 3.9 TimeWheel. Param-
eter axes are arranged around
the horizontal point-based
time axis in a regular polyg-
onal manner. For each time-
step, lines descend from the
time axis to the corresponding
points on the parameter axes.

Arrangement: linear vs. cyclic As the third design aspect, we look at the ar-
rangement of the time domain. Corresponding to our natural perception of time,
we mostly consider time as proceeding linearly from the past to the future, i.e.,
each time value has a unique predecessor and successor (see Figure 3.10). However,
periodicity is very common in all kinds of data, for example seasonal variations,
monthly averages, and many more. In a cyclic organization of time, the domain is
composed of a set of recurring time values (e.g., the seasons of the year, see Fig-
ure 3.11). Hence, any time value A is preceded and succeeded at the same time
by any other time value B (e.g., winter comes before summer, but winter also suc-
ceeds summer). In order to enable meaningful temporal relationships in cyclic time,
Frank (1998) suggests the use of the relations immediately before and immediately
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Fig. 3.10 Linear time. Time N >
proceeds linearly from past to S XD
future. qu (7/0 q/Q Q/Q Q'Q Q/Q V

e

Winter Summer

Fig. 3.11 Cyclic time. Set of
recurring time values such as
Fall

the seasons of the year.

after. Strictly cyclic data, where the linear progression of time from past to future
is neglected, is very rare (e.g., records for the day of week not considering month
or year). The combination of periodic and linear progression denoted by the term
serial periodic data (e.g., monthly temperature averages over a couple of years) is
much more common. Periodic time-oriented data in this sense includes both strictly
cyclic data and serial periodic data.

Examples of visualization techniques capable of representing the two types of
arrangement are the TimeWheel (see Figure 3.9 and — p. 200) for linear time and
the circular silhouette graph (see Figure 3.6 and — p. 175) for cyclic time.

Viewpoint: ordered vs. branching vs. multiple perspectives The fourth subdivi-
sion is concerned with the views of time that are modeled. Ordered time domains
consider things that happen one after the other. On a more detailed level, we might
also distinguish between totally ordered and partially ordered domains. In a totally
ordered domain only one thing can happen at a time. In contrast to this, simulta-
neous or overlapping events are allowed in partially ordered domains, i.e., multiple
time primitives at a single point or overlapping in time. A more complex form of
time domain organization is the so-called branching time (see Figure 3.12). Here,
multiple strands of time branch out and allow the description and comparison of
alternative scenarios (e.g., in project planning). This type of time supports decision-
making processes where only one of the alternatives will actually happen. Note that
branching is not only useful for future scenarios but can also be applied for inves-
tigating the past, e.g., for modeling possible causes of a given decision. In contrast
to branching time where only one path through time will actually happen, multi-
ple perspectives facilitate simultaneous (even contrary) views of time, which are
necessary, for instance, to structure eyewitness reports. A further example of multi-
ple perspectives are stochastic multi-run simulations. For a single experiment, there
might be completely different output data progressions depending on the respective
initialization.
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buy renovate move in
house house house

buy build move in
property house house

buy ___ move

flat in flat
QA o) ®) Q N U )
Q Q Q N N N N
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Fig. 3.12: Branching time. Alternative scenarios for moving into a new living space.

Birth of

Vincent
Fig. 3.13 Multiple perspec- valid timt? %ansact/on time
tives. Vincent was born on
August 8, 2006 (valid time) | | 1 | 1 | |
and this fact was stored in P &P 0D
the register of residents two 9% 9% '0%' /ch’ 9‘3 Q% QQ-’,
days later on August 10, 2006 QQQ’ ng QQQ’ Qg(b QQQ’ QQQ’ ng
(transaction time). R A S A 2t

In temporal databases, the two perspectives valid time and transaction time are
often modeled (see Figure 3.13). The valid time perspective of a fact is the time
when the fact is true in the modeled reality (e.g., “Vincent was born on August 8,
2006”). In contrast to that, the transaction time perspective of a fact denotes when
it was stored in the database (e.g., the birth of Vincent is stored in the register of
residents after filling out a form two days after his birth). Multiple perspectives
often need to be condensed into a single consistent view of time (see for example
Wolter et al., 2009).

Both branching time and multiple perspectives introduce the need to deal with
probability (or uncertainty), to convey, for instance, which path through time will
most likely be taken, or which evidence is believable. The decision chart (see Fig-
ure 3.14 and — p. 159) is an example of a visualization technique capable of repre-
senting branching time.
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Probability that a subcontractor
will receive a contract through a Subcontractor

Probability that decision will rticular ch: /
be in favor of this contractor particuiar channe \ A B C D E
30%
Subcontractor A 12%
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ConF;:la:?:or 1 Subcontractor B 14%
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1 Subcontractor C |—> 14%
20%
Subcontractor A 8%
Organization | |40% Prime 15%
having the Contractor 2 Subcontractor D 6%
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% Subcontractor C H 10%

‘ 20%|19% | 25%| 6% [31%

Decision maker #1 Decision maker #2 ‘ Decision maker #3

[ Aug ‘ Sept ‘ Oct ‘ Nov ‘ Dec ‘ Jan ‘ Feb ‘

Overall probability of subcontractor
getting business via all channels

Fig. 3.14: Decision chart. Example of a visualization technique capable of representing branching
time. Future decisions and potential alternative outcomes along with their probabilities can be
depicted over time.

Source: Adapted from Harris (1999).

3.1.2 Granularities & Time Primitives

The previous section introduced design aspects to adequately model the time do-
mains’ scale, scope, and arrangement as well as possible viewpoints onto the time
domain. Besides these general aspects, the hierarchical organization of time as well
as the definition of concrete time elements used to relate data to time need to be
specified. In the following, we will discuss this facet in more detail.

Granularity and calendars: none vs. single vs. multiple To tame the complexity
of time and to provide different levels of granularity, useful abstractions can be
employed. Basically, granularities can be thought of as (human-made) abstractions
of time in order to make it easier to deal with time in every-day life (like minutes,
hours, days, weeks, months). More generally, granularities describe mappings from
time values to larger or smaller conceptual units” (see Figure 3.15 for an example
of time granularities and their relationships).

If a granularity and calendar system is supported by the time model, we catego-
rize it as multiple granularities. Besides this complex variant, there might be a single

2 An overview and formalization of time granularity concepts is given by Bettini et al. (2000).
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granule

N granularity 2 G D .9, fortnights
[} . ranule 4
° granularity 1 I N . e.g., weeks
o)
§ discrete
time domain chronon

Fig. 3.15: Example of a discrete time domain with multiple granularities. The smallest possible
unit (chronon) is one day. Based on this, the granularity weeks contains granules that are defined
as being a continuous set of seven days. Moreover, the granularity fortnights consists of granules
that are a set of two consecutive weeks.

granularity only (e.g., every time value is given in terms of milliseconds) or none of
these abstractions are supported (e.g., abstract ticks).

Most information systems that deal with time-oriented data are based on a dis-
crete time model that uses a fixed smallest granularity also known as bottom granu-
larity (e.g., Java’s Date class uses milliseconds as the smallest granularity). Hence,
the underlying time domain can be described as a sequence of non-decomposable,
consecutive time intervals of identical duration called chronons (see Jensen et al.,
1998). This allows for a simple representation of a point in time as number of
chronons relative to a reference point (e.g., milliseconds (=chronons) since January
1, 1970 00:00:00 GMT). Chronons may be grouped into larger segments, termed
granules. Based on this, a granularity is a non-overlapping mapping of so-called
granules to subsets of the time domain (see Dyreson et al., 2000). Granularities are
related in the sense that the granules in one granularity may be further aggregated to
form larger granules belonging to a coarser granularity. For example, 60 consecutive
seconds are mapped to one minute.

A system of multiple granularities in lattice structures is referred to as a calendar
(see Figure 3.16 for the granularity lattice of the Gregorian calendar). More pre-
cisely, it is a mapping between human-meaningful time values and an underlying
time domain. Thus, a calendar consists of a set of granularities including mappings
between pairs of granularities that can be represented as a graph (see Dyreson et al.,
2000). Calendars most often include cyclic elements, allowing human-meaningful
time values to be expressed succinctly. For example, dates in the common Gregorian
calendar may be expressed in the form <day, month, year> where each of the fields
day, month, and year circle as time passes (see Jensen et al., 1998).

Moreover, mappings between granularities might be regular or irregular. A regu-
lar mapping exists for example between the granularities seconds and minutes where
one minute is always mapped to 60 seconds?. In contrast to that, the mapping of days
to months is irregular because one month might be composed of 28, 29, 30, or 31
days depending on the context (particular year and month).

3 We are not considering the exception of leap seconds here.
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fortnights years
t*2 lTrdivz t*12 lT tdiv 12
weeks month
Wonths?tofdays(t)
\ days_to_months(t
tr7 days yeto ©
t*24 lT tdiv24
hours
t* 60 lT t div 60
. minutes
Fig. 3.16 Annotated granu-
larity lattice of the Gregorian t*60 T t div 60
calendar that contains regular seconds
and irregular mappings (leap
seconds are not considered in £ tdv1
the granularity lattice). L (chronon)

To manage time granularities and calendars accordingly, appropriate models and,
even more importantly, conversion operators have to be supported. These include for
example the definition of granularities, their relationships, and calendars, and oper-
ations like conversions from one granularity to another or for combining calendars.
Particularly, operations that convert from one granularity to another, as for example
from days to months, can be quite complex due to the irregularities in granulari-
ties. Basic implementations of the described functionalities are present in most pro-
gramming languages and database systems in terms of the widely used Gregorian
calendar (e.g., java.util.Calendar and java.util.GregorianCalendar)*.

Moreover, granularities influence equality relationships. Take for example the
time interval between Tuesday, December 30, 2008 and Thursday, January 1, 2009
(see Figure 3.17). While this interval is entirely within a single week on the gran-
ularity of weeks, it overlaps two years on the granularity of years. Note that this is
contradictory to the naive assumption that when an equality relationship holds true
on a fine granularity it also holds true on a coarser one.

An example of a visualization technique that uses time granularities is the cycle
plot (see Figure 3.18 and — p. 176).

The concepts chronon, granule, granularity, and calendar have been introduced
to hierarchically organize the time domain which reflects our common perception
and usage of time.

Time primitives: instant vs. interval vs. span Next, we present a set of basic el-
ements used to relate data to time, so-called time primitives: instant, interval, and
span. These time primitives can be seen as an intermediary layer between data ele-
ments and the time domain. Basically, time primitives can be divided into anchored

4 More sophisticated systems and models that support multiple (user-defined) granularities and
calendars are described in Dyreson et al. (2000) and Lee et al. (1998).
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Relationship of A and B:

years ... EENTTREP .. AnotequalsB

weeks ... T Y ... AcaulsB

s ... cer  AnotequaisB
A B

Fig. 3.17: Granularities influence equality relationships. The times of A and B are not equal on the
granularity of days, but are equal on the granularity of weeks, and then again are not equal on the
coarser granularity of years.

/N
N A w

Q4

Q1 _/— v\

Fig. 3.18: Cycle plot. Visualization technique that utilizes two time granularities to represent cycles
and trends. The example shows trends of measurements of weekdays over quarters. For example,
on Mondays, the values show an increasing trend over the year while on Tuesdays the trend is
decreasing. Furthermore, the general shape of a week’s cycle is visible.

Source: Adapted from Cleveland (1993) with permission of William Cleveland.

(absolute) and unanchored (relative) primitives. Instant and interval are primitives
that belong to the first group, i.e., they are located on a fixed position along the
time domain. In contrast to that, a span is a relative primitive, i.e., it has no absolute
position in time.

An instant® is a single point in time, e.g., May 23, 1977. Depending on the scope,
i.e., whether a point-based or interval-based time model is used (see previous sec-
tion), an instant might also have a duration (see Figure 3.19 and Figure 3.20). Time
primitives can be defined at all levels of granularity representing chronons, gran-
ules, or sets of both. Examples of instants are the date of birth “May 23, 1977” and

5 Sometimes also referred to as time point.
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Fig. 3.19 Instant in a point- F &F FF&F$FF$

based time model. A point in A A AT A A A
time that has no duration. RN N S AN

Fig. 3.20 Instant in an I S S S
interval-based time model. A q/‘b (ib q/b‘ qio q/@ qj\
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the beginning of a presentation on “January 10, 2009 at 2 p.m.” whereas the first
instant (date of birth) is given at a granularity of days and the second (beginning of
presentation) at a granularity of hours.

An interval is a portion of time of the underlying time domain that can be repre-
sented by two instants that denote the beginning and end of the interval, e.g., [June
13, 2009; June 19, 2009] (see Figure 3.21). Alternatively, intervals can be modeled
as beginning instant + duration (positive span), or as duration (positive span) + end
instant. An interval that is defined in terms of beginning and end is modeled as a
closed interval including the beginning as well as the end instant.

[June 14, 2009; June 17, 2009]

| 1 1 1 1 |

N NI ,fo '\6 ',(\ \‘b 2
Fig. 3.21 Interval [June 14, Q ‘b 06 Q‘b 'QQ’ Q‘b Qb QQ)
2009; June 17, 2009] in a FFFFHF&FF S
point-based time model. % v v v v v

The span is the only unanchored primitive. It represents a directed duration of
time, e.g., 4 days (see Figure 3.22). A time span is defined as a directed, unanchored
primitive that represents a directed amount of time in terms of a number of gran-
ules in a given granularity. Examples of spans are the length of a vacation of “10
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Fig. 3.22 Span. Example of

the span “four days” which 4 days
is formed by four granules of
the granularity days. days (N I

days” and the duration of a lecture of “150 minutes”. Figure 3.22 illustrates this
graphically by showing an example span of “four days” which is a count of four
granules of the granularity days. A span is either positive, denoting forward motion
of time, or negative, denoting backwards motion of time (see Jensen et al., 1998).
In case of irregular granularities (e.g., “months”), the exact length of a span is not
known precisely. Consider for example the granularity months, where a span of “two
months” might be 59, 60, 61, or 62 days depending on the particular time context.
This implies that the exact length of spans within irregular granularities can only be
determined exactly when related absolutely to the time domain (anchored). Other-
wise, mean values might be used for calculations (e.g., mean month and mean year).

Most of the previously given visualization examples are suited for representing
instants. Gantt charts (— p. 167) are an example of a visualization technique that
shows time intervals (see Figure 3.23).

March 31, 2003 i
310 |2 o] 7|,

Construction Plan | 4

Earthworks | ][]

Structural Work y |

Foundation .

[
Walls and Ceilings .....t
EREEE

Windows / Doors

Roof RN

Roofing ceremony —»‘

Screed ' .-.

Fig. 3.23: Gantt chart. Example of a visualization technique capable of representing intervals.
The tasks of a project plan are displayed as a list in the left part of the diagram. For each task, a
horizontal bar (timeline) displays the extent of the task in time.

Relations between time primitives Between individual time primitives relations
might exist, such as before and after. As presented by Peuquet (1994), these rela-
tions can be specified in different ways. We will present these relations in terms of
topology, i.e., relative locations of time elements. Depending on the time primitives
used, different relations make sense.
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Fig. 3.24 Instant relations.
Instants can be related in three
different ways.

Fig. 3.25 Interval relations.
Instants can be related in
thirteen different ways.

Fig. 3.26 Instant+interval
relations. Instants and inter-
vals can be related in eight
different ways.
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Between two instants A and B, three relationships are possible (see Figure 3.24).
Either A is before B, A is after B, or A equals B (i.e., A and B are at the same
time). For relations between time intervals, things get more complex. Allen (1983)
defined a set of thirteen basic relations that are very common in time modeling (see
Figure 3.25). These are A before B or B after A (i.e., interval A ends before interval
B starts), A meets B or B met-by A (i.e., interval A ends right when interval B starts),
A overlaps B or B overlapped-by A (i.e., intervals A and B overlap whereas interval
A ends during interval B), A starts B or B started-by A (i.e., intervals A and B start
at the same time but interval A ends earlier), A during B (i.e., interval A starts later
and ends earlier as interval B), A finishes B or B finished-by A (i.e., interval A and B
end at the same time but interval A starts later), and A equals B (i.e., both intervals
start and end at the same time). When looking at relations between an instant A and
an interval B, eight options exist (see Figure 3.26). Either, A before B or B after A
(i.e., instant A is before the start of interval B), A starts B or B started-by A (i.e.,
instant A and the start of interval B are the same), A during B or B contains A (i.e.,
instant A is after the start and before the end of interval B), or A finishes B or B
finished-by A (i.e., instant A and the end of interval B are the same).

These relationships are important concepts, especially when reasoning about
time. Furthermore, the set of possible relations is determined by further design as-
pects.

Determinacy: determinate vs. indeterminate Uncertainty is another important
aspect when considering time-oriented data. If there is no complete or exact infor-
mation about time specifications or if time primitives are converted from one gran-
ularity to another, uncertainties are introduced and have to be dealt with. Therefore,
the determinacy of the given time specification needs to be considered. A deter-
minate specification is present when there is complete knowledge of all temporal
aspects. Prerequisites for determinate specification are either a continuous time do-
main or only a single granularity within a discrete time domain. Information that
is temporally indeterminate can be characterized as don’t know when information,
or more precisely, don’t know exactly when information (see Jensen et al., 1998).
Examples of this are inexact knowledge (e.g., “time when the earth was formed”),
future planning data (e.g., “it will take 2-3 weeks”), or imprecise event times (e.g.,
“one or two days ago”). Notice that temporal indeterminacy as well as the relativity
of references to time are mainly qualifications of statements rather than of the events
they denote. Indeterminacy might be introduced by explicit specification (e.g., earli-
est beginning and latest beginning of an interval) or is implicitly present in the case
of multiple granularities. Consider for example the statement “Activity A started on
June 14, 2009 and ended on June 17, 2009” — this statement can be modeled by
the beginning instant “June 14, 2009 and the end instant “June 17, 2009” both at
the granularity of days. If we look at this interval from a granularity of hours, the
interval might begin and end at any point in time between 0 a.m. and 12 p.m. of the
specified day (see Figure 3.27).
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Fig. 3.27: Indeterminacy. Implicit indeterminacy when representing the interval [June 14, 2009;
June 17, 2009] that is given at a granularity of days on a finer granularity of hours.
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Fig. 3.28: PlanningLines allow the depiction of temporal indeterminacies via a glyph consisting
of two encapsulated bars representing minimum and maximum duration, that are bounded by two
caps that represent the start and end intervals.

Source: Adapted from Aigner et al. (2005).
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Examples of time models that consider temporal indeterminacy are HMAP® by
Combi and Pozzi (2001) and the time model underlying the time annotations used in
the medical treatment plan specification language Asbru by Shahar et al. (1998). A
visualization technique capable of depicting temporal indeterminacy is for example
PlanningLines (see Figure 3.28 and — p. 172).

3.2 Characterizing Data

After discussing the question of modeling the time domain itself, we now move on to
the question of characterizing time-oriented data. When we speak of time-oriented
data, we basically mean data that are somehow connected to time. More precisely,
we consider data values that are associated with time primitives.

The available modeling approaches are manifold and range from considering
continuous to discrete data models (see Tory and Moller, 2004). In the former case,
time is seen as an observational space and data values are given relative to it (e.g.,
a time-series in form of time-value pairs (z,v)). For the latter, data are modeled
as objects or entities which have attributes that are related to time (e.g., calendar
events with attributes beginning and end). Moreover, certain analytic situations even
demand domain transformations, such as a transformation from the time domain into
the frequency domain (Fourier transformation).

A useful concept for modeling time-oriented data along cognitive principles is
the pyramid framework by Mennis et al. (2000) (see Figure 3.29), which has already
been mentioned briefly in Section 1.1. The model is based on the three perspectives
location (where is it?), time (when is it?), and theme (what is it made of?) at the level
of data. Derived interpretations of these data aspects form objects (what is it?) on
the cognitively higher level of knowledge, along with their taxonomy (classification;
super-/subordinate relationships) and partonomy (interrelationships; part-whole re-
lationships).

Depending on the phenomena under consideration and the purpose of the analy-
sis, different points of view can be taken. An example of this would be considering
distinct conceptual entities that are related to time (objects) vs. the observation of
a continuous phenomenon, like temperature over time (values). There cannot be a
single model that is ideal for all kinds of applications. However, certain fundamental
design alternatives can be identified to characterize time-oriented data. In the con-
text of this book, we focus on the data component, i.e., the lower part of the pyramid
framework as depicted in Figure 3.29.

Scale: quantitative vs. qualitative Due to the given data domain we distinguish
between quantitative and qualitative variables. Quantitative variables are based on a
metric (discrete or continuous) range that allows numeric comparisons. In contrast,
the scale of qualitative variables includes an unordered (nominal) or ordered (ordi-

6 The word HMAP is not an abbreviation, but it is the transliteration of the ancient Greek poetical
word day.
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nal) set of data values. It is of fundamental importance to consider the characteristics
of the data scale to design appropriate visual representations.

Frame of reference: abstract vs. spatial Furthermore, it makes sense to distin-
guish abstract and spatial data. By abstract data we mean a data model that does not
include the where aspect with regard to the pyramid framework, i.e., abstract data are
not connected per se to some spatial location. In contrast to this, spatial data contain
an inherent spatial layout, i.e., the underlying data model includes the where aspect.
The distinction between abstract and spatial data reflects the way the time-oriented
data should be visualized. For spatial data, the inherent spatial information can be
exploited to find a suitable mapping of data to screen. The when aspect has to be
incorporated into that mapping, where it is not always easy to achieve an emphasis
on the time domain. For abstract data, no a priori spatial mapping is given. Thus,
first and foremost an expressive spatial layout has to be found. This spatial layout
should be defined such that the time domain is exposed.

Kind of data: events vs. states This criterion refers to the question of whether
events or states are dealt with. Events, on the one hand, can be seen as markers of
state changes, like for example the departure of a plane. States, on the other hand,
can be characterized as phases of continuity between events (e.g., plane is in the
air). As one can see, states and events are two sides of the same coin. However, it
should be clearly communicated whether states or events, or even a combination of
both, are visualized.

Number of variables: univariate vs. multivariate This criterion concerns the
number of time-dependent variables. In principle, it makes a difference if we have
to represent data where each time primitive is associated with only one single data
value (i.e., univariate data) or if multiple data values (i.e., multivariate data) must be
represented. Compared to univariate data, for which many methods have been devel-
oped, the range of methods applicable for multivariate data is significantly smaller.
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3.3 Relating Data & Time

Aspects regarding time dependency of data have been extensively examined in the
field of temporal databases. Here, we adapt the notions and definitions developed in
that area (see Steiner, 1998; Liu and Ozsu, 2009). According to them, any dataset is
related to two temporal domains:

¢ internal time ¥; and
e external time ,.

Internal time is considered to be the temporal dimension inherent in the data
model. Internal time describes when the information contained in the data is valid.
Conversely, external time is considered to be extrinsic to the data model. The exter-
nal time is necessary to describe how a dataset evolves in (external) time. Depending
on the number of time primitives in internal and external time, time-related datasets
can be classified as shown in Figure 3.30.
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Fig. 3.30 Temporal charac- t
teristics of time related data.
A dataset is related to the two
temporal domains internal
time ¥; and external time T,. o o
Source: Adapted from Steiner
(1998).
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Static non-temporal data If both internal and external time are each comprised
of only one temporal element, the data are completely independent of time. A fact
sheet containing data about the products offered by a company is an example of
static non-temporal data. This kind of data is not addressed in this book.

Static temporal data If the internal time contains more than one time primitive,
while the external time contains only one, then the data can be considered dependent
on time. Since the values stored in the data depend on the internal time, static tempo-
ral data can be understood as an historical view of how the real world or some model
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looked at the various elements of internal time. Common time-series are a promi-
nent example of static temporal data. Most of today’s visualization approaches that
explicitly consider time as a special data dimension address static temporal data, for
instance the TimeSearcher (see Hochheiser and Shneiderman, 2004 and < p. 188).

Dynamic non-temporal data If the internal time contains only one, but the exter-
nal time is composed of multiple time primitives, then the data depend on the exter-
nal time. To put it simply, the data change over time, i.e., they are dynamic. Dynamic
data that change at high rate are often referred to as streaming data. Since the inter-
nal time is not considered, only the current state of the data is preserved; an historical
view is not maintained. There are fewer visualization techniques available that ex-
plicitly focus on dynamic non-temporal data. These techniques are mostly applied
in monitoring scenarios, for instance to visualize process data (see Matkovié et al.,
2002 and — p. 222). However, since internal time and external time can usually be
mapped from one to the other, some of the known visualization techniques for static
temporal data can be applied for dynamic non-temporal data as well.

Dynamic temporal data If both internal and external time are comprised of mul-
tiple time primitives, then the data are considered to be bi-temporally dependent. In
other words, the data contain variables depending on (internal) time, and the actual
state of the data changes over (external) time. Usually, in this case, internal and ex-
ternal time are strongly coupled and can be mapped from one to the other. Examples
of such data could be health data or climate data that contain measures depending
on time (e.g., daily number of cases of influenza or daily average temperature), and
that are updated every 24 hours with new data records of the passed day. An explicit
distinction between internal and external time is usually not made by current visual-
ization approaches, because considering both temporal dimensions for visualization
is challenging. Therefore, dynamic temporal data are beyond the scope of this book.

3.4 Summary

In this chapter, we structured and specified the characteristics of time and time-
oriented data. We approached this from three perspectives: First, we characterized
time and time models by discussing the related design aspects and abstractions.
Second, we presented relevant data aspects and third, we analyzed different types of
time-orientation. Figure 3.31 summarizes these perspectives and their correspond-
ing aspects.

The first perspective mainly addresses time and the complexity of modeling time.
Therefore, we needed to clarify the concepts of scale, scope, arrangement, and view-
points in order to specify the design space, and to define granularity and calendars,
time primitives, as well as temporal relations and determinacy of temporal elements
in order to specify the abstractions.

The second perspective focuses on relevant aspects of the data variables using the
understanding of time models explained above. This resulted in the definitions of
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scale, frame of reference, kind of data, and number of variables. The third perspec-
tive helps to identify how time and data are related in a particular setting. Therefore,
we took a look at how data variables are associated with time elements using the
distinction of internal and external time. All of these aspects need to be considered
when visualizing and analyzing data variables over time.

In terms of characterizing data, we mainly focused on the temporal relations of
data variables, i.e., relations between time primitives as well as between data and
internal and external time. Due to our focus on time aspects in this book, we did not
discuss other issues regarding data structures and the relationships between different
data variables that are not strictly related to time. We are aware that the relationships
between data variables are of importance, too. However, these aspects have been
widely discussed in database and data modeling theories. Also, many useful mod-
eling alternatives and reference models have been developed and can be adopted,
such as continuous models using scalars, vectors, or tensors, etc. (see Wright, 2007)
or discrete models using structures like trees, graphs, etc. (see Shneiderman, 1996).

We took this hard road — which required us to consider a number of characteriza-
tions and modeling concerns — because we are convinced that we can only develop
visualization methods that successfully support people in carrying out their tasks if
we have a clear understanding of what the data look like. In the next chapter we
explore the aspect of visualization design in more depth.
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Chapter 4
Visualization Aspects

The graphical method has considerable superiority for the
exposition of statistical facts over the tabular. A heavy bank of
figures is grievously wearisome to the eye, and the popular mind is
as capable of drawing any useful lessons from it as of extracting
sunbeams from cucumbers.

Farquhar and Farquhar (1891, p. 55)

Many different types of data are related to time. Meteorological data, financial
data, census data, medical data, simulation data, news articles, photo collections,
or project plans, to name only a few examples, all contain temporal information. In
theory, because all these data are time-oriented, they should be representable with
one and the same visualization approach. In practice, however, the data exhibit spe-
cific characteristics and hence each of the above examples requires a dedicated vi-
sualization. For instance, stock exchange data can be visualized with flocking boids
(see Vande Moere, 2004 and — p. 223), census data can be represented with Tren-
dalyzer (see Gapminder Foundation, 2010 and — p. 220), and simulation data can
be visualized efficiently using MOSAN (see Unger and Schumann, 2009 and —
p- 209). News articles (or keywords therein) can be analyzed with ThemeRiver (see
Havre et al., 2002 and — p. 197) and project plans can be made comprehensible
with PlanningLines (see Aigner et al., 2005 and < p. 172). Finally, meteorological
data are visualized for us in the daily weather show. Apparently, this list of visual-
izations is not exhaustive. The aforementioned approaches are just examples from
a substantial body of techniques that recognize the special role of the dimension
of time. We shall complete this list in a rich survey of information visualization
techniques in Chapter 7.

Besides these dedicated techniques, time-oriented data can also be visualized us-
ing generic approaches. Since time is mostly seen as a quantitative dimension or
at least can be mapped to a quantitative domain (natural or real numbers), gen-
eral visualization frameworks like the Xmdv-Tool, Visage, or Polaris (see Ward,
1994; Kolojejchick et al., 1997; Stolte et al., 2002) as well as standard visualization
techniques like parallel coordinates by Inselberg and Dimsdale (1990) or more or

W. Aigner et al., Visualization of Time-Oriented Data, 69
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_4,
© Springer-Verlag London Limited 2011
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less sophisticated diagrams and charts, as surveyed by Harris (1999), are applicable
for visualizing time-oriented data. For simple data and basic analysis tasks, these
approaches outperform specialized techniques, because they are easy to learn and
understand (e.g., common line plot). However, in many cases, time is treated just as
one quantitative variable among many others, not more, not less. Therefore, generic
approaches usually do not support establishing a direct visual connection between
multiple variables and the time axis, they do not communicate the specific aspects
of time (e.g., the different levels of temporal granularity), and they are limited in
terms of direct interactive exploration and browsing of time-oriented data, which
are essential for a successful visual analysis.

The bottom line is that time must be specifically considered to support the vi-
sual analysis. Different types of time-oriented data need to be visualized with ded-
icated methods. As the previous examples suggest, a variety of concepts for ana-
lyzing time-oriented data are known in the literature (see for example the work by
Silva and Catarci, 2000; Miiller and Schumann, 2003; Aigner et al., 2008). This va-
riety makes it difficult for researchers to assess the current state of the art, and for
practitioners to choose visualization approaches most appropriate to their data and
tasks.

What is required is a systematic view of the visualization of time-oriented data
(see Aigner et al., 2007). In this chapter we will develop such a systematic view.
The different design options derived from the systematic view will be discussed and
illustrated by a number of visualization examples.

4.1 Characterization of the Visualization Problem

In the first place, we need a structure to organize our systematic view. But instead
of using formal or theoretical constructs, we decided to present a structure that is
geared to three practical questions that are sufficiently specific for researchers and
at the same time easy to understand for practitioners:

1. What is presented? — Time & data
2. Why is it presented? — User tasks
3. How is it presented? — Visual representation

Because any visualization originates from some data, the first question addresses
the structure of time and the data that have been collected over time. The motivation
for generating a visualization is reflected by the second question. It relates to the
aim of the visualization and examines the tasks carried out by the users. How the
data are represented is covered by the third question. The following sections will
provide more detailed explanations and refinements for each of these questions.
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4.1.1 What? — Time & Data

It goes without saying that the temporal dimension itself is a crucial aspect that
any visualization approach for representing time and time-oriented data has to con-
sider. It is virtually impossible to design effective visual representations without
knowledge about the characteristics of the given data and time domain. The charac-
teristics of time and data as well as corresponding design aspects have already been
explained in detail in Sections 3.1 and 3.2. Here, we will only briefly summarize
these aspects.

Characteristics of time The following list briefly reiterates the key criteria of the
dimension of time that are relevant for visualization:

* Scale — ordinal vs. discrete vs. continuous: In an ordinal time model, only rela-
tive order relations are present (e.g., before, during, after). In discrete and con-
tinuous domains, temporal distances can also be considered. In discrete models,
time values can be mapped to a set of integers based on a smallest possible unit
(e.g., seconds). In continuous models, time values can be mapped to the set of
real numbers, and hence, between any two points in time, another point can be
inserted.

e Scope — point-based vs. interval-based: Point-based time domains have basic
elements with a temporal extent equal to zero. Thus, no information is given
about the region between two points in time. Interval-based time domains relate
to subsections of time having a temporal extent greater than zero.

* Arrangement — linear vs. cyclic: Linear time corresponds to an ordered model
of time, i.e., time proceeds from the past to the future. Cyclic time domains are
composed of a finite set of recurring time elements (e.g., the seasons of the year).

* Viewpoint — ordered vs. branching vs. multiple perspectives: Ordered time do-
mains consider things that happen one after the other. In branching time domains,
multiple strands of time branch out and allow for description and comparison of
alternative scenarios, but only one path through time will actually happen (e.g., in
planning applications). Multiple perspectives facilitate simultaneous (even con-
trary) views of time (as for instance required to structure eyewitness reports).

In addition to these criteria, which describe the dimension of time, aspects re-
garding the presence or absence of different levels of granularity, the time primitives
used to relate data to time, and the determinacy of time elements are relevant (see
Section 3.1 in the previous chapter).

Characteristics of time-oriented data Like the time domain, the data have a major
impact on the design of visualization approaches. Let us briefly reiterate the key
criteria for data that are related to time:

* Scale — quantitative vs. qualitative: Quantitative data are based on a metric scale
(discrete or continuous). Qualitative data describe either unordered (nominal) or
ordered (ordinal) sets of data elements.
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* Frame of reference — abstract vs. spatial: Abstract data (e.g., a bank account)
have been collected in a non-spatial context and are not per se connected to some
spatial layout. Spatial data (e.g., census data) contain an inherent spatial layout,
e.g., geographical positions.

* Kind of data — events vs. states: Events, on the one hand, can be seen as markers
of state changes, whereas states, on the other hand, characterize the phases of
continuity between events.

* Number of variables — univariate vs. multivariate: Univariate data contain only
one data value per temporal primitive, whereas in the case of multivariate data
each temporal primitive holds multiple data values.

These primary categories form a basis for finding answers to the what question
of our systematic view. But having characterized what has to be visualized is just
the first step. The subsequent step is to focus on the why question.

4.1.2 Why? — User Tasks

It is commonly accepted that software development has to start with an analysis of
the problem domain users work in (see Hackos and Redish, 1998; Courage and Bax-
ter, 2005). This applies accordingly to the development of visualization solutions for
time-oriented data.

To specify the problem domain, so-called task models are widely used in the
related field of human-computer interaction (see Constantine, 2003). A prominent
example of such task models is the ConcurTaskTree (CTT) by Paterno et al. (1997).
It describes a hierarchical decomposition of a goal into tasks and subtasks. Four
specific types of tasks are supported in the CTT notation: abstract tasks, interaction
tasks, user tasks, and application tasks. Abstract tasks can be further decomposed
into subtasks (including abstract subtasks). Leaf nodes are always interaction tasks,
user tasks, or application tasks. They have to be carried out either by the user, by the
application system, or by interaction between user and system. The CTT notation is
enriched with a set of temporal operators that define temporal relationships among
tasks and subtasks (e.g., independent concurrency, concurrency with information
exchange, disabling, enabling). Usually, CTT models are constructed manually by a
domain expert, and mostly for the purpose of driving automatic user interface gen-
eration (see for example Paterno and Santoro, 2002). First approaches have begun
to use this notation for visualization purposes. For instance, Winckler et al. (2004)
apply the CTT notation for structured tests and for the evaluation of interactive vi-
sualization techniques.

In the visualization domain, however, tasks are usually given at a lower level
in the form of informal verbal lists only. An accepted low-level task description
specifically addressing the temporal domain has been introduced by McEachren
(1995). The tasks are defined by a set of important questions that users might seek
to answer with the help of visual representations:
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» Existence of data element
Question: Does a data element exist at a specific time?
Starting point: time point or time interval
Search for: data element at that time
Example: “Was a measurement made in June, 1960?”
e Temporal location
Question: When does a data element exist in time?
Starting point: data element
Search for: time point or time interval
Example: “When did the Olympic Games in Vancouver start?”
* Time interval
Question: How long is the time span from beginning to end of the data element?
Starting Point: data element
Search for: duration, i.e., length of time of a data element from its beginning to
its end
Example: “How long was the processing time for dataset A?”
e Temporal pattern
How often does a data element occur?
Starting point: interval in time
Search for: frequency of data elements within a certain portion of time and based
on this the detection of a pattern
Example: “How often was Jane sick last year?”
* Rate of change
Question: How fast is a data element changing or how much difference is there
from data element to data element over time?
Starting point: data element
Search for: magnitude of change over time
Example: “How did the price of gasoline vary in the last year?”
» Sequence
Question: In what order do data elements occur?
Starting point: data elements
Search for: temporal order of different data elements
Example: “Did the explosion happen before or after the car accident?”
* Synchronization
Question: Do data elements exist together?
Starting point: data elements
Search for: occurrence at the same point or interval in time
Example: “Is Jill’s birthday on Easter Monday this year?”

This list of tasks covers two basic cases. First, having at hand one or more data
values, the user is searching for time primitives that exhibit these values, and sec-
ond, having at hand one or more time primitives, the user seeks to discern the data
values associated with them. This reflects the well-established distinction between
identification (i.e., looking for data values) and localization (i.e., looking for when
and where in time and space).

vww.ebook3000.con)



http://www.ebook3000.org

74 4 Visualization Aspects

This distinction is also the basis for the formal task model by Andrienko and
Andrienko (2006). They describe tasks using two basic notions: references, which
constitute the domain (spatial or temporal) in which the data values have been col-
lected, and characteristics, which are the data values that were collected. On the
first level, the Andrienko model is subdivided into two classes of tasks: elementary
and synoptic tasks. Elementary tasks address individual data elements. This may
include individual values, but also individual groups of data. The main point here
is that data are taken into account separately; they are not considered as a whole.
Synoptic tasks, on the other hand, involve a general view and consider sets of values
or groups of data in their entirety.

Elementary tasks are further divided into lookup, comparison, and relation seek-
ing. The lookup task includes direct and inverse lookup, which stand for searching
for data values and searching for points in space and time, respectively. Relation
seeking tasks address the search for occurrences of relations specified between data
characteristics or references, for example, looking for courses that are scheduled on
Mondays. In a broader sense, comparison can also be seen as relation seeking, but
the relations to be determined are not specified beforehand. Direct comparison tasks
interrelate characteristics, whereas inverse comparison tasks interrelate references.

Synoptic tasks are further divided into descriptive and connectional tasks. De-
scriptive tasks specify the properties of either a set of references or a set of char-
acteristics. The first case belongs to the group of identification tasks. Here, a set of
references is given, and the task is to find a pattern that describes the behavior of the
given reference points. The second case belongs to the group of localization tasks.
Here, a concrete pattern is given, and the task is to search for those reference points
in time and space that exhibit the pattern. Besides specifying the properties of a set
of characteristics or references, the comparison of those sets is highly relevant. As
in the case of elementary tasks, we have to distinguish between direct and inverse
comparison tasks, depending on whether sets of references or sets of characteris-
tics are compared. Moreover, the synoptic relation seeking task considers two sets
of characteristics or references to come up with relationships between these sets.

( Visualization tasks ]

Synoptic tasks

(on sets)

Elementary tasks
(on values)

( Lookup ) ( Comparison ) ( Relation Seeking ) ( Descriptive tasks ) Connectional tasks

Direct Inverse ( Lookup ) ( Comparison ) ( Relation Seeking ) Heterogeneous
behavior
Homogeneous
Direct Inverse behavior

Fig. 4.1: Taxonomy of visualization tasks.
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In contrast to descriptive tasks, connectional tasks establish connections between at
least two sets, taking into account the relational behavior of two or more variables.
Depending on the set of underlying references — either variables are considered over
the same set or over different sets of references — homogeneous and heterogeneous
behavior tasks are distinguished.

To illustrate how the different tasks of the Andrienko model are related, we ar-
ranged them into a task taxonomy. Figure 4.1 shows more clearly how the visual-
ization tasks are organized. The quasi-hierarchical structure of this taxonomy allows
the later refinement of classes of tasks depending on application-specific needs. The
following list provides illustrative examples of the different types of tasks:

Elementary tasks:

e Direct lookup: What was the price of Google stocks on January 147

* Inverse lookup: On which day(s) was the lowest stock price for Amazon in 2010?

* Direct comparison: Compare the stock prices of Sun and Oracle on January 14.

» Inverse comparison: Did the price of Apple stocks reach $200 before or after
January 14?

* Relation seeking: On which days was the price of Adobe stocks higher than the
price of AOL stocks?

Synoptic tasks:

* Direct lookup (pattern definition): What was the trend of Oracle stocks during
January?

* Inverse lookup (pattern search): Find months in which the price of Novell stocks
decreased.

e Direct (pattern) comparison: Compare the behavior of the stock price of Hewlett-
Packard in January and June.

» [Inverse (pattern) comparison: How is a decreasing trend of Dell stocks related
to the period of summer vacation?

* Relation seeking: Find two contiguous months with opposite trends in the stock
price of Lenovo.

e Homogeneous behavior: Is the behavior of Nokia stocks influencing the behavior
of Motorola stocks?

* Heterogeneous behavior: Do the phases of the moon influence the behavior of
Intel stocks?

From a practical perspective, the verbal task descriptions by McEachren (1995)
are very helpful because they are easy to understand. They can serve as a guide-
line when designing visual representations of time and time-oriented data. However,
when shifting to a more scientific or theoretical point of view, a more formal notation
is desirable. In order to go beyond the guideline character and to automate the de-
sign process, formal task descriptions are indispensable. Andrienko and Andrienko
(2006) made a significant contribution in this regard. Later in this chapter, we will
examine the impact that user tasks (i.e., the why aspect) can have on the visualiza-
tion design. But before, we shall complete the description of visualization aspects
by focusing on the how perspective.
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4.1.3 How? - Visual Representation

The answers to the questions what the data input is and why the data are analyzed
very much determine the answer to the last remaining question: How can time-
oriented data be represented visually? More precisely, the question is how time and
associated data are to be represented. Chapter 7 will show that a large variety of
visual approaches provide very different answers to this question. To abstract from
the subtle details of this variety, we concentrate on two fundamental criteria: the
mapping of time and the dimensionality of the presentation space.

Mapping of time

Like any data variable that is to be visualized, the dimension of time has to pass the
mapping step of the visualization pipeline. Usually, abstract data are made visually
comprehensible by mapping them to some geometry (e.g., two-dimensional shapes)
and corresponding visual attributes (e.g., color) in the presentation space. On top
of this, human perception has an intrinsic understanding of time that emphasizes
the progression of time, and visualization can make use of this fact by mapping the
dimension of time to the dynamics of a visual representation.

So practically, there are two options for mapping time: the mapping of time to
space and the mapping of time to time. When speaking of a mapping from time
to space, we mean that time and data are represented in a single coherent visual
representation. This representation does not automatically change over time, which
is why we call such visualizations of time-oriented data static. In contrast to that,
dynamic representations utilize the physical dimension of time to convey the time
dependency of the data, that is, time is mapped to time. This results in visualizations
that change over time automatically (e.g., slide shows or animations). Note that the
presence or absence of interaction facilities to navigate in time has no influence on
whether a visualization approach is categorized as static or dynamic.

Static representations There are various ways of mapping time to visual variables
(see Bertin, 1983 and Figure 4.2). Most visualization approaches that implement a
time-to-space mapping use one display dimension to represent the time axis. Classic
examples are charts where time is often mapped to the horizontal x-axis and time-
dependent variables are mapped to the vertical y-axis (see Figure 4.3). More com-
plex mappings are possible when two or more display dimensions are used for repre-
senting time. Mappings that generate two-dimensional spirals or three-dimensional
helices are examples that emphasize the cyclic character of time. The different gran-
ularities of time are often illustrated by a hierarchical subdivision of the time axis.
The actual data can then be visualized in manifold ways. It is practical to use
a data mapping that is orthogonal to the mapping of time. For example point plots
(— p. 152), line plots (— p. 153), or bar graphs (— p. 154) map data values to
position or size relative to the time axis. Time-dependency is immediately perceived
and can be recognized easily, which facilitates the interpretation of the temporal
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Fig. 4.2: Examples of static visual mappings of time.
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Fig. 4.3: Mapping time to position. The horizontal axis of the chart encodes positions of points in
time, whereas the vertical axis encodes data values.

character of the data. In fact, for quantitative variables (discrete or continuous time
and data), using position or length is more efficient than using color or other visual
variables such as texture, shape, or orientation (see Mackinlay, 1986). For ordinal
variables, color coding is a good alternative. Each point or interval on the time axis
can be visualized using a unique color from a color scale. But, as Silva et al. (2007)
demonstrate, care must be taken when using color for visualization. It is absolutely
mandatory that the applied color scale be capable of communicating order!. Only
then are users able to interpret the visualization and to relate data items to their
temporal context easily.

Because time is often considered to be absolute, position or length encodings are
predominant and only rarely is time mapped to other visual variables. When time is
interpreted relatively rather than absolutely, for instance, when considering the age
of a data item or the duration between two occurrences of a data item, then visual
variables such as transparency, color, and others gain importance. An example of
encoding duration to color is given in Figure 4.4.

Instead of encoding data to basic graphical primitives such as points, lines, or
bars that are aligned with the time axis, one can also create fully fledged visual rep-
resentations and align multiple thumbnails of them along the time axis — a concept
that Tufte (1983) refers to as small multiples (— p. 236). The advantage is that a
single thumbnail may contain much more visual information than basic graphical
primitives. But this comes at the price that the number of time primitives (i.e., the
number of thumbnails) that can be shown on screen simultaneously is limited. This

! Borland and Taylor (2007) warn that this is not the case for the most commonly used rainbow
color scale. The ColorBrewer tool by Harrower and Brewer (2003) is a good source of useful color
scales.
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Travel time in hours and days to the nearest city of 50,000 or more people

¢ 1 2 3 4 6 8 12 18 24 36 2d 3d 44 54 I0d

Fig. 4.4: Mapping time to color. Color encodes the time it takes to travel from a location on our
planet to the nearest major city.
Source: Nelson (2008). Used with permission.

reflects the general need to find a good trade-off between the complexity of the vi-
sual encoding of time and that of the data. In Chapter 7, we will see that a variety of
suitable solutions exist, each with an individually determined trade-off depending
on the addressed data and tasks.

Dynamic representations In cases where much screen space is required to convey
characteristics and relationships of data items (e.g., geographical maps, multivariate
data visualization, visualization of graph structures), it is difficult to embed the time
axis into the display space as well. As an alternative, physical time can be utilized
to encode time. To this end, several visualizations (also called frames) are rendered
successively for the time steps in the data. In theory, a one-to-one mapping between
time steps and frames can be implemented, which means that the dynamic visualiza-
tion represents time authentically. In practice, however, this is only rarely possible.
More often, dynamic visualizations perform interpolation to compute intermediate
results in cases where only few time steps are present, or perform aggregation or
sampling to compress the length of an animation in cases where large numbers of
time steps have to be visualized (see Wolter et al., 2009).

Self-evidently, dynamic approaches have to take human perception into account
when representing a series of successively generated visualization frames. Depend-
ing on the number of images shown per second, dynamic visualizations are either
perceived as animations or as slide shows. Animations usually show between 15 and
25 frames per second, while slide shows usually show a new frame every 2 to 4 sec-
onds. On the one hand, data that contain only a few snapshots of the underlying phe-
nomenon should preferably be represented as slide shows to avoid creating false im-
pressions of dynamics. On the other hand, large numbers of observations of highly
dynamic processes are best represented using animations, because they communi-
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cate quite well the underlying dynamics in the data. Figure 4.5 gives an example of a
typical VCR-like widget for controlling the mapping of time to time in an animation.

The distinction between the mapping of time to space and that of time to time is
crucial, because different visualization tasks and goals are supported by these map-
pings. Dynamic representations are well suited to convey the general development
and the major trends in the analyzed data. However, there are also critical assess-
ments of animations used for the purpose of visualization (see Tversky et al., 2002;
Simons and Rensink, 2005). Especially when larger multivariate time-series have to
be visualized, animation-based approaches reach their limits. In such cases, users
are often unable to follow all of the changes in the visual representation, or the an-
imations simply take too long and users face an indigestible flood of information.
This problem becomes aggravated when using animations in multiple views. On the
other hand, if animations are designed well and if they can be steered interactively
by the user (e.g., slow motion or fast forward), mapping the dimension of time to
the physical time can be beneficial (see Robertson et al., 2008). This is not only the
case from the point of view of perception, but it is also because using physical time
for visual mapping implies that the spatial dimensions of the presentation space can
be used exclusively to visualize the time-dependent data.

This is not the case, however, for static representations. In contrast to animations,
static representations require screen real estate to represent the time axis itself and
the data in an integrated fashion. On the one hand, the fact that static representations
show all of the information on one screen is advantageous because one can fully con-
centrate on the dependency of time and data. Especially visual comparison of differ-
ent parts of the time axis can be accomplished easily using static representations. On
the other hand, integration of time and data in one single view tends to lead to over-
crowded representations that are hard to interpret. In the face of larger time-oriented
datasets, analytical methods and interaction are mandatory to avoid visual clutter.

Finally, it is worth mentioning that any (non-temporal) data visualization can be
extended to a visualization for time-oriented data simply by repetition. Repetition
in time leads to dynamic representations, where each frame shows a snapshot of
the data and repetition in space leads to static multiple view representations (or
Tufte’s small multiples, — p. 236), where each view shows an individual part of
the time axis. While static representations always have to deal with the issue of
finding a good layout for the views, dynamic representations encode time linearly
in a straight-forward manner. Perhaps this is the reason why many visualization
solutions resort to simple animations, even though these might not be the best option
for the data and tasks at hand.
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Dimensionality of the presentation space

The presentation space of a visualization can be either two-dimensional or three-
dimensional, or 2D or 3D for short. Two-dimensional visualizations address the spa-
tial dimensions of computer displays, that is, the x-axis and the y-axis. All graphical
elements are described with respect to x and y coordinates. Dots, lines, circles, or
arcs are examples of 2D geometry. The semantics of the data usually determine the
layout of the geometry on screen. 3D visualizations use a third dimension, the z-axis,
for describing geometry. This allows the visualization of more complex and volu-
metric structures. As human perception is naturally tuned to the three-dimensional
world around us, 3D representations potentially communicate such structures bet-
ter than 2D approaches. Since the z-axis does not physically exist on a computer
display, projection is required before rendering 3D visualizations. The projection is
usually transparent to the user and is commonly realized through standard computer
graphics methods which require no additional effort.

Spiral Range: 2009-12-31 - 2005-01-01

Fig. 4.6: Mapping to 2D. Spiral geometry is used to represent the time axis and data are encoded
to the width of spiral segments.

Visualization approaches using a 2D presentation space usually map the time
axis to a visual axis on the display (provided that the approach is not dynamic).
In many cases, the time axis is aligned with either coordinate axis of the display.
However, this is not necessarily always the case. Circular time axes (e.g., the spiral
in Figure 4.6) use polar coordinates, which actually can be mapped to Cartesian
coordinates and vice versa. It is also possible to apply affine transformations to the
time axis.
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Because one dimension of the display space is usually occupied for the repre-
sentation of the dimension of time, the possibilities of encoding the data depend-
ing on time are restricted. One data variable can be encoded to the remaining spa-
tial dimension of the presentation space, as for instance in a bar graph, where the
x-axis encodes time and the y-axis, more precisely the height of bars, encodes a
time-dependent variable. In order to visualize multiple variables further graphical
attributes like shape, texture, or color can be used.

Multidimensional data, that is, data with more independent variables than just
the dimension of time, are hard to visualize in 2D without introducing overlap and
visual clutter. Particularly, data with a spatial frame of reference can benefit from
the additional dimension available in a 3D presentation space. It is common practice
to apply the so-called space-time cube concept (see Kraak, 2003 and — p. 245),
according to which the z-axis encodes time and the x- and y-axes represent two
independent variables (e.g., longitude and latitude). Further variables, dependent or
independent, are then encoded to color, size, shape or other visual attributes (see
Figure 4.7 and — p. 252).

Fig. 4.7: Mapping to 3D. Three-dimensional helices represent time axes for individual regions of
a map and associated data are encoded by color.

The question of whether or not it makes sense to exploit three dimensions for vi-
sualization has been discussed at length by the research community (see Card et al.,
1999). One camp of researchers argues that two dimensions are sufficient for effec-
tive data analysis. In their thinking the third dimension introduces unnecessary dif-
ficulties (e.g., information hidden on back faces, information lost due to occlusion,
or information distorted through perspective projection) which 2D representations
are not or are only marginally affected by. But having just two dimensions for the
visual mapping might not be enough for large and complex datasets.

This is where the other camp of researchers make their arguments. They see the
third dimension as an additional possibility to naturally encode further information.
Undoubtedly, certain types of data (e.g., geospatial data) might even require the



4.2 Visualization Design Examples 83

third dimension for expressive data visualization, because there exists a one-to-one
mapping between the data dimensions and the dimensions of the presentation space.

We do not argue for either position in general. The question whether to use 2D or
3D is rather a question of which data has to be visualized and what are the analytic
goals to be achieved. The application background and user preferences also influ-
ence the decision for 2D or 3D. But definitely, when developing 3D visualizations,
the previously mentioned disadvantages of a three-dimensional presentation space
have to be addressed (e.g., by providing ways to cope with occlusion as suggested by
Elmgqvist and Tsigas, 2007). Moreover, intuitive interaction techniques are manda-
tory and additional visual cues are usually highly beneficial.

In the previous discussion of the questions what, why, and how we have outlined
the basic aspects that need to be considered when visualizing time and time-oriented
data. In the next section, we will return to each of these aspects and show in more
detail and by means of examples how the visualization design is influenced by them.

4.2 Visualization Design Examples

In the previous section, we introduced three basic questions that have to be taken
into account when designing visual representations for time and time-oriented data:

1. Data level: What is presented?
2. Task level: Why is it presented?
3. Presentation level: How is it presented?

We will now demonstrate the close interrelation of the three levels. By means of
examples we will illustrate the necessity and importance of finding answers to each
of these questions in order to arrive at visual representations that allow viewers to
gain insight into the analyzed data.

4.2.1 Data Level

In the first place, the characteristics of time-oriented data strongly influence the
design of appropriate visual representations. Two examples will be used to demon-
strate this: one is related to the time axis itself, the other will deal with the data. First,
we point out how significantly different the expressiveness of a visual representation
can be depending on whether the time domain is linear or cyclic. Secondly, we will
illustrate that spatial time-oriented data” require a visualization design that is quite
different from that of abstract time-oriented data, and that is usually more complex
and involves making well-balanced design decisions.

2 Commonly referred to as spatio-temporal data.
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Time characteristics: linear vs. cyclic representation of time

Figure 4.8 shows three different visual representations of the same time-oriented
dataset, which contains the daily number of cases of influenza that occurred in the
northern part of Germany during a period of three years. The data exhibit a strong
cyclic pattern. The leftmost image of Figure 4.8 uses a simple line plot (— p. 153) to
visualize the data. Although peaks in time can be recognized easily when examining
this representation, the cyclic behavior of the data, however, can only be guessed
and it is hard to discern which cyclic temporal patterns in fact do exist. In contrast,
the middle and the right image of Figure 4.8 show a circular representation that
emphasizes cyclic characteristics of time-oriented data by using a spiral-shaped time
axis (see Weber et al., 2001 and < p. 185). For the left spiral, the cyclic pattern is
not visible. This is due to the fact that the cycle length has been set to 24 days, which
does not match the pattern in the data. The right spiral representation in Figure 4.8 is
adequately parameterized with a cycle length of 28 days, which immediately reveals
the periodic pattern present in the data. The significant difference in the number of
cases of influenza reported on Sundays and Mondays, respectively, is quite obvious.
We would also see this weekly pattern if we set the cycle length to 7 or 14 days, or
any (low) multiple of 7.
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Fig. 4.8: Different insights can be gained from visual representations depending on whether the
linear or cyclic character of the data is emphasized.

The example illustrates that in addition to using the right kind of representation
of time (linear vs. cyclic), it is also necessary to find an appropriate parametriza-
tion of the visual representation. Interaction (see Chapter 5) usually enables users
to re-parameterize the visualization, but the difficulty is to find parameter settings
suitable to discover patterns in unknown datasets. Automatically animating through
possible parameter values — for the spiral’s cycle length in our example — is one
option to assist users in finding such patterns. During the course of the animation,
visual patterns emerge as the spiral’s cycle length is approaching cycles in the data
that match in length. Upon emergence of such patterns, the user stops the anima-
tion and can fine-tune the display as necessary. Analytical methods (see Chapter 6)
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can help in narrowing down the search space, which in our example means finding
promising candidates with adequate cycle length (see Yang et al., 2000). Combin-
ing interactive exploration and analytical methods is helpful for finding less sharp
or uncommon patterns, which are hard to distill using either approach alone.

Data characteristics: abstract data vs. spatial data

We used linear vs. cyclic time to demonstrate the impact of the characteristics of
time on the visualization design. Let us now do likewise with abstract vs. spatial
data to illustrate the impact of data characteristics.

Abstract data are not associated per se with a spatial visual mapping. Therefore,
when designing a visual representation of such data, one can fully concentrate on
aspects related to the characteristics of the dimension of time. The ThemeRiver ap-
proach by Havre et al. (2000) is an example of an approach in which the time aspect
is focused on (— p. 197). The dimension of time is mapped to the horizontal display
axis and multiple time-dependent variables are mapped to the thickness of individ-
ually colored currents, which form an overall visual stream of data values along the
time axis. Figure 4.9 illustrates the ThemeRiver approach. Because time is the only
dimension of reference in abstract time-oriented data, the visual representation can
make the best of the available screen space to convey the variables’ dependency
on time. The full-screen design, where the ThemeRiver occupies the entire screen,

Castro confiscates American refineries
Nationalization of property begins L Bay of Pigs |
iet relations resu

astro bans religious TV and radio :
US imposes emfargo on Cuba

[uba and S ﬁ

wankee(63)

#ieapons{62)

Fig. 4.9: The ThemeRiver technique is fully focused on communicating the temporal evolution of
abstract time-oriented data.
Source: Havre et al. (2002). © 2002 IEEE. Used with permission.
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even makes it possible to display additional information, such as a time scale below
the ThemeRiver, labels in the individual currents, or extra annotations for important
events in the data.

When considering time-oriented data with spatial references, the visualization
design has to address an additional requirement; not only the temporal character of
the data needs to be communicated, but also the spatial dependencies in the data
must be revealed. Of course, this implies a conflict in which the communication of
temporal aspects competes with the visualization of the spatial frame of reference
for visual resources, such as screen space, visual encodings, and so forth. Providing
too many resources to the visualization of aspects of time will most likely lead to
a poorly represented spatial context — and vice versa. The goal is to find a well-
balanced compromise. An example of such a compromise is given in Figure 4.10,
where the data are visualized using ThemeRiver thumbnails superimposed on a two-
dimensional map display (— p. 240). The position of a ThemeRiver thumbnail on
the map is the visual anchor for the spatial context of the data. The ThemeRiver
thumbnail itself encodes the temporal context of the data. The compromise that has
been made implies that the map display is rather basic and avoids showing any
geographic detail; just the borders of regions are visible. On the other hand, the
ThemeRiver representation has to get along with much less screen space (compared

Fig. 4.10: Embedding ThemeRiver thumbnails on a map allows for communicating both temporal
and spatial dependencies of spatial time-oriented data.
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to the full-screen counterpart). This is the reason why labels or annotations are no
longer visible constantly, but instead are displayed only on demand.

On top of the compromises made, all visualization approaches that embed (time-
representing) thumbnails (or glyphs or icons) into a map share a common problem:
finding a good layout. What makes a good layout is heavily application dependent,
but there is consensus that having an overlap-free layout is generally a good starting
point. However, finding a layout that minimizes occlusion among thumbnails and
overlap of thumbnails with geographic features is a difficult problem. In fact, the
problem is related to the general map labeling problem, which is NP-hard. Pursu-
ing a globally optimized solution is computationally complex (see Petzold, 2003;
Been et al., 2006), whereas locally optimizing approaches usually perform less ex-
pensive iterative adjustments that lead to suitable, but not necessarily optimal lay-
outs (see Fuchs and Schumann, 2004; Luboschik et al., 2008). We will not go into
any details of possible solutions, but instead refer the interested reader to the original
publications.

The bottom line is that the characteristics of time and time-oriented data shape
the design of visual representations to a great extent. As with the example of ab-
stract vs. spatial data we see that the more aspects need to be communicated, the
more intricate the visualization can become. One has to make acceptable trade-offs
and may face NP-hard computational challenges. Moreover, the example of linear
vs. cyclic time illustrates that the right visual mapping is essential for crystallizing
answers and insight from visualizations of time-oriented data.

4.2.2 Task Level

We introduced the user task as a second important visualization aspect. Incorpo-
rating the users’ tasks into the visualization design process on a general level is a
challenging endeavor. Therefore, the illustrative example we present here is a prag-
matic solution for the specific case of color coding. Earlier in this chapter we indi-
cated that in addition to positional encoding of data values along a time axis, color
coding plays an important role when visualizing multiple time-dependent data vari-
ables. The design of the color scale employed for the visual encoding substantially
influences the overall expressiveness of the visual representation. To obtain expres-
sive visual results, flexible color coding schemes are needed that can be adapted to
the data as well as to the task at hand. In the following, we will explain how color
scales can be generated in a task-dependent manner, and how they can be applied to
visualize time-oriented data. But first let us briefly review general aspects of color
coding.
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Color coding

The general goal of color coding is to find an expressive mapping of data to color.
This can be modeled as a color mapping function f : D — C that maps values of a
dataset D to colors from a color scale C. A fundamental requirement for effective
color coding is that the color mapping function f be injective, that is, every data
value (or every well-defined group of data values) is associated with a unique color.
This, in turn, allows users to mentally associate that unique color with a distinct data
value (or group of values). On the one hand, mapping two quite different data values
should result in two colors that are easy to discern visually. On the other hand, users
spotting visually similar colors infer that these colors represent data values that are
similar. Figure 4.11 demonstrates a basic mapping strategy.

max color
ma'xdakz T 1
z
value,,, +
H 4 0
min,,,
. value,,,
0 o value,,, —min,,,
MAaXx ;,p, — M1 gy min,,,,
value,,, =(1-f)min_, +{max_,,

Fig. 4.11: Simple strategy for mapping data to color.

Telea (2007) describes these and further factors as relevant for color coding. We
adapted his statements for the case of visualization of time-oriented data under con-
sideration of the characteristics of time and data (as identified in Chapter 3):

* Characteristics of the data: First and foremost, the statistical features of the data
and the time scale should be taken into account: extreme values, overall dis-
tribution of data values as well as data variation speeds and domain sampling
frequencies. For example, using a linear color mapping function on a skewed
dataset will result in the majority of data values being compressed to a narrow
range of colors.

* Characteristics of the tasks at hand: Different tasks require different color cod-
ing schemes. A main distinction here is whether the task requires the comparison
of exact quantitative values or the assessment of qualitative differences. Further-
more, certain goals may lead to specific regions of interest in the data domain.
These regions should be accentuated, for instance by using bright, warm, and
fully saturated colors.



4.2 Visualization Design Examples 89

* Characteristics of the user: The capabilities and the cultural as well as profes-
sional background of users have to be considered when designing appropriate
color scales. Individual color perception has to be taken into account, and for
users suffering from color vision defects, data values have to be mapped redun-
dantly to additional visual attributes. The conventions of the application back-
ground need to be considered as well. Medical experts, for instance, are very
much used to interpreting red-black-green color scales, despite the problems such
colors may cause for people with color vision deficits.

* Characteristics of the output device: Different output devices use different sys-
tems to define and display colors. Thus, a color coding scheme which is appro-
priate for displaying data on a computer display might be inappropriate when
showing the same data on other media. A common example is that colors that
have been carefully tuned for the slides of a talk appear completely different
when projected onto a wall.

The problem is that most of today’s visualizations that use color do not consider
these aspects to an adequate level. It is often the case that just basic color coding
schemes are used, most prominently the classic rainbow color scale. However, this
can lead to a loss of expressiveness of the generated images (see Borland and Taylor,
2007; Silva et al., 2007). In the following, we focus on the task aspect in more detail.

Task-dependent color coding

In order to define color scales in a task-specific manner, an adequate specification
of tasks is required. For this purpose, one can use the task model of Andrienko and
Andrienko (2006), which we described in Section 4.1.2. The model basically in-
vestigates tasks at three different levels. The first level draws a distinction between
individual data values and sets of data values (elementary tasks vs. synoptic tasks).
At the second level, the Andrienkos distinguish lookup, comparison, and relation
seeking tasks. In a broader sense, relation seeking can be seen as a specific case of
comparison®. This fact allows us to focus on the distinction between the two tasks:
lookup and comparison. The third level addresses two types of tasks: identification
and localization. Accomplishing identification tasks (direct lookup or direct com-
parison) requires recognizing data values and characteristic patterns as precisely as
possible, whereas performing localization tasks (inverse lookup or inverse compar-
ison) requires locating those references in time (and/or space) that exhibit certain
characteristics of interest. In summary, task-dependent color scales can be gener-
ated based on the following distinctions:

¢ Individual values vs. sets of values,
¢ Jdentification vs. localization, and
¢ Lookup vs. comparison.

3 For relation seeking the user has to compare different data items and/or time points to find inter-
esting relations, where relations of interest are defined beforehand, which is not the case for plain
comparison.
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Identification Localization
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Fig. 4.12: Examples of unsegmented and segmented color scales for identification and localization
of data values in a visual representation.

Color-coding individual data values requires unsegmented color scales. Unseg-
mented color scales associate unique colors with all individual data values, that is,
every color of the color scale represents exactly one data value. In contrast to that,
segmented color scales should be used to encode sets of data values. Each color of
a segmented color scale stands for a set, usually a range of data values.

In order to facilitate identification tasks, it should be made easy for the user
to mentally map the perceived color to a concrete data value (or set of values).
Moreover, distances in the color scale should correspond to distances in the data. To
support localization tasks, color scales should be designed in such a way that they
exploit pre-attentive perception of temporal areas of interest, for instance by using
accentuation and de-accentuation.

The specification of color scales for identification and localization of individual
data values and sets of values is a well investigated problem (see Bergman et al.,
1995; Harrower and Brewer, 2003; Silva et al., 2007). Figure 4.12 shows examples
of such color scales. The segmented color scale for identification represents five sets
of values, the unsegmented version can be used to identify individual values. The
segmented color scale for localization supports users in making a binary decision:
yellow encodes a match of some selection criteria, otherwise there is no match. The
unsegmented color scale represents a smooth interpretation of the selection criteria.

Figure 4.13 illustrates the difference between color scales for identification and
localization for the case of time-oriented data. The figure shows daily temperature
values for about three and a half years mapped to a color-coded spiral display (—
p. 184). While the color scale in Figure 4.13(a) supports identification, that is, one
can easily associate a color with a particular range of values, the color scale in Fig-
ure 4.13(b) is most suited to locate specific data values in time. In our example, the
highest and lowest values are accentuated using saturated red and blue, respectively.
All other values are encoded to shades of gray, effectively attenuating these parts of
the data. Thus it is easy to locate where in time high and low values occur.

The distinction between lookup and comparison tasks deserves a more detailed
investigation. Supporting the lookup task basically requires color scales that allow
for precise association of particular colors with concrete data values. In order to
facilitate comparison tasks, all variables involved in the comparison must be repre-
sented by a common unified color scale, which can be problematic when variables
exhibit quite different value ranges. The next paragraphs will provide more detail
on how efficient color scales for lookup and comparison tasks can be designed.



4.2 Visualization Design Examples 91
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(a) Color scale for identification of values. (b) Color scale for localization of extrema.

Fig. 4.13: Daily temperature values visualized along a spiral time axis using different color scales
for different tasks.

Color-coding for the lookup task As mentioned earlier, there are two kinds of
lookup tasks: inverse lookup and direct lookup. Inverse lookup tasks are basically
a search for certain references in time that exhibit specific data characteristics (lo-
calization). For the inverse lookup task, relevant data values (or subsets) are known
beforehand and hence can be easily accentuated using a highlighting color. On the
other hand, the design of color scales for direct lookup (identification) is intricate
because the whole range of data values is potentially relevant and must be eas-
ily identifiable. One way to facilitate lookup tasks is to extract statistical metadata
from the underlying dataset and utilize them to adjust predefined color scales (see
Schulze-Wollgast et al., 2005; Tominski et al., 2008). Let us take a look at three
possible ways of adaptation.

Expansion of the value range The labels displayed in a color scale legend are the
key to an easy and correct interpretation of a color-coded visualization. Commonly
a legend shows labels at uniformly sampled points between the data’s minimum and
maximum. As the left color scale in Figure 4.14(a) illustrates, this usually results in
odd and difficult-to-interpret labels. Even if the user has a clear picture of the color,
it takes considerable effort to mentally compute the corresponding value, or even the
range of plausible values. The trick of value range expansion is to extend the data
range that is mapped to the color scale. This is done in such a way so as to arrive
at a color mapping that is easier to interpret. The right color scale in Figure 4.14(a)
demonstrates this positive effect.
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Fig. 4.14: Value range expansion and control point adjustment help to make color legends more
readable and to better adapt the color coding to the underlying data distribution, which is depicted
as a box-whisker plot.

Adjustment of control points A color map is defined by several control points, each
of which is associated with a specific color. Appropriate interpolation schemes are
used to derive intermediate colors in between two control points. The left color
scale in Figure 4.14(b) shows an example where control points are uniformly dis-
tributed (interpolation is not applied for this segmented color scale). While this is
generally a good starting point, more information can be communicated when using
an adapted control point distribution. This is demonstrated in the right color scale
of Figure 4.14(b), where control points have been shifted in accordance with the
data distribution. The advantage is that users can easily associate colors with certain
ranges of the data distribution®.

Skewing of the color mapping function Uneven value distributions can be problem-
atic because they lead to situations where the majority of data values is represented
by only a narrow range of colors. This is unfavorable for lookup tasks. Logarith-
mic or exponential color mapping functions are useful when visualizing data with
skewed value distributions. In cases where the underlying data distribution cannot be
described by an analytical function, equalization can be applied to generate adapted
color scales. The net effect of equalization is that the scale of colors is in accord with
the data’s value distribution. Histogram equalization and box-whisker equalization
are examples of this kind of adaptation:

¢ Histogram equalization works as follows. First, one subdivides the value range
into n uniform bins and counts the number of data values falling into the bins.
Secondly, the color scale is sampled at n + 1 points, where the points’ locations

4 The box-whisker plot or boxplot used in the figures depict minimum, Ist quartile, median, 3rd
quartile, and maximum value (horizontal ticks from bottom to top).
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Fig. 4.15: Equalization schemas for adapting a color scale to the data distribution, which is depicted
as box-whisker plots.

are determined by the cumulative frequencies of the bins. Finally, the colors at
these sample points are used to construct an adapted color scale as illustrated in
Figure 4.15(a). As a result, more colors are provided there where larger num-
bers of data values are located, making values in high density regions easier to
distinguish.

* Box-whisker equalization works similarly. Here, colors are sampled at points de-
termined by quartiles. Quartiles partition the original data into four parts, each
of which contains one-fourth of the data. The second quartile is defined as the
median of the entire set of data (one half of the data lies below the second quar-
tile, the other half lies above it). The first and the third quartile are the medians
of the lower and upper half of the data, respectively. The adapted color scale is
constructed from the colors sampled at the quartiles (see Figure 4.15(b)).

How equalization affects the visualization of spatio-temporal data compared to
using unadapted color scales is shown in Figure 4.16. It can be seen that colors
are hard to distinguish in dense parts of the data unless histogram or box-whisker
equalization is applied, which improves discriminability.

Color-coding for the comparison task The comparison of two or more time-
dependent variables requires a global color scale that comprises the value ranges of
all variables participating in the comparison. Particularly problematic are compar-
isons where the individual value ranges are quite different. For example, a variable
with a small value range would be represented by only a small fraction of the global
color scale, which makes it hard for viewers to differentiate colors in that range. An
approach to alleviating this problem is to derive distinct intervals from the union of
all value ranges and to create a separate encoding for each interval. To this end, a
unique constant hue is assigned to each interval, while varying only brightness and
saturation to encode data values. Finally, the separately specified color scales for the
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Fig. 4.16: Color scale equalization applied to the visualization of time-oriented health data on a
map.

intervals are integrated into one global comparison color scale. To avoid disconti-
nuities at the tieing points of two intervals, brightness and saturation values of one
interval have to correspond with the respective values of the adjacent interval. In
other words, within one interval the hue is constant while brightness and saturation
vary, whereas at the boundary from one interval to the next the hue is modified while
brightness and saturation are kept constant. This way, even small value ranges will
be represented by their own brightness-varying subscale of the global color scale
and the differentiation of data values is improved.

Figure 4.17 shows how different color coding schemes influence the task of com-
paring three time-dependent variables. Figure 4.17(a) uses individual color scales
for each variable. Visual comparison is hardly possible because one and the same
color stands for three different data values (one in each value range). A global color
scale as shown in Figure 4.17(b) allows visual comparison, but data values of the
first and third variable are no longer distinguishable because their value ranges
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Fig. 4.17: Different color scales for visual comparison of three time-dependent variables.

are rather small compared to the one of the second variable. Figure 4.17(c) illus-
trates that adapting the color scale to the global value distribution is beneficial. Fig-
ure 4.17(d) shows the visualization outcome when applying the color scale construc-
tion as described above: the recognition of values has been improved significantly.
However, these results cannot be guaranteed for all cases, in particular, then when
the merging process generates too many or too few distinct value ranges.

In the previous paragraphs we discussed the influence of the task at hand on the
visualization of time-oriented data. The example of color-coding served to demon-
strate how the task can be taken into account in the visualization process. As we have
seen, visualization results can be improved when task-based concepts are applied.
But still more research is required to investigate new methods of task-orientation, in
particular in the light of collaborative visualization environments.

4.2.3 Presentation Level

Finally, there are design issues at the level of the visual representation. Communi-
cating the time-dependence of data primarily requires a well-considered placement
of the time axis. This will make it easier for users to associate data with a particular
time, and vice versa. In Section 4.1.3, we have differentiated between 2D and 3D
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presentations of time-oriented data. Let us take up this distinction as an example of
a design decision to be made at the level of the visual representation. Visualization
approaches that use a 2D presentation space have to ensure that the time axis is em-
phasized, because time and data dimensions often have to share the two available
display dimensions. In the case of 3D representations, a third display dimension is
allocatable. In fact, many techniques utilize it as a dedicated dimension for the time
axis, clearly separating time from other (data) dimensions. In the following, we will
illustrate the 2D and the 3D approach with two examples.

2D presentation of time-oriented data

We discuss the presentation of time-oriented data in 2D by the example of axes-
based visualizations. Axes-based visualization techniques are a widely used ap-
proach to represent multi-dimensional datasets in 2D. The basic idea is to construct
a visual axis for each dimension of the n-dimensional data space, and to scale the
axes with respect to the corresponding value range. In a second step, a suitable lay-
out of the visual axes on the display has to be found. Finally, the data representation
is realized by placing additional visual objects along the visual axes and in accord
with the data. In this way, a lossless projection of the n-dimensional data space
onto the 2-dimensional screen space can be accomplished. Parallel coordinates by
Inselberg and Dimsdale (1990) are a well known example of this approach. Paral-
lel coordinates use equidistant and parallel axes to represent multiple variables, and
each data tuple is represented by a polygonal line linking the corresponding variable
values. In the case of time-oriented data, however, this means that the axis encoding
time is considered as one of many, not taking into account the outstanding impor-
tance of this axis (see Figure 4.18).

2470 1810

Fig. 4.18: In parallel coordinates, the time axis (here the leftmost axis) is just one of many axes
and it is not treated in any particular way to emphasize the importance of time.
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In contrast, Tominski et al. (2004) describe an axes-based visualization called
TimeWheel, which focuses on one specific axis of interest, in our case the time axis
(= p. 200). The basic idea of the TimeWheel technique is to distinguish between
one independent variable, in our case time, and multiple dependent variables repre-
senting the time-oriented data. The dimension of time is presented by the reference
time axis in the center of the display and time-dependent variables are shown as
data axes that are circularly arranged around the time axis, where each dependent
variable has a specific color hue associated with it. For each time value on the time
axis, colored lines are drawn that connect the time value with the corresponding
data value at each of the data axes, effectively establishing a visual link between
time and multivariate data. By doing so, the time dependency of all variables can be
visualized. Note that the interrelation of time values and data values of a variable
can be explored most efficiently when a data axis is parallel to the time axis. Inter-
active rotation of the TimeWheel can be used to move data axes of interest into such
a parallel position.

Two additional visual cues support data interpretation and guide the viewer’s
attention: color fading and length adjustment. Color fading is applied to attenuate
lines drawn from the time axis to axes that are almost perpendicular to the time axis.
During rotation, lines gradually fade out and eventually become invisible when the
associated data axis approaches an upright orientation. To provide more display
space for the data variables of interest, the length of data axes is adjusted according

Fig. 4.19: The TimeWheel shows the reference time axis in a prominent central position and ar-
ranges data axes representing time-dependent variables around the time axis. Data are visualized
by drawing lines between points at the time axis and values at data axes.
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to their angle to the time axis. When the TimeWheel is rotated, data axes that are
going to become parallel to the time axis are stretched to make them longer and
data axes that head for an upright orientation are shrunk to make them shorter. Fig-
ure 4.19 shows a TimeWheel that visualizes eight time-dependent variables, where
color fading and length adjustment have been applied to focus on the orange and the
light green data axes.

The TimeWheel is an example of a 2D visualization technique that acknowledges
the important role of the time axis. The time axis’ central position emphasizes the
temporal character of the data and additional visual cues support interactive analysis
and exploration of multiple time-dependent data variables.

3D presentation of time-oriented data

3D presentation spaces provide a third display dimension. This opens the door to
additional possibilities of encoding time and time-oriented data. Particularly, the
visualization of data that have further independent variables in addition to the di-
mension of time can benefit from the additional dimension of the display space.

Spatio-temporal data are an example where data variables do not only depend on
time, but also on space (e.g., on points given by longitude and latitude or on geo-
graphic regions). When visualizing such data, the temporal frame of reference as
well as the spatial frame of reference have to be represented. We already mentioned
that applying the space-time cube design (see Kraak, 2003 and — p. 245) is com-
mon practice: the z-axis of the display space exclusively encodes time, while the x-
and y-axes represent spatial dimensions. Spatio-temporal data are then encoded by
embedding visual objects into the space-time cube (e.g., visual markers or icons)
and by mapping data to visual attributes (e.g., color or texture). Kristensson et al.
(2009) provide evidence that space-time cube representations can facilitate intuitive
recognition and interpretation of data in their spatio-temporal context.

Figure 4.20 shows two examples of this approach as described by Tominski et al.
(2005). Figure 4.20(a) represents multiple time-dependent variables by so-called
pencil icons (— p. 249). The linear time axis is encoded along the pencil’s faces
starting from the tip. Each face of the pencil is associated with a specific data vari-
able and a specific color hue, and represents the corresponding data values by vary-
ing color saturation. Figure 4.20(b) uses so-called helix icons (— p. 252). Here, we
assume a cyclic character of time and thus, a ribbon is constructed along a spiral
helix. For each time step the ribbon extends in angle and height, depending on the
number of time elements per helix cycle and the number of cyclic passes. Again
color coding is used to encode the data values. To represent more than one data
variable, the ribbon can be subdivided into narrower sub-ribbons.

The 3D display space used in the previous examples is advantageous in terms of
the prominent encoding of time, but it also exhibits two problems that one needs
to address: perspective distortions and occlusion (see Section 4.1.3). Perspective
distortions are problematic because they could impair the interpretation of the visu-
alized data. Therefore, the visual mapping should avoid or reduce the use of geo-
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(a) Pencil icons for linear time. (b) Helix icons for cyclic time.

Fig. 4.20: 3D visualization of spatio-temporal data using color-coded icons embedded into a map
display.

metric visual attributes that are subject to perspective projections (e.g., shape, size,
or orientation). This is the reason why the pencil icons and helix icons apply color
coding instead of geometric encoding. The occlusion aspect has to be addressed by
additional mechanisms. For example, users should be allowed to rotate the icons or
the whole map in order to make back faces visible. Another option is to incorpo-
rate additional 2D views that do not suffer from occlusion. Such views are shown
for a user-selected region of interest in the bottom-left corner of Figures 4.20(a)
and 4.20(b). Again this approach is a compromise. On the one hand, the 2D view
is occlusion-free, but on the other hand, one can show only a limited number of
additional views, and moreover, one unlinks the data from their spatial reference.

Irrespective of whether one uses a 2D or 3D representation, the visualization de-
sign for time-oriented data requires a special handling of the time axis to effectively
communicate the time-dependence of the data. Both approaches have to take care to
emphasize the dimension of time among other data dimensions.

4.3 Summary

Solving the visualization problem primarily requires answering the three questions:
(1) What is visualized? (2) Why is it visualized? (3) How is it visualized? The
answers to the first two questions determine the answer to the third question.

In the case of visualizing time-oriented data, answering the what-question re-
quires both specifying the characteristics of the time domain as well as specifying
the characteristics of the data associated with time. In Chapter 3, we have shown
that many different aspects characterize time and time-oriented data. It is virtually
impossible to simultaneously cover all of them within a single visualization process.
On top of this, there exists no visualization technique that is capable of handling all
of the different aspects simultaneously and presenting all of them in an appropriate
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way. Here, the answer to “why are we visualizing the data” comes into play. Those
aspects of the data that are of specific interest with regard to the tasks at hand have
to be communicated by the visual representation, while others can be diminished or
even omitted. However, this is an intricate problem, and most of today’s visualiza-
tion systems do not support the process of generating suitable task-specific visual
representations. Thus, our primary aim can only be to communicate the problem,
and also to demonstrate the necessity and potential of considering the interrelation
between the what, why, and how aspects by example, as we have done in Section 4.2.

scale, scope, arrangement, viewpoint
What? time granularity & calendars, time primitives,
) determinacy
see Chapter 3

scale, frame of reference, kind of data,
data number of variables
see Chapter 3

time & data internal time, external time
see Chapter 3

Why'? 18t level N N

individual values sets
2" |evel Q Q
lookup comparison
3.14 N
3 Jevel o T
identification localization

How? mapping fAl

static dynamic
dimensionality D @
2D 3D

Fig. 4.21: Three key questions of the visualization problem.

Figure 4.21 again summarizes the key characteristics of the three aspects. The
what-aspect addresses characteristics of time and data as detailed in Chapter 3.
For describing the why-aspect, we rely on an abstracted view of the tasks by
Andrienko and Andrienko (2006) (see Section 4.1.2). The how-aspect is mainly cat-
egorized by the differentiation of static and dynamic as well as 2D and 3D represen-
tations (see Section 4.1.3).
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We will see that there are a variety of techniques for handling and accounting
for these key characteristics. Accordingly, many different visual representations of
time-oriented data can be generated. Chapter 7 will attest to this statement.
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Chapter 5
Interaction Support

A graphic is not “drawn” once and for all; it is “constructed” and
reconstructed until it reveals all the relationships constituted by the
interplay of the data. The best graphic operations are those carried
out by the decision-maker himself.

Bertin (1981, p. 16)

The previous chapter discussed various options for designing visual representations
that help people in understanding time and time-oriented data. ‘Seeing’ trends, cor-
relations, and patterns in a visual representation is indeed a powerful way for people
to gain knowledge from data. However, we have also seen earlier in this book that
manifold aspects are involved in the generation of a visual representation: charac-
teristics of time and data, user tasks, choice and parametrization of visualization
techniques, and so forth. Particularly when feeding unknown data into a visualiza-
tion method, the visual outcome might not turn out as expected. But we usually do
not know exactly what it is that is expected or whether the visual representation is
effective with regard to the task that the user is trying to accomplish. And because
there are things that we do not know, we have to seek assistance from the user. So,
visual exploration and analysis is not a one-way street where data are transformed
into images, but in fact is a human-in-the-loop process controlled and manipulated
by one or more users.

Having said that, it becomes clear that in addition to visual methods, a high de-
gree of interactivity and advanced interaction techniques for working with time-
oriented data are important. Interaction helps users in understanding the visual map-
ping, in realizing the effect of visualization parameters, in carving out hidden pat-
terns, and in becoming confident about the data. But interaction also provokes cu-
riosity — users want to get their hands on their data — which is particularly useful
when exploring unknown data. The importance of interaction is nicely reflected in
the following statement:

Visual representations alone cannot satisfy analytical needs. Interaction techniques are re-
quired to support the dialogue between the analyst and the data.
Thomas and Cook (2005, p. 30)
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5.1 Motivation & User Intents

The constantly increasing size and complexity of today’s datasets are major chal-
lenges for interactive visualization. Large datasets cannot simply be loaded to lim-
ited computer memory and then be mapped to an even smaller display. Users are
only able to digest a fraction of the available information at a time. Complex data
contain many different aspects and may stem from heterogeneous sources. As com-
plexity increases, so does the number of questions that one might ask about the data
and that should be answered with the help of visual representations.

In our particular case, we need to account for the specific aspects of time and
time-oriented data in the context of what, why, and how they are visualized (see
Chapters 3 and 4). Any attempt to indistinctively encode all facets of a complex
time-oriented dataset into a single visual representation is condemned to fail, be-
cause it would lead to a confusing and overloaded display that users could hardly
interpret.

Instead, the big problem has to be split into smaller pieces by focusing on relevant
data aspects and particular tasks per visual representation. Several benefits can be
gained: computational costs are reduced in a kind of divide-and-conquer way, the
visual representations become more effective because they are tailored to emphasize
a particular point, and users find it easier to explore or analyze the data since they
can concentrate on important and task-relevant questions.

Dividing the visualization problem and separating different aspects into individ-
ual views raises the question of how users can visually access and mentally combine
these. The answer is inferaction. In an iterative process, the user will focus on dif-
ferent parts of the data, look at them from alternative perspectives, and will seek
answers to diverse questions. Starting with an overview of the data, which requires
appropriate data abstraction and dedicated visual representations, the user will most
certainly identify parts to focus on for more detailed examination (see Shneiderman,
1996). From there, it might make sense to move on to data that are related or similar,
or it might be better to return to the overview and investigate the data from a dif-
ferent point of view, or with regard to a different question. In other words, the user
forms a mental model of the data by interactively navigating from one focus to the
next, where the term focus includes data subsets, data aspects, analysis tasks, and so
forth. While exploring data this way, users develop understanding and insight.

The general motivation for interaction is clear now, but what specifically mo-
tivates the user to interact? Yi et al.’s (2007) study on a deeper understanding of
interaction gives an answer to this question. They identified several user intents for
interaction and introduced a list of categories that describe on a high level why users
would like to interact. In the following, we make use of the categories from Yi et al.
(2007) and adapt them to the case of interacting with time and time-oriented data:

Select — Mark something as interesting When users spot something interesting
in the visual representation, they want to mark and visually highlight it as such, be
it to temporarily tag an intriguing finding or to permanently memorize important
analysis results. The subjects to be marked can be manifold: interesting points in
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time, an entire time-dependent variable, a particular temporal pattern, or certain
identified events.

Explore — Show me something else In order for the visualization of larger or more
complex multivariate time-oriented data to be practically usable, it has to focus on
only a subrange of time and on only a subset of the data variables. As a consequence,
users have to interactively visit different parts of the time domain and consider alter-
native variables for the inclusion in the visual encoding to arrive at an overall view
of the data.

Reconfigure — Show me a different arrangement Different arrangements of time
and associated data can communicate completely different aspects, a fact which
becomes obvious when recalling the distinction between linear and cyclic represen-
tations of time. As users want to look at time from different angles, they need to
be provided with facilities that allow them to interactively generate different spatial
arrangements of time-oriented data.

Encode — Show me a different representation Similarly to what was said about
the spatial arrangement, the visual encoding of data values has a major impact on
what can be derived from a visual representation. Because data and tasks are ver-
satile, users need to be able to adapt the visual encoding to suit their needs, be it
to carry out localization or comparison tasks, or to confirm a hypothesis generated
from one visual encoding by checking it against an alternative one.

Abstract/Elaborate — Show me more or less detail During visual analysis, users
need to look at certain things in detail, while for other things schematic representa-
tions are sufficient. The hierarchically structured levels of granularity of time, where
higher-level abstractions provide aggregated overviews, and lower levels hold the
corresponding details, are a natural match to drive such an interactive information
drill-down into time-oriented data.

Filter — Show me something conditionally When users search for particular in-
formation in the data or evaluate a certain hypothesis about the data, it makes sense
to restrict the visualization to show only those data items that adhere to the con-
ditions imposed by the search criteria or the hypothesis’ constraints. Interactively
filtering out or attenuating irrelevant data items clears the view for users to focus on
their current task.

Connect — Show me related items When users make a potentially interesting find-
ing in the data, they usually ask themselves whether similar or related discoveries
can be made in other parts of the data. So users intend to interactively find, compare,
and evaluate such similarities or relations, for example, to see whether a trend they
discovered in one season of a year is present for other data variables or is repeated
at the same time in subsequent years.

Undo/Redo — Let me go to where I have already been Users have to navigate
in time and look at it at different levels of granularity, they have to try different
arrangements and visual encodings, and they have to experiment with filtering con-
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ditions and similarity thresholds. To account for the explorative nature of interactive
analytic reasoning, a history mechanism with undo and redo operations is needed.
Undo/redo enables users to try out new views on the data and to return effortlessly
to the previous visual representation if the new one did not work out as expected.

Change configuration — Let me adjust the interface In addition to adapting the
visual representation to the data and tasks at hand, users also want to adapt the over-
all system that provides the visualization. This includes adapting the user interface
(e.g., the arrangement of windows or the items in toolbars), but also the general
management of system resources (e.g., the amount of memory to be used).

Taken together, these intents represent what a visualization system for time-oriented
data should support in terms of interaction in order to take full advantage of the syn-
ergy of the human’s and the machine’s capabilities. Many of the approaches we
describe in the survey in Chapter 7 offer support for one or the other user intent.
While marking (or selecting) interesting data items and navigation in time are quasi-
mandatory, facilities for other intents are often rudimentary or not considered at all.
This is most likely due to the extra effort one has to expend for implementing effec-
tive interaction methods. But in fact, all of these user intents are equally important
and corresponding techniques should be provided.

5.2 Fundamental Principles

Now that we know about the general motivation and more specific user intents be-
hind interaction, we can move on and take a look at how interaction is actually
performed. To this end, we will describe fundamental interaction concepts next.

Conceptual considerations

When users interact they express their intent to change their point of view and they
expect that the visual representation reflects the intended change. Norman (2002)
models interaction as a loop of two gulfs: the gulf of execution and the gulf of eval-
uation. The first part subsumes steps that are related to the execution of interaction,
including the intention, the mental construction of an interaction plan, and the ac-
tual physical interaction (e.g., pressing a button). The second part is related to the
feedback, which in our case is of a visual nature. It involves perceiving and under-
standing the feedback as well as evaluating the success of the interaction. Figure 5.1
illustrates Norman’s conceptual model.

Different modes of interaction can be identified depending on how the interaction
loop is performed. Spence (2007) distinguishes two modes of active user interaction:

» stepped interaction and
* continuous interaction.
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Interpretation

Gulf of Evaluation

Intention Ex?;;rl:te
p

. plan
Gulf of Execution

Fig. 5.1: Norman’s model of interaction (adapted from Norman, 2002).

For stepped interaction the interaction loop is executed in a discrete fashion. That
is, the user performs one interaction step and evaluates the visual feedback. Much
later the user might perform another step of interaction. As an example one can
imagine a user looking at a visualization of the data at the granularity of years. If
more details are required, the user might take an interaction step to switch to a finer
granularity of months.

The term continuous interaction is used to describe interaction for which the loop
is iterated at high frequency. The user continuously performs interaction and eval-
uates feedback for a significant period of time. This is particularly useful, because
examining multiple ‘what if” scenarios is a key aspect of exploratory analysis of
time-oriented data.

An example could refer to setting the cycle length for a spiral visualization in or-
der to find cyclic patterns. For stepped interaction, the user has to explicitly specify
the cycle length of interest in a successive manner. The stepped approach requires
much time to explore parameter ranges and one does not see patterns emerge as
a suitable cycle length is approached. Continuous interaction (e.g., by dragging a
slider) allows the user to explore any range at any speed and reduces the risk of
losing interesting patterns.

Technical considerations

Technically, Jankun-Kelly et al. (2007) model the loop of user interaction as adjust-
ments of visualization parameters, where concrete parameters can be manifold, e.g.,
the rotation angle of a 3D helix glyph, the focus point of a fisheye-transformed time
axis, thresholds of a filter operation, or parameters that control a clustering algo-
rithm.

For smooth and efficient interaction, the ensemble of visual and interaction meth-
ods has to generate feedback in a timely manner (within 50 - 100 ms according to
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Shneiderman (1994) and Spence (2007)). However, even data of moderate size can
pose computational challenges. On the one hand, mapping and rendering the vi-
sual representation might take some time, particularly if complex visual abstractions
have to be displayed. On the other hand, analytical methods (see Chapter 6) involved
in the visualization process consume processing time before generating results. The
adverse implication for interaction is that visual feedback might lag, disrupting the
interaction loop.

Another aspect adds to the time costs for presenting visual feedback. As inter-
action involves change, we want users to understand what is happening. However,
abrupt changes in the visual display will hurt the mental model that users are devel-
oping while exploring unknown data. Pulo (2007) and Heer and Robertson (2007)
provide evidence that smoothly interpolating the parameter change and applying
animation to present the visual feedback is a better solution. However, animation
consumes time as well, not to mention the possibly costly calculations for interpo-
lating parameter changes.

Thus there are two conflicting requirements. On the one hand, interaction needs
synchrony. An interactive system has to be responsive at all times and should pro-
vide visual feedback immediately. From the interaction perspective, a system that
is blocked and unresponsive while computing is the worst scenario. On the other
hand, interaction needs asynchrony — for both generating the feedback (i.e., com-
putation) and presenting the feedback (i.e., animation). The difficulty is to integrate
synchrony and asynchrony.

In order to utilize the power of the human-in-the-loop, Norman’s model must be
outfitted with intuitive interaction methods to allow users to change the visualiza-
tion, and with intuitive ways of presenting the visual feedback to reflect the change.
From a technical perspective, both the gulf of execution and the gulf of evaluation
must work together smoothly and seamlessly under the umbrella of an effective user
interface.

User interface

The user interface is the channel through which a human and a machine exchange
information (i.e., interaction input and visual feedback). This interface is the linch-
pin of interactive visual exploration and analysis of time-oriented data. Any visual
representation is useless if the user interface fails to present it to the user in an ap-
propriate way, and the diversity of available visualization techniques lies idle if the
user interface fails to provide interactive access to them. In order to succeed, the
user interface has to bridge the gap between the technical aspects of a visualization
approach and the users’ mental models of the problems to be solved. In this regard,
Cooper et al. state:

[...] user interfaces that are consistent with users’ mental models are vastly superior to those
that are merely reflections of the implementation model.
Cooper et al. (2007, p. 30)
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The user interface is responsible for numerous tasks. It has to provide visual
access to time-oriented data and to information about the visualization process it-
self at different levels of graphical and semantic detail. Appropriate controls need
to be integrated to allow users to steer exploration and analysis with regard to the
interaction intents mentioned before, including marking interesting points in time,
navigating in time at different levels of granularity, rearranging data items and el-
ements of the visual representation, or filtering for relevant conditions. Moreover,
the user interface has to support bookkeeping in terms of the annotation of findings,
storage of results, and management of the working history (undo/redo).

In general, the user interface has to offer facilities to present information to the
user and to accept interaction input from the user. This separation is reflected in
the model-view-controller (MVC) architecture by Krasner and Pope (1988), where
views provide visual representations of some model (in our case time, time-oriented
data, and visualization parameters) and controllers serve for interactive (or auto-
matic) manipulation of the model.

Visualization views Especially the different temporal granularities make it nec-
essary to present the data at different levels of graphical and semantic detail.
Overview+detail as well as focus+context are the key strategies to address this de-
mand. Overview+detail methods present overview and detail separately. The sepa-
ration can be either spatial or temporal. Spatial separation means that separate views
show detail and overview. For example, on the bottom of Figure 5.2, an overview
shows the entire time domain at a high level of abstraction. On top of the overview
there is a separate detail view, which shows the data in full detail (i.e., detailed plan-
ning information), but only for a narrow time interval. Temporal separation means
a view is capable of showing any level of detail, but only one at a time. This is
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Fig. 5.2: Overview+detail. The detail view at the top shows individual steps of the construction
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Fig. 5.3: Focus+context. The center of the perspective wall shows the focus in full detail. The
focus is flanked on both sides by context regions. Due to perspective distortion, the context regions
intentionally decrease in size and show less detail.

Source: © Inxight Federal Systems.

usually referred to as zooming, where the user can interactively zoom into details
or return to an overview. Semantic zooming denotes zooming that is performed
in the data space, whereas graphical zooming operates in the presentation space.
Contrary to overview+detail, focus+context methods smoothly integrate detail and
overview. For the user-chosen focus, full detail is presented, and the focus is em-
bedded into a less-detailed display of the context. Figure 5.3 shows the perspective
wall technique (— p. 168) as a prominent example of the focus+context approach.
Cockburn et al. (2009) provide a comprehensive survey of overview-+detail, zoom-
ing, and focus+context and discuss the advantages and disadvantages of these con-
cepts.

When visualizing time-oriented data, a sensible approach is to provide multi-
ple coordinated views!, each of which is dedicated to particular aspects of time,
certain data subsets, or specific visualization tasks. Views are coordinated to help
develop and maintain a consistent overall image of the visualized data. This means
that an interaction which is initiated in one view is automatically propagated to all
coordinated views, which in turn update themselves to reflect the change visually.
A practical example is browsing in time. When the user navigates to a particular
range of the time axis in one view, all other views (that are coordinated) follow the
navigation automatically, which otherwise would be a cumbersome task to be man-
ually accomplished by the user on a per-view basis. Figure 5.4 shows an example
where multiple coordinated views are applied to visualize spatio-temporal data in
the VIS-STAMP system (— p. 244).

! Baldonado et al. (2000) provide general guidelines for when to use multiple coordinated views.

vww.ebook3000.con)



http://www.ebook3000.org

5.2 Fundamental Principles 113

Ee VESTAMP b

O s

Bsom
SOM | Bed. SOM | Coar eray | Color Design
e e e e d e |
e & & & o AheE 1
o e
e @
L ]
o
® e 0

Fig. 5.4: Multiple coordinated views. Analysts can look at the data from different perspectives.
The views are coordinated, which means selecting objects in one view will automatically highlight
them in all other views as well.

Source: Generated with the VIS-STAMP system.

In addition to coordination, the arrangement of multiple views on the display
plays a significant role. The two extremal positions one could take are to use a fixed
arrangement that has been designed by an expert and has proved to be efficient, or
to provide users with the full flexibility of windowing systems, allowing them to
move and resize views arbitrarily. Both extremes have their advantages and disad-
vantages and both are actually applied. An interesting alternative is to make use of
view docking. The main reason for applying docking is that while it maintains flex-
ibility, it also imposes a certain order in terms of what arrangements are possible.
For instance, it is preferable that views do not overlap partially; a view should either
be visible or not. To this end, docking works with the available screen space being
partitioned into regions, each of which contains one or more views. The regions can
be resized and moved with the constraint that the arrangement remains a partition,
that is, remains overlap-free. A region that contains more than one view provides an
interface to switch between them (usually tab-based).

Interaction controls The user interface also consists of various interaction con-
trols to enable users to tune the visualization process to the data and task at hand.
Figure 5.5 shows a simple example with only a single spiral view (see Tominski and
Schumann, 2008 and — p. 184), which however already depends on a number of
parameters, which in turn demands a corresponding number of controls in the con-
trol panel. The figure shows sliders for continuous adjustments of parameters such
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Fig. 5.5: User interface for a spiral visualization. The interface consists of one spiral view and one
control panel, which in turn consists of various controls to adjust visualization parameters.

as segments per cycle, spiral width, and center offset. Buttons, drop boxes, and cus-
tom controls are provided for selecting different modes of encoding (e.g., adjusting
individual colors or choosing different color scales).

In this example, user input (e.g., pressing a button or dragging a slider) is imme-
diately committed to the system in order to realize continuous interaction. However,
this puts high demands on the system in terms of maintaining responsiveness and
generating visual feedback at interactive rates (see Piringer et al., 2009). Therefore,
a commonly applied alternative is to allow users to perform a number of adjust-
ments and to commit the adjustments as a single transaction in a stepped manner
only when the user presses the “Apply” button.

Certainly, there are visualization parameters that are adjusted more often than
others during interactive visual exploration. Resources should preferably be spent on
facilitating continuous interaction for important parameters. Moreover, Gajos et al.
(2006) provide evidence that duplicating important functionality from an all-encom-
passing control panel to an exposed position is a useful way to drive adaptable user
interfaces. For example, toolbars allow for interaction that is most frequently used,
whereas rarely applied tools have to be selected from an otherwise collapsed menu
structure.
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5.3 Basic Methods

It is clear now that we need visualization views on the one hand, and interaction
controls on the other hand. Views are usually equipped with visual representations,
and we described many examples for time and time-oriented data in the previous
chapters. Let us now take a closer look at interactive means of controlling the visu-
alization beyond standard graphical user interface controls. To this end, we briefly
describe direct manipulation, brushing & linking, and dynamic queries as key meth-
ods for interactive visualization and show how these methods can be applied for
exploration and analysis of time-oriented data.

Direct manipulation

Working with a graphical user interface has the advantage that standardized compo-
nents can be used to control the visualization process. However, a disadvantage is
that visual feedback usually does not appear where the interaction was performed,
but in a different part of the display, i.e., the view where the visualization is shown
(see Figure 5.5). Direct manipulation as introduced by Shneiderman (1983) is the
classic means to address this disadvantage. The goal is to enable users to directly
manipulate the visual representation without a detour. To this end, a visualization
view or graphical elements are implemented so as to be responsive to user input. A
visualization may for instance allow zooming into details under the mouse cursor
simply by rotating the mouse wheel, or visiting different parts of the visual represen-
tation simply by dragging the view. Such functionality is often present in zoomable
user interfaces (see Cockburn et al., 2009). Virtual trackballs (see Henriksen et al.,
2004) are more object-centric in that they allow users to grab and rotate virtual ob-
jects to view them from different angles.

In terms of interacting with visual representations of time-oriented data, navigat-
ing time is of particular importance. Many tools provide standard slider or calendar
controls in the user interface to support navigation. However, these controls do not
realize direct manipulation. In order to do so, interaction has to be tightly coupled
with the display of the time axis. We explain what this means by two examples.
Take a look back at Figure 5.5. You may notice that a slider for navigating in time
is missing. Instead, the spiral display allows direct manipulation. For this purpose,
small arrow-shaped handles are displayed at the beginning and at the end of the spi-
ral. Clicking these handles navigates back and forth in time. Clicking and dragging
the mouse off a handle adjusts the navigation speed, which is determined by the dis-
tance of the mouse cursor to the handle. A textual label provides precise feedback
about the time span currently mapped to the spiral.

For a second example of direct manipulation, we refer to the interactive axes of
the TimeWheel (— p. 200). Besides a simple non-interactive axis representation, the
TimeWheel provides three different types of interactive axes: (1) overview+detail
axis, (2) focus+context axis, and (3) hierarchical axis (see Figure 5.6). Each of these
interactive axes displays time and additionally offers different options for direct
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(c) Focus+context axis.

Fig. 5.6: The TimeWheel’s mapping of time along the time axis can be manipulated directly in
different ways. The simple axis uses a fixed linear mapping of time. The overview+detail axis
allows users to select any particular range of the time domain to be mapped linearly to the time
axis. The focus+context axis can be used to untangle dense parts of the time domain by applying a
non-linear mapping. The hierarchical axis represents time at different levels of granularity, where
individual axis segments can be expanded and collapsed.

manipulation. The overview+detail axis basically extends the simple axis with three
interactive handles to control the position and extent of the time interval to be dis-
played in the TimeWheel, effectively allowing users to zoom and scroll into any
particular part of the data. The focus+context axis applies a non-linear distortion to
the time axis in order to provide more drawing space for the user’s focus and less
space for the context. This allows users to untangle dense parts of the data. Finally,
for the hierarchical axis, the display is hierarchically subdivided into segments ac-
cording to the different granularities of time (e.g., years, quarters, months, days).
Users can expand or collapse these segments interactively to view the data at differ-
ent levels of abstraction. Figure 5.6 illustrates the three types of interactive axes and
the corresponding visual mapping compared to the simple non-interactive axis.

The advantage of directly manipulating the visual representation is, as indicated,
that interaction and visual feedback take place at the very same location. However,
direct manipulation always involves some learning and training of the interaction
facilities provided. This is necessary because most of the time the interaction is not
standardized but custom-made to fit the visual mapping.
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Brushing & linking

Brushing & linking is a classic interaction concept, which takes up the idea of direct
manipulation. Becker and Cleveland (1987) describe brushing as a technique that
enables users to select interesting data items directly from a data display. There
are various options one can follow when selecting data items. We will often find
brushing being implemented as point and click interaction to select individual data
items. Rubber-band or lasso interaction serve the purpose of brushing subranges in
the data or multiple data items at once. Hauser et al. (2002) introduce brushing based
on angles between data items, and Doleisch and Hauser (2002) go beyond binary
selection to allow for smooth brushing (i.e., data items can be partly selected).

After brushing, selected data items are highlighted in order to make them stand
out against the rest of the data. The key benefit of brushing & linking is that data
selected in one view are automatically highlighted in all other views, effectively
linking the views. In this sense, brushing & linking is a form of coordination among
multiple views. This is especially useful when visualizing the variables of a multi-
variate time-oriented dataset individually in separate views. Then, brushing a tem-
poral interval of interest in one view will highlight the same interval and correspond-
ing data values in all views, and we can easily compare how the individual variables
develop during the brushed time period.

For complex data, using a single brush is often unsatisfactory. Instead, users need
to perform multiple brushes on different time-dependent variables or in different
views. Compound brushing as explained by Chen (2004) allows the combination
of individual brushes into composite brushes by using various operators, including
logical, analytical, data-centric, and visual operations. With such facilities, brushing
is much like a visual query mechanism.

Dynamic queries

Shneiderman (1994) describes dynamic queries as a concept for visual information
seeking. It is strongly related to brushing & linking in that the goal is to focus on
data of interest, which in the case of dynamic queries is often realized by filtering
out irrelevant data. Because time-oriented data are often large, dynamically omitting
data with respect to task-specific conditions can be very helpful.

Depending on the view characteristics and visualization tasks, two alternatives
can be applied to display filtering results: filtered objects can be displayed in less
detail or they can be made invisible. Reducing detail is useful in views that maintain
an overview, where all information needs to be displayed at all times, but filtered
objects need only to be indicated. Making objects invisible is useful in views that
notoriously suffer from cluttering.

Filter conditions are usually specified using dedicated mechanisms. Threshold
or range sliders are effective for filtering time or any particular numerical variable;
textual filters are useful for extracting objects with specific labels (e.g., data tagged
by season). Similar to what has been said for brushing & linking, the next logical
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Fig. 5.7: Several filters can be adjusted in order to dynamically restrict the scatter plot visualization
to data items that conform with the formulated conditions.

step is to combine filters to provide some form of multidimensional data reduction.
For instance, a logical AND combination generates a filter that can be passed only
if an object obeys all filter conditions; an object can pass a logical OR filter if it
satisfies any of the involved filter conditions. Figure 5.7 shows an example of a
dynamic query interface.

While some systems offer only fixed filter combinations or require users to en-
ter syntactic constructs of some filter language, others implement a visual interface
where the user can interactively specify filter conditions. Examples for querying
time-oriented data that are visualized as line plot (— p. 153) are the time boxes
by Hochheiser and Shneiderman (2004) and the relaxed selection techniques by
Holz and Feiner (2009).

Time boxes are used to filter out variables of a multivariate line plot. To this
end, the user marks regions in the visual display by creating one or more elastic
rectangles that specify particular value ranges and time intervals. The system then
filters out all variables whose plots do not overlap with the rectangles, effectively
performing multiple AND-combined range queries on the data. Figure 5.8 depicts a
query that combines three time boxes to restrict the display to stocks that performed
well in the first and the last weeks of the year, but had a bad performance in the
middle of year.

The relaxed selection techniques are useful for finding specific patterns in the
data. For that purpose, the user specifies a query pattern by sketching it directly on
the display. When the user is performing the sketching, either the distance of the
sketch to the line plot or the user’s sketching speed are taken into consideration in
order to locally relax the query pattern. This relaxation is necessary to allow for a
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Fig. 5.8: Three time boxes are used to dynamically query stock data. Only those stocks are dis-
played that are high at the beginning, but low in the middle, and again high at the end of the year.
Source: Generated with the TimeSearcher software.

certain tolerance when matching the pattern in the data. An interactive display of
the query sketch can be used to fine-tune the query pattern. Once the query pattern
is specified, the system computes corresponding pattern matches and displays them
in the line plot as depicted in Figure 5.9.
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Fig. 5.9: The user can sketch a query pattern directly in the line plot and optionally refine it locally
in a dedicated query view. The line plot then shows where in time the query matches with a certain
tolerance.

Source: Image courtesy of Christian Holz.
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Specifying dynamic queries visually as illustrated by the previous two examples
is definitely very useful. However, the user can sketch or mark only those things
which are displayed. Formulating queries with regard to potential but not yet ex-
isting patterns in the data beyond some tolerance requires additional formal query
languages, whose expressiveness, in turn, depends on the formalism used.

Direct manipulation, brushing & linking, and dynamic queries are vital for effective
exploration and analysis of time-oriented data. Although these concepts have existed
for quite some time now, many visualization tools offer only a fraction of what is
possible. Again one can find a reason for that in the higher costs accruing from
designing and implementing efficient interaction methods. Moreover, because visual
and interactive means must be coupled tightly, it is difficult to develop interaction
techniques that can be interchanged among the different visualization techniques for
time-oriented data. Finding a solution to this problem is an open research question.

5.4 Integrating Interactive and Automatic Methods

So far in this chapter, we have shown that interaction is mandatory to allow users
to parameterize the visualization according to their needs and tasks. However, with
increasing complexity of data and visualization methods alike, it is not always easy
for users to find parameter values that suit the analysis task at hand. Particularly
if parameters are not self-explanatory, they are not easy-to-set manually. So, some
form of support is needed to assist users in the parametrization process.

A possible solution is to employ the concept of event-based visualization, which
combines visualization with event methodology (see Reinders et al., 2001; Tominski,
2011). In diverse application fields, including active databases, software engineer-
ing, and modeling and simulation, events are considered happenings of interest that
trigger some automatic actions. In the context of visualization, such an event-action-
scheme is useful for complementing manual interaction with automatic parametriza-
tion of visual representations.

The basic idea of event-based visualization is (1) to let users specify their inter-
ests, (2) to detect if and where these interests match in the data, and (3) to consider
detected matches when generating the visual representation. This general procedure
requires the three main components: (1) event specification, (2) event detection, and
(3) event representation. Figure 5.10 illustrates how they are attached to the visual-
ization pipeline. Next we will look at each of these components in more detail.

Describing user interests
The event specification is an interactive step where users describe their interests as

event types. To be able to find actual matches of user interests in the data, the event
specification must be based on formal descriptions. Tominski (2011) uses elements
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Fig. 5.10: The main ingredients of event-based visualization — event specification, event detection,
and event representation — attached to the visualization pipeline.

of predicate logic to create well-defined event formulas that express interests with
respect to relational datasets (e.g., data records whose values exceed a threshold
or attribute with the highest average value). For an analysis of time-oriented data,
sequence-related notations (for instance as introduced by Sadri et al., 2004) have
to be added to enable users to specify conditions of interest regarding temporally
ordered sequences (e.g., sequence of days with rising stock prices). A combination
of event types to composite event types is possible via set operators.

To give a simple example of a sequence event type, we formulate the interest:
“Find three successive days where the number of people suffering from influenza
increases by more than 15% each day.” This interest is expressed as:

{(x,¥,2)date | z-flu > y.flu- 115 Ay. flu > x. flu-1.15}

The first part of the formula defines three variables (x,y, z) 44 that are sequenced by
date. To express the condition of interest, these three variables are set into relation
using predicates, functions, and logical connectors.

Certainly, casual users will have difficulties in describing their interests by using
event formulas directly. Sufficient specification support starts with providing indi-
vidual means for experts, regular users, and visualization novices. In this regard, one
can think of three different levels of specification: direct specification, specification
by parametrization, and specification by selection. Although all levels are based on
the same formalism, the complete functionality of the formalism is available only
to expert users at the level of direct specification. The idea for the second level is to
hide the complexity of event formulas from the user. To this end, parameterizable
templates are provided. The user can adjust the templates via easy-to-set parame-
ters, but otherwise has no access to the possibly complicated internal event formula.
The amount of increase in the previous event type example is a good candidate for
a template parameter. The increase can then be changed from 15% to any particu-
lar value without rephrasing the entire event type formula. The third level of event
specification is based on simple selection. The idea is to provide a predefined collec-



122 5 Interaction Support

tion of event types that are particularly tailored to the application context, and that
are equipped with expressive labels and descriptions, so that users can easily select
what they are interested in. It is also helpful to enhance the event collection with
a semantic structure (e.g., by grouping the collection with respect to different user
tasks). Devising such a semantic structure and describing event types expressively
is a task for domain experts.

Finding relevant data portions

The event detection is an automatic step that determines whether the interests de-
fined interactively are present in the data. The outcome of the event detection is a
set of event instances. They describe where in the data interesting information is lo-
cated. That is, entities that comply with user interest are marked as event instances.
For event detection, the variables used in event formulas are substituted with con-
crete data entities. In a second step, predicates, functions, and logical connections
are evaluated, so that the event formula as a whole can be evaluated as either true
or false. Because this procedure can be very costly in terms of computation time,
efficient methods must be utilized for the event detection. A combination of the ca-
pabilities of relational database management systems and efficient algorithms (e.g.,
the OPS algorithm by Sadri et al., 2004) is useful for static data. When dynamic
data (i.e., data that change over time, see Section 3.3) have to be considered, detec-
tion efficiency becomes crucial. Here, incremental detection methods can help. Such
methods operate on a differential dataset, rather than on the whole data. However,
incremental methods also impose restrictions on possible event types, because they
do not have access to the entire dataset.

Considering user interests in visual representations

The last important step of event-based visualization is the event representation. The
goal of this step is to incorporate detected event instances (which reflect the inter-
ests of the user) into visual representations. The three requirements that have to be
considered are:

1. Communicate the fact that something interesting has been found.
2. Emphasize interesting data among the rest of the data.
3. Convey what makes the data interesting.

Most importantly, the visual representation must clearly express that something
interesting is contained in the data. To meet this requirement, easy-to-perceive vi-
sual cues (e.g., a red frame around the visual representation, exclamation marks, or
annotations) must be incorporated. Alpha blending can be applied to fade out past
events. The second requirement aims at emphasizing those parts of the visual rep-
resentation that are of interest. Additionally, the visualization should communicate
what makes the highlighted parts interesting (i.e., what the particular event type is).
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However, when facing arbitrarily definable event formulas, this last requirement is
difficult to fulfill.

We can distinguish two basic options for representing events: explicit and implicit
event representation. For the explicit case, the focus is set exclusively on event in-
stances, neglecting the raw data. Since the number of events is usually smaller than
the number of data items, even large datasets can be analyzed. In the implicit case,
the data context is retained and visualization parameters are set automatically so
as to highlight points of interest detected in the data. If we assume that user inter-
ests are related to user tasks and vice versa, implicit event representation can help
to achieve better targeted visual representations. The big challenge is to meet the
above stated requirements solely by adapting visualization parameters. Apparently,
availability of adequate visualization parameters is a prerequisite for implicit event
representation.

We will illustrate the potential of event-based visualization with an example. Let
us assume a user who has to analyze multivariate time-dependent human health data
for uncommonly high numbers of cases of influenza. The task at hand is to find out
if and where in time these situations have occurred. A possible way to accomplish
this task is to use the TimeWheel technique (— p. 200).

Figure 5.11(a) shows a TimeWheel that uses the standard parametrization, where
time is encoded along the central axis and multiple diagnoses are mapped to the

| .
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(a) Default parametrization. (b) Targeted parametrization.

Fig. 5.11: Default vs. targeted parameterization of a TimeWheel. (a) TimeWheel representing a
time-dependent health dataset using the default configuration, which aims at showing main trends,
but does not consider the interests of the user. (b) TimeWheel representing the same data, but
matches with the user’s interests have been detected and corresponding data are emphasized via
highlighted lines and automatic rotation and stretching; the presentation is better targeted to the
user’s task at hand.
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axes surrounding the time axis. In particular, influenza happens to be the diagnosis
that is mapped to the upper right axis (light green). Alpha-blending is applied by
default to reduce visual clutter. Looking at this TimeWheel, the user can only guess
from the labels of the axis showing influenza that there are higher numbers of cases,
because the alpha-blending made the particular lines almost invisible (see question
mark). Several interaction steps are necessary to re-parameterize the TimeWheel to
accomplish the task at hand.

In contrast to this, in an event-based visualization environment, the user can spec-
ify the interest “Find days with a high number of cases of influenza.” as the event
type ({x | x.flu > 300}). If the event detection step confirms the existence of such
events in the data, visualization parameters are altered automatically so as to pro-
vide an individually adjusted TimeWheel that reflects the special situation. In our
particular example, we switch color and transparency of line segments represent-
ing event instances: Days with high numbers of influenza cases are excluded from
alpha-blending and are drawn in white. Additionally, rotation and stretching is ap-
plied such that the axis representing influenza is moved gradually to an exposed
position and is provided with more display space. The application of a gradual pro-
cess is important in this case to support users in maintaining their mental map of
the visual representation. The result of applying parameter changes automatically
in response to event instances is depicted in Figure 5.11(b). In this TimeWheel, the
identification of days with higher numbers of influenza infections is easy.

5.5 Summary

The focus of this chapter was on interaction. We started with a brief overview of
intents that motivate users to interact with the visualization. The most notable intent
in the context of time-oriented data is the intent to navigate in time in order to visit
different parts of the data. Users also need to view time-oriented data at different
levels of detail, because the data are often given at multiple granularities. Further
intents are related to interactively adjusting the visual mapping according to data
and tasks at hand, and to managing the exploration process.

We explained that interactive visualization is an iterative loop where the com-
puter generates feedback in oder to visually reflect the change that resulted from
user interaction. This human-in-the-loop process brings together the computational
power of the machine and the intellectual power of human beings. In order to take
full advantage of this synergy, an efficient user interface is needed that bridges the
gap between the algorithmic structures used for visualizing time and time-oriented
data, and the mental models and analytic workflows of users. This also includes
tackling technical challenges to guarantee smooth execution of the interaction loop.

This chapter also presented brief descriptions of basic interaction concepts, in-
cluding direct manipulation, brushing & linking, and dynamic queries. These con-
cepts are vital for data exploration tasks where the user performs an undirected
search for potentially interesting data features. But still, the potential of these con-
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cepts has not been fully exploited by current visualization techniques for time and
time-oriented data. There is room for future work to better adapt existing interac-
tion methods or to develop new ones according to the specific needs of time-oriented
data.

The example of event-based visualization indicates that a combination of interac-
tive, automatic, and visual methods is quite useful for generating visual representa-
tions that are better targeted for the user’s task at hand than standard representations.
This holds true as long as users know what they are looking for (i.e., users perform
a directed search). Event-based visualization as described here is not suited to auto-
matically mine potential events in time-oriented data. In order to do so, one needs
to integrate analytical methods as described in the next chapter.
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Chapter 6
Analytical Support

It is useful to think of the human and the computer together as a
single cognitive entity, with the computer functioning as a kind of
cognitive coprocessor to the human brain. [...] Each part of the
system is doing what it does best. The computer can pre-process
vast amounts of information. The human can do rapid pattern
analysis and flexible decision making.

Ware (2008, p. 175)

Visualization and interaction as described in the previous chapters help users to vi-
sually analyze time-oriented data. Analysts can look at the data, explore them, and
in this way understand them. This is possible thanks to human visual perception and
the fact that humans are quite good at recognizing patterns, finding interesting and
unexpected solutions, combining knowledge from different sources, and being cre-
ative in general!. This holds true unless the problem to be solved exceeds a certain
size. Very large time-series or data that consist of many thousands of time-dependent
variables can usually not be grasped by human observers. In such cases, we need
the proficiency of computing systems to assist the knowledge crystallization from
time-oriented data. Apparently, if the problem size is sufficiently large, computers
are better (i.e., faster and more accurate) than humans at numeric and symbolic cal-
culations, logical reasoning, and searching.

In general, data mining and knowledge discovery are commonly defined as the
application of algorithms to extract useful structures from large volumes of data,
where knowledge discovery explicitly demands that knowledge be the end prod-
uct of the analytical calculations (see Fayyad et al., 1996, 2001; Han and Kamber,
2005). A variety of concepts and methods are involved in achieving this goal, includ-
ing databases, statistics, artificial intelligence, neural networks, machine learning,
information retrieval, pattern recognition, data visualization, and high-performance
computing.

This chapter will illustrate how automatic analytical calculations can be utilized
to facilitate the exploration and analysis of larger and more complex time-oriented

! Wegner (1997) makes some interesting statements about why interaction is better than algorithms.

W. Aigner et al., Visualization of Time-Oriented Data, 127
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_6,
© Springer-Verlag London Limited 2011
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data. To this end, we will give a brief overview of typical temporal analysis tasks.
For selected tasks, we will present examples that demonstrate how visualization can
benefit from considering analytical support. Our descriptions will intentionally be
kept at a basic level. For details on the sometimes quite complex matter of temporal
data analysis, we refer interested readers to the relevant literature.

6.1 Temporal Analysis Tasks

Temporal analysis and temporal data mining are especially concerned with extract-
ing useful information from time-oriented data. More specifically, analytical meth-
ods for time-oriented data address the following categories of tasks (see Antunes and
Oliveira, 2001; Laxman and Sastry, 2006; Hsu et al., 2008; Brockwell and Davis,
2009; Mitsa, 2010):

Classification Given a predefined set of classes, the goal of classification is to de-
termine which class a dataset, sequence, or subsequence belongs to. Applications
such as speech recognition and gesture recognition apply classification to identify
specific words spoken or interactions performed. The analysis of sensor data or
spatio-temporal movement data often requires classification to make the enormous
volumes of data to be handled manageable.

Clustering Clustering is concerned with grouping data into clusters based on sim-
ilarity, where the similarity measure used is a key aspect of the clustering process.
In the context of time-oriented data, it makes sense to cluster similar time-series or
subsequences of them. For example, in the analysis of financial data, one may be
interested in stocks that exhibit similar behavior over time. In contrast to classifica-
tion, where the classes are known a priori, clusters are not defined upfront.

Search & retrieval This task encompasses searching for a priori specified queries
in possibly large volumes of data. This is often referred to as query-by-example.
Search & retrieval can be applied to locate exact matches for an example query or
approximate matches. In the latter case, similarity measures are needed that define
the degree of exactness or fuzziness of the search (e.g., to find customers whose
spending patterns over time are similar but not necessarily equal to a given spending
profile).

Pattern discovery While search & retrieval requires a predefined query, pattern
discovery is concerned with automatically discovering interesting patterns in the
data (without any a priori assumptions). The term pattern usually covers a variety
of meanings, including sequential pattern, periodic pattern, but also temporal asso-
ciation rules. In a sense, a pattern can be understood as a local structure in the data
or combinations thereof. Often, frequently occurring patterns are of interest, for ex-
ample when analyzing whether a TV commercial actually leads to an increase in
sales. But patterns that occur very rarely can also be interesting because they might
indicate malicious behavior or failures.
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Prediction An important task in analyzing time-oriented data is the prediction of
likely future behavior. The goal is to infer from data collected in the past and present
how the data will evolve in the future. To achieve this goal one first has to build a
predictive model for the data. Examples of such models are autoregressive models,
non-stationary and stationary models, or rule-based models.

In the context of visualization, these tasks share a common goal: data abstraction in
order to reduce the workload when computing visual representations and to keep the
perceptual efforts required to interpret them low. For classification and clustering,
we abstract from the raw data and work with classes and clusters. For search &
retrieval and pattern discovery we are foremost interested in relevant patterns and
de-emphasize irrelevant data. For prediction, we focus on the future.

A variety of methods have to play in concert in order to accomplish temporal
analysis tasks. Statistical aggregation operators (e.g., sum, average, minimum, max-
imum, etc.), methods from time-series analysis, as well as dedicated temporal data
mining techniques are needed.

In what follows, we demonstrate the applicability of analytical methods for the
analysis of time-oriented data using the three examples: clustering, temporal data
abstraction, and principal component analysis. Clustering decreases the number of
data items to be represented, and allows the discernment of similarities and un-
expected behavior. Temporal data abstraction reduces data complexity by deriving
qualitative statements, which are much easier to understand. Principal component
analysis decreases the number of time-dependent variables by switching the focus
to major trends in the data.
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6.2 Clustering

In general, grouping data into clusters and concentrating on the clusters rather than
on individual data values allows the analysis of much larger datasets. Appropri-
ate distance or similarity measures lay the ground work for clustering. Distance
and similarity measures are profoundly application dependent and range from av-
erage geometric distance, to measures based on longest common subsequences, to
measures based on probabilistic models. Based on computed distances, clustering
methods create groups of data, where the number of available techniques is large, in-
cluding hierarchical clustering, partitional clustering, and sequential clustering. Due
to the diversity of methods, selecting appropriate algorithms is typically difficult.
Careful adjustment of parameters and regular validation of the results are therefore
essential tasks in the process of clustering. More details on clustering methods and
distance measures can be found in the work by Jain et al. (1999), Gan et al. (2007),
and Xu and Wunsch II (2009).

A prominent example of how analytical methods can assist the visualization of
time-oriented data is the work by Van Wijk and Van Selow (1999). The goal is to
identify common and uncommon subsequences in large time-series data and to un-
derstand their distribution over time. The problem is that simply drawing line plots
for all subsequences is not a satisfactory solution due to the overwhelmingly large
number of time points and line plots. In order to tackle this problem, clustering
methods and a calendar-based visualization are used.

/\/_ cluster 13

cluster 11 /\/_/\ \/ cluster 12
cluster 8 /_/w cluster 9 cluster 10 \—/\

AL AN A

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Fig. 6.2: By repeatedly merging the two most similar sequences into new clusters, a clustering
hierarchy is generated. The root cluster is an aggregated representative of the entire dataset.
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In particular, the approach works as follows. As Van Wijk and Van Selow (1999)
are interested in patterns on the granularity of days, the first step is to split a large
time-series into k day patterns, each of which stores the subsequence for one day.
The clustering process starts with the k day patterns as initial clusters. Then the dif-
ferences of all possible combinations of two clusters are computed and the two most
similar clusters are merged into a new cluster (i.e., an aggregated representative of
the two clusters). This process runs repeatedly and results in a clustering hierarchy
with 2k — 1 clusters, where the root of the hierarchy represents the entire dataset
in an aggregated fashion. Figure 6.2 illustrates the clustering process with data for
seven days.

The visualization of the clustered day patterns uses two different views for the
two analysis tasks: (1) assess similarity among day patterns and (2) locate common
and uncommon patterns over time. The first task is facilitated by a basic line plot
(= p. 153) that shows a selected number of clusters, where each plot uses a unique
color. To accomplish the second task, a calendar display is used where individual
days are color-coded according to cluster affiliation. This way, analysts can see the
day pattern and at the same time understand when during a year this pattern occurs.
Various interaction methods allow adjustments of the visual representation and data
exploration. In terms of assessing similarities, the user can select a day from the
calendar and with the help of the clustering hierarchy, similar days (and clusters)
can be retrieved automatically.
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Fig. 6.3: Visual analysis of the number of employees at work. Day patterns for selected days and
clusters are visualized as line plots (right). Individual days in a calendar display (left) are colored
according to cluster affiliation.

Source: Van Wijk and Van Selow (1999), © 1999 IEEE. Used with permission.
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Figure 6.3 shows an example of the visualization design. The data displayed in
the figure contain the number of employees at work. The line plot currently shows
the day patterns of two days (5/12/1997 and 31/12/1997) and five clusters (710, 718,
719, 721, and 722). Van Wijk and Van Selow (1999) demonstrate that several con-
clusions can be drawn from the visual representation. To give only a few examples:

* Employees follow office hours quite strictly and work between 8:30 am and 5:00
pm in most cases.

» Fewer people work on Fridays during summer (cluster 718).

* During weekends and holidays only very few people are at work (cluster 710).

¢ It is common practice to take a day off after a holiday (cluster 721).

These and similar statements were more difficult or even impossible to derive
without the integration of clustering. Van Wijk and Van Selow (1999) most con-
vincingly demonstrate the advantages of analytical support for the visual analysis
of time-oriented data. While here the benefit lies in the abstraction from raw data to
aggregated clusters, we will see in the next section that other kinds of abstraction
are useful as well.

6.3 Temporal Data Abstraction

In practice, time-oriented datasets are often large and complex and originate from
heterogeneous sources. The challenging question is how huge volumes of possibly
continuously measured data can be analyzed to support decision making. On the one
hand, the data are too large to be interpreted all at once. On the other hand, the data
are more erroneous than usually expected and some data are missing as well. What
is needed is a way to abstract the data in order to make them eligible for subsequent
visualization.

The term data abstraction was originally introduced by Clancey (1985) in his
classic proposal on heuristic classification. In general, the objective of data abstrac-
tion is:

... to create an abstraction that conveys key ideas while suppressing irrelevant details.

Thomas and Cook (2005, p. 86)

The basic idea is to use qualitative values, classes, or concepts, rather than raw
data, for further analysis or visualization processes (see Lin et al., 2007; Combi et al.,
2010). This helps in coping with data size and data complexity. To arrive at suitable
data abstractions, several tasks must be conducted, including selecting relevant in-
formation, filtering out unneeded information, performing calculations, sorting, and
clustering.
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Principles

Let us now illustrate the concept of temporal data abstraction in medical contexts
with a simple example. Figure 6.4 shows time-oriented data as generated when mon-
itoring newborn infants that have to be ventilated artificially. The figure visualizes
three variables plotted as points against a horizontal time axis: S,0; (arterial oxygen
saturation), P,.CO» (transcutaneous partial pressure of carbon dioxide), and P,CO;
(arterial partial pressure of carbon dioxide). S,0» and F,.CO; are measured contin-
uously at a regular rate, but with different frequency. New values for P,CO; arrive
irregularly and some values for P,.CO, are missing.
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Fig. 6.4: Temporal data abstraction in the context of artificial ventilation. Vertical temporal abstrac-
tions are illustrated as V[1] and V[2] and horizontal temporal abstraction are illustrated as H[1] —
H[5]. The context is given as “artificial ventilation” and its sub-context “controlled ventilation”.

The aim of temporal data abstraction is to arrive at qualitative values or pat-
terns over time intervals. Vertical temporal abstraction (illustrated in V[1] and V[2])
considers multiple variables over a particular time point and combines them into
a qualitative value or pattern. Horizontal temporal abstraction (illustrated as H[1]
— H[5]) infers a qualitative value or pattern from one or more variables and a cor-
responding time interval. Usually the abstraction process is context-dependent. In
Figure 6.4, the abstraction is done in the context of artificial ventilation and in the
sub-context of controlled ventilation.

In medical applications, there are different types of abstraction methods, rang-
ing from rather simple to quite complicated ones. However, as pointed out by
Combi et al. (2010), no exhaustive schema exists to categorize the available meth-
ods. Nevertheless, the common understanding is that even in very simple cases the
process is knowledge-driven. The use of knowledge is the main characteristic that
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distinguishes data abstraction from statistical data analysis (e.g., trend detection us-
ing time-series analysis).

Simple methods involve single data values and usually do not need to consider
time specifically. They generate vertical abstractions. The knowledge used are con-
cept associations or concept taxonomies. Combi et al. (2010) distinguish three types
of simple methods:

* Qualitative abstraction means converting numeric expressions to qualitative ex-
pressions. For example, the numeric value of 34.8°C of body temperature can be
abstracted to the qualitative value “hypothermia”.

* Generalization abstraction involves a mapping of instances into classes. For ex-
ample, “hand-bagging is administered” is abstracted to “manual intervention is
administered”, where “hand-bagging” is an instance of the concept class “manual
intervention”.

* Definitional abstraction is a mapping across different concept categories. The
movement here is not within the same concept taxonomy, as for the generaliza-
tion abstraction, but across two different concept taxonomies.

More complex methods consider one or more variables jointly and specifically
integrate the dimension of time in a kind of temporal reasoning. These methods
generate horizontal temporal abstractions. According to Combi et al. (2010), four
types of complex methods exist:

* Merge (or state) abstraction is the process of deriving maximal time intervals for
which some constraints of interest hold. For example, several consecutive days
with high fever and increased blood values can be mapped to “bed-ridden”.

* Persistence abstraction means applying persistence rules to project maximal in-
tervals for some property, both backwards and forwards in time. For example,
“headache in the morning”, can be abstracted to “headache in the evening be-
fore” or “headache in the afternoon afterwards”.

e Trend (or gradient or rate) abstraction is concerned with deriving significant
changes and rates of change in the progression of some variable. For exam-
ple, P,.CO, has decreased from 130 to 90 in the last 20 minutes would result
in “P,.CO; is decreasing too fast”.

* Periodic abstraction aims to derive repetitive occurrence, with some regularity in
the pattern of repetition. For example, “headache every morning, but not during
the day”, would result in “repetitive headache in the morning”.

Application examples

The principles described in the previous paragraphs can be applied in various ways.
In the following, we will give a few examples of systems that utilize temporal data
abstraction. For more examples, we refer to the survey of temporal data abstraction
in clinical data analysis by Stacey and McGregor (2007).
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Monitoring artificially ventilated infants VIE-VENT is an open-loop knowledge-
based monitoring and therapy planning system for artificially ventilated infants (see
Miksch et al., 1996). In order to derive qualitative descriptions for different kinds
of temporal trends (i.e., very-short, short, medium, and long-term trends) from
continuously arriving quantitative data, the system utilizes context-sensitive and
expectation-guided methods and incorporates background knowledge about data
points, data intervals, and expected qualitative trend patterns. Smoothing and ad-
justment mechanisms help to keep qualitative descriptions stable in case of shifting
contexts or data oscillating near thresholds. Context-aware schemata for data point
transformation and curve fitting are used to express the dynamics of and the reaction
to different data abnormalities. For example, during intermittent positive pressure
ventilation (ippv), the transformation of the quantitative value P,,CO, = 56mmHg
results in the qualitative abstraction “F,.CO; substantially above target range”. Dur-
ing intermittent mandatory ventilation (imv) however, 56mmH g represents the “tar-
get value”. Qualitative abstractions and schemata of curve fitting are subsequently
used to decide if the value progression happens too fast, at normal rate, or too slow.

[®] VIE-VENT VV3.0/UI3.5
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Fig. 6.5: VIE-VENT displays measured quantitative values as line plots. Qualitative abstractions
and trends are represented by different colors and arrows in the top three boxes on the left.
Source: Miksch et al. (1996), © 1996 Elsevier. Used with permission.

Figure 6.5 shows the user interface of VIE-VENT. In the top-left corner, the
system displays exact values of the quantitative blood gas measurements CO2, 02,
Sa02. Arrows depict trends and qualitative abstractions are indicated by different
colors (e.g., deep pink represents “extremely above target range”). The left panel
further shows current and recommended ventilator settings in blue and red boxes,
respectively. The right-hand side shows line plots of the most important variables
for the last four hours.
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Dealing with oscillating data Strongly oscillating data pose a formidable chal-
lenge for methods that aim to extract qualitative abstractions and patterns from the
data. The problem is that derived abstractions could change too quickly as to be in-
terpretable by the observer. Therefore, Miksch et al. (1999) developed the Spread, a
time-oriented data abstraction method that is capable of deriving steady qualitative
abstractions from oscillating high-frequency data. The tool performs the following
steps of processing and data abstraction:

1. Eliminate data errors: Sometimes up to 40% of the input data are obviously
erroneous, i.e., exceed the limits of plausible values.

2. Clarify the curve: Transform the still noisy data into the spread, which is a steady
curve with some additional information about the distribution of the data along
that curve.

3. Qualify the curve. Abstract from quantitative values to qualitative values like
“normal” or “high” and concatenate intervals with equal qualitative values.

Figure 6.6 illustrates how the analytical abstractions can enhance the visualiza-
tion. The Spread smooths out the strongly oscillating raw data. Even the increased
oscillation in the center of the display is dealt with gracefully: it leads to increased
width of the spread, but not to a change of the qualitative value. With these abili-
ties, the Spread can support physicians in making better qualitative assessments of
otherwise difficult-to-interpret data.
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Fig. 6.6: The thin line shows the raw data. The red area depicts the spread and the blue rectangles
represent the derived temporal intervals of steady qualitative values. The lower part of the figure
shows the parameter settings.

Source: Adapted from Miksch et al. (1999), © 1999 Springer. Used with permission.

Linking temporal and visual abstraction In interactive environments, the visual-
ization of time-oriented data and abstractions thereof can change dynamically due
to user interaction, where resizing and zooming are among the most commonly
applied operations. In such scenarios, the visualization must be able to capture as
much temporal information as possible without losing overview and details, even
if the available display space is very limited. Bade et al. (2004) demonstrate that
this is possible by means of semantic zooming (see p. 112 and — p. 230). The se-
mantic zoom functionality relies on an appropriate set of temporal data abstractions
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and associated visual representations for different levels of detail as illustrated in
Figure 6.7. Depending on the available display space (or the current zoom level),
a suitable temporal abstraction is selected automatically and its corresponding vi-
sual abstraction is displayed. The advantage of this procedure is that it relieves the
user of managing the levels of abstraction by hand. Moreover, the semantic zoom
corresponds much better with the interactive nature of flexible and dynamic visual
analysis scenarios.
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The examples described can only indicate the possible benefits that basic and
complex temporal abstraction methods and their integration with the visualization
can have for dealing with time-oriented data in medical applications. We know of
quite positive feedback from medical experts who found it easy to capture the health
conditions of their patients. Moreover, these qualitative abstractions can be used
for further reasoning or in guideline-based care for a simplified representation of
treatment plans.

What our previous examples have in common, however, is that they consider only
a relatively small number of time-dependent variables. As we will see in the next
section, if the number of variables gets larger, we need further analytical methods.

6.4 Principal Component Analysis

Time-oriented data are often of multivariate nature, but too large a number of vari-
ables poses considerable difficulties for the visualization. These difficulties can be
overcome by applying principal component analysis (PCA), which offers an excel-
lent basis for data abstraction (see Jolliffe, 2002; Jackson, 2003; Jeong et al., 2009).
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Fig. 6.8: Principal component analysis transforms multivariate data (with variables x; and X3 in
this case) into a new space, the so-called principal component space, which is spanned by the
principal components (here PC1 and PC2).

The key principle of PCA is a transformation of the original data space into the
principal component space (see Figure 6.8). In the principal component space, the
first coordinate, that is, the first principal component represents most of the original
dataset’s variance, the second principal component, which is orthogonal to the first
one, represents most of the remaining variance, and so on. Visualizing the data in
the new principal component space shows us how closely individual data records
are related to the major trends, and thus PCA helps us to reveal the internal structure
of the data. Moreover, since principal components are ordered by their significance,
we can focus on fewer principal components than we have variables in our data.

In the following we will take a brief look at the basics of principal component
analysis and illustrate by means of examples the benefit that this analytical concept
has for the visual analysis of time-oriented data.

Basic method

Assume that we have modeled our multivariate dataset as a matrix:

X1,1 7 Xlm
X210 " X2m
X = (xlxzmxm) =
Xn,1 " Xnm
where the columns of X correspond to the m variables x1,Xa, . ..,Xy of the dataset,

and the rows represent n records of data (e.g., n repetitions of an experiment). For a
time-oriented dataset, one of the x; is usually the dimension of time.

Depending on the application it can make sense to prepare the data such that
they are mean-centered and normalized (by subtracting off the mean of each vari-
able and scaling each variable according to its variance). Now our goal is to trans-
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form the data into the principal component space that is spanned by » < m principal
components.

For the purpose of explanation, we resort to singular value decomposition (SVD)
according to which any matrix X can be decomposed as:

X=W.x.CcT

where W is an n X r matrix, X is an r X r diagonal matrix, and CT is an r x m matrix:

Wi W
W2,1 e W27r oy - O cl,l Cl,2 CLm
€21 €22 "+ Com
X =
0o --- o,
Cr1 C22 *** Crm
Wnt =" Wnr
The matrix C” has in its rows the transposed eigenvectors ¢;”, ..., ¢,” of the matrix

XTX, which corresponds to the covariance matrix of the original dataset. The ¢;
form the orthonormal basis of the principal component space; they are the principal
components. Each ¢; is the result of a linear combination of the original variables
where the factors (or loadings) of the linear combination determine how much the
original variables contribute to a principal component. The first principal component
¢y is chosen so as to be the one that captures most of the original data’s variance, the
second principal component most of the remaining variance, and so forth. The sig-

nificance values o7, ..., 0, in X are determined by the likewise ranked square roots
of the eigenvalues VAl,...,V/A, of the eigenvectors (i.e., the principal components)
¢y,...,c¢r. Finally, the i-th row of the matrix W contains the coordinates of the i-th

data record in the new principal component space. The individual coordinates are
often referred to as the scores.

This brief formal explanation provides a number of key take-aways. Let us sum-
marize the ones that are most relevant for visualization:

* the significance values determine the ranking of principal components,

* the ranking is the basis for data abstraction, where principal components that bear
little information can be omitted,

* the loadings describe the relationship of the original data variables and the prin-
cipal components, and

* the scores describe the location of the original data records in the principal com-
ponent space.

Application examples
We will now demonstrate how PCA can be applied to enhance the visual analysis

of time-oriented data. Our general goal is to uncover structure in the data and to
reduce the analysis complexity by focusing on significant trends. In a first example,
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we will see that even a single principal component can bear sufficient information
for discerning main trends in the data. Secondly, an example will illustrate how one
can determine the principal components to be retained for the visualization as well
as the ones that can be omitted due to their low significance.

Before we start with the examples, however, it is important to mention that PCA
does not distinguish between independent and dependent variables. In particular,
the dimension of time is processed indiscriminately, which sacrifices the tempo-
ral dependencies in the data. Therefore, it is often preferable to exclude time from
the analysis, and to rejoin time and computed principal components afterwards to
restore the temporal context. This is what we will do in the next example.

Revealing internal structures with PCA We consider the visual analysis of a me-
teorological dataset that contains daily observations of temperature (Zin, Tuvg, and
Tinax) for a period of 105 years, which amounts to approximately 38,000 data records
(see Nocke et al., 2004). As we are only interested in the summer seasons’ weather
conditions, the daily raw data are first aggregated into yearly data. To this end, five
new variables are calculated for each year:

e total heat (pl) as the sum of the maximum temperatures for days with T}, >
20°C,

e summer days (p2) as the number of days with 7,,,, > 25°C,

* hot days (p3) the number of days with 7,,,,, > 30°C,

* mean of average (p4) as the mean of the daily average temperatures 7, and

* mean of extreme (p5) as the mean of the daily maximum temperatures 7.

These five quantitative variables are strongly correlated. The extracted dataset
can be visualized as a centered layer area graph (— p. 195), as illustrated in Fig-
ure 6.9. This visual representation is quite useful to get an overview of the data. We
can clearly distinguish valleys and peaks in the graph, which indicate particularly
cold and hot summers, respectively. The general trend in the data is communicated
quite well.

%
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||

year

Fig. 6.9: Summer conditions (p/—p5) visualized as a centered layer area graph.
Source: Image courtesy of Thomas Nocke.

As we will see next, we can confirm our previous findings and gain further insight
with the help of PCA and a simple bar graph (— p. 154). But instead of visualiz-
ing all five parameters, our visual analysis will be based on just a single principal
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component. So what we do is to apply PCA to the five variables extracted from the
raw data. The dimension of time is excluded from the PCA. The computed PCA
results are then fed to the visualization. In order to restore the temporal context, the
bar graph in Figure 6.10 shows time along the horizontal axis, and the first prin-
cipal component (PC1), to which all variables contribute because of their strong
correlation, at the vertical axis. For each year, a bar is constructed that connects the
baseline with the year’s PC1 coordinate (i.e., the year’s score in principal component
space). This effectively means upward bars encode a positive deviation from the ma-
jor trend, that is, they stand for warmer summers, where long bars indicate summers
with extreme conditions. In contrast, downward bars represent colder-than-normal
summers. As an additional visual cue, frequencies of score values are mapped onto
color to further distinguish typical (saturated green) and outlier (bright yellowish
green) years. This visual representation allows us to discern the following interest-
ing facts:

* The first third of the time axis is dominated by moderately warm summers mixed
with the coldest summers.

* The hot summers in the 1910s and 1920s are immediately followed by cold sum-
mers.

e There were relatively nice summer seasons between 1930 and 1950.

* In general, outlier summers, positive and negative ones, accumulate at the end of
the time axis.

1910 1930 1950 1970 1990

PC1

rare

frequent I I I H
[ ]

] | I Year

| | | | |
1900 1920 1940 1960 1980

Fig. 6.10: The bar graph encodes years along the horizontal axis and the scores of the first principal
component (PC1) along the vertical axis. Color indicates the frequency of score values.

Although the visualization in Figure 6.10 shows only the first principal compo-
nent, rather than the five data variables, it depicts corresponding trends very well.
Nonetheless, one should recall that our data represent a special case where all five
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variables are strongly correlated. This correlation is the reason why PC1 separates
warm and cold summers so well. When analyzing arbitrary time-oriented datasets,
further principal components might be necessary to capture major structural rela-
tionships. The following example will illustrate how users can be assisted in making
informed decisions about which principal component’s scores to display.

Determining significant principal components We now deal with a census dataset
with multiple variables, including population, gross domestic product, literacy, and
life expectancy. As before, the independent dimensions (i.e., time and space) are
excluded to maintain the data’s frame of reference, leaving ten variables to be pro-
cessed analytically by the PCA. Accordingly, the analysis yields ten principal com-
ponents, which correspond to the major trends in the data. The principal compo-
nents’ significance-weighted loadings indicate how individual variables participate
in these trends.

o
o
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PC3 PC4 PCS PCé PC? PCs =] PC10

[
|
I

Population

PopulationDensity
Literacy
InfantMortality

— —

GrossDomesticProduct |
BirthRate |
DeathRate
LifeExpectancyF
LifeExpectancyM
LifeExpectancy

Fig. 6.11: The bars in the table cells visualize the loadings of principal components weighted by
their significance. This clearly echoes the ranking of the principal components.

The significance-weighted loadings of our example are depicted in Figure 6.11,
where longer bars stand for stronger participation, and blue and yellow color are
used for positive and negative values, respectively. By definition, the principal com-
ponents are ranked according to their significance from left to right. The figure in-
dicates that the data’s major trends (PC1-PC4) are largely influenced by the eight
variables from literacy to life expectancy. But we can also see that if we consider
only these first four principal components, we certainly lose the relation to the two
variables population and population density, which do not contribute to the top four
trends. Therefore, at least the principal components up to PC5, which is propor-
tional to population, and PC6, which is indirectly proportional to population den-
sity, should be retained. In turn, if we are interested in the main trends only, we can
safely omit the remaining principal components (PC7-PC10).

If we are interested in outlier trends as well, we should be less generous with
dropping principal components. This can be illustrated by a visualization of the plain
(i.e., unweighted) loadings of the principal components as shown in Figure 6.12.
The figure clearly reveals contradictory contributions of the variables to the lower-
ranked trends. In particular, we can see a contradiction between life expectancy of
females and males in the ninth principal component (PC9).
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PCL P2 PC3 [pce [pe? PCe PCa PCI0
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Literacy . I D I |
InfantMortality | | l I -

GrossDomesticPraduct 1 | | | I | | |

BirthRate 1 | | | | L |

DeathRate [ | || | | | | | || l
LifeExpectancyF || | | | | | | ‘ || O
LifeExpectancyM 1 | | 1 | [
Lifebxpectancy = 1 ’ | | | | ‘ ‘ I

Fig. 6.12: The bars in the table cells visualize the unweighted loadings of principal components,
that is, they indicate how much the individual variables contribute to any particular principal com-
ponent.

The visualization of the loadings helped us in identifying the top-ranked princi-
pal components and those that might bear potentially interesting outlier information.
The knowledge that we derived about the principal components can also be inter-
preted in terms of the variables of the original data space. A number of findings can
be gained, including:

* All the positive loadings in the main trend (PC1) indicate a direct proportional
relationship for the literacy, infant mortality, gross domestic product, birth rate,
death rate, and life expectancy.

e The second trend (PC2) is constituted by the gross domestic product, life ex-
pectancy as well as infant mortality, death rate, and birth rate, where the latter
three variables are indirectly proportional to this trend.

e The major trends in the data (PC1-PC3) are largely independent of population
and population density.

* An outlier trend is present in PC9, where the contradictory loadings of life ex-
pectancy of females and males might hint at an interesting aspect.

In summary we have seen in this section that PCA is a useful tool for crystallizing
major structural relationships in the data and for identifying possible candidates for
data reduction.

6.5 Summary

The information seeking mantra proposed by Shneiderman (1996) should guide the
users when exploring the data visually:

Overview first,
zoom and filter,
then details-on-demand.
Shneiderman (1996, p. 2)

However, with massive, heterogeneous, dynamic, and ambiguous datasets at
hand, it is difficult to create overview visualizations without losing interesting pat-
terns. Therefore, Keim et al. (20006) revised the information seeking mantra, in order
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to indicate that it is not sufficient to just retrieve and display the data using a visual
metaphor:

Analyze First -
Show the Important -
Zoom, Filter and Analyse Further -
Details on Demand.
Keim et al. (2006, p. 6)

In fact, it is necessary to analyze the data according to aspects of interest, to show
the most relevant features of the data, and at the same time to provide interaction
methods that allow the user to get details of the data on demand (see Keim et al.,
2010).

In this chapter, we provided a brief overview of how analytical methods can sup-
port the visual analysis of time-oriented data. We gave a list of typical temporal
analysis tasks and illustrated the utility of analysis methods with the three exam-
ples: clustering, temporal data abstraction, and principal component analysis. All of
these examples perform a particular kind of data abstraction. Admittedly, our exam-
ples are simple, but still we believe that they demonstrate the benefits of analytical
methods quite well.

In fact, when confronted with really huge datasets, a single analytical method
alone will most certainly not suffice. Instead, a number of analytical methods must
play in concert to cope with the size and complexity of time-oriented data. More-
over, analytical methods are not solely a preprocessing step to support the visu-
alization of data. The full potential of analytical methods unfolds only if they are
considered at all stages of interactive exploration and visual analysis processes in
an integrated fashion depending on the data, users, and tasks.

However, as we will see in the next chapter, more in-depth research and devel-
opment is necessary to arrive at an intertwined integration of visual, interactive and
analytical methods for the bigger goal of gaining insight into large and complex
time-oriented data.
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Chapter 7
Survey of Visualization Techniques

Today we live in an information-based technological world. The
problem is that this is an invisible technology. Knowledge and
information are invisible. They have no natural form. It is up to the
conveyor of the information and knowledge to provide shape,
substance, and organization [...]

Norman (1993, p. 104)

A major part of this book is dedicated to a survey of existing visualization techniques
for time and time-oriented data. The complexity of the visualization problem, which
results from the multitude of aspects having an impact on the visual representation,
already suggests that there must be a variety of techniques — and indeed there are
numerous ones. The following survey lists many techniques, some of them very
specific to a particular application domain, others more general with potential appli-
cability in other fields than the one described. We are aware that our survey cannot
be exhaustive. This is due to the fact that visualization of time-oriented data is a
hot research area which is constantly yielding new techniques. Moreover, we have
seen that visualization solutions might be highly application-dependent (what and
why aspects, see Chapter 4), and hence, it is virtually impossible to dig out every
tiny variation of existing visualization approaches that might be hidden in the vast
body of scientific literature across application domains. Therefore, we took care to
include a wide spectrum of key techniques, both classic ones with proven usefulness
and contemporary ones with potential impact.

The survey lists the techniques on a per-page basis. This allows for easy access
when a quick reference to a particular technique is sought by the reader. Each page
briefly describes the background, explains the main idea and concepts, and indi-
cates the application of a particular technique. The description is accompanied with
a reference to the original publication or a list of references in the case that multiple
publications propose or make use of the same approach. As this is a visualization
book, a figure demonstrates the technique in use or the conceptual construction of
the visual representation. Additionally, we provide a side-bar that categorizes the
technique. To keep the categorization at a manageable level, we do not use the full-

W. Aigner et al., Visualization of Time-Oriented Data, 147
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3_7,
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scale classification introduced in the previous chapters, but instead focus on three
key criteria: data, time, and vis(ualization). For each key criterion, we introduce fur-
ther sub-criteria and corresponding characteristics. The side-bar information follows
this pattern:

e data

— frame of reference — abstract vs. spatial
— variables — univariate vs. multivariate

e time

— arrangement — linear vs. cyclic
— time primitives — instant vs. interval

e vis

— mapping — static vs. dynamic
— dimensionality — 2D vs. 3D

Where possible, a distinct classification will be given. However, this is not always
possible, particularly for more general and flexible visualization approaches. In such
cases, we will indicate that multiple characteristics hold per category.

7.1 Techniques

It was not easy to decide on a good order for the techniques in the survey. If we
sorted by the name of a technique or by the year of first publication, we would lose
the semantic relationships of techniques, and similar techniques would be scattered
across the survey just because they have different names. Therefore, we use the cat-
egories provided in the side-bar to structure the survey. At the top-most levels, the
order is determined by the data characteristics. The survey will start with techniques
for abstract time-oriented data, and later we will move on to techniques for spatial
data. Accordingly, techniques for univariate time-oriented data will precede those
for multivariate data. At the subsequent levels, we order the techniques by their
affiliation to the categories arrangement, time primitives, mapping, and dimension-
ality.

Table 7.1 provides an overview of all techniques that are included in our survey
along with their categorization. This table might also be used to search for tech-
niques that fulfill certain criteria. Suppose we have an abstract univariate dataset
containing time instants as well as intervals and would like to find appropriate visu-
alization techniques. In this case, we would look at the columns abstract, univariate,
instant, and interval in Table 7.1 and search for lines that match these criteria. For
the given example, we would find the techniques Gantt chart, perspective wall, and
spiral display as primary matches. For quick access to a technique that is known by
name, the index at the end of the book provides the corresponding page number.
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continued on next page

Table 7.1: Overview and categorization of visualization techniques.
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continued on next page

Table 7.1: Overview and categorization of visualization techniques.
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Table 7.1: Overview and categorization of visualization techniques.

Let us now start the survey with the simple, but most widely used techniques for
visualizing time-oriented data — the point plot and the line plot.
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Point Plot

value
o
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time

Fig. 7.1: Data are displayed as points in a Cartesian coordinate system where time and data are
mapped to the horizontal axis and the vertical axis, respectively.
Source: Authors.

One of the most straightforward ways of depicting time-series data is using a Carte-
sian coordinate system with time on the horizontal axis and the corresponding value
on the vertical axis. A point is plotted for every measured time-value pair. This kind
of representation is called point plot, point graph, or scatter plot, respectively. Harris
(1999) describes it as a 2-dimensional representation where quantitative data aspects
are visualized by distance from the main axis. Many extensions of this basic form
such as 3D techniques (layer graph) or techniques that use different symbols instead
of points are known. This technique is particularly suited for emphasizing individ-
ual values. Moreover, depicting data using position along a common scale can be
perceived most precisely by the human perceptual system.

References

Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Reference. Oxford Uni-
versity Press, New York, NY, USA.



7.1 Techniques 153

Line Plot
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Fig. 7.2: Successive data points are connected with lines to visualize the overall change over time.
(top-left: straight lines; top-right: Bézier curves; bottom-left: missing data; bottom-right: band
graph).

Source: Authors.
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The most common form of representing time-series are line plots. They extend point
plots (— p. 152) by linking the data points with lines which emphasizes their tem-
poral relation. Consequently, line plots focus on the overall shape of data over time.
This is in contrast to point plots where individual data points are emphasized. As il-
lustrated in Figure 7.2, different styles of connections between the data points such

s

=
<

9
as straight lines, step lines (instant value changes), or Bezier curves can be used § =
depending on the phenomenon under consideration. However, what has to be kept  ; .
in mind is that one can not be sure in all cases about the data values in the time in- E %
terval between two data points and that any kind of connection between data points g .§
reflects an approximation only. A further point of caution is missing data. Simply g
connecting subsequent data points might lead to false conclusions regarding the 3

data. Therefore, this should be made visible to the viewer, for instance by using dot-
ted lines (see Figure 7.2, bottom-left). There are many extensions or subtypes like
fever graphs, band graphs (see Figure 7.2, bottom-right), layer line graphs, surface
graphs, index graphs, or control graphs (see Harris, 1999).
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Bar Graph, Spike Graph
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Fig. 7.3: Bar length is used to depict data values. Right: if bars are reduced to spikes the graph is
also called a spike graph.
Source: Adapted from Harris (1999).

Bar graphs (see Harris, 1999) are a well known and widely used type of represen-
tation where bars are used to depict data values (see Figure 7.3, left). This makes
comparisons easier than with point plots. As bar length is used to depict data values,
only variables with a ratio scale (having a natural zero) can be represented. Conse-
quently, the value scale also has to start with zero to allow for a fair visual compar-
ison. In contrast to line plots, bar graphs emphasize individual values as do point
plots. A variant of bar graphs often used for graphing larger time-series (e.g., stock
market data such as price or volume) are spike graphs. As illustrated in Figure 7.3
(right), the vertical bars are reduced so as to appear as spikes, where spike height
is again used to encode data values. This way, a good visual balance is achieved
between focusing on individual values and showing overall development of a larger
number of data values.
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Sparklines
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Fig. 7.4: Simple, word-like graphics intended to be integrated into text visualize stock market data
(top). Bottom: Soccer season results using ticks (up=win, down=loss, base=draw).
Source: Generated with the sparklines package for BIEX.

Tufte (2006) describes sparklines as simple, word-like graphics intended to be in-
tegrated into text. This adds richer information about the development of a variable
over time that words themselves could hardly convey. The visualization method fo-
cuses mainly on giving an overview of the development of values for time-oriented
data rather than on specific values or dates due to their small size and the omis-
sion of axes and labels. Sparklines can be integrated seamlessly into paragraphs of
text, can be laid out as tables, or can be used for dashboards. They are increas-
ingly adopted to present information on web pages (such as usage statistics) in
newspapers (e.g., for sports statistics), or in finance (e.g., for stock market data).
Usually, miniaturized versions of line plots “/\_\_/™ (= p. 153) and bar graphs
Teanl bbb L1 (< p. 154) are employed to represent data. For the spe-
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cial case of binary or three-valued data, special bar graphs can be applied that use § 2
ticks extending up and down a horizontal baseline m"u™"u""™s"s". One use for this & ,
kind of data are wins and losses of sports teams where the history of a whole sea- g §
son can be presented using very little space. For line plots, the first and last value g -2
can be emphasized by colored dots («) and printing the values themselves textually g
to the left and right of the sparkline. Moreover, the minimum and maximum val- )

ues might also be marked by colored dots («). Besides this, colored bands in the
background of the plot can be used to show normal value ranges as for example
here 4.8 \/\J\,f\- 8.3.
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Fig. 7.5: Display of the 25 most important keywords in a series of twelve measurements. The
bigger the font size is, the more important is a keyword. Keywords that are not among the current
top 25 important keywords but have been among them at an earlier point in time are attenuated by
using dimmed color and smaller font size.

Source: Lee et al. (2010). © 2010, IEEE. Used with permission.

Tag clouds visualize a set of keywords weighted by their importance. To this end,
a layout of the keywords is computed. By varying font size, color, or other visual
variables important keywords are emphasized over less-important keywords. Clas-
sic tag clouds, however, are incapable of representing the evolution of keywords.
Lee et al. (2010) integrate sparklines (— p. 155) into tag clouds in order to visual-
ize temporal trends in the development of keywords. The idea is to visually com-
bine a keyword (or tag) and its temporal evolution. The keyword’s importance is
encoded with the font size used to render the text, where the size can correspond
either to the overall importance of the keyword for the entire time-series or to the
importance at a particular point in time. Attached to the keyword is a sparkline that
represents the keyword’s trend. A color gradient is shown in the background of each
keyword-sparkline pair to make this design perceivable as a visual unit. Lee et al.
(2010) conducted user studies with sparkclouds and could confirm that sparkclouds
are useful and have advantages over alternative standard methods for visualizing
text and temporal information.
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Fig. 7.6: The construction of a horizon graph from a line chart is illustrated on the left. Because
horizon graphs require only little screen space they are very useful for comparing multiple time-
dependent variables as shown to the right for stock market data.

Source: Left: Adapted from Reijner (2008). Right: Image courtesy of Hannes Reijner.

Reijner (2008) describes horizon graphs as a visualization technique for comparing
a large number of time-dependent variables. Horizon graphs are based on the two-
tone pseudo coloring technique by Saito et al. (2005). The left part of Figure 7.6
demonstrates the construction of horizon graphs (from top to bottom). Starting from
a common line plot, the value range is divided into equally sized bands that are dis-
criminated by increasing color intensity towards the maximum and minimum values
while using different hues for positive and negative values. Then, negative values are
mirrored horizontally at the zero line. Finally, the bands are layered on top of each
other. This way, less vertical space is used, which means data density is increased
while the resolution is preserved. A study by Heer et al. (2009) has shown that mir-
roring does not have negative effects and that layered bands are more effective than
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the standard line plot (< p. 153) for charts of small size, as for example in the right '% A
part of Figure 7.6. @ a
E
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TrendDisplay
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Fig. 7.7: The main panel shows the raw data (drug discovery data) and the top panel depicts derived
statistical values. Depending on the available screen space, four different levels of visual abstrac-
tion are used: density distributions, thin box plots, box plots plus outliers, and bar histograms (as
illustrated to the right).

Source: Brodbeck and Girardin (2003), © 2003 IEEE. Used with permission.

The TrendDisplay technique by Brodbeck and Girardin (2003) allows the analysis
of trends in larger time-series. The technique is used for the drug discovery process
and in quality control. Basically, the TrendDisplay window is composed of two pan-
els. The main panel on the bottom shows the measured (raw) data and the top panel
depicts derived statistical values (see Figure 7.7, left). Four different levels of detail
are used in order to cope with large numbers of time points: density distributions,
thin box plots, box plots plus outliers, and bar histograms (from low to high level
of detail) (see Figure 7.7, right). In the temporal dimension, bifocal focus+context
functionality is used for enlarging areas of interest without losing context informa-
tion about neighboring data. The different levels of detail are chosen automatically
depending on the available screen space. Moreover, brushing & linking as well as
smooth transitions complete the highly interactive interface.
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Fig. 7.8: Future decisions and corresponding alternative outcomes are depicted over time along
with their probabilities.
Source: Adapted from Harris (1999).

Harris (1999) describes decision charts as a graphical representation for depicting
future decisions and potential alternative outcomes along with their probabilities
over time. It is one of very few techniques for time-oriented data that use the branch-

ing time model (see Section 3.1.1). Decision charts use a horizontal time axis along ls

which information elements (decisions and probabilities) are aligned. Multiple de- }:: a
cisions for a particular time interval are stacked on top of each other, indicating that :’D :
they are possible alternatives for that interval. However, the temporal context itself & =
is not of prime interest and is just indicated by a simple time scale on the bottom g 5
of the chart. The main advantage of the decision chart is that it allows planners to £
investigate possible outcomes and implications before decisions are made. -é
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TimeTree
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Fig. 7.9: The figure shows changes in the organizational structure of officials in the DPR Korea
with focused and important nodes highlighted. The time slider (currently set to March 1995) shows
selected personal events and serves for interactive navigation.

Source: Card et al. (2006), © 2006 IEEE. Used with permission.

TimeTree by Card et al. (20006) is a visualization technique to enable the explo-
ration of changing hierarchical organizational structures and of individuals within
such structures. The visualization consists of three parts: a time slider, a tree view,
and a search interface (see bottom, center, and top of Figure 7.9, respectively). The
time slider’s main purpose is to allow users to navigate to any point in time. Ad-
ditionally, it shows information strips with events for a selected set of individuals,
and thus, provides insight into where in time interesting things have happened. The
tree view shows the snapshot of the organizational structure corresponding to the
selected time point. The tree visualization uses a degree-of-interest (DOI) approach
to highlight important information. To this end, a specific color scheme is used to
indicate certain data characteristics, as for instance, important nodes, nodes match-
ing with search queries, or recently clicked nodes. Low-interest nodes, with regard
to the user’s current focus and search query, are ghosted, and entire subtrees may be
represented as triangular abstractions in order to de-clutter the display and maintain
the readability of important nodes. The search interface supports a textual search for
individuals in the represented organization.
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Fig. 7.10: A sequence of data values is shown along the horizontal axis. Matching subsequences
are connected by arcs, where arc thickness and height encode subsequence size and occurrence
distance, respectively.

Source: Image courtesy of Michael Zornow.
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Patterns in sequences of data values can be visualized using arc diagrams. They were
introduced as an interactive visualizat