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Foreword

Time is central to life. We are aware of time slipping away, being used well or
poorly, or of having a great time. Thinking about time causes us to reflect on the
biological evolution over millennia, our cultural heritage, and the biographies of
great personalities. It also causes us to think personally about our early life or the
business of the past week. But thinking about time is also a call to action, since
inevitably we must think about the future – the small decisions about daily meetings,
our plans for the next year, or our aspirations for the next decades.

Reflections on time for an individual can be facilitated by visual representations
such as medical histories, vacation plans for a summer trip, or plans for five years of
university study to obtain an advanced degree. These personal reflections are enough
justification for research on temporal visualizations, but the history and plans of or-
ganizations, communities, and nations are also dramatically facilitated by powerful
temporal visual tools that enable exploration and presentation. Even more complex
problems emerge when researchers attempt to understand biological evolution, ge-
ological change, and cosmic scale events.

For the past 500 years circular clock faces have been the prime representation for
time data. These emphasize the twelve or 24-hour cycles of days, but some clocks
include week-day, month or year indicators as well. For longer time periods, time
lines are the most widely used, by historians as well as geologists and cosmologists.

The rise of computer display screens opened up new opportunities for time dis-
plays, challenging but not displacing the elegant circular clock face. Digital time
displays are neatly discrete, clear and compact, but make time intervals harder to
understand and compare. Increased use of linear time displays on computers has
come with new opportunities for showing multiple time points, intervals, and future
events. However, a big benefit of using computer displays is that multiple temporal
variables can be shown above or below, or on the same time line. These kinds of
overviews pack far more information in a compact space than was previously possi-
ble, while affording interactive exploration by zooming and filtering. Users can then
see if the variables move in the same or opposite directions, or if one movement
consistently precedes the other, suggesting causality.

vii

www.ebook3000.com

http://www.ebook3000.org


viii Foreword

These rich possibilities have payoffs in many domains including medical histo-
ries, financial or economic trends, and scientific analyses of many kinds. However,
the design of interfaces to present and manipulate these increasingly complex and
large temporal datasets has a dramatic impact on the users’ efficacy in making dis-
coveries, confirming hypotheses, and presenting results to others.

This book on Visualization of Time-Oriented Data by Aigner, Miksch, Schumann
and Tominski represents an important contribution for researchers, practitioners, de-
signers, and developers of temporal interfaces as it focuses attention on this topic,
drawing together results from many sources, describing inspirational prototypes,
and providing thoughtful insights about existing designs. While I was charmed by
the historical review, especially the inclusion of Duchamp and Picasso’s work, the
numerous examples throughout the book showed the range of possibilities that have
been tried – successes as well as failures. The analysis of the user tasks and inter-
action widgets made for valuable reading, provoking many thoughts about the work
that remains to be done.

In summary, this book is not only about work that has been done, but it is also a
call to action, to build better systems, to help decision makers, and to make a better
world.

University of Maryland, Ben Shneiderman
February 2011



Preface

Time is an exceptional dimension. We recognize this every day: when we are waiting
for a train, time seems to run at a snail’s pace, but the hours we spend in a bar with
a good friend pass by so quickly. There are times when one can wait endlessly for
something to happen, and there are times when one is overwhelmed by events oc-
curring in quick succession. Or it can happen that the weather forecast has predicted
a nice and sunny summer day, but our barbecue has to be canceled due to a sudden
heavy thunderstorm. Our perception of the world around us and our understanding
of relations and models that drive our everyday life are profoundly dependent on the
notion of time.

As visualization researchers, we are intrigued by the question of how this impor-
tant dimension can be represented visually in order to help people understand the
temporal trends, correlations, and patterns that lie hidden in data. Most data are re-
lated to a temporal context; time is often inherent in the space in which the data have
been collected or in the model with which the data have been generated. Seen from
the data perspective, the importance of time is reflected in established self-contained
research fields around temporal databases or temporal data mining. However, there
is no such sub-field in visualization, although generating expressive visual represen-
tations of time-oriented data is hardly possible without appropriately accounting for
the dimension of time.

When we first met, we had all already collected experience in visualizing time
and time-oriented data, be it from participating in corresponding research projects or
from developing visualization techniques and software tools. And the literature had
already included a number of research papers on this topic at that time. Yet despite
our experience and the many papers written, we recognized quite early in our col-
laboration that neither we nor the literature spoke a common (scientific) language.
So there was a need for a systematic and structured view of this important aspect of
visualization.

We present such a view in this book – for scientists conducting related research as
well as for practitioners seeking information on how their time-oriented data can be
visualized in order to achieve the bigger goal of understanding the data and gaining
valuable insights. We arrived at the systematic view upon which this book is based
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x Preface

in the course of many discussions, and we admit that agreeing on it was not such
an easy process. Naturally, there is still room for arguments to be made and for
extensions of the view to be proposed. Nonetheless, we think that we have managed
to lay the structural foundation of this area.

The practitioner will hopefully find the many examples that we give throughout
the book useful. On top of this, the book offers a substantial survey of visualization
techniques for time and time-oriented data. Our goal was to provide a review of
existing work structured along the lines of our systematic view for easy visual ref-
erence. Each technique in the survey is accompanied by a short description, a visual
impression of the technique, and corresponding categorization tags. But visual rep-
resentations of time and time-oriented data are not an invention of the computer age.
In fact, they have ancient roots, which will also be showcased in this book. A dis-
cussion of the closely related aspects of user interaction with visual representations
and analytical methods for time-oriented data rounds off the book.

We now invite you to join us on a journey through time – or more specifically on a
journey into the visual world of time and time-oriented data.

Vienna University of Technology & Wolfgang Aigner
University of Rostock, Silvia Miksch
February 2011 Heidrun Schumann

Christian Tominski
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Chapter 1
Introduction

Computers should also help us warp time, but the challenge here is
even greater. Normal experience doesn’t allow us to roam freely in
the fourth dimension as we do in the first three. So we’ve always
relied on technology to aid our perception of time.

Udell (2004, p. 32)

Space and time are two outstanding dimensions because in conjunction they repre-
sent four-dimensional space or simply the world we are living in. Basically, every
piece of data we measure is related and often only meaningful within the context
of space and time. Consider for example the price of a barrel of oil. The data value
of $129 alone is not very useful. Only if assessed in the context of where (space)
and when (time) is the oil price valid and only then is it possible to meaningfully
interpret the cost of $129.

Space and time differ fundamentally in terms of how we can navigate and per-
ceive them. Space can in principle be navigated arbitrarily in all three spatial dimen-
sions, and we can go back to where we came from. Humans have senses for perceiv-
ing space, in particular the senses of sight, touch, and hearing. Time is different; it
does not allow for active navigation. We are constrained to the unidirectional char-
acter of constantly proceeding time. We cannot go back to the past and we have to
wait patiently for the future to become present. And above all else, humans do not
have senses for perceiving time directly. This fact makes it particularly challenging
to visualize time – making the invisible visible.

Time is an important data dimension with distinct characteristics. Time is com-
mon across many application domains as for example medical records, business,
science, biographies, history, planning, or project management. In contrast to other
quantitative data dimensions, which are usually “flat”, time has an inherent se-
mantic structure, which increases time’s complexity substantially. The hierarchical
structure of granularities in time, as for example minutes, hours, days, weeks, and
months, is unlike that of most other quantitative dimensions. Specifically, time com-
prises different forms of divisions (e.g., 60 minutes correspond to one hour, while 24
hours make up one day), and granularities are combined to form calendar systems

W. Aigner et al., Visualization of Time-Oriented Data,
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3 1,
© Springer-Verlag London Limited 2011
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2 1 Introduction

(e.g., Gregorian, Julian, business, or academic calendars). Moreover, time contains
natural cycles and re-occurrences, as for example seasons, but also social (often ir-
regular) cycles, like holidays or school breaks. Therefore, time-oriented data, i.e.,
data that are inherently linked to time, need to be treated differently than other kinds
of data and require appropriate visual and analytical methods to explore and analyze
them.

The human perceptual system is highly sophisticated and specifically suited to
spot visual patterns. Visualization strives to exploit these capabilities and to aid in
seeing and understanding otherwise abstract and arcane data. Early visual depictions
of time-series even date back to the 11th century. Today, a variety of visualization
methods exist and visualization is applied widely to present, explore, and analyze
data. However, many visualization techniques treat time just as a numeric parameter
among other quantitative dimensions and neglect time’s special character. In order
to create visual representations that succeed in assisting people in reasoning about
time and time-oriented data, visualization methods have to account for the special
characteristics of time. This is also demanded by Shneiderman (1996) in his well-
known task by data type taxonomy, where he identifies temporal data as one of seven
basic data types most relevant for information visualization.

Creating good visualization usually requires good data structures. However, com-
monly only simple sequences of time-value-pairs 〈(t0,v0),(t1,v1), . . . ,(tn,vn)〉 are
the basis for analysis and visualization. Accounting for the special characteristics
of time can be beneficial from a data modeling point of view. One can use different
calendars that define meaningful systems of granularities for different application
domains (e.g., fiscal quarters or academic semesters). Data can be modeled and in-
tegrated at different levels of granularity (e.g., months, days, hours, and seconds),
enabling for example value aggregation along granularities. Besides this, data might
be given for time intervals rather than for time points, as for example in project
plans, medical treatments, or working shift schedules. Related to this diversity of
aspects is the problem that most of the available methods and tools are strongly
focused on special domains or application contexts. Silva and Catarci (2000) con-
clude:

It is now recognized that the initial approaches, just considering the time as an ordinal
dimension in a 2D or 3D visualizations [sic], are inadequate to capture the many charac-
teristics of time-dependent information. More sophisticated and effective proposals have
been recently presented. However, none of them aims at providing the user with a complete
framework for visually managing time-related information.

Silva and Catarci (2000, p. 9)

The aim of this book is to present and discuss the multitude of aspects which are
relevant from the perspective of visualization. We will characterize the dimension
of time as well as time-oriented data, and describe tasks that users seek to accom-
plish using visualization methods. While time and associated data form a part of
what is being visualized, user tasks are related to the question why something is
visualized. How these characteristics and tasks influence the visualization design
will be explained by several examples. These investigations will lead to a system-
atic categorization of visualization approaches. Because interaction techniques and
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analytical methods also play an important role in the exploration of and reasoning
with time-oriented data, these will also be discussed. A large part of this book is de-
voted to a survey of existing techniques for visualizing time and time-oriented data.
This survey presents self-contained descriptions of techniques accompanied by an
illustration and corresponding references on a per-page basis.

Before going into detail on visualizing time-oriented data, let us first take a look
at the basics and examine general concepts of information visualization.

1.1 Introduction to Visualization

Visualization is a widely used term. Spence (2007) refers to a dictionary definition
of the term: visualize – to form a mental model or mental image of something.
Visual representations have a long and venerable history in communicating facts and
information. But only about twenty years have passed since visualization became
an independent self-contained research field. In 1987 the notion of visualization in
scientific computing was introduced by McCormick et al. (1987). They defined the
term visualization as follows:

Visualization is a method of computing. It transforms the symbolic into the geometric,
enabling researchers to observe their simulations and computations. Visualization offers a
method for seeing the unseen. It enriches the process of scientific discovery and fosters
profound and unexpected insights.

McCormick et al. (1987, p. 3)

The goal of this new field of research has been to integrate the outstanding ca-
pabilities of human visual perception and the enormous processing power of com-
puters to support users in analyzing, understanding, and communicating their data,
models, and concepts. In order to achieve this goal, three major criteria have to be
satisfied (see Schumann and Müller, 2000):

• expressiveness,
• effectiveness, and
• appropriateness.

Expressiveness refers to the requirement of showing exactly the information con-
tained in the data; nothing more and nothing less must be visualized. Effectiveness
primarily considers the degree to which visualization addresses the cognitive ca-
pabilities of the human visual system, but also the task at hand, the application
background, and other context-related information, to obtain intuitively recogniz-
able and interpretable visual representations. Finally, appropriateness involves a
cost-value ratio in order to assess the benefit of the visualization process with re-
spect to achieving a given task. While the value of a visual representation is not so
easy to determine (see Van Wijk, 2006), cost is often related to time efficiency (i.e.,
the computation time spent) and space efficiency (i.e., the exploited screen space).

Expressiveness, effectiveness, and appropriateness are criteria that any visualiza-
tion should aim to fulfill. To this end, the visualization process, above all else, has
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to account for two aspects: the data and the task at hand. In other words, we have to
answer the two questions: “What has to be presented?” and “Why does it have to be
presented?”. We will next discuss both questions in more detail.

What? – Specification of the data

In recent years, different approaches have been developed to characterize data –
the central element of visualization. In their overview article, Wong and Bergeron
(1997) established the notion of multidimensional multivariate data as multivariate
data that are given in a multidimensional domain. This definition leads to a distinc-
tion between independent and dependent variables. Independent variables define
an n-dimensional domain. In this domain, the values of k dependent variables are
measured, simulated, or computed; they define a k-variate dataset. If at least one
dimension of the domain is associated with the dimension of time, we call the data
time-oriented data.

Another useful concept for modeling data along cognitive principles is the pyra-
mid framework by Mennis et al. (2000). At the level of data, this framework is based
on three perspectives (also see Figure 3.29 on p. 63): where (location), when (time)
and what (theme). The perspectives where and when characterize the data domain,
i.e., the independent variables as described above. The perspective what describes
what has been measured, observed, or computed in the data domain, i.e., the depen-
dent variables as described above. At the level of knowledge, the what includes not
only simple data values, but also objects and their relationships, where objects and
relations may have arbitrary data attributes associated with them.

From the visualization point of view, all aspects need to be taken into account:
The aspect where to represent the spatial frame of reference and to associate data
values to locations, the aspect when to show the characteristics of the temporal frame
of reference and to associate data values to the time domain, and the aspect what to
represent individual values or abstractions of a multivariate dataset. As our interest
is in time and time-oriented data, this book places special emphasis on the aspect
when. We will specify the key properties of time and associated data in Chapter 3
and discuss the specific implications for visualization in Chapter 4.

Why? – Specification of the task

Similar to specifying the data, one also needs to know why the data are visual-
ized and what tasks the user seeks to accomplish with the help of the visualization.
On a very abstract level, the following three basic goals can be distinguished (see
Ward et al., 2010):

• explorative analysis,
• confirmative analysis, and
• presentation of analysis results.
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Explorative analysis can be seen as undirected search. In this case, no a priori
hypotheses about the data are given. The goal is to get insight into the data, to
begin extracting relevant information, and to come up with hypotheses. In a phase of
confirmative analysis, visualization is used to prove or disprove hypotheses, which
can originate from data exploration or from models associated with the data. In
this sense, confirmative analysis is a form of directed search. When facts about
the data have eventually been ascertained, it is the goal of the presentation step to
communicate and disseminate analysis results.

These three basic visualization goals call for quite different visual representa-
tions. This becomes clear when taking a look at two established visualization con-
cepts: filtering and accentuation. The aim of filtering is to visualize only relevant
data and to omit less relevant information, and the goal of accentuation is to high-
light important information. During explorative analysis, both concepts help users
to focus on selected parts or aspects of the data. But filtering and accentuation must
be applied carefully, because it is not usually known which data are relevant or im-
portant. Omitting or highlighting information indiscriminately can lead to misinter-
pretation of the visual representation and to incorrect findings. During confirmative
analysis, filtering can be applied more easily as the data which is relevant, that is,
the data that contribute to the hypotheses to be evaluated are usually known. Ac-
centuation and de-accentuation are common means to enhance expressiveness and
effectiveness, and to fine-tune visual presentations in order to communicate results
and insight yielded by an exploratory or confirmative analysis process.

Although the presentation of results is very important, this book is more about
visual analysis and interactive exploration of time-oriented data. Therefore, we will
take a closer look at common analysis and exploration tasks. As Bertin (1983) de-
scribes, human visual perception has the ability to focus (1) on a particular element
of an image, (2) on groups of elements, or (3) on an image as a whole. Based on
these capabilities, three fundamental categories of interpretation aims have been in-
troduced by Robertson (1991): point, local, and global. They indicate which values
are of interest: (1) values at a given point of the domain, (2) values in a local re-
gion, or (3) all values of the whole domain. These basic tasks can be subdivided
into more specific, concrete tasks, which are usually given as a list of verbal de-
scriptions. Wehrend and Lewis (1990) define several such low-level tasks: identify
or locate data values, distinguish regions with different values or cluster similar data,
relate, compare, rank, or associate data, and find correlations and distributions. The
task by data type taxonomy by Shneiderman (1996) lists seven high-level tasks that
also include the notion of interaction with the data in addition to purely visual tasks:

• Overview: gain an overview of the entire dataset
• Zoom: zoom in on data of interest
• Filter: filter out uninteresting information
• Details-on-demand: select data of interest and get details when needed
• Relate: view relationships among data items
• History: keep a history of actions to support undo and redo
• Extract: allow extraction of data and of query parameters
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Yi et al. (2007) further refine the aspect of interaction in information visualiza-
tion and derive a number of categories of interaction tasks. These categories are
organized around the user’s intentions to interactively adjust visual representations
to the tasks and data at hand. Consequently, a show me prefaces six categories:

• show me something else (explore)
• show me a different arrangement (reconfigure)
• show me a different representation (encode)
• show me more or less detail (abstract/elaborate)
• show me something conditionally (filter)
• show me related items (connect)

The show me tasks allow for switching between different subsets of the analyzed
data (explore), different arrangements of visual primitives (reconfigure), and differ-
ent visual representations (encode). They also address the navigation of different
levels of detail (abstract/elaborate), the definition of data of interest (filter), and the
exploration of relationships (connect).

In addition to the show me categories, Yi et al. (2007) introduce three further
interaction tasks:

• mark something as interesting (select)
• let me go to where I have already been (undo/redo)
• let me adjust the interface (change configuration)

Mark something as interesting (select) subsumes all kinds of selection tasks, in-
cluding picking out individual data values as well as selecting entire subsets of the
data. Supporting users in going back to interesting data or views (undo/redo) is es-
sential during interactive data exploration. Adaptability (change configuration) is
relevant when a system is applied by a wide range of users for a variety of tasks and
data types.

As we have seen, the purpose of visualization, that is, the task to be accom-
plished with visualization, can be defined in different ways. The above mentioned
visualization and interaction tasks serve as a basic guideline to assist visualization
designers in developing representations that effectively support users in conduct-
ing visual data exploration and analysis. In Chapter 4 we will come back to this
issue and refine tasks with regard to the analysis of time-oriented data. The aspect
of interaction will be taken up in Chapter 5.

How? – The visualization pipeline

In order to generate effective visual representations, raw data have to be transformed
into image data in a data-dependent and task-specific manner. Conceptually, raw
data have to be mapped to geometry and corresponding visual attributes like color,
position, size, or shape, also called visual variables (see Bertin, 1983; Mackinlay,
1986). Thanks to the capabilities of our visual system, the perception of visual stim-
uli is mostly spontaneous. As indicated earlier, Bertin (1983) distinguishes three
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levels of cognition that can be addressed when encoding information to visual vari-
ables. On the first level, elementary information is directly mapped to visual vari-
ables. This means that every piece of elementary information is associated with
exactly one specific value of a visual variable. The second level involves abstrac-
tions of elementary information, rather than individual data values. By mapping the
abstractions to visual variables, general characteristics of the data can be communi-
cated. The third level combines the two previous levels and adds representations of
further analysis steps and metadata to convey the information contained in a dataset
in its entirety.

To facilitate generation of visual output at all three levels, a flexible mapping
strategy is required. Such a strategy has been manifested as the so-called visual-
ization pipeline, first introduced by Haber and McNabb (1990). The visualization
pipeline consists of the three steps (see Figure 1.1(a)):

1. filtering,
2. mapping, and
3. rendering.

The filtering step prepares the raw input data for processing through the remain-
ing steps of the pipeline. This is done with respect to the given analysis task and
includes not only selection of relevant data but also operations for data enrichment
or data reduction, interpolation, data cleansing, grouping, dimension reduction, and
others. Literally, the mapping step maps the prepared data to appropriate visual vari-
ables. This is the most crucial step as it largely influences the expressiveness and
effectiveness of the resulting visual representation. Finally, the rendering step gen-
erates actual images from the previously computed geometry and visual attributes.
This general pipeline model is the basis for many visualization systems.

(a) Original variant (adapted from Haber and McNabb, 1990).

(b) Extended variant (adapted from dos Santos and Brodlie, 2004).

Fig. 1.1: The visualization pipeline.
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The basic pipeline model has been refined by dos Santos and Brodlie (2004) in
order to better address the requirements of higher dimensional visualization prob-
lems. The original filtering has been split up into two separate steps: data analysis
and filtering (see Figure 1.1(b)). The data analysis carries out automatic computa-
tions like interpolations, clustering, or pattern recognition. The filtering step then
extracts only those pieces of data that are of interest and need to be presented. In
the case of large high-dimensional datasets, the filtering step is highly relevant be-
cause displaying all information will most likely lead to complex and overloaded
visual representations that are hard to interpret. Because interests may vary among
users, tasks, and data, the filtering step has to support the interactive refinement of
filter conditions. Further input like the specific analysis task or hypothesis as well
as application specific details can be used to steer the data extraction process.

In an effort to formally model the visualization process, Chi (2000) built upon
the classic pipeline model and derived the data state reference model. This model
reflects the stepwise transformation of abstract data into image data through several
stages by using operators. While transformation operators transform data from one
level of abstraction to another, within stage operators process the data only within
the same level of abstraction (see Figure 1.2). This model broadens the capabili-
ties of the visualization process and allows the generation of visual output at all of
Bertin’s levels. Different operator configurations lead to different views on the data,
and thus, to comprehensive insight into the analyzed data. It is obvious that the se-
lection and configuration of appropriate operators to steer the visualization process
is a complex problem that depends mainly on the given visualization goal, which in
turn is determined by the characteristics of the data and the task at hand.

Fig. 1.2: The data state reference model (adapted from Chi, 2000).

The previous paragraphs may suggest that the image or view eventually gener-
ated by a visualization pipeline is an end product. But that is not true. In fact, the
user controls the visualization pipeline and interacts with the visualization process
in various ways. Views and images are created and adjusted until the user deems
them suitable. Therefore, Card et al. (1999) integrate the user in their information
visualization reference model (see Figure 1.3).
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Fig. 1.3: The information visualization reference model (adapted from Card et al., 1999).

Having introduced the very basics of interactive visualization, we now move on
to an application example. The goal is to illustrate a concrete visual representation
and to demonstrate possible benefits for data exploration and analysis.

1.2 Application Example

Our particular example is in the domain of medicine. A considerable share of physi-
cians’ daily work time is devoted to searching and gathering patient-related infor-
mation to form a basis for adequate medical treatment and decision-making. The
amount of information is enormous and disorganized, and physicians might be over-
whelmed by the information provided to them. Often, datasets comprise multiple
variables of different data types that are sampled irregularly and independently from
each other, as for example quantitative parameters (e.g., blood pressure or body
temperature) and qualitative parameters (e.g., events like a heart attack) as well as
instantaneous data (e.g., blood sugar measurement at a certain point in time) and
interval data (e.g., insulin therapy from January to May 2010). Moreover, the data
commonly originate from heterogeneous sources like electronic lab systems, hospi-
tal information systems, or patient data sheets that are not well integrated. Exploring
such heterogeneous time-oriented datasets to get an overview of the history or the
current health status of an individual patient or a group of patients is a challenging
task.

Interactive visualization is an approach to representing a coherent view of such
medical data and to catering for easy data exploration. In our particular example,
an active discourse of the physician via interaction with the visual representation is
of major importance since most static representations cannot satisfy task-dependent
information needs seamlessly. In addition to presenting information intuitively, aid-
ing clinicians in gaining new medical insights about patients’ current health status,
state changes, trends, or patterns over time is an important aspect.

VisuExplore is an interactive visualization tool for exploring a heterogeneous set
of medical parameters over time (see Rind et al., 2010 and ↪→ p. 231). VisuExplore
uses multiple views along a common horizontal time axis to convey the different
medical parameters involved. It is based on several well-known visualization meth-
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Fig. 1.4: Visualization of heterogeneous medical parameters of a diabetes patient.

ods, including line plots (↪→ p. 153), bar graphs (↪→ p. 154), event charts, and time-
lines (↪→ p. 166), that are combined and integrated.

Figure 1.4 shows data of a diabetes patient over a period of two years and three
months between November 2006 and March 2009. Beneath a panel that shows pa-
tient master data, eight visualization views are visible.

A document browser is placed on top that shows icons for medical documents,
like for example diagnostic findings or x-ray images. In our example case, the doc-
ument browser contains progress notes, as at the very beginning of treatment the
physicians suspected renal failure. Next, a line plot with semantic zoom (see p. 112)
is present which shows blood glucose values. Colored areas below the line provide
qualitative information about normal (green), elevated (yellow), and high (red) value
ranges which makes this semantic information easy to read. Below that, another
line plot with semantic zoom functionality shows HbA1c (an indicator of a patient’s
blood glucose condition over the previous several weeks). In this case, more vertical
space is devoted to the chart, thus allowing more exact readings of the values. Still,
semantic information is added as color annotation of the y-axis, using small ticks to
indicate when the variable’s value crosses qualitative range boundaries (e.g., from
critically high to elevated, as shown in the screenshot via a horizontal line that is
colored red and yellow). Below the blood sugar values, there are two timeline charts
showing the insulin therapy and oral anti-diabetic drugs. Insulin is categorized into
rapid-acting insulin (ALT), intermediate-acting insulin (VZI), and a mixture of these
(Misch). Details about brand name or dosage in free text are shown as labels that
are located below the respective timeline. Oral anti-diabetic drugs are shown via an
event chart below. There are also free text details about oral diabetes medication.
The sixth view is a bar graph with adjacent bars for systolic and diastolic blood
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pressure. The bottom two views are line plots related to the body mass index (BMI)
and blood lipids with two lines showing triglyceride and cholesterol values.

This arrangement has been chosen because it places views of medical tests di-
rectly above views of the related medical interventions. The height of some views
has been reduced to fit on a single screen. This is possible because all information
that is relevant for the physician’s current task can still be recognized in this state.

The shown diabetes case is a 44-year-old patient with initially very high blood
sugar values. From the interactive visual representations, several facts about the pa-
tient can be inferred as illustrated by the following insights that were gained by a
physician using the VisuExplore system. The initially high blood sugar values were
examined in detail via tooltips and showed exact values of 428 mg/dl glucose and
14.8% HbA1c. In addition, it can be seen in the bottom panel that blood lipid val-
ues are also high (256 mg/dl cholesterol, 276 mg/dl triglyceride). At the same time,
the body mass index shown above is rather low (20.1). From the progress notes
in the document browser it can be seen that the physician had the suspicion of a
nephropathy. But these elevated values are also signs of latent autoimmune diabetes
of adults, a special form of type 1 diabetes. After one month, blood sugar has im-
proved (168 mg/dl glucose) and blood lipids have normalized. The patient switched
to insulin therapy in a combination of rapid-acting insulin (ALT) and intermediate-
acting insulin (VZI). Since April 2007, the insulin dosage has remained stable and
concomitant medication is no longer needed. The patient’s overall condition has
improved through blood sugar management. Furthermore, the physician involved in
the case study wondered about the very high HbA1c value of 11.9% in November
2006 and why diabetes treatment had only started four months later.

VisuExplore’s interactive features allow physicians to get an overview of mul-
tiple medical parameters and focus on parts of the data. Physicians can add visu-
alizations with one or more additional variables. They may resize and rearrange
visualizations. Further, it is possible to navigate and zoom across the time dimen-
sion by dragging the mouse, by using dedicated buttons, or by selecting predefined
views (e.g., last year). Moreover, the software allows the selecting and highlight-
ing of data elements. Other time-based visualization and interaction techniques can
extend the system to support special purposes. For example, a document browser
shows medical documents (e.g., discharge letters or treatment reports) as document
icons (e.g., PDF, Word) that physicians can click on if they want to open the doc-
ument. VisuExplore integrates with the hospital information systems and accesses
the medical data stored there.

This example demonstrated that visual representations are capable of providing
a coherent view of otherwise heterogeneous and possibly distributed data. The inte-
grative character also supports interactive exploration and task-specific focusing on
relevant information.
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1.3 Book Outline

With the basics of visualization and an application example, we have set the stage
for the next chapters. Before going into detail about the contemporary visualization
of time and time-oriented data, some inspiring and thought-provoking historical de-
pictions and images from the arts are given attention in Chapter 2. The character-
istics of time and data for modern interactive visualization on computers are the
focus of Chapter 3. The actual visualization process, that is the transformation of
abstract data to visual representations, will be discussed in Chapter 4, taking into
account the key question words what, why, and how to visualize. In Chapters 5 and
6, we go beyond pure visualization methods and discuss cornerstones of interaction
and analytical methods to support exploration and visual analysis. A major part of
this book is devoted to a survey of existing information visualization techniques for
time and time-oriented data in Chapter 7. Throughout the book we use the ↪→ sym-
bol followed by a page number to refer the reader to a particular technique in the
survey. A final summary along with a discussion of open challenges can be found in
Chapter 8. Figure 1.5 provides a visual overview of the contents of the book.

Fig. 1.5: Visual overview of the contents of the book.

Please refer to the companion website of the book for updates and additional re-
sources including links to related material, visualization prototypes, and technique
descriptions: http://www.timeviz.net.
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Chapter 2
Historical Background

There is a magic in graphs. The profile of a curve reveals in a flash a
whole situation – the life history of an epidemic, a panic, or an era
of prosperity. The curve informs the mind, awakens the imagination,
convinces.

Henry D. Hubbard in Brinton (1939, Preface)

Long before computers even appeared, visualization was used to represent time-
oriented data. Probably the oldest time-series representation to be found in literature
is the illustration of planetary orbits created in the 10th or possibly 11th century (see
Figure 2.1). The illustration is part of a text from a monastery school and shows
inclinations of the planetary orbits as a function of time.

To broaden the view beyond computer-aided visualization and provide back-
ground information on the history of visualization methods, we present histori-
cal and application-specific representations. They mostly consist of historical tech-
niques of the pre-computer age, such as the works of William Playfair, Étienne-Jules
Marey, or Charles Joseph Minard.

Furthermore, we will take the reader on a journey through the arts. Through-
out history, artists have been concerned with the question of how to incorporate
the dynamics of time and motion in their artworks. We present a few outstanding
art movements and art forms that are characterized by a strong focus on represent-
ing temporal concepts. We believe that art can be a valuable source of inspiration;
concepts or methods developed by artists might even be applicable to information
visualization, possibly improving existing techniques or creating entirely new ones.

2.1 Classic Ways of Graphing Time

Representing business data graphically is a broad application field with a long tradi-
tion. William Playfair (1759–1823) can be seen as the protagonist and founding fa-
ther of modern statistical graphs. He published the first known time-series depicting
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Fig. 2.1: Time-series plot depicting planetary orbits (10th/11th century). The illustration is part of
a text from a monastery school and shows the inclinations of the planetary orbits as a function of
time.
Source: Funkhouser (1936, p. 261). Used with permission of University of Chicago Press.

economic data in his Commercial and Political Atlas of 1786 (Playfair and Corry,
1786). His works contain basically all of the widely-known standard representation
techniques (see Figures 2.2, 2.3, 2.5, and 2.4) such as the pie chart, the silhouette
graph (↪→ p. 175) , the bar graph (↪→ p. 154), and the line plot (↪→ p. 153).

In Figure 2.5 multiple heterogeneous time-oriented variables are integrated within
a single view: the weekly wages of a good mechanic as a line plot, the price of a
quarter of wheat as a bar graph, as well as historical context utilizing timelines (↪→
p. 166). Playfair himself credits the usage of timelines to Joseph Priestley (1733–
1804) who created a graphical representation of the life spans of famous historical
persons divided into two groups of Statesmen and Men of Learning (see Figure 2.6).
The usage of a horizontal line to represent an interval of time might seem obvious to
us nowadays, but in Priestley’s day this was certainly not the case. This is reflected
in the fact that he devoted four pages of text to describe and justify his technique
to his readers. A remarkable detail of Priestley’s graphical method is that he ac-
knowledged the importance of representing temporal uncertainties and provided a
solution to deal with them using dots. Even different levels of uncertainty were taken
into account, ranging from dots below lines to lines and dotted lines.

Even earlier than both Priestley and Playfair, Jacques Barbeu-Dubourg (1709–
1779) created the earliest known modern timeline. His carte chronographique
(Barbeu-Dubourg, 1753) consisted of multiple sheets of paper that were glued to-
gether and add up to a total length of 16.5 meters. A rare version of the chart is
available at Princeton University Library where the paper is mounted on two rollers
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Fig. 2.2: Image from Playfair’s Commercial and Political Atlas (1786) representing exports and
imports of Scotland during one year via a bar graph.
Source: Playfair and Corry (1786).

Fig. 2.3: Image from Playfair’s Commercial and Political Atlas (1786) representing imports and
exports of England from 1700 to 1782 via a line plot. The yellow line on the bottom shows imports
into England and the red line at the top exports from England. Color shading is added between the
lines to indicate positive (light blue) and negative (red; around 1781) overall balances.
Source: Playfair and Corry (1786).
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Fig. 2.4: Silhouette graph used by William Playfair to represent the rise and fall of nations over
a period of more than 3000 years. A horizontal time scale is shown at the bottom that uses a
compressed scale for the years before Christ on the left. Important events are indicated textually
above the time scale. Countries are grouped vertically into Ancient Seats of Wealth & Commerce
(bottom), Places that have Flourished in Modern Times (center), and America (top).
Source: Playfair (1805). Adapted from Brinton (1914).

Fig. 2.5: Information rich chart of William Playfair that depicts the weekly wages of a good me-
chanic (line plot at the bottom), the price of a quarter of wheat (bar graph in the center), as well as
historical context (timeline at the top) over a time period of more than 250 years.
Source: Playfair (1821).
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Fig. 2.6: Joseph Priestley’s chart of biography that portrays the life spans of famous historical
persons using timelines.
Source: Priestley (1765).

in a foldable case that can be scrolled via two handles (see Ferguson, 1991 for a
detailed description).

Another prominent example of a graphical representation of historical informa-
tion via annotated timelines is Deacon’s synchronological chart of universal his-
tory which was originally published in 1890 and was drawn by Edmund Hull (see
Figure 2.7). Various reprints and books extending the original historic facts to the
present and adaptations for specialized areas like for example inventions and explo-
rations can be found in the literature (e.g., Third Millennium Press, 2001).

Charles Joseph Minard created a masterpiece of the visualization of historical
information in 1861. His graphical representation of Napoleon’s Russian campaign
of 1812 is extraordinarily rich in information, conveying no less than six different
variables in two dimensions (see Figure 2.8). Tufte (1983) comments on this repre-
sentation as follows:

It may well be the best statistical graphic ever drawn.
Tufte (1983, p. 40)

The basis of the representation is a 2-dimensional map on which a band sym-
bolizing Napoleon’s army is drawn. The width of the band is proportional to the
army’s size; the direction of movement (advance or retreat) is encoded by color.
Furthermore, various important dates are plotted and a parallel line graph shows the
temperature over the course of time.
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Fig. 2.7: Parts of Deacon’s synchronological chart of universal history.
Source: Third Millennium Press (2001). © Third Millennium Press Ltd. Used with permission.



2.1 Classic Ways of Graphing Time 21

Fig. 2.8: Napoleon’s Russian campaign of 1812 by Charles Joseph Minard (1861). A band visually
traces the army’s location during the campaign, whereby the width of the band indicates the size
of the army and the color encodes advance or retreat of the army. Labels and a parallel temperature
chart provide additional information.
Source: Adapted from http://commons.wikimedia.org/wiki/File:Minard.png; Retrieved Feb., 2011.
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About 25 years after Minard portrayed Napoleon’s march to Moscow, the promi-
nent historic figure Florence Nightingale used a statistical graph to show numbers
and causes of deaths over time during the Crimean War. When Nightingale was sent
to run a hospital near the Crimean battlefields to care for British casualties of war,
she made a devastating discovery: many more men were dying from infectious dis-
eases they had caught in the filthy hospitals of the military than from wounds. By
introducing new standards of hygiene and diet, and most importantly, by ensuring
proper water treatment, deaths due to infectious diseases fell by 99% within a year.
Florence Nightingale tediously recorded mortality data for two years and created
a novel diagram to communicate her findings. Figure 2.9 shows two of these rose
charts. This representation is also called polar area graph and consists of circularly
arranged wedges that convey quantitative data. Unlike pie charts, all the segments of
rose charts have the same angle. Bringing the data in this form clearly revealed the
horrible fact that many more soldiers were dying because of preventable diseases
they had caught in hospital than from wounds sustained in battle. Not only this fact
was communicated, but also how this situation could be improved by the right mea-
sures; these can be seen from the left rose chart in Figure 2.9. Through this diagram,
which was more a call to action than merely a presentation of data, she persuaded
the government and the Queen to introduce wide-reaching reforms, thus bringing
about a revolution in nursing, health care, and hygiene in hospitals worldwide.

Fig. 2.9: Rose charts showing number of casualties and causes of death in the Crimean War by
Florence Nightingale (1858). Red shows deaths from wounds, black represents deaths from acci-
dents and other causes, and blue shows deaths from preventable infectious diseases soldiers caught
in hospital. The chart on the right shows the first year of the war and the chart on the left shows the
second year after measures of increased hygiene, diet, and water treatment had been introduced.
Source: http://en.wikipedia.org/wiki/File:Nightingale-mortality.jpg; Retrieved Feb., 2011.
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A quite different approach to representing historical information is the illustra-
tion of the Cuban missile crisis during the Cold War by Bertin (1983). The di-
agram shows decisions, possible decisions, and the outcomes thereof over time
(see Figure 2.10). This representation is similar to the decision chart (↪→ p. 159).
Chapple and Garofalo (1977) provided an illustration of Rock’n’Roll history shown
in Figure 2.11 that depicts protagonists and developments in the area as curved lines
that are stacked according to the artists’ percentage of annual record sales. The The-
meRiver™ technique (↪→ p. 197) can be seen as further, more formal development
of this idea.

Fig. 2.10: Cuban missile crisis (threat level and decisions over time). The diagram shows decisions,
possible decisions, and the outcomes thereof over time.
Source: Bertin (1983, p. 264). © 1983 by the Board of Regents of the University of Wisconsin
System. Reprinted with permission of The University of Wisconsin Press.
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Fig. 2.11: Rock’n’Roll history that depicts protagonists and developments in the area as curved
lines that are stacked according to the artists’ percentage of annual record sales.
Source: Image courtesy of Reebee Garofalo.
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With the advance of industrialization in the late 19th and early 20th century, op-
timizing resources and preparing time schedules became essential requirements for
improving productivity. One of the main protagonists of the study and optimization
of work processes was Frederick Winslow Taylor (1856–1915). His associate Henry
Laurence Gantt (1861–1919) studied the order of steps in work processes and devel-
oped a family of timeline-based charts as intuitive visual representation to illustrate
and record time-oriented processes (see Figures 2.12 and 2.13). Widely known as
Gantt charts (↪→ p. 167), these representations are such powerful analytical instru-
ments that they are used nearly unchanged in modern project management.

Other interesting representations of work-related data can be seen in Figures 2.14
and 2.15. A record of hours worked per day by an employee is shown in Figure 2.14.
It is interesting to note that both axes are used for representing different granulari-
ties of time, i.e., days on the horizontal axis and hours per day on the vertical axis.
Figure 2.15 employs a radial layout of the time and allows a reading on multiple lev-
els: the outer ring shows days without work and the inner rings show hours worked
during the day, whereas the green areas indicate night hours.

Fig. 2.12: Progress schedule based on the graphical method of Henry L. Gantt. Different work
packages are shown as horizontal lines. Black lines indicate the planned timings; the actual quantity
of work done is shown below in red.
Source: Brinton (1939, p. 259).
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Fig. 2.13: Record of work carried out in one room of a Worsted Mill by Henry L. Gantt. Each row
represents one worker and gives information about whether a bonus was earned and whether the
worker was present.
Source: Brinton (1914, p. 52).

Fig. 2.14 Exact hours and
days worked in 1929 by an
employee at the Oregon ports.
Days are mapped on the hor-
izontal axis and hours per
day worked are represented
as bars on the vertical axis.
The representation shows ex-
treme irregularities in working
hours.
Source: Brinton (1939,
p. 250).
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Fig. 2.15 An analysis of
working time and leisure time
in 1932. Uses a radial layout
of time and allows a read-
ing on multiple levels: the
outer ring shows days without
work and the inner rings show
hours worked during the day,
whereas the green areas indi-
cate night hours.
Source: Brinton (1939,
p. 251).

Fig. 2.16 Phillips curve. Un-
employment rate (horizontal
axis) is plotted against infla-
tion rate (vertical axis). Each
point in the plot corresponds
to one year and is labeled
accordingly. The markers of
subsequent years are linked to
create a visual trace of time.
Source: Adapted from Tufte
(1997, p. 60). Used with
permission of Graphics Press.
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A quite unique representation of economic data is the so-called Phillips curve –
a 2D plot based on an economic theory that shows unemployment vs. inflation in
a Cartesian coordinate system. In this representation, time is neither mapped to the
horizontal nor the vertical axis, but is rather shown textually as labeled data points
on the curve. This way, the dimension of time is slightly de-emphasized in favor of
showing the relationship of two time-dependent variables (see Figure 2.16). Each
year’s combination of the two variables of unemployment rate and inflation rate
leads to a data point in 2D space that is marked by the digits of the corresponding
year. The markers of subsequent years are connected by a line resulting in a path
over the course of time.

For representing positional changes within a set of elements, rank charts were
already introduced in early statistical publications (see Figure 2.17). Elements are
ordered according to their ranking and displayed next to each other in columns for
different points in time. The positional change of individual elements is emphasized
by connecting lines. This way, the degree of rank change is represented by the angles
of the connecting lines, thus making big changes in rank stand out visually by the
use of very steep lines.

Fig. 2.17: Rank of states and territories in population at different census years from 1860 to 1900.
Source: Brinton (1914, p. 65).
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A remarkable representation of time-oriented information was created by Étienne-
Jules Marey (1830–1904) in the 1880s (see Figure 2.18). It shows the train sched-
ule for the track Paris to Lyon graphically. Basically, a 2D diagram is used which
places the individual train stops according to their distance in a list on the verti-
cal axis, while time is represented on the horizontal axis. Thus, horizontal lines are
used to identify the individual stops and a vertical raster is used for timing informa-
tion. The individual trains are represented by diagonal lines running from top-left to
bottom-right (Paris–Lyon) and bottom-left to top-right (Lyon–Paris), respectively.
The slope of the line gives information about the speed of the train – the steeper the
line, the faster the respective train is travelling. Moreover, horizontal sections of the
trains’ lines indicate if the train stops at the respective station at all and how long
the train stops. On top of that, the density of the lines provides information about
the frequency of trains over time. This leads to a clear and powerful representation
showing complex information at a glance while allowing for in-depth analysis of
the data. Similar representations have also been used for the Japanese Shinkansen
train line and the Javanese Soerabaja-Djokjakarta train line where the track’s terrain
profile is additionally shown.

Étienne-Jules Marey not only created the fabulous train schedule, but was also
very interested in exploring all kinds of movement. Born in 1830 in France, he was a
trained physician and physiologist. His interest in internal and external movements
in humans and animals, such as blood circulation, human walking, horse gaits, or
dragonfly flight, led to the decomposition of these movements via novel photog-
raphy and representation methods (see Figures 2.19, 2.20, and 2.21). This photog-
raphy method, which is called chronophotography, paved the way for the birth of
modern film-making at the end of the nineteenth century.

Today, Marey is still a valuable source of inspiration. Reason enough to speak
highly of him and his work:

Tirelessly, this brilliant visionary stopped the passage of time, accelerated it, slowed it down
to “see the invisible,” and recreated life through images and machines.

La maison du cinema and Cinematheque Francaise (2000)
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Fig. 2.18: Train schedule by Étienne-Jules Marey (19th century). Individual train stops are placed
according to their distance in a list on the vertical axis, while time is represented on the horizontal
axis (figure above is rotated by 90°). The individual trains are represented by diagonal lines running
from top-left to bottom-right (Paris–Lyon) and bottom-left to top-right (Lyon–Paris) respectively.
Source: Marey (1875, p. 260).
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Fig. 2.19 A person walking.
Studies of movement by
Étienne-Jules Marey (19th
century).
Source: Marey (1894, p. 61).

Fig. 2.20 Horse gaits. Studies
of movement by Étienne-Jules
Marey (19th century).
Source: Source: Marey (1894,
p. 188).

Fig. 2.21 Chronophotography.
A photo of flying pelican
taken by Étienne-Jules Marey
around 1882.
Source:
http://commons.wikimedia.org/
wiki/File:Marey - birds.jpg;
Retrieved Feb., 2011.
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In medicine, large amounts of information are generated which mostly have to
be processed by humans. Graphical representations which help to make this myr-
iad of information comprehensible play a crucial role in the workflow of healthcare
personnel. These representations range from the fever curves of the nineteenth cen-
tury (see Figure 2.22) and EEG time-series plots (see Figure 2.23) to information-
rich patient status overviews (see Figure 2.24). Especially the graphical summary
of patient status by Powsner and Tufte (1994) makes use of concepts such as small
multiples (↪→ p. 236), focus+context (see p. 111), or the integration of textual and
graphical information. It manages to display information on a single page that would
otherwise fill up entire file folders and would require serious effort to summarize.

Fig. 2.22: Fever charts created by Carl August Wunderlich (1870).
Source: Wunderlich (1870, p. 161, 167).

Fig. 2.23 EEG time-series
plot.
Source:
http://commons.wikimedia.org/
wiki/File:Spike-waves.png;
Retrieved Feb., 2011.

http://commons.wikimedia.org/wiki/File:Spike-waves.png
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Fig. 2.24: Graphical summary of patient status by Powsner and Tufte (1994). Concise summary of
patient information. Uses small multiples, focus+context, and integrates textual as well as graphical
information.
Source: Tufte (1997, p. 110–111). © Graphics Press. Used with permission.

Weather and climate are further well-known application areas dealing with time-
oriented data. Here, developments over time are of greater interest than single snap-
shots. Figure 2.25 shows the adaptation of an extremely information-rich illustra-
tion provided by the New York Times for more than 30 years to show New York
City’s weather developments for a whole year. Monthly and yearly aggregates are
displayed along with more detailed information on temperature, humidity, and pre-
cipitation. All in all, more than 2500 numbers are shown in this representation in a
very compact and readable form. An even earlier example of a visual representation
of the weather data of New York City is shown in Figure 2.26. Here, temperatures,
wind velocity, relative humidity, wind direction, and the weather conditions of a
single month (December, 1912) are displayed.
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Fig. 2.25: Weather statistics for 1980. Aggregated values are displayed along with more detailed
information on temperature, humidity, and precipitation. Similar illustrations have been printed
annually by the New York Times for more than 30 years.
Source: Generated with the Protovis toolkit.

Fig. 2.26: Record of the Weather in New York City for December, 1912. The bold line indicates
temperature in degrees Fahrenheit. The light solid line shows wind velocity in miles per hour. The
dotted line depicts relative humidity in percentage from readings taken at 8 a.m. and 8 p.m. Arrows
portray the prevailing direction of the wind. Initials at the base of the chart show the weather
conditions as follows: S, clear; PC, partly cloudy; C, cloudy; R, rain; Sn, snow.
Source: Brinton (1914, p. 93).
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2.2 Time in Visual Storytelling & Arts

Two disciplines that are seldom connected to time-oriented information are visual
explanations and visual storytelling. Although ubiquitously used in various forms
in daily life, they are rarely considered for visualizing abstract information. Visual
explanations are often used in manuals for home electronics, furniture assembly, car
repair, and many more (see Figures 2.28 and 2.29). Often, they are used to illustrate
stepwise processes visually to an international audience to support the often poorly
translated textual instructions. The stepwise nature conveys a temporal aspect and
might also be applied to represent abstract information. Even older than everything
we presented previously is the craft of storytelling, especially visual storytelling,
starting from caveman paintings and Egyptian hieroglyphs to picture books and
comic strips (see Figure 2.30). Time is the central thread that ties everything to-
gether in visual storytelling. Many interesting techniques and paradigms exist that
might be applicable to visualization in general (see for example Gershon and Page,
2001) as well as to the representation of time-oriented information in particu-
lar.

Comics The art of comics is often dubbed as visual storytelling over time or se-
quential art (a term used by Will Eisner) because temporal flows are represented in
juxtaposed canvases on a page. These descriptions already suggest that comics in-
corporate many concepts of time, while still retaining a static, 2-dimensional form.
Scott McCloud (1994) analyzed many of the methods and paradigms of comics,
concluding that powerful means of representing time, dynamics, and movement are
applied which differ from those applied in painting or photography. Comics allow
for the seamless representation of many temporal concepts that may be also ap-
plicable to visualization. Basically, the course of time is represented in comics via

Fig. 2.27: In learning to read comics we all learned to perceive time spatially, for in the world of
comics, time and space are one and the same.
Source: McCloud (1994, p. 100). © 1993, 1994 Scott McCloud. Reprinted with permission of
HarperCollins Publishers.
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Fig. 2.28: Visual explanation is used to illustrate stepwise processes.
Source: Adapted from Tomitsch et al. (2007).

Fig. 2.29: Life Cycle of the Japanese Beetle (Popillia japonica Newman).
Source: Newman (1965, p. 104–105). Reproduced from Tufte (1990, p. 43). Used with permission
of Graphics Press.

juxtaposition of panels. But the individual panels portray more than single frozen
moments in time and are more than photos placed side by side. Rather, single pan-
els contain whole scenes whose temporal extent may span from milliseconds to
arbitrary lengths (see Figure 2.31). Not only the content of a panel sheds light on
the length of its duration but also the shape of the panel itself can affect our per-
ception of time. Even more freedom in a temporal sense is given by the transition
from one panel to the next or by the space between panels, respectively (see Fig-
ure 2.32). Here, time might be compressed, expanded, rewound; deja vu’s might
be incorporated and much more. This also implies that comics are not just simply
linearly told stories. Comics are very versatile and much more powerful in incor-
porating time in comparison to paintings, photographs, and even film. Besides the
purely temporal aspect, motion is another important topic in comics. Several visual
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(a) Randall Munroe, xkcd – A Webcomic of Romance, Sarcasm, Math, and
Language.
Source: http://xkcd.com/338/; Retrieved Feb., 2011. Image courtesy of Randall
Munroe.

(b) Greg Dean, RealLife – A daily online comic.
Source: http://www.reallifecomics.com/archive/991206.html; Created Dec. 6,
1999; Retrieved Feb., 2011. Image courtesy of Greg Dean.

Fig. 2.30: Comics where temporal flows are represented in juxtaposed canvases on a page.
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techniques, such as motion lines or action lines with additional effects like multiple
images, streaking effects, or blurring are applied (see Figure 2.33). In part, these
techniques are borrowed from photography. Recently, research work on generating
these comic-like effects from motion pictures has been conducted as for example in
Markovic and Gelautz (2006).

Fig. 2.31: A single comic panel contains more than a frozen moment in time.
Source: McCloud (1994, p. 95). © 1993, 1994 Scott McCloud. Reprinted with permission of
HarperCollins Publishers.

Fig. 2.32: Transitions between panels
might span intervals of arbitrary
length.
Source: McCloud (1994, p. 100).
© 1993, 1994 Scott McCloud.
Reprinted with permission of Harper-
Collins Publishers.

Fig. 2.33: Techniques to represent movement in
comics (motion lines, streaking, multiple images,
background streaking).
Source: McCloud (1994, p. 114). © 1993, 1994
Scott McCloud. Reprinted with permission of
HarperCollins Publishers.
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Music & dance Music notes are a notation almost everybody is aware of, but it
is one which is rarely seen in conjunction with time-oriented information (see Fig-
ure 2.34). Nevertheless, music notes are clearly a visual representation of temporal
information – even more than that. A rich set of different symbols, lines, and text
constitute a very powerful visual language. Beat, rhythm, pitch, note length, paus-
ing, instrument tuning, and parallelism are the most important visualized parame-
ters. In fact, it is hard to imagine any other way of representing musical compositions
than via music notes. Related to that, special notations are used for recording dance
performances statically on paper (see Figure 2.35).

Fig. 2.34: Music notation. A rich set of symbols, lines, and text visualizes beat, rhythm, pitch,
note length, pausing, instrument tuning, and parallelism.
Source: http://commons.wikimedia.org/wiki/File:AmazingGraceFamiliarStyle.png; Retrieved
Feb., 2011.

Fig. 2.35: Dance notation. Used for recording dance performances statically on paper.
Source: Tufte (1990, p. 117). © 1990 Graphics Press. Used with permission.

www.ebook3000.com

http://commons.wikimedia.org/wiki/File:AmazingGraceFamiliarStyle.png
http://www.ebook3000.org


40 2 Historical Background

Movies One art form that is only touched upon briefly here, but which might also
offer interesting ideas for visualization, is film. We will present movies that exem-
plify how movie makers are able to transport highly non-linear stories in the tempo-
rally linear medium of film. These examples pertain to the plot of a film, and not to
filming or cutting techniques.

Run Lola Run1 is a movie that presents several possible successions of events
sequentially throughout the film (compare branching time in Section 3.1.1). The
individual episodes begin at the same point in time and show different possible
strands of events.

The movie Pulp Fiction2 comprises an even more complicated and challenging
plot. It is a collection of different episodes that are semantically as well as tem-
porally linked. Moreover, the movie ends by continuing the very first scene in the
movie, thus closing the loop.

A further example of the use of interesting temporal constellations in film is the
movie Memento3. The main character of the movie is a man who suffers from short-
term memory loss, who uses notes and tattoos to hunt for his wife’s killer. What
makes the storytelling so challenging is the fact that time flows backwards from
scene to scene (i.e., the end is shown at the beginning and the story progresses to
the beginning from there).

Music videos are also often used as an innovation playground where directors
can experiment with unconventional temporal flows such as the reverse narrative as
used in Coldplay’s The Scientist4.

Paintings A very interesting approach to overcoming the limitations of time can
be found in Renaissance paintings. Here, sequences of different temporal episodes
are shown in a single composition. Figure 2.36 for example shows a painting by
Masolino da Panicale that presents two scenes in the life of St. Peter within a single
scenery. While this method of showing different stages or episodes within a unifying
scenery was well understood by the people at that time (the Middle Ages), it might
not be as easily understood by a modern viewer. This technique provides evidence
for the following statement:

[...] paintings have always been able to capture more than a fleeting moment in time.
Crabbe (2003)

The beginning of the 20th century was characterized by new findings and break-
throughs in the natural sciences, especially in mathematics and physics, such as
Einstein’s theory of relativity. But not only the world of science was shaken by
these developments; artists also addressed these topics in their own way. Foremost
among these were the protagonists of the art movement of Cubism, who focused on
incorporating time in their artworks. They coined the term Four-dimensional Art.

1 Run Lola Run (Lola rennt), written and directed by Tom Twyker, 1998.
2 Pulp Fiction, written by Quentin Tarantino et al., directed by Quentin Tarantino, 1994.
3 Memento, written by J. and C. Nolan, directed by Christopher Nolan, 2000.
4 The Scientist, recorded by Coldplay, music video directed by Jamie Thraves, 2001.



2.2 Time in Visual Storytelling & Arts 41

Fig. 2.36: Masolino da Panicale, Curing the Crippled and the Resurrection of Tabitha (Brancacci
Chapel, S. Maria del Carmine, Florence, Italy), 1420s. Different stages or episodes of a single per-
son are shown within a unifying scenery.
Source: http://commons.wikimedia.org/wiki/File:Cappella brancacci, Guarigione dello storpio
e resurrezione di Tabita (restaurato), Masolino.jpg; Retrieved Feb., 2011.

Fig. 2.37 Marcel Duchamp,
Nude Descending a Staircase
(No. 2), 1912. The dimen-
sion time is incorporated by
overlaying different stages
of a person’s movement.
(Philadelphia, Philadelphia
Museum of Art. Oil on can-
vas, 57 7/8 x 35 1/8’ (147
x 89.2 cm). The Louise and
Walter Arensberg Collection,
1950. © VBK, Vienna 2010.)
Source: © 2010. Photo The
Philadelphia Museum of
Art/Art Resource/Scala, Flo-
rence.
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Fig. 2.38 Pablo Picasso, Por-
trait of Ambroise Vollard,
1910. Many different obser-
vations are composed and
partly overlaid to form a sin-
gle picture. (Moscow, Pushkin
Museum. © Succession Pi-
casso/VBK, Vienna 2010.)
Source: © 2010. Photo Scala,
Florence.

According to Volaric (2003), the first documented occurrence of time as the
fourth dimension appeared in Paris in 1910. As already mentioned, the concept of
the n-dimensional space in mathematics and physics inspired artists to think about
4D space. Figure 2.37 shows Marcel Duchamp’s painting Nude Descending a Stair-
case which incorporates the dimension of time in a very interesting way by over-
laying different stages of a person’s movement. Another example is Pablo Picasso’s
Portrait of Ambroise Vollard (see Figure 2.38), where many different observations
are composed and partly overlaid to form a single picture. The artists wanted to put
emphasis on the process of looking and recording over time (in contrast to taking a
photo). These new ways of bringing the fourth dimension into the static domain of
pictures are still a challenge to viewers today.

2.3 Summary

We have provided a brief review of relevant historical and application-specific visu-
alization techniques and representations of time in the visual arts. Our aim was to
provide an historical context for developments in this area and to present some ideas
from related areas that might act as a further source of inspiration for designing vi-
sualizations. Furthermore, this chapter has demonstrated the enormous breadth of
the topic which we are only able to cover in part.
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Readers interested in more information about historical representations of time-
oriented data and historical representations in general are referred to the wonderful
books of Tufte (1983, 1990, 1997, 2006), Wainer (2005), and Rosenberg and Grafton
(2010). Michael Friendly’s great work on the history of data visualization can be
studied in numerous articles such as (Friendly, 2008) as well as online in his Data
Visualization Gallery5 and the Milestones Project6. Additionally, interesting historic
facts related to time representations are discussed on the Chronographics Weblog7

of Stephen Boyd Davis.
Now, after setting the stage and considering various concepts and ideas from

related disciplines, we will narrow our focus and present a systematic view of the
visualization of time-oriented data. In this sense, we will first discuss important
aspects that make the handling of time and time-oriented data possible. Following
that, the visualization problem itself will be systematically explained and discussed.
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Chapter 3
Time & Time-Oriented Data

What, then, is time?
If no one asks me, I know what it is.
If I wish to explain it to him who asks, I do not know.

Saint Augustine (AD 354-430, The Confessions)

The fundamental phenomenon of time has always been of interest for mankind.
Many different theories for characterizing the physical dimension of time have been
developed and discussed over literally thousands of years in philosophy, mathe-
matics, physics, astronomy, biology, and many other disciplines. As reported by
Whitrow et al. (2003), a 1981 literature survey by J.T. Fraser found that the total
number of entries judged to be potentially relevant to the systematic study of time
reached about 65,000. This illustrates the breadth of the topic and the restless en-
deavor of man to uncover its secrets. What can be extracted as the bottom line across
many theories is that time is unidirectional (arrow of time) and that time gives order
to events.

The most influential theories for the natural sciences are probably Newton’s con-
cepts of absolute vs. relative time, and Einstein’s four-dimensional spacetime. New-
ton assumed an absolute, true, mathematical time that exists in itself and is not
dependent on anything else. Together with space, it resembles a container for all
processes in nature. This image of an absolute and independent dimension prevailed
until the beginning of the 20th century. Then, Einstein’s relativity theory made clear
that time in physics depends on the observer. Thus, Einstein introduced the notion of
spacetime, where space and time are inherently connected and cannot be separated.
That is, each event in the universe takes place in four-dimensional space at a location
that is defined by three spatial coordinates at a certain time as the fourth coordinate
(see Lenz, 2005). Both Newton’s notion of absolute time and Einstein’s spacetime
are concepts that describe time as a fundamental characteristic of the universe. In
contrast to that, the way humans deal with time in terms of deriving it essentially
from astronomical movements of celestial bodies or phenomena in nature is what
Newton called relative time.

W. Aigner et al., Visualization of Time-Oriented Data,
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The first signs of the systematic use of tools for dealing with time have been
found in the form of bone engravings that resembled simple calendars based on the
cycle of the moon. In this regard, the most fundamental natural rhythm perceived by
humans is the day. Consequently, it is the basis of most calendars and was used to
structure the simple life of our ancestors who lived in close contact with nature (see
Lenz, 2005). More complex calendars evolved when man settled into agricultural
communities, moving away from the life of a hunter-gatherer, and began to live
from agriculture. Until very late in human history, time was kept only very roughly.
Industrialization and urban civilization brought about the need for more precise,
regular, and synchronized overall timekeeping.

Today, the most commonly used calendric system is the Gregorian calendar. It
was introduced by Pope Gregory XII in 1582, primarily to correct the drift of the
previously used Julian calendar, which was slightly too long in relation to the as-
tronomical year and the seasons1. Apart from this calendric system, many other
systems are in use around the world, such as the Islamic, the Chinese, or the Jewish
calendars, or calendars for special purposes, like academic (semester, trimester, etc.)
or financial calendars (quarter, fiscal year, etc.).

In this book, we will not look at the physical dimension of time itself and its
philosophical background, how time is related to natural phenomena, or how clocks
have been developed and used. We focus on how the physical dimension of time
and associated data can be modeled in a way that facilitates interactive visualization
using computer systems. As a next step we are now going to examine the design
aspects for modeling time.

3.1 Modeling Time

First of all, it is important to make a clear distinction between the physical dimension
time and a model of time in information systems. When modeling time in informa-
tion systems, the goal is not to perfectly imitate the physical dimension time, but to
provide a model that is best suited to reflect the phenomena under consideration and
support the analysis tasks at hand. Moreover, as Frank (1998) states, there is noth-
ing like a single correct model or taxonomy of time – there are many ways to model
time in information systems and time is modeled differently for different applica-
tions depending on the particular problem. Extensive research has been conducted
in order to formulate the notion of time in many areas of computer science, includ-
ing artificial intelligence, data mining, simulation, modeling, databases, and more.
A theoretical overview which includes many references to fundamental publications
is provided by Hajnicz (1996). However, as she points out, the terminology is not
consistent across the different fields, and hence, does not integrate well with visu-
alization. Moreover, as Goralwalla et al. (1998) note, most research focuses on the
development of specialized models with different features for particular domains.

1 Interestingly, much more precise calendars were known hundreds of years earlier in other cul-
tures, such as those developed by the Mayas and the Chinese.
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But apart from the many time models created for specific purposes and applications,
attempts have been made to capture the major design aspects underlying all specific
instances, as for example by Frank (1998), Goralwalla et al. (1998), Peuquet (1994,
2002), and Furia et al. (2010).

Here, we want to present the overall design aspects of modeling time, and not a
particular model. To do this, we will describe a number of major design aspects and
their features which are particularly important when modeling time. Application-
specific models can be derived from these as particular configurations.

3.1.1 Design Aspects

To define the design aspects relevant for time, we adapted the works of Frank (1998)
and Goralwalla et al. (1998), where principal orthogonal aspects are presented to
characterize different types of time. These aspects will now be described in detail.

Scale: ordinal vs. discrete vs. continuous As a first perspective, we look at time
from the scale along which elements of the model are given. In an ordinal time
domain, only relative order relations are present (e.g., before, after). For example,
statements like “Valentina went to sleep before Arvid arrived” and “Valentina woke
up after a few minutes of sleep” can be modeled using an ordinal scale. Note that
only relative statements are given and one cannot discern from the given example
whether she woke up before or after he arrived (see Figure 3.1). This might be
sufficient if only qualitative temporal relationships are of interest or no quantitative
information is available.

In discrete domains temporal distances can also be considered. Time values can
be mapped to a set of integers which enables quantitative modeling of time values
(e.g., quantifiable temporal distances). Discrete time domains are based on a small-
est possible unit (e.g., seconds or milliseconds as in UNIX time) and they are the
most commonly used time models in information systems (see Figure 3.2). Con-
tinuous time models are characterized by a possible mapping to real numbers, i.e.,
between any two points in time, another point in time exists (also known as dense
time, see Figure 3.3).

Examples of visualization techniques capable of representing the three types of
scale are the point and figure chart (see Figure 3.4) for an ordinal scale, tile maps
(see Figure 3.5 and ↪→ p. 178) for a discrete scale, and the circular silhouette graph
(see Figure 3.6 and ↪→ p. 175) for a continuous time scale.

Scope: point-based vs. interval-based Secondly, we consider the scope of the ba-
sic elements that constitute the structure of the time domain. Point-based time do-
mains can be seen in analogy to discrete Euclidean points in space, i.e., having a
temporal extent equal to zero. Thus, no information is given about the region be-
tween two points in time. In contrast to that, interval-based time domains relate to
subsections of time having a temporal extent greater than zero. This aspect is also
closely related to the notion of granularity, which will be discussed in Section 3.1.2.
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Fig. 3.1 Ordinal scale. Only
relative order relations are
present. At this level it is not
possible to discern whether
Valentina woke up before or
after Arvid arrived.

Fig. 3.2 Discrete scale.
Smallest possible unit is
minutes. Although Arvid ar-
rived and Valentina woke up
within the same minute, it
is not possible to model the
exact order of events.

Fig. 3.3 Continuous scale.
Between any two points in
time, another point in time
exists. Here, it is possible
to model that Arvid arrived
shortly before Valentina woke
up.

Fig. 3.4 Point and figure
chart. Visualization technique
tracking price and price direc-
tion changes. Uses an ordinal
time scale. ◦...positive price
change of a certain amount,
×...negative price change of a
certain amount, �...begin/end
of a trading period.
Source: Adapted from Harris
(1999).
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Fig. 3.5: Tile maps. Example shows average daily ozone measurements (scale: discrete, scope:
interval-based) over the course of three years.
Source: Adapted from Mintz et al. (1997) with permission of David Mintz.

Fig. 3.6 Circular silhouette
graph. Enables the repre-
sentation of time along a
continuous scale with a cyclic
arrangement. The represen-
tation emphasizes the visual
impression by filling the area
below the plotted line in order
to create a distinct silhouette.
This eases comparison when
placed side by side.
Source: Adapted from Harris
(1999).

For example the time value August 1, 2008 might relate to the single instant August
1, 2008 00:00:00 in a point-based domain, whereas the same value might refer to
the interval [August 1, 2008 00:00:00, August 1, 2008 23:59:59] in an interval-based
domain (see Figures 3.7 and 3.8).

Examples of visualization techniques capable of representing the two types of
scope are the TimeWheel (see Figure 3.9 and ↪→ p. 200) for a point-based domain
and tile maps (see Figure 3.5 and ↪→ p. 178) for an interval-based time domain.
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Fig. 3.7 Time value “August
1, 2008” in a point-based
domain. No information is
given in between two time
points.

Fig. 3.8 Time value “August
1, 2008” in an interval-based
domain. Each element covers
a subsection of the time
domain greater than zero.

Fig. 3.9 TimeWheel. Param-
eter axes are arranged around
the horizontal point-based
time axis in a regular polyg-
onal manner. For each time-
step, lines descend from the
time axis to the corresponding
points on the parameter axes.

Arrangement: linear vs. cyclic As the third design aspect, we look at the ar-
rangement of the time domain. Corresponding to our natural perception of time,
we mostly consider time as proceeding linearly from the past to the future, i.e.,
each time value has a unique predecessor and successor (see Figure 3.10). However,
periodicity is very common in all kinds of data, for example seasonal variations,
monthly averages, and many more. In a cyclic organization of time, the domain is
composed of a set of recurring time values (e.g., the seasons of the year, see Fig-
ure 3.11). Hence, any time value A is preceded and succeeded at the same time
by any other time value B (e.g., winter comes before summer, but winter also suc-
ceeds summer). In order to enable meaningful temporal relationships in cyclic time,
Frank (1998) suggests the use of the relations immediately before and immediately
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Fig. 3.10 Linear time. Time
proceeds linearly from past to
future.

Fig. 3.11 Cyclic time. Set of
recurring time values such as
the seasons of the year.

after. Strictly cyclic data, where the linear progression of time from past to future
is neglected, is very rare (e.g., records for the day of week not considering month
or year). The combination of periodic and linear progression denoted by the term
serial periodic data (e.g., monthly temperature averages over a couple of years) is
much more common. Periodic time-oriented data in this sense includes both strictly
cyclic data and serial periodic data.

Examples of visualization techniques capable of representing the two types of
arrangement are the TimeWheel (see Figure 3.9 and ↪→ p. 200) for linear time and
the circular silhouette graph (see Figure 3.6 and ↪→ p. 175) for cyclic time.

Viewpoint: ordered vs. branching vs. multiple perspectives The fourth subdivi-
sion is concerned with the views of time that are modeled. Ordered time domains
consider things that happen one after the other. On a more detailed level, we might
also distinguish between totally ordered and partially ordered domains. In a totally
ordered domain only one thing can happen at a time. In contrast to this, simulta-
neous or overlapping events are allowed in partially ordered domains, i.e., multiple
time primitives at a single point or overlapping in time. A more complex form of
time domain organization is the so-called branching time (see Figure 3.12). Here,
multiple strands of time branch out and allow the description and comparison of
alternative scenarios (e.g., in project planning). This type of time supports decision-
making processes where only one of the alternatives will actually happen. Note that
branching is not only useful for future scenarios but can also be applied for inves-
tigating the past, e.g., for modeling possible causes of a given decision. In contrast
to branching time where only one path through time will actually happen, multi-
ple perspectives facilitate simultaneous (even contrary) views of time, which are
necessary, for instance, to structure eyewitness reports. A further example of multi-
ple perspectives are stochastic multi-run simulations. For a single experiment, there
might be completely different output data progressions depending on the respective
initialization.
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Fig. 3.12: Branching time. Alternative scenarios for moving into a new living space.

Fig. 3.13 Multiple perspec-
tives. Vincent was born on
August 8, 2006 (valid time)
and this fact was stored in
the register of residents two
days later on August 10, 2006
(transaction time).

In temporal databases, the two perspectives valid time and transaction time are
often modeled (see Figure 3.13). The valid time perspective of a fact is the time
when the fact is true in the modeled reality (e.g., “Vincent was born on August 8,
2006”). In contrast to that, the transaction time perspective of a fact denotes when
it was stored in the database (e.g., the birth of Vincent is stored in the register of
residents after filling out a form two days after his birth). Multiple perspectives
often need to be condensed into a single consistent view of time (see for example
Wolter et al., 2009).

Both branching time and multiple perspectives introduce the need to deal with
probability (or uncertainty), to convey, for instance, which path through time will
most likely be taken, or which evidence is believable. The decision chart (see Fig-
ure 3.14 and ↪→ p. 159) is an example of a visualization technique capable of repre-
senting branching time.
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Fig. 3.14: Decision chart. Example of a visualization technique capable of representing branching
time. Future decisions and potential alternative outcomes along with their probabilities can be
depicted over time.
Source: Adapted from Harris (1999).

3.1.2 Granularities & Time Primitives

The previous section introduced design aspects to adequately model the time do-
mains’ scale, scope, and arrangement as well as possible viewpoints onto the time
domain. Besides these general aspects, the hierarchical organization of time as well
as the definition of concrete time elements used to relate data to time need to be
specified. In the following, we will discuss this facet in more detail.

Granularity and calendars: none vs. single vs. multiple To tame the complexity
of time and to provide different levels of granularity, useful abstractions can be
employed. Basically, granularities can be thought of as (human-made) abstractions
of time in order to make it easier to deal with time in every-day life (like minutes,
hours, days, weeks, months). More generally, granularities describe mappings from
time values to larger or smaller conceptual units2 (see Figure 3.15 for an example
of time granularities and their relationships).

If a granularity and calendar system is supported by the time model, we catego-
rize it as multiple granularities. Besides this complex variant, there might be a single

2 An overview and formalization of time granularity concepts is given by Bettini et al. (2000).
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Fig. 3.15: Example of a discrete time domain with multiple granularities. The smallest possible
unit (chronon) is one day. Based on this, the granularity weeks contains granules that are defined
as being a continuous set of seven days. Moreover, the granularity fortnights consists of granules
that are a set of two consecutive weeks.

granularity only (e.g., every time value is given in terms of milliseconds) or none of
these abstractions are supported (e.g., abstract ticks).

Most information systems that deal with time-oriented data are based on a dis-
crete time model that uses a fixed smallest granularity also known as bottom granu-
larity (e.g., Java’s Date class uses milliseconds as the smallest granularity). Hence,
the underlying time domain can be described as a sequence of non-decomposable,
consecutive time intervals of identical duration called chronons (see Jensen et al.,
1998). This allows for a simple representation of a point in time as number of
chronons relative to a reference point (e.g., milliseconds (=chronons) since January
1, 1970 00:00:00 GMT). Chronons may be grouped into larger segments, termed
granules. Based on this, a granularity is a non-overlapping mapping of so-called
granules to subsets of the time domain (see Dyreson et al., 2000). Granularities are
related in the sense that the granules in one granularity may be further aggregated to
form larger granules belonging to a coarser granularity. For example, 60 consecutive
seconds are mapped to one minute.

A system of multiple granularities in lattice structures is referred to as a calendar
(see Figure 3.16 for the granularity lattice of the Gregorian calendar). More pre-
cisely, it is a mapping between human-meaningful time values and an underlying
time domain. Thus, a calendar consists of a set of granularities including mappings
between pairs of granularities that can be represented as a graph (see Dyreson et al.,
2000). Calendars most often include cyclic elements, allowing human-meaningful
time values to be expressed succinctly. For example, dates in the common Gregorian
calendar may be expressed in the form <day, month, year> where each of the fields
day, month, and year circle as time passes (see Jensen et al., 1998).

Moreover, mappings between granularities might be regular or irregular. A regu-
lar mapping exists for example between the granularities seconds and minutes where
one minute is always mapped to 60 seconds3. In contrast to that, the mapping of days
to months is irregular because one month might be composed of 28, 29, 30, or 31
days depending on the context (particular year and month).

3 We are not considering the exception of leap seconds here.
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Fig. 3.16 Annotated granu-
larity lattice of the Gregorian
calendar that contains regular
and irregular mappings (leap
seconds are not considered in
the granularity lattice).

To manage time granularities and calendars accordingly, appropriate models and,
even more importantly, conversion operators have to be supported. These include for
example the definition of granularities, their relationships, and calendars, and oper-
ations like conversions from one granularity to another or for combining calendars.
Particularly, operations that convert from one granularity to another, as for example
from days to months, can be quite complex due to the irregularities in granulari-
ties. Basic implementations of the described functionalities are present in most pro-
gramming languages and database systems in terms of the widely used Gregorian
calendar (e.g., java.util.Calendar and java.util.GregorianCalendar)4.

Moreover, granularities influence equality relationships. Take for example the
time interval between Tuesday, December 30, 2008 and Thursday, January 1, 2009
(see Figure 3.17). While this interval is entirely within a single week on the gran-
ularity of weeks, it overlaps two years on the granularity of years. Note that this is
contradictory to the naive assumption that when an equality relationship holds true
on a fine granularity it also holds true on a coarser one.

An example of a visualization technique that uses time granularities is the cycle
plot (see Figure 3.18 and ↪→ p. 176).

The concepts chronon, granule, granularity, and calendar have been introduced
to hierarchically organize the time domain which reflects our common perception
and usage of time.

Time primitives: instant vs. interval vs. span Next, we present a set of basic el-
ements used to relate data to time, so-called time primitives: instant, interval, and
span. These time primitives can be seen as an intermediary layer between data ele-
ments and the time domain. Basically, time primitives can be divided into anchored

4 More sophisticated systems and models that support multiple (user-defined) granularities and
calendars are described in Dyreson et al. (2000) and Lee et al. (1998).
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Fig. 3.17: Granularities influence equality relationships. The times of A and B are not equal on the
granularity of days, but are equal on the granularity of weeks, and then again are not equal on the
coarser granularity of years.

Fig. 3.18: Cycle plot. Visualization technique that utilizes two time granularities to represent cycles
and trends. The example shows trends of measurements of weekdays over quarters. For example,
on Mondays, the values show an increasing trend over the year while on Tuesdays the trend is
decreasing. Furthermore, the general shape of a week’s cycle is visible.
Source: Adapted from Cleveland (1993) with permission of William Cleveland.

(absolute) and unanchored (relative) primitives. Instant and interval are primitives
that belong to the first group, i.e., they are located on a fixed position along the
time domain. In contrast to that, a span is a relative primitive, i.e., it has no absolute
position in time.

An instant5 is a single point in time, e.g., May 23, 1977. Depending on the scope,
i.e., whether a point-based or interval-based time model is used (see previous sec-
tion), an instant might also have a duration (see Figure 3.19 and Figure 3.20). Time
primitives can be defined at all levels of granularity representing chronons, gran-
ules, or sets of both. Examples of instants are the date of birth “May 23, 1977” and

5 Sometimes also referred to as time point.
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Fig. 3.19 Instant in a point-
based time model. A point in
time that has no duration.

Fig. 3.20 Instant in an
interval-based time model.
A point in time that has a
duration which depends on its
granularity.

the beginning of a presentation on “January 10, 2009 at 2 p.m.” whereas the first
instant (date of birth) is given at a granularity of days and the second (beginning of
presentation) at a granularity of hours.

An interval is a portion of time of the underlying time domain that can be repre-
sented by two instants that denote the beginning and end of the interval, e.g., [June
13, 2009; June 19, 2009] (see Figure 3.21). Alternatively, intervals can be modeled
as beginning instant + duration (positive span), or as duration (positive span) + end
instant. An interval that is defined in terms of beginning and end is modeled as a
closed interval including the beginning as well as the end instant.

Fig. 3.21 Interval [June 14,
2009; June 17, 2009] in a
point-based time model.

The span is the only unanchored primitive. It represents a directed duration of
time, e.g., 4 days (see Figure 3.22). A time span is defined as a directed, unanchored
primitive that represents a directed amount of time in terms of a number of gran-
ules in a given granularity. Examples of spans are the length of a vacation of “10
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Fig. 3.22 Span. Example of
the span “four days” which
is formed by four granules of
the granularity days.

days” and the duration of a lecture of “150 minutes”. Figure 3.22 illustrates this
graphically by showing an example span of “four days” which is a count of four
granules of the granularity days. A span is either positive, denoting forward motion
of time, or negative, denoting backwards motion of time (see Jensen et al., 1998).
In case of irregular granularities (e.g., “months”), the exact length of a span is not
known precisely. Consider for example the granularity months, where a span of “two
months” might be 59, 60, 61, or 62 days depending on the particular time context.
This implies that the exact length of spans within irregular granularities can only be
determined exactly when related absolutely to the time domain (anchored). Other-
wise, mean values might be used for calculations (e.g., mean month and mean year).

Most of the previously given visualization examples are suited for representing
instants. Gantt charts (↪→ p. 167) are an example of a visualization technique that
shows time intervals (see Figure 3.23).

Fig. 3.23: Gantt chart. Example of a visualization technique capable of representing intervals.
The tasks of a project plan are displayed as a list in the left part of the diagram. For each task, a
horizontal bar (timeline) displays the extent of the task in time.

Relations between time primitives Between individual time primitives relations
might exist, such as before and after. As presented by Peuquet (1994), these rela-
tions can be specified in different ways. We will present these relations in terms of
topology, i.e., relative locations of time elements. Depending on the time primitives
used, different relations make sense.
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Fig. 3.24 Instant relations.
Instants can be related in three
different ways.

Fig. 3.25 Interval relations.
Instants can be related in
thirteen different ways.

Fig. 3.26 Instant+interval
relations. Instants and inter-
vals can be related in eight
different ways.
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Between two instants A and B, three relationships are possible (see Figure 3.24).
Either A is before B, A is after B, or A equals B (i.e., A and B are at the same
time). For relations between time intervals, things get more complex. Allen (1983)
defined a set of thirteen basic relations that are very common in time modeling (see
Figure 3.25). These are A before B or B after A (i.e., interval A ends before interval
B starts), A meets B or B met-by A (i.e., interval A ends right when interval B starts),
A overlaps B or B overlapped-by A (i.e., intervals A and B overlap whereas interval
A ends during interval B), A starts B or B started-by A (i.e., intervals A and B start
at the same time but interval A ends earlier), A during B (i.e., interval A starts later
and ends earlier as interval B), A finishes B or B finished-by A (i.e., interval A and B
end at the same time but interval A starts later), and A equals B (i.e., both intervals
start and end at the same time). When looking at relations between an instant A and
an interval B, eight options exist (see Figure 3.26). Either, A before B or B after A
(i.e., instant A is before the start of interval B), A starts B or B started-by A (i.e.,
instant A and the start of interval B are the same), A during B or B contains A (i.e.,
instant A is after the start and before the end of interval B), or A finishes B or B
finished-by A (i.e., instant A and the end of interval B are the same).

These relationships are important concepts, especially when reasoning about
time. Furthermore, the set of possible relations is determined by further design as-
pects.

Determinacy: determinate vs. indeterminate Uncertainty is another important
aspect when considering time-oriented data. If there is no complete or exact infor-
mation about time specifications or if time primitives are converted from one gran-
ularity to another, uncertainties are introduced and have to be dealt with. Therefore,
the determinacy of the given time specification needs to be considered. A deter-
minate specification is present when there is complete knowledge of all temporal
aspects. Prerequisites for determinate specification are either a continuous time do-
main or only a single granularity within a discrete time domain. Information that
is temporally indeterminate can be characterized as don’t know when information,
or more precisely, don’t know exactly when information (see Jensen et al., 1998).
Examples of this are inexact knowledge (e.g., “time when the earth was formed”),
future planning data (e.g., “it will take 2-3 weeks”), or imprecise event times (e.g.,
“one or two days ago”). Notice that temporal indeterminacy as well as the relativity
of references to time are mainly qualifications of statements rather than of the events
they denote. Indeterminacy might be introduced by explicit specification (e.g., earli-
est beginning and latest beginning of an interval) or is implicitly present in the case
of multiple granularities. Consider for example the statement “Activity A started on
June 14, 2009 and ended on June 17, 2009” – this statement can be modeled by
the beginning instant “June 14, 2009” and the end instant “June 17, 2009” both at
the granularity of days. If we look at this interval from a granularity of hours, the
interval might begin and end at any point in time between 0 a.m. and 12 p.m. of the
specified day (see Figure 3.27).
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Fig. 3.27: Indeterminacy. Implicit indeterminacy when representing the interval [June 14, 2009;
June 17, 2009] that is given at a granularity of days on a finer granularity of hours.

Fig. 3.28: PlanningLines allow the depiction of temporal indeterminacies via a glyph consisting
of two encapsulated bars representing minimum and maximum duration, that are bounded by two
caps that represent the start and end intervals.
Source: Adapted from Aigner et al. (2005).
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Examples of time models that consider temporal indeterminacy are HMAP6 by
Combi and Pozzi (2001) and the time model underlying the time annotations used in
the medical treatment plan specification language Asbru by Shahar et al. (1998). A
visualization technique capable of depicting temporal indeterminacy is for example
PlanningLines (see Figure 3.28 and ↪→ p. 172).

3.2 Characterizing Data

After discussing the question of modeling the time domain itself, we now move on to
the question of characterizing time-oriented data. When we speak of time-oriented
data, we basically mean data that are somehow connected to time. More precisely,
we consider data values that are associated with time primitives.

The available modeling approaches are manifold and range from considering
continuous to discrete data models (see Tory and Möller, 2004). In the former case,
time is seen as an observational space and data values are given relative to it (e.g.,
a time-series in form of time-value pairs (t,v)). For the latter, data are modeled
as objects or entities which have attributes that are related to time (e.g., calendar
events with attributes beginning and end). Moreover, certain analytic situations even
demand domain transformations, such as a transformation from the time domain into
the frequency domain (Fourier transformation).

A useful concept for modeling time-oriented data along cognitive principles is
the pyramid framework by Mennis et al. (2000) (see Figure 3.29), which has already
been mentioned briefly in Section 1.1. The model is based on the three perspectives
location (where is it?), time (when is it?), and theme (what is it made of?) at the level
of data. Derived interpretations of these data aspects form objects (what is it?) on
the cognitively higher level of knowledge, along with their taxonomy (classification;
super-/subordinate relationships) and partonomy (interrelationships; part-whole re-
lationships).

Depending on the phenomena under consideration and the purpose of the analy-
sis, different points of view can be taken. An example of this would be considering
distinct conceptual entities that are related to time (objects) vs. the observation of
a continuous phenomenon, like temperature over time (values). There cannot be a
single model that is ideal for all kinds of applications. However, certain fundamental
design alternatives can be identified to characterize time-oriented data. In the con-
text of this book, we focus on the data component, i.e., the lower part of the pyramid
framework as depicted in Figure 3.29.

Scale: quantitative vs. qualitative Due to the given data domain we distinguish
between quantitative and qualitative variables. Quantitative variables are based on a
metric (discrete or continuous) range that allows numeric comparisons. In contrast,
the scale of qualitative variables includes an unordered (nominal) or ordered (ordi-

6 The word HMAP is not an abbreviation, but it is the transliteration of the ancient Greek poetical
word day.
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Fig. 3.29 Pyramid frame-
work. Data are conceptualized
along the three perspectives
of location, time, and theme.
Derived interpretations form
objects on the cognitively
higher level of knowledge.
Source: Adapted from
Mennis et al. (2000).

nal) set of data values. It is of fundamental importance to consider the characteristics
of the data scale to design appropriate visual representations.

Frame of reference: abstract vs. spatial Furthermore, it makes sense to distin-
guish abstract and spatial data. By abstract data we mean a data model that does not
include the where aspect with regard to the pyramid framework, i.e., abstract data are
not connected per se to some spatial location. In contrast to this, spatial data contain
an inherent spatial layout, i.e., the underlying data model includes the where aspect.
The distinction between abstract and spatial data reflects the way the time-oriented
data should be visualized. For spatial data, the inherent spatial information can be
exploited to find a suitable mapping of data to screen. The when aspect has to be
incorporated into that mapping, where it is not always easy to achieve an emphasis
on the time domain. For abstract data, no a priori spatial mapping is given. Thus,
first and foremost an expressive spatial layout has to be found. This spatial layout
should be defined such that the time domain is exposed.

Kind of data: events vs. states This criterion refers to the question of whether
events or states are dealt with. Events, on the one hand, can be seen as markers of
state changes, like for example the departure of a plane. States, on the other hand,
can be characterized as phases of continuity between events (e.g., plane is in the
air). As one can see, states and events are two sides of the same coin. However, it
should be clearly communicated whether states or events, or even a combination of
both, are visualized.

Number of variables: univariate vs. multivariate This criterion concerns the
number of time-dependent variables. In principle, it makes a difference if we have
to represent data where each time primitive is associated with only one single data
value (i.e., univariate data) or if multiple data values (i.e., multivariate data) must be
represented. Compared to univariate data, for which many methods have been devel-
oped, the range of methods applicable for multivariate data is significantly smaller.
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3.3 Relating Data & Time

Aspects regarding time dependency of data have been extensively examined in the
field of temporal databases. Here, we adapt the notions and definitions developed in
that area (see Steiner, 1998; Liu and Özsu, 2009). According to them, any dataset is
related to two temporal domains:

• internal time Ti and
• external time Te.

Internal time is considered to be the temporal dimension inherent in the data
model. Internal time describes when the information contained in the data is valid.
Conversely, external time is considered to be extrinsic to the data model. The exter-
nal time is necessary to describe how a dataset evolves in (external) time. Depending
on the number of time primitives in internal and external time, time-related datasets
can be classified as shown in Figure 3.30.

Fig. 3.30 Temporal charac-
teristics of time related data.
A dataset is related to the two
temporal domains internal
time Ti and external time Te.
Source: Adapted from Steiner
(1998).

Static non-temporal data If both internal and external time are each comprised
of only one temporal element, the data are completely independent of time. A fact
sheet containing data about the products offered by a company is an example of
static non-temporal data. This kind of data is not addressed in this book.

Static temporal data If the internal time contains more than one time primitive,
while the external time contains only one, then the data can be considered dependent
on time. Since the values stored in the data depend on the internal time, static tempo-
ral data can be understood as an historical view of how the real world or some model
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looked at the various elements of internal time. Common time-series are a promi-
nent example of static temporal data. Most of today’s visualization approaches that
explicitly consider time as a special data dimension address static temporal data, for
instance the TimeSearcher (see Hochheiser and Shneiderman, 2004 and ↪→ p. 188).

Dynamic non-temporal data If the internal time contains only one, but the exter-
nal time is composed of multiple time primitives, then the data depend on the exter-
nal time. To put it simply, the data change over time, i.e., they are dynamic. Dynamic
data that change at high rate are often referred to as streaming data. Since the inter-
nal time is not considered, only the current state of the data is preserved; an historical
view is not maintained. There are fewer visualization techniques available that ex-
plicitly focus on dynamic non-temporal data. These techniques are mostly applied
in monitoring scenarios, for instance to visualize process data (see Matković et al.,
2002 and ↪→ p. 222). However, since internal time and external time can usually be
mapped from one to the other, some of the known visualization techniques for static
temporal data can be applied for dynamic non-temporal data as well.

Dynamic temporal data If both internal and external time are comprised of mul-
tiple time primitives, then the data are considered to be bi-temporally dependent. In
other words, the data contain variables depending on (internal) time, and the actual
state of the data changes over (external) time. Usually, in this case, internal and ex-
ternal time are strongly coupled and can be mapped from one to the other. Examples
of such data could be health data or climate data that contain measures depending
on time (e.g., daily number of cases of influenza or daily average temperature), and
that are updated every 24 hours with new data records of the passed day. An explicit
distinction between internal and external time is usually not made by current visual-
ization approaches, because considering both temporal dimensions for visualization
is challenging. Therefore, dynamic temporal data are beyond the scope of this book.

3.4 Summary

In this chapter, we structured and specified the characteristics of time and time-
oriented data. We approached this from three perspectives: First, we characterized
time and time models by discussing the related design aspects and abstractions.
Second, we presented relevant data aspects and third, we analyzed different types of
time-orientation. Figure 3.31 summarizes these perspectives and their correspond-
ing aspects.

The first perspective mainly addresses time and the complexity of modeling time.
Therefore, we needed to clarify the concepts of scale, scope, arrangement, and view-
points in order to specify the design space, and to define granularity and calendars,
time primitives, as well as temporal relations and determinacy of temporal elements
in order to specify the abstractions.

The second perspective focuses on relevant aspects of the data variables using the
understanding of time models explained above. This resulted in the definitions of
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Fig. 3.31: Design aspects of time-oriented data.
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scale, frame of reference, kind of data, and number of variables. The third perspec-
tive helps to identify how time and data are related in a particular setting. Therefore,
we took a look at how data variables are associated with time elements using the
distinction of internal and external time. All of these aspects need to be considered
when visualizing and analyzing data variables over time.

In terms of characterizing data, we mainly focused on the temporal relations of
data variables, i.e., relations between time primitives as well as between data and
internal and external time. Due to our focus on time aspects in this book, we did not
discuss other issues regarding data structures and the relationships between different
data variables that are not strictly related to time. We are aware that the relationships
between data variables are of importance, too. However, these aspects have been
widely discussed in database and data modeling theories. Also, many useful mod-
eling alternatives and reference models have been developed and can be adopted,
such as continuous models using scalars, vectors, or tensors, etc. (see Wright, 2007)
or discrete models using structures like trees, graphs, etc. (see Shneiderman, 1996).

We took this hard road – which required us to consider a number of characteriza-
tions and modeling concerns – because we are convinced that we can only develop
visualization methods that successfully support people in carrying out their tasks if
we have a clear understanding of what the data look like. In the next chapter we
explore the aspect of visualization design in more depth.
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Chapter 4
Visualization Aspects

The graphical method has considerable superiority for the
exposition of statistical facts over the tabular. A heavy bank of
figures is grievously wearisome to the eye, and the popular mind is
as capable of drawing any useful lessons from it as of extracting
sunbeams from cucumbers.

Farquhar and Farquhar (1891, p. 55)

Many different types of data are related to time. Meteorological data, financial
data, census data, medical data, simulation data, news articles, photo collections,
or project plans, to name only a few examples, all contain temporal information. In
theory, because all these data are time-oriented, they should be representable with
one and the same visualization approach. In practice, however, the data exhibit spe-
cific characteristics and hence each of the above examples requires a dedicated vi-
sualization. For instance, stock exchange data can be visualized with flocking boids
(see Vande Moere, 2004 and ↪→ p. 223), census data can be represented with Tren-
dalyzer (see Gapminder Foundation, 2010 and ↪→ p. 220), and simulation data can
be visualized efficiently using MOSAN (see Unger and Schumann, 2009 and ↪→
p. 209). News articles (or keywords therein) can be analyzed with ThemeRiver (see
Havre et al., 2002 and ↪→ p. 197) and project plans can be made comprehensible
with PlanningLines (see Aigner et al., 2005 and ↪→ p. 172). Finally, meteorological
data are visualized for us in the daily weather show. Apparently, this list of visual-
izations is not exhaustive. The aforementioned approaches are just examples from
a substantial body of techniques that recognize the special role of the dimension
of time. We shall complete this list in a rich survey of information visualization
techniques in Chapter 7.

Besides these dedicated techniques, time-oriented data can also be visualized us-
ing generic approaches. Since time is mostly seen as a quantitative dimension or
at least can be mapped to a quantitative domain (natural or real numbers), gen-
eral visualization frameworks like the Xmdv-Tool, Visage, or Polaris (see Ward,
1994; Kolojejchick et al., 1997; Stolte et al., 2002) as well as standard visualization
techniques like parallel coordinates by Inselberg and Dimsdale (1990) or more or
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less sophisticated diagrams and charts, as surveyed by Harris (1999), are applicable
for visualizing time-oriented data. For simple data and basic analysis tasks, these
approaches outperform specialized techniques, because they are easy to learn and
understand (e.g., common line plot). However, in many cases, time is treated just as
one quantitative variable among many others, not more, not less. Therefore, generic
approaches usually do not support establishing a direct visual connection between
multiple variables and the time axis, they do not communicate the specific aspects
of time (e.g., the different levels of temporal granularity), and they are limited in
terms of direct interactive exploration and browsing of time-oriented data, which
are essential for a successful visual analysis.

The bottom line is that time must be specifically considered to support the vi-
sual analysis. Different types of time-oriented data need to be visualized with ded-
icated methods. As the previous examples suggest, a variety of concepts for ana-
lyzing time-oriented data are known in the literature (see for example the work by
Silva and Catarci, 2000; Müller and Schumann, 2003; Aigner et al., 2008). This va-
riety makes it difficult for researchers to assess the current state of the art, and for
practitioners to choose visualization approaches most appropriate to their data and
tasks.

What is required is a systematic view of the visualization of time-oriented data
(see Aigner et al., 2007). In this chapter we will develop such a systematic view.
The different design options derived from the systematic view will be discussed and
illustrated by a number of visualization examples.

4.1 Characterization of the Visualization Problem

In the first place, we need a structure to organize our systematic view. But instead
of using formal or theoretical constructs, we decided to present a structure that is
geared to three practical questions that are sufficiently specific for researchers and
at the same time easy to understand for practitioners:

1. What is presented? – Time & data
2. Why is it presented? – User tasks
3. How is it presented? – Visual representation

Because any visualization originates from some data, the first question addresses
the structure of time and the data that have been collected over time. The motivation
for generating a visualization is reflected by the second question. It relates to the
aim of the visualization and examines the tasks carried out by the users. How the
data are represented is covered by the third question. The following sections will
provide more detailed explanations and refinements for each of these questions.
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4.1.1 What? – Time & Data

It goes without saying that the temporal dimension itself is a crucial aspect that
any visualization approach for representing time and time-oriented data has to con-
sider. It is virtually impossible to design effective visual representations without
knowledge about the characteristics of the given data and time domain. The charac-
teristics of time and data as well as corresponding design aspects have already been
explained in detail in Sections 3.1 and 3.2. Here, we will only briefly summarize
these aspects.

Characteristics of time The following list briefly reiterates the key criteria of the
dimension of time that are relevant for visualization:

• Scale – ordinal vs. discrete vs. continuous: In an ordinal time model, only rela-
tive order relations are present (e.g., before, during, after). In discrete and con-
tinuous domains, temporal distances can also be considered. In discrete models,
time values can be mapped to a set of integers based on a smallest possible unit
(e.g., seconds). In continuous models, time values can be mapped to the set of
real numbers, and hence, between any two points in time, another point can be
inserted.

• Scope – point-based vs. interval-based: Point-based time domains have basic
elements with a temporal extent equal to zero. Thus, no information is given
about the region between two points in time. Interval-based time domains relate
to subsections of time having a temporal extent greater than zero.

• Arrangement – linear vs. cyclic: Linear time corresponds to an ordered model
of time, i.e., time proceeds from the past to the future. Cyclic time domains are
composed of a finite set of recurring time elements (e.g., the seasons of the year).

• Viewpoint – ordered vs. branching vs. multiple perspectives: Ordered time do-
mains consider things that happen one after the other. In branching time domains,
multiple strands of time branch out and allow for description and comparison of
alternative scenarios, but only one path through time will actually happen (e.g., in
planning applications). Multiple perspectives facilitate simultaneous (even con-
trary) views of time (as for instance required to structure eyewitness reports).

In addition to these criteria, which describe the dimension of time, aspects re-
garding the presence or absence of different levels of granularity, the time primitives
used to relate data to time, and the determinacy of time elements are relevant (see
Section 3.1 in the previous chapter).

Characteristics of time-oriented data Like the time domain, the data have a major
impact on the design of visualization approaches. Let us briefly reiterate the key
criteria for data that are related to time:

• Scale – quantitative vs. qualitative: Quantitative data are based on a metric scale
(discrete or continuous). Qualitative data describe either unordered (nominal) or
ordered (ordinal) sets of data elements.
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• Frame of reference – abstract vs. spatial: Abstract data (e.g., a bank account)
have been collected in a non-spatial context and are not per se connected to some
spatial layout. Spatial data (e.g., census data) contain an inherent spatial layout,
e.g., geographical positions.

• Kind of data – events vs. states: Events, on the one hand, can be seen as markers
of state changes, whereas states, on the other hand, characterize the phases of
continuity between events.

• Number of variables – univariate vs. multivariate: Univariate data contain only
one data value per temporal primitive, whereas in the case of multivariate data
each temporal primitive holds multiple data values.

These primary categories form a basis for finding answers to the what question
of our systematic view. But having characterized what has to be visualized is just
the first step. The subsequent step is to focus on the why question.

4.1.2 Why? – User Tasks

It is commonly accepted that software development has to start with an analysis of
the problem domain users work in (see Hackos and Redish, 1998; Courage and Bax-
ter, 2005). This applies accordingly to the development of visualization solutions for
time-oriented data.

To specify the problem domain, so-called task models are widely used in the
related field of human-computer interaction (see Constantine, 2003). A prominent
example of such task models is the ConcurTaskTree (CTT) by Paternò et al. (1997).
It describes a hierarchical decomposition of a goal into tasks and subtasks. Four
specific types of tasks are supported in the CTT notation: abstract tasks, interaction
tasks, user tasks, and application tasks. Abstract tasks can be further decomposed
into subtasks (including abstract subtasks). Leaf nodes are always interaction tasks,
user tasks, or application tasks. They have to be carried out either by the user, by the
application system, or by interaction between user and system. The CTT notation is
enriched with a set of temporal operators that define temporal relationships among
tasks and subtasks (e.g., independent concurrency, concurrency with information
exchange, disabling, enabling). Usually, CTT models are constructed manually by a
domain expert, and mostly for the purpose of driving automatic user interface gen-
eration (see for example Paternò and Santoro, 2002). First approaches have begun
to use this notation for visualization purposes. For instance, Winckler et al. (2004)
apply the CTT notation for structured tests and for the evaluation of interactive vi-
sualization techniques.

In the visualization domain, however, tasks are usually given at a lower level
in the form of informal verbal lists only. An accepted low-level task description
specifically addressing the temporal domain has been introduced by McEachren
(1995). The tasks are defined by a set of important questions that users might seek
to answer with the help of visual representations:
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• Existence of data element
Question: Does a data element exist at a specific time?
Starting point: time point or time interval
Search for: data element at that time
Example: “Was a measurement made in June, 1960?”

• Temporal location
Question: When does a data element exist in time?
Starting point: data element
Search for: time point or time interval
Example: “When did the Olympic Games in Vancouver start?”

• Time interval
Question: How long is the time span from beginning to end of the data element?
Starting Point: data element
Search for: duration, i.e., length of time of a data element from its beginning to
its end
Example: “How long was the processing time for dataset A?”

• Temporal pattern
How often does a data element occur?
Starting point: interval in time
Search for: frequency of data elements within a certain portion of time and based
on this the detection of a pattern
Example: “How often was Jane sick last year?”

• Rate of change
Question: How fast is a data element changing or how much difference is there
from data element to data element over time?
Starting point: data element
Search for: magnitude of change over time
Example: “How did the price of gasoline vary in the last year?”

• Sequence
Question: In what order do data elements occur?
Starting point: data elements
Search for: temporal order of different data elements
Example: “Did the explosion happen before or after the car accident?”

• Synchronization
Question: Do data elements exist together?
Starting point: data elements
Search for: occurrence at the same point or interval in time
Example: “Is Jill’s birthday on Easter Monday this year?”

This list of tasks covers two basic cases. First, having at hand one or more data
values, the user is searching for time primitives that exhibit these values, and sec-
ond, having at hand one or more time primitives, the user seeks to discern the data
values associated with them. This reflects the well-established distinction between
identification (i.e., looking for data values) and localization (i.e., looking for when
and where in time and space).
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This distinction is also the basis for the formal task model by Andrienko and
Andrienko (2006). They describe tasks using two basic notions: references, which
constitute the domain (spatial or temporal) in which the data values have been col-
lected, and characteristics, which are the data values that were collected. On the
first level, the Andrienko model is subdivided into two classes of tasks: elementary
and synoptic tasks. Elementary tasks address individual data elements. This may
include individual values, but also individual groups of data. The main point here
is that data are taken into account separately; they are not considered as a whole.
Synoptic tasks, on the other hand, involve a general view and consider sets of values
or groups of data in their entirety.

Elementary tasks are further divided into lookup, comparison, and relation seek-
ing. The lookup task includes direct and inverse lookup, which stand for searching
for data values and searching for points in space and time, respectively. Relation
seeking tasks address the search for occurrences of relations specified between data
characteristics or references, for example, looking for courses that are scheduled on
Mondays. In a broader sense, comparison can also be seen as relation seeking, but
the relations to be determined are not specified beforehand. Direct comparison tasks
interrelate characteristics, whereas inverse comparison tasks interrelate references.

Synoptic tasks are further divided into descriptive and connectional tasks. De-
scriptive tasks specify the properties of either a set of references or a set of char-
acteristics. The first case belongs to the group of identification tasks. Here, a set of
references is given, and the task is to find a pattern that describes the behavior of the
given reference points. The second case belongs to the group of localization tasks.
Here, a concrete pattern is given, and the task is to search for those reference points
in time and space that exhibit the pattern. Besides specifying the properties of a set
of characteristics or references, the comparison of those sets is highly relevant. As
in the case of elementary tasks, we have to distinguish between direct and inverse
comparison tasks, depending on whether sets of references or sets of characteris-
tics are compared. Moreover, the synoptic relation seeking task considers two sets
of characteristics or references to come up with relationships between these sets.

Fig. 4.1: Taxonomy of visualization tasks.
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In contrast to descriptive tasks, connectional tasks establish connections between at
least two sets, taking into account the relational behavior of two or more variables.
Depending on the set of underlying references – either variables are considered over
the same set or over different sets of references – homogeneous and heterogeneous
behavior tasks are distinguished.

To illustrate how the different tasks of the Andrienko model are related, we ar-
ranged them into a task taxonomy. Figure 4.1 shows more clearly how the visual-
ization tasks are organized. The quasi-hierarchical structure of this taxonomy allows
the later refinement of classes of tasks depending on application-specific needs. The
following list provides illustrative examples of the different types of tasks:

Elementary tasks:

• Direct lookup: What was the price of Google stocks on January 14?
• Inverse lookup: On which day(s) was the lowest stock price for Amazon in 2010?
• Direct comparison: Compare the stock prices of Sun and Oracle on January 14.
• Inverse comparison: Did the price of Apple stocks reach $200 before or after

January 14?
• Relation seeking: On which days was the price of Adobe stocks higher than the

price of AOL stocks?

Synoptic tasks:

• Direct lookup (pattern definition): What was the trend of Oracle stocks during
January?

• Inverse lookup (pattern search): Find months in which the price of Novell stocks
decreased.

• Direct (pattern) comparison: Compare the behavior of the stock price of Hewlett-
Packard in January and June.

• Inverse (pattern) comparison: How is a decreasing trend of Dell stocks related
to the period of summer vacation?

• Relation seeking: Find two contiguous months with opposite trends in the stock
price of Lenovo.

• Homogeneous behavior: Is the behavior of Nokia stocks influencing the behavior
of Motorola stocks?

• Heterogeneous behavior: Do the phases of the moon influence the behavior of
Intel stocks?

From a practical perspective, the verbal task descriptions by McEachren (1995)
are very helpful because they are easy to understand. They can serve as a guide-
line when designing visual representations of time and time-oriented data. However,
when shifting to a more scientific or theoretical point of view, a more formal notation
is desirable. In order to go beyond the guideline character and to automate the de-
sign process, formal task descriptions are indispensable. Andrienko and Andrienko
(2006) made a significant contribution in this regard. Later in this chapter, we will
examine the impact that user tasks (i.e., the why aspect) can have on the visualiza-
tion design. But before, we shall complete the description of visualization aspects
by focusing on the how perspective.
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4.1.3 How? – Visual Representation

The answers to the questions what the data input is and why the data are analyzed
very much determine the answer to the last remaining question: How can time-
oriented data be represented visually? More precisely, the question is how time and
associated data are to be represented. Chapter 7 will show that a large variety of
visual approaches provide very different answers to this question. To abstract from
the subtle details of this variety, we concentrate on two fundamental criteria: the
mapping of time and the dimensionality of the presentation space.

Mapping of time

Like any data variable that is to be visualized, the dimension of time has to pass the
mapping step of the visualization pipeline. Usually, abstract data are made visually
comprehensible by mapping them to some geometry (e.g., two-dimensional shapes)
and corresponding visual attributes (e.g., color) in the presentation space. On top
of this, human perception has an intrinsic understanding of time that emphasizes
the progression of time, and visualization can make use of this fact by mapping the
dimension of time to the dynamics of a visual representation.

So practically, there are two options for mapping time: the mapping of time to
space and the mapping of time to time. When speaking of a mapping from time
to space, we mean that time and data are represented in a single coherent visual
representation. This representation does not automatically change over time, which
is why we call such visualizations of time-oriented data static. In contrast to that,
dynamic representations utilize the physical dimension of time to convey the time
dependency of the data, that is, time is mapped to time. This results in visualizations
that change over time automatically (e.g., slide shows or animations). Note that the
presence or absence of interaction facilities to navigate in time has no influence on
whether a visualization approach is categorized as static or dynamic.

Static representations There are various ways of mapping time to visual variables
(see Bertin, 1983 and Figure 4.2). Most visualization approaches that implement a
time-to-space mapping use one display dimension to represent the time axis. Classic
examples are charts where time is often mapped to the horizontal x-axis and time-
dependent variables are mapped to the vertical y-axis (see Figure 4.3). More com-
plex mappings are possible when two or more display dimensions are used for repre-
senting time. Mappings that generate two-dimensional spirals or three-dimensional
helices are examples that emphasize the cyclic character of time. The different gran-
ularities of time are often illustrated by a hierarchical subdivision of the time axis.

The actual data can then be visualized in manifold ways. It is practical to use
a data mapping that is orthogonal to the mapping of time. For example point plots
(↪→ p. 152), line plots (↪→ p. 153), or bar graphs (↪→ p. 154) map data values to
position or size relative to the time axis. Time-dependency is immediately perceived
and can be recognized easily, which facilitates the interpretation of the temporal
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Fig. 4.2: Examples of static visual mappings of time.
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Fig. 4.3: Mapping time to position. The horizontal axis of the chart encodes positions of points in
time, whereas the vertical axis encodes data values.

character of the data. In fact, for quantitative variables (discrete or continuous time
and data), using position or length is more efficient than using color or other visual
variables such as texture, shape, or orientation (see Mackinlay, 1986). For ordinal
variables, color coding is a good alternative. Each point or interval on the time axis
can be visualized using a unique color from a color scale. But, as Silva et al. (2007)
demonstrate, care must be taken when using color for visualization. It is absolutely
mandatory that the applied color scale be capable of communicating order1. Only
then are users able to interpret the visualization and to relate data items to their
temporal context easily.

Because time is often considered to be absolute, position or length encodings are
predominant and only rarely is time mapped to other visual variables. When time is
interpreted relatively rather than absolutely, for instance, when considering the age
of a data item or the duration between two occurrences of a data item, then visual
variables such as transparency, color, and others gain importance. An example of
encoding duration to color is given in Figure 4.4.

Instead of encoding data to basic graphical primitives such as points, lines, or
bars that are aligned with the time axis, one can also create fully fledged visual rep-
resentations and align multiple thumbnails of them along the time axis – a concept
that Tufte (1983) refers to as small multiples (↪→ p. 236). The advantage is that a
single thumbnail may contain much more visual information than basic graphical
primitives. But this comes at the price that the number of time primitives (i.e., the
number of thumbnails) that can be shown on screen simultaneously is limited. This

1 Borland and Taylor (2007) warn that this is not the case for the most commonly used rainbow
color scale. The ColorBrewer tool by Harrower and Brewer (2003) is a good source of useful color
scales.
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Fig. 4.4: Mapping time to color. Color encodes the time it takes to travel from a location on our
planet to the nearest major city.
Source: Nelson (2008). Used with permission.

reflects the general need to find a good trade-off between the complexity of the vi-
sual encoding of time and that of the data. In Chapter 7, we will see that a variety of
suitable solutions exist, each with an individually determined trade-off depending
on the addressed data and tasks.

Dynamic representations In cases where much screen space is required to convey
characteristics and relationships of data items (e.g., geographical maps, multivariate
data visualization, visualization of graph structures), it is difficult to embed the time
axis into the display space as well. As an alternative, physical time can be utilized
to encode time. To this end, several visualizations (also called frames) are rendered
successively for the time steps in the data. In theory, a one-to-one mapping between
time steps and frames can be implemented, which means that the dynamic visualiza-
tion represents time authentically. In practice, however, this is only rarely possible.
More often, dynamic visualizations perform interpolation to compute intermediate
results in cases where only few time steps are present, or perform aggregation or
sampling to compress the length of an animation in cases where large numbers of
time steps have to be visualized (see Wolter et al., 2009).

Self-evidently, dynamic approaches have to take human perception into account
when representing a series of successively generated visualization frames. Depend-
ing on the number of images shown per second, dynamic visualizations are either
perceived as animations or as slide shows. Animations usually show between 15 and
25 frames per second, while slide shows usually show a new frame every 2 to 4 sec-
onds. On the one hand, data that contain only a few snapshots of the underlying phe-
nomenon should preferably be represented as slide shows to avoid creating false im-
pressions of dynamics. On the other hand, large numbers of observations of highly
dynamic processes are best represented using animations, because they communi-
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Fig. 4.5 A typical animation
widget to control the mapping
of time to time.

cate quite well the underlying dynamics in the data. Figure 4.5 gives an example of a
typical VCR-like widget for controlling the mapping of time to time in an animation.

The distinction between the mapping of time to space and that of time to time is
crucial, because different visualization tasks and goals are supported by these map-
pings. Dynamic representations are well suited to convey the general development
and the major trends in the analyzed data. However, there are also critical assess-
ments of animations used for the purpose of visualization (see Tversky et al., 2002;
Simons and Rensink, 2005). Especially when larger multivariate time-series have to
be visualized, animation-based approaches reach their limits. In such cases, users
are often unable to follow all of the changes in the visual representation, or the an-
imations simply take too long and users face an indigestible flood of information.
This problem becomes aggravated when using animations in multiple views. On the
other hand, if animations are designed well and if they can be steered interactively
by the user (e.g., slow motion or fast forward), mapping the dimension of time to
the physical time can be beneficial (see Robertson et al., 2008). This is not only the
case from the point of view of perception, but it is also because using physical time
for visual mapping implies that the spatial dimensions of the presentation space can
be used exclusively to visualize the time-dependent data.

This is not the case, however, for static representations. In contrast to animations,
static representations require screen real estate to represent the time axis itself and
the data in an integrated fashion. On the one hand, the fact that static representations
show all of the information on one screen is advantageous because one can fully con-
centrate on the dependency of time and data. Especially visual comparison of differ-
ent parts of the time axis can be accomplished easily using static representations. On
the other hand, integration of time and data in one single view tends to lead to over-
crowded representations that are hard to interpret. In the face of larger time-oriented
datasets, analytical methods and interaction are mandatory to avoid visual clutter.

Finally, it is worth mentioning that any (non-temporal) data visualization can be
extended to a visualization for time-oriented data simply by repetition. Repetition
in time leads to dynamic representations, where each frame shows a snapshot of
the data and repetition in space leads to static multiple view representations (or
Tufte’s small multiples, ↪→ p. 236), where each view shows an individual part of
the time axis. While static representations always have to deal with the issue of
finding a good layout for the views, dynamic representations encode time linearly
in a straight-forward manner. Perhaps this is the reason why many visualization
solutions resort to simple animations, even though these might not be the best option
for the data and tasks at hand.
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Dimensionality of the presentation space

The presentation space of a visualization can be either two-dimensional or three-
dimensional, or 2D or 3D for short. Two-dimensional visualizations address the spa-
tial dimensions of computer displays, that is, the x-axis and the y-axis. All graphical
elements are described with respect to x and y coordinates. Dots, lines, circles, or
arcs are examples of 2D geometry. The semantics of the data usually determine the
layout of the geometry on screen. 3D visualizations use a third dimension, the z-axis,
for describing geometry. This allows the visualization of more complex and volu-
metric structures. As human perception is naturally tuned to the three-dimensional
world around us, 3D representations potentially communicate such structures bet-
ter than 2D approaches. Since the z-axis does not physically exist on a computer
display, projection is required before rendering 3D visualizations. The projection is
usually transparent to the user and is commonly realized through standard computer
graphics methods which require no additional effort.

Fig. 4.6: Mapping to 2D. Spiral geometry is used to represent the time axis and data are encoded
to the width of spiral segments.

Visualization approaches using a 2D presentation space usually map the time
axis to a visual axis on the display (provided that the approach is not dynamic).
In many cases, the time axis is aligned with either coordinate axis of the display.
However, this is not necessarily always the case. Circular time axes (e.g., the spiral
in Figure 4.6) use polar coordinates, which actually can be mapped to Cartesian
coordinates and vice versa. It is also possible to apply affine transformations to the
time axis.
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Because one dimension of the display space is usually occupied for the repre-
sentation of the dimension of time, the possibilities of encoding the data depend-
ing on time are restricted. One data variable can be encoded to the remaining spa-
tial dimension of the presentation space, as for instance in a bar graph, where the
x-axis encodes time and the y-axis, more precisely the height of bars, encodes a
time-dependent variable. In order to visualize multiple variables further graphical
attributes like shape, texture, or color can be used.

Multidimensional data, that is, data with more independent variables than just
the dimension of time, are hard to visualize in 2D without introducing overlap and
visual clutter. Particularly, data with a spatial frame of reference can benefit from
the additional dimension available in a 3D presentation space. It is common practice
to apply the so-called space-time cube concept (see Kraak, 2003 and ↪→ p. 245),
according to which the z-axis encodes time and the x- and y-axes represent two
independent variables (e.g., longitude and latitude). Further variables, dependent or
independent, are then encoded to color, size, shape or other visual attributes (see
Figure 4.7 and ↪→ p. 252).

Fig. 4.7: Mapping to 3D. Three-dimensional helices represent time axes for individual regions of
a map and associated data are encoded by color.

The question of whether or not it makes sense to exploit three dimensions for vi-
sualization has been discussed at length by the research community (see Card et al.,
1999). One camp of researchers argues that two dimensions are sufficient for effec-
tive data analysis. In their thinking the third dimension introduces unnecessary dif-
ficulties (e.g., information hidden on back faces, information lost due to occlusion,
or information distorted through perspective projection) which 2D representations
are not or are only marginally affected by. But having just two dimensions for the
visual mapping might not be enough for large and complex datasets.

This is where the other camp of researchers make their arguments. They see the
third dimension as an additional possibility to naturally encode further information.
Undoubtedly, certain types of data (e.g., geospatial data) might even require the
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third dimension for expressive data visualization, because there exists a one-to-one
mapping between the data dimensions and the dimensions of the presentation space.

We do not argue for either position in general. The question whether to use 2D or
3D is rather a question of which data has to be visualized and what are the analytic
goals to be achieved. The application background and user preferences also influ-
ence the decision for 2D or 3D. But definitely, when developing 3D visualizations,
the previously mentioned disadvantages of a three-dimensional presentation space
have to be addressed (e.g., by providing ways to cope with occlusion as suggested by
Elmqvist and Tsigas, 2007). Moreover, intuitive interaction techniques are manda-
tory and additional visual cues are usually highly beneficial.

In the previous discussion of the questions what, why, and how we have outlined
the basic aspects that need to be considered when visualizing time and time-oriented
data. In the next section, we will return to each of these aspects and show in more
detail and by means of examples how the visualization design is influenced by them.

4.2 Visualization Design Examples

In the previous section, we introduced three basic questions that have to be taken
into account when designing visual representations for time and time-oriented data:

1. Data level: What is presented?
2. Task level: Why is it presented?
3. Presentation level: How is it presented?

We will now demonstrate the close interrelation of the three levels. By means of
examples we will illustrate the necessity and importance of finding answers to each
of these questions in order to arrive at visual representations that allow viewers to
gain insight into the analyzed data.

4.2.1 Data Level

In the first place, the characteristics of time-oriented data strongly influence the
design of appropriate visual representations. Two examples will be used to demon-
strate this: one is related to the time axis itself, the other will deal with the data. First,
we point out how significantly different the expressiveness of a visual representation
can be depending on whether the time domain is linear or cyclic. Secondly, we will
illustrate that spatial time-oriented data2 require a visualization design that is quite
different from that of abstract time-oriented data, and that is usually more complex
and involves making well-balanced design decisions.

2 Commonly referred to as spatio-temporal data.
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Time characteristics: linear vs. cyclic representation of time

Figure 4.8 shows three different visual representations of the same time-oriented
dataset, which contains the daily number of cases of influenza that occurred in the
northern part of Germany during a period of three years. The data exhibit a strong
cyclic pattern. The leftmost image of Figure 4.8 uses a simple line plot (↪→ p. 153) to
visualize the data. Although peaks in time can be recognized easily when examining
this representation, the cyclic behavior of the data, however, can only be guessed
and it is hard to discern which cyclic temporal patterns in fact do exist. In contrast,
the middle and the right image of Figure 4.8 show a circular representation that
emphasizes cyclic characteristics of time-oriented data by using a spiral-shaped time
axis (see Weber et al., 2001 and ↪→ p. 185). For the left spiral, the cyclic pattern is
not visible. This is due to the fact that the cycle length has been set to 24 days, which
does not match the pattern in the data. The right spiral representation in Figure 4.8 is
adequately parameterized with a cycle length of 28 days, which immediately reveals
the periodic pattern present in the data. The significant difference in the number of
cases of influenza reported on Sundays and Mondays, respectively, is quite obvious.
We would also see this weekly pattern if we set the cycle length to 7 or 14 days, or
any (low) multiple of 7.

Fig. 4.8: Different insights can be gained from visual representations depending on whether the
linear or cyclic character of the data is emphasized.

The example illustrates that in addition to using the right kind of representation
of time (linear vs. cyclic), it is also necessary to find an appropriate parametriza-
tion of the visual representation. Interaction (see Chapter 5) usually enables users
to re-parameterize the visualization, but the difficulty is to find parameter settings
suitable to discover patterns in unknown datasets. Automatically animating through
possible parameter values – for the spiral’s cycle length in our example – is one
option to assist users in finding such patterns. During the course of the animation,
visual patterns emerge as the spiral’s cycle length is approaching cycles in the data
that match in length. Upon emergence of such patterns, the user stops the anima-
tion and can fine-tune the display as necessary. Analytical methods (see Chapter 6)
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can help in narrowing down the search space, which in our example means finding
promising candidates with adequate cycle length (see Yang et al., 2000). Combin-
ing interactive exploration and analytical methods is helpful for finding less sharp
or uncommon patterns, which are hard to distill using either approach alone.

Data characteristics: abstract data vs. spatial data

We used linear vs. cyclic time to demonstrate the impact of the characteristics of
time on the visualization design. Let us now do likewise with abstract vs. spatial
data to illustrate the impact of data characteristics.

Abstract data are not associated per se with a spatial visual mapping. Therefore,
when designing a visual representation of such data, one can fully concentrate on
aspects related to the characteristics of the dimension of time. The ThemeRiver ap-
proach by Havre et al. (2000) is an example of an approach in which the time aspect
is focused on (↪→ p. 197). The dimension of time is mapped to the horizontal display
axis and multiple time-dependent variables are mapped to the thickness of individ-
ually colored currents, which form an overall visual stream of data values along the
time axis. Figure 4.9 illustrates the ThemeRiver approach. Because time is the only
dimension of reference in abstract time-oriented data, the visual representation can
make the best of the available screen space to convey the variables’ dependency
on time. The full-screen design, where the ThemeRiver occupies the entire screen,

Fig. 4.9: The ThemeRiver technique is fully focused on communicating the temporal evolution of
abstract time-oriented data.
Source: Havre et al. (2002). © 2002 IEEE. Used with permission.
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even makes it possible to display additional information, such as a time scale below
the ThemeRiver, labels in the individual currents, or extra annotations for important
events in the data.

When considering time-oriented data with spatial references, the visualization
design has to address an additional requirement; not only the temporal character of
the data needs to be communicated, but also the spatial dependencies in the data
must be revealed. Of course, this implies a conflict in which the communication of
temporal aspects competes with the visualization of the spatial frame of reference
for visual resources, such as screen space, visual encodings, and so forth. Providing
too many resources to the visualization of aspects of time will most likely lead to
a poorly represented spatial context – and vice versa. The goal is to find a well-
balanced compromise. An example of such a compromise is given in Figure 4.10,
where the data are visualized using ThemeRiver thumbnails superimposed on a two-
dimensional map display (↪→ p. 240). The position of a ThemeRiver thumbnail on
the map is the visual anchor for the spatial context of the data. The ThemeRiver
thumbnail itself encodes the temporal context of the data. The compromise that has
been made implies that the map display is rather basic and avoids showing any
geographic detail; just the borders of regions are visible. On the other hand, the
ThemeRiver representation has to get along with much less screen space (compared

Fig. 4.10: Embedding ThemeRiver thumbnails on a map allows for communicating both temporal
and spatial dependencies of spatial time-oriented data.
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to the full-screen counterpart). This is the reason why labels or annotations are no
longer visible constantly, but instead are displayed only on demand.

On top of the compromises made, all visualization approaches that embed (time-
representing) thumbnails (or glyphs or icons) into a map share a common problem:
finding a good layout. What makes a good layout is heavily application dependent,
but there is consensus that having an overlap-free layout is generally a good starting
point. However, finding a layout that minimizes occlusion among thumbnails and
overlap of thumbnails with geographic features is a difficult problem. In fact, the
problem is related to the general map labeling problem, which is NP-hard. Pursu-
ing a globally optimized solution is computationally complex (see Petzold, 2003;
Been et al., 2006), whereas locally optimizing approaches usually perform less ex-
pensive iterative adjustments that lead to suitable, but not necessarily optimal lay-
outs (see Fuchs and Schumann, 2004; Luboschik et al., 2008). We will not go into
any details of possible solutions, but instead refer the interested reader to the original
publications.

The bottom line is that the characteristics of time and time-oriented data shape
the design of visual representations to a great extent. As with the example of ab-
stract vs. spatial data we see that the more aspects need to be communicated, the
more intricate the visualization can become. One has to make acceptable trade-offs
and may face NP-hard computational challenges. Moreover, the example of linear
vs. cyclic time illustrates that the right visual mapping is essential for crystallizing
answers and insight from visualizations of time-oriented data.

4.2.2 Task Level

We introduced the user task as a second important visualization aspect. Incorpo-
rating the users’ tasks into the visualization design process on a general level is a
challenging endeavor. Therefore, the illustrative example we present here is a prag-
matic solution for the specific case of color coding. Earlier in this chapter we indi-
cated that in addition to positional encoding of data values along a time axis, color
coding plays an important role when visualizing multiple time-dependent data vari-
ables. The design of the color scale employed for the visual encoding substantially
influences the overall expressiveness of the visual representation. To obtain expres-
sive visual results, flexible color coding schemes are needed that can be adapted to
the data as well as to the task at hand. In the following, we will explain how color
scales can be generated in a task-dependent manner, and how they can be applied to
visualize time-oriented data. But first let us briefly review general aspects of color
coding.
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Color coding

The general goal of color coding is to find an expressive mapping of data to color.
This can be modeled as a color mapping function f : D → C that maps values of a
dataset D to colors from a color scale C. A fundamental requirement for effective
color coding is that the color mapping function f be injective, that is, every data
value (or every well-defined group of data values) is associated with a unique color.
This, in turn, allows users to mentally associate that unique color with a distinct data
value (or group of values). On the one hand, mapping two quite different data values
should result in two colors that are easy to discern visually. On the other hand, users
spotting visually similar colors infer that these colors represent data values that are
similar. Figure 4.11 demonstrates a basic mapping strategy.

Fig. 4.11: Simple strategy for mapping data to color.

Telea (2007) describes these and further factors as relevant for color coding. We
adapted his statements for the case of visualization of time-oriented data under con-
sideration of the characteristics of time and data (as identified in Chapter 3):

• Characteristics of the data: First and foremost, the statistical features of the data
and the time scale should be taken into account: extreme values, overall dis-
tribution of data values as well as data variation speeds and domain sampling
frequencies. For example, using a linear color mapping function on a skewed
dataset will result in the majority of data values being compressed to a narrow
range of colors.

• Characteristics of the tasks at hand: Different tasks require different color cod-
ing schemes. A main distinction here is whether the task requires the comparison
of exact quantitative values or the assessment of qualitative differences. Further-
more, certain goals may lead to specific regions of interest in the data domain.
These regions should be accentuated, for instance by using bright, warm, and
fully saturated colors.
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• Characteristics of the user: The capabilities and the cultural as well as profes-
sional background of users have to be considered when designing appropriate
color scales. Individual color perception has to be taken into account, and for
users suffering from color vision defects, data values have to be mapped redun-
dantly to additional visual attributes. The conventions of the application back-
ground need to be considered as well. Medical experts, for instance, are very
much used to interpreting red-black-green color scales, despite the problems such
colors may cause for people with color vision deficits.

• Characteristics of the output device: Different output devices use different sys-
tems to define and display colors. Thus, a color coding scheme which is appro-
priate for displaying data on a computer display might be inappropriate when
showing the same data on other media. A common example is that colors that
have been carefully tuned for the slides of a talk appear completely different
when projected onto a wall.

The problem is that most of today’s visualizations that use color do not consider
these aspects to an adequate level. It is often the case that just basic color coding
schemes are used, most prominently the classic rainbow color scale. However, this
can lead to a loss of expressiveness of the generated images (see Borland and Taylor,
2007; Silva et al., 2007). In the following, we focus on the task aspect in more detail.

Task-dependent color coding

In order to define color scales in a task-specific manner, an adequate specification
of tasks is required. For this purpose, one can use the task model of Andrienko and
Andrienko (2006), which we described in Section 4.1.2. The model basically in-
vestigates tasks at three different levels. The first level draws a distinction between
individual data values and sets of data values (elementary tasks vs. synoptic tasks).
At the second level, the Andrienkos distinguish lookup, comparison, and relation
seeking tasks. In a broader sense, relation seeking can be seen as a specific case of
comparison3. This fact allows us to focus on the distinction between the two tasks:
lookup and comparison. The third level addresses two types of tasks: identification
and localization. Accomplishing identification tasks (direct lookup or direct com-
parison) requires recognizing data values and characteristic patterns as precisely as
possible, whereas performing localization tasks (inverse lookup or inverse compar-
ison) requires locating those references in time (and/or space) that exhibit certain
characteristics of interest. In summary, task-dependent color scales can be gener-
ated based on the following distinctions:

• Individual values vs. sets of values,
• Identification vs. localization, and
• Lookup vs. comparison.

3 For relation seeking the user has to compare different data items and/or time points to find inter-
esting relations, where relations of interest are defined beforehand, which is not the case for plain
comparison.
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Fig. 4.12: Examples of unsegmented and segmented color scales for identification and localization
of data values in a visual representation.

Color-coding individual data values requires unsegmented color scales. Unseg-
mented color scales associate unique colors with all individual data values, that is,
every color of the color scale represents exactly one data value. In contrast to that,
segmented color scales should be used to encode sets of data values. Each color of
a segmented color scale stands for a set, usually a range of data values.

In order to facilitate identification tasks, it should be made easy for the user
to mentally map the perceived color to a concrete data value (or set of values).
Moreover, distances in the color scale should correspond to distances in the data. To
support localization tasks, color scales should be designed in such a way that they
exploit pre-attentive perception of temporal areas of interest, for instance by using
accentuation and de-accentuation.

The specification of color scales for identification and localization of individual
data values and sets of values is a well investigated problem (see Bergman et al.,
1995; Harrower and Brewer, 2003; Silva et al., 2007). Figure 4.12 shows examples
of such color scales. The segmented color scale for identification represents five sets
of values, the unsegmented version can be used to identify individual values. The
segmented color scale for localization supports users in making a binary decision:
yellow encodes a match of some selection criteria, otherwise there is no match. The
unsegmented color scale represents a smooth interpretation of the selection criteria.

Figure 4.13 illustrates the difference between color scales for identification and
localization for the case of time-oriented data. The figure shows daily temperature
values for about three and a half years mapped to a color-coded spiral display (↪→
p. 184). While the color scale in Figure 4.13(a) supports identification, that is, one
can easily associate a color with a particular range of values, the color scale in Fig-
ure 4.13(b) is most suited to locate specific data values in time. In our example, the
highest and lowest values are accentuated using saturated red and blue, respectively.
All other values are encoded to shades of gray, effectively attenuating these parts of
the data. Thus it is easy to locate where in time high and low values occur.

The distinction between lookup and comparison tasks deserves a more detailed
investigation. Supporting the lookup task basically requires color scales that allow
for precise association of particular colors with concrete data values. In order to
facilitate comparison tasks, all variables involved in the comparison must be repre-
sented by a common unified color scale, which can be problematic when variables
exhibit quite different value ranges. The next paragraphs will provide more detail
on how efficient color scales for lookup and comparison tasks can be designed.
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(a) Color scale for identification of values. (b) Color scale for localization of extrema.

Fig. 4.13: Daily temperature values visualized along a spiral time axis using different color scales
for different tasks.

Color-coding for the lookup task As mentioned earlier, there are two kinds of
lookup tasks: inverse lookup and direct lookup. Inverse lookup tasks are basically
a search for certain references in time that exhibit specific data characteristics (lo-
calization). For the inverse lookup task, relevant data values (or subsets) are known
beforehand and hence can be easily accentuated using a highlighting color. On the
other hand, the design of color scales for direct lookup (identification) is intricate
because the whole range of data values is potentially relevant and must be eas-
ily identifiable. One way to facilitate lookup tasks is to extract statistical metadata
from the underlying dataset and utilize them to adjust predefined color scales (see
Schulze-Wollgast et al., 2005; Tominski et al., 2008). Let us take a look at three
possible ways of adaptation.

Expansion of the value range The labels displayed in a color scale legend are the
key to an easy and correct interpretation of a color-coded visualization. Commonly
a legend shows labels at uniformly sampled points between the data’s minimum and
maximum. As the left color scale in Figure 4.14(a) illustrates, this usually results in
odd and difficult-to-interpret labels. Even if the user has a clear picture of the color,
it takes considerable effort to mentally compute the corresponding value, or even the
range of plausible values. The trick of value range expansion is to extend the data
range that is mapped to the color scale. This is done in such a way so as to arrive
at a color mapping that is easier to interpret. The right color scale in Figure 4.14(a)
demonstrates this positive effect.
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(a) Value range expan-
sion.

(b) Control point adjust-
ment.

Fig. 4.14: Value range expansion and control point adjustment help to make color legends more
readable and to better adapt the color coding to the underlying data distribution, which is depicted
as a box-whisker plot.

Adjustment of control points A color map is defined by several control points, each
of which is associated with a specific color. Appropriate interpolation schemes are
used to derive intermediate colors in between two control points. The left color
scale in Figure 4.14(b) shows an example where control points are uniformly dis-
tributed (interpolation is not applied for this segmented color scale). While this is
generally a good starting point, more information can be communicated when using
an adapted control point distribution. This is demonstrated in the right color scale
of Figure 4.14(b), where control points have been shifted in accordance with the
data distribution. The advantage is that users can easily associate colors with certain
ranges of the data distribution4.

Skewing of the color mapping function Uneven value distributions can be problem-
atic because they lead to situations where the majority of data values is represented
by only a narrow range of colors. This is unfavorable for lookup tasks. Logarith-
mic or exponential color mapping functions are useful when visualizing data with
skewed value distributions. In cases where the underlying data distribution cannot be
described by an analytical function, equalization can be applied to generate adapted
color scales. The net effect of equalization is that the scale of colors is in accord with
the data’s value distribution. Histogram equalization and box-whisker equalization
are examples of this kind of adaptation:

• Histogram equalization works as follows. First, one subdivides the value range
into n uniform bins and counts the number of data values falling into the bins.
Secondly, the color scale is sampled at n + 1 points, where the points’ locations

4 The box-whisker plot or boxplot used in the figures depict minimum, 1st quartile, median, 3rd
quartile, and maximum value (horizontal ticks from bottom to top).
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(a) Histogram equalization. (b) Box-whisker equalization.

Fig. 4.15: Equalization schemas for adapting a color scale to the data distribution, which is depicted
as box-whisker plots.

are determined by the cumulative frequencies of the bins. Finally, the colors at
these sample points are used to construct an adapted color scale as illustrated in
Figure 4.15(a). As a result, more colors are provided there where larger num-
bers of data values are located, making values in high density regions easier to
distinguish.

• Box-whisker equalization works similarly. Here, colors are sampled at points de-
termined by quartiles. Quartiles partition the original data into four parts, each
of which contains one-fourth of the data. The second quartile is defined as the
median of the entire set of data (one half of the data lies below the second quar-
tile, the other half lies above it). The first and the third quartile are the medians
of the lower and upper half of the data, respectively. The adapted color scale is
constructed from the colors sampled at the quartiles (see Figure 4.15(b)).

How equalization affects the visualization of spatio-temporal data compared to
using unadapted color scales is shown in Figure 4.16. It can be seen that colors
are hard to distinguish in dense parts of the data unless histogram or box-whisker
equalization is applied, which improves discriminability.

Color-coding for the comparison task The comparison of two or more time-
dependent variables requires a global color scale that comprises the value ranges of
all variables participating in the comparison. Particularly problematic are compar-
isons where the individual value ranges are quite different. For example, a variable
with a small value range would be represented by only a small fraction of the global
color scale, which makes it hard for viewers to differentiate colors in that range. An
approach to alleviating this problem is to derive distinct intervals from the union of
all value ranges and to create a separate encoding for each interval. To this end, a
unique constant hue is assigned to each interval, while varying only brightness and
saturation to encode data values. Finally, the separately specified color scales for the
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(a) Color coding without equalization.

(b) Histogram equalization. (c) Box-whisker equalization.

Fig. 4.16: Color scale equalization applied to the visualization of time-oriented health data on a
map.

intervals are integrated into one global comparison color scale. To avoid disconti-
nuities at the tieing points of two intervals, brightness and saturation values of one
interval have to correspond with the respective values of the adjacent interval. In
other words, within one interval the hue is constant while brightness and saturation
vary, whereas at the boundary from one interval to the next the hue is modified while
brightness and saturation are kept constant. This way, even small value ranges will
be represented by their own brightness-varying subscale of the global color scale
and the differentiation of data values is improved.

Figure 4.17 shows how different color coding schemes influence the task of com-
paring three time-dependent variables. Figure 4.17(a) uses individual color scales
for each variable. Visual comparison is hardly possible because one and the same
color stands for three different data values (one in each value range). A global color
scale as shown in Figure 4.17(b) allows visual comparison, but data values of the
first and third variable are no longer distinguishable because their value ranges
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(a) Individual color scales. (b) Global color scale.

(c) Box-whisker equalized color scale. (d) Global comparison color scale.

Fig. 4.17: Different color scales for visual comparison of three time-dependent variables.

are rather small compared to the one of the second variable. Figure 4.17(c) illus-
trates that adapting the color scale to the global value distribution is beneficial. Fig-
ure 4.17(d) shows the visualization outcome when applying the color scale construc-
tion as described above: the recognition of values has been improved significantly.
However, these results cannot be guaranteed for all cases, in particular, then when
the merging process generates too many or too few distinct value ranges.

In the previous paragraphs we discussed the influence of the task at hand on the
visualization of time-oriented data. The example of color-coding served to demon-
strate how the task can be taken into account in the visualization process. As we have
seen, visualization results can be improved when task-based concepts are applied.
But still more research is required to investigate new methods of task-orientation, in
particular in the light of collaborative visualization environments.

4.2.3 Presentation Level

Finally, there are design issues at the level of the visual representation. Communi-
cating the time-dependence of data primarily requires a well-considered placement
of the time axis. This will make it easier for users to associate data with a particular
time, and vice versa. In Section 4.1.3, we have differentiated between 2D and 3D
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presentations of time-oriented data. Let us take up this distinction as an example of
a design decision to be made at the level of the visual representation. Visualization
approaches that use a 2D presentation space have to ensure that the time axis is em-
phasized, because time and data dimensions often have to share the two available
display dimensions. In the case of 3D representations, a third display dimension is
allocatable. In fact, many techniques utilize it as a dedicated dimension for the time
axis, clearly separating time from other (data) dimensions. In the following, we will
illustrate the 2D and the 3D approach with two examples.

2D presentation of time-oriented data

We discuss the presentation of time-oriented data in 2D by the example of axes-
based visualizations. Axes-based visualization techniques are a widely used ap-
proach to represent multi-dimensional datasets in 2D. The basic idea is to construct
a visual axis for each dimension of the n-dimensional data space, and to scale the
axes with respect to the corresponding value range. In a second step, a suitable lay-
out of the visual axes on the display has to be found. Finally, the data representation
is realized by placing additional visual objects along the visual axes and in accord
with the data. In this way, a lossless projection of the n-dimensional data space
onto the 2-dimensional screen space can be accomplished. Parallel coordinates by
Inselberg and Dimsdale (1990) are a well known example of this approach. Paral-
lel coordinates use equidistant and parallel axes to represent multiple variables, and
each data tuple is represented by a polygonal line linking the corresponding variable
values. In the case of time-oriented data, however, this means that the axis encoding
time is considered as one of many, not taking into account the outstanding impor-
tance of this axis (see Figure 4.18).

Fig. 4.18: In parallel coordinates, the time axis (here the leftmost axis) is just one of many axes
and it is not treated in any particular way to emphasize the importance of time.
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In contrast, Tominski et al. (2004) describe an axes-based visualization called
TimeWheel, which focuses on one specific axis of interest, in our case the time axis
(↪→ p. 200). The basic idea of the TimeWheel technique is to distinguish between
one independent variable, in our case time, and multiple dependent variables repre-
senting the time-oriented data. The dimension of time is presented by the reference
time axis in the center of the display and time-dependent variables are shown as
data axes that are circularly arranged around the time axis, where each dependent
variable has a specific color hue associated with it. For each time value on the time
axis, colored lines are drawn that connect the time value with the corresponding
data value at each of the data axes, effectively establishing a visual link between
time and multivariate data. By doing so, the time dependency of all variables can be
visualized. Note that the interrelation of time values and data values of a variable
can be explored most efficiently when a data axis is parallel to the time axis. Inter-
active rotation of the TimeWheel can be used to move data axes of interest into such
a parallel position.

Two additional visual cues support data interpretation and guide the viewer’s
attention: color fading and length adjustment. Color fading is applied to attenuate
lines drawn from the time axis to axes that are almost perpendicular to the time axis.
During rotation, lines gradually fade out and eventually become invisible when the
associated data axis approaches an upright orientation. To provide more display
space for the data variables of interest, the length of data axes is adjusted according

Fig. 4.19: The TimeWheel shows the reference time axis in a prominent central position and ar-
ranges data axes representing time-dependent variables around the time axis. Data are visualized
by drawing lines between points at the time axis and values at data axes.
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to their angle to the time axis. When the TimeWheel is rotated, data axes that are
going to become parallel to the time axis are stretched to make them longer and
data axes that head for an upright orientation are shrunk to make them shorter. Fig-
ure 4.19 shows a TimeWheel that visualizes eight time-dependent variables, where
color fading and length adjustment have been applied to focus on the orange and the
light green data axes.

The TimeWheel is an example of a 2D visualization technique that acknowledges
the important role of the time axis. The time axis’ central position emphasizes the
temporal character of the data and additional visual cues support interactive analysis
and exploration of multiple time-dependent data variables.

3D presentation of time-oriented data

3D presentation spaces provide a third display dimension. This opens the door to
additional possibilities of encoding time and time-oriented data. Particularly, the
visualization of data that have further independent variables in addition to the di-
mension of time can benefit from the additional dimension of the display space.

Spatio-temporal data are an example where data variables do not only depend on
time, but also on space (e.g., on points given by longitude and latitude or on geo-
graphic regions). When visualizing such data, the temporal frame of reference as
well as the spatial frame of reference have to be represented. We already mentioned
that applying the space-time cube design (see Kraak, 2003 and ↪→ p. 245) is com-
mon practice: the z-axis of the display space exclusively encodes time, while the x-
and y-axes represent spatial dimensions. Spatio-temporal data are then encoded by
embedding visual objects into the space-time cube (e.g., visual markers or icons)
and by mapping data to visual attributes (e.g., color or texture). Kristensson et al.
(2009) provide evidence that space-time cube representations can facilitate intuitive
recognition and interpretation of data in their spatio-temporal context.

Figure 4.20 shows two examples of this approach as described by Tominski et al.
(2005). Figure 4.20(a) represents multiple time-dependent variables by so-called
pencil icons (↪→ p. 249). The linear time axis is encoded along the pencil’s faces
starting from the tip. Each face of the pencil is associated with a specific data vari-
able and a specific color hue, and represents the corresponding data values by vary-
ing color saturation. Figure 4.20(b) uses so-called helix icons (↪→ p. 252). Here, we
assume a cyclic character of time and thus, a ribbon is constructed along a spiral
helix. For each time step the ribbon extends in angle and height, depending on the
number of time elements per helix cycle and the number of cyclic passes. Again
color coding is used to encode the data values. To represent more than one data
variable, the ribbon can be subdivided into narrower sub-ribbons.

The 3D display space used in the previous examples is advantageous in terms of
the prominent encoding of time, but it also exhibits two problems that one needs
to address: perspective distortions and occlusion (see Section 4.1.3). Perspective
distortions are problematic because they could impair the interpretation of the visu-
alized data. Therefore, the visual mapping should avoid or reduce the use of geo-
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(a) Pencil icons for linear time. (b) Helix icons for cyclic time.

Fig. 4.20: 3D visualization of spatio-temporal data using color-coded icons embedded into a map
display.

metric visual attributes that are subject to perspective projections (e.g., shape, size,
or orientation). This is the reason why the pencil icons and helix icons apply color
coding instead of geometric encoding. The occlusion aspect has to be addressed by
additional mechanisms. For example, users should be allowed to rotate the icons or
the whole map in order to make back faces visible. Another option is to incorpo-
rate additional 2D views that do not suffer from occlusion. Such views are shown
for a user-selected region of interest in the bottom-left corner of Figures 4.20(a)
and 4.20(b). Again this approach is a compromise. On the one hand, the 2D view
is occlusion-free, but on the other hand, one can show only a limited number of
additional views, and moreover, one unlinks the data from their spatial reference.

Irrespective of whether one uses a 2D or 3D representation, the visualization de-
sign for time-oriented data requires a special handling of the time axis to effectively
communicate the time-dependence of the data. Both approaches have to take care to
emphasize the dimension of time among other data dimensions.

4.3 Summary

Solving the visualization problem primarily requires answering the three questions:
(1) What is visualized? (2) Why is it visualized? (3) How is it visualized? The
answers to the first two questions determine the answer to the third question.

In the case of visualizing time-oriented data, answering the what-question re-
quires both specifying the characteristics of the time domain as well as specifying
the characteristics of the data associated with time. In Chapter 3, we have shown
that many different aspects characterize time and time-oriented data. It is virtually
impossible to simultaneously cover all of them within a single visualization process.
On top of this, there exists no visualization technique that is capable of handling all
of the different aspects simultaneously and presenting all of them in an appropriate
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way. Here, the answer to “why are we visualizing the data” comes into play. Those
aspects of the data that are of specific interest with regard to the tasks at hand have
to be communicated by the visual representation, while others can be diminished or
even omitted. However, this is an intricate problem, and most of today’s visualiza-
tion systems do not support the process of generating suitable task-specific visual
representations. Thus, our primary aim can only be to communicate the problem,
and also to demonstrate the necessity and potential of considering the interrelation
between the what, why, and how aspects by example, as we have done in Section 4.2.

Fig. 4.21: Three key questions of the visualization problem.

Figure 4.21 again summarizes the key characteristics of the three aspects. The
what-aspect addresses characteristics of time and data as detailed in Chapter 3.
For describing the why-aspect, we rely on an abstracted view of the tasks by
Andrienko and Andrienko (2006) (see Section 4.1.2). The how-aspect is mainly cat-
egorized by the differentiation of static and dynamic as well as 2D and 3D represen-
tations (see Section 4.1.3).
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We will see that there are a variety of techniques for handling and accounting
for these key characteristics. Accordingly, many different visual representations of
time-oriented data can be generated. Chapter 7 will attest to this statement.
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Chapter 5
Interaction Support

A graphic is not “drawn” once and for all; it is “constructed” and
reconstructed until it reveals all the relationships constituted by the
interplay of the data. The best graphic operations are those carried
out by the decision-maker himself.

Bertin (1981, p. 16)

The previous chapter discussed various options for designing visual representations
that help people in understanding time and time-oriented data. ‘Seeing’ trends, cor-
relations, and patterns in a visual representation is indeed a powerful way for people
to gain knowledge from data. However, we have also seen earlier in this book that
manifold aspects are involved in the generation of a visual representation: charac-
teristics of time and data, user tasks, choice and parametrization of visualization
techniques, and so forth. Particularly when feeding unknown data into a visualiza-
tion method, the visual outcome might not turn out as expected. But we usually do
not know exactly what it is that is expected or whether the visual representation is
effective with regard to the task that the user is trying to accomplish. And because
there are things that we do not know, we have to seek assistance from the user. So,
visual exploration and analysis is not a one-way street where data are transformed
into images, but in fact is a human-in-the-loop process controlled and manipulated
by one or more users.

Having said that, it becomes clear that in addition to visual methods, a high de-
gree of interactivity and advanced interaction techniques for working with time-
oriented data are important. Interaction helps users in understanding the visual map-
ping, in realizing the effect of visualization parameters, in carving out hidden pat-
terns, and in becoming confident about the data. But interaction also provokes cu-
riosity – users want to get their hands on their data – which is particularly useful
when exploring unknown data. The importance of interaction is nicely reflected in
the following statement:

Visual representations alone cannot satisfy analytical needs. Interaction techniques are re-
quired to support the dialogue between the analyst and the data.

Thomas and Cook (2005, p. 30)

W. Aigner et al., Visualization of Time-Oriented Data,
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5.1 Motivation & User Intents

The constantly increasing size and complexity of today’s datasets are major chal-
lenges for interactive visualization. Large datasets cannot simply be loaded to lim-
ited computer memory and then be mapped to an even smaller display. Users are
only able to digest a fraction of the available information at a time. Complex data
contain many different aspects and may stem from heterogeneous sources. As com-
plexity increases, so does the number of questions that one might ask about the data
and that should be answered with the help of visual representations.

In our particular case, we need to account for the specific aspects of time and
time-oriented data in the context of what, why, and how they are visualized (see
Chapters 3 and 4). Any attempt to indistinctively encode all facets of a complex
time-oriented dataset into a single visual representation is condemned to fail, be-
cause it would lead to a confusing and overloaded display that users could hardly
interpret.

Instead, the big problem has to be split into smaller pieces by focusing on relevant
data aspects and particular tasks per visual representation. Several benefits can be
gained: computational costs are reduced in a kind of divide-and-conquer way, the
visual representations become more effective because they are tailored to emphasize
a particular point, and users find it easier to explore or analyze the data since they
can concentrate on important and task-relevant questions.

Dividing the visualization problem and separating different aspects into individ-
ual views raises the question of how users can visually access and mentally combine
these. The answer is interaction. In an iterative process, the user will focus on dif-
ferent parts of the data, look at them from alternative perspectives, and will seek
answers to diverse questions. Starting with an overview of the data, which requires
appropriate data abstraction and dedicated visual representations, the user will most
certainly identify parts to focus on for more detailed examination (see Shneiderman,
1996). From there, it might make sense to move on to data that are related or similar,
or it might be better to return to the overview and investigate the data from a dif-
ferent point of view, or with regard to a different question. In other words, the user
forms a mental model of the data by interactively navigating from one focus to the
next, where the term focus includes data subsets, data aspects, analysis tasks, and so
forth. While exploring data this way, users develop understanding and insight.

The general motivation for interaction is clear now, but what specifically mo-
tivates the user to interact? Yi et al.’s (2007) study on a deeper understanding of
interaction gives an answer to this question. They identified several user intents for
interaction and introduced a list of categories that describe on a high level why users
would like to interact. In the following, we make use of the categories from Yi et al.
(2007) and adapt them to the case of interacting with time and time-oriented data:

Select – Mark something as interesting When users spot something interesting
in the visual representation, they want to mark and visually highlight it as such, be
it to temporarily tag an intriguing finding or to permanently memorize important
analysis results. The subjects to be marked can be manifold: interesting points in
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time, an entire time-dependent variable, a particular temporal pattern, or certain
identified events.

Explore – Show me something else In order for the visualization of larger or more
complex multivariate time-oriented data to be practically usable, it has to focus on
only a subrange of time and on only a subset of the data variables. As a consequence,
users have to interactively visit different parts of the time domain and consider alter-
native variables for the inclusion in the visual encoding to arrive at an overall view
of the data.

Reconfigure – Show me a different arrangement Different arrangements of time
and associated data can communicate completely different aspects, a fact which
becomes obvious when recalling the distinction between linear and cyclic represen-
tations of time. As users want to look at time from different angles, they need to
be provided with facilities that allow them to interactively generate different spatial
arrangements of time-oriented data.

Encode – Show me a different representation Similarly to what was said about
the spatial arrangement, the visual encoding of data values has a major impact on
what can be derived from a visual representation. Because data and tasks are ver-
satile, users need to be able to adapt the visual encoding to suit their needs, be it
to carry out localization or comparison tasks, or to confirm a hypothesis generated
from one visual encoding by checking it against an alternative one.

Abstract/Elaborate – Show me more or less detail During visual analysis, users
need to look at certain things in detail, while for other things schematic representa-
tions are sufficient. The hierarchically structured levels of granularity of time, where
higher-level abstractions provide aggregated overviews, and lower levels hold the
corresponding details, are a natural match to drive such an interactive information
drill-down into time-oriented data.

Filter – Show me something conditionally When users search for particular in-
formation in the data or evaluate a certain hypothesis about the data, it makes sense
to restrict the visualization to show only those data items that adhere to the con-
ditions imposed by the search criteria or the hypothesis’ constraints. Interactively
filtering out or attenuating irrelevant data items clears the view for users to focus on
their current task.

Connect – Show me related items When users make a potentially interesting find-
ing in the data, they usually ask themselves whether similar or related discoveries
can be made in other parts of the data. So users intend to interactively find, compare,
and evaluate such similarities or relations, for example, to see whether a trend they
discovered in one season of a year is present for other data variables or is repeated
at the same time in subsequent years.

Undo/Redo – Let me go to where I have already been Users have to navigate
in time and look at it at different levels of granularity, they have to try different
arrangements and visual encodings, and they have to experiment with filtering con-
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ditions and similarity thresholds. To account for the explorative nature of interactive
analytic reasoning, a history mechanism with undo and redo operations is needed.
Undo/redo enables users to try out new views on the data and to return effortlessly
to the previous visual representation if the new one did not work out as expected.

Change configuration – Let me adjust the interface In addition to adapting the
visual representation to the data and tasks at hand, users also want to adapt the over-
all system that provides the visualization. This includes adapting the user interface
(e.g., the arrangement of windows or the items in toolbars), but also the general
management of system resources (e.g., the amount of memory to be used).

Taken together, these intents represent what a visualization system for time-oriented
data should support in terms of interaction in order to take full advantage of the syn-
ergy of the human’s and the machine’s capabilities. Many of the approaches we
describe in the survey in Chapter 7 offer support for one or the other user intent.
While marking (or selecting) interesting data items and navigation in time are quasi-
mandatory, facilities for other intents are often rudimentary or not considered at all.
This is most likely due to the extra effort one has to expend for implementing effec-
tive interaction methods. But in fact, all of these user intents are equally important
and corresponding techniques should be provided.

5.2 Fundamental Principles

Now that we know about the general motivation and more specific user intents be-
hind interaction, we can move on and take a look at how interaction is actually
performed. To this end, we will describe fundamental interaction concepts next.

Conceptual considerations

When users interact they express their intent to change their point of view and they
expect that the visual representation reflects the intended change. Norman (2002)
models interaction as a loop of two gulfs: the gulf of execution and the gulf of eval-
uation. The first part subsumes steps that are related to the execution of interaction,
including the intention, the mental construction of an interaction plan, and the ac-
tual physical interaction (e.g., pressing a button). The second part is related to the
feedback, which in our case is of a visual nature. It involves perceiving and under-
standing the feedback as well as evaluating the success of the interaction. Figure 5.1
illustrates Norman’s conceptual model.

Different modes of interaction can be identified depending on how the interaction
loop is performed. Spence (2007) distinguishes two modes of active user interaction:

• stepped interaction and
• continuous interaction.
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Fig. 5.1: Norman’s model of interaction (adapted from Norman, 2002).

For stepped interaction the interaction loop is executed in a discrete fashion. That
is, the user performs one interaction step and evaluates the visual feedback. Much
later the user might perform another step of interaction. As an example one can
imagine a user looking at a visualization of the data at the granularity of years. If
more details are required, the user might take an interaction step to switch to a finer
granularity of months.

The term continuous interaction is used to describe interaction for which the loop
is iterated at high frequency. The user continuously performs interaction and eval-
uates feedback for a significant period of time. This is particularly useful, because
examining multiple ‘what if’ scenarios is a key aspect of exploratory analysis of
time-oriented data.

An example could refer to setting the cycle length for a spiral visualization in or-
der to find cyclic patterns. For stepped interaction, the user has to explicitly specify
the cycle length of interest in a successive manner. The stepped approach requires
much time to explore parameter ranges and one does not see patterns emerge as
a suitable cycle length is approached. Continuous interaction (e.g., by dragging a
slider) allows the user to explore any range at any speed and reduces the risk of
losing interesting patterns.

Technical considerations

Technically, Jankun-Kelly et al. (2007) model the loop of user interaction as adjust-
ments of visualization parameters, where concrete parameters can be manifold, e.g.,
the rotation angle of a 3D helix glyph, the focus point of a fisheye-transformed time
axis, thresholds of a filter operation, or parameters that control a clustering algo-
rithm.

For smooth and efficient interaction, the ensemble of visual and interaction meth-
ods has to generate feedback in a timely manner (within 50 - 100 ms according to
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Shneiderman (1994) and Spence (2007)). However, even data of moderate size can
pose computational challenges. On the one hand, mapping and rendering the vi-
sual representation might take some time, particularly if complex visual abstractions
have to be displayed. On the other hand, analytical methods (see Chapter 6) involved
in the visualization process consume processing time before generating results. The
adverse implication for interaction is that visual feedback might lag, disrupting the
interaction loop.

Another aspect adds to the time costs for presenting visual feedback. As inter-
action involves change, we want users to understand what is happening. However,
abrupt changes in the visual display will hurt the mental model that users are devel-
oping while exploring unknown data. Pulo (2007) and Heer and Robertson (2007)
provide evidence that smoothly interpolating the parameter change and applying
animation to present the visual feedback is a better solution. However, animation
consumes time as well, not to mention the possibly costly calculations for interpo-
lating parameter changes.

Thus there are two conflicting requirements. On the one hand, interaction needs
synchrony. An interactive system has to be responsive at all times and should pro-
vide visual feedback immediately. From the interaction perspective, a system that
is blocked and unresponsive while computing is the worst scenario. On the other
hand, interaction needs asynchrony – for both generating the feedback (i.e., com-
putation) and presenting the feedback (i.e., animation). The difficulty is to integrate
synchrony and asynchrony.

In order to utilize the power of the human-in-the-loop, Norman’s model must be
outfitted with intuitive interaction methods to allow users to change the visualiza-
tion, and with intuitive ways of presenting the visual feedback to reflect the change.
From a technical perspective, both the gulf of execution and the gulf of evaluation
must work together smoothly and seamlessly under the umbrella of an effective user
interface.

User interface

The user interface is the channel through which a human and a machine exchange
information (i.e., interaction input and visual feedback). This interface is the linch-
pin of interactive visual exploration and analysis of time-oriented data. Any visual
representation is useless if the user interface fails to present it to the user in an ap-
propriate way, and the diversity of available visualization techniques lies idle if the
user interface fails to provide interactive access to them. In order to succeed, the
user interface has to bridge the gap between the technical aspects of a visualization
approach and the users’ mental models of the problems to be solved. In this regard,
Cooper et al. state:

[...] user interfaces that are consistent with users’ mental models are vastly superior to those
that are merely reflections of the implementation model.

Cooper et al. (2007, p. 30)
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The user interface is responsible for numerous tasks. It has to provide visual
access to time-oriented data and to information about the visualization process it-
self at different levels of graphical and semantic detail. Appropriate controls need
to be integrated to allow users to steer exploration and analysis with regard to the
interaction intents mentioned before, including marking interesting points in time,
navigating in time at different levels of granularity, rearranging data items and el-
ements of the visual representation, or filtering for relevant conditions. Moreover,
the user interface has to support bookkeeping in terms of the annotation of findings,
storage of results, and management of the working history (undo/redo).

In general, the user interface has to offer facilities to present information to the
user and to accept interaction input from the user. This separation is reflected in
the model-view-controller (MVC) architecture by Krasner and Pope (1988), where
views provide visual representations of some model (in our case time, time-oriented
data, and visualization parameters) and controllers serve for interactive (or auto-
matic) manipulation of the model.

Visualization views Especially the different temporal granularities make it nec-
essary to present the data at different levels of graphical and semantic detail.
Overview+detail as well as focus+context are the key strategies to address this de-
mand. Overview+detail methods present overview and detail separately. The sepa-
ration can be either spatial or temporal. Spatial separation means that separate views
show detail and overview. For example, on the bottom of Figure 5.2, an overview
shows the entire time domain at a high level of abstraction. On top of the overview
there is a separate detail view, which shows the data in full detail (i.e., detailed plan-
ning information), but only for a narrow time interval. Temporal separation means
a view is capable of showing any level of detail, but only one at a time. This is

Fig. 5.2: Overview+detail. The detail view at the top shows individual steps of the construction
phase of a renovation plan. In the overview at the bottom, the entire project is shown, including the
design, pre-renovation, renovation, and construction phases.
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Fig. 5.3: Focus+context. The center of the perspective wall shows the focus in full detail. The
focus is flanked on both sides by context regions. Due to perspective distortion, the context regions
intentionally decrease in size and show less detail.
Source: © Inxight Federal Systems.

usually referred to as zooming, where the user can interactively zoom into details
or return to an overview. Semantic zooming denotes zooming that is performed
in the data space, whereas graphical zooming operates in the presentation space.
Contrary to overview+detail, focus+context methods smoothly integrate detail and
overview. For the user-chosen focus, full detail is presented, and the focus is em-
bedded into a less-detailed display of the context. Figure 5.3 shows the perspective
wall technique (↪→ p. 168) as a prominent example of the focus+context approach.
Cockburn et al. (2009) provide a comprehensive survey of overview+detail, zoom-
ing, and focus+context and discuss the advantages and disadvantages of these con-
cepts.

When visualizing time-oriented data, a sensible approach is to provide multi-
ple coordinated views1, each of which is dedicated to particular aspects of time,
certain data subsets, or specific visualization tasks. Views are coordinated to help
develop and maintain a consistent overall image of the visualized data. This means
that an interaction which is initiated in one view is automatically propagated to all
coordinated views, which in turn update themselves to reflect the change visually.
A practical example is browsing in time. When the user navigates to a particular
range of the time axis in one view, all other views (that are coordinated) follow the
navigation automatically, which otherwise would be a cumbersome task to be man-
ually accomplished by the user on a per-view basis. Figure 5.4 shows an example
where multiple coordinated views are applied to visualize spatio-temporal data in
the VIS-STAMP system (↪→ p. 244).

1 Baldonado et al. (2000) provide general guidelines for when to use multiple coordinated views.
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Fig. 5.4: Multiple coordinated views. Analysts can look at the data from different perspectives.
The views are coordinated, which means selecting objects in one view will automatically highlight
them in all other views as well.
Source: Generated with the VIS-STAMP system.

In addition to coordination, the arrangement of multiple views on the display
plays a significant role. The two extremal positions one could take are to use a fixed
arrangement that has been designed by an expert and has proved to be efficient, or
to provide users with the full flexibility of windowing systems, allowing them to
move and resize views arbitrarily. Both extremes have their advantages and disad-
vantages and both are actually applied. An interesting alternative is to make use of
view docking. The main reason for applying docking is that while it maintains flex-
ibility, it also imposes a certain order in terms of what arrangements are possible.
For instance, it is preferable that views do not overlap partially; a view should either
be visible or not. To this end, docking works with the available screen space being
partitioned into regions, each of which contains one or more views. The regions can
be resized and moved with the constraint that the arrangement remains a partition,
that is, remains overlap-free. A region that contains more than one view provides an
interface to switch between them (usually tab-based).

Interaction controls The user interface also consists of various interaction con-
trols to enable users to tune the visualization process to the data and task at hand.
Figure 5.5 shows a simple example with only a single spiral view (see Tominski and
Schumann, 2008 and ↪→ p. 184), which however already depends on a number of
parameters, which in turn demands a corresponding number of controls in the con-
trol panel. The figure shows sliders for continuous adjustments of parameters such
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Fig. 5.5: User interface for a spiral visualization. The interface consists of one spiral view and one
control panel, which in turn consists of various controls to adjust visualization parameters.

as segments per cycle, spiral width, and center offset. Buttons, drop boxes, and cus-
tom controls are provided for selecting different modes of encoding (e.g., adjusting
individual colors or choosing different color scales).

In this example, user input (e.g., pressing a button or dragging a slider) is imme-
diately committed to the system in order to realize continuous interaction. However,
this puts high demands on the system in terms of maintaining responsiveness and
generating visual feedback at interactive rates (see Piringer et al., 2009). Therefore,
a commonly applied alternative is to allow users to perform a number of adjust-
ments and to commit the adjustments as a single transaction in a stepped manner
only when the user presses the “Apply” button.

Certainly, there are visualization parameters that are adjusted more often than
others during interactive visual exploration. Resources should preferably be spent on
facilitating continuous interaction for important parameters. Moreover, Gajos et al.
(2006) provide evidence that duplicating important functionality from an all-encom-
passing control panel to an exposed position is a useful way to drive adaptable user
interfaces. For example, toolbars allow for interaction that is most frequently used,
whereas rarely applied tools have to be selected from an otherwise collapsed menu
structure.

www.ebook3000.com

http://www.ebook3000.org


5.3 Basic Methods 115

5.3 Basic Methods

It is clear now that we need visualization views on the one hand, and interaction
controls on the other hand. Views are usually equipped with visual representations,
and we described many examples for time and time-oriented data in the previous
chapters. Let us now take a closer look at interactive means of controlling the visu-
alization beyond standard graphical user interface controls. To this end, we briefly
describe direct manipulation, brushing & linking, and dynamic queries as key meth-
ods for interactive visualization and show how these methods can be applied for
exploration and analysis of time-oriented data.

Direct manipulation

Working with a graphical user interface has the advantage that standardized compo-
nents can be used to control the visualization process. However, a disadvantage is
that visual feedback usually does not appear where the interaction was performed,
but in a different part of the display, i.e., the view where the visualization is shown
(see Figure 5.5). Direct manipulation as introduced by Shneiderman (1983) is the
classic means to address this disadvantage. The goal is to enable users to directly
manipulate the visual representation without a detour. To this end, a visualization
view or graphical elements are implemented so as to be responsive to user input. A
visualization may for instance allow zooming into details under the mouse cursor
simply by rotating the mouse wheel, or visiting different parts of the visual represen-
tation simply by dragging the view. Such functionality is often present in zoomable
user interfaces (see Cockburn et al., 2009). Virtual trackballs (see Henriksen et al.,
2004) are more object-centric in that they allow users to grab and rotate virtual ob-
jects to view them from different angles.

In terms of interacting with visual representations of time-oriented data, navigat-
ing time is of particular importance. Many tools provide standard slider or calendar
controls in the user interface to support navigation. However, these controls do not
realize direct manipulation. In order to do so, interaction has to be tightly coupled
with the display of the time axis. We explain what this means by two examples.
Take a look back at Figure 5.5. You may notice that a slider for navigating in time
is missing. Instead, the spiral display allows direct manipulation. For this purpose,
small arrow-shaped handles are displayed at the beginning and at the end of the spi-
ral. Clicking these handles navigates back and forth in time. Clicking and dragging
the mouse off a handle adjusts the navigation speed, which is determined by the dis-
tance of the mouse cursor to the handle. A textual label provides precise feedback
about the time span currently mapped to the spiral.

For a second example of direct manipulation, we refer to the interactive axes of
the TimeWheel (↪→ p. 200). Besides a simple non-interactive axis representation, the
TimeWheel provides three different types of interactive axes: (1) overview+detail
axis, (2) focus+context axis, and (3) hierarchical axis (see Figure 5.6). Each of these
interactive axes displays time and additionally offers different options for direct
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(a) Simple axis. (b) Overview+detail axis.

(c) Focus+context axis. (d) Hierarchical axis.

Fig. 5.6: The TimeWheel’s mapping of time along the time axis can be manipulated directly in
different ways. The simple axis uses a fixed linear mapping of time. The overview+detail axis
allows users to select any particular range of the time domain to be mapped linearly to the time
axis. The focus+context axis can be used to untangle dense parts of the time domain by applying a
non-linear mapping. The hierarchical axis represents time at different levels of granularity, where
individual axis segments can be expanded and collapsed.

manipulation. The overview+detail axis basically extends the simple axis with three
interactive handles to control the position and extent of the time interval to be dis-
played in the TimeWheel, effectively allowing users to zoom and scroll into any
particular part of the data. The focus+context axis applies a non-linear distortion to
the time axis in order to provide more drawing space for the user’s focus and less
space for the context. This allows users to untangle dense parts of the data. Finally,
for the hierarchical axis, the display is hierarchically subdivided into segments ac-
cording to the different granularities of time (e.g., years, quarters, months, days).
Users can expand or collapse these segments interactively to view the data at differ-
ent levels of abstraction. Figure 5.6 illustrates the three types of interactive axes and
the corresponding visual mapping compared to the simple non-interactive axis.

The advantage of directly manipulating the visual representation is, as indicated,
that interaction and visual feedback take place at the very same location. However,
direct manipulation always involves some learning and training of the interaction
facilities provided. This is necessary because most of the time the interaction is not
standardized but custom-made to fit the visual mapping.
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Brushing & linking

Brushing & linking is a classic interaction concept, which takes up the idea of direct
manipulation. Becker and Cleveland (1987) describe brushing as a technique that
enables users to select interesting data items directly from a data display. There
are various options one can follow when selecting data items. We will often find
brushing being implemented as point and click interaction to select individual data
items. Rubber-band or lasso interaction serve the purpose of brushing subranges in
the data or multiple data items at once. Hauser et al. (2002) introduce brushing based
on angles between data items, and Doleisch and Hauser (2002) go beyond binary
selection to allow for smooth brushing (i.e., data items can be partly selected).

After brushing, selected data items are highlighted in order to make them stand
out against the rest of the data. The key benefit of brushing & linking is that data
selected in one view are automatically highlighted in all other views, effectively
linking the views. In this sense, brushing & linking is a form of coordination among
multiple views. This is especially useful when visualizing the variables of a multi-
variate time-oriented dataset individually in separate views. Then, brushing a tem-
poral interval of interest in one view will highlight the same interval and correspond-
ing data values in all views, and we can easily compare how the individual variables
develop during the brushed time period.

For complex data, using a single brush is often unsatisfactory. Instead, users need
to perform multiple brushes on different time-dependent variables or in different
views. Compound brushing as explained by Chen (2004) allows the combination
of individual brushes into composite brushes by using various operators, including
logical, analytical, data-centric, and visual operations. With such facilities, brushing
is much like a visual query mechanism.

Dynamic queries

Shneiderman (1994) describes dynamic queries as a concept for visual information
seeking. It is strongly related to brushing & linking in that the goal is to focus on
data of interest, which in the case of dynamic queries is often realized by filtering
out irrelevant data. Because time-oriented data are often large, dynamically omitting
data with respect to task-specific conditions can be very helpful.

Depending on the view characteristics and visualization tasks, two alternatives
can be applied to display filtering results: filtered objects can be displayed in less
detail or they can be made invisible. Reducing detail is useful in views that maintain
an overview, where all information needs to be displayed at all times, but filtered
objects need only to be indicated. Making objects invisible is useful in views that
notoriously suffer from cluttering.

Filter conditions are usually specified using dedicated mechanisms. Threshold
or range sliders are effective for filtering time or any particular numerical variable;
textual filters are useful for extracting objects with specific labels (e.g., data tagged
by season). Similar to what has been said for brushing & linking, the next logical
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Fig. 5.7: Several filters can be adjusted in order to dynamically restrict the scatter plot visualization
to data items that conform with the formulated conditions.

step is to combine filters to provide some form of multidimensional data reduction.
For instance, a logical AND combination generates a filter that can be passed only
if an object obeys all filter conditions; an object can pass a logical OR filter if it
satisfies any of the involved filter conditions. Figure 5.7 shows an example of a
dynamic query interface.

While some systems offer only fixed filter combinations or require users to en-
ter syntactic constructs of some filter language, others implement a visual interface
where the user can interactively specify filter conditions. Examples for querying
time-oriented data that are visualized as line plot (↪→ p. 153) are the time boxes
by Hochheiser and Shneiderman (2004) and the relaxed selection techniques by
Holz and Feiner (2009).

Time boxes are used to filter out variables of a multivariate line plot. To this
end, the user marks regions in the visual display by creating one or more elastic
rectangles that specify particular value ranges and time intervals. The system then
filters out all variables whose plots do not overlap with the rectangles, effectively
performing multiple AND-combined range queries on the data. Figure 5.8 depicts a
query that combines three time boxes to restrict the display to stocks that performed
well in the first and the last weeks of the year, but had a bad performance in the
middle of year.

The relaxed selection techniques are useful for finding specific patterns in the
data. For that purpose, the user specifies a query pattern by sketching it directly on
the display. When the user is performing the sketching, either the distance of the
sketch to the line plot or the user’s sketching speed are taken into consideration in
order to locally relax the query pattern. This relaxation is necessary to allow for a
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Fig. 5.8: Three time boxes are used to dynamically query stock data. Only those stocks are dis-
played that are high at the beginning, but low in the middle, and again high at the end of the year.
Source: Generated with the TimeSearcher software.

certain tolerance when matching the pattern in the data. An interactive display of
the query sketch can be used to fine-tune the query pattern. Once the query pattern
is specified, the system computes corresponding pattern matches and displays them
in the line plot as depicted in Figure 5.9.

Fig. 5.9: The user can sketch a query pattern directly in the line plot and optionally refine it locally
in a dedicated query view. The line plot then shows where in time the query matches with a certain
tolerance.
Source: Image courtesy of Christian Holz.
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Specifying dynamic queries visually as illustrated by the previous two examples
is definitely very useful. However, the user can sketch or mark only those things
which are displayed. Formulating queries with regard to potential but not yet ex-
isting patterns in the data beyond some tolerance requires additional formal query
languages, whose expressiveness, in turn, depends on the formalism used.

Direct manipulation, brushing & linking, and dynamic queries are vital for effective
exploration and analysis of time-oriented data. Although these concepts have existed
for quite some time now, many visualization tools offer only a fraction of what is
possible. Again one can find a reason for that in the higher costs accruing from
designing and implementing efficient interaction methods. Moreover, because visual
and interactive means must be coupled tightly, it is difficult to develop interaction
techniques that can be interchanged among the different visualization techniques for
time-oriented data. Finding a solution to this problem is an open research question.

5.4 Integrating Interactive and Automatic Methods

So far in this chapter, we have shown that interaction is mandatory to allow users
to parameterize the visualization according to their needs and tasks. However, with
increasing complexity of data and visualization methods alike, it is not always easy
for users to find parameter values that suit the analysis task at hand. Particularly
if parameters are not self-explanatory, they are not easy-to-set manually. So, some
form of support is needed to assist users in the parametrization process.

A possible solution is to employ the concept of event-based visualization, which
combines visualization with event methodology (see Reinders et al., 2001; Tominski,
2011). In diverse application fields, including active databases, software engineer-
ing, and modeling and simulation, events are considered happenings of interest that
trigger some automatic actions. In the context of visualization, such an event-action-
scheme is useful for complementing manual interaction with automatic parametriza-
tion of visual representations.

The basic idea of event-based visualization is (1) to let users specify their inter-
ests, (2) to detect if and where these interests match in the data, and (3) to consider
detected matches when generating the visual representation. This general procedure
requires the three main components: (1) event specification, (2) event detection, and
(3) event representation. Figure 5.10 illustrates how they are attached to the visual-
ization pipeline. Next we will look at each of these components in more detail.

Describing user interests

The event specification is an interactive step where users describe their interests as
event types. To be able to find actual matches of user interests in the data, the event
specification must be based on formal descriptions. Tominski (2011) uses elements
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Fig. 5.10: The main ingredients of event-based visualization – event specification, event detection,
and event representation – attached to the visualization pipeline.

of predicate logic to create well-defined event formulas that express interests with
respect to relational datasets (e.g., data records whose values exceed a threshold
or attribute with the highest average value). For an analysis of time-oriented data,
sequence-related notations (for instance as introduced by Sadri et al., 2004) have
to be added to enable users to specify conditions of interest regarding temporally
ordered sequences (e.g., sequence of days with rising stock prices). A combination
of event types to composite event types is possible via set operators.

To give a simple example of a sequence event type, we formulate the interest:
“Find three successive days where the number of people suffering from influenza
increases by more than 15% each day.” This interest is expressed as:

{(x,y,z)date | z. f lu ≥ y. f lu ·1.15∧ y. f lu ≥ x. f lu ·1.15}

The first part of the formula defines three variables (x,y,z)date that are sequenced by
date. To express the condition of interest, these three variables are set into relation
using predicates, functions, and logical connectors.

Certainly, casual users will have difficulties in describing their interests by using
event formulas directly. Sufficient specification support starts with providing indi-
vidual means for experts, regular users, and visualization novices. In this regard, one
can think of three different levels of specification: direct specification, specification
by parametrization, and specification by selection. Although all levels are based on
the same formalism, the complete functionality of the formalism is available only
to expert users at the level of direct specification. The idea for the second level is to
hide the complexity of event formulas from the user. To this end, parameterizable
templates are provided. The user can adjust the templates via easy-to-set parame-
ters, but otherwise has no access to the possibly complicated internal event formula.
The amount of increase in the previous event type example is a good candidate for
a template parameter. The increase can then be changed from 15% to any particu-
lar value without rephrasing the entire event type formula. The third level of event
specification is based on simple selection. The idea is to provide a predefined collec-
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tion of event types that are particularly tailored to the application context, and that
are equipped with expressive labels and descriptions, so that users can easily select
what they are interested in. It is also helpful to enhance the event collection with
a semantic structure (e.g., by grouping the collection with respect to different user
tasks). Devising such a semantic structure and describing event types expressively
is a task for domain experts.

Finding relevant data portions

The event detection is an automatic step that determines whether the interests de-
fined interactively are present in the data. The outcome of the event detection is a
set of event instances. They describe where in the data interesting information is lo-
cated. That is, entities that comply with user interest are marked as event instances.
For event detection, the variables used in event formulas are substituted with con-
crete data entities. In a second step, predicates, functions, and logical connections
are evaluated, so that the event formula as a whole can be evaluated as either true
or false. Because this procedure can be very costly in terms of computation time,
efficient methods must be utilized for the event detection. A combination of the ca-
pabilities of relational database management systems and efficient algorithms (e.g.,
the OPS algorithm by Sadri et al., 2004) is useful for static data. When dynamic
data (i.e., data that change over time, see Section 3.3) have to be considered, detec-
tion efficiency becomes crucial. Here, incremental detection methods can help. Such
methods operate on a differential dataset, rather than on the whole data. However,
incremental methods also impose restrictions on possible event types, because they
do not have access to the entire dataset.

Considering user interests in visual representations

The last important step of event-based visualization is the event representation. The
goal of this step is to incorporate detected event instances (which reflect the inter-
ests of the user) into visual representations. The three requirements that have to be
considered are:

1. Communicate the fact that something interesting has been found.
2. Emphasize interesting data among the rest of the data.
3. Convey what makes the data interesting.

Most importantly, the visual representation must clearly express that something
interesting is contained in the data. To meet this requirement, easy-to-perceive vi-
sual cues (e.g., a red frame around the visual representation, exclamation marks, or
annotations) must be incorporated. Alpha blending can be applied to fade out past
events. The second requirement aims at emphasizing those parts of the visual rep-
resentation that are of interest. Additionally, the visualization should communicate
what makes the highlighted parts interesting (i.e., what the particular event type is).
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However, when facing arbitrarily definable event formulas, this last requirement is
difficult to fulfill.

We can distinguish two basic options for representing events: explicit and implicit
event representation. For the explicit case, the focus is set exclusively on event in-
stances, neglecting the raw data. Since the number of events is usually smaller than
the number of data items, even large datasets can be analyzed. In the implicit case,
the data context is retained and visualization parameters are set automatically so
as to highlight points of interest detected in the data. If we assume that user inter-
ests are related to user tasks and vice versa, implicit event representation can help
to achieve better targeted visual representations. The big challenge is to meet the
above stated requirements solely by adapting visualization parameters. Apparently,
availability of adequate visualization parameters is a prerequisite for implicit event
representation.

We will illustrate the potential of event-based visualization with an example. Let
us assume a user who has to analyze multivariate time-dependent human health data
for uncommonly high numbers of cases of influenza. The task at hand is to find out
if and where in time these situations have occurred. A possible way to accomplish
this task is to use the TimeWheel technique (↪→ p. 200).

Figure 5.11(a) shows a TimeWheel that uses the standard parametrization, where
time is encoded along the central axis and multiple diagnoses are mapped to the

Fig. 5.11: Default vs. targeted parameterization of a TimeWheel. (a) TimeWheel representing a
time-dependent health dataset using the default configuration, which aims at showing main trends,
but does not consider the interests of the user. (b) TimeWheel representing the same data, but
matches with the user’s interests have been detected and corresponding data are emphasized via
highlighted lines and automatic rotation and stretching; the presentation is better targeted to the
user’s task at hand.
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axes surrounding the time axis. In particular, influenza happens to be the diagnosis
that is mapped to the upper right axis (light green). Alpha-blending is applied by
default to reduce visual clutter. Looking at this TimeWheel, the user can only guess
from the labels of the axis showing influenza that there are higher numbers of cases,
because the alpha-blending made the particular lines almost invisible (see question
mark). Several interaction steps are necessary to re-parameterize the TimeWheel to
accomplish the task at hand.

In contrast to this, in an event-based visualization environment, the user can spec-
ify the interest “Find days with a high number of cases of influenza.” as the event
type ({x | x. f lu ≥ 300}). If the event detection step confirms the existence of such
events in the data, visualization parameters are altered automatically so as to pro-
vide an individually adjusted TimeWheel that reflects the special situation. In our
particular example, we switch color and transparency of line segments represent-
ing event instances: Days with high numbers of influenza cases are excluded from
alpha-blending and are drawn in white. Additionally, rotation and stretching is ap-
plied such that the axis representing influenza is moved gradually to an exposed
position and is provided with more display space. The application of a gradual pro-
cess is important in this case to support users in maintaining their mental map of
the visual representation. The result of applying parameter changes automatically
in response to event instances is depicted in Figure 5.11(b). In this TimeWheel, the
identification of days with higher numbers of influenza infections is easy.

5.5 Summary

The focus of this chapter was on interaction. We started with a brief overview of
intents that motivate users to interact with the visualization. The most notable intent
in the context of time-oriented data is the intent to navigate in time in order to visit
different parts of the data. Users also need to view time-oriented data at different
levels of detail, because the data are often given at multiple granularities. Further
intents are related to interactively adjusting the visual mapping according to data
and tasks at hand, and to managing the exploration process.

We explained that interactive visualization is an iterative loop where the com-
puter generates feedback in oder to visually reflect the change that resulted from
user interaction. This human-in-the-loop process brings together the computational
power of the machine and the intellectual power of human beings. In order to take
full advantage of this synergy, an efficient user interface is needed that bridges the
gap between the algorithmic structures used for visualizing time and time-oriented
data, and the mental models and analytic workflows of users. This also includes
tackling technical challenges to guarantee smooth execution of the interaction loop.

This chapter also presented brief descriptions of basic interaction concepts, in-
cluding direct manipulation, brushing & linking, and dynamic queries. These con-
cepts are vital for data exploration tasks where the user performs an undirected
search for potentially interesting data features. But still, the potential of these con-
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cepts has not been fully exploited by current visualization techniques for time and
time-oriented data. There is room for future work to better adapt existing interac-
tion methods or to develop new ones according to the specific needs of time-oriented
data.

The example of event-based visualization indicates that a combination of interac-
tive, automatic, and visual methods is quite useful for generating visual representa-
tions that are better targeted for the user’s task at hand than standard representations.
This holds true as long as users know what they are looking for (i.e., users perform
a directed search). Event-based visualization as described here is not suited to auto-
matically mine potential events in time-oriented data. In order to do so, one needs
to integrate analytical methods as described in the next chapter.
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Chapter 6
Analytical Support

It is useful to think of the human and the computer together as a
single cognitive entity, with the computer functioning as a kind of
cognitive coprocessor to the human brain. [...] Each part of the
system is doing what it does best. The computer can pre-process
vast amounts of information. The human can do rapid pattern
analysis and flexible decision making.

Ware (2008, p. 175)

Visualization and interaction as described in the previous chapters help users to vi-
sually analyze time-oriented data. Analysts can look at the data, explore them, and
in this way understand them. This is possible thanks to human visual perception and
the fact that humans are quite good at recognizing patterns, finding interesting and
unexpected solutions, combining knowledge from different sources, and being cre-
ative in general1. This holds true unless the problem to be solved exceeds a certain
size. Very large time-series or data that consist of many thousands of time-dependent
variables can usually not be grasped by human observers. In such cases, we need
the proficiency of computing systems to assist the knowledge crystallization from
time-oriented data. Apparently, if the problem size is sufficiently large, computers
are better (i.e., faster and more accurate) than humans at numeric and symbolic cal-
culations, logical reasoning, and searching.

In general, data mining and knowledge discovery are commonly defined as the
application of algorithms to extract useful structures from large volumes of data,
where knowledge discovery explicitly demands that knowledge be the end prod-
uct of the analytical calculations (see Fayyad et al., 1996, 2001; Han and Kamber,
2005). A variety of concepts and methods are involved in achieving this goal, includ-
ing databases, statistics, artificial intelligence, neural networks, machine learning,
information retrieval, pattern recognition, data visualization, and high-performance
computing.

This chapter will illustrate how automatic analytical calculations can be utilized
to facilitate the exploration and analysis of larger and more complex time-oriented

1 Wegner (1997) makes some interesting statements about why interaction is better than algorithms.
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data. To this end, we will give a brief overview of typical temporal analysis tasks.
For selected tasks, we will present examples that demonstrate how visualization can
benefit from considering analytical support. Our descriptions will intentionally be
kept at a basic level. For details on the sometimes quite complex matter of temporal
data analysis, we refer interested readers to the relevant literature.

6.1 Temporal Analysis Tasks

Temporal analysis and temporal data mining are especially concerned with extract-
ing useful information from time-oriented data. More specifically, analytical meth-
ods for time-oriented data address the following categories of tasks (see Antunes and
Oliveira, 2001; Laxman and Sastry, 2006; Hsu et al., 2008; Brockwell and Davis,
2009; Mitsa, 2010):

Classification Given a predefined set of classes, the goal of classification is to de-
termine which class a dataset, sequence, or subsequence belongs to. Applications
such as speech recognition and gesture recognition apply classification to identify
specific words spoken or interactions performed. The analysis of sensor data or
spatio-temporal movement data often requires classification to make the enormous
volumes of data to be handled manageable.

Clustering Clustering is concerned with grouping data into clusters based on sim-
ilarity, where the similarity measure used is a key aspect of the clustering process.
In the context of time-oriented data, it makes sense to cluster similar time-series or
subsequences of them. For example, in the analysis of financial data, one may be
interested in stocks that exhibit similar behavior over time. In contrast to classifica-
tion, where the classes are known a priori, clusters are not defined upfront.

Search & retrieval This task encompasses searching for a priori specified queries
in possibly large volumes of data. This is often referred to as query-by-example.
Search & retrieval can be applied to locate exact matches for an example query or
approximate matches. In the latter case, similarity measures are needed that define
the degree of exactness or fuzziness of the search (e.g., to find customers whose
spending patterns over time are similar but not necessarily equal to a given spending
profile).

Pattern discovery While search & retrieval requires a predefined query, pattern
discovery is concerned with automatically discovering interesting patterns in the
data (without any a priori assumptions). The term pattern usually covers a variety
of meanings, including sequential pattern, periodic pattern, but also temporal asso-
ciation rules. In a sense, a pattern can be understood as a local structure in the data
or combinations thereof. Often, frequently occurring patterns are of interest, for ex-
ample when analyzing whether a TV commercial actually leads to an increase in
sales. But patterns that occur very rarely can also be interesting because they might
indicate malicious behavior or failures.
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Prediction An important task in analyzing time-oriented data is the prediction of
likely future behavior. The goal is to infer from data collected in the past and present
how the data will evolve in the future. To achieve this goal one first has to build a
predictive model for the data. Examples of such models are autoregressive models,
non-stationary and stationary models, or rule-based models.

In the context of visualization, these tasks share a common goal: data abstraction in
order to reduce the workload when computing visual representations and to keep the
perceptual efforts required to interpret them low. For classification and clustering,
we abstract from the raw data and work with classes and clusters. For search &
retrieval and pattern discovery we are foremost interested in relevant patterns and
de-emphasize irrelevant data. For prediction, we focus on the future.

A variety of methods have to play in concert in order to accomplish temporal
analysis tasks. Statistical aggregation operators (e.g., sum, average, minimum, max-
imum, etc.), methods from time-series analysis, as well as dedicated temporal data
mining techniques are needed.

In what follows, we demonstrate the applicability of analytical methods for the
analysis of time-oriented data using the three examples: clustering, temporal data
abstraction, and principal component analysis. Clustering decreases the number of
data items to be represented, and allows the discernment of similarities and un-
expected behavior. Temporal data abstraction reduces data complexity by deriving
qualitative statements, which are much easier to understand. Principal component
analysis decreases the number of time-dependent variables by switching the focus
to major trends in the data.

Fig. 6.1 Overview of tempo-
ral analysis tasks.
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6.2 Clustering

In general, grouping data into clusters and concentrating on the clusters rather than
on individual data values allows the analysis of much larger datasets. Appropri-
ate distance or similarity measures lay the ground work for clustering. Distance
and similarity measures are profoundly application dependent and range from av-
erage geometric distance, to measures based on longest common subsequences, to
measures based on probabilistic models. Based on computed distances, clustering
methods create groups of data, where the number of available techniques is large, in-
cluding hierarchical clustering, partitional clustering, and sequential clustering. Due
to the diversity of methods, selecting appropriate algorithms is typically difficult.
Careful adjustment of parameters and regular validation of the results are therefore
essential tasks in the process of clustering. More details on clustering methods and
distance measures can be found in the work by Jain et al. (1999), Gan et al. (2007),
and Xu and Wunsch II (2009).

A prominent example of how analytical methods can assist the visualization of
time-oriented data is the work by Van Wijk and Van Selow (1999). The goal is to
identify common and uncommon subsequences in large time-series data and to un-
derstand their distribution over time. The problem is that simply drawing line plots
for all subsequences is not a satisfactory solution due to the overwhelmingly large
number of time points and line plots. In order to tackle this problem, clustering
methods and a calendar-based visualization are used.

Fig. 6.2: By repeatedly merging the two most similar sequences into new clusters, a clustering
hierarchy is generated. The root cluster is an aggregated representative of the entire dataset.
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In particular, the approach works as follows. As Van Wijk and Van Selow (1999)
are interested in patterns on the granularity of days, the first step is to split a large
time-series into k day patterns, each of which stores the subsequence for one day.
The clustering process starts with the k day patterns as initial clusters. Then the dif-
ferences of all possible combinations of two clusters are computed and the two most
similar clusters are merged into a new cluster (i.e., an aggregated representative of
the two clusters). This process runs repeatedly and results in a clustering hierarchy
with 2k − 1 clusters, where the root of the hierarchy represents the entire dataset
in an aggregated fashion. Figure 6.2 illustrates the clustering process with data for
seven days.

The visualization of the clustered day patterns uses two different views for the
two analysis tasks: (1) assess similarity among day patterns and (2) locate common
and uncommon patterns over time. The first task is facilitated by a basic line plot
(↪→ p. 153) that shows a selected number of clusters, where each plot uses a unique
color. To accomplish the second task, a calendar display is used where individual
days are color-coded according to cluster affiliation. This way, analysts can see the
day pattern and at the same time understand when during a year this pattern occurs.
Various interaction methods allow adjustments of the visual representation and data
exploration. In terms of assessing similarities, the user can select a day from the
calendar and with the help of the clustering hierarchy, similar days (and clusters)
can be retrieved automatically.

Fig. 6.3: Visual analysis of the number of employees at work. Day patterns for selected days and
clusters are visualized as line plots (right). Individual days in a calendar display (left) are colored
according to cluster affiliation.
Source: Van Wijk and Van Selow (1999), © 1999 IEEE. Used with permission.
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Figure 6.3 shows an example of the visualization design. The data displayed in
the figure contain the number of employees at work. The line plot currently shows
the day patterns of two days (5/12/1997 and 31/12/1997) and five clusters (710, 718,
719, 721, and 722). Van Wijk and Van Selow (1999) demonstrate that several con-
clusions can be drawn from the visual representation. To give only a few examples:

• Employees follow office hours quite strictly and work between 8:30 am and 5:00
pm in most cases.

• Fewer people work on Fridays during summer (cluster 718).
• During weekends and holidays only very few people are at work (cluster 710).
• It is common practice to take a day off after a holiday (cluster 721).

These and similar statements were more difficult or even impossible to derive
without the integration of clustering. Van Wijk and Van Selow (1999) most con-
vincingly demonstrate the advantages of analytical support for the visual analysis
of time-oriented data. While here the benefit lies in the abstraction from raw data to
aggregated clusters, we will see in the next section that other kinds of abstraction
are useful as well.

6.3 Temporal Data Abstraction

In practice, time-oriented datasets are often large and complex and originate from
heterogeneous sources. The challenging question is how huge volumes of possibly
continuously measured data can be analyzed to support decision making. On the one
hand, the data are too large to be interpreted all at once. On the other hand, the data
are more erroneous than usually expected and some data are missing as well. What
is needed is a way to abstract the data in order to make them eligible for subsequent
visualization.

The term data abstraction was originally introduced by Clancey (1985) in his
classic proposal on heuristic classification. In general, the objective of data abstrac-
tion is:

... to create an abstraction that conveys key ideas while suppressing irrelevant details.
Thomas and Cook (2005, p. 86)

The basic idea is to use qualitative values, classes, or concepts, rather than raw
data, for further analysis or visualization processes (see Lin et al., 2007; Combi et al.,
2010). This helps in coping with data size and data complexity. To arrive at suitable
data abstractions, several tasks must be conducted, including selecting relevant in-
formation, filtering out unneeded information, performing calculations, sorting, and
clustering.
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Principles

Let us now illustrate the concept of temporal data abstraction in medical contexts
with a simple example. Figure 6.4 shows time-oriented data as generated when mon-
itoring newborn infants that have to be ventilated artificially. The figure visualizes
three variables plotted as points against a horizontal time axis: SaO2 (arterial oxygen
saturation), PtcCO2 (transcutaneous partial pressure of carbon dioxide), and PaCO2

(arterial partial pressure of carbon dioxide). SaO2 and PtcCO2 are measured contin-
uously at a regular rate, but with different frequency. New values for PaCO2 arrive
irregularly and some values for PtcCO2 are missing.

Fig. 6.4: Temporal data abstraction in the context of artificial ventilation. Vertical temporal abstrac-
tions are illustrated as V[1] and V[2] and horizontal temporal abstraction are illustrated as H[1] –
H[5]. The context is given as “artificial ventilation” and its sub-context “controlled ventilation”.

The aim of temporal data abstraction is to arrive at qualitative values or pat-
terns over time intervals. Vertical temporal abstraction (illustrated in V[1] and V[2])
considers multiple variables over a particular time point and combines them into
a qualitative value or pattern. Horizontal temporal abstraction (illustrated as H[1]
– H[5]) infers a qualitative value or pattern from one or more variables and a cor-
responding time interval. Usually the abstraction process is context-dependent. In
Figure 6.4, the abstraction is done in the context of artificial ventilation and in the
sub-context of controlled ventilation.

In medical applications, there are different types of abstraction methods, rang-
ing from rather simple to quite complicated ones. However, as pointed out by
Combi et al. (2010), no exhaustive schema exists to categorize the available meth-
ods. Nevertheless, the common understanding is that even in very simple cases the
process is knowledge-driven. The use of knowledge is the main characteristic that
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distinguishes data abstraction from statistical data analysis (e.g., trend detection us-
ing time-series analysis).

Simple methods involve single data values and usually do not need to consider
time specifically. They generate vertical abstractions. The knowledge used are con-
cept associations or concept taxonomies. Combi et al. (2010) distinguish three types
of simple methods:

• Qualitative abstraction means converting numeric expressions to qualitative ex-
pressions. For example, the numeric value of 34.8◦C of body temperature can be
abstracted to the qualitative value “hypothermia”.

• Generalization abstraction involves a mapping of instances into classes. For ex-
ample, “hand-bagging is administered” is abstracted to “manual intervention is
administered”, where “hand-bagging” is an instance of the concept class “manual
intervention”.

• Definitional abstraction is a mapping across different concept categories. The
movement here is not within the same concept taxonomy, as for the generaliza-
tion abstraction, but across two different concept taxonomies.

More complex methods consider one or more variables jointly and specifically
integrate the dimension of time in a kind of temporal reasoning. These methods
generate horizontal temporal abstractions. According to Combi et al. (2010), four
types of complex methods exist:

• Merge (or state) abstraction is the process of deriving maximal time intervals for
which some constraints of interest hold. For example, several consecutive days
with high fever and increased blood values can be mapped to “bed-ridden”.

• Persistence abstraction means applying persistence rules to project maximal in-
tervals for some property, both backwards and forwards in time. For example,
“headache in the morning”, can be abstracted to “headache in the evening be-
fore” or “headache in the afternoon afterwards”.

• Trend (or gradient or rate) abstraction is concerned with deriving significant
changes and rates of change in the progression of some variable. For exam-
ple, PtcCO2 has decreased from 130 to 90 in the last 20 minutes would result
in “PtcCO2 is decreasing too fast”.

• Periodic abstraction aims to derive repetitive occurrence, with some regularity in
the pattern of repetition. For example, “headache every morning, but not during
the day”, would result in “repetitive headache in the morning”.

Application examples

The principles described in the previous paragraphs can be applied in various ways.
In the following, we will give a few examples of systems that utilize temporal data
abstraction. For more examples, we refer to the survey of temporal data abstraction
in clinical data analysis by Stacey and McGregor (2007).
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Monitoring artificially ventilated infants VIE-VENT is an open-loop knowledge-
based monitoring and therapy planning system for artificially ventilated infants (see
Miksch et al., 1996). In order to derive qualitative descriptions for different kinds
of temporal trends (i.e., very-short, short, medium, and long-term trends) from
continuously arriving quantitative data, the system utilizes context-sensitive and
expectation-guided methods and incorporates background knowledge about data
points, data intervals, and expected qualitative trend patterns. Smoothing and ad-
justment mechanisms help to keep qualitative descriptions stable in case of shifting
contexts or data oscillating near thresholds. Context-aware schemata for data point
transformation and curve fitting are used to express the dynamics of and the reaction
to different data abnormalities. For example, during intermittent positive pressure
ventilation (ippv), the transformation of the quantitative value PtcCO2 = 56mmHg
results in the qualitative abstraction “PtcCO2 substantially above target range”. Dur-
ing intermittent mandatory ventilation (imv) however, 56mmHg represents the “tar-
get value”. Qualitative abstractions and schemata of curve fitting are subsequently
used to decide if the value progression happens too fast, at normal rate, or too slow.

Fig. 6.5: VIE-VENT displays measured quantitative values as line plots. Qualitative abstractions
and trends are represented by different colors and arrows in the top three boxes on the left.
Source: Miksch et al. (1996), © 1996 Elsevier. Used with permission.

Figure 6.5 shows the user interface of VIE-VENT. In the top-left corner, the
system displays exact values of the quantitative blood gas measurements CO2, O2,
SaO2. Arrows depict trends and qualitative abstractions are indicated by different
colors (e.g., deep pink represents “extremely above target range”). The left panel
further shows current and recommended ventilator settings in blue and red boxes,
respectively. The right-hand side shows line plots of the most important variables
for the last four hours.
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Dealing with oscillating data Strongly oscillating data pose a formidable chal-
lenge for methods that aim to extract qualitative abstractions and patterns from the
data. The problem is that derived abstractions could change too quickly as to be in-
terpretable by the observer. Therefore, Miksch et al. (1999) developed the Spread, a
time-oriented data abstraction method that is capable of deriving steady qualitative
abstractions from oscillating high-frequency data. The tool performs the following
steps of processing and data abstraction:

1. Eliminate data errors: Sometimes up to 40% of the input data are obviously
erroneous, i.e., exceed the limits of plausible values.

2. Clarify the curve: Transform the still noisy data into the spread, which is a steady
curve with some additional information about the distribution of the data along
that curve.

3. Qualify the curve. Abstract from quantitative values to qualitative values like
“normal” or “high” and concatenate intervals with equal qualitative values.

Figure 6.6 illustrates how the analytical abstractions can enhance the visualiza-
tion. The Spread smooths out the strongly oscillating raw data. Even the increased
oscillation in the center of the display is dealt with gracefully: it leads to increased
width of the spread, but not to a change of the qualitative value. With these abili-
ties, the Spread can support physicians in making better qualitative assessments of
otherwise difficult-to-interpret data.

Fig. 6.6: The thin line shows the raw data. The red area depicts the spread and the blue rectangles
represent the derived temporal intervals of steady qualitative values. The lower part of the figure
shows the parameter settings.
Source: Adapted from Miksch et al. (1999), © 1999 Springer. Used with permission.

Linking temporal and visual abstraction In interactive environments, the visual-
ization of time-oriented data and abstractions thereof can change dynamically due
to user interaction, where resizing and zooming are among the most commonly
applied operations. In such scenarios, the visualization must be able to capture as
much temporal information as possible without losing overview and details, even
if the available display space is very limited. Bade et al. (2004) demonstrate that
this is possible by means of semantic zooming (see p. 112 and ↪→ p. 230). The se-
mantic zoom functionality relies on an appropriate set of temporal data abstractions
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and associated visual representations for different levels of detail as illustrated in
Figure 6.7. Depending on the available display space (or the current zoom level),
a suitable temporal abstraction is selected automatically and its corresponding vi-
sual abstraction is displayed. The advantage of this procedure is that it relieves the
user of managing the levels of abstraction by hand. Moreover, the semantic zoom
corresponds much better with the interactive nature of flexible and dynamic visual
analysis scenarios.

Fig. 6.7 Different steps of
semantic zooming of a time-
series visualization from a
broad overview with qualita-
tive values (top) to a detailed
view with fine structures and
quantitative details (bottom).
Gray areas indicate missing
data.

The examples described can only indicate the possible benefits that basic and
complex temporal abstraction methods and their integration with the visualization
can have for dealing with time-oriented data in medical applications. We know of
quite positive feedback from medical experts who found it easy to capture the health
conditions of their patients. Moreover, these qualitative abstractions can be used
for further reasoning or in guideline-based care for a simplified representation of
treatment plans.

What our previous examples have in common, however, is that they consider only
a relatively small number of time-dependent variables. As we will see in the next
section, if the number of variables gets larger, we need further analytical methods.

6.4 Principal Component Analysis

Time-oriented data are often of multivariate nature, but too large a number of vari-
ables poses considerable difficulties for the visualization. These difficulties can be
overcome by applying principal component analysis (PCA), which offers an excel-
lent basis for data abstraction (see Jolliffe, 2002; Jackson, 2003; Jeong et al., 2009).
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Fig. 6.8: Principal component analysis transforms multivariate data (with variables x1 and x2 in
this case) into a new space, the so-called principal component space, which is spanned by the
principal components (here PC1 and PC2).

The key principle of PCA is a transformation of the original data space into the
principal component space (see Figure 6.8). In the principal component space, the
first coordinate, that is, the first principal component represents most of the original
dataset’s variance, the second principal component, which is orthogonal to the first
one, represents most of the remaining variance, and so on. Visualizing the data in
the new principal component space shows us how closely individual data records
are related to the major trends, and thus PCA helps us to reveal the internal structure
of the data. Moreover, since principal components are ordered by their significance,
we can focus on fewer principal components than we have variables in our data.

In the following we will take a brief look at the basics of principal component
analysis and illustrate by means of examples the benefit that this analytical concept
has for the visual analysis of time-oriented data.

Basic method

Assume that we have modeled our multivariate dataset as a matrix:

X =
(
x1x2 · · ·xm

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 · · · x1,m

x2,1 · · · x2,m
...

...
...

...
xn,1 · · · xn,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the columns of X correspond to the m variables x1,x2, . . . ,xm of the dataset,
and the rows represent n records of data (e.g., n repetitions of an experiment). For a
time-oriented dataset, one of the xi is usually the dimension of time.

Depending on the application it can make sense to prepare the data such that
they are mean-centered and normalized (by subtracting off the mean of each vari-
able and scaling each variable according to its variance). Now our goal is to trans-
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form the data into the principal component space that is spanned by r ≤ m principal
components.

For the purpose of explanation, we resort to singular value decomposition (SVD)
according to which any matrix X can be decomposed as:

X = W ·Σ ·CT

where W is an n×r matrix, Σ is an r×r diagonal matrix, and CT is an r×m matrix:

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1,1 · · · w1,r

w2,1 · · · w2,r
...

...
...

...
wn,1 · · · wn,r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎝

σ1 · · · 0
...

. . .
...

0 · · · σr

⎞

⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

c1,1 c1,2 · · · c1,m

c2,1 c2,2 · · · c2,m
...

...
...

cr,1 c2,2 · · · cr,m

⎞

⎟
⎟
⎟
⎠

The matrix CT has in its rows the transposed eigenvectors c1
T , . . . ,cr

T of the matrix
XT X, which corresponds to the covariance matrix of the original dataset. The ci
form the orthonormal basis of the principal component space; they are the principal
components. Each ci is the result of a linear combination of the original variables
where the factors (or loadings) of the linear combination determine how much the
original variables contribute to a principal component. The first principal component
c1 is chosen so as to be the one that captures most of the original data’s variance, the
second principal component most of the remaining variance, and so forth. The sig-
nificance values σ1, . . . ,σr in Σ are determined by the likewise ranked square roots
of the eigenvalues

√
λ 1, . . . ,

√
λ r of the eigenvectors (i.e., the principal components)

c1, . . . ,cr. Finally, the i-th row of the matrix W contains the coordinates of the i-th
data record in the new principal component space. The individual coordinates are
often referred to as the scores.

This brief formal explanation provides a number of key take-aways. Let us sum-
marize the ones that are most relevant for visualization:

• the significance values determine the ranking of principal components,
• the ranking is the basis for data abstraction, where principal components that bear

little information can be omitted,
• the loadings describe the relationship of the original data variables and the prin-

cipal components, and
• the scores describe the location of the original data records in the principal com-

ponent space.

Application examples

We will now demonstrate how PCA can be applied to enhance the visual analysis
of time-oriented data. Our general goal is to uncover structure in the data and to
reduce the analysis complexity by focusing on significant trends. In a first example,
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we will see that even a single principal component can bear sufficient information
for discerning main trends in the data. Secondly, an example will illustrate how one
can determine the principal components to be retained for the visualization as well
as the ones that can be omitted due to their low significance.

Before we start with the examples, however, it is important to mention that PCA
does not distinguish between independent and dependent variables. In particular,
the dimension of time is processed indiscriminately, which sacrifices the tempo-
ral dependencies in the data. Therefore, it is often preferable to exclude time from
the analysis, and to rejoin time and computed principal components afterwards to
restore the temporal context. This is what we will do in the next example.

Revealing internal structures with PCA We consider the visual analysis of a me-
teorological dataset that contains daily observations of temperature (Tmin, Tavg, and
Tmax) for a period of 105 years, which amounts to approximately 38,000 data records
(see Nocke et al., 2004). As we are only interested in the summer seasons’ weather
conditions, the daily raw data are first aggregated into yearly data. To this end, five
new variables are calculated for each year:

• total heat (p1) as the sum of the maximum temperatures for days with Tmax ≥
20◦C,

• summer days (p2) as the number of days with Tmax ≥ 25◦C,
• hot days (p3) the number of days with Tmax ≥ 30◦C,
• mean of average (p4) as the mean of the daily average temperatures Tavg, and
• mean of extreme (p5) as the mean of the daily maximum temperatures Tmax.

These five quantitative variables are strongly correlated. The extracted dataset
can be visualized as a centered layer area graph (↪→ p. 195), as illustrated in Fig-
ure 6.9. This visual representation is quite useful to get an overview of the data. We
can clearly distinguish valleys and peaks in the graph, which indicate particularly
cold and hot summers, respectively. The general trend in the data is communicated
quite well.

Fig. 6.9: Summer conditions (p1–p5) visualized as a centered layer area graph.
Source: Image courtesy of Thomas Nocke.

As we will see next, we can confirm our previous findings and gain further insight
with the help of PCA and a simple bar graph (↪→ p. 154). But instead of visualiz-
ing all five parameters, our visual analysis will be based on just a single principal
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component. So what we do is to apply PCA to the five variables extracted from the
raw data. The dimension of time is excluded from the PCA. The computed PCA
results are then fed to the visualization. In order to restore the temporal context, the
bar graph in Figure 6.10 shows time along the horizontal axis, and the first prin-
cipal component (PC1), to which all variables contribute because of their strong
correlation, at the vertical axis. For each year, a bar is constructed that connects the
baseline with the year’s PC1 coordinate (i.e., the year’s score in principal component
space). This effectively means upward bars encode a positive deviation from the ma-
jor trend, that is, they stand for warmer summers, where long bars indicate summers
with extreme conditions. In contrast, downward bars represent colder-than-normal
summers. As an additional visual cue, frequencies of score values are mapped onto
color to further distinguish typical (saturated green) and outlier (bright yellowish
green) years. This visual representation allows us to discern the following interest-
ing facts:

• The first third of the time axis is dominated by moderately warm summers mixed
with the coldest summers.

• The hot summers in the 1910s and 1920s are immediately followed by cold sum-
mers.

• There were relatively nice summer seasons between 1930 and 1950.
• In general, outlier summers, positive and negative ones, accumulate at the end of

the time axis.

Fig. 6.10: The bar graph encodes years along the horizontal axis and the scores of the first principal
component (PC1) along the vertical axis. Color indicates the frequency of score values.

Although the visualization in Figure 6.10 shows only the first principal compo-
nent, rather than the five data variables, it depicts corresponding trends very well.
Nonetheless, one should recall that our data represent a special case where all five
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variables are strongly correlated. This correlation is the reason why PC1 separates
warm and cold summers so well. When analyzing arbitrary time-oriented datasets,
further principal components might be necessary to capture major structural rela-
tionships. The following example will illustrate how users can be assisted in making
informed decisions about which principal component’s scores to display.

Determining significant principal components We now deal with a census dataset
with multiple variables, including population, gross domestic product, literacy, and
life expectancy. As before, the independent dimensions (i.e., time and space) are
excluded to maintain the data’s frame of reference, leaving ten variables to be pro-
cessed analytically by the PCA. Accordingly, the analysis yields ten principal com-
ponents, which correspond to the major trends in the data. The principal compo-
nents’ significance-weighted loadings indicate how individual variables participate
in these trends.

Fig. 6.11: The bars in the table cells visualize the loadings of principal components weighted by
their significance. This clearly echoes the ranking of the principal components.

The significance-weighted loadings of our example are depicted in Figure 6.11,
where longer bars stand for stronger participation, and blue and yellow color are
used for positive and negative values, respectively. By definition, the principal com-
ponents are ranked according to their significance from left to right. The figure in-
dicates that the data’s major trends (PC1-PC4) are largely influenced by the eight
variables from literacy to life expectancy. But we can also see that if we consider
only these first four principal components, we certainly lose the relation to the two
variables population and population density, which do not contribute to the top four
trends. Therefore, at least the principal components up to PC5, which is propor-
tional to population, and PC6, which is indirectly proportional to population den-
sity, should be retained. In turn, if we are interested in the main trends only, we can
safely omit the remaining principal components (PC7-PC10).

If we are interested in outlier trends as well, we should be less generous with
dropping principal components. This can be illustrated by a visualization of the plain
(i.e., unweighted) loadings of the principal components as shown in Figure 6.12.
The figure clearly reveals contradictory contributions of the variables to the lower-
ranked trends. In particular, we can see a contradiction between life expectancy of
females and males in the ninth principal component (PC9).
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Fig. 6.12: The bars in the table cells visualize the unweighted loadings of principal components,
that is, they indicate how much the individual variables contribute to any particular principal com-
ponent.

The visualization of the loadings helped us in identifying the top-ranked princi-
pal components and those that might bear potentially interesting outlier information.
The knowledge that we derived about the principal components can also be inter-
preted in terms of the variables of the original data space. A number of findings can
be gained, including:

• All the positive loadings in the main trend (PC1) indicate a direct proportional
relationship for the literacy, infant mortality, gross domestic product, birth rate,
death rate, and life expectancy.

• The second trend (PC2) is constituted by the gross domestic product, life ex-
pectancy as well as infant mortality, death rate, and birth rate, where the latter
three variables are indirectly proportional to this trend.

• The major trends in the data (PC1-PC3) are largely independent of population
and population density.

• An outlier trend is present in PC9, where the contradictory loadings of life ex-
pectancy of females and males might hint at an interesting aspect.

In summary we have seen in this section that PCA is a useful tool for crystallizing
major structural relationships in the data and for identifying possible candidates for
data reduction.

6.5 Summary

The information seeking mantra proposed by Shneiderman (1996) should guide the
users when exploring the data visually:

Overview first,
zoom and filter,

then details-on-demand.
Shneiderman (1996, p. 2)

However, with massive, heterogeneous, dynamic, and ambiguous datasets at
hand, it is difficult to create overview visualizations without losing interesting pat-
terns. Therefore, Keim et al. (2006) revised the information seeking mantra, in order



144 6 Analytical Support

to indicate that it is not sufficient to just retrieve and display the data using a visual
metaphor:

Analyze First -
Show the Important -

Zoom, Filter and Analyse Further -
Details on Demand.

Keim et al. (2006, p. 6)

In fact, it is necessary to analyze the data according to aspects of interest, to show
the most relevant features of the data, and at the same time to provide interaction
methods that allow the user to get details of the data on demand (see Keim et al.,
2010).

In this chapter, we provided a brief overview of how analytical methods can sup-
port the visual analysis of time-oriented data. We gave a list of typical temporal
analysis tasks and illustrated the utility of analysis methods with the three exam-
ples: clustering, temporal data abstraction, and principal component analysis. All of
these examples perform a particular kind of data abstraction. Admittedly, our exam-
ples are simple, but still we believe that they demonstrate the benefits of analytical
methods quite well.

In fact, when confronted with really huge datasets, a single analytical method
alone will most certainly not suffice. Instead, a number of analytical methods must
play in concert to cope with the size and complexity of time-oriented data. More-
over, analytical methods are not solely a preprocessing step to support the visu-
alization of data. The full potential of analytical methods unfolds only if they are
considered at all stages of interactive exploration and visual analysis processes in
an integrated fashion depending on the data, users, and tasks.

However, as we will see in the next chapter, more in-depth research and devel-
opment is necessary to arrive at an intertwined integration of visual, interactive and
analytical methods for the bigger goal of gaining insight into large and complex
time-oriented data.
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Chapter 7
Survey of Visualization Techniques

Today we live in an information-based technological world. The
problem is that this is an invisible technology. Knowledge and
information are invisible. They have no natural form. It is up to the
conveyor of the information and knowledge to provide shape,
substance, and organization [...]

Norman (1993, p. 104)

A major part of this book is dedicated to a survey of existing visualization techniques
for time and time-oriented data. The complexity of the visualization problem, which
results from the multitude of aspects having an impact on the visual representation,
already suggests that there must be a variety of techniques – and indeed there are
numerous ones. The following survey lists many techniques, some of them very
specific to a particular application domain, others more general with potential appli-
cability in other fields than the one described. We are aware that our survey cannot
be exhaustive. This is due to the fact that visualization of time-oriented data is a
hot research area which is constantly yielding new techniques. Moreover, we have
seen that visualization solutions might be highly application-dependent (what and
why aspects, see Chapter 4), and hence, it is virtually impossible to dig out every
tiny variation of existing visualization approaches that might be hidden in the vast
body of scientific literature across application domains. Therefore, we took care to
include a wide spectrum of key techniques, both classic ones with proven usefulness
and contemporary ones with potential impact.

The survey lists the techniques on a per-page basis. This allows for easy access
when a quick reference to a particular technique is sought by the reader. Each page
briefly describes the background, explains the main idea and concepts, and indi-
cates the application of a particular technique. The description is accompanied with
a reference to the original publication or a list of references in the case that multiple
publications propose or make use of the same approach. As this is a visualization
book, a figure demonstrates the technique in use or the conceptual construction of
the visual representation. Additionally, we provide a side-bar that categorizes the
technique. To keep the categorization at a manageable level, we do not use the full-

W. Aigner et al., Visualization of Time-Oriented Data,
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scale classification introduced in the previous chapters, but instead focus on three
key criteria: data, time, and vis(ualization). For each key criterion, we introduce fur-
ther sub-criteria and corresponding characteristics. The side-bar information follows
this pattern:

• data

– frame of reference – abstract vs. spatial
– variables – univariate vs. multivariate

• time

– arrangement – linear vs. cyclic
– time primitives – instant vs. interval

• vis

– mapping – static vs. dynamic
– dimensionality – 2D vs. 3D

Where possible, a distinct classification will be given. However, this is not always
possible, particularly for more general and flexible visualization approaches. In such
cases, we will indicate that multiple characteristics hold per category.

7.1 Techniques

It was not easy to decide on a good order for the techniques in the survey. If we
sorted by the name of a technique or by the year of first publication, we would lose
the semantic relationships of techniques, and similar techniques would be scattered
across the survey just because they have different names. Therefore, we use the cat-
egories provided in the side-bar to structure the survey. At the top-most levels, the
order is determined by the data characteristics. The survey will start with techniques
for abstract time-oriented data, and later we will move on to techniques for spatial
data. Accordingly, techniques for univariate time-oriented data will precede those
for multivariate data. At the subsequent levels, we order the techniques by their
affiliation to the categories arrangement, time primitives, mapping, and dimension-
ality.

Table 7.1 provides an overview of all techniques that are included in our survey
along with their categorization. This table might also be used to search for tech-
niques that fulfill certain criteria. Suppose we have an abstract univariate dataset
containing time instants as well as intervals and would like to find appropriate visu-
alization techniques. In this case, we would look at the columns abstract, univariate,
instant, and interval in Table 7.1 and search for lines that match these criteria. For
the given example, we would find the techniques Gantt chart, perspective wall, and
spiral display as primary matches. For quick access to a technique that is known by
name, the index at the end of the book provides the corresponding page number.
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2D 3D page
Point Plot � � � � � � 152
Line Plot � � � � � � 153
Bar Graph, Spike Graph � � � � � � 154
Sparklines � � � � � � 155
SparkClouds � � � � � � 156
Horizon Graph � � � � � � 157
TrendDisplay � � � � � � 158
Decision Chart � � � � � � 159
TimeTree � � � � � � 160
Arc Diagrams � � � � � � 161
Interactive Parallel Bar Charts � � � � � � 162
TimeHistogram 3D � � � � � � 163
Intrusion Monitoring � � � � � � 164
Anemone � � � � � � 165
Timeline � � � � � � 166
Gantt Chart � � � � � � � 167
Perspective Wall � � � � � � � 168
DateLens � � � � � � 169
TimeNets � � � � � � 170
Paint Strips � � � � � � 171
PlanningLines � � � � � � 172
Time Annotation Glyph � � � � � � 173
SOPO Diagram � � � � � � 174
Silhouette Graph, Circular Silhouette Graph � � � � � � � 175
Cycle Plot � � � � � � � 176
Cluster and Calendar-Based Visualization � � � � � � � � 177
Tile Maps � � � � � � � 178
Multi Scale Temporal Behavior � � � � � � � 179
Recursive Pattern � � � � � � � � 180
GROOVE � � � � � � � 181
SolarPlot � � � � � � � 182
SpiraClock � � � � � � 183
Enhanced Interactive Spiral � � � � � � 184
Spiral Graph � � � � � � � 185
Spiral Display � � � � � � � � � 186
VizTree � � � � � � � 187

continued on next page

Table 7.1: Overview and categorization of visualization techniques.
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2D 3D page
TimeSearcher � � � � � � 188
TimeSearcher 3, River Plot � � � � � � 189
BinX � � � � � � 190
LiveRAC � � � � � � 191
LifeLines2 � � � � � � 192
Similan � � � � � � 193
CareCruiser � � � � � � 194
Layer Area Graph � � � � � � 195
Braided Graph � � � � � � 196
ThemeRiver � � � � � � 197
3D ThemeRiver � � � � � � 198
Stacked Graphs � � � � � � 199
TimeWheel � � � � � � 200
MultiComb � � � � � � 201
VIE-VISU � � � � � � 202
Timeline Trees � � � � � � 203
Pixel-Oriented Network Visualization � � � � � � � 204
CiteSpace II � � � � � � 205
history flow � � � � � � 206
PeopleGarden � � � � � � � 207
PostHistory � � � � � � � 208
MOSAN � � � � � � � 209
Data Tube Technique � � � � � � 210
Kiviat Tube � � � � � � 211
Temporal Star � � � � � � 212
Time-tunnel � � � � � � 213
Parallel Glyphs � � � � � � � 214
Worm Plots � � � � � � 215
Software Evolution Analysis � � � � � � 216
InfoBUG � � � � � � � 217
Gravi++ � � � � � � � 218
CircleView � � � � � � � 219
Trendalyzer, Animated Scatter Plot � � � � � � 220
TimeRider � � � � � � 221
Process Visualization � � � � � � 222
Flocking Boids � � � � � � 223

continued on next page

Table 7.1: Overview and categorization of visualization techniques.
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2D 3D page
Time Line Browser � � � � � � � 224
LifeLines � � � � � � � 225
PatternFinder � � � � � � � 226
Continuum � � � � � � � 227
EventRiver � � � � � � � 228
FacetZoom � � � � � � � 229
Midgaard � � � � � � � 230
VisuExplore � � � � � � � 231
KNAVE II � � � � � � � 232
Circos � � � � � � � � 233
Kaleidomaps � � � � � � 234
Intrusion Detection � � � � � � 235
Small Multiples � � � � � � � � � � 236
EventViewer � � � � � � � � � � 237
Ring Maps � � � � � � � � � � � 238
Time-Oriented Polygons on Maps � � � � � � � 239
Icons on Maps � � � � � � � � � � 240
Value Flow Map � � � � � � 241
Flow Map � � � � � � � 242
Time-Varying Hierarchies on Maps � � � � � � 243
VIS-STAMP � � � � � � 244
Space-Time Cube � � � � � � � � 245
Spatio-Temporal Event Visualization � � � � � � � 246
Space-Time Path � � � � � � � � 247
GeoTime � � � � � � � 248
Pencil Icons � � � � � � � 249
Data Vases � � � � � � � � 250
Wakame � � � � � � 251
Helix Icons � � � � � � � 252
count 87 17 47 65 94 25 93 30 94 11 80 28

Table 7.1: Overview and categorization of visualization techniques.

Let us now start the survey with the simple, but most widely used techniques for
visualizing time-oriented data – the point plot and the line plot.
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Point Plot
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Fig. 7.1: Data are displayed as points in a Cartesian coordinate system where time and data are
mapped to the horizontal axis and the vertical axis, respectively.
Source: Authors.

One of the most straightforward ways of depicting time-series data is using a Carte-
sian coordinate system with time on the horizontal axis and the corresponding value
on the vertical axis. A point is plotted for every measured time-value pair. This kind
of representation is called point plot, point graph, or scatter plot, respectively. Harris
(1999) describes it as a 2-dimensional representation where quantitative data aspects
are visualized by distance from the main axis. Many extensions of this basic form
such as 3D techniques (layer graph) or techniques that use different symbols instead
of points are known. This technique is particularly suited for emphasizing individ-
ual values. Moreover, depicting data using position along a common scale can be
perceived most precisely by the human perceptual system.

References
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Line Plot
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Fig. 7.2: Successive data points are connected with lines to visualize the overall change over time.
(top-left: straight lines; top-right: Bézier curves; bottom-left: missing data; bottom-right: band
graph).
Source: Authors.

The most common form of representing time-series are line plots. They extend point
plots (↪→ p. 152) by linking the data points with lines which emphasizes their tem-
poral relation. Consequently, line plots focus on the overall shape of data over time.
This is in contrast to point plots where individual data points are emphasized. As il-
lustrated in Figure 7.2, different styles of connections between the data points such
as straight lines, step lines (instant value changes), or Bezier curves can be used
depending on the phenomenon under consideration. However, what has to be kept
in mind is that one can not be sure in all cases about the data values in the time in-
terval between two data points and that any kind of connection between data points
reflects an approximation only. A further point of caution is missing data. Simply
connecting subsequent data points might lead to false conclusions regarding the
data. Therefore, this should be made visible to the viewer, for instance by using dot-
ted lines (see Figure 7.2, bottom-left). There are many extensions or subtypes like
fever graphs, band graphs (see Figure 7.2, bottom-right), layer line graphs, surface
graphs, index graphs, or control graphs (see Harris, 1999).

References
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Bar Graph, Spike Graph
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Fig. 7.3: Bar length is used to depict data values. Right: if bars are reduced to spikes the graph is
also called a spike graph.
Source: Adapted from Harris (1999).

Bar graphs (see Harris, 1999) are a well known and widely used type of represen-
tation where bars are used to depict data values (see Figure 7.3, left). This makes
comparisons easier than with point plots. As bar length is used to depict data values,
only variables with a ratio scale (having a natural zero) can be represented. Conse-
quently, the value scale also has to start with zero to allow for a fair visual compar-
ison. In contrast to line plots, bar graphs emphasize individual values as do point
plots. A variant of bar graphs often used for graphing larger time-series (e.g., stock
market data such as price or volume) are spike graphs. As illustrated in Figure 7.3
(right), the vertical bars are reduced so as to appear as spikes, where spike height
is again used to encode data values. This way, a good visual balance is achieved
between focusing on individual values and showing overall development of a larger
number of data values.

References
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Sparklines
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Fig. 7.4: Simple, word-like graphics intended to be integrated into text visualize stock market data
(top). Bottom: Soccer season results using ticks (up=win, down=loss, base=draw).
Source: Generated with the sparklines package for LATEX.

Tufte (2006) describes sparklines as simple, word-like graphics intended to be in-
tegrated into text. This adds richer information about the development of a variable
over time that words themselves could hardly convey. The visualization method fo-
cuses mainly on giving an overview of the development of values for time-oriented
data rather than on specific values or dates due to their small size and the omis-
sion of axes and labels. Sparklines can be integrated seamlessly into paragraphs of
text, can be laid out as tables, or can be used for dashboards. They are increas-
ingly adopted to present information on web pages (such as usage statistics) in
newspapers (e.g., for sports statistics), or in finance (e.g., for stock market data).
Usually, miniaturized versions of line plots (↪→ p. 153) and bar graphs

(↪→ p. 154) are employed to represent data. For the spe-
cial case of binary or three-valued data, special bar graphs can be applied that use
ticks extending up and down a horizontal baseline . One use for this
kind of data are wins and losses of sports teams where the history of a whole sea-
son can be presented using very little space. For line plots, the first and last value
can be emphasized by colored dots ( ) and printing the values themselves textually
to the left and right of the sparkline. Moreover, the minimum and maximum val-
ues might also be marked by colored dots ( ). Besides this, colored bands in the
background of the plot can be used to show normal value ranges as for example
here 4.8 8.3.
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SparkClouds
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Fig. 7.5: Display of the 25 most important keywords in a series of twelve measurements. The
bigger the font size is, the more important is a keyword. Keywords that are not among the current
top 25 important keywords but have been among them at an earlier point in time are attenuated by
using dimmed color and smaller font size.
Source: Lee et al. (2010). © 2010, IEEE. Used with permission.

Tag clouds visualize a set of keywords weighted by their importance. To this end,
a layout of the keywords is computed. By varying font size, color, or other visual
variables important keywords are emphasized over less-important keywords. Clas-
sic tag clouds, however, are incapable of representing the evolution of keywords.
Lee et al. (2010) integrate sparklines (↪→ p. 155) into tag clouds in order to visual-
ize temporal trends in the development of keywords. The idea is to visually com-
bine a keyword (or tag) and its temporal evolution. The keyword’s importance is
encoded with the font size used to render the text, where the size can correspond
either to the overall importance of the keyword for the entire time-series or to the
importance at a particular point in time. Attached to the keyword is a sparkline that
represents the keyword’s trend. A color gradient is shown in the background of each
keyword-sparkline pair to make this design perceivable as a visual unit. Lee et al.
(2010) conducted user studies with sparkclouds and could confirm that sparkclouds
are useful and have advantages over alternative standard methods for visualizing
text and temporal information.
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Horizon Graph
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Fig. 7.6: The construction of a horizon graph from a line chart is illustrated on the left. Because
horizon graphs require only little screen space they are very useful for comparing multiple time-
dependent variables as shown to the right for stock market data.
Source: Left: Adapted from Reijner (2008). Right: Image courtesy of Hannes Reijner.

Reijner (2008) describes horizon graphs as a visualization technique for comparing
a large number of time-dependent variables. Horizon graphs are based on the two-
tone pseudo coloring technique by Saito et al. (2005). The left part of Figure 7.6
demonstrates the construction of horizon graphs (from top to bottom). Starting from
a common line plot, the value range is divided into equally sized bands that are dis-
criminated by increasing color intensity towards the maximum and minimum values
while using different hues for positive and negative values. Then, negative values are
mirrored horizontally at the zero line. Finally, the bands are layered on top of each
other. This way, less vertical space is used, which means data density is increased
while the resolution is preserved. A study by Heer et al. (2009) has shown that mir-
roring does not have negative effects and that layered bands are more effective than
the standard line plot (↪→ p. 153) for charts of small size, as for example in the right
part of Figure 7.6.
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TrendDisplay
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Fig. 7.7: The main panel shows the raw data (drug discovery data) and the top panel depicts derived
statistical values. Depending on the available screen space, four different levels of visual abstrac-
tion are used: density distributions, thin box plots, box plots plus outliers, and bar histograms (as
illustrated to the right).
Source: Brodbeck and Girardin (2003), © 2003 IEEE. Used with permission.

The TrendDisplay technique by Brodbeck and Girardin (2003) allows the analysis
of trends in larger time-series. The technique is used for the drug discovery process
and in quality control. Basically, the TrendDisplay window is composed of two pan-
els. The main panel on the bottom shows the measured (raw) data and the top panel
depicts derived statistical values (see Figure 7.7, left). Four different levels of detail
are used in order to cope with large numbers of time points: density distributions,
thin box plots, box plots plus outliers, and bar histograms (from low to high level
of detail) (see Figure 7.7, right). In the temporal dimension, bifocal focus+context
functionality is used for enlarging areas of interest without losing context informa-
tion about neighboring data. The different levels of detail are chosen automatically
depending on the available screen space. Moreover, brushing & linking as well as
smooth transitions complete the highly interactive interface.
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Decision Chart
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Fig. 7.8: Future decisions and corresponding alternative outcomes are depicted over time along
with their probabilities.
Source: Adapted from Harris (1999).

Harris (1999) describes decision charts as a graphical representation for depicting
future decisions and potential alternative outcomes along with their probabilities
over time. It is one of very few techniques for time-oriented data that use the branch-
ing time model (see Section 3.1.1). Decision charts use a horizontal time axis along
which information elements (decisions and probabilities) are aligned. Multiple de-
cisions for a particular time interval are stacked on top of each other, indicating that
they are possible alternatives for that interval. However, the temporal context itself
is not of prime interest and is just indicated by a simple time scale on the bottom
of the chart. The main advantage of the decision chart is that it allows planners to
investigate possible outcomes and implications before decisions are made.
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TimeTree
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Fig. 7.9: The figure shows changes in the organizational structure of officials in the DPR Korea
with focused and important nodes highlighted. The time slider (currently set to March 1995) shows
selected personal events and serves for interactive navigation.
Source: Card et al. (2006), © 2006 IEEE. Used with permission.

TimeTree by Card et al. (2006) is a visualization technique to enable the explo-
ration of changing hierarchical organizational structures and of individuals within
such structures. The visualization consists of three parts: a time slider, a tree view,
and a search interface (see bottom, center, and top of Figure 7.9, respectively). The
time slider’s main purpose is to allow users to navigate to any point in time. Ad-
ditionally, it shows information strips with events for a selected set of individuals,
and thus, provides insight into where in time interesting things have happened. The
tree view shows the snapshot of the organizational structure corresponding to the
selected time point. The tree visualization uses a degree-of-interest (DOI) approach
to highlight important information. To this end, a specific color scheme is used to
indicate certain data characteristics, as for instance, important nodes, nodes match-
ing with search queries, or recently clicked nodes. Low-interest nodes, with regard
to the user’s current focus and search query, are ghosted, and entire subtrees may be
represented as triangular abstractions in order to de-clutter the display and maintain
the readability of important nodes. The search interface supports a textual search for
individuals in the represented organization.
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Arc Diagrams
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Fig. 7.10: A sequence of data values is shown along the horizontal axis. Matching subsequences
are connected by arcs, where arc thickness and height encode subsequence size and occurrence
distance, respectively.
Source: Image courtesy of Michael Zornow.

Patterns in sequences of data values can be visualized using arc diagrams. They were
introduced as an interactive visualization technique by Wattenberg (2002). Given a
sequence of values, the goal is to extract significant subsequences that occur multi-
ple times in the original sequence. The visualization displays the sequence of data
values in textual form along the horizontal (time) axis. Occurrences of significant
subsequences are visually connected by spanning arcs. The arcs’ thickness repre-
sents the size of the subsequence, that is, the number of data values in the subse-
quence. The height of an arc indicates the distance between two successive occur-
rences of the subsequence. To express data-specific aspects, one can separately use
the space above or below the data sequence. This also helps to reduce overlap of
arcs. Additionally, transparency is used to allow users to see through overlapping
arcs. The visualization can be controlled interactively via several parameters (e.g.,
minimum size of subsequences or tolerance threshold for fuzzy pattern extraction)
to keep the number of arcs at an interpretable level.
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Interactive Parallel Bar Charts
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Fig. 7.11: Visualization of clinical time-dependent data where one axis represents different
hemodialysis sessions and the other axis represents the series of time steps. One time-dependent
variable (e.g., blood pressure) is encoded to the height of the bars.
Source: Chittaro et al. (2003), © 2003 Elsevier. Used with permission.

Chittaro et al. (2003) present a technique for visualizing time-dependent hemodial-
ysis data. To keep the visualization of multiple hemodialysis sessions simple and
easy to use for physicians, the design is based on common 3D bar charts, where the
height of bars encodes individual data values. Multiple bar charts (one per hemodial-
ysis session) are arranged on a regular grid in a parallel fashion. This visual display
is easy to interpret despite the 3D projection. Visual exploration and analysis are
facilitated through a wealth of interaction tools. Dynamic filtering combined with
a color coding mechanism supports visual classification. To manage occlusions, in-
teractive features are provided, such as flattening individual bars or groups of bars,
or leaving only colored squares in the grid. The water level interaction is particu-
larly helpful for comparison tasks: virtual water engulfs all bars with a height below
a user-defined threshold. This eases the assessment of similarities and differences
with respect to dialysis sessions and time. Additional visual cues support physi-
cians in detecting anomalies or special events in the data and enable them to take
necessary actions quickly. For multivariate analysis, an integration with parallel co-
ordinate plots is supported.
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TimeHistogram 3D
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Fig. 7.12: Time is encoded along the x-axis, while a time-dependent variable (RelativePressure)
is represented along the y-axis. For each time-value pair in the resulting grid in the x-y plane, the
height of a cuboid represents the frequency of data items per grid cell.
Source: Kosara et al. (2004), © 2004 IEEE. Used with permission.

Kosara et al. (2004) proposed an interactive extension of well-known histograms
called TimeHistogram 3D. The TimeHistogram is especially designed for time-
oriented data. It has been developed to give an overview of complex data in the
application context of computational fluid dynamics (CFD). A design goal of this
technique was to show temporal information in static images while maintaining the
easy readability of standard histograms. In the TimeHistograms in Figure 7.12, the
x-axis encodes time and the y-axis encodes a time-dependent variable (RelativePres-
sure), effectively creating a grid in the x-y plane, where each grid cell corresponds
to a unique time-value pair. In order to visualize the number of data items (i.e., their
frequency) per time-value pair, cuboids are shown for each cell, where the height
of a cuboid encodes the frequency. This way, the user can see where in time and
in which value range data items accumulate. Several interactive features such as
brushing, scaling, and a 2D context display, which is shown in the background of
the histogram, are part of this technique.
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Intrusion Monitoring

m
ap

pi
ng

:
dy

na
m

ic
di

m
en

si
on

al
ity

:
2D

vis

ar
ra

ng
em

en
t:

lin
ea

r
tim

e
pr

im
iti

ve
s:

in
st

an
t

time

fr
am

e
of

re
fe

re
nc

e:
ab

st
ra

ct
va

ri
ab

le
s:

un
iv

ar
ia

te

data

Fig. 7.13: The glyph in the center represents the monitored system. Connections to remote hosts
are depicted as radially arranged lines. Critical and suspicious connections are visualized by red
and yellow color, respectively.
Source: Image courtesy of Robert F. Erbacher.

Erbacher et al. (2002) describe a system that visualizes time-stamped network-
related log messages that are dynamically generated by a monitored system. These
messages correspond to events in a linear continuous time domain. The visualiza-
tion shows the monitored server system as a central glyph encoding the number of
users and the server’s load (see Figure 7.13). Events are shown as radially arranged
lines at whose end the remote host is shown as a smaller glyph. Regular network ac-
tivities are drawn with a shade of gray. Unexpected or suspicious activities result in
a change of color: Hosts that try to open privileged connections are colored in red,
hosts that fail to respond turn yellow, lines representing timed-out connections or
connections that failed the authentication procedure are shown in red, and connec-
tions that have been identified as intrusions are represented with even brighter red.
To preserve a history of connections that have been terminated, the corresponding
lines are faded out gradually. This kind of visual representation helps administra-
tors in observing network communication. Presenting colored (red or yellow) lines
among gray lines attracts the attention of administrators to suspicious activity and
actions can be taken quickly to counter network attacks from remote hosts.
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Fig. 7.14: Snapshot of Anemone showing traffic patterns of people visiting the web site of the
Aesthetics & Computation Group at the M.I.T. Media Lab. The structure of the web site is shown
as a node-link representation. Nodes vary in size, depending on how frequently a page is visited
by users. Rarely-visited parts fade out slowly.
Source: Image courtesy of Ben Fry, MIT Media Laboratory, Aesthetics + Computation Group,
© 1999-2005.

Anemone by Fry (2000) is a technique related to the visualization of structured
information. It is a dynamic, organic representation designed to reveal not only the
static structure of a website, which is based on its organization into folders and
files, but also to reveal dynamic usage patterns. To this end, a classic node-link
representation is visually enriched with dynamically updated usage statistics to form
a living representation that truly reflects the restless nature of a website. The static
structure is shown as nodes that are connected via straight branches. At the tip of a
branch resides the actual web page. Additional labels can be used to identify nodes
by their corresponding page’s name. Nodes dynamically change size depending on
how often they are visited by users. When a user follows a link from one page to
another, a thin curved line is drawn connecting both pages. If parts of a site have not
been visited for a long time, they shrink in size and slowly fade out. To allow users
to concentrate on particular items of interest, it is possible to select nodes and to lock
them to a dedicated position. This is quite useful, because the dynamic character of
the technique implies that visual representation constantly changes its appearance.
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Timeline
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Fig. 7.15: Bars are arranged relative to a time axis to visualize both the location and duration of
intervals. One can also see how intervals are related to each other.
Source: Generated by the authors.

If the time primitives of interest are not points but intervals, the visualization has
to communicate not only where in time a primitive is located, but also how long it
is. A simple and intuitive way of depicting incidents with a duration is by marking
them visually along a time axis. This form of visualization is called timeline. Most
commonly, a visual element such as a line or a bar represents an interval’s starting
point and duration (and consequently its end). Figure 7.15 shows an example with
bars. If multiple intervals share a common time axis, as in this example, it is even
possible to discern how the various intervals are related to each other (for possible
relations of intervals see Section 3.1.2). Timelines are a very powerful visualization
technique that, according to Tufte (1983), had been used long before computers
even appeared (see also Chapter 2). Many different variants of timelines exist in
diverse visualization tools. Additional interaction techniques often allow users not
only to view time intervals, but also to create and edit them. Prominent examples
are LifeLines (↪→ p. 225) and Gantt charts (↪→ p. 167).
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Gantt Chart
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Fig. 7.16: The Gantt chart shows a project plan for construction works. To the left, the chart pro-
vides an indented list of tasks. In the main panel, timelines show position and duration of tasks in
time, where black and blue bars stand for groups of tasks and individual tasks, respectively. Addi-
tionally, diamonds indicate milestones.
Source: Authors.

Planning activities, people, and resources is a task that is particularly important in
the field of project management. One of the common visualization techniques used
for such tasks are Gantt charts. This kind of representation was originally invented
by Gantt (1913) who studied the order of steps in work processes (see also Chap-
ter 2, p. 25). Mainly work tasks with their temporal location and duration as well
as milestones are depicted. The tasks are displayed as a textual list in the left part
of the diagram and might be augmented by additional textual information such as
resources, for example. Related tasks can be grouped to form a hierarchy, which is
reflected by indentation in the task list. For displaying the position and duration of
tasks in time, timelines (↪→ p. 166) are drawn at the corresponding vertical position
of the task list. This leads to an easily comprehensible representation of information
from the past, present, and future. Hierarchically grouped tasks can be expanded and
collapsed interactively. Summary lines are used to maintain an overview of larger
plans. Sequence relationships are represented by arrows that connect tasks (e.g., an
arrow from the end of task A to the beginning of task B shows that task B may start
only after task A is finished). Milestones indicating important time points for syn-
chronization within a project plan are visually represented by diamonds. The fact
that tasks are mostly ordered chronologically, typically leads to a diagonal layout
from the upper left to the lower right corner of the display.
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Perspective Wall
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Fig. 7.17: A perspective wall representing time-related information of a file system for a period of
several months. The focus (currently set to September/October 1996) shows detailed text labels for
files, whereas the context regions only indicate files as yellow boxes.
Source: © Inxight Federal Systems.

Time-oriented data that are linked to a longer time axis (i.e., wide span in time or
many time primitives) are usually difficult to represent visually because the image
becomes very wide and exhibits an aspect ratio that is not suited for common dis-
plays. The perspective wall by Mackinlay et al. (1991) is a technique that addresses
this problem by means of a focus+context approach. The key idea is to map time-
oriented data to a 3D wall. For a user-selected focus, full detail is provided in the
center of the display. Two context representations show the data in the past (to the
left) and in the future (to the right) with regard to the current focus. The context is
bent perspectively to reduce the display space occupied by these regions, effectively
allowing for better space utilization in the focus (see center of Figure 7.17). Inter-
action methods are provided to enable users to navigate in time in order to bring
different time spans into focus. The actual data representation on the wall may vary
across applications; the only requirement is that time is mapped linearly from left
to right. For example, one can use bars as in the figure or more advanced visual
representations such as the ThemeRiver (↪→ p. 197).
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DateLens
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Fig. 7.18: A calendar grid shows the items of one’s personal schedule as colored bars (left). Fisheye
distortion is applied to show detailed textual information at the point the user is focusing on, and
to maintain the context at less graphical detail (right).
Source: Images courtesy of Ben Bederson.

Most people use calendars to plan their daily life, for instance, to maintain a list of
appointments or bookmark future events. Bederson et al. (2004) developed a tool to
make it easier to work with a personal schedule on small handheld devices. Because
display space is limited on such devices (compared to common desktop displays),
focus+context mechanisms are applied to present temporal information at differ-
ent levels of detail. Based on a common tabular representation of a calendar (see
Figure 7.18, left), the DateLens magnifies table cells so as to provide more display
space to important information that is currently in the user’s focus (see Figure 7.18,
right). The fisheye distortion magnifies the focus and reduces graphical detail in the
context of the display. If sufficient display space is available, calendar entries are
shown in textual form. Otherwise, temporal intervals of calendar entries are indi-
cated by bars that visualize the starting point and temporal extent of appointments
and events stored in the calendar. Various interaction mechanisms allow users to
view the calendar at different temporal granularities and to navigate forward and
backward in time.
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TimeNets
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Fig. 7.19: TimeNets visualize temporal and structural aspects of genealogical data. Bands that
extend along the horizontal time axis visualize individuals. Marriage and divorce are indicated
by converging and diverging bands, respectively. Children are connected to their parents via drop
lines. Labels are shown for the persons’ names as well as for historical and personal events.
Source: Image courtesy of Jeffrey Heer and Nam Wook Kim.

Genealogical data are an interesting source of time-oriented information. In such
data, not only family structures are of interest, but also temporal relationships.
Kim et al. (2010) propose the TimeNets approach, which aims to visualize both of
these aspects. TimeNets represent persons as individual bands that extend horizon-
tally along a time axis from left to right. Each band shows a label of the person’s
name and different colors are used to encode sex: red is reserved for females, and
males are shown in blue. Marriage of persons is visualized by converging the corre-
sponding bands, while divorce is indicated by diverging bands. When a child is born,
a new band is added to the display. A so-called drop line connects the band of the
child to the parents’ bands to convey the parent-child relationship. In order to allow
users to focus on relevant parts of the data, a degree of interest (DOI) algorithm is
applied. Bands below the DOI threshold are filtered out or smoothly fade in where
they are linked to bands of relevant persons. Users can select multiple persons to
focus on. On each change of the focus, the visualization shows a smooth transition
of the display to keep users oriented.
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Paint Strips
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Fig. 7.20: Paint strips indicate the location and duration of time intervals, effectively allowing
users to assess relationships of intervals. Temporal indeterminacy of intervals is indicated by paint
rollers that can move flexibly within certain constraints, which are represented by wall elements.
Source: Image courtesy of Luca Chittaro.

Chittaro and Combi (2003) designed paint strips to represent relations between time
intervals for visualizing queries on medical databases. The technique is strongly re-
lated to timelines (↪→ p. 166), but here paint strips are used as equivalents of bars
to indicate time intervals, and optionally, the indeterminacy of intervals is commu-
nicated by placing paint rollers at either end of the paint strips. A paint roller with
a weight attached to it means this interval can possibly extend in time. Graphi-
cal depictions of wall elements represent constraints on the extension. This way, the
maximum duration and earliest start or latest end of intervals are defined, depending
on which end of the painting strip the paint rollers are attached to. It is also possi-
ble to link strips, which means if one strip moves, the other one moves to the same
extent as well. This relationship is indicated graphically by connecting the involved
paint rollers before attaching them to the rope that holds the weight (see bottom of
Figure 7.20). Paint strips were especially developed for medical applications but can
be used anywhere where indeterminate time intervals have to be visualized. Thanks
to the simplicity of the paint strip metaphor, there is room for application-dependent
enhancements, such as textual annotations for start and end points as well as for
durations of intervals.
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PlanningLines
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Fig. 7.21: Project plan of construction works that represents temporal uncertainties via Planning-
Lines. A PlanningLine glyph consists of two encapsulated bars, which represent minimum and
maximum duration. The bars are bounded by two caps encoding the start and end intervals.
Source: Adapted from Aigner et al. (2005).

Since the future is always inherently connected with possible uncertainties, delays,
and the unforeseen, these issues need to be dealt with in many domains like project
management or medical treatment planning. PlanningLines by Aigner et al. (2005)
allow the representation of temporal uncertainties, thus supporting project managers
in their difficult planning and controlling tasks. PlanningLines have been designed
to be easily integrated into well-known timeline-based visualization techniques such
as Gantt charts (↪→ p. 167). A single glyph (see glyph explanation in Figure 7.21)
provides a visual representation of the temporal indeterminacies of a single activity,
facilitates the identification of (un)defined attributes, supports in maintaining logical
constraints (e.g., bars may not extend caps), and gives a visual impression of the
individual and overall uncertainties. Uncertainties might be introduced by explicit
specifications, usually connected with future planning (e.g., “The meeting will start
between 12 p.m. and 2 p.m..” – which might be any point in time between noon
and 2 p.m.) or is implicitly present in cases where data are given with respect to
multiple temporal granularities (e.g., data given on a granularity of days and shown
on an hourly scale).
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Time Annotation Glyph
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Fig. 7.22: The time annotation glyph was designed to represent the temporal constraints of medical
treatment plans. It uses the metaphor of bars that lie on pillars. Left: Single glyph and associated
parameters. Right: Usage in a tool for representing the temporal and hierarchical aspects of a
medical treatment plan as well as the execution order of individual parts.
Source: Images courtesy of Robert Kosara.

The time annotation glyph by Kosara and Miksch (2001) uses the simple metaphor
of bars that lie on pillars to represent a complex set of time attributes. Four vertical
lines on the base specify the earliest and the latest starting and ending times. Sup-
ported by these pillars lies a bar that is as long as the maximum duration. On top
of the maximum duration bar, a bar that represents the minimum duration lies upon
two diamonds indicating the latest start and the earliest end. Furthermore, undefined
parts and different granularities are indicated visually. Because of this metaphor, a
few simple time parameter constraints can be understood intuitively. For example,
the minimum duration cannot be shorter than the interval between latest start and
earliest end – if it was, the minimum duration bar would fall down between its sup-
ports. All of the parameters might be defined relative to a reference point that is
also represented graphically. In summary, the following parameters are shown: ear-
liest starting shift (ESS), latest starting shift (LSS), earliest finishing shift (EFS),
latest finishing shift (LFS), minimum duration (MinDu), and maximum duration
(MaxDu). The technique is used to represent the time annotations of medical treat-
ment plans within the AsbruView application (see Figure 7.22, right) as described
in Kosara and Miksch (2001).
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SOPO Diagram
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Fig. 7.23: A SOPO diagram shows the possible configurations of the begin and end times of an
event via a constrained polygonal shape. Right: SOPOView – an interactive visualization tool for
working with SOPOs applied for medical treatment plans.
Source: Images courtesy of Robert Kosara.

For planning and scheduling, the temporal extents of events can be characterized by
sets of possible occurrences (SOPOs), i.e., a set of possible begin and end times dur-
ing which an event may happen. Rit (1986) defined a theoretical model for the def-
inition and propagation of temporal constraints for scheduling problems. A graph-
ical representation of SOPOs was introduced as a visual aid for understanding and
solving such problems. In this representation, the extent of temporal uncertainty
is expressed via a polygonal shape. The axes of a SOPO diagram represent begin
time (x-axis) and end time (y-axis). Points in this diagram do not represent points
in time, but complete intervals specified by their begin (x-coordinate) and end time
(y-coordinate). Hence, the extent of an interval is represented by its position, not
its visual extent. The area an item covers reflects all intervals that fit the specifica-
tion given by means of earliest start, latest start, earliest end, latest end, minimum,
and maximum duration (see Figure 7.23, left). Moreover, the exact occurrence of an
event may be constrained by other related events which further modify the sets of
possible occurrences. The propagation of such constraints is aided graphically, e.g.,
via overlaps of individual SOPOs. Later, this idea was interactively enhanced and
further developed to be applied for visualizing medical treatment plans in the tool
SOPOView (see Figure 7.23, right and Kosara and Miksch, 2002).
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Silhouette Graph, Circular Silhouette Graph
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Fig. 7.24: Silhouette graphs are filled line plots that can be used for enhancing the comparison of
multiple time-series that are put side-by-side.
Source: Adapted from Harris (1999).

Silhouette graphs emphasize the visual impression of time-series by filling the area
below the plotted lines (see Harris, 1999). This leads to distinct silhouettes that en-
hance perception at wide aspect ratios of long time-series compared to line plots (↪→
p. 153) and allow an easier comparison of multiple time-series. On the left of Fig-
ure 7.24, time is mapped to the horizontal axes and multiple time-series are stacked
upon each other. Other layouts of the axes might be used for reflecting different
time characteristics. One example are circular silhouette graphs (see Figure 7.24,
right) that represent silhouette graphs on concentric circles in order to emphasize
periodicities in time.
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Cycle Plot
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Fig. 7.25: Both seasonal and trend components of a time-series can be discerned from cycle plots
(left), which is hardly possible when using line plots (right).
Source: Adapted from Cleveland (1993) with permission of William Cleveland.

Time-series data may contain a seasonal as well as a trend component, which is
also reflected in many statistical models. Cleveland (1993) describes cycle plots as
a technique to make seasonal and trend components visually discernable. This is
achieved by showing individual trends as line plots embedded within a plot that
shows the seasonal pattern. For constructing a cycle plot, one has to define the
time primitives to be considered for the seasonal component. The horizontal axis
of the cycle plot is then subdivided accordingly. Figure 7.25 demonstrates this using
weekdays. We are interested in the trend for each weekday and the general weekly
pattern. The data for a particular weekday are visualized as a separate line plot (e.g.,
data of the 1st, 2nd, 3rd, and 4th Monday). This allows the identification of indi-
vidual trends for each day of the week. In the figure, we see an increasing trend for
Mondays, but a decreasing trend for Tuesdays. Additionally, the cycle plot shows
the mean value for each weekday (depicted as gray lines). Connecting the mean val-
ues as a line plot (dashed line in the figure) reveals the seasonal pattern, which in
this case is a weekly pattern that clearly shows a peak on Wednesday.
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Cluster and Calendar-Based Visualization
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Fig. 7.26: The 3D visualization on the left represents daily power consumption patterns for several
weeks of a year. The calendar representation on the right shows the cluster affiliation of daily
patterns and allows users to discern days with uncommon patterns, in this case office hours of
employees.
Source: Van Wijk and Van Selow (1999), © 1999 IEEE. Used with permission.

Temporal patterns can indicate at which time of the day certain resources are highly
stressed. Relevant applications can be found in computing centers, traffic networks,
or power supply networks. An approach that allows for finding temporal patterns
at different temporal granularities has been proposed by Van Wijk and Van Selow
(1999). The starting point of the approach is to consider the course of a day as a
line plot (↪→ p. 153) covering the 24 hours of a day. Multiple daily courses of this
kind are visualized as a three-dimensional height field (see left part of Figure 7.26),
where the hours of the day are encoded along one axis, individual days are encoded
along the second axis, and data values are encoded as height (along the third axis).
This allows users to detect short term daily patterns and long term trends of the
data at higher temporal granularity. To assist in the analysis of the data, Van Wijk
and Van Selow further suggest grouping similar daily courses into clusters (see also
Section 6.2, p. 130). The data belonging to a particular cluster are aggregated to
define the representative for that cluster, i.e., the representative again forms a daily
course. Cluster affiliation of individual dates is then color-coded into a calendar as
depicted in the right part of Figure 7.26. The user can adjust the number of clusters
to be shown so as to find the level of abstraction that suits the data and the task at
hand. The combination of analytical and visual methods as applied here is useful for
identifying days of common and exceptional daily behavior.
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Tile Maps

m
ap

pi
ng

:
st

at
ic

di
m

en
si

on
al

ity
:

2D

vis

ar
ra

ng
em

en
t:

lin
ea

r,
cy

cl
ic

tim
e

pr
im

iti
ve

s:
in

st
an

t

time

fr
am

e
of

re
fe

re
nc

e:
ab

st
ra

ct
va

ri
ab

le
s:

un
iv

ar
ia

te

data

Fig. 7.27: The matrices show ozone measurements made in the course of three years, where data
values for individual days are encoded to the brightness of matrix cells.
Source: Adapted from Mintz et al. (1997) with permission of David Mintz.

Tile maps as described by Mintz et al. (1997) represent a series of data values along
a calendar division. The idea behind this technique is to arrange data values ac-
cording to different temporal granularities. For example, data values measured on
a daily basis are displayed in a matrix where each cell (or tile) corresponds to a
distinct day, a column represents a week, and a row represents all data values for a
particular weekday (see Figure 7.27). One additional level of granularity can be in-
tegrated by stacking multiple matrices as shown in the figure. Data values are visual-
ized by varying the lightness of individual tiles. A visual representation constructed
this way can be interpreted quite easily, because it corresponds to our experience
of looking at calendars. The arrangement as a two-dimensional matrix allows users
to identify long-term trends by considering the matrix as a whole, to discern indi-
vidual trends for Mondays, Tuesdays, and so forth by looking at the matrix rows,
and to derive weekly patterns by investigating matrix columns. For example, the
U.S. Environmental Protection Agency provides a web tool that generates tile maps
automatically for specified air pollutants and locations.
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Multi Scale Temporal Behavior
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Fig. 7.28: Different levels of granularity are shown simultaneously in one display to allow users to
explore patterns in precipitation data from Brazil at different temporal levels.
Source: Image courtesy of Milton Hirokazu Shimabukuro.

The Multi Scale Temporal Behavior technique by Shimabukuro et al. (2004) com-
prises different levels of granularity and aggregation to explore patterns at different
temporal levels. The basis for the visualization is a matrix that is divided vertically
into three regions, one for each of the three scale levels: daily data, monthly data,
and yearly data (see Figure 7.28, top to bottom). Each column of the matrix repre-
sents a year worth of data. The cells in the topmost region represent months. They
show full detail by color-coding individual pixels within a cell according to daily
values. The middle region shows aggregated data. Here cells are no longer subdi-
vided into pixels, but are colored uniformly, where the color represents the aggrega-
tion of daily values to a single monthly value. The same principle is applied for the
bottom region (in fact, the bottom row). Twelve monthly values are aggregated into
a single value for the year, which can again be represented by color. A significant
and non-trivial problem in dealing with real world datasets are missing data values.
This issue is tackled by the authors by preprocessing the data and marking missing
values as such in the display.
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Recursive Pattern
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Fig. 7.29: Four time-series are shown as recursive patterns, where the color of a pixel represents
stock price. Pixels are arranged to semantically match the hierarchical structure of the data: A row
represents a year with its 12 months, each month is further subdivided into weeks, which in turn
consist of five workdays, each of which represents nine data values for a single day. Right: Exam-
ples of possible pixel arrangements.
Source: Keim et al. (1995), © 1995 IEEE. Used with permission.

The most space-efficient way of visualizing data is to represent them on a per-
pixel basis. Keim et al. (1995) suggest a variety of pixel-based visualization ap-
proaches of which the recursive pattern technique is particularly suited to display
large time-series. The key idea behind the recursive pattern technique is to construct
an arrangement of pixels that corresponds to the inherently hierarchical structure of
time-oriented data given at multiple granularities. Figure 7.29 shows financial data
as a pixel-based visualization. The initial step is to map nine data values collected
per day to a 3x3 pixel group. This group is then used to form a larger group for
a week of workdays containing 5x1 day groups. Recursively, groups for months,
years, and decades can be created by arranging groups of the next lower granularity
in a semantically meaningful way (e.g., 12 months are grouped into a year). In the
resulting pattern, each pixel is color-coded with regard to a single data value in the
time-series. Multiple dense pixel displays of this kind can be combined to get an
overview of large multivariate datasets.
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GROOVE
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Fig. 7.30: GROOVE visualizations combine detail and overview readings and use regular layouts
based on time granularities. Here, police assignments are shown over the course of one month.
For each 5-minute interval the number of units assigned to a duty is given. Each block shows a
day, rows of blocks represent weeks, columns of blocks show the day of the week, and within each
block a row of pixels displays one hour. Color components are used to show detail values for pixels
(lightness – bright: low, dark: high) and average values per block (hue – green: low, blue: high).
Source: Generated with the GROOVE software.

GROOVE (Granularity Overview OVErlay) visualizations as presented by Lam-
marsch et al. (2009) utilize a user-configurable set of four time granularities to par-
tition a dataset in a regular manner. That is, a recursive layout is achieved that shows
columns and rows of larger blocks and a pixel arrangement within blocks for the
detail structure. Following the concept of recursive patterns (↪→ p. 180) different
arrangements might be chosen (e.g., row-by-row or back-and-forth). The specific
of GROOVE visualizations is the combination of overview (aggregated values) and
details in one place using one of three kinds of overlays. This allows micro and
macro readings and avoids eye movements between the overview and detail repre-
sentations. First, color components can be employed with color-based overlay (see
Figure 7.30). Second, opacity overlay applies interactive crossfading between the
overview and the detail display. Third, spatial overlay can be used for viewing the
data selectively at different levels of aggregation by expanding and collapsing areas.
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SolarPlot
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Fig. 7.31: Daily values of ticket sales data over a period of 30 years are plotted around the cir-
cumference of a resizable circle (left). For a selected interval, a more detailed arc can be shown
(center). The technique can be enhanced so as to combine the representation of data and a hierar-
chical structure, in this case email traffic and company organization (right).
Source: Chuah (1998), © 1998 IEEE. Used with permission.

With the SolarPlot technique introduced by Chuah (1998), values are plotted around
the circumference of a circle as shown left in Figure 7.31. Much like in a circular
histogram, the first step is to partition the data series into a number of bins. Each
bin is represented by a sunbeam whose length encodes the frequency of data items
in the corresponding bin. The SolarPlot determines the number of bins dynamically
depending on the size of the circle. Users are allowed to expand or contract the
circle in order to get more or fewer bins, or in other words, to get a more or less
detailed representation of the data. This way it is possible to explore the data at
different levels of abstractions and to discern patterns globally across aggregation
levels. The SolarPlot also supports locally switching to a more detailed plot for a
user-selected focus interval as shown in the center of Figure 7.31. Chuah (1998)
further suggests a variation of the SolarPlot called SolarPlot + Aggregate TreeMap,
where the display of data is combined with a visual representation of a hierarchical
structure (see Figure 7.31, right).
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SpiraClock
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Fig. 7.32: The SpiraClock builds upon the clock display. The minute hand currently points to a
meeting that has already started. Future appointments are aligned along a spiral on the clock face.
Source: Adapted from Dragicevic and Huot (2002) with permission of Pierre Dragicevic.

The SpiraClock invented by Dragicevic and Huot (2002) visualizes time by using
the clock metaphor. The visual representation consists of a clock face and two hands
indicating hour and minute. The interior of the clock shows a spiral that extends
from the clock’s circumference toward its center. Each cycle of the spiral represents
12 hours, with the current hour shown at the outermost cycle and future hours dis-
played in the center (about nine future hours in Figure 7.32). Time intervals (e.g.,
meetings) are represented as thick segments along the spiral shape. These segments
show when intervals start and end. Users can also see if certain appointments are in
conflict because they overlap, or if the agenda is too tight, because many appoint-
ments meet (for further interval relations see Section 3.1.2). As time advances, the
spiral is constantly updated and future intervals gradually move outward until they
are current. Past intervals gradually fade out. In this sense, the SpiraClock enhances
classic clocks with a preview of the near future and a brief view to the past. The
SpiraClock allows users to drag the clock handles to visit different points in time,
and intervals of interest can be highlighted and corresponding textual annotations
can be displayed.
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Enhanced Interactive Spiral
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Fig. 7.33: The spiral shows the daily temperature measured in Rostock from 2006 to 2010. The
blue and green colors in the upper left part of the spiral represent the colder winters of 2009 and
2010.
Source: Generated with the enhanced interactive spiral display tool.

Tominski and Schumann (2008) apply the enhanced two-tone color-coding by Saito
et al. (2005) to visualize time-dependent data along a spiral. Each time primitive
is mapped to a unique segment of the spiral. Every segment is subdivided into two
parts that are colored according to the two-tone coloring method. The advantage of
using the two-tone approach is that it realizes the overview+detail concept by de-
sign. The two colors used per spiral segment allow users to quickly recognize the
value range of that segment (overview). If the value range is of interest, the propor-
tion of the two colors indicates the particular data value more precisely (detail). The
enhanced spiral can be adjusted interactively in various ways. The number of time
primitives, the number of cycles, and additional geometrical parameters influence
the shape of the spiral and thus the mapping of the time domain. The data represen-
tation is mainly controlled by the color scales applied and parameters such as the
number of colors, the direction of the mapping, and the mapping function (linear vs.
logarithmic). Navigation in time is possible via direct manipulation of the spiral.
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Spiral Graph
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Fig. 7.34: A spiral graph encodes time-series data along a spiral, thus emphasizing the cyclic
character of the time domain. Actual data values are visualized using symbols for nominal data
(left) as well as color and line thickness for quantitative data (right).
Source: Weber et al. (2001), © 2001 IEEE. Used with permission.

The spiral graph developed by Weber et al. (2001) is a visualization technique that
focuses on cyclic characteristics of time-oriented data. To this end, the time axis is
represented by a spiral. Time-oriented data are then mapped along the spiral path.
While nominal data are represented by simple icons (see Figure 7.34, left), quantita-
tive data can be visualized by color, line thickness, or texture. One can also visualize
multivariate time-series by intertwining several spirals as shown for two variables in
the right part of Figure 7.34. In this case, a distinct hue is used per spiral so that in-
dividual variables can be discerned. Weber et al. (2001) further envision extending
the spiral to a three-dimensional helix, in order to cope with larger time-series. The
main purpose of the spiral graph is the detection of previously unknown periodic
behavior of the data. The user can interactively adjust the spiral’s cycle length (i.e.,
the number of data values mapped per spiral cycle) to explore the data for cyclic
patterns. As an alternative, it is also possible to smoothly animate through possible
cycle lengths. In this case, periodic behavior of the data becomes immediately ap-
parent by the emergence of a pattern. When such a pattern is spotted, the user stops
the animation and an interesting cycle length has been found (see also Section 4.2.1,
p. 84).

References

Weber, M., Alexa, M., and Müller, W. (2001). Visualizing Time-Series on Spirals. In Proceedings
of the IEEE Symposium on Information Visualization (InfoVis), pages 7–14, Los Alamitos, CA,
USA. IEEE Computer Society.

www.ebook3000.com

http://www.ebook3000.org


186 7 Survey of Visualization Techniques

Spiral Display
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Fig. 7.35: Data can be visualized along a spiral in different ways: by the area of circular elements
(top-left), by the sizes of multiple spikes (bottom-left), as bars marking start and end of intervals
(center), or by the volume of hollow cans aligned at different layers along the vertical axis (right).
Source: Carlis and Konstan (1998), © 1998 ACM. Used with permission.

The interactive spiral display by Carlis and Konstan (1998) uses Archimedean spi-
rals to represent the time domain. Data values at particular time points are visu-
alized as filled circular elements whose area is proportional to the data value (see
Figure 7.35, top-left). In the case of interval-based data, filled bars are aligned with
the spiral shape to indicate start and end of intervals (see Figure 7.35, center). If
multivariate data are given at time points, the spiral is tilted and data values are visu-
alized as differently colored spikes, where spike color indicates variable affiliation
and spike height encodes the corresponding data value (see Figure 7.35, bottom-
left). Alternatively, one can use the vertical z-axis to separate the display of multiple
variables (see Figure 7.35, right). In this case, each time-dependent variable has its
own layer along the z-axis and is represented with a unique color. Within a layer,
data values are encoded to the volume of cans, which are lidless and hollow to pre-
vent occlusion. The system implemented by Carlis and Konstan (1998) allows users
to display multiple linked spirals to perform comparison tasks. The cycle lengths
of spirals can be adjusted interactively and can also be animated automatically for
discovering periodic patterns.
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VizTree
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Fig. 7.36: Time-series of arbitrary length are represented as fixed-length subsequence trees. The
figure shows a winding dataset that records the angular speed of a reel. Top-left: input time-series;
top-right: parameter setting area for discretization and subsequence length; left: subsequence tree
for the time-series; center-right: detail view of the tree shown in the left panel; lower-right: subse-
quences matching a particular string representation (e.g., subsequences starting with ‘ab’) whereas
positions of matched subsequences are highlighted in the top-left panel.
Source: Image courtesy of Eamonn Keogh.

VizTree by Lin et al. (2005) is a time-series pattern discovery and visualization sys-
tem for massive time-series datasets. It uses the time-series discretization method
SAX (symbolic aggregate approximation) developed earlier by Lin et al. (2007).
SAX discretizes time-series into a sequence of symbols (e.g., ‘abacacc’). Subse-
quences (patterns) are generated by moving a sliding window along the sequence.
These subsequences are combined and represented by a horizontal tree visualization
where the frequency of a pattern is encoded by the thickness of a branch (or light
gray when frequency is zero). The VizTree interface consists of multiple coordi-
nated views that show the input time-series along with the subsequence tree as well
as control and detail-on-demand panels. VizTree can be used to accomplish differ-
ent pattern discovery tasks interactively: finding frequently occurring patterns (i.e.,
motif discovery) and surprising patterns (i.e., anomaly detection), query by content,
and the comparison of two time-series by calculating a difference tree.
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TimeSearcher
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Fig. 7.37: Left: TimeSearcher 1 showing stock price data (top-left: Multiple line plots and query
boxes; bottom-left: line plots for individual stocks matching the query). Right: TimeSearcher 2
with query-by-example using a searchbox (light red background) and matching items in red.
Source: Generated with the TimeSearcher software with permission of University of Maryland
Human-Computer Interaction Lab.

Hochheiser and Shneiderman (2004) implemented TimeSearcher as a visual explo-
ration tool for multiple time-series. While employing a straightforward visual rep-
resentation using line plots, its main objective is to enable users to identify and find
patterns in the investigated data. To this end, the so-called timebox query model has
been developed. It allows the specification of a rectangular query region that defines
both a time interval and a value range of interest. Those time-series that comply
with a query (i.e., overlap with the timebox) are displayed, whereas all others are
filtered out. Users can combine multiple timeboxes to refine the query further and
other query functionalities such as leaders and laggers, angular queries, and vari-
able timeboxes are also part of TimeSearcher. To provide contextual information,
the data envelope and the query envelope can be displayed. Buono et al. (2005) ex-
tended these features in TimeSearcher 2 by allowing the representation of heteroge-
neous datasets and providing a searchbox query model that effectively implements a
query-by-example functionality. Here, occurrences of a brushed portion of the time-
series are searched, whereas the similarity threshold of matches can be adjusted.
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TimeSearcher 3, River Plot
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Fig. 7.38: Forecasting of online auction data. Top-left: selection of time interval for similarity
search; bottom-left: selection of variables to consider and parameters to vary in the previews; right:
preview area that assists users in understanding the impact of parameters – varying tolerance levels
as river plots and different combinations of applied transformations as line plots and river plots.
Source: Image courtesy of Paolo Buono.

Buono et al. (2007) developed TimeSearcher 3 as a tool to support similarity-based
forecasting of multivariate time-series. Similarity-based forecasting is a data-driven
method using the similarity to a set of historical data for predicting future behavior.
The outcome of the algorithm is affected by a number of options and parameters, for
instance, the transformations applied or the tolerance threshold used for matching.
As results, the median of the matched subsets becomes the forecast and descriptive
statistics measures reflect the uncertainty associated with the forecast. This is dis-
played graphically as a simplified, continuous box plot, called a river plot. It uses
superimposed, colored regions, for which light gray indicates the range between
the minimum and maximum and dark gray the range between the 25% and 75%
percentiles, and a line in the center, where red indicates the forecast, brown shows
the median during the matching period, and black is the median before this period.
TimeSearcher 3 builds upon TimeSearcher (↪→ p. 188) and adds a preview interface
to allow users to interactively explore the effects of adjusting algorithm parameters
and to see multiple forecasts simultaneously.
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BinX
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Fig. 7.39: Exchange rates for two currencies are compared using the BinX tool. Each bin aggre-
gates the daily rates for a whole year. A selected bin is highlighted and its position on the global
time scale is marked accordingly.
Source: Generated with the BinX tool with permission of Tamara Munzner.

Large time-series require the application of abstraction methods in order to reduce
the number of time points to be displayed, thus keeping visualization costs at a
manageable level. Finding a suitable degree of abstraction, however, is not an easy
task. The BinX tool developed by Berry and Munzner (2004) is interesting in that it
supports the exploration of different aggregations of a time-series. The aggregation
is based on constructing bins, each of which holds a user-defined number of time
points. Easy-to-use interaction is offered to quickly try out differently sized bins.
BinX visualizes one or two quantitative time-dependent variables using common
chart elements. An overview of the time axis is preserved at all times at the bottom
of the BinX representation. The central chart view displays the two time-series in
an aggregated fashion according to currently chosen bin size. In order to faithfully
represent aggregated information, line plot (↪→ p. 153), box-plots, and a min-max
band are used in combination. The correspondence between a point in the chart and
a time span (bin) on the time axis is represented upon user request. BinX supports
clustering of bins as an additional mechanism for analytic abstraction. In this case,
cluster affiliation of bins is encoded via color.
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LiveRAC
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Fig. 7.40: A full day of system management time-series data showing more than 4000 devices in
rows and 11 columns representing groups of monitored parameters. Representations within cells
adapt to the available screen space by using different representations with more or less detail.
Source: McLachlan et al. (2008), © 2008 ACM. Used with permission.

McLachlan et al. (2008) developed LiveRAC, a system for analyzing system man-
agement time-series data. LiveRAC scales to dozens of parameters collected from
thousands of network devices. Familiar representations such as line plots (↪→
p. 153), bar graphs (↪→ p. 154), and sparklines (↪→ p. 155) appear as the cells of a
spreadsheet-like matrix. Rows and columns of the matrix are associated with mon-
itored network devices and monitored parameters, respectively. Each cell contains
an area-aware chart showing time on the horizontal axis and parameters on the ver-
tical axis. To ensure that all cells remain visible at all times (i.e., to avoid scrolling),
LiveRAC uses a so-called stretch and squish layout, which dynamically compresses
and expands cells according to user interaction. Moreover, the individual charts
adapt to the available screen space. This semantic zoom functionality ranges from
charts with detailed labels, to smaller charts with fewer curves and less labeling,
and ultimately to colored blocks for the smallest view. The cell background color
represents changeable thresholds of minimum, maximum, or average values of the
displayed parameters. Aggregation is applied if cells would overlap due to space
restrictions, which is reflected in color intensity.
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LifeLines2
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Fig. 7.41: LifeLines2 show patient records in stacked rows, where triangles indicate health-related
events. A histogram view visualizes the number of events over time. Interaction operators (i.e.,
align, rank, filter) support visual exploration.
Source: Image courtesy of Taowei David Wang.

LifeLines2 by Wang et al. (2009) is an interactive visual exploration interface for
instantaneous events based on categorical, health-related data (e.g., high, normal,
or low body temperature). Events are displayed as triangles along a horizontal time
axis, where color indicates event categories and data of different patient records are
stacked vertically. An aggregation of events is represented as a histogram showing
the number of occurrences over time. LifeLines2 introduces three powerful opera-
tors for interactive exploration: align, rank, and filter. The align operator can be used
to arrange all records along a specific event type in temporal order, for example, to
align a group of patients with regard to their first heart attack. Additionally, the time
axis switches from an absolute time representation to relative time originating from
the specified event (e.g., one week before, or two weeks after the first heart attack).
The rank operator is useful for ordering records according to the number of occur-
rences of a specified event type. The filter operator allows searching of particular
sequences of events including both the presence of events and the absence of events
(e.g., patients having had a heart attack but no stroke following it).
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Similan
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Fig. 7.42: Similan ranks patient records (center) according to their similarity to a target record
(top). Individual records can be compared directly with the target (bottom). Various interaction
operators, including adjustment of similarity weights (right), can be used to refine the visualization.
Source: Image courtesy of Krist Wongsuphasawat.

Wongsuphasawat and Shneiderman (2009) describe Similan as a system for explor-
ing patient records. Patient records are stacked upon each other and show health-
related events as triangles, where color indicates event categories (e.g., arrival, emer-
gency, ICU). Similan uses the same visual representation as LifeLines2 (↪→ p. 192)
but provides a different approach to data exploration. Instead of interactive filtering,
records are ranked according to their similarity to a given event sequence (query-
by-example). In Figure 7.42, the topmost record is the record that is most similar to
the user-specified event sequence. This can be used to search for groups of patients
who share similar temporal patterns. A dedicated view is provided to allow a direct
comparison of the target query record with any particular record in the data. An-
other scenario is to search for an event sequence that the user is not certain whether
it exists in the data; in this way the tool can give the most similar results if the exact
event sequence does not exist. For determining the similarity of event sequences a
similarity measure (M&M measure) has been developed. The weights of factors that
determine the similarity measure can be adjusted interactively by the user.
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CareCruiser
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Fig. 7.43: A patient’s parameters are displayed together with the applied clinical actions. In the
selected area on the right, a delayed drop of the patient’s tcSO2 values after applying a specific
clinical action is revealed. Contextual views are shown on the left – top-left: flow-chart like repre-
sentation of the treatment plan logic; bottom-left: hierarchical decomposition of treatment plan.
Source: Generated with the CareCruiser software.

CareCruiser by Gschwandtner et al. (2011) is a visualization system for exploring
the effects of clinical actions on a patient’s condition. It supports exploration via
aligning, color-highlighting, filtering, and providing focus and context information.
Aligning clinical treatment plans vertically supports the comparison of the effects
of different treatments or the comparison of different effects of one treatment plan
applied on different patients. Three different color-schemes are provided to highlight
interesting portions of the development of a parameter: highlighting the distance of
the actual values to the intended value helps to identify critical values; highlighting
the progress of the actual values relative to the initial values shows to what extent
the applied treatment plan has the intended effect; and highlighting the slope of
a value helps to explore the immediate effects of applied clinical actions. A range
slider is provided to filter the color-highlighting for selected events (see Figure 7.43,
top) and a focus window which grays out the color-information outside its borders
is used to support a focused investigation of a region of specific interest.
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Layer Area Graph
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Fig. 7.44: Shows the developments of four variables as layered bands while emphasizing the total
sum.
Source: Adapted from Harris (1999).

Layer area graphs might be used when comparing time-series that share the same
unit and can be summed up (see Harris, 1999). A layer area graph is a stacked
visualization where time-series plots are drawn upon each other as layered bands.
Caution needs to be exercised for this kind of representation because it is sensi-
tive to the order of the layers. Different orders influence the visual appearance of
the individual layers because only the bottommost layer has a straight baseline. All
subsequent layers are drawn relative to the layers below. An advantage of layer area
graphs is the fact that they emphasize the total sum of values while providing in-
formation about the parts that constitute it. More advanced visualization techniques
such as the ThemeRiver (↪→ p. 197) or stacked graphs (↪→ p. 199) build upon the
basic principle of layer area graphs.
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Braided Graph
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Fig. 7.45: Construction scheme of a braided graph for two variables. Top: individual variables as
silhouette graphs; center: superimposed silhouette graphs using transparency (dashed lines show
intersection points); bottom: braided graph (segments between intersection points are sorted to
ensure visibility of all fragments).
Source: Adapted from Javed et al. (2010). © 2010 IEEE. Used with permission.

Braided graphs allow for superimposing silhouette graphs to show multivariate data.
They were developed in order to take advantage of the enhanced perception of sil-
houette graphs (↪→ p. 175) and at the same time avoiding the disadvantage of vary-
ing baselines of layered graphs (↪→ p. 195). Simply drawing silhouette graphs on
top of each other would lead to occlusion problems where a silhouette for larger
data values occludes silhouettes for smaller values. The solution to this problem is
to identify the points at which silhouettes intersect and to adapt the drawing order
in between two intersections individually so that smaller silhouettes are always in
front of larger ones. This ensures that all segments of all variables remain visible
for the complete time-series. In a user study, Javed et al. (2010) compared line plots
(↪→ p. 153), silhouette graphs (↪→ p. 175), horizon graphs (↪→ p. 157), and braided
graphs along the three tasks of determining local maxima, comparing global slopes,
as well as locating and comparing values at specific time points. Besides the visu-
alization type, the number of displayed time-series, and the height of the represen-
tation was varied. Interestingly, the type of visualization was not found to have a
significant effect on task correctness in all conditions. However, subjects using line
plots and braided graphs were significantly faster when searching for local maxima.
For value and slope comparison tasks this was not the case. In general, higher num-
bers of time-series caused decreased correctness and increased completion time.
Decreasing display space had a negative effect on correctness but little impact on
completion time.
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Fig. 7.46: The ThemeRiver representation uses the metaphor of a river that flows through time.
Colored currents within the river reflect thematic changes in a document collection, where the
width of a current represents the relevance of its associated theme.
Source: Havre et al. (2002), © 2002 IEEE. Used with permission.

The ThemeRiver technique developed by Havre et al. (2000) represents changes of
news topics in the media. Each topic is displayed as a colored current whose width
varies continuously as it flows through time. The overall image is a river that com-
prises all of the topics considered. The ThemeRiver provides an overview of the
topics that were important at certain points in time. Hence, the main focus is di-
rected towards establishing a picture of an easy to follow evolution over time using
interpolation and approximation. Moreover, ThemeRiver representations can be an-
notated, e.g., with related major historical events, and raw data points with exact val-
ues can be shown. Even though the ThemeRiver was originally invented to visualize
thematic changes in document collections, it is also suited to represent other mul-
tivariate, quantitative data. Because perception of data differs depending on where
in the river individual variables are shown, it is important to provide interaction
techniques to allow users to rearrange the horizontal position of variables.

References

Havre, S., Hetzler, E., and Nowell, L. (2000). ThemeRiver: Visualizing Theme Changes Over
Time. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages
115–124, Los Alamitos, CA, USA. IEEE Computer Society.

Havre, S., Hetzler, E., Whitney, P., and Nowell, L. (2002). ThemeRiver: Visualizing Thematic
Changes in Large Document Collections. IEEE Transactions on Visualization and Computer
Graphics, 8(1):9–20.

www.ebook3000.com

http://www.ebook3000.org


198 7 Survey of Visualization Techniques

3D ThemeRiver
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Fig. 7.47: Distinctly colored currents form the overall shape of the 3D ThemeRiver. The width,
and additionally the height of currents is varied to visualize time-oriented data. In this figure, width
encodes the overall distribution of 17 clusters of aerosol data and height indicates the incidence of
zinc.
Source: Imrich et al. (2003), © 2003 IEEE. Used with permission.

Imrich et al. (2003) propose a 3D variant of the ThemeRiver technique (↪→ p. 197).
The 3D approach inherits the basic visual design from its 2D counterpart: multiple
time-oriented variables are encoded to the widths of individually colored currents
that form a river flowing through time along a horizontal time-axis. In the 2D vari-
ant, only one data variable can be visualized per current, namely by varying the
current’s width. Imrich et al.’s extension addresses this limitation. By extending the
design to the third dimension it is possible to use an additional visual encoding: the
height (in 3D) of a current can be varied to encode further information. This design
is particularly suited to visualizing ternary covariate trends in the data. Imrich et al.
conducted user tests to evaluate the usefulness of the 3D encoding, and indeed got
positive results that indicate that the 3D variant has advantages over the 2D variant.
Specifically, the availability of appropriate interactive 3D navigation tools is high-
lighted as an important factor contributing to the success of the 3D ThemeRiver.
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Fig. 7.48: Multivariate time-series visualized as stacked graphs with different designs: Stream-
graph design (top), ThemeRiver layout (center), and traditional stacking (bottom).
Source: Generated with the streamgraph generator code base.

Stacking multiple graphs on top of each other is a suitable approach to visualizing
multiple time-dependent variables (see Harris, 1999). Elaborate variants of stacked
graphs have been investigated in detail by Byron and Wattenberg (2008). To visual-
ize the evolution of an individual variable, data values are encoded to the height of
a so-called layer that extends along the horizontal time axis. A special color map is
applied to visualize additional data variables and to make individual layers distin-
guishable. Several layers are then stacked on top of each other, effectively creating
an overall graph that represents the visual sum of the entire dataset. Layout and sort-
ing of layers can be done in various ways, resulting in quite different designs such as
the Streamgraph design, the ThemeRiver layout (↪→ p. 197), or traditional layer area
graphs (↪→ p. 195). The Streamgraph design (Figure 7.48, top) is notable because it
received quite positive feedback when it appeared on the New York Times web site
as a visual representation of box office revenues. In that version, individual layers
were also outfitted with text labels.

References

Byron, L. and Wattenberg, M. (2008). Stacked Graphs – Geometry & Aesthetics. IEEE Transac-
tions on Visualization and Computer Graphics, 14(6):1245–1252.

Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Reference. Oxford Uni-
versity Press, New York, NY, USA.

www.ebook3000.com

http://www.ebook3000.org


200 7 Survey of Visualization Techniques

TimeWheel
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Fig. 7.49: The TimeWheel’s central axis represents time. The axes in the periphery represent time-
dependent variables; here we see the number of cases for eight diagnoses. Days with particularly
high numbers of influenza cases are highlighted.
Source: Generated with the VisAxes software.

Tominski et al. (2004) describe the TimeWheel as a technique for visualizing mul-
tiple time-dependent variables. The TimeWheel consists of a single time axis and
multiple data axes for the data variables. The time axis is placed in the center of the
display to emphasize the temporal character of the data. The data axes are associated
with individual colors and are arranged circularly around the time axis. In order to
visualize data, lines emanate from the time axis to each of the data axes to estab-
lish a visual connection between points in time and associated data values. These
lines form visual patterns that allow users to identify positive or negative correla-
tions with the time axis, trends, and outliers. Such patterns can be best discerned for
those data axes that are parallel to the time axis. To bring data axes of interest into
this focus, users can rotate the TimeWheel. Focused data axes are further empha-
sized by stretching them, effectively providing them with more drawing space. Data
axes that are perpendicular to the time axis are more difficult to interpret and are,
therefore, attenuated using color fading and shrinking. Interactive exploration, in-
cluding navigation in time, is supported through different types of interactive axes.
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Fig. 7.50: Two MultiComb representations visualize seven time-dependent variables. In the left
MultiComb, line plots are arranged around the display center, in the right one, they extend out-
wards. The very center of the MultiCombs can be used to display additional information via a
spike glyph or an aggregated view.
Source: Generated with the VisAxes software.

Line plots (↪→ p. 153) are expressive visual representations for univariate data. The
rationale behind the MultiComb visualization is to utilize this expressiveness for
representing multiple time-dependent variables. Tominski et al. (2004) describe the
MultiComb as a visual representation that consists of multiple radially arranged line
plots. Two alternative designs exist: time axes are arranged around the display center
(see Figure 7.50, left) or time axes extend outwards from the MultiComb’s center
(see Figure 7.50, right). In the latter case, optional mirror plots duplicate plots of
neighbor variables to ease visual comparison. To maintain a certain aspect ratio for
the separate plots, the axes do not start in the very center of the MultiComb. The
screen space in the center can therefore be used to provide additional views: a spike
glyph can be shown to allow a detailed comparison of data values for a selected time
point, or an aggregated view might display the history of a temporal data stream in
an aggregated fashion. Various possibilities for interaction allow users to browse in
time, to zoom into details of the time axes, as well as to add, remove, and reorder
plots, and to rotate the MultiComb.
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VIE-VISU
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Fig. 7.51: VIE-VISU encodes fifteen health-related patient parameters to different visual attributes
of a glyph (left). The example on the right shows neonatal patient information on an hourly basis
for the course of the day.
Source: Left: Adapted from Horn et al. (2001). Right: Image courtesy of Werner Horn.

Paper-based analysis of patient records is hard to conduct because many parameters
are involved and an overall assessment of the patient’s situation is difficult. There-
fore, Horn et al. (2001) developed VIE-VISU, an interactive glyph-based visualiza-
tion technique for time-oriented patient records. The glyph consists of three parts
that represent circulation, respiration, and fluid balance parameters. All in all, 15
parameters are visualized using different visual attributes (i.e., length, width, color)
as illustrated in the left part of Figure 7.51. For example, the circulation parame-
ter heart rate (HR) is encoded to the width of the triangle on top of the glyph and
the triangle’s color encodes catecholamines (color legend is given at the bottom).
Each glyph represents a one hour period and 24 glyphs are combined in a small
multiples display (↪→ p. 236) as shown in the right part of Figure 7.51. Interaction
controls support navigation in time and switching to different periods for the small
multiples view. VIE-VISU helps users to combine different measurements, maintain
their relationships, show their development over time, and make specific, possibly
life threatening situations easy to spot.
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Timeline Trees
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Fig. 7.52: A smaller set of products in a market basket is visualized using timeline trees. One can
see that milk is bought regularly (green boxes for all but one day), and that cheese, apples, and
bananas are more expensive (higher red-colored boxes).
Source: Image courtesy of Michael Burch.

Data that describe items which are related to each other are quite common. An exam-
ple of such data are transactions in on-line shopping systems where products being
bought together are considered to be related. Burch et al. (2008) visualize temporal
sequences of transactions by means of so-called timeline trees. The visual repre-
sentation consists of three parts: a display of an information hierarchy, a timeline
representation of temporal sequences, and thumbnail pictures. The information hi-
erarchy is a static hierarchical categorization of data items (e.g., a system of product
groups), where groups can be expanded or collapsed interactively to view the data at
different levels of detail. The timeline view shows multiple sequences of boxes for
the current level of detail, where color and box size are used to encode data values
(e.g., product price) of an item (or group) at a particular point in time. Thumbnails
for each leaf of the information hierarchy show an overview of transactions masked
by the corresponding leaf node. Enhanced with several interaction facilities, time-
line trees help users to understand trends in the data and to find relations between
different levels of abstractions (e.g., different product groups, or product groups and
specific products).
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Pixel-Oriented Network Visualization
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Fig. 7.53: Wiki collaboration patterns. Left: adjacency matrix showing users as rows and columns
and collaboration intensity by color brightness of cells that connect two users (darker means more
collaboration); center: pixel-oriented view where collaboration dynamics are shown in a 6x6 pixel
array laid out row by row and each pixel represents a four week period; right: more fine-grained
configuration that shows weekly steps.
Source: Images courtesy of Klaus Stein.

Social networks consist of actors and relationships between them. Unlike most static
node-link representations of graph-like structures would suggest, these networks are
dynamically changing over time. The two most common forms of visualizing time-
varying networks are applying animation to node-link diagrams or applying the con-
cept of small multiples (↪→ p. 236) by showing snapshots of different points in time.
An alternative display is suggested by Stein et al. (2010). They developed a pixel-
oriented visualization of networks (PONV) that reveals interaction patterns between
actors by integrating pixel-based representations (↪→ p. 180) within the cells of an
adjacency matrix. An adjacency matrix can be represented visually as a matrix table
whose rows and columns represent the nodes of the network. The table cell at the
intersection of a particular column and row visualizes information about the rela-
tionship between the corresponding nodes. Figure 7.53 (left) shows an example of
an adjacency matrix where the darkness of a cell represents the collaboration inten-
sity of two individuals (the value 0 and a white cell background indicates that there
is no relationship between two individuals). In order to show the temporal evolution
of the relationships, Figure 7.53 (center) uses an alternative representation. Now
each cell contains a 6x6 pixel glyph, where each pixel represents the aggregated
collaboration intensity of a four-week period. The user can interactively control the
visualization, including the color scale, the pixel pattern arrangement, and the time
period to be covered by each pixel (e.g., daily values as in Figure 7.53, right).
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CiteSpace II
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Fig. 7.54: A network of 750 most cited articles on mass extinction (1980–2010). Top-left: cluster
view; bottom-left: legend – node size reflects overall amount of citations and colored rings show
citations per time slice; top-right: time-zone view; bottom-right: timeline view.
Source: Images courtesy of Chaomei Chen.

CiteSpace II by Chen (2006) is a system that supports visual exploration of biblio-
graphic databases. It combines rich analytic capabilities to analyze emerging trends
in a knowledge domain with interactive visualization of co-citation networks. Three
complementary views are provided for the visual representation: a cluster view, a
time-zone view, and a timeline view. The cluster view represents a network as a
node-link diagram using a force-directed layout. Node size shows how often an ar-
ticle or cluster was cited overall and citation tree rings of a node display the citation
history from the center outward. The color of a ring represents a time period and its
thickness is proportional to the number of citations in this period. Colors of links
represent the time slice of the first co-citation. The time-zone view displays a net-
work by arranging its nodes along vertical strips representing time zones using a
modified spring-embedder layout that controls only the vertical positions of nodes
freely. In the timeline view, time is mapped to the horizontal position and clusters
are arranged along horizontal lines. Users can adjust a complex set of parameters to
control the analysis process as well as interact and manipulate the visualization of a
knowledge domain. CiteSpace II also provides clustering and labeling functions to
help the user to interpret various structural and temporal patterns.
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history flow
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Fig. 7.55: The history flow shows vertical revision lines, one for each revision, where colored
sections reflect the different authors of a document as schematically depicted on the left. This
method is applied to the visualization of the Wikipedia entry on chocolate as shown on the right.
Source: Images courtesy of Fernanda B. Viégas.

Viégas et al. (2004) designed history flow to be an exploratory wiki article analysis
tool for finding author collaboration patterns, showing relations between document
versions, revealing patterns of cooperation and conflict, as well as making broad
trends immediately visible. The basis for the representation are so-called revision
lines. These top-aligned, vertical lines are displayed for every version of a docu-
ment. The length of revision lines is proportional to the document length. Individual
sections of a revision line are colored differently to visualize which authors worked
on which parts of a document. The sections associated with a particular author are
visually connected from one revision to the next. One can discern stable sections and
splits of sections. Gaps in connections clearly indicate deletions and insertions. Two
different layouts can be used for spacing revision lines: uniform spacing (space by
occurrence / event-based) or spacing according to time (space by date / time-based).
The first layout shows each document change equally spaced without showing time
intervals between versions proportionally. The second alternative additionally gives
information about the exact timing.
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Fig. 7.56: This PeopleGarden shows about 1200 posts entered to a discussion board during a
period of two months. Users are represented by flowers whose petals, in turn, represent individual
messages posted by a user.
Source: Xiong and Donath (1999), © 1999 ACM. Used with permission.

Xiong and Donath (1999) developed PeopleGarden as a graphical representation of
users’ interaction histories in discussion groups. PeopleGarden visualizes data about
users and messages posted to an online interaction environment. It integrates infor-
mation on the time of posting, amount of response, and whether a post starts a new
conversation. For intuitive understanding, PeopleGarden uses the metaphor of a gar-
den of flowers. The garden represents the whole environment and flowers represent
individual users within the environment. The petals of a flower stand for the mes-
sages posted by a user, the time of posting is mapped to the ordering and saturation
of the petals, the amount of response is represented by circles that are stacked on
top of petals, and color is used to depict whether a post starts a new conversation.
Furthermore, the height of the flower gives information about how long a specific
user has been a member of the discussion group. Using these visual representations,
one can easily spot dominant voices, long time participants, or very active groups.
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PostHistory
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Fig. 7.57: The calendar panel on the left shows e-mail activity on a daily basis, where the number of
emails and their average directedness are mapped to box size and color, respectively. The contacts
panel on the right displays the names of people who sent messages to the user.
Source: Image courtesy of Fernanda B. Viégas.

Viégas et al. (2004) developed PostHistory with the goal of visually uncovering dif-
ferent patterns of e-mail activity (e.g., social networks, e-mail exchange rhythms)
and the role of time in these patterns. PostHistory is user-centric and focuses on a
single user’s direct interactions with other people through e-mail. The social pat-
terns are derived from analyzing e-mail header information. So, not the content of
messages, but the tracked traffic is used as the basis for the analysis of people’s e-
mail conversations over time. Basically, the user interface visualizes a full year of
e-mail activity and is divided into two main panels: a calendar panel on the left and a
contacts panel on the right. The calendar panel shows the intensity of e-mail activity
on a daily basis whereas a square represents a single day and each row of squares
represents a week. The size of a square is determined by the quantity of e-mail re-
ceived on that day and its color represents the average directedness of messages,
i.e., whether a mail was received via TO, CC, or BCC. The brighter the color, the
more directed the messages are that are present on that day. The contacts panel is
used for displaying the names of people who sent messages to the user.
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MOSAN
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Fig. 7.58: The top-left view shows a simulated reaction network. An overview of the time-
dependent simulation data is given by the small line plots in the boxes of the network. Three
coordinated linked views are provided for the comparison of simulation runs and variables.
Source: Image courtesy of Andrea Unger.

MOSAN is a tool for visualizing multivariate time-oriented data that result from
simulation of reaction networks. Due to the stochastic multi-run simulation, each
variable comprises multiple time-series. In order to facilitate the understanding of
the complex dependencies in the data it is necessary to jointly visualize structural in-
formation and stochastic simulation data together. To this end, Unger and Schumann
(2009) combine different views within a single interactive interface. In an overview,
time-oriented data are shown along with the structural relations among the variables
in the reaction network. The structural relations are shown by a graph layout, where
boxes correspond to variables, and simulation data are visualized by small line plots
within the boxes (see Figure 7.58, top-left). The small line plots provide a highly
aggregated view of the stochastic simulation data, thus focusing on the communica-
tion of the general temporal trends. Furthermore, advanced color-coding is applied
to the plots to support the comparison of heterogeneous value ranges among vari-
ables. In addition to the overview, coordinated linked views support the inspection
of individual time-series of the same variable (see Figure 7.58, top-right) as well
as the detailed inspection and comparison of temporal developments of different
variables selected from the overview (see Figure 7.58, bottom).
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Data Tube Technique
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Fig. 7.59: Data are mapped onto the inside of a 3D tube using a tabular layout. Each slice of the
tube represents an instant and each cell represents a data parameter by color. Left: visual mapping
schema; right: exploring 50 different stocks.
Source: Images courtesy of Mihael Ankerst.

In the data tube technique by Ankerst (2001) multiple time-oriented variables are
mapped to bands that follow the inside of a 3D tube (see Figure 7.59, left). Each
slice of the tube represents an instant and each cell represents a data value by color.
The tube is viewed from above and time is flowing to or from the center of the
tube. The user is able to explore the data by interactively moving through the 3D
tube. Because of the 3D perspective distortion, cells that are further away appear
to be smaller in size, much like in a focus+context display. As a result of this, the
number of displayed parameters and the number of displayable records can be quite
large. Later, Ankerst et al. (2008) also developed a comprehensive temporal data
mining architecture called DataJewel that is closely integrated with pixel-oriented
visualization techniques.
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Kiviat Tube
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Fig. 7.60: Construction of a three-dimensional Kiviat tube representing seven time-dependent vari-
ables. Peaks and valleys indicate ups and downs in the evolution of the data over time. Wings assist
in associating features of the Kiviat tube to particular variables in the data.
Source: Generated the VisAxes3D tool.

The Kiviat tube by Tominski et al. (2005) visualizes multiple time-dependent vari-
ables. The construction of a Kiviat tube is as simple as stacking multiple Kiviat
graphs (see Kolence and Kiviat, 1973) along a shared time axis. Each Kiviat graph
represents the data for multiple variables for a specific point in time. But instead of
drawing individual Kiviat graphs, a three-dimensional surface is constructed. This
way, multiple, otherwise separated time points are combined to form a single 3D
body that represents the dataset as a whole. The spatial characteristics of a Kiviat
tube can be recognized easily, as it allows users to identify peaks or valleys in the
data over time. Additional semitransparent wings assist in relating identified pat-
terns to particular variables. Common interaction methods can be used for zooming
and rotation around arbitrary axes. Rotation specifically around the time axis en-
ables users to quickly access variables on all sides of the Kiviat tube. Interactive
axes allow users to navigate back and forth in time to visit different intervals of a
possibly large time-series.
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Temporal Star
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Fig. 7.61: 3D representation of circular column graphs that are arranged in a row to represent each
time step. A transparent veil can be displayed to enhance the perception of the dataset’s evolution.
Source: Images courtesy of Monique Noirhomme.

The temporal star technique by Noirhomme-Fraiture (2002) visualizes multivariate
data structures in 3D. For each point in time, a circular column graph is drawn that
represents each variable’s value as a bar length in a circular arrangement. These
graphs are aligned in a row to represent the development of the dataset over time
(see Figure 7.61, left). A unique color is assigned to each variable to aid recognition
of variables across time. Moreover, a transparent veil can be displayed to enhance
the perception of the dataset’s evolution as a whole (see Figure 7.61, right). The
concept used is similar to that of the Kiviat tube (↪→ p. 211), which uses Kiviat
graphs instead of circular column graphs. In the temporal star technique, difference
plots are also integrated, showing the relative differences between variables rather
than absolute values. The rendering parameters, the shown time intervals, and the
configuration of the axes can be adjusted interactively. Furthermore, the temporal
star technique is integrated with a data warehousing application that provides rich
data manipulation features.
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Time-tunnel
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Fig. 7.62: Left: individual plots are put onto semi-transparent planes (data-wings) that are posi-
tioned around a central time-bar. Right: selected time intervals can be viewed as radar charts.
Source: Akaishi and Okada (2004), © 2004 IEEE. Used with permission.

Akaishi and Okada (2004) developed time-tunnel as a data analysis technique for
visualizing a number of time-series plots in a 3D virtual space. The individual plots
are put onto semi-transparent planes (data-wings) that are positioned around a cen-
tral time-bar in a fan-like manner (see Figure 7.62, left). In the example above, line
plots are used for visualizing data but any other linear time visualization might also
be used. Multiple planes can be overlapped and compared due to their transparency.
Furthermore, single time slices or selected time intervals can be viewed as radar
charts (see Figure 7.62, right) and provide a multivariate point of view. Additionally,
not only time-series, but any kind of information can be put onto a plane, making it
a multimedia presentation tool.
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Parallel Glyphs
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Fig. 7.63: Parallel glyphs are used to visualize five different variables over time. Each radial glyph
shows a single variable over time whereas each point on the outside of a glyph corresponds to a
data value measured at a specific point in time. Differently colored rings assist in comparing data
values.
Source: Fanea et al. (2005), © 2005 IEEE. Used with permission.

Multivariate time-series can be visualized as parallel glyphs. Fanea et al. (2005) syn-
thesized this technique as a combination of parallel coordinates and star glyphs. The
visualization uses multiple star glyphs, each of which consists of as many radially
arranged spikes as there are time points in the data. The length of a spike corre-
sponds to the data value measured at the spike’s associated time point. The tips
of subsequent spikes are connected via a polyline, effectively creating a polygonal
shape, which visualizes the data of one variable in a radial fashion. As an alter-
native representation to the spikes, the shape can be filled with differently colored
rings to make the data values easier to compare. Multiple such star glyphs are gen-
erated, one for each variable of the dataset. These glyphs are then arranged in a
three-dimensional space along a shared axis in a parallel fashion. To assist users in
identifying correlations among variables, polylines can be used to connect the same
time step along the glyphs. In order to avoid clutter, it is possible to restrict this fea-
ture to a user-selected number of time steps. The technique offers various ways of
manipulating the display, including switching the role of variables and data records,
rotation and zooming in the 3D presentation space, and adjustment of colors.
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Worm Plots
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Fig. 7.64: Worm plots are generated by creating visual abstractions of point groups at multiple
time steps and by assembling a 3D surface that resembles a worm. The worm plot on the right
shows three groups (control, high dose, low dose) of data points of toxicology experiments plotted
against the two variables Scenedesmus and Ankistrodesmus.
Source: Matthews and Roze (1997), © 1997 IEEE. Used with permission.

Worm plots have been developed by Matthews and Roze (1997) to help scientists
gain qualitative insights into the temporal development of groups of points in scat-
ter plots. The initial step necessary to construct a worm plot is generating a visual
abstraction of multiple points. One way to do this is to compute the centroid of a
group of points and the average distance of points to the centroid. The visual ab-
straction is then a circle with a radius equal to the average distance and located at
the centroid. Alternatively, a 2D generalization of box-whisker plots can be used
to form a diamond-shaped visual abstraction. Such abstractions are computed for
each time step (i.e., each scatter plot). Subsequently, a three-dimensional surface
(worm) is assembled from the visual abstractions of each group. This procedure is
illustrated in the left part of Figure 7.64. Presented in an interactively manipulatable
virtual world, worm plots allow users not only to see where in the variable space
point groups are located, but also to discern the compactness of point groups, and to
understand the development of these characteristics over time.
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Software Evolution Analysis
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Fig. 7.65: 3D visualization to analyze software systems and product families. Left: color legend
for different versions; center: hierarchical decomposition by modules, packages, and files (color
represents current version); right: individual file where each row represents a single version colored
by percentage of code originating from a particular (previous) version.
Source: Gall et al. (1999), © 1999 IEEE. Used with permission.

The software evolution analysis technique by Gall et al. (1999) uses 3D visualiza-
tion to analyze software systems or product families respectively. The information
is decomposed hierarchically into modules, packages, and files or similar concepts.
This hierarchy is depicted as a three dimensional tree structure in which the leaf
nodes represent individual files. Multiple such trees are aligned in layers in the
3D space, with one layer for each revision of the software. Color is used to dis-
tinguish different versions and to show changes over time. Furthermore, individual
files might be inspected in more detail to explore the evolution of changes over time
using proportionally colored version lines (see Figure 7.65, right). This way, pat-
terns are formed that can be used to identify, for example, stable parts of a system,
frequently changed parts, similarities, and more.
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InfoBUG
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Fig. 7.66: The InfoBUG encodes data about software to the wings, head, tail, and body of a glyph
(left). The wings show lines of code and number of errors over time, whereas body, head, and
tail show further data for a selected time point. A small multiples view can be used to compare
different software releases over time (right).
Source: Chuah and Eick (1998), © 1998 IEEE. Used with permission.

Chuah and Eick (1998) developed InfoBUG for visualizing changes in software
projects. The InfoBUG is an information-rich graphic that combines a multitude
of different heterogeneous data values. The glyph resembles an insect with wings,
head, tail, and body. The different parts of the glyph are used to represent four dif-
ferent classes of information about software projects (see Figure 7.66, left): code
lines and errors (wings), types of code (head), added and deleted lines of code (tail),
and number of file changes and children (body). The wings represent the lines of
code (left wing) and the number of errors (right wing) over time as vertical silhou-
ette graphs. While the wings show data over time, the other parts of the glyph show
only the data of a user-selected time point, which is indicated as a red line at the
wings. Antennas on the InfoBUG’s head represent different types of code, where
color indicates the type of code and the relative sizes of different types are encoded
by antenna length. The bug’s tail represents the number of deleted and added lines.
Finally, the InfoBUG’s body visualizes information about the number of altered files
via a bar in the middle of the body and the number of child objects via filled circles.
Small multiples (↪→ p. 236) can be used to compare the different releases of a soft-
ware product over time (see Figure 7.66, right). Furthermore, the representation can
be animated to follow the course of time.
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Gravi++
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Fig. 7.67: Patient icons in the middle of the display are positioned relative to the surrounding pa-
rameters (in this case items of a questionnaire) following a spring-based model. Individual answers
to questionnaire items are shown as concentric rings and star glyphs that show a set of answers as
polygonal line might be displayed. The user can step through time manually or can use animation,
which can be steered via the control panel on the lower left. Furthermore, traces might be displayed
that convey information about the evolution of values over time as shown in detail on the lower
right.
Source: Image courtesy of Klaus Hinum.

Hinum et al. (2005) designed Gravi++ to find predictors for the treatment planning
of anorexic girls. It represents patients and data gathered from questionnaires during
treatment over the course of several weeks or months. Patients are represented by
icons that are laid according to a spring-based model relative to the surrounding
icons that represent items of a questionnaire. This leads to the formation of clusters
of persons who gave similar answers. To visualize the changing values over time,
animation is used. The position of each person’s icon changes over time, making
it possible to trace, compare, and analyze the changing values. Alternatively, the
change over time can be represented by traces. The size and path of the person’s
icon is shown corresponding to all time steps or only to a restricted subset like the
previous and the next time step. To visualize the exact values of each question, rings
around the question’s icon can be drawn and star glyphs might be shown.
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CircleView
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Fig. 7.68: Multiple variables are shown as segments of a circle. Each segment is further subdivided
into time slots that represent data values using color. Left: six variables over ten time steps; right:
different time axes arrangements (outside–in vs. inside–out) and space assignment that emphasizes
more recent values.
Source: Adapted from Keim et al. (2004).

Keim et al. (2004) developed CircleView for visualizing multivariate streaming data
as well as static historical data. Its basic idea is to divide a circle into a number of
segments, each representing one variable. The segments are further divided into
slots covering periods of time, and color shows the (aggregated) data value for the
corresponding interval. Thus, time is mapped linearly along the segments. The user
can interactively adjust the number of time slots, the time span per slot, different
layouts for the time axis, and might emphasize more recent slots by assigning in-
creasingly more space to them (see Figure 7.68, right). Since the order of segments
is important for the visual appearance and comparison, it can be adjusted by the
user or set automatically using similarity measures. For streaming data the seg-
ments of the circle are shifted automatically from the center to the edge (or vice
versa). Keim and Schneidewind (2005) also presented a multi-resolution approach
on top of CircleView, where time slots for coarser granularities are shown besides
detail values.
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Trendalyzer, Animated Scatter Plot
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Fig. 7.69: Two data variables are mapped to the horizontal and vertical axes, symbol size represents
a third variable, and animation is used to step through time. Additionally, trails are activated for
the selected countries, Austria and Germany, which help to preserve the path of a variable through
time.
Source: Generated with Trendalyzer with permission of the Gapminder Foundation.

Trendalyzer by Gapminder Foundation (2010) is an interactive visualization and
presentation tool that is based on scatter plots. In contrast to point plots (↪→ p. 152)
where time is mapped on the horizontal or vertical axis, animation is used to rep-
resent time. Hence, two data variables are mapped onto the axes of the Cartesian
coordinate system and animation is used to step through time. The size of a dot rep-
resents a third variable and color is used for distinguishing groups. The animation
can be controlled via a time slider, a play/pause button, and a slider for adjusting
animation speed. Furthermore, trails might be displayed, which help to preserve
the path of a variable through time. This means that dots stay visible and are con-
nected over time. Robertson et al. (2008) evaluated the use of animation in convey-
ing trends over time and compared Trendalyzer with a modified version of trails,
and small multiples (↪→ p. 236). The results show that animation is both slower and
less accurate than the other representations but is well suited as a presentation aid.
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TimeRider
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Fig. 7.70: Patients are represented as marks in a scatter plot that can be animated over time. Body
mass index is mapped to the horizontal axis, HbA1c to the vertical axis, and mark color shows
whether a patient smoked. Time controls for animation and synchronization settings are visible at
the bottom. Additionally, traces are displayed that connect values over time. A detail-on-demand
window showing further patient data is displayed when hovering over a patient mark.
Source: Generated with the TimeRider software.

TimeRider by Rind et al. (2011) is an enhanced animated scatter plot (↪→ p. 220)
for exploring multivariate trends in cohorts of diabetes patients. The enhancements
tackle three challenges of medical data: irregular sampling, data wear (i.e., decreas-
ing validity over time), and patient records covering different portions of time. Ani-
mation of irregularly sampled data is achieved via interpolation of individual values
along a linear trajectory. To account for data wear and to maintain temporal context,
transparency and traces are used to enrich the visual encoding of time. For compar-
ing patient histories that cover different portions of time, TimeRider provides four
synchronization modes: by calendar date, patient age, start of treatment, and end
of treatment. To take better advantage of animation, TimeRider is highly interac-
tive; apart from common interactions to select, pan, zoom, filter, and show details
on demand, the user can change the visual mapping of axes, color, shape, and size
(see Figure 7.70, left). Other task-specific features are value ranges that can be high-
lighted in the background of the scatter plot and dynamic queries on data variables.
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Process Visualization
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Fig. 7.71: Process visualization can be supported by providing virtual instruments at different
levels of detail (left). This helps users to stay focused on important variables of an automotive
process, while less relevant information is presented at a higher level of abstraction only (right).
Source: Matković et al. (2002), © 2002 IEEE. Used with permission.

Process visualization, for instance in automotive environments, has to deal with a
multitude of time-varying input variables to be monitored. Matković et al. (2002)
suggest a focus+context approach to help users keep track of the important changes
of a process. The key idea is to provide virtual instruments that represent moni-
tored variables at different levels of detail. Instruments representing focused vari-
ables provide more detailed information, for example, a brief view on a variable’s
history, which is not possible with classic gauges. On the other hand, less relevant
variables are visualized using heavily abstracted virtual instruments that might show
just the numeric value or even only a colored dot. Multiple such instruments are ar-
ranged in a virtual environment that is used as visual reference for the monitoring
scenario. Focus and context within the environment can change dynamically during
monitoring, either upon detection of certain events in the data or via user interaction.
The approach of Matković et al. (2002) is an excellent example of visualization of
dynamic temporal data (see Section 3.3).
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Flocking Boids
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Fig. 7.72: Stock market data are represented as flocking boids that move in a three-dimensional
presentation space. Left: boids leaving the flock indicate that the corresponding stock price behaves
differently than the majority of prices; right: implicit surfaces surrounding boids help users to
recognize the spatial structure of the flock.
Source: Vande Moere (2004), © 2004 IEEE. Used with permission.

Stock market data change dynamically during the day as prices are constantly up-
dated. Vande Moere (2004) proposes to visualize such data by means of information
flocking boids. The term boids borrows from the simulation of birds (bird objects =
boids) in flocks. In order to visualize stock market prices, each stock is considered
to be a boid with an initially random position in a 3D presentation space. Upon ar-
rival of new data, boid positions are updated dynamically according to several rules.
These rules attempt to avoid collisions of boids, to move boids at the same speed as
their neighbors in the flock, to move boids toward the flock’s center, to keep similar
boids close to each other, and to let boids stay away from boids that are dissimilar.
The visual representation is inherently dynamic and aims at the users’ capability
to perceive emergence of patterns as the visualization updates. To this end, boids
and corresponding traces are visualized as animated curves, as shown on the left in
Figure 7.72. This 3D visual representation is enhanced by enclosing boids within
implicit surfaces, which help users recognize the spatial structure of the flock (see
Figure 7.72, right). The flocking boids visualization can be useful for detecting var-
ious patterns in the data such as the emergence of clusters, the separation of boids
from the main flock, or a general chaotic behavior of boids.
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Time Line Browser
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Fig. 7.73: Heterogeneous patient information is visualized along a common horizontal time axis.
Intervals are displayed as labeled bars and events are displayed as icons. The small circles form a
point plot that shows the patient’s blood glucose over time.
Source: Cousins and Kahn (1991), © 1991 Elsevier. Used with permission.

Cousins and Kahn (1991) developed the time line browser for visualizing heteroge-
neous time-oriented data. The time line browser integrates qualitative and quantita-
tive data as well as instant and interval data into a single coherent view. To this end,
Cousins and Kahn (1991) distinguish simple events, complex events, and intervals.
Simple events are represented as small circles, whereas complex events are shown as
icons. Bars are used to indicate location and duration of intervals. These depictions
are aligned with respect to a common horizontal time axis (↪→ p. 166), where tex-
tual labels might be used to display further details. In addition to the visualization,
a formal system for timeline elements and timeline operations has been developed.
It defines five basic operations (i.e, slice, filter, overlay, add, new) for manipulating
timelines and also supports composite operations. These operations are useful for
addressing the issues of different temporal granularities and the calendar mapping
problem.
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LifeLines
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Fig. 7.74: Horizontal bars are used to show the temporal location and duration of health-related
incidents. The example shows several facets of patient information and an additional linked sono-
gram on the right.
Source: Image courtesy of Catherine Plaisant and University of Maryland Human-Computer In-
teraction Lab.

A simple and intuitive way of depicting incidents is by drawing a horizontal line
on a time scale for the time span the incident took. This form of visualization is
called timeline (↪→ p. 166). Plaisant et al. (1998) apply and extend this concept for
visualizing health-related incidents in personal histories and patient records. Con-
sequently, they call their approach LifeLines. Horizontal bars are used to show the
temporal location and duration of incidents, treatments, or rehabilitation. Additional
information can be encoded via the height as well as the color of individual bars.
In order to structure the displayed information in groups, so-called facets are intro-
duced. Multiple such facets are stacked vertically. Depending on the information
sought by the user, facets can be expanded and collapsed. When collapsed, only a
very small and geometrically as well as semantically down-scaled visual represen-
tation without textual labels is shown. When expanded, a facet shows full detail.
External information related to certain incidents might be provided on demand in a
linked view, as for example x-ray images or sonograms.
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PatternFinder
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Fig. 7.75: The query formulated in the visual interface (top) relates a cholesterol test to a sub-
sequent emergency visit in a hospital. The resulting visualization (bottom) shows several patient
records that match with the query as vertically stacked ball-and-chain representations.
Source: Image courtesy of Jerry Alan Fails.

PatternFinder by Fails et al. (2006) is used for constructing queries to find temporal
patterns in medical record databases. The temporal patterns consist of events that are
associated with data, and time spans that separate events. Users formulate queries
by imposing constraints on events and time spans. Events can be selected from a
hierarchically structured vocabulary and constraints for associated variables can be
specified in a visual interface along with temporal constraints. This way, users can
build queries for the existence of events (e.g., persons with heart attack), tempo-
rally ordered events (e.g., heart attack followed by stroke), temporally ordered value
changes (e.g., BMI of 25 or higher followed by BMI of 20 or lower), and trends over
time (e.g., BMI decreasing). Event sequences might not only be specified in terms
of temporal order, but also in terms of temporal distance (e.g., time span of 28 days
or less between heart attack and stroke). Moreover, all of the mentioned query types
can also be combined. For visualizing query results, a so-called ball-and-chain rep-
resentation is used: results are shown as vertically stacked timelines, where colored
circles represent matched events and bars stand for matched time spans.
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Fig. 7.76: Continuum showing a music dataset with the three variables era, composer, and piece.
Scalable histograms provide a complete representation of the data and quantify the focal data item.
Top-left: limeline overview; bottom-left: timeline detail view; right: dimension selector panel.
Source: Image courtesy of Paul André.

Collections of small events often constitute larger, more complex events, like for
example talks at conferences or legs of a race. Moreover, events might also be re-
lated to other events at other points in time (e.g., a paper written at some point in
time and referenced later). Continuum by André et al. (2007) is a timeline visualiza-
tion tool to represent large amounts of hierarchically structured temporal data and
their relationships. It addresses the three problems of scale, hierarchy, and relation-
ships by using scalable histogram overviews, flattening high-dimensional data into
dynamically adjustable hierarchies, and arching connection lines for representing
non-hierarchical relationships. The interface consists of three main panels that show
overview, detail, and the dimension configuration. The timeline overview always
represents the complete timespan of the dataset using scalable histograms where the
vertical axis quantifies the user-selected focal data item. The timeline detail view
shows hierarchical relationships as nested elements and applies semantic zooming
depending on the amount of information to be displayed. With the dimension selec-
tor, users can interactively control the hierarchical buildup and the level of detail to
be shown.
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EventRiver
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Fig. 7.77: CNN news data from August 2006. Event bubbles flow in a horizontal river of time,
where important events are highlighted in red in the top part of the river.
Source: Luo et al. (2011). © 2011, IEEE. Used with permission.

Text collections such as news corpora or email archives often contain temporal refer-
ences, which embed the text’s information into a temporal context. Luo et al. (2011)
describe a technique, called EventRiver, for exploring such text collections interac-
tively in terms of important events and the stories that these events constitute. In a
first phase, events are extracted from the data using a number of analytical steps,
including keyword identification and temporal locality clustering. This phase yields
a set of events which are characterized by their position in time, by their duration,
and by several other measures (e.g., temporal influence, strength, co-strength). The
visual design of EventRiver is based on so-called event bubbles that flow in a hor-
izontal river of time (i.e., along a horizontal time axis). The bubbles are placed
horizontally where events are located in time. A bubble’s shape illustrates how an
event has emerged and disappeared over time. Colors and the bubbles’ vertical po-
sitions in the river are chosen so as to highlight important interconnected events that
constitute long term stories in the text documents. While tooltip labels show the im-
portant keywords of events, document details are provided on demand in separate
views. Analysts can adjust the EventRiver by using various interaction techniques
including dynamic filtering, semantic and temporal zooming, and manual relocation
of event bubbles.
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FacetZoom
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Fig. 7.78: The hierarchical structure of time is shown as an interactive horizontal time axis widget
that has a data view attached to it, in this case a visualization of stock market data.
Source: Image courtesy of Raimund Dachselt.

FacetZoom is a technique that enables users to navigate hierarchically structured
information spaces (see Dachselt et al., 2008). The hierarchical structure of time is
a natural match for this technique. What Dachselt and Weiland (2006) originally
called TimeZoom is a visual navigation aid for time-oriented data. The basic idea
is to display a horizontal time axis that represents different levels of temporal gran-
ularity as stacked bars (e.g., decades, years, months, weeks, days). The time axis
is an interactive widget that can be used to access data from different parts of the
time domain at different levels of abstraction. In addition to continuous zooming
and panning via mouse, it is also possible to simply select discrete intervals from
the time axis. Depending on the user’s selection, the time axis display is altered to
accommodate the selected part of the time axis with more display space. Accord-
ingly, the data view, which is attached to the time axis, can use the extra space to
represent more data items in greater detail. While the actual mapping of time is
static, the navigation steps of the user, including the visual adjustment of the time
axis, are smoothly animated.
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Midgaard
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Fig. 7.79: Midgaard integrates the display of time-oriented patient data and treatment plans. Right:
main user interface showing different measurements (e.g., blood gas measurements, blood pres-
sure) using line plots, their corresponding temporal abstractions using color, and treatment plans
as well as additional patient information on the right, and an interactive multi-scale time axis at the
bottom; left: different steps of semantic zooming of a time-series from a broad overview (top) to a
detailed view with details of fine structures (bottom).
Source: Authors.

Several tightly integrated visualization techniques have been developed in the
Midgaard project by Bade et al. (2004) to enhance the understanding of hetero-
geneous patient data. To support the user in exploring the data and to capture as
much qualitative and quantitative information as possible on a limited display space,
Midgaard supports different levels of abstractions for time-oriented data (see Sec-
tion 6.3). Switching between these levels is achieved via a smoothly integrated se-
mantic zoom functionality (see Figure 7.79, left). These methods were designed to
allow users to interact with data and time. Navigation in time is done using three
linked time axes (see Figure 7.79, bottom-right). The first one (bottom) provides a
fixed overview of the underlying time interval covering its full range. Selecting a
subrange in that time axis defines the temporal bounds for the main display area and
the second (middle) time axis. Selecting a further subrange in the middle time axis
defines detail and surrounding context areas in time. By interactively adjusting the
subranges, users can easily zoom and pan in time.
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Fig. 7.80: Visualization of heterogeneous medical parameters of a diabetes patient. Beneath a
panel that shows patient master data, eight visualization views show progress notes in a document
browser, glucose and HbA1c as line plots with semantic zoom, insulin therapy as timelines, OAD
as event chart, blood pressure as bar graphs, and BMI as well as lipids as line plots (top to bottom).
Source: Generated with the VisuExplore software.

VisuExplore by Rind et al. (2010) is an interactive visualization system for explor-
ing a heterogeneous set of medical parameters over time. It uses multiple views
along a common horizontal time axis to convey the different medical parameters in-
volved. VisuExplore provides an extensible environment of pluggable visualization
techniques and its primary visualization techniques are deliberately kept simple to
make them easily usable in medical practice: line plots (↪→ p. 153), timeline charts
(↪→ p. 166), bar graphs (↪→ p. 154), event charts, line plots with semantic zoom (see
p. 112), and document browsers (see Figure 7.80, top). Furthermore, data might also
be presented as textual tables to augment the visual representations. VisuExplore’s
interactive features allow physicians to get an overview of multiple medical param-
eters and focus on parts of the data. Users may add, remove, resize, and rearrange
visualization views. Additionally, a measurement tool is integrated that makes it
possible to determine time spans between user selected points of interest and this
works not only within one but also across different views.
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KNAVE II
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Fig. 7.81: KNAVE II supports the visualization and knowledge-based navigation of patient data
and abstractions thereof. Left: tree view of clinical domain ontology for navigation; right: visual-
ization panels for raw data and abstractions; bottom-left: search panel.
Source: Shahar et al. (2006), © 2006 Elsevier. Used with permission.

KNAVE II by Shahar et al. (2006) enables visual browsing and exploring of pa-
tient’s data (raw measured values and external interventions such as medications).
The system focuses mainly on the visual display of temporal abstractions of the
data (see Section 6.3) and shows domain-specific concepts and patterns. In order to
abstract the raw data, a predefined knowledge base is used that defines three types
of interpretations: classification of data (e.g., low – normal – high), change of data
(e.g., increasing – decreasing), and rate of change (e.g., slow – fast). Colored time-
lines (↪→ p. 166) depict abstracted intervals as bars where a bar’s vertical position
within a panel encodes its qualitative value. For example, the second panel (blue
frame) in Figure 7.81 shows the platelet state abstracted to the qualitative values:
very low, low, moderately low, normal, high (from bottom to top). KNAVE II also
allows users to view the raw data as line plots (↪→ p. 153). Moreover, statistics for
parameters and corresponding abstractions can be superimposed as bar graphs (↪→
p. 154) as shown in the topmost panel, or can be given as text labels, as shown in the
third and fifth panels. A granularity-based zoom allows users to quickly navigate in
time simply by clicking individual granules, for instance the month Aug.
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Fig. 7.82: Display of multivariate data using data tracks in a radial layout. Images show human
chromosome data using point plots, line plots, tiles, histograms, heatmaps, and connectors that
link points on the circle (right).
Source: Images courtesy of Martin Krzywinski.

Circos by Krzywinski et al. (2009) uses a circular design to generate multivariate
displays. It uses concentric bands (data tracks) as display areas and is capable of dis-
playing data as point plots (↪→ p. 152), line plots (↪→ p. 153), histograms, heat maps,
tiles, connectors, and text. In this sense, time is mapped circularly to the circum-
ference of data tracks. The configuration of a visual representation is handled via
plain-text files where rules that can be defined for each data track filter and format
data elements based on position, value or previous formatting. For communicating
quantitative data via color, perceptually uniform color schemes based on the work of
Brewer (1999) are used. Circos was initially developed for genomics and bioinfor-
matics data to visualize alignments, conservation, and intra- and inter-chromosomal
relationships. Relationships between pairs of positions are represented by the use of
ribbons that connect elements. In the same way, relational data encoded in tabular
formats can be shown. Due to its flexible approach, Circos has also been applied
to numerous other application areas, such as urban planning, and has been used for
infographics in newspapers and ads to display complex relationships.
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Kaleidomaps
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Fig. 7.83: On the left, six kaleidomaps show the morphology of blood pressure and flow waves over
two experimental phases. Top-right: illustration of the layout of variables within a kaleidomap;
bottom-right: layout of time within a segment.
Source: Bale et al. (2006), © 2006 IEEE. Used with permission.

Kaleidomaps by Bale et al. (2007) visualize multivariate time-series data and the
results of wave decomposition techniques using the curvature of a line to alter the
detection of possible periodic patterns. The overall idea of kaleidomaps is similar to
the rendered output of a kaleidoscope for children, from whence the name comes.
A base circle is broken into segments of equal angles for different variables. Each
circle segment has two axes representing time, one along the radius and one along
the arc of the segment. The data values and categories are represented using color.
Due to the circular nature of kaleidomaps, the number of variables in one circle
is limited to a maximum of six to eight. Interaction techniques within the kalei-
domaps allow an analyst to drill down both in time and frequency domains in order
to uncover potential relationships between time, space, and waveform morpholo-
gies. Kaleidomaps were developed in the domain of critical care medicine, but case
studies have shown their usefulness in other domains as well, like in environment
analysis.
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Intrusion Detection
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Fig. 7.84: Machines in a network are represented by a matrix of 3D cubes in the center of the
display. Time is mapped to the circumference of a circle enclosing the matrix of machines. When
a particular machine is accessed, a line is drawn that links the particular machine with a point in
time on the circular time axis.
Source: Images courtesy of Kovalan Muniandy.

A 3D visualization technique by Muniandy (2001) helps to analyze user access to
computers in a network over time for intrusion detection. The different parameters
time, users, machines, and access are mapped onto a 3D cylinder. In Figure 7.84,
time is mapped onto the circumference of a circle showing the 24 hours of a day.
The units along the circle can be configured to represent either hours, months, or
years. Different users are represented by individual cylinder slices that are stacked
upon each other and machines are represented as cubes that are arranged in a ma-
trix. Access to a machine by a user is visualized by a line connecting the user slice
at the corresponding access time with the accessed machine. This way, certain pat-
terns of network access can easily be spotted visually and suspicious behavior can
be revealed. Details-on-demand are displayed when hovering with the mouse over
an element of the visualization. To mitigate occlusion, the representation can be
zoomed and rotated freely by the user. Moreover, filtering can be applied to remove
clutter.
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Small Multiples
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Fig. 7.85: Small multiples showing migration data. Each miniature map visualizes migration of
people as links between countries. Green color indicates the origin, red color the destination, and
line width the volume of migration.
Source: Generated with the JFlowMap software with permission of Ilya Boyandin.

Small multiples are more a general concept than a specific technique. Tufte (1983,
1990) describes small multiples as a set of miniature visual representations. For
time-oriented data, each miniature visualizes a selected time point. The concrete
depiction may show a single variable or multiple variables in an abstract or spatial
context using a 2D or 3D presentation space. Particularly relevant is the arrange-
ment of the small multiples as it dictates how the time axis is perceived. Linear or
circular arrangements can be used, or specific arrangement patterns can be applied
to account for different granularities of the time axes. Small multiples provide an
overview of the data and allow users to visually compare the data at different time
points. Another advantage of small multiples is that the concept can be applied to
virtually any existing visualization technique; the only thing to do is to create a
thumbnail from an existing visual representation for each time step. Depending on
the amount of screen space occupied by each thumbnail, however, the number of
representable time steps could be rather moderate. Or, if the images are shrunk to fit
more time steps, less details are visible.
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Fig. 7.86: Visual exploration of event data. Spatial, temporal, and thematic dimensions of events
can flexibly be assigned to configurations of bands, stacks, and panels. Left: low pressure and high
wind events are shown along three locations and two years; right: display configuration to reveal
temporal patterns along hours of a day.
Source: Adapted from Beard et al. (2008).

EventViewer by Beard et al. (2008) is a framework that has been developed to vi-
sualize and explore spatial, temporal, and thematic dimensions of sensor data. The
system supports queries on events that have been extracted from such data and are
stored in an events database. The spatial, temporal, and thematic categories of se-
lected events can flexibly be assigned to three kinds of nested display elements
called bands, stacks, and panels. Bands are the primary graphic object and act as
display container for a set of events. The horizontal dimension of a band represents
time and bars within a band represent instances of events. The length of a bar cor-
responds to the event’s duration and color can be used to encode other data values.
Furthermore, missing data is shown by using gray bars to make a clear visual distinc-
tion to areas without events (shown as empty areas). Stacks consist of event bands
that are placed on top of each other and panels are collections of stacks. Each of
the three data dimensions space, time, and theme can be modeled along hierarchies
or lattices. For time, calendric systems consisting of time granularities like hours,
days, weeks, and years are used (see Section 3.1.2). The configuration of display
elements are broken down along these hierarchical and lattice structures and form
small multiples (↪→ p. 236). The assignments can be changed interactively by the
user via direct manipulation, thus revealing different kind of patterns as for example
periodic patterns, spatial and temporal trends, or event-event relationships.
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Fig. 7.87: Ring maps representing health related alert levels (green, yellow, orange, red) for various
zip code regions during a period of 24 weeks (left) and degree of activity during the course of a
day for 96 human activities, one shown per ring (right).
Source: Left: Image courtesy of Guilan Huang. Right: Image courtesy of Jinfeng Zhao.

The basic idea of ring maps is to create multiple differently sized rings, each of
which is subdivided into an equal number of ring segments (see Zhao et al., 2008;
Huang et al., 2008). The rings and their segments as well as the center area of the
overall visual representation can be used in various ways. One can utilize ring maps
to visualize spatio-temporal data. To this end, a map is shown in the center and the
ring segments of a particular angle are associated with a specific area of the map.
This is depicted in the left part of Figure 7.87, where different angles show the data
for different zip code regions. A time-series for each region can then be represented
by the rings, for instance, by assigning the first series entry to the inner-most ring
and the last one to the outer-most ring. The actual data visualization is done by
color coding. There are other ways of mapping information to rings and segments.
The right part of Figure 7.87 shows an application of ring maps where the hours of
the day are mapped to the ring segments and the rings represent different activities a
person can be busy with during the course of a day. The degree of activity is encoded
by color. This time the center of the display is used to show a complementary 3D
representation to assist users in spotting highly active regions.
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Fig. 7.88: Development of high school population in school districts over the years 2005, 2006,
and 2007. Three different layouts to represent change over time of values associated with areas of
a map. Left: wedges; center: rings; right: time slices. Data values are shown using color.
Source: Shanbhag et al. (2005), © 2005 IEEE. Used with permission.

Three time-oriented visualization methods are presented by Shanbhag et al. (2005)
to analyze and support effective allocation of resources in a spatio-temporal context.
Wedges, rings, and time slices are the three basic layouts used to display changes of
data values over time on a map. For all three variants, data values and categories are
represented using color components (hue, saturation, and brightness). In the layout
of the wedges the area of a polygon is partitioned in a clock-like manner into radical
sectors equal to the number of time points (see Figure 7.88, left). The ring layout is
based on the idea of the concentric rings of a tree trunk where the innermost ring
corresponds to the earliest time point and the outermost ring corresponds to the lat-
est time point (see Figure 7.88, center). The time slices layout divides a polygon
into vertical slices that are ordered from left to right according the progress in time
(see Figure 7.88, right). The wedges, rings, and time slice layouts are applied to
polygonal areas of a map. These visualizations were used for example to repartition
school districts (seen as planning polygons) where variables such as student popu-
lation by grade, number of students requiring free meals, and test scores needed to
be analyzed to plan the future allocation of resources.

References

Shanbhag, P., Rheingans, P., and desJardins, M. (2005). Temporal Visualization of Planning Poly-
gons for Effcient Partitioning of Geo-Spatial Data. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis), pages 211–218, Los Alamitos, CA, USA. IEEE Computer
Society.

www.ebook3000.com

http://www.ebook3000.org


240 7 Survey of Visualization Techniques

Icons on Maps

m
ap

pi
ng

:
st

at
ic

di
m

en
si

on
al

ity
:

2D
,3

D

vis

ar
ra

ng
em

en
t:

lin
ea

r,
cy

cl
ic

tim
e

pr
im

iti
ve

s:
in

st
an

t,
in

te
rv

al

time

fr
am

e
of

re
fe

re
nc

e:
sp

at
ia

l
va

ri
ab

le
s:

un
i-

,m
ul

ti
va

ri
at

e

data

Fig. 7.89: The figure illustrates the embedding of time-representing icons into a map in order to
visualize spatio-temporal data. This illustration shows ThemeRiver icons and TimeWheel icons in
the left and the right part of the map, respectively. The northern part of the map illustrates a conflict
graph as used for local optimization of icon positions.
Source: Generated with the LandVis system.

When time-oriented data additionally contain spatial dependencies, it is necessary
to visualize both the temporal aspects and the spatial aspects. A sensible approach
to achieving this is to adapt existing solutions. Maps are commonly applied to rep-
resent the spatial context of the data. In order to apply existing visualization tech-
niques to represent the temporal context, they must be made compatible with the
map display. First and foremost, this implies a reduction in size, which effectively
means creating icons from otherwise full-window visual representations. In a sec-
ond step, it is then possible to place multiple icons on the map, where the data
are anchored in space. If there are too many icons on a map, they most likely oc-
clude each other. Therefore, additional methods are applied to resolve occlusions
by the global or local optimization of icon positions. The problem of finding suit-
able icon positions is very much related to the cartographic map labeling problem.
Tominski et al. (2003) and Fuchs and Schumann (2004) demonstrate the integration
of the ThemeRiver (↪→ p. 197) and the TimeWheel (↪→ p. 200) into a map display.
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Fig. 7.90: Univariate spatio-temporal data are represented by embedding multiple miniature sil-
houette graphs into regions of a map. The graphs use a specific encoding where yellow color
corresponds to a positive deviation of the variable from the data’s mean and blue color indicates a
negative deviation.
Source: Image courtesy of Gennady Andrienko.

What Andrienko and Andrienko (2004) call value flow map is a technique to vi-
sualize variation in spatio-temporal data. A value flow map shows one miniature
silhouette graph (↪→ p. 175) for each area of a cartographic map to represent the
temporal behavior of one data variable per area. Typically, temporal smoothing is
carried out by replacing the values of a point-based time scale with the mean values
of an interval-based time scale. In this way, small fluctuations are disregarded and
major trends become visible. Moreover, a number of data transformations can be
applied to define the mapping of the graphs. An example of such a transformation
is to show the variable’s deviation from the data’s mean, rather than the raw data,
that is, data values are replaced by their differences to the mean in order to repre-
sent positive and negative variations. This way, the silhouette graphs visualize quite
well how the data values flow in time and space (hence value flow map). This is a
necessary requirement to enable analysts to detect patterns, and thus to support ex-
ploring spatial distributions, comparing data evolution at different locations, as well
as finding similarities and outliers.
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Fig. 7.91: The flow map shows characteristic movements of photographers over time extracted
from metadata of more than 590,000 geo-referenced and time-stamped photographs.
Source: Image courtesy of Gennady Andrienko.

Flow maps show movements of objects over time, that is, they show a change of
positions over time, rather than a change of data values. Usually, such movements
form directed (optionally segmented) trajectories connecting the starting point of a
movement and its end point. Such trajectories can be represented visually as more
or less complex arrows or curves, where width, color, and other attributes can be
used to encode additional information (see Kraak and Ormeling, 2003). A famous
example is Minard’s flow map of Napoleon’s Russian campaign (see Figure 2.8
on page 21). A high number of flows, however, leads to overlapping trajectories
and thus to visually cluttered flow maps. In order to represent massive data, flow
maps can show abstractions of movements, rather than individual movements (see
Andrienko and Andrienko, 2011). To faithfully communicate the underlying data,
characteristic movements need to be extracted. First, time points are aggregated to
larger time intervals and individual places are substituted with larger regions so as
to arrive at abstracted trajectories that show mean trends. Secondly, the trajectories
are grouped based on a similarity search, e.g., by applying cluster analysis or self
organizing maps (SOM). In this way, places with similar dynamics are merged, and
individual trajectories are replaced by trajectories associated with the groups.
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Fig. 7.92: Hierarchy layouts are embedded into areas of a map, where each map layer corresponds
to one time step. Colored links and spikes between layers indicate significant changes from one
time step to the other.
Source: Generated with the LandVis system.

Hierarchical structures can be found in many application areas. A technique for
visualizing hierarchies that change over time in a geo-spatial context is described by
Hadlak et al. (2010). This technique follows the idea of using the third dimension
of the presentation space to represent the dimension of time, which is analog to
the space-time cube approach (↪→ p. 245). For a series of time steps, individual
map layers are constructed, where each map region shows an embedded hierarchy
layout and each node’s color visualizes a data value. To facilitate the identification
of changes between two layers, visual cues are added. Differently colored links
between subsequent layers are used to indicate nodes that have moved or whose
attribute values have changed significantly. Significance is determined by a user-
selectable threshold. Positive attribute changes are shown as red links and negative
changes are shown in blue. Links representing node movements are colored with a
shade of gray. Addition or deletion of nodes and edges is indicated by spikes. Spikes
that represent deletion leave a layer in the direction of the time axis and are shown
in blue. Those that mark addition enter a layer and are shown in red. The layering
approach in combination with the described visual cues allows users to compare
successive time steps more closely.
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Fig. 7.93: Multiple views show multivariate spatio-temporal crime data that have been clustered
by a self-organizing map (SOM). An enhanced color coding schema is used consistently among
all views to visualize cluster affiliation.
Source: Generated with the VIS-STAMP system.

Spatio-temporal data can be complex and multi-faceted. Guo et al. (2006) devel-
oped a system called VIS-STAMP that integrates computational, visual, and carto-
graphic methods for visual analysis and exploration of such data. At the heart of
the system is a self-organizing map (SOM) that is used for multivariate clustering,
sorting, and coloring. The visual ensemble comprises a matrix view (top-left in Fig-
ure 7.93), a map view (top-right), a parallel coordinates view (bottom-right), and a
SOM view (bottom-left). The matrix view’s columns represent time points and its
rows stand for geographic regions. Cluster affiliation of the matrix cells is visual-
ized by means of an enhanced color coding schema. The color coding is consistent
across all views. The map view follows the small multiples approach (↪→ p. 236)
and shows color-coded map thumbnails, one for each time point. The parallel coor-
dinates view addresses the multivariate character of the data. Finally, the SOM view
offers a detailed view and control interface of the underlying self-organizing map. A
number of automatic and interactive manipulation techniques (e.g., reordering and
sorting) facilitate the data analysis.
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Fig. 7.94: This space-time cube represents two spatial dimensions (latitude and longitude) along
the y-axis and the z-axis, and time along the x-axis. Multiple color-coded layers are embedded into
the cube to visualize spatio-temporal climate data.
Source: Image courtesy of Thomas Nocke.

A classic concept that combines the visualization of space and time is the space-time
cube, which is attributed to the pioneer work of Hägerstrand (1970). The basic idea
is to map two spatial dimensions to two axes of a virtual three-dimensional cube and
to use the third axis for the mapping of time. The spatial context is often represented
as a map that constitutes one face of the space-time cube. The three-dimensional
space inside the cube is used to represent spatio-temporal data, where possible visual
encodings are manifold. One can place graphical objects in the cube in order to mark
points of interest, or one can construct trajectories that illustrate paths of objects
(↪→ p. 247). Associated data can be encoded to the properties of graphical objects
and trajectories, where color and size are common candidates. Another technique
is to place multiple layers along the time axis, each of which encodes the data for
a specific time point. Space-time cubes usually rely on appropriate interaction to
allow users to view the data from different perspectives. A contemporary review of
the concept can be found in the work by Kraak (2003).
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Spatio-Temporal Event Visualization
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Fig. 7.95: Events in space and time are visualized by embedding graphical objects of varying size
and color into space-time cubes. From left to right, the cubes show events related to convective
clouds, human health data, and earthquakes.
Source: Left: Turdukulov et al. (2007), © 2007 Elsevier. Used with permission. Center: Generated
with the LandVis system. Right: Gatalsky et al. (2004), © 2004 IEEE. Used with permission.

Events usually describe happenings of interest. In order to analyze events in their
spatial and temporal context, one can make use of the space-time cube concept (↪→
p. 245). The actual events are visualized by placing graphical objects in the space-
time cube at those positions where events are located in time and space. Attributes
associated with events can be encoded, for example, by varying size, color, shape,
or texture of the graphical objects. Marking events in a space-time cube is a gen-
eral concept with a wide range of applications: Turdukulov et al. (2007) explore
events related to the development of convective clouds, Tominski et al. (2005) con-
sider maxima in human health data as events of interest, and Gatalsky et al. (2004)
visualize earthquake events.
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Space-Time Path
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Fig. 7.96: A space-time path is embedded into a space-time cube and shows a person’s movement
For better orientation, important places are marked by vertical lines and annotations.
Source: Kraak (2003), © 2003 International Cartographic Association (ICA). Used with permis-
sion.

The space-time path is a specific representation of data in a space-time cube (↪→
p. 245). The roots of the concept of space-time paths can be found in the work by
Lenntorp (1976). Kwan (2009) describes contemporary visual representations that
are based on the classic concept. A space-time path is constructed by considering
the location of an object as a three-dimensional point in space and time. Multiple
such points ordered by time describe the path that an object has taken. The path can
be rendered as a polyline that connects successive points. In order to encode data
along a space-time path, one can vary the line’s color, use differently dashed line
segments, or employ other visual attributes. Alternatively, a space-time path can be
represented as a three-dimensional tube, where the tube’s radius can be varied to
encode additional data values. Today’s implementations usually offer interaction to
allow for virtual movements through space and time, or for rotation and zoom.
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GeoTime
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Fig. 7.97: The visualization shows taxis involved in a hit and run accident as colored points and
paths. Patterns of interest are annotated in the scene, and a narrative can be authored on the right.
Source: Image courtesy of William Wright. GeoTime is a registered trademark of Oculus Info Inc.

Kapler and Wright (2005) describe GeoTime® as a system to visualize data items
(e.g., objects, events, transactions, flows) in their spatial and temporal context. It
provides a dynamic, interactive version of the space-time cube concept (↪→ p. 245),
where a map plane illustrates the spatial context and time is mapped vertically along
the third display dimension. Items and tracks are placed in the space-time cube at
their spatial and temporal coordinates. GeoTime provides a variety of visual and
interactive capabilities. Time intervals of interest can be selected by the user and
events are smoothly animated along the time axis. Alternative projections of the
display allow users to focus more on either temporal or spatial aspects. Notable
about GeoTime are its annotation, storytelling, and pattern recognition features (see
Eccles et al., 2008). They enable automatic as well as user annotation of the rep-
resentation with findings, as well as the creation of stories about the data for ana-
lytic exploration and communication. Additional functionality allows the analysis of
events and transactions in time above a network diagram (see Kapler et al., 2008).
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Pencil Icons
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Fig. 7.98: Multiple time-dependent variables are mapped onto the faces of pencil icons to visualize
temporal dependencies in the data. By placing the icons on a map, the spatial dependencies are
communicated.
Source: Generated with the LandVis system.

Pencil icons have been developed by Tominski et al. (2005) to visualize multivari-
ate spatio-temporal data. The technique is based on the space-time cube concept
(↪→ p. 245), where the spatial frame of reference is represented as a map in the x-y
plane of a virtual three-dimensional cube. The dimension of time is mapped along
the cube’s z-axis. Within the cube, pencil icons are positioned where data is avail-
able. This way, the spatial context is communicated. Each pencil icon represents the
temporal context and multiple time-dependent variables by mapping time along the
pencil, starting at the tip, and by associating each face of the pencil with an indi-
vidual time-dependent variable. Color coding is applied to visualize the data. Color
lightness is varied according to data values, and different hues are used to help users
identify particular variables. The linear shape of the pencil is suited to represent lin-
ear characteristics of the underlying time axis. Heterogeneous data can be depicted
by using appropriate color scales. In order to deal with occlusion and information
displayed at the pencils’ back faces, several interaction techniques are provided, in-
cluding navigation in the virtual world as well as the individual and linked rotation
of pencils.
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Data Vases
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Fig. 7.99: Shape and color of a data vase encode time-varying data values. The spatial component
of the data can be communicated by a vertical alignment of 2D data vases (top), or by embedding
3D data vases into a space-time cube (bottom).
Source: Thakur and Hanson (2010), © 2010 IEEE. Used with permission.

The data vases technique has been designed to visualize multiple time-varying vari-
ables. Thakur and Rhyne (2009) describe two alternative designs: a 2D and a 3D
variant. A 2D data vase is basically a graph constructed by mirroring a line plot (↪→
p. 153) against the time axis, effectively creating a symmetric shape that can be filled
(segment-wise) with a data-specific color. Such data vases can then be arranged on
the screen to create a meaningful visualization. For spatio-temporal data, one can
use multiple vertically aligned data vases, each of which represents an individual
geographic region. Thakur and Hanson (2010) further elaborate the idea of extend-
ing data vases to the third dimension. In 3D, data vases are constructed by stacking
discs along a vertical time axis, where each disc maps the data for a particular time
primitive to disc size and color. Such 3D data vases can then be embedded into a
space-time cube (↪→ p. 245), i.e., a virtual 3D world where two dimensions are used
to show a geographic map and the third dimension encodes time.
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Wakame
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Fig. 7.100: Three-dimensional visualization objects, so-called Wakame, show multiple variables
along time. Placing multiple Wakame on a map allows analysts to make sense of spatio-temporal
data. A time scale widget on the bottom can be used to select intervals of interest.
Source: Image courtesy of Clifton Forlines.

Forlines and Wittenburg (2010) describe an interactive system for visualizing mul-
tivariate spatio-temporal data. The temporal aspects are encoded to multivariate
glyphs, so-called Wakame. A single Wakame basically corresponds to a radar chart
that has been extruded along the third dimension. In a radar chart, different variables
are represented on radially arranged axes that are connected to form a polyline.
Wakame are constructed as solid three-dimensional objects whose shape indicate
temporal trends and relations among time-dependent variables (also see Kiviat tube,
↪→ p. 211). Embedding multiple Wakame into a map display facilitates the under-
standing of spatial aspects. What is noteworthy about the Wakame system are its
interaction and animation facilities. An intelligent camera positioning mechanism
supports users in finding perspectives on the Wakame that most likely bear inter-
esting information. A hierarchical time axis widget (↪→ p. 229) denotes by color
how “different” each time primitive is from its neighbors. This allows users to pick
interesting time primitives easily. Upon interaction, animation is used to smoothly
interpolate between views. Additional animation schemes are offered to switch be-
tween the three-dimensional Wakame view and traditional two-dimensional radar
charts and line plots (↪→ p. 153), which might be better suited for certain analysis
tasks.
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Fig. 7.101: Helix icons use color-coding to visualize multivariate spatio-temporal data along helix
ribbons, which emphasize the data’s cyclic temporal character. The spatial aspect of the data is
illustrated by embedding helix icons in a space-time cube.
Source: Generated with the LandVis system.

Helix icons by Tominski et al. (2005) are useful for emphasizing the cyclic character
of spatio-temporal data. The underlying model of this technique is the space-time
cube (↪→ p. 245), which maps the spatial context to the x-axis and the y-axis, and the
dimension of time to the z-axis of a virtual three-dimensional cube. The actual data
visualization is embedded into the cube. To this end, a helix ribbon is constructed
to unroll the time domain along the z-axis. Each segment of the helix ribbon vi-
sualizes a specific instant (or interval) in time by means of color-coding. Multiple
time-dependent variables can be visualized by subdividing the helix ribbon into nar-
rower sub-ribbons, each of which represents a different variable. Using unique hues
for each sub-ribbon helps the user distinguish variables. As for spiral graphs (↪→
p. 185), interaction techniques help users in finding an appropriate number of seg-
ments per cycle so that periodic patterns in the data are revealed. The inherent 3D
representation problems (i.e., information displayed on helix back faces or inter-
icon occlusion) are dealt with by offering 3D navigation through the space-time
cube and rotation of helix icons.
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7.2 Summary

This chapter reviewed 101 existing techniques for visualizing time and time-oriented
data. Since there are observable balances and imbalances with regard to our catego-
rization, it is worth taking a closer look at possible explanations.

Data – frame of reference In this book we mainly focus on abstract data, which
is also reflected by our survey. Showing time-oriented data in a spatial frame of
reference significantly increases the design efforts because more information has
to be packed into the visual mapping. Particularly, the disciplines of cartography
and geo-visualization, which are established, independent fields of research, have
developed approaches to combining the visualization of temporal and spatial aspects
of data (see Kraak and Ormeling, 2003; Andrienko and Andrienko, 2006).

Data – variables The number of techniques for univariate and multivariate data are
almost balanced. While classic techniques often consider simpler univariate data,
modern approaches take on the challenge of dealing with multiple variables. The
survey also contains several techniques that cope with multiple variables simply by
the repetition of a basic visualization design that only addresses univariate data (↪→
p. 180).

Time – arrangement Most of the techniques in the survey support linear time; the
approaches with cyclic time are significantly outnumbered. Reasons for this might
be that users are usually interested in trends evolving from past, to present, to future,
rather than in finding cycles in the data. The latter aspect, however, is important to
fully understand the data, and therefore, expert data analysts need effective cyclic
representations as well (↪→ p. 186).

Time – time primitives Instants in time are the most commonly used time primi-
tive in our survey. This seems natural because data are often measured at a particular
point in time. Intervals occur less often, for example, in planning scenarios, where it
is important to know how long certain activities will take (↪→ p. 172). And as soon
as it becomes necessary to abstract from individual instants to intervals in order to
deal with bigger and bigger datasets, we have to prepare the visual representation
accordingly (↪→ p. 230).

Vis – mapping Apparently, the static pages of a book are better suited for showing
static techniques. In this sense, our survey is a bit biased in that it contains mostly
static approaches. However, dynamic animation is equally important and often it is
the first solution offered when time-oriented data have to be visualized. Animation
can also be an option in combination with static methods to extend the capacity of a
technique in terms of the data that can be handled (↪→ p. 248).

Vis – dimensionality Two-dimensional visual representations are often preferred
over three-dimensional ones, because they are more abstract and thus easier to un-
derstand. Especially techniques developed in the early days of computer graphics
tend to stick with two dimensions simply due to the limited computing power avail-
able then. However, modern technologies have made it easier both for visualization
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designers to implement three-dimensional visualization, and for visualization users
to navigate and explore virtual 3D visualization spaces. This is particularly useful
when data with spatial references have to be visualized (↪→ p. 245).

There is another significant fact that can be derived from the survey: Most ap-
proaches address the model of an ordered time domain, while only a few of them
explicitly consider the visualization of branching alternative strings of time, and
none of them is capable of visualizing data that are based on the model of mul-
tiple perspectives. Therefore, particularly branching time and time with multiple
perspectives deserve more research attention in the future.

From the review we can also see that some general concepts reoccur in several
instantiations, as for instance the general application of line plots as the most basic
visualization of time-dependent data, the utilization of the third display dimension
to encode time, or the mapping of time to spiral shapes in order to visualize cyclic
aspects. We also see that quite a number of publications is specific to a particular
what and why, and as a consequence represent tailored solutions in terms of how
the data are visualized. On the one hand, specific solutions are highly adapted and
fine-tuned to be successful in supporting a specific set of users that try to solve a
particular problem. On the other hand, however, these solutions are hard to adapt
and reuse for other visualization problems, even when a new problem is similar
to the original one and differs only in one aspect of our categorization schema.
Therefore, existing techniques often lack broader applicability.

From the application perspective – a perspective that many users share as their
day-to-day work is to make sense of constantly changing data – a general framework
would be favorable. What other challenges need to be addressed in the future and
what such a framework could look like will be discussed in the next chapter.
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Chapter 8
Conclusion

All the pieces are there – huge amounts of information, a great need
to clearly and accurately portray them, and the physical means for
doing so. What has been lacking is a broad understanding of how
best to do it.

Wainer (1997, p. 112)

This book has dealt with concepts and methods for visualizing time and time-
oriented data. In this chapter, we will briefly summarize the key aspects that have
been elaborated so far. We will further consider the current state of visualization of
time-oriented data and identify application issues and research challenges. We con-
clude with the description of a blueprint of concepts that may serve as a basis for
tackling the identified problems in the future.

8.1 Summary

Most of the existing techniques for computational analysis and visualization have
been developed to deal with numbers. In practice, these numbers are often anchored
in space and time. Depictions of a spatial frame of reference lie at the core of car-
tography and geo-visualization, and these disciplines have yielded many powerful
visualization techniques. However, until now, no independent research field which
focuses on the visualization of time-oriented data has been established. Neverthe-
less, visual representations of time and time-oriented data have a long and venerable
history. This fact has been illustrated by means of several classic examples from the
pre-computer era in Chapter 2.

Designing appropriate visual representations for time-oriented data requires re-
sponding to the questions:

• What is presented?
• Why is it presented?
• How is it presented?

W. Aigner et al., Visualization of Time-Oriented Data,
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3 8,
© Springer-Verlag London Limited 2011
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So, in order to adequately address the what aspect, one needs to consider the
specific characteristics of the time domain as well as the characteristics of the data
that are related to time. In Chapter 3, we used four principal criteria to categorize
the characteristics of time: the scale (ordinal vs. discrete vs. continuous), the scope
(linear vs. cyclic), the arrangement (point-based vs. interval-based), and the view-
point (linear vs. branching vs. multiple perspectives). To characterize the data, four
major criteria have been used: the scale of variables (qualitative vs. quantitative),
the frame of reference (abstract vs. spatial), the kind of data (events vs. states), and
the dimensionality (univariate vs. multivariate). We further defined time primitives
that act as a kind of glue between time and data. Time primitives are often orga-
nized in hierarchically structured calendar systems to accommodate different levels
of temporal granularity (e.g., seconds, minutes, hours).

With the why question user tasks come into play. We addressed this in Chapter 4.
At the task level we distinguished lookup and comparison tasks, direct and indirect
search, as well as elementary (performed on individual values) and synoptic tasks
(performed on sets of values). As a matter of fact, the particular characteristics of
time and data as well as the specific user tasks largely influence the design of visu-
alization solutions.

General principles of how time and time-oriented data can be visualized were
presented in Chapter 4 as well. Two basic distinctions were made: the dimension
of time can be represented using the display space (i.e., static representation) or
physical time (i.e., dynamic representation), where the presentation space can be
either two-dimensional or three-dimensional. We discussed these categories in detail
and gave various examples of visualization designs addressing specific aspects of
the data level, the task level, and the presentation level.

Visual exploration and analysis of time-oriented data also requires interaction
methods that allow users to manipulate the visual representation in a variety of ways,
including navigation of time and data, adjustment of graphical encoding and spatial
arrangement, selection of data of interest, filtering out irrelevant data, and many
more. Chapter 5 provided a compact overview of interaction.

Moreover, analytical methods have to be provided for supporting the generation
of expressive visual representations. Among other purposes, analytical methods are
useful for computing data abstractions that may serve to cope with large volumes
of data or to allow visual analysis at different levels of granularity. Chapter 6 was
dedicated to the aspect of analytical support.

As diverse and manifold as time and data characteristics and visualization design
choices, interaction concepts, and analytical methods are, the body of available visu-
alization techniques for time and time-oriented data is equally diverse. In Chapter 7,
we summarized many classic and state-of-the-art techniques, some of a general na-
ture, others very specific, and some well-established, and others more progressive
or alternative. We categorized all of these techniques according to six major crite-
ria, described briefly the main idea behind the techniques, and provided illustration
examples. The result is a compact overview of the variety of existing visual repre-
sentations for time and time-oriented data.
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In conclusion, the survey gives evidence that time is indeed an important dimen-
sion that deserves special treatment in visual, interactive, and analytical methods.
However, tools or systems that provide the broad functionality demanded specifi-
cally for time-oriented data are not available. Moreover, there are several open is-
sues to be addressed in the future. In the next sections, we will take a look at these
issues from an application perspective as well as from a research point of view.

8.2 Application Issues

A main concern from an application perspective is to bridge the gap between the
development of powerful visual methods on the one hand, and their integration into
the real-life workflows in different application scenarios on the other hand. This
requires research which addresses the problems in terms of both software issues and
user issues.

Software issues – systems & formats

There are a variety of commercial and open source visualization systems, as for in-
stance, Tableau1, Spotfire2, MagnaView3, or vtk4. Many of the available systems
provide excellent support for visual exploration and analysis of multivariate data.
However, the specifics of time are not always easy to handle, because time is treated
as just another quantitative variable or because the software lacks support for the
wide range of characteristics which are relevant when dealing with time (e.g., sup-
port for cyclic time or for different time primitives). As a result, in order to visu-
ally explore temporal dependencies, the user has to manually find an appropriate
visual mapping that emphasizes the time axis. Moreover, this means it is difficult
or actually not feasible for users to apply a particular system for all the different
characteristics of time discussed before.

On the other hand, visualization research has yielded powerful research proto-
types that provide dedicated support for the time aspect. A prominent example in
this regard is the TimeSearcher5 project for visual exploration of time-series data
(↪→ p. 188). However, the integration of such prototypes into the infrastructure of
day-to-day business is usually problematic and requires additional effort. Further-
more, research prototypes are usually not designed to cover all aspects of time, but
instead to address only particular cases – mostly the visualization of linear and or-
dered time domains.

1 http://www.tableausoftware.com/; Retrieved Feb., 2011.
2 http://spotfire.tibco.com/; Retrieved Feb., 2011.
3 http://www.magnaview.nl/; Retrieved Feb., 2011.
4 http://www.vtk.org/; Retrieved Feb., 2011.
5 http://www.cs.umd.edu/hcil/timesearcher/; Retrieved Feb., 2011.
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Another significant problem to be solved is caused by the diversity of existing
data formats and interfaces. Processes that generate or collect data and tools that
manipulate or analyze the data often use specific databases and data formats that
meet the requirements of the particular application scenario. Software tools for vi-
sualizing the data and interacting with them often use different formats. This cir-
cumstance requires individual and possibly complex data transformations, which
represent a substantial obstacle. To this end, researchers who develop more compre-
hensible and simplified data interfaces will be rewarded with greatly expanded user
communities.

User issues – knowledge & support

Besides improving the technical basis, it is important to take the needs of the users
into account. In this regard, an important point is to improve the awareness about
new visualization and interaction methods. Nowadays, users mostly apply tradi-
tional visualization techniques such as line plots or bar graphs. These techniques
are well-established and have proven to be useful. However, new innovative visu-
alization methods allow the representation of a larger number of variables and data
values, provide comprehensive interaction functionality, and take the specific as-
pects of time into account. These new possibilities can lead to new findings.

Moreover, in many application domains, visual methods are primarily used to
present results. This is an adequate strategy for all those analytical problems whose
solution can be computed automatically and that do not require input from the user
to generate analysis results. However, many analytical problems do not have a sin-
gle closed solution, but rather require an interactive visual exploration process that
integrates the user tightly throughout the analysis workflow.

Another point to mention is that typically users in specific application domains
are the ones to create visual representations. This implies that they have to know
which visual representation should be used for which task. However, although these
users have a strong domain-specific background, it can not be assumed that they
are also experts in visualization design. If users were better supported by the vi-
sualization systems in choosing expressive, effective, and appropriate visualization
techniques, the quality of information display and analysis results could greatly im-
prove. To this end, facilities for specifying data characteristics and analytic tasks are
mandatory.

Moreover, cumbersome data transformations and extensive switching between
application and visualization systems are substantial obstacles for widespread use.
In fact, interactive visualization methods for time-oriented data have to be integrated
into application portals and systems in order to allow domain experts to use these
techniques effortlessly and seamlessly.

To summarize, bridging the gap between research on interactive visualization
methods and their application requires both imparting an awareness of the variety of
possibilities and providing means to effectively use them within a given application
infrastructure.
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8.3 Research Challenges

Designing appropriate visual representations and tools for time-oriented data as well
as making them applicable in real world problem solving scenarios requires further
scientific investigation. In the following, we will discuss several aspects in this re-
gard.

Problem specification & user guidance

In the field of software engineering it is generally acknowledged that the first step in
developing tools and user interfaces should be a sound analysis of the given prob-
lem domain (see Hackos and Redish, 1998; Courage and Baxter, 2005). The same
applies for designing visual representations. However, most of today’s visualiza-
tion systems do not provide any means of describing the visualization problem.
In the case of visually analyzing time-oriented data, this means (1) the character-
istics of time and associated time-oriented data as well as (2) the intentions and
tasks of users have to be specified. If appropriate descriptions are provided to store
this knowledge, visualizations can be realized that suit the data and the tasks. Al-
though first approaches for automatic visualization design have been developed (see
Mackinlay, 1986; Senay and Ignatius, 1994; Wills and Wilkinson, 2010), further re-
search is needed to allow an easy-to-use specification of data and tasks and the pro-
vision of adequate descriptors, in this way enabling the automatic suggestion and
computation of appropriate visual representations. The aim is to guide the users,
rather than burden them with technical details. Thus, a significant shift could be re-
alized from a technique-centered view to a user-centered view, i.e., a view that puts
the user into the focus (see Kerren et al., 2007).

New visualization methods

Choosing adequate visualizations is one point, but providing a set of suitable tech-
niques that cover all the different aspects of time is another concern. Although a
large diversity of powerful visualization techniques for time-oriented data have been
developed, most of them support only certain parts of the introduced time and data
categorization. In the particular case of visualizing multivariate data, usually linear,
point-based, and ordered time domains are assumed. Further investigations are re-
quired, including the development of techniques for interval-based time, branching
time, and multiple perspectives, for simultaneously displaying raw data and data ab-
stractions, and for showing the time-oriented data in their spatial frame of reference.

Another important challenge to be considered originates from the hierarchical
nature of time, which leads to the situation that data may be given at multiple levels
of granularity. New interactive visualization techniques are required to allow ana-
lysts to combine different levels of data and time and to switch between the levels.
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This specific challenge for time-oriented data is related to the more general open
research topic of handling variables given at multiple scales (see Keim et al., 2010).

Data quality & data provenance

We have primarily considered visual representations that show the data themselves,
rather than information on data quality or data provenance. However, taking uncer-
tainties and provenance into account will significantly improve the expressiveness
of visual representations, and also strengthen the user’s confidence in the findings
made. In the case of time-oriented data, uncertainties of the data and uncertainties of
the temporal frame of reference have to be communicated. Currently, visualization
methods communicating both time and data uncertainties are not available. There-
fore, new visualization strategies have to be developed. The concern of representing
the quality of data has also been acknowledged as an open research topic in visual-
ization research in general (see Keim et al., 2010).

Scalability

Apart from issues concerning data quality, the fast growing quantities of data also
pose a considerable challenge to visualization. Not too long ago researchers and
practitioners were exploring and analyzing acquired or simulated datasets of mod-
est size (e.g., from kilobytes to a few megabytes). Nowadays, it is common to focus
on problems involving enormous amounts of data in gigabytes, terabytes, petabytes,
or more (see Ward et al., 2010). This calls for particular characteristics and func-
tionalities of data management as well as of the visual and algorithmic design (see
Keim et al., 2010). With regard to time-oriented data, we need to be able to deal with
both very long time-series containing vast amounts of time primitives (e.g., cover-
ing large time spans and/or at very fine-grained time scales) and large numbers of
time-dependent variables in parallel. If the visualization and interaction techniques
as well as the analytical methods are able to cope with such large quantities of time-
oriented data, we will be able to extend the frontiers of complex and demanding
research areas, such as biomedicine or climate research.

Novel interaction methods

Interaction methods are essential to allow users to explore time-oriented data as
well as the space of possible visual encodings. Obviously, the features of time-
oriented data influence the interaction techniques and tasks carried out on such data.
Navigating in time and switching between different levels of temporal granularity
are mandatory when interacting with time-oriented data, but are rather uncommon
when interacting with abstract quantitative variables. The visualization of larger
datasets benefits from visual overviews and the ability to drill down into areas of
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interest while preserving orientation within the information space. Interacting di-
rectly with visual representations and analytical methods provides more control and
tighter feedback for the human analyst.

However, interaction techniques for time-oriented data mostly consider linear,
point-based time domains. More research is needed to enable users to interact with
visual representation of cyclic time, branching time, or multiple perspectives. This
also includes reasoning about what it means to move in cycles, along branches, or
in multiple perspectives. Moreover, support is needed to structure the interactive
exploration process and to provide guidance in terms of where to go next or which
encoding to choose. It is important that these investigations be made in accordance
with the users’ demands. A recent workshop on “Interacting with Temporal Data”
organized at the ACM CHI Conference 2009 gives evidence of the growing interest
in this research topic (see Mackay et al., 2009).

Advanced analytical methods

Most analytical methods for time-oriented data available today treat time as a flat,
ordered sequence of events. Thus, these methods are lacking information about the
time intervals between events or about after how much time a particular pattern
will reoccur. But, the natural structures of time, such as years and seasons, as well
as social structures of time, such as weeks and business days, can strongly influ-
ence what findings can be extracted from time-oriented data. For example, the pat-
tern of monthly sales may vary largely due to differences in the arrangements of
workdays, weekends, and holidays. However, only few existing analytical methods,
like for example the seasonally adjusted autoregressive integrated moving average
(SARIMA), model cyclic temporal behavior adequately. As a consequence, better
support for dealing with the hierarchical and cyclical structures of time as well as
their semantics (i.e., accounting for the specifics of time) is needed.

Moreover, many analytical methods are like black-boxes which accept some
time-oriented data as input and generate some analytic result as output. However,
it remains largely unexplored how to parameterize analytical methods appropriately
to adapt to the given data and tasks, or how to combine multiple analytical methods
to generate better analysis results. To solve these problems, the black-boxes must be
made transparent and steerable for the user, where sufficient support by the visual-
ization system should be taken for granted.

Evaluation

In order to be able to automatically suggest techniques to the user or to automati-
cally adapt chosen techniques to data and tasks, we need to know which techniques
are good. This requires evaluation. Evaluation has to be conducted in terms of the
three criteria expressiveness, effectiveness, and appropriateness (see Chapter 1). Ex-
pressiveness and effectiveness are related to the data level and the task level, respec-
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tively. They require testing whether the characteristics of time and data are suf-
ficiently communicated, and whether the visual representation matches the tasks,
expectations, and perceptual capabilities of users. With the appropriateness crite-
rion, resources come into play. Moreover, the application domain has to be taken
into account to address the appropriateness criterion.

Because thorough evaluation requires a combined consideration of multiple cri-
teria, Munzner (2009) introduced a nested model for visualization design and vali-
dation. She proposed to subdivide the generation of visual representations into four
nested levels (i.e., characterization of data and tasks, abstraction into operation and
data types, design of encoding and interaction, and development of algorithms) and
argues that distinct evaluation methodologies should be used for each level of the
model. Plaisant (2004) gives an overview of currently applied evaluation methods
and points out challenges specific to the evaluation of information visualization.
These challenges also apply to evaluating time-oriented data visualizations. Al-
though general evaluation methods (see Lazar et al., 2010) and methods tailored
to visualization, for example, to measure effectiveness (see Zhu, 2007), are readily
available, more research is needed in terms of specifically evaluating the encoding
of and the interaction with time and time-oriented data. To this end, it is necessary to
develop new evaluation strategies that are tailored to the requirements of visualizing
time-oriented data.

Multi-user & heterogeneous display environments

Typically, visualization and interaction techniques are designed to be used in sin-
gle user and single display scenarios. However, modern technologies and infras-
tructures enable analysts to use multi-touch displays with tangible interaction, to
operate large-display environments with virtual interaction, or to work in smart en-
vironments, which are heterogeneous conglomerates of dynamically linked devices.
On the one hand, technological progress opens up new possibilities. For example,
one can imagine multi-user and multi-display problem solving scenarios, where a
large-scale display shows an overview of a large time-oriented dataset, while mul-
tiple user groups discuss selected details from different parts of the dataset shown
on multiple linked tabletop displays. On the other hand, new research questions and
challenges have to be addressed. From a technical point of view, there is a need
to scale visualization, interaction, and analytical facilities to the given resources
(display, interaction, and computation devices) and to the intended audience (single
user, small or large user groups). From a user perspective, research is necessary to
investigate how multiple users can work together to analyze time-oriented data co-
operatively. On a more general level, these issues are related to the challenges of
display scalability and human scalability as described by Thomas and Cook (2005).
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Non-visual mapping and accessibility

Apart from the numerous options of visually representing time-oriented data we
have seen throughout the book, other forms of representing time are possible. Time
could for example be mapped to sound or to haptic sensations as with braille inter-
faces. Smell and flavor might also be candidates for such a mapping. Despite the fact
that these mappings are in principle imaginable, their feasibility and usefulness have
to be investigated. Particularly, this also addresses accessibility by users with dis-
abilities, especially blind users. Speeth (1961) already showed how seismographic
data can be presented in an auditory display. An example of a recent attempt in this
direction is a system for data sonification by Zhao et al. (2008) to explore spatial
data for users with visual impairments. Apart from being an essential issue for gov-
ernment agencies this is also a fruitful research topic that can lead to novel insights.

Intertwining visual, interactive, and analytical methods

Finally, there is a challenge that touches – or better, that encompasses all previously
mentioned concerns: In order to facilitate exploration and analysis of time-oriented
data, we should not consider visual, interactive, and analytical methods in isolation,
but instead should strive for a tight intertwining of them, effectively utilizing their
strengths and compensating their weak spots. In the next section, we give an outlook
in this direction.

8.4 Visual Analytics

The development of new methods is only one side of the coin; combining them
efficiently and integrating them into the workflow of the user is the other side.
The new research field of visual analytics aims to combine visual, interactive, and
analytical methods within real scenarios to solve real application problems (see
Thomas and Cook, 2005; Keim et al., 2010).

A basic precondition for achieving this goal is to provide an open, extensible
framework that:

• comes with interchangeable building blocks for visualization, interaction, and
analysis of time-oriented data,

• uses commonly agreed-upon interfaces for flexible combination of methods,
• provides descriptors for specifying available techniques as well as data and user

tasks, and
• offers an easy-to-use user interface for interactive exploration, including on-

demand guidance.

Designing such a comprehensive framework is a formidable research challenge,
not to mention the effort required to actually implement the framework’s broad func-
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tionality. To make a very first step in this direction, we sketch a basic design concept
in Figure 8.1.

Data component The data component encapsulates all data-related aspects, in-
cluding data import from heterogeneous sources, flexible data management, and ef-
ficient data search and retrieval. Such functionality is typically realized by database
management systems (DBMS), where the underlying paradigm can be manifold
(e.g., relational model, temporal database, key-value store, column store, graph
database, etc.).

The data component contains time-oriented data, which typically come from var-
ious external data sources in different idiosyncratic formats. DBMS functionality
can be used to consolidate, unify, and combine the different data sources.

In order to support the seamless interplay of all of the components of the frame-
work, appropriate specifications are needed. This is reflected by the descriptor
database. This database includes metadata about the data under investigation such
as characteristics of the time domain and characteristics of associated time-oriented
data (see Chapter 3).

Fig. 8.1: Conceptual framework for visual analytics of time-oriented data.
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Besides the mandatory data specification, the descriptor database should provide
further useful information such as a description of user tasks and a specification of
the capabilities of visual, interactive, and analytical methods. Unfortunately, these
latter aspects are rarely supported by current systems. But only if data, tasks, and
capabilities are properly specified is it possible to automatically suggest suitable
(combinations of) visualization, interaction, and analysis methods for any particular
combination of data and tasks. An example for the potential of automatic adapta-
tion according to some specification is the concept of event-based visualization as
described in Section 5.4.

An interesting question is how to collect the information to fill the descriptor
database. Although some information can be generated automatically, for example,
by computing statistics such as minimum, maximum, or data distribution, in most
cases it is necessary to resort to manual specification. Therefore, the framework
should contain support for both automatic processing to create descriptors as well
as interactive specification and refinement to complete the descriptors. Furthermore,
there is a need to change descriptors dynamically during the visual analysis process.
For example, analysis results may lead to new hypotheses about the data, which
in turn manifest themselves in the formulation of new user tasks, in a switch of
interests, or in the need to access additional data, which affects the generation of
metadata.

Functional component The heart of the framework is given by the functional com-
ponent that includes visualization methods and analytical methods. The set of visu-
alization methods can be filled with the techniques described in Chapter 7. The set
of analytical methods includes computational approaches for analyzing and mining
time-oriented data as described in Chapter 6.

GUI & interaction component The third and very important component consists
of an all-encompassing graphical user interface and corresponding interaction meth-
ods. This component provides the means for embedding visual analytics in day-
to-day workflows and for allowing for interactive exploration and analysis of the
time-oriented data as discussed in Chapter 5.

In the previous two paragraphs we used only a few lines to discuss the functional
component (visualization and analysis) and the GUI & interaction component, be-
cause these aspects have been detailed in separate chapters in this book. Notably,
there are many different techniques available, but they are considered in isolation.
The big challenge of visual analytics is to facilitate smooth interoperability among
different approaches to the exploration and analysis of time-oriented data.

If we arrive at commonly agreed-upon interfaces, the building blocks and meth-
ods of the framework can be integrated into application portals and thus into the
workflows of users. If we succeed in providing appropriate descriptors, automatic
selection of suitable techniques and corresponding configurations can be accom-
plished, effectively guiding the user throughout the visual analysis process. This
leads to the new paradigm of making the users and their tasks the focal point, where
a central aspect is to assemble visual analytics tools automatically as illustrated in
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Fig. 8.2: Automatic assembly of visual analytics components.

Figure 8.2. This automatic approach aims to relieve users of the burden of compiling
solutions manually. As a result, users can focus on accomplishing tasks on the data
by utilizing the power of analytical methods to verify hypotheses and the flexibility
of interactive exploration to discover unexpected findings.

Implementing such a user-centric view is one of the most challenging problems
identified by the current research agenda of visual analytics (see Keim et al., 2010).
First steps have been taken to solve this problem and contributing to an improved
analysis of time-oriented data is one of them.
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win, A., editors, Handbook of Data Visualization, pages 15–56. Springer, Berlin, Heidelberg,
Germany.

Fry, B. (2000). Organic Information Design, Master’s thesis, Massachusetts Institute of Technol-
ogy.

www.ebook3000.com

http://davinci.ntu.ac.uk/rws/researchers/design/tonycrabbe/different.htm
http://davinci.ntu.ac.uk/rws/researchers/design/tonycrabbe/different.htm
http://www.ebook3000.org


References 273

Fuchs, G. and Schumann, H. (2004a). Intelligent Icon Positioning for Interactive Map-Based Infor-
mation Systems. In Proceedings of the International Conference of the Information Resources
Management Association (IRMA), pages 261–264, Hershey, PA, USA. Idea Group Inc.

Fuchs, G. and Schumann, H. (2004b). Visualizing Abstract Data on Maps. In Proceedings of the
International Conference Information Visualisation (IV), pages 139–144, Los Alamitos, CA,
USA. IEEE Computer Society.

Funkhouser, H. G. (1936). A Note on a Tenth Century Graph. Osiris, 1(1):260–262.
Furia, C. A., Mandrioli, D., Morzenti, A., and Rossi, M. (2010). Modeling Time in Computing:

A Taxonomy and a Comparative Survey. ACM Computing Surveys, 42:6:1–6:59.
Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld, D. S. (2006). Exploring the Design Space for

Adaptive Graphical User Interfaces. In Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI), pages 201–208, New York, NY, USA. ACM Press.

Gall, H., Jazayeri, M., and Riva, C. (1999). Visualizing Software Release Histories: The Use of
Color and Third Dimension. In Proceedings of the International Conference on Software Main-
tenance (ICSM), pages 99–108, Los Alamitos, CA, USA. IEEE Computer Society.

Gan, G., Ma, C., and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, ASA-
SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, USA.

Gantt, H. L. (1913). Work, Wages, and Profits. Engineering Magazine Co., New York, NY, USA.
Gapminder Foundation (2010). Gapminder Trendalyzer. URL, http://www.gapminder.org/world/.

Retrieved Feb., 2011.
Gatalsky, P., Andrienko, N., and Andrienko, G. (2004). Interactive Analysis of Event Data Using

Space-Time Cube. In Proceedings of the International Conference Information Visualisation
(IV), pages 145–152, Los Alamitos, CA, USA. IEEE Computer Society.

Gershon, N. and Page, W. (2001). What Storytelling Can Do for Information Visualization. Com-
munications of the ACM, 44(8):31–37.
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Paternò, F. and Santoro, C. (2002). One Model, Many Interfaces. In Proceedings of the Fourth
International Conference on Computer-Aided Design of User Interfaces (CADUI), pages 143–
154, Boston, MA, USA. Kluwer Academic Publishers.

Petzold, I. (2003). Beschriftung von Bildschirmkarten in Echtzeit, PhD thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn.

Peuquet, D. J. (1994). It’s about Time: A Conceptual Framework for the Representation of Tem-
poral Dynamics in Geographic Information Systems. Annals of the Association of American
Geographers, 84(3):441–461.

Peuquet, D. J. (2002). Representations of Space and Time. The Guilford Press, New York, NY,
USA.



278 References

Piringer, H., Tominski, C., Muigg, P., and Berger, W. (2009). A Multi-Threading Architecture
to Support Interactive Visual Exploration. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1113–1120.

Plaisant, C. (2004). The Callenge of Information Visualization Evaluation. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI), pages 106–119, New York, NY,
USA. ACM Press.

Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., and Shneiderman, B. (1998). LifeLines: Us-
ing Visualization to Enhance Navigation and Analysis of Patient Records. In Proceedings of the
American Medical Informatics Association Annual Fall Symposium, pages 76–80, Bethesda,
MD, USA. American Medical Informatic Association (AMIA).

Playfair, W. (1805). An Inquiry into the Permanent Causes of the Decline and Fall of Powerful and
Wealthy Nations. Greenland and Norris, London, UK.

Playfair, W. (1821). A Letter on our Agricultural Distresses, their Causes and Remedies. William
Sams, London, UK.

Playfair, W. and Corry, J. (1786). The Commercial and Political Atlas: Representing, by Means
of Stained Copper-Plate Charts, the Progress of the Commerce, Revenues, Expenditure and
Debts of England during the Whole of the Eighteenth Century. printed for J. Debrett; G. G. and
J. Robinson; J. Sewell; the engraver, S. J. Neele; W. Creech and C. Elliot, Edinburgh; and L.
White, London, UK.

Powsner, S. M. and Tufte, E. R. (1994). Graphical Summary of Patient Status. The Lancet,
344(8919):386–389.

Priestley, J. (1765). A Chart of Biography. Johnson, J., London, UK.
Pulo, K. (2007). Navani: Navigating Large-Scale Visualisations with Animated Transitions. In

Proceedings of the International Conference Information Visualisation (IV), Los Alamitos, CA,
USA. IEEE Computer Society.

Reijner, H. (2008). The Development of the Horizon Graph. In Electronic Proceedings of the
VisWeek Workshop From Theory to Practice: Design, Vision and Visualization.

Reinders, F., Post, F. H., and Spoelder, H. J. (2001). Visualization of Time-Dependent Data with
Feature Tracking and Event Detection. The Visual Computer, 17(1):55–71.

Rind, A., Aigner, W., Miksch, S., Wiltner, S., Pohl, M., Drexler, F., Neubauer, B., and Suchy,
N. (2011). Visually Exploring Multivariate Trends in Patient Cohorts using Animated Scatter
Plots. In Proceedings of the International Conference on Human-Computer Interaction (HCI-
I), Berlin, Germany. Springer. To appear.

Rind, A., Miksch, S., Aigner, W., Turic, T., and Pohl, M. (2010). VisuExplore: Gaining New Med-
ical Insights from Visual Exploration. In Hayes, G. R. and Tan, D. S., editors, Proceedings of
the 1st International Workshop on Interactive Systems in Healthcare (WISH@CHI2010), pages
149–152, New York, NY, USA. ACM Press.

Rit, J.-F. (1986). Propagating Temporal Constraints for Scheduling. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 383–388, Los Altos, CA, USA. Morgan
Kaufmann.

Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko, J. (2008). Effectiveness of Animation
in Trend Visualization. IEEE Transactions on Visualization and Computer Graphics, 14:1325–
1332.

Robertson, P. K. (1991). A Methodology for Choosing Data Representations. IEEE Computer
Graphics and Applications, 11(3):56–67.

Rosenberg, D. and Grafton, A. (2010). Cartographies of Time: A History of the Timeline. Princeton
Architectural Press, New York, NY, USA.

Sadri, R., Zaniolo, C., Zarkesh, A., and Adibi, J. (2004). Expressing and Optimizing Sequence
Queries in Database Systems. ACM Transactions on Database Systems, 29(2):282–318.

Saito, T., Miyamura, H., Yamamoto, M., Saito, H., Hoshiya, Y., and Kaseda, T. (2005). Two-Tone
Pseudo Coloring: Compact Visualization for One-Dimensional Data. In Proceedings of the
IEEE Symposium on Information Visualization (InfoVis), pages 173–180, Los Alamitos, CA,
USA. IEEE Computer Society.

www.ebook3000.com

http://www.ebook3000.org


References 279

Schulze-Wollgast, P., Tominski, C., and Schumann, H. (2005). Enhancing Visual Exploration by
Appropriate Color Coding. In Proceedings of the International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), pages 203–210, Plzen,
Czech Republic. University of West Bohemia.

Schumann, H. and Müller, W. (2000). Visualisierung – Grundlagen und allgemeine Methoden.
Springer, Berlin, Germany.

Senay, H. and Ignatius, E. (1994). A Knowledge-Based System for Visualization Design. Computer
Graphics and Applications, 14(6):36–47.

Shahar, Y., Goren-Bar, D., Boaz, D., and Tahan, G. (2006). Distributed, Intelligent, Interactive
Visualization and Exploration of Time-Oriented Clinical Data and their Abstractions. Artificial
Intelligence in Medicine, 38(2):115–135.

Shahar, Y., Miksch, S., and Johnson, P. (1998). The Asgaard Project: A Task-Specific Framework
for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artificial Intelligence
in Medicine, 14(1-2):29–51.

Shanbhag, P., Rheingans, P., and desJardins, M. (2005). Temporal Visualization of Planning Poly-
gons for Effcient Partitioning of Geo-Spatial Data. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis), pages 211–218, Los Alamitos, CA, USA. IEEE Computer
Society.

Shimabukuro, M., Flores, E., de Oliveira, M., and Levkowitz, H. (2004). Coordinated Views to
Assist Exploration of Spatio-Temporal Data: A Case Study. In Proceedings of the International
Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV), pages
107–117, Los Alamitos, CA, USA. IEEE Computer Society.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. IEEE
Computer, 16(8):57–69.

Shneiderman, B. (1994). Dynamic Queries for Visual Information Seeking. IEEE Software,
11(6):70–77.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visu-
alizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336–343, Los
Alamitos, CA, USA. IEEE Computer Society.

Silva, S., Madeira, J., and Santos, B. S. (2007). There is More to Color Scales than Meets the Eye:
A Review on the Use of Color in Visualization. In Proceedings of the International Confer-
ence Information Visualisation (IV), pages 943–950, Los Alamitos, CA, USA. IEEE Computer
Society.

Silva, S. F. and Catarci, T. (2000). Visualization of Linear Time-Oriented Data: A Survey. In Pro-
ceedings of the International Conference on Web Information Systems Engineering (WISE),
pages 310–319, Los Alamitos, CA, USA. IEEE Computer Society.

Simons, D. J. and Rensink, R. A. (2005). Change Blindness: Past, Present, and Future. Trends in
Cognitive Sciences, 9(1):16–20.

Speeth, S. D. (1961). Seismometer Sounds. The Journal of the Acoustical Society of America,
33(7):909–916.

Spence, R. (2007). Information Visualization: Design for Interaction. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2nd edition.

Stacey, M. and McGregor, C. (2007). Temporal Abstraction in Intelligent Clinical Data Analysis:
A Survey. Artificial Intelligence in Medicine, 39(1):1–24.

Stein, K., Wegener, R., and Schlieder, C. (2010). Pixel-Oriented Visualization of Change in Social
Networks. In Proceedings of the International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 233–240, Los Alamitos, CA, USA. IEEE Computer
Society.

Steiner, A. (1998). A Generalisation Approach to Temporal Data Models and their Implementa-
tions, PhD thesis, Swiss Federal Institute of Technology.

Stolte, C., Tang, D., and Hanrahan, P. (2002). Polaris: A System for Query, Analysis, and Visu-
alization of Multidimensional Relational Databases. IEEE Transactions on Visualization and
Computer Graphics, 8(1):52–65.



280 References

Telea, A. C. (2007). Data Visualization: Principles and Practice. A K Peters, Ltd., Natick, MA,
USA.

Thakur, S. and Hanson, A. J. (2010). A 3D Visualization of Multiple Time Series on Maps. In
Proceedings of the International Conference Information Visualisation (IV), pages 336–343,
Los Alamitos, CA, USA. IEEE Computer Society.

Thakur, S. and Rhyne, T.-M. (2009). Data Vases: 2D and 3D Plots for Visualizing Multiple Time
Series. In Proceedings of the International Symposium on Visual Computing (ISVC), pages
929–938, Berlin, Germany. Springer.

Third Millennium Press (2001). Zeittafel der Weltgeschichte. Den letzen 6000 Jahren auf der Spur.
Könemann Verlagsgesellschaft mbH, Cologne, Germany.

Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development
Agenda for Visual Analytics. IEEE Computer Society, Los Alamitos, CA, USA.

Tominski, C. (2011). Event-Based Concepts for User-Driven Visualization. Information Visualiza-
tion, 10(1):65–81.

Tominski, C., Abello, J., and Schumann, H. (2004). Axes-Based Visualizations with Radial Lay-
outs. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages 1242–1247,
New York, NY, USA. ACM Press.

Tominski, C., Abello, J., and Schumann, H. (2005a). Interactive Poster: 3D Axes-Based Visu-
alizations for Time Series Data. In Poster Compendium of IEEE Symposium on Information
Visualization (InfoVis), pages 49–50, Los Alamitos, CA, USA. IEEE Computer Society.

Tominski, C., Fuchs, G., and Schumann, H. (2008). Task-Driven Color Coding. In Proceedings
of the International Conference Information Visualisation (IV), pages 373–380, Los Alamitos,
CA, USA. IEEE Computer Society.

Tominski, C., Schulze-Wollgast, P., and Schumann, H. (2003). Visualisierung zeitlicher Verläufe
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Germany, 2nd edition.
Xiong, R. and Donath, J. (1999). PeopleGarden: Creating Data Portraits for Users. In Proceedings

of the ACM Symposium on User Interface Software and Technology (UIST), pages 37–44, New
York, NY, USA. ACM Press.

Xu, R. and Wunsch II, D. C. (2009). Clustering. John Wiley & Sons, Inc., Hoboken, NJ, USA.
Yang, J., Wang, W., and Yu, P. S. (2000). Mining Asynchronous Periodic Patterns in Time Series

Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 275–279, New York, NY, USA. ACM Press.

Yi, J. S., ah Kang, Y., Stasko, J., and Jacko, J. (2007). Toward a Deeper Understanding of the Role
of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1224–1231.

Zhao, H., Plaisant, C., Shneiderman, B., and Lazar, J. (2008a). Data Sonification for Users with
Visual Impairment: A Case Study with Georeferenced Data. ACM Transactions on Computer-
Human Interaction, 15(1):4:1–4:28.

Zhao, J., Forer, P., and Harvey, A. S. (2008b). Activities, Ringmaps and Geovisualization of Large
Human Movement Fields. Information Visualization, 7(3):198–209.

Zhu, Y. (2007). Measuring Effective Data Visualization. In Proceedings of the International Sym-
posium on Visual Computing (ISVC), pages 652–661, Berlin, Germany. Springer.

www.ebook3000.com

http://www.ebook3000.org


Index

Symbols

↪→ 12
2D 81, 96
3D 81, 98
3D ThemeRiver 198

A

absolute time 45
accentuation 90
Anemone 165
animated scatter plot 220
appropriateness 3
arc diagrams 161
AsbruView 173

B

band graph 153
bar graph 16, 154
Barbeu-Dubourg, Jacques 16
BinX 190
bottom granularity 54
braided graph 196
branching time 51, 159
brushing & linking 117

C

calendar 54
CareCruiser 194
carte chronographique 16
chronon 54
chronophotography 29
CircleView 219
Circos 233

circular silhouette graph 47, 51, 175
CiteSpace II 205
classification 128
cluster and calendar-based visualization 177
clustering 128, 130
color coding 87
comics 35
Commercial and Political Atlas 16
comparison tasks 74, 93
ConcurTaskTree (CTT) 72
confirmative analysis 5
connectional tasks 75
continuous interaction 109
continuous time 47
Continuum 227
Cuban missile crisis 23
Cubism 40
cycle plot 55, 176
cyclic time 50

D

dance notation 39
data

multidimensional 4
multivariate 4
time-oriented 4

data abstraction 129, 132
data aspects 66, 71

frame of reference 63, 85
kind of data 63
number of variables 63
scale 62

data mining 127
data state reference model 8
data tube technique 210
data vases 250

W. Aigner et al., Visualization of Time-Oriented Data,
Human-Computer Interaction Series, DOI 10.1007/978-0-85729-079-3,
© Springer-Verlag London Limited 2011

283

http://dx.doi.org/10.1007/978-0-85729-079-3


284 Index

DataJewel 210
DateLens 169
Deacon’s synchronological chart of universal

history 19
decision chart 52, 159
descriptive tasks 74
direct manipulation 115
discrete time 47
distance measures 130
dynamic mapping 79
dynamic queries 117

E

EEG time-series plot 32
effectiveness 3
elementary tasks 74
enhanced interactive spiral 184
event-based visualization 120
EventRiver 228
EventViewer 237
explorative analysis 5
expressiveness 3
external time 64

F

FacetZoom 229
fever curve 32
filtering 117
flocking boids 223
flow map 242
focus+context 32, 111
four-dimensional art 40
frame 79

G

Gantt chart 25, 58, 167
Gantt, Henry Laurence 25
GeoTime 248
goals 4
granularity 53
granule 54
graphical summary of patient status 32
graphical zooming 112
Gravi++ 218
Gregorian calendar 46, 54
GROOVE 181

H

helix icons 252
hierarchical clustering 131

history flow 206
HMAP 62
horizon graph 157

I

icons on maps 240
identification tasks 73, 90
InfoBUG 217
information visualization 3
information visualization reference model 8
instant 56
interaction intents 6, 106
interaction model 108
interactive parallel bar charts 162
internal time 64
interpretation aims 5
interval 57
interval relations 60
interval-based time 47
intrusion detection 235
intrusion monitoring 164

J

Julian calendar 46

K

kaleidomaps 234
Kiviat tube 211
KNAVE II 232
knowledge discovery 127

L

layer area graph 195
LifeLines 225
LifeLines2 192
line plot 153
linear time 50
LiveRAC 191
localization tasks 73, 90
lookup tasks 74, 91

M

Marey, Étienne-Jules 29
Midgaard 230
Minard, Charles Joseph 19
model-view-controller 111
MOSAN 209
multi scale temporal behavior 179
MultiComb 201
multiple coordinated views 112
multiple perspectives, time with 51
music notation 39

www.ebook3000.com

http://www.ebook3000.org


Index 285

N

Napoleon’s Russian campaign 19
Nightingale, Florence 22
Nude Descending a Staircase (Marcel

Duchamp) 42

O

ordered time 51
ordinal time 47
overview+detail 111

P

paint strips 171
parallel coordinates 69, 96
parallel glyphs 214
pattern 128
pattern discovery 128
PatternFinder 226
pencil icons 249
PeopleGarden 207
perspective wall 168
Phillips curve 28
pixel-oriented network visualization 204
planetary orbits plot 15
PlanningLines 62, 172
Playfair, William 15
point and figure chart 47
point plot 152
point-based time 47
polar area graph see rose chart
Portrait of Ambroise Vollard (Pablo Picasso)

42
PostHistory 208
prediction 129
presentation 5
Priestley, Joseph 16
principal component analysis (PCA) 137
process visualization 222
pyramid framework 4, 62

Q

query-by-example 128

R

rank chart 28
recursive pattern 180
relation seeking tasks 74
relations between time primitives 58
relative time 45

Renaissance 40
ring maps 238
river plot 189
Rock’n’Roll history 23
rose chart 22

S

scatter plot see point plot
search & retrieval 128
searchbox query model 188
semantic zooming 112, 136
sequential art 35
serial periodic data 51
silhouette graph 16, 175
Similan 193
similarity measures 130
small multiples 32, 78, 80, 236
software evolution analysis 216
SolarPlot 182
SOPO diagram 174
space-time cube 82, 98, 245
space-time path 247
spacetime 45
span 57
SparkClouds 156
sparklines 155
spatio-temporal event visualization 246
spike graph 154
SpiraClock 183
spiral display 186
spiral graph 185
stacked graphs 199
static mapping 76
stepped interaction 109
streaming data 65
synoptic tasks 74

T

task model 72
task taxonomy 5, 74
tasks 72, 75, 87
Taylor, Frederick Winslow 25
temporal data abstraction 133
temporal star 212
ThemeRiver 23, 85, 197
tile maps 47, 49, 178
time annotation glyph 173
time aspects 66, 71

arrangement 49, 84
determinacy 60
granularity and calendars 53
scale 47



286 Index

scope 47
time primitives 55
viewpoint 51

time line browser 224
time point 56
time primitives 55
time-oriented polygons on maps 239
time-tunnel 213
time-varying hierarchies on maps 243
timebox query model 188
TimeHistogram 3D 163
timeline 166
timeline trees 203
TimeNets 170
TimeRider 221
TimeSearcher 188
TimeSearcher 3 189
TimeTree 160
TimeWheel 49, 51, 97, 200
TimeZoom 229
train schedule Paris-Lyon 29
transaction time 52
Trendalyzer 220
TrendDisplay 158

U

user interface 110

V

valid time 52
value flow map 241
variable

dependent 4
independent 4

VIE-VISU 202
VIS-STAMP 244
visual analytics 263
visual explanations 35
visual storytelling 35
visual variable 6, 76
visualization 3
visualization pipeline 7
VisuExplore 9, 231
VizTree 187

W

Wakame 251
weather chart 33
worm plots 215

Z

zooming 112

www.ebook3000.com

http://www.ebook3000.org

	Foreword
	Preface
	About the Authors
	Acknowledgements
	Contents
	1 Introduction
	1.1 Introduction to Visualization
	1.2 Application Example
	1.3 Book Outline
	References

	2 Historical Background
	2.1 Classic Ways of Graphing Time
	2.2 Time in Visual Storytelling & Arts
	2.3 Summary
	References

	3 Time & Time-Oriented Data
	3.1 Modeling Time
	3.1.1 Design Aspects
	3.1.2 Granularities & Time Primitives

	3.2 Characterizing Data
	3.3 Relating Data & Time
	3.4 Summary
	References

	4 Visualization Aspects
	4.1 Characterization of the Visualization Problem
	4.1.1 What? -- Time & Data
	4.1.2 Why? -- User Tasks
	4.1.3 How? -- Visual Representation

	4.2 Visualization Design Examples
	4.2.1 Data Level
	4.2.2 Task Level
	4.2.3 Presentation Level

	4.3 Summary
	References

	5 Interaction Support
	5.1 Motivation & User Intents
	5.2 Fundamental Principles
	5.3 Basic Methods
	5.4 Integrating Interactive and Automatic Methods
	5.5 Summary
	References

	6 Analytical Support
	6.1 Temporal Analysis Tasks
	6.2 Clustering
	6.3 Temporal Data Abstraction
	6.4 Principal Component Analysis
	6.5 Summary
	References

	7 Survey of Visualization Techniques
	7.1 Techniques
	7.2 Summary
	References

	8 Conclusion
	8.1 Summary
	8.2 Application Issues
	8.3 Research Challenges
	8.4 Visual Analytics
	References

	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




