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Preface

A wide variety of evidence suggests that language is probabilistic. In lan-

guage comprehension and production, probabilities play a role in access,

disambiguation, and generation. In learning, probability plays a role in

segmentation and generalization. In phonology and morphology, proba-

bilities play a role in acceptability judgments and alternations. And in

syntax and semantics, probabilities play a role in the gradience of cate-

gories, syntactic well-formedness judgments, and interpretation. More-

over, probabilities play a key role in modeling language change and

language variation.

This volume systematically investigates the probabilistic nature of lan-

guage for a range of subfields of linguistics (phonology, morphology,

syntax, semantics, psycholinguistics, historical linguistics, and sociolin-

guistics), each covered by a specialist. The probabilistic approach to the

study of language may seem opposed to the categorical approach, which

has dominated linguistics for over 40 years. Yet one thesis of this book is

that the two apparently opposing views may in fact go very well together:

while categorical approaches focus on the endpoints of distributions of

linguistic phenomena, probabilistic approaches focus on the gradient

middle ground.

This book originated as the symposium ‘‘Probability Theory in Lin-

guistics,’’ held in Washington, D.C., as part of the Linguistic Society of

America meeting in January 2001. One outcome of the symposium was

the observation that probability theory allows researchers to change the

level of magnification when exploring theoretical and practical problems

in linguistics. Another was the sense that a handbook on probabilistic

linguistics, providing necessary background knowledge and covering the

various subfields of language, was badly needed. We hope this book will

fill that need.



We expect the book to be of interest to all students and researchers

of language, whether theoretical linguists, psycholinguists, historical lin-

guists, sociolinguists, or computational linguists. Because probability

theory has not formed part of the traditional linguistics curriculum, we

have included a tutorial on elementary probability theory and proba-

bilistic grammars, which provides the background knowledge for under-

standing the rest of the book. In addition, a glossary of probabilistic

terms is given at the end of the book.

We are most grateful to the authors, who have given maximal e¤ort to

write the overview chapters on probabilistic approaches to the various

subfields of linguistics. We also thank the authors for their contribution

to the review process. We are grateful to Michael Brent for his contri-

bution to the original symposium and to Anne Mark for her excellent

editorial work. Finally, we would like to thank the editor, Thomas Stone,

for his encouragement and help during the processing of this book.

The editors of this book worked on three di¤erent continents (with the

South Pole equidistant from us all). We recommend this as a fabulously

e‰cient way to work. The book never slept.
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Tekniska Högskolan in Stockholm (1987–1988) and Ecole Nationale

Supérieure des Télécommunications in Paris (1996–1997, as a Fellow of

the John Simon Guggenheim Foundation).

Kie Zuraw Kie Zuraw is an assistant professor of linguistics at the Uni-

versity of Southern California and, in 2001–2002, a visiting assistant

professor of linguistics at MIT. She received a Ph.D. from the University

of California, Los Angeles, in 2000. Her dissertation proposed, using

detailed case studies of lexical patterns in Tagalog, a model of the learn-

ability, representation, and use (in speaking and listening) of lexically

probabilistic phonology and of how lexical patterns are perpetuated his-

torically. Her other interests include variable and probabilistic grammars,

learning algorithms, contact and loanword phonology, the selection and

assimilation of new words into the lexicon, computational models of the

speech community, reduplication and pseudoreduplication, and Philip-

pine and other Austronesian languages.

xii Contributors



Chapter 1

Introduction Rens Bod, Jennifer Hay, and
Stefanie Jannedy

1.1 Probabilistic Linguistics

One of the foundations of modern linguistics is the maxim of categoricity:

language is categorical. Numbers play no role, or, where they do, they are

artifacts of nonlinguistic performance factors. Thus, while it is widely

recognized that real language can be highly variable, gradient, and rich in

continua, many linguists would argue that the competence that underlies

such ‘‘performance factors’’ consists of well-defined discrete categories

and categorical grammaticality criteria. Performance may be full of fuzzi-

ness, gradience, and continua, but linguistic competence is not.

However, a groundswell of recent results challenge the idea that lin-

guistic competence is categorical and discrete. While linguistic phenom-

ena such as phonological and morphological alternations and syntactic

well-formedness judgments tend to be modeled as categorical, it has

become increasingly clear that alternations and judgments display prop-

erties of continua and show markedly gradient behavior. Moreover, psy-

cholinguistic experiments demonstrate that speakers’ well-formedness

judgments of words and sentences are extremely well predicted by the

combined probabilities of their subparts.

While generative approaches to linguistics have evolved to capture

the endpoints of such distributions, there is growing interest in the rela-

tively unexplored gradient middle ground, and a growing realization that

concentrating on the extremes of continua leaves half the phenomena

unexplored and unexplained. The chapters in this book illustrate that one

need not discard the many insights of modern linguistics in order to

insightfully model this middle ground. On the contrary, a probabilistic

approach can push the boundaries of linguistic theory forward, by substan-

tially enriching the current state of knowledge. Probabilistic linguistics



increases the range of data for which a theory can account, and for which

it must be accountable.

1.2 Motivating Probabilities

In recent years, a strong consensus has emerged that human cognition is

based on probabilistic processing. Jurafsky (this volume) outlines some

recent literature, and papers documenting the probabilistic underpinnings

of a wide range of cognitive processes appear in Rao, Olshausen, and

Lewicki 2002. The editors of that book praise the probabilistic approach

for its promise in modeling brain functioning and its ability to accurately

model phenomena ‘‘from psychophysics to neurophysiology.’’

However, the fact that probability theory is an increasingly useful and

important tool in cognitive science does not make it automatically suit-

able for modeling language. To be convinced of its suitability, readers

should rightly demand evidence that the language faculty itself displays

probabilistic properties. We briefly outline the nature of this evidence

below.

1.2.1 Variation

Language changes over time—a process that is usually echoed synchroni-

cally across age groups. Zuraw provides evidence that language change

can result from probabilistic inference on the part of listeners, and she

argues that probabilistic reasoning ‘‘could explain the maintenance of

lexical regularities over historical time’’ (sec. 5.5.1).

It is well accepted that language does not just vary across time—it is

inherently variable. There is no known case, for example, where analo-

gous phonemes have exactly the same implementation across two lan-

guages (Pierrehumbert).

Acquiring a language or dialect, then, involves not just identifying its

phonemes, but also learning the extremely subtle patterns of production

and allophony relevant to each phoneme in that language. Within a par-

ticular language, production patterns di¤er across individuals, depending

on aspects of identity (Mendoza-Denton, Hay, and Jannedy). Within

individuals, production patterns di¤er on the basis of stylistic factors such

as addressee, context, and topic, and this stylistic variation to a large

degree echoes the variation present across members of society. Knowl-

edge of variation, then, must form part of linguistic competence, since

individuals can manipulate their implementation of phonetic variants to
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portray linguistic and extralinguistic information. And individuals di¤er

not only in the specific variants they use in di¤erent contexts, but also in

the frequency with which they use them. Knowledge of variation must

involve knowledge of frequencies (Mendoza-Denton, Hay, and Jannedy).

And this, as it turns out, does not set it apart from other types of linguis-

tic knowledge.

1.2.2 Frequency

One striking clue to the importance of probabilities in language comes

from the wealth of frequency e¤ects that pervade language representa-

tion, processing, and language change.

The chapters in this book document many ways in which frequency

permeates language. Frequent words are recognized faster than infre-

quent words, and there is a bias toward interpreting ambiguous words in

terms of their more frequent meanings (Jurafsky). Frequent words lead

leniting changes (Zuraw) and are more prone to reduction in speech

(Jurafsky; Mendoza-Denton, Hay, and Jannedy). Frequent combinations

of phonemes (Pierrehumbert) and structures (Manning) are perceived as

more grammatical, or well formed, than infrequent combinations. The

relative frequency of derived words and their bases a¤ects the morpho-

logical decomposability of complex words (Baayen). These are just a few

of the many frequency e¤ects discussed in this book that influence lan-

guage perception, production, and representation.

Frequency a¤ects language processes, and so it must be represented

somewhere. The language-processing system tracks, records, and exploits

frequencies of various kinds of events.

We can best model many of these e¤ects by making explicit the link

between frequency and probability. Probability theory provides well-

articulated methods for modeling frequency, and it provides researchers

with the tools to work not only with the frequency of events, but also with

the frequency of combinations of events. One can thus estimate the prob-

ability of complex events (such as sentences) by combining the proba-

bilities of their subparts.

The presence of frequency e¤ects is not in itself su‰cient to warrant

adopting a probabilistic view. It is conceivable that at least some of the

frequency e¤ects outlined in this book could occur without any kind of

probabilistic e¤ect. However, the presence of frequency e¤ects does pro-

vide evidence that the basic building blocks of probability theory are

stored and exploited. Just as the complete absence of frequency e¤ects
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would challenge the foundations of probabilistic linguistics, so their

overwhelming presence adds weight to the claim that the language faculty

is inherently probabilistic.

1.2.3 Gradience

Frequency e¤ects provide one type of evidence for a probabilistic lin-

guistics. A stronger type of evidence comes from gradience. The chapters

in this book are filled with examples of continua and gradience. Here, we

outline just a few of these cases—phenomena that at first glance may ap-

pear categorical, but upon closer inspection show clear signs of gradience.

And probabilities are extremely well suited to capturing the notion of

gradience, as they lie in a continuum between 0 (reflecting impossibility)

and 1 (reflecting certainty).

1.2.3.1 Category Membership Pierrehumbert argues that phoneme

membership is gradient, with phonemes representing continuous proba-

bility distributions over phonetic space. Items that are central in such a

distribution are good examples of a particular phoneme; more peripheral

items are more marginal as members. And distributions may overlap.

Manning suggests that such an approach may also be appropriate for

modeling syntactic category membership, which also displays properties

of gradience. As a case study, he examines ‘‘marginal prepositions’’ such

as concerning, considering, and following. He convincingly demonstrates

the gradient behavior of this class, which ranges from fully verbal to fully

prepositional, arguing that ‘‘it seems that it would be useful to explore

modeling words as moving in a continuous space of syntactic category,

with dense groupings corresponding to traditional parts of speech’’ (sec.

8.4).

Categories are central to linguistic theory, but membership in these

categories need not be categorical. Probabilistic linguistics conceptualizes

categories as distributions. Membership in categories is gradient.

1.2.3.2 Well-Formedness Manning illustrates that, in corpus-based

searches, there is no well-defined distinction between sentences generally

regarded as ‘‘grammatical’’ in the literature, and those regarded as un-

grammatical. Rather, what we see is a cline of well-formedness, wherein

some constructions are highly preferred, others are used less frequently,

and some are used not at all. The distinction drawn between grammatical

and ungrammatical is often somewhere in the middle of the cline, ruling
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out those constructions that tend to be less frequent as ‘‘ungrammatical.’’

However, nowhere in the cline is there a dramatic drop in frequency; in

fact, the cline can often be gradual, so that the decision where to draw the

distinction is relatively arbitrary. The di‰culty of drawing such lines has

led to special notation in formal syntax, to represent questionable gram-

matical status (the question mark,?). But this middle territory has seldom

been the object of theory building, nor has it been incorporated into for-

mal models of syntax. Probabilistic linguistics seeks to account for the full

continuum between grammaticality and ungrammaticality.

The gradualness observed in corpus searches is also echoed in gramma-

ticality judgments: speakers do not find it a strange task to rate degrees

of acceptability or grammaticality, as we might expect if grammaticality

were categorical, rather than gradient.

Similarly, in the realm of phonology, Pierrehumbert summarizes com-

pelling evidence that the judged well-formedness of novel words is incon-

trovertibly gradient and can be predicted as a function of the probability

of the words’ subparts.

1.2.3.3 Morphological Productivity It is widely accepted that some

a‰xes are productive and can give rise to new words, whereas others

are unproductive—present in extant words, but not available for further

word formation. However, as Baayen discusses, not all a‰xes are equally

productive. Some word formation rules give rise to very few words,

whereas others are highly productive and spawn many new words. Mor-

phological productivity is a clearly gradient phenomenon. Understanding

and accurately modeling it, then, requires a theory of linguistics that can

predict degrees of productivity. Drawing a simple categorical distinction

between ‘‘productive’’ and ‘‘unproductive’’ is relatively stipulative and

captures only a small proportion of the facts.

1.2.3.4 Morphological Decomposition As both Baayen and Pierrehum-

bert discuss, word formation is not the only morphological process that

exhibits symptoms of gradience. Both authors summarize evidence that

morpheme boundaries, the very essence of morphology, are gradient—

that is, stronger in some complex words than in others. This gradience

arises from the role of decomposition in speech perception: complex

words that are often decomposed are represented with strong morpho-

logical boundaries, those that are seldom decomposed come to be rep-

resented with weak ones. Crucially, and as with all other examples
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discussed in this section, this gradience is not a simple matter of per-

formance—it has deep linguistic consequences.

1.2.3.5 The Argument/Adjunct Distinction Even syntactic roles may

be gradient. Manning argues against a categorical conception of the

argument/adjunct distinction, citing documented di‰culties with cleanly

dividing verbal dependents into freely occurring adjuncts and sub-

categorized arguments. He suggests that one possibility for modeling the

observed gradience is to represent subcategorization information as ‘‘a

probability distribution over argument frames, with di¤erent verbal

dependents expected to occur with a verb with a certain probability’’ (sec.

8.3.1).

1.2.4 Acquisition

As outlined above, there is a wide range of evidence for gradience and

gradient e¤ects in language. Modeling all such factors as artifacts of

‘‘performance’’ would be a massive challenge and would likely constitute

serious hoop-jumping. One common reason for wanting to do so stems

from skepticism regarding the mind’s ability to acquire and store a com-

plex range of generalizations and frequencies. However, the chapters in

this book argue that adding probabilities to linguistics in fact makes the

acquisition problem easier, not harder.

As Gold (1967) demonstrated, formal languages cannot be learned

without negative evidence. Moreover, negative evidence is not readily

available to children. Together, these two facts are widely used as evi-

dence that language is special and largely innate, a line of reasoning

known as the ‘‘argument from the poverty of the stimulus.’’ Manning

outlines evidence that challenges this argument—most importantly, evi-

dence (dating from Horning 1969) that, unlike categorical grammars,

probabilistic grammars are learnable from positive evidence alone.

As outlined by Pierrehumbert, generalizations based on statistical

inference become increasingly robust as sample size increases. This holds

for both positive and negative generalizations: as the range and quantity

of data increase, statistical models are able to acquire negative evidence

with increasing certainty. Pierrehumbert also outlines several types of

results relating to the acquisition of phonemes and phonological general-

izations, which together provide strong evidence that acquisition involves

the continual updating of probability distributions.
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Many current models of language acquisition rely on probabilistic

models, and considerable evidence demonstrates that infants track prob-

abilities in order to tackle such di‰cult tasks as decomposing a speech

stream into words (Goodsitt, Morgan, and Kuhl 1993; Sa¤ran, Newport,

and Aslin 1996a,b) and even into phrases (Sa¤ran 2001). It is certainly

not the case that the use of probabilities complicates the learning task. On

the contrary, if the language faculty is probabilistic, the learning task is

considerably more achievable. Variability and continuity both enhance

learning.

1.2.5 Universals

Many phenomena or constraints are present in a great many languages,

reflecting universal tendencies of the language faculty. They are operative

to greater or lesser degrees in di¤erent languages and in some cases are

highly grammaticalized and categorical. Manning discusses one such case

in depth: the interaction of passive, person, and topicality. A categorical

formal framework does not enable us to fully capture the di¤erent degrees

to which constraints are operative in di¤erent languages. By contrast,

probabilistic linguistics does enable us to formally model such situations,

capturing both the ways in which languages are similar (operating under

similar constraints) and the ways in which they di¤er (the probabilities

associated with those constraints).

1.3 Probabilities Where?

Clearly, there is a need to integrate probabilities into linguistics—but

where? Taken together, the chapters in this book answer, ‘‘Everywhere.’’

Probabilities are operative in acquisition (see, e.g., Manning; Pierrehum-

bert), perception (Zuraw; Baayen; Jurafsky), and production (Pierre-

humbert; Baayen; Jurafsky). Moreover, they are not merely a tool for

processing: linguistic representations are probabilistic (see, e.g., Pierre-

humbert; Baayen; Mendoza-Denton, Hay, and Jannedy), as are linguistic

constraints and well-formedness rules (Manning; Bod). Probabilities per-

meate the linguistic system.

Probabilities are relevant at multiple levels of representation (Pierre-

humbert) and can be calculated over arbitrarily complex, abstract repre-

sentations (Manning; Jurafsky). As Manning discusses, it is a common

misconception that probabilities can be recorded only over surface
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structure; indeed, there is no barrier to calculating probabilities over

hidden structure. Probabilistic linguistics does not abandon all the prog-

ress made by linguistics thus far; on the contrary, it integrates this

knowledge with a probabilistic perspective.

As Baayen and Pierrehumbert argue, probabilities of both types and

tokens play an important role. For example, the number of di¤erent

words a speaker has encountered containing a particular a‰x is impor-

tant (the types), as is the number of times the speaker has encountered

each of those words (tokens).

As Pierrehumbert discusses, linguistic constraints consist of statistically

robust generalizations. There are many theoretically possible constraints

that could be operative in language, but those that are e¤ectively learned,

transmitted, and exploited are those that are statistically robust: they can

be learned from limited language exposure, and they can be successfully

learned by di¤erent individuals exposed to language in di¤erent ways

and to di¤erent extents. The robust generalizations are the linguistically

important ones.

Here we briefly review some of the many levels of representation that

show probabilistic properties.

As noted above, phonemes are probabilistic distributions over a con-

tinuous phonetic space (Pierrehumbert). Learning phonemes, and classi-

fying phonetic exemplars as specific phonemes, requires situating them

within the appropriate region in this phonetic space. Phoneme member-

ship is probabilistic.

Knowledge of phonotactics involves knowledge of co-occurrence

probabilities of phonemes. The well-formedness of a string of phonemes

is a function of ‘‘the frequency of the subparts and the specific way

in which they were combined’’ (Pierrehumbert, sec. 6.2). Such phono-

tactic probabilities are exploited in speech perception for segmentation,

and they a¤ect well-formedness judgments, influence pronunciation, and

a¤ect behavior in linguistic tasks such as creating blends. Phonotactics is

probabilistic.

Probabilities are also operative at the morpheme level. Some a‰xes are

much more productive than others; that is, probability of use varies, and

forms part of the speaker’s linguistic knowledge. Individuals’ choice

among competing a‰xes shows a strong bias toward the most probable

one, as measured by patterns of occurrence in related words (Baayen).

A‰x choice is probabilistic.
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The processing and representation of words is strongly influenced by

lexical frequency: more probable and less probable words behave di¤er-

ently. This is true both of morphologically simple and of morphologically

complex words. The many realms in which word frequency manifests

itself include ambiguity resolution (Jurafsky), phoneme reduction (Juraf-

sky; Mendoza-Denton, Hay, and Jannedy; Pierrehumbert), language

change (Zuraw), and speed of access (Jurafsky). Word representations are

probabilistic.

Relationships between words also exhibit linguistically relevant proba-

bilities. The larger the number of word pairs that instantiate a general-

ization (or word sets that instantiate a paradigm), the more robust that

generalization is. Generalizations that are represented by a great many

words pairs tend to be highly salient and productive (Pierrehumbert).

Morphophonological relations between words are probabilistic.

Individuals also track co-occurrence probabilities of words (Jurafsky).

In comprehension, these influence processing time. In production, high-

frequency (or high-probability) word pairs are more phonetically re-

duced. Low-probability words (given the probability of surrounding

words) are more likely to attract a pitch accent. Word combinations are

probabilistic.

Verbs take di¤erent subcategorization frames with di¤erent fre-

quencies. The probability that a specific verb will take various specific

subcategorization frames a¤ects ambiguity resolution (Jurafsky). More-

over, there is evidence that subcategorization displays properties of a

continuum (Manning). Syntactic subcategorization is probabilistic.

Jurafsky provides evidence that people track the probabilities of syn-

tactic structures. Frequently encountered sentences or sentence fragments

are more easily processed than infrequently encountered ones, even con-

trolling for lexical frequency and other relevant factors. And listeners

and readers are influenced by the likelihood of a specific structure or

word given previously encountered structure. This e¤ect influences pro-

cessing time and is involved in disambiguation. Bod and Manning discuss

methods for the probabilistic combination of syntactic subtrees. Sentence

structure is probabilistic.

Cohen discusses cases in which supplementing truth-conditional se-

mantics with probability theory increases the explanatory power of the

model. These include the modeling of generics, frequency adverbs, con-

ditionals, and vague terms. He demonstrates clearly that the semantics of
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such words are probabilistic. He concludes by discussing prospects for a

fully probabilistic semantics, in which judgments of truth conditions are

replaced by judgments of probability. In such a semantics, the meaning of

a sentence would not be a function from possible worlds to truth values;

rather, it would be ‘‘a function from sets of possible worlds to proba-

bilities’’ (sec. 9.8). Such a theory, Cohen argues, would formally capture

the idea that ‘‘understanding the meaning of a sentence is the ability,

given a situation, to assess its probability.’’ Semantics too, then, may be

probabilistic.

In short, practically every level of representation provides robust evi-

dence for the involvement of probabilities.

1.4 Conclusion

Language displays all the hallmarks of a probabilistic system. Categories

and well-formedness are gradient, and frequency e¤ects are everywhere.

We believe all evidence points to a probabilistic language faculty.

Knowledge of language should be understood not as a minimal set of

categorical rules or constraints, but as a (possibly redundant) set of gra-

dient rules, which may be characterized by a statistical distribution.

10 Bod, Hay, and Jannedy



Chapter 2

Introduction to Elementary
Probability Theory and
Formal Stochastic Language
Theory

Rens Bod

2.1 Introduction

For a book on probabilistic approaches to a scientific discipline, it may

seem unnecessary to start with an introduction to probability theory. The

reader interested in probabilistic approaches would usually have a work-

ing knowledge of probability theory and would directly read the more

specialized papers. However, the situation is somewhat di¤erent for lin-

guistics. Since probability theory does not form part of a traditional

linguistics curriculum, probabilistic linguistics may not be as accessible

as some other areas. This is further reinforced by the disciplinary gap

between probabilistic and categorical approaches, the first being domi-

nant in psycholinguistics and natural language processing, the second in

generative linguistics. One goal of this book is to show that these two

apparently opposing methodologies go very well together: while categor-

ical approaches focus on the endpoints of distributions of linguistic phe-

nomena, probabilistic approaches focus on the gradient middle ground.

That linguistic phenomena are gradient will not be discussed here, as

this is extensively shown in the other chapters. But to make these chap-

ters accessible to the linguistics community at large, there is a need to

explain the most important concepts from probability theory first. Any

additional concept that may be encountered later can be looked up in the

glossary. I will only assume that the reader has some elementary knowl-

edge of set theory (see Partee, ter Meulen, and Wall 1990 for a linguistic

introduction).

After a brief introduction to the basics of probability theory, I will

show how this working knowledge can be put into practice by developing

the concept of probabilistic grammar, which lies at the heart of proba-

bilistic linguistics. Since many di¤erent probabilistic grammars have been



proposed in the literature, there is a need for a theory that creates some

order among them, just as Formal Language Theory creates order among

nonprobabilistic grammars. While I will only scratch the surface of a

Formal Stochastic Language Theory, I will show that probabilistic gram-

mars evoke their own stochastic hierarchies.1

2.2 What Are Probabilities?

Historically, there have been two interpretations of probabilities: objecti-

vist and subjectivist. According to the objectivist interpretation, proba-

bilities are real aspects of the world that can be measured by relative

frequencies of outcomes of experiments. The subjectivist view, on the

other hand, interprets probabilities as degrees of belief or uncertainty of

an observer rather than as having any external significance. These two

contrasting interpretations are also referred to as frequentist versus

Bayesian (from Thomas Bayes, 1764). Whichever interpretation one pre-

fers, probabilities are numbers between 0 and 1, where 0 indicates im-

possibility and 1 certainty (percentages between 0% and 100% are also

used, though less commonly).

While the subjectivist relies on an observer’s judgment of a probability,

the objectivist measures a probability through an experiment or trial—the

process by which an observation is made. The collection of outcomes or

sample points for an experiment is usually referred to as the sample space

W. An event is defined as any subset of W. In other words, an event

may be any set of outcomes that result from an experiment. Under the

assumption that all outcomes for an experiment are equally likely, the

probability P of an event A can be defined as the ratio between the size of

A and the size of the sample space W. Let jAj be the number of elements

in a set A; then

PðAÞ ¼ jAjjWj : ð1Þ

To start with a simple, nonlinguistic example, assume a fair die that is

thrown once. What is the chance of obtaining an even number? The

sample space of this trial is

W ¼ f1; 2; 3; 4; 5; 6g:

The event of interest is the subset containing all even outcomes. Let us

refer to this event as A:
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A ¼ f2; 4; 6g:

Thus, the number of elements in A is 3, and the number of elements in W

is 6; that is, jAj ¼ 3 and jWj ¼ 6. Then the probability of A is

PðAÞ ¼ jAjjWj ¼
3

6
¼ :5:

Let us now turn to a slightly more linguistic example. Assume a small

corpus consisting of 50 unambiguous words of which 25 are nouns, 20 are

verbs, and 5 are adjectives. Consider the experiment of randomly select-

ing a word W from this corpus. What is the probability of selecting a

verb? The sample space W of this trial is the set of all words in the corpus.

The event of interest A is the set of verbs, which we may write as fW : W

is a verbg. So,

PðAÞ ¼ jAjjWj ¼
jfW : W is a verbgj

jWj ¼ 20

50
¼ :4:

For the sake of brevity, we will often write PðfverbgÞ instead of PðfW :

W is a verbgÞ. Thus,

PðfverbgÞ ¼ jfverbgj
jWj ¼ 20

50
¼ :4;

PðfnoungÞ ¼ jfnoungj
jWj ¼ 25

50
¼ :5;

PðfadjectivegÞ ¼ jfadjectivegj
jWj ¼ 5

50
¼ :1:

Two important observations can now be made. First, note that the

probability of selecting either a verb or a noun or an adjective is equal to

1, since in that case the event of interest A is fW : W is any wordg, which

is equal to the sample space W, and thus PðAÞ ¼ jWj=jWj ¼ 1. This corre-

sponds to the intuition that the probability that something will be sam-

pled in this experiment is equal to 1.

Second, note that the sum of the probabilities of each event, fverbg,
fnoung, and fadjectiveg, is also equal to 1; that is, :4þ :5þ :1 ¼ 1. If

events do not overlap, the probability of sampling either of them is equal

to the sum of their probabilities. This is known as the sum rule. For

example, the probability of selecting either a verb or a noun, usually writ-

ten as PðfverbgW fnoungÞ or Pðfverb; noungÞ, is equal to 45=50 ¼ :9,

which is also equal to the sum PðfverbgÞ þ PðfnoungÞ ¼ :4þ :5 ¼ :9.
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It is important to note that the event fverb; noung does not refer to the

event of a word being in the class of words that can be both a noun

and a verb. As defined above, events are subsets of the sample space,

and fverb; noung denotes the event of either a noun occurring or a verb

occurring.

These two properties just noted are actually the rules a so-called prob-

ability function should obey (in addition to the fact that it should range

over [0, 1]). The first rule says that a trial will always produce an event in

the event space. That is, the probability that something in the event space

will happen—namely, PðWÞ—is 1:

PðWÞ ¼ 1: ð2Þ

The second rule says that if two or more events do not overlap, the

probability that either event occurs is equal to the sum of their proba-

bilities. That is, for two disjoint events A and B,

PðAWBÞ ¼ PðAÞ þ PðBÞ: ð3Þ

As long as these rules hold, P is a probability function, also known as a

probability distribution. (There are some well-studied probability distri-

butions that appear later in this book, such as the binomial distribution

and the normal distribution. See the glossary for definitions.)

Note that rule (3) can be generalized to any number of events. That is,

for n disjoint events A1;A2; . . . ;An,

PðA1 WA2 W � � �WAnÞ ¼ PðA1Þ þ PðA2Þ þ � � � þ PðAnÞ: ð4Þ

The right-hand side of this sum rule is often conveniently abbreviated by

the sum sign S:

PðA1 WA2 W � � �WAnÞ ¼ SiPðAiÞ: ð5Þ

Recall that under the frequentist interpretation, the probability of an

event is interpreted as its relative frequency in a series of experiments. A

classical result from statistics shows that the relative frequency of an

event converges to its true probability as the number of experiments

increases (Law of Large Numbers). Thus, if x is an outcome of some

experiment (e.g., throwing a die) and CountðxÞ is the number of

times x occurs in N repeated experiments, then the relative frequency

CountðxÞ=N converges to the probability of x if N goes to infinity. The

probability of x is also written as PðX ¼ xÞ, where X is called a random

variable (see also the glossary).
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2.3 Joint Probabilities and Conditional Probabilities

Let us now extend our notion of simple probability to that of joint prob-

ability. Joint probabilities are useful if we are interested in events that

contain more than one outcome. For example, in an experiment where we

randomly sample two words from the corpus described in section 2.1

(rather than just one word), what is the probability of an event consisting

of a noun and a verb—given that we sample with replacement?2 We write

this probability as PðfnoungX fverbgÞ, or simply as Pðfnoung; fverbgÞ.
We already computed the probabilities of sampling a noun and a verb

separately:

PðfnoungÞ ¼ :5;

PðfverbgÞ ¼ :4:

Intuitively, this amounts to saying that in 50% of the cases we sample

a noun, after which in 40% of the cases we sample a verb. This means

that we sample them jointly in 40% of 50% of the cases—that is, in

20% of the cases (in our experiment). Thus, intuitively, the joint proba-

bility of sampling a noun and a verb is equal to the product of the prob-

abilities of sampling them separately: Pðfnoung; fverbgÞ ¼ PðfnoungÞ�
PðfverbgÞ ¼ :5� :4 ¼ :2.3 We can do this simple multiplication because

we designed our experiment in such a way that sampling a verb is inde-

pendent of having sampled a noun.4 We say that the events fnoung and

fverbg are independent. In general, for two independent events A and B,

PðA;BÞ ¼ PðAÞ � PðBÞ if A and B are independent: ð6Þ

It is often the case that two events are not independent, but dependent.

We could design an experiment where the probability of sampling a

verb changes if we know that we previously sampled a noun. This is for

instance the case in an experiment where we sample two consecutive

words. Suppose that in our corpus, 90% of the nouns are followed by

verbs. For such an experiment, the probability of sampling a verb given

that we first sampled a noun is thus .9 (rather than .4). This probability is

written as PðfverbgjfnoungÞ and is called the conditional probability of a

verb given a noun. But now what is the probability of sampling a noun

and a verb in this particular experiment? We know that

PðfnoungÞ ¼ :5;

PðfverbgjfnoungÞ ¼ :9:
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That is, in 50% of the cases we sample a noun, after which in 90% of

the cases we sample a verb (in this experiment). This means that we

sample them jointly in 90% of 50% of the cases—that is, in 45% of the

cases. Thus, the joint probability Pðfnoung; fverbgÞ is equal to the prod-

uct PðfnoungÞ � PðfverbgjfnoungÞ ¼ :5� :9 ¼ :45. In general, for two

events A and B,

PðA;BÞ ¼ PðAÞ � PðBjAÞ; ð7Þ

which reads as ‘‘The probability of A and B equals the probability of A,

times the probability of B given A.’’ Note that this formula generalizes

over formula (6): if the events A and B are independent, PðBjAÞ is equal

to PðBÞ, and (7) reduces to (6). Formula (7) is generally known as the

multiplication rule or product rule. The product rule can also be written as

a general definition for conditional probability:

PðBjAÞ ¼ PðA;BÞ
PðAÞ : ð8Þ

It is important to realize that a conditional probability is itself a proba-

bility function, and its values sum up to 1 by varying what is on the left-

hand side of the bar in (8). Most textbooks on probability theory first

define the concept of conditional probability and then, from that, the

formula for joint probability. For the current exposition, it seemed more

intuitive to do this the other way round.

From (8), Bayes’ rule can be derived. First, we will rename the vari-

ables of (8):

PðH jEÞ ¼ PðE;HÞ
PðEÞ ; ð9Þ

where, in the context of Bayesian reasoning, PðH jEÞ usually reads as ‘‘the

probability of a hypothesis H given some evidence E.’’ Second, since set

intersection is commutative (i.e., AXB ¼ BXA), the joint probability

PðE;HÞ is equal to PðH;EÞ, and we can therefore write the right-hand

side of (9) also as PðH;EÞ=PðEÞ, which according to (7) is equal to

PðHÞ � PðE jHÞ=PðEÞ. Thus, (9) can be written as

PðH jEÞ ¼ PðHÞ � PðE jHÞ
PðEÞ : ð10Þ

This formula, known as Bayes’ rule, is useful if the conditional probabil-

ity PðH jEÞ is more di‰cult to compute than PðHÞ and PðE jHÞ. The

probability PðHÞ is usually called the prior probability, while PðE jHÞ is
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called the posterior probability. We will see later in this book how Bayes’

rule can be applied to linguistic phenomena.

Turning back to the concept of joint probability, the product rule (7)

for two events can be generalized to multiple events. For example, the

joint probability of three events A, B, and C is

PðA;B;CÞ ¼ PðAÞ � PðBjAÞ � PðC jA;BÞ; ð11Þ

which reads as ‘‘The probability of A, B, and C equals the probability of

A, times the probability of B given A, times the probability of C given A

and B.’’ The proof of (11) follows straightforwardly when we combine

the associative property of set intersection (i.e., AXBXC ¼ AX ðBXCÞ ¼
ðAXBÞXC) with formula (7): PðA;B;CÞ ¼ PðA; ðB;CÞÞ ¼ PðAÞ �
PðB;C jAÞ ¼ PðAÞ�PðBjAÞ�PðC jA;BÞ. And for n events A1;A2; . . . ;An,

the multiplication rule becomes

PðA1;A2; . . . ;AnÞ ¼ PðA1Þ � PðA2jA1Þ � � � � � PðAnjA1;A2; . . . ;An�1Þ;
ð12Þ

which is also known as the chain rule. Remember that in an experiment

where the events A1;A2; . . . ;An are independent, formula (12) simply

reduces to

PðA1;A2; . . . ;AnÞ ¼ PðA1Þ � PðA2Þ � � � � � PðAnÞ: ð13Þ

Sometimes, each event depends only on the immediately previous event,

in which case formula (12) reduces to

PðA1;A2; . . . ;AnÞ ¼ PðA1Þ � PðA2jA1Þ � � � � � PðAnjAn�1Þ: ð14Þ

Formula (14) stands for what is more commonly known as a first-order

markov model, where each event depends only on the preceding event;

and formula (13) corresponds to a zero-order markov model. In general, a

k-th order markov model assumes that each event depends only on a fixed

number of k preceding events, where k is called the history of the model.

For several decades, markov models were assumed to be inadequate for

linguistics because they were applied to word sequences (n-grams, such as

bigrams or trigrams) only, without taking into account the grammatical

structure of these sequences. Yet we will see in the following section that

formulas (12) through (14) can just as well be applied to grammatical

structures.

It is useful to introduce the product sign P, which abbreviates long

products (and is analogous to the sum sign S, which abbreviates

long sums). For example, (12) is often written as

Elementary Probability Theory 17



PðA1;A2; . . . ;AnÞ ¼ PiPðAijA1;A2; . . . ;Ai�1Þ: ð15Þ

And (as with (13)), if the events are independent, (15) reduces to

PðA1;A2; . . . ;AnÞ ¼ PiPðAiÞ: ð16Þ

It is important to understand the di¤erence in use between the sum rule

in (4) and the product rule in (6) and (7). The sum rule describes the

probability that either event A or event B occurs in some experiment,

which is equal to the sum of their probabilities (provided that A and B are

disjoint5). The product rule, on the other hand, describes the probability

that both A and B occur as a joint event in an experiment where events

can have more than one outcome; and this probability is equal to the

product of the probabilities of A and B (or in the general case, to the

product of the probability of A and the conditional probability of B given

A).

2.4 Probabilistic Grammars

With these concepts from probability theory in mind, we can now look

at an example of actual linguistic interest: probabilistic grammars (also

called stochastic grammars). As the following chapters will show, proba-

bilistic grammars are used to describe the probabilistic nature of a vast

number of linguistic phenomena, such as phonological acceptability, mor-

phological alternations, syntactic well-formedness, semantic interpre-

tation, sentence disambiguation, and sociolinguistic variation.

One of the most widely used probabilistic grammars is the probabilistic

context-free grammar or PCFG (also called stochastic context-free gram-

mar). As an introduction to PCFGs, consider a simple example. Suppose

we have a very small corpus of phrase structure trees (also called a tree-

bank) consisting of only two surface trees for the sentences Mary hates

visiting relatives and John likes buzzing bees (figure 2.1). We will assume

that each tree in the treebank corresponds to the structure as it was per-

ceived for that sentence by some hypothetical natural language user.

(Some subcategorizations are omitted to keep the example simple.) Note

that the only di¤erence between the two structures (apart from the words)

is the syntactic label covering the last two words of the sentences, which is

VP in the first sentence and NP in the second. By reading the rules o¤ the

trees, we obtain the context-free grammar (CFG) implicit in these struc-

tures. Table 2.1 gives these rules together with their frequencies in the
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Figure 2.1

A treebank of two trees

Table 2.1

The rules implicit in the treebank of figure 2.1

Rule Frequency

S! NP VP 2

VP! V NP 2

VP! V VP 1

NP! V NP 1

NP!Mary 1

NP! John 1

NP! relatives 1

NP! bees 1

V! hates 1

V! likes 1

V! visiting 1

V! buzzing 1

Total 14
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treebank. This table allows us to derive, for example, the probability of

the rule S! NP VP in the treebank—or, more precisely, the probability

of randomly selecting S! NP VP from among all rules in the treebank.

The rule S! NP VP occurs twice in a sample space of 14 rules; hence,

its probability is 2=14 ¼ 1=7. However, usually we are interested not so

much in the probability of a single rule, but in the probability of a com-

bination of rules (i.e., a derivation) that generates a particular sentence.

The grammar derived from the treebank in table 2.1 generates an infinite

number of sentences, including Mary likes buzzing bees, Mary likes visit-

ing buzzing bees, Mary likes visiting buzzing visiting bees. Thus, although

these sentences are not in the treebank, they can be generated by pro-

ductively combining fragments from the treebank trees.6 For example,

Mary likes buzzing bees can be generated by combining the rules from

table 2.1 that are shown in figure 2.2. This combination of rules, or deri-

vation, produces the tree structure in figure 2.3.7 Note that the sentence

Mary likes buzzing bees is ambiguous. That is, it can also be generated by

combining the rules from table 2.1 that are shown in figure 2.4, which

produce the alternative tree structure in figure 2.5.

One application of probability theory is to provide a ranking of the

various tree structures for a sentence by means of their probabilities. How

can we determine the probabilities of the two structures in figures 2.3 and

2.5? Using the concepts from sections 2.2 and 2.3, we can view a tree

structure as an event containing the context-free rules in an experiment

that parses a particular sentence by a (leftmost) derivation. In this exper-

iment, we thus first select an S-rule from among all possible S-rules. We

then select the next rule among the rules that can be combined with the

previous rule (i.e., that start with the same category as the leftmost cate-

gory on the right-hand side of the previous rule), and we repeat this pro-

cess until only words remain. Note that this experiment is well defined

only if each rule can indeed be combined with the previous rule and if the

first rule starts with an S. Thus, the probability of the derivation corre-

sponding to the tree in figure 2.3 is the joint probability of selecting the

rules in table 2.2.

The probability of (1) can be computed by dividing the number of

occurrences of rule S! NP VP by the number of occurrences of all rules

that start with an S. There are two rules S! NP VP in the treebank, and

the total number of S-rules is also two (in fact, they coincide); thus, the

probability of (1) is 2=2 ¼ 1. Note that this probability is actually the

conditional probability PðS! NP VPjSÞ, and thus the sum of the condi-
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tional probabilities of all rules given a certain nonterminal to be rewritten

is 1.

The probability of (2) is equal to 1/5 since the rule NP!Mary occurs

once among a total of five rules that start with an NP.

The probability of (3) is equal to 2/3 since the rule VP! V NP occurs

twice among a total of three rules that start with a VP.

The probabilities of all rules in table 2.2 are given in table 2.3. Having

computed these probabilities, how can we now compute their joint prob-

ability? That is, are the rules to be taken as dependent or independent? In

other words, should we apply formula (12) or (13)? A crucial assumption

underlying PCFGs is that the rules in a derivation depend only on the

nonterminal to be expanded. And this is the assumption we followed in

computing the probabilities above by selecting each rule from among

the rules that start with the same nonterminal (i.e., we computed the con-

ditional probabilities PðS! NP VPjSÞ, PðNP!MaryjNPÞ, etc., rather

S! NP VP

NP!Mary

VP! V NP

V! likes

NP! V NP

V! buzzing

NP! bees

Figure 2.2

Treebank rules for deriving Mary likes buzzing bees

Figure 2.3

Tree structure generated by the rules in figure 2.2
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S! NP VP

NP!Mary

VP! V VP

V! likes

VP! V NP

V! buzzing

NP! bees

Figure 2.4

Treebank rules for deriving the alternative structure for Mary likes buzzing bees

Figure 2.5

Tree structure generated by the rules in figure 2.4

Table 2.2

The probability of a derivation is the joint probability of selecting these rules

Event

(1) selecting the rule S! NP VP from among the rules starting with an S,

(2) selecting the rule NP!Mary from among the rules starting with an NP,

(3) selecting the rule VP! V NP from among the rules starting with a VP,

(4) selecting the rule V! likes from among the rules starting with a V,

(5) selecting the rule NP! V NP from among the rules starting with an NP,

(6) selecting the rule V! buzzing from among the rules starting with a V,

(7) selecting the rule NP! bees from among the rules starting with an NP.
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than the simple probabilities PðS! NP VPÞ and PðNP!MaryÞ).
Thus, for a PCFG, the probability of a rule is independent of the deriva-

tion it occurs in and so can be computed o¤-line. Table 2.4 gives the

PCFG probabilities for all rules that can be derived from the treebank

in figure 2.1. PCFGs can of course be defined independently of how the

rule probabilities are ‘‘learned.’’ A PCFG that extracts the probabilities

directly from a treebank, as shown above, is known as a treebank gram-

mar, a term coined by Charniak (1996).

Let us now turn back to the probability of the derivation for Mary likes

buzzing bees that generates the tree in figure 2.3. This can be computed

as the product of the probabilities in table 2.3, that is, 1� 1=5� 2=3�
1=4� 1=5� 1=4� 1=5 ¼ 2=6; 000 ¼ 1=3; 000. This probability is small,

reflecting the fact that the grammar produces derivations for infinitely

many sentences whose probabilities sum up to 1 only in the limit. But

what we are actually interested in is to compare the probability of this

derivation with the probability of the other derivation for Mary likes

buzzing bees (producing the tree in figure 2.5). The latter probability is

equal to 1� 1=5� 1=3� 1=4� 2=3� 1=4� 1=5 ¼ 2=3; 600 ¼ 1=1; 800.

Thus, the probability of the derivation producing the tree in figure 2.5 is

higher than the probability of the derivation producing the tree in figure

2.3. Although we must keep in mind that our sample space of two trees is

Table 2.3

The probabilities of the various rules in table 2.2

Event Probability

(1) selecting the rule S! NP VP from among the rules starting
with an S

1

(2) selecting the rule NP!Mary from among the rules starting
with an NP

1/5

(3) selecting the rule VP! V NP from among the rules starting
with a VP

2/3

(4) selecting the rule V! likes from among the rules starting
with a V

1/4

(5) selecting the rule NP! V NP from among the rules starting
with an NP

1/5

(6) selecting the rule V! buzzing from among the rules starting
with a V

1/4

(7) selecting the rule NP! bees from among the rules starting
with an NP

1/5
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unrealistically small (most available treebanks contain 50,000 trees or

more), it is somewhat surprising that the tree in figure 2.5 has a higher

probability than the one in figure 2.3. We would expect the reverse:

since Mary likes buzzing bees di¤ers by only one word from the treebank

sentence John likes buzzing bees but di¤ers much more from the other

treebank sentence, Mary hates visiting relatives, we might expect a prob-

abilistic grammar to predict that the most probable tree for Mary likes

buzzing bees would be the same tree associated with John likes buzzing

bees, rather than the tree associated with Mary hates visiting relatives.

However, as noted, a crucial assumption underlying PCFGs is that their

rules are independent. It is easy to see that this assumption is wrong, even

for the subclass of natural language sentences that are in fact context free.

For example, the words buzzing and bees in the NP buzzing bees are

probabilistically dependent: that is, the probability of observing bees is

not equal to the probability of observing bees given that we have first

observed buzzing. But this dependency is not captured by a PCFG, since

it takes the rules V! buzzing and NP! bees to be independent. Thus,

while a CFG may su‰ce as a grammar formalism for defining the cate-

gorical properties for the context-free subset of sentences, its probabilistic

counterpart PCFG does not do the same job for the noncategorical prop-

erties of this context-free subset.

Table 2.4

Probabilistic context-free grammar (PCFG) probabilities for the rules derived
from the treebank in figure 2.1

Rule PCFG probability

S! NP VP 1

VP! V NP 2/3

VP! V VP 1/3

NP! V NP 1/5

NP!Mary 1/5

NP! John 1/5

NP! relatives 1/5

NP! bees 1/5

V! hates 1/4

V! likes 1/4

V! visiting 1/4

V! buzzing 1/4
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Several alternative models have been proposed to redress the short-

comings of PCFGs. These alternative probabilistic extensions of CFGs

have resulted in probabilistic grammars that are provably stronger than

PCFGs (‘‘stronger’’ will be explained more precisely in the next section).

One such grammar makes the probabilities of the rules dependent on the

previous rules used in a derivation, by e¤ectively applying formula (12) to

the rules (Black et al. 1993). However, while such a history-based gram-

mar can thereby capture the dependency between buzzing and bees, it has

problems with dependencies between words that are separated by other

words, as for example in the sentence The old man died, where there is

a dependency between old and died but not between old and man or

between man and died. It cannot capture this dependency because the

rules are made dependent on directly preceding rules, and not on any

arbitrary previously used rule(s).

Another probabilistic grammar formalism, which has become quite

influential in the field of natural language processing, associates each

nonterminal of a context-free rule with its lexical head according to the

treebank tree (e.g., Collins 1996; Charniak 1997a). However, such a head-

lexicalized probabilistic grammar neglects dependencies that go beyond

simple headword dependencies, such as the one between nearest and to

in the ATIS8 sentence Show the nearest airport to Denver. Since a head-

lexicalized probabilistic grammar considers nearest to be a non-headword

of the NP the nearest airport, it incorrectly disambiguates this sentence

(it assigns the highest probability to the tree where the PP to Denver is

attached to show, since the dependency between the headwords show and

to is more likely in the ATIS treebank than that between the headwords

airport and to). The shortcomings of head-lexicalized probabilistic gram-

mars are discussed more fully in Bod 2001b.

What we may learn from these di¤erent probabilistic formalisms is that

the probability of a whole (i.e., a tree) can be computed from the com-

bined probabilities of its parts, but that it is di‰cult to decide what the

relevant parts are. In a PCFG, the relevant parts are assumed to be the

simple CFG rules (clearly wrong), while in a head-lexicalized grammar,

the parts are assumed to be the rules enriched with their lexical heads

(also too limited). Another probabilistic grammar formalism, probabilistic

lexicalized tree-adjoining grammar (Schabes 1992; Resnik 1992), takes the

elementary trees of a tree-adjoining grammar as the relevant parts (see

Bod 1998 for a critique of this formalism).
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Still another formalism generalizes over most other probabilistic

grammars. It does so by taking any subtree (of arbitrary size) as a part,

including the entire trees from a treebank. This formalism, known as

a Data-Oriented Parsing (DOP) model (Bod 1993, 1998), is formally

equivalent to a probabilistic tree substitution grammar. A DOP model

captures the previously mentioned problematic dependency between old

and died, or nearest and to, by a subtree that has the two relevant words

as its only lexical items. Moreover, a DOP model can capture arbitrary

fixed phrases and idiom chunks, such as to take advantage of. Note that a

DOP model reduces to a PCFG if the size of the subtrees is limited to the

smallest ones.

To see how a DOP model works, consider a simple example. Since the

number of subtrees tends to be quite large, we will use the tiny treebank

shown in figure 2.6. A total of 34 subtrees, shown in figure 2.7, can be

derived from this treebank (at least if we use one specific instantiation of

DOP, known as DOP1; see Bod 1998). Notice that some subtrees

occur twice: a subtree may be extracted from di¤erent trees, and also

from a single tree if the same node configuration appears at di¤erent

positions.

These subtrees form the underlying grammar by which new sentences

are generated. Subtrees are combined using a node substitution operation

similar to the operation that combines context-free rules in a (P)CFG,

indicated by the symbol ‘‘�’’. Given two subtrees T and U, the node sub-

stitution operation substitutes U on the leftmost nonterminal leaf node of

T, written as T �U . For example, the sentence Mary likes Susan can be

generated by combining three subtrees from figure 2.7 as shown in figure

2.8.

Figure 2.6

A treebank of two trees
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Figure 2.7

The subtrees derived from the trees in figure 2.6



The events involved in this derivation are listed in table 2.5. The prob-

ability of (1) is computed by dividing the number of occurrences of the

subtree [S NP [VP[V likes] NP]] in figure 2.7 by the total number of occur-

rences of subtrees with root label S: 1/20. The probability of (2) is equal

to 1/4, and the probability of (3) is also equal to 1/4.

The probability of the whole derivation is the joint probability of the

three selections in table 2.5. Since in DOP each subtree selection depends

only on the root label and not on the previous selections, the probability

of a derivation is, as in PCFG, the product of the probabilities of the

subtrees, in this case 1=20� 1=4� 1=4 ¼ 1=320. Although it is again

assumed that the parts of the probabilistic grammar are independent, this

assumption is not harmful in DOP, since if the treebank contains any

larger subtree that includes two (or more) smaller subtrees, it can directly

be used as a unit in a derivation, thereby taking into account the co-

occurrence of the smaller subtrees.

This brings us to another feature of DOP: the fact that di¤erent deri-

vations can produce the same tree. This so-called spurious ambiguity may

be irrelevant for nonprobabilistic grammars, but for probabilistic gram-

Figure 2.8

Generating Mary likes Susan by combining subtrees from figure 2.6

Table 2.5

The probability of a derivation is the joint probability of selecting its subtrees

Event

(1) selecting the subtree [S NP [VP[V likes] NP]] from among the subtrees with
root label S,

(2) selecting the subtree [NP Mary] from among the subtrees with root label NP,

(3) selecting the subtree [NP Susan] from among the subtrees with root label NP.
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mars it leads to a di¤erent probability model. For example, the tree

shown in figure 2.8 for the sentence Mary likes Susan can also be derived

by combining the subtrees shown in figure 2.9. The probability of this

derivation is equal to 1=20� 1=4� 1=2 ¼ 1=160, which is di¤erent from

the probability of the derivation in figure 2.8, even though it produces the

same tree. And in fact there are many more derivations that produce this

tree, each with its own probability. The one shown in figure 2.10 is anal-

ogous to a PCFG derivation for Mary likes Susan, in that each subtree

exactly corresponds to a context-free rewrite rule. The probability of this

derivation is equal to 2=20� 1=4� 2=8� 1=2� 1=4 ¼ 1=1; 280, which is

again di¤erent from the probabilities of the other two derivations gen-

erating this tree.

Thus, DOP does not exhibit a one-to-one correspondence between

derivation and tree, as PCFG does. Instead, there may be several distinct

Figure 2.9

A di¤erent derivation generated by combining subtrees from figure 2.6, yielding
the same parse for Mary likes Susan

Figure 2.10

Another derivation generated by combining subtrees from figure 2.6, yielding the
same parse for Mary likes Susan
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derivations for the same tree. The probability that a certain tree occurs is

then the probability that any of its derivations occurs. According to rule

(4), this amounts to saying that the probability of a tree is the sum of the

probabilities of its derivations (I leave the computation of the tree prob-

ability for Mary likes Susan to the reader). Intuitively this means that

in DOP, evidence for a tree accumulates: the more derivations a tree

has, the larger its probability tends to be. This means that if a tree can

be constructed (also) from large subtrees found in a treebank, it tends to

be ranked higher than a tree than can be constructed only from small

subtrees.

Note that if we are interested in the probability of generating a certain

sentence, we must sum up the probabilities of all di¤erent trees that gen-

erate that sentence—following the same reasoning as for the probability

of a tree. It can be shown that the sum of the probabilities of all sentences

generated by a DOP model is equal to 1 (following Chi and Geman

1998).

The DOP model outlined here, DOP1, is just one of many DOP models

that have been proposed (see Bod, Scha, and Sima’an 2002 for an over-

view). The distinctive features of the general DOP approach, when it was

proposed in Bod 1992, were that (1) it directly used sentence fragments as

a grammar, and (2) it did not impose constraints on the size of the frag-

ments. While (1) is now relatively uncontroversial in probabilistic natural

language processing (see Manning and Schütze 1999), (2) has not been

generally adopted. Many models still work either with local trees, that is,

single-level rules with limited means of information percolation such as

headwords (e.g., Collins 1996; Charniak 1997a), or with restricted frag-

ments, as in probabilistic lexicalized tree-adjoining grammar, that do

not include nonlexicalized fragments (e.g., Schabes 1992; Chiang 2000).

However, the last few years have seen a shift toward using more and

larger treebank fragments. While initial extensions of PCFGs limited

fragments to the locality of headwords (e.g., Collins 1996; Eisner 1996),

later models have shown the importance of including context from higher

nodes in the tree (e.g., Johnson 1998b). The importance of including non-

headwords is now widely accepted (e.g., Goodman 1998; Collins 1999;

Charniak 2000). And Collins (2000, 176) argues for ‘‘keeping track of

counts of arbitrary fragments within parse trees,’’ a proposal carried out

by Collins and Du¤y (2001, 2002), who use exactly the same set of sen-

tence fragments that was proposed in the original DOP model (Bod

1992).
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From a linguistic point of view, the more interesting question is

whether language users store sentence fragments in memory, and if they

do, whether they store arbitrarily large fragments as the DOP model

proposes. Jurafsky (this volume) reports that people store not only lexical

items, but also frequent bigrams (two-word units), frequent phrases, and

even whole sentences. For the case of sentences, there is some evidence

that language users store not only idioms, but also simple high-frequency

sentences such as I love you and I don’t know (Jurafsky, this volume; Bod

2001a). The fact that language users store sentence fragments in memory

and that these fragments can range from two-word units to entire sen-

tences suggests that language users need not always generate or parse

sentences from scratch using the rules of the grammar, but that they can

productively reuse previously heard sentences and sentence fragments.

Yet there is no evidence so far that people memorize all fragments they

hear. Only high-frequency fragments seem to be stored. However, if the

language faculty has to learn which fragments will be stored, it will ini-

tially need to store everything (with the possibility of forgetting some

things, of course); otherwise, frequencies can never accumulate. This

results in a model that continuously and incrementally updates its frag-

ment memory given new input. We will see that such a model turns out to

be important for almost all subfields of (probabilistic) linguistics, ranging

from phonology to syntax and from psycholinguistics to sociolinguistics.

Another interesting linguistic question is whether DOP models are too

general. Since DOP models essentially store all sentences, they perhaps do

not provide su‰cient constraints for defining the set of possible lan-

guages. Since this question is aptly dealt with by Manning (this volume),

I will not go into it here. Still another interesting linguistic question

is whether DOP models of the type outlined above are actually too con-

strained, since they have the generative power of context-free languages

(this follows from the node substitution operation for combining sub-

trees). Although context-free power may su‰ce for phonology (Pierre-

humbert, this volume) and morphology (Baayen, this volume), there are

syntactic phenomena, such as long-distance dependencies and cross-serial

dependencies, that are known to be beyond context free. Therefore, a

model that is inherently context free is deemed to be linguistically inade-

quate. In the last few years, various DOP models have been developed

whose generative capacity is richer than context free. These models are

based on linguistic representations that also allow for syntactic features,

functional categories, and semantic forms (see Bod and Kaplan 1998;
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Neumann 1998; Hoogweg 2002). Although a detailed description of these

models lies beyond the scope of this chapter, it should be noted that for

these richer DOP models as well, fragments of arbitrary size are indis-

pensable for predicting correct sentence structure (see Bod 1998; Way

1999; Bod and Kaplan 2002). Manning (this volume) examines some

other probabilistic extensions of non-context-free grammars.

2.5 Formal Stochastic Language Theory

We have seen that a DOP model (actually, a DOP1 model) generalizes

over a PCFG. But is DOP also probabilistically ‘‘richer’’ than a PCFG?

That is, is it impossible to create a PCFG for every DOP model? These

two questions lead us to ask how two probabilistic grammars can be

compared. First note that in comparing probabilistic grammars, we are

not interested in the traditional notion of generative capacity, since for

example DOP1, PCFG, history-based grammar, and head-lexicalized

grammar are all context free. Instead, we are interested in the probability

distributions that these probabilistic grammars define over sentences and

their trees.

Two central concepts in traditional Formal Language Theory are weak

equivalence and strong equivalence. Two grammars are said to be weakly

equivalent if they generate the same strings, and strongly equivalent if

they generate the same strings with the same trees. The set of strings

generated by a grammar G is also called the string language of G, while

the set of trees generated by G is called the tree language of G.

Analogously, the two central concepts in Formal Stochastic Language

Theory are weak stochastic equivalence and strong stochastic equivalence.

Two probabilistic grammars are said to be weakly stochastically equiva-

lent, if and only if they generate the same stochastic string language

(where the stochastic string language generated by a probabilistic gram-

mar G is the set of pairs hx;PðxÞi where x is a string from the string

language generated by G and PðxÞ the probability of that string). Two

probabilistic grammars are said to be strongly stochastically equivalent if

and only if they generate the same stochastic tree language (where the

stochastic tree language generated by a probabilistic grammar G is the set

of pairs hx;PðxÞi where x is a tree from the tree language generated by

G and PðxÞ the probability of that tree). Note that if two probabilistic

grammars are strongly stochastically equivalent, they are also weakly

stochastically equivalent.
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As an illustration of how Formal Stochastic Language Theory can be

used to compare di¤erent formalisms, we will investigate whether PCFG

and DOP are strongly stochastically equivalent (for some other compar-

isons, see Bod 1998; Carroll and Weir 2000). Since the instantiation of

DOP in this chapter is equal to a probabilistic tree substitution grammar

(PTSG), we will refer to this DOP model as a PTSG (in accordance with

Manning and Schütze 1999, 446–448). Specifically, the question is, Is

there a PTSG for which there is a strongly equivalent PCFG but no

strongly stochastically equivalent PCFG? As can easily be shown, the

answer is yes. Consider the very simple PTSG G in figure 2.11 consisting

of three subtrees that are all assigned a probability of 1/3.9 The string

language generated by G is fa; ab; abb; abbb; abbbb; . . .g, which can be

abbreviated as fab�g. The only PCFG G 0 that is strongly equivalent to G

consists of the following productions:

(1) S ! Sb

(2) S ! a

G 0 would also be strongly stochastically equivalent to G if it assigned the

same probabilities to the parse trees in the tree language as those assigned

by G. Let us consider the probabilities of two trees generated by G —

specifically, the trees represented by t1 and t3.10 The tree represented by

t3 has exactly one derivation, which consists of the subtree t3. The prob-

ability of generating this tree is hence equal to 1/3. The tree represented

by t1 has two derivations: by selecting subtree t1, or by combining the

subtrees t2 and t3. The probability of generating this tree is equal to

the sum of the probabilities of its two derivations; that is, 1=3 þ
ð1=3� 1=3Þ ¼ 4=9.

Figure 2.11

A probabilistic tree substitution grammar consisting of three elementary trees
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If G 0 is strongly stochastically equivalent to G, it should assign the

probabilities 4/9 and 1/3 to (at least) the trees represented by t1 and

t3, respectively. The tree t3 is exhaustively generated by production

(2); thus, the probability of this production should be equal to 1/3:

PðS ! aÞ ¼ 1=3. The tree t1 is exhaustively generated by applying pro-

ductions (1) and (2); thus, the product of the probabilities of these pro-

ductions should be equal to 4/9: PðS ! SbÞ � PðS ! aÞ ¼ 4=9. By

substitution, we get PðS ! SbÞ � 1=3 ¼ 4=9, from which we derive that

PðS ! SbÞ ¼ 4=3. This means that the probability of the production

S ! Sb should be larger than 1, which is not allowed. Thus, G 0 cannot be

made strongly stochastically equivalent to G.

This proof shows that there exists a PTSG for which there is no strongly

stochastically equivalent PCFG (even if it is strongly equivalent). On the

other hand, it can easily be shown that for every PCFG there exists a

strongly stochastically equivalent PTSG: for any rule in any PCFG, one

can create a minimal one-level subtree (with the same probability) cover-

ing exactly the corresponding rule.

Now, if for every PCFG there is a strongly stochastically equivalent

PTSG, but not vice versa, then the set of stochastic tree languages gen-

erated by the class of PCFGs is a proper subset of the set of stochastic tree

languages generated by the class of PTSGs. This is what it means to say

that PTSGs are ‘‘richer’’ than PCFGs.

The goal of this section has been to present a framework in which dif-

ferent probabilistic grammars can be compared. The importance of such

a comparison should not be underestimated. If we invent a new formal-

ism only to find out that for each grammar in this formalism we can

create a strongly stochastically equivalent PCFG, then we haven’t made

much progress. Thus, rather than being interested in a grammar’s place in

the Chomsky hierarchy (Chomsky 1959), we are often more interested in

its place in the stochastic hierarchy within one and the same class of the

Chomsky hierarchy.

2.6 Conclusion

Although the background knowledge outlined here (and in the glossary)

should su‰ce for understanding this book, this chapter only scratches

the surface of probability theory and probabilistic grammars. Important

topics it has not touched on include probabilistic regular grammars
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(which are equivalent to markov models), probabilistic attribute-value

grammars (which generalize over several richer probabilistic grammars),

and consistency requirements for probabilistic grammars (which turn

out to be particularly interesting for DOP models—see Bod 2000a; John-

son 2002). If the reader feels cheated and wants to see the full picture,

then I have achieved my goal. Excellent textbooks and overview articles

on probability theory and formal stochastic language theory are avail-

able, some of which are mentioned below.

The reader may wonder whether probability theory is really needed to

cope with gradience and frequency e¤ects in language, or whether these

e¤ects could just as well be accounted for by other approaches such as

Optimality Theory or connectionism. Then it is really time to dive into

the following chapters: probabilistic approaches nowadays cover the en-

tire spectrum of linguistics, and other approaches are increasingly turning

to probabilistic models, including Optimality Theory and connectionism.

2.7 Further Reading

There are many good introductory textbooks on probability theory and

statistics. A very accessible introduction is Moore and McCabe 1989,

which focuses on probability distributions. Other textbooks include Ross

2000 and Feller 1970, as well as (at a more advanced level) Breiman 1973

and Shao 1999. For an introduction from a Bayesian standpoint, see

DeGroot 1989. Krenn and Samuelsson 1997 o¤ers a tutorial on proba-

bility theory from the viewpoint of natural language processing. Oakes

1998 gives an overview of the use of statistics in corpus linguistics. An

interesting survey on the emergence of probability in the history of

thought is Hacking 1975.

Probabilistic grammars were first studied outside linguistics: they were

used for pattern recognition (Grenander 1967), and mathematical prop-

erties of PCFGs were explored (Booth 1969). It was shown that PCFGs

can be learned from positive data alone (Horning 1969); this result turns

out to be quite important for probabilistic linguistics (see Manning, this

volume). One of the first papers that argues for PCFGs from a linguistic

standpoint is Suppes 1970. Manning and Schütze 1999 gives a good

overview of the properties of PCFGs and discusses several enhancements.

Jurafsky and Martin 2000 explores the psycholinguistic relevance of

PCFGs. Chi and Geman 1998 shows that proper probability distributions
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are obtained if the probabilities of the PCFG rules are estimated directly

from a treebank (as proposed in Bod 1993 and Charniak 1996).

An overview of probabilistic extensions of CFGs is included in Char-

niak 1997b, Bod 1998, 2001b, and Manning and Schütze 1999. Proba-

bilistic grammars for languages richer than context free are developed in

Abney 1997, Bod and Kaplan 1998, Johnson et al. 1999, and elsewhere.

DOP models are discussed in Bod 1998 and Bod, Scha, and Sima’an

2002. Regarding the properties of various probability models for DOP,

see Bod 2000a, Bonnema 2002, Goodman 2002, and Johnson 2002.

Initial comparisons of di¤erent probabilistic grammars focused on their

stochastic string languages (e.g., Fu 1974; Levelt 1974; Wetherell 1980)

Bod 1993 distinguishes between weak and strong stochastic equivalence,

and Bod 1998 uses these concepts to compare di¤erent probabilistic

extensions of CFGs, suggesting a hierarchy of probabilistic grammars

within the classes of the Chomsky hierarchy. Abney, McAllester, and

Pereira 1999 investigates the exact relationship between probabilistic

grammars and probabilistic automata. Carroll and Weir 2000 demon-

strates the existence of a subsumption lattice of probabilistic grammars

with PCFG at the bottom and DOP at the top.

Notes

I wish to thank all coauthors of this book for their helpful feedback on this chap-
ter. I am especially grateful to Jennifer Hay and Chris Manning, whose extensive
comments were particularly useful.

1. The word stochastic is used as a synonym for probabilistic, but is especially
used when it refers to results generated by an underlying probability function.

2. In this book and in probabilistic linguistics in general, the word sampling

always refers to sampling with replacement.

3. Note that the probability of first sampling a verb and then a noun is also .2.
This is because set intersection is commutative: fnoungX fverbg ¼ fverbgX
fnoung and therefore PðfnoungX fverbgÞ ¼ PðfverbgX fnoungÞ. This also
means that the probability of sampling a noun and a verb in any order is equal
to :2þ :2 ¼ :4.

4. In this book, multiplications are often written without the multiplication sign.
Thus, PðAÞ � PðBÞ is also written as PðAÞPðBÞ.
5. If A and B are not disjoint, there is double counting, which means that the
counts of the intersection of A and B should be subtracted. Thus, for the general
case, PðAWBÞ ¼ PðAÞ þ PðBÞ � PðAXBÞ.
6. This shows that the ‘‘Chomskyan myth’’ that finite corpora can only generate
finite numbers of sentences is fallacious.
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7. Without loss of generality, we will assume that a tree or a sentence is produced
by a leftmost derivation, where at each step the leftmost nonterminal is rewritten.

8. Air Travel Information System (see Marcus, Santorini, and Marcinkiewicz
1993).

9. This PTSG would correspond to a DOP model of which the subtrees are taken
from a treebank consisting only of tree t1.

10. Note that the trees t1 and t3 are both elements of the set of subtrees of G and
of the tree language generated by G.
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Chapter 3

Probabilistic Modeling in
Psycholinguistics: Linguistic
Comprehension and
Production

Dan Jurafsky

Probability is not really about numbers; it is about the structure of reasoning.

—Glenn Shafer, cited in Pearl 1988

3.1 Introduction

It must certainly be accounted a paradox that probabilistic modeling is

simultaneously one of the oldest and one of the newest areas in psycho-

linguistics. Much research in linguistics and psycholinguistics in the 1950s

was statistical and probabilistic. But this research disappeared through-

out the ’60s, ’70s, and ’80s. In a highly unscientific survey (conducted by

myself ) of six modern college textbooks and handbooks in psycholin-

guistics, not one mentions the word probability in the index.

This omission is astonishing when we consider that the input to lan-

guage comprehension is noisy, ambiguous, and unsegmented. In order to

deal with these problems, computational models of speech processing

have had to rely on probabilistic models for many decades. Computa-

tional techniques for processing of text, an input medium much less noisy

than speech, rely just as heavily on probability theory. Just to pick an

arbitrary indicator, 77% of the papers presented at the year 2000 confer-

ence of the Association for Computational Linguistics relied on proba-

bilistic models of language processing or learning.

Probability theory is certainly the best normative model for solving

problems of decision making under uncertainty. Perhaps, though, it is a

good normative model but a bad descriptive one. Even though probabil-

ity theory was originally invented as a cognitive model of human reason-

ing under uncertainty, perhaps people do not use probabilistic reasoning

in cognitive tasks like language production and comprehension. Perhaps

human language processing is simply a nonoptimal, nonrational process?



In the last decade or so, a consensus has been emerging that human

cognition is in fact rational and relies on probabilistic processing. Seminal

work by Anderson (1990) gave Bayesian underpinnings to cognitive

models of memory, categorization, and causation. Probabilistic models

have cropped up in many areas of cognition, among them categorization

(Glymour and Cheng 1998; Rehder 1999; Tenenbaum 2000; Tenenbaum

and Gri‰ths 2001a,b).

Probabilistic models are also now finally being applied in psycholin-

guistics, drawing from early Bayesian-esque precursors in perception such

as Luce’s (1959) choice rule. What does it mean to claim that human

language processing is probabilistic? This claim has implications for lan-

guage comprehension, production, and learning.

Probability has been claimed to play three roles in language compre-

hension. First, consider the task of accessing linguistic structure from

the mental lexicon or grammar. Perhaps more probable structures are

accessed more quickly, or with less e¤ort. Or perhaps they can merely

be accessed with less evidence than less probable structures. Second,

consider disambiguation. Ambiguity is ubiquitous in language compre-

hension: speech input is ambiguously segmented, words are syntactically

and semantically ambiguous, sentences are syntactically ambiguous, utter-

ances have ambiguous illocutionary force, and so on. Probability is one

of the factors that play a role in disambiguation: the more probable an

interpretation, the more likely it is to be chosen. Third, probability may

play a key role in explaining processing di‰culty. Recent models of what

makes certain sentences di‰cult to process are based, at least in part, on

certain interpretations having particularly low probabilities, or on sudden

switches of probabilistic preference between alternative interpretations.

In this chapter, I will summarize models of all three of these roles for

probability in comprehension: access, disambiguation, and processing

di‰culty.

The claim that human language processing is probabilistic also has

implications for production. Probability may play a role in accessing

structures from the mental lexicon or grammar. High-probability struc-

tures may be accessed faster, or more easily, or simply with more confi-

dence. Disambiguation, itself a phenomenon of comprehension, has a

correlate in production: choice. Given multiple possible structures a

speaker might say, probability may play a role in choosing among them.

I will give an overview of the experimental and modeling literature on

probabilistic production, although there is significantly less to summarize

here than there is for comprehension.
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Probability also plays a role in learning. Many models of how linguistic

structure is empirically induced rely on probabilistic and information-

theoretic models. I will not focus on learning here; instead, the interested

reader should turn to relevant papers such as Brent and Cartwright 1996;

Sa¤ran, Aslin, and Newport 1996; Sa¤ran, Newport, and Aslin 1996a,b;

Tenenbaum and Xu 2000; and Sa¤ran 2001.

What probabilistic modeling o¤ers psycholinguistics is a model of the

structure of evidential reasoning: a principled and well-understood algo-

rithm for weighing and combining evidence to choose interpretations in

comprehension, and to choose certain outcomes in production. Through-

out the chapter, I will make reference to Bayesian reasoning, and in par-

ticular to Bayes’ rule (equation (10) in chapter 2). Bayes’ rule gives us a

way to break down complex probabilities into ones that are easier to

operationalize and compute. Suppose we are trying to compute the prob-

ability of some interpretation i given some evidence e. Bayes’ rule states

that this probability can be broken down as follows:

PðijeÞ ¼ PðejiÞPðiÞ
PðeÞ : ð1Þ

This says that we can compute the probability of an interpretation i given

evidence e by instead asking how likely the interpretation i is a priori, and

how likely the evidence e would be to occur if we knew the interpretation

was correct. Both of these are often easier to compute than PðijeÞ.
Probabilistic modeling has been applied to many areas of psycho-

linguistics: phonological processing, morphological processing, lexical

processing, syntactic processing, discourse processing. I will focus in

this chapter on lexical and syntactic processing. As for other areas of

processing, Baayen (this volume) covers processing with respect to mor-

phology and Pierrehumbert (this volume) touches on processing issues

in phonology. Regarding probabilistic work on dialogue and discourse

processing, see Jurafsky, in press.

3.2 Summary of Evidence for Probabilistic Knowledge

In this section, I will summarize evidence from psycholinguistic experi-

ments that bears on the use of frequency-based or probabilistic knowl-

edge in human language processing. The focus will be on lexical and

syntactic processing, both in comprehension and in production.

What kinds of experiments provide evidence for probabilistic model-

ing? First, I will summarize many experiments showing that frequencies
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of various linguistic structures play a role in processing: frequencies of

words, word pairs, lexical categories of words, subcategorization rela-

tions, and so on. Why should finding evidence for frequencies support

probabilistic models?

One reason is that relative frequency can play the role of prior proba-

bility in the computation of conditional probability. Recall from Bayes’

rule that the probability PðijeÞ of some structure or interpretation i given

some evidence e can be computed as follows:

PðijeÞ ¼ PðejiÞPðiÞ
PðeÞ : ð2Þ

This means that the conditional probability of an interpretation or struc-

ture i is directly related to the prior probability of i. Since the relative

frequency of i provides an easy way to estimate the prior probability of i,

the Bayesian model predicts that we should find frequency e¤ects for

various kinds of structures.

But many complex structures are too rare for their probability to be

computed by counting the number of times they have occurred. Language

is creative, after all, and many large structures (like sentences) may only

occur once. In these cases, we would not expect to see evidence for the

frequency of these unique events.

In just these cases, however, probabilistic modeling gives us tools to

estimate the prior probability of these structures by making independence

assumptions, allowing us to estimate the probability of one large complex

object from the counts of many smaller objects. This, for example, is the

goal of probabilistic grammar formalisms like Data-Oriented Parsing and

stochastic context-free grammars. Since these models compute larger

structures and their probabilities by combining smaller structure and

their probabilities, probabilistic modeling suggests that the frequency of

smaller, more primitive structures should play a role in processing. This

once again predicts that we should find e¤ects of various frequencies in

processing. I will explore some of these assumptions in more detail in

section 3.3.

In addition to evidence for frequencies, I will summarize evidence for

various kinds of conditional probabilities. In general, I will define the

probabilities of interest as the experiments are introduced.

3.2.1 Lexical Frequency

One of the earliest and most robust e¤ects in psycholinguistics is the

word frequency e¤ect. Word frequency plays a role in both the auditory
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and visual modalities, and in both comprehension and production. I will

summarize results of experiments in this area; but first, it’s important to

know how lexical frequency is measured.

3.2.1.1 Measuring Lexical Frequency Most studies since 1970 have

relied on word frequency statistics calculated from the Brown corpus

of American English, a 1-million word collection of samples from 500

written texts from di¤erent genres (newspapers, novels, nonfiction, aca-

demic prose, etc.), which was assembled at Brown University in 1963–64.

Kučera and Francis 1967 reports the frequency for each word-form in the

corpus, while Francis and Kučera 1982 uses a lemmatized and part-of-

speech tagged version of the Brown corpus to report frequencies for

lemmas (e.g., reporting both combined and distinct frequencies for go,

goes, going, went, and gone, and distinct frequencies for, say, table the

verb and table the noun).

From the very beginning of the field, it was clear that deriving fre-

quencies from corpora in this way was not unproblematic. It might seem

astonishing that the wide variety of frequency e¤ects reported in the lit-

erature are based on using this one corpus. Indeed, the use of such cor-

pora to derive frequencies, either as a control factor or as an explicit part

of a probabilistic model, is problematic in three ways. First, consider that

a corpus is an instance of language production, but the frequencies

derived from corpora are often used to model or control experiments in

comprehension. While comprehension and production frequencies are

presumably highly correlated, there is no reason to expect them to be

identical. Second, the Brown corpus is a genre-stratified corpus. It con-

tains equal amounts of material from newspapers, fiction, academic

prose, and so on. But presumably a corpus designed for psychological

modeling of frequency would want to model the frequency with which an

individual hearer or speaker is exposed to (or uses) linguistic input. This

would require a much larger focus on spoken language, on news broad-

casts, and on magazines. Third, the Brown corpus dates from 1961; most

subjects in psycholinguistics experiments carried out today are college

undergraduates and weren’t even born in 1961; the frequencies that would

be appropriate to model their language capacity may di¤er widely from

Brown corpus frequencies.

I see these problems as introducing a very strong bias against finding

any e¤ects of corpus frequencies in experimental materials. Nonetheless,

as we will see, strong and robust e¤ects of corpus frequencies have been

found. One reason for this is that, as studies have long shown, frequencies
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from di¤erent corpora are very highly correlated (Howes and Solomon

1951). A more important reason is that most studies report only very

broad-grained frequencies, often using just three bins: high-frequency,

low-frequency, and other. Finally, studies are beginning to use larger and

more recent corpora and databases such as the CELEX lexical database

(based on a corpus of 18 million words) (Baayen, Piepenbrock, and

Gulikers 1995) and the British National Corpus (which has roughly 10

million tokens of tagged spoken English and 90 million tokens of written

English). These corpora are large enough to allow for the direct use of

unbinned frequencies (see, e.g., Allegre and Gordon 1999; de Jong et al.

2002; Baayen et al. 2002).

3.2.1.2 Lexical Frequency in Comprehension The earliest work study-

ing word frequency e¤ects in comprehension seems to have been by

Howes and Solomon (1951), who used a tachistoscope to display a word

for longer and longer durations. They showed that the log frequency of a

word (as computed from corpora of over 4 million words) correlated

highly with the mean time subjects took to recognize the word; more fre-

quent words were recognized with shorter presentations. Later, the nam-

ing paradigm, in which subjects read a word out loud, was used to show

that high-frequency words are named more rapidly than low-frequency

words (Forster and Chambers 1973). The lexical decision paradigm, in

which subjects decide if a string of letters presented visually is a word

or not, has also been used to show that lexical decisions about high-

frequency words are made faster than decisions about low-frequency

words (Rubenstein, Garfield, and Millikan 1970; Whaley 1978; Balota

and Chumbley 1984). Again, these results are robust and have been

widely replicated. Frequency also plays a role in other on-line reading

measures such as fixation duration and gaze duration.

Similarly robust results have been found for auditory word recognition.

Howes (1957) first found results with speech that were similar to his

earlier results with vision: when presented with high- and low-frequency

words immersed in noise, subjects were better at identifying high- than

low-frequency ones. In an extension of this experiment, Savin (1963)

found that when subjects made recognition errors, they responded with

words that were higher in frequency than the words that were presented.

Grosjean (1980) used the gating paradigm, in which subjects hear more

and more of the waveform of a spoken word, to show that high-frequency

words are recognized earlier (i.e., given less of the speech waveform) than

low-frequency words. Tyler (1984) showed the same result for Dutch.
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In conclusion, the evidence shows that in both the visual and auditory

domains, high-frequency words are accessed more quickly, more easily,

and with less input signal than low-frequency words.

3.2.1.3 Lexical Frequency in Production The e¤ects of lexical fre-

quency on production have been measured via a number of tests, includ-

ing latency (the time to start producing a word), duration (the time from

word onset to word o¤set), phonological reduction (number of deleted or

reduced phonemes), rate of speech errors, and others.

The earliest studies focused on duration; indeed, lexical frequency

e¤ects on duration in production have been remarked upon for over a

hundred years. Schuchardt (1885) noticed, for example, that more fre-

quent words tend to be shorter. Later, Fidelholz (1975) and Hooper

(1976) showed that frequent words such as forget are more likely to have

lexically reduced vowels (e.g., [fPr]) than less frequent words such as forgo

(e.g., [fOr]) (table 3.1).

While these early studies showing an e¤ect of frequency on a word’s

phonological makeup are suggestive, they do not confirm that the e¤ect

of frequency on lexical production is on-line and productive. It could be

that frequent words have reduced vowels and fewer phonemes because of

some diachronic fact statically reflected in the lexicon that is only related

to on-line production in a complex and indirect way.

To show that frequency plays an active and on-line role in language

production, it is necessary to examine the e¤ect of frequency on some

dynamic process. One such process is phonological variation; thus, a

number of studies have examined whether frequency dynamically a¤ects

variation in production. Bybee (2000) examined word-find /t/ and /d/ in a

corpus of spoken Chicano English. After excluding the extremely high

frequency words just, went, and and, she classified the remaining 2,000

word tokens into two bins, high-frequency (defined as more than 35

per million in the Brown corpus) and low-frequency (fewer than 35 per

Table 3.1

Lexically reduced vowels in high-frequency words. (After Fidelholz 1975.)

Reduced vowel [fPr] Full vowel [fOr]

Word Count per million Word Count per million

forget 148 forfend <1

forgive 40 forgo <1
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million). She showed that final /t/ and /d/ deletion rates were greater in

high-frequency words (54.5%) than in low-frequency words (34.3%). Hay

(2000) has shown that for complex words, the ratio of the frequency of

the derived word and the frequency of its base is an important predictor

of processing time.

Gregory et al. (2000) and Jurafsky et al. (2001) provided further evi-

dence that these frequency e¤ects on reduction are on-line, by controlling

for a wide variety of contextual factors, and also by investigating the

e¤ect of frequency on a word’s duration, in addition to its phonological

reduction. They examined the duration of words and the percentage of

final-consonant deletion in a 38,000-word phonetically transcribed sub-

corpus from the Switchboard corpus of American English telephone con-

versations (Godfrey, Holliman, and McDaniel 1992; Greenberg, Ellis,

and Hollenback 1996). They used multiple regression to control for con-

textual factors like segmental context, rate of speech, number of phones,

and word predictability.

They first confirmed Bybee’s results by analyzing 2,042 word tokens

whose full pronunciation ended in /t/ or /d/. After controlling for con-

textual factors, they found that these final obstruents are more likely to be

deleted in more frequent words. High-frequency words (at the 95th per-

centile of frequency) were 2.0 times more likely to have deleted final /t/ or

/d/ than low-frequency words (at the 5th percentile).

Gregory et al. (2000) and Jurafsky et al. (2001) also investigated the

e¤ects of frequency on word duration, using 1,412 monosyllabic word

tokens ending in /t/ or /d/. They found a strong e¤ect of word fre-

quency on duration. Overall, high-frequency words (at the 95th percen-

tile of frequency) were 18% shorter than low-frequency words (at the 5th

percentile).

Taken together, these results suggest that frequency plays an on-line

role in lexical production. Duration studies, however, may not be com-

pletely convincing. It is possible, for example, that high-frequency words

are stored with multiple phonological lexemes (Jurafsky et al. 2001) or

with very detailed phonetic information about the length of each phone in

each word (Pierrehumbert 2001b).

The most unambiguous evidence for frequency e¤ects in production,

then, must come from latency. Oldfield and Wingfield (1965), for exam-

ple, showed an on-line e¤ect of word frequency on latency of picture-

naming times. Presenting subjects with pictures, they found that pictures

with high-frequency names were named faster than pictures with low-
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frequency names. Wingfield (1968) showed that this e¤ect must be caused

by word frequency rather than the frequency of pictured objects, by

showing that the e¤ect was not replicated when subjects were asked to

recognize but not verbalize picture names. These results were also repli-

cated for Dutch by Jescheniak and Levelt (1994).

In conclusion, more frequent words are accessed more quickly (shorter

latency) and are articulated more quickly (shorter duration).

3.2.2 Frequency of Lexical Semantic Form and Lexical Category

Words are ambiguous in many ways. A word can have multiple senses

(bank can refer to a location alongside a river or a financial institution),

multiple lexical categories (table can be a noun or a verb), and multiple

morphological categories (searched can be a participle or a preterite).

These di¤erent categories of an ambiguous word vary in frequency; for

example, the word table is more likely to be a noun than a verb. In this

section, I summarize experiments showing that the frequency of these

categories plays a role in processing.

A number of experiments have shown that the frequency of a particular

sense of an ambiguous word plays a role in comprehension. Simpson and

Burgess (1985), for example, studied lexical access in the visual domain.

Subjects were first presented with an ambiguous prime word (homograph)

that had a more frequent sense and a less frequent sense. Subjects then

performed lexical decision on targets that were associated with either

the more frequent or the less frequent meaning of the homograph

prime. Simpson and Burgess found that the more frequent meaning of the

homograph caused faster response latencies to related associates, sug-

gesting that the more frequent meaning is retrieved more quickly. This

result is robust and has been replicated with many paradigms, including

eye fixation times in reading and cross-modal priming. Evidence for the

use of word sense frequency in comprehension has also been reported

crosslinguistically—for example, in Chinese (Li and Yip 1996; Ahrens

1998).

The frequency of an ambiguous word’s syntactic category plays a role

in comprehension as well. One class of studies involves sentence process-

ing and human parsing. Gibson (1991) and Jurafsky (1992, 1996) suggest

that lexical category frequencies might play a role in the di‰culty of

processing some garden path sentences. Fox example, (3) and (4) are

known to be di‰cult to process. Gibson suggests that (3) is di‰cult to

process because man is much more likely to be a verb than a noun, while
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Jurafsky suggests that (4) is di‰cult because of the lexical category pref-

erences of complex (more likely to be an adjective than a noun) and house

(more likely to be a noun than a verb):

(3) The old man the boats. (from Milne 1982)

(4) The complex houses married and single students and their families.

(from Jurafsky 1992, 1996)

Finally, morphological category frequencies play a role in compre-

hending ambiguous words. Words such as searched, scratched, proposed,

and selected are ambiguous between a participle and a preterite (simple

past) reading. For some of these words, the participle reading is more

frequent. For example, the percentage of participle readings for selected

(in the Brown corpus) is 89%, while the percentage for the simple past

readings is 11%. By contrast, the preferences are reversed for searched:

78% for simple past readings, and 22% for participle readings. Burgess

and Hollbach (1988) suggested that these lexical category probabilities

might play a role in disambiguation.

Trueswell (1996) investigated this hypothesis by embedding these verbs

in sentences that have a local ambiguity. Each sentence had an initial

word sequence like the room searched that was syntactically ambiguous

between a relative clause reading (compatible with the participle form)

and a main verb reading (compatible with the simple past). Trueswell

found that verbs with a frequency-based preference for the simple past

form caused readers to prefer the main clause interpretation (as measured

by longer reading time for a sentence like (5) that required the other

interpretation):

(5) The room searched by the police contained the missing weapon.

This suggests that the frequency with which the di¤erent morphological

categories of a verb occur plays a role in whether one syntactic parse is

preferred or not.

In summary, the frequencies of the semantic, syntactic, or morpholog-

ical categories associated with an ambiguous word play an important role

in comprehension. More frequent categories are accessed more quickly

and are preferred in disambiguation.

Rather surprisingly, given this robust e¤ect of the frequency of lexical

semantic/syntactic category in comprehension, there may not be any such

e¤ect in production. Instead, some studies have suggested that frequency

e¤ects in lexical production are confined to the level of the word-form or

lexeme, rather than the semantic/syntactically defined lemma level.
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Both Dell (1990) and Jescheniak and Levelt (1994), for example,

studied whether word frequency e¤ects in production take place at the

level of the semantic lemma or the phonological word-form. Finding an

e¤ect of frequency for the semantic/syntactic lemma would be the corre-

late in lexical production of finding an e¤ect of semantic sense or syntac-

tic category in comprehension. Dell (1990) used experimentally elicited

speech errors to study word frequency e¤ects. Previous work had shown

that low-frequency words are more susceptible to phonological speech

errors than high-frequency words. Dell showed that some low-frequency

words are not susceptible to phonological speech errors: specifically, low-

frequency words (such as wee) with a high-frequency homophone (such as

we). In other words, a low-frequency word that shares a lexeme with a

high-frequency word exhibits some of the frequency properties of the

high-frequency word. One way to model this result is to store frequency

e¤ects only at the lexeme level; the words we and wee would then share a

single frequency node.

Jescheniak and Levelt (1994) used a novel translation task to study

word frequency e¤ects. Like Dell, they looked at homophones, in which

two distinct lemmas share one lexeme. If frequency e¤ects are localized

at the lemma level, accessing a low-frequency lemma in production

should have slower latency than accessing a high-frequency lemma; but

if frequency e¤ects are localized at the lexeme level, low-frequency and

high-frequency lemmas of the same homophone should have identical

latencies. This hypothesis cannot be tested with standard paradigms like

picture naming, since it is unlikely that both the high-frequency and

low-frequency senses of a word are picturable (e.g., neither we nor wee

is obviously picturable). Jescheniak and Levelt therefore used a novel

translation latency task: bilingual Dutch subjects were ask to produce the

Dutch translation for a visually presented English word, and the transla-

tion latency was recorded. For example, subjects saw the English word

bunch, whose Dutch translation is bos. The Dutch word bos has another

sense, forest. If frequencies are stored at the lexeme level, latencies to low-

frequency words like bunch/bos should match latencies to high-frequency

words. This is what Jescheniak and Levelt found. Latency to homo-

phones patterned like latency to high-frequency words, and not like

latency to low-frequency words.

One important caveat about Dell’s (1990) and Jescheniak and Levelt’s

(1994) results: they crucially rely on the assumption that lexical produc-

tion is modular. If lexical production is completely interactionist, fre-

quencies could be stored at the lemma level but activation could spread
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from the lemma, down to the lexeme, and back up to both lemmas,

allowing a low-frequency lemma to act like a high-frequency one. In

fact, this is exactly Dell’s proposal, and he built a nonmodular compu-

tational model to show that the idea is possible. The evidence for a lack

of a lemma e¤ect, then, rests only on the evidence for a modular (non-

interactionist) model of lexical production.

To help resolve this dilemma, Jurafsky et al. (2001) proposed a di¤er-

ent, corpus-based methodology for studying frequency e¤ects in produc-

tion. They examined the production of ambiguous words like to (which

can be an infinitive marker (We had to do it) or a preposition (I would

have gone to the store)) and that (which can be (at least) a complemen-

tizer, a pronoun, or a determiner). Again using the 38,000-word phoneti-

cally transcribed subcorpus from the Switchboard corpus of American

English telephone conversations, they measured the duration of the func-

tion words. They then used multiple regression to control for known

factors a¤ecting duration, including rate of speech, segmental context,

contextual predictability, and so on, and to test for an e¤ect of lemma

frequency on duration. They found that the di¤erent pronunciations and

durations of these words could be completely accounted for by other

factors such as pitch accent and contextual predictability. They found

no evidence that lemma frequency a¤ected lexical production.

Thus, although the frequencies of the semantic, syntactic, or morpho-

logical categories associated with an ambiguous word play a role in

comprehension, preliminary studies suggest that they may not play a

similar role in production.

3.2.3 Neighboring Word-to-Word Probabilities

Having looked at frequency e¤ects for single words, let us now turn to

evidence that frequency plays a role in more complex and structured

relationships between words and syntactic structure. A number of studies

show that the probabilistic relationships between neighboring words play

a role in both comprehension and production.

Some of these studies looked at raw frequency, while others looked at

various probabilistic measures. Researchers have investigated both the

conditional probability of a word given the previous word Pðwijwi�1Þ and

the joint probability of two words together Pðwi�1wiÞ. The joint proba-

bility of two words is generally estimated from the relative frequency of

the two words together in a corpus, normalized by the total number N of

word-pair tokens in the corpus (which is one more than the total number
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of words in the corpus):

Pðwi�1wiÞ ¼
Countðwi�1wiÞ

N
: ð6Þ

Some experiments use this normalized joint probability, while others

simply use the raw joint frequency.

Another common metric is the first-order markov relation: the condi-

tional probability of a word given the previous word (sometimes called

the transitional probability (Sa¤ran, Aslin, and Newport 1996; Bush

1999). The conditional probability of a particular target word wi given a

previous word wi�1 can be estimated from the number of times the two

words occur together Countðwi�1wiÞ, divided by Countðwi�1Þ, the total

number of times that the first word occurs:

Pðwijwi�1Þ ¼
Cðwi�1wiÞ
Cðwi�1Þ

: ð7Þ

MacDonald (1993) studied the e¤ect of word-pair ( joint) frequencies

on comprehension. Investigating the processing of a noun followed by a

word that is ambiguous between a noun and verb, such as the pair mira-

cle cures, she hypothesized that if the noun-noun pair was frequent (like

miracle cures), its interpretation would be biased toward the noun reading

of the second word. She predicted no such bias for infrequent noun-noun

pairs (like shrine cures). She confirmed this hypothesis by looking at

reading time just after the ambiguous word in sentences that were other-

wise biased toward a verb reading. For example, subjects spent more time

reading the word people in (9) than in (8), since the frequent noun-noun

phrase in (9) biases the reader toward the noun reading of cures, whereas

the word people is compatible only with the verb reading:

(8) The doctor refused to believe that the shrine cures people of many

fatal diseases . . .

(9) The doctor refused to believe that the miracle cures people of many

fatal diseases . . .

Extending this study, McDonald, Shillcock, and Brew (2001) showed

using eye-tracking that bigram probability Pðwijwi�1Þ is a good predictor

of gaze duration on word wi. Bod (2000b, 2001a) showed in a recognition

task that this extends to structures larger than bigrams: frequent three-

word (subject-verb-object) sentences proved to be recognized more easily

and faster than infrequent three-word sentences.
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The psycholinguistic role of word-to-word frequencies or probabilities

has also been extensively studied in production. The production studies

have generally investigated the e¤ect that frequency or probability given

neighboring words has on the phonetic form of a word. The main result is

that words in high-frequency word-pairs or high-probability word-pairs

are phonetically reduced in some way.

Krug (1998), for example, showed that cliticization is more common in

more frequent word-pairs. Bybee and Scheibman (1999) and Bush (1999)

found that word boundary coronals are more likely to be palatalized

between word sequences with high conditional probabilities, as shown in

table 3.2.

Gregory et al. (2000), Jurafsky et al. (2001), and Bell et al. (2001)

studied the e¤ect of di¤erent kinds of probability on reduction. As

mentioned above, they used a phonetically transcribed portion of the

Switchboard telephone corpus of American English. They used multiple

regression to control for other factors a¤ecting reduction, and looked

at more measures of predictability and more measures of reduction. In

particular, they looked at both the joint probability and conditional

probability of target words with both previous and following words.

Confirming earlier studies, they found that words that have a higher

probability given neighboring words are reduced. In particular, Gregory

et al. (2000) and Jurafsky et al. (2001) found that high-probability content

words are shorter in duration and more likely to have final /t/ or /d/

deleted. Jurafsky et al. (2001) and Bell et al. (2001) found that high-

probability function words are shorter and undergo more vowel reduction

and more coda deletion. All of the studies found more reduction in high-

probability words no matter how probability was defined (conditional

probability given the previous word or given the next word; joint proba-

bility with the previous word or with the next word).

Table 3.2

Examples of word boundary coronals that are more or less likely to palatalize

High Pðwijwi�1Þ Low Pðwijwi�1Þ
More palatalized Less palatalized

did you at you

told you but you

would you good you
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Pan and Hirschberg (2000) have shown that conditional bigram prob-

ability correlates highly with location of pitch accent; specifically, pitch

accent is more likely to occur on low-probability words. Gregory (2001)

has extended this result by showing that conditional probability given

previous and following words is a significant predictor of pitch accent

even after controlling for other contextual factors such as position in the

intonation phrase, part of speech, and number of syllables.

In summary, the probability of a word given the previous or following

word plays a role in comprehension and production. Words with a high

joint or conditional probability given preceding or following words have

shorter durations in production. In comprehension, any ambiguous words

in a high-frequency word-pair are likely to be disambiguated consistently

with the category of the word-pair itself.

3.2.4 Syntactic Subcategorization Frequencies

Quite a bit of attention has been paid to the next type of probability we

will look at: the frequency of the di¤erent subcategorization frames of a

verb. For example, the verbs remember and suspect are both subcate-

gorized for either a direct object noun phrase or a sentential complement,

as in (10)–(13):

(10) The doctor remembered [NP the idea].

(11) The doctor remembered [S that the idea had already been

proposed].

(12) The doctor suspected [NP the idea].

(13) The doctor suspected [NP that the idea would turn out not to work].

While both verbs allow both subcategorization frames, they do so with

di¤erent frequencies. Remembered is more frequently used with a noun

phrase complement, while suspected is more frequently used with a sen-

tential complement. These frequencies can be computed either from a

parsed or a transitivity-coded corpus (Merlo 1994; Roland and Jurafsky

1998) or by asking subjects to write sentences using the verbs (Connine

et al. 1984; Garnsey et al. 1997).

Since these frequencies are contingent on the verb, they are the

maximum likelihood estimate of the conditional probability of the sub-

categorization frame given the verb PðframejverbÞ. These conditional

probabilities have been shown to play a role in disambiguation. For
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example, the noun phrase the idea is ambiguous in the following sentence

prefix:

(14) The doctor suspected the idea . . .

The idea could function as a direct object noun phrase complement of

suspected, or it could be the syntactic subject of an embedded sentential

complement. A wide variety of experiments shows that the verb’s ‘‘bias’’

(its probabilistic preference for a subcategorization frame) influences

which of these two continuations subjects expect.

This idea of subcategorization bias was first suggested in a slightly dif-

ferent context by Fodor (1978), who predicted that a verb’s preference for

being transitive or intransitive could a¤ect whether the human parser

hypothesizes a gap following the verb. Ford, Bresnan, and Kaplan (1982)

proposed a generalization of Fodor’s hypothesis: that each verb has

strengths for di¤erent subcategorization frames, that these strengths are

based on some combination of frequency and contextual factors, and that

these strength-based expectations are used throughout parsing. When

they tested this idea by asking subjects in an o¤-line experiment to per-

form a forced choice between two interpretations of an ambiguous utter-

ance, they found that some set of subcategorization strengths could be

used to predict the interpretation selected by the subjects.

Ford, Bresnan, and Kaplan (1982) did not actually test whether these

transitivity preferences were related to frequency in any way. Although

Jurafsky (1996) later confirmed that some of the preferences corre-

sponded to Brown corpus frequencies, this was not clear at the time Ford,

Bresnan, and Kaplan conducted their study; furthermore, the fact that

their experiment was o¤-line left open the possibility that semantic plau-

sibility or some other factor rather than subcategorization frequency was

playing the causal role. Clifton, Frazier, and Connine (1984) tested the

model more directly by using the frequency norms collected by Connine

et al. (1984) to show that a frequency-based interpretation of transitivity

preference predicted quicker understanding in filler-gap sentences, and

Tanenhaus, Stowe, and Carlson (1985) showed that anomalous fronted

direct objects required extra reading time at transitive-bias verbs, but not

intransitive-bias verbs.

Trueswell, Tanenhaus, and Kello (1993) extended these results to show

that these frequency-based subcategorization preferences play an on-line

role in the disambiguation of various syntactic ambiguities. One experi-

ment was based on cross-modal naming (so called because the stimulus
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is auditory while the target is orthographic). Subjects heard a sentence

prefix ending in either an S-bias verb (The old man suspected . . .) or an

NP-bias verb (The old man remembered . . .). They then had to read out

loud (‘‘name’’) the word him. Previous research had shown that naming

latencies are longer when the word being read is an ungrammatical or

unexpected continuation. In Trueswell, Tanenhaus, and Kello’s study,

naming latency to him was longer after S-bias verbs (The old man sus-

pected . . . him) than after NP-bias verbs (The old man remembered . . .

him). This suggests that subjects preferred the more frequent frame of the

verb and were surprised when this preference was overturned, causing

longer naming latencies. Trueswell, Tanenhaus, and Kello also confirmed

these results with an eye-tracking study that focused on the di¤erence in

reading times between sentences with and without the complementizer

that. Controlled first-pass reading times at the disambiguating verb

phrase were longer for NP-bias verbs but not for S-bias verbs, indicating

that subjects attached the postverbal noun phrase as a direct object for

NP-bias verbs but not for S-bias verbs.

MacDonald (1994) showed that the e¤ect of subcategorization frame

frequency also plays a role in resolving a di¤erent kind of ambiguity:

main clause/relative clause (MC/RR) ambiguities. These ambiguities

have been the object of much study since Bever (1970) first pointed out

the di‰culty of the garden path sentence in (15):

(15) The horse raced past the barn fell.

Until the word fell, this sentence is ambiguous between a reading in

which raced is a main verb and one in which it is a part of a reduced rel-

ative clause modifying the horse. The di‰culty of the sentence is caused

by the fact that readers incorrectly select the main verb sense and then are

confused when they reach fell.

MacDonald (1994) suggested that the subcategorization frequencies

proposed by earlier researchers could play a role in explaining processing

di‰culties in main verb/reduced relative ambiguities. Her test materials

used transitive-bias verbs like push and intransitive-bias verbs like move,

in sentences like these:

(16) The rancher could see that the nervous cattle pushed into the

crowded pen were afraid of the cowboys.

(17) The rancher could see that the nervous cattle moved into the

crowded pen were afraid of the cowboys.
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MacDonald found that corrected reading times in the disambiguation

region were afraid were longer for intransitive-bias verbs like move than

transitive-bias verbs like push.

Jennings, Randall, and Tyler (1997) extended Trueswell, Tanenhaus,

and Kello’s (1993) study on the e¤ect of verb subcategorization bias on

disambiguation, using a similar cross-modal naming paradigm. One goal

of this study was to clear up some potential problems with Trueswell,

Tanenhaus, and Kello’s materials. But perhaps its most significant result

addressed an important issue that no previous research on the role of

frequency in syntactic disambiguation had addressed. Previous studies

had generally clustered their verb-bias frequency into two bins: high

transitive-bias versus low transitive-bias, or high S-bias versus low S-bias.

All previous results on syntactic disambiguation, then, were compatible

with a model in which subcategorization preferences were represented

as a ranked or ordered list, with no link to an actual frequency or proba-

bility. Jennings, Randall, and Tyler showed a correlation between the

strength of a verb’s bias and reading time at the target word. The stronger

the verb’s bias for one subcategorization frame over the other, the larger

the advantage they found in naming latency for the preferred over the

nonpreferred continuation.

Despite the many studies of subcategorization frequencies in compre-

hension, there are no equivalent studies in production. Of course, the fre-

quencies used to model the comprehension studies are derived from

production data. But there have been no production tests showing clearly

that verb-argument probability plays an active on-line role here, as op-

posed, say, to merely being correlated with semantics or world knowl-

edge. There is at least one suggestive study, by Stallings, MacDonald, and

O’Seaghdha (1998), who note a similarity between sentential comple-

ment-taking verbs and heavy-NP shift: in both cases, the verb and the

complement can be separated by other material (e.g., sentential comple-

ments can be separated from the verb by adverbial expressions: She said

the other day that . . .). By contrast, direct objects cannot be separated in

this way from their verbs. In a production experiment based on this con-

trast, Stallings, MacDonald, and O’Seaghdha showed that verbs that can

take either sentential complements or noun phrase direct objects are more

likely to undergo heavy-NP shift than verbs that take only noun phrase

direct objects. They also showed that verbs that frequently undergo

heavy-NP shift elicit slower responses when placed in a nonshifted con-

text. They suggest that each verb is stored with a ‘‘shifting disposition’’—
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a frequency-based preference for appearing contiguous with its arguments

or not.

In summary, the conditional probability of a subcategorization frame

given a verb plays a role in disambiguation in comprehension. The higher

the conditional probability of the frame, the more it will be preferred in

disambiguation. In production, the evidence is less conclusive and awaits

further study.

3.2.5 Conditional and Lexicalized Syntactic Frequencies

The subcategorization bias of a verb is a kind of conditional probability:

the probability of seeing a noun phrase or a sentence given the verb. A

number of experiments have found evidence that sentence comprehension

makes use of another kind of conditional probability: the probability of a

word or the probability of a lexical category conditioned on previous

context or on particular syntactic structure.

Juliano and Tanenhaus (1993) studied the role of the frequency of the

di¤erent lexical categories of that, which can be a determiner, a com-

plementizer, a pronoun, or an intensifier. Overall, the pronoun reading

of that is more frequent than any of the other readings. But Juliano

and Tanenhaus noticed that the frequencies of these di¤erent categories

depend on the syntactic context, as shown in table 3.3. Accordingly, they

conducted a self-paced reading study using sentences like those in (18)–

(21). In (19) and (21), that must be a complementizer, while in (18) and

(20), that must be a determiner. The word diplomat/s provides the dis-

ambiguating information (the plural is compatible only with the com-

plementizer reading).

(18) The lawyer insisted that experienced diplomat would be very helpful.

(19) The lawyer insisted that experienced diplomats would be very

helpful.

(20) That experienced diplomat would be very helpful to the lawyer.

Table 3.3

Brown corpus part-of-speech percentages for that. (From Juliano and Tanenhaus
1993.)

Determiner Complementizer

At start of sentence 35% 11%

After verb 6% 93%
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(21) That experienced diplomats would be very helpful made the lawyer

confident.

If subjects make use of the conditional probability of the part of speech

given the context, they should treat sentence-initial that as a determiner

and postverbal that as a complementizer. This would predict increased

reading time for the sentence-initial complementizer reading (21) and for

the postverbal determiner reading (18). Juliano and Tanenhaus found just

such an interaction: reading times for would were longer in (21) and (18)

and shorter in (19) and (20). Notice that the simple unconditioned use of

the di¤erent lexical-category frequencies for that would not predict this

interaction.

A second piece of evidence that probabilities conditioned on previous

structure are used in disambiguation comes from Trueswell, Tanenhaus,

and Kello’s (1993) experiment discussed above. Recall that these re-

searchers showed that cross-modal naming latency to him was longer

after hearing S-bias verbs (The old man suspected . . . him) than after

hearing NP-bias verbs (The old man remembered . . . him), a result that

supports the use of verb subcategorization frequencies in comprehension.

But in a separate analysis, Trueswell, Tanenhaus, and Kello also showed

that the longer naming latency after S-bias verbs is not uniform for all

S-bias verbs. It has often been noted that the complementizer that is

optional after some S-bias verbs. Trueswell, Tanenhaus, and Kello mea-

sured the frequency with which each S-bias verb occurred with an explicit

that, to compute the ‘‘that-preference’’ for each verb. They found that this

that-preference correlated with the increased reading time: the more an

S-bias verb expected to be followed by that, the longer the latency on

naming him. Once again, this suggests that subjects are computing the

probability of hearing the that complementizer given previous structure

(in this case, the verb).

A third study supporting the idea of probabilities conditioned on pre-

vious structure was carried out by MacDonald (1993). Recall that Mac-

Donald was looking at the processing of a noun followed by a word that

can be either a noun or a verb, such as the pair miracle cures. She exam-

ined the frequency with which the first word occurs as the head of a noun

phrase versus the frequency with which it occurs as the modifier of a noun

phrase. For example, the noun warehouse appears in the Brown corpus

more often as a modifier, while corporation occurs more often as a head.

If subjects make use of this probability, they should treat nouns that are
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more frequently heads as complete noun phrases, parsing the following

word as a verb; nouns that are more likely to be modifiers should cause

the following word to be treated as a noun. MacDonald found that the

frequency with which a word occurs as a head versus modifier in the

Brown corpus did predict reading time di‰culty on the word following

these bigrams.

In summary, the conditional probability of a word (like that) or a lex-

ical category (like determiner or complementizer) given previous words or

structure plays a role in disambiguation. Words or categories with higher

conditional probabilities are preferred.

3.2.6 Constructional Frequencies

The frequency e¤ects described so far are all lexical in some way. Indeed,

the vast majority of frequency e¤ects that have been studied involve lex-

ical structure. A small number of studies have looked for frequency

e¤ects for larger (supralexical) structures, but the results are relatively

inconclusive.

For example, studying the e¤ect of idiom frequency on word-by-word

reading of Dutch idioms, some of which had syntactic errors (such as

agreement errors) inserted in them, d’Arcais (1993) found that subjects

were able to locate the errors more quickly in frequently than in less fre-

quently occurring idioms.

A number of researchers have suggested that one factor contributing to

the di‰culty of the main verb/reduced relative ambiguity is the relative

rarity of reduced relative clauses. In a norming study for an experiment

using 32 verbs, Tabossi et al. (1994) checked 772 sentences from the

Brown corpus containing -ed forms of the verbs. They found that the verb

occurred as part of a simple main clause in 37% of the sentences, a rela-

tive clause in 9%, and a reduced relative clause in 8%.

Jurafsky (1996), McRae, Spivey-Knowlton, and Tanenhaus (1998),

and Narayanan and Jurafsky (1998), among others, showed that

(various) models that include the corpus-based frequency of the main

clause versus reduced relative construction are able to model certain

reading time e¤ects in main clause/reduced relative sentences such as (15),

repeated here as (22):

(22) The horse raced past the barn fell.

Jurafsky, for example, showed that the stochastic context-free grammar

(SCFG) probability for the main clause parse was significantly lower than
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the SCFG probability for the reduced relative parse because of two fac-

tors: first, the reduced relative construction includes one more SCFG rule,

and second, this SCFG rule introducing the reduced relative structure has

a very low probability.

A series of studies by Mitchell and colleagues (Mitchell 1994; Cuetos,

Mitchell, and Corley 1996) has focused on a model of disambiguation

called tuning. Tuning models claim that people tabulate every ambiguity

they encounter, together with the disambiguation decision. Future dis-

ambiguation decisions are based on choosing the most likely previously

chosen disambiguation for the ambiguity. Tuning models thus claim that

syntactically ambiguous sentences are resolved to whichever choice has

been made more often in the past. As a simplifying assumption, Mitchell

and colleagues assume that the frequency of this choice is isomorphic to

the total frequency of the structures in the language.

I discuss tuning models in this section because although such models

could hypothetically apply to any kind of disambiguation, all research so

far has focused on the frequency of two specific complex syntactic con-

structions. In particular, Cuetos, Mitchell, and Corley (1996) looked at

ambiguities like those in (23), where a relative clause who was on the bal-

cony can attach to either the first of two noun phrases (the servant) or the

second (the actress) (not counting the subject someone):

(23) Someone shot [NP1
the servant ] of [NP2

the actress] who was on the

balcony.

Figure 3.1 shows a simplified schematic of the two parse trees whose fre-

quency is being computed.

Cuetos, Mitchell, and Corley (1996) found crosslinguistic di¤erences in

disambiguation preference between English and many other languages,

Figure 3.1

The tuning hypothesis predicts that frequencies are stored for these parses for
Someone shot the servant of the actress who was on the balcony, with attachment of
the relative clause to NP2 (left) and NP1 (right)
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including Spanish and Dutch. Supporting the tuning hypothesis, English

speakers preferred to attach relative clauses to NP2, and the NP2 attach-

ment construction shown on the left of figure 3.1 was more common in a

corpus. Also supporting the hypothesis, Spanish speakers preferred to at-

tach relative clauses to NP1, and the NP1 attachment shown on the right

of figure 3.1 was more frequent in a Spanish corpus. But more recent

studies have cast doubt on the link between the frequency of the two

constructions and the disambiguation decisions. Studies on three-site rel-

ative clause ambiguities in English have not found a link between corpus

frequency of these (very) complex constructions and disambiguation

preference (Gibson, Schütze, and Salomon 1996). Another study found

that Dutch speakers preferred to attach relative clauses to NP1, but that

the NP2 attachment construction shown on the left of figure 3.1 was more

common in a corpus (Mitchell and Brysbaert 1998).

Still other studies, however, have shown that human preferences do

match corpus preferences when the animacy of the NP1 is held constant

(e.g., Desmet, Brysbaert, and Baecke, in press). Since corpora are used to

estimate frequencies in most probabilistic models, this is an important

result; I will return to this issue in section 3.4.3. But since this control

factor concerned the semantics of the noun phrases, it suggests that a

purely structure-frequency account of the tuning hypothesis cannot be

maintained.

It has also been shown (Bod 2000b, 2001a) that frequent three-word

(subject-verb-object) sentences (e.g., I like it) are recognized more easily

and quickly than infrequent three-word sentences (e.g., I keep it), even

after controlling for plausibility, word frequency, word complexity, and

syntactic structure. These results suggest that frequent sentences or at

least some structural aspects of these frequent sentences are stored in

memory.

In addition to studies of the complex structures posited by the tuning

hypothesis, which do not show strong evidence for frequency e¤ects in

comprehension, there have been some studies on frequency e¤ects for

simpler syntactic structure in production. Bates and Devescovi (1989)

performed a crosslinguistic series of production studies that attempted to

control for semantic and pragmatic factors. They found that relative

clauses, which are generally more frequent in Italian than in English,

occurred more frequently in Italian in their production study even after

these controls. They suggest that the frequency of the relative clause con-

struction in Italian may play a role in its being selected in production.

Probabilistic Modeling in Psycholinguistics 61



In conclusion, while some studies seem to suggest that the frequency of

larger nonlexical syntactic structures plays a role in disambiguation, the

evidence is still preliminary and not very robust. None of the studies that

found an e¤ect of nonlexical syntactic or idiom structure did so after

carefully controlling for lexical frequencies and two-word or three-word

frequencies. Although Bod’s (2001a) results clearly point to storage of

three-word chunks, it is not necessarily higher-level structure that is play-

ing a causal role. But of course complex constructions are much less

frequent than words, and so we expect frequency e¤ects from larger con-

structions to be harder to find. This remains an important area for future

research.

3.2.7 Summary of Psycholinguistic Results on Frequency and Probability

Frequency plays a key role in both comprehension and production, but

solid evidence exists only for frequency related in some way to lexical

items, or to the relationship between lexical items and syntactic structure.

High-frequency words are recognized more quickly, with less sensory

input, and with less interference by neighbors than low-frequency words.

High-frequency words are produced with shorter latencies and shorter

durations than low-frequency words. Low-frequency words are more

subject to phonological speech errors.

The frequencies of various lexical categories a word belongs to play a

role in language processing. For words that are morphologically, syntac-

tically, or semantically ambiguous, the more frequent morphological

category, part of speech, or sense is accessed more quickly and is pre-

ferred in disambiguation. But this e¤ect of lexical semantic/syntactic cate-

gory does not seem to extend to production.

The frequency of multiple-word structures plays a role in both com-

prehension and production. Frequent word-pairs or idioms are more

quickly accessed and/or preferred in disambiguation. Frequent word-

pairs or words that have a high markov bigram probability given neigh-

boring words are shorter in duration and phonologically more reduced.

Various kinds of conditional probabilities play a role in comprehension

and production. For verbs that have more than one possible syntactic

subcategorization, the more frequent subcategorization frame is preferred

in disambiguation. The probability that a verb appears separated from its

complement plays a role in production. For words that can belong to

more than one part of speech, the part of speech with higher conditional

probability given the preceding part of the sentence is preferred.
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Finally, a frequency e¤ect for other, larger syntactic structures, while

not disproved, remains to be shown.

Although I have focused only on knowledge for which a frequency

e¤ect has been found, many other kinds of knowledge of course play a

role in probabilistic evidence-combination. One of these is the relation-

ship between lexical and thematic knowledge. For example, animate

nouns are more likely to be agents, while inanimate nouns are more likely

to be patients; the word cop is more likely to be the agent of the verb

arrested than is the noun crook. Many studies have shown that this kind

of thematic role information plays a role in comprehension (Trueswell,

Tanenhaus, and Garnsey 1994; Garnsey et al. 1997; McRae, Spivey-

Knowlton, and Tanenhaus 1998).

3.3 Probabilistic Architectures and Models

Having shown that frequencies of linguistic structure, especially linguistic

structure related to lexical items, play a role in language processing, in

this section I turn to probabilistic architectures for modeling these fre-

quency e¤ects. Practically all of these models address the process of

comprehension, most of them focusing on syntactic comprehension. I

will discuss a few preliminary directions toward probabilistic models of

production.

3.3.1 Constraint-Based Models

A large class of experimental and modeling work in sentence compre-

hension belongs to the constraint-based (sometimes constraint-based lexi-

calist) framework (Spivey-Knowlton, Trueswell, and Tanenhaus 1993;

MacDonald, Pearlmutter, and Seidenberg 1994; Trueswell and Tanen-

haus 1994; Trueswell, Tanenhaus, and Garnsey 1994; Spivey-Knowlton

and Sedivy 1995; McRae, Spivey-Knowlton, and Tanenhaus 1998;

Seidenberg and MacDonald 1999; Kim, Srinivas, and Trueswell 2002).

Specific models di¤er in various ways, but constraint-based models as

a class focus on the interactions of a large number of probabilistic con-

straints to compute parallel competing interpretations.

Much work in the constraint-based framework has focused on experi-

ments showing that certain frequency-based constraints play a role in sen-

tence processing, via either regression or full factorial analysis of reading

time data. Above, I summarized the results of a number of these experi-

ments on the roles of verb bias, collocation frequencies, and so on, in
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sentence comprehension. The constraint-based framework includes some

computational models in addition to experimental results. In general,

these are neural network models that take as input various frequency-

based and contextual features, which they combine via activation to

settle on a particular interpretation (Burgess and Lund 1994; Pearlmutter

et al. 1994; Spivey-Knowlton 1996; Tabor, Juliano, and Tanenhaus 1997;

Kim, Srinivas, and Trueswell 2002).

I have chosen one of these models to describe, the competition-

integration model of Spivey-Knowlton (1996), because it has been most

completely implemented; because it, more than other such models, is

clearly intended to be probabilistic; and because it has been widely tested

against experimental results from a number of reading time studies

(McRae, Spivey-Knowlton, and Tanenhaus 1998; Spivey and Tanenhaus

1998; Tanenhaus, Spivey-Knowlton, and Hanna 2000). The input to this

model is a set of probabilistic features like the bias for main clauses versus

reduced relatives, the verb’s preference for participle versus preterite, the

contextual support for a particular interpretation, and so on. Some input

features are derived from frequencies; others come from rating studies.

All features are then normalized to estimate a probabilistic input feature

varying between 0 and 1. The model uses a neural network, shown in

figure 3.2, to combine these constraints to support alternative interpreta-

tions in parallel. Each syntactic alternative is represented by a prebuilt

localist node in a network; thus, the network models only the dis-

ambiguation process itself rather than the generation or construction of

syntactic alternatives. The alternatives compete until one passes an acti-

vation threshold.

Each interpretation receives activation from the constraints, which is

then fed back to the constraint nodes within each cycle of competition.

The algorithm first normalizes each pair of constraints. Let Ci;a be the

activation of the ith constraint node connected to the ath interpretation

node. C 0i;a will be the normalized activation; the activation of each con-

straint thus ranges from 0 to 1:

C 0i;a ¼
Ci;aP
a Ci;a

: ð24Þ

The activation Ia from the constraints to interpretation a is a weighted

sum of the activations of the constraints, where wi is the weight on

constraint i:
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Ia ¼
X

i

wi � C 0i;a: ð25Þ

Finally, the interpretations send positive feedback to the constraints:

Ci;a ¼ C 0i;a þ Ia � wi � C 0i;a: ð26Þ

These three steps are iterated until one interpretation reaches criterion.

Reading time is modeled as a linear function of the number of cycles it

takes an interpretation to reach criterion.

This model accounts for reading time data in a number of experiments

on disambiguation of main verb/reduced relative ambiguities (McRae,

Spivey-Knowlton, and Tanenhaus 1998; Spivey and Tanenhaus 1998;

Tanenhaus, Spivey-Knowlton, and Hanna 2000). Let us look at McRae,

Spivey-Knowlton, and Tanenhaus’s (1998) study, which included two

experiments. The first was a sentence completion experiment. For each

verb in their study, McRae, Spivey-Knowlton, and Tanenhaus had sub-

jects complete four sentence fragments like these:

Figure 3.2

A schematic of the competition-integration model. (From McRae, Spivey-
Knowlton, and Tanenhaus 1998.)
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The crook arrested

The crook arrested by

The crook arrested by the

The crook arrested by the detective

For each fragment, they measured the proportion of reduced relative

clause completions. They then showed that combining a number of prob-

abilistic factors via the competition-integration model correctly predicted

the completion preferences for main clauses versus reduced relatives.

McRae, Spivey-Knowlton, and Tanenhaus (1998) also showed that the

thematic fit of a subject with the verb plays a role in reading time. Con-

sider the di¤erence between good agents for arrested (e.g., cop: The cop

arrested . . .) and good patients for arrested (e.g., crook). Figure 3.3 shows

that controlled human reading time for good agents like cop gets longer

after reading the by phrase (requiring cop to be a patient), while con-

trolled reading time for good patients like crook gets shorter.1 McRae,

Spivey-Knowlton, and Tanenhaus again showed that the competition-

integration model predicts this reading time di¤erence.

Figure 3.3

Corrected self-paced reading times for words in these regions. (From figure 6 of
McRae, Spivey-Knowlton, and Tanenhaus 1998.)
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3.3.2 Rational and Utility-Based Probabilistic Models

3.3.2.1 The Competition Model There are remarkable similarities be-

tween some of the earliest and some very recent probabilistic models of

sentence processing. They all attempt to combine the ideas of probability

with utility, cost, or other ideas of rationality in processing.

The competition model (MacWhinney, Bates, and Kliegl 1984; Mac-

Whinney and Bates 1989) may have been the first probabilistic model of

sentence processing. Its goal is to map from the ‘‘formal’’ level (surface

forms, syntactic constructions, prosodic forms, etc.) to the ‘‘functional’’

level (meanings, intentions). Since input is ambiguous and noisy, the

model assumes that the sentence processor relies in a probabilistic manner

on various surface cues for building the correct functional structures. The

model focuses on how these cues probabilistically combine to suggest

di¤erent interpretations, and on how these probabilities di¤er from lan-

guage to language. Consider the problem of assigning agent and patient

roles to noun phrases in an input sentence. An English-speaking compre-

hender relies heavily on word order cues in making this mapping, while a

German speaker relies more heavily on morphological (case) cues.

The competition model formalizes the notion of cues via cue validity,

which is generally defined in this model as a combination of cue avail-

ability and cue reliability. Consider the task of identifying an interpreta-

tion i given a cue c. Cue availability is defined by Bates and MacWhinney

(1989) as the ratio of the cases in which the cue is available to the total

number of cases in a domain. Probabilistically, we can think of this as an

estimate of the prior probability of a cue. Cue reliability is defined by

Bates and MacWhinney as the ratio of cases in which a cue leads to the

correct conclusion to the number of cases in which it is available. Proba-

bilistically, this relative frequency is the maximum likelihood estimate of

PðijcÞ. If cue availability and cue reliability are combined by multiplica-

tion, as suggested by McDonald (1986), then cue validity vðc; iÞ of cue

c for interpretation i works out to be the joint probability of cue and

interpretation:

vðc; iÞ ¼ availabilityðcÞ � reliabilityðcÞ ¼ PðcÞ � PðijcÞ ¼ Pðc; iÞ: ð27Þ

The competition framework views cue validity as an objectively correct

value for the usefulness of a cue in a language, derived from corpora and

studies of multiple speakers. Cue strength is the subjective property of a
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single human language user, the probability that the language user

attaches to a given piece of information relative to some goal or meaning.

This use of joint probability as a measure of cue strength seems to be

equivalent to the cue strength used in memory models like SAM (Search

of Associative Memory) (Raaijmakers and Shi¤rin 1981; Gillund and

Shi¤rin 1984).

How do cues combine to support an interpretation? McDonald and

MacWhinney (1989) formalize cue combination by assuming that the

contribution of each cue toward an interpretation is independent and that

cue strengths vary between 0 and 1. Given these assumptions, they pro-

pose the following equation for cue combination, where A and B are

interpretations and C is the set of all cues c1 . . . cn.

PðAjCÞ ¼
Q

i PðAjciÞQ
i PðAjciÞ þ

Q
i PðBjciÞ

: ð28Þ

The numerator in (28) factors the probability PðAjCÞ into separate terms

PðAjciÞ for each of the individual cues ci, while the denominator acts as a

normalizing term. Multiplying the factors of the individual cues ci implies

that they are independent (recall equation (6) in chapter 2). Assuming

that the contribution of each cue is independent is a simplifying assump-

tion that resembles the ‘‘naive Bayes’’ independence assumption often

used in the categorization literature.

The competition model also considers another kind of validity in addi-

tion to cue validity: conflict validity. Conflict validity is based on how

useful a cue is in a competition situation. It is defined (Bates and Mac-

Whinney 1989) as the number of competition situations in which a cue

leads to a correct interpretation divided by the number of competition

situations in which that cue participates. Thus, the absolute frequency or

validity of a cue is not as important as how useful the cue is in dis-

ambiguation situations. Conflict validity is thus related to the idea of dis-

criminative training in machine learning, and to the tuning hypothesis

that ambiguities are resolved to whichever interpretation has been chosen

more frequently in the past (Mitchell 1994; Cuetos, Mitchell, and Corley

1996).

Finally, the competition model also considers factors related to the cost

of a cue. For example, certain cues may be di‰cult to perceive (‘‘per-

ceivability cost’’), or holding them until they are integrated may use up

short-term memory (‘‘assignability costs’’).
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3.3.2.2 Rational Models Anderson (1990) proposed a rational model

for human cognitive processing. The rational framework claims that

human cognitive processing makes optimal use of limited resources to

solve cognitive problems. The optimal solution to many problems of

decision given noisy data and limited resources is known to be proba-

bilistic. Anderson thus applies a probabilistic formulation of his rational

model to the task of modeling human memory and categorization. In the

course of doing this, he shows how his model explains some results in

lexical access.

Anderson assumes that a rational system for retrieving memory would

retrieve memory structures serially ordered by their probabilities of being

needed p, and would consider the gain G associated with retrieving the

correct target and the cost C of retrieving the item. Such a memory

should stop retrieving items when

pG < C: ð29Þ

Anderson shows that by making certain strong independence assump-

tions, it is possible to produce a relatively straightforward equation for

PðAjHA&QÞ, the probability that memory trace A is needed, conditional

on some history HA of its being relevant in the past, and context Q. Let i

range over elements that make up the context Q. Anderson gives the fol-

lowing equation:

PðAjHA&QÞ ¼ PðAjHAÞ �
Y

i AQ

PðijAÞ
PðiÞ : ð30Þ

Equation (30) says that we can estimate the posterior probability that A is

needed from two terms: a term representing A’s past history (how fre-

quent it was and how often it was needed) and a term representing the

ratio of the conditional probabilities of the cues given that the structure is

relevant or not relevant. Anderson proposes that an increase in need

probability PðAjHA&QÞ maps monotonically into higher recall probabil-

ity and faster latency (reaction time). He shows that his model predicts

a number of basic results in recall rates and latencies, including some

results in lexical processing. For example, his model predicts the result

that low-frequency words are better recognized than high-frequency

words (Kintsch 1970). This sketch of equation (30) and the model has

been necessarily but unfortunately brief; the interested reader should turn

to Anderson 1990.
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Chater, Crocker, and Pickering (1998) apply Anderson’s rational

model to sentence processing. They first propose that the goal of the

human parser is to maximize the probability of obtaining the globally

correct parse. Extending Anderson’s serial model of memory, they

assume that as each word is input, the parser considers all possible parses

in series. But they suggest that ordering these parses just by their proba-

bilities may not be optimal. A parse that seems (locally) to be optimal

may turn out to be the wrong parse. A serial parser would garden-path

at this point, then have to backtrack and reanalyze a sentence. They

therefore suggest that an optimal parser would need to include the cost

of this backtracking in its algorithm for choosing a parse to follow

at points of ambiguity. In particular, they suggest that it is important

to balance the probability of a hypothesis, how long it would take to

settle on the hypothesis (i.e., follow it and build the parse tree), and

how long it would take to escape from the hypothesis (test and reject

it). Given this assumption, they show that a serial parser should first

consider the hypothesis Hi with the highest value of the following func-

tion f of Hi:

f ðHiÞ ¼ PðHiÞ � Pðsettle HiÞ �
1

1� Pðescape HiÞ
: ð31Þ

This proposal—that the function f , rather than unaugmented probability

p, is the utility function maximized by the human parser—is an intriguing

claim about sentence processing that remains to be tested.

3.3.3 Markov Models of Lexical Category Preference

The previous sections motivated the use of probabilities as a tool for

ranking interpretations or actions taken by the human comprehension

mechanism. Let us turn now to the details of some probabilistic models.

This section and the next two describe increasingly sophisticated proba-

bilistic models of lexical category and syntactic disambiguation: hidden

markov models, stochastic context-free grammars, and Bayesian belief

networks. All of these are instances of what are often called graphical

models (Jordan 1999).

Corley and Crocker (1996, 2000) focus on the problem of lexical cate-

gory disambiguation as part of human sentence processing. They propose

that human lexical category disambiguation can be modeled by a hidden

markov model (HMM) part-of-speech tagging algorithm (or a variant of

the HMM algorithm known as the Church tagger—Church 1988).
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HMM taggers are used to compute the probability of a sequence of

part-of-speech tags given a sequence of words. For example, given the

sequence of words in (32), a tagger would produce the series of tags

in (33):

(32) the miracle cures

(33) Det Noun Noun

HMM taggers rely on a very simple intuition: given a word, choose its

most likely tag in context. They operationalize ‘‘most likely’’ by using

only two probabilistic sources of knowledge: the probability of a word

given a lexical category tag PðwijtiÞ and the probability of one lexical

category tag following another Pðtijti�1Þ.
For example, the word race can be a verb or a noun. The noun is vastly

more frequent; but verbs are more common after the infinitive marker to.

Table 3.4 (taken from Jurafsky and Martin 2000, with probabilities from

the combined Brown and Switchboard corpora) shows that an HMM

tagger correctly chooses the part of speech verb in the context to race.

HMM taggers actually produce the most likely sequence of tags t̂t n
1

for an entire sentence or sequence of words of length n rather than just

for a single word t̂ti. We can use the function argmaxx f ðxÞ, which returns

the x that maximizes f ðxÞ, to write the equation for what the tagger is

maximizing:

t̂t n
1 ¼ argmax

t n
1

Pðtn
1 jwn

1 Þ: ð34Þ

This equation can be rewritten by Bayes’ rule (chapter 2, equation (10)),

as

t̂t n
1 ¼ argmax

t n
1

Pðwn
1 jtn

1 ÞPðtn
1 Þ

Pðwn
1 Þ

: ð35Þ

Since an HMM tagger is choosing the most likely tag sequence for a fixed

Table 3.4

Hidden markov model tag probabilities for race. (From Jurafsky and Martin
2000.)

Words Pðtijti�1ÞPðwijtiÞ P

to/INF race/VERB PðVerbjInfToÞ � PðracejVerbÞ .00001

to/INF race/NOUN PðNounjInfToÞ � PðracejNounÞ .000007
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set of words wn
1 , we can drop the denominator term, producing

t̂t n
1 ¼ argmax

t n
1

Pðwn
1 jtn

1 ÞPðtn
1 Þ: ð36Þ

The HMM tagger makes two large simplifying assumptions: first,

that the probability of a word depends only on its own tag, and not any

neighboring tags; and second, that the words are independent of each

other. This results in the following equation by which a bigram tagger

estimates the most probable tag sequence:

t̂t n
1 ¼ argmax

t n
1

Pðtn
1 jwn

1 ÞA
Yn

i¼1

PðwijtiÞPðtijti�1Þ: ð37Þ

Corley and Crocker (1996, 2000) show that this probabilistic model

accounts for a number of the psycholinguistic results discussed above.

For example, they model Juliano and Tanenhaus’s (1993) finding that

subjects seem to treat sentence-initial that as a determiner, but postverbal

that as a complementizer. Table 3.5 shows that the HMM probabilities

predict a determiner reading sentence-initially, but a complementizer

reading after a verb. Corley and Crocker also show that their tagging

model accounts for three other results on lexical category disambiguation.

3.3.4 Stochastic Context-Free Grammars

Jurafsky (1996) proposed a probabilistic model for syntactic disam-

biguation. His probabilistic parser kept multiple interpretations of an

ambiguous sentence, ranking each interpretation by its probability. The

probability of an interpretation was computed by multiplying two prob-

abilities: the stochastic context-free grammar (SCFG) ‘‘prefix’’ probabil-

ity of the currently seen portion of the sentence, and the ‘‘valence’’

(syntactic/semantic subcategorization) probability for each verb.

Table 3.5

Corley and Crocker’s (1996) probability computation for hidden markov model
tagger on data from Juliano and Tanenhaus 1993

Context
Part of
speech Pðtijti�1ÞPðwijtiÞ P

Sentence-initial Comp P(Compj#)P(thatjComp) .0003
Det PðDetj#)PðthatjDetÞ .0011

Following verb Comp PðCompjVerbÞPðthatjCompÞ .023

Det PðDetjVerbÞPðthatjDetÞ .00051
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A stochastic context-free grammar, first proposed by Booth (1969),

associates each rule in a context-free grammar with the conditional prob-

ability that the left-hand side expands to the right-hand side. For exam-

ple, the probability of two of the expansions of the nonterminal NP,

computed from the Brown corpus, is

[.42] NP! Det N,

[.16] NP! Det Adj N.

Jurafsky’s model was on-line, using the left-corner probability algo-

rithm of Jelinek and La¤erty (1991) and Stolcke (1995) to compute the

SCFG probability for any initial substring (or ‘‘prefix’’) of a sentence.

Subcategorization probabilities in the model were also computed from

the Brown corpus. For example, the verb keep has a probability of .81 of

being bivalent (keep something in the fridge) and a probability of .19 of

being monovalent (keep something).

While the model kept multiple interpretations, it was not fully parallel.

Low-probability parses were pruned via beam search. Beam search is an

algorithm for searching for a solution in a problem space that only looks

at the best few candidates at a time. The name derives from the metaphor

of searching with a flashlight; only things that lie within the beam of the

light are retained. The use of beam search in the algorithm, rather than

full parallel search, means that the model predicts extra reading time (the

strong garden path e¤ect) when the correct parse has been pruned away

and the rest of the sentence is no longer interpretable without reanalysis.

Jurafsky (1996) showed that this model could account for a number of

psycholinguistic results regarding parse preferences and garden path sen-

tences. For example, the corpus-based subcategorization and SCFG

probabilities for keep and other verbs like discuss correctly modeled the

preferences for these verbs in the o¤-line forced-choice experiment carried

out by Ford, Bresnan, and Kaplan (1982). The SCFG grammar also

correctly modeled the misanalysis of garden path sentences like (38), by

claiming that the correct parse (in which houses is a verb) gets pruned:

(38) The complex houses married and single students and their families.

Finally, the combination of SCFG probability and subcategorization

probability modeled the garden path e¤ect for preferentially transitive

verbs like race and the weaker garden path e¤ect for preferential intran-

sitive verbs like find:
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(39) The horse raced past the barn fell.

(40) The bird found in the room died.

In summary, Jurafsky’s (1996) parser has the advantages of a clean,

well-defined probabilistic model, the ability to model the changes in prob-

ability word by word, a parallel processing architecture that can model

both lexical and syntactic processing, accurate modeling of parse pref-

erence, and a probabilistic beam search architecture that explains di‰cult

garden path sentences. The model has many disadvantages, however.

First, it only makes very coarse-grained reading time predictions; it pre-

dicts extra reading time at di‰cult garden path sentences, because the

correct parse falls out of the parser’s beam width. It does not make

fine-grained reading time predictions of any kind. In addition, although

the description of the model claims that the interpreter can combine prob-

abilistic information of any sort, the model as described specifies only

SCFG and subcategorization probabilities. Finally, the model has been

tested on only a handful of examples.

Crocker and Brants (2000) propose a probabilistic model of sentence

processing that is similar to Jurafsky’s (1996) but that, unlike Jurafsky’s,

is designed to have wide coverage and e‰cient scalability. Their incre-

mental cascaded markov model (ICMM) is based on the broad-coverage

statistical parsing techniques of Brants (1999). ICMM is a maximum

likelihood model, which combines stochastic context-free grammars with

HMMs, generalizing the HMM/SCFG hybrids of Moore et al. (1995).

The original nonincremental version of the model constructs a parse tree

layer by layer, first at the preterminal (lexical category) nodes of the parse

tree, then at the next higher layer in the tree, and so on. In the incremen-

tal version of the model, information is propagated up the layers of the

model after reading each word. Each markov model layer consists of a

series of nodes corresponding to phrasal (syntactic) categories like NP or

AdvP, with transitions corresponding to trigram probabilities of these

categories. The output probabilities of each layer are structures whose

probabilities are assigned by a stochastic context-free grammar. Figure

3.4 shows a part of the first markov model layer for one sentence. Each

markov model layer acts as a probabilistic filter, in that only the highest-

probability nonterminal sequences are passed up from each layer to the

next higher layer. The trigram transition probabilities and SCFG output

probabilities are trained on a treebank.
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Crocker and Brants’s (2000) model accounts for a number of experi-

mental results on human parsing. For example, because the ICMM is a

generalization of Corley and Crocker’s (1996) model, it handles the same

lexical category e¤ects described in the previous section, including Juliano

and Tanenhaus’s (1993) conditional probability e¤ect of that.

The ICMM also models a finding by Pickering, Traxler, and Crocker

(2000), who were looking at disambiguation of the role of noun phrases

like his goals in NP/S ambiguities like the following:

(41) The athlete realized [NP his goals] at the Olympics.

(42) The athlete realized [S[NP his goals] were out of reach].

Realize is an S-bias verb. Nonetheless, Pickering, Traxler, and Crocker

showed that readers must be considering the NP interpretation of his

goals. They did this by creating pairs of sentences with sentential com-

plements. In one sentence, (43), the noun phrase potential was a plausible

direct object for realize. In the other sentence, (44), the noun phrase her

exercises was not a plausible direct object:

(43) The young athlete realized her potential one day might make her a

world-class sprinter.

(44) The young athlete realized her exercises one day might make her a

world-class sprinter.

Pickering, Traxler, and Crocker showed that reading time was delayed on

the phrase might make her after the implausible direct object her exercises

Figure 3.4

Part of the first markov model layer for one sentence. (From Crocker and Brants
2000.) The letter t indicates the subtrees generated by the stochastic context-
free grammar. For example, PðtjNPÞ is the conditional probability of the subtree
NN! company given the NP.
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but not after the plausible direct object her potential. In order to be influ-

enced by the plausibility of the direct object, the human parser must be

building the direct object interpretation, despite the S-bias of the verb

realized.

Crocker and Brants (2000) use the structure of the SCFG to model this

result. Sentential complements involve one more SCFG rule than direct

objects (the rule VP! S). The probability of the sentential complement

will thus be lower than it would be otherwise; since probabilities are less

than 1, multiplying by an additional rule lowers the probability of a

parse. Thus, Crocker and Brants’s model predicts that the probability of

the direct object reading of (42) is actually higher than the probability

of the sentential complement reading.

Like Jurafsky (1996) and Crocker and Brants (2000), Hale (2001) pro-

poses to model human sentence processing via a probabilistic parser

based on SCFG probabilities. But Hale’s model o¤ers an important new

contribution: much more fine-grained predictions about parsing di‰culty

and hence reading time. Hale proposes that the cognitive e¤ort needed to

integrate the next word into a parse is related to how surprising or un-

expected that word is. The surprisal of a word is an alternate term in

information theory for the word’s information value (Attneave 1959),

which can be computed by the negative log of its probability:

hðwiÞ ¼ �log PðwiÞ: ð45Þ

Thus, Hale’s proposal is that reading times at a word are a function of the

amount of information in the word. A word that is surprising or infor-

mative (has a large negative log probability and hence a large positive

information content) will cause extended reading times and hence a

garden path sentence.

How should the probability PðwiÞ be estimated? This is of course a

cognitive modeling question; the appropriate probability is whatever

people can be shown to use. Hale proposes to use a simple syntax-based

probability metric: the conditional SCFG probability of the word given

the parse tree of the preceding prefix.

The conditional probability of a word given the previous structure can

be computed from an SCFG by using the prefix probability. Recall that

the prefix probability is the probability of an initial substring of a sen-

tence given the grammar. Unlike computing the probability of an entire

sentence, computing the probability of a prefix is somewhat complex,

since it involves summing over the probability of all possible recursive
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structures before the parser knows exactly how many recursions will be

seen. Jelinek and La¤erty (1991) show how this prefix probability can be

computed, and Stolcke (1995) shows how this computation can be inte-

grated into a probabilistic Earley parser. If ai represents the prefix prob-

ability of words w0w1 . . . wi, then the conditional probability of a new

word given all the previous words is

Pðwijw1;w2 . . . wi�1Þ ¼
Pðw1 . . . wiÞ

Pðw1 . . . wi�1Þ
¼ ai

ai�1
: ð46Þ

Hale’s proposal is that reading times at a word will be proportional to the

information value assigned by this probability, or

hðwiÞ ¼ �log
ai

ai�1
: ð47Þ

Hale actually gives a di¤erent but equally valid way of thinking about

this equation. He proposes that the cognitive e¤ort needed for parsing

any sequence of words is proportional to the total probability of all the

structural analyses that are incompatible with that sequence. That is,

cognitive e¤ort, and particularly the garden path e¤ect, occurs wherever

the parser disconfirms potential parses that together comprise a large

probability mass. The simplest way to measure the amount of probability

mass that is disconfirmed is to look at the amount of probability mass in

the prefix leading up to the previous word that is no longer in the prefix

leading up to the current word, which is the di¤erence between ai and

ai�1.

Hale shows that his model predicts the large increases in reading time

corresponding to two well-known cases of processing di‰culty: reduced

relative clauses and subject-object asymmetries. First, he shows that the

surprise at the word fell is very high in the reduced relative garden path

sentence (48) by hand-building a mini context-free grammar for the rules

in the sentence and setting the probabilities from a sample of the Penn

Treebank. Figure 3.5 shows the prediction of extra surprise, hence extra

reading time at fell.

(48) The horse raced past the barn fell.

Hale’s model predicts a large increase in reading time at fell because

the probability of fell is extremely low. In this sense, Jurafsky’s (1996)

pruning-based model is just a special case of Hale’s. Jurafsky’s model

predicts extra reading time because the probability of fell is zero; the
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potential parse that could have incorporated fell was pruned away. Hale’s

model is thus able to make more fine-grained reading time predictions

than Jurafsky’s.

These more fine-grained predictions can be seen in Hale’s probabilistic

explanation for a second source of processing di‰culty: subject-object

relative asymmetry. Many researchers had noticed that object relative

clauses (49) are more di‰cult to parse than subject relative clauses (50);

see Gibson 1998 for a summary of previous research (and a nonproba-

bilistic model):

(49) The man who you saw saw me.

(50) The man who saw you saw me.

Figure 3.6 shows the reading time predictions of Hale’s model; note that

the object relative has a much higher maximum (and mean) surprisal than

the subject relative.

In summary, probabilistic models of human parsing based on markov

models and stochastic context-free grammars use the SCFG or HMM

probability to predict which parse of an ambiguous sentence a human

will prefer. These models also make some predictions about timecourse.

Jurafsky (1996) and Crocker and Brants (2000) use the beam search par-

adigm to prune low-probability interpretations, hence predicting longer

reading time when the next word is compatible only with a parse that has

Figure 3.5

Hale’s (2001) prediction of reading time based on surprise values computed from
a simple stochastic context-free grammar
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already been pruned. Hale (2001) o¤ers more fine-grained predictions

about reading time, predicting an increase in reading time for surprising

or unexpected words, as measured by parse probability.

3.3.5 Bayesian Belief Networks

As noted at the outset, the goal of probabilistic modeling in language

processing is to solve the problem of choosing among possible alter-

natives in comprehension and production, given only incomplete and

noisy evidence. The models summarized so far go a long way toward this

goal. The competition and constraint satisfaction models both focus on

the use of multiple probabilistic or frequency-based cues. The markov

and SCFG models just described extend this use of probabilistic cues to

show how some of these cues can be combined in a probabilistically cor-

rect manner; in particular, they focus on how independence assumptions,

Figure 3.6

Hale’s (2001) prediction of reading time based on surprise values computed from
a simple stochastic context-free grammar for (a) object relatives and (b) subject
relatives
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like the assumptions of SCFGs, can be used to combine syntactic proba-

bilities in a structured and motivated way.

In this section, I introduce a more general framework for combining

probabilistic knowledge: the Bayesian belief network. Bayesian belief

networks are data structures that represent probability distributions over

a collection of random variables. A network consists of a directed acyclic

graph, in which nodes represent random variables (unknown quantities)

and the edges between nodes represent causal influences between the

variables. The strengths of these influences are quantified by conditional

probabilities; thus, for each variable node A that can take values a1 . . . an,

with parents B1 . . . Bn, there is an attached conditional probability table

pðA ¼ a1jB1 ¼ bx; . . . ;Bn ¼ bzÞ, pðA ¼ a2jB1 ¼ bx; . . . ;Bn ¼ bzÞ, and so

on. The table expresses the probabilities with which the variable A can

take on its di¤erent values, given the values of the parent variables. The

structure of the network reflects conditional independence relations be-

tween variables, which allow the joint distribution to be decomposed into

a product of conditional distributions. The Bayesian network thus allows

us to break down the computation of the joint probability of all the evi-

dence into many simpler computations.

Recall that the advantage of a Bayesian approach to language pro-

cessing is that it gives a model of what probability to assign to a particu-

lar belief, and of how beliefs should be updated in the light of new

evidence. Bayesian belief networks are thus on-line models; for example,

if we are estimating the probabilities of multiple possible interpretations

of an ambiguous utterance, the network will allow us to compute the pos-

terior probability of each interpretation as each piece of evidence arrives.

In addition, the use of a Bayesian belief network as a probabilistic esti-

mator allows us to incorporate any kind of evidence: syntactic, semantic,

discourse. This in turn allows us to capture the syntactic probabilities

captured by graphical models like HMMs and SCFGs, while augmenting

them with other probabilities, all in an on-line manner.

Jurafsky (1996) suggested that access and disambiguation of linguistic

knowledge follow an evidential Bayesian model, though he gave only the

briefest sketch of what the model should look like. Narayanan and

Jurafsky (1998, 2002) followed up on this proposal by implementing a

Bayesian model of syntactic parsing and disambiguation.

In this model, each interpretation of an ambiguous input is assigned

a probability by combining multiple probabilistic sources of evidence,

such as SCFG probabilities, syntactic and thematic subcategorization

80 Jurafsky



probabilities, and other contextual probabilities using a Bayesian belief

network.

For example, after seeing the first few words of a main clause/reduced

relative ambiguous sentence (The horse raced ), the Bayesian model

assigns probabilities to both the main clause (MC) and reduced relative

(RR) interpretations using the belief network sketched in figure 3.7. This

particular belief network combines multiple sources of probabilistic evi-

dence, such as the subcategorization probability of the verb raced, the

probability that horse is the semantic theme of a racing event, and the

syntactic probability that a noun phrase will include a reduced relative

clause, computed using SCFG probabilities.

This network is actually composed of two subnetworks, one computing

the SCFG probabilities and one computing the lexical and thematic

probabilities. The SCFG probabilities can be directly computed by the

first subnetwork; the conditional independence assumptions in a stochas-

tic context-free parse of a sentence can be translated into the conditional

independence statements entailed by a Bayesian network. Figure 3.8 illus-

trates the belief network representations that correspond to the SCFG

Figure 3.7

A belief network combining stochastic context-free grammar probabilities (syn)
with subcategorization, thematic (thm), and other lexical probabilities to represent
support for the main clause (MC) and reduced relative (RR) interpretations of a
sample input. (From Narayanan and Jurafsky 1998.)
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parses for the main clause and reduced relative interpretations of an am-

biguous prefix like The witness examined.

Figure 3.9 gives the structure of the Bayesian network that computes

lexical and thematic support for the two interpretations. The model re-

quires conditional probability distributions specifying each verb’s prefer-

ence for di¤erent argument structures, as well as its preference for

di¤erent tenses. Narayanan and Jurafsky (2002) also compute proba-

bilities from the semantic fit between head nouns (like crook or cop) and

semantic roles (agent or patient) for a given predicate (like arrested ) by

normalizing the preferences given by McRae, Spivey-Knowlton, and

Tanenhaus (1998). Thus, the probabilities include

Pðagent jsubject ¼ crook; verb ¼ arrestedÞ,
Pðpatient jsubject ¼ crook; verb ¼ arrestedÞ,
Pðtransitive jverb ¼ arrestedÞ,
Pðpreterite jverb ¼ arrestedÞ,

and so on. As shown in figure 3.9, the MC and RR interpretations require

the conjunction of specific values corresponding to tense, semantic fit,

and argument structure features. Note that only the RR interpretation re-

quires the transitive argument structure.

In some cases, as with the SCFG, we have relatively complete models

of the independence assumptions between probabilities. In other cases, as

with thematic and syntactic probabilities, we do not yet have a good idea

what the exact causal relationship is between probabilities. The simplest

Figure 3.8

Pieces of belief networks corresponding to two stochastic context-free grammar
parses for the prefix The witness examined . . .
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thing to do in such cases is to assume the probabilities are independent

and to multiply them. Figure 3.7 shows that Narayanan and Jurafsky

(1998) make a somewhat weaker assumption by using the noisy-and

model (Pearl 1988) in computing the conjunctive impact of the lexical/

thematic and syntactic support to compute the probabilities for the MC

and RR interpretations. A noisy-and model assumes that whatever

inhibits a specific source (syntactic) from indicating support for an

interpretation is independent of mechanisms that inhibit other sources

(lexical) from indicating support for the same interpretation. This assump-

tion, called the assumption of exception independence, is used widely

with respect to both disjunctive (noisy-or) and conjunctive sources. In

the case of the RR and MC interpretations, as each piece of new evi-

dence is introduced by reading new words, the posterior support for the

di¤erent interpretations is computed using the following equation:

PðMCÞ ¼ 1� Pð:MCÞ ¼ 1� Pð:MC jSyn;Lex;ThmÞ

¼ 1� ðPð:MC jSynÞ � Pð:MC jLex;ThmÞ

PðRRÞ ¼ 1� Pð:RRÞ ¼ 1� Pð:RRjSyn;Lex;ThmÞ

¼ 1� ðPð:RR jSynÞ � Pð:RR jLex;ThmÞ: ð51Þ

Let’s walk through the model word by word as it assigns probabilities

to the di¤erent parses of the initial prefix of three sentences:

Figure 3.9

The belief network that represents lexical and thematic support for the two inter-
pretations shown in figure 3.8 (A ¼ agent, T ¼ theme)
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(52) The horse raced past . . .

(53) The horse carried past . . .

(54) The horse found in . . .

Previous research has found that (52) causes a severe garden path

e¤ect, while (53) and (54) do not (Pritchett 1988; Gibson 1991). Naraya-

nan and Jurafsky’s (1998) approach models this garden path e¤ect via

the beam search assumption of Jurafsky (1996); interpretations whose

probability falls outside the beam width of the best interpretation are

pruned. Figure 3.10 shows the relevant posterior probabilities for the

example The horse raced past the barn fell and the replacement of raced

by carried or found at di¤erent stages of the input, expressed in terms of

the probability of the MC interpretation to the RR interpretation, or the

MC/RR ratio.

At the first point in the graph, the network expresses the probability

ratio after seeing the phrase the horse. The network is thus computing the

following probabilities:

Figure 3.10

The main clause/reduced relative (MC/RR) posterior probability ratio for raced

falls above the threshold and the reduced relative interpretation is pruned. For
found and carried, both interpretations are active in the disambiguating region.
(From Narayanan and Jurafsky 1998.)
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P(MC, S! NP . . . , NP! Det N, Det! the, N! horse j the, horse),

P(RR, S! NP . . . , NP! NP . . . , NP! Det N, Det! the,

N! horse j the, horse).

Next, the word raced appears, and the network computes the new poste-

rior probability ratio given this new information:

P(MC, S! NP VP, NP! Det N, Det! the, N! horse, VP! V . . . ,

V! raced, Vform, Agent jVform ¼ preterite, subject ¼ ‘‘horse’’,

verb ¼ race);

P(RR, S! NP VP, NP! NP VP, NP! Det N, Det! the,

N! horse, VP! V . . . , V! raced, Vform, Agent jVform ¼ participle,

subject ¼ ‘‘horse’’, verb ¼ race).

As shown in figure 3.10, Narayanan and Jurafsky’s (1998) model pre-

dicts that the MC/RR ratio exceeds the threshold immediately after the

verb raced is accessed (MC/RRA387g 5), leading to the pruning of the

RR interpretation. In the other cases, while the MC/RR ratio is tempo-

rarily rising, it never overshoots the threshold, allowing both the MC and

RR interpretations to be active throughout the ambiguous region.

Narayanan and Jurafsky (2002) tested their (1998) data further, by

modeling both sentence completion probabilities and reading time data

on 24 sentences from McRae, Spivey-Knowlton, and Tanenhaus 1998.

They also included in the model new probabilities taken from McRae,

Spivey-Knowlton, and Tanenhaus’s study that allow conditioning on the

identity of the preposition. Finally, they extended the model’s reading

time predictions by predicting an increase in reading time whenever an

input word causes the best interpretation to drop in probability enough to

switch in rank with another interpretation.

The first experiment modeled by Narayanan and Jurafsky (2002)

was the sentence completion experiment conducted by McRae, Spivey-

Knowlton, and Tanenhaus (1998), summarized above. Narayanan and

Jurafsky showed that the same factors integrated by McRae, Spivey-

Knowlton, and Tanenhaus using the competition-integration model can

instead be integrated by the Bayesian network shown in figures 3.8 and

3.9.

Figure 3.11 shows the human fragment completion preferences and

the probabilities the model assigned to the RR and MC completions.

The Bayesian model’s results correspond closely to the human judgments

about whether a specific ambiguous verb was used in the MC or RR
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construction. As in McRae, Spivey-Knowlton, and Tanenhaus 1998, the

data show that thematic fit clearly influenced the sentence completion

task. The probabilistic account further captured the fact that at the by

phrase, the posterior probability of producing an RR interpretation

increased sharply; thematic fit and other factors influenced both the

sharpness and the magnitude of the increase.

Narayanan and Jurafsky (2002) also modeled aspects of on-line read-

ing experiments from McRae, Spivey-Knowlton, and Tanenhaus 1998

discussed above. Recall that the latter authors showed that controlled

human reading time for good agents for arrested (e.g., cop) gets longer

after reading the by phrase (requiring cop to be a patient), while con-

trolled reading time for good patients (e.g., crook) gets shorter.

Narayanan and Jurafsky’s (1998) model predicts this larger e¤ect from

the fact that the most probable interpretation for the good agent case

flips from the MC to the RR interpretation in this region. No such flip

occurs for the good patient case.

Figure 3.12(a) shows that the good patient results already have an MC/

RR ratio of less than one (the RR interpretation is superior), while a flip

Figure 3.11

The main clause/reduced relative (MC/RR) posterior probability ratio for sen-
tence completion after each word, from the Bayesian model (Narayanan and
Jurafsky, in press) and human completion data (McRae, Spivey-Knowlton, and
Tanenhaus 1998)
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Figure 3.12

(a) Main clause/reduced relative ratio for the ambiguous region showing a flip for
the good agent case at the word the, as the ratio goes below 1, but no such flip
for the good patient case. (b) P(MC) and P(RR) for the good agent cases alone.
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occurs for the good agent sentences (from the initial state where MC/

RR > 1 to the final state where MC/RR < 1). Whereas figure 3.12(a)

shows MC/RR ratios for di¤erent initial NPs, figure 3.12(b) focuses just

on the good agent case and breaks the MC and RR probabilities into two

separate lines, showing the crossing point where the flip occurs.

3.3.6 Probabilistic Modeling of Production

We have now looked at the architectures of many probabilistic models of

comprehension. In production, by contrast, there seem to be no worked-

out probabilistic models. Perhaps the main cause of this, as Harald

Baayen (personal communication) points out, is that obtaining proba-

bilities for production studies is di‰cult, because it is so di‰cult to con-

trol the circumstances that will prompt a subject to coin a particular

sentence. In any case, modern models of lexical production such as those

developed by Levelt, Roelofs, and Meyer (1999), Dell (1986), and Dell et

al. (1997)—indeed most models, back to Morton’s (1969) seminal logogen

model—are based on some idea of activation that is tied in some way to

frequency. In a logogen-style model, a high-frequency word has a lower

activation threshold and hence is quicker to access. In other models, fre-

quency instead plays its role via the weights on links that pass activation

into a word node. In any case, Bates and Devescovi (1989) proposed that

this sort of frequency-based activation model also be used to model syn-

tactic frequency e¤ects. In their model, given a semantic input, the pro-

duction system allows various possible syntactic constructions and lexical

realizations to compete for access. Frequency and function both play a

role in ranking these competing realizations. Evidence for this role of

syntactic frequency comes from the study by Bates and Devescovi (1989)

discussed in section 3.2.6, which showed that in a controlled production

study, relative clauses occurred far more often in Italian production than

English production. They suggest that the frequency of relative clauses in

Italian may play a direct role in their being chosen in production.

In addition, Stallings, MacDonald, and O’Seaghdha (1998) and Ro-

land and Jurafsky (2001) suggest that various conditional probabilities

relating to a verb’s subcategorization frame play a role in production.

The experiment by Stallings, MacDonald, and O’Seaghdha summa-

rized in section 3.2.4 suggests that each verb is stored with a ‘‘shifting

disposition’’—a frequency-based preference for whether it expects to

appear contiguous with its arguments or not. Stallings, MacDonald, and

O’Seaghdha suggest that this preference plays an on-line role in choosing

88 Jurafsky



an interpretation in production. Roland and Jurafsky suggest that a verb

subcategorization probability is stored with the verb lemma and used in

production to select among alternative subcategorizations.

3.3.7 Conclusion

I have sketched, at a surface level, a number of probabilistic models of

comprehension. Most models focus on ambiguity, showing that human

preference for one interpretation of an ambiguous input can be predicted

by the probability of that interpretation. The rational models extend this

idea to investigate the role of cost and utility in disambiguation prefer-

ences. Finally, the most recent work has begun to explore a more fine-

grained relationship between probability and processing time.

3.4 Potential Challenges to and Confusions about Probabilistic Models

In this section, I discuss some commonly encountered challenges to prob-

abilistic models and introduce some frequently asked questions.

3.4.1 Surely You Don’t Believe That People Have Little Symbolic

Bayesian Equations in Their Heads?

No, probabilistic modeling of human language processing does not imply

that little Bayesian equations are somehow symbolically dancing around

in the head of a speaker. This misguided conception gives rise to a com-

mon objection to probabilistic models of language processing: that it

seems hard to believe that people are ‘‘doing complex math in their

heads.’’

Rather, many probabilistic modelers assume that probability theory is

a good model of language processing at what Marr (1982) called the

‘‘computational level’’: it characterizes the input-output properties of the

computations that the mind must somehow be doing. How this model is

realized at lower levels (of ‘‘implementation’’ or ‘‘algorithm’’) is an inter-

esting question that unfortunately cannot be addressed here (though see

some discussion in Baayen, this volume). The most common assumption,

however, is that probability is realized either as an activation level of

some mental structure or as a distributed pattern of activation. Stored

frequencies or probabilities can thus be encoded either as resting activa-

tion levels or as weights on connections. It is well known that the link

between neural network or connectionist models and probabilistic ones is

close (see, e.g., McClelland 1998). Other realizations of probabilistic
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models are possible, however, such as the exemplar models of phonology

developed by Pierrehumbert (2001b) and others.

It is important to mention an alternative possible relation between

probabilistic models and neural networks or other activation-based

models, suggested by Ariel Cohen (personal communication)—namely,

that probabilistic models are simply wrong, and that neural network or

connectionist models are a better and more explanatory model of human

language processing. Unfortunately, very little research has focused on

discriminating between probabilistic models and connectionist models.

Deciding whether probabilistic models are merely a higher-level descrip-

tion of connectionist models, or whether the two are mutually exclusive

alternatives, remains a key problem for future research.

3.4.2 Are Probabilistic Models Always Nonmodular?

Frequency-based, constraint-based, and probabilistic models have often

been opposed to models that exhibit Fodorian modularity (Fodor 1983),

or models based on rich linguistic structure. While any individual model

may make any particular confluence of claims, there is no necessary

link between probability and antimodularity. The probabilistic models

discussed in this chapter are generally models of the probability of

something—generally the probability of a certain linguistic structure, as

computed by humans in the course of linguistic processing. This fact

should make it clear that these probabilistic models are not meant to

argue for ‘‘using numbers instead of linguistic structure’’ or ‘‘random

number generators in people’s heads’’ (to cite two more standard but

misguided objections to probabilistic models). Some of the probabilistic

models sketched in this chapter are modular (e.g., the one proposed in

Crocker and Brants 2000); others are nonmodular. Some involve ‘‘emer-

gent’’ structure; others involve explicit structure. Furthermore, the use

of probability says nothing about whether many and varied proba-

bilistic constraints are used immediately, as most probabilistic researchers

believe, or after a delay of a few milliseconds, as some psycholinguists

have argued in o¤ering the garden path and construal models.

3.4.3 But Corpus Frequencies Don’t Match Norming Study Frequencies

The probabilities in the models described here are generally estimated

from corpus frequencies. A number of researchers have noticed that these

corpus frequencies do not always match the frequencies derived from

various psychological experiments. This mismatch might suggest that
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frequency-based models are not psychologically plausible. Recall, for

example, the work of Gibson, Schütze, and Salomon (1996) on English

and Mitchell and Brysbaert (1998) on Dutch, which suggested that

attachment preferences di¤er between corpora and production experi-

ments. Desmet, Brysbaert, and Baecke (in press) showed that, at least

in Dutch, this di¤erence disappears when the animacy of the NPs is

controlled.

Other such mismatches have been reported, however. For example,

Merlo (1994) compared verb subcategorization frequencies computed

from corpora with frequencies computed from psychological norming

studies. In a kind of psychological norming study called a ‘‘sentence pro-

duction’’ study, subjects are asked to write a sentence using a particular

verb. Transitivity biases are then computed from a collection of such

sentences. Merlo found that transitivity preferences in a corpus of Wall

Street Journal and DARPA Air Travel Information System sentences

di¤ered from transitivity preferences in norming studies such as Connine

et al.’s (1984).

Roland and Jurafsky (2001) followed up on Merlo’s research by look-

ing at the causes of subcategorization di¤erences between corpora such as

the Brown corpus and subcategorization norming studies such as Con-

nine et al.’s (1984). Their analysis suggests that most of the di¤er-

ences between these verb subcategorization frequencies came from two

factors. The first factor is word sense: di¤erent corpora tend to use dif-

ferent senses, and di¤erent senses tend to have di¤erent subcategorization

biases. The second factor is discourse and genre e¤ects: for example, the

single-sentence production tasks were much less likely to display passives,

zero anaphora, and other discourse-related phenomena than natural cor-

pus sentences. Roland et al. (2000) extended this study, examining the

subcategorization probabilities for 69 verbs. They found that after con-

trolling for verb sense, the binned subcategorization probabilities (high,

medium, and low transitive bias) for each verb were relatively stable

across corpora.

What are the implications for probabilistic models? Roland and Juraf-

sky (2001) and Roland (2001) proposed that the locus of verb sub-

categorization probabilities is the semantic lemma rather than the lexeme,

and suggested that the frequency of a particular verb subcategorization

in a corpus is a product of multiple factors. In particular, in lexical pro-

duction, lexical subcategorization probabilities, which are stored at the

semantic lemma level, might be combined with other probabilistic influ-
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ences from discourse and genre to produce the subcategorization patterns

observed in corpora.

Thus, the mismatch between corpus frequencies and psychological

norming studies is to be expected. These are essentially two di¤erent

kinds of production studies, with di¤erent constraints on the production

process. A probabilistic model of production that is correctly conditioned

on sense, genre, and other factors would correctly model the di¤erent

observed frequencies for these two kinds of corpora.

3.4.4 Maybe Frequency Is Just an Epiphenomenon

Another common objection to probabilistic and other frequency-based

models is that frequency is only an epiphenomenon of other structural

factors. One such claim relates to the processing of unaccusative and

unergative verbs in English. Unaccusative verbs (bloom, melt, blush, etc.)

and unergative verbs (race, slide, sail, etc.) are both typically intransitive,

but have been modeled as di¤ering in underlying lexical-syntactic form:

Unergatives NP [VP V] (external argument, no internal argument)

Unaccusatives [VP V NP/CP] (internal argument, no external ar-

gument)

Both unaccusative and unergative verbs generally alternate with a caus-

ative transitive form (e.g., unaccusative melt can be both intransitive and

transitive). Kegl (1995) has claimed that unaccusatives are particularly

hard for agrammatic aphasics to process. Her argument is based on

a study of an agrammatic aphasic subject, whose productions showed

a significant absence of unaccusatives when compared with those of a

matched control. Kegl’s explanation is that unaccusatives are like pas-

sives in involving traces, which are claimed to be generally di‰cult for

agrammatic aphasics to process (Grodzinsky 2000).

An alternative explanation might be based on frequency: as Gahl et al.

(in press) have suggested, the comprehension di‰culty of a verb might

vary with its frequency-based subcategorization bias, and unaccusative

verbs could occur more frequently in their intransitive than in their tran-

sitivized form. Gahl et al. tested this hypothesis with eight aphasic sub-

jects using a plausibility-in-comprehension task, with both transitive and

intransitive sentences. A given sentence thus either matched or didn’t

match the transitivity bias of the verb. Gahl et al. predicted that a sen-

tence should be easier to understand if its structure matches the tran-
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sitivity bias of its verb, and they predicted that there was no reason to

expect unaccusatives to act like passives. They found that unaccusatives

as a whole were much easier for their aphasic subjects to understand than

passives, that unaccusatives as a whole were not harder than unergatives,

and that in general sentences were easier when their syntactic structures

matched the subcategorization frequency bias of the verb. Thus, process-

ing of unaccusatives was influenced by frequency bias, rather than by

structural problems with traces.

Another claim that structure rather than frequency causes processing

di‰culty comes from Stevenson and Merlo (1997), who noticed that the

causativized form of unergative verbs (see (52a)) is more di‰cult to pro-

cess than the causativized form of unaccusative verbs (see (52b)).

(52) a. Causativized unergatives

The students advanced to the next grade had to study very hard.

The clipper sailed to Portugal carried a crew of eight.

The ship glided past the harbor guards was laden with treasure.

b. Causativized unaccusatives

The witch melted in The Wizard of Oz was played by a famous

actress.

The oil poured across the road made driving treacherous.

Stevenson and Merlo were extending a proposal of Hale and Keyser

(1993), in which verbs project their phrasal syntax in the lexicon.

Stevenson and Merlo proposed that causativized (transitive) forms

of unergatives are more complex than causativized (transitive) forms of

unaccusatives, in terms of number of nodes and number of binding rela-

tions. This complexity, together with limitations on creating and binding

empty nodes, caused Stevenson’s (1994) parser to be unable to activate

the structure needed to parse transitivized unergatives, hence explaining

the garden path e¤ect.

But an alternative explanation for the garden path e¤ect relies on the

subcategorization frequency biases discussed earlier. As Stevenson and

Merlo (1997) and Gahl (1999) show, unergative verbs like race have a

huge intransitive bias, and unaccusatives have a slight causative/transitive

bias, if anything (see table 3.6, and see Gahl 1999 for further details of the

comparison).

A frequency explanation for the di‰culty of these garden path sen-

tences also has the advantage of explaining gradient e¤ects. Filip et al.
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(2002), for example, have shown that some unergatives are easier to

understand in reduced relative clauses than others, which would be di‰-

cult to explain with a purely structural model.

The fact that frequency might be the psychological actor rather than

structural factors in this instance does not mean that structural, semantic,

or functional factors might not often be the causal force that is gram-

maticalized via frequency. Thus, it is crucial to continue to investi-

gate semantic or functional factors like those proposed by Stevenson and

Merlo (1997).

3.5 Conclusion

What is the state of knowledge about probabilistic modeling in 2002? We

know that the frequency of many kinds of linguistic structure plays a role

in processing. The strongest evidence for this role, however, exists only

for frequency related in some way to lexical items or to the relationship

between lexical items and syntactic structure. The role of probabilities

in nonlexical syntactic structure, while assumed in many probabilistic

models, rests on very little psychological evidence. This is perhaps un-

surprising, since the psychological evidence for constituency itself is so

weak. Nonetheless, understanding the role of frequency of larger struc-

tures is an important unsolved problem.

As for models, it is clear that probabilistic models of linguistic pro-

cessing are still in their infancy. Most models include only a very small

number of probabilistic factors and make wildly unjustified assumptions

about conditional independence. Furthermore, there is a dearth of work

exploring the crucial relationship between the neural network models,

which focus on emergence, distributional evidence, and the details of

input features, and Bayesian models, which focus on the mathematics of

evidence combination and independence assumptions. Nonetheless, some

conclusions are already possible. Probabilistic models do a good job of

selecting the preferred interpretation of ambiguous input and are starting

Table 3.6

Transitivity counts for unergative versus unaccusative verbs (From Gahl 1999.)

Transitive Intransitive

Unergative 2,869 13% 19,194 87%

Unaccusative 17,352 54% 14,817 46%
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to make headway in predicting the timecourse of this disambiguation

process.

Many unsolved problems remain. How exactly should prior probabil-

ities be estimated from corpora? What exactly is the relationship between

probability and reading or production time? We know that this relation-

ship is logarithmic, but little about how or why.

The constraints of space and time have made this survey of proba-

bilistic work in psycholinguistics unfortunately brief. I have given short

shrift to the role of frequency in recall, to the role of phonological and

orthographic neighborhood frequencies in processing, and, most distress-

ing, to the vast connectionist literature that is so closely related to proba-

bilistic modeling. Alas, those areas will have to await another survey.

Notes

Many thanks to the editors, Susanne Gahl, Alan Bell, and Ariel Cohen, and spe-
cial thanks to Harald Baayen for help and detailed comments above and beyond
the call of duty. An early version of this chapter was given as a talk at the
AMLAP 2001 conference in Saarbrücken; particular thanks to Matt Crocker,
Don Mitchell, and Brian McElree for helpful comments. Of course, all remaining
errors are my own.

1. Controlled reading times are computed by subtracting reading times for
reduced relative clauses from those for unreduced relative clauses.
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Chapter 4

Probabilistic Sociolinguistics:
Beyond Variable Rules

Norma Mendoza-Denton,
Jennifer Hay, and Stefanie
Jannedy

4.1 Overview

In this chapter we outline issues facing quantitative approaches in con-

temporary variationist sociolinguistic theory, surveying trends that led

scholars (1) to reject intuitive and categorical descriptions of language

data and (2) to use frequency-based and probabilistic approaches to the

modeling of language variation. We discuss the importance of linguistic

and social contexts in the description of variable linguistic behavior by

analyzing our data on the monophthongization of the diphthong /ay/ in

the speech of the popular African-American talk show host Oprah

Winfrey. We compare VARBRUL (variable rule-based logit analysis)

results with CART (classification and regression trees) results to high-

light the strengths and weaknesses of di¤erent tools in the modeling of

probabilistic phenomena. Implications for the theory of sociolinguistic

variation and for models of cognition are emphasized throughout. We

advocate a usage-based account for both linguistic processes and social

identity construction. Such an account allows for the continuous and

incremental updating of mental representations on the basis of new input,

and it synergistically captures advances in probabilistic linguistics and

in social identity construction theory. Social identities are transmitted

simultaneously with linguistic structures, and as such they represent

dynamic processes, continuously negotiated in interaction.

4.2 Background and History

4.2.1 Introduction

The study of sociolinguistic variation has faced di¤erent problems from

other fields of linguistics. While other branches of quantitative linguistics



have competed with schools of intuitive and categorical thinking (Bod,

this volume), sociolinguists have always started from empirical premises.

The very first statistically sophisticated studies that were conducted in a

modern sociolinguistic framework laid the foundation for debates on sta-

tistical modeling within this field. Past debates within sociolinguistics

have included the search for a unified statistical model and tools (Bic-

kerton 1971; Sanko¤ and Rousseau 1974); the interpretation of correla-

tional statistics linking social structure to linguistic forms, especially in

the field of language and gender (Eckert 1989; Labov 1990; Cameron

1990); and the positing of alternative models for the di¤usion of change

through a population, such as the implicational scale versus quantitative

model debate (Bickerton 1973; Romaine 1985; Rousseau 1989; see sum-

mary in Rickford 2001). Several of these debates have accorded privileged

status to questions of how to model the mathematics of sociolinguistics,

while paying short shrift to cognitive issues of the mental representation

of linguistic categories and of social processes. Recent work by Mendoza-

Denton (2001) and Eckert (1999) has pointed out that advances within

social theory and the evolution of understanding of sociolinguistic pro-

cesses challenge researchers to move beyond viewing social categories as

static, relegating them to simple decisions made by the analyst prior to

data analysis. Primary questions now surfacing are: How do social cate-

gories emerge from the distribution of data? How do abstractions such as

ethnicity and gender emerge from the many di¤erent ways that speakers

have of fashioning themselves as classed, gendered, or ethnic social

agents? Although some of the current methods (such as VARBRUL and

CART) constrain researchers in selecting discrete variables within socio-

demographic categories (coding tokens for age, ethnicity), we propose

utilizing a variety of techniques (including discourse and conversation

analysis) to more closely examine specific instances of variables and the

contexts of their use to determine how social meaning is constructed.

Exemplar theory, a frequency-based model emerging in areas such as

phonology and morphology (Pierrehumbert, this volume), can lead the

way to unification with social-theoretic understandings of the role of

innovative social actors in communities of practice. In exemplar theory,

categories are not preexisting, but are established as dynamic (continu-

ously and incrementally updated) generalizations of linguistic data over

increasingly abstract domains. The robustness of the categories depends

on frequency of the input that can be classified under that category, and

on the recency of the stimulus.
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There is a groundswell of evidence that much social information is

carried in moment-to-moment performances by key individuals—icons

—in local communities (Eckert 1999; Labov 2001; Mendoza-Denton

2001; Schilling-Estes 2001). Performances by these social brokers in

the linguistic marketplace are subject to the same cognitive constraints

of robustness and frequency that underlie other areas of symbolic

manipulation.

After reviewing some of the early sociolinguistic literature on variation

and on the variable rules framework, we present an extended example

analyzing a socially iconic speaker—Oprah Winfrey—with two statistical

modeling techniques, supplemented with discourse analysis, showing how

her use of specific variants contributes to the construction of her linguistic

style.

4.2.2 Against Intuition

Sociolinguistics explores the social correlations of patterns of human lin-

guistic behavior at all levels of grammar, ranging from phonology and

syntax to semantics and discourse. The quantification of performance

data to explore and explain speakers’ linguistic competence in social

situations has been a staple of the sociolinguistic paradigm. Unlike the

methods used in some other areas of linguistics, those deployed by socio-

linguists are empirical in nature and require the modeling of quantitative

patterns to draw conclusions about speaker competence. It is not assumed

that linguistic innovation, nuances in speech patterns, or variants of lex-

ical choice are in free variation. Rather, they are manifestations of the

subtle patterning and interaction of linguistic and social competence.

A speaker has choices to make when selecting which words to use in

crafting a sentence, whether to release a word-final stop, or whether to

raise a high vowel to display more extreme formant values. These choices

carry social meaning at the moment of utterance, and the gradual cumu-

lative steps of innovators may lead to category shifts with the power to

rearrange entire linguistic systems. Through the analysis of historical

records we gain insight into the succession of linguistic changes, such as

those precipitated by the English Great Vowel Shift. Historical evidence

and contemporary recordings can be used to show the gradualness of

these changes, the lexical di¤usion of their carrier items through the pop-

ulation, and their continuing consequences in current structural reorga-

nizations, such as the Northern Cities Chain Shift in the United States

(Eckert 1989; Labov 2001).
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Sociolinguistics is concerned with capturing not only patterns of

change, but also variation across speakers of di¤erent speech commu-

nities, among speakers in a single speech community, and in the speech of

individuals. Variability follows the twin constraints of (1) being condi-

tioned by language-internal factors and (2) participating in processes of

social semiosis—a dual meaning-making system par excellence. Because

there is little room in generative linguistic frameworks to explore and

explain either noncategorical changes or stable variation, much work in

that vein has been devoted to describing the endpoints of changes, vari-

ability being dismissed as randomness or noise. Categorical descriptions

of language data ignore the triggers and mechanisms of variability, their

social motivation, and the productivity of such linguistic patterns.

As far back as 1937, Bronislaw Malinowski outlined a view of the

essential dilemma facing linguistics:

. . . whether the science of language will become primarily an empirical study,
carried out on living human beings within the context of their practical activities,
or whether it will remain largely confined to deductive arguments . . . (1937, 63)

This chapter will argue that current quantitative models of language

behavior may still benefit from further investigation precisely of the form

that Malinowski advocated: carried out on living individuals in the course

of practical activity, shedding light on both linguistic form and questions

of social structure.

Hymes exhorted his linguistic contemporaries to take up research in a

nascent field called sociolinguistics, the goal of which was to ‘‘identify

rules, patterns, purposes, and consequences of language use, and to

account for their interrelations’’ (1974, 71). The definitional core of this

field was and remains a theoretical concern for the interrelationship and

the codependence between components of linguistic structure and of

social structure. Why is this inherently a probabilistic problem? Socio-

linguists commonly understand the linguistic variable as ‘‘a construct that

unites a class of fluctuating variants within a language set’’ (Wolfram

1991, 23), reflecting a decision point at which a speaker chooses between

alternative ways of saying the same thing.

The central probabilistic sociolinguistic questions then become: What

factors a¤ect a speaker’s decision to use one variant over another? How

can we best model the simultaneous influence of these linguistic and social

factors at that particular decision point? How does the use of a particular

linguistic variant reflect social membership? And what can the distribu-
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tion of alternative forms in the social landscape reveal about the internal

synchronic and diachronic workings of linguistic structure?

We take the multiple determination of variables as a given: it is not

only the internal organization of linguistic structure (i.e., phonological

context) that shapes variation, but also social settings and characteristics

of speakers, all operating in concert and reflected in language (cf. Bay-

ley’s (2001) principle of multiple causation).

Labov (1966, 1972) showed that through the frequencies of the various

phonetic manifestations of underlying phonological /r/, New Yorkers

displayed finely tuned linguistic performance reflecting social classes, eth-

nic groups, and even such subjective factors as the level of formality

in the speech situation. Rhoticity, the presence or absence of a pro-

nounced syllable-coda /r/, varied in predictable and replicably measur-

able ways. However disparate their informal production, New Yorkers

demonstrated their orientation to the current rhotic standard by exhibit-

ing variation wherein formal speech was always more rhotic than informal

speech, across all social classes and across all ‘‘styles’’ (word list, reading

passage, formal interview, unstructured interview). Figure 4.1 illustrates

class stratification in New York City as reflected in a linguistic variable.

The vertical axis represents a phonological index for (r), where 100 would

reflect a completely r-ful dialect and 0 would reflect a completely r-less

one. The interview contexts that appear on the horizontal axis are

designed to elicit increasingly careful, standardized speech. This figure

shows that as the formality of the context increases, from casual speech

through minimal pairs, so does the production of rhotic speech across all

social groups. No group is categorically r-ful or r-less, and all groups

exhibit a finely grained pattern of linguistic behavior that indicates con-

sciousness of the r-ful form as the prestigeful target. On the basis of their

collective orientation toward the same prestigeful targets across di¤erent

variables—Labov studied (r), (th), and (-ing)—these randomly sampled

New Yorkers could be classified as a single speech community. In the

production arena, social di¤erences are shown in patterns of variation. In

the perceptual arena, social inferences are drawn from the architecture of

variation.

Labov’s (1966, 1972) study precipitated a scientific paradigm shift in

the study of language and society. Since then, much sociolinguistic work

has been carried out using the methodology of the sociolinguistic inter-

view, a structured oral interview protocol that was originally designed to

be administered to a large, randomly sampled, stratified urban population
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of the sort studied by sociologists. Indeed, Labov’s innovative interview

method was first undertaken as part of a sociological survey of New York

City. Soon thereafter, in the 1960s and 1970s, large-scale, quantitative

studies began in other urban areas. Such studies aimed to model di¤erent

strata of speech communities by including large numbers of speakers,

varying with respect to age, ethnicity, socioeconomic status, and gender.

Modern sociolinguistics is firmly grounded in the belief that language

change is propelled by social variation, where innovative speakers push

the envelope of preexisting changes, simultaneously abstracting from and

constrained by structural linguistic factors. Linguistic facts that appear

synchronically categorical—the lack of grammatical gender agreement in

Figure 4.1

Class stratification of a linguistic variable in the process of change: (r) in guard,
car, beer, beard, board, and so on. SEC (socioeconomic class) scale: 0–1, lower
class; 2–4, working class; 5–6, 7–8, lower middle class; 9, upper middle class. A,
casual speech; B, careful speech; C, reading style; D, word lists; D 0, minimal pairs.
(From Labov 1972, 114.)
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English, for instance—appear from a diachronic perspective as the end-

point of a change that has been carried through to completion. Much of

the motivation for presenting data on age-graded, style-based, or gen-

dered stratification is to support claims of changes in progress. Indeed,

the old notion of ‘‘free variation’’ has been entirely replaced in socio-

linguistics by the notion of a change in progress, where the variable in

question is assumed to be part of a system in flux, and the task of the

sociolinguist is to identify, from a naturalistic sample, which is the con-

servative usage, which is (are) the innovative usage(s), who the innovators

are, and what structural constraints they face.

To date, hundreds of urban studies in the United States and around the

world have applied some version of the sociolinguistic interview method-

ology (though it is not without its problems—see Wolfson 1976; Briggs

1986), eliciting informal speech by asking interviewees what their child-

hood games were like, whether they have ever come close to death, and

what kinds of changes they have experienced in their lifetimes (for a de-

tailed explanation of the design of a sociolinguistic interview, see Feagin

2001). This method has proved remarkably productive and has served

in creating finely stratified models of the speech of urban populations.

This particular area of inquiry has come to be called urban dialectology,

and here we cite but a few recent examples: Silva-Corvalán 1989 for

Santiago, Chile; Thibault and Daveluy 1989, Thibault and Sanko¤ 1993

for Montreal, Canada; Tagliamonte 1999 for York, U.K.; Kontra and

Váradi 1997 for Budapest, Hungary; Lennig 1978 for Paris, France;

Trudgill 1974, 1988 for Norwich, U.K.; Horvath 1985 for Sydney, Aus-

tralia; Rickford 1986 for Guyana; Haeri 1998 for Cairo, Egypt; and

Labov, Ash, and Boberg, in press, for 145 cities in the United States

alone, where sociolinguistic interview methodology and minimal pair

elicitation have been combined to produce The Atlas of North American

English.

4.2.3 Beginning with Frequency

Some of the first studies of language variation were done on socio-

linguistic interview corpora, using frequency-based information to locate

patterning in the production of linguistic variables. For instance, Wolf-

ram (1974, 202) investigated linguistic contact among African-American

and Puerto Rican speakers in New York City by examining their rates of

monophthongization of /ay/. Monophthongization of /ay/ is understood
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to be an African-American English feature typically not present in

Euro-American dialects in the northern United States such as that of

New York City. Wolfram hypothesized that linguistic influence from

African-Americans was the source of greater frequencies of mono-

phthongization among Puerto Rican speakers with extensive contacts in

the African-American community, as compared to those with limited

contacts (see table 4.1). Although this brief example does not fully

portray the complexity of Wolfram’s findings, we will borrow it to help

illustrate two extended points, one sociolinguistic-methodological and

one mathematical.

First, in appealing to social explanations for the patterning of linguistic

data, and to ensure their validity and replicability, students of variation

begin by thoroughly investigating the social categories extant in a given

community. Often this takes the form of prolonged ethnographic, partic-

ipant observation fieldwork within the community in question. This par-

ticular feature of investigative inquiry minimizes the observer’s paradox

and creates a number of close connections between sociolinguistics and

qualitative social sciences such as anthropology. In this case, Wolfram

based his categorization on participant observation in addition to a fol-

low-up interview designed to probe aspects of social contact between the

African-American and Puerto Rican communities. Note that his cate-

gories go beyond census-based ‘‘ethnic’’ categories, instead reflecting

associative groups in the community.

Second, the reasons behind quantitative variationists’ shift in the

direction of probabilistic approaches are also apparent in this example.

Looking at the distribution of the variants in table 4.1 is not enough, for

instance, to determine the comparability of the distribution of linguistic

contextual factors in the interviews of di¤erent associative groups, or

whether the contributions by subvariants within the variables are compa-

Table 4.1

Percentages of monophthongized /ay/ tokens in the speech of African-American
speakers (AA), Puerto Rican speakers with extensive African-American contacts
(PR/AA), and Puerto Rican speakers with limited African-American contacts
(PR). (Adapted from Wolfram 1974.)

AA PR/AA PR

No./Total 190/247 104/148 261/657

% monophthongized 76.9 70.3 39.7
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rable (Wolfram 1991, 25). Consider as examples of possible disparities

two imaginary conditions: (1) that the distribution in the above case

could be the result of a particularly frequent discourse marker that carries

the monophthongized realization of the variable in question (such as like

[la:k]); and (2) that such a marker is unevenly distributed in the speech

community, with one of the groups using it much more frequently than

the others. In such a case, we would have an irrecoverable distributional

anomaly in the data, and the comparison of marginals (raw percentages)

would be misleading. Providing frequency counts for each particular

phonological context runs into a similar problem, since there are di¤erent

numbers of total tokens in each group, and contexts before /k/ would be

overrepresented in one group versus the other, causing a similar skew in

those data.

And yet the following questions remain: Is the skew resulting from

unevenly distributed linguistic contexts an artifact of the data collection

method? Why do sociolinguistic data require collection methods di¤erent

from those used in collecting other linguistic data? Couldn’t all the

distributional anomalies be easily avoided if the researcher controlled

contexts and used laboratory elicitation? Part of the challenge of socio-

linguistics is to take up the Malinowskian question introduced at the

beginning of this chapter: shall we study language as a static entity, as it

may occur word by word in isolation, or shall we study it as it unfolds in

vivo, minimizing the e¤ects of the laboratory and of the interviewer as

much as possible?

The construction of a sample of naturally occurring speech is a di¤er-

ent enterprise from the construction of a random sample in a demo-

graphic study, or of an experimental paradigm that can control exact

numbers of presentations of stimuli, repetitions, ordering of contexts, and

so on. Sociolinguistic data di¤er from census or experimental psychology

data in that it is usually impossible to predict how often the relevant

phenomenon will occur in the flow of naturally occurring conversation.

Contributions to numerical skew and unreliability of pure proportional

information and frequency counts may include the following:

1. Unevenly populated speaker categories. These may emerge because

of distributional facts about the subject population, including rates of

response in a door-to-door interview situation, or nature and number of

participants in a naturalistic speech activity. Investigating a talk show

situation such as The Oprah Winfrey Show, with a female talk show host
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and a preponderance of female guests, easily illustrates such di‰culties.

These demographic di‰culties as well as the time-intensiveness of tran-

scription lead researchers to rely on a small sample size for speakers and

to concentrate on collecting relatively long speech samples from each

speaker, the standard length of a sociolinguistic interview being at least

an hour.

2. Widely disparate frequency of forms. Certain variants of the variable

in question may be possible but rare in naturalistic discourse. For exam-

ple, Matsuda’s (1993) study of analogical leveling found that some of

the target variants of the potential forms of vowel-stem verbs seldom

occurred in Tokyo Japanese discourse, with a frequency of four or five

tokens per 90-minute interview. By its very design, the sociolinguistic inter-

view is structured but not controlled, and additional methods may have

to be devised (Matsuda’s solution was to deploy ingeniously worded ques-

tions designed to elicit the elusive constructions (1993, 7)).

3. High proportion of empty cells. This is an extension of point 2, but

often a mathematically fatal condition for certain kinds of statistical

models (i.e., analysis of variance, chi-square) that demand controlled

data. For example, phrases that appear to be possible in the combina-

torics of generative syntax may be pragmatically restricted or may simply

be unattested in the data set.

These factors contribute to the poor fit of sociolinguistic data to summary

statistics such as percentages, and to analyses such as sum-of-squares

approximations, setting the stage for multivariate probabilistic methods.

4.3 Incorporating Probability into Sociolinguistics

4.3.1 What Is/Was a Variable Rule?

Shortly following his first sociolinguistic studies of New York City,

Labov (1969) proposed the variable rule. Working within the rule-based

framework used in Chomsky and Halle’s (1968) The Sound Pattern of

English, Labov introduced the variable rule by distinguishing it from the

categorical rule and

associat[ing] with each variable rule a specific quantity f which denotes the pro-
portion of cases in which the rule applies as part of the structure of the rule itself.
This proportion is the ratio of cases in which the rule actually does apply to the
total population of utterances in which the rule can possibly apply, as defined by
the specified environment. The quantity f [in a variable rule] thus ranges between
0 and 1; for all categorical rules . . . it follows that f ¼ 1. (1969, 738)
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This quantitative extension of the categorical rule framework was fol-

lowed by a mathematical model developed by Cedergren and Sanko¤

(1974) and Sanko¤ and Labov (1979).

A new family of notational conventions accompanied the positing of

this new theoretical possibility. One of the best-studied variables in socio-

linguistics is word-final -t/-d deletion (e.g., [wes] for west), a common

process that displays morphophonological, class-stratified variability in

all English dialects. Variable rules soon ceased to be written with specific

frequencies, because depending on a speaker’s level of formality or social

class the researcher would get di¤ering frequency information, though the

ordering and strength of constraints was similar for speakers in the same

speech community (Fasold 1991). Thus, the constraints were assigned

Greek alphabet letters in order of strength (a being the strongest). The

following variable rule describes -t/-d deletion in Wolfram’s data (Fasold

1991, 4; based on Wolfram 1974):

(1) [d]! hqi / h[�gstress]ih�b#i ## h�aVi

This rule states that word-final [d] optionally deletes when it is (1) in

an unstressed syllable, (2) not a su‰x, or (3) not followed by a vowel.

Deletion is most likely when condition (3), the strongest constraint, is

met.

Ordering the constraints is helpful, but it cannot fully describe which

choice in the set will be used by a speaker as a member of a particular

group. A probabilistic model can be derived to evaluate the contributing

influences of each variable constraint. The VARBRUL family of statisti-

cal programs was originally developed by Rousseau and Sanko¤ (1978a)

specifically to deal with the quantitative modeling of sociolinguistic data

displaying the complexities described above. It is important to keep in

mind the distinction between the variable rule theoretical framework for

understanding sociolinguistic variation and the VARBRUL family of

statistical programs, which is still used despite relative agnosticism by

practitioners about what it actually models (Fasold 1991).

4.3.2 A Variable Rule Is Not a Generative Rule

The theoretical proposal of variable rules was immediately viewed with

skepticism by generative grammarians and castigated in a series of arti-

cles, notable among which is Kay and McDaniel 1979. Here we examine

the nature of this debate and its implications for underlying cognitive

structures.
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Although Labov, Cedergren, and Sanko¤ did not see the introduction

of variable rules as a major departure from the concept of rules in lin-

guistic theory, Kay and McDaniel argued that the variable rule was in

fact such a radical departure that ‘‘it leads to a conceptual muddle in so

far as its proponents think they are working within the generative frame-

work’’ (1979, 152). To illustrate, Kay and McDaniel borrowed Chom-

sky’s hypothetical context-sensitive rules for a simple natural language.

Here rule (2b) is optional:

(2) a. S ! ab

b. ab! aSb

These rules generate the set of all strings in a language where n instances

of a are followed by n instances of b, as in fab; aabb; aaabbb; . . .g. Within

this framework, there are di¤erent kinds of rules: obligatory rules like

(2a), and optional rules like (2b) that specify more than one possibility in

the derivation and allow for the generation of infinite sets of sentences

with fixed rules. In terms of the hypothetical language above, a third

optional context-sensitive rule might be posited, yielding strings such as

facbb; aacbbb; . . .g:

(3) a! c / b

This rule is already extremely close to being a variable rule in the sense

introduced by Labov (1969). The only di¤erence is that in addition to

having contextual information, a variable rule has frequency information,

and where (3) can be stated as ‘‘Realize a as c in the context before b

sometimes,’’ a variable rule might be stated as ‘‘Realize a as c in the

context before b 69% of the time, when conditioned by the following

variables . . .’’ Kay and McDaniel argued that the leap from ‘‘sometimes’’

to a specific frequency is unwarranted, since ‘‘[t]he frequency with which

a sentence is produced as an utterance (token) is completely irrelevant.

Hence a ‘rule’ which is concerned with predicting token frequencies is not

a rule of (generative) grammar’’ (1979, 153). Kay and McDaniel noted

with alarm the break and incompatibility between the categorical nature

of rules in closed, discrete, deductive-inferential systems and the gradient

quality of the new variable rules, based on open-ended, continuous, and

inductive-inferential systems (Romaine 1985; Givón 1979). But what are the

di¤erent cognitive implications in these two representational statements?

Sanko¤ argued that ‘‘the formal models of grammatical theory have

discrete structures of an algebraic, algorithmic and/or logical nature’’
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(1985, 75), allowing speakers to make a choice between two or more

equivalencies (e.g., allophones) that might carry the same denotation. He

continued, ‘‘By allowing a degree of randomness into the choice between

such alternates, the grammatical formalisms are converted into proba-

bilistic models of linguistic performance.’’ Here, Romaine argued, is pre-

cisely where the chasm lies: generative grammars ‘‘do not generate true

sentences or actual utterances, which are then checked against some cor-

pus; they generate correct sentences. . . . In the most general terms, this

type of grammar is a set of devices which check derivations for well-

formedness’’ (1985, 59). Much like the laws of abstract algebra or sub-

atomic physics, which cannot be tested against a corpus, so the aim of

linguistic grammars is not to compare their output to naturalistic speech.

Romaine further argued that if one were to truly extend the generative

framework, a central characteristic of a sociolinguistic grammar would

have to be sociolinguistic well-formedness. This sensitivity to social con-

text is already about utterances in the world, and by its very violation of

the principles of abstract derivation described above, it fatally fails to

conform to the notion of what is meant as the object of description of a

generative grammar.

Sanko¤ did not see variable rules as claiming a particular type of

ontological status for the surface output they describe (Sanko¤ 1988), and

yet Labov stated, ‘‘We can say that the kinds of solutions o¤ered to

problems such as consonant cluster simplification, copula deletion, and

negative concord represent abstract relations of linguistic elements that

are deeply embedded in the data. It is reasonable to suppose that they are

more than the constructions of the analyst, they are the properties of

language itself ’’ (1972, 259). This does not necessarily imply that Labov

believed in exact isomorphism between models and the phenomena

described by the models, as Romaine suggested (1985, 65), but it does

point to the possibility of understanding variable rules in two di¤erent

ways: as a building block in a progressively more exact description of

how humans cognitively organize language (Labov), or simply as a sta-

tistical ‘‘display tool’’ (Fasold 1991), which sociolinguists may use to dis-

cern the various influences in their data.

While during the 1970s much of the debate over variable rules revolved

around challenges from generative theoreticians and increasing refine-

ments in the mathematical model, urban dialectology scholarship from

the 1980s onward split in two directions: one that adopted variable rules

as a modus operandi and applied them in di¤erent sociolinguistic contexts
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and to larger linguistic domains such as syntax (Weiner and Labov 1983;

Rickford et al. 1995) and discourse (Vincent 1991); and one that chal-

lenged the use of variable rules altogether because of the perceived lack

of a coherent stance on the nature of representation (Gazdar 1976;

Sterelny 1983), or over the issue of whether percentages can be part

of a speaker’s knowledge of the language (Bickerton 1971; Butters 1971,

1972, later reversed in Butters 1990). Other challenges have arisen with

the charge that because of their reliance on aggregate data, variable

rules obscure information about individual performance (Itkonen 1983;

Bickerton 1971; for a refutation see Guy 1980). Especially as generative

linguists have moved away from rule-based frameworks and toward

constraint-based frameworks like Optimality Theory and the Minimalist

Program, most sociolinguists have been less inclined to make statements

about the psychological reality of variable rules (Fasold 1991).

Fasold (1991, 10) observes that variable rules are designed to make ob-

jectivist predictions about the frequencies with which certain rules would

apply under certain contextual conditions. However, we must also con-

sider possible subjectivist probabilistic interpretations—choice models—

of variable rules such as that espoused by van Hout (1984).

4.3.3 The VARBRUL Program

As a family of computer programs developed specifically to deal with the

data of sociolinguistic variation, the VARBRUL programs are similar to

logistic regression models. Practitioners working within the VARBRUL

framework use the criterion of maximum likelihood estimation for deter-

mining how well a model with a given set of factors fits the data. The full

details of the mathematical development of VARBRUL and its relation-

ship to the variable rule framework appear in Cedergren and Sanko¤

1974; Rousseau and Sanko¤ 1978a,b; Sanko¤ 1985, 1988; Sanko¤ and

Labov 1979 (a reply to Kay and McDaniel 1979); and Rousseau 1989.

Detailed instructions for employing the software are available in Young

and Bayley 1996.

Binary logistic regression is also available in most modern statistics

packages. It either goes by a name such as ‘‘logistic regression’’ (e.g.,

LOGISTIC in SAS, or Binary Logistic in SPSS) or can be implemented

within a generalized linear model (e.g., GENMOD in SAS, or glm in

S-Plus), by selecting a link function of ‘‘logit’’ and/or distribution of

‘‘binomial.’’ One di¤erence between VARBRUL and commercially

available alternatives is the form of reporting of the coe‰cients, or
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‘‘weights,’’ assigned to the selected independent variables. VARBRUL

reports weights as probabilities, whereas other programs report them in

logit form (i.e., as natural log of an odds). VARBRUL probabilities

range between 0 and 1, with values below .5 indicating a disfavoring

e¤ect and values above .5 indicating a favoring e¤ect. Corresponding

logit values range between negative infinity and positive infinity, and

when p is .5, the logit is 0. While no upper or lower bound exists for the

logit, it is undefined when p equals exactly 1 or 0 (see discussion in Knoke

and Bohrnstedt 1994, 334). Probability weights can be transformed into

logit values by taking the log odds; that is, logit ¼ logeðpi=ð1� piÞÞ. For

further discussion of the logit function, see Manning, this volume, and

Zuraw, this volume.

The formulas for the logistic or generalized linear model of

VARBRUL in use today are as follows. Formula (1) is the generalized

linear model:

log
p

1� p

� �

¼ w0 þ w1 þ w2 þ � � � þ wn; ð1Þ

where w0 is an input weight and w1 . . . wn are contextual factor weights.

Logðp=ð1� pÞÞ is the logit function, while log stands for the natural log-

arithm (with base e).

For each n, wn is equivalent to logðpn=ð1� pnÞÞ. Thus, (1) is equivalent

to

log
p

1� p

� �

¼ log
p0

1� p0

� �

þ log
p1

1� p1

� �

þ log
p2

1� p2

� �

þ � � �

þ log
pn

1� pn

� �

; ð2Þ

where p0 is an input probability and p1 . . . pn are contextual probabilities.

And since log xy ¼ log xþ log y, (2) is also equivalent to (3), one of

the most currently used multiplicative equivalents of (1):

log
p

1� p

� �

¼ log
p0

1� p0
� p1

1� p1
� p2

1� p2
� � � � � pn

1� pn

� �

: ð3Þ

VARBRUL estimates the contextual factor probabilities by combin-

ing the input probability ( p0, the likelihood that this variable ‘‘rule’’

may apply in the overall data set, regardless of any contextual in-

fluences) with the specific factor weights for all the factors included in the

model.
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Using a technique based on the dynamic clustering of Diday and col-

leagues (Sanko¤ 1985; Bochi et al. 1980), Rousseau (1978, 1989) further

developed the log likelihood test, a procedure that tests whether a con-

straint has an e¤ect that is significantly di¤erent from another in its con-

straint family. This test partitions the data into subsets and compares the

di¤erence between the log likelihoods of the subsets, comparing them to

an analysis of the data without any partitions. From this test, it is possi-

ble to arrive at the optimal likelihood analysis as well as the optimal

number of factors within each factor group.

4.4 Stylin’ Oprah: A Case Study Exercise in Probabilistic Sociolinguistics

This section will illustrate the use of the VARBRUL program with an

extended example drawn from our work on the speech of the Ameri-

can daytime TV talk show host Oprah Winfrey. We will begin with a

description of the larger project and then discuss the application of the

VARBRUL program to our data.

4.4.1 Data and Analysis

Our work attempts to describe variation in the speech of Oprah Winfrey.

Style shifting (intraspeaker variation) in Winfrey’s speech has been

observed by other analysts and has been characterized as a device to

appeal to a cross-section of viewers; most analyses in the literature have

centered on topic and lexical choice (Lippi-Green 1997; Peck 1994).

Winfrey herself is originally from Kosciusko, Mississippi. She spent

all of her language acquisition years in the U.S. South, attending high

school and college (and beginning her broadcasting career at the age of

19) in Nashville, Tennessee. She later moved to Baltimore and then to

Chicago where she currently hosts her show. We may then expect that

in her speech she would draw from two overlapping repertoires: re-

gional African-American English phonological features of the U.S. South

and the supraregional speech variety that is normative in commercial

broadcasting.

We suspected context-dependent style shifting at the sociophonetic

level in Winfrey’s speech and have thus far analyzed some early results on

monophthongization of /ay/ (Hay, Jannedy, and Mendoza-Denton 1999;

Hay, Mendoza-Denton, and Jannedy 2000). We call the phenomenon

monophthongization simply for the sake of convenience. It is not our

intent here to investigate which variant is underlying, the monophthongal
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or the diphthongal one, but merely to posit that Winfrey’s speech does

vary, and that it does so in a patterned way. We do not assume an

abstract representation for the phoneme /ay/; rather, we assume a distri-

bution that encompasses the range from fully monophthongized to fully

diphthongized forms.

Style shifting has been shown to be sensitive to many elements of the

speech situation, including addressees, topics, referees, and even over-

hearers (Mendoza-Denton 1999). Rickford and McNair-Knox (1994)

found that syntactic and phonological features of African-American Ver-

nacular English covaried in the speech of an African-American teenage

girl (Foxy) along two axes: Foxy’s speech changed depending on whether

her interlocutor was African-American or European-American, and

depending on whether the topic was school-related or non-school-related

(friendships and recreation). A similar result suggesting a strong unity of

‘‘styles’’ correlating with topics was found by the California Style Col-

lective (1993), who looked at sociophonetic, prosodic, and discourse-

marking features and their co-occurrence patterns in the speech of a

Euro-American California teenager, nicknamed Trendy. Trendy’s index

of innovative features, like Foxy’s, correlated with school topics, and

even with subtopics, such as descriptions of individual groups of people

within the social landscape of her school.

In our study, we have isolated samples of The Oprah Winfrey Show

where Winfrey is talking into the camera or to a television studio audi-

ence, without a specific interlocutor. The lack of a specific addressee is

crucial: this is the closest we can come in this naturally occurring situa-

tion to controlling for the e¤ects of specific interlocutors. Concentrating

on the absent persons to whom Winfrey refers in the various segments

(who happen to be both topics and referees in this case) allows us to code

the segments ‘‘about’’ a referee under a single code and to include the

characteristics of these referees as our independent variables.

Most of the segments we coded were short passages describing a par-

ticular guest or brief announcements of upcoming shows. For instance,

the following transcribed segment, all coded as keyed to the referee ‘‘Tina

Turner,’’ includes five examples of /ay/ (my, wildest, Friday, night, trying):

But let me tell you about tomorrow’s show. Tina Turner, we’re following Tina
around the country, Tina Turner made one of my wildest dreams come true, and
you’re gonna get to see it tomorrow, that’s Friday. Actually last night, we were
onstage dancing with Tina Turner. There’s a brief look at our rehearsal: that’s me,
trying to keep in step with Miss Tina, you’ll see that on tomorrow’s show, it’s
great fun. (The Oprah Winfrey Show, May 2, 1997)
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It is important here to note that our codings for individual referees are

not strictly codings of referents but codings of global referee-as-topic.

Thus, in this instance, the coding of the vowel in the first person pronoun

my is keyed to the referee ‘‘Tina Turner,’’ on the basis of prior findings

about the importance of topics in the organization of variation (Rickford

and McNair-Knox 1994).

A probabilistic model of sociophonetic-level behavior seeks to under-

stand each instance of dependent variable /ay/ as a decision point for

the speaker. Following the analogy of Preston (1991), the speaker must

decide how to flip the variable coin: whether to pronounce the phono-

logical diphthong /ay/ with a diphthongal phonetic realization [ay], a

monophthongal one [a:], or something in between. For the purposes of

reporting these results, we will look at the monophthongal realization as

the surface variant we are trying to model. We begin with an input weight

of .32 for the data set from this speaker (the likelihood that the mon-

ophthongal variant will occur across all contexts in her speech), since the

monophthongal variant occurs about 32% of the time. Various indepen-

dent variables such as situational characteristics, variables in the linguistic

context, or characteristics of the referee will weight each particular ‘‘coin

toss’’ in one direction or another. We attempt to account for factors

that may modify this input weight and a¤ect monophthongal realization

either by promoting it or inhibiting it. In investigating whether Winfrey

will choose to monophthongize /ay/ (if indeed this process can be char-

acterized as residing solely in the speaker’s choice space), the question we

mean to ask through the use of probabilistic methodology is: What possi-

ble social or linguistic factors, or their combination, influence this choice?

Possible factors might be sociodemographic characteristics of the referee

(in this case the African-American singer Tina Turner), the phonological

and prosodic environments of the segment, or the frequency of the

carrier lexical item. To test these questions, we coded the data with factors

that include both the linguistic or ‘‘internal’’ and referee-sociological or

‘‘external’’ factors.

We coded 229 words containing /ay/ taken from discontinuous selec-

tions of approximately six hours of The Oprah Winfrey Show, from seg-

ments that aired in the 1996–97 season. We examined tokens by means of

both auditory and acoustic criteria. Two phonetically trained listeners

performed an auditory analysis of the data: a token was coded as mon-

ophthongized if and only if the listeners agreed on the classification. To

provide acoustic verification of the auditory analysis, the vowel quality
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was coded on the basis of spectrographic displays: each token in the

data set was labeled either as a monophthong or as a diphthong from

wide-band spectrograms. Although monophthongization of /ay/ is a

continuous phonetic phenomenon, for the purpose of data entry into the

VARBRUL program it must be treated as discrete: preferably as a binary

variable, ternary variables being possible but necessitating collapse into

the most predictive binary set. This limitation is one of the disadvantages

of using VARBRUL analysis when treating continuous variables. Its

implications are considerable and will be discussed at length in the

next sections, where we compare VARBRUL analysis with other possible

analyses.

We were able to distinguish three auditory possibilities for the realiza-

tion of /ay/: fully diphthongized, fully monophthongized, and somewhere

in between. Statistical analyses were carried out for two possible group-

ings of the tokens in the data set: one that considered only the fully

monophthongal tokens as monophthongs, and one that considered both

the slightly monophthongal and the fully monophthongal tokens in one

category. According to these analyses, the most predictive and consistent

results emerged with the latter grouping. Of the 229 tokens of /ay/ in our

sample, 32% (74/229) were monophthongized according to the more

inclusive definition, and 68% (155/229) were diphthongs. Since the diph-

thongal realization of /ay/ is normative in the standard language of the

media, it is noteworthy that one-third of the tokens were monophthongal.

All the factor groups initially tested in this analysis are listed in table

4.2; statistically significant results, with raw frequencies and probability

weights, are reported in table 4.3.

4.4.2 Explanation of Factor Groups and Results

The data were analyzed using Goldvarb Version 2.0 (Rand and Sanko¤

1990), a variable rule program for the Macintosh computer. Both the

application and its documentation are available online at hhttp://www.

CRM.UMontreal.CA/~sanko¤/GoldVarb_Eng.htmli.

Widely accepted by sociolinguists, the VARBRUL family of programs

of which Goldvarb is a member utilizes the maximum likelihood estimate

(Sanko¤ 1988) discussed above. Goldvarb computes probability weights

that are expressed as likelihoods, with a probability weight of .5 neither

favoring nor disfavoring application of the process in question. Probabil-

ity weights between .5 and 1 favor the process more strongly the closer

they are to the asymptotic 1, while probability weights between .5 and 0
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Table 4.2

Variables, factor groups, and factors tested in study of monophthongization in the
speech of Oprah Winfrey

Variable status Factor groups Factors

Dependent
variable

monophthongal vs.
diphthongal /ay/

diphthongized
slight monophthongization
full monophthongization

Independent
variables
(linguistic/
internal)

preceding phonetic
context

voiced obstruents
voiceless obstruents
nasals
liquids
vowels/glides

following phonetic
context

voiced obstruents
voiceless obstruents
nasals
liquids
vowels/glides

word class open
closed

frequency in corpus infrequent ¼ occurring < 5 times in
corpus
frequent ¼ occurring > 5 times in
corpus

log-converted
CELEX frequency

unattested < log 2
between log 2 and log 4
between log 4 and log 6
between log 6 and log 8
between log 8 and log 10
between log 10 and log 12
< log 12

Independent
variables
(social/external)

referee gender male
female
indeterminate or inanimate

referee ethnicity African-American
zero referee
non-African-American

individual referee 18 individual referees (see appendix)
were given separate codes; ‘‘other’’
category was also used

Variable
interactions
(social/linguistic)

ethnicity and
frequency

African-American infrequent
(< log 10)
African-American frequent
non-African-American infrequent
non-African-American frequent
zero infrequent
zero frequent



disfavor the application of the process more strongly the closer they are

to asymptotic 0.

VARBRUL analysis makes the mathematical assumption of an ideal

data set with crosscutting factor e¤ects but without significant inter-

actions, where all the factors are independent of one another (Sanko¤

1988, 4–19). However, certain factors in this data set are extremely likely

to display collinearity. In practice, then, many factors (like word class

and raw frequency), being highly correlated, could not appropriately be

run together. As a result, only factors that could be assumed to be fairly

independent of each other were run together. It is widely believed that

social factors may show a high degree of correlation (Bayley 2001), but

researchers think that it is relatively rare to find correlations across inter-

nal and external variables. Labov (2001, 84) states:

A full assessment of the e¤ects of intersecting social parameters, and a complete
account of sociolinguistic structure, is only possible with multivariate analysis. A
multivariate approach was first introduced into sociolinguistic studies in the form
of the variable rule program (Rand and Sanko¤ 1990). It was motivated not by
the need to analyze external, social factors, but rather to deal with the language-
internal configuration of internal, linguistic constraints on variation (Cedergren
and Sanko¤ 1974). The basic fact about internal factors that the variable rule
program continually displays is that they operate independently of each other
(Sanko¤ and Labov 1979). However it was realized from the outset that social
factors are typically not independent. Though it is convenient and useful to in-
corporate external and internal factors in the same analysis, a considerable
amount of information can be lost in the typical VARBRUL analysis of speech
communities.

Including both internal and external factors is crucial to our data, how-

ever, since we found an interaction between lexical frequency calculated

on the CELEX database (Baayen et al. 1995), presumably a purely lin-

guistic variable, and ethnicity of referee, a social variable. The results

presented in table 4.3 are explained by factor group below.

4.4.2.1 Preceding Phonetic Context and Following Phonetic Context

We coded the immediately surrounding phonetic context of each /ay/

token within and across syllables and words, utilizing categories that

have been shown in the literature to a¤ect monophthongization in both

African-American and Euro-American U.S. South populations.

Coding monophthongization according to a sonority hierarchy (Selkirk

1984) follows widely accepted methodology outlined by Hazen (2001).

We included two other categories as well: vowel/glide and pause. Sev-

eral studies (Thomas 1995; Schilling-Estes 1996; Wolfram, Hazen, and
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Schilling-Estes 1999) have shown that the expected descending order

of following phonetic environments favoring monophthongization for

African-Americans is liquids > nasals > voiced obstruents > voiceless

obstruents. Our data for following phonetic context fit the expected pat-

tern, with probability weights as follows (see also figure 4.2): liquids

.804 > vowel/glide .799 > nasal .436 > voiced obstruent .384 > voiceless

obstruent .320. In this data set, following voiceless and voiced obstruent

contexts heavily disfavored the expression of monophthongal /ay/, while

a following nasal neither disfavored nor favored the process. Only liquid

and vowel/glide following contexts strongly promoted the expression of

monophthongized variants. Because Euro-American U.S. Southerners

exhibit a di¤erent pattern, with high rates of monophthongization before

voiced obstruents, we believe that Winfrey’s use of /ay/ is indexical of

variation in the African-American community.

Preceding phonetic context was not a significant predictor of variation

in this data set and was discarded in the final analysis.

4.4.2.2 Word Class As with other reductive processes (Wright 1997),

monophthongization may apply at di¤erent rates among words depend-

ing on their frequency. In an earlier analysis, we tested lexical frequency

within the Oprah Winfrey corpus and found that it was highly correlated

with monophthongization (Hay, Jannedy, and Mendoza-Denton 1999).

Figure 4.2

VARBRUL weights for following phonetic category as a predictor of mono-
phthongization. Values above 0.5 favor monophthongization, values below 0.5
disfavor.
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Frequency can be a di‰cult metric to use because it may be partly con-

founding a linguistic factor: whether a word belongs to a closed class or

an open class. To test this confound, we coded open and closed classes

separately from frequency. When run by itself as the only independent

variable, word class is highly significant in predicting the patterning of

our data. Open class words disfavored the monophthongization process

with a probability weight of .397, while closed class words favored it

with a weight of .643 (log likelihood ¼ �137:896, p < :001). Although

both word frequency and word class were significant on their own, the

most predictive model of the data was found by using the log-converted

CELEX frequency category (see section 4.4.2.4).

4.4.2.3 Raw Frequency in the Corpus One issue when trying to use

lexical frequency as a predictive factor in the study of a naturally occur-

ring sample is whether to use the word frequency of the sample itself or

some independent metric of word frequency in the language as a whole

(because the sample might not be representative of the speaker’s overall

repertoire). In our case, words that were very frequent in the sample were

words like style (from a segment of The Oprah Winfrey Show called ‘‘The

House of Style’’) and wild (the descriptor of Tina Turner’s ‘‘Wildest

Dreams’’ tour).

As a first step toward assessing the importance of frequency, we used

the raw frequency within our corpus and divided the words into ‘‘fre-

quent’’ (>5 occurrences in the sample) and ‘‘infrequent’’ (all other

words). This distinction also yielded significant results: infrequent words

disfavored monophthongization with a probability weight of .329, while

frequent words slightly favored it with a weight of .589 (log like-

lihood ¼ �138:474, p < :001). Although significant on its own, raw fre-

quency in this corpus was overshadowed by the log-converted CELEX

frequency, which contributed more substantially in fitting the model to

the data.

4.4.2.4 Log-Converted CELEX Frequency Another frequency metric

that we used was frequency in the English language according to the

CELEX corpus. The CELEX database (Baayen et al. 1995) from the

Max Planck Institute for Psycholinguistics in Nijmegen incorporates

the 17.9-million token COBUILD/Birmingham corpus, and in addition

represents more than 90,000 lemmas from dictionary entries. All the

sources for CELEX are textual, about 15% coming from U.S. authors.
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Despite the di¤erences (oral vs. textual, U.S. vs. composite) between our

raw frequency corpus and the CELEX corpus, CELEX codings were

better able to account for variation in our data. This strongly suggests

that the processes at work in the patterning of our data transcend these

particular instances of The Oprah Winfrey Show and may well be operat-

ing in other contexts as well.

The CELEX ordinal frequency ranking for each token was converted

to a log-based frequency code because there is good evidence that humans

process frequency information in a logarithmic manner. That is, a fre-

quency di¤erence occurring among the lower frequencies carries more

weight than a frequency di¤erence of equal magnitude occurring among

the higher frequencies. Since VARBRUL requires discrete independent

variables, in order to input the data we created a five-way log value split

that provided a near-perfect cline of influence in which the most fre-

quent words (> log 12) strongly favored monophthongization (probability

weight .734), while the least frequent words (< log 6) strongly disfavored

it (probability weight .063) (see figure 4.3). A binary (median) log value

division was also devised. Words of frequency < log 10 strongly dis-

favored monophthongization (probability weight .370), while words of

frequency > log 10 favored it (probability weight .642) (see figure 4.4).

We used the binary division to code for interactions between word fre-

quency and ethnicity.

Figure 4.3

VARBRUL weights for lexical frequency as a predictor of monophthongization:
results for log-converted CELEX frequency. Values above 0.5 favor mono-
phthongization, values below 0.5 disfavor.
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4.4.2.5 Individual Referee To investigate the possibility that Winfrey

was treating each referee in an idiosyncratic or individualized way, and

not according to gender or ethnicity, we also assigned segments codes

that referred to people individually. Nineteen referee codes (including

‘‘other’’ for segments that were not about particular people) were used

(the full list is given in the appendix). The ‘‘other’’ code was used pri-

marily when Winfrey spoke straight into the camera without a specific

addressee. These segments fulfilled our requirement that the speech have

no specific interlocutor, and they included a segment called ‘‘Gratitude

Moments,’’ where Winfrey spoke about her favorite things, one where she

spoke about her birthday, and one where she warned the audience about

getting scammed (robbed). One of our initial hypotheses was that the

individual codes would be important predictors of variation. However, it

was not borne out in the VARBRUL results and was eliminated. In our

later analysis using CART trees, the individual codes became an impor-

tant factor.

4.4.2.6 Referee Gender So-called external or social variables that we

coded in the corpus included the referee’s gender. By itself, again, gender

was significant, but not when included in a statistical run with any other

factor. Codings for this factor included male, female, and ‘‘other,’’ used

for situations where the referent did not have a gender or where gender

Figure 4.4

VARBRUL weights for lexical frequency as a predictor of monophthongization:
results for log-converted CELEX frequency (cuto¤ at median). Values above 0.5
favor monophthongization, values below 0.5 disfavor.
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could not be determined. Oddly enough, there were no statistically sig-

nificant di¤erences between rates of monophthongization for female and

male referees (both of these were neutral, f: .468, m: .435), while the

‘‘other’’ category showed a markedly favoring e¤ect, o: .730 (log like-

lihood ¼ �139:252, p < :01).

4.4.2.7 Referee Ethnicity The ethnicity of the referee was the most

important factor group (first selected in the Goldvarb step-up/step-down

procedure) in modeling the monophthongization of /ay/. We coded ref-

eree ethnicity according to three categories: African-American referees

(strongly favoring monophthongization; probability weight .622); non-

African-American referees (strongly disfavoring; .336); and zero referee,

which favored monophthongization more strongly (.7) than the other

categories. These weights are shown in figure 4.5. However, it was also

clear from our analysis that ethnicity of referee also interacted strongly

with word frequency. And VARBRUL assumes that the di¤erent factors

included in a single analysis act independently of one another.

4.4.2.8 Ethnicity and Frequency One solution to the problem of

assuming factor group independence in VARBRUL is to create an inde-

Figure 4.5

VARBRUL weights for ethnicity of referee as a predictor of monophthongiza-
tion. Values above 0.5 favor monophthongization, values below 0.5 disfavor.
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pendent factor group that combines the interacting factors into discrete

possibilities in order to isolate their e¤ects (Bayley 2001). We did this by

creating an additional interaction factor group that combined the six

possibilities resulting from the interaction of two frequency categories

(frequent vs. infrequent words; i.e., > log 10 vs. < log 10 in the binary

CELEX coding) and three ethnicity categories (African-American, non-

African-American, and zero referee). Our results were most puzzling:

they showed a significant interaction in what we had originally coded as

two separate predictive factor groups. When combined, the ethnicity of

referee/binary CELEX frequency factor group was intriguingly arranged

thus (see also figure 4.6): [no ref, infrequent .783 > African-American,

frequent .781 > no ref, infrequent .725 >] non-African-American, fre-

quent .576 > African-American, infrequent .437 > non-African-Ameri-

can, infrequent .177. The bracketing around the first three factors

indicates that according to the di¤erence-in-log-likelihoods test (Rous-

seau 1989), these factors are not statistically significantly di¤erent from

each other and should be collapsed. They are shown separately here for

expository reasons.

Figure 4.6

VARBRUL weights for the interaction between referee ethnicity and lexical fre-
quency as a predictor of monophthongization. Values above 0.5 favor mono-
phthongization, values below 0.5 disfavor.
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Initially, we found this result—that either a frequent or an infrequent

word with a zero referee was as likely to lead to monophthongization as

a frequent word with an African-American referee—di‰cult to explain,

especially since there is such a strong distinction in likelihood of mon-

ophthongization between African-American and non-African-American

referees. What could this mean? Colleagues have suggested to us that zero

referee might be Winfrey’s baseline style, and that this might be close to a

style used for African-American referees. And, as discussed below, much

of the zero referee section included frequent self-reference, specifically

using the words I and my. Of course, self-referring words are also fre-

quent words, so it is di‰cult to disentangle the two e¤ects and precisely

identify the locus of the observed patterns. Because the two predictors are

highly correlated with one another, one cannot simply include them both

in a logistic regression, to see which one is the stronger predictor. The

technique we have used assumes strict independence among the factors.

In the next section, we explain how we set about investigating the self-

reference e¤ect. For now, we return to the interaction between ethnicity

of referee and lexical frequency.

From the interaction of frequency and ethnicity of referee, given our

understanding of frequent words as the carriers of style (Hay, Jannedy,

and Mendoza-Denton 1999) we expected frequency to have a much big-

ger e¤ect in speech relating to African-American referees (where frequent

words should be prone to monophthongization for both stylistic and

articulatory reasons) than in speech relating to non-African-American

referees (for whom we expect some canceling out of the articulatory

tendency to monophthongize frequent words, given that the stylistic

setting favors diphthongs). In fact, our results show the opposite: word

frequency has a much bigger e¤ect for non-African-American referees

than for African-American referees. Upon closer examination, we be-

lieve this result does not necessarily contradict our assumptions about

frequency and style; rather, it reflects an asymptote for this type of vari-

ation. When referencing African-Americans and using frequent words,

Winfrey reaches the limit of her range of variation. VARBRUL proba-

bility weights around .78 set the upper bound of monophthongization

that can be found in Winfrey’s speech. Essentially, there is a ceiling

e¤ect, indicating that in no speech situation will she go beyond her per-

sonal maximum of variation (even just doubling her rate for infrequent

words with African-American referees would overshoot this asymptote).
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Frequency thus has the biggest e¤ect within the subset of the data that

is not otherwise prone to monophthongization (non-African-American

referees), while referee ethnicity has the biggest e¤ect within the subset

that is not otherwise prone to monophthongization (the infrequent

words).

4.4.2.9 Self-Reference, Style, and the Use of Qualitative Analysis To

disentangle the e¤ects of lexical frequency and ethnicity, we inspected the

show transcripts and found specialized discourse patterns in the use of the

highly frequent words I and my. The segments coded as ‘‘zero referee’’

consisted largely of Winfrey self-disclosing to her audience. The segments

‘‘House of Style,’’ ‘‘My Favorite Things,’’ and ‘‘Oprah’s Birthday’’ are

frequently self-referring. This self-disclosure feature of Winfrey’s televi-

sion persona—and the genre of daytime talk shows in general—has

received a great deal of attention from scholars (Shattuc 1997; Masciar-

otte 1991). In terms of our data, a style of conversational engagement

through self-disclosure means that Winfrey talks about her own past

encounters with the people to whom she refers, sharing her personal his-

tory in great detail. Guests she knows well elicit more self-reference, so

that a short segment on Michael Jordan, with whom Winfrey has a

famously close relationship, included 8 self-referring tokens out of 17

/ay/ tokens, or 47% of the tokens for that segment. The segment ‘‘My

Favorite Things/Birthday Presents’’ included 23/35 or 65% self-referring

tokens. A segment about Mia Farrow, by contrast, included only 1/20 or

5% self-referring tokens.

The use of highly frequent words as stylistic devices in the genre of talk

show hosting may boost overall perceptual saliency of the variable and

make it a good candidate for the display of speaker style. Other examples

of highly frequent words used as iconic displays of speaker and group

style can be found in Mendoza-Denton 1997 and California Style Col-

lective 1993.

When included in a VARBRUL run with ethnicity and with following

phonetic context only, self-referring words joined these factors in a set

that best predicted variation in the data. Self-referring words correlated

positively with monophthongization, exhibiting VARBRUL weights very

similar to those of the zero referee category; non-self-referring words had

probability weight .398, while self-referring words had weight .680 (log

likelihood ¼ �109:428, p < :001) (see figure 4.7).
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We believe both frequency and self-reference are playing a role in the

aggregate data set. The observed frequency e¤ects are spread throughout

the whole frequency range (see table 4.3, where frequency e¤ects were

significant even when split into five frequency categories), and so they

cannot be attributed only to self-reference. However, it is consistent

with the observed discourse patterns to hypothesize that Winfrey’s self-

referring speech might be particularly prone to monophthongization—

although, as explained above, because of the collinearity of the factors

this is best investigated qualitatively. Precisely disentangling the relative

contribution of frequency and self-reference would require a larger data

set and remains a task for future work.

4.4.3 An Alternative to VARBRUL: Classification and Regression Trees

(CART)

In this section, we briefly explore the patterns in our data further, using a

di¤erent statistical approach.

The construction of classification trees is essentially a type of variable

selection. Such trees are a valuable tool for exploratory data analysis and

can handle missing values or empty cells with ease, tree construction

being based on the cases that do not have missing values. Classification

trees are an attractive method of data exploration because they handle

interactions between variables automatically. They also have the advan-

Figure 4.7

VARBRUL weights for self-reference as a predictor of monophthongization.
Values above 0.5 favor monophthongization, values below 0.5 disfavor.
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tage of being completely nonparametric. No assumptions are made about

the underlying distribution of the data. These features make them less

powerful for detecting patterns in data, but fairly reliable in terms of the

patterns found.

Classification trees do assume that the e¤ect being modeled is orga-

nized into discrete factors. An analogous class of models, regression trees,

deals with continuous data.

Foundational literature on classification and regression trees includes

Morgan and Sonquist 1963, Morgan and Messenger 1973, and Breiman

et al. 1984. A good practical guide for their implementation in S-Plus can

be found in Venables and Ripley 1994.

A classification tree begins with the data to be analyzed and then

attempts to split it into two groups (here, one that maximizes monoph-

thongization, and one that minimizes it). Ideal splits minimize varia-

tion within categories and maximize variation across categories. All

possible classifications of the independent variables are attempted. Tree

construction works one step at a time, so once the first split is achieved,

an optimal split is sought for each resultant node. The particular tech-

nique used here (that implemented in S-Plus/R) allows only binary splits.

At any given node, the maximum reduction of deviance over all possible

splits is used to identify the best split. This process continues until either

the number of cases reaching each leaf is small or the leaf is su‰ciently

homogenous relative to the root node.

This process often grows a tree that overclassifies the data. That is, a

tree may fit a particular data set extremely well, but may be unlikely to

generalize if new data points are added to the analysis. A selection pro-

cess can then be used (akin to the stepwise procedure used in multiple

regression) to determine which divisions should appropriately be included

in the model and which are best discarded—a process known as tree

pruning (Breiman et al. 1984). There are a number of di¤erent methods

for choosing where to prune the tree (i.e., for deciding which nodes can

best be removed).

One method of tree pruning uses a process of cross-validation. The

data set is divided into subsets, and separate trees are grown on the basis

of each subset. The trees based on each subset of the data can then be

compared with one another. As Venables and Ripley (1994, 44) explain,

‘‘Suppose we split the training set into 10 (roughly) equally sized parts.

We can then use 9 to grow the tree and test it on the tenth. This can be

done in 10 ways, and we can average the results.’’ This process returns an
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averaged deviance for trees of each possible size. In the analysis presented

below, we used this cross-validation technique—pruning the tree to the

smallest tree size with the minimum deviance. This represents a fairly

conservative approach to tree building.

When we attempted to build a tree based on the monophthongization

data, we allowed for the possible contribution of the following variables:

the individual identity, ethnicity, and gender of the referee; the class and

frequency of the word; the preceding and following phonetic environ-

ment. Of these, only two remained in the pruned tree: the identity of the

individual and the following phonetic environment. Because each branch

of the tree deals with successively smaller sets of data, a fairly large data

set is required to establish the coexisting significance of a sizable number

of contributing factors. The power of this technique is therefore slightly

limited when dealing with small data sets—especially if these data sets

display much variability.

The pruned tree is shown in figure 4.8. The first and most important

split is between segments where Winfrey is talking about Tina Turner,

Will Smith, Halle Berry, or no one in particular (group (c)), and all other

segments. In the former four instances, she was much more likely to

monophthongize /ay/ (60% of tokens) than in all others (17%).

These two nodes split further into two subcases. The left branch splits

into two more sets of individuals: those who strongly discourage mon-

ophthongization (group (a): 2%) and those who are more likely to lead

to monophthongization (group (b): 23%). Finally, among group (c) the

classification algorithm detects a significant e¤ect of the following envi-

ronment: monophthongization is more likely preceding liquids and nasals

than other phonological segments.

Other variables were included in the full tree (lexical frequency is the

next factor to appear), but did not survive the pruning process. Because a

classification tree looks for patterns in progressively smaller sets of data,

we would likely need a much bigger data set than we currently have in

order for it to reveal the full range of complexity in our data. Those fac-

tors that do survive the pruning process, however, are ones in which we

can have extreme confidence.

The classification algorithm divides individuals into three groups. No

African-American referee appears in group (a), 3 African-American ref-

erees appear in group (b) (3/8, 38%), and the individuals identified in

group (c) are all African-American and are grouped together with the

zero referee cases.

130 Mendoza-Denton, Hay, and Jannedy



This ‘‘individual identity’’ variable therefore echoes the e¤ects of eth-

nicity, while imbuing it with an added level of subtlety. It could perhaps

be seen as organizing people into groups according to the nature of

Winfrey’s involvement with them—ethnicity being one component of this

(though probably not a binary component), and other dimensions of sol-

idarity perhaps also playing a role. Because the classification tree is an

excellent tool for revealing significant groupings in data, it can be used

to reveal natural groupings of individuals, which (as inspection of the

groups reveals) could not be replicated by any combination of standard

social variables.

4.4.4 The Oprah Winfrey Data: Summary

4.4.4.1 Analysis Techniques Using a relatively small data set, we have

shown how inferences can be derived from it in di¤erent ways. What we

Figure 4.8

CART classification tree for monophthongization
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hope to have demonstrated with this exercise is that di¤erent types of

analysis can assist in the interpretation of results. In our case, we used

two types of quantitative analysis (VARBRUL and CART) as well as

qualitative analysis (looking at patterns of self-reference). Two basic

results emerge unambiguously from our study: Winfrey’s style shifting is

partially conditioned by the ethnicity of the person she is referring to, and

partially by the following phonetic environment.

Subtler nuances of the data—the role of lexical frequency, the presence

of interaction e¤ects, the emergence of natural groupings of individuals—

are highlighted di¤erently by the di¤erent statistical techniques we used.

Each technique has drawbacks. Since classification trees are local opti-

mizers, once an initial split is made it is impossible to ask what the overall

e¤ect of a second factor is, given the first one. And in order to examine

the e¤ect of a large number of variables using a classification tree, a large

data set is required. VARBRUL is not well equipped to easily explore

possible interactions, nor is it equipped to deal with continuous depen-

dent or independent variables, although these limitations can be over-

come by the use of logistic regression in commercially available statistics

packages.

The VARBRUL program e¤ectively implements a binomial stepwise

regression analysis. It models a binomial outcome, using discrete factors.

In this sense, it is an appropriate tool to use in the formulation of variable

rules as they were originally conceptualized—rules that predict which of

two discrete outcomes will occur on the basis of discrete factors, such as

the gender or ethnicity of the speaker (or in the case of our data, the ref-

eree) or the identity of the phoneme that precedes or follows. Continuous

independent factors can be built into the model, by breaking them up into

discrete groupings—a technique that imposes artificial category bound-

aries on the factor.

And yet monophthongization is not really discrete. Di¤erent degrees of

monophthongization (or diphthongization) exist, and Winfrey exploits

the full range of this continuum in her performance of style. Winfrey does

not shift between discrete styles (an ‘‘African-American referee,’’ a ‘‘non-

African-American referee,’’ and a ‘‘self-disclosure’’ style); rather, she

seamlessly navigates a range of continuous stylistic dimensions, and the

degree to which she employs monophthongization signals (together with

many other variables) where she is positioned in stylistic space. Mon-

ophthongization is not discrete, ethnicity is not discrete, nor is lexical
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frequency. And yet we impose boundaries on all of these in order to

simplify our analysis and detect statistical patterns that will shed light on

language and on society.

We believe one challenge for the future of probability theory in socio-

linguistics is to move beyond the limitation of discrete categorization

and to work toward understanding how gradient, continuous linguistic

variables are conditioned by both categorical and continuous social

and linguistic factors. Such analyses have begun to appear, notably Ber-

dan’s (1996) study of second language acquisition, where he used the

logistic regression module in SPSS to model time as a continuous inde-

pendent factor. Sudbury and Hay (in press) also model continuous inde-

pendent factors (time and frequency) in their analysis of rhoticity and

/r/-sandhi.

Modeling and understanding the combination of continuous and dis-

crete factors in predicting gradient implementation of sociolinguistic

variables will be a major challenge in the future of probability theory in

sociolinguistics—one that will require an adjustment in the way data are

collected and analyzed, and in the statistical techniques used to explore

the patterns of variability within those data.

As illustrated in our Oprah Winfrey data analysis, if one of the pre-

dictor variables in the hypothesized model is continuous (such as lexical

frequency or age), VARBRUL is unable to model it as a continuous

predictor; instead, the researcher must break it up into a number of dis-

crete sets. This does not tend to be a feature of more general imple-

mentations of logistic regression, which can unproblematically model

continuous variables. Thus, as discussed by Berdan (1996) and Bayley

(2001), the VARBRUL implementation may not be the most appropriate

for data sets that involve one or more important continuous independent

variables.

And while it is possible to encode interactions in VARBRUL by cre-

ating hybrid categories (see, e.g., Sanko¤ and Labov 1979, 204; also the

example in section 4.4.2.8), this solution is not straightforward, and it

requires that the researcher identify the possible interaction in advance.

Other implementations of logistic regression tend to allow possible inter-

action e¤ects to be explored in a more straightforward way. Sigley (2001)

tested for the presence of interactions in seven previously reported data

sets and found that about 26% of pairwise tests produced significant

interactions. He argues that interaction e¤ects are widespread and are
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potentially just as important as main e¤ects when modeling (socio)-

linguistic variation. For further discussion of problems associated with

interactions in VARBRUL, see Young and Yandell 1999 and Bayley

2001.

Another major challenge for sociolinguistics lies in finding appropri-

ately sophisticated frameworks with which to understand the patterns

that probabilistic analyses reveal—frameworks with adequate insight and

explanatory power. The patterns revealed by our Oprah Winfrey study

need explanation in many areas. Here we address just two: What are the

cognitive patterns and processes through which such patterns of intra-

speaker variation arise? And what are the social mechanisms and con-

structs that condition the observed behavior?

4.4.4.2 The Cognitive: What Is Variation? Our analysis of Winfrey’s

monophthongization patterns gives a good indication of their character-

istics. Her orientation toward the person she is talking about (an impor-

tant component of which is the person’s ethnicity) a¤ects the likelihood

(and probably the degree) of monophthongization. Monophthongization

is further influenced by the phonetic environment and by the lexical fre-

quency of the word it appears in.

So what are the cognitive implications of these findings? What is

Winfrey doing when she style-shifts? Models of speech production do not

currently account for sociophonetic variation, even though this is a large

part of what people do when they produce speech. One component of

speech is clearly the continuous signaling of social identity and orienta-

tion. In order to satisfactorily begin to model this process, sociolinguists

and those who work on speech will need to combine e¤orts.

One promising interpretation is that producing a phoneme (or word)

involves the activation of a distribution of phonetically detailed remem-

bered examples that characterize that phoneme (or word). More proto-

typical or central exemplars will be easiest to access, because of their

central status in the distribution; and particularly frequent examples

will also be easy to access, because of their high resting activation level.

Exemplar theories of speech production and perception have been devel-

oped by, among others, Pierrehumbert (2001a, in press) for production

and Johnson (1997b,c) for perception. Exemplar models are promising

candidates for modeling sociophonetic e¤ects because they do not treat

variation as noise; on the contrary, variation is central and is inherently

coded in lexical representations. Such models would appear to provide a
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natural explanation for the involvement of lexical frequency in style

shifting, as well as for why intraindividual style shifting echoes the inter-

individual social distribution of variables to which a speaker has been

exposed (Bell 1984).

In Pierrehumbert’s (2001a) implementation of exemplar theory, the

selection of a phonetic target is modeled as random selection from a

cloud of exemplars associated with the appropriate category. This models

many social e¤ects well, because ‘‘although social and stylistic factors

may select for di¤erent parts of the exemplar cloud in di¤erent situations,

the aggregate behavior of the system over all situations may be modeled

as a repeated random sampling from the entire aggregate of exemplars’’

(Pierrehumbert 2001a, 145). Pierrehumbert demonstrates how a model

with fully remembered exemplars can account for the fact that frequent

words lead historical leniting changes and can model the timecourse of

certain types of phonological merger.

The implementation is modified in Pierrehumbert, in press, so that

production does not involve the specific selection of an exemplar, but

rather can be heavily biased by activated exemplars. Exemplars are

weighted and can be activated to di¤erent degrees in di¤erent contexts.

Weighting can be a¤ected by sociostylistic register and by contextual and

attentional factors.

Goldinger (2000), Kirchner (in press), and Bybee (2001) also advocate

exemplar-based models for speech production. And results reported by

Goldinger (1997), Niedzielski (1999), Strand and Johnson (1996), and

Whalen and She¤ert (1997), among others, provide strong evidence

that social and speaker-specific information is not only stored, but also

actively exploited in speech perception. Such results are highly consistent

with models that include an exemplar-based level of representation, and

they are very di‰cult to account for in models in which detailed exem-

plars are not stored.

Docherty and Foulkes (2000) have attempted to situate a discussion of

sociophonetic variation in an exemplar model of lexical representation.

Such a model accounts nicely for other patterns of variance such as

coarticulation, connected speech processes, background noise e¤ects, and

intra- and interspeaker variability, and so, as Docherty and Foulkes point

out, this seems a natural place to start. One of their central questions is

‘‘how phonology stands in the face of the variable aspects of a speaker’s

performance . . .’’ (p. 112). It would certainly seem that modeling socio-

phonetic variation would be a crucial test of the degree to which any
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model of phonetic or phonological production and perception succeeds.

However, it is not just models of speech that could benefit from such an

understanding. Sociolinguists’ understanding of the factors that are

involved in style shifting, both linguistic and social, and the potential and

possible ways in which they interact, would be deeply enriched by a clear

understanding of the mechanisms through which this variation is repre-

sented and produced.

Resolving the nature of the cognitive status of probability distributions

found in sociolinguistic studies would certainly make researchers’ under-

standing and modeling of these phenomena more sophisticated and open

new doors for analysis and explanation. By embedding studies of lan-

guage variation in an understanding of language perception, production,

and reproduction, researchers can start to consider how the observed

probability distributions may come about, and how they might propa-

gate, spread, and be manipulated in di¤erent social contexts for di¤erent

social ends.

4.4.4.3 The Social: What Is Style? In the exemplar-theoretic view out-

lined above, social information that is interpretable by a listener is auto-

matically stored with the exemplar, made more robust with repetition,

and crucially linked to the actual instances of use of a particular variant.

The proposal that linguistic categories, targets, and patterns are gradually

built up through incremental experience with speech is entirely compati-

ble with a view of the social world that relies on gradually built up social

categories that emerge from the experiences that surround individuals as

social actors. Just as there are no preset categories in phonology, and

phonemes are abstracted from statistical patterning of the input (see

Pierrehumbert, this volume, for extensive supporting evidence), so are

social patterns abstracted and recovered from the same input.

We underscore the importance of interpretability by the listener.

Within both the linguistic and the social world, young learners or foreign

language speakers may not be equipped to fully understand the cate-

gory composition of the stimuli to which they are exposed. It is only

with repeated exposure that a child or a nonnative speaker can develop

a robust enough model to incorporate and interpret new examples.

Because the development of an exemplar-based model proceeds exam-

ple by example, it is important to look not only at overall distributions

and gross statistical generalizations, but also at the micropatterning of

individual instances. Understanding the flow of on-line discourse and its

136 Mendoza-Denton, Hay, and Jannedy



relationship to robustness for both linguistic and social categories is an

urgent task for sociolinguistics. Earlier, we mentioned that many of the

social categories that researchers assume as given are not discrete, but

may be treated as discrete for the purposes of statistical convenience. By

supplementing statistical methods with qualitative analysis, we have

exemplified one possible way to investigate how categories are built up in

naturalistic contexts.

4.5 Conclusion

The use of probabilistic methods has led to important breakthroughs in

sociolinguistics and has played an extremely important role in shaping the

study of language variation and change. An important challenge for the

future will be to move toward a more unified understanding of how sub-

tle, gradient patterns of variation a¤ect and are a¤ected by cognitive,

linguistic, and social structures, while always remembering that choices

made for the analyst’s convenience (such as treating monophthongization

or ethnicity as binomial variables) are not pure mirrors of discrete cate-

gories in the world. We believe that the strongest theory of the interaction

of language and society is a probabilistic theory, yet we encourage prob-

abilistic sociolinguistic scholars to go beyond current methods: uncollapse

what has been collapsed, and look for finer-grained social-theoretic

explanations within what is uncovered in aggregate patterning.

Appendix

This appendix lists the di¤erent referees for the segments analyzed. Individ-
uals were coded as ‘‘African-American’’ or ‘‘non-African-American.’’ The ‘‘zero
referee’’ cases involve segments in which the discourse is not focused on a specific
individual.

Roseanne Barr, F actor non-African-American

Halle Berry, F actor African-American

George Clooney, M actor non-African-American

Bill Cosby, M actor African-American

Cindy Crawford, F model non-African-American

Celine Dion, F musician non-African-American

Mia Farrow, F actor non-African-American

Daisy Fuentes, F actor non-African-American

Kathy Lee Gi¤ord, F actor non-African-American

Delma Heyn, F writer non-African-American

Lauren Hutton, F actor non-African-American

Probabilistic Sociolinguistics 137



Michael Jordan, M basketball player African-American

Jackie Onassis, F celebrity non-African-American

Brooke Shields, F actor non-African-American

Will Smith, M actor/musician African-American

Steven Spielberg, M movie director non-African-American

Tina Turner, F musician African-American

F Guest who dreams of having a house African-American

‘‘Gratitude Moments’’ zero referee

‘‘Oprah’s Birthday’’ zero referee

‘‘How to Avoid Getting Scammed’’ zero referee

‘‘House to Style’’ (how to have more of it) zero referee

‘‘Oprah’s Favorite Things’’ zero referee

Note

The authors would like to acknowledge Rens Bod, Janet Pierrehumbert, and Kie
Zuraw for extensive comments and suggestions. Malcah Yeager-Dror provided
helpful guidance and Matt Loughren helped with references. All errors and omis-
sions remain our own.
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Chapter 5

Probability in Language
Change

Kie Zuraw

5.1 Introduction

Why do languages change? If children are able to infer surrounding

adults’ grammatical systems from their utterances, and if adults adjust

their lexicons and perhaps grammars to achieve better communication

with their interlocutors, any linguistic innovations that might somehow

arise should be quickly stamped out. This is a combination of Weinreich,

Labov, and Herzog’s (1968) ‘‘actuation problem’’ (how and why does a

particular change occur at a particular time?) and what we might call

the ‘‘continuation problem’’: what sustains the momentum of a change,

causing an innovation to increase in frequency, to spread from word

to word, or to spread from speaker to speaker, rather than stalling or

receding?

Any answer to the continuation problem must rely on a probabilistic

model of the language faculty. If the rise in frequency of an innova-

tion results from snowballing mislearnings, we require a model of how

learners respond to their variable environment. If the rise in frequency

results from individuals’ adopting the speech patterns of some social

group, we require a probabilistic model of the speech community, in

which individuals probabilistically and incrementally update their gram-

mars and lexicons in response to interlocutors’ behavior. Moreover, when

the rise in frequency of an innovation involves variation within individ-

uals, as we can often see that it does in written records, we require a prob-

abilistic model of language representation and/or use. Otherwise, we

have no way of representing the di¤erence between a generation whose

members use a new variant 20% of the time and a generation whose mem-

bers use a new variant 40% of the time.



The fact that language change happens seems to demand a proba-

bilistic view of the language faculty, in phonology, morphology, syntax,

semantics, processing, acquisition, and the social use of language. The

probabilistically oriented study of language change therefore relies on

probabilistic models of all the areas of linguistics discussed in this book.

This chapter surveys the role of probability in the study of language

change. Section 5.2 describes the use of probabilistic tools in establishing

language relatedness through vocabulary comparison, an important task

when historical and textual records are lacking and inferences about lan-

guage change must be drawn from the ways in which related languages

di¤er. Section 5.3 examines how the frequencies of linguistic traits change

over time in the historical record, and how the timecourse of a change can

shed light on its motivation and on the continuation problem. Section 5.4

discusses the role that the frequencies of lexical items and constructions

play in their susceptibility to change, and what this can tell us about the

synchronic e¤ects of frequency. Section 5.5 asks how language change is

directly molded by probabilistic behavior on the part of its participants—

speakers, hearers, and learners.

5.2 Probability as a Tool for Investigating Language Relatedness

An important task in historical linguistics is establishing which linguistic

changes are possible or probable (the ‘‘constraints problem’’ of Wein-

reich, Labov, and Herzog 1968). In many cases, we can look to syn-

chronic variation to tell us which changes are in progress in a particular

language (see Labov 1994). In rare cases, we have written records of

change within a language. But the vast majority of language changes that

have taken place in human history have left no trace either in synchronic

variation or in the written record. The only way to discover them is

through comparison of related languages: if we can reconstruct a proto-

phoneme �p, for example, that became b in some context in a daughter

language, then we know that the change from p to b in that context is a

possible one; if we find many such cases, then we know that the change is

a common one. Moreover, once we have established by reconstruction

that a change took place, we can use synchronic evidence to answer ques-

tions such as how regular the change was and which types of exceptions

were allowed to persist.

But how are we to know if two languages are related in the first place,

so that an attempt at reconstruction makes any sense? A common method
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for establishing the relatedness of languages is to compare their vocab-

ularies. A list of words is collected for each language, based on a standard

list of 100 or 200 meanings (e.g., the lists proposed in Swadesh 1952,

1955) that are expected to have a name in every language. If the lan-

guages are related, we expect to find either similarities between the sounds

of words with identical or similar meanings (e.g., if the word for meaning

i begins with a labial consonant in language A, then the word for mean-

ing i begins with a labial consonant in language B too) or consistent cor-

respondences between them (e.g., wherever we see a t in language A,

there is a k in the corresponding word of language B). Because reflexes of

a protophoneme can di¤er considerably in daughter languages, consistent

correspondences are a more appropriate criterion for languages that are

not known to be closely related.1 The more frequent and consistent the

correspondences are, the more likely it is that the two languages are con-

nected, whether through descent from a common ancestor or perhaps

through borrowing.2

The mathematical challenge in using this method is, how sure can we

be that the similarities or correspondences found are not merely due to

chance? It turns out that the degree of similarity or correspondence nec-

essary to establish relatedness is greater than we might intuit. Ringe

(1992) gives a detailed and highly accessible demonstration of this fact

using randomly generated and real word-lists. Ringe’s method is flawed,

as discussed below, but he makes an important point: even though a par-

ticular event may be very unlikely to occur by chance, it may be an

instantiation of a larger class of events one or more of which is relatively

likely to occur.

Suppose, for example, that we hypothesize that two languages are

related, and our criterion for relatedness is similarity (rather than regular

correspondence). If we find that the word for eye begins with t in both

languages, that is a piece of evidence in favor of the hypothesis, but how

striking is it? How likely is it to have occurred by chance if the two lan-

guages were not related? The probability that language A’s and language

B’s words for eye should both begin with t by chance is equal to the pro-

portion of words in language A that begin with t ðAtÞ times the propor-

tion of words in language B that begin with t ðBtÞ. If, in each language,

only 5% of words begin with t, then AtBt ¼ :0025, a low probability. But

this is a misleading result: the hypothesis being tested is not that both

languages’ words for eye begin with t, but that the languages’ vocab-

ularies are similar. The probability we should be interested in is the
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probability that at least one pair of words on the list would begin with the

same sound by chance; this probability will depend on the phoneme dis-

tributions in the two languages, but will be much, much higher than

.0025. For example, if each language has the same 20 phonemes, each

occurring word-initially 5 times in a list of 100 meanings, the chance of

obtaining at least one match is nearly 100%.

Because this issue has caused so much confusion in the literature (see

Manaster Ramer and Hitchcock 1996 for an attempt to sort out one

exchange), it is worth belaboring. Manaster Ramer and Hitchcock call

the confusion of a specific event with the class to which it belongs the

‘‘birthday fallacy’’: the chance that two randomly chosen people share the

birthday of February 1 is small (1 in 3652 ¼ 133;225), but the chance that

they merely share the same birthday is much greater (1 in 365).3 Choos-

ing a specific date when calculating the probability of a shared birthday is

analogous to requiring a correspondence to involve a particular sound or

pair of sounds, or to occur in a particular word.

The same issue arises when we seek correspondences across multiple

languages, as suggested by Greenberg and colleagues (Greenberg 1987;

Greenberg and Ruhlen 1992). A correspondence seen in any two lan-

guages out of a group of, say, 15 languages is not as significant as a cor-

respondence seen in a comparison between just two languages, because

there are
15

2

� �

¼ 105 pairs in which such a correspondence could have

occurred, rather than just 1.4 As Baxter and Manaster Ramer (1996)

argue, it should be possible to determine the number of matches across

a set of n languages that would be as significant as a match in a two-

language comparison, but the determination becomes much more

complicated when, for example, each language participating in the cor-

respondence is required to be from a di¤erent family (Manaster Ramer

and Hitchcock 1996).

Considering just the simpler case of a comparison between two lan-

guages, what we would like to do is determine how di¤erent a contingency

table is from what would be expected by chance. The contingency table

5.1 represents how often each word-initial consonant (or q for vowel-

initial words) in a list of 100 English words corresponds to each word-

initial consonant in the German word with the same meaning. For

example, there are 4 words that begin with w in English and with v

(orthographic w) in German. We could construct similar tables for any
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other type of correspondence we were interested in, such as medial con-

sonants or consonant-vowel sequences.

If the two languages were not related, we would expect to see, on

average, the values shown in table 5.2, which preserves the row and col-

umn totals of table 5.1 but eliminates any row-column interaction. In

a given case, the numbers will di¤er from those in table 5.2 (mini-

mally, they must be integers), so our question is, how unusual is it for a

chance-generated table to deviate from table 5.2 as strongly as table 5.1

does?

Ringe proposes calculating the probability, for each cell, that the

number of observed matches or more would be seen by chance, by sum-

ming binomials. That is, he proposes that the probability of finding

exactly one match of x in language A with y in language B in a list of 100

words is the product of three numbers: AxBy (the probability that a par-

ticular pair shows the correspondence), ð1� AxByÞ99 (the probability that

the 99 other pairs do not), and 100 (the number of places in the list where

a matching pair could be found). Similarly, the probability of finding

exactly two such pairs would be AxBy
2 � ð1� AxByÞ98 � 9;900. To calcu-

late the probability of finding n or more matches, we would sum the

probabilities of finding n through 100 matches:

X100

i¼n

ðAxByÞ i � ð1� AxByÞ100�i � 100

i

� �

: ð1Þ

For Ax ¼ By ¼ :05 and n ¼ 3, this sum is .20—in other words, at least

one correspondence between x and y is a fairly likely event.

The problem with Ringe’s method, as pointed out by Baxter and

Manaster Ramer (1996), is that it wrongly assumes that the probability of

seeing a correspondence in one word-pair is independent of whether the

same correspondence occurs in another pair. Ax and By are based on fre-

quencies within the chosen word-list. Suppose that At ¼ Bt ¼ :05: there

are five instances of initial t in each language’s word-list. If the words for

eye begin with t in both languages, then the chance that the words for

cheek will also both begin with t is lowered, because there is one fewer t

left in the pool from which cheek can draw its initial consonant. The

probability that the words for cheek would begin with t in both languages

is now not ð5=100Þ � ð5=100Þ ¼ :0025, but ð4=99Þ � ð4=99Þ ¼ :0016. The

values to be summed are not binomials as shown in (1), but hyper-

geometrics, which are unwieldy for numbers as high as 100.
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How, then, can we accurately determine whether a table like table 5.1

is significantly di¤erent from the average table we would expect to see

if the two languages were not at all related? Statistics such as w2 give

a measure of how di¤erent an observed contingency table is from

the expected table,5 but in order to determine the significance of that

di¤erence—how likely it would be to arise by chance—we must rely on

lookup tables that are inappropriate to the task. Lookup tables for the

distribution of w2, for example, assume that the data points are inde-

pendent and that expected cell values are relatively high (expected fre-

quencies of at least five in each cell)—much too high for a table with

dozens of cells and only 100 instances to go around.

Kessler (2001) proposes an ingenious solution to the inapplicability of

standard lookup tables, similar in spirit to Oswalt’s (1970) shift test,6 but

much more robust. We want to know the distribution of values of w2, or

some other measure of skewedness, if languages A and B are not related,

so that we can see how unusual the observed value of w2 is. If A and B are

not at all related, and if we have excluded from the word-list words sub-

ject to sound symbolism and onomatopoeia, then any lineup of A’s words

with B’s should be equally likely—the particular lineup that occurs in

reality is the result of mere chance. Thus, the universe of possible ar-

rangements that should occur by chance, while preserving the individual

phoneme distribution of each language, is well represented by keeping the

order of A’s list constant and permuting B’s list in all possible ways. If

we calculate w2 for each such permutation, we obtain the distribution of

w2. We can compare the value of w2 obtained for the actual word-list to

this distribution: if it is larger than 99% of the w2 values in the distribu-

tion, then we know that a contingency table as skewed as the one we

obtained will occur only 1% of the time if the two languages are unre-

lated.

In practice, however, we cannot consider all permutations of B’s list.

For a list of 100 words, there are astronomically many permutations:

100!A9:3� 10157. This is too many to consider, even for a computer.

Kessler’s solution is to instead randomly generate some large number of

permutations to get a close estimate of how often the resulting w2 values

are greater or smaller than the observed one. The more permutations

sampled, the more accurate the count; Kessler uses 10,000 permutations.

The same method can be used for any other measure: Kessler considers

R2, the sum of the square of each cell entry (minus one if nonzero); vari-

ous breakdowns by phonetic feature; and matching phoneme sequences
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rather than individual phonemes. For Kessler’s example data, R2 seems

to work best.

The problem of determining whether a language resemblance is

stronger than would be expected by chance is a tractable one, then, at

least in simple cases such as correspondences between phonemes. As all

the authors cited here agree, however, establishing relatedness is only a

starting point. These statistical methods do not replace the work of

establishing which words are cognates, determining the contextual deter-

minants of sound changes that lead to inexact correspondences, or

reconstructing protoforms. They do, however, give us a tool with which

to determine how striking an apparently striking connection really is, so

that we can decide whether an attempt at reconstruction is warranted.

5.3 Changes in Probabilities over Time

Language change appears to take place gradually, with innovations being

used at di¤erent rates in di¤erent parts of the speech community and in

di¤erent linguistic or social contexts, and with an innovation’s overall

rate of use rising gradually, often over centuries (though see discussion of

Shi 1989 below). Changes in observed probabilities in the historical rec-

ord can give evidence for the nature of the linguistic system underlying

variable linguistic behavior, the nature and proximal cause of a particular

change, and the way in which changes take hold and spread.

5.3.1 Correlations in Rate of Change

Suppose that a language is observed to undergo a gradual change from

an SOV (subject-object-verb) word order to an SVO order; that in texts

from intermediate stages, the innovative order is found more frequently in

main clauses than in subordinate clauses; and that in the intermediate

stages, variation is observed even within each individual writer. How

should the linguistic system of an individual living during the middle

stages be represented? If it is a grammar that encodes separately the

probabilities of employing SOV or SVO in various contexts, then the

innovative word order may spread at quite unrelated rates in main and

subordinate clauses. If, however, the di¤erence between SOV and SVO is

controlled by a single parameter in the grammar—whose setting can be

probabilistic to allow variation—and it is some orthogonal force (stylis-

tic, perhaps) that prefers SOV in subordinate clauses, then although the

frequency of use of the innovative order may di¤er according to clausal
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context, the rates of change of those contextual frequencies should be the

same, assuming that orthogonal forces remain constant. This is the con-

stant rate hypothesis, proposed by Kroch (1989): because changes occur

at the level of abstract grammatical parameters, they spread at the same

rate in every context, although the base frequencies of use in each context

may di¤er for external reasons.

Kroch and colleagues have tested the constant rate hypothesis by

modeling S-shaped language changes with a logistic function. It has long

been observed (e.g., Osgood and Sebeok 1954; Weinreich, Labov, and

Herzog 1968; Bailey 1973) that language change takes an S-shaped

course: a new variant appears rarely for a long time, then quickly

increases in frequency; finally, the rate of change slows as the frequency

approaches its maximum (100% in the case of a total replacement of the

earlier form). There are several mathematical functions that produce an

S-like shape. Kroch chooses the logistic function because every logistic

function has associated with it a slope, and therefore the slopes of fre-

quency changes that should be linked, according to the constant rate

hypothesis, can be compared.

The logistic function takes the form in (2),7 where P, interpreted here

as the probability of seeing some variant in some context that it could

potentially occupy, is a function of t, time:

P ¼ 1

1þ e�k�st
: ð2Þ

Simple algebra transforms (2) into (3), where now the logistic transform,

or logit, ðlnðP=ð1� PÞÞÞ, is a linear function of t, with a slope (steepness)

s and an intercept (initial value) k:8

ln
P

1� P
¼ k þ st: ð3Þ

When frequency changes over time are plotted for the same innovation

in di¤erent contexts, the logit for each context should have approximately

the same slope under the constant rate hypothesis, although they may

have di¤erent intercepts. Figure 5.1 illustrates two logistic functions

whose logits have the same slope, but di¤erent intercepts, and one that

has a di¤erent slope.

The constant rate hypothesis can also be tested using the multivariate

analysis performed by the VARBRUL program (see Mendoza-Denton,

Hay, and Jannedy, this volume). VARBRUL represents the logit as the
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sum of some contextual weights, representing the positive and negative

e¤ects of various features of the context, plus a base rate of use, in this

case a linear function f of time:

ln
P

1� P
¼ f ðtÞ þ a1 þ a2 þ a3 þ � � � ðKroch 1989; 6Þ ð4Þ

If the values of the aj do not change as t changes, then the contribution

of the context is constant over time, and only the base rate of use of the

innovative variant changes.

Kroch and colleagues have found evidence for the constant rate

hypothesis in several cases of language change. Kroch (1989) illustrates

how the results of Noble (1985), Oliveira e Silva (1982), and Fontaine

(1985) support the constant rate hypothesis in the replacement of posses-

sive have by have got in British English, the rise of the definite article

in Portuguese possessive noun phrases, and the loss of verb-second in

French, respectively. Kroch (1989) also reanalyzes Ellegård’s (1953) data

on the rise of periphrastic do in English. Pintzuk (1995) has found that

Old English I 0-initial Infl rose in frequency at the same rate in main and

Figure 5.1

Three logistic functions. The solid and dotted lines have the same logit slope (0.5),
but di¤erent logit intercepts (2 and 0, respectively); the dashed line has the same
logit intercept as the dotted line (0), but a di¤erent logit slope (0.3).
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subordinate clauses, and Santorini (1993) reports that the rise of a similar

I 0-initial Infl phenomenon in early Yiddish proceeded at the same rate

with both simple and complex verbs, although in this case the intercepts

of the logits are also similar, so we cannot be sure that the simple and

complex verbs represent two truly di¤erent contexts.

These findings suggest that syntactic and morphosyntactic changes do

indeed occur at some abstract level of the grammar, a¤ecting all contexts

equally, and subject only to independent influences on various contexts.

Tabor (1994), using a very di¤erent model of grammar, essentially agrees,

but views constant rate e¤ects as a special case of frequency linkage

e¤ects—related changes proceeding at related, though not necessarily

identical, rates.

Tabor’s model of (morphosyntactic) language change uses a connec-

tionist network to learn associations between words and the contexts in

which they tend to occur and among words that tend to occur in similar

contexts. Words, represented by input nodes, are connected to intermedi-

ate hidden-layer nodes; words that are strongly associated to the same

hidden-layer nodes act as clusters somewhat like traditional grammatical

categories (e.g., Noun, Verb), although cluster membership is a gradient

property, so that a single word may belong to di¤erent clusters to di¤er-

ent degrees. Hidden-layer nodes are connected to each other, to represent

sequential information, and to output nodes, representing behaviors in

various syntactic constructions. How strongly a word is associated to

some syntactic behavior is therefore mediated by the hidden units and

thereby by the behavior of cluster-mates.

If a network that has been trained on a corpus is exposed to an altered

version of the original training data (representing an externally motivated

shift in frequency), it adjusts its connection weights in response, but not

only those aspects of the language that changed in the training data will

be a¤ected: aspects of the language that were strongly linked to the

changed aspects will be a¤ected also. In particular, if the frequency with

which some word occurs in some context changes in the training data, the

network will adjust the word’s association strengths with the hidden units

in response, thereby altering the word’s indirect association to other

words; as a consequence, other aspects of the word’s behavior will also

change, under the influence of the word’s new cluster-mates.9 At the same

time, the network must adjust associations between the word’s strongly

associated hidden units and the output units, so that the behavior of other

words that were strongly associated to the same hidden units will change
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too. This is where frequency linkage e¤ects come from in Tabor’s model:

a change in one aspect of the language drags along with it changes in

other aspects of the language.

Frequency linkage of the constant-rate variety will be observed when

two words or constructions have the same distribution (or nearly so)

before the change begins. Tabor demonstrates with an abstract example:

two nouns, N1 and N2, behave similarly along five binary contextual

dimensions, C1 through C5 (e.g., if C1 is what possessive verb the nouns

appear as the object of, they might appear as the object of have 96% of

the time and as the object of have got 4% of the time). A third noun, N3,

behaves like N1 and N2 along dimension C1, but shows di¤erent fre-

quencies on the other four dimensions. A network is trained on a corpus

with these properties, then retrained on a corpus that is the same except

that N2 undergoes a frequency change in C1, from choosing option A 4%

of the time to choosing it 100% of the time; no examples of N1 and N3

are given for C1 in the new corpus. The point of the experiment is to

observe how the frequencies for N1’s and N3’s choosing option A in C1

change as the network approaches the desired frequency for N2’s choos-

ing option A in C1. The slope of the logit for how often N1 exhibits

option A in C1 is almost identical to the slope of the logit for N2, but

N3’s slope is much shallower. Because N3 does not share N2’s properties

as well as N1 does, N3 is not ‘‘dragged along’’ as much as N1 is. Thus,

for Tabor, constancy of rate is gradient; he would predict that SVO

would spread at the same rate in main and subordinate clauses to the

extent that the behavior of main and subordinate clauses is otherwise

similar.

It remains to be seen whether any convincing cases of demonstrably

partial frequency linkage exist. Tabor argues that the rise of English

periphrastic do is such a case, but Kroch (1989) proposes that certain

syntactic assumptions can explain why the slopes for some of the contexts

for do are unequal. If clear cases can be found, then we have evidence

that language change is indeed abstract, occurring at the level of struc-

tures and categories, but that structures and categories can be fuzzy and

membership in them gradient.

5.3.2 Reanalysis and Frequency Change

Besides bearing on the abstractness of language change, rates of use over

time can shed light on the relationship between reanalysis and frequency.

It seems clear in many cases of morphological, syntactic, and semantic
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change that some word or construction has been reanalyzed; that is, its

behavior has changed in a radical way, indicating that it has joined a

di¤erent grammatical category. For example, be going to, which once

obligatorily indicated motion toward, is now used as an all-purpose

future marker in English.

How and why does reanalysis occur? In the (otherwise very di¤erent)

models of Lightfoot (1991) and Tabor (1994), reanalysis results from fre-

quency shifts that encourage or even force learners to assign a new struc-

tural analysis to a form because of the contexts in which it appears.

Others argue that reanalysis is a prerequisite for syntactic change: only

after two structural options become available can one rise in frequency.

Santorini (1993) and Pintzuk (1995), for example, argue that in Yiddish

and English, respectively, the availability of an I 0-initial position for Infl

in both main and subordinate clauses occurs at the beginning of the

rise in frequency of medial Infl, not at the end (the alternative analysis

is that in the early stages, clause-medial Infl results from movement, and

not until later is Infl reanalyzed as potentially I 0-initial). In these two cases,

the argument for the availability of I 0-initial Infl at the early stages is

mainly a syntactic one, but it also has a probabilistic element. Surface

nonfinal Infl could be the result of base-generated I 0-initial Infl or base-

generated I 0-final Infl, with rightward movement of other constituents.

Santorini and Pintzuk both argue that the rate of such rightward move-

ments observed in unambiguous contexts is too low to account for the

relatively high rate of nonfinal Infl. Therefore, I 0-initial Infl must have

been used at least some of the time at the early stages of the change,

before it became very frequent.

Frisch (1994) presents another case in which evidence that reanalysis

precedes syntactic change comes from frequencies over time. In Middle

English, not acted like a sentence-level adverb: it could appear preverbally

or postverbally, much like modern never; it carried an emphatic meaning;

and it alone was not su‰cient to indicate negation (ne was instead the

usual marker of nonemphatic negation).

(5) Þat

that

Jesuss

Jesus

nohht

not

ne

neg

wollde

would

Ben

be

boren

born

nowwhar

nowhere

i

in

þe

the

land; . . .

land

‘That Jesus did not (at all) want to be born anywhere in the land; . . .’

(Frisch 1994, 189; Ormulum I: 122)

It is standardly proposed (Kroch 1989; Pollock 1989; Shanklin 1990;

Roberts 1993) that not was reanalyzed as a sentential negator, losing its
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preverbal position and emphatic meaning, because the phonological loss

of the clitic ne eventually forced not to be so interpreted. Frisch demon-

strates, however, that the loss of preverbal not was well underway before

the loss of ne began.10 Frisch argues, therefore, that a semantic reanalysis

of not as nonemphatic, allowing it to occupy the specifier position of

NegP rather than a sentence-level adverb position, caused ne to become

redundant and be lost. With ne gone, not was free to occupy either the

specifier or the head of NegP.

An important assumption is that the rate of adverbial use of not in

ambiguous cases can be extrapolated from the behavior of the unambig-

uous sentence adverb never. Never is preverbal 16% of the time, and dur-

ing the first 70 years of Middle English, not has the same distribution.

Frisch presents the following formulas:

number of preverbal not ¼ 0:16� total number of adverbial not; ð6Þ

total number of adverbial not ¼ number of preverbal not=0:16: ð7Þ

Assuming that the rate at which true sentence-level adverbs appear

preverbally is constant at 16% throughout the period, Frisch obtains an

estimate of how often not is used adverbially from 1150 to 1500. The key

finding is that this percentage falls drastically before the percentage of

negative sentences containing ne begins to drop much at all.

We have, then, cases in which reanalysis appears to occur at the

beginning of a frequency shift, rather than at the end. Does this contra-

dict Tabor’s claim that frequency shift leads to gradient reanalysis, in

which a word begins to belong more and more to a di¤erent cluster,

gradually taking on properties of that cluster? Perhaps not: in Tabor’s

model, reanalysis and frequency shifts can be gradual and mutually

reinforcing. If Tabor’s model were extended to include semantics, an in-

creasing use of not in nonemphatic contexts (a typical case of semantic

bleaching) could cause not to be gradually reanalyzed as a nonemphatic

negator. The more strongly it was so recategorized, the less often it would

appear preverbally. Reanalysis would thus follow one frequency shift,

and precipitate another: frequency shifts a¤ect probabilistic learners and

in turn are a¤ected by probabilistic speakers.

5.3.3 The Timecourse of Language Change

As mentioned above, it has long been observed that language change

proceeds along an S-shaped curve. Why should change begin and end

slowly? If changes spread from speaker to speaker, the rate of spreading
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depends on the number of interactions between a speaker who has the

new variant and one who has the old variant. There will be few such ex-

changes at first, because there are few speakers who have the new variant,

and few such exchanges at the end, because there are few remaining

speakers to whom the change has not yet spread (Bloomfield 1933). When

there is variation within individuals, as there is in nearly all studies of

historical texts, the picture is more complicated, because there are no

speakers with 100% use of the new variant at first. We must assume that

speakers can slightly increment their use of a variant and that some force

(such as group identification or learnability) encourages the change to

continue in one direction. The remainder of this section discusses some

attempts to derive S-shaped language change mathematically, with lim-

ited success.

But first, a cautionary note, based on Shi’s (1989) findings. Shi argues

that a gradual, S-shaped change that appears to have taken place over

1,000 years is actually an abrupt change that was completed in at most

200 years. The illusion of gradualness comes from the persistence of clas-

sical style in modern texts. Shi tracks the rise of the aspectual particle le in

Mandarin, which derives from the classical verb liao ‘finish’. When the

number of uses of le per 1,000 characters is tracked for a corpus from

the pre-tenth to the twentieth century, the rate of use rises slowly from the

tenth to the twelfth century, then rises quickly until the seventeenth cen-

tury, and continues to rise slowly (though unevenly) to the present.

Shi finds, however, that le seems to be inhibited by classical verbs and

hypothesizes that avoidance of le by more recent writers is merely an

attempt to emulate classical style. Shi uses occurrences of the sentence-

final copula or interjective ye as an index of classicalness. Classical texts

have approximately 8 occurrences of ye per 1,000 characters, so if there

are n occurrences of ye per 1,000 characters in a text, there are approxi-

mately n=8 classical characters per actual character in the text; the rest

can be considered vernacular. When the number of les per 1,000 vernac-

ular characters is plotted, the picture is very di¤erent from when raw

character count was used: there is now a sharp rise in use of le from the

tenth to the twelfth century, and the rate of le use has not risen since.

Shi’s study points out an important potentially distorting e¤ect of the

unavoidable use of written records: even when a change is abrupt, the

conservatism of written styles may cause it to appear gradual.

Assuming, however, that the S-shaped model is accurate (though it

may appear artificially stretched in the written record), are there any

models that can derive it? Manning (this volume), points out that sto-
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chastic Optimality Theory (Boersma 1998; Boersma and Hayes 2001)

predicts S-shaped change if one constraint rises or falls at a constant rate

through the grammar. In stochastic Optimality Theory, surface forms are

chosen according to their satisfaction of constraints whose rankings are

normally distributed. Change is therefore slow when constraints’ distri-

butions overlap only at the outer edges, accelerates as the centers of the

bell curves begin to overlap, and slows as the distributions again overlap

only at the edges. The mechanism by which the grammar is transmitted

from generation to generation in such a way that a change in ranking is

persistent and linear is not known, however. The following paragraphs

review some attempts at achieving S-shaped change through modeling

transmission of the grammar from adults to children over time.

Niyogi and Berwick (1995) present an abstract simulation of language

change that does derive a logistic function for change, among other pos-

sibilities. In Niyogi and Berwick’s model, di¤erent members of the popu-

lation use di¤erent grammars, and learners must decide which grammar

to adopt. (Admittedly, this is an unrealistic assumption, as it predicts

no variation within individuals.) Each grammar is a series of n binary

parameters, and the distribution of sentences produced by each grammar

is uniform (all well-formed sentences are equally likely). Learners set

parameters on the basis of examples, permanently and without tracking

probabilities. Because the learner has limited opportunity to adjust its

grammar, mislearning is likely, especially if many utterances are ambigu-

ous, making even homogeneous populations potentially unstable.

Learning proceeds as follows in Niyogi and Berwick’s model. The

learner draws at random two utterances by members of the surrounding

population. If the second trigger utterance unambiguously supports one

parameter setting, the learner chooses that setting. If only the first trigger

is unambiguous, the learner chooses that setting. And if both triggers are

ambiguous, the learner makes an unbiased choice at random. In other

words, the critical period is just two utterances, and if they conflict, the

more recent utterance prevails.

Niyogi and Berwick investigate by simulation the case of three param-

eters governing constituent order (yielding eight possible grammars) and

find that the distribution of grammars sometimes changes according to a

logistic function (S-shaped curve) that varies in steepness. But with some

starting distributions and maturation times, the function is not logistic:

rapid change can occur right away (the initial tail of the S is cut o¤ ), or

the function may fall o¤ toward the end rather than continuing to

approach an asymptote.
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Niyogi and Berwick apply their model to the change from Old French

verb-second (V2) to Modern French SVO, using the five binary param-

eters suggested by Clark and Roberts (1993) to yield 32 possible gram-

mars. If learning time is limited, so that the younger generation does not

have full opportunity to acquire the older generation’s grammar, then in

simulations even a population that begins homogeneously V2 shifts away

from V2, though the change is slow and does not proceed very far. But

when even small numbers of SVO speakers are included in the initial

population (perhaps representing foreign speakers), there is relatively

rapid loss of V2.11

Niyogi and Berwick’s model is deterministic if the population of agents

is infinite (and generations do not overlap). Extending the investigation to

cases in which the population is finite and small, Briscoe (2000) finds that

the results are quite di¤erent. For example, if two competing grammars

are initially equally distributed and produce equal proportions of ambig-

uous sentences, in the infinite-population model the two grammars should

remain in balance: half the learners will adopt one, and half will adopt

the other. In a finite population, however, the probability that exactly

half the learners will adopt one grammar on any given trial is low ( just as

the probability is low that exactly half of a finite number of coin tosses

will come up heads). Therefore, one grammar will probably gain ground

over the other. As one grammar becomes much more common than the

other, however, it becomes less and less likely that it can maintain its

advantage. At the extreme, if a grammar is used by 100% of the popula-

tion, as long as there are some unambiguous sentences, some learners will

learn the other grammar. Even a moderate bias such as 75%–25% is

untenable if there is a high proportion of ambiguous sentences: if 75% of

the population uses grammar A, with 50% of sentences from each gram-

mar being ambiguous, and there are 100 learners, the probability that 75

or more of the learners will adopt A is only .07. Grammar A begins to

lose ground, then, falling toward 50%, which we have already seen is

itself an unstable state. The proportions of the two grammars will there-

fore oscillate endlessly.

Clearly, a realistic and complete model of how changes spread remains

to be implemented.

5.4 The Role of Frequency in Language Change

We have seen the importance of changes in frequency over time. The

individual frequencies of linguistic items also appear to play an important
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role in language change. Words’ frequencies a¤ect their susceptibility to

phonological, morphological, and morphosyntactic change. This fact

reinforces the findings elsewhere in this book that not all lexical items are

treated alike and that the strength of lexical entries is gradient. These

di¤ering strength values are important in the lexical (word-to-word)

spread of linguistic innovations.

5.4.1 Frequency and Phonological Erosion

Bybee (1994; see also Bybee 2001) proposes that a usage-based model of

phonology can account for two relationships between word frequency

and phonological change: frequent lexical items are the first to adopt

automatic, phonetic rules, and the last to abandon nonphonetic rules.

By ‘‘phonetic rules’’ Bybee means rules, like American English flapping,

that involve minimal articulatory or acoustic change. Nonphonetic rules

include morphologically conditioned rules, like stress in Spanish verbs or

English noun-verb pairs, and lexical generalizations, like the English sing-

sang-sung and ring-rang-rung patterns.

An important assumption for Bybee in explaining the e¤ect of

frequency on susceptibility to phonetic changes is that lexical representa-

tions do not include only the idiosyncratic aspects of a word. Redun-

dancies and phonetic detail are also included, so that di¤erent words

may be reliably associated with slightly di¤erent patterns of articulatory

timing and other subphonemic properties.

Phonetic rules tend to spread gradually through the lexicon, a¤ecting

frequent words to a greater extent. For example, in Hooper 1976, Bybee

found that medial schwa deletion was most advanced in frequent words

like every (it is nearly obligatory) and less advanced in less frequent words

like artillery (it is nearly forbidden). In Bybee’s usage-based model, this is

because lexical entries are updated by speakers and/or listeners every time

they are used. If schwa deletion has some probability of applying every

time a word is used, then there is a related probability that the word’s

lexical entry will be updated to reflect the change. Because there is no

reverse rule of ‘‘schwa restoration,’’ once the strength of the schwa in a

lexical entry is reduced, it cannot later increase; it can only stay where it is

or reduce further. The more often a word is used, the more chances it has

to drift irreversibly toward schwa deletion. Thus, highly frequent words

are the innovators in phonetic change.

Pierrehumbert (2001a; see also this volume), in developing an

exemplar-theory-based model of production, derives this finding quanti-

tatively. In exemplar theory, categories are represented mentally as clouds

Probability in Language Change 157



of remembered tokens (projected onto a similarity map) that are typically

densest in the middle. Highly similar tokens are grouped into a single

exemplar, whose strength is augmented when tokens are added to the

group (and, countervailingly, decays over time). An incoming stimulus is

classified according to the number of exemplars from each category that

are similar to it, with a weighting in favor of stronger exemplars. Cate-

gories are produced by choosing an exemplar at random, but with a

preference for stronger exemplars, and with some amount of noise added,

so that the actual production may di¤er slightly from the exemplar

chosen. Pierrehumbert shows that when exemplars are chosen in this way

and the resulting tokens added to memory, the exemplar cloud gradually

becomes more di¤use, but its center does not shift.

When a persistent bias (motivated by some external force) is added,

however, drift does occur. If there is a tendency for productions to be

slightly hypoarticulated with respect to the exemplar chosen for produc-

tion (i.e., the articulatory gesture is reduced in magnitude), the center

of the exemplar cloud gradually shifts toward hypoarticulation. For

example, if an exemplar is chosen whose articulatory e¤ort along some

dimension is 0.9, it may be produced with 0.89 e¤ort instead. The 0.89

token is then added as an exemplar, and if it is chosen in a later produc-

tion, it may be pronounced with 0.88 e¤ort, and so on.

The shift increases as the number of productions of the category

increases. This means that if individual words have their own exemplar

clouds, then words that are used more often shift more rapidly, as Bybee

predicts. Pierrehumbert further shows how an infrequent category that is

subject to lenition (or any other persistent bias) is absorbed into a fre-

quent category that is not subject to lenition.

Bybee argues that frequent words are more subject to phonetic rules for

an additional reason: phonetic rules tend to be lenition rules, involving

reduced articulatory gestures. Frequent words are more likely to be used

in prosodically unemphasized positions, which are associated with less

articulatory e¤ort. This is because a frequent word is likely to be used

more than once in a discourse, and subsequent occurrences of a word in a

discourse tend to be less emphasized prosodically than the first occurrence

(Fowler and Housum 1987). In addition, frequent words or constructions

are more likely to become semantically bleached (see Bybee, in press,

discussed below) and thus less likely to be the carrier of important dis-

course information that is subject to prosodic emphasis.

Frequent words’ lexical entries are thus doubly subject to a phonetic

rule when that rule is lenitive: not only does the word’s more frequent use
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give it more opportunities to undergo the change, but the word’s tendency

to occur in repetitive or semantically bleached contexts disproportion-

ately subjects it to lenition.

5.4.2 Frequency and Nonphonetic Rules

Highly frequent words are conservative, however, when it comes to non-

phonetic rules like the English irregular past tenses (Hooper 1976) or

English noun-verb stress shifts (Phillips 1998, 2001):12 when the language

begins to lose or gain a rule, they are the last words to change.13 There

are two reasons for this. The first reason is the competition between

irregulars (residual archaic forms) and regulars (the innovative form).

This competition proceeds di¤erently in di¤erent models of regulars and

irregulars, but in every case an irregular requires a strong lexical entry in

order to resist regularizing. Under the dual-mechanism model of Pinker

and Prince (1994), for example, listed irregular words and regular mor-

phological rules compete in the brain: irregular, listed sang competes with

regular, synthesized singþed. If the lexical entry of an irregular word is

not strong enough, it may not be accessed in time or with enough cer-

tainty to win the competition, and the regular pronunciation will win. In

a model such as Albright and Hayes’s (2000) that encodes both regular

and irregular patterns in the grammar, the competition is between very

specific irregular rules and more general regular rules; in a connectionist

model, it is between patterns in associative memory (Rumelhart and

McClelland 1986a; Daugherty and Seidenberg 1994).

Frequent words’ lexical entries are strong from frequent use and rein-

forcement and thus will tend to beat out synthesized, regular pronuncia-

tions, whether the pressure for those pronunciations comes from the

grammar or from elsewhere in the lexicon. Infrequent words’ lexical

entries, on the other hand, may not be strong enough to win reliably.

The second, related reason for the retention of nonproductive rules in

frequent words concerns transmission from one generation to the next.

Infrequent irregulars may fail to be transmitted to the next generation—if

a word is too infrequent, the child may never encounter it—and the

younger generation will apply regular rules to the word. An abstract

simulation performed by Kirby (2001) confirms that this mechanism can

have the observed e¤ect. Although the population in Kirby’s simulation

begins with no lexicon at all, as a lexicon begins to develop, it is only the

most frequent words that are able to retain an irregular form; words that

are too infrequent to be reliably transmitted fall under a regular compo-

sitional rule.
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5.4.3 Frequency and the Undertransmission of Morphosyntax

The instability of infrequent irregulars is one type of ‘‘undertransmis-

sion.’’ Richards (1997) has studied a more drastic type of undertrans-

mission in the morphosyntactic realm that leads to a change not just in

particular lexical items, but in the whole grammatical system. Richards

compares the word order and verbal morphology of current speakers of

Lardil, an Australian language, to data collected by Hale from speakers

in the 1960s. Lardil is being replaced in everyday use by English, but

Richards argues that the changes observed in Lardil are due not to the

linguistic influence of English, but to the scarcity of Lardil data available

to learners. (Richards’s arguments rest on syntactic sensitivities of the

changes that would not be expected if the language were merely adopting

English morphosyntax.)

The morphological di¤erence between ‘‘Old Lardil’’ and ‘‘New Lardil’’

that Richards discusses is the frequent absence of inflection on objects in

New Lardil (the syntactic di¤erence is the resulting rigidification of word

order). Richards’s explanation is that in Old Lardil, certain phonological

rules could delete object su‰xes. New Lardil learners exposed to these

apparently unsu‰xed forms, and not exposed to enough overtly su‰xed

forms to learn that su‰x deletion is phonologically conditioned, might

conclude that overt su‰xes alternate freely with null su‰xes.

In analyzing the behavior of particular nouns and pronouns, Richards

finds that the pronoun on which inflection was most often produced had a

highly irregular paradigm in Old Lardil. The pronoun on which inflection

was least often produced had a more regular paradigm. Richards suggests

that although regular morphophonological rules have been lost in New

Lardil because of insu‰cient evidence, individual lexical entries exhibit-

ing idiosyncratic inflection have been retained when frequent enough.

Similarly, Richards finds that the regular morphophonological rules of

verb augmentation have been lost, but that certain (presumably) irregular

verbs forms of Old Lardil have been retained. High frequency, then, can

allow a word to retain various idiosyncratic properties in the face of a

more general language change.

5.4.4 Frequency and Grammaticalization

Frequency may also have an e¤ect on which words or morphemes will

undergo morphosyntactic change. Grammaticalization, the process by

which content morphemes or morpheme sequences become function ele-

ments, tends to be correlated with an increase in frequency (see Traugott
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and Heine 1991, Hopper and Traugott 1993, for overviews and many

case studies of grammaticalization). Is this increase merely the result of

grammaticalization, as the morpheme becomes needed in more contexts,

or could it also be a cause?

Bybee (in press) argues that it can. Bybee traces the evolution of En-

glish can from a content word meaning ‘have mental ability/knowledge’

to a function word meaning ‘possibility exists’. Following Haiman (1994),

Bybee views grammaticalization as a form of ritualization, whereby rep-

etition of a frequent act (in this case, the uttering of a word or construc-

tion) bleaches the act of its significance, reduces its (phonological) form,

and allows it to become associated to a wider range of meanings. Bybee

shows how cunnan, the ancestor of can, which first took only noun phrase

objects, began to take as its object the infinitives of verbs relating to intel-

lectual states and activities, communication, and skills. Bybee argues that

because cunnan with a noun phrase object was already common, addi-

tional mental verbs began to be added to ‘‘bolster the meaning,’’ creating

seemingly redundant expressions like cunnan ongitan ‘know how to under-

stand’. This use of cunnan further weakened it semantically: presumably,

a learner who encounters the phrase cunnan ongitan is likely to attribute

all the meaning to ongitan and treat cunnan as merely grammatical.

The token frequency of can increased greatly from Old to Middle

English, partly as can came to be used with a larger number of verbs,

partly as some of the canþVERB combinations became more frequent.

The increase in both type and token frequency, Bybee argues, further

bleached can semantically, and its verbal objects expanded to include

emotional states, nonmental states, verbs that take as object another

person, verbs indicating an action (rather than merely a skill). A few

instances of inanimate subjects also began to occur. Eventually, as the

‘possibility’ meaning became more common, the use of inanimate subjects

increased. Thus, increasing frequency and semantic bleaching reinforce

each other.

Bybee further notes (citing crosslinguistic findings in Bybee, Perkins,

and Pagliuca 1991, 1994) that grammaticalized morphemes tend to be

shorter and more phonologically fused with surrounding material, for

reasons discussed above: frequent morphemes (including grammatical

morphemes) are more susceptible to erosive lenition rules, which can

cause loss and overlap of gestures. Bybee proposes that the units of lexi-

cal storage are not only morphemes or words, but also highly fre-

quent phrases or sequences. When grammatical morphemes enter into
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high-frequency sequences such as going to, those sequences too are sub-

ject to erosion (gonna). As these sequences gain their own lexical repre-

sentations, they can also develop idiosyncratic meanings and syntactic

functions.

Tabor’s (1994) connectionist model, described above, similarly views

frequency as a driver of syntactic change. Tabor focuses not on the over-

all type or token frequency of a lexical item, but on the frequency with

which it occurs in a particular context. Tabor performed a series of

experiments, simulating real changes that occurred in English, in which a

network was trained on a corpus, then trained on a frequency-altered

version of that corpus, and a word or sequence of words consequently

changed its categorical a‰liation, exhibiting new behaviors that were

previously ungrammatical (i.e., below some probability threshold). The

cases simulated include the rise of periphrastic do, the development of sort

of/kind of as a degree modifier, and the development of be going to as a

future auxiliary.

Tabor, like Bybee, argues that the changes in frequency that often pre-

cede a reanalysis can be the cause of the reanalysis: the more a word

appears in the same context as words from some other category, the more

it is pushed to take on the characteristics of that category. For example,

in the sort of/kind of case, sentences like (8) would have been parsed only

as (8a) until the nineteenth century (‘It was a type of dense rock’), but can

currently also be parsed as (8b) (‘It was a somewhat dense rock’). Tabor

argues that a high frequency for sentences like (8)—where sort of/kind

of is followed by an adjectiveþnoun and therefore appears in a position

that the degree modifies quite or rather also can appear in—caused sort

of/kind of to become a‰liated with the degree modifiers and there-

fore become able to appear in unambiguously degree-modifying contexts,

like (9).

(8) It was a sort/kind of dense rock. (Tabor 1994, 137)

a. It was [NP a [N 0 [N sort/kind] [PP of [NP dense rock]]]].

b. It was [NP a [N 0 [AdjP[DegMod sort/kind of ] [Adj dense]] rock]].

(9) We are sort/kind of hungry. (Tabor 1994, 137)

Tabor finds a sharp rise in the late eighteenth century in how often sort

of/kind of is followed by an adjective (crucially, preceding the rise of

sentences like (9)). The simulation showed that increasing the frequency

of ha sort/kind of Adj Ni noun phrases does lead unambiguously degree-

modified utterances like (9) to rise above the threshold of grammati-
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cality (i.e., become more frequent than a near-grammatical control

sentence type that is never attested in the corpus and does not become

more likely over the course of the training) and continue to rise in fre-

quency. Thus, again we see that reanalysis and frequency change are

mutually reinforcing.

5.5 Language Agents in a Probabilistic Environment

Speaker-hearer interactions, whether involving adults, children, or a

combination, are the atoms of language change. What we call a language

change is not a single event, but a high-level description of millions of

individual interactions over time, with early interactions influencing later

ones. If a participant, child or adult, comes away from an interaction

with her grammar or lexicon slightly changed, then her altered behavior

in a subsequent interaction may cause a change in the grammar of her

interlocutor, and so on.

The mathematics of a model built up from many probabilistic inter-

actions of agents can be unwieldy, however. Rather than trying to calcu-

late directly how the system will behave, researchers often use computer

simulation as an experimental tool. Artificial agents with the desired

properties and behaviors are left to interact and change, and the results

observed. Through such simulations, the e¤ects of probabilistic learning

and behavior on language change can be explored, and we can determine

under what conditions a change will continue or accelerate, and under

what conditions variation is stable.14

5.5.1 The Adoption of New Words

Elsewhere (Zuraw 2000), in presenting a model of exceptions and regu-

larities in the phonological grammar, I show that listeners’ probabilistic

updating of their lexicons can shape the integration of new words into a

language. The puzzle I attempted to address is that even though there is a

resistance to applying semiproductive phonology to new words, as words

become integrated into the lexicon they begin to undergo semiproductive

phonology at rates similar to those found in the established lexicon.

In the proposed model, semiproductive phonology is encoded in a sto-

chastic optimality-theoretic grammar (see Boersma 1998; Boersma and

Hayes 2001) by low-ranking markedness constraints. Existing words’

behavior is determined by high-ranking faithfulness constraints that

require the preservation of idiosyncratic properties encoded in lexical
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entries. These constraints do not apply to new words, however, because

those words lack lexical entries. The ‘‘subterranean’’ constraints emerge,

therefore, to determine the pronunciation of new words.

The example examined in greatest depth is Tagalog nasal coalescence,

which fuses a prefix-final nasal with a stem-initial obstruent.

(10) Stem

bákat ‘mark, scar’

Nasal-coalesced

mamákat ‘to leave a scar’

Stem

bajáni ‘hero, helper’

Prefixed but not nasal-coalesced

mambajáni ‘to o¤er cooperation’

As shown in figure 5.2, nasal coalescence appears to be distributed in

the lexicon according to a pattern—voiceless obstruents are much more

likely than voiced to undergo it, and obstruents with fronter places of

articulation are somewhat more likely than those with backer places to

undergo it—but the pronunciation of individual words is unpredictable

and must be memorized. I argue that words with nasal-coalescing prefixes

(or at least some of them) have their own lexical entries, and thus high-

ranking faithfulness constraints against coalescing, splitting, or inserting

segments within a lexical entry ensure that they are pronounced correctly.

An additional constraint, UseListed, which prefers inputs to be a single

lexical entry, ensures that if a lexical entry exists, it is used as the basis for

evaluating faithfulness.

When no lexical entry exists, as when a prefixed form is created for the

first time, UseListed cannot be satisfied, and the faithfulness constraints

do not apply, so it falls to low-ranked constraints to decide probabilisti-

Figure 5.2

Rates of nasal coalescence in the native Tagalog lexicon, broken down by stem-
initial consonant
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cally whether nasal coalescence should apply. I further assume that the

strength of a lexical entry grows gradually as instances of the word are

encountered, and that a lexical entry with strength of 0.5, for example, is

available for use only half the time. Thus, in 50% of utterances, Use-

Listed and the faithfulness constraints will enforce the memorized

pronunciation of such a half-strength word, but in the other 50% of

utterances, the lower-ranked constraints will decide, because the lexical

entry has not been accessed.

Boersma’s (1998) Gradual Learning Algorithm is shown to be able to

learn the distribution of nasal coalescence from exposure to the lexicon

and encode that distribution in the ranking of subterranean constraints,

preferring nasal coalescence on voiceless obstruents and dispreferring

nasal coalescence on back obstruents (crosslinguistic motivations are

suggested for both). The behavior of the resulting grammar in generat-

ing and assigning acceptability ratings to new morphologically complex

words is shown to be a fair match to experimental results with speakers.

The part of the model that I will describe here concerns the grammar and

lexicon’s e¤ects on the adoption of new words by the speech community.

The grammar is biased against applying semiproductive phonology to

new words (this is just the definition of semiproductivity in this model: an

unfaithful mapping from input to output is productive to the extent that

the ranking values in the grammar allow it to apply to new words). This

is consistent with experiments in several languages, finding that speakers

are reluctant to apply semiproductive phonology to new words; although

various aspects of the experimental design can increase apparent produc-

tivity, it is always less than what might be expected from looking at the

lexicon (Bybee and Pardo 1981; Eddington 1996; Albright, Andrade, and

Hayes 2001; Suzuki, Maye, and Ohno 2000). It has also been observed in

many cases, however, that words eventually tend to conform to existing

lexical patterns after they have been in the vocabulary for some time. In

the Tagalog case, prefixed forms of Spanish loan-stems undergo nasal

coalescence at rates similar to those seen in the native vocabulary, as

shown in figure 5.3. This phenomenon seems counterintuitive, if we

expect that the more frequent pronunciation early in a word’s life (i.e.,

without nasal coalescence) should take over and become the conven-

tionalized pronunciation as the word establishes a lexical entry in the

minds of speakers.

I propose that the solution lies in probabilistic interactions between

speakers and hearers, specifically in probabilistic reasoning on the part of
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the listener. Because morphologically complex words can be either drawn

directly from their own lexical entries or formed synthetically by mor-

pheme concatenation, the listener must decide whether a morphologically

complex word that she hears was lexical or synthesized for her interlocu-

tor, assuming that she wants to maintain a lexicon that is similar to her

interlocutor’s. For example, if a listener hears mambulo, she must guess

whether the speaker was using a lexicalized word mambulo or merely

concatenating the prefix maN- with the stem bulo. Factors that should

enter into the calculation include how strong the listener’s own lexical

entry for the word is (if she has one at all) and how likely it is that a lex-

icalized or concatenated input, respectively, would produce the observed

pronunciation. The listener can apply Bayes’ rule:

Pðsynthesized j pronunciationÞ

¼ PðpronunciationjsynthesizedÞ � PðsynthesizedÞ
PðpronunciationÞ ; ð11Þ

Pðlexicalized j pronunciationÞ

¼ PðpronunciationjlexicalizedÞ � PðlexicalizedÞ
PðpronunciationÞ : ð12Þ

The grammar influences that calculation, because the probabilities

PðpronunciationjsynthesizedÞ and PðpronunciationjlexicalizedÞ depend on

the grammar. PðpronunciationjlexicalizedÞ is always close to one, because

of the high-ranking faithfulness constraints. PðpronunciationjsynthesizedÞ

Figure 5.3

Rates of nasal coalescence in Spanish loan-stems
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is higher for non-nasal-coalesced pronunciations than for nasal-coalesced

pronunciations—recall that the grammar somewhat disfavors nasal co-

alescence on new words. Therefore, there is a bias toward classifying

non-nasal-coalesced words as synthesized and nasal-coalesced words as

lexical. Intuitively, the low productivity of a phonological rule encourages

speakers to interpret words that do display the rule as exceptional and

therefore listed.

The lexicon also influences the calculation, by contributing to P(syn-

thesized) and PðlexicalizedÞ. PðsynthesizedÞ depends on the construction’s

productivity, determined by how many morphologically and semantically

eligible words participate in the construction. PðlexicalizedÞ depends on

the candidate word’s similarity to existing words. Thus, pronunciations

that are similar to existing, lexicalized words (e.g., nasal-coalesced voice-

less front obstruents and non-nasal-coalesced voiced back obstruents) are

more likely to be interpreted as lexical.

If a hearer does decide that a word was lexicalized for her interlocutor,

she will create a weak lexical entry for it. The existence of this weak lex-

ical entry means that when it is the hearer’s turn to speak, she has some

small probability of using it. The bias toward recording nasal-coalesced

words as lexical, especially when they resemble existing nasal-coalesced

words (and ignoring non-nasal-coalesced words as synthesized) results

in stronger lexical entries for nasal-coalesced pronunciations, which in

turn results in an increase in the number of nasal-coalesced productions,

leading to further strengthening of lexical entries for nasal-coalesced

pronunciations.

The model was implemented in a computer simulation with 10 agents

of varying ages who from time to time ‘‘die’’ and are replaced by agents

with empty lexicons. To avoid undue influence from young speakers with

immature lexicons, in each speaker-hearer interaction the hearer proba-

bilistically decides, as a function of the speaker’s age, whether to let her

lexicon be a¤ected by the speaker’s utterance.15 Di¤erent pronunciations

for the same word (nasal-coalesced and not) do not directly compete, but

if they are not reinforced, lexical entries decay.16 Therefore, if two pro-

nunciations remain prevalent, agents can have two strong pronunciations

for the same word. This is a desirable result, because there are certain

nasal-coalesced words whose pronunciation is variable within speakers.

But if one pronunciation becomes much more common than the other,

the lexical entry for the uncommon pronunciation will gradually decay.
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The result of the simulations, shown in figure 5.4, was that new words

were incorporated into the lexicon in a pattern similar to that seen among

Spanish stems (though somewhat more extreme—this could be because

some of the Spanish-derived words have not been in use long enough

for their pronunciations to reach their final state). That is, for voiceless

obstruents, the final rate of nasal coalescence is nearly 100%; for front,

voiced obstruents, it is around 50%; and for back, voiced obstruents, it is

close to 0%.

Probabilistic reasoning by adults, then, could explain the mainte-

nance of lexical regularities over historical time. Such reasoning requires

speakers to have a probabilistic grammar, so that there is variation in the

treatment of new words, and it requires listeners to have access, whether

direct or indirect, to the statistical characteristics of the lexicon.

5.5.2 Learners’ Response to the Probabilistic Environment

If language change is a shift in the distribution of competing variants,

what causes that distribution to change from one generation to the next?

Why don’t children mimic the frequencies of their elders? We have seen

that in some cases—generally cases of morphosyntactic change—the shift

in frequency appears to reflect a reanalysis (e.g., Frisch’s not case, Tabor’s

sort of case): younger speakers use a construction at a di¤erent rate be-

cause they assign a di¤erent interpretation to it. In other cases—gener-

ally cases of phonological change—younger speakers may use the older

Figure 5.4

Rates of nasal coalescence in new words in a simulated speech community

168 Zuraw



or the newer variant according to the requirements of the social setting

(i.e., formal vs. informal), indicating that they control a grammar that is

qualitatively similar to their elders’, but that assigns di¤erent probabil-

ities to di¤erent variants. Biber and Finegan (1989) argue that stylistic

shifts in written English over the last four centuries similarly reflect socio-

logical, rather than structural, motivations.

Another possible source of frequency shift that has been proposed is

the conflict between frequency and learnability: some variable situations

could be inherently unstable, depending on learners’ bias in dealing with

ambiguous utterances. Yang (2000) and Briscoe (1999) both explore this

idea within a principles-and-parameters framework (Chomsky 1981b),

where acquisition is the process of parameter setting.

For Yang, no parameters are preset—all settings must be learned. The

learner has a finite number of grammars to choose from, each having an

associated weight that the learner maintains.17 In each learning trial, the

learner receives an input sentence and probabilistically selects one gram-

mar, with higher-weighted grammars more likely to be chosen. If the

grammar selected can parse the sentence, then the learner augments its

weight and decrements the weight of the other grammars. If the grammar

selected cannot parse the sentence, then the learner decrements its weight

and augments the weights of all the other grammars.

The final weight that each grammar will attain depends in part on the

distribution of grammars among the adults providing the learning data,

but also on how many ambiguous sentences occur and what the learner

does with them. For example, adults using a V2 grammar will produce a

high proportion of sentences that are compatible with an SVO grammar.

Yang shows how this system can cause a drift in grammar proba-

bilities. Suppose that the learning environment contains two grammars Gi

and Gj, and that a proportion a of Gi’s sentences are incompatible with Gj

(this is Gi’s advantage—the proportion of Gi-generated sentences that

unambiguously lead the learner to strengthen the weight of Gi), and a

proportion b of Gj’s sentences are incompatible with Gi (Gj’s advantage).

These proportions vary according to the specifics of the grammars and

according to the likelihood of various utterances; for example, the likeli-

hood that an unambiguously V2 sentence is uttered given a V2 grammar

may be quite di¤erent from the likelihood that an unambiguously SVO

sentence is uttered given an SVO grammar. At generation n, the linguistic

environment contains some proportion p of adult utterances from Gi and

some proportion q of adult utterances from Gj ðpþ q ¼ 1Þ.
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The probability that grammar Gi will have its weight incremented

in any learning trial is ap, and the probability that Gj will have its

weight incremented is bq. The learners will therefore tend to converge

on new weights p 0 ¼ ap=ðapþ bqÞ for Gi and q 0 ¼ bq=ðapþ bqÞ for Gj.

This means that the weights have been learned unfaithfully ( p 00 p and

q 00 q), except in the special case of a ¼ b.

For Gj to overtake Gi, q needs to grow at p’s expense. This means that

p 0=q 0 < p=q (the ratio of p to q decreases), or, coalescing the equations

for p 0 and q 0 obtained above, ap=bq < p=q, or a < b: Gi’s advantage must

be smaller than Gj ’s. Yang examined corpora in two case studies to see if

a < b does indeed cause Gj to overtake Gi.

The first case study was the change from Old French’s V2 grammar to

Modern French’s SVO grammar. The SVO grammar must have gen-

erated more sentences not analyzable as V2 (i.e., SXVO and XSVO sen-

tences) than the V2 grammar generated sentences not analyzable as SVO

(i.e., XVSO and OVS sentences). Certain sentences would have been am-

biguous: SVO, SVOX, SVXO. To get an idea of how many unambiguous

sentences an SVO grammar would generate, Yang looked at modern

SVO English and found that 10% of sentences are SXVO or XSVO

(SVO’s advantage). Looking at modern V2 languages, Yang found that

the combined proportion of XVSO and OVS sentences (V2’s advantage)

is 30%. If these advantages also held for competing SVO and V2 gram-

mars in transitional French, then SVO should not have been able to

overtake V2. Yang proposes that the solution lies in Old French’s null-

subjecthood: null-subject XVS sentences would be produced XV, which is

also compatible with an SVO analysis (the XV sentence would be inter-

preted as XSV). Taking null subjects into account, V2’s advantage is only

5%–18%. If it fell below about 10%, then SVO would begin to take over.

The second case study was the change from V2 in Middle English to

SVO in Modern English. The problem is similar to that in the French

case: why would SVO take over? Yang proposes that the answer here is

Middle English’s pronominal proclitics, which resulted in some XSVO

and OSV sentences (‘‘V3’’). When cliticization waned and these pronouns

had to be reanalyzed as real DPs, the V3 sentences would have been

compatible only with an SVO grammar, adding to its advantage.

In Briscoe’s (1999) model, the instability of a variable grammar comes

not from the frequency of ambiguous sentences, but from the (over-

turnable) presetting of certain parameter values.18 On the one hand, a

more frequent variant has more opportunities to shape the learner’s
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grammar; but on the other hand, the more learnable variant—the one

that uses more default parameter settings—has an advantage from the

start. Briscoe simulates changes in word order, using a generalized Cate-

gorial Grammar framework, in which the syntactic rules are weighted so

that di¤erent well-formed sentences have di¤erent probabilities of being

uttered under a particular grammar. The parameters of the grammar

include the default head-complement order, the order of subject and verb,

the order of verb and object, and several others.

Certain parameter settings are associated with prior probabilities,

intended to reflect innate markedness. Parameter settings are changed

only when the learner’s current grammar fails to parse an incoming sen-

tence. The learner tries changing some settings, and if this makes the

input sentence parsable, those potential new settings are strengthened,

though not adopted right away. If the strength of a setting exceeds a

threshold value, the new setting is adopted, though it can be changed

back if contrary evidence is encountered later. Even after a setting is

adopted, its strength continues to be updated; this determines how easy it

will be to reverse the setting later. Thus, during learning each parameter

has an innate prior probability, a posterior probability derived from

learning, and a current setting.

Briscoe’s approach di¤ers from Yang’s in that, although the learner

keeps several grammars under consideration, only one grammar is used at

a time, and thus individual adults’ outputs will not be variable. The

learner chooses the most probable grammar according to Bayes’ rule.

Letting g be a grammar, G the space of possible grammars, and tn a trig-

gering input (¼ the set of sentences seen so far), the probability of a

grammar g given a triggering input tn is given in (13):

Pðg A G jtnÞ ¼
PðgÞ � PðtnjgÞ

PðtnÞ
: ð13Þ

The prior probability of PðgÞ is equal to the product of the probabilities

of all its parameter settings. PðtnjgÞ, the probability that a given grammar

produces the set of sentences seen, is derived from the rule weights of each

grammar. The denominator PðtnÞ of (13) is unimportant, because it is the

same in all grammars being compared. The grammar that the learner uses

to try to parse incoming sentences, and that the learner will use when

speaking, is simply the most probable g A G.

Briscoe’s model, like Yang’s, is sensitive to the amount of overlap in

triggers (e.g., surface SVO as evidence for either an SVO grammar or a
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V2 grammar). Briscoe found that in a population of mainly SOVþV2-

speaking adults (‘‘German’’) and some SVO-speaking adults, learners

reliably converged to SOVþV2 as long as the percentage of unambigu-

ously SVO triggers did not exceed 15% (the number depends on the

strength of the default settings, if any).19 If the percentage exceeded 15%,

a drift toward SVO could begin.

The learner’s response to a variable environment is crucial to language

change. But in order to ensure that learners do not merely replicate the

frequencies around them, there must be some persistent bias at work,

whether it comes from social motivations, from learnability, or from

ambiguity.

5.5.3 Language Change under Competing Forces

We have seen several forces that may be at work in probabilistic language

change: innate parameter settings, frequencies of ambiguous utterances,

frequencies of individual lexical items or constructions, variation due to

language or dialect contact. In real cases of language change, however, it

can be di‰cult to tease apart these factors to determine which are neces-

sary or su‰cient triggers for various changes. As Dras, Harrison, and

Kapicioglu (2001) note, simulation studies provide a way to perform dia-

chronic experiments on language, altering the strength of each force and

observing the e¤ects.

Few such simulations have been undertaken that attempt to model real

changes, but this line of inquiry seems promising. This section concludes

by reviewing preliminary results from one simulation project (Dras, Har-

rison, and Kapicioglu 2001) that investigated the e¤ects of various forces

on changes in vowel harmony. Dras, Harrison, and Kapicioglu collected

corpus data on Old Turkic—in which 100% of words were harmonic for

palatality and backness—and several of its descendants, from the ninth

century to the present. Some of the contemporary languages have main-

tained very high rates of harmony, while others’ rates of harmony have

fallen drastically. Dras, Harrison, and Kapicioglu identified internal and

external factors that could a¤ect rates of vowel harmony—vowel co-

articulation, inherent markedness of certain vowels, consonantal e¤ects,

merger of vowels (collapsing harmony pairs), the introduction of dishar-

monic loanwords, and language contact—and modeled several of them.20

Agents in the simulation exchanged words with randomly selected neigh-

bors, updating their lexical entries to reflect what they had heard. When

speaking, an agent might mispronounce a word or coarticulation; when
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listening, an agent might mishear, ignore a coarticulation, or adjust an

interlocutor’s pronunciation before adding it to the lexicon. Agents

might also mutate their lexical entries at an agent-specific rate; if a vowel

was to be mutated, there was an agent-specific probability that it would

be made harmonic.

If factors favoring harmony were strong enough, harmony could

increase, following roughly an S-shaped curve. Dras, Harrison, and

Kapicioglu found that vowel merger alone was not su‰cient to eliminate

harmony, nor was the addition of disharmonic loanwords. Though the

authors emphasize that their results are preliminary and that the model

needs to be enriched with several more factors, this study shows a prom-

ising direction for future work: using probabilistic simulation tools and

real historical data to model the e¤ects of a variety of internal and exter-

nal factors on language change. Such simulations should help us deter-

mine which factors, alone or in conjunction, are strong enough to cause

and continue language change.

5.6 Conclusion

Many linguists are interested in language change because of what it can

tell us about synchronic language. For example, the types of reanalysis

that are common may tell us about the learning mechanism, and the way

a change spreads through the speech community may tell us about the

social function of language.

Because the study of language change draws on all areas of linguistics,

and particularly on probabilistic approaches to all areas of linguistics,

the study of language change also has something to contribute to the

study of probabilistic linguistics: models of synchronic acquisition, repre-

sentation, and use of language must be consistent with observed dia-

chronic facts.

We have seen that the probabilistic behavior of learners, speakers, and

listeners can shape language change and that simulation studies can help

us explore how this happens. Simulation studies can also support or

undermine models of how agents represent and use linguistic knowledge:

if a model yields a good match to the known facts concerning language

change, it is to be preferred over one that does not. In Tabor 1994, for

example, a connectionist model of syntactic knowledge is supported by

its ability to model frequency linkage and the relationship between fre-

quency changes and reanalysis. In Zuraw 2000, a probabilistic model of
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knowledge of lexical regularities is supported by its ability to model the

incorporation of new words into the lexicon.

Language change can be a testing ground, then, for probabilistic models

of learning, speaking, and listening. It is to be hoped that current advances

in our understanding of the probabilistic nature of the language faculty will

have much to contribute to the study of language change over the coming

years, and that the study of language change can return the favor.

Notes

Many thanks to the editors, Rens Bod, Jennifer Hay, and Stefanie Jannedy, and
to Bryan Zuraw, for their substantial feedback. The greatest thanks go to Norma
Mendoza-Denton and Chris Manning, whose comments significantly shaped the
form and content of this chapter.

1. When a group of languages is known to be related, we may wonder how
closely. Although answering this question requires quantitative techniques, it
generally does not involve probabilistic tools. Determining degree of relatedness
involves establishing a similarity metric and a clustering technique to group the
most similar languages most closely. See Embleton 1986 for a review of quantita-
tive techniques in tree reconstruction, and Guy 1980a,b, for some interesting
computer experiments. Current work in comparative dialectology (e.g., Kessler
1995; Nerbonne and Heeringa 2001) similarly explores similarity metrics and
clustering techniques, although this literature generally does not seek to establish
facts about genetic relatedness but rather seeks to quantify the degree of current
similarity between dialects in a way that might, for example, be useful to language
planners and educators.

2. The tools of probability can do little to help us identify loans; obvious loans
could be excluded from word-lists, but, as Kessler (2001) observes, borrowings
that took place in the distant past may be impossible to detect.

3. An analogous nonlinguistic example is the ‘‘lottery fallacy’’: even though you
will almost certainly not win the lottery this week (even if you buy a ticket), it is
quite likely that someone will win. It is perhaps the high likelihood of the general
event that makes the specific event seem within reach.

4.
p

q

� �

, ‘‘p choose q,’’ is the number of ways that a subset set with q elements

can be chosen from a set of p elements.
p

q

� �

¼ p!=ððp� qÞ! � q!Þ, where n!, ‘‘n

factorial,’’ is equal to n � ðn� 1Þ � ðn� 2Þ � ðn� 3Þ � . . . � 3 � 2 � 1.

5. w2 is the sum of ðO� EÞ2=E for each cell, where O is the observed value and E

is the expected value (the value that the cell would have if the proportion of
entries per row were the same for each column and vice versa).

6. In the shift test, for a list of length n, only n permutations are considered:
shifting list B down by 0 lines, by 1 line, by 2 lines, and so on.
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7. Or, equivalently,

P ¼ ekþst

1þ ekþst
:

8. ln stands for natural logarithm. lnðxÞ ¼ y means that xy ¼ e, where eA2:72 is
the so-called natural number.

9. This is the source of Tabor’s ‘‘Q-divergence’’: changes in a word’s category are
accompanied or even preceded by changes in the frequency with which it appears
in an ambiguous context.

10. A potential counterargument is that if ne was lost for phonological reasons, it
might have been preserved in the written record for a deceptively long time.

11. Niyogi and Berwick make the point that only the five-parameter system, not a
similar three-parameter system, tends toward loss of V2. The three-parameter
system actually produces a tendency toward increasing V2. Therefore, Niyogi and
Berwick argue, diachronic simulations such as theirs can be a way of investigating
the plausibility of substantive proposals in linguistic theory.

12. Phillips found that the stress shift illustrated by convı́ct (noun or verb)
becoming cónvict (noun)/convı́ct (verb) a¤ected infrequent words first. She also
found, however, that final stress on verbs ending in -ate in British English devel-
oped first on frequent words. Phillips suggests that the -ate shift is not really a
morphological rule in Bybee’s sense. Applying the stress shift does not require
analyzing the morphological category or morphemic structure of a word; rather, it
involves ignoring -ate’s status as a su‰x.

13. Bybee (in press) proposes that just as frequent words can retain archaic pho-
nology or morphology, so frequent words and constructions can retain archaic
syntax. Bybee proposes this as the explanation for why the English modal auxil-
iaries (can, might, should, etc.) retain their archaic behavior with respect to nega-
tion and question formation: He should not, Should he? versus He does not drive,

Does he drive? The frequency e¤ect could be thought of as complementary to, or a
driving force for, the traditional explanation that only modals occupy Infl.

14. A growing literature simulates ‘‘language evolution,’’ that is, change whose
starting point is a speech community that lacks any shared linguistic knowledge.
See Steels 2000 for a very brief overview; for further reading, see Kirby 1999 and
many of the papers in Hurford, Studdert-Kennedy, and Knight 1998 and Knight,
Studdert-Kennedy, and Hurford 2000.

15. Like most agent-based simulations of language change, the model lacks social
or spatial structure: each agent has an equal probability of interacting with any
other agent. Because leadership in a language change seems to be correlated with
the characteristics of the speaker’s social network (see Milroy 1980; Labov 2001),
a simulation that attempts to model the spread of a sociolinguistically correlated
change through the speech community would require a more realistic social
structure. Social structure is probably irrelevant, however, to merely demonstrat-
ing the transmissibility of a lexical pattern.
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16. In the simulation reported in Zuraw 2000, pronunciations do compete
directly: when one is augmented, the other is diminished. The results reported here
are from a later version of the simulation.

17. In many situations, it is unrealistic for the learner to maintain a full list of
possible grammars. In a principles-and-parameters model, the number of possible
grammars is vp, where v is the number of values that each parameter can take,
and p is the number of parameters. Even with binary parameters ðv ¼ 2Þ, this
number grows very quickly as the number of parameters grows. In Optimality
Theory, the situation is even worse: the number of grammars is c!, where c is the
number of constraints. A model in which individual parameter settings or con-
straint rankings are probabilistic is more tractable (see Boersma 1998; Boersma
and Hayes 2001 for probabilistically ranked constraints within a single grammar).

18. This paper also includes some interesting simulations of creole genesis.

19. The source of the variation could be dialect contact, social prestige, or ran-
dom mislearning by the older generation.

20. Coarticulation, inventory structure, lexical patterns, vowel merger, fixed non-
harmonic su‰xes, and disharmonic loanwords.
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Chapter 6

Probabilistic Phonology:
Discrimination and
Robustness

Janet B. Pierrehumbert

6.1 Introduction

Phonology deals with the implicit knowledge of language sound structure

as used contrastively to convey meaning. The ability of humans to use

this knowledge productively shows the need for an abstract generative

theory of phonology. A fluent adult speaker of a language can produce

new words with native word-level allophony, produce novel combinations

of words with native phrase-level allophony, accommodate borrowings to

native phonotactics, and create morphological neologisms involving pho-

nological modifications of the component parts. Baayen (2001) presents

calculations suggesting that new words are continually created. No mat-

ter how large a corpus a researcher is working with, a substantial increase

in its size will uncover additional words. Thus, phonology is productive

for the same reason that syntax is: to express novel meanings, people

construct new combinations of familiar parts.

The productivity of phonology is widely believed to constitute evidence

for a theory in which the phonology of any particular language has the

character of a formal grammar, and the universal theory of phonology

delineates the types of grammars that are available for use in individual

languages. For example, the phonology of Finnish includes a set of ter-

minal elements, such as features or phones. It includes principles for

combining these elements into well-formed syllables, metrical feet, and

phonological words. These principles permit /h/ in coda position (as in

the word /kahvi/ ‘co¤ee’). They permit the double attachment of a pho-

neme to coda and onset position (as in the word /hElp:o/ ‘easy’). They

preclude the kind of complex onsets found in English /strit/ street.

They set up an alternating word pattern, described with metrical feet.

They enforce initial word stress absolutely. Analyses of this sort are very



familiar. The assumption I want to emphasize about them is that they

involve synoptic knowledge that exploits abstract variables, such as C

(consonant), m (mora), and s (syllable). If the knowledge were less

abstract and synoptic, it would not generalize to novel cases in the specific

ways it does.

This conception of phonology as a formal grammar (with abstract

variables) is often assumed to stand in opposition to the idea that

phonology involves statistical knowledge. However, this opposition is

spurious, because probability theory requires us to assign probability dis-

tributions to variables. Without variables, there would be no way for a

statistical learning model to tabulate any statistics about anything. Once

we have variables, they can be as abstract as we like; in principle, we can

assign probability distributions to any variable of any nature that we may

care to define in response to scientific findings.

Introducing probability distributions into the model provides obvious

and well-established tools for handling variable data and gradient out-

comes. However, it in no way precludes a rigorous treatment of phe-

nomena that prove to be highly categorical. Such phenomena can be

handled in probabilistic models by assigning extreme probabilities to

particular outcomes: namely, a probability of 0 to a nonoccurring event

and a probability of 1 to an outcome that is certain. In short, within a

probabilistic model, nonprobabilistic fragments of the grammar are

readily treated as limiting cases. (For complete formal development of the

intrinsic connection between probability theory and logic, see Carnap

1950 and Adams 1998.) In the remainder of this chapter, I will assume

that the ultimate and true theory of phonology will involve both proba-

bility distributions and abstract variables, because the abstract variables

have probability distributions over other levels of representation. My

discussion will focus on questions of which distributions over which vari-

ables. I will argue that careful consideration of how statistical distribu-

tions are established and distinguished from each other enables us to

reach important conclusions about the nature of human language, con-

clusions that would elude us in a nonprobabilistic framework.

In viable theories of phonetics/phonology, there is a ladder of abstrac-

tion, each level having its own representational apparatus. Thus, the

theory as a whole must delineate both the available representation at each

level and the principles relating one level to another. In the remainder of

this chapter, it will be important to distinguish the following levels. This

list represents a minimal rather than definitive list of levels of representa-
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tion, and representational distinctions within each level on the list have

been glossed over when they are not central to the goals of the chapter.

1. Parametric phonetics. The parametric phonetic representation is a

quantitative map of the acoustic and articulatory space. In speech per-

ception, it describes the perceptual encoding of the speech signal on each

individual occasion. In speech production, it describes the articulatory

gestures as they unfold in time and space.

2. Phonetic encoding. The phonetic encoding system of a language

abstracts over the parametric phonetic space, defining the inventory

available in the language for encoding word forms (phonological repre-

sentations of words). In traditional phonology, these categories are taken

to be phonemes. Phonemes are minimal contrastive units and they can be

equated across di¤erent structural positions; the same phoneme occurs at

the beginning of pat and the end of step. However, much recent evidence

(reviewed below) suggests that phonetic categories are considerably less

abstract than phonemes. They are not minimal in the sense that they

include redundant information. Nor can they be equated across contexts.

Thus, they can be viewed as peaks in the total phonetic distribution of the

language (e.g., areas of the parametric space that the language exploits

preferentially) or as positional allophones. Phonetic encoding, as used

here, includes not only speech segments but also aspects of prosody and

intonation that are defined with respect to the speech signal.

3. Word-forms in the lexicon. Each word in a speaker’s lexicon has

a representation of its sound structure that allows it to be recognized

despite variation in its phonetic form resulting from speaker di¤erences

and context. The same representation presumably mediates between per-

ception and production, making it possible for speakers to repeat words

they have acquired through perception. Given this description, it is clear

that word-forms are also abstractions over the phonetic space. A given

word is learned through repeated exposure to that word in speech. Per-

vasive word frequency e¤ects in psycholinguistics show that a word’s fre-

quency of occurrence a¤ects the long-term representation of that word.

Connections between word frequency and detailed quantitative aspects

of pronunciation are documented in Bybee 2001 and Jurafsky, Bell, and

Girand, 2002. Such phenomena strengthen the point that words are gen-

eralizations over speech.

4. The phonological grammar. The phonological grammar, encom-

passing both prosodic structure and phonotactics, describes the set of

possible words of a language. (Phrasal phonology is beyond the scope of
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this chapter.) The grammar is revealed by well-formedness judgments

as well as neologisms and borrowings. It is also revealed by the procrus-

tean adjustments that morphologically complex forms can undergo if

they become lexicalized as units.

Phonology represents generalizations over the word-forms in the

lexicon, which are in turn generalizations over speech. Hence, pho-

nology does not abstract over speech directly, but rather indirectly via

the abstraction of word-forms. This jump in level has important conse-

quences. First, we can find discrepancies between the strongest patterns in

the lexicon and the strongest patterns in running speech. Discrepancies

occur because a pattern that is common in running speech may be rare in

the lexicon if its occurrence in running speech results from just a few dif-

ferent words. Second, the lexicon is small in comparison to the total

number of word tokens a person encounters. An adult speaker of English

knows on the order of 10,000 monomorphemic words and 100,000 words

total (see discussion below). Any generalization in the word-level pho-

nology must be learnable from a data set of this size. In contrast, the 200-

million word corpus used in Baayen’s (2001) calculation cited above

would correspond to about 18,000 hours of speech, about the amount of

speech native speakers have encountered by the time they reach adult-

hood, assuming they hear speech two to three hours per day. Language

learners have at their disposal a vast amount of data for learning gen-

eralizations over speech, such as native details of pronunciations. The

consequences of this vast discrepancy between lexicon size and number of

encountered word tokens will be discussed further below in connection

with statistical robustness.

5. Morphophonological correspondences. A given stem or a‰x can

assume phonologically di¤erent forms in di¤erent, related words. Many

of the di¤erences are attributable to general constraints of the phonolog-

ical grammar. For example, in a standard analysis the /n/ pronounced in

the word hymnal (before a vowel-initial su‰x) is not realized in the bare

form of the stem hymn. This fact may be attributed to sequencing con-

straints within the syllable. The vowel-initial su‰x rescues the consonant

by parsing it into onset position. A general line of development in pho-

nological theory, launched by Kisseberth’s (1970) work on conspiracies,

aims to show how morphophonological alternations arise when contex-

tual factors make a given stem subject to di¤erent surface constraints.

This enterprise, insofar as it succeeds, minimizes the need for explicit

statements about alternations. Optimality Theory is a recent manifesta-
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tion of this trend. However, no current theory explains all morpho-

phonological alternations on the basis of general phonological patterns,

because many such alternations are not, in fact, general. Many alterna-

tions need to be learned on the basis of specific relations between words

or within paradigms. I will refer to such alternations as correspondences.

Morphophonological correspondences will not be the primary topic

of this chapter, since they are treated independently by Baayen (this

volume). The cases that Baayen analyzes in depth are linking ele-

ments in Dutch nominal compounds and final voicing/devoicing in the

past tense of Dutch verbs. Parallel cases in English include irregular

voicing in the English plural, as in thief/thieves, and (perhaps surprisingly)

English flapping, as in the contrast between capitalistic, which shares

the flap of capital, with militaristic, which maintains the aspiration of

military (Withgott 1983). Such patterns involve generalizations over

pairs or sets of words. This point is brought home by an e¤ort to esti-

mate the plural of an unstable form. Is the plural of roof rooves, on

the analogy thief : thieves :: roof : rooves? Or is it roofs, on the analogy

cu¤ : cu¤s :: roof : roofs? The AML model (Analogical Modeling of Lan-

guage) developed by Skousen (1989) acknowledges this fact in its very

name; for detailed discussion of this model, see Baayen, this volume.

In Optimality Theory, output-output correspondence constraints, or sym-

pathy constraints, acknowledge the same kind of relationship (see Mc-

Carthy and Prince 1995; McCarthy 1999). Morphophonological schemas

in the usage-based theory of Bybee (2001) also involve generalizations over

word relationships.

The levels of representation just introduced imply an organization

of probabilities in the theory. Specifically, phonetic categories have prob-

ability distributions over the parametric phonetic space. Word-forms,

viewed as sequences of phonetic categories, also have probability distri-

butions over temporal sequences of events in the phonetic space. (These

distributions may be deducible from the categories that comprise the

word-form. Or nearly so.) The prosodic and phonotactic templates that

define the phonological grammar have probability distributions over

the word-forms in the lexicon. Morphophonological relationships also

involve probability distributions over a universe of pairings or collections

of word-forms.

In the following sections, I will first review empirical evidence that

implicit knowledge at all levels of representation is probabilistic. Then, I

will show how probabilistic reasoning predicts limits on the inferences
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that can be made about language, either by the scientist or by the lan-

guage learner. These limits lead to level-specific e¤ects, because the pho-

netic encoding system and word-forms are acquired from vast exposure to

speech, whereas the phonological grammar is abstracted over the lexicon.

The lexicon provides a much smaller number of data points than running

speech. Language is statistically robust, and this robustness forms its

character at all levels. Finally, I will discuss correlations across levels and

their implications for phonological theory.

6.2 Probability at Various Levels of Representation

6.2.1 The Phonetic Space and Categories over It

The phonetic inventory of a language is a set of labeled probability dis-

tributions over the phonetic space. By ‘‘phonetic space,’’ I mean the

acoustic and articulatory parameterization of speech as a physical event.

For example, to a first approximation, vowels can be viewed as proba-

bility distributions over F1-F2 space, as shown in figure 6.1. Figure 6.1

pools data for the same vowel across speakers. Each vowel occupies a

continuous region of the space. The regions for di¤erent vowels are quite

distinct, even ignoring F3 and any other characteristics that distinguish

them. Each vowel is more frequently instantiated by values near the cen-

ter of its distribution than by values near the edges of its distribution.

The F1-F2 space is continuous, because the parameters vary contin-

uously. It is possible to define a vowel location that is between any two

particular vowel tokens, no matter how close these two may be to each

other, and it is possible to define a distance metric between vowels that

integrates the separation in the F1 and F2 directions. The same claims

would apply to other physical parameters as well, such as spectral tilt, jaw

opening, or activation of the cricothyroid muscle. If we conceive of the

phonetic space in terms of all controllable or noticeable articulatory and

acoustic dimensions, then it is a very high dimensional space indeed. A

complex shape within this hyperspace describes the combinations of

articulatory and acoustic values that human anatomy and physiology

permit us to achieve.

Any individual language exploits as categories a reasonably small

number of regions in hyperspace, with no language using all regions of

the phonetic space equally. In fact, a rather sparse selection of regions is

used by any individual language, as compared to the universal capa-

bilities evidenced by the union of phonetic outcomes across all languages.
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Figure 6.1

The F1–F2 vowel space. Data, taken from Peterson and Barney 1952, combine
data for children, women, and men. Regions corresponding to each vowel are in-
dicated. Only tokens that were unambiguously identified by listeners are included.
In cases of overlap between regions, F3 or some other feature disambiguated the
percept.
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The largest phoneme inventories reported in Ladefoged and Maddieson’s

(1996) typological survey are still small compared to the complete IPA

(International Phonetic Alphabet), viewed as an estimate of the total set

of sound segments available for use in any language.

The claim that languages use regions of the phonetic space—as

opposed to points in the space—is supported by the fact that the pho-

netic realization of any given element is always variable. Even repeated

recordings of the same speaker saying the same word in the same context

will yield some variability in the measured values of physical parameters.

When we consider the amount of variation relating to di¤erences in vocal

tract anatomy, speech style, and idiolect that the speech perception sys-

tem encounters, it is clear that the system has an impressive capability for

coping with variation. Indeed, the whole point of abstract levels is to cope

with variation. If productions of the same word were acoustically identi-

cal across speakers and situations, then the recognition system could

work just by matching spectral templates, the mathematical equivalent of

laying one spectrogram on top of another and holding the pair up to the

light to see whether they were identical or not. Lexical entries could link

spectral templates directly to meanings, and no more abstract phonetic

encoding would be necessary.

Acquiring the phonetic encoding system of a language involves acquir-

ing probability distributions over the phonetic space. Evidence that these

distributions are acquired comes both from language typology and from

studies of language acquisition. As discussed at more length in Pierre-

humbert 2000 and Pierrehumbert, Beckman, and Ladd 2001, there is no

known case of a phoneme that has exactly the same phonetics in two dif-

ferent languages. Even the most closely analogous phonemes prove to be

systematically di¤erent when examined quantitatively in analogous con-

texts, and patterns of variation across contexts reveal even more quanti-

tative di¤erences. For example, Caramazza and Yeni-Komshian (1974)

show that voice onset times for stops in Canadian French di¤er system-

atically from those in both American English and Continental French.

Experiments reported by Flege and Hillenbrand (1986) show that vowel

lengthening before a voiced fricative is quantitatively di¤erent in English

and French, and that English and French listeners are attuned to this

di¤erence as a perceptual cue for the voicing of the fricative. Beddor and

Krakow (1999) explore language-specific details of nasal coarticulation,

and Beddor, Harnsberger, and Lindemann (in press) present similar

results for patterns of vowel-vowel coarticulation in di¤erent languages.
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Studies of language acquisition show that phonetic knowledge is

acquired gradually. Although children show attunement to the encoding

system of their language toward the end of the first year of life (Werker

and Tees 1994), it takes a long time to reach adult levels of competence.

In production, elementary-school children still lack adult levels of

accuracy in durational and spectral patterns (Lee, Potamianos, and

Narayanan 1999) and in control and perception of coarticulatory pat-

terns (Nittrouer 1992, 1993). Hazen and Barrett (2000) present similar

results for phoneme perception, showing that categorization boundaries

for minimal pairs such as coat, goat sharpen gradually from ages 6 to

12, but at age 12 they still di¤er from those of adults. Such findings are

readily modeled by assuming that the probability distribution correspond-

ing to any encoding unit is incrementally updated through experience.

In contrast, the (still common) assumption that phonological acquisi-

tion involves selecting items from a universally available categorical

inventory (along the lines of the IPA) provides no way of representing

the fine phonetic di¤erences that define a native accent. It also fails to

explain why children take so very long between positing a category in

their language and using it with adult levels of precision in perception

and production.

As discussed by Johnson (1997c) and Pierrehumbert (2001a), the per-

ceptual learning involved in the gradual acquisition of detailed phonetic

categories is readily modeled using exemplar theory. In exemplar theory,

labels are associated with a distribution of memory traces in a parametric

space, in this case a cognitive representation of the parametric phonetic

space. These traces are the exemplars that give the model its name.

Empirical distributions of exemplars associated with each label are grad-

ually built up as speech tokens are encountered and encoded. This con-

cept is illustrated in figure 6.2, in which a single dimension, F2 (the

second formant value), is selected for the purposes of exposition. The two

labels involved are /i/ and /E/, which are generally but not completely

separated in F2. Vertical lines represent remembered instances of /i/ and

/E/, with higher vertical lines representing the strong memory trace

resulting from a pileup of recent examples. The empirical distributions

are not individually normalized, and so /i/, being more frequent than /E/,

is more abundantly represented. An incoming token of an unknown

vowel is indicated by the asterisk, located at a point on the F2 axis that

reflects its actual F2 value. According to a standard model of perceptual

classification, the labeling of this token is determined by a statistical

Probabilistic Phonology 185



choice rule that assigns the most probable label based on the location of

the unknown stimulus in relation to the density of the competing labels in

the neighborhood of the stimulus (see Luce, Bush, and Galanter 1963a;

Kruschke 1992.) The relevant neighborhood is indicated by the arrows

around the stimulus. Since the distribution for /i/ shows a higher density

in this neighborhood, the stimulus is classified as /i/. This classified speech

event would induce an additional labeled memory trace at that location.

Through continual updating in this fashion, the mental representation of

the distribution for each label is gradually built up with experience.

For details of production to mirror perception, it is necessary to run the

model backward. Pierrehumbert (2001a, in press) provides an exact

proposal for doing so. Once a label is selected (presumably, through a

decision to say a word that involves that label), a production goal is

established by sampling the empirical distribution for that label. Specifi-

cally, an averaged neighborhood around a randomly sampled point in the

distribution serves as a production goal. Bias terms on the initial sam-

pling and on the computed production goal are available to model sys-

tematic shifts in the use of the phonetic space. Such shifts can come about

through choices of speech style and historical changes in progress.

Johnson (1997c) and Pierrehumbert (2001a) leave open the question of

what causes a phonetic category to be initiated in the first place. Catego-

rization could be tied to functionality at another level (in particular, to

functionality in meaning contrasts). However, increasing evidence that

Figure 6.2

Classification of an unknown stimulus token, in the framework of exemplar
theory. The asterisk indicates the F2 location of the unknown stimulus. The
arrows show the window over which the evaluation is made. (From Pierrehumbert
2001a.)
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infants initiate categories of phonetic encoding before they know mean-

ings of words has encouraged researchers to look for bottom-up factors in

categorization. A series of experiments reported by Maye and Gerken

(2000) and Maye, Werker, and Gerken (2002) contrasts encoding of

the same phonetic continuum under two conditions, one in which the

distribution of tokens over the continuum is bimodal and one in which it

is unimodal. These researchers found that both adults and infants inter-

pret the bimodal continuum as involving two categories, even in the

absence of any information about meaning. These experimental results

are substantially anticipated by calculations presented by Kornai (1998).

Kornai carried out an unsupervised cluster analysis on vowel formant

data from Peterson and Barney 1952. The clusters identified through this

analysis are extremely close to the mean values for the 10 vowels of

American English, according to Peterson and Barney. The success of this

analysis reflects the fact that utilization of the vowel space is not uniform,

as discussed above. Utilization is more intense in regions close to the

prototypical values for vowels of the relevant language, and it is sparse in

between. Results of this character are not confined to speech segments.

Mermelstein (1975) launched a line of research on bottom-up detection of

syllables by obtaining strong results on the basis of the amplitude integral

of the speech signal. Pausing, lengthening, and voice quality changes may

e¤ectively cue major intonational boundaries. Thus, it appears to be a

hallmark of natural language that units of phonetic encoding correspond

to distributional peaks over the parametric phonetic space. I will return to

the significance of this finding in section 6.4.

6.2.2 Word-Forms and Lexical Neighbors

People learn new words by encoding instances of those words encoun-

tered in speech. Recent results reviewed in Pierrehumbert, in press,

indicate that these long-term representations of individual words are

surprisingly detailed. Evidence for long-term encoding of subphonemic

detail includes morphological transfer e¤ects, as discussed by Steriade

(2000), historical entrenchment of sociostylistic features, as discussed by

Yaeger-Dror and Kemp (1992) and Yaeger-Dror (1996), and unconscious

imitation of specific voices, as revealed in Goldinger’s (2000) experiments.

It may also be noted that infants acquire their first words before they

abstract phonemes, and that their phoneme inventory is only gradually

developed on the basis of recurring patterns in a growing lexicon (see
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review in Vihman 1996). Results such as these dictated the present treat-

ment of word-forms as generalizations over the speech stream that use the

resources of the phonetic encoding system.

Psycholinguistic results show that a speaker’s total store of words is not

an unstructured list. Instead, the words are organized in a lexical network

in which words are connected to each other by virtue of phonological and

semantic relationships. During language acquisition, the similarities and

contrasts among words in the early vocabulary play an important role in

the subsequent evolution of the system (see Beckman and Edwards 2000

for an incisive review). In adults, each word’s competitiveness in percep-

tion and production is strongly a¤ected by the number and frequency of

word-forms that are similar to it. Luce and Pisoni (1990, 1998) explored

the consequences of such similarities for CVC syllables, using the term

lexical neighbor for a CVC syllable that di¤ers minimally from a given

CVC syllable through the addition, deletion, or substitution of a single

phoneme. They found that other things being equal, it takes longer to

recognize words that have many lexical neighbors than words that have

few lexical neighbors. The delay is particularly great if the lexical neigh-

bors have high average frequency relative to the target; the hardest words

to recognize are infrequent words with many frequent lexical neighbors,

and the easiest are frequent words with few and infrequent lexical neigh-

bors. However, it is not as widely acknowledged that these same factors

a¤ect both allophonic outcomes and well-formedness judgments, phe-

nomena traditionally viewed as the purview of phonology.

Wright (1997) measured formant values in a set of ‘‘hard’’ and ‘‘easy’’

words produced in citation form. He found that the ‘‘hard’’ words

were more fully articulated in citation form than the ‘‘easy’’ words, as

evidenced by a somewhat expanded vowel space. In a similar vein, Scar-

borough (2002) reports that hard words have stronger nasal coarticula-

tion than easy words, facilitating perception. Already in 1964, Greenberg

and Jenkins showed that invented words that are highly similar to exist-

ing words receive high ratings as possible words of a language. Consider a

new English word canvle. It is minimally di¤erent from several existing

words, as shown in table 6.1. The existence of these real words means that

canvle is a very good nonsense word. Bailey and Hahn (2001) undertook

a detailed experimental and computational study of the e¤ects of phono-

tactics and lexical neighbors on ‘‘wordlikeness’’ judgments of nonsense

words. They found that both of these factors have identifiable e¤ects, and
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together they explain wordlikeness judgments better than either one does

alone. Notably, words with improbable phonotactics were rated better if

they had more lexical neighbors than if they had fewer.

Both lexical neighborhoods and phonotactics reflect general knowledge

of the lexicon. Conceptually, both involve searching the lexicon for words

that match some phonological template. However, there are important

di¤erences between these two concepts, which relate to di¤erences in the

level of abstraction involved. The lexical neighborhood is found by iden-

tifying the few words in the lexicon that nearly match a given word in its

entirety. The lexical neighbors of a word can mismatch it in various,

unrelated regards. In the example above, canvle mismatches anvil in

initial position, whereas it mismatches candle in the onset of the second

syllable. Phonotactic generalizations are made over all words in the

lexicon, but involve far less detailed templates. For example, the fact

that /nt/ is a phonotactically splendid nasal-obstruent cluster in English

relates to the huge, diverse set of words containing /nt/ as either a hetero-

syllabic or a final cluster, including words such as intrepid, pantry, encoun-

ter, poignant, tyrant. There are 650 such examples among the CELEX

monomorphemes. (The large on-line dictionary CELEX, as described in

Baayen, Piepenbrock, and Gulikers 1995, was the basis for the inventory

of monomorphemic words used in Hay, Pierrehumbert, and Beckman,

in press, and Pierrehumbert 2001b.) For /nf/, which is phonotactically

worse than /nt/, there are only 38 examples among the CELEX mono-

morphemes. Examples include influence and enforce. For any of the

words just cited, the nasal-obstruent template covers only a small part of

the word. Lexical neighborhoods are understood to arise on-line during

processing as words that are highly similar to the current word token are

activated during perception or production. Thus, there is no evidence

Table 6.1

Lexical neighbors for a nonsense word

Orthography IPA

canvle k0nvPl

canvas k0nvPs

anvil 0nvPl

candle k0ndPl

Campbell k0mbPl
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that they involve any more abstraction than the abstraction involved in

encoding and storing the word-forms themselves. Phonotactic general-

izations, in contrast, may plausibly involve abstraction of a phonological

grammar based on knowledge of all the words. Thus, Bailey and Hahn’s

(2001) results may be understood as showing that wordlikeness judg-

ments do not tap a single level of representation in the system. Instead,

the decision about whether a neologism is a possible word of English is

reached by combining information from two levels of representation. The

input from the lexical level is the extent to which the target word activates

highly similar existing words. The input from the phonological level is the

well-formedness of the word as determined by a stochastic phonological

parse integrating its subparts.

Distinguishing lexical neighborhood from phonological e¤ects is di‰-

cult, requiring the kind of exacting calculations and experiments that

Bailey and Hahn (2001) have performed, because there is a high correla-

tion between the size of a word’s lexical neighborhood and its phonotactic

likelihood as computed from its subparts. If a word has numerous neigh-

bors, these neighbors will often have numerous shared subparts that all

contribute to the counts for the subparts in a (stochastic) phonological

grammar. However, the correlation is not perfect. A phonotactically

probable word may have few neighbors if its various subparts are instan-

tiated in nonoverlapping sets of other words. Even though each subpart

would be found frequently in this case, no substantial fragment of the

word would match a substantial fragment of any other word. Similarly,

an improbable word may have fairly many neighbors if its rare subparts

happen to co-occur in several other words.

Because of the di‰culty of making this distinction in concrete cases,

the existence of a phonological grammar as an explicit level of abstrac-

tion is in fact still controversial in psycholinguistics. Bailey and Hahn

(2001) is one study that provides evidence for a phonologically abstract

level. Experiments reported by Vitevich and Luce (1998) and Vitevich

et al. (1999) show evidence separating lexical and phonotactic e¤ects.

Though phonotactic goodness and lexical neighborhood density are

correlated in the lexicon, these researchers find that they have opposite

e¤ects in perception. Phonotactic goodness facilitates perception whereas

dense lexical neighborhoods delay perception by creating competition.

Furthermore, the role of the two levels is task dependent. The influence

of the lexicon is reduced in tasks that are carried out at high speed

and for which only sound pattern information is functionally relevant.
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Such an outcome can only be modeled if the lexicon is distinguished

from the phonotactics. Data on the psychological reality of obligatory con-

tour principle (OCP) e¤ects discussed by Berent and Shimron (1997) and

Frisch and Zawaydeh (2001) also provide evidence for phonological ab-

straction of this particular constraint. In the light of such results, I will

assume, following mainstream thought in linguistics, that an abstract

phonological level is to be distinguished from the lexicon proper. I now

turn to the properties of this level.

6.2.3 Words and Word-Level Phonology

Words are made up of phonological units, and the way in which units

combine di¤ers across languages. Phonotactics deals with how units

combine to make words. Because the lexicon is an open set, as discussed

in the introduction, the goal of phonological description is not the actual

word list, but the larger set of possible words. A number of sources of

evidence converge to indicate that there is a scale of possibility, which

relates to the perceived likelihood of a whole word as a function of the

frequency of its subparts and the specific way they were combined. All

of the studies I will cite exemplify probabilistic knowledge of phonologi-

cal constraints; however, not all authors eliminate lexical neighborhood

e¤ects as a possible artifactual source of their findings.

In an experimental study of nonsense CVC syllables, Treiman et al.

(2000) constructed stimuli in which phoneme frequencies were controlled

and the frequency of the rhyme (the VC) was varied. They found

that both well-formedness judgments and outcomes in a blending task

reflected the rhyme frequency. Frisch, Large, and Pisoni (2000) collected

data on the wordlikeness of two- to four-syllable nonsense words

made up of either high-frequency or low-frequency CV syllables. The

ratings were a cumulative function of the frequencies of subparts. Hay,

Pierrehumbert, and Beckman (in press) investigated the perception and

judged acceptability of trochaic nonsense words containing medial nasal-

obstruent clusters. They found that transcription errors disproportion-

ately corrected infrequent clusters to (acoustically similar) more frequent

ones. Acceptability was a gradient function of the likelihood of the

(statistically) best morphosyntactic parse of the words. Nasal-obstruent

constraints and an OCP constraint on strident fricatives both a¤ected

acceptability, and these e¤ects interacted cumulatively to determine a

given form’s score. Munson (2001) found that phonotactic likelihood

a¤ects judgments by both adults and elementary-school children. It
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a¤ects error rates in production by children but not by adults. Zamuner,

Gerken, and Hammond (2001) replicated Munson’s finding for adults

and extended the production results to infants.

In the literature on the psychological reality of phonotactic regularities,

e¤ects by now have been found for a wide variety of phonological tem-

plates. Treiman et al. (2000) report probabilistic e¤ects relating to the VC

rhyme of CVC syllables. Hay, Pierrehumbert, and Beckman (in press)

report e¤ects relating to a C.C syllable juncture in English, and Cutler

and Otake (1996, 1998) report e¤ects relating to the same position in

Japanese and Dutch. Frisch and Zawaydeh (2001) and Frisch et al.

(2001) have demonstrated the reality of OCP e¤ects on the triconsonantal

roots of Arabic, the consonants in these roots being separated by various

vowels in the various words in which the roots appear. (In these studies of

Arabic, phonotactic e¤ects and neighborhood e¤ects are distinguished.)

Cutler and Butterfield (1992) have demonstrated e¤ects in speech percep-

tion of the strong but not absolute constraint that English words begin

with a stressed syllable. Frisch, Large, and Pisoni (2000) report a cumu-

lative e¤ect of the likelihood of CV syllables when combined with each

other in two- to four-syllable nonsense words.

All of these phonotactic patterns are readily described using the

apparatus of autosegmental and metrical phonology. A combined auto-

segmental/metrical formalism (as is developed in Pierrehumbert and

Beckman 1988) permits all of them to be understood simply as fragments

of phonological description. These is no single privileged level of analysis,

and the fragments crosscut each other in the sense that they do not stand in

any fixed hierarchical relationship. Taking the syllable as a kind of mental

reference point, note that the list I have just given includes patterns that are

bigger or smaller than a syllable (the word stress and the syllable rhyme);

syllables that happen to be diphones; syllable junctures, containing just

the end of one syllable and the beginning of the next; and consonantal

projections that abstract across variations in syllable structure.

These observations are at odds with a thread in psycholinguistics

that has sought a privileged unit of analysis. For example, in the (sub-

sequently updated) speech production model of Levelt (1989), the syllable

is the unit of production. This idea makes it hard to understand why

some complex syllables such as /zimp/ are readily produced and judged

acceptable even though they do not occur in the lexicon at all, at least as

indicated by a search of CELEX. However, the observations fit in readily
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with the framework of Data-Oriented Parsing (DOP) as described by Bod

(1998). In DOP, as developed for automatic grammar acquisition in syn-

tax and semantics, all partial formal descriptions up to some threshold of

complexity are projected from any experienced utterance. Frequency

counts for each descriptor are incremented as more and more utterances

are encountered, and these frequency counts are exploited in scoring

alternative parses of novel incoming forms. Compared to syntax, in fact,

phonology seems like a very attractive forum for DOP because the pho-

nological grammar lacks recursion and the known constraints appear to

have relatively simple formal structure. In section 6.4, I will return to the

question of what constraints are possible in relation to the issue of what

constraints are statistically learnable from a lexicon of realistic size.

6.2.4 Morphophonological Correspondences

The last level of representation introduced above encompasses general-

izations about relations between or among words. This is the level of

morphophonological correspondences. Experimental studies of morpho-

phonological generalizations indicate that their psychological reality

and productivity depends on type frequency—for example, the number

of di¤erent word-pairs that instantiate the generalization. Cena (1978)

reports that the productivity of the English Great Vowel Shift (as in

serene : serenity, cone : conic) depends on the specific vowel pair involved,

being productive only for the more frequent vowel pairings. A study on

conjugation of novel verbs in Spanish by Bybee and Pardo (1981) found

that conjugation patterns exhibited only in a few high-frequency verbs

failed to generalize; those exhibited in more than six di¤erent mid-

frequency verbs did generalize. Bybee (1995b) discusses the role of type

frequency in the formation of German participles for verbs and plurals

for nouns. She shows that the default participial form of German is the

most frequent one (contra Clahsen and Rothweiler 1992) and that type

frequency also a¤ects the productivity of the default German plural

ending /s/.

It is known that children need to have acquired a critical mass of ex-

amples before they project a morphophonological generalization (March-

man and Bates 1994). However, alternations are not necessarily acquired

in order of frequency. Since morphophonological generalizations are gen-

eralizations over word pairs, the cognitive availability of a given general-

ization depends not merely on the existence of the two words separately
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in a child’s lexicon, but also on the perception that they are related. For

example, the words bicycle and biscotti both contain (diachronically) a

common morpheme meaning ‘two’; biscotti are twice-cooked. The rela-

tionship between these words goes unnoticed by many adult speakers,

however. For a young child, the relationship between imagine and imagi-

nation might not be established, even if the child knew both words

separately. In a similar vein, Raimy and Vogel (2000) argue that the

notoriously late acquisition of the distinction between compounds such

as BRICK warehouse (a warehouse for bricks) and phrases such as brick

WAREhouse (a warehouse made of bricks) is actually due to the com-

plexity and irregularity of the semantic relationships expressed.

The scientist seeking to model frequency e¤ects in morphophonology

faces a similar challenge in determining what word relationships should

figure in the universe over which probabilities are established. There is no

comprehensive formal treatment of what word pairings or word sets are

relevant. Many of the clearest results have been obtained with inflectional

morphology, in which the paradigmatic organization of the forms is less

controversial than for derivational morphology.

6.2.5 Interim Summary

In summary, probabilistic e¤ects are known to exist at all levels of rep-

resentation of sound structure. These e¤ects are perhaps most widely

acknowledged in the area of phonetic encoding. Statistical classification

models that originate with the foundational works of mathematical psy-

chology can be adapted and extended to model how di¤erent languages

utilize the phonetic space in di¤erent ways. A fairly large body of experi-

mental work also reveals the existence of probabilistic implicit knowledge

of word-forms in the lexicon. This knowledge is revealed both in speech

processing and in tasks closer to the traditional purview of phonology,

such as well-formedness judgments and allophonic outcomes. Following

results in psycholinguistics, we can distinguish two aspects to this knowl-

edge. One is the epiphenomenal knowledge of the lexical neighbors of a

given stimulus, being the set of words that are so similar to the given

word that they are activated in speech processing. The other is the long-

term abstraction of the phonological grammar over the entire lexicon.

Frequency e¤ects are found at both levels. Probabilistic e¤ects of word-

form relationships are also observed in the area of morphological alter-

nations and productivity.
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6.3 Expected and Observed Frequencies

The productivity of phonology indicates that humans have internalized

an abstract system for making complex forms from simpler parts, and

linguists have the scientific goal of characterizing this system. Comparing

alternative characterizations of the system reveals an inverse relationship

between grammatical complexity of the system and the productivity it can

describe. At one extreme of this relationship lies the simplest possible

grammar, an arbitrary cross product of the phonological inventory (e.g.,

any combination of elements, in any order and of any length). This cross

product provides the maximum number of forms that could be generated

with the inventory of elements. At the other extreme lies the list of word-

forms actually observed in the lexicon. That is, we could take the words

in the lexicon as a set of positive grammatical constraints that license all

and only the stated combinations of elements. The lexical list would pro-

vide the minimum number of outputs consistent with our data set to date,

and it supports zero productivity in the sense that any thus far unattested

word is taken to be impossible.

Obviously, the true state of phonology is somewhere between these

extremes. Researchers attempt to propose specific grammars whose pro-

ductivity agrees well with the extensions that humans make, and whose

restrictions agree well with the forms observed to be absent. It is just as

important to explain the impossible forms as to explain the possible ones.

This enterprise requires a way to determine what forms are systematically

absent; systematically absent forms reflect complications of the grammar,

in comparison to the simpler grammar that would generate them. Com-

paring observed frequencies to expected ones provides the means for

making deductions of this kind.

6.3.1 Learning, Inference, and Underrepresentation

The language learner is in many ways similar to a scientist, an analogy

developed at length in the ‘‘theory theory’’ of Gopnik, Meltzo¤, and

Kuhl (1999). The learner is attempting to construct a synopsis of en-

countered forms that is general enough to be productive yet restrictive

enough to rule out impossible forms. If the grammar is not general

enough, the learner will not be able to process novel forms generated by

other people or to express new meanings. If it is too general, the learner

will generate novel forms that no one else can understand. Although the
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learner may have specific perceptual and cognitive characteristics that

di¤er from those of the scientist, this broad analogy means that general

mathematical bounds on inferring grammars from data constrain the

scientist and the learner in the same way.

A notorious issue for the language learner is the lack of negative evi-

dence. Linguistic scientists face exactly the same di‰culty. Although we

can obtain negative judgments about well-formedness, these are a very

limited tool. As discussed above, the cognitive status of well-formedness

judgments is under dispute, since they are known to conflate e¤ects at

di¤erent levels. As sociolinguistic studies have shown, well-formedness

judgments are vulnerable to perceived social norms and do not always

conform to more naturalistic data. Even if the judgments were valid,

there is no way we could obtain enough of them. No matter how many

such judgments we obtain, they are a sparse sampling of the set of forms

the grammar should rule out. Finally, linguists can’t reliably produce

forms that are impossible in their own language, and synthesizing the

forms using a computer leaves no way to ensure that they exhibit the

allophony they would have had if they were possible. Therefore, there

is no reliable way to present impossible words to subjects in a way that

guarantees they are encoded with the phonological representation the

researcher has in view.

This situation has the result that statistical underrepresentation must

do the job of negative evidence. Recent studies indeed show that children

are quite sensitive to the statistics of sound patterns. By using statistical

tools, linguists can also surmount the problem of negative evidence. It is

also the case that underrepresentation has limits as a tool for deciding

among alternative formal theories. We can turn these limits back on the

theory and infer that there are some questions the language learner must

not be asking, because they could not in principle be answered.

A phonological configuration that is systematically underrepresented is

one that appears less frequently than would be expected if the grammar

had no constraint disfavoring it. Thus, any claim about underrepresen-

tation must be made within the context of a comparison between two

grammars: a simpler grammar that provides the null hypothesis for the

calculation, and the more complex and restrictive grammar whose status

one wishes to evaluate. A choice for a simpler grammar that is always

available is the generalized cross product described above. Under this

grammar, each element has a frequency (estimated by its count relative to

the size of some corpus), and elements combine at random. The expected
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frequency E of any combination of elements P1 and P2 is accordingly the

product of their two frequencies:

EðP1P2Þ ¼ PðP1Þ � PðP2Þ: ð1Þ

In practice, phonologists computing expected frequencies acknowledge

that phoneme frequencies di¤er with position (in the syllable and/or in

the word). That is, a partial phonological grammar is presupposed, and

competition is between this presupposed grammar and a possible compli-

cation of it.

A major application of this reasoning is work on the OCP as it a¤ects

homorganic consonants in Arabic and other languages. Combinations

of consonants at the same place of articulation are disfavored, the degree

of underrepresentation being a function of the similarity and proximity of

the consonants as well as of the specific language. McCarthy (1988) and

Pierrehumbert (1992) both present results on this e¤ect as it applies to

the triconsonantal roots of Arabic verbs. In their calculations of E, posi-

tionally correct phoneme frequencies are used (C1, C2, or C3 position).

Berkley (1994, 2000) presents similar results for English, French, and

Latin. She overturns Davis’s (1991) claim that /t/ is somehow exempted

from OCP e¤ects that apply to other stops in /sCVC/ configurations in

English. Davis notes that forms like /spEp/ are bad, whereas words such

as stats actually exist. However, Berkley is able to show that the stats case

is also underrepresented, suggesting a more uniform grammar than Davis

proposed. Frisch (1996) also presents further calculations on Arabic that

relate the degree of underrepresentation of consonant pairs in Arabic to

the degree of similarity between the consonants as computed from a psy-

chologically motivated metric. A gradient relationship is found, in which

the proscription against totally identical consonants emerges at one end

of a similarity continuum. These results obviate the need to posit two

di¤erent grammatical mechanisms to capture the fact that the proscrip-

tion against identical consonants is statistically stronger than the con-

straint against similar but nonidentical consonants.

Another application of the idea of expected value is found in

Pierrehumbert 1994. Pierrehumbert computed expected frequencies of

occurrence for all medial clusters of three or more consonants in mono-

morphemic English words (such as the /lfr/ in the word palfry), by

assuming that these arise as random combinations of codas and on-

sets. The positional frequencies for codas were roughly approximated

by the frequencies of the various consonants in word-final position once
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appendices were stripped o¤; the positional frequencies for onsets were

approximated by frequencies of onsets in word-initial position. Pierre-

humbert showed that the vast preponderance of long medial clusters are

expected to occur less than once in any lexicon of realistic size. For

example, although a medial cluster such as /lskr/ in the nonsense word

pelskra is syllabifiable and violates no sequential constraints (cf. dell, else,

screw), it is unattested in any monomorphemic words of English found in

the Collins on-line dictionary distributed by the Linguistic Data Consor-

tium. Because of its relatively rare subparts, its expected count in a dic-

tionary of this size is less than one. Thus, its absence is expected under a

syllable grammar that includes positional probabilities for phonemes.

In a probabilistic model, no complication of the grammar is necessary

to explain such cases. If the grammar lacked positional probabilities,

then the absence of these forms would need to be modeled by complicat-

ing the grammar with additional constraints. The same argument can be

made for more than 8,400 additional long clusters that are unattested

in monomorphemic words. Pierrehumbert also identifies a number of

syllable contact constraints, with observed counts less than the values

expected from random combination of codas and onsets. These include

an OCP e¤ect leading to underrepresentation of forms with a C1C2C1

cluster (e.g., the hypothetical palfly) and a constraint disfavoring coronal

obstruents in word-internal coda position (e.g., *pirtfy). An experiment

involving two di¤erent judgment tasks showed that these systematically

underrepresented patterns relate to psychologically real constraints.

6.3.2 Sample Size

Both the statistical analyses of the Arabic OCP and Pierrehumbert’s

analysis of the long medial clusters of English were carried out using large

on-line dictionaries yielding data sets that are roughly similar in size to

the total mental lexicon of an adult speaker (see also discussion below).

An individual Arabic speaker probably does not know a great many

more triconsonantal verb stems than the 2,674 found by Cowan (1979).

The Collins on-line dictionary of English contains 69,737 phonologically

distinct entries and is similar in its coverage of monomorphemic words to

the CELEX dictionary. Data sets such as these can be viewed as random

samplings of the larger hypothetical data set in which all the latent

potential for lexical additions is actually instantiated. The constraints

governing the larger data set must, however, be inferrable from a sam-

pling of this set. This is the case because adult speakers have learned the
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phonology of their language, and learning the phonology cannot require

more word-forms than individual adult speakers know.

In general, the bigger the sample, the more confidently patterns can be

established. As the sample size increases, increasingly complex patterns

can be established with reasonable confidence. The samples for mono-

morphemic words (around 10,000 items) are relatively small in compari-

son to the complexity of hypotheses phonologists might entertain. This is

even more true for constraints such as the Arabic OCP that are active on

only a subpart of the vocabulary (e.g., the verbs, which participate in

nonconcatenative morphology and hence have a highly salient projection

of the consonantal tier). To appreciate the force of this observation, let us

consider how large a sample is required to be confident about two di¤er-

ent constraints of English, di¤ering in their statistical force.

The first is the constraint that a triphonemic monosyllable must con-

tain a vowel or vocoid in English (unlike in Berber, well known for per-

mitting even obstruents in nuclear position). For the sake of exposition, I

make the simplifying assumption that these monosyllables are all (in fact)

of the form CVC, VCC, CCV. The probability that a phoneme is a

vowel/vocoid in this universe is 1/3; the probability that it is not is 2/3.

(Probabilities sum to one and in this case there are only two alternatives.)

Our null hypothesis will be that phonemes combine at random, and so

positional probabilities will not figure in the null hypothesis. Under the

null hypothesis, the expected probability of a CCC form is ð2=3Þ3 ¼ :296.

Under the null hypothesis, we would need to look at three or four forms

in order to expect to find one of form CCC. But if such a small item set

fails to have any CCC forms, we would have very weak evidence that this

outcome is impossible; on the average, one expects to get a 6 once on

every six rolls of a die, but rolling a die six times without getting a 6 is not

good evidence that the die has no 6. Specifically, the probability under the

null hypothesis of obtaining no CCC forms in a sample of size n is

1� 2

3

� �3
 !n

¼ 19

27

� �n

: ð2Þ

The bigger n gets, the smaller this probability is and the more confident

we become that the null hypothesis can be rejected. In this particular case,

the null hypothesis becomes rapidly disfavored as n increases. For n ¼ 9

(a sample of nine triphonemic words, of which none prove to have the

form CCC), the probability that the null hypothesis is true is already less

than .05. For n ¼ 14, p < :01 and for n ¼ 20, p < :001.
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Figure 6.3 illustrates graphically the comparison between the null

hypothesis and the actual state of a¤airs, for the case of a 14-word sam-

ple. There are two probability distributions on this figure, the one on the

right having the common lumpy shape and the one on the left consisting

of a spike located on top of the y-axis. The distribution on the right shows

the distribution of counts of CCC words under the null hypothesis.

Obviously, this distribution peaks around 4. In a 14-word sample, we

expect to find ð0:296 � 14Þ ¼ 4:144 CCC words. However, we could find

more or fewer by the luck of the draw, as the figure shows. The distribu-

tion on the left represents the distribution of counts of CCC words under

the hypothesis that the probability is 0. This is a degenerate situation in

which the distribution has zero variance, because luck of the draw will

never provide more or fewer than zero CCC words. The two distributions

in this figure are well separated, exhibiting only a barely visible overlap at

zero, where the left-hand distribution has a value of 1.0 (because all the

probability is at a single location) and the right-hand distribution has a

value of .007. The nearly perfect separation of the two hypotheses is what

allows them to be distinguished in practice with such a small data set.

In this example, a very small amount of data causes confidence in the

null hypothesis to deteriorate rapidly. That is because there was a huge

Figure 6.3

Probability distributions for PðCCCÞ ¼ 0 and PðCCCÞ ¼ :296, for a sample size
of n ¼ 14. Distributions computed directly by a binomial calculation.
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di¤erence between the probability of a CCC word according to the null

hypothesis, and its actual probability. When the quantitative di¤erence

between the two hypotheses is smaller, the rate at which increasing the

sample size clarifies the inference is correspondingly less.

Fox example, let us consider how large a sample is needed to infer that

the probability of /s/ in word-initial position di¤ers systematically from

its likelihood in word-final position in English. I will assume (idealizing

somewhat) that the positional frequencies of /s/ in the CELEX mono-

morphemes are the true underlying frequencies for this comparison.

(Counts in morphologically complex words could be misleading, because

some words and word-level a‰xes, such as -less and -ness, show up re-

peatedly in complex words.) The probability of word-initial /s/ is .1153

in this set, and the probability of word-final /s/ is .0763. Note first that

for a sample of nine words, we expect to find 0:1153 � 9 ¼ 1:06 cases of

word-initial /s/, and 0:0763 � 9 ¼ 0:6867 cases of word-final /s/. Round-

ing to the nearest integer, a sample of nine words yields the same ex-

pected count of 1 word-initial /s/ and 1 word-final /s/. Thus, a sample size

that already was decisive (on a typical significance threshold of p a :05)

for the case of the *CCC constraint is too small for one to expect any

di¤erence for the positional /s/ frequencies. The situation is explored

further in the three panels of figure 6.4, constructed along the same lines

as figure 6.3.

Figure 6.4 illustrates two probability distributions: one for the counts

of word-initial /s/ (on the left), and one for word-final /s/ (on the right).

Because we are now varying the counts by two orders of magnitude

across the panels of the figure, the x-axis has now been normalized by the

sample size n. In figure 6.4(a), the sample size is 14 (the sample size for

achieving significance level p a :01 for the *CCC constraint). The heavily

overlaid distributions reveal how poorly discriminable the two cases are

with such a small sample. In figure 6.4(b), the sample size is 140, and the

overlap of the distributions is reduced. In figure 6.4(c), corresponding to a

sample size of 1,400, the distributions are well separated, but still show

some degree of overlap.

Thus, it requires at least two orders of magnitude more data to evalu-

ate positional e¤ects on /s/ than to discover the underrepresentation of

CCC monosyllables. This situation comes about through two factors. The

*CCC constraint is very general, since C is a broad category whose over-

all probability in the system is 2/3. /s/ is a more specific category that is

instantiated less frequently. In general, the more specific a phonological
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Figure 6.4

Probability distributions for PðasÞ ¼ :1153 and PðsaÞ ¼ :0763, for sample sizes
of (a) n ¼ 14, (b) n ¼ 140, and (c) n ¼ 1;400. Distributions computed directly by a
binomial calculation.

202 Pierrehumbert



description is, the fewer forms it will be true over and the more data will

be needed to distinguish its probability from the probability of any of its

close formal relatives. Also, in the *CCC example, the null hypothesis of

P ¼ :296 di¤ers greatly from the actual state of a¤airs to which we com-

pare it. The positional e¤ect on /s/ was relatively slight, the probability

for final position being about 2/3 of the probability for initial position. A

slight di¤erence is harder to evaluate than a massive one.

It is important to keep in mind that the probability of an anomalous

run of events under the null hypothesis will never be zero; it will only get

smaller and smaller. The probability of throwing all heads on n throws of

a fair coin is ð1=2Þn, so a coin tosser could get a million heads in a row

with a probability of one-half to the millionth power, which though small

is greater than zero. If we imagined that people had vocabularies of

infinite size, then no amount of data would su‰ce to prove that CCC

monosyllables are truly impossible; we could only show that they are

vanishing rare.

6.3.3 Vocabulary Size

Since people do not have vocabularies of infinite size, the sizes of actual

vocabularies can be used to place a bound on the statistical resolution

Figure 6.4 (continued)
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that is either possible or useful. Estimation of vocabulary size is a di‰cult

issue. Productive and receptive vocabularies di¤er. It is unclear which

morphologically complex words are stored and which are derived on the

fly. Also, undersampling is a problem even with large data sets. However,

some useful reference points can be deduced. One important count is the

number of monomorphemic (or root) words in an individual’s vocabu-

lary. This set provides the basis for phonological generalizations about

within-word phonotactics and prosodic patterns. Lexical items containing

internal word boundaries, such as peppermint or matchless, show word-

boundary phonotactics even if they have idiosyncratic semantics. Data

from Anglin (1993), as graphed by Vihman (1996), indicate that English-

speaking first graders (age 6 to 7) have a receptive vocabulary of about

2,500 root words, and by fifth grade (age 10 to 11) this number has grown

to approximately 6,000. According to a tabulation made in the Phonetics

Laboratory at Ohio State University, the number of monomorphemic

words in CELEX is 11,381. As discussed in Pierrehumbert 2001b, this is a

quite comprehensive list which probably exceeds the monomorphemic

inventory of any single individual. For phonological constraints over

monomorphemic words, probabilities of less than .00005 are e¤ectively

zero (since the expected count in a sample of size 10,000 would be zero).

Any phonological constraints that are learned early in life need to be

learnable on much smaller data sets, a point to which I return below.

For other phonological processes, such as stress patterns and morpho-

phonological alternations, a larger vocabulary is relevant. Anglin (1993)

estimates that English-speaking fifth graders know 25,000 root words plus

derived words and idioms. (Productive and unproductive derivation do

not appear to be distinguished in this estimate.) A detailed study by Nagy

and Anderson (1984) yields the estimate that printed school English

includes approximately 89,000 word ‘‘families.’’ This number includes as

distinct entries words that are morphologically complex but that have

moderately to extremely opaque semantics. For example, in this study,

collarbone is distinct from collar. However, the authors assume that

senselessly can be productively derived from senseless and stringy can be

derived from string. The existence of 89,000 word families in the entire

corpus of printed school English does not mean that any individual child

knows all the words. Examples provided include words such as solenoid,

hornswoggle, and ammeter, and it appears improbable that any single

school child knows all of them; discussion draws attention to the ability

to read materials containing some unknown words. The authors estimate

204 Pierrehumbert



that the total number of words known by a high school senior ranges

from 25,000 to 50,000. From figures such as these, we can infer that an

adult’s total vocabulary is an order of magnitude larger than the adult’s

vocabulary of monomorphemic words, but probably less than two orders

of magnitude larger. If a statistical inference is so delicate that it cannot

confidently be made with a lexicon of around 100,000 words, there is no

way for learners to make it and its cognitive status is highly dubious. If a

probability over this set is <.000005, it is e¤ectively zero.

6.4 Discrimination and Robustness

We have just seen that a full-blown adult lexicon, though large, is still not

large enough for grammatical constraints of arbitrary subtlety to be

deduced from it. In practice, the limits on grammatical subtlety are much

more severe. First, children learn much of phonology at a young age,

before they have large vocabularies. Second, di¤erent children have dif-

ferent vocabularies, and adults likewise. The commonplace observation

that the grammar can be learned from poor levels of language exposure

amounts to saying that it can be learned from a severe downsampling of

the maximal data set, and it can be learned equally well from di¤erent

downsamples of the data set. The fact that people with di¤erent language

exposure can end up with essentially the same grammar also means that

language acquisition is resistant to outliers (or statistically anomalous

events). A statistically anomalous hurricane may destroy a large city, but

early exposure to the word Ladefoged does not destroy a child’s stress

system. These marvels of the acquisition system amount to the claim that

language is statistically robust. In this section, I develop the idea of

robustness further and show how it constrains the nature of the phono-

logical system.

6.4.1 Robustness in Categorization

Statistical robustness has been most explored in relation to catego-

rization of the phonetic space. Vowel inventories have provided a par-

ticularly fruitful subtopic because of the ease with which the relevant

phonetic dimensions can be conceptualized and manipulated. Accord-

ingly, I resume discussion of the perception and production of phonetic

categories in connection with the /i/-/E/ example of figure 6.2.

In figure 6.5, idealized distributions for /i/ and /E/ have been plotted on

the assumption that the underlying distributions are Gaussian and that
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Figure 6.5

Relationship of two competing categories having idealized Gaussian distributions
over the phonetic space. (a) 200-Hz separation of means. Low variance leads
to little overlap of the distributions. (b) 100-Hz separation leads to more overlap.
(c) Greater variance also leads to more overlap.

206 Pierrehumbert



both categories have been so abundantly experienced that the mental

representations approach the true underlying distributions. Thus, the dis-

tributions in figure 6.5 are smooth instead of showing individual spikes

for memory traces. Three cases are compared. In figure 6.5(a), the means

of the distributions di¤er by 200 Hz and there is slight overlap between

the two vowels. In figure 6.5(b), the distributions have been shifted so

they di¤er by only 100 Hz. In figure 6.5(c), the means are as just separate

as in figure 6.5(a), but each category has more variability so there is more

overlap.

Since the distributions are smooth, the classification of an incoming

token at any point can be read o¤ the graph by seeing which distribution

line lies above the other at that location on the x-axis. Figure 6.6 shows

how this works by reproducing figure 6.5(c) with additional annotations.

The listener is attempting to classify a stimulus at the F2 location indi-

cated by the arrow. The line for the label /i/ is above that for /E/, so /i/ is

the most probable label. It is immediately obvious that given the distri-

bution type under consideration, there is some F2 value such that any

stimulus with an F2 value above this value will be classified as /i/, and

any stimulus with an F2 value below this value will be classified as /E/.

This cuto¤ is defined by the intersection of the two distributions and is

Figure 6.5 (continued)
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shown with a vertical dashed line in the figure. Luce, Bush, and Galanter

(1963a) provide a mathematical treatment of classification situations in

which a threshold or cuto¤ is well defined.

For the situation shown in figure 6.6, the result is that a sizable region

of the /E/ production space will be heard as /i/, and a certain region of the

/i/ production space will be heard as /E/. The extent of such confusions

would be exactly the same for figure 6.5(b). Although the separation of

the means is half as much in figure 6.5(b) as in figure 6.6, the distributions

are also narrower and the degree to which the distributions overlap is (by

design) exactly the same. To achieve reliable discrimination, in which the

intention of the speaker can be recovered by the listener with very little

chance of error, we need the situation displayed in figure 6.5(a). Here, the

separation of the means of the distribution is large in relation to their

width.

Discrimination is not the same as statistical significance. As the quan-

tity of data contributing to the distributions in figure 6.5(b) or 6.5(c)

increases toward infinity, the di¤erence in the means of these distributions

can become as statistically significant as one could wish. That is, if the

two labels are given, we can become more and more sure, scientifically

speaking, that the distributions for these labels are not the same. But no

Figure 6.6

Figure 6.5(c), with the discrimination threshold indicated
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amount of certainty on this point improves the situation with respect to

discrimination of the categories when classifying an unknown incoming

token. In a similar vein, thanks to millions of test takers, it is extremely

certain that the distribution of scores on the verbal portion of the SAT is

slightly higher for women than for men. (The SAT is a standardized test

administered to high school students applying to university in the United

States.) However, since this di¤erence is slight compared to the variation

of scores for each gender, knowing someone’s verbal SAT score does not

permit one to deduce that person’s gender with any reliability.

Statistical discrimination plays a central role in theories of the phonetic

foundations of phonology, in particular pioneering work by Lindblom

and colleagues on adaptive dispersion theory for vowels (see Liljencrants

and Lindblom 1972; Lindblom 1986; Lindblom 1990). The model is pre-

dicated on the understanding that the language system requires robust

discrimination of categories in order to guarantee the integrity of com-

munication. Given that speech production and perception are intrinsically

variable, this characteristic places bounds on the number of categories

that can be maintained over the same space, as well as constraining their

optimal arrangement with respect to each other. The e¤ects are seen both

in segmental inventories and in the way speakers manipulate the vowel

space in continuous speech, making the minimal e¤ort needed to main-

tain su‰cient contrast. One consequence is that total phonetic space will

be underutilized in any particular language, since accuracy of discrimi-

nation depends on statistical troughs like that in figure 6.5(a). Other

researchers who have applied adaptive dispersion theory include Eng-

strand and Krull (1994), who demonstrate reduced durational variance

for vowels in languages in which vowel length is distinctive, and Miller-

Ockhuizen and Sands (2000), who use the model to explain phonetic

details of clicks in two related languages with di¤erent click inventories.

The equations of adaptive dispersion theory treat perceptual discrim-

inability (contrastiveness) synoptically as a direct pressure on produc-

tions. The same e¤ects can also be approached in terms of how category

systems evolve over time, because discrimination is related to the stability

of the systems as they evolve. Assuming that distributions are used in a

perception-production loop, as discussed in section 6.2, the classification

of stimuli in perception provides data for the probability distributions

controlling production. (The productions of one individual provide per-

ceptual data for another individual, so that the perception-production
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loop goes through members of the speech community.) Situations such as

those depicted in figures 6.5(b) and 6.5(c) are intrinsically unstable over

time, because in any region of the phonetic space where the distribu-

tions overlap, productions of the less likely label will be misclassified in

perception.

Assuming only that the probability distributions are updated with per-

ceptual data (an assumption needed to model how phonetic learning can

occur in the first place), there are two major outcomes, which depend on

the degree of distributional overlap in relation to the random variation in

the perception and production processes. One outcome is that the two

distributions sharpen up, each on its own side of the discrimination cut-

o¤. The other is that the distribution for the less frequent label gets

entirely eaten up by the distribution for the more frequent label, as each

fresh misclassification enhances the latter’s frequency advantage. This

results in a collapse of the category system. Pierrehumbert (2001a) pres-

ents in detail the case of loss of contrast through a historical lenition

process. A small but systematic lenition bias in production of the marked

(less frequent) member of a contrast eventually results in its collapse with

the more frequent member. Note that both of the major outcomes are

characterized by a distinct distributional peak for each category label.

Thus, consideration of the stability and robustness of categories over time

provides a basis for the observations of adaptive dispersion theory, as

well as observations made by Kornai (1998), Maye and Gerken (2000),

and Maye, Werker, and Gerken (2002). Well-defined clusters or peaks in

phonetic distributions support stable categories, and poor peaks do not.

The same line of reasoning is convincingly applied in De Boer’s (2000)

modeling of vowel systems.

Such observations also have important implications for our under-

standing of the abstractness of phonetic encoding. The calculations

presented by Lindblom, Miller-Ockhuizen, Kornai, Maye, Gerken, and

Werker all deal with phonemes in a fixed context. Thus, they do not

clearly di¤erentiate phonemes (which are equivalenced across di¤erent

contexts) from positional allophones. However, distributions of phonetic

outcomes in continuous speech have revealed many cases in which the

realization of one phoneme in one context is extremely similar or even

identical to that of some other phoneme in another context. For example,

Pierrehumbert and Talkin (1992) show that the distribution of vocal fold

abduction (or breathiness) for /h/ overlaps that of vowels when both are

tabulated out of context; when tabulated relative to context, there are just
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a few sporadic cases of overlap. Overlap of devoiced allophones of /z/

with /s/ is discussed in Pierrehumbert 1993. Cases such as these mean that

parametric distributions for phonemes are not always well distinguished

from each other, if they are tabulated without regard to context. Within

each given context, the distributions are much better distinguished. Thus,

positional allophones appear to be a more viable level of abstraction

for the phonetic encoding system than phonemes in the classic sense.

Further implications follow from cases in which the phonemes are well

distinguished in one context but not in another. These situations favor

positional neutralizations. Steriade (1993) explores this concept in con-

nection with stop consonants, demonstrating neutralization in contexts

in which the stop release is missing. Flemming (1995) extends this line of

reasoning in the framework of Optimality Theory.

Category discriminability also has important ramifications in socio-

linguistics. An important set of studies (Labov, Karen, and Miller 1991;

Faber and DiPaolo 1995) deals with cases of near-merger, in which the

phonetic distributions of two categories have become heavily overlapped

(owing to historical changes and/or dialect variation) but a statistically

significant di¤erence is still observable in productions. A case in point is

the near-merger between ferry and furry in Philadelphia English, as dis-

cussed by Labov, Karen, and Miller (1991). A surprising behavioral

finding is that subjects whose productions display an acoustic di¤erence

between the vowels of such word pairs are unable to distinguish these

words at above chance levels. This is true even if they are listening to their

own speech.

In the class of model I have been discussing, it is to be expected that

discrimination in perception will be worse than the discrimination analy-

sis that the scientist can carry out on objective acoustic measures. This is

the case because of intrinsic noise in the perceptual system. The scientist

can carry out a statistically optimal analysis on a microphone signal of

the highest quality, whereas the perceptual system is limited by the critical

bands of the auditory encoding, by the background noise from blood

rushing through the ears, and so forth. However, it is also the case in this

model that it is impossible to acquire a phonetic distinction that one can-

not perceive. The subjects in the near-merger study must have been able

to perceive a di¤erence between ferry and furry at the time their produc-

tion patterns were being established. Otherwise, the labeling and phonetic

distributions needed to produce such a di¤erence would never have been

acquired. The model predicts that whenever a contrast becomes truly
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imperceptible in a language, the contrast will collapse and this collapse

will be irreversible. This prediction is borne out by Labov’s (1994) asser-

tion that total neutralizations are never reversed. Apparent cases of

reversal can be traced to the survival of the distinction in some context.

This can be a social context, as in cases in which a contrast is reimported

into the speech community from a dialect or an influx of borrowings. Or

the contrast may survive in some other context within the cognitive

system, as when a contrast is reimported from a morphologically rich

orthographic system. Similarly, detailed phonetic studies reveal that

morphological relatives can serve this role through paradigm uniformity

e¤ects at the allophonic level. A case in point is Port, Mitleb, and

O’Dell’s (1981) study of incomplete neutralization of obstruent voicing in

German.

The failure of Labov, Karen, and Miller’s (1991) subjects to perceive a

distinction in their own speech thus requires more explanation, assuming

that this failure is more severe than perceptual encoding noise alone

would predict. The levels of representation I have outlined provide an

avenue of explanation. The task carried out by Labov, Karen, and

Miller’s subjects was a word judgment task, hence involved access to

the lexicon. Thus, one must consider not only the phonetic encoding in

perception, but also the relationship of this encoding to the stored word-

form. If subjects have learned, from exposure to the varied dialect com-

munity of Philadelphia, that vowel quality information does not reliably

distinguish ferry and furry, then they can downweight this information as

a perceptual cue in lexical access. They learn not to pay attention to a cue

they cannot rely on. This interpretation of the situation is borne out by a

related study by Schulman (1983) on the perception of a sit, set, sat, sot

continuum by bilingual Swedish-English speakers from Lyksele. The

speakers were unable to hear the set, sat distinction when experimental

instructions were delivered in Swedish, a language in which dialect diver-

sity renders the distinction unreliable. However, they could hear the dis-

tinction when instructions were delivered in English. In short, this study

indicates that the attentional weighting of di¤erent phonetic cues is not

an entrenched feature of the cognitive system; instead, it can be varied

according to the speech situation.

6.4.2 Robustness of Phonological Constraints

Statistical robustness is a well-established and major theme of the litera-

ture on phonetic encoding. Less widely acknowledged is the fact that it
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also plays an important role at more abstract levels of representation. In

fact, the small size of the lexicon, in comparison with the huge body of

experienced speech, places severe limits on statistical inference over word-

forms as well as correspondences between word-forms.

This issue is taken up by Pierrehumbert (2001b), in a set of pilot cal-

culations addressing the issue of why known phonological constraints are

so coarse grained. Though a DOP approach would permit us to construct

a huge proliferation of phonological templates using the logical resources

of phonology, the constraints that appear to be psychologically real by

any test are relatively simple and nondetailed. Note in particular that they

are simple in comparison to the lexical representations of individual

words, as we have already seen from the comparison of lexical neighbor-

hood e¤ects with phonotactic e¤ects.

The method used in this study was a Monte Carlo simulation of vo-

cabulary acquisition; hypothetical vocabularies of di¤erent individuals

at di¤erent levels of development were estimated by random sampling of

the 11,381 monomorphemic words in CELEX. Since the goal was to dis-

cover the constraints on within-word sequences, morphologically com-

plex words liable to contain internal word boundaries are excluded from

this training set. The sampling was weighted by word frequency, on the

assumption that an individual is more likely to learn a frequent word than

an infrequent one. Inventories for 20 ‘‘individuals’’ at each vocabulary

level—400, 800, 1,600, 3,200, and 6,400 words—were computed. The

vocabulary level needed to learn a given constraint reliably was deter-

mined by inspecting these individual vocabularies to see whether the

constraint was actually manifested for most or all individuals. The

study compared the learnability of two real phonological constraints of

English to that of two unrealistic constraints that are considerably more

detailed.

The realistic phonological constraints of English are the constraint on

foot alignment in the word and a constraint set governing word-medial

nasal-obstruent clusters. The first refers to the fact that the basically tro-

chaic foot structure of English is extended to trisyllables by aligning the

foot to the left edge rather than the right edge of the word. The result is a

100 stress pattern (as in parity) rather than the 010 stress pattern found in

some other languages. The treatment of nasal-obstruent clusters is taken

from the detailed experimental study by Hay, Pierrehumbert, and Beck-

man (in press). This study, also discussed above, showed that the nasal-

obstruent constraints are part of the speaker’s implicit knowledge and
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that perceived well-formedness is gradiently related to the frequency of

the di¤erent clusters.

One of the unrealistic constraints evaluated in this study is a hypothet-

ical constraint that combines the 100 stress template with the nasal-

obstruent regularities. That is, the study asks whether it is reasonable

for a language to have di¤erent nasal-obstruent constraints for trisyllabic

words with a specific stress pattern. The other unrealistic constraint

involves the statistical pattern studied by Moreton (1997). Moreton’s

experiment looked for a phonemic bias e¤ect as a corollary of a di¤erence

in probability, comparing word-final stressed /gri/ as in degree and word-

final stressed /kri/ as in decree. /gri/ is much more common than /kri/ in

running speech, chiefly because of the high frequency of the word agree.

There is also a contrast in type frequency between the two patterns, but

it is much smaller. This example was selected because Moreton obtained

a null result in his experiment—one of the few cases anywhere in the

experimental literature for a negative finding on the psychological reality

of a statistical phonotactic pattern.

The calculations showed that the 100 stress pattern is extremely robust,

learnable by all 20 individuals from a mere 400 words. A rank order of

five nasal-obstruent combinations could be reliably learned from 3,200

words, a vocabulary level realistically achievable by an elementary-school

child (see above). The two unrealistic constraints were not reliably learn-

able even at a vocabulary level of 6,400 monomorphemic words. The fact

that Moreton’s subjects had not (apparently) learned the /gri/-/kri/ con-

straint is therefore unsurprising.

Pierrehumbert (2001b) views vocabulary levels in terms of stage in

language acquisition. The same line of reasoning, however, leads to the

prediction that adult speakers with di¤erent vocabulary levels should

have somewhat di¤erent grammars. In particular, adults with large

vocabularies should be in a better position to estimate low, but nonzero,

probabilities. This prediction is borne out by Frisch et al. (2001), who

found that adults with large vocabularies have a more generous threshold

for viewing nonce forms as acceptable, and who present calculations

showing that this e¤ect, for their stimuli, cannot be attributed to lexical

neighborhood e¤ects.

A new series of calculations extends this line of reasoning by exploring

phonemic n-phones more systematically. The nasal-obstruent sequences

contain two phonemes, hence are diphones. Even disregarding the posi-

tional information, /gri/ and /kri/ are triphones. Bailey and Hahn’s
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(2001) study of lexical neighborhood densities and phonotactic statistics,

discussed above, systematically evaluated the role of diphone statistics in

comparison to triphone statistics. Diphone statistics were an important

predictor of wordlikeness judgments, but triphone statistics did not add

any predictive power beyond that provided by diphone statistics. The

goal of the present calculations was to determine the extent to which

diphone and triphone constraints on the internal form of words can or

must be learned from the lexicon. If triphone constraints are not learnable

as such, then the well-formedness of a triphone must be estimated from

the well-formedness of its subparts. Under this assumption, the well-

formedness of the /str/ sequence in street would follow from the well-

formedness of /st/ and /tr/; the ill-formedness of /stl/ in *stleet would

follow from its ill-formed subpart /tl/. If triphones are generally and nec-

essarily parsed in terms of their subparts, then triphone statistics would

add no predictive power in a model of perceived well-formedness, just as

Bailey and Hahn report.

The calculations were again made on the CELEX monomorphemes.

The transcription set contains 37 phonemes, disregarding 11 examples of

distinctively nasalized vowels in French borrowings. The transcribed

distinction between syllabic and nonsyllabic sonorant consonants was

also disregarded on the grounds that it is predictable from sonority

sequencing. When these are sonority peaks in their sequence (as in apple),

they are syllabic; otherwise not (as in mill ). This means that the full cross

product of the phonemes, providing the baseline against which con-

straints must be evaluated, generates 1,369 di¤erent diphones and 50,653

triphones.

Basic counts show the general feasibility of training word-internal

diphone statistics from the inventory of extant monomorphemes. The

11,381 CELEX monomorphemes display 51,257 tokens of diphones.

Thus, the data set is 37 times bigger than the constraint set that the

learner is attempting to parameterize. Downsampling the data set to

3,200 words (the number around which nasal-obstruent constraints began

to be reliably learnable) still yields a ratio of approximately ten data

points per diphone, on the average. This is an order of magnitude more

data than constraint set parameters, and it is equivalent to the count that

permitted *CCC to be detected at p < :05 in the tutorial example above.

The learnability situation is quite di¤erent when we look at the tri-

phones. There are fewer triphones per word than diphones. For example,

a four-phoneme word contains two triphones (namely, those starting at
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the first and second phonemic positions) but three diphones. Thus, there

are only 39,877 examples of triphones in the training set. Meanwhile, the

candidate constraint set has exploded to 50,653 di¤erent forms. This

leaves an average of less than one data point per constraint parameter,

even on the implausible assumption that the whole vocabulary is avail-

able to the young language learner. Even the number of triphones that

actually occur at least once in the monomorphemic inventory—namely,

5,414—is large in relation to children’s level of lexical knowledge. In

short, it is mathematically impossible to assign probabilities to triphones

generally, on the basis of knowledge of monomorphemic words. If the

general assumptions presented here are valid, then it should be possible to

predict the well-formedness of triphones from more general constraints,

which are learnable from the available data.

This raises the issue of how well triphones may be predicted from their

diphone subparts. We can look at this issue in two ways. First, we com-

pute the expected count of each triphone in an inventory the actual size of

the training set (see table 6.2). To do this, for each triphone P1P2P3, we

append P3 to P1P2 with the conditional probability of P3 following P2 in

a diphone. If this expected count (rounded to the nearest integer) is at

least one, then the triphone is expected to occur. If it rounds to zero, the

triphone is expected to be absent. The table breaks out these counts

according to whether the triphone is or is not exemplified in the data set.

This prediction is quite successful. Out of 45,239 triphones that fail to

occur, 42,776, or 95%, are predicted to be absent from the rarity of their

subparts. Incorrect predictions constitute only 6.6% of the data. Not

revealed by the table is the fact that these cases are overwhelmingly ones

in which the count was predicted to be zero and is actually one, or vice

versa—in short, cases that sit right on the threshold applied in setting up

the table.

A way of viewing the data that overcomes the thresholding issue and

also provides more insight into relative well-formedness is to plot the

actual rate of occurrence of triphones against their expected rate of

occurrence, as shown in figure 6.7. In figure 6.7, the triphones have been

ranked by expected count and 10 bins of expected count are established.

Within each bin, the median actual rate of occurrence is plotted along

with upper and lower quartiles. Overall, the actual rate of occurrence is

shown to be strongly related to the expected rate of occurrence. The fact

that the relationship is not perfect arises both from sampling issues (the

actual lexicon can be viewed as a sampling of the potential lexicon) and,
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more importantly, from the fact that triphones are subject to additional

constraints beyond the biphone conditions. An example is the OCP con-

straint disfavoring C1C2C1 combinations, as discussed above.

Comparing the diphone situation to that of triphones reveals that it is

not only possible, but also necessary, to learn constraints on diphones

rather than estimating their likelihood from their (phone) subparts. Table

6.3, constructed along the same lines as the triphone table 6.2, shows that

only a few of the absent diphones are predicted to be absent on the basis

of phone frequencies alone. Of the 1314 diphones that are predicted

to exist under the null hypothesis, 44% are unattested. This outcome is

not surprising, since the null hypothesis does not take into account the

pattern of sonority alternation that imposes a syllabic rhythm on the

speech stream. One consequence is that a pair of identical high-frequency

Table 6.2

Existence and absence of triphones in a data set in relation to expected counts

Absent Exist

Predicted to be absent 42,776 892

Predicted to exist 2,463 4,522

Figure 6.7

Quartiles of observed counts for triphones, plotted against median count expected
from diphone frequencies
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phonemes is predicted to be frequent: because of the high frequency of /i/,

the sequence /ii/ is expected to be the most frequent combination of all,

whereas in fact it is impossible. Most of the numerous unexplained

absences in this table arise from factors that a linguist would view as

systematic.

For attested diphones, phoneme frequencies are also rather poor at

predicting the rate of occurrence. This is indicated in figure 6.8, con-

structed along the same lines as figure 6.7. Though diphones containing

frequent phonemes are on the average more frequent, the spread around

this trend is much greater than in figure 6.7. In particular, the lower

quartile remains almost at zero all the way up to the highest expected

count.

In the absence of additional evidence, it is not possible to conclude that

all triphones are necessarily evaluated via their subparts. The highest-

frequency triphones have counts in the three hundreds, amply su‰cient to

support an evaluation of their observed frequency relative to the expected

frequency from a diphone grammar. It is possible that some triphones do

acquire probabilities in their own right. The initial triphone of advent

occurs in 7 words despite having a predicted rate of occurrence of zero.

The final triphone of raft occurs in 13 words despite having a predicted

rate of occurrence of one. Possibly, people may have some implicit

knowledge of these facts; but it would be di‰cult to demonstrate that any

such knowledge goes beyond lexical neighborhood e¤ects. However, in

inspecting the list of predicted and attested triphones, it was surprisingly

di‰cult to find these examples, as cases of blatantly overrepresented tri-

phones are few. The mere assumption that the lexicon is a random sam-

pling of a bigger universe of possible words means that it would exhibit

some random variation in the over- and underrepresentation of particular

combinations. It is not known whether cases of this type are treated as

within-the-noise by the cognitive system, or whether they are remembered

as important.

The fact that triphones are an unpromising field for large-scale pho-

nological constraints also points up the importance of investigating

large-scale constraint candidates that are closer to the fruits of linguistic

scholarship. In the linguistic literature, constraints with a larger temporal

scale (such as vowel harmony constraints and foot structure constraints)

generally have the property of referring to classes of phonemes rather

than to individual phonemes, if they refer to phonemes at all. As far as

trainability goes, an increase in temporal scale is o¤set by a decrease in
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featural specificity. As the results on 100 versus 010 stress patterns show,

such constraints can be extremely robust.

The nonlearnability of triphones at the level of the phonological gram-

mar contrasts sharply with the amount of detail people learn about

specific words. Even the most categorical description of a good-sized

word, such as ambrosia or budgerigar, is highly complex compared to any

known phonological constraint, indicating that brute cognitive limits on

representational complexity are not the issue. Moreover, cases discussed

above in relation to word-specific allophonic detail and subphonemic

morphophonological paradigm e¤ects show that the representations of

words can be extremely detailed. This detail can be acquired because

reasonably frequent words are encountered so many times in speech.

Counts in Carterette and Jones’s (1974) tabulation of conversational

Table 6.3

Existence and absence of diphones in a data set in relation to expected counts

Absent Exist

Predicted to be absent 48 7

Predicted to exist 582 732

Figure 6.8

Quartiles of observed counts for diphones, plotted against median count expected
from phoneme frequencies
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speech by adults and children show that the most frequent triphonemic

function words (such as was and what) are up to 50 times as frequent in

speech as triconsonantal syllable onsets such as /spr/. A word with a fre-

quency of six per million (a threshold above which word frequency e¤ects

are experimentally established, even for morphologically complex words)

would show up approximately once per 15 hours of speech, assuming an

average rate of three words per second. Athough people can learn the

existence of new words from very few examples, once they have learned a

word, they have plenty of evidence to fine-tune its representation.

6.5 Correlations across Levels

The previous discussion emphasizes the need to distinguish levels of rep-

resentation, each with its own statistical e¤ects. This is reminiscent of the

modularity claims of classical generative theory. However, there are

important di¤erences. In the generative approach, the task of setting up

modules is viewed as a task of partitioning the system into maximally

independent components. Each module is as stripped down as possible.

In evaluating specific theoretical proposals, any observed redundancy

between information encoded in one module and information encoded in

another is viewed as a weakness. However, it has proved impossible to

eliminate redundancy across modules. The present approach, in contrast,

uses rich representations (as Baayen, this volume, also discusses). Corre-

lations across levels of representation are viewed as a necessary conse-

quence of the way that more abstract levels are projected from less

abstract levels. Some of these correlations are extremely obvious and

would show up in any current approach. For example, in essentially all

current approaches, the phonological entities manipulated in the gram-

mar and morphophonology are viewed as contentful; their behavior

reflects their general phonetic character as it percolates up the system

through successive levels of abstraction.

Some other examples of confluence across levels are far less obvious

and reveal subtle properties of human language.

One nonobvious correlation concerns the relationship of the phonetic

encoding system to the phonological grammar. It is known that children

can use statistical cues to decompose the speech stream into chunks at a

very early age, before they know that words refer to objects and events

(see Jusczyk, Luce, and Charles-Luce 1994; Mattys et al. 1999). Low-

frequency transitions are taken to be boundaries, and these transition
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frequencies must evidently be estimated using surface statistics, since type

statistics would depend on a lexicon, which the child has not yet formed.

Luckily, these surface (or token) statistics on diphones are highly corre-

lated with type statistics in the lexicon. In general, phoneme combinations

that are infrequent in running speech are also infrequent word-internally

in the lexicon. This means that a low-frequency phoneme transition is a

viable cue to the possible existence of a word boundary. As Hay (2000)

points out, it is possible to design a formal language in which this corre-

lation does not obtain. Imagine, for example, that a language had an

invariant start phoneme for words (say, /t/) and an invariant stop pho-

neme (say, /k/), so that every word began with /t/ and ended with /k/. In

this case, the combination /kt/ would be extremely common in running

speech, but would nonetheless be the cue to the presence of a word

boundary. Human languages do not have this property. Instead, they

show maximal contrast sets in word-initial position, and the proliferation

of alternatives at word onsets leads to low-frequency combinations across

the word boundary. The confluence between type frequency and token

frequency thus supports bootstrapping of the system during language

acquisition and smooths the communication between levels in the mature

system.

A second important case of confluence brings together the issues in

phonetic categorization and n-phone statistics that were discussed above.

A substantial body of work in phonetics shows that the acoustic land-

marks provided by transitions between the physical regimes of the vocal

tract play a key role in forming discriminable categories. For example,

at an obstruent-vowel transition, an aerodynamic factor (the buildup of

pressure during the stop closure) conspires with an acoustic factor (a

jump in the number of resonances as the vocal tract moves from a closed

to an open position) and a psychoacoustic factor (the way the ear adjusts

its sensitivity to changes in amplitude). These factors together mean that

obstruent-vowel transitions are perceptually salient and reliably distin-

guished from each other, a point developed in more detail in acoustic

landmark theory (Stevens 1998). Steriade (1993) provides a typological

survey showing the ramifications of this phonetic situation with regard to

stops. Transitions between segments are also important in production,

since coproduction of adjacent segments can result in substantial mod-

ifications of their realizations, including occlusions and gestural reorga-

nizations. Such phenomena are one of the main topics of Articulatory

Phonology as developed by Browman and Goldstein (1986, 1992).
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The connection made in Steriade’s work between phonetic information

and phonological sequencing is made in a more broad-based way by the

importance of diphone statistics in phonotactics. Any phonological

diphone implicitly defines a phonetic transition, which has the potential

to be a dynamic cue in speech perception. Some of these transitions are

very robust from an encoding standpoint, and others are fragile. Fragility

can arise either because the transition lacks perceptual landmarks or

because it lies in an unstable region of the phonetic control space and

yields excessively variable outcomes. Thus, there is as much reason for a

language to selectively utilize the universe of possible transitions as to

selectively utilize the phonetic space in its phoneme inventory. The learn-

ability of diphone statistics thus delineates a confluence among the pho-

netic space, the inventory size, the size of the lexicon, and the complexity

of the grammar.

Much recent work in stochastic Optimality Theory takes a di¤erent

stance on correlations across levels of representation. For example,

Flemming’s (1995), Kirchner’s (1997), and Boersma’s (1998) response to

correlations has been to dissolve the boundaries between levels by treat-

ing all e¤ects through a single Optimality Theory grammar with a single

constraint ranking. The Gradual Learning Algorithm (GLA) of Boersma

(1998) and Boersma and Hayes (2001) is the most mathematically elabo-

rated model of this type, and so it is the one I will discuss here.

The conceptual core of stochastic Optimality Theory is morphophono-

logical alternations that are by-products of general phonological con-

straints. A landmark paper by Anttila (available in 1994 and published in

1997) undertook to explain variability in the form of the Finnish genitive

plural as a response to constraints on metrical prominence, word stress,

and metrical alternation, all of which are active in the language generally.

Anttila hypothesizes that the variability in outcome for the genitive

plural arises because some constraints are unranked. On each individual

instance of word production, a specific constraint ranking is imposed

through a random selection of ranking for unranked constraints. De-

pending on which constraint ranks ahead of the others on that specific

trial, one or another of the surface goals takes priority in selecting the

form on that particular occasion.

A major extension of this approach is the GLA model of Boersma

(1998) and Boersma and Hayes (2001). In this model, constraints are

ranked on a real-valued scale. Each individual constraint has a Gaussian

distribution of ranking values on this scale. The mean of the distribution
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is incrementally learned through language exposure, and the variance is

taken to be constant. The exact nature of the training algorithm has

important repercussions for the overall behavior of the model. After a

careful evaluation of statistical robustness and stability, Boersma pro-

posed a training algorithm in which each individual extant word causes

downward adjustment of all constraints it violates. The result is that the

model is much closer to a standard stochastic grammar than would at

first appear; phonological templates that are abundantly instantiated in

the training set end up being highly favored by the grammar, and those

that are poorly instantiated end up being disfavored. Thus, the rankings

of constraints closely track the frequency values that would be assigned to

the same constraints in some stochastic grammars.

This model permits much finer tracking of probability distributions

for di¤erent outcomes than Anttila’s model was capable of. Indeed, the

model has such general mathematical power that the perceptual classifi-

cation phenomena introduced in section 6.2 can be expressed in the

model by positing large (in fact, arbitrarily large) constraint families that

describe arbitrarily fine regions of the parametric space. Fine-tuning of

constraint rankings has the e¤ect of performing the metric calculations of

a standard psychoacoustic model. Conceptually, then, phonetic encoding

is raised into the phonological grammar by treating the parametric pho-

netic space as if it were a very large set of categories.

Morphophonological correspondences are also folded down onto the

same constraint ranking. The need to express paradigm uniformity e¤ects

is generally accepted in Optimality Theory and is addressed by corre-

spondence and sympathy constraints (see McCarthy and Prince 1995;

McCarthy 1999). A more challenging case is presented by morphopho-

nological correspondences that are unnatural in the sense of Anderson

(1981). A case in point is the alternation of /k/ with /s/ in English word

pairs such as electric, electricity, electricism. Though this alternation

(velar softening) has a historical basis in a series of phonetic natural

reductions, it is not natural as it stands. If /s/ were in any sense an

unmarked pronunciation of /k/ before a schwa, then it should be more

frequent than /k/ before schwa generally. According to CELEX, how-

ever, /s/ is less than half as frequent as /k/ before schwa in the lexicon as

a whole. Furthermore, any phonetic generalization that pressured /k/ in

the direction of /s/ should also tend to fricate /t/. However, in the cases in

which /t/ appears before one of the triggering a‰xes, it remains a stop:

magnet, magnetism, Jesuit, Jesuitism, mute, mutism.
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The /k/@/s/ alternation is nonetheless productive, as we would predict

from statistics over the relevant universe. CELEX shows 72 word-pairs

involving a base form ending in /k/ with a related form ending in -ism or

-ity. Velar softening is found in all of them. Such a perfect regularity is

expected to be extended, and a recent pilot experiment indicates that this

is the case. Subjects were led to believe that the experiment concerned the

(semantic) choice among various a‰xes that turn adjectives into abstract

nouns. They completed 18 discourse fragments such as the following,

involving a‰xation on a novel stem. Baseline sentences and fillers were

also included.

(3) Janet is criotic about environmental issues. Her ????? manifests itself

in avid involvement in environmental groups.

All six subjects softened the /k/ to /s/ in every single case in which they

selected the su‰x -ity or -ism over the semantic competitor -ness.

This outcome can be captured in the GLA model in the following way.

(I am grateful to Paul Boersma (personal communication) for suggesting

the specifics of this analysis.) A constraint disfavoring /k/ before -ity and

-ism becomes extremely highly ranked as the learner encounters words

such as electricity. At the same time, Universal Grammar is presumed to

supply a universal set of constraints disfavoring replacement of any pho-

neme with any other phoneme (e.g., disfavoring phonemic changes for a

full cross product of the phonemes). The constraint disfavoring replace-

ment of /k/ with /s/ comes to be ranked low as the learner encounters

words in which the replacement has occurred. /t/ is una¤ected, since the

key constraint targets /k/ only, not voiceless stops in general. Once the

constraint rankings have been learned, the same replacement will occur in

any novel form.

Thus, the price of folding unnatural morphophonological correspon-

dences into the phonological grammar is splitting the correspondences

into unrelated constraint pairs, which are ranked separately. Probabilities

are not directly encoded on correspondences; rather, they indirectly a¤ect

the state of the grammar through incremental training.

Thus, the GLA model is very powerful. It can encode statistical regu-

larities at all levels, from phonetic encoding up through morphophono-

logical correspondences. For regularities that are either more or less

abstract than the level of its core strengths, some researchers might find

the encoding to be indirect and inperspicuous. In particular, the treatment
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of phonetic encoding appears to eschew the well-established resources of

mathematical psychology.

In the GLA model, all constraints are at the same level and all con-

straint rankings are trained on the same data set. Thus, the connection

drawn above between the granularity of constraints and the size of the

e¤ective training set does not appear to be available. In the model pre-

sented above, the probability distributions for di¤erent parts of the sys-

tem are established directly from experience, and thus non-Gaussian

distributions will be automatically discovered. Phonetics, like many other

physical processes, provides examples of skewed distributions relating to

physical nonlinearities and saturations (see, e.g., Duarte et al. 2001,

where it is shown that the distribution of consonantal interval durations

in speech is skewed and obeys a gamma distribution, for many di¤erent

languages). In contrast, distributions arising from repeated independent

decisions (as in coin flipping or a forced-choice experiment) tend to be

Gaussian. Since the assumption of Gaussian distributions is critical to the

mathematical tractability of the model, the existence of non-Gaussian

distributions appears to be problematic. The GLA model also does not

distinguish e¤ects relating to type frequency from e¤ects relating to sur-

face, or token, frequency. It also provides no way to downweight the

grammatical impact of extremely frequent words, as Bybee (2001) and

Bailey and Hahn (2001) show to be necessary.

In the presentation above, I have suggested that well-formedness judg-

ments represent a decision with weighted inputs from two levels, the

lexicon and a score established by the phonological grammar as the

likelihood of the best parse. Well-formedness judgments come about dif-

ferently in the GLA model. Boersma and Hayes (2001) propose that they

arise from the likelihood that the given word would emerge as such under

repeated runs of the grammar. The word is judged as poor if it would

often be modified to some better form on repeated trials. This kind of

virtual reality calculation is available in a closed form (e.g., without

actually running the grammar many times) because of the simplifying

assumptions of the model. The idea is applied with some success in an

experiment on morphophonological alternation in Tagalog reported by

Zuraw (2000).

This assumption is problematic for phonotactic judgments, which have

made up most of the literature. Three experiments cited above show high

accuracy rates for some sequences that are relatively infrequent and are
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judged as poor. The transcription data reported by Hay, Pierrehumbert,

and Beckman (in press) revealed that rates of correction of unusual clus-

ters depended both on the cluster frequency and on the existence of an

acoustically similar competitor. Rare clusters without a similar competi-

tor were not corrected often, even though they were judged as poor. In an

imitation experiment, Munson (2001) also found that error rates in adult

productions were not significantly di¤erent for infrequent and frequent

clusters, though frequency did a¤ect wordlikeness judgments. This out-

come also occurred in the adult baseline data for Zamuner, Gerken, and

Hammond’s (2001) acquisition study. Results such as these follow from

the assumption that small phonetic e¤ects can pile up over time in shap-

ing the lexicon, which in turn shapes the grammer. With the lexicon

standing between the phonetics and the grammar, it is possible for low

rates of phonetic instability to coexist with strong lexical statistics. The

view of the lexicon presented here also allows lexical neighborhood e¤ects

to a¤ect well-formedness judgments. The observed combination of factors

is not captured in the GLA model, in which well-formedness judgments

are based on the grammar alone.

I have discussed the GLA in this much detail because it is by far the

most coherent and comprehensive proposal to fold e¤ects at di¤erent

levels, from phonetic encoding up through morphophonological corre-

spondences, into a single grammar. Its successes provide further evidence

for the importance of stochastic grammars and robust learning algo-

rithms to our understanding of phonology. Its specific weaknesses reveal

the general weaknesses of responding to confluences across levels by con-

flating them.

6.6 Conclusion

In conclusion, entities at all levels of representation in phonetics and

phonology display statistical variation. A wide assortment of behaviors

reveals that speakers have implicit knowledge of this variation. It is rele-

vant to speech processing, where it a¤ects perceptual classification as well

as speed and accuracy in perception and production. It is also reflected in

long-term properties of the system, such as allophonic outcomes and the

compositionality of complex patterns from subparts.

For any level in the system, we must consider not only its overall

probability of occurrence, but also its probability distribution over the

less abstract level that gave rise to it. Each category of phonetic encoding
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has both a total rate of occurrence and a distribution over the parametric

phonetic space. The availability of both is an automatic feature of exem-

plar theory, in which empirical distributions are built up incrementally

from experienced tokens of speech. The range and likelihood of various

phonetic realizations are revealed by the local density of memory traces

on the parametric space, and the frequency of the category as a whole is

revealed by the total quantity of traces. Analogous e¤ects are found at

higher levels, with word-forms also having probability distributions over

phonetic outcomes, and phonological constraints having probability dis-

tributions over the space of word-forms.

Comparison of probabilities plays a crucial role in scientific inference

and language learning. Both scientists and language learners posit a more

complicated grammar only if systematic deviations from the output pat-

terns of a simpler grammar are observable. The level of language expo-

sure thus places bounds on the complexity of inferences that can be made.

Children should be able to make gross inferences about the phonological

system before they make subtler ones, and even for adults, the subtlety of

inferences that are cognitively viable is limited by the size of the data set

to which the generalization pertains. In particular, thanks to the tremen-

dous volume of speech that people encounter, fine details of allophony

can be learned as well as a large number of word-specific properties.

Because of the much smaller size of the lexicon, general knowledge of

words is more coarse grained. Thus, a probabilistic framework allows us

to make inferences about the utilization of the phonetic space, and the

possible constraint set in phonology, in a way that is not possible in a

purely categorical approach.

The starting point of this discussion was the claim that cognitive enti-

ties have probabilities and probability distributions and that comparisons

of probabilities are involved in comparing alternative models of the whole

system. Comparisons of probabilities also play a role in processing, when

there are two alternative analyses of the same form. In phonetic encoding

of speech events, each event is categorized by finding the most probable

of the competing labels. In parsing speech into words, a relevant com-

parison is the likelihood that a given sequence is word internal versus the

likelihood that it bridges a word boundary. For example, in Hay, Pierre-

humbert, and Beckman’s (in press) study, the judged well-formedness of

the nonsense forms was found to depend on the statistically most likely

parse. For a form such as /strinpi/, containing a cluster that is impossible

within words, the most likely parse includes a word boundary: /strin#pi/.
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The score for such a form reflected the likelihood of the winning parse. In

general, this means that in speech processing, the relationship of proba-

bilities will be relevant exactly when there is more than one competing

analysis in the cognitive system at the time when the speech processing

takes place. The expected values that played a role in the original infer-

ences about the form of the system are not necessarily relevant in the

adult system; they may be associated with grammars that were sup-

planted long ago by a more mature conceptualization.

The phonological system as I have described it exhibits confluences

across levels that permit bootstrapping of the system from surface regu-

larities to more abstract ones, and that are implicated in the astonishing

speed and accuracy of the adult system. One important case of confluence

is the correlation of surface (token) statistics with type statistics, a corre-

lation related to the special status of word-initial position as a locus for

maximal contrasts. A second case is the privileged status of diphones with

regard to acoustic distinctiveness, coarticulatory control, and complexity

of the phonological grammar in relation to the size of the lexicon.

Note

I am very grateful to Jen Hay, Dan Jurafsky, and Norma Mendoza-Denton for
useful discussions that contributed substantially to the structure of this chapter.
Thanks, too, to Stef Jannedy for replotting Peterson and Barney 1952. I also
much appreciate reactions from audiences at the Linguistic Society of America
2001 symposium ‘‘Probability Theory in Linguistics’’; Journées d’Études sur
l’Acquisition Phonologique Précoce, 6–8 October 2001, Carry-le-Rouet (Mar-
seille); and the Laboratoire de Science Cognitive et Psycholinguistique.
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Chapter 7

Probabilistic Approaches to
Morphology

R. Harald Baayen

7.1 Introduction

In structuralist and generative theories of morphology, probability is a

concept that, until recently, has not had any role to play. By contrast,

research on language variation across space and time has a long history

of using statistical models to gauge the probability of phenomena such as

t-deletion as a function of age, gender, education, area, and morphologi-

cal structure. In this chapter, I discuss four case studies that illustrate the

crucial role of probability even in the absence of sociolinguistic variation.

The first shows that by bringing probability into morphological theory,

we can make the intuitive notion of morphological productivity more

precise. The second considers a data set that defies analysis in terms of

traditional syntagmatic rules, but that can be understood as being gov-

erned by probabilistic paradigmatics. The third illustrates how the use of

item-specific underlying features can mask descriptive problems that can

only be resolved in probabilistic morphology. Finally, the fourth focuses

on the role that probability plays in understanding morphologically

complex words. However, before we consider the di¤erent ways in which

probability emerges in morphology, it is useful to ask why probability

theory, until very recently, has failed to have an impact in linguistic

morphology, in contrast to, for instance, biological morphology.

To answer this question, consider the developments in information

technology since the 1950s, which have not been without consequences

for the study of language. The computers of that era had comparatively

reasonable computational capacity but very limited memory, on the order

of 15 KB (it was common then to count memory capacities in bits). For a

program to work e‰ciently, it had to minimize storage. Programming



languages such as Fortran, Cobol, Lisp, and Algol were being developed,

the last being the first language (in 1958) with a formal grammar and the

first language to allow recursive calling of functions.

With very few computers available for the academic community (by

1958, there were only some 2,500 computers in use in the United States),

many researchers had to carry out statistical analyses by hand, a tedious

and laborious process—even though methods for applied statistics were

generally designed to minimize calculations by adopting various kinds of

simplifying assumptions (such as independence, linearity, and normality).

Linguistic data in electronic form did not exist. Not surprisingly, the lin-

guistic theories of the time took formal languages as the model for lan-

guage, emphasizing the generative capacity of language, denying any role

of importance to probability and statistics, and elevating economy of

storage in memory to a central theorem.

Currently, desktop computers have vastly increased processing power

and virtually unlimited memory. Carrying out a multivariate analysis is

no longer a week’s work. Statisticians have developed new, often compu-

tationally intensive methods for analyzing data that cannot be modeled

adequately by the traditional statistical techniques (e.g., bootstrap and

permutation methods). In addition, artificial neural networks (ANNs)

have become standard tools in statistics. Some ANN architectures have

been found to be equivalent to existing statistical techniques. (See, for

instance, Oja 1982 for principal components analysis and Lebart 1995 for

correspondence analysis.) Other network architectures have made it pos-

sible to estimate probabilities that cannot be calculated e‰ciently by

standard analytical means (see, e.g., Mehta and Patel 1986 and Clarkson,

Fan, and Joe 1993, for Fisher’s exact test of independence). Yet other

network architectures such as feed-forward ANNs provide genuinely new

statistical tools for the flexible generalization of linear regression func-

tions (see, e.g., Venables and Ripley 1994, sec. 10.4).

Not only do we now have many more sophisticated statistical tech-

niques, we also have an ever-increasing amount of data. The early corpora

for English, such as the Brown corpus (Kučera and Francis 1967), com-

prised 1 million words; more recent corpora, such as the British National

Corpus (hhttp://info.ox.ac.uk/bnc/i), contain 100 million words; and the

World Wide Web is enjoying increasing use as a data resource with (for

English) an estimated 47 billion words in February 2000 (Grefenstette

2000). Not surprisingly, these developments in technology and resources

have left their mark on linguistics.
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An area of linguistics on which these changes have had a very promi-

nent impact is morphology. Early work on morphology in the generative

framework focused on the properties of morphological rewrite rules

(Arono¤ 1976; Selkirk 1980), within a framework that, with the exception

of Jackendo¤ ’s (1975) proposals, assumed a strict separation between the

regular and the irregular. Although Bybee and Moder (1983) introduced

morphological schemas to account for attraction phenomena among ir-

regular forms in English, and although Bybee (1985) proposed to under-

stand morphological phenomena in terms of similarities between stored

representations in the lexicon, the study by Rumelhart and McClelland

(1986) turned out to be the most e¤ective in challenging the classic view

of morphology as a symbolic system. They showed that a very simple

ANN could, with a considerable degree of success, map English present

tense forms onto past tense forms without making a distinction between

regular and irregular forms, and without formulating any explicit sym-

bolic rules.

The original biological motivation for ANNs stems from McCulloch

and Pitts (1943). They published a seminal model of a neuron as a binary

thresholding function in discrete time that has been very influential in the

development of ANNs. A report from 1948 (in Ince 1992) shows that

Alan Turing also developed the mathematics for networks of simple

processing units (which he called ‘‘unorganized machines’’) in combina-

tion with genetic algorithms (what he called a ‘‘genetic search’’) as a

model for understanding computation in the brain. This report did not

attract attention at the time. Only recently has it become clear that

Turing may have been the first connectionist (Copeland and Proudfoot

1999), and only now are his ideas being implemented and studied with

computer simulations (Teuscher 2001). Real neurons are now known to

be more complicated than the neurons of McCulloch and Pitts, Turing, or

the ANNs used in statistics. The interest of McClelland, and Rumelhart,

and the PDP Research Group’s (1986) connectionist model for the cre-

ation of past tense forms, therefore, resides not in the precise form of its

network architecture, which is biologically implausible. The value of their

study is that, by showing that a network of very simple processing units

can perform a linguistic mapping, they have provided a powerful scien-

tific metaphor for how neurons in the brain might accomplish linguistic

mappings.

The connectionist past tense model met with fierce opposition. Pinker

and Prince (1988) argued that it was fundamentally flawed in just about

Probabilistic Approaches to Morphology 231



any conceivable way. Since then, the discussion has taken the shape of a

stimulus-response series in which a paper in the symbolic tradition claim-

ing that an ANN cannot model a certain fact is followed by a study

showing how that fact naturally follows once one adopts the right kind of

connectionist architecture and training regime (see, e.g., MacWhinney

and Leinbach 1991; Plunkett and Juola 2000). Brain imaging data have

been advanced as evidence against the connectionist account (Jaeger et al.

1996), without convincing the connectionist opposition (Seidenberg and

Hoe¤ner 1998).

Nevertheless, the symbolic position seems to be in something of a

retreat. For instance, Pinker and Prince (1988) and Pinker (1991) flatly

reject the connectionist approach. More recently, however, Pinker (1997,

1999) allows for the possibility that irregular verbs are stored in some

kind of associative memory, although he maintains the claim that lan-

guage comprises a mental dictionary of memorized words, on the one

hand, and a mental grammar of creative rules, on the other. Marcus

(2001) seems to go a step further by accepting connectionist models as

enlightening implementational variants of symbolic systems. But he too

claims that ANNs are incapable of explaining those crucial data sets that

would reveal the supposedly symbolic nature of human language pro-

cessing. Another index of the retreat of the narrow symbolic position is

the emergence of stochastic Optimality Theory (Boersma 1998; Zuraw

2000), an extension of Optimality Theory incorporating a mechanism

accounting for nondeterministic data, and of interpretations of Opti-

mality Theory in which similarity spaces and attractors play a crucial role

(Burzio, in press b).

At least three issues play a role in the controversy between the con-

nectionist and symbolic positions. The first issue is whether human cog-

nition and language as a cognitive faculty are fundamentally symbolic in

nature. This is an issue about which I will remain agnostic.

A second issue is whether ANNs are appropriate models for language.

For instance, should ANNs be able to generalize outside the scope of

their training space, as argued by Marcus (2001)? The answers to ques-

tions such as this depend on a host of assumptions about learning and

generalizability in animals, primates, and humans, questions that go far

beyond my competence and the scope of this chapter.

A third issue at stake here is whether language is, at its core, a deter-

ministic phenomenon (one that can be handled by simple symbolic rules)

or a probabilistic phenomenon (one for which such simple symbolic rules
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are inadequate). This is the issue addressed in this chapter. I will argue

that the role of probability in morphology is far more pervasive than

standard textbooks on morphology would lead one to believe. However,

this chapter will not be concerned with how ANNs deal with nondeter-

ministic data, for two reasons. First, a good introduction to neural net-

work theory requires a chapter of its own (see, e.g., McLeod, Plunkett,

and Rolls 1998). Second, given that the neural networks used to model

language are artificial neural networks providing abstract statistical

models for linguistic mapping problems, it makes sense to consider a

broader range of statistical tools available at present for understanding

the quantitative structure of such problems. From this perspective, ANNs

pair the advantage of maximal flexibility with the disadvantages of

requiring considerable time with respect to training the model, on the one

hand, and a loss of analytical user control, on the other: to understand

how an ANN achieves a particular mapping itself requires application of

conventional multivariate statistical techniques.

What I will therefore discuss in this chapter are some quantitative

techniques for coming to grips with the probabilistic structure of mor-

phological phenomena that, unlike ANNs, do not require extensive

training time and that provide immediate insight into the quantitative

structure of morphological data. I o¤er these techniques as useful analyt-

ical tools, without committing myself to any of them as ‘‘models of the

mind.’’

However, I will also indulge in speculating how these techniques might

be articulated in terms of the spreading activation metaphor, the cur-

rent gold standard in psycholinguistics for modeling lexical processing. I

indulge in these speculations in order to suggest how the mental lexicon

might deal with probabilistic phenomena without invoking complex sta-

tistical calculations. Those committed to a connectionist approach will

have no di‰culty reformulating my symbolic spreading activation models

at the subsymbolic level. Those committed to Optimality Theory will find

that my models can be reformulated within stochastic Optimality Theory.

Both kinds of reformulation, however, come with the cost of increased

complexity in terms of the numbers of formal parameters required to fit

the data.

The remainder of this chapter is structured as follows. Section 7.2

illustrates how probability theory can help us to understand a key issue

in morphological theory, the enigmatic phenomenon of morphological

productivity. Section 7.3 discusses two data sets illustrating the role of
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probability in the production of complex words. Finally, section 7.4 con-

siders the role of probability during the comprehension of morphologi-

cally complex words.

7.2 Probability and Productivity

Arono¤ (1976) described productivity as one of the central mysteries of

derivational morphology. What is so mysterious about productivity is

not immediately evident from the definition given earlier by Schultink

(1961)—namely, that productivity is the possibility available to language

users to coin, unintentionally, an in principle uncountable number of

formations. The empirical problem that makes productivity so mysterious

is that some word formation rules give rise to few words, while other

word formation rules give rise to many. In English, there are many words

in -ness (goodness), fewer words in -ee (employee), and hardly any words

in -th (warmth). In other words, productivity is graded or scalar in nature,

with productive word formation at one extreme, semiproductive word

formation in the middle, and unproductive word formation at the other

extreme.

Productivity becomes an even more enigmatic notion once it is realized

that unproductive word formation patterns can be fully regular (e.g., the

Dutch su‰x -in that creates female agent nouns, as in boer ‘farmer’,

boerin ‘female farmer’), while word formation need not be rule governed

in the traditional sense to be productive (see the discussion of linking ele-

ments in Dutch in section 7.3).

Some researchers (Schultink 1961; Bauer 2001) have argued for a prin-

cipled distinction between productive and unproductive word formation.

An unproductive a‰x would be ‘‘dead’’; it would not be part of the

grammar. Productive a‰xes, on the other hand, would be ‘‘alive,’’ and

the question of degrees of productivity would only arise for such living

a‰xes. The problem with this view is that in practice, it is very di‰cult to

know whether an a‰x is truly unproductive. Consider, for instance, the

following quotation from Bauer 2001, 206:

Individual speakers may coin new words which are not congruent with currently
predominating customs in the community as a whole. The Oxford English Dictio-

nary credits Walpole with coining gloomth and greenth in the mid-eighteenth cen-
tury, some 150 years after the end of the period of societal availability for -th;
greenth appears to have survived into the late nineteenth century, but neither is
now used, and neither can be taken to illustrate genuine productive use of -th.
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Interestingly, a simple query of the World Wide Web reveals that words

such as coolth, greenth, and even gloomth are used by speakers of English,

even though -th is one of the well-worn examples of a supposedly com-

pletely unproductive su‰x in English. Consider the following examples of

the use of coolth:

(1) Coolth, once a nonce word made on analogy with warmth, is now

tiresomely jocular: The coolth of the water in the early morning is too

much for me. Kenneth G. Wilson (1923?). The Columbia Guide to

Standard American English. 1993.

hhttp://www.bartleby.com/68/5/1505.htmi

(2) Increase the capacity of your house to store coolth. (Yes, it is a real

word.) Using the mass in the house to store coolth in the summer

and heat in the . . .

hhttp://www.tucsonmec.org/tour/tech/passcool.htmi

(3) The combination of high-altitude and low-latitude gives Harare high

diurnal temperature swings (hot days and cool nights). The team

developed a strategy to capture night-time coolth and store it for

release during the following day. This is achieved by blowing night

air over thermal mass stored below the verandah’s . . .

hhttp://www.arup.com/insite/features/printpages/harare.htmi

(4) Do we see the whiteness of the snow, but only believe in its coolth.

Perhaps this is sometimes so; but surely not always. Sometimes

actual coolth is . . .

hhttp://www.ditext.com/sellars/ikte.htmi

(5) Early drafts of Finnegans Wake—HCE . . . behaved in an

ungentlemanly manner opposite a pair of dainty maidservants in the

greenth of the rushy hollow, whither, or so the two gown and

pinners pleaded . . .

hhttp://www.robotwisdom.com/jaj/fwake/hce.htmli

(6) Macom—Garden realization . . . realization 3. Delivery of carpet

lawn—Fa Kotrba 4. Maintainance of greenth a) chemical treatment;

weeding out; fertilization and plant nutrition; prevention of . . .

hhttp://www.macom.cz/english/service.htmi

(7) This year I discovered the Gothic novel. The first Gothic novel I

read was ‘‘Melmoth the Wanderer.’’ I read all 697 pages in about five

days it was so good. In the Penguin Classics introduction to
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‘‘Melmoth’’ it mentions other Gothic novels such as ‘‘The Italian,’’

‘‘Vathek’’ and ‘‘The Castle of Otranto.’’ All of which I’ve since read

and have discovered a new genre of fiction which I really enjoy. I’ve

also had a new word added to my vocabulary: ‘‘Gloomth.’’

hhttp://www.geocities.com/prozacpark/gothnovel.htmi

Example (1) is an example of the prescriptive view, mirroring on the Web

the quotation from Bauer 2001. Example (2) shows how coolth is used to

fill the lexical gap in the series hot/heat, warm/warmth, cool/coolth, cold/

cold. It is a technical term introduced to the reader as a real word of

English. The writer of example (3) takes the use of coolth for granted, and

the writer of example (4), in a discussion of Kant’s theory of experience,

seems to find the nontechnical use of coolth unproblematic. Examples (5)

and (6) illustrate the use of greenth, and example (7) shows how modern

speakers can even enjoy learning about gloomth. These examples show

that forms such as coolth, greenth, and gloomth are occasionally used in

current English, testifying to the residual degree of productivity of -th and

the graded, scalar nature of productivity.

At first sight, it would seem that the degree of productivity of a word

formation pattern might be captured by counting the number of distinct

formations (henceforth word types). The problem with type frequency as

a measure of productivity is that unproductive patterns may comprise

more types than productive patterns. In Dutch, for instance, the su‰x

-elijk occurs more often than the prefix her- (see, e.g., Baayen 2001), but it

is the latter and not the former that is generally judged to be productive.

What we need, then, is a measure that captures the probability of new

words, independently of the number of words that are already attested.

Two measures that formalize the notion of degree of productivity in

terms of probability are available (Baayen and Renouf 1996; Baayen

2001). They are based on the probability theory of the number of di¤er-

ent species (types) observed among a given number of observations

(tokens). First consider the ‘‘productivity’’ of a fair die. There are six

types: 1, 2, 3, 4, 5, and 6. Imagine how many di¤erent types we count as

we throw a fair die 100 times. How many of these types may we expect to

have seen after N throws? In other words, how does the expected vocab-

ulary size E½VðNÞ� increase as a function of the sample size N? The

growth curve of the vocabulary size for a fair die is shown in the upper

left panel of figure 7.1 using a solid line. The vertical axis plots the

expected count of types. The horizontal axis plots the number of throws,
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Figure 7.1

Type-token dynamics for 100 throws with a fair die (upper left), for the context-
governed subcorpus of the British National Corpus (upper right), as well as for the
nouns in -th (lower left) and the nouns in -ness (lower right) in this subcorpus. The
horizontal axis plots the number of tokens ðNÞ, the vertical axis the number of
types ðE½VðNÞ�Þ and number of hapax legomena ðE½Vð1;NÞ�Þ.
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that is, the individual observations or tokens. The growth curve of the

vocabulary shows that after 40 throws, we are almost certain to have seen

each side of the die at least once. In fact, each type will probably have

been counted more than once. This is clear from the dotted line in the

graph, which represents the growth curve E½Vð1;NÞ� of the hapax lego-

mena, the types that occur exactly once in the sample. After 40 trials, it is

very unlikely that there is a type left in the sample that has been observed

only once.

Now consider the upper right panel of figure 7.1. Here we see the

corresponding plot for some 6 million words from the British National

Corpus (its context-governed subcorpus of spoken British English).

Now imagine that instead of throwing a die, we are reading through this

subcorpus, word token by word token, keeping track of the number of

di¤erent word types, and also counting the hapax legomena. The upper

right panel of figure 7.1 shows that both the growth curve of the vocabu-

lary and the growth curve of the hapax legomena increase as we read

through the corpus. There is no sign of the growth curve of the vocabu-

lary reaching an asymptote, as in the case of the fair die. There is also

no indication of the growth curve of the hapax legomena having an

early maximum with the horizontal axis as asymptote as N is increased.

This pattern is typical for word frequency distributions, irrespective of

whether one is dealing with small texts of a few thousand words or

with huge corpora of tens or even hundreds of millions of words. It is

also typical for the word frequency distributions of productive a‰xes.

For instance, the nouns in -ness in the context-governed subcorpus of

the BNC are characterized by the growth curves of the vocabulary and

the hapax legomena shown in the lower right panel. Conversely, the pat-

tern shown for the fair die represents a frequency distribution prototyp-

ical for unproductive a‰xes. For instance, the nouns in -th in the

context-governed subcorpus of the BNC are characterized by the growth

curves shown in the lower left panel of figure 7.1.

It turns out that the rate PðNÞ at which the vocabulary size VðNÞ
increases is a simple function of the number of hapax legomena Vð1;NÞ
and the sample size N:

PðNÞ ¼ E½Vð1;NÞ�
N

ð1Þ

(see, e.g., Good 1953; Baayen 2001). Note that the growth rate of the

vocabulary size is itself a function of the sample size. The rate at which
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the vocabulary size increases decreases through sampling time. Initially,

nearly every word is new, but as we read through the corpus, we see more

and more words we have encountered before. Also note that the upper

left panel of figure 7.1 clearly illustrates the relation between the growth

rate PðNÞ and the growth curve of the number of hapax legomena

Vð1;NÞ. After 50 throws, the growth curve of the vocabulary is, at least

to the eye, completely flat. After 50 throws, therefore, the growth rate of

the vocabulary should be very close to zero. Since after 50 throws the

number of hapax legomena has become practically zero, PðNÞ must also

be zero, as required.

The growth rate PðNÞ has a simple geometric interpretation: it is the

slope of the tangent to the growth curve of the vocabulary size at sample

size N. The growth rate PðNÞ is also a probability—namely, the proba-

bility that, after having sampled N tokens, the next token to be sampled

will represent a type that has not been observed among the previous N

tokens. To see this, consider an urn containing a fixed number of marbles.

Each marble has one color, there are V di¤erent colors, there are N mar-

bles, and there are V(1) marbles with a unique color (i.e., with a color no

other marble has). The probability that the first marble drawn from the

urn will have a color that will not be sampled again is Vð1Þ=N. Since

there is no reason to suppose that sampling the last marble will be di¤er-

ent from sampling the first marble, the probability that the very last

marble taken from the urn represents a color that has not been seen

before must also be Vð1Þ=N. This probability approximates the proba-

bility that, if marbles from the same population are added to the urn, the

first added marble drawn from the urn will have a new color. The expec-

tation operator in (1) makes this approximation precise.

In order to derive productivity measures from the growth rate of the

vocabulary size, consider the case where we sample a new token after

having read through N tokens. Let {A} denote the event that this token

represents a new type. We furthermore regard the vocabulary as a whole

to be a mixture of C di¤erent kinds of words: various kinds of mono-

morphemic words (simplex nouns, adjectives, pronouns, etc.), and many

di¤erent kinds of complex words (compounds, nouns in -ness, verbs in

-ize, adverbs in -ly, etc.). Let {B} denote the event that the N þ 1-th token

belongs to the i-th mixture component of the vocabulary. The hapax-

conditioned degree of productivity P�ðN; iÞ of the i-th mixture compo-

nent is the conditional probability that the N þ 1-th token belongs to the

i-th mixture component, given that it represents a type that has not been
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observed before. Let Vð1;N; iÞ denote the number of hapax legomena

belonging to the i-th mixture component, observed after N tokens have

been sampled:

P�ðN; iÞ ¼ PðfBgjfAgÞ

¼ PðfBgXPðfAgÞ
PðfAgÞ

¼

E½Vð1;N; iÞ�
N

PC
j¼1 E½Vð1;N; jÞ�

N

¼ E½Vð1;N; iÞ�
E½Vð1;NÞ� : ð2Þ

For -th and -ness, the values of P� are 1:0e–13=32042 ¼ 3:1e–18 and

158=32042 ¼ :0049, respectively. Note that for spoken British English,

the probability of observing new formations in -th is vanishingly small. It

is probably only for written English that an extremely large corpus such

as the World Wide Web (for which in the year 2000 N > 47;000;000;000;

Grefenstette 2000) succeeds in showing that there are unobserved

formations—in other words, that there is some very small residual pro-

ductivity for -th.

The category-conditioned degree of productivity PðN; iÞ of mixture

component i is the conditional probability that the N þ 1-th token repre-

sents a new type, given that it belongs to mixture component (or mor-

phological category) i. With Ni the number of tokens counted for the i-th

mixture component, we have

PðN; iÞ ¼ PðfAgjfBgÞ

¼ PðfAgXPðfBgÞ
PðfBgÞ

¼
E½Vð1; N; iÞ�

N
Ni

N

¼ E½Vð1;N; iÞ�
Ni

: ð3Þ
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Applying (3) to -th and -ness, we obtain 1:0e–13=3512 ¼ 2:8e–17 and

158=3813 ¼ :04 as estimates of P for -th and -ness, respectively.

To understand the di¤erence between the interpretations of P and P�,

it is important to realize that productivity is determined by a great many

factors, ranging from structural and processing constraints to register and

modality (Bauer 2001; Plag, Dalton-Pu¤er, and Baayen 1999). Since P�

estimates the contribution of an a‰x to the growth rate of the vocabulary

as a whole, it is a measure that is very sensitive to the di¤erent ways in

which nonsystemic factors may a¤ect productivity. For instance, the suf-

fix -ster attaches productively to Dutch verbs to form female agent nouns

(zwem-er ‘swimmer’, zwemster ‘female swimmer’). However, even though

-ster is productive, speakers of Dutch are somewhat hesitant to use it.

Consequently, its contribution to the overall growth rate of the vocabu-

lary is quite small.

The category-conditioned degree of productivity of a given a‰x does

not take counts of other a‰xes into consideration. This measure is strictly

based on the morphological category of the a‰x itself. It estimates its

productivity, independently of the nonsystemic factors. Hence, it provides

a better window on the potentiality of the a‰x. Measured in terms of P,

-ster emerges with a high degree of productivity (see Baayen 1994 for

experimental validation).

The prominent role of the hapax legomena in both productivity mea-

sures makes sense from a processing point of view. The more frequent a

complex word is, the more likely it is that it is stored in memory and the

less likely it is that its constituents play a role during production and

comprehension (Hasher and Zacks 1984; Scarborough, Cortese, and

Scarborough 1977; Bertram, Schreuder, and Baayen 2000). Conversely,

the more infrequent words there are with a given a‰x, the more likely it

is that its structure will be relevant during comprehension and produc-

tion. The number of hapax legomena, the lowest-frequency words in the

corpus, therefore provides a first approximation of the extent to which

the words with a given a‰x are produced or accessed through their

constituents.

Hay (2000) provides a more precise processing interpretation for the

category-conditioned degree of productivity. This study brings together

the insight that phonological transparency codetermines productivity and

the insight that relative frequency is likewise an important factor. First,

consider phonological transparency. The more the phonological form of
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the derived word masks its morphological structure, the less such a form

will contribute to the productivity of the morphological category to which

it belongs (see, e.g., Cutler 1981; Dressler 1985). Hay operationalizes the

role of phonological transparency in terms of o¤set-onset probabilities

and then shows that the resulting juncture probabilities predict other

properties of the words in which they occur, such as prefixedness ratings,

semantic transparency ratings, and number of meanings.

Next, consider relative frequency. The idea here is that the frequency

relation between a derived word and its base should codetermine the

parsability of that word. If the frequency of the derived word is substan-

tially greater than that of its base, it is unlikely that the base will e¤ec-

tively contribute to the processes of production and comprehension. If, on

the other hand, the frequency of the derived word is much lower than the

frequencies of its constituents, it is much more likely that these con-

stituents do have a role to play. Hay (2000) shows that relative frequency

predicts pitch accent placement: prefixes in words for which the derived

frequency is greater than the frequency of the base are less likely to

attract pitch accent than prefixes in words for which the derived fre-

quency is less than the base frequency. She also shows that t-deletion is

more likely to occur in case the derived word is more frequent than its

base. Finally, she shows that complexity ratings for such words tend to be

lower than for words for which base frequency exceeds derived frequency.

Interestingly, Hay demonstrates that for a sample of 12 English deri-

vational a‰xes, the category-conditioned degree of productivity is a

linear function of mean relative frequency and mean juncture probability

of the formations in the corresponding morphological categories. In other

words, the probability that a morphological category will give rise to

new formations emerges as being demonstrably codetermined by the

juncture probabilities of its members and the frequency relations between

these members and their base words. Hay and Baayen (2002) provide

a more detailed analysis of the correlation between relative frequency

and the two productivity measures P and P� for 80 English derivational

a‰xes. Their results suggest that the degree of productivity of an a‰x

correlates surprisingly well with the likelihood that it will be parsed in

comprehension.

Having looked at how probability theory can help us come to grips

with the elusive notion of degrees of productivity, let us now consider the

possibility that morphological regularity itself is probabilistic in nature.
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7.3 Probability in Morphological Production

In this section, I introduce two data sets illustrating the role of probability

in the production of morphologically complex words. The first data

set concerns the production of linking elements in Dutch nominal

compounds. The second addresses the selection of voice specification of

syllable-final obstruents in Dutch.

7.3.1 Linking Elements in Dutch

The immediate constituents of nominal compounds in Dutch are often

separated by what I will refer to as a linking element. Whether a linking

element should be inserted, and if so, which linking element, is di‰cult to

predict in Dutch. To see this, consider the compounds in (8):

(8) a. schaap-herder

sheep-herder

‘shepherd’

b. schaap-S-kooi

sheep-s-fold

‘sheepfold’

c. schaap-EN-vlees

sheep-en-meat

‘mutton’

The same left constituent appears without a linking element, with the

linking element -s-, and with the linking element -en-. Intensive study of

this phenomenon has failed to come up with a set of rules that adequately

describe the distribution of linking elements in Dutch compounds (see

Krott, Baayen, and Schreuder 2001, for discussion and further refer-

ences). This suggests that the appearance of linking elements is fairly

random and that the use of linkers is unproductive. This is not the case,

however. Linking elements are used productively in novel compounds,

and there is substantial agreement among speakers about which linking

element is most appropriate for a given pair of immediate constituents.

The challenge that the linking elements of Dutch pose for linguistic

theory is how to account for the paradox of an apparently random mor-

phological phenomenon that nevertheless is fully productive.

The key to solving this paradox is to exchange a syntagmatic approach

for a paradigmatic approach, and to exchange greedy learning for lazy
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learning. A syntagmatic approach assumes that it is possible to formulate

a generalization describing the properties that the context should have for

a given linking element to appear. A paradigmatic approach assumes that

the set of compounds similar to the target compound requiring the possi-

ble insertion of a linking element, its compound paradigm, forms the

analogical basis from which the probabilities of the di¤erent linking ele-

ments are derived. The syntagmatic approach is most often coupled

with greedy learning, in the sense that once the generalization has been

abstracted from a set of examples, these examples are discarded. In fact,

researchers working in the tradition of generative grammar tend to

believe that learning a rule and forgetting about the examples that

allowed the rule to be deduced go hand in hand. Pinker (1991, 1997,

1999), for instance, has argued extensively for a strict division of labor

between rules accounting for what is productive and regular, on the one

hand, and storage in memory for what is unproductive and irregular, on

the other hand. Conversely, the paradigmatic, analogical approach is

based on the insight that learning may involve a continuous process

driven by an ever-increasing instance base of exemplars. In this approach,

it may even be harmful to forget individual instances. This kind of learn-

ing, then, is lazy in the sense that it does not attempt to formulate a rule

that allows the data to be discarded. Greedy learning, once completed,

requires little memory. By contrast, lazy learning assumes a vast storage

capacity.

Two mathematically rigorously defined approaches to the modeling of

paradigmatic analogy are available: Analogical Modeling of Language

(AML; Skousen 1989, 1992), and the many machine learning algorithms

implemented in the TIMBL program of Daelemans et al. (2000). Both

AML and TIMBL determine the choice of the linking element for a given

target compound on the basis of the existing compounds that are most

similar to this target compound. The two methods di¤er with respect to

what counts as a similar compound. AML makes use of a similarity

metric that also plays a role in quantum mechanics (Skousen 2000). I will

return to AML below. In this section, I describe the IB1-IG metric (Aha,

Kibler, and Albert 1991; Daelemans, van den Bosch, and Weijters 1997)

available in TIMBL.

In formal analogical approaches, the question of which linking element

to choose for a compound amounts to a classification problem: does this

compound belong to the class of compounds selecting -en-, to the class of

compounds selecting -s-, or to the class of compounds with no overt
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linking element (for notational convenience, henceforth the compounds

with the linking element -0-)? In order to establish which class a com-

pound for which we have to determine the linking element belongs to, we

need to define the properties of compounds on which class assignment has

to be based. In other words, we need to know which features are relevant

and what values these features might have. Now consider table 7.1, which

lists a hypothetical instance base with 10 compounds. In this example,

there are five features: the modifier, the head, the nucleus of the modifier,

the onset of the head, and the coda of the head. The values of the feature

Nucleus are the vowels aa, a, oe, and e. The values of the feature Modifier

are the left constituents schaap, lam, paard, koe, and varken. What we

want to know is what the most probable linking element is for the novel

compound schaap-?-oog ‘sheep’s eye’.

To answer this question, we need to know which exemplars in the

instance base are most relevant. We want to discard exemplars that are

very di¤erent from the target compound, and we want to pay special

attention to those compounds that are very similar. In other words, we

need a similarity metric, or, alternatively, a distance metric. The IB1-IG

distance metric is based on a simple distance metric (known as the

‘‘simple matching coe‰cient’’ or ‘‘Hamming distance’’) that tracks the

number of features that have di¤erent values. Let X denote the target

compound, and let Y denote an exemplar in the instance base. The

Table 7.1

Features and their values for a hypothetical instance base of Dutch compounds.
L denotes the linking element. The numbers in parentheses refer to the first and
second constituents.

Modifier
(1)

Head
(2)

Nucleus
(1)

Onset
(2)

Coda
(2) L Translation

schaap bout aa b t -en- ‘leg of mutton’

schaap herder aa h r -q- ‘shepherd’

schaap kooi aa k i -s- ‘sheepfold’

schaap vlees aa v s -en- ‘mutton’

lam bout a b t -s- ‘leg of lamb’

lam vlees a v s -s- ‘lamb’

lam gehakt a g t -s- ‘minced lamb’

paard oog aa — g -en- ‘horse’s eye’

koe oog oe — g -en- ‘cow’s eye’

varken oog e — g -s- ‘pig’s eye’
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Hamming distance between these two compounds, DðX ;YÞ, is defined as

the number of features with mismatching values:

DðX ;Y Þ ¼
Xn

i¼1

I½xi0yi �: ð4Þ

In the present example, the number of features n equals 5. The value of

the i-th feature of X is denoted by xi. The operator I½z� evaluates to 1 if the

expression z is true, and to 0 otherwise. This metric allows us to group

the compounds in the instance base according to their distance from the

target compound. For instance, schaap-en-bout is at distance 3 from

the target schaap-?-oog, because these two compounds mismatch with

respect to the features Head, Onset(2), and Coda(2). We can now deter-

mine the set S of compounds that, given the features and their values,

are most similar to the target compound. The distribution of linking

elements in this set of nearest neighbors determines the probabilities of

selection. Denoting the cardinality of S by S, the probability of the

linking element -en- is given by the proportion of compounds in S that

select -en-:

PðL ¼ -en-Þ ¼
XS

i¼1

I½Li¼-en-�
S

: ð5Þ

The IB1-IG distance measure improves considerably upon (4) by

weighting the features for their relevance, using the information-theoretic

notion of entropy. The entropy HðLÞ of a distribution of linking elements

L, with J di¤erent linking elements,

HðLÞ ¼ �
XJ

j¼1

pj log2 pj; ð6Þ

is a measure of uncertainty about which linking element to choose in the

situation where no information is available about the values of the fea-

tures of a given word. For the data in table 7.1,

HðLÞ ¼ �½PðL ¼ enÞ log2ðPðL ¼ enÞÞ þ PðL ¼ sÞ log2ðPðL ¼ sÞÞ

þ PðL ¼qÞ log2ðPðL ¼qÞÞ�

¼ �½0:4 log2ð0:4Þ þ 0:5 log2ð0:5Þ þ 0:1 log2ð0:1Þ�

¼ 1:36:
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The degree of uncertainty changes when extra information is provided,

for instance, the information that the value of the feature Modifier is

schaap:

HðLjModifier ¼ schaapÞ

¼ �½PðL ¼ enjModifier ¼ schaapÞ log2ðPðL ¼ enjModifier ¼ schaapÞÞ

þ PðL ¼ sjModifier ¼ schaapÞ log2ðPðL ¼ sjModifier ¼ schaapÞÞ

þ PðL ¼qjModifier ¼ schaapÞ

� log2ðPðL ¼qjModifier ¼ schaapÞÞ�

¼ �½0:5 � log2ð0:5Þ þ 0:25 � log2ð0:25Þ þ 0:25 � log2ð0:25Þ�

¼ 1:5:

We can gauge the usefulness or weight wi of a feature Fi for predicting the

linking element by calculating the probability-weighted extent to which

knowledge of the value v of Fi decreases our uncertainty:

wi ¼ HðLÞ �
X

v AFi

PðvÞHðLjvÞ: ð7Þ

For the feature Modifier, v ranges over the values schaap, lam, paard, koe,

and varken. Note that when v has the value schaap, the probability PðvÞ
equals 4/10. Because HðLjvÞ ¼ 0 when v0 schaap (the other modifiers all

occur with just one linking element, so there is absolute certainty about

the appropriate linking element in these cases), the information gain

weight for the feature Modifier is

wModifier ¼ HðLÞ � PðModifier ¼ schaapÞHðLjModifier ¼ schaapÞ

Modifier ¼ 1:36� 0:4 � 1:5

Modifier ¼ 0:76:

The feature with the lowest information gain weight is Coda(2), which is

not surprising as there is no obvious phonological reason to suppose the

coda of the second constituent to codetermine the choice of the linking

element. Crucially, when this technique is applied to a realistic instance

base, the information gain weights are a powerful means for establishing

which features are important for understanding the quantitative structure

of a data set.

When this technique is applied to an instance base of Dutch compounds

as available in the CELEX lexical database (Baayen, Piepenbrock, and
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Gulikers 1995), it turns out that, of a great many features, the Modifier

and Head features have the highest information gain values (1.11 and

0.41, respectively) and that other features, such as whether the first con-

stituent bears main stress, have a very low information gain weight (0.07).

When we modify our distance metric by weighting for information gain,

DðX ;Y Þ ¼
Xn

i¼1

wiI½xi0yi �; ð8Þ

and when we choose the linking element on the basis of the distribution of

linking elements in the set of compounds with the smallest distance D,

some 92% of the linking elements in Dutch compounds are predicted

correctly (using 10-fold cross-validation). Experimental studies (Krott,

Baayen, and Schreuder 2001; Krott, Schreuder, and Baayen 2002) have

confirmed the crucial importance of the Modifier and Head features.

Apparently, the compounds sharing the modifier constituent (the left

constituent compound family), and to a lesser extent the compounds

sharing the head constituent (the right constituent compound family),

form the analogical exemplars on which the choice of the linking element

in Dutch is based. What we have here is paradigmatically determined

selection instead of syntagmatically determined selection. Instead of try-

ing to predict the linking element on the basis of specific feature values of

the surrounding constituents (its syntagmatic context), it turns out to be

crucial to zoom in on the constituents themselves and the distributional

properties of their positional compound paradigms.

To see how such paradigmatic e¤ects might be accounted for in a psy-

cholinguistic model of the mental lexicon, consider figure 7.2. This figure

outlines the functional architecture of a spreading activation model for

paradigm-driven analogy using the small instance base of table 7.1. At

the left-hand side of the graph, the modifier (labeled LEFT) and the head

constituent (labeled RIGHT) are shown. These two lexemes are con-

nected to their positional compound paradigms, listed in the center. The

weights on the connections to the compounds in the instance base are

identical to the information gain weights of the left and right constituents.

The di¤erent linking elements are displayed at the right-hand side of the

graph. Each linking element is connected with the compounds in which

it appears. Activation spreads from the left and right constituents to

the compounds in the paradigmatic sets, and from there to the linking

element. The linking element that receives the most activation is the
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one selected for insertion in the novel compound schaap-?-oog. Krott,

Schreuder, and Baayen (2002) show that an implemented computational

simulation model along these lines provides excellent fits to both the

choices and the times required to make these choices in experiments with

novel Dutch compounds.

This example shows that morphological network models along the lines

proposed by Bybee (1985, 1995a, 2001) can be made precise and that,

once formalized, they have excellent predictive power. It should be kept

in mind, however, that the present model presupposes considerable

structure in the mental lexicon, both in terms of the specific connectivity

required and in terms of the specific information gain weights on these

connections. In this light, it makes more sense to speak of an analogical

Figure 7.2

A spreading activation model for the selection of linking elements in Dutch.
(After Krott, Schreuder, and Baayen 2002.)
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or paradigmatic rule for the selection of the linking element rather than

of a network model, because we are dealing not with undi¤erentiated

connectivity in an encompassing network for the whole mental lexicon,

but with highly structured connectivity in a subnetwork dedicated to the

specific task of selecting the appropriate linking element for Dutch

compounds.

The next section provides a second example of a phenomenon that

turns out to be analogical in nature, the morphophonology of final

obstruents in Dutch.

7.3.2 Syllable-Final Obstruents in Dutch

The feature [voice] is distinctive in Dutch. This is illustrated in (9) for the

Dutch nouns /rat-en/ and /rad-en/. When the alveolar stop is voiceless,

the noun means ‘honeycombs’; when the stop is voiced, the noun means

‘councils’. When the stop is in syllable-final position, as in isolated singu-

lar forms, the distinction between the voiced and voiceless obstruent is

neutralized, and in phrase-final position both obstruents are realized as

voiceless.

(9) Form

/rat-en/

/rat/

/rad-en/

/rat/

Translation

‘honeycomb’-plural

‘honeycomb’

‘council’-plural

‘council’

Voicing

voiceless

voiceless

voiced

voiceless

Traditionally, this phenomenon is accounted for by assuming that the

obstruents in /rat-en/ and /rad-en/ are specified as being underlyingly

voiceless and voiced, respectively, with a rule of syllable-final devoicing

accounting for the neutralization of the voice distinction in the singular

(e.g., Booij 1995). Whether the final obstruent in a given word alternates

between voiced and voiceless is taken to be an idiosyncratic property of

that word that has to be specified lexically, although it has been noted

that fricatives following long vowels tend to be underlyingly voiced

and that bilabial stops tend to be voiceless following long vowels (Booij

1999).

Ernestus and Baayen (2003) report that there is far more structure to

the distribution of the voice specification of final obstruents in the lexicon

of Dutch than expected on the basis of this standard analysis. Figure 7.3

summarizes some of the main patterns in the data for three major rime

patterns by means of the barplots at the left-hand side. The data on which
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these graphs are based are some 1,700 monomorphemic words attested in

the Dutch part of the CELEX lexical database. These words are nouns,

verbs, or adjectives that end in an obstruent that has both voiced and

voiceless counterparts in Dutch, and that are attested with a following

schwa-initial su‰x. For these words, we therefore know whether they

have an alternating or a nonalternating final obstruent. The top left panel

of figure 7.3 plots the proportion of words exhibiting voice alternation

(p(voiced)) as a function of the kind of obstruent (bilabial (P) and alveo-

lar (T) stops; labiodental (F), alveolar (S), and velar (X) fricatives) for

words with a rime consisting of a short vowel followed by a sonorant

� �

� �

� �

Figure 7.3

Proportions of voiced morpheme-final obstruents in Dutch as a function of type
of obstruent, broken down by three rime structures. P: /p,b/; T: /t,d/; S: /s,z/;
F: /f,v/; X: /x,g/. The numbers above the bars specify the total counts of mono-
morphemic words (left) and the total number of responses for pseudoverbs (right)
for the class represented by that bar.

Probabilistic Approaches to Morphology 251



consonant, followed by the final obstruent. Note that as we proceed from

left to right, the percentage of words with underlying voiced obstruents

increases. The center left panel shows a fairly similar pattern for words

ending in a long vowel that is directly followed by the final obstruent

without any intervening consonant. The bottom left panel shows the dis-

tribution for words ending in a short vowel immediately followed by the

final obstruent. For these words, we observe a U-shaped pattern. (A very

similar pattern characterizes the subset of verbs in this database of mon-

omorphemic words.) Ernestus and Baayen show that the quality of the

vowel, the structure of the coda (does a consonant precede the final

obstruent, and if so, is it a sonorant?), and the type of final obstruent are

all significant predictors of the distribution of the percentage of voicing in

Dutch.

The right panels of figure 7.3 present the corresponding barplots for the

data obtained in a production experiment in which participants were

asked to produce the past tense form for some 200 artificially created

but phonotactically legal pseudoverbs. The past tense su‰x was selected

because it has two allomorphs the selection of which depends on whether

the final obstruent alternates. If the final obstruent alternates, the past

tense su‰x has the form -de and the final obstruent is realized as voiced.

If the final obstruent does not alternate, the appropriate past tense su‰x

is -te, and the final obstruent is realized as voiceless. When participants

are asked to produce the past tense form, the status they assign to the

final obstruent of the pseudoverb, alternating or not alternating, can be

determined simply on the basis of the form of the past tense su‰x.

Interestingly, the percentages of verbs for which the participants used

the past tense su‰x -de reflect to a considerable degree the percentages of

the words with alternating final obstruents in the lexicon shown in the left

panels. Note that even the U-shaped pattern in the lower left panel is

present to some extent in the lower right panel. This pattern of results is

incompatible with theories that hold that the selection of the past tense

su‰x crucially depends on the availability of a lexically specified feature

marking the verb as underlyingly voiced. After all, the participants in the

experiment were asked to produce the past tense for pseudoverbs, forms

that are not available in the lexicon and for which no such lexically

specified feature is available. We are therefore faced with the question of

how the participants might have arrived at their choice of the allomorph

of the past tense su‰x for these pseudoverbs.
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Figure 7.4 illustrates the kind of lexical connectivity required for a

spreading activation network to predict the choice of the past tense allo-

morph. Completely analogous to the spreading activation model illus-

trated in figure 7.2 for modeling the choice of the linking element in

Dutch compounds, activation spreads from the phonological feature

values (left) to the words sharing these feature values (center) and from

there to the voicing specification of the final obstruent and of the past

tense allomorph (right). As before, this model embodies an analogical,

paradigmatic rule. It presupposes that vowel length, coda structure, and

type of obstruent can be identified for any given input form and that the

speaker has learned that it is these features that are primarily relevant for

the voicing alternation. Once the values of these features are activated,

the paradigms of words in the lexicon sharing these feature values are

Figure 7.4

A spreading activation model for the selection of the voice specification of final
obstruents in Dutch
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coactivated, proportionally to the weights w1;w2; . . . : The support from

the weighted paradigmatic cohorts determines the probability of select-

ing [�voice] or [þvoice]. Note that this probability is not determined by

the proportion of words with exactly the same values as the target for

the features vowel length, coda structure, and type of obstruent. Words

that share only two feature values, and even words that share only one

feature value, also codetermine the probabilities of a voiced or voiceless

realization.

A formal definition of these probabilities proceeds as follows. Let F

denote the number of features, and let v denote the vector

v ¼

v1

v2

..

.

vF

0

B
B
B
B
@

1

C
C
C
C
A

specifying for the target word the value vi of each feature Fi. We define

nijk as the number of lexemes with value j for feature i that support

exponent k, the exponents in this example being the voicing outcomes

voiced and voiceless. The support sk that exponent k receives given target

v and weights w equals

sk ¼
XF

i¼1

winivik; ð9Þ

and the probability pk that it will be selected, given K di¤erent exponents,

is

pk ¼
sk

PK
m¼1 sm

: ð10Þ

The maximum likelihood choice of this spreading activation model is the

exponent for which pk is maximal. This maximum likelihood choice is the

choice that the model predicts that the majority of the participants should

opt for.

When we set the weights w to the information gain weights (7), the

maximum likelihood prediction of the model coincides with the majority

choice of the participants in 87.5% of the experimental pseudoverbs.

When we optimize the weights using the simplex algorithm of Nelder and

Mead (1965), this accuracy score improves to 91.7%. The by-word prob-

abilities for voicelessness in this model correlate well with the proportions
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of participants selecting the voiceless allomorph of the past tense su‰x,

-te (r ¼ :85, tð190Þ ¼ 22:1, p < :0001). That the maximum likelihood

choices of the model are similar to those made by the participants is

illustrated in figure 7.5, the dendrogram for the hierarchical clustering of

the participants and the model. (The clustering is based on a distance

matrix of by-participant pairwise proportions of pseudoverbs that di¤er

with respect to the assignment of voice.) The participants are labeled

1–28, and the model, which can be found in the lower center of the tree

diagram, is labeled 29. In a dendrogram such as this, participants who are

very similar will be in a very similar position in the tree. For instance,

participants 20 and 25 are very similar, and the group formed by partic-

ipants 20 and 25 is in turn very similar to participant 12. These partic-

ipants are very di¤erent from participants 4 and 6. One has to traverse

the tree almost to its root to go from participant 25 to participant 4. In

other words, vertical traversal distance, labeled Height in figure 7.5, tells

us how dissimilar two participants are. The position of the model, 29,

�

�

Figure 7.5

Hierarchical clustering of participants (1–28) and the spreading activation model
(29) on the basis of pairwise proportional matching coe‰cients
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near to participants 15, 5, and 27, shows that the model’s behavior is

quite similar to that of a number of actual participants. If the model had

occupied a separate position in the dendrogram, this would have been an

indication that its voicing predictions might be in some way fundamen-

tally di¤erent from those of the participants, which would have been a

source of worry about the validity of the model as a model of how

speakers of Dutch arrive at their choice of the past tense su‰x.

Summing up, the distribution of voice alternation for final obstruents

in the lexicon of Dutch is far from random. Speakers of Dutch make use

of this information when confronted with novel (pseudo)verbs (see

Ernestus and Baayen 2001, 2002, for evidence that even the voice speci-

fication of existing words is likewise a¤ected by the distributional prop-

erties of voicing in the lexicon). The probability that a speaker of Dutch

will select the voiced or voiceless allomorph of the Dutch past tense su‰x

can be approximated with a reasonable degree of accuracy on the basis of

only three parameters, one for each relevant feature.

There are many other formal quantitative models that provide good fits

to the present data (see Ernestus and Baayen 2003, for detailed discus-

sion), two of which are of special interest. Boersma (1998) proposes a

stochastic version of Optimality Theory (SOT) in which constraints are

assigned a position on a hierarchy scale. The exact position of a con-

straint on this scale is stochastic; that is, it varies slightly from instance to

instance, according to a normal distribution. The positions of the con-

straints are determined by Boersma’s Gradual Learning Algorithm (see

also Boersma and Hayes 2001). This algorithm goes through the list of

forms in the model’s input, adjusting the constraints at each step. If the

model predicts an outcome that is at odds with the actually attested out-

come, the positions of the constraints are adjusted. Those constraints that

are violated by the actual input form are moved down. At the same time,

those constraints that are violated by the words that the model thought

were correct instead of the actual input form are moved up in the hierar-

chy. The simplest model that provides a reasonable fit to the data is

summarized in table 7.2. It has 10 constraints, and hence 10 parameters.

The maximum likelihood predictions of this model correspond for 87%

of the experimental pseudoverbs with the majority choice of the partic-

ipants, a success rate that does not di¤er significantly from the success

rate (91%) of the spreading activation model (p > :25, proportions test).

Given that SOT and the spreading activation model have the same

observational adequacy, the question arises which model is to be pre-
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ferred for this specific data set. SOT implements a greedy learning strat-

egy, in that the individual examples to which the model is exposed are

discarded. It is a memoryless system that presupposes that it is known

beforehand which constraints might be relevant. The spreading activation

model, by contrast, crucially depends on having in memory the phono-

logical representations of Dutch monomorphemic lexemes. Interestingly,

this requirement does not add to the complexity of the grammar, as the

phonological form of monomorphemic words must be stored in the lexi-

con anyway. Since there is no intrinsic advantage to greedy learning for

these data, Occam’s razor applies in favor of the spreading activation

model as the more parsimonious theory, at least for this data set.

The interactive activation model is in turn challenged by a lazy learn-

ing model with no parameters at all, Analogical Modeling of Language

(AML; Skousen 1989, 1992). In what follows, I give a procedural intro-

duction to AML. For a rigorous mathematical analysis of the statistical

properties of AML, see Skousen 1992; and for the use of this natural

statistic in quantum physics, see Skousen 2000.

Like the interactive activation model, AML requires an input lexicon

that specifies for each lexeme the values of a series of features describing

Table 7.2

Constraints and their position in Stochastic Optimality Theory for the voice
specification of final obstruents in Dutch

Constraint Gloss Position

*P[þvoice] no underlyingly voiced bilabial stops �173.5

*T[þvoice] no underlyingly voiced alveolar stops �217.5

*S[þvoice] no underlyingly voiced aveolar fricatives �512.2

*F[�voice] no underlyingly voiceless labiodental fricatives �515.4

*X[�voice] no underlyingly voiceless velar fricatives �515.6

*V:O[�voice] no underlyingly voiceless obstruents following
long vowels

�516.4

*iuyO[�voice] no underlyingly voiceless obstruents following
[i, u, y]

�516.7

*VO[þvoice] no underlyingly voiced obstruents following
short vowels

�517.0

*SonO[�voice] no underlyingly voiceless obstruents following
sonorants

�1300.1

*OO[þvoice] no underlyingly voiced obstruents following
obstruents

�1302.1
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its final syllable together with the underlying voice specification of the

final obstruent. Table 7.3 lists some examples of an instance base with

features Onset, Vowel Type, Vowel (using the DISC computer phonetic

alphabet), Coda structure (whether a prefinal consonant is present and, if

so, whether it is a sonorant or a stop), and (final) Obstruent.

When AML has to predict the voice specification for a pseudoverb

such as puig, it considers the exemplars in its lexicon for all possible

supracontexts of the target. A supracontext of the target is the set of

exemplars (possibly empty) that share a minimum number (possibly even

zero) of feature values with the target. Table 7.4 lists all the supracontexts

of puig. The first supracontext has distance 0: the values of all its features

are fixed. That is, in order for a word to belong to this supracontext, it

must share puig’s values for all five of its features. Because puig is not a

real word of Dutch, this fully specified supracontext is empty. The next 5

supracontexts have distance 1. They contain the exemplars that share

four feature values and that di¤er from the target at (at most) one posi-

tion. This position is indicated by a hyphen in table 7.4. The next 10

supracontexts cover the sets of exemplars that have two variable posi-

tions. The final supracontext has five variable positions. As we move

down table 7.4, the supracontexts become less specific in their similarity

Table 7.3

Feature specifications in the lexicon for Analogical Modeling of Language

Lexeme Onset
Vowel
type Vowel Coda Obstruent Voicing

aap empty long a none P voiceless

aard empty long a sonorant T voiced

aars empty long a sonorant S voiced

aas empty long a none S voiced

abrikoos k long o none S voiced

abt empty short A obstruent T voiceless

accent s short E sonorant T voiceless

accijns s short K sonorant S voiced

accuraat r short a none T voiceless

acht empty short A obstruent T voiceless

� � � � � � � � � � � � � � � � � � � � �
zwijg zw long K none X voiced

zwoeg zw iuy u none X voiced

zwoerd zw iuy u sonorant T voiced

258 Baayen



Table 7.4

Supracontexts for the pseudoverb puig

Supracontext Distance Voiced Voiceless Homogeneity

p long L none x 0 0 0 empty

– long L none x 1 7 1 homogeneous

p – L none x 1 0 0 empty

p long – none x 1 1 0 homogeneous

p long L – x 1 0 0 empty

p long L none – 1 0 1 homogeneous

– – L none x 2 7 1 homogeneous

– long – none x 2 65 1 heterogeneous

– long L – x 2 7 1 homogeneous

– long L none – 2 38 34 heterogeneous

p – – none x 2 2 1 heterogeneous

p – L – x 2 0 0 empty

p – L none – 2 0 1 homogeneous

p long – – x 2 1 0 homogeneous

p long – none – 2 4 8 heterogeneous

p long L – – 2 0 2 homogeneous

– – – none x 3 107 4 heterogeneous

– – L – x 3 7 1 homogeneous

– – L none – 3 38 34 heterogeneous

– long – – x 3 65 1 heterogeneous

– long – none – 3 261 188 heterogeneous

– long L – – 3 38 38 heterogeneous

p – – – x 3 2 1 heterogeneous

p – – none – 3 7 34 heterogeneous

p – L – – 3 0 2 homogeneous

p long – – – 3 7 11 heterogeneous

– – – – x 4 126 5 heterogeneous

– – – none – 4 409 636 heterogeneous

– – L – – 4 38 38 heterogeneous

– long – – – 4 300 231 heterogeneous

p – – – – 4 13 59 heterogeneous

– – – – – 5 583 1,101 heterogeneous
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requirements and contain nondecreasing numbers of exemplars. The col-

umns labeled Voiced and Voiceless tabulate the number of exemplars in a

given context that have the corresponding voice specification. Thus, there

are 8 exemplars in the second supracontext, 7 of which are underlyingly

voiced. The last, most general supracontext at the bottom of the table

covers all 1,684 words in the lexicon, of which 583 are voiced.

Supracontexts can be deterministic or nondeterministic. A supracontext

is deterministic when all its exemplars support the same voice specifica-

tion (e.g., p long L – –); otherwise, it is nondeterministic (e.g., – long L

none –). When predicting the voice specification for a new word that is

not yet in the model’s instance base, AML inspects only those supra-

contexts that are homogeneous. All deterministic supracontexts are

homogeneous. A nondeterministic supracontext is homogeneous only

when all more specific supracontexts that it contains have exactly the

same distribution for the voice specification. Consider, for example, the

nondeterministic supracontext – long L – x, which has the outcome dis-

tribution (7, 1). It contains the more specific supracontext – long L none

x. This supracontext is more specific because the fourth feature has the

specific value none. This supracontext is also nondeterministic, and it has

the same outcome distribution (7, 1). The supracontext – long L – x has

one other more specific supracontext, p long L – x. This supracontext is

the empty set and does not count against the homogeneity of the more

general supracontexts of which it is a subset. Therefore, the supracontext

– long L – x is homogeneous. It is easy to see that the nondeterministic

supracontext – long L None – is heterogeneous, as there is no other more

specific supracontext with the distribution (38, 34). The homogeneous

contexts jointly constitute the analogical set on which AML bases its

prediction. Intuitively, one can conceptualize the homogeneity of a

supracontext as indicating that there is no more specific information (in

the form of a more fully specified supracontext) with contradicting dis-

tributional evidence. In other words, distributional evidence tied to more

specific supracontexts blocks contradicting distributional evidence from

less specific supracontexts from having an analogical contribution.

Table 7.5 lists the exemplars that appear in the analogical set. AML

o¤ers two ways for calculating the probabilities of the outcomes (voiced

or voiceless), depending on whether the size of the supracontexts is taken

into account. In occurrence-weighted selection, the contribution of an

exemplar (its similarity score in the model) is proportional to the count of

di¤erent supracontexts in which it occurs. The third column of table 7.5
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lists these counts, and the fourth column the proportional contributions.

The probability of a voiced realization using occurrence-weighted selec-

tion is .75, as the summed count for the voiced exemplars equals 25 out of

a total score of 100. Applied to all experimental pseudoverbs, the maxi-

mum likelihood choice of AML with occurrence-weighted selection

agrees with the majority choice of the participants in 166 out of 192

cases, an accuracy score of 86% that does not di¤er significantly from the

accuracy score of 91% obtained with the spreading activation model

(X 2ð1Þ ¼ 1:6761, p ¼ :1954).

When we use size-weighted selection, the contribution of an exemplar is

proportional to the sum of the sizes of the supracontexts in the analogical

set in which it appears. This size-weighted selection amounts to using a

squaring function for measuring agreement, similar to the quadratic

measure of agreement found in Schrödinger’s wave equation (Skousen

2000). The exemplar buig, for instance, occurs in four homogeneous

supracontexts, the homogeneous supracontexts in table 7.4 with the (7, 1)

distribution. The size of each of these four supracontexts is 8; hence, buig

Table 7.5

The exemplars predicting the voice specification for the pseudoverb puig. The
column labeled Composition specifies the sizes of the supracontexts to which an
exemplar belongs.

Occurrence
weighted Size weighted

Exemplar Voicing Count
Contri-
bution Count

Com-
position

Contri-
bution

buig voiced 4 0.10 32 8-8-8-8 0.12

duig voiced 4 0.10 32 8-8-8-8 0.12

huig voiced 4 0.10 32 8-8-8-8 0.12

juich voiceless 4 0.10 32 8-8-8-8 0.12

poog voiced 2 0.05 2 1-1 0.01

puist voiceless 2 0.05 4 2-2 0.02

puit voiceless 4 0.10 6 2-2-1-1 0.02

ruig voiced 4 0.10 32 8-8-8-8 0.12

luig voiced 4 0.10 32 8-8-8-8 0.12

vuig voiced 4 0.10 32 8-8-8-8 0.12

zuig voiced 4 0.10 32 8-8-8-8 0.12

P(voiced) 0.75 0.84
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now contributes a count of 32 instead of 4. In the case of the exemplar

poog, the two homogeneous supracontexts in which it appears both have

a size of 1. Hence, the contribution of poog remains proportional to a

count of 2. The probability of a voiced realization using size-weighted

selection is .84. The accuracy score of AML with respect to the complete

set of experimental pseudoverbs is again 86%. Although AML seems to

be slightly less accurate than the spreading activation model, the fact that

AML is a parameter-free model (i.e., a model with no parameters that the

analyst can tweak to get the model to better fit the data) makes it a very

attractive alternative.

It is important to realize that AML bases its predictions on the local

similarity structure in the lexicon given a target input. There are no global

computations establishing general weights that can subsequently be

applied to any new input. It is not necessary to survey the instance base

and calculate the information gain weight for, say, the onset. Likewise, it

is not necessary to establish a priori whether constraints pertaining to the

onset should or should not be brought into a stochastic optimality gram-

mar. (The only requirement is the a priori specification of a set of features

and their values, but this minimal requirement is a prerequisite for any

current theory.) What I find interesting is that the microstructure of local

similarities as captured by the analogical set of AML is by itself su‰cient

to capture the support in the language for the voice specification for a

given target word. The absence of a role for the onset follows without

further specification from the fact that the supracontexts containing the

onset (the supracontexts with an initial p in table 7.4) are either very

sparsely populated or heterogeneous. Although generalizations in the

form of abstract rules may provide a good first approximation of mor-

phological regularities, for more precise prediction it is both necessary

and, surprisingly, su‰cient to take into account the microstructure of the

similarity space around individual words. Global similarity structure is

grounded in the local similarity structure around individual words.

7.3.3 Discussion

The case studies surveyed in this section have a number of interesting

consequences for linguistic theory. A first observation concerns the notion

of productivity. Regularity, of the kind that can be captured by symbolic

rules, is often seen as a necessary condition for productivity. The Dutch

linking elements, however, are productive without being regular in this

sense. Similarly, the morphophonological voicing alternation of obstru-
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ents in Dutch also enjoys a fair degree of productivity, even though

standard analyses have treated it as idiosyncratic and lexically specified.

To understand the basis of productivity, the paradigmatic, probabilistic

dimension of morphological structure is crucial.

A second observation is that rejecting syntagmatic symbolic rules as

the appropriate framework for the analysis of a given morphological

phenomenon does not imply embracing subsymbolic connectionism. The

present examples show that a symbolic approach in which paradigmatic

structure provides a similarity space over which probabilities are defined

can provide an excellent level of granularity for understanding the role of

probability in language production. This is not to say that the present

data sets cannot be modeled by means of subsymbolic ANNs. On the

contrary, ANNs are powerful nonlinear classifiers, whereas the classifica-

tion problems discussed in this section are trivial compared to the classi-

fication problems that arise in, for instance, face recognition. ANNs have

the disadvantage that they require large numbers of parameters (the

weights on the connections) that themselves reveal little about the lin-

guistic structure of the data, unlike the information gain weights in the

spreading activation model. The hidden layers in an ANN often provide

a compressed re-representation of the structure of the data, but the cost in

terms of the number of parameters and the complexity of the training

procedure are high. And it is not always clear what one has learned when

a three-layer network successfully maps one type of representation onto

another (see Forster 1994). For those who take the task of morphological

theory as part of linguistics to be to provide the simplest possible account

for (probabilistic) phenomena in word formation, ANNs are probably

not the analytically most insightful tool to use. However, those who view

morphology as part of cognitive science may gladly pay the price of

greater analytical complexity, especially when more biologically realistic

neural network models become available.

A third observation concerns the notion of learning. Traditional sym-

bolic approaches such as the one advocated by Pinker (1991) are based on

the a priori assumption that greedy learning is at the core of the language

faculty. The Gradual Learning Algorithm of Boersma (1998) is in line

with this tradition: occurrences leave a trace in the positions of the con-

straints; they themselves need not be stored in memory. TIMBL and

AML, by contrast, are based on lazy learning, with extensive storage of

exemplars in memory and similarity-based reasoning taking the place of

abstract rules.
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A question that arises here is to what extent these models provide a

reasonable window on language acquisition. It should be noted that all

models discussed here share, in their simplest form, the assumption that it

is known at the outset which features are relevant and what values these

features can assume, and that this knowledge is constant and not subject

to development over time. This is a strong and unrealistic assumption.

Granted this assumption, SOT, TIMBL, and AML can all approximate

acquisition as a function of the input over time. Given which constraints

are relevant for a given linguistic mapping, SOT can chart how the posi-

tioning of constraints develops over time. What TIMBL requires for

modeling classificatory development is a continuous reevaluation of the

information gain weights as the instance base is increased with new

exemplars. AML, by contrast, predicts changing classificatory behavior

as a function of a changing lexicon without further assumptions, a prop-

erty it shares with connectionist models of language acquisition.

A related final question concerns whether there are di¤erences in the

extent to which di¤erent models depend on a priori assumptions. All

models reviewed here, including SOT and AML, do not di¤er with

respect to the minimal levels of representation they require. The di¤er-

ences between these models concern how they make use of these repre-

sentations and what happens with the examples from which a given

mapping has to be learned. Both TIMBL and AML instantiate lazy

learning algorithms that do not require any further a priori knowledge.

The same holds for connectionist models. SOT instantiates a greedy

learning algorithm, an algorithm that does require the a priori knowledge

of which constraints are potentially relevant, or, at the very least, that

does require considerable hand-crafting in practice. For instance, there is

no constraint *iuyF[þvoice] in the SOT model summarized in table 7.2,

simply because it turned out to be unnecessary given the other constraints

that had already been formulated. Theoretically, it might be argued that

every combination of feature values (e.g., T, or SonO) and outcome

values (e.g., [�voice]) is linked automatically with a (supposedly innate,

universal) constraint, with irrelevant constraints dropping to the bottom

of the grammar during learning. Under this view, SOT would not depend

on a priori knowledge either, although such an SOT grammar is encum-

bered with an enormous pile of useless constraints lying inactive at the

bottom of the ranking. Note, however, that TIMBL and AML are

encumbered in a di¤erent way, namely, with useless features that are

themselves harmless but that render the on-line calculation of the simi-
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larity space more complex. Similarly in connectionist networks, such

useless features add noise to the system, delaying learning and slowing

down convergence.

Summing up, from a statistical point of view, SOT, AML, and

TIMBL, and connectionist models as well, all have their own advantages

and disadvantages as explanatory frameworks for the data sets discussed.

One’s choice of model will in practice be determined by one’s view of the

explanatory value of these models as instantiations of broader research

traditions (Optimality Theory, machine learning, and cognitive science)

across a much wider range of data sets.

7.4 Probability in Morphological Comprehension

In the previous section, we saw how probabilities based on counts of

word types falling into di¤erent similarity classes play a role in the pro-

duction of morphologically complex words. In this section, we will see

that probabilities based on token frequencies play a crucial role in solving

the ambiguity problem in morphological segmentation. Consider the

examples in (10):

(10) acuteþness 32 aþcuteness 39

expertþness 25 exþpertþness 68

intentþness 29 inþtentþness 57

perverseþness 31 perþverseþness 66

sacredþness 27 sacþredness 56

tenderþness 28 tendþerþness 55

preparedþness 19 prepþaþredþness 58

The first column lists correct segmentations for a number of words with

the su‰x -ness; the third column lists some incorrect or implausible seg-

mentations. I will explain the interpretation of the numbers in the second

and fourth columns below. How do we know, upon reading a string such

as preparedness, which of the segmentations in (11) is the one to choose?

(11) preparedness 19

preparedþness 27

preþparedþness 56

prepþaþredþness 58

prepþaþredness 58

preþparþedþness 71

preþpaþredþness 78
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preþpaþredness 78

preþpareþdþness 78

prepþareþdþness 78

prepareþdþness 78

Some of these segmentations can be ruled out on the basis of combinato-

rial restrictions. For instance, the form are (2 sg., 1/2/3 pl. present of be,

or singular of the noun denoting an area of 100 m2) in prepþareþdþness

does not combine with the su‰x -d. Other segmentations in (11), how-

ever, are possible albeit implausible. For example, ((pre((pare)d))ness)

has the same structure as ((pre((determine)d))ness), but it is unlikely to

be the intended reading of preparedness. Why are such forms implausible?

In other words, why are their probabilities so low? In various computa-

tional approaches (e.g., probabilistic context-free grammars, probabilistic

head-lexicalized grammars, and Data-Oriented Parsing, as described in

chapter 2), the probability of the whole, P(preparedness), is obtained

from the probabilities of combinations of its constituents, some of which

are listed in (12):

(12) P(prepared, ness)

P(pre, pared)

P(pared, ness)

P(pre, pared, ness)

. . .

P(prepare, d)

P(d, ness)

P(prepare, d, ness)

Crucially, these probabilities are estimated on the basis of the relative

token frequencies of these bigrams and trigrams in large corpora, with the

various approaches using di¤erent subsets of probabilities and combining

them according to di¤erent grammars (for an application to Dutch mor-

phology, see Heemskerk 1993; for a memory-based segmentation system

using TIMBL, see van den Bosch, Daelemans, and Weijters 1996). In this

section, I consider how human morphological segmentation might be

sensitive to probabilities of combinations of constituents.

It is important to realize that if the brain does indeed make use of

probabilities, then it must somehow keep track of (relative) frequency

information for both irregular and completely regular complex words.

The issue of whether fully regular complex words are stored in the mental

lexicon, however, is hotly debated. Pinker (1991, 1997), Marcus et al.
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(1995), Clahsen, Eisenbeiss, and Sonnenstuhl-Henning (1997), and Clah-

sen (1999) have argued that frequency information is stored in the brain

only for irregular complex words, and not at all for regular complex

words. They argue that regular morphology is subserved by symbolic

rules that are not sensitive to the frequencies of the symbols on which

they operate, and that irregular morphology is subserved by a frequency-

sensitive associative storage mechanism.

The only way in which probabilities might play a role for regular

complex words in this dual-route model is at the level of the rules them-

selves; that is, rules might di¤er with respect to their probability of being

applied. Consider table 7.6, which lists the frequencies of the singular,

plural, and diminutive forms of the Dutch nouns tong ‘tongue’ and gast

‘guest’, as listed in the CELEX lexical database. By assigning di¤erent

probabilities to the rules for diminutivization and pluralization, this

approach can account for the lower probabilities of diminutives com-

pared to plurals. However, it cannot account for the di¤erences in the

probabilities of the two plural forms. Even though the lexemes tong and

gast have very similar probabilities, the former occurs predominantly in

the singular, and the latter predominantly in the plural. I will refer to tong

as a singular-dominant noun and to gast as a plural-dominant noun. What

the dual-route model predicts is that such di¤erences in frequency domi-

nance are not registered by the brain, and hence that such di¤erences do

not a¤ect lexical processing. Note that this amounts to the claim that the

Table 7.6

Frequencies in a corpus of 42 million tokens as available in the CELEX lexical
database of the singular, plural, and diminutive forms of the Dutch nouns tong

‘tongue’, gast ‘guest’, and the corresponding probabilities

Word Inflection Frequency Probability

tong singular 2,085 4.96e-05

tongen plural 179 0.43e-05

tongetje diminutive 24 0.06e-05

2,288 5.45e-05

gast singular 792 1.89e-05

gasten plural 1,599 3.80e-05

gastje diminutive 0 0

2,391 5.69e-05
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brain has no knowledge of the probability that a particular noun co-

occurs with the plural su‰x. The only frequency count that should be

relevant in the dual-route approach is the stem frequency, the summed

frequency of the singular and the plural forms.

There is massive evidence, however, that the claim that frequency

information is retained by the brain for irregular words only is incorrect

(see, e.g., Taft 1979; Sereno and Jongman 1997; Bertram et al. 1999;

Bertram, Schreuder, and Baayen 2000; Baayen et al. 2002). These studies

show that probabilistic information in the form of knowledge of co-

occurrence frequencies of constituents forming complex words must be

available to the brain. But how then might the brain make use of this

information? Although I think that formal probabilistic models provide

excellent mathematically tractable characterizations of what kinds of

knowledge are involved in morphological segmentation, I do not believe

that, for example, the algorithms for estimating the parameters of hidden

markov models can be mapped straightforwardly onto the mechanisms

used by the brain. The way the brain solves the ambiguity problem may

well be more similar to a dynamic system in which a great many inter-

dependent morphological units compete to provide a segmentation that

spans the target word in the input. In what follows, I will outline a model

implementing a simple dynamic system, and I will show that it provides a

reasonable framework for understanding some interesting aspects of the

processing of Dutch and German plural nouns.

7.4.1 A Dynamic System for Morphological Segmentation

Whereas computational parsing models in linguistics have successfully

used token-count-based probabilities of occurrence, psycholinguistic re-

search on the segmentation problem has focused on the role of form

similarity. In the Shortlist model of the segmentation of the auditory

speech stream (Norris 1994), for instance, the lexical representations that

are most similar to the target input are wired into a connectionist network

implementing a similarity-based competition process. The resulting model

is very sensitive to di¤erences in form between lexical competitors, and

captures important aspects of auditory lexical processing. However,

Shortlist does not address how to account for the word frequency e¤ect in

auditory word recognition (see, e.g., Rubenstein and Pollack 1963).

MATCHECK (Baayen, Schreuder, and Sproat 2000; Baayen and

Schreuder 1999, 2000) implements an approach to the segmentation

problem in which form similarity and token-frequency-based probability
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simultaneously play a role. This model is a dynamic system articulated

within the interactive activation framework. It shares with dynamic sys-

tems in general the properties that its behavior depends crucially on the

initial condition of the model, that it is deterministic, and that there is

order in what seems to be chaotic behavior. The components of the model

are an input lexicon, a mechanism for ascertaining whether a lexical

representation should be taken into account as a candidate for a seg-

mentation, and a competition mechanism. In what follows, I outline the

architecture of MATCHECK for the visual modality.

The input lexicon contains form representations for stems, a‰xes, and

full forms, irrespective of their regularity. Each representation w has an

initial activation level aðw; 0Þ equal to its frequency in a corpus. The ini-

tial probability of a lexical representation pw;0 is its relative frequency in

the lexicon.

The mechanism for determining whether a lexical representation

should be taken into account as a possible constituent in a segmentation

makes use of an activation probability threshold 0 < y < 1. Only those

lexical representations with a probability pw; t b y at timestep t are can-

didates for inclusion in a segmentation.

The competition mechanism consists of a probability measure imposed

on the activation levels of the lexical representations, combined with a

similarity-based function that determines whether the activation of a

given lexical representation should increase or decrease. The activation

probability of representation w at timestep t is

pw; t ¼
aðw; tÞ

PV
i¼1 aðwi; tÞ

; ð11Þ

with V the number of representations in the lexicon. The details of the

criteria for whether the activation of a lexical representation increases or

decreases need not concern us here. What is crucial is that a lexical rep-

resentation that is aligned with one of the boundaries of the target word is

allowed to increase its activation until its activation probability has

reached the threshold y. Once this threshold has been reached, activation

decreases. Given a decay rate dw ð0 < dw < 1Þ for representation w, the

change in activation from one timestep to the next is defined as

aðw; tÞ ¼ aðw; 0Þ þ dwfaðw; t� 1Þ � aðw; 0Þg: ð12Þ

Because dw < 1, the activation at each successive timestep becomes

smaller than it was at the preceding timestep. Asymptotically, it will
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decrease to its original resting activation level. Activation increase, which

occurs at the timesteps before w has reached threshold, is also defined in

terms of dw,

aðw; tÞ ¼ aðw; t� 1Þ
dw

; ð13Þ

but now we divide by dw instead of multiplying by dw. Consequently,

the activation at timestep t becomes greater than the activation at time-

step t� 1. Because activation increase and activation decrease are both

defined in terms of dw, words with a decay rate close to one are slow to

decay and slow to become activated. Conversely, words that decay

quickly (dt close to zero) also become activated quickly. Note that if the

activation level of a lexical representation increases while the activation

levels of the other representations remain more or less unchanged, its

probability increases as well.

The key to the accuracy of MATCHECK as a segmentation model lies

in the definition of the activation and decay parameter dw, which di¤ers

from representation to representation. It is defined in terms of the fre-

quency fw and the length Lw of a lexical representation w, in combination

with three general parameters ða; d; zÞ, as follows:

dw ¼ f ðgðd; a;wÞ; z; d;wÞ; ð14Þ

with

gðd; a;wÞ ¼ d
1

1þ a
logðLw þ 1Þ

logð fwÞ

; ð15Þ

and, with T denoting the target word, and using d as shorthand for

gðd; a;wÞ,

f ðd; z; d;wÞ ¼ d þ ð1� dÞ jLw � LT j
maxðLw; LTÞ

� �z

i¤ z > 0

d otherwise.

8
<

:
ð16Þ

The parameter d ð0 < d < 1Þ denotes a basic activation and decay rate

that is adjustable for each individual word. Lexical representations with

higher frequencies receive higher values for dw. They have a reduced

information load and become activated less quickly than lower-frequency

representations. The parameter a ða b 0Þ specifies how the frequency and

length of the representation should be weighted, independently of its
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similarity to the target word. The parameter z ðz b 0Þ determines to what

extent the relative di¤erence in length of a lexical competitor and the

target word should a¤ect the activation and decay rate of w. Increasing a

or z leads to a decrease of dw and hence to more rapid activation and

decay. Finally, constituents that are more similar in length to the target

word have a smaller dw than shorter constituents (for experimental evi-

dence that longer a‰xes are recognized faster than shorter a‰xes, see

Laudanna, Burani, and Cermele 1994).

Figure 7.6 illustrates the activation dynamics of MATCHECK. On the

horizontal axis, it plots the timesteps in the model. On the vertical axis, it

plots the activation probability. The solid horizontal line represents the

activation probability threshold y ¼ 0:3. Consider the left panel, which

plots the activation curves for the singular-dominant plural tongen. The

curved solid line represents the plural su‰x -en, which, because of its high

frequency, has a high initial probability. During the first timesteps, the

many words with partial similarity to the target, such as long ‘lung’, be-

come activated along with the constituents themselves. Hence, although

the activation of -en is actually increasing, its activation probability

decreases. The base tong starts out with a very low initial probability, but

because of its greater similarity to the plural form, it reaches threshold

long before -en. Upon reaching threshold, its activation begins to decay.

The subsequent erratic decay pattern for tong is due to the interference of

a lexical competitor, not shown in figure 7.6, the orthographic neighbor

of the plural form, tonnen (see, e.g., Andrews 1992, Grainger 1990, and

Grainger and Jacobs 1996, for experimental evidence for orthographic

neighborhood e¤ects). Thanks to the probability measure imposed on the

activations of the lexical representations, the decay of the activation of

tong makes activation probability available for the lower-frequency plural

form, which can now reach threshold as well. This point in model time

(timestep 19) is represented by a vertical solid line. This is the first time-

step in the model at which a full spanning of the input is available. In

other words, the first ‘‘parse’’ to become available for tongen is the plural

form. Once both the singular and plural forms have entered activation

decay, the plural a‰x finally reaches threshold. It is only now that stem

and su‰x provide a full spanning of the input, so the second parse to

become available arrives at timestep 41. The following erratic activation

bumps for the base noun arise because of the di¤erence in the speed with

which the singular and plural forms decay, and they have no theoretical

significance.
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Figure 7.6

Patterns of activation probabilities over time in MATCHECK for the Dutch
singular-dominant plural tongen ‘tongues’ (left), the matched plural-dominant
plural gasten ‘guests’ (center), and the low-frequency singular-dominant plural
loepen ‘magnification glasses’ (right), with threshold at .3. The first full spannings
of the input are tongen ðt ¼ 19Þ, gasten ðt ¼ 15Þ, and loepþen ðt ¼ 27Þ.
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The center panel in figure 7.6 reveals a similar pattern for the plural-

dominant plural gasten. However, its representations reach threshold at

an earlier timestep. The singular tong reaches threshold at timestep 13

and its plural tongen becomes available at timestep 18, whereas the cor-

responding model times for gast and gasten are 10 and 14, respectively.

Finally, the right panel of figure 7.6 shows the timecourse development

for a very low-frequency singular-dominant noun plural, loepen ‘magnifi-

cation glasses’. Note that the first constituent to reach threshold is the

plural su‰x, followed by the base, which jointly provide a full spanning

of the target long before the plural form reaches threshold.

Two questions arise at this point. First, how well does MATCHECK

solve the ambiguity problem? Second, how good is MATCHECK at

modeling actual processing times in psycholinguistic experiments? The

first question is addressed by Baayen and Schreuder (2000). They showed,

for instance, that for 200 randomly selected words of lengths 5–8 (in let-

ters) with on average three incorrect segmentations, the first segmentation

to be produced by MATCHECK was correct in 194 cases, of which 92

were due to the full form being the first to become available, and 102 to a

correct segmentation becoming available first. The model times listed in

examples (10) and (11) illustrate how MATCHECK tends to rank correct

segmentations before incorrect segmentations, using the parameter set-

tings of Baayen and Schreuder (2000). For instance, the model times

listed for preparedness in (11) show that the full form preparedness and

the correct parse prepared-ness become available at timesteps 19 and 27,

respectively, long before the first incorrect parse pre-pared-ness (timestep

56) or the complete correct segmentation prepare-d-ness (timestep 78).

Because the model gives priority to longer constituents, a parse such as

prepared-ness, which is based on the regular participle prepared, becomes

available before the many incorrect or implausible parses containing

shorter constituents. The presence of the regular participle prepared in the

lexicon protects the model against having to decide between alternative

segmentations such as prepare-d-ness and pre-pared-ness. In other words,

paradoxically, storage enhances parsing. In MATCHECK, storage in

memory does not just occur for its own sake; its functionality is to reduce

the ambiguity problem.

We are left with the second question, namely, whether the model times

produced by MATCHECK have any bearing on actual human process-

ing latencies. The next two sections address this issue by means of data

sets from Dutch and German.
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7.4.2 Regular Noun Plurals in Dutch

Baayen, Dijkstra, and Schreuder (1997) studied regular Dutch plurals in

-en and their corresponding singulars using visual lexical decision. The

visual lexical decision task requires participants to decide as quickly and

accurately as possible whether a word presented on a computer screen is a

real word of the language. Response latencies in visual lexical decision

generally reveal strong correlations with the frequencies of occurrence of

the words. This particular study made use of a factorial experimental

design contrasting three factors: Stem Frequency (high vs. low), Num-

ber (singular vs. plural), and Dominance (singular-dominant vs. plural-

dominant). Within a stem frequency class, the average stem frequency

was held constant in the mean, as illustrated in table 7.6 for the nouns

tong and gast. The right panel of figure 7.7 provides a graphical summary

Figure 7.7

Predicted mean model times (left) and observed mean reaction times (right) for
Dutch regular noun plurals in -en cross-classified by Number (singular vs. plural),
Stem Frequency (high vs. low), and Frequency Dominance (singular-dominant
(solid lines) vs. plural-dominant (dashed lines))
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of the pattern of results. The horizontal axis contrasts singulars (left) with

plurals (right). The dashed lines represent plural-dominant singulars and

plurals. The solid lines represent singular-dominant singulars and plurals.

The lower two lines belong to the nouns with a high stem frequency, and

the upper two lines to the nouns with a low stem frequency.

What this graph shows is that high-frequency nouns, irrespective of

number, are processed faster than low-frequency nouns. It also reveals a

frequency e¤ect for the plural forms. For each of the two stem frequency

conditions, singular-dominant plurals are responded to more slowly than

plural-dominant plurals. Speakers of Dutch are clearly sensitive to how

often the plural su‰x -en co-occurs with particular noun singulars to

form a plural. Especially the fast response latencies for plural-dominant

plurals bear witness to the markedness reversal studied by Tiersma

(1982): while normally the singular is the unmarked form both with

respect to its phonological form and with respect to its meaning, many

plural-dominant plurals are semantically unmarked compared to their

corresponding singulars (see Baayen, Dijkstra, and Schreuder 1997, for

further discussion). This plural frequency e¤ect, however, is completely at

odds with the dual-route model advanced by Pinker and Clahsen and

their coworkers. Finally, figure 7.7 shows that for singular nouns it is the

frequency of the lexeme (i.e., the summed frequencies of the singular and

the plural forms) that predicts response latencies, and not so much the

frequencies of the singular forms themselves. If the frequencies of the

singulars as such had predicted the response latencies, one would have

expected to see a di¤erence in the response latencies between singular-

dominant and plural-dominant singulars. The observed pattern of results

has been replicated for Dutch in the auditory modality (Baayen et al., in

press) and for Italian in the visual modality (Baayen, Burani, and

Schreuder 1997).

The left panel of figure 7.7 summarizes the results obtained with

MATCHECK for the parameter settings d ¼ 0:3, y ¼ 0:25, a ¼ 0:4,

z ¼ 0:3, and r ¼ 3. This last parameter determines the granularity of the

model, that is, the precision with which the timestep at which the thresh-

old is reached is ascertained (see Baayen, Schreuder, and Sproat 2000).

The lexicon of the model contained the 186 experimental words and in

addition some 1,650 randomly selected nouns as well as various inflec-

tional and derivational a‰xes. The frequencies of the a‰xes were set to

the summed frequencies of all the words in the CELEX lexical database

in which they occur. Singular nouns received the summed frequencies of
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the singular and plural forms as frequency count, the assumption being

that in a parallel dual-route model the processing of the (globally

marked) plural leaves a memory trace on the (globally unmarked) singu-

lar. Plural nouns were assigned their own plural frequency. The lexicon

also contained a dummy lexeme consisting of a series of x characters,

which received as frequency count the summed frequencies of all words in

the CELEX database that were not among the 1,650 randomly selected

nouns. This ensured that all words in the lexicon had initial probabilities

identical to their relative frequencies in the corpus on which the CELEX

counts are based.

Interestingly, it is impossible to obtain the pattern shown in the left

panel of figure 7.7 with just these settings. The reason for this is that

the singular form, thanks to its cumulated frequency, is a strong com-

petitor of the plural form. Although plural-dominant plurals reach thresh-

old before singular-dominant plurals with the same stem frequency, as

desired, they also reach threshold well after the corresponding singulars.

Indistinguishable processing times for singulars and plurals, as observed

for plural-dominant singulars and plurals in the high stem frequency

condition in the experiment, cannot be simulated.

The adaptation of MATCHECK that leads to the pattern of results

actually shown in the left panel of figure 7.7 is to enrich the model with a

layer of lexemes in the sense of Arono¤ (1994) or lemmas in the sense of

Levelt (1989). The representations of the singular and plural forms have

pointers to their lexeme, which in turn provides pointers to its associated

semantic and syntactic representations. The lexemes serve a dual function

in MATCHECK. Their first function is to accumulate in their own acti-

vation levels the summed activation levels of their inflectional variants.

Once the lexeme has reached threshold activation level, a response can be

initiated. This allows the model to take into account the combined evi-

dence in the system supporting a given lexeme. The second function of

the lexemes is to pass on part of the activation of the (marked) plural

form to the (unmarked) singular form. I assume that it is this process that

leaves a memory trace with the singular that results over time in the

summed frequency of the singular and the plural form being the predictor

of response latencies for singulars. To implement this modification, we

have to revise the definition of increasing activation given in equation (13)

for the representation of the singular as follows. Let ws denote the repre-

sentation of a singular, and let i range over its n inflectional variants. For
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the present data, n ¼ 1, as there is only one inflectional variant other than

the singular itself, namely, the plural. We define aðws; tÞ as follows:

aðws; tÞ ¼
aðws; t� 1Þ

dws

þ logðaðws; t� 1ÞÞ
Xn

i¼1

aðwi; tÞl; ð17Þ

with l the parameter determining how much activation flows from the

plural to the singular. In the simulation leading to the left panel of figure

7.7, l was set to 1.1.

How well does this model approximate the observed patterns in the

experimental data? A comparison of the left and right panels of figure 7.7

suggests that the model provides a good fit, an impression that is con-

firmed by table 7.7: the same main e¤ects and interactions that are sig-

nificant in the experiment are also significant according to the model. The

model also captures that high-frequency plural-dominant singulars and

plurals are processed equally fast (tð45:99Þ ¼ �0:82, p ¼ :416 for the

response latencies, tð35:44Þ ¼ �0:86, p ¼ :398 for the model times, Welch

two-sample t-tests), in contrast to the low-frequency plural-dominant sin-

gulars and plurals (tð41:65Þ ¼ �2:38, p ¼ :022 for the response latencies,

tð32:33Þ ¼ �4:394, p ¼ :0001 for the model times).

MATCHECK provides this good fit to the experimental data with

parameter settings that make it make the most of the available full-form

representations. The only word for which a parse into base and a‰x

reached threshold before the full form was the plural form loepen, for

which the activation probabilities over time were shown in the right

panel of figure 7.6. In other words, if the model has to parse, it can do so

Table 7.7

F-values for 1 and 178 degrees of freedom and the corresponding p-values for the
model times (expected) and the reaction times (observed)

Expected Observed

F p F p

Number 64.1 .000 46.4 .000

Dominance 27.3 .000 27.1 .000

StemFreq 65.7 .000 90.4 .000

Number : Dominance 13.9 .000 15.8 .000

Number : StemFreq 7.3 .007 7.9 .005

Dominance : StemFreq 0.6 .434 0.1 .828

Number : Dominance : StemFreq 0.1 .459 0.6 .451
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without any problem; otherwise, the stem will tend to contribute to the

recognition process only through its contribution to the activation of the

lemma.

The conclusion that parsing as such plays a minor role for this data set

also emerged from the mathematical modeling study of Baayen, Dijkstra,

and Schreuder (1997). Their model, however, was based on the assump-

tion that there is no interaction between the representations feeding the

direct access route and those feeding the parsing route. The present

model, by contrast, implements the idea that all lexical representations

are in competition and that the direct route and the parsing route are not

independent. In fact, by allowing activation to spread from the plural to

the base, and by allowing the evidence for the word status of a target in

lexical decision to accumulate at the lexeme layer, there is much more

synergy in this competition model than in the earlier mathematical model.

7.4.3 Noun Plurals in German

Clahsen, Eisenbeiss, and Sonnenstuhl-Henning (1997) and Sonnenstuhl-

Henning and Huth (2002) report that in German, high-frequency plurals

in -er are responded to faster in visual lexical decision than low-frequency

plurals in -er, while matched high- and low-frequency plurals in -s are

responded to equally fast. They attribute this di¤erence to the linguistic

status of these two plurals. The -s plural is argued to be the default su‰x

of German (Marcus et al. 1995), the only truly regular plural formative.

According to these authors, plurals in -s are therefore not stored, which

would explain why high- and low-frequency plurals in -s require the same

processing time, a processing time that is determined only by the speed of

the parsing route and the resting activation levels of the representations

on which it operates. Plurals in -er, by contrast, are described as irregular.

These forms must be stored, and the observed frequency e¤ects for high-

and low-frequency plurals reflect this.

In the light of their theory, it is not surprising that Clahsen, Eisenbeiss,

and Sonnenstuhl-Henning (1997) suggest that Dutch plurals in -en might

be irregular rather than regular (Clahsen, Eisenbeiss, and Sonnenstuhl-

Henning 1997). This hypothesis, which does not make sense from a lin-

guistic point of view (see Baayen et al. 2002), is inescapable if one accepts

the dual-route model. However, this model faces many problems.

Burzio (in press a), for instance, points out that many morphologically

regular past tense forms are phonologically irregular, while many mor-

phologically irregular past tense forms are phonologically regular, an
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inverse correlation between morphological and phonological regularity.

In a dual-route model, morphological rules should be able to coexist with

phonological rules, leading to a positive correlation between morpholog-

ical and phonological regularities, contrary to fact.

Behrens (2001) presents a detailed examination of the German plural

system showing that the -s plural does not fulfill the criteria for instanti-

ating a symbolic rule, a conclusion supported by her acquisition data

based on a very large developmental corpus.

Other problems for the dual-route model are pointed out by Ramscar

(2002) and Hare, Ford, and Marslen-Wilson (2001). Hare, Ford, and

Marslen-Wilson report frequency e¤ects for regular past tense forms in

English that have unrelated homophones (e.g., allowed and aloud ). Par-

ticularly interesting is the study by Ramscar, who shows that past tense

inflection in English is driven by semantic and phonological similarity,

instead of by encapsulated symbolic rules that would be sensitive only to

the phonological properties of the stem.

If the separation of rule and rote in the dual-route model is incorrect

(see also Bybee 2001), the question arises why there seems to be no fre-

quency e¤ect for the German -s plural. In what follows, I will show that a

simulation study with MATCHECK sheds new light on this issue.

Serving as our point of departure is the data set from experiment 1 of

the study by Sonnenstuhl-Henning and Huth (2002). Table 7.8 summa-

rizes the design of this experiment: six a‰x classes (plurals in -s, plurals in

-er, and four sets of plurals in -n/-en, grouped by gender and the presence

or absence of a final schwa), each of which is crossed with plural fre-

quency (high vs. low) while matching for stem frequency. Table 7.9 sum-

marizes the pattern of results obtained by means of a series of t-tests on

the item means, and the right panel of figure 7.8 displays the results

graphically. The high- and low-frequency plurals in -s elicited response

latencies that did not di¤er significantly in the mean. The same holds for

the plurals in -en of nonfeminine schwa-final nouns (labeled (4) in the

tables and figure). The authors present these results as evidence that plu-

rals in -s are not stored in the German mental lexicon. A question that

remains unanswered in this study is why the supposed default plural suf-

fix, the rule-governed formative par excellence, is the one to be processed

most slowly of all plural classes in the study.

To study this data set with MATCHECK, a lexicon was constructed

with the 120 singulars and their corresponding plurals that were used in

this experiment. Some 2,100 randomly selected words from the CELEX
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Table 7.8

German plurals cross-tabulated by class and frequency. Response latencies (RT)
and frequencies of stem and plural as tabulated in Sonnenstuhl-Henning and
Huth 2002.

Su‰x Class
Fre-
quency F(stem) F(pl) RT

Model
time

-er (1) low 112 13 556 11.3

-er (1) high 112 43 510 9.3

-s (2) low 105 11 591 15.5

-s (2) high 97 50 601 15.2

-en (3) [þfem, þe] low 107 22 568 12.1

-en (3) [þfem, þe] high 111 59 518 10.6

-en (4) [�fem, þe] low 178 100 571 14.2

-en (4) [�fem, þe] high 209 170 544 13.0

-en (5) [þfem, �e] low 115 11 588 15.7

-en (5) [þfem, �e] high 116 66 548 12.8

-en (6) [�fem, �e] low 110 17 594 15.1

-en (6) [�fem, �e] high 112 84 535 12.7

Table 7.9

T-tests by a‰x. The t-tests for the observed data are as reported in Sonnenstuhl-
Henning and Huth 2002; the t-tests for MATCHECK are Welch two-sample
t-tests based on the model times.

Observed Expected

Su‰x Class t df p t df p

-s (1) 0.31 9 .760 0.53 16.59 .601

-er (2) 4.92 9 .001 2.35 17.93 .030

-en (3) 6.44 9 <.001 2.95 16.70 .009

-en (4) 1.51 9 .166 1.19 17.00 .248

-en (5) 4.39 9 .002 2.80 17.06 .012

-en (6) 4.19 9 .001 2.82 12.32 .015
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Figure 7.8

Predicted mean model times (left), predicted model times adjusted for the e¤ect
of Family Size (center), and observed mean reaction times (right) for German
noun plurals in -en cross-classified by Frequency (low vs. high) and A‰x Class
(1: -er; 2: -s; 3: -n for feminine nouns ending in e; 4: -n for nonfeminine nouns
ending in e; 5: -en for feminine nouns; 6: -en for nonfeminine nouns).
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lexical database were added to the model’s lexicon, including representa-

tions for the plural su‰xes -en, -n, -er, and -s as well as for other inflec-

tional su‰xes such as -d and -e. All lexical entries received a frequency

based on the frequency counts in the German section of the CELEX lex-

ical database. Because these counts are based on a small corpus of only 6

million words, they were multiplied by 7 to make them similar in scale to

the Dutch frequency counts, which are derived from a corpus of 42 mil-

lion words. Su‰xes received frequencies equal to the summed frequency

of all the words in which they occur as a constituent. The singulars of the

target plural forms were assigned the summed frequency of their inflec-

tional variants, the lemma frequency of CELEX on which the high- and

low-frequency sets of plurals in Sonnenstuhl-Henning and Huth’s (2002)

study were matched, just as in the simulation study of Dutch plurals in

the preceding section. Again, a dummy lexeme was added with a fre-

quency equal to the summed frequencies of the words not explicitly rep-

resented in the model’s lexicon. Parameter values that as a first step yield

a good fit to the experimental data are d ¼ 0:28, y ¼ 0:20, r ¼ 3, a ¼ 0:7,

z ¼ 0:9, and l ¼ 0:5. This fit is shown in the left panel of figure 7.8. As

shown by the Welch two-sample t-tests listed in table 7.9, those frequency

contrasts that were found to be statistically significant in the experiment

are also significant in the model, and those contrasts that are not signifi-

cant in the experiment are likewise not significant in the model.

What is disturbing about these results is that the ordering in model

time seems to be wrong. Compare the left and right panels of figure 7.8.

According to the model, the plurals in -s should be processed more

quickly than any other kind of plural, but in fact they elicit the longest

response latencies. Conversely, the model predicts the longest response

latencies for the plurals in -er, even though in fact they were responded to

very quickly.

Why does MATCHECK produce this reversed pattern? A possible

answer can be found by considering the average family size of the six

plural classes. The family size of an inflected simplex noun is the type

count of the derived words and compounds in which that noun occurs as

a constituent. Various studies have shown that, other things being equal,

words with a large morphological family are responded to more quickly

than words with a small morphological family (Schreuder and Baayen

1997; Bertram, Baayen, and Schreuder 2000; de Jong, Schreuder, and

Baayen 2000; de Jong et al. 2002). The family size e¤ect is semantic in

nature and probably arises because of activation spreading in the mental
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lexicon to morphologically related words. Interestingly, table 7.10 shows

that the nouns with the -er plural have the largest family size in this data

set, while the nouns with the -s plural have the smallest family size. Thus,

plurals in -s might elicit long response latencies because of their small

morphological families. Conversely, the plurals in -er might be responded

to quickly thanks to their large families.

It is possible to test this hypothesis by asking ourselves whether we can

systematically reorder the lines in the left panel of figure 7.8 on the basis

of the family counts listed in table 7.10 such that a pattern approaching

the one in the right panel is obtained. It turns out that this is not possible

using the counts of family members for the individual words, probably

because these counts (based on a corpus of only 6 million words) intro-

duce too much noise compared to the model times of MATCHECK. A

mapping is possible, however, on the basis of the class means, using the

transformation hðtijÞ for the j-th plural in the i-th plural class with family

size Vi and model time tij. Let xi ¼ logðViÞ � 1:2, the distance of log

family size from a baseline log family size of 1.2. The further the family

size of a plural class is from this baseline, the greater the distance yi that

it will shift:

yi ¼ 1:7 � ejxi j � sðxiÞ; ð18Þ

with sðxÞ ¼ 1 if x > 0 and sðxÞ ¼ �1 if x < 0. Adjustment with the mean

of the shifts yi leads to the transformation

hðtijÞ ¼ tij � yi �
Pn

k yk

n
: ð19Þ

Application of (19) results in the pattern shown in the center panel of

figure 7.8, a reasonable approximation of the actually observed pattern

Table 7.10

Mean family size of the six German plural classes in Sonnenstuhl-Henning and
Huth’s (2002) study

Plural Class Family size

-er (1) 12.5

-s (2) 1.7

-en (3) 8.8

-en (4) 3.1

-en (5) 2.6

-en (6) 3.9

Probabilistic Approaches to Morphology 283



represented in the right panel. Although a more principled way of

integrating MATCHECK with subsequent semantic processes is clearly

called for, the present result suggests that di¤erences in morphological

family size may indeed be responsible for the di¤erence in ordering

between the left and right panels of figure 7.8. The family size e¤ect

observed here underlines that the plurals in -er are tightly integrated into

the network of morphological relations of German and that, by contrast,

the plurals in -s are rather superficially integrated and relatively marginal

in the language. This is not what one would expect for a default su‰x in a

dual-route model, especially if default status is meant to imply proto-

typical rule-based processing rather than marginal rule-based processing

applicable mainly to recent loans, recent abbreviations, interjections, and

other normally uninflected words.

These modeling results receive further support from a simulation of

experiment 4 of the study by Clahsen, Eisenbeiss, and Sonnenstuhl-

Henning (1997), who contrasted plurals in -s with plurals in -er. As in

Sonnenstuhl-Henning and Huth’s (2002) study, a significant frequency

e¤ect was observed only for the plurals in -er. Interestingly, application of

MATCHECK to this data set with exactly the same parameter values

leads to the same pattern of results, with a significant di¤erence in model

time for the plurals in -er (tð15:45Þ ¼ 4:13, p ¼ :0008) but not for the

plurals in -s (tð15:52Þ ¼ 1:60, p ¼ :1290).

We are left with one question. Why is it that MATCHECK does not

produce a frequency e¤ect for plurals in -s? Consider figure 7.9, which

plots the timecourse of activation for the German nouns Hypotheken

‘mortgages’ (left panel) and Taxis ‘taxis’ (right panel). The pattern in the

left panel is typical for the plurals in -en and for those plurals in -er for

which no vowel alternation occurs. Crucially, the base and the plural

form become active one after the other, indicating that there is little

competition between them. In the case of plurals in -s, however, the base

and the plural become active at more or less the same time—they are

in strong competition, masking the e¤ect of the frequency of the plural.

The reason for this strong competition is the small di¤erence in length

between the singular forms and their corresponding plurals in -s. Recall

that the activation/decay rate of a word as defined in equations (14)–(16)

depends on its length in relation to the length of the target word.

The more similar a word is in length to the target, the faster it will

become active. This property contributes to the segmentation accuracy of

MATCHECK as reported by Baayen and Schreuder (2000), and it is
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responsible for the absence of a frequency e¤ect for -s plurals in the pres-

ent simulation study. Note that this property of MATCHECK is of the

kind typically found in dynamic systems in general, in that it allows a tiny

di¤erence in the initial conditions (here the length of the base) to lead to

quite di¤erent outcomes (here the presence or absence of a frequency e¤ect).

From a methodological point of view, it is important to realize that

null e¤ects, in this case the absence of a frequency e¤ect for German

plurals in -s, should be interpreted with caution. Clahsen and his

coworkers infer from this null e¤ect that German -s plurals do not

develop representations of their own. We have seen that this null e¤ect

may also arise as a consequence of the di¤erences between the forms of

the -s and -en su‰xes and the kinds of words that they attach to (see

Laudanna and Burani 1995 and Bertram, Schreuder, and Baayen 2000,

for the processing consequences of a‰x-specific di¤erences). Another

� �

Figure 7.9

Patterns of activation probabilities over time in MATCHECK for the German
plurals Hypotheken ‘mortgages’ (left) and Taxis ‘taxis’ (right), with a threshold
at .2

Probabilistic Approaches to Morphology 285



argument based on a null e¤ect is made by Frost, Forster, and Deutsch

(1997), who claim that connectionist models would not be able to model

the presence and absence of semantic transparency e¤ects in priming

experiments in English and Hebrew, respectively. As shown by Plaut and

Gonnerman (2000), the null e¤ect of transparency in Hebrew emerges in

connectionist simulation studies as a consequence of the di¤erence in

morphological structure between English and Hebrew.

7.4.4 Discussion

This section addressed the role of probability in morphological com-

prehension. Techniques developed by computational linguists make prof-

itable use of co-occurrence probabilities to select the most probable

segmentation from the set of possible segmentations. It is clear from the

computational approach that knowledge of co-occurrence probabilities is

indispensable for accurate and sensible parsing.

From this perspective, the hypothesis defended by Pinker and Clahsen

and their coworkers that co-occurrence knowledge is restricted to irregu-

lar complex words is counterproductive (see also Bybee 2001). Bloom-

fieldian economy of description cannot be mapped so simply onto human

language processing. Much more productive are, by contrast, those psy-

cholinguistic studies that have addressed in great detail how form-based

similarity a¤ects the segmentation process. These studies, however, seem

to implicitly assume that the segmentation problem can be solved without

taking co-occurrence probabilities into account.

MATCHECK is a model in which probabilities develop dynamically

over time on the basis of both frequency of (co-)occurrence and form

similarity. I have shown that this model provides reasonable fits to

experimental data sets and that it provides an explanation of why fre-

quency e¤ects for regular plurals may be absent even though these plurals

are stored in the mental lexicon. The mechanisms used by MATCHECK

to weight the role of frequency and similarity are crude and in need of

considerable refinement. Nevertheless, I think that the model provides a

useful heuristic for understanding how the human brain might use prob-

ability in morphological comprehension to its advantage.

7.5 Concluding Remarks

In this chapter, I have presented some examples of how concepts from

probability theory and statistics can be used to come to grips with the
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graded nature of many morphological data. I first showed that the graded

phenomenon of morphological productivity can be formalized as a

probability—one that is itself grounded, at least in part, in junctural

phonotactic probabilities and parsing probabilities. Following this, I dis-

cussed examples of morphological regularities that are intrinsically prob-

abilistic in nature, outlining how simple spreading activation architectures

(symbolic connectionist networks) might capture the role of probability

while avoiding complex statistical calculations. Finally, I have shown that

part of the functionality of the storage of regular complex forms in the

mental lexicon may reside in contributing to resolving parsing ambi-

guities in comprehension.

Not surprisingly, I agree with researchers such as Seidenberg and

Gonnerman (2000) and Plaut and Gonnerman (2000) that traditional,

nonprobabilistic theories of morphology are inadequate in the sense that

they cannot handle graded phenomena in an insightful way. These

researchers seem to suggest, however, that the graded nature of mor-

phology shows that the subsymbolic connectionist approach to language

is the only way to go. This is where they and I part company. In this

chapter, I have shown that computational models of analogy provide

excellent analytical tools for understanding the role of probability in

morphology.

Note

I am indebted to Kie Zuraw and Janet Pierrehumbert for their careful and con-
structive criticism; to Wolfgang Dressler, Mirjam Ernestus, Robert Schreuder,
and Royal Skousen for their comments and suggestions for improvements; and to
Stefanie Jannedy, Jennifer Hay, and Rens Bod for their wonderful editorial work.
Errors in content and omissions remain my responsibility.
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Chapter 8

Probabilistic Syntax Christopher D. Manning

8.1 The Tradition of Categoricity and Prospects for Stochasticity

‘‘Everyone knows that language is variable.’’ This is the bald sentence

with which Sapir (1921, 147) begins his chapter on language as a histori-

cal product. He goes on to emphasize how two speakers’ usage is bound

to di¤er ‘‘in choice of words, in sentence structure, in the relative fre-

quency with which particular forms or combinations of words are used.’’

I should add that much sociolinguistic and historical linguistic research

has shown that the same speaker’s usage is also variable (Labov 1966;

Kroch 2001, 722). However, the tradition of most syntacticians has been

to ignore this thing that everyone knows.

Human languages are the prototypical example of a symbolic sys-

tem. From very early on, logics and logical reasoning were invented for

handling natural language understanding. Logics and formal languages

have a languagelike form that draws from and meshes well with natural

languages. It is not immediately obvious where the continuous and quan-

titative aspects of syntax are. The dominant answer in syntactic theory

has been ‘‘nowhere’’ (Chomsky 1969, 57; also 1956, 1957, etc.): ‘‘It must

be recognized that the notion ‘probability of a sentence’ is an entirely

useless one, under any known interpretation of this term.’’

In the 1950s there were prospects for probabilistic methods taking hold

in linguistics, in part owing to the influence of the new field of Informa-

tion Theory (Shannon 1948).1 Chomsky’s influential remarks had the

e¤ect of killing o¤ interest in probabilistic methods for syntax, just as for

a long time McCarthy and Hayes (1969) discouraged exploration of

probabilistic methods in artificial intelligence. Among his arguments were

that (1) probabilistic models wrongly mix in world knowledge (New York



occurs more in text than Dayton, Ohio, but for no linguistic reason);

(2) probabilistic models don’t model grammaticality (neither Colorless

green ideas sleep furiously nor Furiously sleep ideas green colorless has pre-

viously been uttered—and hence must be estimated to have probability

zero, Chomsky wrongly assumes—but the former is grammatical while

the latter is not); and (3) use of probabilities does not meet the goal of

describing the mind-internal I-language as opposed to the observed-in-

the-world E-language. This chapter is not meant to be a detailed critique

of Chomsky’s arguments—Abney (1996) provides a survey and a rebut-

tal, and Pereira (2000) has further useful discussion—but some of these

concerns are still important to discuss. I argue in section 8.3.2 that in

retrospect none of Chomsky’s objections actually damn the probabilistic

syntax enterprise.

Chambers (1995, 25–33) o¤ers one of the few clear discussions of this

‘‘tradition of categoricity’’ in linguistics of which I am aware. He makes

a distinction between standardly used linguistic units that are discrete and

qualitative versus an alternative that allows units that are continuous and

quantitative. He discusses how the idea that linguistics should keep to a

categorical base precedes modern generative grammar. It was standard

among American structuralists and is stated most firmly by Joos (1950,

701–702):

Ordinary mathematical techniques fall mostly into two classes, the continuous
(e.g., the infinitesimal calculus) and the discrete or discontinuous (e.g., finite group
theory). Now it will turn out that the mathematics called ‘‘linguistics’’ belongs to
the second class. It does not even make any compromise with continuity as sta-
tistics does, or infinite-group theory. Linguistics is a quantum mechanics in the
most extreme sense. All continuities, all possibilities of infinitesimal gradation, are
shoved outside of linguistics in one direction or the other.

Modern linguistics is often viewed as a cognitive science. Within cog-

nitive science in general, it is increasingly understood that there is a

central role for the use of probabilistic methods in modeling and under-

standing human cognition (for vision, concept learning, etc.—see, e.g.,

Kersten 1999; Tenenbaum 1999). Indeed, in many areas, probabilistic

modeling has become so prevalent that Mumford (1999) has seen fit to

declare the Dawning of an Age of Stochasticity. Human cognition has a

probabilistic nature: we continually have to reason from incomplete and

uncertain information about the world, and probabilities give us a well-

founded tool for doing this.
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Language understanding is a subcase of this. When someone says,

‘‘It’s cold in here,’’ in some circumstances I’m understanding correctly

if I interpret that utterance as a request to close the window. Ambiguity

and underspecification are ubiquitous in human language utterances, at

all levels (lexical, syntactic, semantic, etc.), and how to resolve these

ambiguities is a key communicative task for both human and computer

natural language understanding. At the highest level, the probabilistic

approach to natural language understanding is to view the task as trying

to learn the probability distribution P(meaning|utterance, context)—a

mapping from form to meaning conditioned by context. In recent years,

such probabilistic approaches have become dominant within computa-

tional linguistics (Manning and Schütze 1999), and they are becoming

increasingly used within psycholinguistics (Jurafsky, this volume; Baayen,

this volume). Probabilistic methods have largely replaced earlier compu-

tational approaches because of the more powerful evidence combination

and reasoning facilities they provide. This greater power comes from the

fact that knowing how likely a module thinks a certain sense, structure, or

interpretation is is much more useful and powerful information than just

knowing whether it is deemed possible or impossible. Language acquisi-

tion is also a likely place for probabilistic reasoning: children are neces-

sarily doing uncertain analytical reasoning over uncertain input. But is

the same true for the core task of describing the syntax—the grammar—

of a human language?

I will advocate that the answer is yes. However, so far, syntax has not

seen the dawn. Probabilistic syntax (or, equivalently, stochastic syntax)

has been a little-studied area, and there is not yet a large, coherent body

of work applying sophisticated probabilistic models in syntax. Given

the great promise of probabilistic techniques, the reader should see this

as an invitation to get involved on the ground floor of an exciting new

approach. I will attempt to explain why probabilistic models have great

value and promise for syntactic theory, and to give a few small examples

and connections to relevant literature. Motivation for noncategorical

models in syntax comes from language acquisition, historical change, and

typological and sociolinguistic variation, and I touch on those motiva-

tions briefly, but only briefly since they are dealt with further in other

chapters. Throughout, the aim is to examine probabilistic models for ex-

plaining language structure, as opposed to simply using techniques like

significance tests to buttress empirical results.
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8.2 The Joys and Perils of Corpus Linguistics

8.2.1 On the Trail of a Neat Fact

Halfway through a long overseas plane flight, I settled down to read a

novel (Russo 2001). However, I only made it to the third page before my

linguist brain reacted to this sentence:

(1) By the time their son was born, though, Honus Whiting was

beginning to understand and privately share his wife’s opinion, as

least as it pertained to Empire Falls.

Did you notice anything abnormal? It was the construction as least as that

attracted my attention: for my categorical syntactician self, this construc-

tion is simply ungrammatical. I should add the rider ‘‘in my idiolect’’; but

in just this manner, despite what is said in introductory linguistics classes,

modern linguistics has become highly prescriptive, or at least has come to

use ‘‘normative edited texts’’—a term Chambers (1995, 27) attributes to

Labov.

For my corpus linguist self, this sentence is a piece of incontrovertible

primary data. This status for data is importantly di¤erent from Chom-

sky’s (1965, 4) stance that ‘‘observed use of language . . . may provide

evidence . . . but surely cannot constitute the actual subject matter of

linguistics, if this is to be a serious discipline.’’ But there remains the

question of how to interpret this datum, and here Chomsky’s (1986) dis-

tinction between externally visible E-language and the internalized I-

language of the mind still seems important. One possibility, which seemed

the most probable one to a linguist friend sitting in the next seat, is that

as least as is just a typo, or some similar result of editing. Or it might

have been a ‘‘speech error’’ that somehow survived into print, but that the

author would judge as ungrammatical if asked. Or it could be a matter of

dialectal, sociolectal, or just idiolectal variation. In general one cannot

make a highly confident decision between these and other choices. In this

case one could conceivably have telephoned; but in general that option

is not available, and at any rate sociolinguists have long observed that

people’s actual language use deviates from their reports of how they use

language. This unclarity of attribution means that corpus linguistics nec-

essarily has a statistical basis: one has to reason about the likelihood of

di¤erent explanations based on both the frequency with which di¤erent

forms occur and prior probabilistic models of language and other aspects

of cognition and the world.
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Back on land, the obvious way to address this question, within a sci-

entific empirical linguistics, is to collect more evidence. A search of 1994

New York Times newswire yields no examples—is this just because they

have better copy editors?—but then I find four examples including (2a–b)

in 1995 New York Times newswire, and two more examples from 1996. It

already appears less likely that this was just a typo. A search on the Web

(which with every passing year becomes a better medium for empirical

linguistic research) yields hundreds of further examples. There are ones

(apparently) from U.S. East Coast speakers (2c), from Midwestern

speakers (2d), and from West Coast speakers (2e). There are ones from

college professors (2c) and from fishing boat owners (2f ). I can’t even

regard this as a U.S. aberration (I’m Australian): I find examples from

Australia (2g) and South Africa (2h). Finally, I find examples with at

least as in a neighboring sentence (2i–j), showing intraspeaker variation.

While much less common than at least as (perhaps about 175 times less

common, based on this small study), as least as seems to have robust

support and perhaps indicates a development within the language (there

were several examples in discussions of the 2000 U.S. election, but there

was also one citation from 1972—more research would be needed to

establish this). Unlike the initial example from Russo, many—but not

all—of these additional examples use as least as in conjunction with an as

Adj as construction, which perhaps provides a pathway for the develop-

ment of this apparently new form.2

(2) a. Indeed, the will and the means to follow through are as least as

important as the initial commitment to deficit reduction.

b. Steven P. Jobs has reemerged as a high-technology captain of

industry, as least as far as the stock market is concerned.

c. Alternatively, y is preferred to x if, in state x, it is not possible to

carry out hypothetical lump-sum redistribution so that everyone

could be made as least as well o¤ as in y.

d. There is as least as much investment capital available in the

Midwest as there is on either Coast.

e. The strip shall be of a material that is as least as slip-resistant as

the other treads of the stair.

f. As many of you know he had his boat built at the same time as

mine and it’s as least as well maintained and equipped.

g. There is a history of using numbers to write music that dates as

least as far back to Pythagoras.
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h. He added: ‘‘The legislation is as least as strict as the world’s

strictest, if not the strictest.’’

i. Black voters also turned out at least as well as they did in 1996, if

not better in some regions, including the South, according to exit

polls. Gore was doing as least as well among black voters as

President Clinton did that year.

j. Second, if the required disclosures are made by on-screen notice,

the disclosure of the vendor’s legal name and address must appear

on one of several specified screens on the vendor’s electronic site

and must be at least as legible and set in a font as least as large as

the text of the o¤er itself.

Thus, we have discovered a neat fact about English lexicogrammar—

previously unremarked on as far as I am aware—and we have at least

some suspicions about its origin and range of use, which we could hope to

confirm with further corpus-based analysis. And this has been quite fun

to do: there was the chance discovery of a ‘‘smoking gun’’ followed by

‘‘text mining’’ to discover further instances. However, a few observations

are immediately in order.3

8.2.2 The Important Lessons

First, this example was easy to investigate because the phenomenon is

rooted in particular lexical items. It’s easy to search text corpora for as

least as constructions; it is far harder to search corpora for something like

participial relative clauses or locative inversion constructions. Such tech-

nological limitations have meant that corpus linguistic research has been

largely limited to phenomena that can be accessed via searches on par-

ticular words. The average corpus linguist’s main research tool remains

the word-concordancing program, which shows a searched-for keyword

in context (perhaps with morphological stemming, sorting options, etc.).4

However, a (theoretical) syntactician is usually interested in more abstract

structural properties that cannot be investigated easily in this way. For-

tunately for such research, recent intensive work in statistical natural

language processing (statistical NLP; Manning and Schütze 1999) has led

to the availability of both many more richly annotated text corpora that

can support such deeper investigations, and many more tools capable of

being used with good accuracy over unannotated text in order to recover

deep syntactic relationships. The prospects for applying these corpora

and tools to probabilistic syntactic analysis are bright, but it remains fair
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to say that these tools have not yet made the transition to the Ordinary

Working Linguist without considerable computer skills.5

Second, one needs a large corpus to be able to do interesting explora-

tion of most syntactic questions. Many syntactic phenomena, especially

those commonly of interest to theoretical syntacticians, are incredibly

rare in text corpora. For instance, in the New York Times newswire cor-

pus mentioned above, I searched through about 230 million words of text

to find a paltry six examples of as least as. This is one aspect of the

problem that Sinclair (1997, 27) sums up by saying, ‘‘The linguistics of

the twentieth century has been the linguistics of scarcity of evidence.’’

All approaches to linguistics have dealt with this problem in one way or

another. Generative approaches resort to inventing the primary data, on

the basis of intuitions. I will not discuss the possible limitations of such an

approach in detail here. Su‰ce it to say that even Chomsky (1986, 63)

admits that ‘‘the facts are often quite obscure.’’6 Traditional field linguists

have been constrained by quite small collections of texts and conversa-

tions. While the major syntactic features will be clear, there is generally

quite insu‰cient data for the kind of subtle issues that are the mainstay

of theoretical syntax. Similarly for sociolinguists: the data they collect by

traditional in-person techniques are rich in social and contextual infor-

mation, but poor in quantity. It is probably for this reason that the vast

majority of sociolinguistic work has dealt with phonetic realization (for

which the data are dense), and the small amount of syntactic work has

been mainly on phenomena such as copula deletion and use of modals

where again the density of the use of function words makes analysis from

a small corpus possible. In contrast, corpus linguists have tended to work

with large amounts of data in broad pseudogenres like ‘‘newspaper text,’’

collapsing the writing of many people from many places. There is no easy

answer to the problem of getting su‰cient data of just the right type:

language changes across time, space, social class, method of elicitation,

and so on. There is no way that we can collect a huge quantity of data (or

at least a collection dense in the phenomenon of current interest) unless

we are temporarily prepared to ride roughshod over at least one of these

dimensions of variation. To deal with rare syntactic phenomena, we must

either work with intuitions or else be prepared to aggregate over speakers

and time periods. Even then, the sparsity of linguistic data is nearly

always a major technical challenge in probabilistic approaches to linguis-

tics or NLP.
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Finally—and most seriously—whatever their interest, the above ob-

servations on as least as unquestionably fit into the category of activ-

ities that Chomsky (1979, 57) long ago derided as butterfly collecting:

‘‘You can also collect butterflies and make many observations. If you

like butterflies, that’s fine; but such work must not be confounded with

research, which is concerned to discover explanatory principles of some

depth and fails if it does not do so.’’ A central question is whether prob-

abilistic models can be used for linguistic explanation and insight in this

manner. I think this is a serious concern. To go out on a limb for a

moment, let me state my view: generative grammar has produced many

explanatory hypotheses of considerable depth, but is increasingly failing

because its hypotheses are disconnected from verifiable linguistic data.

Issues of frequency of usage are by design made external to matters of

syntax, and as a result categorical judgments are overused where not

appropriate, while a lack of concern for observational adequacy has

meant that successive versions have tended to treat a shrinking subset of

data increasingly removed from real usage. On the other side, corpus lin-

guistics (McEnery and Wilson 2001)—or ‘‘usage-based models of gram-

mar’’ (Barlow and Kemmer 2000)—has all the right rhetoric about

being an objective, falsifiable, empirical science interested in the totality

of language use, but is failing by largely restricting itself to surface facts

of language, rather than utilizing sophisticated formal models of gram-

mar, which make extensive use of hidden structure (things like phrase

structure trees and other abstract representational levels). This reflects

an old dichotomy: one sees it clearly in the 1960s Handbook of Mathe-

matical Psychology (Luce, Bush, and Galanter 1963a,b), where in some

chapters probabilistic finite state models (markov chains) are being

actively used to record surface-visible stimulus-response behavior, where-

as in another chapter Chomsky is arguing for richer tools (then, trans-

formational grammars) for attacking deeper analytical problems. The

aim of the current chapter is to indicate a path beyond this impasse: to

show how probabilistic models can be combined with sophisticated lin-

guistic theories for the purpose of syntactic explanation.

Formal linguistics has traditionally equated structuredness with homo-

geneity (Weinreich, Labov, and Herzog 1968, 101), and it has tried too

hard to maintain categoricity by such devices as appeal to an idealized

speaker/hearer. I would join Weinreich, Labov, and Herzog (1968, 99) in

hoping that ‘‘a model of language which accommodates the facts of vari-
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able usage . . . leads to more adequate descriptions of linguistic compe-

tence.’’ The motivation for probabilistic models in syntax comes from

two sides:

0 Categorical linguistic theories claim too much. They place a hard cate-

gorical boundary of grammaticality where really there is a fuzzy edge,

determined by many conflicting constraints and issues of conventionality

versus human creativity. This is illustrated with an example in section

8.3.1.
0 Categorical linguistic theories explain too little. They say nothing at all

about the soft constraints that explain how people choose to say things

(or how they choose to understand them). The virtues of probabilistic

models for this task are developed in section 8.5.

The first problem is a foundational worry, but the second is more inter-

esting in showing the possibility for probabilistic models to a¤ord in-

creased linguistic explanation.

8.3 Probabilistic Syntactic Models

As an example of the noncategorical nature of syntax, and the idealiza-

tion that occurs in most of the syntactic literature, I will look here at

verbal clausal subcategorization frames. I will first look at problems with

categorical accounts, then explore how one might build a probabilistic

model of subcategorization, and finally consider some general issues in

the use of probabilistic approaches within syntax.

8.3.1 Verbal Subcategorization

It is well known that di¤erent verbs occur with di¤erent patterns of

arguments that are conventionally described in syntax by subcategoriza-

tion frames (Chomsky 1965; Radford 1988). For example, some verbs

must take objects while others do not:7

(3) a. Kim devoured the meal.

b. *Kim devoured.

c. *Dana’s fist quivered Kim’s lip.

d. Kim’s lip quivered.

Other verbs take various forms of sentential complements.

A central notion of all current formal theories of grammar (includ-

ing Government-Binding (Chomsky 1981a), the Minimalist Program
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(Chomsky 1995), Lexical-Functional Grammar (Bresnan 2001), Head-

Driven Phrase Structure Grammar (Pollard and Sag 1994), Categorial

Grammar (Morrill 1994), Tree-Adjoining Grammar (Joshi and Schabes

1997), and other frameworks) is a distinction between arguments and

adjuncts combining with a head. Arguments are taken to be syntactically

specified and required by the head, via some kind of subcategorization

frame or argument list, whereas adjuncts (of time, place, etc.) can freely

modify a head, subject only to semantic compatibility constraints.

This conception of the argument/adjunct distinction is the best one can

do in the categorical 0/1 world of traditional formal grammars: things

have to be either selected (as arguments) or not. If they are not, they are

freely licensed as adjuncts, which in theory should be able to appear with

any head and to be iterated any number of times, subject only to semantic

compatibility. And there is certainly some basis for the distinction: a

rich literature (reviewed in Radford 1988; Pollard and Sag 1987; Schütze

1995) has demonstrated argument/adjunct asymmetries in many syntactic

domains, such as phrasal ordering and extraction.

However, categorical models of selection have always been problem-

atic. The general problem with this kind of model was noticed early on

by Sapir (1921, 38), who noted that ‘‘all grammars leak.’’ In context,

language is used more flexibly than such a model suggests. Even Chom-

sky in early work (1955, 131) notes that ‘‘an adequate linguistic theory

will have to recognize degrees of grammaticalness.’’ Many subcatego-

rization distinctions presented in the linguistics literature as categori-

cal are actually counterexemplified in studies of large corpora of written

language use. For example, going against (3c), Atkins and Levin (1995)

find examples of quiver used transitively, such as The bird sat, quivering

its wings. In this section, I will look at some examples of clausal com-

plements, focusing particularly on what realizations of arguments are

licensed, and then touch on the argument/adjunct distinction again at the

end.

Some verbs take various kinds of sentential complements, and this can

be described via subcategorization frames:

(4) regard:

consider:

think:

NP[acc] as {NP, AdjP}

NP[acc] {AdjP, NP, VP[inf ]}

{ CP[that], NP[acc] NP}

In (5), I reproduce the grammaticality judgments for subcategoriza-

tions given by Pollard and Sag (1994, 105–108) within the context of an
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argument that verbs must be able to select the category of their comple-

ments.8 I begin with consider, which Pollard and Sag say appears with a

noun phrase object followed by various kinds of predicative complements

(nouns, adjectives, clauses, etc.), but not with as complements:

(5) a. We consider Kim to be an acceptable candidate.

b. We consider Kim an acceptable candidate.

c. We consider Kim quite acceptable.

d. We consider Kim among the most acceptable candidates.

e. *We consider Kim as an acceptable candidate.

f. *We consider Kim as quite acceptable.

g. *We consider Kim as among the most acceptable candidates.

h. ?*We consider Kim as being among the most acceptable

candidates.

However, this lack of as complements is counterexemplified by various

examples from the New York Times:9

(6) a. The boys consider her as family and she participates in everything

we do.

b. Greenspan said, ‘‘I don’t consider it as something that gives me

great concern.’’

c. ‘‘We consider that as part of the job,’’ Keep said.

d. Although the Raiders missed the playo¤s for the second time in

the past three seasons, he said he considers them as having

championship potential.

e. Culturally, the Croats consider themselves as belonging to the

‘‘civilized’’ West, . . .

If this were an isolated incident (counterexemplifying (5e) and (5h) in

particular), then we would merely have collected one more butterfly,

and we would conclude that Pollard and Sag got that one particular fact

wrong. But the problem is much more endemic than that. The subcate-

gorization facts that they provide can in general be counterexemplified.

Since this is an important point in the argument for probability distribu-

tions in syntax, let me give a few more examples.

According to Pollard and Sag—and generally accepted linguistic wis-

dom—regard is the opposite of consider in disallowing infinitival VP

complements, but allowing as complements:

(7) a. *We regard Kim to be an acceptable candidate.

b. We regard Kim as an acceptable candidate.
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But again we find examples in the New York Times where this time regard

appears with an infinitival VP complement:

(8) a. As 70 to 80 percent of the cost of blood tests, like prescriptions, is

paid for by the state, neither physicians nor patients regard

expense to be a consideration.

b. Conservatives argue that the Bible regards homosexuality to be a

sin.

Pollard and Sag describe turn out as allowing an adjectival phrase com-

plement but not a present participle VP complement:

(9) a. Kim turned out political.

b. *Kim turned out doing all the work.

But again we find counterexamples in the New York Times:

(10) But it turned out having a greater impact than any of us dreamed.

Similarly, end up is predicted to disallow a perfect participle VP comple-

ment,

(11) a. Kim ended up political.

b. *Kim ended up sent more and more leaflets.

but an example of the sort predicted to be ungrammatical again appears

in the New York Times:

(12) On the big night, Horatio ended up flattened on the ground like a

fried egg with the yolk broken.

What is going on here? Pollard and Sag’s judgments seem reason-

able when looking at the somewhat stilted ‘‘linguists’ sentences.’’ But with

richer content and context, the New York Times examples sound (in my

opinion) in the range between quite good and perfect. None of them

would make me choke on my morning granola. They in all likelihood

made it past a copy editor. While one must consider the possibility of

errors or regional or social variation, I think it is fair to say that such

explanations are not terribly plausible here.

The important question is how we should solve this problem. Within

a categorical linguistics, there is no choice but to say that the previ-

ous model was overly restrictive and that these other subcategorization

frames should also be admitted for the verbs in question. But if we do

that, we lose a lot. For we are totally failing to capture the fact that

the subcategorization frames that Pollard and Sag do not recognize are
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extremely rare, whereas the ones they give encompass the common sub-

categorization frames of the verbs in question. We can get a much better

picture of what is going on by estimating a probability mass function

(pmf ) over the subcategorization patterns for the verbs in question. A

pmf over a discrete random variable (a set of disjoint choices) gives the

probability of each one. Here, we will estimate a pmf for the verb regard.

The subcategorization pmf in figure 8.1 was estimated from 300 tokens

of regard from the New York Times, by simply counting how often each

subcategorization occurred in this sample and then graphing these fre-

quencies divided by the number of tokens—so as to give the maximum

likelihood point estimate for each frame.10

The graph is annotated with Pollard and Sag’s grammaticality judg-

ments. We can note two things. First, the line of grammaticality has

Figure 8.1

Estimated probability mass function (pmf ) for subcategorizations of regard based
on a 300-token New York Times corpus. The graph is annotated with grammati-
cality judgments of Pollard and Sag (1994).
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apparently been drawn at a fairly arbitrary point of low frequency.

Roughly, things that occur at least 1 time in 100 are regarded as gram-

matical, while things that occur less commonly are regarded as ungram-

matical. If the cuto¤ had been set as 1 time in 10, then only the as NP and

as AdjP complementation patterns would be ‘‘grammatical’’; if the cuto¤

had been set at 1 time in 1,000, then they would all be grammatical.11

Second, note how much important information is lost by simply pro-

viding categorical information. In a categorical description, there is no

record whatsoever of the fact that over three-quarters of all predicative

complements of regard are in the form of an as NP complement. A

probability distribution captures such information in a straightforward

manner.

Looking more broadly, careful consideration of the assumed categori-

cal distinction between arguments and adjuncts further argues for new

foundations for syntax. There are some very clear arguments (normally,

subjects and objects), and some very clear adjuncts (of time and ‘‘outer’’

location), but also a lot of stu¤ in the middle. Things in this middle

ground are often classified back and forth as arguments or adjuncts

depending on the theoretical needs and convenience of the author (Babby

1980; Fowler 1987; Maling 1989, 1993; Li 1990; Wechsler and Lee 1996;

Przepiórkowski 1999a,b). Additionally, various in-between categories

are postulated, such as argument-adjuncts (Grimshaw 1990) and pseudo-

complements (Verspoor 1997).

In a probabilistic approach, in contrast, it is not necessary to categori-

cally divide verbal dependents into subcategorized arguments and freely

occurring adjuncts. Rather, we can put a probability function over the

kinds of dependents to expect with a verb or class, conditioned on various

features. This is especially useful in di‰cult in-between cases. For exam-

ple, in the Oxford Advanced Learners Dictionary (Hornby 1989), the verb

retire is subcategorized as a simple intransitive and transitive verb, and as

an intransitive taking a PP[ from] or PP[to] argument.12 While preposi-

tional phrases headed by to or from are common with retire (13a–b)—

and are arguably arguments by traditional criteria—this does not exhaust

the list of putative arguments of retire. While in most often occurs

with retire to specify a time point (a canonical adjunct PP), it sometimes

expresses a destination (13c), and it seems that these examples demand

the same treatment as examples with PP[to]. Similarly, uses of a PP[as]

to express the position that one is retiring from (13d) seem at least as
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selected by the verb as those expressed by a PP[to] or PP[ from]. What

about the usage of retire on (13e), where the PP[on] expresses the source

of monetary support?13

(13) a. Mr. Riley plans to retire to the $1.5 million ranch he is building

in Cody, Wyo.

b. Mr. Frey, 64 years old, remains chairman but plans to retire

from that post in May.

c. To all those wishing to retire in Mexico (international section,

March 10 and 11), let me o¤er three suggestions: . . .

d. Donald W. Tanselle, 62 years old, will retire as vice chairman of

this banking concern, e¤ective Jan. 31.

e. A worker contributing 10% of his earnings to an investment

fund for 40 years will be able to retire on a pension equal to two

thirds of his salary.

Rather than maintaining a categorical argument/adjunct distinction

and having to make in/out decisions about such cases, we might instead

try to represent subcategorization information as a probability distribu-

tion over argument frames, with di¤erent verbal dependents expected to

occur with a verb with a certain probability. For instance (sticking for the

moment to active uses, and assuming that controlled and imperative sub-

jects are present, etc.), we might estimate that14

P(NP[subj]jV ¼ retire) ¼1.0

P(NP[obj]jV ¼ retire) ¼.52

P(PP[ from]jV ¼ retire) ¼.05

P(PP[as]jV ¼ retire) ¼.06
..
.

By writing things like this, I am implicitly assuming independence be-

tween arguments (see Bod, this volume): the chance of getting a PP[as]

is independent of whether a PP[ from] is present or not. This is presum-

ably not true: intuition suggests that having either a PP[as] or a PP[ from]

makes having the other less likely. We could choose instead to provide

joint estimates of a complete subcategorization frame:

P(NP[subj] jV ¼ retire) ¼ .25

P(NP[subj] NP[obj]jV ¼ retire) ¼ .5

P(NP[subj] PP[ from]jV ¼ retire) ¼ .04

P(NP[subj] PP[ from] PP[after]jV ¼ retire) ¼ .003
..
.
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In this latter case, the sums of the probabilities of all frames would add

to one (in the former, it is the probabilities of whether a verb will have a

certain argument or not that add to one).

Regardless of details of the particular modeling choices, such a change

of approach reshapes what questions can be asked and what results are

achievable in terms of language description, learnability, production,

and comprehension. Moreover, the probabilistic approach opens up pos-

sibilities for renewed productive interplay between formal syntax and

various areas of applied linguistics, including computational linguistics.

A language teacher is likely to be interested in how a certain semantic

type of argument is most commonly expressed, or which frames a verb is

most commonly used with. While they incorporate a number of further

notions, modern statistical NLP parsers (Collins 1997; Charniak 1997b)

incorporate generative probabilistic models of surface subcategorization,

much like the above kind of lexicalized dependency information. Rather

than using simple probabilistic context-free grammar rules like VP! V

NP PP of the sort discussed by Bod (this volume), these generative

models use lexicalized argument frames by modeling the probability that

a VP is headed by a certain verb, and then the probability of certain

arguments surrounding that verb:15

PðVP! V½retire� PP½ from�Þ ¼ PðVP½retire�jVPÞ

�PðVP½retire� ! V NP PPjVP½retire�Þ � PðPP½ from�jPP;VP½retire�Þ:

Perhaps most importantly, such models combine formal linguistic

theories and quantitative data about language use, in a scientifically pre-

cise way.

However, dealing simply with surface subcategorization is well known

to be problematic. A problem that I glossed over in the earlier discussion

is that retire also occurs in the passive, and it is sometimes followed by an

NP that isn’t its object but a temporal NP:

(14) The SEC’s chief accountant, Clarence Sampson, will retire next

year and may join the FASB, which regulates the accounting

profession. (WSJ newswire 1987/09/25)

Similarly, one might feel that use of a PP[in] rather than PP[to] (as in

(13a, c)) is simply a choice from several alternative ways of expressing

one thing (a goal of motion), the choice being mainly determined by the

NP that occurs within the PP rather than the verb. If we accept, following

much linguistic work (Grimshaw 1979, 1990; Bresnan and Moshi 1990),
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that selection is better described at a level of argument structure, with a

subsequent mapping to surface subcategorization, we might instead adopt

a model that uses two distributions to account for the subcategorization

of a verb V. We would first propose that the verb occurs with a certain

probability with a certain argument structure frame, conditioned on the

verb, and presumably the context in a rich model.16 Then we could

assume that there is a mapping or linking of argument structure roles

onto surface syntactic realizations. The actual surface subcategorization

Subcat would be deterministically recoverable from knowing the argu-

ment structure ArgStr and the mapping Mapping. Then, assuming that

the mapping depends only on the ArgStr and Context, and not on the

particular verb, we might propose the model

PðSubcatjV ;ContextÞ

¼
X

fMapping;ArgStr : subcatðMapping;ArgStrÞ¼Subcatg
PðArgStrjV ;ContextÞ

�PðMappingjArgStr;ContextÞ:

For these probability distributions, we might hope to usefully condition

via the class of the verb (Levin 1993) rather than on particular verbs, or

to do the linking in terms of a mapping from semantic roles to grammati-

cal functions (Bresnan and Zaenen 1990), the space of which is quite

constrained.

However, such a frequency-based account is not satisfactory, because

frequency of occurrence needs to be distinguished from argument status

(Grimshaw and Vikner 1993; Przepiórkowski 1999b). Many arguments

are optional, while some adjuncts are (almost) compulsory (e.g., a how

adjunct for worded as in He worded the proposal very well ). Returning to

our example of retire and using the same 1987 WSJ data, we find that the

canonical temporal adjunct use of PP[in] (in December, in 1994) occurs

with retire about 7 times as often as a PP[to] expressing a destination (and

about 30 times as often as a PP[in] expressing a destination). If frequency

is our only guide, a temporal PP[in] would have to be regarded as an

argument. Linguists tend to regard the temporal PP as an adjunct and the

destination as an argument on the basis of other criteria, such as phrasal

ordering (arguments normally appear closer to the head than adjuncts)

as in (15), iterability (adjuncts can be repeated) as in (16), or a feeling of

semantic selection by the verb (any verb can have a temporal modifier):17

(15) a. Mr. Riley plans to retire to the Cayman Islands in December.

b. ?Mr. Riley plans to retire in December to the Cayman Islands.
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(16) a. Mr. Riley plans to retire within the next five years on his

birthday.

b. ?Mr. Riley plans to retire to the Cayman Islands to his ranch.

Beginning at least with Tesnière 1959, various criteria (morphological,

syntactic, semantic, and functional) have been discussed for distinguish-

ing arguments from adjuncts. Evidence for degree of selection (or argu-

menthood) could thus be derived from data in more sophisticated ways,

by examining such phenomena as ordering, iteration, and semantic se-

lectivity in examples that give relevant evidence. For example, Merlo

and Leybold (2001) suggest also measuring head dependence (i.e., what

range of heads a particular PP appears with), which is operationalized

by counting the number of di¤erent verbs that occur with a given PP

(where matching is broadened to include not just exact hpreposition, head

nouni matches, but also a match over a semantic classification of the

head noun). A low number indicates argument status, while a high num-

ber indicates modifier status. We would then judge gradient argument-

hood via a more complex evaluation of a variety of morphological,

syntactic, semantic, and functional factors, following the spirit of diagram

(22) below.

However, it remains an open question whether all these phenomena are

reflections of a single unified scale of argumenthood or manifestations of

various underlying semantic and contextual distinctions. It has long been

noted that the traditional criteria do not always converge (Vater 1978;

Przepiórkowski 1999b). Such lacks of convergence and categoricity have

also been found in many other places in syntax; witness, for instance,

problems with the categorical unaccusative/unergative division of intran-

sitive verbs assumed by most linguistic theories (Napoli 1981; Zaenen

1993; Sorace 2000), or the quite gradient rather than categorical ability

to extract, or extract from, adjuncts (Rizzi 1990; Hukari and Levine

1995).18 There is clearly a trade-o¤ between simplicity of the theory and

factual accuracy (in either the categorical or the probabilistic case), but

the presence of probabilities can make dealing with the true complexity of

human language more palatable, because dominant tendencies can still be

captured within the model.

8.3.2 On the Nature of Probabilistic Models of Syntax

In this section, I briefly address some of the questions and concerns that

commonly come up about the use of probabilistic models in syntax.
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8.3.2.1 Probabilities Are Not Just about World Knowledge What peo-

ple actually say has two parts. One part is contingent facts about the

world. For example, at the time I write this, people in the San Francisco

Bay Area are talking a lot about electricity, housing prices, and stocks.

Knowledge of such facts is very useful for disambiguation in NLP, but

Chomsky was right to feel that they should be excluded from syntax. But

there is another part to what people say, which is the way speakers choose

to express ideas using the resources of their language. For example, in

English, people don’t often put that clauses before the verb, even though

it’s ‘‘grammatical’’ to do so:

(17) a. It is unlikely that the company will be able to meet this year’s

revenue forecasts.

b. #That the company will be able to meet this year’s revenue

forecasts is unlikely.

The latter statistical fact is properly to be explained as part of people’s

knowledge of language—that is, as part of syntax.19 This is also the

kind of knowledge that people outside the core community of theoreti-

cal syntacticians tend to be more interested in: sociolinguists, historical

linguists, language educators, people building natural language gen-

eration and speech-understanding systems, and others dealing with real

language. To account for such facts, as we have seen in this section,

one can put probability mass functions over linguistic structures. Work-

ing out an estimate of an assumed underlying distribution is referred

to as density estimation—normally regardless of whether a discrete prob-

ability mass function or a continuous probability density function is go-

ing to be used. Probability functions can be conditionalized in various

ways, or expressed as joint distributions, but for the question of how peo-

ple choose to express things, our eventual goal is density estimation for

P( form|meaning, context).20 In section 8.5, we will consider in more

detail some methods for doing this.

One should notice—and could possibly object to the fact—that the

domain of grammar has thus been expanded to include grammatical

preferences, which will often reflect factors of pragmatics and discourse.

Such preferences are traditionally seen as part of performance. How-

ever, I think that this move is positive. In recent decades, the scope of

grammar has been expanded in various ways: people now routinely

put into grammar semantic and discourse facts that would have

been excluded in earlier decades. And it is not that there is nothing left in
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performance or contingent facts about the world: whether the speaker has

short-term memory limits or is tired or drunk will influence performance,

but is not part of grammar. But principles that have a linguistic basis, and

that will commonly be found to be categorical in some other language,

are treated uniformly as part of grammar. This corresponds with the po-

sition taken by Prince and Smolensky (1993, 198): ‘‘When the scalar

and the gradient are recognized and brought within the purview of

theory, Universal Grammar can supply the very substance from which

grammars are built: a set of highly general constraints, which, through

ranking, interact to produce the elaborate particularity of individual lan-

guages.’’ Keller (2000, 29) cites a study by Wolfgang Sternefeld that con-

cludes that the bulk of instances of gradience in grammar appear to be

matters of competence grammar, rather than attributable to performance,

contentfully construed (i.e., things that can reasonably be attributed

to the nature of on-line human sentence processing), or extralinguistic

factors.

8.3.2.2 One Can Put Probabilities over Complex Hidden Structure

People often have the impression that one can put probability distribu-

tions only over things one can count (surface visible things like the words

of a sentence and their ordering), and not over what probabilists call

‘‘hidden structure’’ (the things linguists routinely use to build theories,

such as phrase structure trees, features with values, and semantic repre-

sentations). However, this is certainly no longer the case: There is now a

range of techniques for putting probability distributions over hidden

structure, widely used for sophisticated probabilistic modeling—we saw

some simple examples above for probabilities of argument structure

frames. Even if the nature or values of assumed hidden structure have

never been observed, one can still build probabilistic models. In such

situations, a particularly well known and widely used technique is the

Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin

1977; McLachlan and Krishnan 1996), an iterative algorithm that

attempts to estimate the values of hidden variables so as to make the

observed data as likely as possible. This is not to say that there are not

sometimes still formidable problems in successfully estimating distribu-

tions over largely hidden structure; but statisticians want to work on

problems of putting probabilities over good model structures, not on

denying that these structures exist. In general, it is now possible to add

probabilities to any existing linguistic model. The most studied case of
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this is for context-free grammars (Booth and Thomson 1973; Manning

and Schütze 1999; Bod, this volume), but distributions have also been

placed over other more complex grammars such as Lexical-Functional

Grammars (Bod and Kaplan 1998; Johnson et al. 1999; Riezler et al.

2000).

This is not to say that one should not rethink linguistic theories when

adding probabilities, as I have tried to indicate in the beginning part of

this section. Nevertheless, especially in the psycholinguistic literature, the

dominant terms of debate have been that one either has to stick to good

old-fashioned rule/constraint systems from linguistic theory or move to

connectionist modeling (Seidenberg and MacDonald 1999; Pinker 1999).

Without in any way wishing to dismiss connectionist work, I think it is

important to emphasize that this is a false dichotomy: ‘‘soft’’ probabilistic

modeling can be done over rule systems and/or symbolic structures. The

numerate connectionist community has increasingly morphed into a

community of sophisticated users of a variety of probabilistic models.

8.3.2.3 Can Probabilities Capture the Notion of Grammaticality?

Several recent pieces of work have argued with varying degrees of

strength for the impossibility of collapsing notions of probability and

grammaticality (Abney 1996; Culy 1998; Keller 2000). This is a di‰cult

question, but I feel that at the moment this discussion has been clouded

rather than clarified by people not asking the right probabilistic ques-

tions. It is certainly true that in general a sentence can have arbitrarily

low probability in a model and yet still be perfectly good—in general this

will be true of all very long sentences, as Abney (1996) notes. It is also the

case that real language use (or a statistical NLP model aimed at dis-

ambiguating between meanings) builds in facts about the world. In these

cases, the probability of di¤erent sentences reflects the nature of the

world, and this clearly needs to be filtered out to determine a notion of

grammatical acceptability independent of context. A profitable way to

connect grammaticality and probability is perhaps to begin with the joint

distribution P( form, meaning, context). We could then consider ways of

marginalizing out the context and the meaning to be expressed.21 We

would not want to do this via the actual empirical distributions of con-

texts and ideas that people express, which reflect contingent facts about

the world (see section 8.3.2.1), but by imposing some flat prior distribu-

tion, which is uninformative about the contingent facts of the world. For

instance, in this distribution, people would be equally likely to travel to
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North Dakota for holidays as to Paris. Using such an uninformative

prior is a rough probabilistic equivalent of considering possible worlds

in semantics. Under this analysis, forms might be considered gradiently

grammatical to the extent that they had probability mass in the resulting

marginal distribution.

Alternatively, one might think that the above suggestion of margin-

alizing out context is wrong because it e¤ectively averages over possible

contexts (see note 21), and a closer model to human judgments would be

that humans judge the grammatical acceptability of sentences by assum-

ing a most favorable real-world context. For this model, we might calcu-

late probabilities of forms based on the probability of their most likely

meaning in their most favorable context, by instead looking at22

Pð f Þ ¼ 1

Z
max

m
max

c
Pð f ;m; cÞ:

However, while humans clearly have some ability to consider sentences

in an imagined favorable context when judging (syntactic) ‘‘grammati-

cality,’’ sociolinguistic and psycholinguistic research has shown that

judgments of grammaticality are strongly codetermined by context and

that people don’t automatically find the best context (Labov 1972, 193–

198; Carroll, Bever, and Pollack 1981). Nevertheless, Keller (2000) argues

for continuing to judge grammaticality via acceptability judgments

(essentially still intuitive judgments, though from a more controlled

experimental setting) and modeling soft constraints by looking at relative

acceptability. The issues here deserve further exploration, and there may

be valuable alternative approaches, but, as exemplified at the beginning

of this section, I tend to feel that there are good reasons for getting at

synchronic human grammars of gradient phenomena from large data sets

of actual language use rather than from human judgments. In part this is

due to the unclarity of what syntactic acceptability judgments are actually

measuring, as just discussed.

8.3.2.4 The Formal Learnability of Stochastic Grammars One might

think that adding probability functions to what are already very complex

symbol systems could only make formal learnability problems worse, but

this is not true. An important thing to know is that adding probability dis-

tributions to a space of grammars can actually improve learnability. There

is not space here for a detailed discussion of language acquisition data,

but I wish to address briefly the formal learnability of syntactic systems.
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If linguists know anything about formal learnability, it is that Gold

(1967) proved that formal languages (even finite state ones) are unlearn-

able from positive evidence alone. This result, together with the accepted

wisdom that children do not have much access to negative evidence and

do not pay much attention to it when it is given, has been used as a for-

mal foundation for the Chomskyan assumption that an articulated and

constrained Universal Grammar must be innate.

There are many directions from which this foundation can be under-

mined. Some recent work has emphasized the amount of implicit negative

evidence (through lack of comprehension, etc.) that children do receive

(Sokolov and Snow 1994; Pullum 1996). One can question the strictness

of the criterion of identifiability in the limit used by Gold (namely, that

for any language in the hypothesis space, and for any order of sentence

presentation, there must be a finite length of time after which the infer-

ence device always returns the correct language). Under a weaker crite-

rion of approachability in the limit (each incorrect grammar is rejected

after a finite period of time), context-free and context-sensitive grammars

are learnable from positive evidence alone (Feldman et al. 1969).

But most importantly in this context, assuming probabilistic grammars

actually makes languages easier to learn. The essential idea is that such a

grammar puts probability distributions over sentences. If the corpus was

produced from such a grammar, it is highly probable that any phenome-

non given a high probability by the grammar will show up in the corpus.

In contrast, Gold’s result depends on the fact that the learner may

observe an unrepresentative sample of the language for any period of time.

Using probabilistic grammars, absence of a sentence from the corpus thus

gives implicit negative evidence: if a grammar would frequently generate

things that never appear in the corpus, that grammar becomes increas-

ingly unlikely as the amount of observed corpus data grows. In particu-

lar, Horning (1969) showed that providing one assumes a denumerable

class of possible grammars with a prior distribution over their likelihood,

then stochastic grammars are learnable from positive evidence alone.

Such formal learnability results give guidance, but they assume con-

ditions (stationarity, independence, etc.) that mean they are never going

to exactly model ‘‘real-world conditions.’’ But more generally it is

important to realize that whereas almost nothing was known about

learning around 1960 when the linguistic orthodoxy of ‘‘poverty of the

stimulus’’ developed, a lot has changed since then. The fields of statistics

and machine learning have made enormous advances, stemming from
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both new theoretical techniques and the opportunities for computer

modeling. One relevant result is that it is often easier to learn over con-

tinuous spaces than discontinuous categorical spaces, essentially because

the presence of gradients can direct learning.23

8.3.2.5 Explanatory Value and Qualms about Numbers There are two

final worries. First, one could doubt whether it will ever be possible

to determine probabilities correctly for abstract but important linguistic

features. What is the probability of a parasitic gap (Engdahl 1983) in a

sentence given that it contains an adjunct extraction? Obviously, we can

never hope to estimate all these probabilities exactly from a finite corpus,

and we would be defeated by the nonstationarity of language even if we

tried. But this is unimportant. Practically, all we need are reasonable

estimates of probabilities, which are su‰cient to give a good model of the

linguistic phenomenon of interest. The di‰culty of producing perfect

probability estimates does not mean we are better o¤ with no probability

estimates. Theoretically, our assumption is that such probabilities do exist

and have exact values: there is some probability that a sentence an

English speaker utters will contain a parasitic gap. There is also a proba-

bility that the next sentence I utter will contain a parasitic gap. This

probability may di¤er from the average for the population, and it may

change when one conditions on context, the meaning to be expressed, and

so on; but it exists. This probability simply captures an aspect of the

behavior of the wetware in the human brain (and is, at this level, uncom-

mitted even about whether some, much, or none of syntax is innate).

People also sometimes just object to the use of numbers whatsoever

in grammatical theory, independent of whether they can be determined.

This strikes me as an invalid objection. Kroch (2001, 722) argues that

‘‘there is no doubt, however, that human beings, like other animals, track

the frequencies of events in their environment, including the frequency of

linguistic events.’’24

Second, one could think that there are so many numbers flying around

that we can just fit (or ‘‘learn’’) anything and that there is thus no

explanatory value with regard to the goal of describing possible human

languages. This is a genuine worry: if the model is too powerful or gen-

eral, it can essentially just memorize the data, and by considering varying

parameter settings, one might find that the model provides no constraint

on what languages are possible.25 This is one possible objection to the

Data-Oriented Parsing models developed by Bod (this volume): they do

essentially just memorize all the data (to provide constraints on possible
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linguistic systems, one needs to add substantive constraints on the repre-

sentations over which the model learns and on the fragment extraction

rules—and even then, there are no restrictions on the space of possible

soft constraints). But this just means that we should do a good job at the

traditional syntactic tasks of looking for constraints that apply across

syntactic constructions, and looking for model constraints that delimit

possible human linguistic systems. Some starting ideas about how to do

this appear in section 8.5. While there are approaches to ‘‘softness’’ other

than probabilities (such as using prototypes or fuzzy logic), the sound

theoretical foundation of probability theory, and the powerful methods

for evidence combination that it provides, makes it the method of choice

for dealing with variable phenomena.

8.4 Continuous Categories

Earlier, I followed Chambers (1995) in emphasizing an alternative

approach to linguistics that allows units that are continuous and quanti-

tative. Any probabilistic method is quantitative, and the actual proba-

bilities are continuous quantities, but most work using probabilities in

syntax, and in particular the large amount of related work in statistical

NLP, has put probabilities over discrete structures and values, of the kind

familiar from traditional linguistics. However, while language mostly acts

like a discrete symbol system (making this assumption workable in much

of linguistics), there is considerable evidence that the hidden structure of

syntax defies discrete classification. People continually stretch the ‘‘rules’’

of grammar to meet new communicative needs, to better align grammar

and meaning, and so on. Such leakage in grammars leads to gradual

change. As a recent example, the term e-mail started as a mass noun like

mail (I get too much junk e-mail ). However, it is becoming a count noun

(filling the role of the nonexistent *e-letter): I just got an interesting e-mail

about that. This change happened in the last decade: I still remember

when this last sentence sounded completely wrong (and ignorant (!)). It

then became commonplace, but still didn’t sound quite right to me. Then

I started noticing myself using it.

As a more detailed example of the blurring of syntactic categories

during linguistic change, consider the group of English words sometimes

called ‘‘marginal prepositions’’ (Quirk et al. 1985, 666).26 These words

have the form of present participles of verbs, and they are used as

verbs, but they also appear to function as prepositions. Examples include

concerning, supposing, excepting, according, considering, regarding, and
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following. Historically and morphologically, these words began as

verbs, but they are moving in at least some of their uses from being par-

ticiples to being prepositions. Some still clearly maintain a verbal exis-

tence (e.g., following, concerning, considering); for others, their verbal

character is marginal (e.g., according, excepting); for still others, it is

completely lost (e.g., during (previously a verb; cf. endure),27 pending, and

notwithstanding).

In the remainder of this section, I will illustrate with following, which

is one of the more recent participles to make the move and which has

been the subject of an earlier corpus study (Olofsson 1990), to which I am

indebted for various references cited below. While some prepositional

uses of following are recorded quite early, as in (18),

(18) Following his ordination, the Reverend Mr Henry Edward intends

to go to Rome. (1851)

such uses seem to have become considerably more frequent in the second

half of the twentieth century. One manifestation of this, as so often in

cases of language change, is that prescriptive commentators on language

began to condemn the innovation. The first edition of Fowler’s well-

known (British) dictionary of usage makes no mention of following but

elsewhere shows considerable liberality about this process of change:

‘‘there is a continual change going on by which certain participles or

adjectives acquire the character of prepositions or adverbs, no longer

needing the prop of a noun to cling to. . . . [We see] a development caught

in the act’’ (Fowler 1926). However, Gowers (1948, 56) declares, ‘‘Fol-

lowing is not a preposition. It is the participle of the verb follow and must

have a noun to agree with.’’ With its continued spread, the 1954 revised

edition of Fowler, edited by Gowers, still generally condemns the tempo-

ral usage, but softens the dictum by saying that it can be justified in cer-

tain circumstances.

One test for a participial use is that participial clauses require their

subject to be controlled by a noun phrase in the main clause (19a), while

prepositions do not. So (19b) is possible only if we anthropomorphize the

truck to control the subject of the verb seeing, whereas the preposition

after in (20) does not have any controlled subject:

(19) a. Seeing the cow, he swerved violently.

b. #Seeing the car, the truck swerved violently.

(20) After the discovery, the price of gold began to drop.
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We can observe the following development. The earlier cases clearly have

a participial verb with the basic motion sense of follow (21a). By exten-

sion, it later became common to use follow to indicate place (21b) or time

(21c). In these examples, it is still plausible to regard a noun phrase in the

main clause (including the unexpressed subject of the imperative in (21b))

as coreferential with the subject of following, but such an assumption is

not necessary: we could replace following with the preposition after with

virtually no change in interpretation. This ambiguity of analysis allowed

the temporal use to become generalized, and following began to be used

as a preposition with no possible controller (21d–e):

(21) a. They moved slowly, toward the main gate, following the wall.

b. Repeat the instructions following the asterisk.

c. This continued most of the week following that ill-starred trip to

church.

d. He bled profusely following circumcision.

e. Following a telephone call, a little earlier, Winter had said . . .

There is a tradition in linguistics of imposing categoricity on data. One

sees this also in NLP. For example, the tagging guidelines for the Penn

Treebank (Santorini 1990) declare about such cases that

putative prepositions ending in -ed or -ing should be tagged as past participles
(VBN) or gerunds (VBG), respectively, not as prepositions (IN).

According/VBG to reliable sources
Concerning/VBG your request of last week

Maintaining this as an arbitrary rule in the face of varying linguistic

usage is essentially meaningless. One can avoid accepting gradual change

by stipulating categoricity. But the results of such moves are not terribly

insightful: it seems that it would be useful to explore modeling words as

moving in a continuous space of syntactic category, with dense groupings

corresponding to traditional parts of speech (Tabor 2000).28

8.5 Explaining More: Probabilistic Models of Syntactic Usage

Much of the research in probabilistic NLP has worked with probabilities

over rules, such as the PCFG models discussed by Bod (this volume).

Such an approach probably seems old-fashioned to most linguists who

have moved to thinking in terms of constraints on linguistic representa-

tions. In this section, I adopt such an outlook and examine the space of
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probabilistic and categorical linguistic models, not from the point of view

of the substantive claims of particular theories, but from the perspective

of how constraints interact.

8.5.1 A Linguistic Example

I integrate with the theory discussion of a particular syntactic example

drawn from the interaction of passive, person, and topicality. This exam-

ple is drawn from joint work on stochastic syntax with Joan Bresnan and

Shipra Dingare; see Bresnan, Dingare, and Manning 2001 and Dingare

2001 for more details and references. The example is very much simplified

for expository purposes, but still has enough structure to permit compar-

ing and contrasting di¤erent approaches and to build example proba-

bilistic models. The central aim of the example is to support the following

proposition: The same categorical phenomena that are attributed to hard

grammatical constraints in some languages continue to show up as soft

constraints in other languages. This argues for a grammatical model that

can account for constraints varying in strength from soft to hard within

a uniform formal architecture, and for the explanatory inadequacy of a

theory that cannot. Compare these remarks by Givón (1979, 28) con-

trasting a categorical restriction on indefinite subjects in Krio with the

dispreference for them in English:

But are we dealing with two di¤erent kinds of facts in English and Krio? Hardly.
What we are dealing with is apparently the very same communicative tendency—
to reserve the subject position in the sentence for the topic, the old-information
argument, the ‘‘continuity marker.’’ In some languages (Krio, etc.) this commu-
nicative tendency is expressed at the categorial level of 100%. In other languages
(English, etc.) the very same communicative tendency is expressed ‘‘only’’ at the
noncategorial level of 90%. And a transformational-generative linguist will then be
forced to count this fact as competence in Krio and performance in English.

Ideas of stronger and weaker constraints are common in the typologi-

cal and functionalist syntactic literatures, but until now there has been

a dearth of formal syntactic models that can describe such a situation.

Rather, the soft constraints are treated as some sort of performance

e¤ect, which bears no theoretical relation to the categorical rules of other

languages, which would be seen as deriving, for instance, from parameter

settings in Universal Grammar.

A traditional linguist could argue that the competence system is cate-

gorical, with only hard constraints, but that there is a lot of noise in

the performance system, which means that ungrammatical sentences are
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sometimes produced. I presented the first argument against this position

in section 8.3.1, where the problem of the nonidentifiability of the com-

petence grammar (where to draw the line between grammatical and

ungrammatical sentences) was discussed. In this section, I concentrate on

the stronger argument that this model is unexplanatory because one

would have to invest the performance system with soft constraints that

should be treated uniformly with hard constraints of the competence

grammar of other languages. At any rate, one needs a model of any noise

attributed to the performance system; simply leaving it unspecified, as

in most linguistic work, means that the model makes no empirical pre-

dictions about actual language use.

Consider an event where a policeman scolded me, where I’m part of

the existing discourse (perhaps just by virtue of being a speech act par-

ticipant), but mention of the policeman is new. This input semantic

representation will be described by an extended argument structure as

seehpoliceman [new], me [old]i. In English, this idea would most com-

monly be expressed as an output by either a simple active or a simple

passive sentence, as in (22). An equivalent pair of choices is available in

many languages, but in others, one of these choices is excluded.

(22)

Constraints ¼ Features ¼
Properties

Input:

scoldhpoliceman [new],

me [old]i

Linking Discourse Person

f1 f2 f3
3Subj/Ag 3Subj/Older 31=2 > 3

*Nonsubj/Ag *Subj/Newer *3 > 1/2

a. A policeman scolded me 1 0 0

b. I was scolded by a

policeman

0 1 1

What determines a speaker’s choice here? There are many factors, but

in the simplified example in (22), we will consider just three. The con-

straints can be stated either positively or negatively, and I provide mne-

monic names for each polarity. Use of negative constraints is de rigeur in

Optimality Theory (Prince and Smolensky 1993), but the choice is arbi-

trary, and for the generalized linear models that I discuss later, it may be

more helpful to think of them as positive soft constraints (‘‘The subject

should be old information,’’ etc.).
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1. A linking constraint: 3Subj/Ag ¼ *Nonsubj/Ag. It is preferable for the

subject of the sentence to express the entity that is performing the action

of the sentence, that is, its agent.

2. A discourse constraint: 3Subj/Older ¼ *Subj/Newer. For purposes

of topic continuity, it is better for the previously mentioned (i.e., older)

entity to be the subject.

3. A person constraint: 31=2 > 3 ¼ �3 > 1=2. Because the 1st/2nd person

speech act participants are the central foci of discourse empathy, it is

better for one of them to be the subject, the thing that the sentence is

perceived to be about, than some other 3rd person entity.

These three constraints (also referred to as features or properties) are

shown in (22), labeled with both their mnemonic names and the expres-

sions f1, f2, and f3. The first constraint would favor use of the active,

while the other two would favor use of the passive. In (22), a 1 means a

constraint is satisfied, and a 0 means that it is violated (i.e., a 0 corre-

sponds to a * in an Optimality Theory tableau).

The constraints introduced here are all well supported crosslinguisti-

cally. Within Optimality Theory, their basis can be captured via the con-

cept of harmonic alignment (Prince and Smolensky 1993). When there are

two scales of prominence, one structural (e.g., syntactic positions) and the

other substantive (e.g., semantic features), harmonic alignment specifies a

way of building an (asymmetric) partially ordered set of constraints in the

form of linear scales, referred to as constraint subhierarchies. These give

putatively universal limits on constraint ordering/strength. For instance,

following Aissen (1999), we could perform harmonic alignment between

a surface grammatical relations hierarchy and a thematic hierarchy to

derive the importance of the linking constraint:

(23) Hierarchies

Agent � Patient

Subj � Nonsubj

Harmonic alignment

Subj/Ag > Subj/Pt

Nonsubj/Pt >

Nonsubj/Ag

Constraint subhierarchies

*Subj/Ptg *Subj/Ag

*Nonsubj/Agg
*Nonsubj/Pt

The second subhierarchy, restated positively, gives the result that univer-

sally a feature rewarding agents that are subjects must be ranked higher

than a feature rewarding patients that are subjects. For simplicity, in

the remainder, I only use the higher-ranked constraint, 3Subj/Ag ¼
*Nonsubj/Ag. Similarly, it is well supported in the typological literature

that there is a person hierarchy, where 1st and 2nd person outrank 3rd;
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that is, local person outranks nonlocal (Silverstein 1976; Kuno and

Kaburaki 1977; Givón 1994). This constraint could be modeled by har-

monic alignment of the person hierarchy with the grammatical relations

hierarchy, but I have expressed it as a simple relational constraint—just

to stress that the models allow the inclusion of any well-defined property

and are not restricted to one particular proposal for defining constraint

families. At any rate, in this manner, although our constraints are possi-

bly soft, not categorical, we can nevertheless build in and work with sub-

stantive linguistic hypotheses.

8.5.2 Categorical (Constraint-Based) Syntactic Theories

The standard but limiting case of a syntactic theory is the categorical

case, where outputs are either grammatical or ungrammatical. The gram-

mar assumes some kind of representation, commonly involving tree struc-

tures and/or attribute-value representations of grammatical features. The

grammar explains how the representation is used to describe an infinite

set of sentences, and it defines a number of hard (categorical) constraints

on those representations. Generative approaches assume a common set of

representations and principles, Universal Grammar (UG), underlying all

languages, plus language-specific constraints, which are conjoined with

the ones given by UG, and/or parameterized constraints, which are part

of UG but can vary on a language-particular basis. A grammatical sen-

tence must satisfy all the constraints. Sentences that do not are regarded

as syntactically ill formed or ungrammatical. For instance, there is an

agreement constraint, which ensures that, for the passive sentence in (22),

(24a) is grammatical, while (24b) is not:

(24) a. I was scolded by a policeman.

b. *I were scolded by a policeman.

A grammar of a language is the conjunction of a large set of such con-

straints over the representations. One can determine the grammatical

sentences of the language by solving the resulting large constraint satis-

faction problem (Carpenter 1992; Stabler 2001). In conventional, cate-

gorical NLP systems, ungrammatical sentences do not parse and so

cannot be processed.29

For all the main forms of formal/generative syntax, the grammar of

English will do no more than say that both the active and the passive

outputs in (22) are possible grammatical sentences of English. Since none
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of the constraints f1; . . . ; f3 are categorical in English, none would be part

of the grammar of English. In other words, the grammar says nothing at

all about why a speaker would choose one output or the other.

However, in many languages of the world, one or another of these

constraints is categorical, and a speaker would not be able to use senten-

ces corresponding to both of the English outputs in the situation specified

in (22).30 In general, passives are marked (Greenberg 1966; Trask 1979):

many languages lack a passive construction, passives are normally more

restricted language internally, and normally they are morphologically

marked. While this could be partly due to historical happenstance, I see

it as reflecting the constraint f1. If the constraint f1 is categorical in a

language, then passive forms will never occur:31

(25) scoldhpoliceman [new], me [old]i *Nonsubj/Ag

+ Active: Sag, Opt A policeman scolded

me

Passive: Spt, Oblag I was scolded by a

policeman

*!

The e¤ects of the person hierarchy on grammar are categorical in some

languages, most famously in languages with inverse systems, but also in

languages with person restrictions on passivization. In Lummi (Coast

Salishan, United States and Canada), for example, if one argument is 1st/

2nd person and the other is 3rd person, then the 1st/2nd person argu-

ment must be the subject. The appropriate choice of passive or active is

obligatory to achieve this (26)–(27). If both arguments are 3rd person

(28), then either active or passive is possible (Jelinek and Demers 1983,

1994):32

(26) a. *‘The man knows me/you.’

b. x
˙
či-t-n¼sPn/¼sxw

know-tr-pass ¼ 1/2.nom.subj

P
by

cP
the

swPy"qP"
man

‘I am/You are known by the man.’

(27) a. x
˙
či-t¼sPn/¼sxw

know-tr ¼ 1/2.nom.subj

cP
the

swPy"qP"
man

‘I/You know the man.’

b. *‘The man is known by me/you.’
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(28) a. x
˙
či-t-s

know-tr-3.erg.subj

cP
the

swPy"qP"
man

cP
the

swi"qo"Pl

boy

‘The man knows the boy.’

b. x
˙
či-t-n

know-tr-pass

cP
the

swi"qo"Pl

boy

P
by

cP
the

swPy"qP"
man

‘The boy is known by the man.’

Such interactions of person and voice (or inversion) occur in a consid-

erable number of Native American languages, and also more widely

(Bresnan, Dingare, and Manning 2001). To account for this, we can say

that in Lummi the person constraint f2 is categorical (i.e., part of the

grammar of Lummi), but the others are not. Some of the Lummi cases

then look like this:

(29) scoldhpoliceman [new], me [old]i *3 > 1/2

Active: S3, O1 A policeman scolded me *!

+ Passive: S1, Obl3 I was scolded by a policeman

(30) scoldhpoliceman [new], Fred [old]i *3 > 1/2

+ Active: S3, O3 A policeman scolded Fred

+ Passive: S3, Obl3 Fred was scolded by a

policeman

In a categorical model, if constraints come into conflict, then the form

is ungrammatical. Therefore, if a language had a categorical version of

both the linking constraint and the person constraint, there would be

no way to express the idea scoldhpoliceman, mei. Expressive gaps of this

sort may occasionally occur in language (perhaps, an example is express-

ing ideas that violate relative clause wh-extraction constraints—Pesetsky

1998), but are extremely rare. In general, languages seem to conspire to

avoid such gaps. In a categorical grammar, the linguist has to build such

conspiracies into the grammar by restricting the basic constraints, either

by adding complex negated conditions on constraints by hand or by

making use of ideas like the elsewhere principle (Kiparsky 1973).

The typological factors of person and linking are present in the analysis

of passive and voice in Kuno and Kaburaki 1977. Again, we see in cate-

gorical work a tendency to view as ungrammatical structures that are
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simply very marked, though perhaps licensed in special discourse cir-

cumstances. For example, Kuno and Kaburaki star as ungrammatical

sentences such as (31):

(31) *Mary was hit by me.

On their account, it violates the Ban on Conflicting Empathy Foci: on the

grammatical relations hierarchy, the choice of Mary as subject implies

that the speaker empathizes with Mary, while the speech-act participant

hierarchy dictates that the speaker must empathize most with himself. A

conflict is possible in an unmarked active sentence, but not in a marked

sentence type. However, Kato (1979) takes Kuno and Kaburaki to task

for such claims, providing corpus evidence of passives with 1st person

agents, such as (32):

(32) Gore [Vidal] never lacked love, nor was he abandoned by me.

(Time)

It is somewhat unclear what Kuno and Kaburaki were claiming in the

first place: while in some cases they explain a * ungrammaticality mark

by invoking the Ban on Conflicting Empathy Foci, in others they suggest

that special contexts can make violations of empathy constraints possible.

Their conclusion (p. 670) points to the kind of approach to optimization

over soft constraints that I am advocating here: ‘‘[V]iolations of empa-

thy constraints sometimes yield totally unacceptable sentences; at other

times, especially when other factors make up for the violations, they yield

only awkward or even acceptable sentences.’’ Such situations can only be

written about informally when working in a categorical formal frame-

work. When working in a probabilistic syntactic framework, they can be

formally modeled.

8.5.3 Optimality Theory

Standard Optimality Theory (OT) is not a probabilistic framework,33 but

it is a useful in-between point as we proceed from categorical to proba-

bilistic grammars. OT di¤ers from standard categorical grammars by

assuming that optimization over discrete symbol structures via ranked,

violable constraints is fundamental to the cognitive architecture of

language. Human language is described by a set of universal constraints,

which are hypothesized to be present in all grammars, but they are more

or less active depending on their ranking relative to other constraints.

The (unique) grammatical output for an input is the one that optimally
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satisfies the ranked constraints of a language, where satisfying a higher-

ranked constraint is judged superior to satisfying any number of lower-

ranked constraints. Consider again (22). If all three constraints were

present and categorical, there would be no output: the theory would sim-

ply be inconsistent. However, under the OT conception of ranked, viola-

ble constraints, we can maintain all the constraints and simply rank the

person constraint highest. As the person constraint is categorical for

Lummi (undominated in OT terminology), it will determine the passive

output for (22), as shown in (33b). When there are two 3rd person argu-

ments, Lummi falls back on other constraints. Since passivization is still

possible here, we conclude that the linking constraint is ranked low and

that other information structure constraints, such as the discourse con-

straint, determine the optimal output. For example, if the agent is the

topic, that is, the older information, then the active will be chosen over

the passive (33a), and vice versa.

(33) a.

Input:

vhag/3/old, pt/3/newi
*3 > 1/2 *Subj/Newer *Nonsubj/Ag

+ Active: Sag, Opt

Passive: Spt, Oblag *! *

b.

Input:

vhag/3/new, pt/1/oldi
*3 > 1/2 *Subj/Newer *Nonsubj/Ag

Active: Sag, Opt *! *

+ Passive: Spt, Oblag *

The introduction of constraint ranking can potentially give a better

description of Lummi syntax. It shows how secondary constraints come

into play when the most important constraints are satisfied (a phenome-

non referred to as ‘‘emergence of the unmarked’’). The output form does

not have to obey all these constraints: it is most important that person be

observed, but if this constraint does not di¤erentiate forms, then lower-

ranked constraints show through and determine the grammatical output.

This automatically gives us the kind of elsewhere hierarchy that has been

widely observed in linguistic systems (Kiparsky 1973). This ranking of
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constraints, and the ability of less highly ranked constraints to show

through, is the hallmark of OT.

A problem with OT is that it flies in the face of Sapir’s words with

which this chapter began: OT predicts that there should always be a

unique output for every input. The highest-ranked di¤erentiating con-

straint always determines things, giving a unique output. This is tenable

in some areas of linguistics, but it goes against widespread variation in the

use of language, not just across members of a community, but usually

also by each individual (Guy 1981; Labov 1994; Kroch 2001). Because

of the generally problematic nature of this theoretical assumption, a small

industry has arisen trying to work variable outputs into OT (Nagy and

Reynolds 1997; Boersma 1997; Pesetsky 1998; Müller 1999; Anttila

2001). For the particular case here, there are existing OT accounts of

diathesis alternations based on typological evidence (Legendre, Ray-

mond, and Smolensky 1993; Ackema and Neeleman 1998; Aissen 1999;

Lødrup 1999), but once one incorporates the role of discourse and infor-

mation structure into diathesis prediction, the consequent variation sug-

gests the use of a stochastic account. Below, I will discuss Boersma’s

stochastic OT, the best-motivated and most thoroughly probabilistic

extension to OT.

It is interesting that, historically (for at least Paul Smolensky, one of

the primary architects of OT), OT is a retreat from a quantitative frame-

work that does harmony maximization over numerical soft constraints.

The earlier approach of Harmonic Grammar (Smolensky 1986; Legendre,

Miyata, and Smolensky 1990), although couched in a connectionist net-

work, is mathematically extremely close to the loglinear models discussed

below (Smolensky and Legendre 2000). Prince and Smolensky (1993, 198)

motivate OT by noting that in practice, ‘‘[o]rder, not quantity (or count-

ing), is the key in Harmonic Grammar–based theories. In Optimality

Theory, constraints are ranked, not weighted; harmonic evaluation

involves the abstract algebra of order relations rather than numerical

adjudication between quantities.’’ This strict domination ordering of

constraints is argued by Prince and Smolensky to be the basic, funda-

mental, ubiquitous, universal, and unmarked means of constraint inter-

action within linguistics.

It is true that such a ranking is often su‰cient ( just as it is true for

some purposes that categorical constraints are su‰cient), but the need to

handle variability is one key reason for believing that sometimes more is

needed. The other reason is to be able to handle the phenomenon of
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‘‘ganging up,’’ where multiple lesser constraint violations are deemed to

make an output worse than another with just one, more serious constraint

violation. There is partial recognition of and a partial treatment for this

phenomenon within OT via the theory of local conjunction (Smolensky

1993, 1997), whereby a conjunction of two constraints can be given a

position in the constraint ordering separate from (i.e., higher than) the

two individual constraints. But as soon as one wishes to allow a general

conception of constraints having a combined e¤ect (i.e., ‘‘ganging up’’),

then one needs to bring back the numbers. An ordering alone is insu‰-

cient to assess when multiple lesser constraints will or will not overrule

higher-ranked constraints, or (in terms of the local conjunction perspec-

tive) where a local conjunction should be placed within the overall con-

straint ranking. While Smolensky motivates local conjunction as a limited

but necessary deviation from the basic method of linguistic constraint

interaction, it goes somewhat against the spirit of OT and suggests the

model is not quite right: at the end of the day, a combination of con-

straint violations is deemed worse than a violation of just the highest-

ranked individual constraint.

8.5.4 The Linguistic Example, Continued

Considering again (22), none of the three constraints shown are categori-

cal in the grammar of English, but all of them play a role. All else being

equal, old information is more commonly the subject, local persons are

more commonly the subject, and agents are more commonly the subject.

Quantitative data can demonstrate that a language exhibits soft gen-

eralizations corresponding to what are categorical generalizations in other

languages. A probabilistic model can then model the strength of these

preferences, their interaction with each other, and their interaction with

other principles of grammar. By giving variable outputs for the same

input, it can predict the statistical patterning of the data. Beyond this, the

model allows us to connect such soft constraints with the categorical

restrictions that exist in other languages, naturally capturing that they are

reflections of the same underlying principles. This serves to e¤ectively link

typological and quantitative evidence.

Bresnan, Dingare, and Manning (2001) collected counts over transitive

verbs from parsed portions of the Switchboard corpus of conversational

American English (Godfrey, Holliman, and McDaniel 1992), analyz-

ing for person and active versus passive. Switchboard is a database of

spontaneous telephone conversations between anonymous callers spread
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across the United States. We chose Switchboard because it is a large,

parsed, spoken corpus (about 1 million words are parsed). The parsing

made our data collection significantly easier. Not only is spoken material

more natural; it also includes numerous instances of 1st and 2nd person,

whereas in many of the (mainly written) corpora available to us, 1st and

2nd person are extremely rare. On the other hand, full passives (ones with

by phrases) turn out to be very rare, and so even though we counted

around 10,000 clauses, the results table discussed below still has a couple

of zeroes in it.34

English does not have a categorical constraint of person on passiv-

ization, but the same phenomenon is nonetheless at work as a soft

constraint. We found that the same disharmonic person/argument asso-

ciations that are avoided categorically in languages like Lummi also

depress or elevate the relative frequency of passives in the Switchboard

corpus. Compared to the rate of passivization for inputs of 3rd persons

acting on 3rd persons (1.2%), the rate of passivization for 1st or 2nd per-

son acting on 3rd is substantially depressed (0%) while that for 3rd person

acting on 1st or 2nd (2.9%) is substantially elevated; see table 8.1.35 The

leftmost column in the table gives the four types of inputs (local person

acting on local, local acting on nonlocal, etc.). For each input, we calcu-

late the rate of passivization from the number of times that input was

realized as passive. The percentage of full passives in spoken English is

very small: most passives involve suppression of the agent (a further 114

examples with a local person patient, and 348 examples with a 3rd person

patient).36 Person is only a small part of the picture in determining

the choice of active/passive in English (information structure, genre, and

the like are more important—but we left consideration of information

structure to further research because it is much more di‰cult to clas-

Table 8.1

Counts of actives and full passives in the Switchboard corpus, broken down by
agent and patient person

Event roles # act. # pass. % act. % pass.

vhag/1,2; pt/1,2i 179 0 100.00 0.00

vhag/1,2; pt/3i 6,246 0 100.00 0.00

vhag/3; pt/3i 3,110 39 98.76 1.24

vhag/3; pt/1,2i 472 14 97.11 2.89

Total/Mean 10,007 53 99.47 0.53
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sify). Nevertheless, there is a highly significant e¤ect of person on active/

passive choice.37 The very same hard constraint found in Lummi appears

as a soft constraint in English.

8.5.5 Stochastic Optimality Theory

Stochastic OT (Boersma 1997, 1998; Boersma and Hayes 2001) basically

follows OT, but di¤ers from it in two essential ways. First, constraints are

not simply ordered, but in fact have a value on the continuous scale of

real numbers. Constraints are specific distances apart, and these distances

are relevant to what the theory predicts. Second, there is stochastic eval-

uation, which leads to variation and hence to a probability distribution

over outputs from the grammar for a certain input. At each evaluation,

the value of each constraint is perturbed by temporarily adding to its

ranking value a random value drawn from a normal distribution. For

example, a constraint with a rank of 99.6 could be evaluated at 97.1 or

105. It is the constraint ranking that results from this perturbation that is

used in evaluation. Hence, the grammar constrains but underdetermines

the output. One could think that this model of random perturbation

is rather strange: does a speaker roll dice before deciding how to express

him- or herself ? There may be some inherent randomness in human

behavior, but principally the randomness simply represents the incom-

pleteness of our model and our uncertainty about the world (Bresnan and

Deo 2000). Linguistic production is influenced by many factors that

we would not wish to put into a syntactic model.38 We cannot know or

model all of these, so we are predicting simply that if one averages over

all such e¤ects, then certain outputs will occur a certain proportion of the

time.

For instance, for the constraints in figure 8.2, *Nonsubj/Ag and *Subj/

Newer would sometimes rerank, while a reranking of *Nonsubj/Ag and
�3 > 1=2 would be quite rare, but still occasionally noticeable.39 In other

Figure 8.2

A stochastic OT model of the English passive. This is a constructed model, not
based on real data. Note that the scale is reversed so the highest-ranked constraint
is to the left, as in standard OT.
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words, the situation would resemble that observed for the English active/

passive choice.40 Active forms would usually result, as the constraint to

disprefer passives usually wins; but sometimes the discourse constraint

would determine the optimal output, with passives being used to get old

information into the subject position; and occasionally the person con-

straint would win out, causing a preference for passivization when the

patient is local person, even when the outputs di¤er in how well they meet

the discourse constraint. In some of these last rare cases, the evaluation

constraint ranking for English would look just like the regular constraint

ranking in Lummi shown in (33). This exemplifies the overarching point

that variable outputs within grammars can reflect the variation between

grammars in a way that theories of soft constraints can illuminate.

Indeed, intraspeaker variation appears to be constrained by the same

typological markedness factors that play a role in interspeaker variation

(Cheshire, Edwards, and Whittle 1989, 1993; Ihalainen 1991; Cheshire

1991, 1996; Schilling-Estes and Wolfram 1994; Anderwald 1999; Bresnan

and Deo 2000).

The advantages of the generalization to stochastic evaluation over

standard OT include a robust learning algorithm and the capability of

learning frequency distributions, which permits a unified account of

both variable and categorical data (Boersma and Hayes 2001). In syntax

and semantics, this approach has been adopted to explain problems of

optionality and ambiguity that arise with nonstochastic OT (Bresnan and

Deo 2000; Bresnan, Dingare, and Manning 2001; Koontz-Garboden

2001; Clark 2001; Boersma, in press). Like OT, stochastic OT can explain

both crosslinguistic implicational generalizations (i.e., typological asym-

metries) and within-language ‘‘emergence of the unmarked’’ e¤ects. Sto-

chastic OT thus preserves the core typological predictions of ordinal OT

arising from universal subhierarchies of the kind briefly mentioned in

section 8.5.1. This has the consequence that substantive linguistic claims

(such as that making an agent a nonsubject must be more marked than

making a patient a nonsubject) are still embodied in the theory. As a

consequence, many types of languages (those that categorically violate

hierarchies) are not learnable under the theory, thereby accounting for the

typological gaps. A stochastic OT grammar with the constraint set shown

cannot be made to learn an ‘‘anti-Lummi’’ where passivization occurs

when there is a local person agent and a 3rd person patient.

Although this has only just begun to be explored (Bresnan, Dingare,

and Manning 2001; Clark 2001), stochastic OT also seems quite promis-
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ing for modeling historical change. If a process of historical change is

modeled by the movement in strength of a constraint along the ranking

scale, as implied by stochastic OT, then (all else being equal) smooth

changes in the relative frequencies of usage are predicted, just as is

generally observed in practice. In particular, assuming that the choice

between output A and B for an input I is crucially dependent on the dif-

ference in ranking of two constraints a and b, and that a is moving at a

constant rate to meet and then cross b in ranking, then stochastic OT

predicts that the ratio between outputs A and B over time will be a logis-

tic curve, of the sort shown in figure 8.4. That is, we would expect to see

the kind of S-curve between the proportion of occurrences of the two

outputs that has been widely noted in historical and sociolinguistics

(Weinreich, Labov, and Herzog 1968; Bailey 1973; Kroch 2001). A sto-

chastic grammatical model is in many ways a more plausible model for

syntactic change than the competing-grammars model prevalent in gen-

erative grammar (Kroch 2001). By design (reflecting the orthodoxy of

generative grammar), the competing-grammars model excludes variation

from within grammars and places it as a choice among several competing

grammars. Such a model can only easily generate variable outputs char-

acterized by covariation between phenomena, captured by the choice of

whether grammar A or grammar B was selected to generate a sentence.

Where parameters vary independently or change at di¤erent rates, the

competing-grammars model requires an exponential number of compet-

ing grammars (Guy 1997; Bresnan and Deo 2000), and within-sentence

variation (as in (2j)) requires intrasentential switching among them.

A stochastic grammar is both more economical, by localizing points of

di¤erence, and more expressive, by allowing variation within a single

grammar.

A potential limitation of stochastic OT is that it still does not pro-

vide for doing optimization over the combination of all the constraint

values—some number of highly ranked constraints at evaluation time

will determine the winner, and the rest will be ignored. In particular,

lower-ranked constraint violations cannot ‘‘gang up’’ to defeat a higher-

ranked constraint. Each will individually occasionally be ranked over the

higher constraint, and having multiple violations will cause this to happen

more often, but there is no true ‘‘ganging up.’’ Providing that the con-

straints are well spaced, a form that violates 10 lesser-ranked constraints

will still almost always lose to one that violates 1 high-ranked constraint.

This is potentially problematic as there is some evidence for ganging-up
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e¤ects in syntax (Keller 2000) and phonetics/phonology (Guy 1997;

Flemming 2001). Further research is needed to see whether the con-

strained model of constraint interaction provided by stochastic OT is

adequate for all linguistic systems. Kuhn (2001a,b) suggests that a sto-

chastic OT model is quite promising in generation, when choosing on

linguistic grounds among a fairly limited number of candidates, but seems

less plausible as a parsing/interpretation model where in general most of

the readings of an ambiguous sentence can be made plausible by varying

context and lexical items in a way not easily modeled by an OT approach

(the decisive evidence can come from many places). This would fit with

the facts on the ground, where OT models (stochastic or otherwise) have

been mainly employed for generation (though see Kuhn 2001a for

discussion of bidirectional OT), whereas work in NLP, which focuses

mainly on parsing, has tended to use more general feature interaction

models.

8.5.6 Loglinear Models

Within speech and natural language processing, there has been a large

movement away from categorical linguistic models to statistical models.

Most such models are based on either markov chain models or branch-

ing process models (Harris 1963), such as PCFGs (Bod, this volume).

An important advance in this area has been the application of loglinear

models (Agresti 1990) to modeling linguistic systems (Rosenfeld 1994;

Ratnaparkhi 1998). In particular, such statistical models can deal with

the many interacting dependencies and the structural complexity found in

modern syntactic theories, such as constraint-based theories of syntax, by

allowing arbitrary features to be placed over linguistic representations

and then combined into a probability model (Abney 1997; Johnson et al.

1999; Riezler et al. 2000).

In the above OT and stochastic OT frameworks, the output (‘‘gram-

matical’’) linguistic structures are those that are optimal among the subset

of possible linguistic structures that can be generated to correspond to

a certain input. For example, in OT generation, the grammatical linguis-

tic structures are precisely those that are optimal with respect to all other

possible structures with the same semantic interpretation or meaning.

This corresponds to a conditional probability distribution in the case of

loglinear models, in which the probability of an output is conditioned

on the input semantic interpretation. For example (22), the probability

of di¤erent outputs ok for an input i would be modeled as a conditional
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distribution in terms of weights wj given to the di¤erent features fj as

follows:

PðokjiÞ ¼
1

ZðiÞ e
w1� f1ðok ; iÞþw2� f2ðok ; iÞþw3� f3ðok ; iÞ:

Here ZðiÞ is just a normalization constant—a technical way of making

sure a probability distribution results, by scaling the exponential terms to

make sure that the sums of the probabilities for all the ok add to one.

Such exponential models are also called maximum entropy models because

an exponential distribution maximizes the entropy of the probability dis-

tribution subject to the given constraints, and loglinear models because

taking the log of both sides results in the linear model:

log PðokjiÞ ¼ w1 � f1ðok; iÞ þ w2 � f2ðok; iÞ þ w3 � f3ðok; iÞ � log ZðiÞ:

While the features used can have arbitrary values, in our example (22),

the features are just binary. Especially in this case, the above formula has

an easy interpretation: the log of the probability of an output is straight-

forwardly related to the sum of the weights for the features that are sat-

isfied (i.e., in OT terms, unviolated).

For example, if we assume the weights w1 ¼ 4, w2 ¼ 3, and w3 ¼ 2,

then we have that

log P(active) ¼ w1 � log Z ¼ 4� log Z,

log P(passive) ¼ w2 þ w3 � log Z ¼ 5� log Z.

Assuming that these are the only possible outputs for this input, we can

easily calculate the normalization term Z (using 1
Z
ðe5 þ e4Þ ¼ 1 to obtain

Z) and get the result that:

P(active) ¼ 0.27,

P(passive) ¼ 0.73.

There are actually two ways we could use this result. By optimizing over

loglinear models—that is, by taking the most probable structure,

arg maxk PðokjiÞ—one can determine a unique output that best satisfies

multiple conflicting constraints, in a manner similar to OT, but allowing

for arbitrary ganging up of features. That is, for this particular input and

these weights, the model would always choose a passive output. But note

crucially that it would do this because constraints f2 and f3 gang up to

beat out constraint f1, which is the highest-weighted constraint. Alter-

natively, by using the model as a probability distribution over outputs,

we would get variable outputs in the style of stochastic OT, but again
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with more flexibility in constraint interaction than the systems currently

employed in linguistics. The model would predict that one would get a

passive output about 3/4 of the time and an active output 1/4 of the time

for this configuration. Given actual data on how often actives and pas-

sives occur for various input feature specifications, we can use fitting

algorithms to automatically find the weights wi that best fit the data. We

still get the e¤ect of ‘‘emergence of the unmarked’’: if all outputs share

the same constraint violations or satisfactions for highly weighted con-

straints, then the optimal candidate (under the first interpretation) or the

candidate that is most commonly output (under the second interpreta-

tion) will be determined by low-ranked constraints on which the various

output candidates di¤er. However, there has so far not been much

research into how typological restrictions on the space of possible gram-

mars can be built into loglinear models.

8.5.7 Generalized Linear Models

In the last couple of decades, there has been a revolution in the way sta-

tisticians standardly model categorical count/proportion data of the kind

most commonly found in linguistics (i.e., under the assumption that one’s

categories are discrete). The traditional tools were some simple para-

metric and nonparametric test statistics, of which by far the best known

is the (Pearson) chi-square (w2) test. These approaches sat as an under-

developed sibling beside the sophisticated theory of linear models for

continuous variables. Most people will have seen at least simple linear

regression, analyzing a set of points ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞ, as in

figure 8.3. We would like to find the line

f ðxÞ ¼ mxþ b

with parameters m and b that fits these points best (in the sense of mini-

mizing the squared error indicated by the arrow lengths in the figure).

This can easily be extended to a multiple linear regression model,

where the response variable ðyiÞ is predicted from a variety of explana-

tory xij variables, or even suitable functions of them. For example, we

might have multiple linear regression models that look like one of these:

f ðyjx1; x2Þ ¼ b0 þ b1x1 þ b2x2;

f ðyjx1; x2Þ ¼ b0 þ b1 logðx1Þ þ b2x2 þ b3x2
2 :

Indeed, such a multiple linear regression model was suggested for variable

rules in Labov’s early sociolinguistic work (Labov 1969):41
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p ¼ b0 þ b1x1 þ � � � þ bpxp:

Here the xi are indicator variables associated with a certain environmen-

tal feature, the bi are weights, and p is the probability of a rule applying.

However, this model is inappropriate when the aim is for the response

variable to be a probability of rule application. Suppose there are three

explanatory variables that individually strongly suggest a certain result,

say with a probability of .8. If we set the corresponding bi weights to

around .8, the problem is that if all three of these features were present,

then, when linearly combined, the value for the response variable would

exceed one—an invalid value for a probability. Since this cannot be

allowed, the best fit values in this model would be to set the bi to a value

around .3, which would mean that when only one of the features is pres-

ent, the predictions of the model would be very poor (predicting only

a 30% rather than 80% chance of the result). The immediate response

to this was to consider multiplicative models of application and non-

application (Cedergren and Sanko¤ 1974), but these have generally been

replaced by logistic regression models (Rousseau and Sanko¤ 1978a;

Sanko¤ 1988).

The logistic regression model is one common case of a generalized lin-

ear model, suitable for modeling binary response variables. The approach

�
Figure 8.3

An example of linear regression. The line y ¼ 0:25xþ 1 is the best least-squares
fit for the points ð1; 1Þ, ð2; 2Þ, ð6; 1:5Þ, ð7; 3:5Þ. Arrows show the y values for each
x value given by the model.
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of generalized linear models has transformed the study of categorical data

by bringing all the tools of traditional linear regression to the categorical

case. This is done by generalizing the linear model by allowing the com-

bined value of the explanatory variables to be equal to some function of

the response variable, termed the link function g. So we have

gðyÞ ¼ b0 þ b1x1 þ � � � þ bpxp:

For traditional linear regression (with a normally distributed response), g

is the identity function. By choosing a log function for g, we obtain the

loglinear models of the preceding section—a product of factors gives a

sum of log factors. For a binary response variable, the appropriate link

function is the logit function logitðpÞ ¼ log½p=ð1� pÞ�. The inverse of the

logit function is the logistic function. If logitðpÞ ¼ z, then

p ¼ ez

1þ ez
:

The logistic function will map any value of the right-hand side (z) to a

proportion value between 0 and 1, as shown in figure 8.4. It is this logit

model that has been the basis of VARBRUL sociolinguistic modeling

since the late 1970s. An example relevant to the study in this section is

Weiner and Labov’s (1983) study of factors that predict active and pas-

sive in ‘‘agentless’’ sentences.

Figure 8.4

The logistic function
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There is not space here for a detailed treatment of generalized linear

models. There are many good books that cover these models in detail,

though not always in a way approachable to linguists (Bishop, Fienberg,

and Holland 1977 is the classic; Agresti 1990 and McCullagh and Nelder

1990 are standard references; Lloyd 1999 is more recent; Fienberg 1980

and Agresti 1996 are more approachable; Powers and Xie 1999 is directed

toward social scientists; and some recent general statistical methods

books such as Ramsey and Schafer 1997 give elementary coverage).

However, since they are likely to continue to be so important to and use-

ful in the development of probabilistic models over linguistic data, it is

helpful to understand at least the main idea and how other models relate

to them.

The logistic regression model is appropriate for binary response varia-

bles or proportions based on binomial counts—that is, when the number

of trials is fixed. It is thus the natural model to use in the variable rules

approach, where one is predicting the application or nonapplication of a

particular rule. However, another very natural method is to simply collect

a contingency table of counts for how often various linguistic tokens

appear, organized into dimensions according to how they do or do not

satisfy various constraints. For such a model, there is no natural limit to

the counts in one cell, and the loglinear model, with a log link function, is

appropriate. This model can be fit as a multinomial model by using iter-

ative proportional fitting methods (Darroch and Ratcli¤ 1972) or general

minimization techniques, such as conjugate gradient descent (Johnson et

al. 1999).

Within a generalized linear model approach, an OT grammar is a spe-

cial case, where the weight of each successive constraint is so much

smaller than the weight of preceding constraints that there is no oppor-

tunity for ganging up—the highest-weighted di¤erentiating feature

always determines the outcome. The details di¤er slightly between the

logistic and loglinear cases, but this connection has been noted multiple

times. Rousseau and Sanko¤ (1978a, 66–67) discuss the possibility of this

as a ‘‘whole hierarchy of successively weaker knockout features.’’ Prince

and Smolensky (1993, 200) point out that ‘‘Optimality Theory . . . repre-

sents a very specialized kind of Harmonic Grammar, with exponential

weighting of the constraints.’’ Johnson (1998a) shows how standard OT

(with a bound on the number of constraint violations) corresponds to

loglinear models with the constraint weights being far enough apart that

constraints do not interact. The last two are equivalent in that Harmonic
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Grammar connectionist nets approximate loglinear models (Smolensky

and Legendre 2000).

The example presented here is excessively simple (for expository pur-

poses): there are just three constraints, designed to work over simple

transitive sentences. I should therefore stress that these models can scale

up. This has not been much demonstrated for linguistic goals, but within

NLP, loglinear models with well over 100,000 features are regularly being

deployed for tasks of parsing and disambiguation (Ratnaparkhi 1999;

Toutanova and Manning 2000). Essentially, the models are based on

su‰cient statistics, which are counts of how often certain things happen

or fail to happen in a sentence. These constraints can be any evaluable

function, which can probe arbitrary aspects of sentence structure. For

instance, Johnson et al. (1999) place features over grammatical relations,

argument/adjunct status, low versus high attachment, and so on. Essen-

tially, we are left with the customary linguistic task of finding the right

constraints on linguistic goodness. Once we have them, they can be auto-

matically weighted within a loglinear model.

8.6 Conclusion

There are many phenomena in syntax that cry out for noncategorical and

probabilistic modeling and explanation. The opportunity to leave behind

ill-fitting categorical assumptions and to better model probabilities of

use in syntax is exciting. The existence of ‘‘soft’’ constraints within the

variable output of an individual speaker, of exactly the same kind as the

typological syntactic constraints found across languages, makes explora-

tion of probabilistic grammar models compelling. One is not limited to

simple surface representations: I have tried to outline how probabilistic

models can be applied on top of one’s favorite sophisticated linguistic rep-

resentations. The frequency evidence needed for parameter estimation in

probabilistic models requires much more data collection and much more

careful evaluation and model building than traditional syntax, where one

example can be the basis of a new theory, but the results can enrich lin-

guistic theory by revealing the soft constraints at work in language use.

This is an area ripe for exploration by the next generation of syntacticians.

Notes

My thanks to Bas Aarts, Farrell Ackerman, Harald Baayen, Rens Bod, Joan
Bresnan, Ariel Cohen, Shipra Dingare, Mark Johnson, Dan Klein, Mike Max-
well, Simon Musgrave, John Paolillo, and Hidetosi Sirai for comments on a draft
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of this chapter, or discussions of issues related to it. This chapter draws analyses
and insight from joint research with Joan Bresnan and Shipra Dingare. In partic-
ular, although the presentation is di¤erent, the central example in the latter part
of the chapter is drawn from Bresnan, Dingare, and Manning 2001. Taking lin-
guistic usage seriously requires paying more attention to sociolinguistic variation
than a syntactician traditionally did: I have found Chambers 1995 very helpful,
and a few ideas and quotations are borrowed from that work. Parts of the
research presented here were supported by the National Science Foundation
under grant BCS-9818077.

1. For instance, Gleason 1961, a standard text of the period, devotes a chapter to
a nontechnical introduction to Information Theory and suggests that it is likely to
have a big impact on linguistics.

2. All italics in the cited examples are mine. Sources: (2a) NYT newswire, 1995/
09/01 article by Dave Ahearn quoting Alan Greenspan; (2b) NYT newswire,
1995/11/29; (2c) John McHale, Economics 1415, Reform of the Public Sector,
Fall 1999, hhttp://icg.harvard.edu/~ec1415/lecture/lecturenote4.pdfi; (2d) Ed
Zimmer, hhttp://tenonline.org/art/9506.htmli; (2e) State of California, Uniform
Building Code, Title 24, Section 3306(r), hhttp://www.johnsonite.com/techdata/
section2/TITLE24C.HTMi; (2f ) Ron Downing (Alaskan second-generation
halibut fishing boat captain), March 10, 1998, hhttp://www.alaska.net/~gusto/
goodbye.txti; (2g) Matthew Hindson (composer) catalogue notes, hhttp://
members.ozemail.com.au/~mhindson/catalogue/pnotes-pi.htmli; (2h) Sunday

Business Times, South Africa, hhttp://www.btimes.co.za/99/0425/comp/
comp04.htmi; (2i) Leigh Strope, Associated Press, 2000/11/07, hhttp://www.
theindependent.com/stories/110700/ele_turnout07.htmli; (2j) Je¤rey M. Reisner,
hhttp://www.allcities.org/Articles/Ar_Reisner.htmi.

3. See also Fillmore 1992 for an amusing account of the strengths and weaknesses
of corpus linguistics.

4. See, for instance, the research methods discussed in McEnery and Wilson 2001.
For Windows computers, Mike Scott’s Wordsmith Tools (hhttp://www.liv.ac.uk/

~ms2928/wordsmith/i) is a leading recent example of a corpus linguistics tool
based around concordances.

5. The parsed sentences in the Penn Treebank (Marcus, Santorini, and Marcin-
kiewicz 1993) provide one useful source of data for complex syntactic queries
(used, for example, by Wasow (1997) and Bresnan, Dingare, and Manning
(2001)). But the tgrep access software supplied with some versions is limited to
Unix and has not been actively maintained (though see hhttp://www-2.cs.cmu.
edu/~dr/Tgrep2/i for an improved Tgrep2 program—also for Unix/Linux). The
recently released ICE-GB corpus comes with a friendly graphical tool for Win-
dows, ICECUP, which allows searching of parse trees (Wallis, Aarts, and Nelson
1999; Nelson, Wallis, and Aarts, in press). See hhttp://nlp.stanford.edu/links/
statnlp.htmli for a listing of corpora and NLP tools.

6. Recently, considerably more attention has been paid to the reliability of intu-
itive judgments and good methodologies for gathering them (Schütze 1996; Cow-
art 1997), but most linguists in practice pay little attention to this area.
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7. In English, most verbs can be used either transitively or intransitively, and in
introductory syntax classes we grope for examples of verbs that are purely transi-
tive or intransitive, using verbs such as those in (3). Linguistic examples are
standardly informally rated for exclusively syntactic well-formedness on the scale
* (ungrammatical) > ?* > ?? > ? (questionable) > unmarked (grammatical). I use
# to indicate a sentence that is somehow deviant, without distinguishing syntactic,
semantic, or contextual factors.

8. It is certainly not my aim here to single out Pollard and Sag for reproach.
I choose them as a source simply because they actually provide clear testable
claims, as part of a commitment to broad observational adequacy. This has
become increasingly rare in generative syntax, and I would not want to give the
impression that another theory that assumes a categorical model of argument
frames, but does not provide any examples of them, is superior.

9. The source for these and following examples is Linguistic Data Consortium
New York Times newswire: (6a) 1994/08/04; (6b) 1994/12/07; (6c) 1994/10/03;
(6d) 1995/01/16; (6e) 1995/08/04; (8a) 1995/12/15; (8b) 1996/05/15; (10) 1995/05/
01; (12) 1994/09/07.

10. The exact numbers in this graph should be approached with caution, but
I hope it is adequate to illustrate the general point. It would be necessary to do
larger counts to get accurate probability estimates of rare patterns. Also, as is
discussed by Roland and Jurafsky (1998), one should note that the frequency of
di¤erent subcategorization patterns varies greatly with the genre of the text.

In this graph, forms with as followed by a verbal past/passive participle were
collapsed with as plus adjective, and passive examples were grouped with the
subcategorization for the corresponding active form.

11. Sampson (1987; 2001, chap. 11) also argues against a grammatical/ungram-
matical distinction on the basis of a cline of commonness, though I think his
evidence is less compelling (see Taylor, Grover, and Briscoe 1989; Culy 1998).

12. The OALD is one of several dictionaries that attempt to list subcategoriza-
tion information (in a traditional form). Other sources of wide-coverage sub-
categorization information include resources constructed for NLP, such as
COMLEX (Grishman, Macleod, and Meyers 1994). The discussion in this section
expands the discussion of retire in Manning 1993.

13. All italics mine. These examples are from Linguistic Data Consortium Wall

Street Journal newswire: (13a) 1994/11/23, (13b) 1994/11/20, (13c) 1987/04/07,
(13d) 1986/12/08, (13e) 1994/12/12.

14. These are rough estimates from 1987 WSJ. Recall note 10—in particular, the
extremely high frequency of transitive uses of retire would be unusual in many
genres, but companies often retire debt in the WSJ.

15. Do these models estimate the entire frame jointly, or the parts of it inde-
pendently? Some combination of these methods is generally best, since the joint
distribution gives better information, when it can be estimated, but the sparseness
of available data means that it is commonly better to work with the simpler but
more robust independent estimates.
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16. A semantic selection model of roughly the required sort has been explored in
NLP models by Resnik (1996).

17. The judgments for these examples are quite murky and certainly wouldn’t
convince anyone who doesn’t already believe in the argument/adjunct distinction.
The distinctions are often sharper in nominalizations, which provide less freedom
of ordering than verb phrases (e.g., contrast Bill Clinton’s retirement from politics

in 2001 with ?Bill Clinton’s retirement in 2001 from politics). See Radford 1988 for
more convincing examples.

18. Ross’s work ‘‘squishes’’ is another productive source of examples (Ross 1972,
1973a,b,c).

19. Of course, I would not want to suggest that human grammatical knowledge
stipulates exactly this. Rather, it should follow from more general principles of
information structure.

20. Contrast this expression with the language-understanding conditional proba-
bility from section 8.1.

21. The concept of ‘‘marginalizing out’’ in probability refers to removing a vari-
able that we are not interested in, by summing (in the discrete case) a probability
expression over all values of that variable. For instance, if there were just three
contexts, c1, c2, and c3, we could marginalize out the context by computing

Pð f ;mÞ ¼ Pð f ;m; c1Þ þ Pð f ;m; c2Þ þ Pð f ;m; c3Þ ¼
X

ci

PðciÞPð f ;mjciÞ:

Computationally e‰cient methods for manipulating individual variables and
marginalizing out ones that are not of interest are at the heart of work on using
Bayesian networks for reasoning (Jensen and Jensen 2001).

22. The Z term is needed for renormalization so that a probability distribution
results. See the example of renormalization in section 8.5.6.

23. Though I should note that there has also also been considerable progress in
categorical learning. A number of good books on statistical and machine learning
are available (Bishop 1995; Ripley 1996; Mitchell 1997; Hastie, Tibshirani, and
Friedman 2001), and conferences such as CoNLL (hhttp://ilk.kub.nl/~signll/i)
focus on natural language learning.

24. See Bod 1998 for further evidence of human sensitivity to linguistic
frequencies.

25. Concern about overly powerful learning methods is, admittedly, an issue that
has been felt more keenly in linguistics than in most other areas, which have con-
centrated on finding su‰ciently powerful learning methods. Smolensky (1999)
attributes to Dave Rumelhart the notion that ‘‘linguists think backwards.’’ Never-
theless, the goal of explaining the extensive but limited typological variation of
human language is a real and valid one.

26. A couple of other examples appear in chapter 1 of Manning and Schütze 1999.

27. For example, ‘‘The wood being preserv’d dry will dure a very long time’’
(Evelyn 1664).
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28. Another approach is to make progressively finer discrete subdivisions of
word types, as is possible within a hierarchical lexicon approach (Malouf 2000). If
the subdivisions are fine enough, it becomes di‰cult to argue against such an
approach by linguistic means (since there are normally only a finite number of
linguistic tests to employ). Indeed, such a model approaches a continuous model
in the limit. Such an approach is not necessarily more insightful or constrained,
though; indeed, I believe that locating words in a continuous space may be a more
natural way to approach modeling variation and change.

29. Although, in practical NLP systems, people have commonly added some kind
of heuristic repair strategy.

30. Below, I discuss the linking and person constraints. The presented discourse
constraint is somewhat oversimplified, but nevertheless represents the essentials of
another widespread phenomenon. Not only is it a soft constraint in English, but
in many Philippine languages, such as Tagalog, there is a categorical specificity
constraint on subject position, which resembles (but is more complex than) the
discourse constraint given here (Kroeger 1993).

31. Here, adopting Optimality Theory notations, * indicates a constraint viola-
tion, ! means it is fatal, and the pointing hand indicates a valid form (which
is unique for Optimality Theory, but might be many-fold for a categorical
grammar).

32. Note that the Lummi pattern holds for bound pronouns; full pronouns des-
ignating speaker and hearer are focused and formally 3rd person expressions
(Jelinek and Demers 1994, 714). If both arguments are 1st/2nd person, an active
form is required.

33. Except in the trivial sense where all probabilities are 0 or 1.

34. Again, though, these are not ‘‘structural’’ zeroes representing impossible
occurrences: an example of a sentence that would be counted in the top right cell
was given in (32).

35. Previous studies also show evidence of person/voice interactions in English
(Svartvik 1966; Estival and Myhill 1988). However, they only provide various
marginals (e.g., counts of how many actives and passives there are in texts), which
gives insu‰cient information to reconstruct the full joint distribution of all the
variables of interest. Estival and Myhill (1988) do provide the kind of information
needed for animacy and definiteness, but they provide person frequencies only for
the patient role. We want to be able to predict the overall rate of the di¤erent
systemic choices (Halliday 1994) that can be made for a certain input. That is, we
want to know, for instance,

Pð form ¼ passivejag ¼ 1; pt ¼ 3Þ:
We can determine the conditional frequencies needed from the full joint distribu-
tion (Bod, this volume).

36. It seems reasonable to put aside the short passives (without by phrases) as a
separate systemic choice, and at any rate the person of the unexpressed agent
cannot be automatically determined with certainty. If we include them, since they
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overwhelmingly have 3rd person agents, the results are not materially a¤ected: the
person constraint shines through at least as clearly.

37. w2 ¼ 116, p < :001, though this test is not necessarily appropriate given the
zero cell entries. The more appropriate Fisher’s exact test gives p < 10�8.

38. For example, famously Carroll, Bever, and Pollack (1981) showed that peo-
ple’s judgment of active versus passive sentences is a¤ected by whether they are
sitting in front of a mirror at the time.

39. Boersma (1997, 1998) and Boersma and Hayes (2001) assume normal curves
with a fixed standard deviation of 2 (1 is more standardly used, but the choice is
arbitrary). At 2 standard deviations apart (4 points on the scale), reranking occurs
about 8% of the time. Note that according to this model, nothing is actually cate-
gorical; but if constraints are far enough apart, reversals in constraint ranking
become vanishingly rare (perhaps one time in a billion a Lummi speaker does
utter a sentence with a 3rd person subject and a local person object).

40. This is just an example grammar with my simple constraint system. See
Bresnan, Dingare, and Manning 2001 for constructing actual grammars of the
English passive using a more developed set of constraints.

41. Also, Keller (2000) uses multiple linear regression to model gradient gram-
maticality in his linear Optimality Theory model. (Noticing that speakers’ mag-
nitude estimation judgments are log-transformed, one could say Keller is using a
loglinear model, as below. However, since the output values are arbitrary, rather
than being probabilities, no normalization is necessary, and hence the fitting
problem remains standard least squares, rather than requiring more complex
techniques, as for either Harmonic Grammar or the loglinear models discussed
above.)
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Chapter 9

Probabilistic Approaches to
Semantics

Ariel Cohen

9.1 Introduction

This chapter discusses the application of probability to issues in seman-

tics. First, though, let’s consider the devil’s advocate warning. Prob-

ability, the devil’s advocate would say, really has nothing to do with

semantics. The probability calculus tells us how to calculate with proba-

bilities, but not what such calculations mean. We know, for example, that

if the probability that some event will occur is a, the probability that it

will not occur is 1� a. But what does it mean to say that the probability

is a? What are the truth conditions of this statement? What ought the

world to be like for it to be true? And how can we find out? The mathe-

matical theory of probability is silent on these issues. Hence, the devil’s

advocate would say, probability judgments themselves are in need of a

semantics. Therefore, saying that the meaning of a particular expression

is a probability judgment gives us no insight into what it means, because

the probability judgment itself is just as much in need of a semantics as

the original expression is.

This argument has merit. Indeed, it probably accounts for the fact that

there is less use of probability in semantics than perhaps there ought to be.

There are, however, two types of response to this argument. One is that

although the mathematical theory of probability provides no semantics

for probability judgments, the philosophical theory of probability does. In

fact, philosophers have been debating this very issue for centuries. They

considered questions such as what it actually means to say that the prob-

ability that a coin will land ‘‘heads’’ is .5, or that the probability of get-

ting cancer is higher if one smokes. There have been many proposals for

the semantics of the term PðAjBÞ, that is, the conditional probability of A

given B, or the probability for a B to be an A. If we accept one or another



of these solutions, we may use it to provide a semantics for probability

judgments. As we will see, researchers have used di¤erent interpretations

of probability to account for various phenomena.

Another response is applicable to cases where the use of probability in

semantics is less direct. Rather than saying that probability judgments are

the meaning of some expression, one can use a semantic account that is

inspired by probability, that borrows some concepts and ways of thinking

from it, without using it directly. We will discuss such use of probability

later in this chapter.

This review is not meant to be exhaustive. The goal is to examine a

number of case studies in some depth, considering to what extent proba-

bility can shed light on the problem under discussion.

In this chapter, I will assume familiarity with basic concepts in formal

semantics. The reader who lacks this background may wish to consult one

of the many textbooks on this topic (Allwood, Andersson, and Dahl 1977;

Dowty, Wall, and Peters 1981; Gamut 1991; Heim and Kratzer 1998; de

Swart 1998; Carpenter 1999; Chierchia and McConnell-Ginet 2000).

9.2 Generics and Frequency Adverbs

Perhaps the phenomenon that has received the greatest number of

probabilistic accounts (as well as many nonprobabilistic ones) is that of

generics and frequency statements.1 These constructions occur frequently

in natural language. Much of our knowledge about the world is expressed

using such sentences—a glance at an encyclopedia will easily provide

myriads of examples. Yet it is far from clear what such sentences mean,

that is, what a given sentence entails, what it presupposes, and what it is

that makes it true or false.

Perhaps the most puzzling fact about these sentences is that they are, in

a sense, both very strong and very weak. On the one hand, generics and

frequency statements are stronger than simple quantified statements, in

being lawlike. On the other hand, they are weak: they are contingent on

properties of the actual world and (except, perhaps, for always) are even

weaker than universal statements, since they allow for exceptions.

The amount of work on this topic is quite substantial (see Carlson and

Pelletier 1995, Cohen 1996, and Pelletier and Asher 1997 for overviews

and references). In this chapter, I will only consider accounts that make

use of probability.
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The idea to be considered is that generics and frequency statements

make probability judgments. Thus, it seems plausible that for (1) to be

true, the probability that an arbitrary bird flies must be one:

(1) Birds always fly.

Similarly, never would require this probability to be zero, and sometimes

would require it to be nonzero. It is less clear what the probability ought

to be for adverbs such as usually, or often, and even less clear what it

would be for generics such as (2):

(2) Birds fly.

But whatever the exact value is, it is attractive to consider such sentences,

too, as expressions of probability judgments.

A number of authors have attempted to account for generics and fre-

quency statements in terms of probability, or using concepts that arise

from an analysis of probability.

It turns out that di¤erent theories of generics assume di¤erent inter-

pretations of probability. Let us consider them in turn.

9.2.1 Ratio Theories

An old idea, which can be traced as far back as Galileo (see Hacking

1975), is that probability judgments express ratios of sets of individuals.

PðAjBÞ is the ratio of the set of individuals that satisfy both A and B to

the set of those that satisfy B. Hence, the probability that a fair coin

comes up ‘‘heads’’ would be .5 just in case in half of all observed tosses,

the coin came up ‘‘heads.’’

Åquist, Hoepelman, and Rohrer (1980) have applied this conception of

probability to the semantics of frequency adverbs. Frequency adverbs,

according to this study, are relations between sets. For example, (1) is a

relation between the set of birds and the set of flying objects, and its logi-

cal form would be as shown in (3):

(3) always(lxbird(x), lxfly(x))

The sets need not be sets of individuals. They may also be sets of tuples

of individuals, or tuples of individuals and times (and presumably events

as well). A classic example is (4a), discussed by Lewis (1975). Its logical

form, according to Åquist, Hoepelman, and Rohrer, would be something

like (4b):
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(4) a. Riders on the Thirteenth Avenue line seldom find seats.

b. seldom(lxlt(person(x)5 time(t)5rider(x; t)),

lxlt(person(x)5 time(t)5find-seat(x; t)))

The truth conditions Åquist, Hoepelman, and Rohrer provide for such

adverbs of frequency are probabilistic. Specifically:

0 always(B;A) is true i¤ PðAjBÞ ¼ 1
0 very-often(B;A) is true i¤ PðAjBÞb :9
0 often(B;A) is true i¤ PðAjBÞb :7
0 fairly-often(B;A) is true i¤ PðAjBÞ > :5
0 fairly-seldom(B;A) is true i¤ PðAjBÞ < :5
0 seldom(B;A) is true i¤ PðAjBÞa :3
0 very-seldom(B;A) is true i¤ PðAjBÞ < :1
0 never(B;A) is true i¤ PðAjBÞ ¼ 0
0 sometimes(B;A) is true i¤ PðAjBÞ0 0

Though they do not discuss generics, presumably some suitable value of

probability may be found for generics as well.

The heart of Åquist, Hoepelman, and Rohrer’s proposal lies in their

definition of probability. This is done in terms of ratios. That is to say, A

and B are taken to be sets, and PðAjBÞ ¼def jAXBj=jBj.

9.2.2 Logical Relation Theories

The idea underlying the logical relation interpretation of probability,

originating with Carnap (1950), is that PðAjBÞ is the ratio of possible

worlds in which both A and B hold to those where B holds.2 The proba-

bility that a coin comes up ‘‘heads,’’ then, is the ratio of worlds in which

it comes up ‘‘heads’’ to worlds in which it is tossed. Of course, in order

to make sense of the idea of ratios of possible worlds, one needs to define

some measure function on worlds. An appropriate measure function

needs to assign a real number to each world, in such a way that the sum

of the measures on all worlds is finite (typically one). A variety of such

functions have been proposed by Carnap and his followers.

Two kinds of logical relation theories have been applied to generics.

9.2.2.1 Probability Distribution over Worlds Schubert and Pelletier

(1989) propose an account of the meaning of generics that makes use of a

logical relation theory of probability. I should emphasize that probability

plays a relatively minor role in their account, whose emphasis is on the

dynamic behavior of generics. For our purposes, the intricacies of their
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dynamic logic are not relevant, and I will therefore explain the spirit,

rather than the letter, of their ideas. Moreover, while the authors reserve

their probabilistic truth conditions for generics only, it seems that they

could be easily applied to frequency statements too.

According to Schubert and Pelletier’s interpretation, (2) is true just

in case in ‘‘most’’ pairs of possible worlds and birds, the bird flies in that

world, ‘‘where ‘most’ is to be interpreted in terms of some probability

distribution favouring worlds w 0 similar to w [the world of evaluation,

usually the actual world] with regard to the ‘inherent’ or ‘essential’ nature

of things’’ (pp. 259–260).

Schubert and Pelletier admit that they leave open exactly what this

means; we will be able to say a little more about the implications of this

theory after we consider another logical relation theory of probability.

9.2.2.2 Normality A di¤erent application of a logical relation inter-

pretation of probability to genericity has been proposed by a number

of scholars (Delgrande 1987; Morreau 1992; Asher and Morreau 1995;

Krifka 1995; Pelletier and Asher 1997, to name just a few). These

accounts make use of Kratzer’s (1981) theory of probability judgments.

Kratzer herself does not deal with generics; her main concern is with

qualitative probability judgments, such as these:

(5) a. There is a good possibility that Gauzner-Michl was the murderer.

b. There is, however, still a slight possibility that Kastenjakl was the

murderer.

c. Gauzner-Michl is more likely to be the murderer than Kastenjakl.

d. It is probable that Gauzner-Michl was the murderer.

In her treatment of such sentences, Kratzer proposes that they are

modal statements, similar to statements of necessity and possibility.

Modal statements, according to Kratzer, are evaluated with respect to

two components: a modal base and an ordering source.

The modal base is the set of accessible worlds, and it is provided by the

context. The role of the modal base is to indicate the type of modality:

logical, physical, epistemic, deontic, and so on. In a sense, the modal base

provides the definition of what is considered possible: something may be

considered possible because it is logically possible, because it is allowed

by the laws of nature, because it is possible as far as the speaker knows,

because it is permissible, and so on, and the modal base provides this

criterion for possibility.
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In addition to the modal base, an ordering source is defined over

worlds. The intuitive idea behind this ordering source is that if w1 a w2,

then w2 is closer to the ideal, or more ‘‘normal’’ than w1. In the ideal

worlds, everything is as it should be, and there is no unexpected turn of

events. Such a world is, as Kratzer puts it, a ‘‘complete bore.’’

Using the machinery of the modal base and the ordering source, Krat-

zer provides an account of the truth conditions of the sentences in (5).

Sentence (5d) expresses what she calls human necessity. She proposes that

a proposition f is humanly necessary i¤ it is true in all worlds closest to

the ideal. More formally, if W is the modal base, then for all w A W there

is w 0 A W such that

1. w a w 0, and

2. for all w 00 A W , if w 0a w 00 then f is true in w 00.

Thus, (5d) is true i¤ in all worlds in which events turned out in the nor-

mal, expected way, Gauzner-Michl was the murderer.

Sentence (5a) expresses what Kratzer calls human possibility. A propo-

sition f is a human possibility i¤ sf is not a human necessity. Thus, (5a)

is true just in case it is not probable that Gauzner-Michl was not the

murderer.

Sentence (5b) is an example of a slight possibility. A proposition f is

slightly possible i¤

1. there is at least one w A W in which f is true, and

2. sf is a human necessity.

Thus, (5b) means that it is probable that Kastenjakl was not the mur-

derer, but it is still possible that he was.

Comparative possibility is expressed by (5c). f1 is more possible than f2

i¤ for every world in which f2 holds, there is a world where f1 holds that

is at least as normal, but there is a world where f1 holds for which there is

no world at least as normal in which f2 holds. More formally,

1. for all w A W , if f2 holds in w then there is w a w 0 such that f1 holds

in w 0, and

2. there is w A W such that f1 holds in w and for no w a w 0, f2 holds in

w 0.

Thus, the truth of (5c) entails that for every world in which Kastenjakl is

the murderer, there is a world at least as normal where Gauzner-Michl is;

but there is at least one world w where Gauzner-Michl is the murderer,
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and in all the worlds that are at least as normal as w, Kastenjakl is not the

murderer.

Kratzer’s theory has been applied to generics using the idea that

generics express human necessity. Thus, for example, (2) is true just in

case in the most normal worlds, all birds fly.

Note that, whatever merit this idea has with respect to generics, it can-

not be applied to frequency adverbs. This is because Kratzer’s technique

cannot apply to arbitrary probability judgments, but only to a restricted

class of them, exemplified by the sentences in (5). In particular, quantita-

tive judgments, which are arguably necessary for an account of frequency

adverbs, are not handled by Kratzer’s account.

9.2.3 Relative Frequency Theories

A view that goes back to Poisson (1837) is that the probability judgment

PðAjBÞ expresses a statement of limiting relative frequency, that is, the

mathematical limit of the proportion of Bs that are As as the number of

Bs approaches infinity.

There are a number of ways to formalize frequency theories mathe-

matically (see, e.g., Reichenbach 1949; von Mises 1957; van Fraassen

1980), but the underlying idea is simple. If we want to know how likely

smokers are to get lung cancer, we count the number of cancer patients

among smokers and divide by the total number of smokers in our sample.

We do this for large samples, over long periods of time. The larger the

sample and the longer the duration of the study, the closer the ratio will

get to the desired probability. The limit of this ratio as the sample size

approaches infinity is the probability. Similarly, the limit of the frequency

of ‘‘heads’’ in an infinite sequence of coin tosses, according to this view,

is exactly the probability of ‘‘heads,’’ namely, .5 (if the coin is fair). One

conclusion of the frequency interpretation is that it is impossible for a fair

coin to come up ‘‘heads’’ on each and every one of an infinite sequence of

coin tosses; sooner or later, it is felt, the coin will come up ‘‘tails,’’ and, in

the long run, both outcomes will have occurred with equal frequency.

Of course, we cannot actually examine an infinite number of smokers; but

we can extrapolate from a finite sequence of examinations to what the

limit might be. The longer the actual sequence is, the more confidence we

should have in the correctness of the extrapolation.

It should be noted that most philosophers do not consider relative fre-

quency theories to be an adequate interpretation of the general notion of

probability. However, what we are concerned with here is to investigate
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the adequacy of such theories for the specific probability judgments

expressed by generics and frequency statements.

In Cohen 1999, I propose such an account of generics and frequency

statements. The intuitive idea is that sentences such as (1) and (2) are

evaluated with respect to infinite sequences of birds. Such sentences are

evaluated in models with branching time, so that for any given time there

is more than one possible future. There is a course of time where the

world is destroyed in the year 3000, there is a course of time where you

become the President of Dalmatia, there is a course of time where I never

finish writing this chapter, and so on. Following Thomason (1970), each

linear course of time is called a history. Sentences (1) and (2) are evalu-

ated with respect to histories that admit infinite sequences of birds. Sen-

tence (1) is true i¤ in every admissible such sequence, the limit of relative

frequency of flying birds among birds is 1; (2) is true i¤ this limit is

greater than .5.

Note that if every possible history were admissible, this theory of

probability would turn out to be equivalent to a logical relation theory,

since every history could be seen as a possible world. However, this is not

really the case.

Since it is impossible to observe infinitely long sequences in the actual

world, these must be extrapolated from the actual history. For this

extrapolation to be of use, we need to assume that the observed instances

provide a good statistical sample. That is to say, we need to assume that

the relative frequency over the sample we do have is close to the value

of the probability, that is, the relative frequency over infinitely long se-

quences. In order for us to believe this, any sequence we consider ought to

be such that any su‰ciently large sample taken from it is a good sample.

Then, if our sample is su‰ciently large, we can extrapolate from it with

some confidence. Thus, the admissible histories are such that the relative

frequency of flying birds over any su‰ciently long subsequence will be

close to that over the sequence as a whole. In particular, (the relevant

part of ) the actual history must be part of any admissible history, and

the relative frequency over the actual history must be close to that of the

admissible history as a whole.

What sort of thing is an admissible history, then? With respect to a

generic or a frequency statement Qðc; fÞ, it is a history where the pro-

portion of fs among cs remains pretty much the same. With respect to

(1) and (2), for example, an admissible history is one where the propor-

tion of flying birds among birds is pretty much constant. There may be
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relatively brief fluctuations, but, on the whole, there will not be any sig-

nificantly long intervals of time where the proportion of flying birds

changes drastically, and there will not be prolonged discontinuities. Thus,

a history in which birds suddenly lose the faculty of flight will not be

admissible. And since admissible histories must contain the actual history,

the limiting relative frequency of flying birds in all admissible infinite

sequences will be close to that in the actual world.

To take another example, let us consider (6):

(6) John (often) jogs in the park.

Here, an admissible history is one in which John’s jogging in the

park continues with pretty much the same frequency. It is possible that

for a few days in a row he might be ill and not jog, or that during

some week or other he might feel very energetic and jog every day. But,

on the whole, his jogging frequency should remain pretty much constant

throughout the history. A history in which John jogs furiously in the park

just before summer in order to lose weight, and then stays idle the rest of

the year, will not be admissible. The reason is that there would be a suf-

ficiently long time interval where the frequency of John’s jogging is very

high, and another su‰ciently long time interval where that frequency is

very low.

According to Salmon (1977), a reference class B is homogeneous i¤ for

every partition of B, and every B 0JB induced by the partition, PðAjBÞ is

equal to PðAjB 0Þ. If we relax Salmon’s definition so that we require only

that the probabilities be roughly the same, and only consider partitions

along the temporal dimension, it follows that the domain of generics and

frequency adverbs is homogeneous. This is because they are evaluated

with respect to admissible histories, so that for every su‰ciently long

interval, the relative frequency is close to that of the limiting relative fre-

quency over the history as a whole.

It is obviously possible to partition a domain in other ways, not simply

according to time. Do other partitions play a role in the evaluation of

generics and frequency statements?

The answer to this question, it turns out, is yes. While frequency

adverbs require their domain to be homogeneous only with respect to the

time partition, generics require homogeneity with respect to a great num-

ber of other partitions as well. This notion seems to correspond rather

well to the pretheoretical notion of what a generic sentence means. Lowe

(1991), for example, considers the following sentence:
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(7) Fido chases cats.

He writes:

The sort of empirical evidence which would support or undermine the truth of [(7)]
is a matter that is broadly familiar to us all (though it is by no means a simple

matter). If Fido is found to chase a good many di¤erent individual cats, of vary-
ing sizes, colours, ages and temperaments, then, ceteris paribus, we shall consider
[(7)] to be empirically well supported; if not, then not. (p. 295; original emphases)

Lowe’s observation makes intuitive sense. Note that what this means is

that it is not su‰cient for Fido to chase many cats, but that he should

chase cats of many varieties. That is to say, the domain of the generic has

to be homogeneous with respect to many partitions, depending on cats’

sizes, colors, and so on.

What exactly the partitions are with respect to which a generic requires

homogeneity is a matter for further research, and will probably require a

consideration of cognitive factors,3 but one can get an idea from exam-

ples such as these:

(8) a. Israelis live on the coastal plain.

b. People are over three years old. (Henk Zeevat, personal

communication)

c. Primary school teachers are female.

The majority of Israelis live on the coastal plain, yet (8a) is ruled out,

because if the domain of Israelis is partitioned according to the geo-

graphical regions in which they live, there will obviously be subsets of this

domain whose members do not live on the coastal plain (e.g., those who

live in Jerusalem or Beer Sheva). Hence, the domain is not homogeneous

with respect to the property of living on the coastal plain, and (8a) is

ruled out.

The majority of people are clearly over three years old; yet (8b) is bad.

If we partition people according to their ages, there will be some subsets

of people (e.g., babies) such that the probability that their members are

over three years old is zero. Hence, the domain of the generic quantifier is

not homogeneous, and sentence (8b) is ruled out.

Although the majority of primary school teachers are female, (8c) is

odd. The reason is that, if we partition the set of teachers according to

their gender, there will obviously be a set, the probability of whose mem-

bers to be female is zero—the set of male teachers. Therefore, the set of

teachers is not homogeneous with respect to the property of being female.
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In contrast to generics, if the adverb usually is inserted into the sen-

tences in (8), they become acceptable, in fact true:

(9) a. Israelis usually live on the coastal plain.

b. People are usually over three years old.

c. Primary school teachers are usually female.

These facts demonstrate that frequency adverbs, unlike generics, only

require that their domain be homogeneous with respect to the time

partition.

9.2.4 Evaluating Interpretations of Probability

The question is, of course, which, if any, of the interpretations of prob-

ability should we choose? L. J. Cohen (1989) argues that di¤erent

interpretations of probability are appropriate for di¤erent types of prob-

ability judgment. Thus, it is possible that some interpretation of proba-

bility will be appropriate for the semantics of generics and frequency

adverbs, whereas another interpretation may be appropriate for a di¤er-

ent phenomenon.

How can we choose an interpretation of probability suitable for a given

application? L. J. Cohen characterizes probability judgments using four

parameters and points out that di¤erent interpretations are appropriate

for di¤erent settings of these parameters. Let us evaluate the theories dis-

cussed in this section with respect to these parameters.

9.2.4.1 Necessity versus Contingency The first parameter indicates

whether a probability judgment expresses a necessary or contingent state-

ment. In general, generics and frequency statements are true or false con-

tingently; they may be true in the real world, yet false in other worlds, and

vice versa. It just happens to be the case that, in the actual world, (10)

is true, but it might have been otherwise:

(10) Birds (generally) fly.

This is quite compatible with a ratio or relative frequency theory, since

there is no necessity for a ratio or a relative frequency to have a certain

value.

Things are more complicated with logical relation theories. These

theories were originally developed to account for logically necessary

probability judgments (specifically, the relation between evidence and
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conclusion). Hence, they face a problem when applied to the analysis of

generics and frequency adverbs.

Schubert and Pelletier (1989) o¤er to solve this problem, as we have

seen, by assuming that the probability distribution is sensitive to inherent

or essential properties of the actual world. Thus, the e¤ect of other worlds

on the truth conditions is negligible. If an eventual explication of this

notion allows us to understand ‘‘inherent’’ and ‘‘essential’’ properties as

contingent (though, perhaps, not accidental) properties, we would have

an account of the contingency of generics and frequency statements: they

are evaluated with respect to worlds that are similar to the actual world in

terms of contingent properties.

Similarly, if normality is interpreted as a contingent rather than a nec-

essary property, normality-based approaches can account for the contin-

gency of generics and frequency statements.

9.2.4.2 Propositions versus Properties The second parameter indicates

whether, in the probability judgment PðAjBÞ, the terms A and B stand

for ‘‘whole sentences, expressing fully determinate propositions, or just

sentence-schemata or parts of sentences’’ (L. J. Cohen 1989, 84). I take

this parameter to indicate a distinction between probability judgments

relating propositions to those relating properties.

Generics and frequency statements relate properties; (1) and (2) relate

the property of flying to the property of being a bird, rather than relating,

say, the proposition that Tweety flies to the proposition that Tweety is a

bird.

Ratio and frequency theories require A and B to designate properties,

since they are concerned with the ratio or the frequency with which indi-

viduals that satisfy B also satisfy A. Therefore, they satisfy the second

parameter with respect to generics and frequency adverbs.

Logical relation theories, on the other hand, are problematic. Bacchus

(1990) claims that they are not appropriate for dealing with generics

and frequency statements.4 The reason is that generics and frequency

statements relate properties, not propositions; but only propositions, not

properties, can be said to hold in a world.

Take, again, (2). According to logical relation theories, (2) means that

some proposition has a high probability, relative to some probability dis-

tribution over possible worlds. But what would such a proposition be?

One possibility that immediately suggests itself is (11):
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(11) Ex(bird(x)! fly(x))

But this is much too strong a requirement. For (11) to have a high prob-

ability, it is required that it be true in ‘‘most’’ possible worlds. This means

that in those worlds there will be no nonflying birds, which, in turn,

means that the probability for the claim that there are nonflying birds is

low. However, the truth of (2) does not require that we assign low prob-

ability to the statement that there are nonflying birds; one can readily

accept the existence of nonflying birds and still consistently believe (2).

Bacchus shows that other alternatives to (11) are also inadequate and

concludes that logical relation theories of probability are not appropriate

for the type of probability judgments exemplified by (2).

Schubert and Pelletier (1989) amend the logical relation theory so as

to solve this problem. As we have seen, (2) expresses quantification over

pairs of possible worlds and birds, not just possible worlds. In general, the

probability distribution is defined not simply over possible worlds, but

over pairs of possible worlds and contexts. For our purposes, we can treat

contexts simply as assignment functions. Then, for example, (2) is true

just in case for most pairs hw; gi (where w is a world and g an assignment

function) such that wbirdðxÞxw;g ¼ 1, it holds that wflyðxÞxw;g ¼ 1. This

has the e¤ect that for most pairs of birds and worlds, the bird flies in that

world.

Thus, in e¤ect, Schubert and Pelletier propose an account of probabil-

ity based on possible worlds, while maintaining that generics and fre-

quency adverbs relate properties, not propositions. While a property

cannot be given a truth value with respect to a given world, it can be

given a truth value with respect to a world and an assignment function.

The application of Kratzer’s (1981) theory to generics (e.g., the claim

that (2) is true just in case (11) is true in the most normal worlds) is also

open to Bacchus’s objection. Pelletier and Asher (1997) attempt to solve

this problem by making normality relative to an individual and a prop-

erty (and a world). For example, (2) is true i¤, for every individual bird

b, in all worlds that are most normal with respect to b and the property

of being a bird, b flies. Other birds in these worlds may fail to fly, thus

enabling us to assign human necessity to the statement that some birds

do not fly. Thus, for each bird there might be a di¤erent set of normal

worlds. Pelletier and Asher do not, however, suggest any way of deter-

mining these normal worlds.
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9.2.4.3 Substitutivity The third and perhaps crucial parameter involves

the conditions under which other terms can be substituted for A or B

without changing the probability PðAjBÞ. Suppose we have two exten-

sionally equivalent properties, B1 and B2. That is to say, the set of indi-

viduals that satisfy B1, at this moment in time and in the actual world, is

identical to the set of individuals that satisfy B2. If generics and frequency

adverbs behave extensionally, we would expect QðB1;AÞ and QðB2;AÞ
to have the same truth conditions for every property A and frequency

adverb Q.

It seems that this does not hold in general. Consider the following

example (from Carlson 1989):

(12) A computer (always) computes the daily weather forecast.

Carlson observes that

‘‘the daily weather forecast’’ requires an intensional interpretation, where its
meaning cannot be taken as rigidly referring to the present weather forecast, e.g.
the one appearing in today’s copy of the Times predicting light rain and highs in
the upper thirties. (p. 179; emphasis added)

Suppose, for example, that today’s weather forecast predicts a severe

blizzard and is consequently the main news item. So the terms the daily

weather forecast and the main news item have the same extension today,

yet (13), when interpreted generically, would be false:

(13) A computer (always) computes the main news item.

The intensionality exhibited here—it is important to note—is with

respect to the time index, but not with respect to possible worlds.5 Sup-

pose that the weather report is John’s favorite newspaper feature. Then

(14) would have the same truth conditions as (12), although there are any

number of worlds where John never so much as glances at the daily

weather forecast:

(14) A computer (always) computes John’s favorite newspaper feature.

I should make it clear what I am not saying here. I am definitely

not claiming that the property of being the daily weather report, or being

John’s favorite newspaper feature, has the same extension in all possible

worlds; clearly, in di¤erent possible worlds, there may be di¤erent

weather conditions, and John may have di¤erent preferences. What I am

claiming is that the truth conditions of a generic sentence relating two

properties do not depend on their extensions in any other world but the
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real one, though they do depend on the extensions of the properties at

di¤erent times.

To give another example, suppose that John fears all bats but no other

animal. The set of bats is equivalent to the set of animals John fears,

although the intensions of the respective terms di¤er; there are any num-

ber of possible worlds where John feels nothing but love toward bats.

However, it seems that a generic or frequency statement involving bats

has the same truth conditions as a similar sentence about animals John

fears:

(15) a. Bats (usually) fly.

b. Animals that John fears (usually) fly.

Similarly, there is no logical necessity for the whale to be the largest

animal on Earth, or for the quetzal to be Guatemala’s national bird;

yet (16a) and (16b) have the same truth conditions as (17a) and (17b),

respectively:

(16) a. The whale suckles its young.

b. The quetzal has a magnificent, golden-green tail.

(17) a. The largest animal on Earth suckles its young.

b. Guatemala’s national bird has a magnificent, golden-green tail.

Generics and frequency adverbs, then, are parametric on time, but not

on possible worlds; if two properties have the same extension throughout

time, they can be freely exchanged in a generic or a frequency sentence

salva veritate.

I should emphasize that whether or not two properties have the same

extension in the actual world may depend on other worlds, if the proper-

ties contain intensional contexts. The following examples are due to Rich

Thomason (personal communication):

(18) a. Americans know that Indiana is in the Midwest.

b. Americans know that Guanabara is in Brazil.

The propositions that Indiana is in the Midwest and that Guanabara is in

Brazil have the same extension in the actual world—both are true; yet

(18a) may be true and (18b) false, or vice versa. The reason is that know is

an intensional verb, and therefore the properties of knowing that Indiana

is in the Midwest and knowing that Guanabara is in Brazil do not neces-

sarily have the same extension in the actual world, since one may know

one fact without knowing the other.
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Given that generics and frequency adverbs are parametric on time but

not possible worlds, an account of probability is needed that satisfies this

requirement—in other words, where di¤erent descriptions of the same

timeless property can be interchanged without a change in truth value.

Theories that regard probabilities as ratios of sets allow any terms

that are extensionally equivalent at the present time to be substituted for

each other without changing the truth value, since sets are purely exten-

sional categories. Hence, they wrongly predict that generics and fre-

quency adverbs are completely extensional.

According to logical relation theories, whether or not two terms can

be substituted for one another depends on whether they have the same

extension in all possible worlds that are similar to the actual world

(Schubert and Pelletier 1989) or in all possible worlds that are in the

modal base (Kratzer 1981). Thus, such theories predict that generics and

frequency adverbs are parametric on possible worlds. This is, again, an

incorrect prediction.

The relative frequency view is the one that successfully predicts the be-

havior of generics. Generics and frequency statements are parametric on

time because they are evaluated with respect to courses of time—histories.

However, they are not parametric on possible worlds, because the his-

tories are restricted to admissible ones. There are any number of worlds

where the whale is not the largest animal on Earth and where the quetzal

is not Guatemala’s national bird, and correspondingly there are any

number of histories where a larger animal than the whale evolves and

where Guatemala decides to change its national bird. But such histories

will not be admissible. In order for them to be admissible, they would

have to continue the actual history; but in the actual history the whale is

the largest animal on Earth and the quetzal is Guatemala’s national bird,

so these histories would fail to be homogeneous. Only histories in which

things happen pretty much the way they occur in the actual world will be

admissible; hence, generics and frequency statements are not parametric

on possible worlds.

9.2.4.4 Extensibility The fourth parameter indicates whether or not

the probability judgment PðAjBÞ would remain the same if the number of

Bs were greater than it actually is.6 Suppose that,

on the assumption that he is a forty-year-old asbestos worker, a man has a .8
probability of death before the age of sixty. . . . [T]he same judgment of probability
would presumably hold good even if the number of asbestos workers were larger
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than it in fact is. Only thus might someone legitimately infer a reason for not
going to work in an asbestos factory. But to accept a .6 probability, for any per-
son picked out at random at a certain conference, that he is staying in the Hotel
Excelsior is not to accept a probability that could be relied on to have held good if
more people had been at the conference. Perhaps the additional participants
would all have had to stay elsewhere because the Hotel Excelsior had no more
unoccupied rooms. (L. J. Cohen 1989, 89)

In this sense, generics and frequency adverbs are extensible; (1) and (2)

would keep their respective truth values even if there were more birds

than there actually are.

Theories regarding probabilities as ratios of sets are not applicable to

extensible judgments, since changing the number of instances might very

well change the ratio.

Logical relation theories, on the other hand, would pass this test, since

they take probability judgments to be about possible worlds, rather than

the actual world; thus, if the number of birds in the actual world were

di¤erent, this would not necessarily change the truth values of (1) and (2).

Relative frequency theories also predict the extensibility of generics and

frequency adverbs, since they take probability to be evaluated with re-

spect to sequences that already contain infinitely many Bs.

9.2.4.5 Summary Ratio theories predict the facts that generics and

frequency adverbs are contingent and relate properties; however, they

erroneously predict them to be fully extensional and cannot account for

their extensibility.

Logical relation theories account for the extensibility of generics and

frequency adverbs and can, with some modifications, account for the fact

that they relate properties. However, explaining the contingency of these

constructions is not easy, and these theories erroneously predict that

generics and frequency adverbs are fully intensional.

Relative frequency theories account for the behavior of generics and

frequency adverbs with respect to all four parameters: they are correctly

predicted to be contingent, to relate properties, to be extensible, and to be

parametric on time but not on possible worlds.

9.3 Conditionals

We have seen that generics and frequency adverbs are extensible. This

means that if (19) is true, then, if there were more birds than there actu-

ally are, they would probably fly:
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(19) Birds (usually) fly.

It follows that if something that is not currently a bird were a

bird, it would probably fly. In other words, (19) entails the conditional

(20):

(20) If Dumbo were a bird, he would probably fly.

One of the nagging problems for any truth-conditional semantics of

natural language is an account of conditionals. What does it mean to say

that If A then B? The truth or falsity of a conditional appears to be more

than simply a function of the truth values of A and B. Surely, the mean-

ing of conditionals is not simply the material conditional, or else all

counterfactual conditionals would be trivially true.

An attractive idea, one that goes back to Stalnaker 1970, is to use con-

ditional probabilities in the analysis of conditionals.7 The idea is the fol-

lowing. We know that in a given situation, a sentence such as (21) is

either true or false:

(21) It is raining.

We can meaningfully talk about the probability that (21) is true. Indeed,

this is presumably what weather forecasters do. So speakers may assign

certain probabilities to sentences. The probabilities of complex sentences

may be dependent on, or constrained by, the probabilities of their

parts. For example, our semantics ought to make sure that the probabil-

ity of (22a) is one minus the probability of (21), and that the probability

of (22b) is not greater than the probability of (21):

(22) a. It is not raining.

b. It is raining and it is cold.

Indeed, the semantics of negation and conjunction satisfy these require-

ments.

The idea is to find a definition of the truth conditions of the conditional

If A then B such that its probability will be the conditional probability

PðBjAÞ. Thus, for example, we seek a semantics for (23a) such that its

probability will be (23b):

(23) a. If it rains tomorrow, the track will be muddy.

b. P(the track is muddy|it rains)

On the face of it, this seems almost obvious. As van Fraassen (1976)

puts it:
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[T]he English statement of a conditional probability sounds exactly like that of the
probability of a conditional. What is the probability that I throw a six if I throw
an even number, if not the probability that: if I throw an even number, it will be a
six? (pp. 272–273)

The rather surprising fact of the matter is that such a definition cannot

be found, as proved by Lewis (1976). More specifically, Lewis has shown

that, given some basic constraints on probability functions, only proba-

bility functions that have at most four values will satisfy such a definition.

Some researchers have taken Lewis’s negative results (and other, simi-

lar results; see Hájek and Hall 1994) to show that probability can play no

role in the explication of the semantics of conditionals. However, all is

not really lost. One possibility is to devise a system where the conditional

probability PðBjAÞ is equal, not to the probability of the conditional If

A then B, but to some other value associated with this conditional and

related to probability.

One such approach has been developed by Stalnaker and Je¤rey

(1994). The idea is to treat all propositions as random variables. For

propositions that do not involve conditionals, the corresponding random

variable has only two possible values: 1 if the proposition is true, 0 if the

proposition is false. Now take the conditional If A then B, written as

A > B. If A is true and B is true, the value of the corresponding random

variable is 1; that is, the conditional is true. If A is true and B is false, the

conditional is false, so the value of the corresponding random variable is

0. But what if A is false? In this case, Stalnaker and Je¤rey suggest that

the value of the random variable is PðBjAÞ. So, conditionals are proposi-

tions that may receive not only the values 1 and 0, but also some number

between these extremes.

Since the value of a conditional is a random variable, it makes sense to

talk about the expected value of this variable:

EðA > BÞ ¼ 1� PðA5BÞ þ 0� PðA5sBÞ þ PðBjAÞ � PðsAÞ: ð24Þ

Stalnaker and Je¤rey show that for many important cases of condi-

tionals, this expectation is equal to the conditional probability:

EðA > BÞ ¼ PðBjAÞ: ð25Þ

Take the following example (due to Edgington 1991). Suppose

PðAÞ ¼ :7 and PðA5BÞ ¼ :56. Then PðBjAÞ ¼ :8, and PðA5sBÞ ¼
PðAÞ � PðA5BÞ ¼ :14. Now A > B is 1 if A5B, 0 if A5sB and .8

otherwise. So,
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EðA > BÞ ¼ 1� :56þ 0� :14þ :8� :3 ¼ :8 ¼ PðBjAÞ: ð26Þ

So, indeed, the expected value of A > B is equal to the conditional prob-

ability of B given A.

While theories such as that of Stalnaker and Je¤rey may have interest-

ing technical and philosophical implications, it is not clear that they

correspond to our intuitions about the meaning of conditionals. In par-

ticular, things become less intuitive when embedded conditionals are

considered. Here is an example, due to Edgington (1991; see also Lance

1991):

Consider the conditional (27a), represented schematically as (27b):

(27) a. If the match is wet, then if you strike it it will light.

b. W > ðS > LÞ

What is its expected value? According to the definition, we want it to be

PðS > LjWÞ. Intuitively, this probability ought to be zero, or very close

to zero: given that the match is wet, the conditional that if you strike it it

will light ought to have a very low probability. However, this is not the

result that we get if we follow the calculation through.

Suppose the match is wet, so we have W. Then if S5L, S > L has the

value 1. Hence, the probability that S > L has the value 1 is PðS5LjWÞ.
Similarly, the probability that S > L has the value 0 is PðS5sLjWÞ,
and the probability that S > L has the value PðLjSÞ is PðsSjWÞ. There-

fore, the expected value is

1� PðS5LjWÞ þ 0� PðS5sLjWÞ þ PðLjSÞ � PðsSjWÞ: ð28Þ

Now, let us assign some numbers to the probability judgments:

0 The probability of the match being wet is PðWÞ ¼ :55.
0 If the match is wet, it will certainly not light: PðLjWÞ ¼ 0, therefore

PðS5LjWÞ ¼ 0.
0 In general, there is a .9 chance of the match lighting if struck:

PðLjSÞ ¼ :9.
0 There is a fifty-fifty chance of the match being struck: PðSÞ ¼
PðsSÞ ¼ :5.
0 If the match is not struck, it is certainly wet: PðW jsSÞ ¼ 1. By Bayes’

rule,

PðsSjWÞ ¼ PðW jsSÞ � PðsSÞ
PðWÞ ¼ 1� :5

:55
A :91:
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So we get

PðS > LjWÞ ¼ 1� 0þ 0þ :9� :91A :82: ð29Þ

So, instead of 0, we got a rather high value, .82.

To conclude this section, we can say that the jury is out regarding

whether a probabilistic approach to natural language conditionals is pos-

sible. While there are some interesting approaches, most of the results are

negative. It might turn out that although conditionals look very much like

conditional probabilities, there is, in fact, no relation between them. This,

indeed, was Lewis’s (1976) original conclusion. On the other hand, it may

turn out that probabilistic notions, such as expectations, while not deter-

mining the semantics of conditionals, may yet enable us to derive deep

insights about the meaning of this construction.

9.4 Vagueness

We have seen that it is hard to determine not only the truth conditions of

conditionals, but even their truth values. That is to say, it is often not

clear whether, in a given situation, the conditional If A then B is true,

false, or somewhere in between. It is for this reason that a probabilistic

account of conditionals appears, at least initially, so appealing.

Another phenomenon where judgments of truth value are hard, and,

consequently, a probabilistic account is attractive, is that of vague predi-

cation. Many terms in natural language, probably the vast majority, are

vague. For example, how tall does a person need to be in order to be

considered tall? We may all agree that a seven-foot person is tall and

a five-foot person is not tall. But what about people with heights in

between?

Kamp (1975) addresses these issues. His motivation is to give an

account of comparatives in terms of positive adjectives (e.g., to analyze

taller in terms of the meaning of tall ). This calls for a semantics where a

predicate can hold of an entity to a certain degree. Then we can say that

John is taller than Bill just in case the predicate tall holds of John to a

greater degree than it does of Bill.

Kamp argues against using a multivalued logic (i.e., a logic where

propositions can have truth values ranging between 0 and 1) to account

for degrees. He maintains that it would be impossible to provide combi-

natory rules for such a logic that will satisfy our intuitions.
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For example, what would the value of wsfx be? It ought to be 1� wfx.

But then what do we do with wf5cx? Suppose that wfx ¼ wcx ¼ :5.

Then, of course, wf5cxa :5, but what is its precise value? We can-

not define wf5cx ¼ :5, for then we would get wf5sfx ¼ :5, where, in

fact, we want wf5sfx ¼ 0. Nor can we define wf5cx ¼ 0, for then we

would get wf5fx ¼ 0, which is absurd. And any number between 0 and

.5 will give the wrong results for both wf5sfx and wf5fx.

Although Kamp does not use a multivalued logic, he finds it instructive

to consider a simple case of such a logic, a three-valued logic: true, false,

and undefined. In this logic, models may be partial. In classical logic, the

interpretation function F assigns to each symbol of arity n an n-place

relation on the universe U. Thus, constants are assigned individuals, one-

place predicates are assigned sets of individuals, two-place relations are

assigned sets of ordered pairs, and so on. However, in a partial model

the interpretation function assigns to each symbol of arity n an ordered

pair of n-place relations: F ðQnÞ ¼ hFþðQnÞ;F�ðQnÞi. The idea is that

FþðQnÞ is where Qn definitely holds, F�ðQnÞ is where Qn definitely does

not hold, and the rest is where Qn is undefined. For example, suppose we

have three individuals, Aleksandra, Bart, and Caroline. Aleksandra is

definitely tall, Caroline is definitely not tall, and Bart is neither definitely

tall nor definitely not tall. Then:

(30) FðtallÞ ¼ hfAleksandrag; fCarolinegi

There is a theory that provides the right truth conditions for tautologies

and contradictions in partial models: this is the theory of supervaluation

(van Fraassen 1969). The idea is this. Suppose we have a formula that

contains one or more truth value gaps: the truth value of some (perhaps

all) of its parts is undefined. Then we consider all the possible com-

pletions, that is, all models where the gaps are ‘‘filled’’ in a consistent

manner. So we have a set of models that are not partial, where every

formula is either true or false. Then we look at our formula: if it is true in

all completions, we consider it true, and if it is false in all completions, we

consider it false; otherwise, its truth value is undefined. For example,

p5sp will be false, because in all models in which p has a definite truth

value, p5sp is false. For similar reasons, p4sp is true.

This still does not help in the general case, but it is a step forward. We

can associate with every sentence the set of all completions that make it

true. Sentences that are already true, or tautologies, will be associated

with the set of all completions; sentences that are already false, or con-
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tradictions, will be associated with the empty set. And intermediate sen-

tences will have an intermediate set associated with them. Intuitively, the

larger the set associated with a sentence, the ‘‘truer’’ it is. Kamp’s idea is

to have a probability function defined over these sets to make this intu-

ition precise.

Kamp defines a vague model M for a language L (for simplicity, L is

taken to be extensional) as a quadruple hM;L;F; Pi where

1. M is a partial model for L;

2. L is a set of completions of L;

3. F is a field of subsets over L;

4. for each formula f A L and assignment g, fM 0 AL : wfxM 0;g ¼ 1g AF;

5. P is a probability function over F.

Now, the degree to which a sentence f (with respect to assignment g) is

true can be defined as the value of the probability function over those

completions where it is true:

(31) wfxM;g ¼ PðfM 0 A L : wfxM 0;g ¼ 1gÞ

Thus, we capture the intuition that a sentence is ‘‘truer’’ the larger the set

of completions that make it true. Because P is a probability function, if f

is definitely true in M (or is a tautology), it is definitely true in M, and if

it is definitely false in M (or a contradiction), it is definitely false in M.

The reason is that if f is definitely true or a tautology, then all comple-

tions make it true, and PðLÞ ¼ 1; and if f is definitely false or a contra-

diction, then no completion makes it true, and PðqÞ ¼ 0.

Let us consider the role probability plays in Kamp’s system. We have

already seen the importance of using probability to capturing correctly

the truth conditions of nonvague sentences, tautologies, and contradic-

tions, something that a multivalued logic on its own is claimed to be

incapable of doing. But Kamp notes another advantage. Given a vague

predicate, we can, in principle, decide arbitrarily whether a given indi-

vidual falls into its extension or not. But once we have made such a deci-

sion, decisions regarding other individuals are not necessarily arbitrary.

For example, suppose there are two persons, p1 and p2, whose respec-

tive heights are h1 and h2, and suppose h1 < h2. Then, we do not have to

decide that p1 is tall; but if we do, we must say that p2 is tall too. This

means that there is no completion where p1 is tall but p2 is not. Therefore,

fM 0 A L : wtallðp1Þx
M 0;g ¼ 1gJ fM 0 A L : wtallðp2Þx

M 0;g ¼ 1g; ð32Þ
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and hence

wtallðp1Þx
M;g

a wtallðp2Þx
M;g: ð33Þ

That is to say, it is ‘‘truer’’ that p2 is tall than that p1 is tall. Kamp uses

this (after further refinements of his system, which do not concern us

here) as the truth conditions of (34):

(34) p2 is taller than p1.

The use of probabilities means that one cannot have a simple for-

mula for calculating, say, the truth value of f5c based on the truth

values of f and c. However, in special cases, this can be done. We know

that Pðf5cÞ ¼ PðfÞ � PðcÞ if f and c are independent, that is, if

PðfjcÞ ¼ PðfÞ.
Kamp does not propose an interpretation of his probability function.

In particular, he does not propose an interpretation of the notion of

independence. What does it mean to say that two propositions are inde-

pendent of each other? Edgington (1996) considers this question.

One interpretation of probability that appears to be attractive for

the meaning of vagueness is the subjectivist, or Bayesian, interpretation,

according to which the probability of f indicates our degree of belief that

f is true. If we are certain that John is tall, we would assign to (35) the

value 1; if we are certain that he is not tall, we would assign it the value 0;

and if we are not certain, we would assign it an intermediate value:

(35) John is tall.

Thus, we could interpret independence as follows: f is independent of c

i¤ knowing f gives us no rational reason to change our belief about c.

For example, if we know that John is tall, this does not a¤ect our belief

about how intelligent he is; hence, (35) and (36) are independent of each

other:

(36) John is intelligent.

However, Edgington argues that belief is not the right sort of interpre-

tation for vagueness—that there is a di¤erence between being uncertain

about whether f holds and f’s holding to a certain degree. For example,

imagine we would like to drink co¤ee, and we have to decide whether to

visit Shirley or Roger. Shirley may serve us either co¤ee or tea; we do not

know what beverage it would be, so the probability that we will drink

co¤ee is .5. Roger, on the other hand, will definitely serve us a drink that
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is an odd mixture of co¤ee and tea; it is indeterminate whether it can be

properly called ‘‘co¤ee’’ or ‘‘tea.’’ Clearly, the two choices are not equiv-

alent. We may decide that even tea is better than drinking Roger’s con-

coction, and visit Shirley; or we may decide that the prospect of drinking

tea is so abhorrent, that Roger’s novelty drink is the safest choice. But the

point is that having a beverage that is co¤ee to the degree .5 is not the

same as having a .5 chance of drinking co¤ee.

How, then, are we to interpret the statement that f and c are indepen-

dent? According to Edgington, PðfjcÞ is to be interpreted as the truth

value of f if we decide that c is definitely true. For example, suppose

John is good at math to the degree d1 and intelligent to the degree d2.

Then, if we decide that John is definitely good at math, this may a¤ect

the truth value of his being intelligent. Hence, the two statements are not

independent. On the other hand, if we decide that John is definitely tall,

this would probably not a¤ect our judgment of how intelligent he is.

Hence, being tall and being intelligent are independent.

Does Kamp’s account of vagueness, which makes use of probability, fit

our intuition? The answer is not very clear. Suppose, for example, that

John is tall to the degree .5 and intelligent to the degree .5. If the proper-

ties of being tall and being intelligent are independent of each other, it

follows that John has the property of being both tall and intelligent to the

degree :5� :5 ¼ :25. It is not immediately clear whether this is or is not a

reasonable conclusion.

9.5 Many

A vague word that has received considerable attention is many (and

its counterpart, few). How many is many? There is obviously no clear

boundary between what is considered many and what is not.

The problem of many is complicated further by the fact that, on top

of its vagueness, it is also ambiguous, having at least two readings (Partee

1988).8 Consider the following sentence, for example:

(37) Many Nobel laureates watched the Olympic games.

Sentence (37) may mean simply that the number of Nobel laureates who

watched the Olympic games was large, compared with some norm n; this

is the cardinal reading. Under this reading, (37) is false, simply because

there aren’t many people who have won a Nobel prize. But (37) can also

mean that the proportion of Nobel laureates who watched the Olympic
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games was large, compared with some norm k; this is the proportional

reading. Under this reading, (37) may very well be true.

The two readings of many can be formalized as follows:

1. Cardinal: many(A;B) i¤ jAXBj > n

2. Proportional: many(A;B) i¤ jAXBj > k � jAj

Partee argues at length that the two readings are indeed distinct and

have di¤erent truth conditions. One of the distinctions between the two

readings is that only the cardinal reading is symmetric; the proportional

one is not. Thus, if we understand (37) as saying simply that the number

of Nobel laureates who watched the Olympic games is high, (38) is true.

If, more plausibly, we take (37) to indicate a high percentage of Nobel

laureates who are interested in the Olympic games, (38) is false:

(38) Many people who watched the Olympic games were Nobel

laureates.

As noted above, besides being ambiguous, many is also vague; the

parameters n and k do not have a precise value. Where would these

values come from? Fernando and Kamp (1996) suggest that these values

depend on our expectations: we may not expect Nobel laureates to be

interested in anything as mundane as the Olympic games, and hence even

a small number or percentage of them will count as many; on the other

hand, we may expect sports fans to be very interested in the Olympic

games, so that much higher norms would be required to make (39) true:

(39) Many sports fans watched the Olympic games.

Informally, Fernando and Kamp propose that Many As are Bs is true

just in case It could well have been the case that fewer As are Bs. Taking

many to be dependent on expectation naturally calls for a probabilistic

account: something is expected if its probability is high, unexpected if

its probability is low. But what sort of probability account will be appro-

priate? As in the case of generics and frequency statements, the crucial

question appears to be that of intensionality. Is many extensional or

intensional?

At first glance, it appears that many must be extensional. If we look at

its definition above, we see that, on both its readings, the only thing about

the sets A and B that matters is their cardinalities. Once the extensions of

A and B are known, we can compute the cardinality of their intersection

(and, for the proportional reading, also the cardinality of A), and we are

done.
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However, things are not that simple. Keenan and Stavi (1986) produce

the following minimal pair:

(40) a. Many lawyers attended the meeting last year.

b. Many doctors attended the meeting last year.

They point out that even if all the lawyers were doctors and all the doc-

tors were lawyers (so the predicates lawyer and doctor were coexten-

sional), the truth values of the two sentences might di¤er. For example, if

the meeting in question is a meeting of a medical association, we would

expect doctors to attend, but not lawyers; hence, if the meeting is small,

we may still a‰rm (40a) while denying (40b).

A similar point is made by Kamp and Reyle (1993), whose examples

are these:

(41) a. Many houses in X burned down last year.

b. Many houses in X were insured against fire last year.

Even if the all the houses that burned were insured, and all the insured

houses burned down, the truth values of the sentences might di¤er. The

expectation that a house will be insured is much greater than the expec-

tation that it will burn down (indeed, this is the rationale behind the

insurance business). Hence, after a given fire, we may a‰rm (41a) yet

deny (41b).

How can one account for this seemingly intensional behavior of many?

The explanation is that once the values of n and k are fixed, many is,

indeed, extensional. But these same values depend on the intensions of

the arguments of many. Thus, the truth conditions of many do, after all,

depend on the intensions of its arguments.

Consequently, the probability judgment expressed by many cannot

be extensional, so Fernando and Kamp argue that it cannot be a type of

ratio theory. They propose instead a type of logical relation theory, that

is, an account of probability in terms of possible worlds.

Since, according to their theory, many is intensional, they replace the

sets A and B with the formulas f and c, and consider the formula

manyxðfðxÞ;cðxÞÞ. Its cardinal reading amounts to saying that there is

some number n such that there are at least n individuals that are both f

and c, and that this n counts as many:

(42) manyxðfðxÞ;cðxÞÞ i¤

4
nb1

ððbbnxðfðxÞ5cðxÞÞ5n-is-manyxðfðxÞ;cðxÞÞ
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The expression bbnx is an abbreviation for ‘‘there are at least n xs.’’

More interesting is the second conjunct, which expresses the claim that

this n is considered many with respect to f and c. It is here that proba-

bility plays a role.

Let jaðxÞjx;w indicate the number of individuals that satisfy a in world

w: jfu : waðxÞxw;g½u=x� ¼ 1gj. If w is the actual world, this will be written

simply jaðxÞjx. Then, the truth conditions of n-is-many can be represented

as follows:

(43) n-is-manyxðfðxÞ;cðxÞÞ i¤ Pðfw : jfðxÞ5cðxÞjx;w < ngÞ > c

In words: take the probability of the set of worlds where the number

of individuals satisfying both f and c is less than n; this probability is

greater than some parameter c. Now, manyxðfðxÞ;cðxÞÞ means that there

is some number n, such that there are n individuals that are both f and c,

and there could well have been fewer than n.

Note that, under the cardinal reading, manyxðfðxÞ;cðxÞÞ is a function

of (the intension of ) f5c, hence its symmetry.

Let us now turn to the proportional reading. The only di¤erence is in

the definition of n-is-many. Here, instead of unconditional probability,

conditional probability is used:

(44) n-is-manyxðfðxÞ;cðxÞÞ i¤

Pðfw : jfðxÞ5cðxÞjx;w < ngjfw : jfðxÞjx;w ¼ jfðxÞjxgÞ > c

In words: n is many i¤ there could well have been fewer than n xs that

satisfy fðxÞ5cðxÞ, given that there are jfðxÞjx xs that satisfy fðxÞ.
Since f has a privileged position (it forms the reference class of the

conditional probability), this reading is asymmetric, as desired.

9.6 Even

We have just seen a probabilistic account of many, which views proba-

bility as expectation. If something is expected, it has a high probability; if

something is surprising, we assign it a low probability. One would expect,

then, to have probabilistic accounts of natural language expressions

associated with expectation.

One such expression, whose semantics and pragmatics have received

some attention, is even. Consider, for example, a sentence such as (45):

(45) The food was so good, that even Denise finished everything on her

plate.
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This sentence conveys, in some sense, that we do not expect Denise to

finish everything on her plate, that she is unlikely to do so. Thus, the fact

that she did finish eating everything is used as a demonstration of the

truth of the claim that the food was good. If, in contrast, Denise were

expected to eat anything put before her, regardless of its quality, there

would be no reason to infer that the food was exceptionally good.

Exactly how even conveys this notion of surprise or unlikelihood is a

matter of some debate; most researchers claim it is a matter of presuppo-

sition or conventional implicature, though it has also been suggested

that this meaning is conveyed through conversational implicature (Kay

1990) or even as part of the truth conditions of even (Lycan 1991). This

controversy is not really our concern here. What is more interesting is

whether probability can be used as a way to model this surprise.

As it happens, no thorough account of even in explicit probabilistic

terms has been proposed, as far as I know; but such an account is

sketched by Chierchia and McConnell-Ginet (1990, 387). They consider

sentences of the form in (46):

(46) Even N S

The sentence S is subjectless, and its logical form, S 0, is an open formula.

N is a proper noun, and its logical form, N 0, is a constant. Then the log-

ical form of (46) is (47):

(47) bxðx ¼ N 05S 0Þ

If wN 0xM;g ¼ a, then (47) is, of course, satisfied just in case (48) holds:

(48) wS 0xM;g½a=x� ¼ 1

For example, the (relevant part of ) the logical form of (45) is (49),

(49) bxðx ¼ d5finish-all-foodðxÞÞ

which is satisfied just in case (50) holds:

(50) wfinish-all-foodðxÞxM;g½Denise=x� ¼ 1

The interesting part, of course, is the presupposition of (46). According

to Chierchia and McConnell-Ginet, this presupposition is satisfied in a

context i¤ the context makes salient some probability measure, and some

set A of individuals, such that for every a 0 A A (with the exception of a

itself ), the probability that wS 0xM;g½a 0=x� ¼ 1 is greater than the probability

that wS 0xM;g½a=x� ¼ 1. Thus, (45) presupposes that everybody else is more

likely to finish all the food on their plate than Denise is.
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As mentioned above, Chierchia and McConnell-Ginet’s proposal is

more of a note than a thorough treatment of even, and the authors will-

ingly admit that ‘‘[m]uch more needs to be done, of course, for an ade-

quate analysis’’ (p. 387). Indeed, this issue is not taken up in the second

edition of their textbook (Chierchia and McConnell-Ginet 2000). Why

has there been no detailed probabilistic treatment of even?

Francescotti (1995) proposes an answer. He argues that probability is

the wrong sort of concept to be used in formalizing the meaning of even.

He considers the following pair of sentences:

(51) a. Granny was accused of kidnapping, and even murder.

b. Granny was accused of murder, and even kidnapping.

Supposing that murder is more common than kidnapping, the probability

that Granny committed murder is higher than that she committed a kid-

napping; hence, Francescotti claims, if surprise were accounted for in

terms of probability, we would expect Granny’s being accused of kid-

napping to be more surprising than her being accused of murder. We

would therefore expect (51b) to be felicitous and (51a) to be odd. But the

facts are exactly the reverse: (51a) is fine, but (51b) is odd.

Francescotti explains these judgments by saying that surprise is sensi-

tive to more than probability—for example, to the moral and legal sig-

nificance of an act. Francescotti’s statement is not entirely clear, and

there are two ways to understand it.

One possible interpretation is that even if A is more probable than B, it

can be more surprising, because its implications are more significant. This

is the interpretation preferred by Kay (1990, 84). He presents the follow-

ing example:

(52) A: It looks as if Mary is doing well at Consolidated Widget.

George [the second vice president] likes her work.

B: That’s nothing. Even Bill [the president] likes her work.

According to Kay, (52) is quite felicitous even in a context where there

is no reason to think that Bill is less likely than George to like

Mary’s work. The reason why even is felicitous is that Bill’s liking Mary’s

work is a stronger statement: it shows evidence of a higher level of

success.

Another way to interpret evidence such as (51) and (52) is that even is,

in fact, dependent on probability, but that the probability judgments

with respect to which a sentence is evaluated are not always determined
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directly by the sentence. Though Francescotti is not entirely clear on this

point, he seems to favor this interpretation.

For example, if we evaluate the sentences in (51) with respect to the

respective probabilities of murders and kidnappings, we would, indeed,

erroneously predict that (51a) is odd and (51b) is fine. But if, instead, we

notice that committing murder puts one in more trouble than kidnapping,

and if we assume that people are not likely to cause themselves more

trouble than is necessary, we would be ‘‘more surprised to find that one

would do what would put one in more serious moral or legal trouble. It is

for this reason that we find Granny’s committing murder more surprising

than her kidnapping’’ (Francescotti 1995, 167).

This probability judgment may be a¤ected by the specific character of

Granny herself: ‘‘[s]uppose we know that Granny has the propensity, not

only for getting in trouble, but also performing actions that a¤ord her the

maximal amount of trouble. In this case, we would not be surprised at all

to find that Granny has placed herself in moral and legal jeopardy, and

[(51b)] would therefore be more felicitous than [(51a)]’’ (p. 167).

At this point, it appears that in the case of even, as in the case of

conditionals, more research is needed before we can conclude whether a

probabilistic account is desirable, let alone feasible.

9.7 Indirect Use of Probability

The previous sections discussed several cases where probability is explic-

itly introduced into the semantics in order to provide an account of some

phenomenon. As mentioned in the introduction, however, there are also

less direct uses of probability. There are semantic accounts that do not

use probability as such, but are inspired by probabilistic notions.

A good example of such a theory is van der Does and van Lambalgen’s

(2000) logic of perception reports. While their logic does not use proba-

bility as such, it does use ideas from probability theory, in particular the

notion of conditional expectation.

The problem that van der Does and van Lambalgen set out to solve is

the fact that, in general, perception reports are not veridical. Take (53),

for example:

(53) I see this arm.

Suppose we represent (53) as (54):

(54) see(I; x)
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Given an assignment function that assigns the individual arm in question

to x, (54) would be satisfied just in case I do, in fact, see this arm.

However, these are not really the truth conditions of (53). For this

sentence to be true, all that is required is that something would appear

like this arm to me. It may indeed be this arm, but it may be another arm,

or a leg, or a loaf of bread, or, indeed, nothing at all—a hallucination.

Intuitively, the actual nature of the object I see depends on how well I can

see and interpret what I see, which in turn depends both on my vision and

on the current conditions (lighting, occluding objects, etc.). If I have per-

fect vision, the conditions are ideal, nothing interferes with or occludes

my vision, and there is no possibility of hallucination, then it would

indeed follow from (53) that there exists an arm that I see. In contrast, if

my vision is really poor, then nothing at all can be concluded about the

object I see. In this case, all we can say is that there is something I see—

but what it really is, we cannot say:

(55) bx see(I; x)

Van der Does and van Lambalgen use Marr’s (1982) theory of vision.

According to Marr, the same object may be represented at various levels

of detail. For example, we can view the arm as simply a sort of cylindrical

shape; or, in a more detailed way, as two cylinders, corresponding to

the forearm and the upper arm; or as a more detailed picture still, com-

posed of three cylinders, corresponding to the upper arm, the forearm,

and the hand; or with additional cylinders, corresponding to the fingers;

and so on. At one extreme, the representation of an object is a blur where

we can distinguish nothing about the object; at the other extreme, the

representation is an exceedingly specific picture, where all the details are

discernible.

Viewed in this way, vision involves approximation: we start from the

actual object, which is infinitely detailed, and we arrive at some sort

of mental representation that filters out many of these details. A conse-

quence of this is that in the context of a perception report, we cannot

simply talk about an object being seen to have some property; rather, we

must talk about whether, given a certain level of detail, it is seen to have

this property.

Applying Marr’s idea to a concrete example, we can represent the

predicate arm using a series of models; in each of them the predicate

is interpreted at a di¤erent level of detail, but in each of them it is an

arm. Van der Does and van Lambalgen call this system a refining system.
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Thus, for example, in a coarse model, we may have an individual a that is

an arm; but in a more refined model, this individual will turn out to be a

composite fu; f g, where u is the upper arm and f is the forearm. We can

order these models according to how refined they are; intuitively, the limit

of this series is reality, that is, the completely detailed representation of

the object.

Consider (53) again. Suppose that at the current level of detail, I can-

not distinguish an arm from a leg, yet I am still quite able to distinguish

an arm from a loaf of bread. In this case, we do know something about

the thing I see, but not its exact identity. So we cannot have a logical

form like (54), where the variable is totally free, a case representing per-

fect knowledge; nor do we want (55), where the variable is totally bound,

representing no knowledge at all. We want, intuitively, a case where the

variable is ‘‘partially’’ bound, representing partial knowledge.

It is at this point that a notion from probability theory becomes help-

ful. Probability theory o¤ers a device to represent partial knowledge,

namely, conditional expectation.

Conditional expectation is used to represent cases when we cannot

measure a random variable completely accurately, instead having only

partial knowledge of its value. Suppose, for example, that a person is

picked at random, using some probability distribution. This person has a

precise height; let the value of the random variable X be this height.

Suppose we need to make our best guess about the value of X. If our

vision is infinitely accurate (say, we have some sort of bionic eye), then we

can know every person’s height just by looking—we have perfect infor-

mation. So, in this case we do not need to guess—we know the precise

value of X. In the other extreme case, our vision is very poor; we cannot

make out the person’s shape at all. What is our best guess about this

person’s height? Our best strategy is to use the average height of people—

namely, the expected value of X—and guess that this is the person’s

height.

Now, suppose we can see the person, but cannot assess the height

precisely. All we can distinguish is whether the person is tall, of middle

height, or short. Then, if the person is tall, we should guess the average

height of tall people, that is, the expected value of X among tall people. If

the person is of middle height, we should guess the expected value of X

among middle-sized people; and if short, the expected value among short

people.
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Mathematically, if G is a s-field generated by the sets of tall people,

middle-sized people, and short people, then our guess of the height of the

person is the conditional expectation of X given G, EðX jGÞ. Note that

EðX jGÞ is itself a random variable: its value will be either the average

height of tall people, the average height of medium-sized people, or the

average height of short people. Thus, it is ‘‘smoother’’ than the original

random variable X: it filters out distinctions that are real, but cannot be

perceived.

Van der Does and van Lambalgen propose a counterpart of condi-

tional expectation for their logic of vision, which they call conditional

quantification. Let M be a model, F the set of assignments on M, G an

algebra of subsets of F, and f a formula. Let us identify with a formula f

the set of assignments that make it true, f f A F : wfxM; f ¼ 1g. Then, the

set of assignments that corresponds to the conditional quantifier bðfjGÞ is

5fC A GjfJCg.
The idea is that bðfjGÞ is the best estimate of the assignments that

make f true on the basis of the information available in G. G contains

those propositions (sets of assignments) whose truth we can verify at the

current level of detail. So, an assignment makes bðfjGÞ true just in case it

makes true those statements entailed by f that we can verify at the cur-

rent level of detail.

As an example, let us go back to (53). Its logical form, according to

van der Does and van Lambalgen, is (56):

(56) bðarmðxÞjGÞ

The algebra G represents the (visual) knowledge the speaker has. Now,

suppose there are three individuals in the universe, a, l, and b; and we

know that a is an arm, l is a leg, and b is a loaf of bread.

Now suppose the speaker has perfect vision; every property can be

identified. In this case, G is the algebra of the power set of F, the set of

all assignments. So, an assignment will make (56) true just in case it

makes true all its entailments that the speaker can verify. But since the

speaker can verify everything, an assignment will make (56) true just in

case it will make arm(x) true, as desired. Formally:

5fC A GjarmðxÞJCg ¼5fCJFjarmðxÞJCg ¼ armðxÞ

¼ f f : f ðxÞ ¼ ag: ð57Þ

To take the other extreme case, suppose the speaker cannot distin-

guish any properties. The algebra G will be simply fq;Fg. Then, the set
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of assignments that make (56) true will be those that make true all the

entailments of arm(x) that the speaker can verify. But since the speaker

can verify nothing, this will be the set of all assignments. Formally:

5fC A GjarmðxÞJCg ¼F ¼ f f : f ðxÞ ¼ a or f ðxÞ ¼ l or f ðxÞ ¼ bg:
ð58Þ

So, indeed, in a case of no information at all, we are not able to distin-

guish any object from any other object.

Now, suppose the speaker can identify the property body-part, but not

arm. So the speaker is able to distinguish a from b, but not from l. The

algebra will be generated by fbody-partðxÞg. An assignment will satisfy

(56) just in case it satisfies its entailments that the speaker can verify,

namely, fbody-partðxÞg. Formally:

5fC A GjarmðxÞJCg ¼ fbody-partðxÞg ¼ f f ðxÞ ¼ a or f ðxÞ ¼ lg: ð59Þ

This is the desired result.

9.8 Conclusion

In this chapter, I have discussed the role that probability, in a variety of

ways and interpretations, plays in the study of semantic phenomena. I

have considered a number of proposals, each setting out to answer a spe-

cific question about a specific phenomenon; let the reader decide to what

extent each specific proposal is successful.

Considering all these theories as a whole, a pattern suggests itself:

probability appears as a tool that aids traditional truth-conditional

semantics, not as a replacement for it. Probabilistic notions do not change

the fundamentals of semantic theory, but interact with them in specific

cases in order to solve a specific problem.

It is conceivable that a more radical use of probability might be dis-

covered, one that plays a role in the fundamentals of the theory. Let me

sketch what direction such a theory might take.

Traditional semantics treats the meaning of a sentence as a function

from situations (often considered to be possible worlds) to truth values.

The intuition is that in order to demonstrate understanding of the mean-

ing of a sentence, one must be able to judge its truth or falsity in any sit-

uation. Crucially, the description of the situation must be complete. That

is, all the facts about the situation must be known; otherwise, one may

understand a sentence yet still be unable to judge its truth value. For
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instance, we all presumably understand (60); yet we are unable to judge

its truth value with certainty, because we lack su‰cient information. But

our understanding the meaning of the sentence implies that if we did have

complete information, we would know if it were true or false.

(60) There is life on Mars.

Now, this is a rather idealized view of what understanding the meaning

of a sentence is. In practice, we hardly ever have complete information;

the way by which we demonstrate understanding of a sentence involves,

by necessity, judgments in cases of incomplete information. If we wish

to take the real rather than the idealized conditions as the definition of

meaning, we would need to use probability, or something like it, at a

fundamental level of our semantics. Then, we will be talking about judg-

ments of probability, rather than judgments of truth values; to demon-

strate understanding of the meaning of a sentence, one would need to

be able to judge the likelihood that it is true in any given situation. The

meaning of a sentence would, then, not be a function from possible

worlds to truth values; rather, it would be a function from states of

knowledge to probability values. We can take the usual approach of rep-

resenting knowledge in terms of a set of possible worlds; the meaning of

a sentence, then, would be a function from sets of possible worlds to

probabilities. This would capture formally the idea that understanding

the meaning of a sentence is the ability, given a situation, to assess its

probability.

Such a semantics has never, to my knowledge, been carefully proposed.

There is, of course, a good reason for this: such a theory would be con-

siderably more complicated than truth-conditional semantics, and it is

not clear that it would have advantages over the more traditional seman-

tics. But it might.

Notes

I would like to thank Fritz Hamm, who gave me much detailed and enlightening
advice, and Chris Manning, who reviewed the chapter and made many useful
suggestions on both content and form.

1. Following de Swart (1991) and others, I distinguish between frequency
adverbs, such as usually and always, and other adverbs of quantification, such as
twice. I refer to a sentence containing a frequency adverb as a frequency statement.

2. Actually, Carnap uses state descriptions rather than possible worlds, but his
approach can naturally be recast in terms of the latter.
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3. See Cohen 2002; compare Fisher’s (1959) requirement that the reference class
be ‘‘subjectively homogeneous and without recognizable stratification’’ (p. 33).

4. Or, more precisely, with what he calls ‘‘statistical probability.’’

5. For the distinction between the two types of intensionality, depending on the
index involved, see Landman 1989.

6. L. J. Cohen refers to this property as ‘‘counterfactualizability,’’ but I believe
this term is somewhat confusing, as well as being rather cumbersome.

7. See Edgington 1991 for a good survey of the issues involved.

8. I say at least because it has been claimed that, in fact, many has additional
readings (Westerståhl 1985; Lappin 1988, 1993; Cohen 2001); but these will not
concern us here.
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Glossary of Probabilistic
Terms

Bayes’ rule Bayes’ rule calculates the conditional probability PðAjBÞ from
PðBjAÞ. This is useful when the former quantity is di‰cult to determine. From
the equivalence PðA;BÞ ¼ PðB;AÞ (see joint probability), we derive that
PðAÞ PðBjAÞ ¼ PðBÞ PðAjBÞ, from which Bayes’ rule follows:

PðAjBÞ ¼ PðAÞ PðBjAÞ
PðBÞ .

Bayes’ rule is often used to determine the most probable hypothesis H given some
evidence E: argmaxH PðHjEÞ. Since PðEÞ is a constant, we may ignore PðEÞ in
maximizing PðHÞ PðEjHÞ=PðEÞ. In that case, Bayes’ rule reduces to

argmaxH PðHjEÞ ¼ argmaxH PðHÞ PðEjHÞ:
The probability PðHÞ is usually called the prior probability that H occurs, while
PðEjHÞ is called the posterior probability.

Bias of an estimator The bias of an estimator is the di¤erence between the
expected value (or expectation) of the estimator and the true value of the
parameter.

Bigram A bigram is a sequence of two consecutive items such as phonemes, let-
ters, or words.

Binomial distribution The binomial distribution is a discrete distribution that
results from a series of trials with only two outcomes (also called Bernoulli trials),
each trial being independent from the other ones. Repeatedly tossing a coin is an
example of a binomial distribution, but also repeatedly selecting a certain word
(type) from a corpus. The binomial distribution gives the number r of successes
out of n trials, where the probability of success in each trial is p:

Pðr; n; pÞ ¼ n!

ðn� rÞ!r! prð1� pÞn�r:

In this formula, n and p are the parameters (see distribution) of the binomial dis-
tribution (parameters are separated from the random variable by a semicolon in
the left-hand side of the function).

Central limit theorem The central limit theorem states that the sum of a large
number of independent, identically distributed random variables follows approxi-
mately a normal distribution.



Chain rule The chain rule is a generalization of the product rule. It gives the joint

probability for n events A1;A2; . . . ;An. That is,

PðA1;A2; . . . ;AnÞ ¼ PðA1Þ � PðA2jA1Þ � � � � � PðAnjA1;A2; . . . ;An�1Þ:
Note that for two events, the chain rule is equivalent to the product rule:

PðA1;A2Þ ¼ PðA1Þ � PðA2jA1Þ:
For independent events, the chain rule reduces to

PðA1;A2; . . . ;AnÞ ¼ PðA1Þ � PðA2Þ � � � � � PðAnÞ:
Chi-square test The chi-square or w2 test is a statistical test used to compare
observed frequencies with frequencies expected for independence. If the di¤erence
between observed and expected frequencies is large, then the null hypothesis of
independence can be rejected.

Condition The verb condition refers to using something on the right-hand side of
a conditional probability expression to delimit the range of circumstances over
which the probability of the thing on the left-hand side of the conditional proba-
bility expression is evaluated.

Conditional expectation The notion of conditional expectation is useful if we
cannot measure a random variable completely accurately, but have only partial
knowledge of its value. The conditional expectation EðX jYÞ is defined as the
function of the random variable Y whose value at Y ¼ y is

EðX jY ¼ yÞ:
Thus, EðX jY Þ is itself a random variable. A very useful property of conditional
expectation is that for all random variables X and Y,

EðX Þ ¼ EðEðX jY ÞÞ:
Conditional independence Two events A and B are conditionally independent

given event C when

PðA;BjCÞ ¼ PðAjCÞ PðBjCÞ:
Conditional probability The notion of conditional probability is useful if we
cannot determine the probability of an event directly, but have only partial
knowledge about the outcome of an experiment. The conditional probability of an
event A given that an event B has occurred is written as PðAjBÞ. For PðBÞ > 0, it
is defined as

PðAjBÞ ¼ PðA;BÞ
PðBÞ ;

where PðA;BÞ is the joint probability of A and B.

Confidence interval See Hypothesis testing.

Contingency table A contingency table allows for presenting the frequencies of
the outcomes from an experiment in which the observations in the sample are
classified according to two criteria.

Correspondence analysis Correspondence analysis is a statistical technique used
to analyze simple two-way and multi-way tables containing some correspondence
between the rows and columns.
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Dependence See Independence.

Disjoint Two sets or events are disjoint if they have an empty intersection.

Distribution A probability distribution (or probability function) is a function that
distributes a mass of 1 throughout the sample space W. Distributions can be
grouped into families that di¤er only in the value of a so-called parameter. A
parameter is a constant if one is looking at a specific function, while it is a vari-
able if one is looking at a whole family. There is a distinction to be made between
discrete distributions, having a finite number of outcomes, and continuous dis-
tributions, having a continuous domain. The three principal distributions, which
occur in a great variety of problems, are the binomial distribution, the Poisson

distribution, and the normal distribution.

EM algorithm See Expectation Maximization algorithm.

Entropy The entropy H is the average uncertainty of a random variable X and is
defined as

HðXÞ ¼ �
X

x AX

pðxÞ log2 pðxÞ:

Entropy is normally measured in bits. In Shannon’s Information Theory, entropy
is understood as the amount of information in a random variable. It can be
thought of as the average length of the message needed to transmit an outcome
of that variable. For an accessible introduction to Information Theory and its
application to natural language, see Manning and Schütze 1999.

Estimator An estimator is any random variable used to estimate some parameter

of the underlying sample space from which the sample is drawn. A widely used
estimator is the maximum likelihood estimator. Two important notions related to
any estimator are bias and robustness.

Event An event is a subset of a sample space W.

Event space The event space is the set of all events of a sample space W, that is,
the power set of W.

Expectation The expectation is the mean of a random variable. Let X be a ran-
dom variable assuming the values x1; x2; . . . with corresponding probabilities
Pðx1Þ;Pðx2Þ; . . . : The expectation or expected value of X is defined by

EðXÞ ¼
X

i

xiPðxiÞ:

The terms mean, average, and expectation are all synonymous.

Expectation Maximization algorithm The Expectation Maximization or EM
algorithm provides a general procedure for estimating the values of hidden
parameters of a model (e.g., a hidden markov model ). This algorithm starts
with an arbitrary initial hypothesis; it then repeatedly calculates the expected
values of the hidden parameters under the assumption that the current hypothesis
is correct, after which it recalculates the maximum likelihood hypothesis. This
procedure is repeated until the change in the values of the parameters becomes
negligible.
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Gaussian A Gaussian is a probability distribution also known as normal

distribution.

Hidden markov model A hidden markov model or HMM is a markov model

that, instead of emitting the same symbol each time at a given state, has available
a choice of symbols, each with a certain probability of being selected. In an
HMM, the symbol emitted at a certain state is unknown or hidden.

HMM See Hidden markov model.

Hypothesis testing Hypothesis testing is an assessment of whether or not some-
thing is a chance event. It consists of assuming that a null hypothesis H0, which we
want to prove false, is really true. We calculate the probability of as extreme a
statistical material as the one observed, given that H0 is indeed true. If this prob-
ability is less than some predefined value p, we can discard the null hypothesis
with a significance level p (e.g., 5%). The significance level is related to the confi-
dence degree in that a method for constructing a confidence interval with con-
fidence degree 1� p (e.g., 95%) can be used to construct a hypothesis test with
significance level p. Note that failure to discard the null hypothesis does not mean
that we can conclude it is true. It may be false or highly unlikely, but the statisti-
cal material (the data) does not allow us to discard it at the desired significance
level.

Independence Two events A and B are said to be independent if

PðA;BÞ ¼ PðAÞ PðBÞ:
Unless PðBÞ ¼ 0, this is equivalent to saying that

PðAÞ ¼ PðAjBÞ:
In other words, knowing that B is the case does not a¤ect the probability of A.
Otherwise, events are dependent.

Independent See Independence.

Information Theory See Entropy.

Joint probability The joint probability of two events A and B is the probability
of both A and B occurring. The joint probability is written as PðA;BÞ and also
as PðAXBÞ. Note that

PðA;BÞ ¼ PðB;AÞ
and

PðAXBÞ ¼ PðBXAÞ:
The joint probability is related to the conditional probability of A given B, PðAjBÞ,
as follows:

PðA;BÞ ¼ PðAjBÞ PðBÞ ¼ PðBjAÞ PðAÞ:
Logit function The logit function is a function of the probability of an event; it is
the natural logarithm of the ratio of the probability of the event occurring to the
probability of that event not occurring, given by the formula

f ðpÞ ¼ loge

p

1� p
:
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The logit function is widely used in sociolinguistic modeling (Mendoza-Denton,
Hay, and Jannedy, this volume), but also in probabilistic syntax (Manning, this
volume) and language change (Zuraw, this volume).

Markov chain See Markov model.

Markov model A markov model (also markov chain or markov process) can be
thought of as a stochastic process generating a sequence of symbols, where the
symbols are not independent but depend on a number of previous symbols in the
sequence. This number of previous symbols corresponds to the order of a markov
model. For example, in a first-order markov model, each symbol depends only on
its preceding symbol; in a second-order markov model, each symbol depends on
the two previous symbols; and so on (see also Bod, this volume). A markov model
can be conveniently represented by a state diagram consisting of states and tran-

sitions. It is said that each state emits a symbol, and a transition between two
states is labeled with the probability of this transition.

Markov process See Markov model.

Maximum likelihood The maximum likelihood hypothesis or estimator chooses
the parameter values (see distribution) that assign the highest probability to the
observed outcome. In estimating the probability of a word in a corpus or a con-
text-free rule in a treebank, the maximum likelihood estimator is equal to the
relative frequency (of the word or rule). For estimating the values of hidden

parameters (e.g., in a hidden markov Model ), the Expectation Maximization algo-

rithm is often used. For many linguistic problems, the maximum likelihood esti-
mator is unsuitable because of the sparseness of the data. If a certain linguistic
phenomenon can be modeled by a given distribution, it is possible to estimate the
probabilities of events that lie outside the observed data.

Multiplication rule See Product rule.

n-gram An n-gram is a sequence of n consecutive items such as phonemes, let-
ters, or words.

Nonparametric test A nonparametric test is a statistical test (see hypothesis test-

ing) that makes no assumptions about the underlying distribution.

Normal distribution The normal or Gaussian distribution is a continuous distri-

bution that can be applied to a wide range of experimental data (see central limit

theorem) and is often used to approximate the discrete binomial distribution. It is
more popularly known as the bell curve. The normal distribution has two param-

eters: the mean m and the standard deviation s. It is defined by

Pðx; m; sÞ ¼ ð2psÞ�1=2e�ðx�mÞ2=2s2

:

Null hypothesis See Hypothesis testing.

Parameter See Distribution.

Parametric test A parametric test is a statistical test (see hypothesis testing) that
assumes that the underlying distribution follows the normal distribution.

Poisson distribution The Poisson distribution is a convenient approximation of
the binomial distribution in the case where the number of trials n is large and the
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probability p small. The Poisson distribution is defined by

Pðk; lÞ ¼ e�l lk

k!
;

where Pðk; lÞ can be conceived as the probability of exactly k successes in an ideal
experiment (and where the parameter l is viewed as a physical parameter).

Posterior probability See Bayes’ rule.

Principal components analysis Principal components analysis is a multivariate
statistical procedure that is used to reduce the apparent dimensionality of the
data. It leads to a unique solution.

Prior probability See Bayes’ rule.

Probability distribution See Distribution.

Probability function A probability function (or probability distribution) distrib-
utes a probability mass of 1 throughout the sample space W. It is any function that
ranges over [0, 1], such that PðWÞ ¼ 1 and for two disjoint events A and B,

PðAWBÞ ¼ PðAÞ þ PðBÞ:
(See also Bod, this volume.)

Probability mass function A probability mass function for a random variable X

gives the probability that the random variable has certain numerical values. We
write a probability mass function as PðX ¼ xÞ, which reads as the probability that
the random variable X has value x.

Probability space A probability space ties together the three main components of
probability theory; it consists of a sample space, a s-field, and a probability func-

tion. The probability space’s main use is in providing a method of background
assumptions for definitions and theorems.

Product rule The product rule (or multiplication rule) states that the joint proba-

bility of two events A and B is equal to the probability of A multiplied by the
conditional probability of B given A:

PðA;BÞ ¼ PðAÞ PðBjAÞ:
If A and B are independent, the product rule reduces to

PðA;BÞ ¼ PðAÞ PðBÞ:
A derivation of the product rule is given in Bod, this volume.

Random variable Intuitively, a random variable is a real number determined
by a (probabilistic) experiment. A random variable is defined by the function
X : W! R, where R is the set of real numbers. Random variables are useful if we
want to talk about probabilities of numerical values related to the event space.
Since random variables have a numerical range, we can work directly with the
values of a random variable, rather than with irregular events.

Regression Regression is a statistical procedure to determine the relationship
between a dependent variable and one or more independent variables. See Man-
ning, this volume, for some important regression methods.
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Robustness of an estimator The robustness of an estimator is its break-
down point, that is, the fraction of outlying sample points that can corrupt the
estimator.

Sample space A sample space W is the set of outcomes for an experiment.

s-field A s-field is a set with a maximal element W (a sample space) and arbitrary
complements and unions. The power set of the sample space (i.e., the event space)
is a s-field.

Significance See Hypothesis testing.

Standard deviation The standard deviation of a random variable is closely related
to the notion of variance. It is defined as the square root of the variance.

Stochastic The word stochastic is commonly used as a synonym for probabilistic,
especially if it refers to a sequence of results generated by an underlying probabil-

ity distribution.

Stochastic process A stochastic process is the generation of a sequence of results
with a certain probability distribution.

Sum rule For disjoint events, the sum rule states that the probability of either
event occurring is equal to the sum of the probabilities of the events. That is, for
two events A and B, where AXB ¼q,

PðAWBÞ ¼ PðAÞ þ PðBÞ:
For the general case, where AXB0q, the sum rule is given by

PðAWBÞ ¼ PðAÞ þ PðBÞ � PðAXBÞ:
(See also Bod, this volume.)

Trigram A trigram is a sequence of three consecutive items such as phonemes,
letters, or words.

Variance The variance of a random variable is a measure of how much the
values of the random variable vary over trials. Variance can be intuitively under-
stood as how much on average the variable’s values di¤er from the variable’s
expectation:

VarðX Þ ¼ EððX � EðX ÞÞ2Þ:
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Åquist, L., Hoepelman, J., and Rohrer, C. 1980. Adverbs of frequency. In C.
Rohrer, ed., Time, tense and quantifiers. Tübingen, Germany: Niemeyer Verlag,
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434 References



Vitevich, M., and Luce, P. 1998. When words compete: Levels of processing in
perception of spoken words. Psychological Science 9, 325–329.

Vitevich, M., Luce, P., Pisoni, D., and Auer, E. T. 1999. Phonotactics, neighbor-
hood activation and lexical access for spoken words. Brain and Language 68, 306–
311.

von Mises, R. 1957. Probability, statistics and truth. New York: Macmillan.
Original German edition published 1928.

Wallis, S. A., Aarts, B., and Nelson, G. 1999. Parsing in reverse: Exploring ICE-
GB with fuzzy tree fragments and ICECUP. In J. M. Kirk, ed., Corpora galore:

Papers from the 19th International Conference on English Language Research on

Computerised Corpora, ICAME-98. Amsterdam: Rodopi, pp. 335–344.

Wasow, T. 1997. Remarks on grammatical weight. Language Variation and

Change 9, 81–105.

Way, A. 1999. A hybrid architecture for robust MT using LFG-DOP. Journal of

Experimental and Theoretical Artificial Intelligence 11, 201–233.

Wechsler, S., and Lee, Y.-S. 1996. The domain of direct case assignment. Natural

Language and Linguistic Theory 14, 629–664.

Weiner, E. J., and Labov, W. 1983. Constraints on the agentless passive. Journal

of Linguistics 19, 29–58.

Weinreich, U., Labov, W., and Herzog, M. 1968. Empirical foundations for a
theory of language change. In W. Lehmann and Y. Malkiel, eds., Directions for

historical linguistics. Austin: University of Texas Press, pp. 95–188.

Werker, J., and Tees, R. C. 1994. Cross-language speech perception: Evidence for
perceptual reorganization during the first year of life. Infant Behavior and Devel-

opment 7, 49–63.
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