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For whom is this book written?

Crow’s Law: Do not think what you want to think until you
know what you ought to know.1

Linear algebra is a living, active branch of mathematical research which
is central to almost all other areas of mathematics and which has impor-
tant applications in all branches of the physical and social sciences and in
engineering. However, in recent years the content of linear algebra courses
required to complete an undergraduate degree in mathematics – and even
more so in other areas – at all but the most dedicated universities, has been
depleted to the extent that it falls far short of what is in fact needed for
graduate study and research or for real-world application. This is true not
only in the areas of theoretical work but also in the areas of computational
matrix theory, which are becoming more and more important to the work-
ing researcher as personal computers become a common and powerful tool.
Students are not only less able to formulate or even follow mathematical
proofs, they are also less able to understand the underlying mathematics
of the numerical algorithms they must use. The resulting knowledge gap
has led to frustration and recrimination on the part of both students and
faculty alike, with each silently – and sometimes not so silently – blaming
the other for the resulting state of affairs. This book is written with the
intention of bridging that gap. It was designed be used in one or more of
several possible ways:

(1) As a self-study guide;
(2) As a textbook for a course in advanced linear algebra, either at the

upper-class undergraduate level or at the first-year graduate level; or
(3) As a reference book.

It is also designed to be used to prepare for the linear algebra portion of
prelim exams or PhD qualifying exams.

This volume is self-contained to the extent that it does not assume any
previous knowledge of formal linear algebra, though the reader is assumed
to have been exposed, at least informally, to some basic ideas or techniques,
such as matrix manipulation and the solution of a small system of linear
equations. It does, however, assume a seriousness of purpose, considerable

1This law, attributed to John Crow of King’s College, London, is quoted by R. V.
Jones in his book Most Secret War.
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x For whom is this book written?

motivation, and modicum of mathematical sophistication on the part of
the reader.

The book also contains a large number of exercises, many of which are
quite challenging, which I have come across or thought up in over thirty
years of teaching. Many of these exercises have appeared in print before,
in such journals as American Mathematical Monthly, College Mathemat-
ics Journal, Mathematical Gazette, or Mathematics Magazine, in various
mathematics competitions or circulated problem collections, or even on the
internet. Some were donated to me by colleagues and even students, and
some originated in files of old exams at various universities which I have
visited in the course of my career. Since, over the years, I did not keep
track of their sources, all I can do is offer a collective acknowledgement to
all those to whom it is due. Good problem formulators, like the God of the
abbot of Citeaux, know their own. Deliberately, difficult exercises are not
marked with an asterisk or other symbol. Solving exercises is an integral
part of learning mathematics and the reader is definitely expected to do
so, especially when the book is used for self-study.

Solving a problem using theoretical mathematics is often very differ-
ent from solving it computationally, and so strong emphasis is placed on
the interplay of theoretical and computational results. Real-life imple-
mentation of theoretical results is perpetually plagued by errors: errors in
modelling, errors in data acquisition and recording, and errors in the com-
putational process itself due to roundoff and truncation. There are further
constraints imposed by limitations in time and memory available for com-
putation. Thus the most elegant theoretical solution to a problem may not
lead to the most efficient or useful method of solution in practice. While
no reference is made to particular computer software, the concurrent use
of a personal computer equipped symbolic-manipulation software such as
Maple, Mathematica, Matlab or MuPad is definitely advised.

In order to show the “human face” of mathematics, the book also in-
cludes a large number of thumbnail photographs of researchers who have
contributed to the development of the material presented in this volume.

Acknowledgements. Most of the first edition this book was written
while the I was a visitor at the University of Iowa in Iowa City and at the
University of California in Berkeley. I would like to thank both institu-
tions for providing the facilities and, more importantly, the mathematical
atmosphere which allowed me to concentrate on writing. This edition was
extensively revised after I retired from teaching at the University of Haifa
in April, 2004.

I have talked to many students and faculty members about my plans for
this book and have obtained valuable insights from them. In particular, I
would like to acknowledge the aid of the following colleagues and students
who were kind enough to read the preliminary versions of this book and
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offer their comments and corrections: Prof. Daniel Anderson (University
of Iowa), Prof. Adi Ben-Israel (Rutgers University), Prof. Robert Cacioppo
(Truman State University), Prof. Joseph Felsenstein (University of Wash-
ington), Prof. Ryan Skip Garibaldi (Emory University), Mr. George Kirkup
(University of California, Berkeley), Prof. Earl Taft (Rutgers University),
Mr. Gil Varnik (University of Haifa).

Photo credits. The photograph of Dr. Shmuel Winograd is used with
the kind permission of the Department of Computer Science of the City
University of Hong Kong. The photographs of Prof. Ben-Israel, Prof. Blass,

The photograph of Prof. Greville is used
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is used with the kind permission of Prof. Walter Gander. The photograph
of Prof. V. N. Faddeeva is used with the kind permission of Dr. Vera Si-
monova. The photograph of Prof. Zorn is used with the kind permission
of his son, Jens Zorn. The photograph of J. W. Givens was taken from
a group photograph of the participants at the 1964 Gatlinburg Conference
on Numerical Algebra. All other photographs are taken from the MacTu-
tor History of Mathematics Archive website (http://www-history.mcs.st-
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1
Notation and terminology

Sets will be denoted by braces, { } , between which we will either enumer-
ate the elements of the set or give a rule for determining whether something
is an element of the set or not, as in {x | p(x)}, which is read “the set of
all x such that p(x)”. If a is an element of a set A we write a ∈ A; if
it is not an element of A, we write a /∈ A. When one enumerates the ele-
ments of a set, the order is not important. Thus {1, 2, 3, 4} and {4, 1, 3, 2}
both denote the same set. However, we often do wish to impose an order
on sets the elements of which we enumerate. Rather than introduce new
and cumbersome notation to handle this, we will make the convention that
when we enumerate the elements of a finite or countably-infinite set, we
will assume an implied order, reading from left to right. Thus, the implied
order on the set {1, 2, 3, . . .} is indeed the usual one. The empty set,
namely the set having no elements, is denoted by ∅. Sometimes we will
use the word “collection” as a synonym for “set”, generally to avoid talking
about “sets of sets”.

A finite or countably-infinite selection of elements of a set A is a list.
Members of a list are assumed to be in a definite order, given by their
indices or by the implied order of reading from left to right. Lists are
usually written without brackets: a1, . . . , an, though, in certain contexts,
it will be more convenient to write them as ordered n-tuples (a1, . . . , an).
Note that the elements of a list need not be distinct: 3, 1, 4, 1, 5, 9 is a list
of six positive integers, the second and fourth elements of which are equal
to 1. A countably-infinite list of elements of a set A is also often called
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2 1. Notation and terminology

a sequence of elements of A. The set of all distinct members of a list is
called the underlying subset of the list.

If A and B are sets, then their union A∪B is the set of all elements
that belong to either A or B, and their intersection A ∩ B is the
set of all elements belonging both to A and to B. More generally, if
{Ai | i ∈ Ω} is a (possibly-infinite) collection of sets, then

⋃
i∈Ω Ai is the

set of all elements that belong to at least one of the Ai and
⋂

i∈Ω Ai is
the set of all elements that belong to all of the Ai. If A and B are sets,
then the difference set A � B is the set of all elements of A which do
not belong to B.

A function f from a nonempty set A to a nonempty set B is a rule
which assigns to each element a of A a unique element f(a) of B. The
set A is called the domain of the function and the set B is called the
range of the function. To denote that f is a function from A to B,
we write f : A → B. To denote that an element b of B is assigned to
an element a of A by f, we write f : a �→ b. (Note the different form
of the arrow!) This notation is particularly helpful in the case that the
function f is defined by a formula. Thus, for example, if f is a function
from the set of integers to the set of integers defined by f : a �→ a3, then
we know that f assigns to each integer its cube. The set of all functions
from a nonempty set A to a nonempty set B is denoted by BA. If
f ∈ BA and if A′ is a nonempty subset of A, then the restriction of
f to A′ is the function f ′ : A′ → B defined by f ′ : a′ �→ f(a′) for all
a′ ∈ A′.

Functions f and g in BA are equal if and only if f(a) = g(a) for all
a ∈ A. In this case we write f = g. A function f ∈ BA is monic if and
only if it assigns different elements of B to different elements of A, i.e. if
and only if f(a1) �= f(a2) whenever a1 �= a2 in A. A function f ∈ BA

is epic if and only if every element of B is assigned by f to some element
of A. A function which is both monic and epic is bijective. A bijective
function from a set A to a set B determines a bijective correspondence
between the elements of A and the elements of B. If f : A → B is a
bijective function, then we can define the inverse function f−1 : B → A
defined by the condition that f−1(b) = a if and only if f(a) = b. This
inverse function is also bijective. A bijective function from a set A to
itself is a permutation of A. Note that there is always at least one
permutation of any nonempty set A, namely the identity function a �→ a.

The cartesian product A1 × A2 of nonempty sets A1 and A2 is
the set of all ordered pairs (a1, a2), where a1 ∈ A1 and a2 ∈ A2. More
generally, if A1, . . . , An is a list of nonempty sets, then A1 × . . .×An is
the set of all ordered n-tuples (a1, . . . , an) satisfying the condition that
ai ∈ Ai for each 1 ≤ i ≤ n. Note that each ordered n-tuple (a1, . . . , an)
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uniquely defines a function f : {1, . . . , n} → ∪n
i=1Ai given by f : i �→ ai

for each 1 ≤ i ≤ n. Conversely, each function f : {1, . . . , n} →
⋃n

i=1 Ai

satisfying the condition that f(i) ∈ Ai for 1 ≤ i ≤ n, defines such
an ordered n-tuple, namely (f(1), . . . , f(n)). This suggests a method for
defining the cartesian product of an arbitrary collection of nonempty sets.
If {Ai | i ∈ Ω} is an arbitrary collection of nonempty sets, then the set∏

i∈Ω Ai is defined to be the set of all those functions f from Ω to⋃
i∈Ω Ai satisfying the condition that f(i) ∈ Ai for each i ∈ Ω. The

existence of such functions is guaranteed by a fundamental axiom of set
theory, known as the Axiom of Choice. A certain amount of controversy
surrounds this axiom, and there are mathematicians who prefer to make as
little use of it as possible. However, we will need it constantly throughout
this book, and so will always assume that it holds.

In the foregoing construction we did not assume that the sets Ai were
necessarily distinct. Indeed, it may very well happen that there exists a
set A such that Ai = A for all i ∈ Ω. In that case, we see that

∏
i∈Ω Ai

is just AΩ. If the set Ω is finite, say Ω = {1, . . . , n}, then we write
An instead of AΩ. Thus, An is just the set of all ordered n-tuples
(a1, . . . , an) of elements of A.

We use the following standard notation for some common sets of numbers

N the set of all nonnegative integers
Z the set of all integers
Q the set of all rational numbers
R the set of all real numbers
C the set of all complex numbers

Other notion is introduced throughout the text, as is appropriate. See the
Summary of Notation at the end of the book.



2
Fields

The way of mathematical thought is twofold: the mathematician first pro-
ceeds inductively from the particular to the general and then deductively
from the general to the particular. Moreover, throughout its development,
mathematics has shown two aspects – the conceptual and the computa-
tional – the symphonic interleaving of which forms one of the major aspects
of the subject’s aesthetic.

Let us therefore begin with the first mathematical structure: numbers.
By the Hellenistic times, mathematicians distinguished between two types
of numbers: the rational numbers, namely those which could be written
in the form m

n for some integer m and some nonnegative integer n, and
those numbers representing the geometric magnitude of segments of the
line, which today we call real numbers and which, in decimal notation, are
written in the form m.k1k2k3 . . . where m is an integer and the ki are
digits. The fact that the set Q of rational numbers is not equal to the set
R of real numbers was already noticed by the followers of the mathemati-
cian/mystic Pythagoras. On both sets of numbers we define operations
of addition and multiplication which satisfy certain rules of manipulation.
Isolating these rules as part of a formal system was a task first taken on in
earnest by nineteenth-century British and German mathematicians. From
their studies evolved the notion of a field, which will be basic to our consid-
erations. However, since fields are not our primary object of study, we will

5



6 2. Fields

delve only minimally into this fascinating notion. A serious consideration
of field theory must be deferred to an advanced course in abstract algebra.1

A nonempty set F together with two functions F×F → F , respectively
called addition (as usual, denoted by +) and multiplication (as usual,
denoted by · or by concatenation), is a field if the following conditions
are satisfied:

(1) (associativity of addition and multiplication): a + (b + c) =
(a + b) + c and a(bc) = (ab)c for all a, b, c ∈ F .

(2) (commutativity of addition and multiplication): a+ b = b+a
and ab = ba for all a, b ∈ F.

(3) (distributivity of multiplication over addition): a(b + c) =
ab + ac for all a, b, c ∈ F .

(4) (existence of identity elements for addition and multiplica-
tion): There exist distinct elements of F , which we will denote by 0
and 1 respectively, satisfying a + 0 = a and a1 = a for all a ∈ F .

(5) (existence of additive inverses): For each a ∈ F there exists
an element of F , which we will denote by −a, satisfying a + (−a) = 0.

(6) (existence of multiplicative inverses): For each 0 �= a ∈ F
there exists an element of F , which we will denote by a−1, satisfying
a−1a = 1.

Note that we did not assume that the elements −a and a−1 are unique,
though we will soon prove that in fact they are. If a and b are elements
of a field F , we will follow the usual conventions by writing a− b instead
of a + (−b) and a

b instead of ab−1. Moreover, if 0 �= a ∈ F and if n
is a positive integer, then na denotes the sum a + . . . + a (n summands)
and an denotes the product a · . . . · a (n factors). If n is a negative
integer, then na denotes (−n)(−a) and an denotes (a−1)−n. Finally,
if n = 0 then na denotes the field element 0 and an denotes the field
element 1. For 0 = a ∈ F , we define na = 0 for all integers n and

1

The development of the abstract theory of fields is generally credited to the 19th-
century German mathematician Heinrich Weber, based on earlier work by the
German mathematicians Richard Dedekind and Leopold Kronecker. Another
19th-century mathematician, the British Augustus De Morgan, was the first to
isolate the importance of such properties as associativity, distributivity, and so forth.
The final axioms of a field are due to the 20th-century German mathematician Ernst
Steinitz.



2. Fields 7

an = 0 for all positive integers n. The symbol 0k is not defined for
k ≤ 0.

As an immediate consequence of the associativity and commutativity of
addition, we see that the sum of any list a1, . . . , an of elements of a field
F is the same, no matter in which order we add them. We can therefore
unambiguously write a1 + . . . + an. This sum is also often denoted by∑n

i=1 ai. Similarly, the product of these elements is the same, no matter
in which order we multiply them. We can therefore unambiguously write
a1 · . . . ·an. This product is also often denoted by

∏n
i=1 ai. Also, a simple

inductive argument shows that multiplication distributes over arbitrary
sums: if a ∈ F and b1, . . . bn is a list of elements of F then a (

∑n
i=1 bi) =∑n

i=1 abi.

We easily see that Q and R, with the usual addition and multiplication,
are fields.

A subset G of a field F is a subfield if and only if it contains 0 and 1,
is closed under addition and multiplication, and contains the additive and
multiplicative inverses of all of its nonzero elements. Thus, for example,
Q is a subfield of R. The intersection of a collection of subfields of a field
F is again a subfield of F.

We now want to look at several additional important examples of fields.

Example: Let C = R
2 and define operations of addition and multi-

plication on C by setting (a, b)+(c, d) = (a+c, b+d) and (a, b) · (c, d) =
(ac−bd, ad+bc). These operations define the structure of a field on C, in
which the identity element for addition is (0, 0), the identity element for
multiplication is (1, 0), the additive inverse of (a, b) is (−a,−b), and

(a, b)−1 =
(

a

a2 + b2
,

−b

a2 + b2

)

for all (0, 0) �= (a, b). This field is called the field of complex numbers.
The set of all elements of C of the form (a, 0) forms a subfield of C,
which we normally identify with R and therefore it is standard to consider
R as a subfield of C. In particular, we write a instead of (a, 0) for
any real number a. The element (0, 1) of C is denoted by i. This
element satisfies the condition that i2 = (−1, 0) and so it is often written
as

√
−1. We also note that any element (a, b) of C can be written as

(a, 0) + b(0, 1) = a + bi, and, indeed, that is the way complex numbers are
usually written and how we will denote them from now on. If z = a + bi,
then a is the real part of z, which is often denoted by Re(z), while
bi is the imaginary part of z, which is often denoted by Im(z). The
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field of complex numbers is extremely important in mathematics. From
a geometric point of view, if we identify R with the set of points on
the Euclidean line, as one does in analytic geometry, then it is natural to
identify C with the set of points in the Euclidean plane.2

If z = a+bi ∈ C then we denote the complex number a−bi, called the
complex conjugate of z, by z. It is easy to see3 that for all z, z′ ∈ C

we have z + z′ = z + z′, −z = −z, zz′ = z · z′, z−1 = (z)−1, and z = z.
The number zz equals a2 + b2, which is a nonnegative real number and
so has a square root in R, which we will denote by |z|. Note that |z| is
nonzero whenever z �= 0. From a geometric point of view, this number is
just the distance from the number z, considered as a point in the euclidean
plane, to the origin, just as the usual absolute value |a| of a real number
a is the distance between a and 0 on the real line. It is easy to see that if
y and z are complex numbers then |yz| = |y| · |z| and |y + z| ≤ |y|+ |z|.
Moreover, if z = a + bi then

z + z = 2a ≤ 2|a| = 2
√

a2 ≤ 2
√

a2 + b2 = 2|z|.

We also note, as a direct consequence of the definition, that |z| = |z| for
every complex number z and so z−1 = |z|−2z for all 0 �= z ∈ C.

Example: The set Q
2 is a subfield of the field C defined above.

However, it is also possible to define field structures on Q
2 in other ways.

Indeed, let F = Q
2 and let p be a fixed prime integer. Define addition

and multiplication on F by setting (a, b) + (c, d) = (a + c, b + d) and
(a, b) · (c, d) = (ac + bdp, ad + bc).

Again, one can check that F is indeed a field and that, again, the set of
all elements of F of the form (a, 0) is a subfield, which we will identify
with Q. Moreover, the additive inverse of (a, b) ∈ F is (−a,−b) and

2 The term “imaginary” was coined by the 17th-
century French philosopher and mathematician René Descartes. The use of i to
denote

√
−1 was introduced by 18th-century Swiss mathematician Leonhard Euler.

The geometric representation of the complex numbers was first proposed at the end of
the 18th century by the Norwegan surveyor Caspar Wessel, and later by the French
accountant Jean-Robert Argand.

3When a mathematician says that something is “easy to see” or “trivial”, it means
that you are expected to take out a pencil and paper and spend some time – often
considerable – checking it out by yourself.
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the multiplicative inverse of (0, 0) �= (a, b) ∈ F is
(

a

a2 − pb2
,

−b

a2 − pb2

)

.

(We note that a2−pb2 is the product of the nonzero real numbers a+b
√

p
and a − b

√
p and so is nonzero.) The element (0, 1) of F satisfies

(0, 1)2 = (p, 0) and so one usually denotes it by
√

p and, as before, any
element of F can be written in the form a + b

√
p, where a, b ∈ Q.

The field F is usually denoted by Q

(√
p
)
. Since there are infinitely-

many distinct prime integers, we see that there are infinitely-many ways of
defining different field structures on Q × Q, all having the same addition.

Example: Fields do not have to be infinite. Let p be a positive integer
and let Z/(p) = {0, 1, . . . , p− 1}. For each nonnegative integer n, let us,
for the purposes of this example, denote the remainder after dividing n by
p as [n]p. Thus we note that [n]p ∈ Z/(p) for each nonnegative integer
n and that [i]p = i for all i ∈ Z/(p). We now define operations on
Z/(p) by setting [n]p +[k]p = [n+k]p and [n]p · [k]p = [nk]p. It is easy to
check that if the integer p is prime then Z/(p), together with these two
operations, is again a field, known as the Galois4 field of order p. This
field is usually denoted by GF (p). While Galois fields were first considered
mathematical curiosities, they have since found important applications in
coding theory, cryptography, and modeling of computer processes.

These are not the only possible finite fields. Indeed, it is possible to show
that for each prime integer p and each positive integer n there exists an
(essentially unique) field with pn elements, usually denoted by GF (pn).

Example: Some important structures are “very nearly” fields. For
example, let R∞ = R ∪ {∞}, and define operations � and � on R∞
by setting

a � b =






min{a, b} if a, b ∈ R

b if a = ∞
a if b = ∞

4 The 19th-century French mathematical genius
Evariste Galois, who died at the age of 21, was the first to consider such structures.
The study of finite and infinite fields was unified in the 1890’s by Eliakim Hastings
Moore, the first American-born mathematician to achieve an international reputation.
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and

a � b =
{

a + b if a, b ∈ R

∞ otherwise .

This structure, called the optimization algebra, satisfies all of the condi-
tions of a field except for the existence of additive inverses (such structures
are known as semifields). As the name suggests, it has important appli-
cations in optimization theory and the analysis of discrete-event dynamical
systems. There are several other semifields which have important applica-
tions and which have been extensively studied.

Another possibility of generalizing the notion of a field is to consider an
algebraic structure which satisfies all of the conditions of a field except for
the existence of multiplicative inverses, and to replace that condition by
the condition that if a, b �= 0 then ab �= 0. Such structures are known
as integral domains. The set Z of all integers is the simplest example
of an integral domain which is not a field. Algebras of polynomials over a
field, which we will consider later, are also integral domains. In a course
in abstract algebra, one proves that any integral domain can be embedded
in a field.

In the field GF (p) which we defined above, one can easily see that the
sum 1+ . . .+1 (p summands) equals 0. On the other hand, in the field
Q, the sum of any number of copies of 1 is always nonzero. This is an
important distinction which we will need to take into account in dealing
with structures over fields. We therefore define the characteristic of a
field F to be equal to the smallest positive integer p such that 1+ . . .+1
(p summands) equals 0 – if such an integer p exists – and to be equal
to 0 otherwise. We will not delve deeply into this concept, which is dealt
with in courses on field theory, except to note that the characteristic of a
field, if nonzero, always turns out to be a prime number.

In the definition of a field, we posited the existence of distinct identity
elements for addition and multiplication, but did not claim that these ele-
ments were unique. It is, however, very easy to prove that fact.

(2.1) Proposition: Let F be a field.
(1) If e is an element of F satisfying e + a = a for all a ∈ F

then e = 0;
(2) If u is an element of F satisfying ua = a for all a ∈ F

then u = 1.

Proof: By definition we note that e = e + 0 = 0 and u = u1 = 1.
�
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Similarly, we prove that additive and multiplicative inverses, when they
exist, are unique. Indeed, we can prove a stronger result.

(2.2) Proposition: If a and b are elements of a field F then:
(1) There exists a unique element c of F satisfying a+ c = b.
(2) If a �= 0 then there exists a unique element d of F

satisfying ad = b.

Proof: (1) Choose c = b − a. Then

a + c = a + (b − a) = a + [b + (−a)]
= a + [(−a) + b] = [a + (−a)] + b = 0 + b = b.

Moreover, if a + x = b then

x = 0 + x = [(−a) + a] + x

= (−a) + (a + x) = (−a) + b = b − a,

proving uniqueness.
(2) Choose d = a−1b. Then ad = a(a−1b) = (aa−1)b = 1b = b.

Moreover, if ay = b then y = 1y = (a−1a)y = a−1(ay) = a−1b, proving
uniqueness. �

We now summarize some of the elementary properties of fields, which
are all we will need for our discussion.

(2.3) Proposition: If a, b, and c are elements of a field F
then:

(1) 0a = 0;
(2) (−1)a = −a;
(3) a(−b) = −(ab) = (−a)b;
(4) −(−a) = a;
(5) (−a)(−b) = ab;
(6) −(a + b) = (−a) + (−b);
(7) a(b − c) = ab − ac;
(8) If a �= 0 then

(
a−1

)−1 = a;
(9) If a, b �= 0 then (ab)−1 = b−1a−1;
(10) If a + c = b + c then a = b;
(11) If c �= 0 and ac = bc then a = b.
(12) If ab = 0 then a = b or b = 0.

Proof: (1) Since 0a+0a = (0+0)a = 0a, we can add −(0a) to both
sides of the equation to obtain 0a = 0.

(2) Since (−1)a+a = (−1)a+1a = [(−1)+1]a = 0a = 0 and also
(−a) + a = 0, we see from Proposition 2.2 that (−1)a = −a.
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(3) By (2) we have a(−b) = a[(−1)b] = (−1)ab = −(ab) and
similarly (−a)b = −(ab).

(4) Since a + (−a) = 0 = −(−a) + (−a), this follows from Propo-
sition 2.2.

(5) From (3) and (4) it follows that (−a)(−b) = a[−(−b)] = ab.
(6) Since (a + b) + [(−a) + (−b)] = a + b + (−a) + (−b) = 0 and

(a + b) + [−(a + b)] = 0, the result follows from Proposition 2.2.
(7) By (3) we have a(b− c) = ab + a(−c) = ab + [−(ac)] = ab− ac.
(8) Since

(
a−1

)−1
a−1 = 1 = aa−1, this follows from Proposition

2.2.
(9) Since

(
a−1b−1

)
(ba) = a−1ab−1b = 1 = (ab)−1(ba), the result

follows from Proposition 2.2.
(10) This is an immediate consequence of adding −c to both sides

of the equation.
(11) This is an immediate consequence of multiplying both sides of

the equation by c−1.
(12) If b = 0 we are done. If b �= 0 then by (1) it follows that

multiplying both sides of the equation by b−1 will yield a = 0. �

(2.4) Proposition: Let a be a nonzero element of a finite field
F having q elements. Then a−1 = aq−2.

Proof: If q = 2 then F = GF (2) and a = 1, so the result is
immediate. Hence we can assume q > 2. Let B = {a1, . . . aq−1} be the
nonzero elements of F, written in some arbitrary order. Then aai �= aah

for i �= h since, were they equal, we would have ai = a−1(aai) =
a−1(aah) = ah. Therefore B = {aa1, . . . aaq−1} and so

q−1∏

i=1

ai =
q−1∏

i=1

(aai) = aq−1

[
q−1∏

i=1

ai

]

.

Moreover, this is a product of nonzero elements of F and so, by Proposition
2.3(12), is also nonzero. Therefore, by Proposition 2.3(11), 1 = aq−1 and
so aa−1 = 1 = aq−1 = a(aq−2), implying that a−1 = aq−2. �

Exercises

Exercise 1 Let F be a field and let G = F × F. Define operations of
addition and multiplication on G by setting (a, b) + (c, d) = (a + c, b + d)
and (a, b) · (c, d) = (ac, bd). Do these operations define the structure of a
field on G?
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Exercise 2 Let r ∈ R and let 0 �= s ∈ R. Define operations � and �
on R × R by setting (a, b) � (c, d) = (a + c, b + d) and

(a, b) � (c, d) = (ac − bd(r2 + s2), ad + bc + 2rbd).

Do these operations, considered as addition and multiplication respectively,
define the structure of a field on R × R?

Exercise 3 Define a new operation † on R by setting a † b = a3b.
Show that R, on which we have the usual addition and this new operation
as multiplication, satisfies all of the axioms of a field with the exception of
one.

Exercise 4 Let 1 < t ∈ R and let F = {a ∈ R | a < 1}. Define
operations ⊕ and � on F as follows:
(1) a ⊕ b = a + b − ab for all a, b ∈ F ;
(2) a � b = 1 − tlogt(1−a) logt(1−b) for all a, b ∈ F.
For which values of t does F, together with these operations, form a
field?

Exercise 5 Show that the set of all real numbers of the form a + b
√

2 +
c
√

3 + d
√

6, where a, b, c, d ∈ Q, forms a subfield of R.

Exercise 6 Is {a + b
√

15 | a, b ∈ Q} a subfield of R?

Exercise 7 Show that the field R has infinitely-many distinct subfields.

Exercise 8 Let F be a field and define a new operation ∗ on F by
setting a ∗ b = a + b + ab. When is (F,+, ∗) a field?

Exercise 9 Let F be a field and let Gn be the subset of F consisting
of all elements which can be written as a sum of n squares of elements of
F.
(1) Is the product of two elements of G2 again an element of G2?
(2) Is the product of two elements of G4 again an element of G4?

Exercise 10 Let t = 3
√

2 ∈ R and let S be the set of all real numbers
of the form a + bt + ct2, where a, b, c ∈ Q. Is S a subfield of R?

Exercise 11 Let F be a field. Show that the function a �→ a−1 is a
permutation of F � {0F }.

Exercise 12 Show that every z ∈ C satisfies

z4 + 4 = (z − 1 − i)(z − i + i)(z + 1 + i)(z + 1 − i).

Exercise 13 In each of the following, find the set of all complex numbers
z = a + bi satisfying the given relation. Note that this set may be empty
or may be all of C. Justify your result in each case.
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(a) z2 = 1
2 (1 + i

√
3);

(b)
(√

2
)
|z| ≥ |a| + |b|;

(c) |z| + z = 2 + i;
(d) z4 = 2 −

(√
12
)
i;

(e) z4 = −4.

Exercise 14 Let y be a complex number satisfying |y| < 1. Find the set
of all complex numbers z satisfying |z − y| ≤ |1 − yz|.

Exercise 15 Let z1, z2, and z3 be complex numbers satisfying the
condition that |zi| = 1 for i = 1, 2, 3. Show that |z1z2 + z1z3 + z2z3| =
|z1 + z2 + z3|.

Exercise 16 For any z1, z2 ∈ C, show that |z1|2 + |z2|2 − z1z2 − z1z2 =
|z1 − z2|2.

Exercise 17 Show that |z + 1| ≤ |z + 1|2 + |z| for all z ∈ C.

Exercise 18 If z ∈ C, find w ∈ C satisfying w2 = z.

Exercise 19 Define new operations ◦ and � on C by setting y◦z = |y|z
and

y � z =
{

0 if y = 0
1
|y|yz otherwise

for all y, z ∈ C. Is it true that w � (y ◦ z) = (w � y) ◦ (w � z) and
w ◦ (y � z) = (w ◦ y) � (w ◦ z) for all w, y, z ∈ C?

Exercise 20 Let 0 �= z ∈ C. Show that there are infinitely-many complex
numbers y satisfying the condition yy = zz.

Exercise 21 (Abel’s inequality5): Let z1, . . . , zn be a list of complex
numbers and, for each 1 ≤ k ≤ n, let sk =

∑k
i=1 zi. For real numbers

a1, . . . , an satisfying a1 ≥ a2 ≥ . . . ≥ an ≥ 0, show that
∣
∣
∣
∣
∣

n∑

i=1

aizi

∣
∣
∣
∣
∣
≤ a1

(

max
1≤k≤n

|sk|
)

.

5 Nineteenth-century Norwegian mathematicial genius Niels Hen-
rik Abel died tragically at the age of 26.
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Exercise 22 Let 0 �= z0 ∈ C satisfy the condition |z0| < 2. Show
that there are precisely two complex numbers, z1 and z2, satisfying
|z1| + |z2| = 1 and z1 + z2 = z0.

Exercise 23 If p is a prime positive integer, find all subfields of GF (p).

Exercise 24 Find elements c, d �= ±1 in the field Q

(√
5
)

satisfying
cd = 19.

Exercise 25 Let F be the set of all real numbers of the form

a + b
(

3
√

5
)

+ c
(

3
√

5
)2

,

where a, b, c ∈ Q. Is F a subfield of R?

Exercise 26 Let p be a prime positive integer and let a ∈ GF (p). Does
there necessarily exist an element b of GF (p) satisfying b2 = a?

Exercise 27 Let F = GF (11) and let G = F ×F. Define operations of
addition and multiplication on G by setting (a, b) + (c, d) = (a + c, b + d)
and (a, b) · (c, d) = (ac + 7bd, ad + bc). Do these operations define the
structure of a field on G?

Exercise 28 Let F be a field and let G be a finite subset of F � {0}
containing 1 and satisfying the condition that if a, b ∈ F then ab−1 ∈ G.
Show that there exists an element c ∈ G such that G = {ci | i ≥ 0}.

Exercise 29 Let F be a field satisfying the condition that the function
a �→ a2 is a permutation of F. What is the characteristic of F?

Exercise 30 Is Z/(6) an integral domain?

Exercise 31 Let F = {a + b
√

5 ∈ Q(
√

5) | a, b ∈ Z}. Is F an integral
domain?

Exercise 32 Let F be an integral domain and let a ∈ F satisfy a2 = a.
Show that a = 0 or a = 1.

Exercise 33 Let a be a nonzero element in an integral domain F. If
b �= c are distinct elements of F, show that ab �= ac.

Exercise 34 Let F be an integral domain and let G be a nonempty
subset of F containing 0 and 1 and closed under the operations of
addition and multiplication in F . Is G necessarily an integral domain?

Exercise 35 Let U be the set of all positive integers and let F be the
set of all functions from U to C. Define operations of addition and
multiplication on F by setting f + g : k �→ f(k) + g(k) and fg : k �→∑

ij=k f(i)g(j) for all k ∈ U. Is F, together with these operations, an
integral domain? Is it a field?
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Exercise 36 Let F be the set of all functions f from R to itself
of the form f : t �→

∑n
k=1 [ak cos(kt) + bk sin(kt)] , where the ak and

bk are real numbers and n is some positive integer. Define addition and
multiplication on F by setting f+g : t �→ f(t)+g(t) and fg : t �→ f(t)g(t)
for all t ∈ R. Is F, together with these operations, an integral domain?
Is it a field?

Exercise 37 Show that every integral domain having only finitely-many
elements is a field.

Exercise 38 Let F be a field of characteristic other than 2 in which
there exist elements a1, . . . , an satisfying

∑n
i=1 a2

i = −1. (This happens,
for example, in the case F = C). Show that for any c ∈ F there exist
elements b1, . . . , bk of F satisfying c =

∑k
i=1 b2

i .

Exercise 39 Let p be a prime integer. Show that for each a ∈ GF (p)
there exist elements b and c of GF (p), not necessarily distinct, satisfying
a = b2 + c2.

Exercise 40 Let F be a field in which we have elements a, b, and c
(not necessarily distinct) satisfying a2+b2+c2 = −1. Show that there exist
(not necessarily distinct) elements d and e of F, satisfying d2+e2 = −1.

Exercise 41 Is every nonzero element of the field GF (5) in the form 2i

for some positive integer i? What happens in the case of the field GF (7)?

Exercise 42 Find the set of all fields F in which there exists an element
a satisfying the condition that a + b = a for all b ∈ F � {a}.

Exercise 43 (Binomial Formula) If a and b are elements of a field
F, and if n is a positive integer, show that (a + b)n =

∑n
k=0

(
n
k

)
akbn−k.

Exercise 44 Let F be a field of characteristic p > 0. Use the previous
two exercises to show that the function γ : F → F defined by γ : a �−→ ap

is monic.

Exercise 45 Let a and b be nonzero elements of a finite field F, and
let m and n be positive integers satisfying am = bn = 1. Show that
there exists a nonzero element c of F satisfying ck = 1, where k is
the least common multiple of m and n.

Exercise 46 If a is a nonzero element of a field F, show that (−a)−1 =
−(a−1).

Exercise 47 A field F is orderable if and only if there exists a subset
P closed under addition and multiplication such that for each a ∈ F
precisely one of the following conditions holds: (i) a = 0; (ii) a ∈ P ;
(iii) −a ∈ P. Show that GF (5) is not orderable.
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Vector spaces over a field

If n > 1 is an integer and if F is a field, it is natural to define addition
on the set Fn componentwise:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

More generally, if Ω is any nonempty set and if FΩ is the set of all
functions from Ω to the field F, we can define addition on FΩ by
setting f + g : i �→ f(i) + g(i) for each i ∈ Ω. Given these definitions, is
it possible to define multiplication in such a manner that Fn or FΩ will
become a field naturally containing F as a subfield? We have seen that
if n = 2 and if F = R or F = Q, this is possible – and, indeed, in the
latter case there are several different methods of doing it. If F = GF (p)
then it is possible to define such a field structure on Fn for every integer
n > 1. However in general the answer is negative – as we will show in
a later chapter for the specific case of R

k, where k > 2 is an odd
integer. Nonetheless, it is possible to construct another important and
useful structure on these sets, and this structure will be the focus of our
attention for the rest of this book. We will first give the formal definition,
and then look at a large number of examples.

Let F be a field. A nonempty set V, together with a function
V × V → V called vector addition (denoted, as usual, by +) and a
function F × V → V called scalar multiplication (denoted, as a rule,

17



18 3. Vector spaces over a field

by concatenation) is a vector space over F if the following conditions
are satisfied:

(1) (associativity of vector addition): v + (w + y) = (v + w) + y
for all v, w, y ∈ V.

(2) (commutativity of vector addition): v + w = w + v for all
v, w ∈ V.

(3) (existence of a identity element for vector addition): There
exists an element 0V of V satisfying the condition that v + 0V = v for
all v ∈ V.

(4) (existence of additive inverses): For each v ∈ V there exists an
element of V, which we will denote by −v, which satisfies v+(−v) = 0V .

(5) (distributivity of scalar multiplication over vector addition
and of scalar multiplication over field addition): a(v+w) = av+aw
and (a + b)v = av + bv for all a, b ∈ F and v, w ∈ V.

(6) (associativity of scalar multiplication): (ab)v = a(bv) for all
a, b ∈ F and v ∈ V.

(7) (existence of identity element for scalar multiplication): 1v =
v for all v ∈ V.

The elements of V are called vectors and the elements of F are called
scalars1.

Example: Note that condition (7), apparently trivial, does not follow
from the other conditions. Indeed, if we take V = F but define scalar
multiplication by av = 0V for all a ∈ F and v ∈ V, we would get a
structure which satisfies conditions (1) - (6) but not condition (7).

If v, w ∈ V we again write v − w instead of v + (−w). As we
noted when we talked about fields, if v1, . . . , vn is a list of vectors in
a vector space V over a field F, the associativity of vector addition
allows us to unambiguously write v1 + . . . + vn, and this sum is often
denoted by

∑n
i=1 vi. Moreover, if a ∈ F is a scalar then we surely have

a (
∑n

i=1 vi) = (
∑n

i=1 avi) . Similarly, if a1, . . . , an is a list of scalars and

1

The theory of vector spaces was developed in the 1880’s by the American engineer
and physicist, Josiah Willard Gibbs and the British engineer Oliver Heaviside,
based on the work of the Scottish physicist James Clerk Maxwell, the German
high-school teacher Herman Grassmann, and the French engineer Jean Claude
Saint-Venant.
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if v ∈ V, then we have (
∑n

i=1 ai) v =
∑n

i=1 aiv. We will also adopt the
convention that the sum of an empty set of vectors is equal to 0V .

Clearly any field F is a vector space over itself, where we take the
vector addition to be the addition in F and scalar multiplication to be
the multiplication in F.

We also note an extremely important construction. Let F be a field
and let Ω be a nonempty set. Assume that, for each i ∈ Ω, we are given
a vector space Vi over F, the addition in which we will denote by +i (the
vector spaces Vi need not, however, be distinct from one another). Recall
that

∏
i∈Ω Vi is the set of all those functions f from Ω to

⋃
i∈Ω Vi

which satisfy the condition that f(i) ∈ Vi for each i ∈ Ω. We now define
the structure of a vector space on

∏
i∈Ω Vi as follows: if f, g ∈

∏
i∈Ω Vi

then f + g is the function in
∏

i∈Ω Vi given by f + g : i �→ f(i) +i g(i)
for each i ∈ Ω. Moreover, if a ∈ F and f ∈

∏
i∈Ω Vi, then af is the

function in
∏

i∈Ω Vi given by af : i �→ a [f(i)] for each i ∈ Ω. It is routine
to verify that all of the axioms of a vector space are satisfied in this case.
For example, the identity element for vector addition is just the function in∏

i∈Ω Vi given by i �→ 0Vi
for each i ∈ Ω. This vector space is called the

direct product of the vector spaces Vi over F. If the set Ω is finite,
say Ω = {1, . . . , n}, then we often write V1× . . .×Vn instead of

∏
i∈Ω Vi.

If all of the vector spaces Vi are equal to the same vector space V, then
we write V Ω instead of

∏
i∈Ω Vi and if Ω = {1, . . . , n} we write V n

instead of V Ω. Note that a function f from a finite set Ω = {1, . . . , n}
to a vector space V is totally defined by the list f(1), f(2), . . . , f(n) of its
values. Conversely, any list v1, . . . , vn of elements of V uniquely defines
such a function f given by f : i �→ vi. Therefore this notation agrees
with our previous use of the symbol V n to denote sets of n-tuples of
elements of V. However, to emphasize the vector space structure here, we

will write the elements of V n as columns of the form






v1

...
vn




 , where the

vi are (not necessarily distinct) elements of V. Usually, we will consider
the case V = F. Vector addition and scalar multiplication in V n are then
defined by the rules






v1

...
vn




 +






w1

...
wn




 =






v1 + w1

...
vn + wn




 and c






v1

...
vn




 =






cv1

...
cvn




 .

The “classical” study of vector spaces centers around the spaces R
n, the

vectors in which are identified with the points in n-dimensional euclidean
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space2. However, other vector spaces also have important applications.
Vector spaces of the form C

n are needed for the study of functions of
several complex variables. In algebraic coding theory, one is interested in
spaces of the form Fn, where F is a finite field. The vectors in this
space are words of length n and the field F is the alphabet in which
these words are written. Thus, for example, a popular choice for F is the
Galois field GF (28), the 256 elements of which are identified with the 256
ASCII symbols.

Let V be a vector space, let k and n be positive integers, and
let Ω = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ n}. There exists a bijective
correspondence between V Ω and the set of all rectangular arrays of the

form






v11 . . . v1n

...
...

vk1 . . . vkn




 in which the entries vij are elements of V.

Such an array is called a k × n matrix3 over V. We will denote the set
of all such matrices by Mk×n(V ). Addition and scalar multiplication in
Mk×n(V ) is given by






v11 . . . v1n

...
...

vk1 . . . vkn




 +






w11 . . . w1n

...
...

wk1 . . . wkn






=






v11 + w11 . . . v1n + w1n

...
...

vk1 + wk1 . . . vkn + wkn






2 The first explicit statement of the geometric “parallelogram law”
for adding vectors in R

2 was given by the sixteenth-century Pisan scientist Galileo
Galilei.

3 The term “matrix” was first coined by the 19th-century British
mathematician James Joseph Sylvester in 1848. Sylvester was one of the major
researchers in the theory of matrices and determinants.
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and c






v11 . . . v1n

...
...

vk1 . . . vkn




 =






cv11 . . . cv1n

...
...

cvk1 . . . cvkn




 . The identity element

for vector addition in Mk×n(V ) is the 0-matrix O =






0V . . . 0V

...
...

0V . . . 0V




 .

Note that V n = Mn×1(V ).

If V is a vector space and if Ω = N, then the elements of V Ω are
infinite sequences [v0, v1, . . .] of elements of V. We will denote this vector
space, which we will need later, by V ∞. Again, the space of particular
interest will be F∞.

Example: If F is a subfield of a field K, then K is a vector space
over F, with addition and multiplication just being the operations in K.
Thus, in particular, we can think of C as a vector space over R and of
R as a vector space over Q.

Example: Let A be a nonempty set and let V be the collection of
all subsets of A. Let us define addition of elements of V as follows: if B
and C are elements of V then B+C = (B∪C)�(B∩C). This operation
is usually called the symmetric difference of B and C. This definition
turns V into a vector space over GF (2), where scalar multiplication is
defined by 0B = ∅ and 1B = B for all B ∈ V. This is actually just a
special case of what we have seen before. Indeed, we note that there is a
bijective function from V to GF (2)A which assigns to each subset B
of A its characteristic function, namely the function χB defined by

χB : a �→
{

1 if a ∈ B
0 otherwise

and it is easy to see that χA + χB = χA+B , while χAχB = χA∩B .

(3.1) Proposition: Let V be a vector space over a field F .
(1) If z ∈ V satisfies z + v = v for all v ∈ V then z = 0V .
(2) If v, w ∈ V then there exists a unique element y ∈ V

satisfying v + y = w.

Proof: The proof is similar to the proofs of Proposition 2.1(1) and
Proposition 2.2(1). �

(3.2) Proposition: Let V be a vector space over a field F . If
v, w ∈ V and if a ∈ F, then:
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(1) a0V = 0V ;
(2) 0v = 0V ;
(3) (−1)v = −v;
(4) (−a)v = −(av) = a(−v);
(5) −(−v) = v;
(6) av = (−a)(−v);
(7) −(v + w) = −v − w;
(8) a(v − w) = av − aw;
(9) If av = 0V then either v = 0V or a = 0.

Proof: The proof is similar to the proof of Proposition 2.3. �

Let V be a vector space over a field F . A nonempty subset W of V
is a subspace of V if and only if it is a vector space in its own right with
respect to the addition and scalar multiplication defined on V. Thus, any
vector space V is a subspace of itself, called the improper subspace; any
other subspace is proper. Also, {0V } is surely a subspace of V, called
the trivial subspace; any other subspace is nontrivial.

Note that the two conditions for a nonempty subset of a vector space
to be a subspace are independent: the set of all vectors in R

3 all entries
of which are integers is closed under vector addition but not under scalar

multiplication; the set of all vectors




a
b
c



 ∈ R
3 satisfying abc = 0 is

closed under scalar multiplication but not under vector addition.

Example: Let V be a vector space over a field F and let Ω be a
nonempty set. We have already seen that the set V Ω of all functions from
Ω to V is a vector space over F. If Λ is a subset of Ω then the set
{f ∈ V Ω | f(i) = 0V for all i ∈ Λ} is a subspace of V Ω. In particular, if
k < n are positive integers, then we can think of V k as being a subspace

of V n, by identifying it with











v1

...
vn




 ∈ V n

∣
∣
∣
∣
∣
∣
∣
∣
∣

vk+1 = . . . = vn = 0V






.

Note that if y ∈ V, then {f ∈ V Ω | f(i) = y for all i ∈ Λ} is not a
subspace of V Ω unless y = 0V .

Example: Let {Vi | i ∈ Ω} be a collection of vector spaces over a
field F. The set of all functions f ∈

∏
i∈Ω Vi satisfying the condition

that f(i) �= 0Vi
for at most finitely-many elements i of Ω is a subspace

of
∏

i∈Ω Vi, called the direct coproduct of the spaces Vi and denoted
by

∐
i∈Ω Vi. The direct coproduct is a proper subset of

∏
i∈Ω Vi when

and only when the set Ω is infinite. If each of the spaces Vi is equal to
a given vector space V, we write V (Ω) instead of

∐
i∈Ω Vi.
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Example: If V is a vector space over a field F and if v ∈ V, then
the set Fv = {av | a ∈ F} is a subspace of V which is contained in any
subspace of V containing v.

Example: Let R be the field of real numbers and let Ω be either equal
to R or to some closed interval [a, b] on the real line. We have already
seen that the set R

Ω of all functions from Ω to R is a vector space over
R. The set of all continuous functions from Ω to R is a subspace of this
vector space, as are the set of all differentiable functions from Ω to R,
the set of all infinitely-differentiable functions from Ω to R, and the set
of all analytic functions from Ω to R. If a < b are real numbers, we will
denote the space of all continuous functions from the closed interval [a, b]
to R by C(a, b). These spaces will be very important to us later4.

(3.3) Proposition: If V is a vector space over a field F , then
a nonempty subset W of V is a subspace of V if and only if
it is closed under addition and scalar multiplication.

Proof: If W is a subspace of V then it is surely closed under addition
and scalar multiplication. Conversely, suppose that it is so closed. Then
for any w ∈ W we have 0V = 0w ∈ W and −w = (−1)w ∈ W. All of
the other conditions are satisfied in W because they are satisfied in V.
�

(3.4) Proposition: If V is a vector space over a field F , and
if {Wi | i ∈ Ω} is a collection of subspaces of V, then

⋂
i∈Ω Wi

is a subspace of V.

Proof: Set W =
⋂

i∈Ω Wi. If w, y ∈ W then, for each i ∈ Ω, we
have w, y ∈ Wi and so w+y ∈ Wi. Thus w+y ∈ W. Similarly, if a ∈ R
and w ∈ W then aw ∈ Wi for each i ∈ Ω, and so aw ∈ W. �

We will also set the convention that the intersection of an empty collec-
tion of subspaces of V is V itself. Subspaces W and W ′ are disjoint
if and only if W ∩ W ′ = {0V }. More generally, a collection {Wi | i ∈ Ω}

4 The first fundamental research in spaces of functions was done by
the German mathematician Erhard Schmidt, a student of David Hilbert, whose work
forms one of the bases of functional analysis.
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of subspaces of V is pairwise disjoint if and only if Wi ∩ Wj = {0V }
for i �= j in Ω. (Note that disjointness of subspaces of a given space is
not the same as disjointness of subsets!)

Now let us look at a very important method of constructing subspaces
of vector spaces. Let D be a nonempty set of elements of a vector space
V over a field F. A vector v ∈ V is a linear combination of elements
of D over F if and only if there exist elements v1, . . . , vn of D and
scalars a1, . . . , an in F such that v =

∑n
i=1 aivi. We will denote the

set of all linear combinations of elements of D over F by FD. Note
that if v ∈ V then F{v} is the set Fv which we defined earlier.

It is clear that if D is a nonempty set of elements of a vector space V
over a field F then D ⊆ FD. Also, 0V ∈ FD for any nonempty subset
D of V, and it is the only vector belonging to each of the sets FD. To
simplify notation, we will therefore define F∅ to be {0V }. If D′ ⊆ D
then surely FD′ ⊆ FD. We also note that FD = F (D ∪ {0V }) for any
subset D of V.

Example: If D =









1
0
0



 ,




0
1
0









and D′ =









0
2
0



 ,




3
3
0










are subsets of R
3, then FD = FD′ =









a
b
0





∣
∣
∣
∣
∣
∣

a, b ∈ R





. Indeed,

if




a
b
0



 ∈ R
3 then




a
b
0



 = a




1
0
0



 + b




0
1
0



 =
(

b − a

2

)



0
2
0



 +
a

3




3
3
0



 .

Example: If D =









0
0
4



 ,




2
2
0



 ,




2
0
0



 ,




1
1
1









⊆ R

3 then




4
2
4



 = 1




0
0
4



 + 1




2
2
0



 + 1




2
0
0





= 1




2
0
0



 + (−1)




2
2
0



 + 4




1
1
1



 .

Thus we see that there may be several ways of representing a vector as a
linear combination of elements of a given subset of a vector space.
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(3.5) Proposition: Let D be a subset of a vector space V
over a field F. Then:

(1) FD is a subspace of V ;
(2) Every subspace of V containing D also contains FD;
(3) FD is the intersection of all subspaces of V containing

D.

Proof: If D = ∅ then FD = {0V } and we are done. Thus we
can assume that D is nonempty. It is an immediate consequence of the
definitions that the sum of two linear combinations of elements of D over
F is again a linear combination of elements of D over F, and that
the product of a scalar and a linear combination of elements of D over
F is again a linear combination of elements of D over F. This proves
(1). Moreover, (2) is an immediate consequence of (1) and Proposition 3.3,
while (3) follows directly from (2). �

If D is a subset of a vector space V over a field F then the subspace
FD of V is called the subspace generated or spanned by D, and the
set D is called a generating set or spanning set for this subspace. In
particular, we note that ∅ is a generating set for {0V }.

Example: Let F be a field. The set









1
0
0



 ,




0
1
0



 ,




0
0
1









is a

generating set for the vector space F 3 over F. The set








1
1
0



 ,




1
0
1



 ,




0
1
1










is also a generating set for F 3 if the characteristic of F is other than 2,

but not for F = GF (2) since, in this case,




1
0
0



 cannot be written as

a linear combination of this set of vectors over F. The set








1
0
0



 ,




0
1
0



 ,




1
1
0










is not a generating set for F 3, for any field F, since




0
0
1



 cannot be

written as a linear combination of the elements of this set.
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(3.6) Proposition: Let V be a vector space over a field F
and let D1 and D2 be subsets of V satisfying D1 ⊆ D2 ⊆ FD1.
Then FD1 = FD2.

Proof: Since FD1 is a subspace of V containing D2, we know by
Proposition 3.5 that FD2 ⊆ FD1. Conversely, any linear combination of
elements of D1 over F is also a linear combination of elements of D2

over F and so FD1 ⊆ FD2, thus establishing equality. �

In particular, we note that FD = F (FD) for any subset D of V.

(3.7) Proposition (Exchange Property): Let V be a vector
space over a field F and let v, w ∈ V. Let D be a subset of V
satisfying v ∈ F (D ∪ {w}) � FD. Then w ∈ F (D ∪ {v}).

Proof: Since v ∈ F (D ∪ {w}) we know that there exist elements
v1, . . . , vn of D and scalars a1, . . . , an, b in F satisfying the condition
that v =

∑n
i=1 aivi + bw. Moreover, since v /∈ FD, we know that b �= 0

and so w = b−1v −
∑n

i=1 b−1aivi ∈ F (D ∪ {v}). �

A vector space V over a field F is finitely generated over F if it
has a finite generating set. Finitely-generated vector spaces are often much
easier to deal with by purely algebraic methods and therefore, in several
situations, we will have to restrict our discussion to these spaces.

Example: If F is a field and n is a positive integer, then one sees

that















1
0
0
...
0










,










0
1
0
...
0










, . . . ,










0
0
0
...
1















is a finite generating set for Fn over

F, and so Fn is finitely generated. More generally, if V is a vector
space finitely generated over a field F, say V = F{v1, . . . , vk}, and if n
is a positive integer, then













v1

0
...
0








,








v2

0
...
0








, . . . ,








vk

0
...
0








,








0
v1

...
0








,








0
v2

...
0








, . . . ,








0
vk

...
0








, . . .








0
0
...
v1








,








0
0
...
v2








, . . . ,








0
0
...
vk
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is a generating set for V n having kn elements.

Example: If F is a field and if k and n are positive integers, then
the vector space Mk×n(F ) of all k × n matrices over F is finitely
generated over F. Similarly, if V is a finitely-generated vector space over
F, then the vector space Mk×n(V ) is also finitely generated over F.

Example: For any field F, the vector space F∞ is not finitely gener-
ated over F.

Example: The field R is finitely generated as a vector space over itself,
but is not finitely generated as a vector space over Q.

Let V be a vector space over a field F . In Proposition 3.4, we saw
that if {Wi | i ∈ Ω} is a collection of subspaces of V then

⋂
i∈Ω Wi is

a subspace of V. In the same way, we can define the subspace
∑

i∈Ω Wi

of V to be the set of all vectors in V of the form
∑

j∈Λ wj , where Λ
is a finite nonempty subset of Ω and wj ∈ Wj for each j ∈ Λ. In other
words,

∑
i∈Ω Wi = F

(⋃
i∈Ω Wi

)
. Indeed, from the definition of this sum,

we see something stronger: if Di is a generating set for Wi for each
i ∈ Ω then

∑
i∈Ω Wi = F

(⋃
i∈Ω Di

)
.

As a special case of the above, we see that if W1 and W2 are subspaces
of V, then W1 + W2 equals the set of all vectors of the form w1 + w2,
where w1 ∈ W1 and w2 ∈ W2. If both W1 and W2 are finitely
generated then W1 + W2 is also finitely generated. By induction, we can
then show that if W1, . . . ,Wn are finitely-generated subspaces of V, then∑n

i=1 Wi is also finitely generated.

(3.8) Proposition: If V is a vector space over a field F and
if {Wi | i ∈ Ω} is a collection of of subspaces of V, then:

(1) Wh is a subspace of
∑

i∈Ω Wi for all h ∈ Ω;
(2) If Y is a subspace of V satisfying the condition that Wh

is a subspace of Y for all h ∈ Ω, then
∑

i∈Ω Wi is a subspace
of Y.

Proof: (1) is clear from the definition. As for (2), if we have a subspace
Y satisfying the given condition, if Λ is a finite subset of Ω, and if
wj ∈ Wj for each j ∈ Λ, then wj ∈ Y for each j and so

∑
j∈Λ wj ∈ Y.

Thus
∑

i∈Ω Wi ⊆ Y. �

(3.9) Proposition: If V is a vector space over a field F and
if W1, W2, and W3 are subspaces of V, then:

(1) (W1 + W2) + W3 = W1 + (W2 + W3);
(2) W1 + W2 = W2 + W1;
(3) W3 ∩ [W2 + (W1 ∩ W3)] = (W1 ∩ W3) + (W2 ∩ W3);
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(4) (Modular law for subspaces): If W1 ⊆ W3 then

W3 ∩ (W2 + W1) = W1 + (W2 ∩ W3).

Proof: Parts (1) and (2) follow immediately from the definition, while
(4) is a special case of (3). We are therefore left to prove (3). Indeed, if
v belongs to W3 ∩ [W2 + (W1 ∩ W3)] , then we can write v = w2 + y,
where w2 ∈ W2 and y ∈ W1 ∩ W3. Since v, y ∈ W3, it follows that
w2 = v − y ∈ W3, and so v = y + w2 ∈ (W1 ∩ W3) + (W2 ∩ W3).
Thus we see that W3 ∩ [W2 + (W1 ∩ W3)] ⊆ (W1 ∩ W3) + (W2 ∩ W3).
Conversely, assume that v ∈ (W1 ∩W3)+ (W2 ∩W3). Then, in particular,
v ∈ W3 and we can write v = w1 + w2, where w1 ∈ W1 ∩ W3 and
w2 ∈ W2 ∩ W3. Thus v = w1 + w2 ∈ W3 ∩ W2 + (W1 ∩ W3). This shows
that (W1 ∩ W3) + (W2 ∩ W3) ⊆ W3 ∩ [W2 + (W1 ∩ W3)] and so we have
the desired equality. �

Exercises

Exercise 48 Let V = Q
2, with the usual vector addition. If a + b

√
2 ∈

Q(
√

2) and if
[

c
d

]

∈ Q
2, set

(
a + b

√
2
)
[

c
d

]

=
[

ac + 2bd
bc + ad

]

. Do

these operations turn Q
2 into a vector space over Q(

√
2)?

Exercise 49 Is it possible to define on V = Z/(4) the structure of a vec-
tor space over GF (2) in such a way that the vector addition is the usual
addition in Z/(4)?

Exercise 50 Consider the set Z of integers, together with the usual addi-
tion. If a ∈ Q and k ∈ Z, define a ·k to be �a� k, where �a� denotes
the largest integer less than or equal to a. Using this as our definition of
“scalar multiplication”, have we turned Z into a vector space over Q?

Exercise 51 Let V = {0, 1} and let F = GF (2). Define vector addition
and scalar multiplication by setting v + v′ = max{v, v′}, 0v = 0, and
1v = v for all v, v′ ∈ V. Does this define on V the structure of a vector
space over F?

Exercise 52 Let V = C(0, 1). Define an operation � on V by setting
f � g : x �→ max{f(x), g(x)}. Does this operation of vector addition,
together with the usual operation of scalar multiplication, define on V the
structure of a vector space over R?
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Exercise 53 Let V �= {0V } be a vector space over R. For each v ∈ V
and each complex number a + bi, let us define (a + bi)v = av. Does V,
together with this new scalar multiplication, form a vector space over C?

Exercise 54 Let V = {i ∈ Z | 0 ≤ i < 2n} for some given positive
integer n. Define operations of vector addition and scalar multiplication
on V in such a way as to turn it into a vector space over the field GF (2).

Exercise 55 Let V be a vector space over a field F. Define a function
from GF (3) × V to V by setting (0, v) �→ 0V , (1, v) �→ v, and
(2, v) �→ −v for all v ∈ V. Does this function, together with the vector
addition in V, define on V the structure of a vector space over GF (3)?

Exercise 56 Let V = R ∪ {∞} and extend the usual addition of real
numbers by defining v +∞ = ∞+ v = ∞ for all v ∈ V. Is it possible to
define an operation of scalar multiplication on V in such a manner as to
turn it into a vector space over R?

Exercise 57 Let V = R
2. If

[
a
b

]

,

[
a′

b′

]

∈ V and r ∈ R, set

[
a
b

]

+
[

a′

b′

]

=
[

a + a′ + 1
b + b′

]

and r

[
a
b

]

=
[

ra + r − 1
rb

]

. Do

these operations define on V the structure of a vector space over R? If
so, what is the identity element for vector addition in this space?

Exercise 58 Let V = R and let ◦ be an operation on R defined
by a ◦ b = a3b. Is V, together with the usual addition and “scalar
multiplication” given by ◦, a vector space over R?

Exercise 59 Show that Z cannot be turned into a vector space over any
field.

Exercise 60 Let V be a vector space over the field GF (2). Show that
v = −v for all v ∈ V.

Exercise 61 Give an example of a vector space having exactly 125 ele-
ments.

Exercise 62 In the definition of a vector space, show that the commuta-
tivity of vector addition is a consequence of the other conditions.

Exercise 63 Let W be the subset of R
5 consisting of all vectors an odd

number of the entries in which are equal to 0. Is W a subspace of R
5?

Exercise 64 Let V = R
R and let W be the subset of V containing

the constant function x �→ 0 and all of those functions f ∈ V satisfying
the condition that f(a) = 0 for at most finitely-many real numbers a. Is
W a subspace of V ?
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Exercise 65 Let V =











a1

...
a5






∣
∣
∣
∣
∣
∣
∣

0 < ai ∈ R





. If v =






a1

...
a5




 and

w =






b1

...
b5




 belong to V, and if c ∈ R, set v + w =






a1b1

...
a5b5




 and

cv =






ac
1
...

ac
5




 . Do these operations turn V into a vector space over R?

Exercise 66 Let F = GF (3). How many elements are there in the sub-

space of F 3 generated by









1
2
1



 ,




2
2
1










?

Exercise 67 A function f ∈ R
R is piecewise constant if and only if

it is a constant function x �→ c or there exist a1 < a2 < . . . < an and
c0, . . . , cn in R such that

f : x �→






c0 if x < a1

ci if ai ≤ x < ai+1 for 1 ≤ i < n
cn if an ≤ x

.

Does the set of all piecewise constant functions form a subspace of the vector
space R

R over R?

Exercise 68 Let V be the vector space of all continuous functions from
R to itself and let W be the subset of all those functions f ∈ V satisfying
the condition that |f(x)| ≤ 1 for all −1 ≤ x ≤ 1. Is W a subspace of
V ?

Exercise 69 Let F = GF (2) and let W be the subspace of F 5 con-

sisting of all vectors






a1

...
a5




 satisfying

∑5
i=1 ai = 0. Is W a subspace

of F 5?

Exercise 70 Let V = R
R and let W be the subset of V consisting of

all monotonically-increasing or monotonically-decreasing functions. Is W
a subspace of V ?

Exercise 71 Let V = R
R and let W be the subset of V consisting of

the constant function a �→ 0, and all epic functions. Is W a subspace
of V ?
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Exercise 72 Let V = R
R and let W be the subset of V containing the

constant function a �→ 0 and all of those functions f ∈ V satisfying the
condition that f(π) > f(−π). Is W a subspace of V ?

Exercise 73 Let V = R
R and let W be the subset of V consisting of

all functions f satisfying the condition that there exists a real number c
(which depends on f) such that |f(a)| ≤ c|a| for all a ∈ R. Is W a
subspace of V ?

Exercise 74 Let V = R
R and let W be the subset of V consisting of

all functions f satisfying the condition that there exist real numbers a
and b such that |f(x)| ≤ a| sin(x)| + b| cos(x)| for all x ≥ 0. Is W a
subspace of V ?

Exercise 75 Let F be a field and let V = FF , which is a vector space
over F. Let W be the set of all functions f ∈ V satisfying f(1) = f(−1).
Is W a subspace of V ?

Exercise 76 For any real number 0 < t ≤ 1, let Vt be the set of all
functions f ∈ R

R satisfying the condition that if a < b in R then there
exists a real number u(a, b) satisfying |f(x) − f(y)| ≤ u(a, b) |x − y|t for
all a ≤ x, y ≤ b. For which values of t is Vt a subspace of R

R?

Exercise 77 Let U be a nonempty subset of a vector space V. Show
that U is a subspace of V if and only if au + u′ ∈ U for all u, u′ ∈ U
and a ∈ F.

Exercise 78 Let V be a vector space over a field F and let v and w
be distinct vectors in V. Set U = {(1− t)v + tw | t ∈ F}. Show that there
exists a vector y ∈ V such that {u + y | u ∈ U} is a subspace of V.

Exercise 79 Let V be a vector space over a field F and let W and Y

be subspaces of V 2. Let U be the set of all vectors
[

v
v′

]

∈ V 2 satisfying

the condition that there exists a vector v′′ ∈ V such that
[

v
v′′

]

∈ W

and
[

v′′

v′

]

∈ Y. Is U a subspace of V 2?

Exercise 80 Consider R as a vector space over Q. Given a nonempty
subset W of R, let W be the set of all real numbers b for which there
exists a sequence a1, a2, . . . of elements of W satisfying lim

i→∞
ai = b.

Show that W is a subspace of R whenever W is.

Exercise 81 Let V be a vector space over a field F and let P be the
collection of all subsets of V, which we know is a vector space over GF (2).
Is the collection of all subspaces of V a subspace of P?
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Exercise 82 Let W be the set of all functions f ∈ R
N satisfying the

condition that if f(i) �= 0 then f(ji) �= 0 for all positive integers j. Is
W a subspace of R

N?

Exercise 83 Let W be the set of all functions f ∈ R
N satisfying the

condition that if f(i) �= 0 then f(ji) = 0 for all positive integers j. Is
W a subspace of R

N?

Exercise 84 Let V be a vector space over a field F and let Y be the

set of all matrices of the form




v1 v2 0V

0V v1 + v2 0V

0V v1 v2



 in M3×3(V ). Is

Y a subspace of M3×3(V )?

Exercise 85 Let W be the set of all functions f ∈ R
R satisfying the

following conditions: there exist positive real numbers a and b such that
for all x ∈ R satisfying |x| ≥ a we have |f(x)| ≤ b|x|. Show that W
is a subspace of R

R.

Exercise 86 Let W be a subspace of a vector space V over a field F.
Is the set (V � W ) ∪ {0V } necessarily a subspace of V ?

Exercise 87 Let V be a vector space over a field F and let f be a
function from V to the unit interval [0, 1] on the real line satisfying
the condition that f(au + bv) ≥ min{f(u), f(v)} for all a, b ∈ F and
all u, v ∈ V. Show that f(0V ) ≥ f(v) for all v ∈ V and that if
0 ≤ h ≤ f(0V ) then Vh = {v ∈ V | f(v) ≥ h} is a subspace of V.

Exercise 88 Find subsets D and D′ of R
3 such that R(D ∩ D′) �=

RD ∩ RD′.

Exercise 89 Find subspaces W and Y of R
3 having the property that

W ∪ Y is not a subspace of R
3.

Exercise 90 Let V be a vector space over a field F and let 0V �= w ∈ V.
Given a vector v ∈ V �Fw, find the set G of all scalars a ∈ F satisfying
F{v, w} = F{v, aw}.

Exercise 91 Let p be a prime integer and let V be a vector space over
F = GF (p). Show that V is not the union of k subspaces, for any
k ≤ p.

Exercise 92 Let V be a vector space over a field F and let c and
d be fixed elements of F. Define a new operation � on V by setting
v � v′ = cv + dv′. Is V , with this new vector addition and the old scalar
multiplication, still a vector space over F?



4
Algebras over a field

In general, a vector space does not carry with it the notion of multiplying
two vectors in the space to produce a third vector. However, sometimes
such multiplication may be possible. A vector space K over a field F is
an F -algebra if and only if there exists a function (v, w) �→ v • w from
K × K to K such that

(1) u • (v + w) = u • v + u • w;
(2) (u + v) • w = u • w + v • w;
(3) a(v • w) = (av) • w = v • (aw)

for all u, v, w ∈ K and a ∈ F. As in the proof of Proposition 2.3(1),
these conditions suffice to show that 0K • v = v • 0K = 0K for all v ∈ K.

Note that the operation • need not be associative, nor need there exist
an identity element for this operation. When the operation is associative,
i.e. when it satisfies

(4) v • (w • y) = (v • w) • y
for all v, w, y ∈ K, then the algebra is called an associative F -algebra.
If an identity element for • exists, that is to say, if there exists an element
0K �= e ∈ K satisfying v • e = v = e • v for all v ∈ K, we say the
F -algebra K is unital. In a unital F -algebra, as with the case of fields,
the identity element must be unique. In this case, we can then identify F
with the subset {ae | a ∈ F} of K and we note that a • v = v • a for
all v ∈ K and a ∈ F.

If v is an element of an associative F -algebra (K, •) and if n is a
positive integer, we write vn instead of v • . . . • v (n factors). If K

33
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is also unital and has a multiplicative identity e, we set v0 = e for all
0K �= v ∈ K. The element (0K)0 is not defined.

If v • w = w • v for all v and w in some F -algebra K, then the
algebra is commutative. An F -algebra (K, •) satisfying the condition
that v • w = −w • v for all v, w ∈ K is anticommutative. If the
characteristic of F is other than 2, it is easy to see that this condition is
equivalent to the condition that v • v = 0K for all v ∈ K. Of course, in
that case K cannot possibly be unital.1

If (K, •) is an associative unital F -algebra having a multiplicative iden-
tity e, and if v ∈ K satisfies the condition that there exists an element
w ∈ K such that v • w = w • v = e, then we say that v is a unit of
K. As with the case of fields, such an element w, if it exists, is unique
and is usually denoted by v−1. If v is a unit, then so is −v, for one
immediately notes that (−v)−1 = −(v−1). Also, it is easy to see that if
v and w are units of K, then so is v • w. Indeed,

(v • w) • (w−1 • v−1) = (v • (w • w−1)) • v−1

= (v • e) • v−1 = v • v−1 = e

and similarly (w−1 • v−1) • (v • w) = e, and so (v • w)−1 = w−1 • v−1.
If v ∈ K is a unit and if n > 1 is an integer, we write v−n instead of
(v−1)n.

Example: Any vector space V over a field F can be turned into
an associative and commutative F -algebra which is not unital by setting
v • w = 0V for all v, w ∈ V.

Example: If F is a subfield of a field K, then K has the structure
of an associative F -algebra, with multiplication being the multiplication
in K. Thus, C is an R-algebra and Q(

√
p) is a Q-algebra for every

prime integer p. These algebras are, of course, unital.

1 The first system-
atic study of associative algebras was initiated by the 19th century American mathe-
matician Benjamin Peirce and continued by his son, the mathematician and logician
Charles Sanders Peirce. Other major contributors at the beginning of the 20th
century were the American mathematician Leonard Dickson and the Scottish math-
ematician Joseph Henry Wedderburn.
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Example: Let F be a field, let (K, •) be an F -algebra, and let Ω be
a nonempty set. Then the vector space KΩ of all functions from Ω to K
has the structure of an F -algebra with respect to the operation • defined
by f • g : i �→ f(i) • g(i) for all i ∈ Ω. This F -algebra is associative if
K is. If K is unital with multiplicative identity element e, then KΩ

is also unital, with identity element given by the constant function i �→ e.
In particular, if F is a field and if Ω is a nonempty set then FΩ is an
associative unital F -algebra with respect to the operation • defined by
f • g : i �→ f(i)g(i) for all i ∈ Ω.

Example: We have already seen that the collection of all subsets of
a given nonempty set A is a vector space over GF (2). It is in fact
an associate and commutative unital GF (2)-algebra with respect to the
operation ∩. The identity element with respect to this operation is A
itself.

Example: Let K be the vector space over R consisting of all functions
in R

R which are infinitely differentiable, and define an operation • on K
by setting f • g = (fg)′ (where ′ denotes differentiation). Then (K, •)
is an algebra which is commutative but not associative.

The collection of all operations • on a vector space V over a field F
which turn V into an F -algebra will be studied in more detail in Chapter
20.

Let F be a field. If (K, •) is an F -algebra, then a subspace L of
K satisfying the condition that w • w′ ∈ L for all w,w′ ∈ L is an
F -subalgebra of K. If (K, •) is a unital F -algebra, then L is a unital
subalgebra if it contains the multiplicative identity element of K.

Let F be a field. An anticommutative F -algebra (K, •) is a Lie
algebra2 over F if and only if it satisfies the additional condition

2 Sophus Lie was a 19th-century Norwegan math-
ematician who developed mathematical concepts that provide the basic model for quan-
tum theory and an important tool in differential geometry. Another pioneer in the study
of noncommutative algebras because of their importance in physics was 20th-century
British mathematician Dudley Littlewood.
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(Jacobi identity) u • (v • w) + v • (w • u) + w • (u • v) = 0K ;

for all u, v, w ∈ K. This algebra is not associative unless u • v = 0K for
all u, v ∈ K.

Example: Let F be a field and let (K, ∗) be an associative F -algebra.
Define a new operation • on K by setting v •w = v ∗w −w ∗ v. Then
(K, •) is a Lie algebra over F, which is usually denoted by K−. The
operation in K− is known as the Lie product defined on the given F -
algebra K. This example is very important, because one can show that
any Lie algebra over a field F can be considered as a subalgebra of a Lie
algebra of the form K− for some associative F -algebra K. (A proof
of this result, known as the Poincaré-Birkhoff-Witt Theorem, is far
beyond the scope of this book.)

If v, w ∈ K, then v • w = 0K precisely when v ∗ w = w ∗ v, in other
words, precisely when (v, w) forms a commuting pair. Of course, if the
algebra K is commutative, all pairs of elements commute, but in general
that will not be the case.

Lie algebras are of fundamental importance in the modeling problems
in physics, and have many other applications; they are in the forefront of
current mathematical research. One particular Lie algebra defined on R

3

goes back to the work of Grassmann. Define the structure of an R-algebra
on R

3 with multiplication × given by



a1

a2

a3



×




b1

b2

b3



 =




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1



 .

This operation, called the cross product, has very important applications
in physics and engineering. It is easy to check that the algebra (R3,×) is
a Lie algebra over R.

Note that if v1 =




1
0
0



 , v2 =




0
1
0



 , and v3 =




0
0
1



 , then, surely,

v1×v2 = v3, v1×v2 = v3, and v3×v1 = v2. Moreover, the cross product
is the only possible anticommutative product which can be defined on R

3

and which satisfies this condition. Indeed, if • is any such product defined
on R

3 then



a1

a2

a3



 •




b1

b2

b3



 =

(
3∑

i=1

aivi

)


3∑

j=1

bjvj



 =
3∑

i=1

3∑

j=1

aibj(vi • vj)

=




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1



 =




a1

a2

a3



×




b1

b2

b3



 .
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(4.1) Proposition: If v and w are nonzero elements of R
3,

then v × w =




0
0
0



 if and only if Rv = Rw.

Proof: Suppose v =




a1

a2

a3



 and w =




b1

b2

b3



. These vectors are

nonzero and so one of the entries in w is nonzero; without loss of generality,
we can assume that b1 �= 0. Then a2b3−a3b2 = a3b1−a1b3 = a1b2−a2b1 =
0 and so, if we define c = a1b

−1
1 , we have v = cw. Hence v ∈ Rw.

Moreover, c �= 0 so w = c−1v ∈ Rv, proving the desired equality.
Conversely, if Rv = Rw then there exists an 0 �= d ∈ R such that

w = dv. Then v × w = d(v × v) =




0
0
0



. �

The cross product is very particular to the vector space R
3, and does not

generalize easily to spaces of the form R
n for n > 3, with the exception

of n = 7, which we will see in a later chapter.

An important non-associative algebra is the following: let F be a field
of characteristic other than 2, and let (K, ∗) be an associative algebra.
We can define a new operation • on K, called the Jordan product, by
setting v •w = 1

2 (v ∗w+w ∗v). Then (K, •) is a commutative F -algebra,
usually denote by K+, called the Jordan algebra defined by K. It is
not associative in general, but does satisfy the

(Jordan identity) (v • w) • (v • v) = v • (w • (v • v))

for all v, w ∈ K. Jordan algebras have important applications in physics3.
Note that if v ∗w = w ∗ v, then v •w = v ∗w. This observation will have
important consequences later.

3 Jordan algebras were developed by
20th-century German physicist Pascual Jordan, one of the fathers of quantum me-
chanics and quantum electrodynamics. The algebraic structure of Lie algebras and Jor-
dan algebras was studied in detail by 20th-century American mathematicians Nathan
Jacobson and A. Adrian Albert.
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We now come to an extremely important algebra. Let F be a field and
let X be an element not in F , which we will call an indeterminate.
A polynomial in X with coefficients in F is a formal sum f(X) =∑∞

i=0 aiX
i, in which the elements ai belong to F , and no more than

a finite number of these elements differ from 0. The elements ai are
called the coefficients of the polynomial. If all of the ai equal 0, then
the polynomial is called the 0-polynomial. Otherwise, there exists a
nonnegative integer n satisfying the condition that an �= 0 and ai = 0
for all i > n. The coefficient an is called the leading coefficient of
the polynomial; the integer n is called the degree of the polynomial,
and is denoted by deg(f). If the leading coefficient of a polynomial is
1, the polynomial is monic. The degree of the 0-polynomial is defined
to be −∞, where we assume that −∞ < i for each integer i and
(−∞) + i = −∞ for all integers i. If f(X) is a polynomial of degree
n �= −∞, we often write it as

∑n
i=0 aiX

i. The set of all polynomials in
X with coefficients in F is denoted by F [X]. We identify the elements
of F with the polynomials of degree at most 0, and so can consider
F as a subdomain of F [X]. We can associate the 0-polynomial with the
identity element 0 of F for addition and the polynomials of degree 0
with the nonzero elements of F and so, without any problems, consider
F as a subset of F [X].

Example: The polynomials 5X3 + 2X2 + 1 and 5X3 − X2 + X + 4
in Q[X] both have degree 3 and leading coefficient 5. Therefore they
are not monic. The polynomials X3 + 2X2 + 1 and X3 − X2 + X + 4
in Q[X] are both monic and have the same degree 3.

We define addition and multiplication of polynomials over a field as fol-
lows: if f(X) =

∑∞
i=0 aiX

i and g(X) =
∑∞

i=0 biX
i are polynomials

in F [X], then f(X) + g(X) is the polynomial
∑∞

i=0 ciX
i, where

ci = ai + bi for all i ≥ 0 and f(X)g(X) is the polynomial
∑∞

i=0 diX
i,

where di =
∑i

j=0 ajbi−j for all i ≥ 0. It is easy to verify that these defi-
nitions turn F [X] into an associative and commutative unital F -algebra
with the 0-polynomial acting as the identity element for addition and the
degree-0 polynomial 1 acting as the identity element for multiplication.
This algebra also has another important property, namely that the product
of two nonzero elements of F [X] is again nonzero. An algebra having
this property is said to be entire.

If f(X) =
∑∞

i=0 aiX
i and g(X) =

∑∞
i=0 biX

i are polynomials in F [X]
then we define the polynomial f(g(X)) to be

∑∞
i=0 aig(X)i. Then, for

any fixed g(X), the set F [g(X)] = {f(g(X)) | f(X) ∈ F [X]} is a unital
subalgebra of F [X].

Commutative, associative, entire, unital F -algebras are integral domains.
The converse of this is not true: Z is an integral domain which is not an
F -algebra for any field F.
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Note that every polynomial in F [X] is a linear combination of elements
of the set B = {1,X,X2, . . .} over F, so B is a set of generators of F [X]
over F. On the other hand, it is clear that no finite set of polynomials
can be a generating set for F [X] over F, and so F [X] is not finitely
generated as a vector space over F.

We should remark that the formal definition of multiplication of polyno-
mials does not translate into the fastest method of carrying out such mul-
tiplication in practice on a computer, especially for polynomials of large
degree. The problem of fast polynomial multiplication has been the sub-
ject of extensive research over the years, and many interesting algorithms
to perform such multiplication have been devised. A typical such algorithm
is Karatsuba’s algorithm4, which is easy to implement on a computer:
let f(X) and g(X) be polynomials in F [X], where F is a field. We can
write these polynomials as f(X) =

∑n
i=0 aiX

i and g(X) =
∑n

i=0 biX
i,

where n is a nonnegative power of 2 satisfying n ≥ max{deg(f),deg(g)}.
(Of course, in this case an and bn may equal 0.) We now calculate
f(X)g(X) as follows:

(1) If n = 1 then f(X)g(X) = a1b1X
2 +(a0b1 +a1b0)X +

a0b0.
(2) Otherwise, write f(X) = f1(X)Xn/2 + f0(X) and

g(X) = g1(X)Xn/2 + g0(X),

where the polynomials f0(X), f1(X), g0(X), and g1(X) are
all of degree at most n/2.

(3) Recursively, calculate f0(X)g0(X), f1(X)g1(X), and

(f0 + f1)(X)(g0 + g1)(X).

(4) Then

f(X)g(X) = Xn(f1g1)(X) +
Xn/2 [(f0 + f1)(g0 + g1) − f0g0 − f1g1] (X) +
(f0g0)(X).

4 Anatoli Karatsuba is a contemporary Russian mathematician
whose research is primarily in number theory.
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Indeed, if the multiplication of two polynomials of degree at most n using
the definition of polynomial multiplication takes an order of 2n2 arithmetic
operations (i.e., additions and multiplications), it is possible to prove that
there exists a fixed positive integer c such that the multiplication of
two polynomials of degree at most n using Karatsuba’s algorithm takes at
most cn1.59 arithmetic operations. If n is sufficiently large, the difference
between these two bounds can be significant.

There are other highly-sophisticated algorithms for multiplying two poly-
nomials of degree at most n in an order of n log(n) arithmetic operations.

(4.2) Proposition (Division Algorithm): If F is a field and
if f(X) and g(X) �= 0 are elements of F [X], then there exist
unique polynomials u(X) and v(X) in F [X] satisfying f(X) =
g(X)u(X) + v(X) and deg(v) < deg(g).

Proof: Assume that f(X) =
∑∞

i=0 aiX
i and g(X) =

∑∞
i=0 biX

i are
the given polynomials. If f(X) = 0 or if deg(f) < deg(g), choose
u(X) = 0 and v(X) = f(X), and we are done. Thus we can assume that
n = deg(f) ≥ deg(g) = k, and will prove our result by induction on n. If
n = 0 then k = 0 and therefore we can choose u(X) to be a0b

−1
0 , which

is a polynomial of degree 0, and choose v(X) to be the 0-polynomial.
Now assume, inductively, that n > 0 and that the proposition has been
established for all functions f(X) of degree less than n. Set h(X) =
f(X) − anb−1

k Xn−kg(X). If this is the 0-polynomial, choose u(X) =
anb−1

k Xn−k and let v(X) be the 0-polynomial. Otherwise, since deg(f) >
deg(h), we see by the induction hypothesis that there exist polynomials
v(X) and w(X) in F [X] satisfying h(X) = g(X)w(X) + v(X), where
deg(g) > deg(v). Thus f(X) =

[
anb−1

k Xn−k + w(X)
]
g(X) + v(X), as

required.
We are left to show uniqueness. Indeed, assume that

f(X) = g(X)u1(X) + v1(X) = g(X)u2(X) + v2(X),

where deg(v1) < deg(g) and deg(v2) < deg(g). Then

g(X) [u1(X) − u2(X)] + [v1(X) − v2(X)]

equals the 0-polynomial. If u1(X) = u2(X) then v1(X) = v2(X) and
we are done. Therefore assume that u1(X) �= u2(X). But then, since
deg(g[u1 − u1]) > deg(v1 − v2) and since F [X] is entire, this is a contra-
diction. Thus we have established uniqueness. �

Let us emphasize that the set F [X] is composed of formal expressions
and not functions. Every polynomial f(X) =

∑∞
i=0 aiX

i ∈ F [X] defines
a corresponding polynomial function in FF given by c �→ f(c) =
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∑∞
i=0 aic

i, but the correspondence between polynomials and polynomial
functions is not bijective. Indeed, it is possible for two distinct polynomials
to define the same polynomial function. Thus, for example, if F = GF (2)
then the distinct polynomials X,X2,X3, . . . all define the same function
from F to itself, namely the function given by 0 �→ 0 and 1 �→ 1. The
degree of a polynomial function is the least of the degrees of the (perhaps
many) polynomials which define that function.5

Let p1(X) and p2(X) be polynomials in F [X] and let c ∈ F. If we
set f(X) = p1(X)+ p2(X) and g(X) = p1(X)p2(X) then it is clear that
f(c) = p1(c) + p2(c) and g(c) = p1(c)p2(c).

(4.3) Proposition: Let F be a field and let p(X) be a polyno-
mial in F [X]. Then an element c of F satisfies the condition
that p(c) = 0 if and only if there exists a polynomial u(X) ∈ F [X]
satisfying p(X) = (X − c)u(X).

Proof: By Proposition 4.2, we know that there exist polynomials u(X)
and v(X) in F [X] satisfying p(X) = (X − c)u(X) + v(X), where
deg(v) < deg(X − c) = 1. Therefore v(X) = b for some b ∈ F. If
b = 0 then p(c) = (c − c)u(c) = 0. Conversely, if p(c) = 0 then
0 = p(c) = (c − c)u(c) + b = b and so p(X) = (x − c)u(X). �

As an immediate consequence of this result, we see that if F is a field
and if p(X) ∈ F [X], then the set of all elements c of F satisfying
p(c) = 0 is finite and, indeed, cannot exceed the degree of p(X).

Let F be a field. A polynomial p(X) ∈ F [X] is reducible if and
only if there exist polynomials u(X) and v(X) in F [X], each of degree
at least 1, satisfying p(X) = u(X)v(X). Otherwise, the polynomial
is irreducible. Many tests for the irreduciblity of polynomials in Q[X]
have been devised. One of the earliest and well-known is Eisenstein’s

5 The first person to systematically consider the best methods of
calculating f(c) for a polynomial f(X) ∈ F [X] and for c ∈ F, was the twentieth-
century Russian mathematician Alexander Ostrowski.
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criterion:6 if p(X) =
∑n

i=0 aiX
i ∈ Q[X], where each ai is an integer,

and if there exists a prime integer q such that q does not divide an,
q divides ai for all 0 ≤ i ≤ n − 1, and q2 does not divide a0, then
p(X) is irreducible. (A proof of this can be found in books on abstract
algebra.) Thus, using this criterion, we see that 3X3 + 7X2 + 49X − 7 is
an irreducible polynomial in Q[X].

Example: If F = GF (5) then the polynomial X3 + X + 1 ∈ F [X] is
irreducible, a fact which can be established, if necessary, by testing all pos-
sibilities. However, when F = GF (3) it is easy to verify the factorization
X3 + X + 1 = (X + 2)(X2 + X + 2), and thus see that the polynomial is
reducible.

Example: If p(X) = u(X)v(X) in F [X], then surely p(X + c) =
u(X + c)v(X + c) for any c ∈ F, and so to prove that a polynomial p(X)
is irreducible it suffices to prove that p(X + c) is irreducible for some
c ∈ F. For example, let q be a prime integer. The qth cyclotomic
polynomial in Q[X] is defined to be Φq(X) =

∑q−1
i=0 Xi. We claim that

this polynomial is irreducible. To see that this is so, we note that

Φq(X + 1) = Xq−1 +
q−2∑

i=0

(
q

q − 1 − i

)

Xi,

which is irreducible by Eisenstein’s criterion.

It is known that the number of monic irreducible polynomials of positive
degree m in GF (p) equals N(p) = 1

m

∑
µ(d)pm/d, where the sum

ranges over all integers d which divide m and the Möbius function
µ(d) is defined by

µ(d) =






1 if d = 1
(−1)k if d is the product of k distinct primes
0 otherwise

.

This means that the probability of a randomly-selected monic polynomial
of degree m in GF [X] being irreducible is N(p)/pm, which is roughly
1
m .

6 Gauss’ brilliant student, Ferdinand Eisenstein, died of tubercu-
losis at the age of 29.
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Any polynomial in F [X] can be written as a product of irreducible
polynomials. How to find such a decomposition, especially in the case of
polynomials over a finite field or over Q, is a very difficult and important
problem, which attracted such great mathematicians as Newton and which
continues to attract many important mathematicians until this day. In-
deed, the problem of factoring polynomials over finite fields into irreducible
components has become even more important, since it is the basis for many
current cryptographic schemes. There are algorithms, such as Berlekamp’s
algorithm, which factor a polynomial f(X) ∈ F [X], where F = GF (pn),
in a time polynomial in p, n, and deg(f). Moreover, under various
assumptions, such as the Generalized Riemann Hypothesis, polynomials of
special forms can be factored much more rapidly.

A polynomial p(X) ∈ F [X] of positive degree is completely reducible
if and only if it can be written as a product of polynomials in F [X] of de-
gree 1. Not every polynomial over every field is completely reducible. For
example, the polynomial X2 +1 ∈ Q[X] is not completely reducible. The
field F is algebraically closed if every polynomial of positive degree in
F [X] is completely reducible. The fields Q and R are not algebraically
closed. The field C is algebraically closed, by a theorem known as the
Fundamental Theorem of Algebra. This theorem is in fact analytic
and not algebraic, and relies on various analytic properties of functions of a
complex variable. Most of the great mathematicians of the eighteenth cen-
tury – d’Alembert, Euler, Laplace, Lagrange, Argand, Cauchy, and others
– tried in vain to prove this theorem. The first proof was given by Gauss in
his doctoral thesis in 1799. His proof was basically topological and relied
on work of Euler. During his lifetime, Gauss published several proofs of
this theorem7.

Example: The field F = GF (2) is not algebraically closed since the
polynomial X2 + X + 1 ∈ F [X] is not completely reducible.

Note that if a field F is algebraically closed then every polynomial
function F → F defined by a polynomial of positive degree is epic. Indeed,
let p(X) ∈ F [X] be a polynomial of positive degree and let d ∈ F. Then

7 Most proofs of the Fundamental Theorem of Algebra are existence
proofs and do not give a constructive method of finding the degree-one factors of a
polynomial over an algebraically-closed field. The first constructive proof was given by
the German mathematician Helmut Kneser in 1940.
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q(X) = p(X)− d is a polynomial of positive degree in F [X] and so there
exists an element c of F such that q(c) = 0. In other words, p(c) = d.

(4.4) Proposition: A monic polynomial p(X) ∈ R[X] is irre-
ducible if and only if it is of the form X − a or (X − a)2 + b2,
where a ∈ R and 0 �= b ∈ R.

Proof: Clearly every polynomial of the form X − a is irreducible.
Now assume that f(X) = (X − a)2 + b2 = X2 − 2aX + a2 + b2. Were this
polynomial reducible, we could find real numbers c and d satisfying

f(X) = (X − c)(X − d) = X2 − (c + d)X + cd

and so c+d = 2a and cd = a2+b2. This implies that c2−2ac+a2+b2 = 0
and hence c = 1

2

[
2a ±

√
4a2 − 4(a2 + b2)

]
= a±

√
−b2, which contradicts

the assumption that c ∈ R since b is assumed to be nonzero. Thus
polynomials of both of the given forms are indeed irreducible.

Conversely, let p(X) =
∑n

i=0 ciX
i be a monic irreducible polynomial

in R[X] that is not of the form X − a. By the Fundamental Theorem of
Algebra we know that there exists a complex number z = a+bi satisfying
p(z) = 0. Since the coefficients of p(X) are real, this means that p(z) = 0
as well, since 0 = 0 = p(z) =

∑n
i=0 ciz

i = p(z). Thus there exists a
polynomial u(X) ∈ R[X] satisfying p(X) = (X − z)(X − z)u(X), where
(X − z)(X − z) = X2 − (z + z)X + zz = X2 − 2aX + a2 + b2. Since p(X)
was assumed irreducible, we conclude that z /∈ R (i.e. b �= 0) and that
p(X) equals X2 − 2aX + a2 + b2, as desired. �

An obvious generalization of the above construction is the following: let
F be a field and let (K, •) be an F -algebra. If X is an element not
in K, we can define a polynomial with coefficients in K as a formal
sum f(X) =

∑∞
i=0 aiX

i, in which the elements ai belong to K and
no more than a finite number of them differ from 0K . The set of all
such polynomials will be denoted by K[X]. As above, we define addition
and multiplication in K[X] as follows: if f(X) =

∑∞
i=0 aiX

i and
g(X) =

∑∞
i=0 biX

i belong to K[X], then f(X)+g(X) is the polynomial∑∞
i=0 ciX

i, in which ci = ai + bi for each 0 ≤ i ≤ ∞, and f(X)g(X)
is the polynomial

∑∞
i=0 diX

i, in which di =
∑i

j=0 aj • bi−j for each
0 ≤ i ≤ ∞. Again, it is easy to check that K[X] is an F -algebra. This
generalization allows us to consider algebras of polynomials in several
indeterminates with coefficients in K defined inductively by setting
K[X1, . . . , Xn] = K[X1, . . . , Xn−1][Xn] for each n > 1. Elements of this
algebra are of the form

f(X1, . . . , Xn) =
∑

ai1,...,in
Xi1

1 · . . . · Xin
n ,
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where the sum ranges over all n-tuples (i1, . . . , in) of nonnegative integers
and at most finitely-many of the coefficients ai1,...,in

∈ K are nonzero.

Exercises

Exercise 93 Let F be a field and let (K, •) and (L, ∗) be F -algebras.

Define an operation � on K × L by
[

a
b

]

�
[

a′

b′

]

=
[

a • a′

b ∗ b′

]

. Is

(K × L, �) an F -algebra?

Exercise 94 Let F be a field and let (K, •) be a unitary, associative,
commutative, and entire F -algebra which, as a vector space, is finitely gen-
erated over F. Is K a field?

Exercise 95 Let F be a field and let (K, •) be an associative F -algebra
which, as a vector space, is finitely generated over F. Given an element
a ∈ K, do there necessarily exist elements a1, a2 ∈ K satisfying a1 •a2 =
a?

Exercise 96 Define an operation • on R
2 by setting

[
a
b

]

•
[

c
d

]

=
[

2ac − bd
ad + bc

]

.

Show that this operation turns R
2 into an R-algebra. Is this algebra

associative?

Exercise 97 Let F be a field and let (K, •) be a unital F -algebra.
Define an operation � on the vector space L = K × F by setting

[
v
a

]

�
[

w
b

]

=
[

v • w + bv + aw
ab

]

for all v, w ∈ K and a, b ∈ F. Is L an F -algebra? Is it unital?

Exercise 98 Let F be a field. An F -algebra (K, •) is a division
algebra if and only if for every v ∈ K and for every 0K �= w ∈ K there
exist unique vectors x, y ∈ K, not necessarily equal, satisfying w •x = v
and y • w = v. Is the algebra defined in the previous exercise a division
algebra?

Exercise 99 Let F be a field and let (K, •) be an associative F -algebra
which, as a vector space, is finitely generated over F. Suppose that there
exists an element y ∈ K satisfying the condition that for each v ∈ K
there exists an element v′ ∈ K satisfying v′ •y = v. Show that each such
element v′ must be unique.



46 4. Algebras over a field

Exercise 100 Let F be an infinite field and let (K, ∗) be an associa-
tive unital F -algebra. If v, w ∈ K, show that there are infinitely-many
elements w′ of K satisfying v • w = v • w′ in K.

Exercise 101 Let F be a field and let (K, •) be an associative unital
F -algebra. If A and B are subsets of K, we let A • B be the set
of all elements of K of the form a • b, with a ∈ A and b ∈ B (in
particular, ∅ • B = A • ∅ = ∅). We know that the set V of all subsets
of K is a vector space over GF (2). Is (V, •) a GF (2)-algebra? If so,
is it associative? Is it unital?

Exercise 102 Let F be a field and let (K, •) be an associative F -algebra.
If V and W are subspaces, we let V •W be the set of all finite sums of
the form

∑n
i=1 vi • wi, with vi ∈ V and wi ∈ W. Is V • W necessarily

a subspace of K?

Exercise 103 For v, w ∈ R
3, simplify the expression (v + w)× (v −w).

Exercise 104 For u, v, w ∈ R
3, simplify the expression (u + v + w) ×

(v + w).

Exercise 105 Let F be a field and let (K, •) be an F -algebra satisfying
the Jacobi identity. Show that K is a Lie algebra if and only if v•v = 0K

for all v ∈ K.

Exercise 106 Let F be a field and let (K, ∗) be an associative F -
algebra. For each 0F �= c ∈ F and define an operation •c on K by
setting v •c w = c(v ∗ w + w ∗ v). For which values of c is (K, •) a
Jordan algebra over F?

Exercise 107 Let F be a field and let (K, •) be a unitary F -algebra. For
each v ∈ K, let S(v) be the set of all a ∈ F satisfying the condition that
v−a1K does not have an inverse with respect to the operation •. If v ∈ K
has a multiplicative inverse v−1 with respect to this operation, show that
either S(v) = ∅ = S(v−1) or S(v) �= ∅ and S(v−1) = {a−1 | a ∈ S(v)}.

Exercise 108 Let F be a field and let L be the set of all polynomials
f(X) ∈ F [X] satisfying the condition that f(−a) = −f(a) for all a ∈ F.
Is L a subspace of F [X]?

Exercise 109 Let F be a field and let L be the set of all polynomials
f(X) ∈ F [X] satisfying the condition that deg(f) is even. Is L a
subspace of F [X]?

Exercise 110 Let F be a field and let f(X), g(X) ∈ F [X]. Show that
deg(fg) = deg(f) + deg(g).

Exercise 111 Let F be a field and let f(X), g(X) ∈ F [X]. Show that
deg(f + g) ≤ max{deg(f),deg(g)}, and give an example in which we do
not have equality.
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Exercise 112 Find polynomials u(X), v(X) ∈ Q[X] satisfying

X4 + 3X3 = (X2 + X + 1)u(X) + v(X).

Exercise 113 Let F = GF (2). Find polynomials u(X), v(X) ∈ F [X]
satisfying X5 + X2 = (X3 + X + 1)u(X) + v(X).

Exercise 114 Let F = GF (7). Find a nonzero polynomial p(X) ∈ F [X]
such that the polynomial function defined by p is the 0-function.

Exercise 115 Is the polynomial 6X4+3X3+6X2+2X+5 ∈ GF (7)[X] ir-
reducible?

Exercise 116 Is the polynomial X7 + X4 + 1 ∈ Q[X] irreducible?

Exercise 117 Let t ∈ R satisfy the condition that there exist a, b ∈ R

satisfying c + d = 1 and

2a3 − a2 − 7a + t = 0 = 2b3 − b2 − 7b + t.

Find t.

Exercise 118 Compare the subsets F [X2] and F [X2 + 1] of F [X],
where F is a field.

Exercise 119 Let F = GF (p), where p is a prime integer, and let
g be an arbitrary function from F to itself. Show that there exists a
polynomial p(X) ∈ F [X] of degree less than p satisfying the condition
that g(c) = p(c) for all c ∈ F.

Exercise 120 Let c be a nonzero element of a field F and let n > 1 be
an integer. Show that there exists a polynomial p(X) ∈ F [X] satisfying
cn + c−n = p(c + c−1).

Exercise 121 Let F be a field. Find the set of all polynomials 0 �=
p(X) ∈ F [X] satisfying p(X2) = p(X)2.

Exercise 122 Let k be a positive integer and let

pk(X) =
1
k!

X(X − 1) · . . . · (X − k + 1) ∈ Q[X].

Show that pk(n) ∈ Z for every nonnegative integer n.

Exercise 123 For any positive integer n, let

pn(X) = nXn+1 − (n + 1)Xn + 1 ∈ Q[X].

Show that there exists a polynomial qn(X) ∈ Q[X] satisfying pn(X) =
(X − 1)2qn(X).
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Exercise 124 Let F be a field and let W be a nontrivial subspace of the
vector space F [X] over F. Let p(X) ∈ F [X] be a given monic polynomial
and let p(X)W = {p(X)f(X) | f(X) ∈ W}. Show that p(X)W is a
subspace of F [X] and find a necessary and sufficient condition for it to
equal W.

Exercise 125 Let p be a prime integer and let n be a positive integer.
Does there necessarily exist an irreducible monic polynomial in GF (p)[X]
of degree n?

Exercise 126 Let p be a prime integer and let n be a positive integer.
Show that the product of all irreducible monic polynomials in GF (p)[X]
of degree dividing n is equal to Xpn − X.

Exercise 127 Let n > 1 be an integer. Is the polynomial p(X) =
1 +

∑n
h=1

1
h!X

h ∈ Q[X] necessarily irreducible?

Exercise 128 Show that the polynomial X4 + 1 is irreducible in Q[X]
but reducible in GF (p)[X] for every prime p.

Exercise 129 Show that the polynomial in Q[X] of the form

X4 + 2(1 − c)X2 + (1 + c)2

is irreducible for every c ∈ Q satisfying
√

c /∈ Q.

Exercise 130 Let k be a positive integer and let a < b be real numbers.
A function f ∈ R

[a,b] is a spline function of degree k if and only
if there exist real numbers a = a0 < . . . < an = b and polynomials
p0(X), . . . , pn−1(X) of degree k in R[X] satisfying the conditon that
f : x �→ pi(x) for all ai ≤ x ≤ a i+1 and all 0 ≤ i ≤ n − 1. Spline
functions play an important part in interpolation theory. Is the set of all
spline functions of fixed degree k a subspace of the vector space R

[a,b]?



5
Linear independence and dimension

In this chapter we will see how a restricted group of vectors in a vector
space over a field can dictate the structure of the entire space, and we will
deduce far-ranging conclusions from this. Let V be a vector space over
a field F. A nonempty subset D of V is linearly dependent if and
only if there exist distinct vectors v1, . . . , vn in D and scalars a1, . . . , an

in F, not all of which are equal to 0, satisfying
∑n

i=1 aivi = 0V . A
list of elements of V is linearly dependent if it has two equal members
or if its underlying subset is linearly dependent. Clearly any set of vectors
containing 0V is linearly dependent. A nonempty set of vectors which
is not linearly dependent is linearly independent1. That is to say, D
is linearly independent if and only if D = ∅ or D �= ∅ and we have∑n

i=1 aivi = 0V with the ai in F and the vi in V, when and only
when ai = 0 for all 1 ≤ i ≤ n. As a consequence of this definition, we

1 The notion of linear independence of vectors was extensively gen-
eralized to other mathematical contexts the by 20th-century American mathematician
Hassler Whitney.
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see that an infinite set of vectors is linearly dependent if and only if it has
a finite linearly-dependent subset, and an infinite set of vectors is linearly
independent if and only if each of its finite subsets is linearly independent.
It is also clear that any set of vectors containing a linearly-dependent subset
is linearly dependent and that any subset of a linearly-independent set of
vectors is linearly independent.

Example: The subset









1
2
1



 ,




−1

3
4



 ,




−4

7
11









of Q

3 is lin-

early dependent since




0
0
0



 = (−1)




1
2
1



 + 3




−1

3
4



 + (−1)
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7
11



 .

Similarly, the subset
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1
1
1









of Q

3 is linearly inde-

pendent, since if




0
0
0



 = a




1
0
0



+ b




1
1
0



+ c




1
1
1



 , then




0
0
0



 =




a + b + c

b + c
c



 and that implies that a = b = c = 0.

Example: The subset
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of GF (2)7 is linearly

independent and generates a subspace of V composed of eight vectors:
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.

Note that in every element of V other than its identity element for ad-
dition, a majority of the entries are nonzero. This property makes this
subspace of V important in algebraic coding theory.
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Example: Let ḃ > 1 be a real number, let {p1, p2, . . .} be the set
of prime integers and, for each i, let ui = logb(pi). We claim that
D = {u1, u2, . . .} is a linearly-independent subset of R, when it is con-
sidered as a vector space over Q. Indeed, assume that this is not the
case. Then there is a positive integer n and rational numbers a1, . . . , an

satisfying
∑n

i=1 aiui = 0. If we multiply both sides by the product of the
denominators of the ai, we can assume that the ai are integers. Then

1 = b0 = b
∑

aiui =
n∏

i=1

baiui =
n∏

i=1

(bui)ai =
n∏

i=1

pai
i ,

and this is a contradiction. Therefore D must be linearly independent.

Example: Let F be a field and let Ω be a nonempty set. Let
Vi be a vector space over F for each i ∈ Ω, and set V =

∏
i∈Ω Vi.

We have already seen that the identity for addition in this vector space
is the function g0 : Ω →

⋃
i∈Ω Vi given by g0 : i �→ 0Vi

. For each
i ∈ Ω, let fi : Ω →

⋃
i∈Ω Vi be a function satisfying the condition that

fi(i) �= g0(i) but fi(h) = g0(h) for all h ∈ Ω � {i}. We claim that
the subset {fi | i ∈ Ω} of V is linearly independent. To see that,
assume that there exists a finite subset Λ of Ω and a family of scalars
{ch | h ∈ Λ} such that

∑
h∈Λ chfh = g0. Then for each k ∈ Λ we

have g0(k) =
(∑

h∈Λ chfh

)
(k) =

∑
h∈Λ chfh(k) = ckfk(k) and since, by

definition, fk(k) �= g0(k), we must have ck = 0.

Example: If F is a field, the subset {1,X,X2, . . .} of F [X] is
surely linearly independent, since

∑n
i=0 aiX

i = 0 if and only if each of
the coefficients ai equals 0.

Example: Let V = R
R be the vector space, over R, of all functions

from R to itself. Let D be the set of all functions of the form x �→ eax

for some real number a. We claim that D is linearly independent. Indeed,
assume that there are distinct real numbers a1, . . . , an and real numbers
c1, . . . , cn such that the function x �→

∑n
i=1 cie

aix equals the 0-function
f0 : x �→ 0, which is the identity element of V for addition. We need to
show that each of the ci equals 0, and this we will do by induction on
n.

If n = 1 then we must have c1 = 0 since the function x �→ eax is
different from f0 for each a ∈ R. Assume therefore that n > 1 and
that every subset of D having no more than n − 1 elements is linearly
independent. For each 1 ≤ i ≤ n, set bi = ai − an. Then

f0 = e−anx
n∑

i=1

cie
aix =

[
n−1∑

i=1

cie
bix

]

+ cn
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and if we differentiate both sides of the equation, we see that f0 =∑n−1
i=1 bicie

bix. By the induction hypothesis and the choice of the scalars
ai as being distinct, it follows that bici = 0 �= bi for each 1 ≤ i ≤ n − 1
and so ci = 0 for all 1 ≤ i ≤ n − 1. This in turn implies that cn = 0
as well.

Similarly, let G be the subset of V consisting of all of the functions of
the form gi : x �→ xi−12x−1. We claim that this set too is linearly inde-
pendent. Indeed, assume otherwise. Then there exists a positive integer
n and there exist real numbers c1, . . . , cn, such that

∑n
i=1 cigi = f0.

But this implies that 2x−1
(∑n

i=1 cix
i−1

)
= 0 for each real number x.

Since 2x−1 �= 0 for each x ∈ R, we conclude that
∑n

i=1 cix
i−1 = 0

for all x. But the polynomial function x �→
∑n

i=1 cix
i−1 from R to

itself has infinitely-many roots if and only ci = 0 for all i, proving linear
independence.

Note that if {v, w} is a linearly-dependent set of vectors in an anti-
commutative algebra (K, •) over a field of characteristic other than 2,
then there exist scalars a and b, not both equal to 0, such that
av + bw = 0K . Relabeling if necessary, we can assume that b �= 0. Then
0K = a(v •v)+ b(v •w) = b(v •w) and so v •w = 0K . A simple induction
argument shows that if D is a linearly-dependent subset of K then
v1 • . . . • vk = 0K for any finite subset {v1, . . . , vk} of D.

Note too that Proposition 3.7 can be easily iterated to get the more
general result that if D is a nonempty subset of a vector space V over a
field F and if B is a finite linearly-independent subset of FD having
k elements, then there exists a subset D′ of D also having k elements
satisfying the condition that F ((D � D′)∪B) = FD. Moreover, if D is
linearly independent, so is (D � D′)∪B. This result is sometimes known
as the Steinitz Replacement Property.

(5.1) Proposition: Let V be a vector space over a field F. A
nonempty subset D of V is linearly dependent if and only if
some element of D is a linear combination of the others over F.

Proof: Assume D is linearly dependent. Then there exists a finite
subset {v1, . . . , vn} of D and scalars a1, . . . , an, not all of which equal
0, satisfying

∑n
i=1 aivi = 0V . Say ah �= 0. Then vh = −a−1

h

∑
i�=h aivi

and so we see that vh is a linear combination of the other elements of D
over F. Conversely, assume that there is some element of D is a linear
combination of the others over F. That is to say, there is an element v1

of D, elements v2, . . . , vn of D � {v1} and scalars a2, . . . , an in F
satisfying v1 =

∑n
i=2 aivi. If we set a1 = −1, we see that

∑n
i=1 aivi = 0V

and so D is linearly dependent. �
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Example: For every real number a, let fa be the function in R
R

defined by fa : x �→ |x − a|. We claim that the subset D = {fa | a ∈ R}
of R

R is linearly independent. Indeed, assume that this is not the case.
Then there exists a real number b such that fb is a linear combination
of other members of D. In other words, there exists a finite subset E of
R \ {b} and scalars ca for each a ∈ E such that fb =

∑
a∈E cafa. But

the function on the right-hand side of this equation is differentiable at b,
while the function on the left-hand side is not. From this contradiction,
we see that D is linearly independent.

We now introduce a new concept: if A is a nonempty set, then a relation
� between elements of A is called a partial order relation if and only
if the following conditions are satisfied:

(1) a � a for all a ∈ A;
(2) If a � b and b � a then a = b;
(3) If a � b and b � c then a � c.

The term “partial” comes from the fact that, given elements a and b of
A, it may happen that neither a � b nor b � a. A set on which a partial
order has been defined is a partially-ordered set. A partially-ordered set
A satisfying the condition that for all a, b ∈ A we have either a � b or
b � a is called a chain. A nonempty subset B of a partially-ordered set
A is itself partially-ordered relative to the partial order relation defined on
A; it is a chain subset if it is a chain relative to the partial order defined
on A.

If A is a nonempty set on which we have a partial order relation �
defined, then an element a0 of A is maximal in A if and only if a0 � a
when and only when a = a0. An element a1 is minimal if and only
if a � a1 when and only when a = a1. Maximal and minimal elements
need not exist or, if they exist, need not be unique. The Well Ordering
Principle, one of the fundamental axioms of number theory, says that any
nonempty subset of N, ordered with the usual partial order, has a minimal
element.

Partial order relations are ubiquitous in mathematics, and often play
a very important, though not usually highlighted, part in the analysis of
mathematical structures.

Example: Let A be a nonempty set and let P be the collection of
all subsets of A. Define a relation � between elements of P by setting
B � B′ if and only if B ⊆ B′. It is easy to verify that this is indeed
a partial order relation. Moreover, P has a unique maximal element,
namely A, and a unique minimal element, namely ∅. The set P is not
a chain whenever A has more than one element since, if a and b are
distinct elements of A, then {a} � {b} and {b} � {a}.

Example: Let A = {1, 2, 3} and let P be the collection of all subsets
of A having one or two elements. Thus P has six elements: {1}, {2},
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{3}, {1, 2}, {1, 3}, and {2, 3}. Again, the relation � between elements
of P defined by setting B � B′ if and only if B ⊆ B′ is a partial order
relation. Moreover, P has three minimal elements: {1}, {2}, and {3}; it
also has three maximal elements: {1, 2}, {1, 3}, and {2, 3}.

In general, if we have a collection of subsets of a given set, the collection
is partially-ordered by setting B � B′ if and only if B ⊆ B′. Therefore
it makes sense for us to talk about “a minimal generating set” of a vector
space V – namely a minimal element in the partially-ordered collection
of all generating sets of V – and about “a maximal linearly-independent
subset” of a vector space V – namely a maximal element of the partially-
ordered collection of all linearly-independent subsets of V. However, we
have no a priori guarantee that such minimal or maximal elements in fact
exist.

Example: Consider the set A of all integers greater than 1, and
define a relation � on A by setting k � n if and only if there is a
positive integer t satisfying n = tk. This is a partial order relation on
A. Moreover, A has infinitely-many minimal elements, since each prime
integer is a minimal element of A, while it has no maximal elements, since
n � 2n for each n ∈ A.

(5.2) Proposition: Let V be a vector space over a field F.
Then the following conditions on a subset D of V are equivalent:

(1) D is a minimal set of generators of V ;
(2) D is a maximal linearly-independent subset of V ;
(3) D is a linearly-independent set of generators of V .

Proof: (1) ⇒ (2): Let D be a minimal set of generators of V, and
assume that D is linearly dependent. By Proposition 5.1 there exists
an element v0 ∈ D which is a linear combination of elements of the set
E = D � {v0} over F. Say v0 =

∑n
i=1 aiui, where the ui belong to E

and the ai are scalars in F. If v is arbitrary element of V then, since
D is a set of generators of V, there exists elements v1, . . . , vn of E and
scalars b0, b1, . . . , bn such that v =

∑n
j=0 bjvj . But this then implies that

v = b0v0 +
∑n

j=1 bjvj =
∑n

i=1 b0aiui +
∑n

j=1 bjvj and so E is also a set
of generators of V, contradicting the minimality of D. This establishes
the claim that D is linearly independent. If v ∈ V � D, the set D ∪ {v}
is linearly dependent since v is a linear combination of elements of D.
Thus D is a maximal linearly-independent set.

(2) ⇒ (3): Assume that D is a maximal linearly-independent subset of
V. Consider a vector v0 in V �D. By (2), we know that the set D∪{v0}
is linearly dependent and so 0V ∈ F (D ∪ {v0}) � FD by Proposition 3.7,
this implies v0 ∈ F (D ∪ {0V }) = FD, which proves that D is a set of
generators of V.
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(3) ⇒ (1): Assume that D is a linearly-independent set of generators of
V and that E is a proper subset of D which is also a set of generators
for V. Let v0 ∈ D � E. Then there exist elements v1, . . . , vn of E
and scalars a1, . . . , an such that v0 =

∑n
i=1 aivi. But, by Proposition

5.1, that implies that the set D is linearly dependent, contradicting (3).
Therefore no such E exists and so D is a minimal set of generators of
V. �

(5.3) Proposition: Let V be a vector space over a field F and
let D be a linearly-independent subset of V. If v0 ∈ V � FD
then the set D ∪ {v0} is linearly independent.

Proof: Assume that this set is linearly dependent. Then there exist
elements v1, . . . , vn of D and scalars a0, a1, . . . , an, not all equal to
0, such that

∑n
i=0 aivi = 0V . The scalar a0 must be different from 0,

for otherwise D would be linearly dependent, which is a contradiction.
Therefore v0 =

∑n
i=1 −a−1

0 aivi ∈ FD, which contradicts the choice of v0.
Thus D ∪ {v0} must be linearly independent. �

Proposition 5.3 has important implications. For example, let V be a
vector space over a field F which is not finitely generated and let D =
{v1, . . . , vn} be a linearly-independent subset of V. Then FD �= V, since
V is not finitely generated, and so there exists a vector vn+1 ∈ V � FD
such that {v1, . . . , vn+1} is linearly independent. Thus we see that a
vector space which is not finitely generated has linearly-independent finite
subspaces of arbitrarily-large size.

A generating set for a vector space V over a field F which is also
linearly independent, is called a basis of V over F. In Proposition 5.2
we gave some equivalent conditions for determining of a subset of a vector
space is a basis. However, we have not yet proven that every (or, indeed,
any) vector space must have a basis.

Example: Clearly









1
0
0



 ,




0
1
0



 ,




0
0
1









and









1
0
0



 ,




1
1
0



 ,




1
1
1










are bases of F 3 for any field F. If the characteristic of F is other

than 2, then
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is a basis of F 3, but if the
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field F has characteristic 2, then the set is linearly dependent, since
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Example: Let F be a field and let both k and n be positive integers.
For each 1 ≤ s ≤ k and each 1 ≤ t ≤ n, let Hst be the matrix [aij ] in
Mk×n(F ) defined by

aij =
{

1 if (i, j) = (s, t)
0 otherwise .

Then {Hst | 1 ≤ s ≤ k and 1 ≤ t ≤ n} is a basis of Mk×n(F ).

Example: If F is a field, then we have already seen that the subset
{1,X,X2, . . .} of F [X] is a linearly-independent generating set for F [X]
as a vector space over F, and so is a basis of this space. The same is
true for the subset {1,X + 1,X2 + X + 1, . . .} of F [X]. More generally,
if {p0(X), p1(X), . . .} is a subset of F [X] satisfying the condition that
deg(pi(X)) = i for all i ≥ 0, then it is a basis of F [X] as a vector space
over F.

Since every element of a vector space V over a field F has a unique
representation as a linear combination of elements of a basis, if one wants to
define a structure of an F -algebra on V it suffices to define the product of
any pair of basis elements, and then extend the definition by distributivity
and associativity. This is illustrated by the following example, and we will
come back to it again in Proposition 5.5.

Example: We have already noted that if F is a field then F [X]
is an associative F -algebra. Let us generalize this construction. Let H
be a nonempty set on which we have defined an associative operation ∗.
Thus, for example, H could be the set of nonnegative integers with the
operation of addition or multiplication. Let V be the vector space over
F with basis {vh | h ∈ H} and define an operation • on V as
follows: if v =

∑
g∈H agvg and w =

∑
h∈H bhvh are elements of V

(where at most finitely-many of the ag and the bh are nonzero), then
set v • w =

∑
g∈H

∑
h∈H agbhvg∗h. This turns V into an associative F -

algebra. In the case H = {Xi | i ≥ 0}, we get F [X]. Such constructions
are very important in advanced applications of linear algebra.

Note that a vector space may have (and usually does have) many bases
and so the problem arises as to whether there is a preferred basis among
all of these. For vector spaces of the form Fn, there are reasons to prefer
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; for vector spaces of the form

Mk×n(F ) there are reasons to prefer the basis {Hst | 1 ≤ s ≤ k and
1 ≤ t ≤ n} defined above; and for vector spaces of the form F [X] there
are reasons to prefer the basis {1,X,X2, . . .}. These bases are called the
canonical bases of their respective spaces. However, in various applica-
tions – especially those involving large calculations – it is often convenient
and sometimes extremely important to pick other bases which fit the prob-
lem under consideration.

It is also important to emphasize another point. When we defined the
notation for this book, we stressed that when a set is defined by listing
its elements, the set comes with an implicit order defined by that listing.
When we deal with bases, and especially finite bases, the order in which
the elements of the basis are written often plays a critical role, and one
should never lose track of this.

(5.4) Proposition: Let V be a vector space over a field F
and let D be a nonempty subset of V. Then D is a basis of
V if and only if every vector in V can be written as a linear
combination of elements of D over F in precisely one way.

Proof: First, let us assume that D is a basis of V and that there exists
an element v of V which can be written as a linear combination of elements
of D over F in two different ways. That is to say, that there exists a finite
subset {v1, . . . , vn} of D and there exist scalars a1, . . . , an, b1, . . . , bn in
F such that v =

∑n
i=1 aivi =

∑n
i=1 bivi, where ah �= bh for at least one

index h. Then 0V = v− v = (
∑n

i=1 aivi)− (
∑n

i=1 bivi) =
∑n

i=1[ai − bi]vi,
where at least one of the scalars ai − bi is nonzero. This contradicts the
assumption that D is a basis and hence linearly independent. Therefore
every vector in V can be written as a linear combination of elements of
D over F in precisely one way.

Conversely, assume that every vector in V can be written as a linear
combination of elements of D over F in precisely one way. That certainly
implies that D is a generating set for V over F. If {v1, . . . , vn} is a
subset of D and if a1, . . . , an are scalars satisfying

∑n
i=1 aivi = 0V , then

we have
∑n

i=1 aivi =
∑n

i=1 0vi and so, by uniqueness of representation,
we have ai = 0 for each 1 ≤ i ≤ n. This shows that D is linearly
independent and so a basis. �
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We can look at Proposition 5.4 from another point of view. Let D be a
nonempty subset of a vector space V over a field F, and define a function
θ : F (D) → V by setting θ : f �→

∑
u∈D f(u)u. (This sum is well-defined

since only finitely-many of the summands are nonzero.) Then:
(1) The function θ is monic if and only if D is linearly independent;
(2) The function θ is epic if and only if D is a generating set;
(3) The function θ is bijective if and only if D is a basis.

(5.5) Proposition: Let D be a basis for a vector space V over
a field F . Then any function f : D×D → V can be extended in a
unique manner to a function V ×V → V which defines on V the
structure of an F -algebra. Moreover, all F -algebra structures
on V arise in this manner.

Proof: Let D = {yi | i ∈ Ω}. Suppose that we are given a func-
tion f : D × D → V. We define an operation • on V as follows:
if v, w ∈ V, then, by Proposition 5.4, we know that we can write v =∑

i∈Ω aiyi and w =
∑

j∈Ω bjyj in a unique manner, where the ai

and bj are scalars, only a finite number of which are nonzero; then set
v • w =

∑
i∈Ω

∑
j∈Ω aibjf(yi, yj). It is straightforward to show that this

defines the structure of an F -algebra on V. Conversely, if (V, •) is an
F -algebra, define the function f : D × D → V by f : (yi, yj) �→ yi • yj .
�

The function f in Proposition 5.5 is the multiplication table of the
vector multiplication operation •.

Example: Let F be a field and let a, b ∈ F. Let B = {v1, v2, v3, v4}
be the canonical basis for F 4 over F. Define an operation • on B
according to the multiplication table:

• v1 v2 v3 v4

v1 v1 v1 v3 v4

v2 v2 av1 v4 av3

v3 v3 −v4 bv1 −bv2

v4 v4 −av3 bv2 −abv1

and extend this operation to F 4 by setting
(∑4

i=1 aivi

)
•
(∑4

j=1 bjvj

)
=

∑4
i=1

∑4
j=1 aibj(vi • vj). Then F 4, together with this operation, is a

unital associative algebra known as a quaternion algebra over F, in
which v1 is the identity element of for multiplication. In the special case
of F = R and a = b = −1, we get the algebra of real quaternions,
which is denoted by H. The algebra of real quaternions was first defined by
Hamilton in 1844 as a generalization of the field of complex numbers (and
earlier studied by Gauss, who did not publish his results). It is a division
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algebra over R since every nonzero quaternion is a unit of H. These were
subsequently generalized by Clifford and used in his study of noneuclidean
spaces.2 Lately, they have also been used in computer graphics and in
signal analysis. If F is a field having characteristic p > 0, quaternion
algebras over F are not even entire. However, they arise naturally in the
theory of elliptic curves, and so are of great importance in cryptography.
If p > 2, then no quaternion algebras over F are commutative.

We now show that any vector space over a field F has a basis. Indeed,
the following two propositions show somewhat stronger than that3.

(5.6) Proposition: If V is a vector space finitely generated
over a field F then every finite generating set of V over F
contains a basis of V.

Proof: Let V be a vector space finitely generated over a field F and
let D be a finite generating set for V over F. If D is minimal among all
generating sets for V, then we know by Proposition 5.2 that it is a basis
of V. If not, it properly contains other generating sets for V over F,
one of which, say E, has the fewest elements. Then E cannot properly
contain any other generating set for V over F, and so it must be a basis
of V. �

2 Sir William Rowan Hamil-
ton, a 19th-century Irish mathematician and physicist, helped create matrix theory
in its modern formulation, together with Cayley and Sylvester. Hamilton was the first
to use the terms “vector” and “scalar” in an algebraic context. His championship of
quaternions as an alternative to vectors in physics was later taken up by Scottish math-
ematician Peter Guthrie Tait. Nineteenth-century British mathematician William
Kingdom Clifford was one of the first to argue that energy and matter were just
different types of curvature of space.

3 The Italian mathematician Giuseppe Peano, best known for
his axiomatization of the natural numbers, was the first to prove that every finitely-
generated vector space has a basis at the end of the 19th century. He also gave the final
form for the definition of a vector space, which we used above.
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(5.7) Proposition: If V is a vector space finitely generated
over a field F then every linearly-independent subset B of V
is contained in a basis of V over F.

Proof: By assumption, there exists a finite generating set {v1, . . . , vn}
for V over F. Let B be a linearly-independent subset of V. If vi ∈ FB
for each 1 ≤ i ≤ n, then FB = V, and B is itself a basis of V. Otherwise,
let h = min{i | vi /∈ FB}. By Proposition 5.3, the set D = B ∪ {vh}
is linearly independent. If it is a generating set for V, then it is a basis
and we are done. If not, let k = min{i | vi /∈ FD}, and replace D by
B ∪ {vh, vk}. Continuing in this manner, we see that after finitely-many
steps we obtain a basis of V. �

We now want to extend this result to vector spaces which are not finitely
generated, and to do so we have to make use of an axiom of set theory known
variously as the Hausdorff Maximum Principle or Zorn’s Lemma4.
To state this principle, we need another concept about partially-ordered
sets. Let A be a set on which we have defined a partial order � . A
subset B of A is bounded if and only if there exists an element a0 ∈ A
satisfying b � a0 for all b ∈ B. Note that we do not require that a0

belong to B. The Hausdorff maximum principle then says that if A is a
partially-ordered set in which every chain subset is bounded, then A has
a maximal element. Again, this is not really a “principle” or a “lemma”;
it is an axiom of set theory which has been shown to be independent of the
other (Zermelo-Fraenkel) axioms one usually assumes. Indeed, it is logically
equivalent to the Axiom of Choice, which we mentioned in Chapter 1 as
being somewhat controversial among those mathematicians dealing with
the foundations of mathematics. However, in this book, we will assume
that it holds. Given that assumption, we can now extend Proposition 5.7.

(5.8) Proposition: If V is a vector space over a field F then
every linearly-independent subset B of V is contained in a
basis of V.

4 Felix Hausdorff, one of the leading mathemati-
cians of the early 20th century and one of the founders of topology, died in a German
concentration camp in 1942. Max Zorn, a German mathematician who emigrated to
the United States, made skillful use of the Hausdorff Maximum Principle in his research,
turning it into an important mathematical tool.
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Proof: Let B be a linearly-independent subset of V and let P be
the collection of all linearly-independent subsets of V which contain B,
which is partially-ordered by inclusion, as usual. Then P is nonempty
since B ∈ P. Let Q be a chain subset of P. We want to prove that Q
is bounded in P. That is to say, we want to find a linearly independent
subset E of V which contains every element of Q. Indeed, let us take
E to be the union of all of the elements of Q. To show that E is linearly
independent, it suffices to show that every finite subset of E is linearly
independent. Indeed, let {v1, . . . , vn} be a finite subset of E. Then
for each 1 ≤ i ≤ n, there exists an element Di of Q containing vi.
Since Q is a chain, there exists an index h such that Di ⊆ Dh for all
1 ≤ i ≤ n and so vi ∈ Dh for all 1 ≤ i ≤ n. Therefore this set is a subset
of a linearly-independent set and so is linearly independent. Thus we have
shown that every chain subset of P is bounded and so, by the Hausdorff
maximum principle, the set P has a maximal element. In other words,
there exists a maximal linearly-independent subset of V containing B,
and this, as we know, is a basis of V over F. �

Taking the special case of B = ∅ in Proposition 5.8, we see that every
vector space has a basis. In the above proof we used the Axiom of Choice
to prove this statement. In fact, one can show something considerably
stronger: in the presence of the other generally-accepted axioms of set
theory, the Axiom of Choice is equivalent, in the sense of formal logic, to
the statement that every vector space over any field has a basis5.

Example: Consider the field R as a vector space over its subfield Q.
A basis for this space is known as a Hamel basis. By Proposition 5.8, we
know that Hamel bases exist, but nobody has been able to come up with a
method of specifically constructing one. The subset C of R consisting of
all real numbers which can be represented in the form

∑
i>0 ui3−i, where

each ui is either 0 or 2, is called the Cantor set, and it can be shown
to be “sparse” (in a technical sense of the word we won’t go into here) in
the unit interval [0, 1] in R. It is possible to show that there is a Hamel
basis of R contained in C. Still, the mere existence of Hamel bases leads
to some very interesting results, as the following shows.

5 This result is due to the contemporary American mathematician,
Andreas Blass.
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Let H be a Hamel basis of R. If r ∈ R then we can write r =∑
a∈H qa(r)a, where qa(r) ∈ Q and there are only finitely-many elements

a ∈ H for which qa(r) �= 0. Since such a representation is unique, we see
that

qa(b) =
{

1 if a = b
0 otherwise

for a, b ∈ H. Moreover, if r, s ∈ R and a ∈ H then qa(r + s) =
qa(r) + qa(s) so, if a �= b are elements of H then for any r ∈ R we
have qa(r + b) = qa(r) + qa(b) = qa(r). Thus we see that the function
qa ∈ R

R is periodic, with period b for any b ∈ H � {a}, and its image
is contained in Q. Moreover, if we pick two distinct elements c and d
of H, we see that for each r ∈ R, we have r = f(r) + g(r), where
f, g ∈ R

R are defined by f : r �→ qc(r)c and g : r �→
∑

a∈H�{c} qa(r)a.
By our previous comments, f is periodic with period d and g is periodic
with period c. We conclude that the identity function in R

R is the sum
of two periodic functions. A somewhat more sophisticated argument along
the same lines shows that any polynomial function in R

R of degree n is
the sum of n + 1 periodic functions. Of course, since we cannot specify
H, there is no way of finding these periodic functions explicitly.6

We have seen that a vector space over a field can have many bases. We
want to show next that if the vector space is finitely generated, then all
of these bases are finite and have the same number of elements. First,
however, we must prove a preliminary result.

(5.9) Proposition: Let V be a vector space over a field F
which is generated by a finite set B = {v1, . . . , vn} and let D be
a linearly independent set of vectors in V. Then the number of
elements in D is at most n.

Proof: Suppose that D has a subset E = {w1, . . . , wn+1} having
more than n elements. Since this set must also be linearly independent,
we know that none of the wi equals 0V . For each 1 ≤ k ≤ n, set
Dk = {w1, . . . , wk, vk+1, . . . , vn}.

6 Twentieth-century German mathematician Georg Hamel was a
student of Hilbert who worked primarily in function theory. In his later years, he
became notorious for his pro-Nazi views and activities.
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Since B is a generating set for V, we can find scalars a1, . . . , an,
not all equal to 0, such that w1 =

∑n
i=1 aivi. In order to simplify our

notation, we will renumber the elements of B if necessary so that a1 �= 0.
Then v1 = a−1

1 w1−
∑n

i=2 a−1
1 aivi and so D ⊆ FD1. But D1 ⊆ V = FD

and so V = FD1 by Proposition 3.6. Now assume that 1 ≤ k < n
and that we have already shown that V = FDk. Then there exist scalars
b1, . . . , bn, not all equal to 0, such that wk+1 =

∑k
i=1 biwi +

∑n
i=k+1 bivi.

If the scalars bk+1, . . . bn are all equal to 0, then we have shown that D
is linearly dependent, which is not the case. Therefore at least one of them
is nonzero and, by renumbering if necessary, we can assume that bk+1 �= 0.

Thus vk+1 = b−1
k+1wk+1 −

∑k
i=1 b−1

k+1biwi −
∑n

i=k+2 b−1
k+1bivi and so, using

the above reasoning, we get V = FDk+1. Continuing in this manner, we
see that after n steps we obtain V = FDn = F{w1, . . . , wn}. But then
wn+1 ∈ F{w1, . . . , wn} and so E is linearly dependent, contrary to our
assumption. This proves that D can have at most n elements. �

(5.10) Proposition: Let V be a vector space finitely generated
over a field F. Then any two bases of V have the same number
of elements.

Proof: By hypothesis, there exists a finite generating set for V over F
having, say, n elements. If B is a basis of V then, by Proposition 5.9,
we know that B has at most n elements and so, in particular, is finite.
Suppose B and B′ are two bases for V having h and k elements
respectively. Since B is linearly independent and B′ is a generating set,
we know that h ≤ k. But, on the other hand, B′ is linearly independent
and B is a generating set, so k ≤ h. Thus h = k. �

We should remark at this point that the assertion for linearly-dependent
sets corresponding to Proposition 5.10 is not true. That is to say, a finite
linearly-dependent set of vectors may have two minimal linearly-dependent
subsets with different numbers of elements. Indeed, there is no efficient
algorithm to find such subsets of a given linearly-dependent set. We should
also note that Proposition 5.9 is a special case of a more general theorem:
if V is a vector space (not necessarily finitely generated) over a field F
then there exists a bijective function between any two bases of V. The
proof of this result makes use of techniques from advanced set theory, such
as transfinite induction.

If V is a vector space finitely generated over a field F then V is
finite dimensional and the number of elements in a basis of V is called
the dimension of V over F. If V is not finite dimensional, it is
infinite dimensional. (In choosing this latter terminology, we are delib-
erately skipping over the subject of various transfinite dimensions, since
the reader is not assumed to be familiar with the arithmetic of transfinite
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cardinals. In certain mathematical contexts, distinction between infinite di-
mensions – for example the distinction between spaces of countably-infinite
and uncountably-infinite dimension – can be very significant. We will not,
however, need it in this book.) We denote the dimension of V over F
by dim(V ), or by dimF (V ) when it is important to emphasize the field
of scalars7.

Notice that the proof of Proposition 5.9, which is in turn critical in
proving Proposition 5.10, uses the fact that every nonzero element of F
has a multiplicative inverse, and this cannot be avoided. If we try to weaken
the notion of a vector space by allowing scalars to be, say, only integers,
it may happen that such a space would have two bases of different sizes
and so we could no longer define the notion of dimension in an obvious
manner. We did not use, in an unavoidable manner, the commutativity
of scalar multiplication and so we could weaken our notion of a vector
space to allow scalars which do not commute among themselves, such as
scalars coming from H. However, the generality thus gained does not
seem to outweigh the bother it causes, and so we will refrain from doing
so. Thus, for us, the fact that scalars always come from a field is critical
in the development of our theory.

Example: If F is a field then dim(Fn) = n for every positive integer
n, since the canonical basis of Fn has n elements. Similarly, if k and
n are positive integers then dimF (Mk×n(F )) = kn, since the canonical
basis of Mk×n(F ) has kn elements. The dimension of the space F [X]
is infinite since the canonical basis of F [X] has infinitely-many elements.

Example: If F is a field and n is a positive integer, then the set
W of all polynomials in F [X] having degree at most n is a subspace
of F [X] having dimension n + 1, since {1,X, . . . ,Xn} is a basis of W
having n + 1 elements.

Example: The dimension of R over itself is 1. Since {1, i} is clearly
a basis of C as a vector space over R, we see that dimR(C) = 2 and
so there cannot be a proper subfield F of C properly containing R.

7 The notion of dimension was implicit in the work of Peano, but
was redefined and studied in a comprehensive manner by the 20th-century German
mathematician Hermann Weyl.
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Indeed, if there were such a field, its dimension over R would have to be
greater than 1 and less than 2 (else it would be equal to C), which
is impossible. Clearly, dimR(H) = 4. It turns out that the only possible
dimensions of division algebras over R are 1, 2, 4, and 8. The dimension
8 case is realized by a (non-associative) Cayley algebra over R, as defined
in Chapter 15. There are no associative division algebras of dimension 8
over R.8

Example: Let F be a field, let (K, •) be an associative unital F -
algebra, and let v ∈ K. If p(X) =

∑∞
i=0 aiX

i ∈ F [X], then p(v) =∑∞
i=0 aiv

i is an element of K and the set of all elements of K of this form
is an F -subalgebra of K, which is in fact commutative, even though K
itself may not be. We will denote this algebra by F [v]. If the dimension
of F [v], considered as a vector space over F, is finite, we know that
there must exist a polynomial p(X) ∈ F [X] of positive degree satisfying
p(v) = 0K . In that case, we say that v is algebraic over F. Otherwise,
if the dimension of F [v] is infinite, we say v is transcendental over F.

Thus, for example, the real numbers π and e (the base of the natural
logarithms) are transcendental over Q. If F is a subfield of a field K
then the set L of all elements of K which are algebraic over F is a
subfield of K. Moreover, if K is algebraically closed, so is L, and in
fact L is the smallest algebraically-closed subfield of K containing F.
In particular, we can consider the field of all complex numbers algebraic
over Q. This is a proper subfield of C, known as the field of algebraic
numbers.9

8 Twentieth-century German mathe-

matican Heinz Hopf used algebraic topology to prove that the only possible dimen-
sions were powers of 2, and the final result was obtained by twentieth-century American
mathematician Raoul Bott and contemporary American mathematician John Milnor,
again using nonalgebraic tools.

9 The transcendence of π was proven by German
mathematician Ferdinand von Lindemann in 1882. The transcendence of e was
proven by French mathematician Charles Hermite in 1873. As we shall see later,
Hermite made many important contributions to linear algebra.
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From the definition of dimension we see that if V is a vector space of
finite dimension n over a field F then:

(1) Every subset of V having more than n elements must be linearly
dependent;

(2) There exists a linearly-independent subset B of V having precisely
n elements;

(3) If B is as in (2) then B is also a generating set of V over F.

(5.11) Proposition: Let V be a vector space finitely generated
over a field F and let W be a subspace of V. Then:

(1) W is finitely generated over F ;
(2) Every basis of W can be extended to a basis of V ;
(3) dim(W ) ≤ dim(V ), with equality when and only when W = V.

Proof: Let n = dim(V ).
(1) If W is not finitely generated, then, as we remarked after Propo-

sition 5.3, W has a linearly-independent subset B having n + 1 ele-
ments. But B is also a subset of V, contradicting the assumption that
dim(V ) = n.

(2) Let B be a basis of W. Then B is as linearly-independent set of
elements of V and so, by Proposition 5.7, can be extended to a basis of
V.

(3) By (2), we see that the number of elements of a basis of W can be
no greater than the number of elements of a basis of V, and so dim(W ) ≤
dim(V ). Moreover, if we have equality then any basis B of W is also a
basis of V, and so W = FB = V. �

We now want to extend the notion of linear independence. Let U and
W be subspaces of a vector space V over a field F. Any vector v ∈ U+W
can be written in the form u+w, where u ∈ U and w ∈ W, but there is
no reason for this representation to be unique. It will be unique, however,
if U and W are disjoint. Indeed, if this condition holds and if u, u′ ∈ U
and w,w′ ∈ W satisfy u + w = u′ + w′, then u − u′ = w′ −w ∈ U ∩W
and so u − u′ = 0V = w − w′, which in turn implies that u = u′ and
w = w′.

To emphasize the importance of this situation, we will introduce new
notation: if U and W are disjoint subspaces of a vector space V over
a field F, we will write U ⊕W instead of U +W. The subspace U ⊕W
is called the direct sum of U and W . We note that, by this definition,
U ⊕ {0V } = U for every subspace U of V.

Example: It is easy to see that R
2 = R

[
1
0

]

⊕ R

[
0
1

]

.

Of course, we would like to extend the notion of direct sum to cover more
than two subspaces. In general, if V is a vector space over a field F ,



5. Linear independence and dimension 67

then a collection {Wh | h ∈ Ω} of subspaces of V is independent if
and only if it satisfies the following condition: if Λ is a finite subset of Ω
and if we choose elements wh ∈ Wh for all h ∈ Λ, then

∑
h∈Λ wh = 0V

when and only when wh = 0V for each h ∈ Λ. Thus we see that an
infinite collection of subspaces is independent if and only if every finite
nonempty subcollection is independent. Clearly, a subset D of a vector
space V over a field F is linearly independent if and only if the collection
of subspaces {Fv | v ∈ D} is independent.

(5.12) Proposition: Let V be a vector space over a field F and
let W1, . . . ,Wn be distinct subspaces of V. Then the following
conditions are equivalent:

(1) {W1, . . . Wn} is independent;
(2) Every vector w ∈

∑n
i=1 Wi can be written as w1 + . . . + wn,

with wi ∈ Wi for each 1 ≤ i ≤ n, in exactly one way;
(3) Wh and

∑
i�=h Wi are disjoint, for each 1 ≤ h ≤ n.

Proof: (1) ⇒ (2): Let w ∈
∑n

i=1 Wi and assume that we can write
w = w1 + . . .+wn = y1 + . . .+ yn, where wi, yi ∈ Wi for each 1 ≤ i ≤ n.
Then

∑n
i=1(wi − yi) = 0V and so, by (1), it follows that wi − yi = 0V

for each 1 ≤ i ≤ n, proving (2).
(2) ⇒ (3): Assume that 0V �= wh ∈ Wh∩

∑
i�=h Wi. Then for each i �= h

there exists an element wi ∈ Wi satisfying wh =
∑

i�=h wi, contradicting
(2).

(3) ⇒ (1): Suppose we can write w1 + . . . + wn = 0V , where wi ∈ Wi

for each 1 ≤ i ≤ n, and where wh �= 0V for some h. Then wh =
−
∑

i�=h wi ∈ Wh ∩
∑

i�=h Wi, and this contradicts (3). Thus (1) must
hold. �

If V is a vector space over a field F and if {Wi | i ∈ Ω} is an
independent collection of subspaces of V, we write

⊕
i∈Ω Wi instead of∑

i∈Ω Wi. If Ω = {1, . . . , n}, we will also write this sum as W1⊕ . . .⊕Wn.
If V =

⊕
i∈Ω Wi, then we say that V has a direct-sum decomposition

relative to the subspaces Wi.

Example: If B is a basis of a vector space V over a field F then
V =

⊕
v∈B Fv.

The importance of direct-sum decompositions is illustrated by the fol-
lowing result.

(5.13) Proposition: Let V be a vector space over a field F , let
{Wi | i ∈ Ω} be a pairwise disjoint collection of subspaces of V
and, for each i ∈ Ω, let Bi be a basis of Wi. Then V =

⊕
i∈Ω Wi

if and only if B =
⋃

i∈Ω Bi is a basis of V.
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Proof: Assume V =
⊕

i∈Ω Wi and let v ∈ V. Then there exists a
finite subset Λ of Ω such that v ∈

⊕
i∈Λ Wi, and so for each i ∈ Λ

there is an element wi ∈ Wi satisfying v =
∑

i∈Λ wi. Moreover, each wi

is a linear combination of elements of Bi. Thus v is a linear combination
of elements of B, and so B is a generating set for V. We are left to show
that B is linearly independent. If that is not the case, then there exist
an element h of Ω, vectors y1, . . . , yt in Bh, and scalars a1, . . . , at in
F, not all of which equal to 0, such that

∑t
j=1 ajvj + u = 0V , where

u is a linear combination of elements of
⋃

i�=h Bi. But then
∑t

j=1 ajvj ∈
Wh ∩

∑
i�=h Wi, contradicting our initial assumption. Thus B =

⋃
i∈Ω Bi.

Conversely, if B =
⋃

i∈Ω Bi, it then follows that every element of V
can be written in a unique way as

∑
i∈Λ wi, where Λ is some finite subset

of Ω, which suffices to prove that V =
⊕

i∈Ω Wi. �

Let W be a subspace of a vector space V over a field F. A subspace
Y of V is a complement of W in V if and only if V = W ⊕ Y. We
immediately note that if Y is a complement of W in V then W is a
complement of Y in V. In general, a subspace of a vector space can have
many complements.

Example: Each of the following subspaces of R
2 is a complement of

each of the others in R
2:

W1 =
{[

a
0

] ∣
∣
∣
∣ a ∈ R

}

; W2 =
{[

0
b

] ∣
∣
∣
∣ b ∈ R

}

;

W3 =
{[

c
c

] ∣
∣
∣
∣ c ∈ R

}

; and W4 =
{[

d
2d

] ∣
∣
∣
∣ d ∈ R

}

.

(5.14) Proposition: Every subspace W of a vector space V
over a field F has at least one complement in V.

Proof: If W is improper, then {0V } is a complement of W in V.
Similarly, V is a complement of {0V } in V. Otherwise, let B be
a basis of W. By Proposition 5.8, we know that there exists a linearly-
independent subset D of V such that B ∪ D is a basis of V. Then
FD is a complement of W in V. �

Example: Let F be a field of characteristic other than 2, let n be a
positive integer, and let V be a vector space over F. Let W = Mn×n(V ),
which is also a vector space over F. Let W1 be the set of all those matrices
A = [vij ] in W satisfying vij = vji for all 1 ≤ i, j ≤ n, and let W2

be the set of all those matrices A = [vij ] in W satisfying vij = −vji

for all 1 ≤ i, j ≤ n. These two subspaces are disjoint. If A = [vij ] is an
arbitrary matrix in W, then we can write A = B + C, where B = [yij ]
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is the matrix defined by yij = 1
2 (vij + vji) for all 1 ≤ i, j ≤ n, and

C = [zij ] is the matrix defined by zij = 1
2 (vij − vji) for all 1 ≤ i, j ≤ n.

Note that A ∈ W1 and B ∈ W2. Thus V = W1 ⊕ W2.

Example: A function f ∈ R
R is even if and only if f(a) = f(−a)

for all a ∈ R; it is odd if and only if f(a) = −f(−a) for all a ∈ R.
The set W of all even functions is clearly a subspace of R

R, as is the set
Y of all odd functions, and these two subspaces are disjoint. Moreover, if
f ∈ R

R then f = f1 + f2, where the function f1 : x �→ 1
2 [f(x) + f(−x)]

is in W and the function f2 : x �→ 1
2 [f(x) − f(−x)] is in Y. Thus Y

is a complement of W in R
R.

(5.15) Proposition: Let F be a field which is not finite and let
V be a vector space over F having dimension at least 2. Then
every proper nontrivial subspace W of V has infinitely-many
complements in V.

Proof: By Proposition 5.14 we know that W has at least one comple-
ment U in V. Choose a basis B for U. If 0V �= w ∈ W, then
by Proposition 3.2(9) and the fact that F is infinite, we know that
Fw is an infinite subset of W. Thus we know that the set W is in-
finite. For each w ∈ W, let Yw = F{u + w | u ∈ B}. We claim
that each of these spaces is a complement of W in V. Indeed, as-
sume that v ∈ W ∩ Yw. Then there exist elements u1, . . . , un of B
and scalars c1, . . . , cn in F satisfying v =

∑n
i=1 ci(ui + w). But

then
∑n

i=1 ciui = v − (
∑n

i=1 ci) w ∈ W ∩ U = {0V } and since the set
{u1, . . . , un} is linearly independent, we see that ci = 0 for all i. This
shows that v = 0V , and we have thus shown that W and Yw are disjoint.
If v is an arbitrary element of V, let us write v = x+(

∑n
i=1 ciui) , where

x ∈ W , the vectors u1, . . . , un belong to B, and the scalars c1, . . . , cn

belong to F. Then v = [x − (
∑n

i=1 ci)w] +
∑n

i=1 ci(ui + w) ∈ W + Yw

and thus we have shown that V = W + Yw and so Yw is a complement
of W in V.

We are left to show that all of these complements are indeed different
from each other. Indeed, assume that w �= x are elements of W satisfying
Yw = Yx. If u ∈ B then there exist elements u1, . . . , un of B and scalars
c1, . . . , cn such that u + w =

∑n
i=1 ci(ui + x). From this it follows that

u−
∑n

i=1 ciui = (
∑n

i=1 ci) x−w and this belongs to W ∩Yw = {0V }. But
B is a linearly-independent set and so u has to equal to one of the uh

for some 1 ≤ h ≤ n, and we must have ci = 0 for i �= h and ch = 1.
Hence x − w = 0V , namely x = w. This is a contradiction, and so the
Yw must all be distinct.

(5.16) Proposition (Grassmann’s Theorem): Let V be a vector
space over a field F and let W and Y be subspaces of V
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satisfying the condition that W + Y is finite-dimensional. Then
dim(W + Y ) = dim(W ) + dim(Y ) − dim(W ∩ Y ).

Proof: Let U0 = W ∩Y, which is as subspace both of W and of Y. In
particular, U0 has a complement U1 in W and a complement U2 in Y.
Then W +Y = U0+U1+U2. We claim that in fact W +Y = U0⊕U1⊕U2.
Indeed, assume that u0 + u1 + u2 = 0V , where uj ∈ Uj for j = 0, 1, 2.
Then u1 = −u2 −u0 ∈ W ∩Y = U0. But U0 and U1 are disjoint and so
u1 = 0V . Therefore u0 = −u2 ∈ U0∩U2 = {0V }. Therefore u0 = 0V and
u2 = 0V as well. Thus we see that the set {U0, U1, U2} is independent.
Therefore, from the definition of the complement, we have

dim(W + Y ) = dim(U0) + dim(U1) + dim(U2) = dim(W ) + dim(U2)

and this equals dim(W )+dim(Y )−dim(W ∩Y ) since Y = U2⊕(W ∩Y ).
�

Example: Consider the subspaces W1 = R









1
0
2



 ,




1
2
2









and

W2 = R









1
1
0



 ,




0
1
1









of R

3. Each one of these subspaces has

dimension 2, and so we see that 2 ≤ dim(W1 +W2) ≤ 3. By Proposition
5.16, we see that, as a result of this, we have 1 ≤ dim(W1 ∩ W2) ≤ 2.
In order to ascertain the exact dimension of W1 ∩ W2 we must find a
basis for it. If v ∈ W1 ∩ W2 then there exist scalars a, b, c, d satisfying

a




1
0
2



 + b




1
2
2



 = c




1
1
0



 + d




0
1
1



 , and so a + b = c, 2b = c + d,

and 2a + 2b = d, from which we conclude that b = −3a, c = −2a, and

d = −4a. Thus v has to be of the form (−2a)




1
1
0



 + (−4a)




0
1
1



 =

a




−2
−6
−4



 , which shows that W1 ∩ W2 = R




−2
−6
−4



 , and so it has

dimension 1.
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Exercise 131 Let v1, v2, and v3 be elements of a vector space V over
a field F and let c1, c2, c3 ∈ F. Is the subset

{c2v3 − c3v2, c1v2 − c2v1, c3v1 − c1v3}

of V necessarily linearly dependent?

Exercise 132 For which values of the real number t is the subset
{[

cos(t) + i sin(t)
1

]

,

[
1

cos(t) − i sin(t)

]}

of C
2 linearly dependent?

Exercise 133 Consider the functions f : x �→ 5x and g : x �→ 52x. Is
{f, g} a linearly-dependent subset of R

R?

Exercise 134 Find a, b ∈ Q such that the subset









2

a − b
1



 ,




a
b
3










of Q
3 is linearly dependent.

Exercise 135 Let V be a vector space over a field F and let n > 1 be

an integer. Let Y be the set of all vectors






v1

...
vn




 ∈ V n satisfying the

condition that the set {v1, . . . .vn} is linearly dependent. Is Y necessarily
a subspace of V n?

Exercise 136 Is the subset









1 + i
3 + 8i
5 + 7i



 ,




1 − i

5
2 + i



 ,




1 + i
3 + 2i
4 − i









of

C
3 linearly independent, when we consider C

3 as a vector space over C?
Is it linearly independent when we consider C

3 as a vector space over R?

Exercise 137 For each nonnegative integer n, let fn ∈ R
R be the

function defined by fn : x �→ sinn(x). Is the subset {fn | n ≥ 0} of R
R

linearly independent?

Exercise 138 Let V = C(−1, 1), which is a vector space over R. Let
f, g ∈ V be the functions defined by f : x �→ x2 and g : x �→ |x|x. Is
{f, g} linearly independent?

Exercises
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Exercise 140 Let F be a field of characteristic different from 2 and
let V be a vector space over F containing a linearly-independent subset
{v1, v2, v3}. Show that the set {v1 + v2, v2 + v3, v1 + v3} is also linearly
independent.

Exercise 141 Is the subset












1
1
2
2





 ,







1
2
1
2





 ,







1
1
1
2





 ,







0
2
2
0











of GF (3)4

linearly independent?

Exercise 142 Let t ≤ n be positive integers and, for all 1 ≤ i ≤ t, let

vi =






ai1

...
ain




 be a vector in R

n chosen so that 2|ajj | >
∑t

i=1 |aij | for

all 1 ≤ j ≤ n. Show that is linearly independent.

Exercise 143 If {v1, v2, v3, v4} is a linearly-independent subset of a vec-
tor space V over the field Q, is the set

{3v1 + 2v2 + v3 + v4, 2v1 + 5v2, 3v3 + 2v4, 3v1 + 4v2 + 2v3 + 3v4}

linearly independent as well?

Exercise 144 Let A be a subset of R having at least three elements
and let f1, f2, f3 ∈ R

A be the functions defined by fi : x �→ xi−12x−1. Is
the set {f1, f2, f3} linearly independent?

Exercise 145 Let F = GF (5) and let V = FF , which is a vector space
over F. Let f : x �→ x2 and g : x �→ x3 be elements of V. Find an
element h of V such that {f, g, h} is linearly independent.

Exercise 146 Consider R as a vector space over Q. Is the subset{
(a − π)−1 | a ∈ Q

}
of this space linearly independent?

Exercise 147 In the vector space V = R
R over R, consider the functions

f1 : x �→ ln
(

(x2 + 1)3

x4 + 7

)

,

f2 : x �→ ln
(√

x2 + 1
)
, and f3 : x �→ ln

(
x4 + 7

)
. Is the subset {f1, f2, f3}

of V linearly independent?

Exercise 139 Let V be a vector space over GF (5) and let v1, v2, v3 ∈ V.
Is the subset {v1 + v2, v1 − v2 + v3, 2v2 + v3, v2 + v3} of V linearly
independent?
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Exercise 149 Let F be a subfield of a field K and let n be a positive
integer. Show that a nonempty linearly-independent subset D of Fn

remains linearly independent when considered as a subset of Kn.

Exercise 150 Let F = GF (5) and let V = FF . For 4 ≤ k ≤ 7, let
fk ∈ V be defined by fk : a �→ ak. Is the subset {fk | 4 ≤ k ≤ 7} of V
linearly independent?

Exercise 151 Let V be a vector space over R. For vectors v �= w in
V, let K(v, w) be the set of all vectors in V of the form (1− a)v + aw,
where 0 ≤ a ≤ 1. Given vectors v, w, y ∈ V satisfying the condition that
the set {w − v, y − v} is linearly independent (and so, in particular, its
elements are distinct), show that the set

K(v, 1
2 (w + y)) ∩ K(w, 1

2 (v + y)) ∩ K(y, 1
2 (v + w))

is nonempty, and determine how many elements it can have.

Exercise 152 Let V be a vector space finitely generated over a field F
and let B = {v1, . . . , vn} be a basis for V. Let y ∈ V � B. Show that
the set {v1, . . . , vn, y} has a unique minimal linearly-dependent subset.

Exercise 153 Find all of the minimal linearly-dependent subsets of the

subset
{[

1
0

]

,

[
0
4

]

,

[
0
0

]

,

[
2
0

]

,

[
2
2

]}

of Q
2.

Exercise 154 Let F be a field of characteristic other than 2. Let V
be the subspace of F [X] consisting of all polynomials of degree at most 3.
Is

{
X + 2,X2 + 1,X3 + X2,X3 − X2

}
a basis of V ?

Exercise 155 Let {v1, . . . , vn} be a basis for a vector space V over a
field F. Is the set {v1 + v2, v2 + v3, . . . , vn−1 + vn, vn + v1} necessarily
also a basis for V over F?

Exercise 156 Is {1 + 2
√

5, − 3 +
√

5} a basis for Q(
√

5) as a vector
space over Q?

Exercise 157 For which values of a ∈ R is the set
{[

a 2a
2 3a

]

,

[
1 2
2a 3

]

,

[
1 2a

a + 1 a + 2

]

,

[
1 a + 1
2 2a = 1

]}

a basis for M2×2(R) as a vector space over R?

Exercise 148 Show that the subset









1
2
0



 ,




0
1
2



 ,




2
0
1









of GF (p)3

is linearly independent if and only if p �= 3.
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Exercise 159 Let F be an algebraically-closed field and let (K, •) be
an associative F -algebra having a basis {v1, v2} as a vector space over F.
Show that v2

2 = v2 or v2
2 = 0K .

Exercise 160 Find a basis for the subspace W of R
4 generated by












4
2
6

−2





 ,







1
−1

3
−1





 ,







1
2
0
0





 ,







1
5

−3
1











.

Exercise 161 For each real number a, let fa ∈ R
R be defined by

fa : r �→
{

1 if r = a
0 otherwise .

Is {fa | a ∈ R} a basis for R
R over R?

Exercise 162 Let A be a nonempty finite set and let V be the collection
of all subsets of A, which is a vector space over GF (2). For each a ∈ A,
let va = {a}. Is {va | a ∈ A} a basis for V ?

Exercise 163 Let F be a field and let a, b, c ∈ F. Determine whether








1
a
b



 ,




0
1
c



 ,




0
0

a + b + c









is a basis for F 3.

Exercise 164 Let V be a vector space finitely generated over a field F

having a basis {v1, . . . , vn}. Is
{

v1,
∑2

i=1 vi, . . . ,
∑n

i=1 vi

}
necessarily a

basis for V ?

Exercise 165 Let F = GF (p) for some prime integer p, let n be a
positive integer, and let V be a vector space of dimension n over F. In
how many ways can we choose a basis for V ?

Exercise 166 Let V be a three-dimensional vector space over a field F,
with basis {v1, v2, v3}. Is {v1 + v2, v2 + v3, v1 − v3} a basis for V ?

Exercise 167 Let V be a vector space of finite dimension n over C

having basis {v1, . . . , vn}. Show that {v1, . . . , vn, iv1, . . . , ivn} is a basis
for V, considered as a vector space over R.

Exercise 168 Let V be a vector space of finite dimension n > 0 over
R and, for each positive integer i, let Ui be a proper subspace of V.
Show that V �=

⋃∞
i=1 Ui.

Exercise 158 Let A be a nonempty finite set and let P be the collection
of all subsets of A. Let F be a field and let K be the vector space over
F having basis {vB | B ∈ P}. Define an operation • on K by setting(∑

B∈P aBvB

)
•
(∑

C∈P dCvC

)
=

∑
B∈P

∑
C∈P aBdCvB∪C . Is K an

F -algebra? If so, is it associative?
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Exercise 170 Let V be the subspace of R[X] consisting of all polynomi-
als of degree at most 5, and let A = {X5+X4,X5−7X3,X5−1,X5+3X}.
Show that this subset of V is linearly independent and extend it to a basis
of V.

Exercise 171 Let V be a vector space of finite dimension n over a
field F, and let W be a subspace of V of dimension n− 1. If U is a
subspace of V not contained in W, show that dim(W ∩U) = dim(U)−1.

Exercise 172 Let a, b, c, d be rational numbers such that

{a + c
√

3, b + d
√

3}
is a basis for Q(

√
3) as a vector space over Q. Is {c + a

√
3, d + b

√
3}

a basis for Q(
√

3) as a vector space over Q? Is {a + c
√

5, b + d
√

5} a
basis for Q(

√
5) as a vector space over Q?

Exercise 173 Find a real number a such that

dim









R














−9
a

−1
−5
−14









,









2
−5

3
0
2









,









1
4

−1
1
2









,









3
−1

2
1
4









,









−1
9

−4
1
0






















= 2.

Exercise 174 Let W = R












2
1
3
1





 ,







1
2
0
1





 ,







−1
1

−3
0












⊆ R
4. Determine

the dimension of W and find a basis for it.

Exercise 175 Consider the vectors v1 =









0
1
0
1
0









, v2 =









7
4
1
8
3









, v3 =









0
3
0
4
0









, v4 =









1
9
5
7
1









, and v5 =









0
1
0
5
0









in the vector space Q
5. Do

there exist rational numbers aij , for 1 ≤ i, j ≤ 5, such that the subset{∑5
j=1 aijvj

∣
∣
∣ 1 ≤ i ≤ 5

}
of Q

5 is linearly independent?

Exercise 169 Let V be a vector space over a field F which is not finite
dimensional, and let W be a proper subspace of V. Show that there
exists an infinite collection {Y1, Y2, . . .} of subspaces of V satisfying⋂∞

i=1 Yi ⊆ W but
⋂n

i=1 Yi � W for all n ≥ 1.
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Exercise 177 Let W = R












1
2
1
0





 ,







−1
1
1
1












⊆ R
4 and let V =

R












2
−1

0
1





 ,







−5
6
3
0












. Compute dim(W + V ) and dim(W ∩ V ).

Exercise 178 Let F be a subfield of a field K satisfying the condition
that the dimension of K as a vector space over F is finite and equal to
r. Let V be a vector space of finite dimension n > 0 over K. Find the
dimension of V as a vector space over F.

Exercise 179 Let V be a vector space over a field F having infinite
dimension over F. Show that there exists a countably-infinite collection
of proper subspaces of V, the union of which equals V.

Exercise 180 Let F = GF (p), where p is a prime integer, and let V
be a vector space over F having finite dimension n. How many subspaces
of dimension 1 does V have?

Exercise 181 Let W be the subset of R
R consisting of all functions of

the form x �→ a · cos(x − b), for real numbers a and b. Show that W
is a subspace of R

R and find its dimension.

Exercise 182 Let W = R












4
3
2
1





 ,







6
2
2
2





 ,







1
1
1
2











⊆ R

4 and let Y =

R












4
−2

0
−2





 ,







1
0
3
2











⊆ R

4. Find dim(W + Y ) and dim(W ∩ Y ).

Exercise 183 Let V be a vector space of finite dimension n over a field
F and let W and Y be distinct subspaces of V, each of dimension
n − 1. What is dim(W ∩ Y )?

Exercise 184 Let V be a finite-dimensional vector space over a field F
and let B be a basis of V satisfying the condition that

Exercise 176 Let F be a subfield of a field K satisfying the condition
that K is finitely generated as a vector space over F. For each c ∈
K, show that there exists a nonzero polynomial p(X) ∈ F [X] satisfying
p(c) = 0.
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Exercise 185 Let F be a field and let V be the subspace of F [X]
consisting of all polynomials of degree at most 4. Find a complement for
V in F [X].

Exercise 186 Let F be a field and let V be the subspace of F [X]
consisting of all polynomials of the form (X3 + X + 1)p(X) for some
p(X) ∈ F [X]. Find a complement for V in F [X].

Exercise 187 Let B be a nonempty proper subset of a set A. Let F
be a field and let V = FA. Let W be the subspace of V consisting of
all those functions f ∈ V satisfying f(b) = 0 for all b ∈ B. Find a
complement of W in V.

Exercise 188 Let F be a field of characteristic other than 2, let V be a

vector space over F, and let U =









v
v′

v + v′





∣
∣
∣
∣
∣
∣

v, v′ ∈ V





⊆ V 3. Is

Y =









v
v
v





∣
∣
∣
∣
∣
∣

v ∈ V





a complement of U in V ?

Exercise 189 Let F be a field and let p(X) ∈ F [X] have positive degree
k. Let W be the subspace of F [X] composed of all polynomials of the
form p(X)g(X) for some g(X) ∈ F [X]. Show that W has a complement
in F [X] of dimension k.

Exercise 190 Let V be a vector space over a field F which is not finite
dimensional, and let V ⊃ W1 ⊃ W2 ⊃ . . . be a chain of subspaces of V,
each properly contained in the one before it. Is the subspace

⋂∞
i=1 Wi of

V necessarily finite-dimensional?

Exercise 191 Let V be a vector space finite dimensional over a field F.
Let W and Y be subspaces of V and assume that there is a function
f ∈ FV satisfying the condition that f(w) < f(y) for all 0V �= w ∈ W
and 0V �= y ∈ Y. Show that dim(W ) + dim(Y ) ≤ dim(V ).

Exercise 192 Let (K, •) be a division algebra of dimension 2 over R

containing an element v1 which satisfies the condition that v1 • v = v =
v • v1 for all v ∈ V. Show that (K,+, •) is a field.

Exercise 193 For each a ∈ R, the set Q[a] = {p(a) | p(X) ∈ Q[X]} is a
subspace of R, considered as a vector space over Q. Find all pairs (a, b)

{[
w
w

] ∣
∣
∣
∣ w ∈ B

}

is a basis for V 2. What is the dimension of V ?
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Exercise 195 Let (K, •) be a unital R-algebra (not necessarily associa-
tive) with multiplicative identity e, and let {vi | i ∈ Ω} be a basis for
K over R containing e (which is equal to vt for some t ∈ Ω). If
v =

∑
i∈Ω civi ∈ K, set v = ctvt −

∑
i�=t civi. If v ∈ K, is it true that

vv = vv and v = v? (Note that this construction generalizes the notion
of the conjugate of a complex number.)

Exercise 196 For each nonnegative integer n, define the subsets Pn,
An, and Fn of R as follows:
(1) P0 = ∅, A0 = {1}, and F0 = Q;
(2) If n > 0, then Pn is the set of the first n prime integers, An

consists of 1 and the set of square roots of products of distinct elements
of Pn, and Fn = QAn.
Show that each An is a linearly-independent subset of R, considered
as a vector space over Q, and that Fn is a subfield of R, having the
property that every element of Fn the square of which belongs to Q must
belong to Qa, for some a ∈ An.

of real numbers a �= b satisfying the condition that the set {Q[a], Q[b]}
is independent over Q.

Exercise 194 Let V be a vector space over a field F. Find a necessary
and sufficient condition for there to exist subspaces W and W ′ of V
such that {{0V },W,W ′} is independent.
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Let V and W be vector spaces over a field F. A function α : V → W
is a linear transformation1 or homomorphism if and only if for all
v1, v2 ∈ V and a ∈ F we have α(v1 + v2) = α(v1) + α(v2) and
α(av1) = aα(v1). We note that, as a consequence of the second condition,
we have α(0V ) = α(00V ) = 0α(0V ) = 0W . If (K, •) and (L, ∗) are F -
algebras, then a linear transformation α : K → L is a homomorphism
of F -algebras if it is a linear transformation and, in addition, satisfies
α(v1 • v2) = α(v1) ∗ α(v2) for all v1, v2 ∈ K. If both K and L are
unital, then it is a homomorphism of unital F -algebras if it also sends
the identity element of K for • to the identity element of L for ∗.

Example: Let V be a vector space over a field F. Every scalar c ∈ F
defines a linear transformation σc : V → V given by σc : v �→ cv. In

1 Linear transformations between finite-dimensional vector spaces
were studied by Peano. Linear transformations between infinite-dimensional spaces were
first considered in the late 19th century by Italian mathematician Salvadore Pincherle.

79



80 6. Linear transformations

particular, σ1 is the identity function v �→ v and σ0 is the 0-function
v �→ 0V .

Example: Let F be a field and let a1, . . . , a6 be scalars in F. The

function α : F 2 → F 3 defined by α :
[

c1

c2

]

�→




a1c1 + a2c2

a3c1 + a4c2

a5c1 + a6c2



 is a

linear transformation.

The previous example can be generalized in an extremely significant
manner. Let k and n be positive integers and let F be a field. Every
matrix A = [aij ] ∈ Mk×n(F ) defines a linear transformation from Fn

to F k given by








c1

c2

...
cn








�→








a11c1 + . . . + a1ncn

a21c1 + . . . + a2ncn

...
ak1c1 + . . . + akncn








. In what follows,

we will show that every linear transformation from Fn to F k can be
defined in this manner.

Example: Let F be a field of characteristic 0. Then there are linear
transformations α and β from F [X] to itself defined by

α :
∞∑

i=0

aiX
i �→

∞∑

i=0

iaiX
i and β :

∞∑

i=0

aiX
i �→

∞∑

i=0

(1 + i)−1aiX
i+1.

(By 1 + i, we mean the sum of 1 + i copies of the identity element for
multiplication of F ; since the characteristic of F is 0, we know that
this element is nonzero, and so is a unit in F.)

Example: Let V and W be vector spaces over a field F and let
k and n be positive integers. For all 1 ≤ i ≤ k and 1 ≤ j ≤ n,
let αij : V → W be a linear transformation. Then there is a linear
transformation from Mk×n(V ) to Mk×n(W ) defined by






v11 . . . v1n

...
...

vk1 . . . vkn




 �→






α11(v11) . . . α1n(v1n)
...

...
αk1(vk1) . . . αkn(vkn)




 .

Example: Let V be the subspace over R
R consisting of all differen-

tiable functions. For each f ∈ V, we define a function Df : R × R → R,
called the differential of f, by setting Df : (a, b) �→ f ′(a)b, where f ′ is
the derivative of f. Then the function D : V → R

R×R given by f �→ Df
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is a linear transformation. These linear transformations play an important
part in differential geometry.

Example: Linear transformations are considered nice from an algebraic
point of view, but may be less so from an analytic point of view. Let
B be a Hamel basis of R over Q. Then for each real number r
there exists a unique finite subset {u1(r), . . . , un(r)(r)} of B and scalars
a1(r), . . . , an(r)(r) in Q satisfying r =

∑n(r)
j=1 aj(r)uj(r). The function

from R to R defined by r �→
∑n(r)

j=1 aj(r) is a linear transformation,
but is not continuous at any r ∈ R.

Let V and W be vector spaces over a field F. To any function

f : V → W can associate the subset gr(f) =
{[

v
f(v)

] ∣
∣
∣
∣ v ∈ V

}

of V × W , called the graph of f. We can use the notion of graph to
characterize linear transformations in terms of subspaces.

(6.1) Proposition: Let V and W be vector spaces over a
field F and let α : V → W be a function. Then α is a linear
transformation if and only if gr(α) is a subspace of V × W.

Proof: Assume that α is a linear transformation. If v, v′ ∈ V and
c ∈ F then in V × W we have

[
v

α(v)

]

+
[

v′

α(v′)

]

=
[

v + v′

α(v) + α(v′)

]

=
[

v + v′

α(v + v′)

]

∈ gr(α)

and c

[
v

α(v)

]

=
[

cv
cα(v)

]

=
[

cv
α(cv)

]

∈ gr(α), showing that gr(α)

is closed under taking sums and scalar multiples, and so is a subspace of
V ×W . Conversely, if it is such a subspace then for v, v′ ∈ V and c ∈ F

we note that
[

v
α(v)

]

+
[

v′

α(v′)

]

=
[

v + v′

α(v) + α(v′)

]

∈ gr(α) and

so we must have α(v) + α(v′) = α(v + v′). Similarly, c

[
v

α(v)

]

=
[

cv
cα(v)

]

∈ gr(α) and so we must have cα(v) = α(cv). Thus α is a

linear transformation. �

Let V and W be vector spaces over a field F. If α and β be linear
transformations from V to W, they are, in particular, functions in WV
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and so the function α+β : V → W is defined by α+β : v �→ α(v)+β(v)
for all v ∈ V. For all v, v′ ∈ V and all c ∈ F we have

(α + β)(v + v′) = α(v + v′) + β(v + v′)
= α(v) + α(v′) + β(v) + β(v′)
= (α + β)(v) + (α + β)(v′).

and (α + β)(cv) = α(cv) + β(cv) = cα(v) + cβ(v) = c[α(v) + β(v)] =
c(α + β)(v).

Thus we see that α + β is a linear transformation from V to W. If
c ∈ F is a scalar then the function cα from V to W is defined by
cα : v �→ cα(v) and this, again, is a linear transformation from V to W.
It is easy to check that the set of all linear transformations from V to W
is a subspace of WV , which we will denote by Hom(V,W ). This means
that we can apply concepts we have already considered for vectors to linear
transformations. For example, we can talk about a linearly-dependent or
linearly-independent set of linear transformations from a vector space V
over a field F to a vector space W over F . However, we must be
very careful to remember that when we are doing so, we are working in the
space Hom(V,W ), and not in either V or W. The following example
illustrates the pitfalls one can encounter.

Example: Let V and W be vector spaces over the same field F. A
nonempty subset D = {α1, . . . , αn} of Hom(V,W ) is locally linearly
dependent if and only if the subset {α1(v), . . . , αn(v)} of W is linearly
dependent for every v ∈ V. If D is a linearly-dependent subset of
Hom(V,W ), then there exist scalars c1, . . . , cn, not all of which are equal
to 0, such that

∑n
i=1 ciαi is the 0-function. In particular, for each

v ∈ V we see that
∑n

i=1 ciαi(v) = 0W and so D is locally linearly
dependent. The converse, however, is false. It may be possible for D to
be linearly independent and still locally linearly dependent. To see this,
take V = W = F 2 and let D = {α1, α2} ⊆ Hom(F 2, F 2), where we

define α1 :
[

a
b

]

�→
[

a
0

]

and α2 :
[

a
b

]

�→
[

b
0

]

. If v ∈ F 2, then

{α1(v), α2(v)} is a subset of the one-dimensional subspace F

[
1
0

]

of

F 2 and so cannot be linearly independent. On the other hand, D is
linearly independent since if there exist scalars c and d satisfying the
condition that cα1 + dα2 is the 0-function, then

[
0
0

]

= cα1

([
1
0

])

+ dα2

([
1
0

])

=
[

c
0

]

+
[

0
0

]

=
[

c
0

]

,

which implies that c = 0. Similarly,
[

0
0

]

= cα1

([
0
1

])

+ dα2

([
0
1

])

=
[

0
0

]

+
[

0
d

]

=
[

0
d

]

,
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which implies that d = 0 as well.

The following proposition shows that the operation of a linear transfor-
mation is entirely determined by its action on elements of a basis. This
result is extremely important, especially if the vector spaces involved are
finitely generated.

(6.2) Proposition: Let V and W be vector spaces over a
field F, and let B be a basis of V. If f ∈ WB then there
is a unique linear transformation α ∈ Hom(V,W ) satisfying the
condition that α(u) = f(u) for all u ∈ B.

Proof: Since B is a basis of V, we know that each vector v ∈ V
can be written as a linear combination v =

∑n
i=1 aiui of elements of B

in a unique way. We now define the function α : V → W by α : v �→∑n
i=1 aif(ui). This function is well defined as a result of the uniqueness

of representation of v, as was shown in Proposition 5.4. Moreover, it is
clear that α is a linear transformation. If β : V → W is a linear
transformation satisfying the condition that β(u) = f(u) for all u ∈ B
then β(v) = β (

∑n
i=1 aiui) =

∑n
i=1 aiβ(ui) =

∑n
i=1 aif(ui) = α(v) and

so β = α. Thus α is unique. �

Example: We can use Proposition 6.2 to show how uncommon linear
transformations really are. Let F = GF (3) and let V = F 4. Then V
has 34 = 81 elements and so the number of functions from V to itself is
8181. On the other hand, a basis B for V over F has 4 elements and so,
since every linear transformation from V to itself is totally determined by
its action on B and that any function from B to V defines such a linear
transformation, we see that the number of linear transformations from
V to itself is 814. Therefore, the probability that a randomly-selected
function from V to itself is a linear transformation is 814/8181 = 81−77,
which is roughly 0.11134 × 10−146.

(6.3) Proposition: Let V, W, and Y be vector spaces over
a field F and let α : V → W and β : W → Y be linear
transformations. Then βα : V → Y is a linear transformation.

Proof: If v1, v2 ∈ V and if a ∈ F then

(βα)(v1 + v2) = β (α(v1 + v2)) = β (α(v1) + α(v2))
= β(α(v1)) + β(α(v2)) = (βα)(v1) + (βα)(v2)

and (βα)(cv1) = β (α(cv1)) = β(cα(v1)) = cβ (α(v1)) = c(βα)(v1), which
proves the proposition. �
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Example: It is often important and insightful to write a linear trans-
formation as a composite of linear transformations of predetermined types.
Consider the following situation: let a < b be real numbers and let V
be the vector space over R consisting of all functions from the closed
interval [a, b] to R. Let W be the subspace of V consisting of all
differentiable functions, and let δ : W → V be the function which assigns
to each function f ∈ W its derivative. For each real number a < c < b,
let εc : V → R be the linear transformation defined by εc : g �→ g(c).
Then the Intermediate Value Theorem from calculus says that the linear
transformation β : W → R defined by

β : f �→ f(b) − f(a)
b − a

is of the form εcδ for some c.

Let V and W be vector spaces over a field F and let α : V → W
be a linear transformation. For w ∈ W, we will denote the set

{v ∈ V | α(v) = w}

by α−1(w). Note that this set may be empty. In particular, we will be
interested in α−1(0W ) = {v ∈ V | α(v) = 0W }. This set is called the
kernel of α and is denoted by ker(α). Then ker(α) is never empty,
since it always contains 0V . If U is a nonempty subset of W, set
α−1(U) = {α−1(u) | u ∈ U}. It is easy to verify that α−1(U) is a
subspace of V whenever U is a subspace of W.

Example: Let F be a field and let α ∈ Hom(F 3, F 4) be the linear

transformation defined by α :




a
b
c



 �→







a − b
0
c
c





 . Then ker(α) =









a
a
0





∣
∣
∣
∣
∣
∣

a ∈ F





.

(6.4) Proposition: Let V and W be vector spaces over a
field F and let α ∈ Hom(V,W ). Then ker(α) is a subspace of
V, which is trivial if and only if α is monic.

Proof: Let v1, v2 ∈ ker(α) and let a ∈ F. Then α(v1 + v2) =
α(v1) + α(v2) = 0W + 0W = 0W and so v1 + v2 ∈ ker(α). Similarly,
α(av1) = aα(v1) = a0W = 0W and so av1 ∈ ker(α). This proves that
ker(α) is a subspace of V.
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If α is monic then α−1(w) can have at most one element for each
w ∈ W, and so, in particular, ker(α) = {0V }. Conversely, suppose that
ker(α) is trivial and that there exist elements v1 �= v2 of V satisfying
α(v1) = α(v2). Then α(v1 − v2) = α(v1)− α(v2) = 0W and so v1 − v2 ∈
ker(α). Thus v1 − v2 = 0V and so v1 = v2, which is a contradiction.
Hence α must be monic. �

Let V and W be vector spaces over a field and let α : V → W be
a linear transformation. The image of α is the subset im(α) = {α(v) |
v ∈ V } of W. This set is nonempty since 0W = α(0V ) ∈ im(α). Note
that w ∈ im(α) if and only if α−1(w) �= ∅. If U is a nonempty subset
of V, we denote the subset {α(u) | u ∈ U} of W by α(U). Thus
α(V ) = im(α).

(6.5) Proposition: Let V and W be vector spaces over a
field F and let α ∈ Hom(V,W ). Then im(α) is a subspace of
W, which is improper if and only if α is epic.

Proof: If α(v1) and α(v2) are in im(α) and if a ∈ F, then
α(v1) + α(v2) = α(v1 + v2) ∈ im(α) and similarly aα(v1) = α(av1) ∈
im(α), proving that im(α) is a subspace of W. The second part follows
immediately from the definition of an epic function. �

A monic linear transformation between vector spaces over a field F is
called a monomorphism; an epic linear transformation between vector
spaces is called an epimorphism. A bijective linear transformation be-
tween vector spaces is called an isomorphism. If both spaces are also
F -algebras, then a bijective homomorphism of F -algebras is called an iso-
morphism of F -algebras. Similarly, a bijective homomorphism of unital
F -algebras is an isomorphism of unital F -algebras.

Example: Let F be a field and let k and n be positive integers.
For each matrix A = [aij ] ∈ Mk×n(F ) we can define the transpose of A
to be the matrix AT ∈ Mn×k(F ) obtained from A by interchanging its

rows and columns. In other words, AT =






a11 . . . ak1

...
...

a1n . . . akn




 . It is easy

to check that the function A �→ AT is an isomorphism from Mk×n(F )
to Mn×k(F ).

Example: Let K and L be F -algebras. It is possible for a linear
transformation α : K → L to be an isomorphism of vector spaces without
being an isomorphism of F -algebras. This is the case, for example, with the
linear transformation α : Q(

√
2) → Q(

√
5) given by α : a+b

√
2 �→ a+b

√
5.
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Example: Let V be a vector space over a field F. Any linear trans-
formation α : V → F other than the 0-function is an epimorphism.
Indeed, if α is a nonzero linear transformation and if v0 ∈ V satis-
fies the condition that α(v0) = c �= 0, then for any a ∈ F we have
a = (ac−1)c = (ac−1)α(v0) = α

(
(ac−1)v0

)
∈ im(α).

Example: Let F be a field and let α : F (∞) → F [X] be the function
defined by α : f �→

∑∞
i=0 f(i)Xi, which is well-defined since only finitely-

many of the f(i) are nonzero. This is easily checked to be an isomorphism
of vector spaces.

We have already seen that if D is a basis of a vector space V over a
field F then there exists a bijective function θ : F (D) → V, and it is easy
to verify that this is in fact an isomorphism of vector spaces. This leads
us to the very important observation that for any nontrivial vector space
V over a field F there exists a nonempty set Ω and an isomorphism
F (Ω) → V.

Let V and W be vector spaces over a field F and let B be a basis of
V. Then we can define a function ϕ : Hom(V,W ) → WB by restriction:
ϕ(α) : u �→ α(u) for all u ∈ B. It is straightforward to check that ϕ is
a linear transformation of vector spaces over F. Moreover, by Proposition
6.2 we see that any function f ∈ WB is of the form ϕ(α) for a unique
element α of Hom(V,W ). Therefore ϕ is an isomorphism.

Let V and W be vector spaces over a field F . If α : V → W is a
linear transformation and 0W �= w ∈ W then α−1(w) is not a subspace
of V. However, the next result shows that, if it is nonempty, it is “close”
to being a subspace.

(6.6) Proposition: Let α : V → W be a linear transformation
of vector spaces over a field F and let w ∈ im(α). For any
v0 ∈ α−1(w) we have α−1(w) = {v + v0 | v ∈ ker(α)}.

Proof: If v ∈ ker(α) then α(v+v0) = α(v)+α(v0) = 0W +w = w and
so v +v0 ∈ α−1(w). Conversely, if v1 ∈ α−1(w) then v1 = (v1−v0)+v0,
where v1 − v0 ∈ ker(α) since α(v1 − v0) = α(v1)− α(v0) = w −w = 0W .
�

Note that α−1(w) is not a subspace of V but rather the result of “shift-
ing” a subspace by adding a fixed nonzero vector to each of its elements.
Such a subset of a vector space is called an affine subset of a vector space.
Let V and W be vector spaces over a field F. An affine transforma-
tion ζ : V → W is a function of the form v �→ α(v) + y, for some fixed
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α ∈ Hom(V,W ) and y ∈ W. It is clear that the sum of two affine trans-
formations is again an affine transformation, as is the product of an affine
transformation by a scalar, so that the set Aff(V,W ) of all affine transfor-
mations from V to W is also a subspace of WV which in turn contains
Hom(V,W ) as a subspace. Indeed, Aff(V,W ) = F (Hom(V,W ) ∪ K),
where K is the set of all constant functions from V to W.

Moreover, if ζ : V → W is the affine transformation defined by
v �→ α(v) + y and if w ∈ W, then ζ−1(w) = α−1(w − y) and so is an
affine subset of V.

Analysis of computational procedures in linear algebra often hinges on
the fact that when we think we are computing the effect of some linear
transformation α ∈ Hom(V,W ), we are in fact computing that of an
affine transformation v �→ α(v) + y where y is a vector arising from
computational or random errors which, hopefully, is “very small” (in some
sense) relative to α(v). Similarly, in linear models in statistics one must
allow for such an affine transformation, where y is a random error vector,
assumed to have expectation 0.

Example: Let V = C(0, 1) and let W be the subspace of V
composed of all differentiable functions having a continuous derivative. Let
δ : W → V be the linear transformation which assigns to each function
f ∈ W its derivative. Then ker(δ) consists of all constant functions. If
g ∈ im(δ) then g = δ(f), where f is the function f : x �→

∫ x

0
g(t)dt.

Thus δ−1(g) consists of all functions of the form f : x �→
∫ x

0
g(t)dt + c,

where c ∈ R.

(6.7) Proposition: If α : V → W is an isomorphism of vector
spaces over a field F then there exists an isomorphism β : W → V
satisfying βα(v) = v and αβ(w) = w for all v ∈ V and all w ∈ W.

Proof: Define the function β by β(w) = v if and only if w = α(v).
This function is well-defined since every element w is of the form α(v)
for a unique element v ∈ V. It is easy to check that the function β is an
isomorphism which satisfies the stated conditions. �

The function β defined in Proposition 6.7 is denoted by α−1.

Let V and W be vector spaces over a field F. If there exists an
isomorphism from V to W we, say that V and W are isomorphic,
and write V ∼= W. It is easy to see that if V, W, and Y are vector
spaces over F then:

(1) V ∼= V ;
(2) If V ∼= W then W ∼= V ;
(3) If V ∼= W and W ∼= Y then V ∼= Y.
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It is also clear that if α : V → W is an isomorphism between vector spaces
over F and if B is a basis of V then {α(u) | u ∈ B} is a basis of
W. As an immediate consequence of this, we see that if V ∼= W then the
dimensions of V and W are the same. The converse is true if V and
W are finitely generated, as we shall now see.

(6.8) Proposition: If V and W are vector spaces of finite
dimension n over a field F, then V ∼= W.

Proof: Let B = {v1, . . . , vn} be a basis for V and D = {w1, . . . , wn}
be a basis for W. Define the function f ∈ WB by setting f : vi �→ wi

for all 1 ≤ i ≤ n. By Proposition 6.2, we know that there exists a linear
transformation α ∈ Hom(V,W ) satisfying the condition α(vi) = f(vi)
for all 1 ≤ i ≤ n. This linear transformation is epic since im(α) contains a
basis of W. If v =

∑n
i=1 aivi ∈ ker(α) then 0W = α(v) = α (

∑n
i=1 aivi) =∑n

i=1 aiα(vi) =
∑n

i=1 aiwi and so ai = 0 for all 1 ≤ i ≤ n, since the set
D is linearly independent. Therefore ker(α) is trivial, and this shows
that α is monic and hence an isomorphism. �

(6.9) Proposition: If V and W are finitely-generated vector
spaces over a field F then

(1) There exists a monomorphism from V to W if and only
if dim(V ) ≤ dim(W );

(2) There exists an epimorphism from V to W if and only
if dim(V ) ≥ dim(W ).

Proof: (1) If there exists a monomorphism α from V to W then
V ∼= im(α) and so dim(W ) ≥ dim(im(α)) = dim(V ). Conversely, assume
that dim(V ) ≤ dim(W ). Then there exists a basis B = {v1, . . . , vn} of
V and there exists a basis D = {w1, . . . , wt} of W, where n ≤ t. The
function from B to W given by vi �→ wi for all 1 ≤ i ≤ n can be
extended to a linear transformation α : V → W, which is monic and so is
a monomorphism.

(2) If there exists an epimorphism α from V to W and if {v1, . . . , vn}
is a basis of V, then {α(vi) | 1 ≤ i ≤ n} is a generating set of W
and so the dimension of W is at most n = dim(V ). Conversely, if
n = dim(V ) ≥ dim(W ) = t, pick a basis {w1, . . . , wt} of W and a basis
B = {v1, . . . , vn} of V. Define a function f : B → W by

f : vi �→
{

wi for 1 ≤ i ≤ t
wt for t ≤ i ≤ n

.

From Proposition 6.2, it follows that there exists a linear transformation
α : V → W satisfying α(vi) = f(vi) for all 1 ≤ i ≤ n, and this is the
desired epimorphism. �
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(6.10) Proposition: Let V and W be vector spaces over a field
F, where V is finitely generated. Then dim(V ) = dim(im(α)) +
dim(ker(α)) for any linear transformation α ∈ Hom(V,W ).

Proof: Let α ∈ Hom(V,W ). Set V1 = ker(α) and let V2 be a
complement of V1 in V. By Proposition 5.16, we see that dim(V ) =
dim(V1)+dim(V2) and so it suffices for us to show that V2

∼= im(α). Let α2

be the restriction of α to V2. Then α2 ∈ Hom(V2, im(α)). If v2 ∈ ker(α2)
then v2 ∈ V2 ∩ V1 = {0V }. Thus α2 is a monomorphism. If w ∈ im(α)
then there exists an element v of V satisfying α(v) = w. Moreover,
v = v1+v2 for some v1 ∈ V1 and v2 ∈ V2 so w = α(v) = α(v1)+α(v2) =
0W + α(v2) = α(v2) = α2(v2). Therefore im(α2) = im(α), showing that
α2 is also an epimorphism and hence the desired isomorphism. �

Let V and W be vector spaces over a field F. If α ∈ Hom(V,W )
then we define the rank rk(α) of α to be dim(im(α)) and define is the
nullity null(α) of α to be dim(ker(α)). Thus, Proposition 6.10 says
that V has finite dimension n then both the rank and nullity of α are
finite and their sum is n. The converse is also clearly true: if the rank and
nullity of α are both finite, then the dimension of V is finite. Let us give
bounds on the rank and nullity of compositions of linear transformations.

(6.11) Proposition (Sylvester’s Theorem): Let V, W, and Y be
vector spaces finitely-generated over a field F and let α : V → W
and β : W → Y be linear transformations. Then

(1) null(βα) ≤ null(α) + null(β);
(2) rk(α) + rk(β) − dim(W ) ≤ rk(βα) ≤ min{rk(α), rk(β)}.

Proof: (1) Let β1 be the restriction of β to im(α). Then ker(β1)
is a subspace of ker(β). By Proposition 6.10, we have

null(βα) = dim(V ) − rk(βα) = [dim(V ) − rk(α)] + [rk(α) − rk(βα)]
= null(α) + null(β1) ≤ null(α) + null(β).

(2) Clearly im(βα) is a subspace of im(β) and so its dimension is
no greater than that of im(β). Moreover, im(βα) = im(β1) and so
rk(βα) ≤ rk(α). Thus rk(βα) ≤ min{rk(α), rk(β)}. Moreover, from (1)
we see that

dim(V ) − null(βα) ≥ dim(V ) − null(α) + dim(W ) − null(β) − dim(W )
= rk(α) + rk(β) − dim(W )

and this proves that rk(α) + rk(β) − dim(W ) ≤ rk(βα). �
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Exercises

Exercise 197 Which of the following statements are true for all vector
spaces V and W over a field F and all α ∈ Hom(V,W )?
(1) α(A ∪ B) = α(A) ∪ α(B) for all nonempty subsets A and B
of V ;
(2) α(A∩B) = α(A)∩α(B) for all nonempty subsets A and B of V ;
(3) α−1(C ∪D) = α−1(C)∪α−1(D) for all nonempty subsets C and D
of W ;
(4) α−1(C ∩D) = α−1(C)∩α−1(D) for all nonempty subsets C and D
of W.

Exercise 198 Let α : R
3 → R

3 be a linear transformation satisfying

α








1
0
1







 =




−1

3
4



 , α








1

−1
1







 =




0
1
0



 ,

and α








1
2

−1







 =




3
1
4



 . What is α








1
0
0







?

Exercise 199 Let α : R
3 → R

3 be a linear transformation satisfying

α








1
1
0







 =




1
2

−1



 , α








1
0

−1







 =




0
1
1



 , and α








0

−1
1







 =




3
3
3



 . Find a vector v ∈ R
3 for which α(v) =




1
0
0



 .

Exercise 200 Let F be a field and let V be the subspace of F [X]
consisting of all polynomials of degree at most 2. Let α : V → F [X] be
a linear transformation satisfying α(1) = X, α(X + 1) = X5 + X3, and
α(X2 + X + 1) = X4 − X2 + 1. What is α(X2 − X)?

Exercise 201 For each d ∈ R, let αd : R
2 → R

2 be the function defined

by αd :
[

a
b

]

�→
[

a + b + d2 + 1
a

]

. Is there a number d having the

property that αd is a linear transformation?

Exercise 202 For each d ∈ R, let αd : R
2 → R

2 be the function defined

by αd :
[

a
b

]

�→
[

5da − db
8d2 − 8d − 6

]

. Is there a number d having the

property that αd is a linear transformation?
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Exercise 203 Let W and W ′ be subspaces of a vector space V over a
field F and assume that we have linear transformations α : W → V and
β : W ′ → V satisfying the condition that α(v) = β(v) for all v ∈ W∩W ′.
Find a linear transformation θ : W + W ′ → V, the restriction of which to
W equals α and the restriction of which to W ′ equals β, or show why
no such linear transformation exists.

Exercise 204 Let F = GF (3) and let θ ∈ FF be the function defined
by θ(0) = 0, θ(1) = 2, and θ(2) = 1. Let n be a positive integer and

let α : Fn → Fn be the function defined by α :






a1

...
an




 �→






θ(a1)
...

θ(an)




 Is

α a linear transformation?

Exercise 205 Does there exist a linear transformation α : Q
4 → Q[X]

satisfying α













1
2
0

−1











 = 2, α













−1
1
1
1











 = X, and α













−1
4
2
1











 =

X + 1?

Exercise 206 Let B be a Hamel basis for R as a vector space over Q

and let 1 �= a ∈ R. Show that there exists an element y ∈ B satisfying
ay /∈ B.

Exercise 207 For which nonnegative integers h is the function α from

GF (3)3 to itself defined by α :




a
b
c



 �→




ah

b
ch



 a linear transforma-

tion?

Exercise 208 For any field F, let θ : F → F be the function defined by

θ : a �→
{

0 if a = 0
a−1 otherwise .

This is clearly a linear transformation when F = GF (2). Does there exist
a field other than GF (2) for which θ is a linear transformation?

Exercise 209 Let V = F∞ and let α : V → V be the function that as-
signs to each sequence [a1, a2, . . .] ∈ V its sequence of partial sums, namely
[a1, a2, . . .] �→

[
a1,

∑2
i=1 ai,

∑3
i=1 ai, . . .

]
. Is α a linear transformation?

Exercise 210 Let Y = R
R × R. Is the function α : Y → R defined by

α : (f, a) �→ f(a) a linear transformation?
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Exercise 211 Let α : R → R be a continuous function satisfying

α(a + b) = α(a) + α(b)

for all a, b ∈ R. Show that α is a linear transformation.

Exercise 212 Let F be a field and let b and c be nonzero elements of
F. Let α : F∞ → F∞ be the linear transformation defined by

α : [a1, a2, . . .] �→ [a3 + ba2 + ca1, a4 + ba3 + ca2, . . .].

Let y ∈ ker(α) be a vector satisfying the condition that two successive
entries in y equal 0. Show that y = [0, 0, . . .].

Exercise 213 Consider the field F = Q(
√

2) as a Q-algebra. Show that
the only homomorphisms of Q-algebras from F to itself are the identity
function and the function a + b

√
2 �→ a − b

√
2.

Exercise 214 Let V, W, and Y be vector spaces finitely-generated over
a field F and let α : V → W be a linear transformation. Show that the
set of all linear transformations β : W → Y satisfying the condition that
βα is the 0-transformation is a subspace of Hom(W,Y ), and calculate
its dimension.

Exercise 215 Let V and W be vector spaces over a field F and let
V ′ be a proper subspace of V. Are {α ∈ Hom(V,W ) | ker(α) ⊆ V ′} and
{α ∈ Hom(V,W ) | ker(α) ⊇ V ′} subspaces of Hom(V,W )?

Exercise 216 Let V and W be vector spaces over a field F and assume
that there are subspaces V1 and V2 of V, both of positive dimension,
satisfying V = V1 ⊕ V2. For i = 1, 2, let Ui = {α ∈ Hom(V,W ) |
ker(α) ⊇ Vi}. Show that {U1, U2} is an independent set of subspaces of
Hom(V,W ). Is it necessarily true that Hom(V,W ) = U1 ⊕ U2?

Exercise 217 Let F be a field, and let α : M2×2(F ) → M2×2(F ) be
a linear transformation satisfying α(AB) = α(A)α(B) for all A,B ∈

M2×2(F ). Show that α

([
0 0
1 0

])

�= I.

Exercise 218 Let V and W be vector spaces over a field F and let
α, β : V → W be linear transformations satisfying the condition that for
each v ∈ V there exists a scalar cv ∈ F (depending on v) satisfying
β(v) = cvα(v). Show that there exists a scalar c satisfying β = cα.

Exercise 219 Find the kernel of the linear transformation α : R
5 → R

3

defined by α :









a
b
c
d
e








�→




b + c − 2d + e

a + 2b + 3c − 4d
2a + 2c − 2e



 .
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Exercise 220 Let α : R
3 → R

3 be the linear transformation defined by

α :




a
b
c



 �→




2a + 4b − c

0
3c + 2b − a



 . Are im(α) and ker(α) disjoint?

Exercise 221 Let W be the subspace Q












2
−1

0
1





 ,







1
0
0
1





 ,







1
1
0
1












of

Q
4 and let α : W → Q

2 be the linear transformation defined by setting

α :







a
b
c
d





 �→

[
a + 2b + c

−a − 2b − c

]

. Find a basis for ker(α).

Exercise 222 Let F = GF (3) and let α : F 3 → F 3 be the linear

transformation defined by α :




a
b
c



 �→




a + b
2b + c

0



 . Find the kernel of

α.

Exercise 223 Let α : R
4 → R

3 be the linear transformation defined by

α :







a
b
c
d





 �→




2a + 4b + c − d

3a + b − 2c
a + 5c + 4d



 . Do there exist a, b, d ∈ Z such that







a
b
7
d





 ∈ ker(α)?

Exercise 224 Let V and W be vector spaces over a field F. Let α ∈
Hom(V,W ) and β ∈ Hom(W,V ) satisfy the condition that αβα = α.
If w ∈ im(α), show that α−1(w) = {β(w) + v − βα(v) | v ∈ V }.

Exercise 225 Let V, W, and Y be vector spaces over a field F and
let α ∈ Hom(V,W ) and β ∈ Hom(W,Y ) satisfy the condition that
im(α) has a finitely-generated complement in W and im(β) has a
finitely-generated complement in Y. Does im(βα) necessarily have a
finitely-generated complement in Y ?

Exercise 226 Let α : M3×3(R) → R be the function defined by α :
[aij ] �→

∑3
i=1

∑3
j=1 aij . Show that α is a linear transformation and find

a basis for ker(α).
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Exercise 227 Let F = GF (2) and let n > 2 be an integer. Let W be

the set of all vectors






a1

...
an




 in Fn having an even number of nonzero

entries. Show that W is a subspace of Fn by showing that it is the
kernel of some linear transformation.

Exercise 228 Let A and B be nonempty sets. Let V be the collection
of all subsets of A and let W be the collection of all subsets of B, both
of which, as we have seen, are vector spaces over GF (2). Any function
f : A → B defines a function αf : W → V by setting

αf : D �→ {a ∈ A | f(a) ∈ D}.

Show that each such function αf is a linear transformation, and find its
kernel.

Exercise 229 Let V be a vector space over a field F and let α : V 3 → V

be the function defined by α :




v1

v2

v3



 �→ v1 + v2 + v3. Show that α is a

linear transformation and find its kernel.

Exercise 230 Let n be a positive integer and let V be the subspace of
R[X] composed of all polynomials of degree at most n. Let α : V → V
be the linear transformation given by α : p(X) �→ p(X + 1) − p(X). Find
ker(α) and im(α).

Exercise 231 Let α : R
3 → R

3 be the linear transformation given by

α :




a
b
c



 �→




a + b + c
−a − c

b



 . Find ker(α) and im(α).

Exercise 232 Find the kernel of the linear transformation α : Q[X] → R

defined by α : p(X) �→ p(
√

3).

Exercise 233 Let V = C(0, 1). For each positive integer n, we define
the nth Bernstein function βn : V �→ R[X] by

βn : f �→
n∑

k=0

n!
k!(n − k)!

f

(
k

n

)

Xk(1 − X)n−k.

Show that each βn is a linear transformation and find
⋂∞

n=1 ker(βn).
(Note: the Bernstein functions are used in building polynomial approxima-
tions to continuous functions.)
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Exercise 234 Let V and W be vector spaces over a field F, where
dim(V ) is a positive integer. Show that W =

∑
{im(α) |α ∈ Hom(V,W )}.

Exercise 235 Let W be the subspace of R
R consisting of all twice-

differentiable functions and let α : W → R
R be the linear transformation

α : f �→ f ′′. Find α−1(f0), where f0 ∈ R
R is defined by f0 : x �→ x + 1.

Exercise 236 Let W be the subspace of R
R consisting of all differ-

entiable functions and let α : W → R
R be the function defined by

α(f) : x �→ f ′(x) + cos(x)f(x). Show that α is a linear transforma-
tion and find its kernel.

Exercise 237 Let n be a positive integer and let V be a vector space
over C. Does there exist a linear transformation α : V → C

n other than
the 0-function satisfying the condition that im(α) ⊆ R

n?

Exercise 238 Let V and W be vector spaces over a field F and let
α : V → W be a linear transformation other than the 0-function. Find a
linear transformation β : V → W satisfying im(α) = im(β) �= im(α+β).

Exercise 239 Let V be a finite-dimensional vector space over a field F
and let α, β ∈ Hom(V, V ) be linear transformations satisfying im(α) +
im(β) = V = ker(α) + ker(β). Show that im(α) ∩ im(β) = {0V } =
ker(α) ∩ ker(β).

Exercise 240 Let V, W, and Y be vector spaces over a field F and let
α ∈ Hom(V,W ) and β ∈ Hom(W,Y ) satisfy the condition that ker(α)
and ker(β) are both finitely generated. Is ker(βα) necessarily finitely
generated?

Exercise 241 Find a linear transformation α : Q
3 → Q

4 satisfying

im(α) = Q












1
2

−1
3
0





 ,







2
1
1

−4












.

Exercise 242 Let F = GF (2) and let α ∈ Hom(F 7, F 3) be given by




a1

...
a7




 �→




a4 + a5 + a6 + a7

a2 + a3 + a6 + a7

a1 + a3 + a5 + a7



 . If v is a nonzero element of ker(α),

show that at least three entries in v are equal to 1.

Exercise 243 Let V and W vector spaces finite dimensional over a
field F and let α ∈ Hom(V,W ). If Y is a subspace of W, is it true
that dim(α−1(Y )) ≥ dim(V ) − dim(W ) + dim(Y )?
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Exercise 244 Let V be a vector space over a field F and let Y = V ∞.
Let W be the subspace of Y consisting of all those sequences [v1, v2, . . .]
in which vi = 0 for all odd i and let W ′ be the subspace of Y
consisting of all those sequences in which vi = 0 for all even i. Find
a linear transformation from Y to itself, the kernel of which equals W
and the image of which equals W ′.

Exercise 245 Let W be the subspace of R
6 composed of all vectors






a1

...
a6




 satisfying

∑6
i=1 ai = 0. Does there exist a monomorphism from

W to R
4?

Exercise 246 Let n be a positive integer and let α : Q
n → Q

n be a linear
transformation which is not a monomorphism. Does there necessarily exist
a nonzero element of ker(α) all the entries of which are integers?

Exercise 247 Let n be a positive integer and let W be the subspace of
C[X] consisting of all polynomials of degree less than n. Let a1, . . . , an be
distinct complex numbers and let α : W → C

n be the function defined by

α : p(X) �→






p(a1)
...

p(an)




 . Is α a monomorphism? Is it an isomorphism?

Exercise 248 Let V be a vector space over a field F and let α : V → V
be a linear transformation satisfying the condition that α2 = aα + bσ1,
where a and b are nonzero scalars. Show that α is a monomorphism.

Exercise 249 Let p be a prime integer and let F be a field of character-
istic p. Let (K, •) be an associative and commutative unital F -algebra
and let α : K → K be the function defined by α : v �→ vp. Show that α
is an isomorphism of unital F -algebras.

Exercise 250 Let F be a field and let K and K ′ be fields contain-
ing F. Show that every homomorphism of F -algebras K → K ′ is a
homomorphism of unital F -algebras.

Exercise 251 Let F = GF (7). How many distinct monomorphisms can
one define from F 2 to F 4?

Exercise 252 Let V and W be vector spaces over a field F and
let α, β ∈ Hom(V,W ) be monomorphisms. Is α + β necessarily a
monomorphism?

Exercise 253 Let F be a field and let F ′ be a field containing F. Let
(K, •) be an F -algebra and let α : F ′ → K be a nontrivial homomorphism
of F -algebras. Show that α is monic.
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Exercise 254 Let V and W be vector spaces over a field F and
let α ∈ Hom(V,W ) be an epimorphism. Show that there exists a linear
transformation β ∈ Hom(W,V ) satisfying the condition that αβ is the
identity function on W.

Exercise 255 Let V be a vector space finite dimensional over a field F ,
the dimension n of which is even. Show that there exists an isomorphism
α : V → V satisfying the condition that α2(v) = −v for all v ∈ V.

Exercise 256 Let α : V → W be a linear transformation between vector
spaces over a field F and let D be a nonempty linearly-independent
subset of im(α). Show that there exists a basis B of V satisfying the
condition that {α(v) | v ∈ B} = D.

Exercise 257 Let V and W be vector spaces over a field F and let
α ∈ Hom(V,W ) satisfy the condition that αβα is not the 0-function for
any linear transformation β : W → V which is not the 0-function. Show
that α is an isomorphism.

Exercise 258 Let F be a field and let α : F 3 → F [X] be the linear

transformation defined by




a
b
c



 �→ (a+b)X +(a+c)X5. Find the nullity

and rank of α.

Exercise 259 Let F be a field and let p(X) = X2 + bX + c ∈ F [X]
be a polynomial having distinct nonzero roots d1 and d2 in F. Let
α : F 3 → F be the linear transformation defined by




a1

a2

a3



 �→ a3 + ba2 + ca1

and let β : F∞ → F∞ be the linear transformation defined by

β : [a1, a2, a3, . . .] �→ [α(a1, a2, a3), α(a2, a3, a4), . . .] .

Show that the nullity of β is at least 2.

Exercise 260 Let Ω be a nonzero set and let V be the collection of all
subsets of Ω, considered as a vector space over GF (2). Show that this
vector space is isomorphic to GF (2)Ω.

Exercise 261 Let F be a field and let V be the subspace of F∞

consisting of all sequences [a1, a2, a3, . . .] in which ai = 0 for all even i.
Let W be the subspace of F∞ consisting of all sequences [a1, a2, a3, . . .]
in which ai = 0 for all odd i. Show that V ∼= F∞ ∼= W.
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Exercise 262 Let V be a vector space over a field F having subspaces

W and W ′. Let Y =
{[

w
w′

] ∣
∣
∣
∣ w ∈ W and w′ ∈ W ′

}

, which is

a subspace of V 2. Let α : Y → V be the linear transformation defined

by α :
[

w
w′

]

�→ w + w′. Find the kernel of α, and show that it is

isomorphic to W ∩ W ′.

Exercise 263 Let V be a vector space over a field F. Let W be
a subspace of V and let W ′ be a complement of W in V. Let
α : W → W ′ be a linear transformation. Show that W isomorphic to
the subspace Y = {w + α(w) | w ∈ W} of V.

Exercise 264 Show that there is no vector space over any field F having
precisely 15 elements.

Exercise 265 Let F be a field and let V = F [X]. Show that V ∼= V 2.

Exercise 266 Let V, W, and Y be vector spaces over a field F . Let
{α1, . . . , αn} be a finite subset of Hom(V,W ) and let β ∈ Hom(V, Y )
be a linear transformation satisfying

⋂n

i=1
ker(αi) ⊆ ker(β). Show that

there exist linear transformations γ1, . . . , γn in Hom(W,Y ) satisfying
β =

∑n
i=1 γiαi.

Exercise 267 Let V be a vector space over a field F and let W be
a subspace of V. For each v ∈ V, let v + W = {v + w | w ∈ W}. Let
V/W be the collection of all the sets of the form v + W for v ∈ V and
define operations of addition and scalar multiplication on V/W by setting
(v + W ) + (v′ + W ) = (v + v′) + W and c(v + W ) = (cv) + W for all
v, v′ ∈ V and c ∈ F. Show that:
(1) v + W = v′ + W if and only if v − v′ ∈ W ;
(2) V/W, with the given operations, is a vector space over F ;
(3) The function v �→ v + W is an epimorphism from V to W, the
kernel of which equals W ;
(4) Every complement of W in V is isomorphic to V/W.
The space V/W is called the factor space of V by W.

Exercise 268 Let F be a field and let m > n be positive integers. Let
A and B be fixed matrices in Mn×m(F ) and let θ : Mn×m(F ) →
Mn×m(F ) be the linear transformation defined by θ : C �→ ACB. Show
that θ is not an isomorphism.



7
The endomorphism algebra of a vector
space

Let V be a vector space over a field F. A linear transformation α
from V to itself is called an endomorphism of V. We will denote
the set of all endomorphisms of V by End(V ). This set is nonempty,
since it includes the functions of the form σc : v �→ cv for c ∈ F. In
particular, it includes the 0-endomorphism σ0 : v �→ 0V and the identity
endomorphism σ1 : v �→ v. If V is nontrivial, these functions are not the
same. We see that we have two operations defined on End(V ) : addition
and multiplication (given by composition). Indeed, as a direct consequence
of the definitions we conclude the following:

(7.1) Proposition: If V is a nontrivial vector space over a
field F, then End(V ) is an associative unital F -algebra with
σ0 being the identity element for addition and σ1 being the
identity element for multiplication.

If V is a nontrivial vector space over a field F then there exists a
function σ : F → End(V ) defined by σ : c �→ σc for all c ∈ F. This
function is monic, for if σc = σd then for any 0V �= v ∈ V we have
cv = σc(v) = σd(v) = dv and hence (c − d)v = 0V . Since 0V �= v,
this implies that c − d = 0 and so c = d. Moreover, if c, d ∈ F then
σc + σd = σc+d and σcσd = σcd so σ is a monic homomorphism of
unital F -algebras. We can use this function to identify F with its image
under σ and consider it a subalgebra of the F -algebra End(V ).

99
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If α, β ∈ End(V ) and if c ∈ F, then we have already seen that the
functions α + β, αβ, and cα all belong to End(V ). Therefore we
see that if p(X) =

∑n
i=0 aiX

i ∈ F [X] then p(α) =
∑n

i=0 aiα
i is an

endomorphism of V, and, indeed, the set F [α] of all endomorphisms
of V of this form is an F -subalgebra of End(V ). The function from
F [X] to F [α] given by p(X) �→ p(α) is immediately seen to be an epic
homomorphism of unital F -algebras for any α ∈ End(V ).

Example: Let F = GF (2) and let p(X) = X2 + X ∈ F [X]. Then
p(a) = 0 for every a ∈ F. However, p(α) �= σ0, where α ∈ End(F 2) is

defined by α :
[

a
b

]

�→
[

b
a

]

.

Example: Structures of the form F [α] are important in many areas
of mathematics. For example, let V be the collection of all infinitely-
differentiable functions from R to R and let δ be the differentiation
endomorphism on V . If p(X) =

∑n
i=0 aiX

i ∈ R[X], then we have
p(δ) : f �→ a0f +

∑n
i=1 aif

[i], where f [i] denotes the ith derivative of f .
Such an endomorphism is called a differential operator with constant
coefficients on V. If c ∈ R and if f ∈ V is the function given by
fc : x �→ ecx, then δ(fc) = cfc and so p(δ) : fc �→

∑n
i=0 aic

iecx =(∑n
i=0 aic

i
)
fc = p(c)fc. Thus, p(δ) is the 0-function whenever c is as

root of p(X). Hence fc ∈ ker(p(δ)) for each root c of p(X).

Example: Let F be a field and let (K, •) be a nonassociative F -
algebra. An endomorphism δ ∈ End(K) is a derivation if and only if
δ(v •w) = [δ(v)] •w + v • [δ(w)] . Thus, for example, if K is a Lie algebra
then, as a consequence of the Jacobi identity, we see that every y ∈ K
defines a derivation δy of K given by δy : v �→ y • v. Also, if K is
the R-algebra consisting of all infinitely-differentiable functions in R

R,
then the endomorphism of K which assigns to each function in K its
derivative is a derivation. The set of all derivations defined on K is a
subspace of End(K). If δ and δ′ are derivations on K, then δδ′ is
not, in general, a derivation on K, but the Lie product δδ′−δ′δ is always
a derivation on K, and so the set of all derivations on K is a Lie algebra
over F.

Given a nontrivial vector space V over a field F, we note that the F -
algebra End(V ) is neither necessarily commutative nor necessarily entire,
as the following examples show:

Example: Let F be a field and let V = F 3. Let α, β ∈ End(V ) be

the endomorphisms defined by α :




a
b
c



 �→




b
a
c



 and β :




a
b
c



 �→
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a
0
0



 . Then βα :




a
b
c



 �→




b
0
0



 and αβ :




a
b
c



 �→




0
a
0



 , so

βα �= αβ.

Example: Let F be a field and let V = F 3. Let α, β ∈ End(V ) be

the endomorphisms defined by α :




a
b
c



 �→




0
0
c



 and β :




a
b
c



 �→



a
0
0



 . Then βα = σ0 = αβ.

We do, however, have the following:

(7.2) Proposition: Let V be a nontrivial vector space over
a field F. Then for all α ∈ End(V ) and all c ∈ F we have
ασc = σcα.

Proof: If v ∈ V then ασc(v) = α(cv) = cα(v) = σcα(v). �

An endomorphism of a vector space V over a field F which is also an
isomorphism (i.e., which is both monic and epic), is called an automor-
phism of V. Since α(0V ) = 0V for any endomorphism α of V, we
see that any automorphism of V induces a permutation of V � {0V }.
Similarly, a homomorphism of F -algebras which is also an isomorphism is
an automorphism of F -algebras.

By what we have already seen, we know that α ∈ End(V ) is an au-
tomorphism if and only if there exists an endomorphism α−1 ∈ End(V )
satisfying αα−1 = σ1 = α−1α. We will denote the set of all automor-
phisms of V by Aut(V ). This set is nonempty, since σ1 ∈ Aut(V ),
where σ−1

1 = σ1. Moreover, if α, β ∈ Aut(V ) then (αβ)(β−1α−1) =
α(ββ−1)α−1 = αα−1 = σ1 and similarly (β−1α−1)(αβ) = σ1. Thus
αβ ∈ Aut(V ), with (αβ)−1 = β−1α−1. It is also clear that if α ∈ Aut(V )
then α−1 ∈ Aut(V ).

Example: Let V be a vector space over a field F and let n > 1
be an integer. Any permutation π of the set {1, . . . , n} defines an

automorphism απ of V n given by απ :








v1

v2

...
vn








�→








vπ(1)

vπ(2)

...
vπ(n)








which



102 7. The endomorphism algebra of a vector space

rearranges the entries of each vector according to the permutation π. More
generally, if V is a vector space over a field F having a basis B = {vi |
i ∈ Ω} and if π is a permutation of Ω, then there is an automorphism
of V defined by

∑
i∈Λ aivi �→

∑
i∈Λ aπ(i)vπ(i) for each finite subset Λ

of Ω.

Example: Let F be a field and let n be a positive integer. We have
already seen that the function A �→ AT is an automorphism of Mn×n(F ),
considered as a vector space over F.

Example: Let V be a vector space having finite dimension n over a
field F and let v and y be nonzero elements of V. Then there exist
bases {v1, . . . , vn} and {y1, . . . , yn} of V satisfying v1 = v and y1 = y.
The function α : V → V defined by α :

∑n
i=1 aivi �→

∑n
i=1 aiyi is thus

an automorphism of V satisfying α(v) = y.

Let V be a vector space over a field F and let n be a positive integer.
We will list several types automorphisms, called elementary automor-
phisms, of a vector space of the form V n. These automorphisms will play
an important part in our ensuing discussion.

(1) If 1 ≤ h �= k ≤ n, we define εhk ∈ Aut(V n) by






v1

...
vn




 �→






w1

...
wn




 ,

where

wi =






vk if i = h
vh if i = k
vi otherwise

.

This automorphism satisfyies ε−1
hk = εhk.

(2) If 1 ≤ h ≤ n, and if 0 �= c ∈ F, we define εh;c ∈ Aut(V n) by





v1

...
vn




 �→






w1

...
wn




 , where

wi =
{

cvi if i = h
vi otherwise .

This automorphism satisfyies ε−1
h;c = εh,c−1 .

(3) If 1 ≤ h �= k ≤ n and if c ∈ F, we define εhk;c ∈ Aut(V n) by





v1

...
vn




 �→






w1

...
wn




 , where

wi =
{

vi + cvk if i = h
vi otherwise .
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This automorphism satisfyies ε−1
hk;c = εhk;−c.

Identifying the automorphisms of a finite-dimensional vector space V
over a field F is a problem which will be of major importance to us later,
and so it is important to characterize these functions.

(7.3) Proposition: Let V be a vector space of finite dimen-
sion n over a field F . Then the following conditions on an
endomorphism α of V are equivalent:

(1) α is an automorphism of V ;
(2) α is monic;
(3) α is epic.

Proof: By definition, (1) implies (2). Now assume (2). By Proposition
6.10, we see that the rank of α equals n and so im(α) = V by Proposition
5.11, proving (3). Now assume (3). By Proposition 6.10, we see that the
nullity of α equals n − n = 0 and so ker(α) = {0V }, proving that α
is monic as well, and so is bijective. This proves (1). �

(7.4) Proposition: Let V be a finite-dimensional vector space
over a field F and let α ∈ End(V ). If there exists a β ∈ End(V )
satisfying αβ = σ1 or βα = σ1, then α ∈ Aut(V ) and β = α−1.

Proof: If βα = σ1 then ker(α) ⊆ ker(σ1) = {0V } and so, by
Proposition 7.3, α ∈ Aut(V ). Similarly, if αβ = σ1 then im(α) ⊇
im(σ1) = V and so, by Proposition 7.3, α ∈ Aut(V ). Moreover, if
αβ = σ1 we see that α−1 = α−1σ1 = α−1(αβ) = β and similarly α−1 = β
when βα = σ1. �

Example: Proposition 7.3 and Proposition 7.4 are no longer true if we
remove the condition of finite dimensionality. For example, let F be a field
and let V = F [X]. Define the endomorphisms α and β of V by setting
α :

∑n
i=0 aiX

i �→
∑n

i=0 aiX
i+1 and β :

∑n
i=0 aiX

i �→
∑n

i=1 aiX
i−1. Then

α,β /∈ Aut(V ), despite the fact that α is monic and β is epic. Moreover,
βα = σ1 but αβ �= σ1.

Let V be a vector space over a field F and let α ∈ End(V ). A
subspace W of V is invariant under α if and only if α(w) ∈ W
for all w ∈ W or, in other words, if and only if α(W ) ⊆ W. Thus, W
is invariant under α if and only if the restriction of α to W is an
endomorphism of W. It is clear that V and {0V } are both invariant
under every endomorphism of V. If α ∈ End(V ) then im(α) and ker(α)
are both invariant under α.
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Example: Let F be a field and, for each positive integer k, let Wk

be the subspace of F [X] composed of all polynomials of degree at most
k. Let δ be the formal differentiation endomorphism of F [X], namely
the endomorphism defined by δ :

∑n
i=0 aiX

i �→
∑n

i=0 iaiX
i−1. Then each

of the subspaces Wk is invariant under δ. Now assume that F is of
characteristic 0. If p(X) =

∑n
i=0 aiX

i ∈ Wk and if a ∈ F then it is easy

to check that p(X) = p(a)+
∑n

h=1
1
h!

[
δh(p)(a)

]
(X−a)h. The coefficients

1
h!

[
δh(p)(a)

]
are known as the Taylor coefficients of p(X) around a.

Example: Let V = R
2 and let α be the endomorphism of V defined

by α :
[

a
b

]

�→
[

b
−a

]

. Let W be a proper subspace of V which

is invariant under α. Then dim(W ) ≤ 1 and so there exists a vector

w =
[

c
d

]

satisfying W = Rw. Since α(w) =
[

d
−c

]

, it follows that

there exists a real number e such that α(w) = ew. That is to say, ec = d
and ed = −c. From this we learn that ce2 = −c and so c = d = 0.

This proves that W =
{[

0
0

]}

, and so we see that V has no proper

nontrivial subspaces invariant under α.

Example: Let F be a field and let n be a positive integer. Let

α be the endomorphism of Fn defined by α :








a1

a2

...
an








�→








an

a1

...
an−1








.

A subspace W invariant under α is cyclic. Cyclic subspaces of Fn,
where F is a finite field, are important in defining certain families of
error-correcting codes.

Let V be a vector space over a field F. An endomorphism α of V is
a projection if and only if α2 = α. Note that if α is a projection and if
w = α(v) ∈ im(α) then α(w) = α2(v) = α(v) = w, so that the restriction
of α to its image is just σ1. The converse is also true. If α ∈ End(V )
satisfies the condition that the restriction of α to its image is just σ1,
then for each v ∈ V we have α2(v) = α(α(v)) = σ1(α(v)) = α(v) and so
α is a projection.



7. The endomorphism algebra of a vector space 105

Example: If F is a field then the endomorphism of F 3 defined by



a
b
c



 �→




3a − 2c

−a + b + c
3a − 2c



 is a projection.

Example: The sum of two projections need not be a projection. For
example, if V = R

3 then the endomorphisms α and β of V defined

by α :




a
b
c



 �→




a
b
0



 and β :




a
b
c



 �→




0
b
c



 are projections, but

α + β is not a projection.

Example: If W is a subspace of a vector space V over a field F
having a complement Y in V, we know that every element v ∈ V can
be written in a unique way in the form w + y, where w ∈ W and y ∈ Y.
The endomorphism of V defined by v �→ w is a projection the image of
which is W.

In fact, all projections of a vector space are of the form in the previous
example, as the following example shows.

(7.5) Proposition: Let V be a vector space over a field F and
let α ∈ End(V ) be a projection. Then V = im(α) ⊕ ker(α).

Proof: If v ∈ im(α) ∩ ker(α) then there exists an element y of V
satisfying v = α(y) and so v = α(v) = 0V . Thus im(α) and ker(α) are
disjoint. If v is an arbitrary vector in V then v = [v − α(v)] + α(v) ∈
ker(α) + im(α). Therefore V = im(α) ⊕ ker(α). �

(7.6) Proposition: Let V be a vector space over a field F and
let α ∈ End(V ). A subspace W of V is invariant under α if
and only if βαβ = αβ for each projection β of V the image of
which is W.

Proof: Assume that W is invariant under α and let β be a
projection of V the image of which is W. By Proposition 7.5 we have
V = W⊕ker(β). If v ∈ V we can therefore write v = w+y, where w ∈ W
and y ∈ ker(β). Hence αβ(v) = αβ(w) + αβ(y) = α(w) + 0V = α(w) =
βα(w) = βαβ(v), showing that βαβ = αβ. Conversely, if βαβ = αβ for
each projection β of V the image of which is W then, for each such β,
we have w = β(w) for all w ∈ W and so α(w) = αβ(w) = βαβ(w) ∈ W,
showing that W is invariant under α. �
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(7.7) Proposition: Let V be a vector space over a field F and
let {W1, . . . Wn} be a set of subspaces of V. Then the following
conditions are equivalent:

(1) V = W1 ⊕ . . . ⊕ Wn;
(2) There exist projections α1, . . . αn in End(V ) with Wi =

im(αi) for all 1 ≤ i ≤ n, which satisfy the conditions αiαj = σ0

for i �= j and α1 + . . . + αn = σ1.

Proof: (1) ⇒ (2): From (1) it follows that every v ∈ V can be written
in a unique manner as

∑n
i=1 wi, where wi ∈ Wi for all 1 ≤ i ≤ n. Define

αi to be the projection v �→ wi for each i. It is easy to verify that these
linear transformations do indeed satisfy the required conditions.

(2) ⇒ (1): Since α1+ . . .+αn = σ1 we surely have V =
∑n

i=1 im(αi) =∑n
i=1 Wi. If 0V �= v ∈ Wh∩

∑
j �=h Wj then there exists an i �= h such that

αi(v) �= 0V . But αh(v) = v so αiαh �= σ0, which is a contradiction.
Therefore Wh ∩

∑
j �=h Wj = {0V } for each 1 ≤ h ≤ n, proving (1).

�

(7.8) Proposition: Any two complements of a subspace W of
a vector space V over a field F are isomorphic.

Proof: Let U and Y be complements of W in V. By Proposition
7.7 we know that there exists a projection β ∈ End(V ) the image of
which is U and the kernel of which is W. Let α be the restriction
of β to Y. The linear transformation α is a monomorphism since
ker(α) ⊆ ker(β)∩ Y = W ∩ Y = {0V }. Any vector u ∈ U can be written
as w + y, where w ∈ W and y ∈ Y and we have α(y) = β(y) =
β(w) + β(y) = β(w + y) = β(u) = u. Thus we see that α is also epic and
hence is the desired isomorphism. �

We now introduce a notion which is basic in all branches of mathematics.
A relation ≡ defined between the elements of a given nonempty set U is
called an equivalence relation if and only if the following conditions are
satisfied:

(1) u ≡ u for all u ∈ U ;
(2) u ≡ u′ if and only if u′ ≡ u;
(3) If u ≡ u′ and u′ ≡ u′′ then u ≡ u′′.

Example: Let B be a nonempty subset of a set A and define a
relation ≡B on A by setting a ≡B a′ if and only if a = a′ or both
a and a′ belong to B. Then ≡B is an equivalence relation on A.
In particular, if W is a subspace of a vector space V then the relation
≡W defined on V by setting v ≡W v′ if and only if v − v′ ∈ W is an
equivalence relation on V.
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Example: Let V and W be a vector spaces over a field F and let
α ∈ HomF (V,W ). Define a relation ≡ on V by setting v ≡ v′ if and
only if α(v) = α(v′). This is easily seen to be an equivalence relation.

Let V be a vector space over a field F. A subset G of Aut(V ) is a
group of automorphisms if it is closed under taking products, contains
σ1, and satisfies the condition that α−1 ∈ G whenever α ∈ G. Clearly
Aut(V ) itself is such a group. The notion of a group of automorphisms is
very important in linear algebra and its applications, but here we will only
touch on it.

Example: Let V be a vector space over a field F and let Ω be a
nonempty set. Every permutation π of Ω defines an automorphism απ

of the vector space V Ω over F defined by απ(f) : i �→ f(π(i)) for all
i ∈ Ω and all f ∈ V Ω. The collection G of all such automorphisms is a
group of automorphisms in Aut(V Ω).

(7.9) Proposition: If V is a vector space over a field F and
if G is a group of automorphisms of V then G defines an
equivalence relation ∼G on V by setting v ∼G v′ if and only
if there exists an element α of G satisfying α(v) = v′.

Proof: If v ∈ V then σ1(v) = v and so v ∼G v. If v, v′ ∈ V satisfy
v ∼G v′ then there exists an element α of G satisfying α(v) = v′ and
so v′ = α−1(v). Thus v′ ∼G v. Finally, if v, v′, v′′ ∈ V satisfy v ∼G v′

and v′ ∼G v′′ then there exist elements α and β of G satisfying
α(v) = v′ and β(v′) = v′′ and so βα(v) = v′′. Thus v ∼G v′′. �

(7.10) Proposition: If V is a vector space over a field F and
if G is a group of automorphisms of V then all elements of G
have the same rank.

Proof: If α ∈ G then, by Proposition 6.11, rk(σ1) = rk(αα−1) ≤
rk(α) = rk(ασ1) ≤ rk(σ1) and so rk(α) = rk(σ1). �

Exercises

Exercise 269 Let V be a vector space over GF (3). Show that there
exists an endomorphism α of V satisfying α(v) + α(v) = v for all
v ∈ V.
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Exercise 270 Let V be a vector space finitely generated over a field F
and let α, β, γ ∈ End(V ). Find necessary and sufficient conditions for
there to exist an endomorphism θ of V satisfying αγβ = βθα.

Exercise 271 Let F = GF (2) and let n be a positive integer. Let

α : Fn → Fn be the function defined by α :






a1

...
an




 �→






a′
1
...

a′
n




 , where

0′ = 1 and 1′ = 0. Is α an endomorphism of Fn?

Exercise 272 Let α, β : Q[X] → Q[X] be defined by α : p(X) �→ Xp(X)
and β : p(X) �→ X2p(X). Show that α, β, and α − β are all monic
endomorphisms of Q[X].

Exercise 273 Let V be a finitely-generated vector space over a field F
and let α ∈ End(V ). Show that α is not monic if and only if there exists
an endomorphism β �= σ0 of V satisfying αβ = σ0.

Exercise 274 Let V be a vector space over a field F and let α ∈
End(V ). Show that ker(α) = ker(α2) if and only if ker(α) and im(α)
are disjoint.

Exercise 275 Let V be a vector space over a field F and let α ∈
End(V ). Show that im(α) = im(α2) if and only if V = ker(α) + im(α).

Exercise 276 Let V be a vector space over a field F and let K =
F × V × End(V ), which is again a vector space over F. Define an
operation � on K by setting (a, v, α) � (b, w, β) = (ab, aw + β(v), βα). Is
(K, �) an F -algebra? Is it associative? Is it unital?

Exercise 277 Let V be a vector space over a field F, and let Aff(V, V )
be the set of all affine transformations from V to itself. Is Aff(V, V ),
on which we have defined the operations of addition and composition of
functions, an associative unital F -algebra?

Exercise 278 Let α ∈ Aut(R2) be defined by α :
[

a
b

]

�→
[

−b
a

]

.

Show that R{α, σ1} is a unital subalgebra of End(R2). Show that it
is proper by giving an example of an endomorphism of R

2 not in this
subalgebra.

Exercise 279 Let V be the space of all real-valued functions on the in-
terval [−1, 1] which are infinitely differentiable, and let δ be the endo-
morphism of V which assigns to each function f its derivative. Find
the kernel and image of δ.
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Exercise 280 Let α : C → C be the function defined by α : a + bi �→
−b + ai. Is α an endomorphism of C considered as a vector space over
R? Is it an endomorphism of C considered as a vector space over itself?

Exercise 281 Let V be a vector space of finite dimension n over a field
F and let α ∈ End(V ). Show that there exists an automorphism β of
V satisfying αβα = α.

Exercise 282 Let V = M2×2(R), which is a vector space over R. Con-
sider the function α : V → V defined by

α :
[

a11 a12

a21 a22

]

�→
[

|a11| |a12|
|a21| |a22|

]

.

Is α an endomorphism of V ?

Exercise 283 Consider R as a vector space over Q and let α be
an endomorphism of this space satisfying the condition that there exists an
a0 ∈ R such that α is continuous at a0. Show that α is continuous at
every a ∈ R.

Exercise 284 Let A be a nonempty set and let V be the collection of
all subsets of A, considered as a vector space over GF (2). For which
subsets C of A is the function B �→ B ∪ C an endomorphism of V ?

Exercise 285 Let V be a vector space of finite dimension n over a field
F and let {αij | 1 ≤ i, j ≤ n} be a collection of endomorphisms of V,
not all of which are equal to σ0, satisfying the condition that

αijαkh =
{

αih if j = k
σ0 otherwise .

Show that there exists a basis {v1, . . . , vn} of V such that

αjk(vi) =
{

vj if i = k
0V otherwise .

Exercise 286 Let V be a vector space of finite dimension n over a field
F and choose an element α ∈ End(V ). Let ϕ : End(V ) → End(V ) be
the function defined by β �→ βα. This is an endomorphism of End(V ),
considered as a vector space over F. Show that a positive integer n
satisfies αn = σ0 if and only if ϕn is the 0-function.

Exercise 287 Let α be an endomorphism of R
3 satisfying the condition

that α2 = σ0. Show that there exists a linear transformation β : R
3 → R

and that there exists a vector y ∈ R
3 satisfying α(v) = β(v)y for all

v ∈ R
3.
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Exercise 288 For each 0 �= a ∈ R, let βa : C → C be the function
defined by βa : z �→ z + az. Show that βa is an endomorphism of C

considered as a vector space over R, and describe its image and kernel.

Exercise 289 Let V be a vector space finitely generated over Q and
let α, β ∈ End(V ) satisfy 3α3 + 7α2 − 2αβ + 4α − σ1 = σ0. Show that
αβ = βα.

Exercise 290 Let V be as vector space over a field F and let α, β, γ ∈
End(V ) satisfy αβ = σ1 = αγ. Show that βγ �= γβ.

Exercise 291 Let F be a field of characteristic other than 2 and let
V be a vector space of finite dimension n over F. Let α be an
endomorphism of V satisfying the condition that α2 = σ1. Show that
rk(σ1 − α) + rk(σ1 + α) = n.

Exercise 292 Let V be a vector space over a field F which is not finitely
generated, and let σ0 �= α ∈ End(V ). Set A = {β ∈ End(V ) | αβ = σ1}.
Show that if A has more than one element then it is infinite.

Exercise 293 Let V be a vector space over a field F having dimension
greater than 1. Show that there exists a function α ∈ V V which is not
an endomorphism of V but which nonetheless satisfies the condition that
α(av) = aα(v) for all a ∈ F and all v ∈ V.

Exercise 294 Let V be a vector space over a field F satisfying the
condition that αβ = βα for all α, β ∈ End(V ). Show that dim(V ) = 1.

Exercise 295 Let V = M2×2(R), considered as a vector space over R.
Let α : V → V be the function defined by

α :
[

a b
c d

]

�→
[

a + 2b + c + 2d 2a + 4b + 3c + 5d
3a + 6b + 2c + 5d a + 2b + c + 2d

]

.

Is α an endomorphism of V ? Is it an automorphism of V ?

Exercise 296 Let V be the vector space of all continuous functions from
R to itself and let α : V → V be the function defined by α : f(x) �→[
x2 + sin(x) + 2

]
f(x). Show that α is an automorphism of V.

Exercise 297 Let F be a field and let α : F [X] → F [X] be the function
defined by α : p(X) �→ p(X + 1). Is α an endomorphism of F [X]? Is
it an automorphism?

Exercise 298 Let F be a field and, for each a ∈ F, let θa be the
endomorphism of F [X] defined by θa : p(X) �→ p(X + a). Let α ∈
End(F [X]) satisfy α(X) ∈ F and αθa = θaα for all a ∈ F. Can α
be a monomorphism?
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Exercise 299 Let α ∈ End(R3) be defined by α :




a
b
c



 �→




a − 2b

c
a − b



 . Is

α an automorphism of R
3?

Exercise 300 Let α be the endomorphism of R
(∞) defined by

α : [a1, a2, a3, . . .] �→ [b1, b2, b3, . . .],

where bh =
∑

j≤h(−1)j−1
(
h−1
j−1

)
aj for each h ≥ 1. Show that α is an

automorphism satisfying α = α−1.

Exercise 301 Let V be a vector space finitely generated over R and let
α be an endomorphism of V satisfying α3 + 4α2 + 2α + σ1 = σ0. Show
that α ∈ Aut(V ).

Exercise 302 Let V be a vector space over a field F and let α, β ∈
End(V ) satisfy αβ = σ1. Set ϕ = σ1 − βα. Show that for every integer
n ≥ 1 we have σ1 =

∑n−1
k=0 βkϕαk + βnαn.

Exercise 303 Let V be the space of all polynomial functions from the
interval [0, 1] on the real line to R. Let α and β be the endomorphisms
of V defined by α(f) : x �→

∫ x

0
f(t)dt and β(f) : x �→

∫ 1

x
f(t)dt. Find

im(α + β). Is it true that αβ = βα?

Exercise 304 Let F be a field and let V = F∞. Let n > 1 be an

integer. Each vector y =






d1

...
dn




 ∈ Fn defines an endomorphism θy

of V by θy : [a1, a2, . . .] �→ [b1, b2, . . .], where bh =
∑n

i=1 ah−1+idi, for
h = 1, 2, . . . . Show that if θy is a monomorphism then the polynomial
p(X) =

∑n
i=1 diX

i−1 ∈ F [X] has no roots in F.

Exercise 305 Let F = GF (5) and let V = F 3. How many endo-

morphisms α of V satisfy the conditions α








1
0
0







 =




2
1
0



 and

α








0
3
0







 =




1
1
1



?

Exercise 306 Let V be the set of all continuous functions from R to
itself, which is a vector space over R. Let α : V → V be the function
defined by α(f) : x �→ f

(
x
2

)
for all x ∈ R and all f ∈ V. Is α an

automorphism of V ?
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Exercise 307 Let V = R
∞ and let W be the subspace of V con-

sisting of all convergent sequences. Let α ∈ End(V ) be defined by
α : [a1, a2, . . .] �→ [b1, b2, . . .], where bh = 1

h

(∑h
i=1 ai

)
for all h ≥ 1. If

v ∈ V satisfies α(v) ∈ W, is v itself necessarily in W?

Exercise 308 Let V be a vector space over a field F and let α ∈
Aut(V ). Let W1, . . . ,Wk be subspaces of V satisfying V =

⊕k
i=1 Wi.

For each 1 ≤ i ≤ k, let Yi = {α(w) | w ∈ Wi}. Is V =
⊕k

i=1 Yi?

Exercise 309 Consider R as a vector space over Q. An endomorphism
of this space is bounded if and only if there exists a nonnegative real num-
ber m(α) satisfying the condition that |α(x)| ≤ m(α)|x| for all x ∈ R.
Does the set of all bounded endomorphisms of R form an R-subalgebra of
End(R)?

Exercise 310 Let F be a field, let n be a positive integer, and let
V = Mn×n(F ). Given a matrix B ∈ V, is the function αB : V → V
defined by αB : A �→ AB + BA an endomorphism of V ?

Exercise 311 Let F be a field and let V = F [X]. Let δ ∈ End(V )
be the formal differentiation function and let α ∈ End(V ) be defined by
α : p(X) �→ Xp(X). Show that αδ − δα = σ1.

Exercise 312 Let V be a nontrivial vector space over a field F. Is the
set of all automorphisms of V a subspace of the vector space End(V )
over F?

Exercise 313 Consider GF (3) as a vector space over itself. Does there
exist an automorphism of this space other than σ1?

Exercise 314 Let V = F∞ for some field F. Each w = [c1, c2, . . .] ∈ V
defines a function βw : V → V by

βw : [a1, a2, . . .] �→ [a1, a1c1 + a2, (a1c1 + a2)c2 + a3, . . .].

Show that βw is an automorphism of V.

Exercise 315 Let V be a vector space over a field F ; let α ∈ End(V )
and let β ∈ Aut(V ). Define the function θ : V 2 → V 2 by setting

θ :
[

v
v′

]

�→
[

β(v)
α(v) + v′

]

. Is θ necessarily an automorphism of V 2?

Exercise 316 Let F = GF (5) and let α ∈ Aut(F 2) be defined by

α :
[

a
b

]

�→
[

2b
a + 2b

]

. Show that there exists a positive integer h

satisfying αh+1 = α and find the smallest such integer h.
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Exercise 317 Let F be a field of characteristic other than 2. Let V
be a vector space over F and let α, β, γ, δ be endomorphisms of V
satisfying the condition that α − β and α + β are automorphisms of
V. Show that there exist endomorphisms ϕ and ψ of V satisfying
ϕα + ψβ = γ and ψα + ϕβ = δ.

Exercise 318 Let V be a vector space of finite dimension n over a field
F. Let α ∈ End(V ) and assume that there exists a vector in y ∈ V
satisfying the condition that D = {α(y), α2(y), . . . , αn(y)} is a basis for
V. Show that D′ = {y, α(y), . . . , αn−1(y)} is also a basis for V and that
α ∈ Aut(V ).

Exercise 319 Let F be a field and let V = F (Z). Let α be the
endomorphism of V defined by α(f) : i �→ f(i + 1) for all f ∈ V. Show
that α − cσ1 /∈ Aut(V ) for all 0 �= c ∈ F.

Exercise 320 Let V be a vector space of finite dimension n over a field
F , and let 0 < k ≤ n be a positive integer. Let Ak be the set of all
subspaces of V having dimension k. Let α ∈ Aut(V ) and, for each
W ∈ Ak, let θα(W ) = {α(w) | w ∈ W}. Show that the function θα is a
permutation of Ak.

Exercise 321 Let r, s, and t be distinct real numbers and let α be

the endomorphism of R
3 defined by α :




a
b
c



 �→




a + br + cr2

a + bs + cs2

a + bt + ct2



 . Is

α an automorphism of R
3?

Exercise 322 Let V be a vector space over a field F and let α ∈
End(V ). Show that W =

⋃∞
i=1 ker(αi) is a subspace of V which is

invariant under α.

Exercise 323 Let α and β be the endomorphisms of Q
4 defined by

α :







a
b
c
d





 �→







2a − 2b − 2c − 2d
5b − c − d
−b + 5c − d
−b − c + 5d





 and β :







a
b
c
d





 �→







0
−b + 2c + 3d
2b − 3c + 6d
3b + 6c + 2d





 .

Find two nontrivial proper subspaces of Q
4 which are invariant both under

α and under β.

Exercise 324 Let F be a field and let V = F 4. Let α be the endomor-

phism of V defined by α :







a
b
c
d





 �→







a − b
a − b
a − b

c − b − d





 . Does there exist a

two-dimensional subspace of V invariant under α?
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Exercise 325 Let V be a vector space over a field F and let α ∈
End(V ). If W and Y are subspaces of V which are invariant under
α, show that both W + Y and W ∩ Y are invariant under α.

Exercise 326 Let W be a subspace of a vector space V over a field F
and let S be the set of all α ∈ End(V ) such that W is invariant under
α. Is S necessarily an F -subalgebra of End(V )?

Exercise 327 Let V be a vector space over a field F and let α ∈
End(V ). If W is a subspace of V, show that the set of all subspaces
of W which are invariant under α, partially ordered by inclusion, has a
maximal element.

Exercise 328 Let V = R
∞ and let W be the subspace of V consisting

of all sequences [a1, a2, . . .] for which the series
∑∞

i=1 ai converges. Let
σ be a permutation of the set of all positive integers and let α ∈ End(V )
be defined by α : [a1, a2, . . .] →

[
aσ(1), aσ(2), . . .

]
. Is W invariant under

α?

Exercise 329 Let V be a vector space over a field F. Let 0 �= c ∈ F
and let α ∈ End(V ). Let {x0, x1, . . . , xn} be a set of vectors in V
satisfying α(x0) = cx0 and α(xi)− cxi = xi−1 for all 1 ≤ i ≤ n. Show
that F{x0, x1, . . . , xn} is a subspace of V which is invariant under α.

Exercise 330 Let F be a field which is not finite and let V be a vector
space over F having dimension greater than 1. For each 0 �= c ∈ F,
show that there exist infinitely-many distinct subspaces of V which are
invariant under the endomorphism σc of V.

Exercise 331 Let α and β be endomorphisms of a vector space V over
a field F and let θ ∈ Aut(V ) satisfy θα = βθ. Show that a subspace
W of V is invariant under α if and only if W ′ = {θ(w) | w ∈ W} is
invariant under β.

Exercise 332 Let α and β be endomorphisms of a vector space V
over a field F satisfying αβ = βα. Is ker(α) invariant under β?

Exercise 333 Let V be a vector space over a field F and let α ∈
End(V ) be a projection. Show that σ1 − α is also a projection.

Exercise 334 Let V be a vector space finitely generated over a field F
and let α ∈ End(V ) satisfy the condition α2(σ1 − α) = σ0. Is α
necessarily a projection?

Exercise 335 Let V be the space of all continuous functions from R to
itself and let W = R{sin(x), cos(x)} ⊆ V. Let δ be the endomorphism
of W which assigns to each function its derivative. Find a polynomial
p(X) ∈ R[X] of degree 2 satisfying p(δ) = σ0.
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Exercise 336 Let V be a vector space having finite dimension over Q

and assume that there exists an α ∈ Aut(V ) satisfying α−1 = α2 + α.
Show that dim(V ) is divisible by 3.

Exercise 337 Let n be a positive integer and let

G =











a1

...
an




 ∈ R

n

∣
∣
∣
∣
∣
∣
∣

ai ≥ 0 for all 1 ≤ i ≤ n





.

Let α be an endomorphism of R
n satisfying the condition that α(v) ∈ G

implies that v ∈ G. Show that α ∈ Aut(Rn).

Exercise 338 Let V be a vector space over a field F and let W and
Y be subspaces of V satisfying W + Y = V. Let Y ′ be a complement
of Y in V and let Y ′′ be a complement of W ∩ Y in W. Show that
Y ′ ∼= Y ′′.

Exercise 339 Let F be a field of characteristic other than 2 and let V
be a vector space over F. Let α,β ∈ End(V ) be projections satisfying the
condition that α + β is also a projection. Show that αβ = βα = σ0.

Exercise 340 Let V be a vector space over F and let α,β ∈ End(V ).
Show that α and β are projections satisfying ker(α) = ker(β) if and
only if αβ = α and βα = β.

Exercise 341 Let V be a vector space finitely generated over a field
F and let α �= σ1 be an endomorphism of V which is a product of
projections. Show that α /∈ Aut(V ).

Exercise 342 Let V be a vector space over Q and let α ∈ End(V ).
Show that α is a projection if and only if (2α − σ1)2 = σ1.

Exercise 343 Let α and β be endomorphisms of a vector space V over
a field F and let f(X) ∈ F [X] satisfy f(αβ) = σ0. Set g(X) = Xf(X).
Show that g(βα) = σ0.

Exercise 344 Let V = R
R and let g ∈ V. Find necessary and sufficient

conditions on g for the endomorphism f �→ gf of V to be a projection.

Exercise 345 Let W be a subspace of a vector space V over a field F
which is invariant under an endomorphism α of V. Let β ∈ End(V ) be a
projection satisfying the condition that im(β) = W. Show that βαβ = αβ.

Exercise 346 Let V be a vector space of finite dimension n over a field
F and let α ∈ End(V ). Show that there exists an automorphism β of
V and a projection θ of V satisfying α = βθ.
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Exercise 347 Let F be a field of characteristic other than 2 and let
V be a vector space over F. Let α ∈ End(V ) be a projection satisfying
the condition that α − β is a projection for all β ∈ End(V ). Show that
α = σ1.

Exercise 348 Let V be a vector space over F and let α,β ∈ End(V )
be projections satisfying the condition that im(α) and im(β) are disjoint.
Is it necessarily true that αβ = βα?

Exercise 349 Let V be a vector space of finite dimension n over a
field F and let S = End(V ) � Aut(V ). For α, β ∈ S, show that
im(α) = im(β) if and only if {aθ | θ ∈ S} = {βϕ | ϕ ∈ S}.

Exercise 350 Let F be a field. Does there exist an endomorphism α
of F 3 which is not a projection satisfying the condition that α2 is a
projection equal neither to σ0 nor to σ1.

Exercise 351 Let V be a vector space finite dimensional over a field F
and let α be an endomorphism of V. Show that there exist a positive
integer k such that im(αk) and ker(αk) are disjoint.

Exercise 352 Let F be a field of characteristic other than 2, and
let V be a vector space over F. Let α ∈ End(V ) satisfy α3 = α.
Show that V = W1 ⊕ W2 ⊕ W3, where W1 = {v ∈ V | α(v) = v},
W2 = {v ∈ V | α(v) = −v}, and W3 = ker(α).

Exercise 353 Let F be a field of characteristic other than 2 and let V
be a finitely-generated vector space over F. Show that every endomorphism
of V is the sum of two automorphisms of V.

Exercise 354 Let n > 1 be an integer and let θ : R
n → R be the

function defined by θ :






a1

...
an




 �→

∑n
i=1 a2

i . Assume that we can define an

operation • on R
n satisfying the condition that (Rn, •) is an associative

unital R-algebra with multiplicative identity e, and also satisfying the
condition that θ(v•w) = θ(v)θ(w) for all v, w ∈ R

n. Show that (Rn,+, •)
is a division algebra over R.

Exercise 355 Any sequence v = [a1, a2, . . .] ∈ R
∞ defines an endo-

morphism αv of R[X] which acts on elements of the canonical basis
of R[X] according to the rule αv : Xn �→

∑n
k=0

(
n
k

)
(k!)ak+1X

n−k for
each nonnegative integer n. Given a ∈ R, find v, w ∈ R

∞ such that
αv : p(X) �→ p(X + a) and αw : p(X) �→ p(X + a) − p(a).



8
Representation of linear
transformations by matrices

In this chapter we show how we can study linear transformations between
finitely-generated vector spaces by studying matrices1. Let V and W be
finitely-generated vector spaces over a field F, where dim(V ) = n and
dim(W ) = k. Fix bases B = {v1, . . . , vn} of V and D = {w1, . . . , wk}
of W. From Proposition 5.4, we know that if we are given a linear trans-
formation α ∈ Hom(V,W ) then for each 1 ≤ j ≤ n there exist scalars
a1j , . . . , akj satisfying the condition α(vj) =

∑k
i=1 aijwi, and that these

scalars are in fact uniquely determined by α. Thus α defines a matrix
[aij ] ∈ Mk×n(F ). Conversely, assume we have a matrix A = [aij ] ∈
Mk×n(F ). Then we know that every vector v in V can be written in
a unique way in the form

∑n
j=1 bjvj and so A defines a linear trans-

formation α ∈ Hom(V,W ) by setting α : v �→
∑k

i=1

(∑n
j=1 aijbj

)
wi.

Moreover, it is clear that different linear transformations in Hom(V,W )

1 The theory of matrices and their relation to linear transformations
was developed in detail by the 19th-century British mathematician Sir Arthur Cayley,
one of the most prolific researchers in history.
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define different matrices in Mk×n(F ) and different matrices in Mk×n(F )
define different linear transformations in Hom(V,W ). We summarize the
above remarks in the following proposition.

(8.1) Proposition: Let V be a vector space of finite dimension
n over a field F and let W be a vector space of finite dimension
k over F. For every basis B of V and every basis D of W
there exists a bijective function ΦBD : Hom(V,W ) → Mk×n(F ),
which is an isomorphism of vector spaces over F.

Proof: We have already seen that if B = {v1, . . . , vn} and D =
{w1, . . . , wk}, then the function ΦBD is defined by ΦBD(α) = [aij ],
where α(vj) =

∑k
i=1 aijwi for all 1 ≤ j ≤ n, and that this function is

bijective. We are therefore left to show that this is a linear transformation.
Indeed, if ΦBD(α) = [aij ] and ΦBD(β) = [bij ] then

(α + β)(vj) =
k∑

i=1

(aij + bij)wi =
k∑

i=1

aijwi +
k∑

i=1

bijwi = α(vj) + β(vj)

for all 1 ≤ j ≤ n, and so ΦBD(α + β) = ΦBD(α) + ΦBD(β). Similarly,
if c ∈ F then (cα)(vj) =

∑k
i=1 caijwi = c

(∑k
i=1 aijwi

)
= c (α(vj)) for

all 1 ≤ j ≤ n, and so ΦBD(cα) = cΦBD(α). Thus we see that ΦBD is
indeed a linear transformation and thus also an isomorphism. �

We have already seen that, in the above situation, dim(Mk×n(F )) = kn
and so, by Proposition 6.9, we also see that dim(Hom(V,W )) = kn.

Example: Let V = R
3 and let B be the canonical basis on V. Each

vector v =




a1

a2

a3



 ∈ V defines a linear transformation αv : V → V

given by αv : w �→ v × w. Then ΦBB(αv) =




0 −a3 a2

a3 0 −a1

−a2 a1 0



 .

Example: Let V = R
3 and W = R

2. Choose bases

B =









0.5
−0.5

0



 ,




0.5
0

−0.5



 ,




0

0.5
0.5
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of V and of D =
{[

1
1

]

,

[
1
0

]}

of W. If




r
s
t



 ∈ R
3 then there

exist b1, b2, b3 ∈ R satisfying



r
s
t



 = b1




0.5
−0.5

0



 + b2




0.5
0

−0.5



 + b3




0

0.5
0.5



 =
1
2




b1 + b2

−b1 + b3

−b2 + b3





and so we have to solve the system of linear equations

2r = b1 + b2

2s = −b1 + b3

2t = −b2 + b3

and if we do so, we get b1 = r− s + t, b2 = r + s− t, and b3 = r + s + t.

The matrix A =
[

3 5 7
4 8 2

]

defines a linear transformation α ∈
Hom(V,W ) given by

α : b1




0.5
−0.5

0



 + b2




0.5
0

−0.5



 + b3




0

0.5
0.5



 �→

(3b1 + 5b2 + 7b3)
[

1
1

]

+ (4b1 + 8b2 + 2b3)
[

1
0

]

.

so

α








r
s
t







 = (15r + 9s + 5t)
[

1
1

]

+ (14r + 6s − 2t)
[

1
0

]

=
[

29r + 15s + 3t
15r + 9s + 5t

]

.

It is very important to emphasize that the matrix representation of a
linear transformation depends on the bases which we fixed at the beginning,
and on the order in which the elements of the bases are written! If we
choose different bases or write the elements of a chosen basis in a different
order, we will get a different matrix. Shortly, we will consider the relation
between the matrices which represent a given linear transformation with
respect to different bases.

Let V be a vector space finitely generated over a field F, let α be
an endomorphism of V, and let W be a subspace of V which is
invariant under α. As we have already seen, the restriction β of α to
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W is an endomorphism of W. Now, let B = {v1, . . . , vk} be a basis for
W, which we can expand to a basis D = {v1, . . . , vn} for all of V. If
ΦDD(α) = [aij ] then for all 1 ≤ j ≤ k we have α(vj) =

∑k
i=1 aijvi and

so aij = 0 whenever 1 ≤ j ≤ k and k < i ≤ n. Thus we see that the

matrix ΦDD(α) is of the form
[

A11 A21

O A22

]

, where A11 = ΦBB(β).

The subspace Y = F{vk+1, . . . , vn} of V is a complement of W in
V. If it too is invariant under α then we would also have A21 = O
and so α is represented by a matrix composed of two square matrices
“strung out” along the diagonal. From a computational point of view,
such a representation has distinct advantages.

Beside addition and scalar multiplication of matrices, we can also define
the product of two matrices, provided that these matrices are of suitable
sizes. Let (K, •) be an associative unital algebra over a field F. If
A = [vij ] ∈ Mk×n(K) and B = [wjh] ∈ Mn×t(K) for some positive
integers k, n, and t, we define the matrix AB to be the matrix
[yih] ∈ Mk×t(K) where, for each 1 ≤ i ≤ k and all 1 ≤ h ≤ t, we
set yih =

∑n
j=1 vij • wjh. For the most part, we will be interested in this

construction for the case K = F, but sometimes we will have need of the
more general construction. Note that a necessary condition for the product
of two matrices to be defined is that the number of columns in the first
matrix be equal to the number of rows in the second matrix.

Example: If A =
[

2 3 2
−1 2 1

]

∈ M2×3(Q) and

B =




−1 0 2 −1

1 0 1 −2
2 1 0 −3



 ∈ M3×4(Q)

then AB =
[

5 2 7 −14
5 1 0 −6

]

∈ M2×4(Q) but BA is not defined.

Example: If we consider the matrices A =
[

2 3 2
−1 2 1

]

∈ M2×3(Q)

and B =




−1 0

1 0
2 1



 ∈ M3×2(Q) then AB =
[

5 2
5 1

]

∈ M2×2(Q) and

BA =




−2 −3 −2

2 3 2
3 8 5



 ∈ M3×3(Q).
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Suppose that A = [aij ] ∈ Mk×n(F ) and v =






b1

...
bn




 ∈ Fn. Then

Av =






c1

...
ck




 ∈ F k where, for each 1 ≤ i ≤ k, we have ci =

∑n
j=1 aijbj .

Denoting the columns of A by u1, . . . , un, we see that Av =
∑n

j=1 bjuj .

So we conclude that if there exists a nonzero vector v such that Av =




0
...
0




, then the columns of A must be linearly dependent. If every

element of F k is of the form Av for some v ∈ Fn, then the columns
of A must form a generating set for F k.

Let (K, •) be an associative unital algebra over a field F and let n

be a positive integer. If v =






v1

...
vn




 and w =






w1

...
wn




 are elements of

Kn then vT w = [
∑n

i=1 vi • wi] ∈ M1×1(K). This is called the interior
product of v and w. This 1 × 1 matrix is usually identified with the
scalar

∑n
i=1 vi •wi ∈ K, which we will denote by v �w, in a departure

from usual notation2.
Dually, the exterior product of v and w is defined to be the matrix

vwT = [yij ] ∈ Mn×n(K), where yij = vi•wj . We will denote the exterior
product of v and w by v ∧ w. Notice that the exterior product is not
commutative, but rather v ∧ w = (w ∧ v)T . Exterior products of vectors
are encountered far less often than interior products, but have important
applications in many areas, among them physics (in the Dirac model of
quantum physics, interior products are called bra-ket products, whereas
exterior products are called ket-bra products).

In particular, we note the following: let K be an algebra over a field
F , let A ∈ Mk×n(K), and let B ∈ Mn×t(K). Let vT

1 , . . . vT
k be the

rows of A and let w1, . . . , wt be the columns of B. Then AB = [cij ],
where cij = vi � wj for all 1 ≤ i ≤ k and all 1 ≤ j ≤ t.

2The usual notation is v · w, but that can cause confusion with the dot product,
which we will study later, in the case that F = C. For that reason, also, we use the
term “interior product” rather than the often-seen “inner product”.
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Let F be a field, let n be a positive integer, let v =






a1

...
an




 and

w =






ba1

...
bn




 belong to Fn, and let C = [cij ] ∈ Mn×x(F ). Then the

computation of v�Cw =
∑n

i=1 ai

(∑n
j=1 cijbj

)
requires n2 +n multipli-

cations and n2−1 additions. However, if we can find vectors u =






u1

...
un






and y =






y1

...
nn




 in Fn such that C = u ∧ y, then, by the distributive

law, v � Cw =
∑n

i=1 ai

(∑n
j=1 uiyjbj

)
= (

∑n
i=1 aiui)

(∑n
j=1 yjbj

)
and

this requires only 2n+1 multiplications and 2n−2 additions. Similarly,
if we can find vectors u, u′, y, y′ ∈ Fn such that C = u∧ y +u′ ∧ y′, then
the computation of v � Cw requires 4n + 2 multiplications and 4n − 4
additions. For large values of n, this can result in considerable saving,
especially if the computation is to be repeated frequently.

Example: Combinatorial optimization is the area of mathematics deal-
ing with the computational issues arising from finding optimal solutions
to such problems as the traveling salesman problem, testing Hamiltonian
graphs, sphere packing, etc. The general form of combinatorial optimiza-
tion problems is the following: let F be a subfield of R and let n be
a positive integer. Assume that we have a nonempty finite (and in gen-
eral very large) subset S of N

n ⊆ Fn. Usually, the set S arises from
the characteristic functions of certain subsets of {1, . . . , n} of interest in

the problem. Then, given a vector v =






a1

...
an




 ∈ Fn, we want to find

min {s � v | s ∈ S} . Note that if we consider F not as a subset of R but
as a subset of the optimization algebra R∞, then the problem becomes
one of computing p(a1, . . . , an), where

p(X1, . . . , Xn) =
∑





Xi1

1 · . . . · Xin
n

∣
∣
∣
∣
∣
∣
∣






i1
...
in




 ∈ S
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is a polynomial in several indeterminates over R∞ (polynomials with
coefficients in a semifield are defined in the same way as polynomials with
coefficients in a field).

Observe that multiplying a k × n matrix by an n × t matrix requires
kt(n − 1) arithmetic operations. If these numbers are all very large, as is
often the case in real-life applications of matrix theory, the computational
overhead – and risk of accumulated errors due to rounding and truncation
– is substantial.3 We will keep this in mind throughout our discussion, and
try to consider strategies of minimizing this risk. In this connection, we
should note that the product of two matrices has an important property:
let (K, •) be an associative unital algebra over a field F assume that
A = [vij ] ∈ Mk×n(K) and B = [wij ] ∈ Mn×t(K), where k, n, and t
are positive integers. Furthermore, let us pick positive integers

1 = k(1) < k(2) < . . . < k(p + 1) = k

1 = n(1) < n(2) < . . . < n(q + 1) = n

1 = t(1) < t(2) < . . . < t(r + 1) = t.

For all 1 ≤ i ≤ p and all 1 ≤ j ≤ q, let

Aij =






vk(i),n(j) . . . vk(i),n(j+1)

...
...

vk(i+1),n(j) . . . vk(i+1),n(j+1)




 .

This allows us to write A in block form






A11 . . . A1q

...
...

Ap1 . . . Apq




 . Note

that these blocks are not necessarily square matrices. In the same way,

we can write B as a matrix






B11 . . . B1t

...
...

Bq1 . . . Bqt




 . Then AB =






C11 . . . C1t

...
...

Cp1 . . . Cpt




 where, for each 1 ≤ i ≤ p and each 1 ≤ h ≤ t,

we have Cih =
∑q

j=1 AijBjh. A sophisticated use of this method can

3We will often mention large matrices, without being too specific as to what that
means. As a rule of thumb, a matrix is “large”, and calls for special treatment as such,
when it cannot be stored in the RAM memory of whatever computer we are using for our
computations. Such matrices occur in sufficiently-many applications that considerable
research is devoted to dealing with them.
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substantially decrease the number of operations needed to multiply two
matrices, as we shall see.

Needless to say, this seemingly odd definition of the product of two ma-
trices was not chosen at random4. Indeed, it satisfies certain important
properties. Thus, if (K, •) is an associative unital algebra over a field
F , if k, n, t, and p are positive integers, and if we have matrices
A ∈ Mk×n(K), B,B1, B2 ∈ Mn×t(K), and C ∈ Mt×p(K), then

(1) A(BC) = (AB)C;
(2) A(B1 + B2) = AB1 + AB2;
(3) (B1 + B2)C = B1C + B2C.

As a consequence, we see that if B ∈ Mn×t(K) is given, then the func-
tion from Mk×n(K) to Mk×t(K) defined by A �→ AB is a linear
transformation of vector spaces.

We also note that if A = [vij ] ∈ Mk×n(K) and B = [wjh] ∈ Mn×t(K),
then AT ∈ Mn×k(K) and BT ∈ Mt×n(K) so BT AT ∈ Mt×k(K).
Indeed, BT AT = [yhi], where yhi =

∑n
j=1 wjh • vij . Hence, if K is also

commutative (and in particular if K = F ), we have BT AT = (AB)T .

The definition of matrix multiplication is in fact a direct consequence of
the relation between matrices and linear transformations, which we have
already observed. This is best seen in the following result.

(8.2) Proposition: Let V be a vector space of finite dimension
n over a field F for which we have chosen a basis B = {v1, . . . , vn},
let W be a vector space of finite dimension k over F for which
we have chosen a basis D = {w1, . . . , wk}, and let Y be a vector
space of finite dimension t over F, for which we have chosen
a basis E = {y1, . . . , yt}. If α ∈ Hom(V,W ) and β ∈ Hom(W,Y )
then ΦBE(βα) = ΦDE(β)ΦBD(α).

4 Matrix multiplication was first defined by the 19th-
century French mathematician Jacques Philippe Binet. It took some getting used
to; many decades later, the father of astrophysics, Sir Arthur Eddington, still wrote
“I cannot believe that anything so ugly as multiplication of matrices is an essential part
of the scheme of nature”.



8. Representation of linear transformations by matrices 125

Proof: Assume that ΦBD(α) = [aij ] and ΦDE(β) = [bhi]. Then

α : v �→
k∑

i=1

n∑

j=1

cjaijwi and βα : v �→
t∑

h=1

k∑

i=1

n∑

j=1

cjbhiaijyh,

showing the desired equality. �

We can extend the definition of matrix multiplication as follows: let h,
k, and n be positive integers and let V be a vector space over a field
F. If A = [aij ] ∈ Mh×k(F ) and if M = [vjt] ∈ Mk×n(V ), we can define
AM ∈ Mh×n(V ) to be the matrix [uit], where uit =

∑k
j=1 aijvjt for

all 1 ≤ i ≤ h and 1 ≤ t ≤ n. Notice that if A,B ∈ Mk×k(F ) and if
M,N ∈ Mk×n(V ) then

(1) A(BM) = (AB)M ;
(2) A(M + N) = AM + AN ;
(3) (A + B)M = AM + BM.

In general, and especially when we are talking of actual computations,
it is easier to work with matrices than with linear transformations, and in-
deed most of the modern computer software and hardware are designed to
facilitate easy and speedy matrix computation. Therefore, given finitely-
generated vector spaces V and W over a field F, it is usual to fix
bases for them and then identify Hom(V,W ) with the space of all ma-
trices over F of the appropriate size. The choice of the correct bases
then becomes critical, and we will focus on that throughout the following
discussions. Such a choice usually depends on the problem at hand. In
particular, the automatic choice of canonical bases, when they exist, may
not be the best for a given problem, and can entail a considerable cost both
in computational time and numerical accuracy.

Exercises

Exercise 356 Let V be the vector space over R composed of all polyno-
mials in R[X] having degree less than 3 and let W be the vector space
over R composed of all polynomials in R[X] having degree less than 4.
Let α : V → W be the linear transformation defined by

α : a + bX + cX2 �→ (a + b) + (b + c)X + (a + c)X2 + (a + b + c)X3.

Select bases B = {1,X + 1,X2 + X + 1} for V and

D = {X3 − X2,X2 − X,X − 1, 1}

for W. Find the matrix ΦBD(α).
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Exercise 357 Let K = M2×2(R) and let A =
[

a b
c d

]

∈ K. Let D be

the canonical basis of K. If α, β ∈ End(K) are defined by α : X �→ XA
and β : X �→ AX, find ΦDD(α) and ΦDD(β).

Exercise 358 Given the matrix A =




0 1 2 3
1 3 4 0
3 2 0 1



 ∈ M3×4(R), find

the set of all matrices B ∈ M4×3(R) satisfying AB =




1 0 0
0 1 0
0 0 1



 .

Exercise 359 Given the matrix A =




1 8
3 5
2 2



 ∈ M3×2(Q), find the set

of all matrices B ∈ M2×3(Q) satisfying AB =




1 0 0
0 1 0
0 0 1



 and find

the set of all matrices C ∈ M2×3(Q) satisfying CA =
[

1 0
0 1

]

.

Exercise 360 Given the matrix A =







1 −1 2
0 1 2

−1 3 1
2 1 −1





 ∈ M4×3(R),

find the set of all matrices B ∈ M3×4(R) satisfying BA =




1 0 0
0 1 0
0 0 1



 .

Exercise 361 Find the matrix representing the linear transformation

α :




a
b
c



 �→
[

a + b + c
b + c

]

from R
3 to R

2 with respect to the bases









−1

0
2



 ,




0
1
1



 ,




3

−1
0









of R

3 and
{[

−1
1

]

,

[
1
0

]}

of R
2.

Exercise 362 Find the set of all matrices A ∈ M4×3(R) satisfying the

condition







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0





 A = A




0 1 0
0 0 1
0 0 0



 .
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Exercise 363 Let α be an endomorphism of R
3 represented with respect

to some basis by the matrix




0 2 −1

−2 5 −2
−4 8 −3



 . Is α a projection?

Exercise 364 Find the real numbers missing from the following equation:






1 −3
1 ∗
1 ∗
∗ 1







[
−1 ∗ 7 ∗
∗ 1 ∗ 0

]

=







−25 −1 1 3
−1 ∗ ∗ ∗
∗ ∗ 5 ∗
∗ ∗ ∗ 0





 .

Exercise 365 Let α :




a
b
c



 �→




3a + 2b
−a − c
a + 3b



 be an endomorphism of

R
3. Find the matrix representing α with respect to the basis B =









1

−1
0



 ,




1
0

−1



 ,




0
1
0









of R

3.

Exercise 366 Let D = {v1, v2, v3} be a basis for R
3 and let α be

the endomorphism of R
3 satisfying ΦDD(α) =




−1 −1 −3
−5 −2 −6

2 1 3



 . Find

ker(α).

Exercise 367 Let V be the subspace of R[X] consisting of all polyno-
mials of degree less than 3 and choose the basis B = {1,X,X2} for V.

Let α ∈ End(V ) satisfy ΦBB(α) =




1 1 1
0 2 2
0 0 3



 . Let D be the basis

{1,X + 1, 2X2 + 4X + 3} for V. What is ΦDD(α)?

Exercise 368 Let α ∈ End(R3) be represented with respect to the canon-

ical basis by the matrix




2 2 0
1 1 2
1 1 2



 . Find a real number a such that

α is represented with respect to the basis









a

−1
0



 ,




−2

a
1



 ,




1
1
a










by the matrix




0 0 0
0 1 0
0 0 4



 .



128 8. Representation of linear transformations by matrices

Exercise 369 Let V be the subspace of R[X] consisting of all polyno-
mials of degree less than 3 and let α ∈ End(V ) be defined by

α : aX2 + bX + c �→ (a + 2b + c)X2 + (3a − b)X + (b + 2c).

Find ΦDD(α), where D = {X2 + X + 1,X2 + X,X2}.

Exercise 370 Find all rational numbers a for which there exists a nonzero

matrix B ∈ M4×3(Q) satisfying B




a 1 1
1 1 a
1 a 1



 =







0 0 0
0 0 0
0 0 0
0 0 0





 .

Exercise 371 For which real numbers a does there exist a real number

b satisfying
[

a 1 1
1 1 a

]



b −1
1 −1
1 b



 =
[

1 0
0 1

]

?

Exercise 372 Let V = R
R and let W be the subspace of V gener-

ated by the linearly-independent set B = {1, x, ex, xex}. Let δ be the
endomorphism of W which assigns to each function its derivative. Find
ΦBB(δ).

Exercise 373 Let B = {1 + i, 2 + i}, which is a basis for C as a
vector space over R. Let α be the endomorphism of this space defined by
α : z �→ z. Find ΦBB(α).

Exercise 374 Let F = GF (3) and let α : F 3 → F 2 be the linear

transformation defined by α :




a
b
c



 �→
[

a − b
2a − c

]

. Let β : F 2 → F 4

be the linear transformation defined by β :
[

a
b

]

�→







b
a

2b
2a





 . Find the

matrix representing βα with respect to the canonical bases.

Exercise 375 Let α ∈ End(R4) be represented with respect to the canon-

ical basis by the matrix







3 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1





 . Given a vector v ∈ R

4

satisfying the condition that all entries of α(v) are nonnegative, show that
all entries of v are nonnegative.
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Exercise 376 Let V and W be vector spaces over a field F and
choose bases {vi | i ∈ Ω} and {wj | j ∈ Λ} for V and W respectively.
Let p : Ω × Λ → F be a function satisfying the condition that the set
{j ∈ Λ | p(i, j) �= 0} is finite for each i ∈ Ω. Let αp : V → W
be the function defined as follows: if v =

∑
i∈Γ aivi, where Γ is a

finite subset of Ω and where the ai are scalars in F, then αp(v) =∑
i∈Γ

∑
j∈Λ aip(i, j)wj . Show that αp is a linear transformation and that

every linear transformation from V to W is of this form.

Exercise 377 Let k and n be positive integers, let v ∈ R
n, and let

A ∈ Mk×n(R). Show that Av = O if and only if AT Av = O.

Exercise 378 Let A ∈ M3×2(R) and B ∈ M2×3(R) be matrices satis-

fying AB =




8 2 −2
2 5 4

−2 4 5



 . Calculate BA.

Exercise 379 Find matrices A ∈ M3×2(R) and B ∈ M2×3(R) satis-

fying AB =




1 1 1

−2 0 −6
0 1 −2



 .

Exercise 380 Let F be a field and let n be a positive integer. Let W
be a nontrivial subspace of the vector space V = Mn×n(F ) satisfying the
condition that if A ∈ W and B ∈ V then AB and BA both belong to
W. Show that W = V.

Exercise 381 Let a, b, c, a′, b′, c′ ∈ C satisfy the condition that aa′+bb′+

cc′ = 2, and let A = I −




a
b
c




[

a′ b′ c′
]
. Calculate A2.

Exercise 382 Find a nonzero matrix A in M2×2(R) satisfying v�Av =
0 for all v ∈ R

2.

Exercise 383 Let α be the endomorphism of Q
4 represented with respect

to the canonical basis by the matrix







1 0 1 −1
2 1 2 1
0 1 6 1
3 1 3 4





 . Find a two-

dimensional subspace of Q
4 which is invariant under α.

Exercise 384 Find the set of all matrices A in M3×3(R) satisfying

A2 =




0 1 0
0 0 0
0 0 0



 .
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Exercise 385 Find the set of all real numbers a such that the endomor-

phism of R
3 represented by the matrix




1 a a
2 2a 4
3 a 6



 with respect to

the canonical basis is an automorphism.

Exercise 386 Find the set of all real numbers a and b such that the

endomorphism of R
3 represented by the matrix




1 a b
0 a 1
0 a 1



 with respect

to the canonical basis is a projection.

Exercise 387 Let n be a positive integer and let F be a field. For each
v, w ∈ Fn, consider the function τv,w : Fn → Fv defined by τv,w : y �→
(w�y)v (this function is called the dyadic product function). Show that
τv,w a linear transformation. Is the function Fn → Hom(V, Fv) defined
w �→ τv,w a linear transformation?

Exercise 388 Let k < n be positive integers and let F be a field. Given
a matrix A ∈ Mk×n(F ), do there necessarily exist matrices B,C ∈
Mn×k(F ) satisfying the condition that AB = O ∈ Mk×k(F ) and CA =
O ∈ Mn×n(F )?

Exercise 389 Let A ∈ Mn×n(Q) be a matrix satisfying the condition
that if v ∈ Q

n is a vector all of the components of which are nonnegative,
then all of the components of Av are nonnegative. Are all of the entries
in A necessarily nonnegative?



9
The algebra of square matrices

We are now going to concentrate on the algebraic structure of sets of the
form Mn×n(K), where n is a positive integer and (K, •) is an associative
unital algebra over a field F. From what we have already seen, this is again
an associative unital F -algebra, which will not be commutative if n > 1.
The additive identity of this algebra is the matrix all of the entries of which
equal 0K . The additive inverse of a matrix A = [dij ] ∈ Mn×n(K) is the
matrix [−aij ]. The multiplicative identity of Mn×n(K) is the matrix
E = [dij ] given by

dij =
{

e if i = j
0 otherwise

where e is the multiplicative identity of (K, •).
The most important case is, of course, that of K = F. In this case,

the additive identity is O and the multiplicative identity is the matrix
I = [aij ] defined by

aij =
{

1 if i = j
0 otherwise .

If K is a vector space of dimension n over F and if B is a basis of K,
then it is straightforward to verify that the function ΦBB : End(K) →
Mn×n(F ) is an isomorphism of unital F -algebras.

If F is a field and if n is a positive integer then, corresponding to the
associative F -algebra Mn×n(F ), we have the Lie algebra Mn×n(F )−.
This Lie algebra is called the general Lie algebra defined by Fn.

131
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Example: Let F be a field and let A = [aij ] ∈ M4×4(F ). Then A
can also be written in block form as









[
a11 a12

a21 a22

] [
a13 a14

a23 a24

]

[
a31 a32

a41 a42

] [
a33 a34

a43 a44

]








∈ M2×2(K),

where K = M2×2(F ). Addition and multiplication of matrices are so
defined (and not accidentally!) so that they give the same results whether
performed in M4×4(F ) or in M2×2(K).

We begin by identifying some particularly-important square matrices
over a a unital associative F -algebra K, and with them some significant
subalgebras of Mn×n(K).

Let (K, •) is an associative unital F -algebra and let n be a positive
integer. A matrix A = [dij ] ∈ Mn×n(K) is a diagonal matrix if and
only if there exist elements c1, . . . , cn of K such that

dij =
{

ci if i = j
0K otherwise .

The matrices O and E are diagonal. Moreover, the sum and product
of diagonal matrices are diagonal matrices, and so the set of all diagonal
matrices is an F -subalgebra of Mn×n(K). If K is commutative (and, in
particular, if K = F ) then this algebra is also commutative. The units
of the subalgebra are all diagonal matrices in which each ci is a unit

of K (and hence surely nonzero). In this case,






c1 . . . 0K

...
. . .

...
0K . . . cn






−1

=






c−1
1 . . . 0K

...
. . .

...
0K . . . c−1

n




 .

Example: Let F be a field, let (K, •) is an associative unital F -
algebra, and let n be a positive integer. A matrix A = [aij ] ∈ Mn×n(K)
is a scalar matrix if and only if there exists a scalar c ∈ K such that
aij = c when i = j and aij = 0K otherwise. We denote this matrix
by cE (and, in particular, cI when K = F ). Scalar matrices are surely
diagonal matrices, and both O and E are scalar matrices. Moreover, the
sum and product of scalar matrices are scalar matrices. If c, d ∈ K then
(cE)(dE) = (dE)(cE) and if 0K �= c ∈ K is a unit, then (cE)(c−1E) = E.
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Hence the set of all scalar matrices over F forms an F -subalgebra of
Mn×n(F ), which is in fact a field. The function F → Mn×n(F ) defined
by c �→ cI is a monic homomorphism of F -algebras, and so we can identify
F with the subfield of all scalar matrices of Mn×n(F ). Moreover, it is
also easy to see that (cI)A = A(cI) = cA for any A ∈ Mn×n(F ).

Let (K, •) is an associative unital F -algebra, let n be a positive
integer, and let d be a positive integer less than n. A matrix A =
[vij ] ∈ Mn×n(K) is a band matrix of width 2d − 1 if and only if
aij = 0K whenever |i − j| > d − 1. Thus, the band matrices of width 1

are the diagonal matrices. The matrix









1 2 0 0 0
2 3 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 4 4









∈ M5×5(R)

is an example of a band matrix of width 3. The set of band matrices
of fixed width is closed under addition and contains O and I, but is
not necessarily closed under multiplication, and so is not a subalgebra of
Mn×n(K). However, it is closed under scalar multiplication and so is a
subspace of the vector space Mn×n(K) over F.

Band matrices over F are very important for numerical computations,
especially when d is small relative to n. Of particular importance are
band matrices of width 3, which are also known as tridiagonal matrices,
and have important use in the computation of quadratic splines and in the
computation of extremal eigenvalues of matrices.

A special type of tridiagonal matrix in M2n×2n(F ), which we will see

again later, is one of the form








A11 O . . . O
O A22 . . . O

. . .
O . . . O Ann








, where the Aii

are 2×2 blocks. Note that this matrix can also be thought of as a diagonal
matrix in Mn×n(K), where K = M2×2(F ). More generally, if d and
n are positive integers, then any diagonal matrix in Mn×n(L), where
L = Md×d(K), is a band matrix of width 2d − 1 in Mdn×dn(K).

Let (K, •) is an associative unital F -algebra and let n be a posi-
tive integer. A matrix A = [cij ] ∈ Mn×n(K) is an upper-triangular
matrix if and only if cij = 0K whenever i > j. Thus, the matrix








1 2 6 3 7
0 3 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 4








∈ M5×5(R) is upper triangular. The set of all upper-
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triangular matrices includes the set of diagonal matrices, is closed under
addition, and contains O and E. Moreover, it is closed under mul-
tiplication, and so is an F -subalgebra of Mn×n(K). In the case that
K = F, we see that the dimension of Mn×n(F ) as a vector space over
F equals n

2 (n + 1). Upper-triangular matrices arise naturally in many
applications, as we will see below. In a similar manner, we say that a ma-
trix A = [cij ] ∈ Mn×n(K) is a lower-triangular matrix if and only if
cij = 0K whenever i < j. Again, the set of all lower-triangular matrices
is a subspace of the vector space Mn×n(K) over F and, indeed, an
F -subalgebra. Note that a matrix A is upper triangular if and only if
AT is lower triangular.

A matrix A = [cij ] ∈ Mn×n(K) is symmetric if and only if A = AT .
That is, A is symmetric if and only if cij = cji for all 1 ≤ i, j ≤ n. If
B is any matrix in Mn×n(K) then B + BT is symmetric. If K is
commutative and if C ∈ Mk×n(K) for any positive integers k and n,
then CCT ∈ Mk×k(K) and CT C ∈ Mn×n(K) are symmetric. If n is
a positive integer and F is a field, then v ∧ v is a symmetric matrix in
Mn×n(F ) for all v ∈ Fn. Diagonal matrices are clearly symmetric and
the set of symmetric matrices in Mn×n(K) is closed under taking sums
and scalar multiples, and so it is a subspace of the vector space Mn×n(K)
over F. In the case K = F, the dimension of Mn×n(F ) equals n

2 (n+1).
However, the set of symmetric matrices is not closed under products. For

example, the matrices A =




2 5 1
5 2 0
1 0 1



 and B =




1 2 1
2 0 0
1 0 3



 in

M3×3(R) are symmetric but AB =




13 4 5
9 10 5
2 2 4



 is not. Nonetheless,

if A and B are a commuting pair of symmetric matrices then (AB)T =
(BA)T = AT BT = AB, so AB is again symmetric.

Similarly, a matrix A = [cij ] ∈ Mn×n(K) is skew symmetric if and
only if A = −AT . The set of all skew-symmetric matrices in Mn×n(K)
is again a subspace of Mn×n(K). Note that if F is a field having
characteristic other than 2, then any matrix A ∈ Mn×n(K) can be
written as the sum of a symmetric matrix and a skew-symmetric matrix,
since A = 1

2 (A+AT )+ 1
2 (A−AT ). In one of the examples after Proposition

5.14, we saw that this representation is in fact unique. The Lie product of
two skew-symmetric matrices is again skew-symmetric.
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Example: Let n be a positive integer. A matrix A = [aij ] ∈ Mn×n(R)
is a Markov1 matrix if and only if aij ≥ 0 for all 1 ≤ i, j ≤ n and∑n

j=1 ahj = 1 for each 1 ≤ h ≤ n; it is a stochastic matrix if and only
if both A and AT are Markov matrices. It is easy to show that the
product of two Markov matrices is again a Markov matrix and the product
of two stochastic matrices in Mn×n(R) is again a stochastic matrix.

Markov matrices arise naturally in probability theory. In particular, if
we have a system which, at each tick of a (discrete) clock, is in one of the
distinct states s1, . . . , sn and if, for each 1 ≤ i, j ≤ n, we denote by pij

the probability that if the situation is in state i at a given time t then
it will be in state j at time t + 1, the matrix [pij ] is a Markov matrix.

As we have already pointed out, a matrix O �= A ∈ Mn×n(F ) is not
necessarily a unit. The units of the F -algebra of square matrices are known
as nonsingular matrices; the other matrices are singular2 matrices. By
what we have already noted, the product of nonsingular matrices is again
nonsingular. Let V be a vector space over F of dimension n and
let B be a basis of V. Then there exists an endomorphism α of
V such that A = ΦBB(α). If A is a unit then there also exists an
endomorphism β of V satisfying A−1 = ΦBB(β). This means that
I = AA−1 = ΦBB(α)ΦBB(β) = ΦBB(αβ) and so αβ = σ1, and similarly
βα = σ1. Therefore α ∈ Aut(V ) and β = α−1.

Example: Let F be a field and let n be a positive integer. If c ∈ F
and v, w ∈ Fn, then the matrix A = I + c(v ∧ w) is nonsingular if and
only if the scalar 1 + c(v � w) is nonzero. Indeed, direct computation
shows that if 1 + c(v � w) �= 0, then A−1 = I + d(v ∧ w), where

1 Russian mathematician Andrei Markov made major contribu-
tions to probability theory at the beginning of the twentieth century.

2 These terms were first used by American mathematician Maxime
Bôcher in 1907. He was also the first to popularize the terms “linearly dependent”
and “linearly independent”.
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d = −c [1 + c(v � w)]−1 and if 1+ c(v�w) = 0 then Av = v + c(v�w)v
is the 0-vector, and so A must be singular.

Example: The multiplicative inverse of a “nice” nonsingular matrix
may not be “nice”. Thus, if A is a nonsingular matrix all of the entries of
which are nonnegative, it does not follow that all of the entries of A−1 are

nonnegative. For example, if we choose A =




1 1 1
1 2 1
1 1 2



 then direct

computation shows us that A−1 =




3 −1 −1

−1 1 0
−1 0 1



. If A = [aij ] is the

n × n tridiagonal matrix with aii = 2 for all 1 ≤ i ≤ n and aij = −1
whenever |i − j| = 1, then not only is A−1 not tridiagonal, but in fact
no entries in A−1 equal 0, for any n > 1.

Example: Let n be a prime positive integer. The complex number
cn = cos

(
2π
n

)
+ i sin

(
2π
n

)
is called a primitive root of unity of degree

n, since it easy to check that cn
n = 1 but ci

n �= 1 for all 0 < i < n.
Therefore, c−1

n = cn−1
n for all n. For each z ∈ C, let F (z) ∈ Mn×n(C)

be the matrix [aij ] defined by aij = z(i−1)(j−1) for all 1 ≤ i, j ≤ n.
It is straightforward to show that the matrix F (cn) is nonsingular and,
indeed, F (cn)−1 = 1

nF (c−1
n ). The endomorphism ϕn of C

n which
is represented with respect to the canonical basis by the matrix F (cn)
is called a discrete Fourier transform of C

n. This endomorphism
is of great importance in applied mathematics. An algorithm, known as
the fast Fourier transform (FFT), introduced by J. W. Colley and
John W. Tukey3 in 1965, allows one to calculate ϕn(v) in an order of
n log(n) arithmetic operations, rather than n2, as one would anticipate.
This facilitates the use of Fourier transforms in applications. A similar
construction is also possible over finite fields, and especially over fields of
the form GF (p). We will look at this example again in Chapter 15.

3 Joseph Fourier was a close friend of Napoleon
and served for many years as permanent secretary of the Parisian Academy of Sciences.
He worked primarily in applied mathematics, and developed many important tools in this
area. John W. Tukey was a twentieth-century American statistician who developed
many advanced mathematical tools in statistics.
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A closely-related endomorphism, the discrete cosine transform is used
in defining the JPEG algorithm for image compression.

Example: The subset T of M2×2(R) consisting of all matrices of the

form
[

a b
−b a

]

is easily checked to be an R-subalgebra of M2×2(R).

Moreover, the function γ : C → T given by γ : a + bi �→
[

a b
−b a

]

is

an R-algebra isomorphism.

Let K be an associative unital algebra over a field F having multi-
plicative identity e, and let n be a positive integer. Let E be the
multiplicative identity of Mn×n(K) A matrix A = [cij ] ∈ Mn×n(K) is
an elementary matrix if and only if it is of one of the following forms:

(1) Ehk, the matrix formed from E by interchanging the hth and
kth columns, where h �= k;

(2) Eh;c, the matrix formed from E by multiplying the hth column
by 0K �= c ∈ K;

(3) Ehk;c, the matrix formed from E by adding c times the kth
column to the hth column, where h �= k, where c ∈ K.

It is easy to verify that matrices of the form Ehk and Ehk;c are always
nonsingular, with E−1

hk = Ehk and E−1
kh;c = Ehk;−c. If c is a unit in

K, then matrices of the form Eh;c are nonsingular, with E−1
h;c = Eh,c−1 .

We note that the transpose of an elementary matrix is again an elementary
matrix. Indeed, ET

hk = Ehk and ET
h;c = Eh;c for all 1 ≤ h, k ≤ n and

0K �= c ∈ K, while ET
hk;c = Ekh;c for all 1 ≤ h �= k ≤ n and all c ∈ K.

As the name clearly implies, there is a connection between the elementary
automorphisms which we defined previously and the elementary matrices.
Indeed, if K = F and if B is the canonical basis of Fn, then Ehk =
Φ(εhk), Eh;c = Φ(εh;c), and Ehk;c = Φ(εhk;c).

Let us see what happens when one multiplies an arbitrary matrix in
Mn×n(K) on the left by an elementary matrix:

(1) If B ∈ Mn×n(K) then EhkB is the matrix obtained from B by
interchanging the hth and kth rows of B. Thus, for example, in M4×4(Q)
we look at the effect of E24 :







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0













5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2





 =







5 6 4 1
3 3 2 2
0 4 2 7
3 2 2 2





 .

(2) If B ∈ Mn×n(K) then Eh;cB is the matrix obtained from B by
multiplying the hth row of B by c. Thus, for example, in M4×4(Q) we
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look at the effect of E2;5 :






1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1













5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2





 =







5 6 4 1
15 10 10 10
0 4 2 7
3 3 2 2





 .

(3) If B ∈ Mn×n(K) then Ehk;cB is the matrix obtained from B
by adding c times the the hth row to the kth row. Thus, for example, in
M4×4(Q) we look at the effect of E13;2 :







1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1













5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2





 =







5 6 4 1
3 2 2 2

10 16 10 9
3 3 2 2





 .

(9.1) Proposition: If F is a field, if n is a positive integer,
and if A,B,C,D ∈ Mn×n(F ) then:

(1) When A and B are nonsingular, so is AB, with (AB)−1 =
B−1A−1;

(2) When AB is nonsingular, both A and B are nonsingular;
(3) When A and B are nonsingular,

A−1 + B−1 = A−1(B + A)B−1;

(4) When I + AB is nonsingular, so is I + BA, and

(I + BA)−1 = I − B(I + AB)−1A;

(5) (Guttman’s Theorem) If A is nonsingular and if v, w ∈ Fn

satisfy the condition that 1 + w � A−1v �= 0, then the matrix
A + v ∧ w ∈ Mn×n(F ) is nonsingular and satisfies (A + v ∧ w)−1 =
A−1 −

(
1 + w � A−1v

)−1 (
A−1[v ∧ w]A−1

)
.

(6) (Sherman-Morrison-Woodbury Theorem4) When the ma-
trices C, D, D−1 + AC−1B and C + BDA are nonsingular, then
(C + BDA)−1 = C−1 − C−1B(D−1 + AC−1B)−1AC−1.

4 Louis Guttman was a 20th-century American/Israeli statistician
and sociologist, who developed many advanced mathematical tools for use in statistics.
Jack Sherman, Winifred J. Morrison, and Max Woodbury were 20th-century
American statisticians.
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Proof: (1) This is a special case of a general remark about units in
associative F -algebras, which we have already noted.

(2) Let V a vector space of dimension n over F, and let D
be a basis of V. Then there exist endomorphisms α and β of V
satisfying A = ΦDD(α) and B = ΦDD(β), and so AB = ΦDD(αβ).
Since AB is nonsingular, we know that αβ ∈ Aut(V ). Then there
exists an automorphism γ of V satisfying γ(αβ) = σ1 = (αβ)γ. Then
(γα)β = σ1 = α(βγ) and so, by Proposition 7.4, we know that both α and
β are automorphisms of V and hence both A and B are nonsingular.

(3) This is an immediate consequence of the fact that A(A−1+B−1)B =
B + A.

(4) We note that

(I + BA)
[
I − B(I + AB)−1A

]
= I + BA − (B + BAB)(I + AB)−1A

= I + BA − B(I + AB)(I + AB)−1A

= I + BA − BA = I.

(5) A simple calculation shows us that if x, y ∈ Fn satisfy the condition
that c = 1 + y � x is nonzero, then
(
I − c−1[x ∧ y]

)
(I + [x ∧ y]) = I + x ∧ y − c−1[x ∧ y] − c−1[x ∧ y]2

= I + x ∧ y − c−1c[x ∧ y] = I

and so (I + [x ∧ y])−1 = I − c−1 [x ∧ y] . Therefore, if we set d = 1 + w�
A−1v, then

(A + v ∧ w)−1 =
[
A
(
I + A−1[v ∧ w]

)]−1
=

(
I + A−1[v ∧ w]

)−1
A−1

=
[
I − d−1

(
A−1[v ∧ w]

)]
A−1

= A−1 − d−1
(
A−1[v ∧ w]A−1

)

as required.
(6) First note that I + C−1BDA = C−1(C + BDA) and so, by (1),

this matrix too is nonsingular. By (4),

(I + C−1BDA)−1 = I − C−1B(I + (DAC−1B)DA

and so

(C + BDA)−1 =
[
C(I + C−1BDA)

]−1

=
[
I − C−1B(I + DAC−1B)−1DA

]
C−1

= C−1 − C−1B
[
D−1(I + DAC−1B)

]−1
AC−1

= C−1 − C−1B(D−1 + AC−1B)−1AC−1.

as required. �
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Guttman’s Theorem is important in the following context: assume we
have calculated A−1 for some square matrix A and now we have to
calculate B−1, where B differs from A in only one entry. With the help
of this result, we can make use of our knowledge of A−1 to calculate B−1

with relative ease and speed. The Sherman-Morrison-Woodbury Theorem
has similar uses.

In particular, we note from Proposition 9.1 that, if A,B ∈ Mn×n(F ),
then AB is nonsingular if and only if BA is nonsingular. We should
also note that, if A,B ∈ Mn×n(F ), then BT AT = (AB)T and so,
if A is a nonsingular matrix and B = A−1 then AB = I and so
BT AT = IT = I and so AT is also nonsingular. Moreover, this shows
that (AT )−1 = (A−1)T for every nonsingular matrix A ∈ Mn×n(F ).

(9.2) Proposition: Let F be a field, let n be a positive
integer, and let A,B ∈ Mn×n(F ), where A is nonsingular. Then
there exist unique matrices C and D in Mn×n(F ) satisfying
CA = B = AD.

Proof: Define C = BA−1 and D = A−1B. Then surely CA =
B = AD. If C ′ and D′ are matrices satisfying C ′A = B = AD′ then
C ′ = (C ′A)A−1 = BA−1 = C and D′ = A−1(AD′) = A−1B = D, and
so we have uniqueness. �

Example: The matrices C and D in Proposition 9.2 need not be the

same. For example, if A,B ∈ M2×2(R) are defined by A =
[

1 3
0 1

]

and B =
[

1 0
3 1

]

then A−1 =
[

1 −3
0 1

]

, C =
[

1 −3
3 −8

]

and

D =
[

−8 −3
3 1

]

.

(9.3) Proposition: Let F be a field, let n be a positive integer,
and let A = [aij ] ∈ Mn×n(F ). Then the following conditions are
equivalent:

(1) A is nonsingular;
(2) The columns of A are distinct and the set of these columns

is a linearly-independent subset of Fn;
(3) The rows of A are distinct and the set of these rows is a

linearly-independent subset of M1×n(F ).

Proof: (1) ⇔ (2): Denote the columns of A by y1, . . . , yn. Let V = Fn

and let B = {v1, . . . , vn} be the canonical basis of V. If two columns of
A are equal or if the set of columns is linearly dependent, there exist scalars
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c1, . . . , cn, not all equal to 0, such that A






c1

...
cn




 =

∑n
i=1 ciyi =






0
...
0




 .

But if (1) holds, then






c1

...
cn




 = A−1






0
...
0




 =






0
...
0




 , which is a

contradiction. Therefore (2) holds. Conversely, assume (2) holds. Then
the endomorphism α of V given by v �→ Av is a monic and so an
automorphism of V. But A = ΦBB(α), and so, as we have seen, A is
nonsingular.

(1) ⇔ (3): This follows directly from the equivalence of (1) and (2), given
the fact that a matrix A is nonsingular if and only if AT is nonsingular.
�

Example: Let F be a field and let n > 1 be an integer. If v, w ∈ Fn,
then the columns of v∧w ∈ Mn×n(F ) are linearly dependent and so v∧w
is always singular.

Example: If F is a field and if U = [uij ] ∈ Mn×n(F ) is an upper-
triangular matrix satisfying the condition that uii �= 0 for all 1 ≤ i ≤ n
then, by Proposition 9.3, it is clear that U is nonsingular. We claim that,
moreover, U−1 is again upper triangular. Let us prove this contention by
induction on n. It is clearly true for n = 1. Assume therefore that n > 1
and that we have already shown that the inverse of any upper-triangular

matrix in M(n−1)×(n−1)(F ) is upper-triangular. Write U =
[

A y
z unn

]

,

where A ∈ M(n−1)×(n−1)(F ), y ∈ Fn−1, . and z =






0
...
0






T

. Assume

that U−1 =
[

B x
wT b

]

, where B ∈ M(n−1)×(n−1)(F ) and w, x ∈ Fn−1.

Then AB + y ∧ w = I, Ax + by = zT , unnwT = z, and unnb = 1, so
we must have b = u−1

nn �= 0 and wT = z. Therefore y ∧ w = O and so
B = A−1. By hypothesis, B is upper triangular and so U−1 is again
upper triangular. A similar argument holds for lower-triangular matrices.

(9.4) Proposition: Let F be a field and let n be a positive
integer. A matrix in Mn×n(F ) is nonsingular if and only if it is
a product of elementary matrices.
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Proof: Since each of the elementary matrices is nonsingular, we know
that any product of elementary matrices is also nonsingular. Conversely,
let A = [aij ] be a nonsingular matrix in Mn×n(F ) and let B = [bij ] be
A−1. Then B is also nonsingular and so, by Proposition 9.3, the columns
of B are distinct and the set of columns is linearly independent in Fn.
In particular, there exists a nonzero entry bh1 in the first column of B.
Multiply B on the left by Eh1 to get a new matrix in which the (1, 1)-
entry nonzero. Now multiply it on the left by E1;c, where c = b−1

h1 , in

order to get a matrix of the form








1 * . . . *
* * . . . *
...

...
...

* * . . . *








. Now let 1 < t ≤ n,

and let d(t) be the additive inverse of the (t, 1)-entry of the matrix.
Multiplying the matrix on the left by Et1;d(t), we will get a matrix with 0
in the (t, 1)-entry and so, after this for each such t, we see that a matrix
B′ = C1B, where C1 is a product of elementary matrices, and which is

of the form








1 * . . . *
0 * . . . *
...

...
...

0 * . . . *








. This matrix is still nonsingular, since it

is a product of two nonsingular matrices, and so its columns are distinct
and form a linearly-independent subset of Fn. Therefore there exists a
nonzero entry b′h2 in the second column, with h > 1. Repeating the above
procedure, we can find a matrix C2 which is a product of elementary

matrices and such that C2C1B is of the form










1 0 * . . . *
0 1 * . . . *
0 0 * . . . *
...

...
...

...
0 0 * . . . *










.

Continuing in this manner, we obtain matrices C1, . . . , Cn, each of them
a product of elementary matrices, such that Cn · . . . ·C1B = I. Therefore
Cn · . . . · C1 = B−1 = A, as we wanted to show. �

Example: Let F be a field and let n be a positive integer. Every
permutation π of the set {1, . . . , n} defines a matrix Aπ = [aij ] ∈
Mn×n(F ) by setting aij = 1 if j = π(i) and aij = 0 otherwise, called
the permutation matrix defined by π. This matrix is clearly a result of
multiplying I by a number of elementary matrices of the form Ehk, and
so is nonsingular.
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Proposition 9.4 allows us to construct an algorithm for computing A−1

when A is a nonsingular matrix in Mn×n(F ). First of all, we construct
the matrix

[
I A

]
∈ Mn×2n(F ) and on this matrix we perform a

series of elementary operations, namely operations which are the result
of multiplying it on the left by elementary matrices, which bring the right-
hand block into the form I. Then the left-hand block is A−1. To calculate
A−1 by this method, we use n3−2n2+n additions and n3 multiplications.

Example: Consider the matrix A =




1 2 3
2 3 0
0 1 2



 ∈ M3×3(Q). There-

fore we begin with the matrix




1 0 0 1 2 3
0 1 0 2 3 0
0 0 1 0 1 2



 ∈ M3×6(Q). Then:

(1) Get




1 0 0 1 2 3

−2 1 0 0 −1 −6
0 0 1 0 1 2



 after multiplying the first row

by −2 and adding it to the second row;

(2) Get




1 0 0 1 2 3

−2 1 0 0 −1 −6
−2 1 1 0 0 −4



 after adding the second row to

the third row;

(3) Get




1 0 0 1 2 3
2 −1 0 0 1 6

0.5 −0.25 −0.25 0 0 1



 after multiplying the second

row by −1 and then multiplying the third row by −0.25;

(4) Get




1 0 0 1 2 3
−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1



 after multiply the third

row by −6 and adding it to the second row;

(5) Get




−0.5 0.75 0.75 1 2 0
−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1



 after multiplying the

third row by −3 and adding it to the first row;

(6) Finally, get




1.5 −0.25 −2.25 1 0 0
−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1



 after multiplying

the second row by −2 and adding it to the first row.
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Therefore we see that A−1 =
1
4




6 −1 −9

−4 2 6
2 −1 −1



 .

Example: When one uses computer to compute matrix inverses, one
must always be aware of hardware limitations. For example, one can show

that Nievergelt’s matrix A =
[

888445 887112
887112 885871

]

∈ M2×2(Q) is non-

singular, while the matrix B = A−
[

c c
c c

]

, where c =
1

3548450
(which

is approximately 2.81813186039 × 10−7) is not. Nonetheless, a computer
or calculator capable of only 12-digit accuracy cannot differentiate between
the two.

Example: For each positive integer n, let Hn ∈ Mn×n(Q) be the
matrix [aij ], in which aij = 1

i+j−1 . This matrix is called the n × n

Hilbert matrix5. The Hilbert matrices are all nonsingular but, while
their entries all lie between 0 and 1, the entries in their inverses are very
large. For example, H−1

6 equals










36 −630 3360 −7560 7560 −2772
−630 14700 −88200 211680 −220500 83160
3360 −88200 564480 −1411200 1512000 −582120

−7560 211680 −1411200 3628800 −3969000 1552320
7560 −220500 1512000 −3969000 4410000 −1746360

−2772 83160 −582120 1552320 −1746360 698544











Therefore these matrices are often used as benchmarks to judge the effi-
ciency and accuracy of computer programs to calculate matrix inverses.
In particular if the computer we are using has only 7-digit accuracy, it is
reasonable to assume that we will have a 100% error in computing H−1

6 .

It is sometimes possible to use a representation of a nonsingular matrix
A in block form in order to calculate A−1. Indeed, suppose that A ∈

5 German David Hilbert was one of the foremost mathematicians
in the world at the beginning of the 20th century. He and his students were among the
first to study infinite-dimensional vector spaces.
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Mn×n(F ) is a matrix which can be written in block form
[

A11 A12

A21 A22

]

,

where A11 ∈ Mk×k(F ). In order to find A−1, we must find a matrix[
B11 B12

B21 B22

]

, where B11 ∈ Mk×k(F ), such that

A11B11 + A12B21 = I

A11B12 + A12B22 = O

A21B11 + A22B21 = O

A21B12 + A22B22 = I

and if we know that the matrix A11 is itself nonsingular, then from the
first equation we immediately see that B11 = A−1

11 (I − A12B21). If we
substitute this in the third equation, we obtain

B21 = −
[
A22 − A21A

−1
11 A12

]−1
A21A

−1
11 ,

under the assumption, of course, that the matrix C = A22−A21A
−1
11 A12 is

nonsingular. In the same manner, we also obtain B12 = −A−1
11 A12C

−1 and
B22 = A−1

22 (I − A21B12) if the matrix A22 is nonsingular. Thus we see
that a sufficient condition for A to be nonsingular is that we can partition
it as above in such a manner that A11, A22, and A22 − A21A

−1
11 A12 are

all nonsingular.

Let F be a field and let k and n be positive integers. Two matrices
B,C ∈ Mk×n(F ) are equivalent if and only if there exist nonsingular
matrices P ∈ Mk×k(F ) and Q ∈ Mn×n(F ) such that PBQ = C. This
is, indeed, an equivalence relation on Mk×n(F ) since:

(1) IBI = B for each such matrix B, showing that B is equivalent
to itself;

(2) If PBQ = C then P−1CQ−1 = B;
(3) If PBQ = C and P ′CQ′ = D′ then (P ′P )B(QQ′) = D, where

we note that both P ′P and QQ′ are again nonsingular.
Similarly, we say that B and C are row equivalent if and only if there
exists a nonsingular matrix P ∈ Mk×k(F ) satisfying PB = C, and we
say that B and C are column equivalent if and only if there exists a
nonsingular matrix Q ∈ Mn×n(F ) satisfying BQ = C. Both of these
relations are also equivalence relations on Mk×n(F ), and it is clear that
if B and C are row equivalent then they are equivalent (take Q = I)
and if they are column equivalent then they are equivalent (take P = I).

Equivalence of matrices is a very strong concept. Indeed, it is easy to
show that any matrix B ∈ Mk×n(F ) is equivalent to one which is in block
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form
[

I O
O O

]

. Therefore, it is more useful to consider row equivalence

of matrices as our basic tool.

Now let V be a vector space of dimension n over a field F and
choose bases B = {v1, . . . , vn} and D = {w1, . . . , wn} of V. For
each 1 ≤ j ≤ n there exist elements q1j , . . . , qnj of F satisfying
wj =

∑n
i=1 qijvi. By Proposition 9.3, we know that the matrix Q = [qij ]

is nonsingular. If v =
∑n

i=1 aivi =
∑n

j=1 bjwj is an element of V, then we

see that v =
∑n

j=1 bjwj =
∑n

j=1 bj (
∑n

i=1 qijvi) =
∑n

i=1

(∑n
j=1 qijbj

)
vi

and so we must have ai =
∑n

j=1 qijbj for all 1 ≤ i ≤ n. Thus we see

that






a1

...
an




 = Q






b1

...
bn




 . The matrix Q is called the change-of-basis

matrix from D to B.

Example: Let F be a field, let n be a positive integer, and let V
be the subspace of the vector space F [X] made up of all polynomials of
degree at most n − 1. Then dim(V ) = n, and it has a canonical basis
B = {1,X, . . . ,Xn−1}. Let c1, . . . , cn be distinct scalars, and for each
1 ≤ i ≤ n, consider the polynomial

pi(X) =
∏

j �=i

1
ci − cj

(X − cj) ∈ V.

This polynomial is called the ith Lagrange interpolation polynomial,
and we will return to these polynomials below in another context. It is
clear that

pi(cj) =
{

1 if i = j
0 otherwise .

Thus, for example, if n = 4 and if we choose c1 = 1, c2 = 3, c3 = 5,
and c4 = 7, we obtain

p1(X) = − 1
48

X3 +
5
16

X2 − 71
48

X +
35
16

p2(X) =
1
16

X3 − 13
16

X2 +
47
16

X − 35
16

p3(X) =
−1
16

X3 +
11
16

X2 − 31
16

X +
21
16

p4(X) =
1
48

X3 − 3
16

X2 +
23
48

X − 5
16

.

Returning to the general case, we see that the set D = {p1(X), . . . , pn(X)}
of Lagrange interpolation polynomials is linearly independent since, if we
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have
∑n

i=1 aipi(X) = 0, then for each 1 ≤ h ≤ n we have ah =∑n
i=1 aipi(ch) = 0. Therefore D is also a basis of V. If q(X) is an

arbitrary polynomial in V then there exist scalars a1, . . . , an satisfying
q(X) =

∑n
i=1 aipi(X); Again, this implies that ai = q(ci) for all i. In

particular, if q(X) = Xk we see that Xk =
∑n

i=1 ck
i pi(X). Therefore

the change of basis matrix from D to B is








1 c1 . . . cn
1

1 c2 . . . cn
2

...
...

...
1 cn . . . cn

n








. A

matrix of this form is called a Vandermonde matrix, and such matrices
are always nonsingular6.

Lagrange interpolation allows us to represent a polynomial p(X) of
degree less than n in a computer not by its list of coefficients but rather
by a list of its values p(a1), . . . , p(an) at n preselected elements of F. Such
representations can be used to obtain algorithms for rapid multiplication
of polynomials, especially in the case the field F is finite.

Let us now return to the matter of change of basis, and now let us assume
that we have a linear transformation α : V → Y, where V is a vector
space of dimension n over a field F and Y is a vector space of dimension
k over F. We have bases B = {v1, . . . , vn} and D = {w1, . . . , wn} of
V. Choose a basis E = {y1, . . . , yk} of Y . Then ΦBE(α) is a matrix
C = [cij ]. If Q = [qij ] is the change of basis matrix from D to B then
for each 1 ≤ j ≤ n we have α(wj) = α (

∑n
h=1 qhjvh) =

∑n
h=1 qhjα(vh) =

∑n
h=1 qhj

(∑k
i=1 cihyi

)
=

∑k
i=1 (

∑n
h=1 cihqhj) yi and so ΦDE(α) = CQ,

showing that ΦDE(α) and C are column equivalent. In the same manner,
if we have another basis G = {z1, . . . , zk} of Y and if P = [pij ] is
the change of basis matrix from E to G, then zj =

∑k
i=1 pijyi for

all 1 ≤ j ≤ k. If ΦBG(α) is the matrix C ′ = [c′ij ], then for all

1 ≤ j ≤ n we have α(vj) =
∑k

h=1 ehjzh =
∑k

h=1 ehj

(∑k
i=1 pihyi

)
=

6 Joseph-Louis Lagrange was one of the ap-
plied mathematicians who surrounded Napoleon, and his book on analytical mechanics
is considered a mathematical classic. Alexandre-Théophile Vandermonde was an
18th century French chemist and mathematician who studied determinants of matrices.
Vandermonde matrices do not appear in his work, and it is not clear why they are named
after him.
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∑k
i=1

(∑k
h=1 pihehj

)
yi and this equals

∑k
i=1 cijyi and so C = PC ′ and

so C ′ = P−1C. Thus ΦBG(α) and C are row equivalent. If we put
both of these results together, we see that ΦDG(α) = P−1ΦBE(α)Q, and
so ΦDG(α) and ΦBE(α) are equivalent.

Example: Let α : R
3 → R

2 be the linear transformation given by α :



a
b
c



 �→
[

a + b
b + c

]

. Choose bases B =









1
0
0



 ,




0
1
1



 ,




0

−1
0









and

D =









1
0
0



 ,




1
0
1



 ,




0
1

−1









of R

3 and bases E =
{[

1
0

]

,

[
0

−1

]}

and G =
{[

1
1

]

,

[
1

−1

]}

of R
2. Then ΦBE(α) =

[
1 1 −1
0 −2 1

]

since

α








1
0
0







 =
[

1
0

]

= 1
[

1
0

]

+ 0
[

0
−1

]

α








0
1
1







 =
[

1
2

]

= 1
[

1
0

]

− 2
[

0
−1

]

α








0

−1
0







 =
[

−1
−1

]

= (−1)
[

1
0

]

+ 1
[

0
−1

]

and, similarly, ΦDG(α) =
1
2

[
1 2 1
1 0 1

]

,

α








1
0
0







 =
[

1
0

]

=
1
2

[
1
1

]

+
1
2

[
1

−1

]

α








1
0
1







 =
[

1
1

]

= 1
[

1
1

]

+ 0
[

1
−1

]

α








0
1

−1







 =
[

1
0

]

=
1
2

[
1
1

]

+
1
2

[
1

−1

]
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Further, we also see that




1
0
0



 = 1




1
0
0



 + 0




0
1
1



 + 0




0

−1
0



 ,




1
0
1



 = 1




1
0
0



 + 1




0
1
1



 + 1




0

−1
0



 , and




0
1

−1



 = 0




1
0
0



 −

1




0
1
1



− 2




0

−1
0



 so Q =




1 1 0
0 1 −1
0 1 −2



 .

Moreover,
[

1
1

]

= 1
[

1
0

]

− 1
[

0
−1

]

and
[

1
−1

]

= 1
[

1
0

]

+

1
[

0
−1

]

so P =
[

1 1
−1 1

]

and P−1 =
1
2

[
1 −1
1 1

]

. Note that

P−1ΦBE(α)Q = ΦDG(α).

Example: We will now see an application of linear algebra to calculus.
Let V be the vector space over R consisting of all infinitely-differentiable
functions f ∈ R

R, and let δ ∈ End(V ) be the differentiation endomor-
phism.

(1) If a and b are given real numbers, not both equal to 0, then
the functions f0 : x �→ eax sin(bx) and f1 : x �→ eax cos(bx) belong
to V and the subspace W = R{f0, f1} of V is invariant under δ.
The restriction of δ to W can be represented with respect to the basis

{f0, f1} of W by the nonsingular matrix A =
[

a −b
b a

]

. It is easy to

check that A−1 = 1
a2+b2

[
a b

−b a

]

. Therefore

∫

f0(t)dt = δ−1(f0) =
(

1
a2 + b2

)

[af0 − bf1] and
∫

f1(t)dt = δ−1(f1) =
(

1
a2 + b2

)

[bf0 + af1].

(2) The functions g0 : x �→ x2ex, g1 : x �→ xex, and g2 : x �→ ex all
belong to V and the subspace Y = R{g0, g1, g2} of V is invariant under
δ. The restriction of δ to Y can be represented with respect to the basis

{g0, g1, g2} of Y by the nonsingular matrix B =




1 0 0
2 1 0
0 1 1



 . Since



150 9. The algebra of square matrices

B−1 =




1 0 0

−2 1 0
2 −1 1



 , we see that

∫

g0(t)dt = δ−1(g0) = g0 − 2g1 + 2g2,

∫

g1(t)dt = δ−1(g1) = g1 − g2, and
∫

g2(t)dt = δ−1(g2) = g2.

Let us turn to problems connected with the implementation of this the-
ory. Let F be a field and let n be a positive integer. Let A = [aij ]
and B = [bij ] belong to Mn×n(F ) and let C = AB. In order to
calculate each one of the n2 entries in C, we need n multiplications
and n − 1 additions/subtractions, and so to calculate C we need n3

multiplications and n3 − 2n2 + n additions/subtractions. Putting this
in another way, the total number of operations needed to calculate AB
from the definition is on the order of nc, where c = 3. If n is very
large, this can entail considerable computational overhead and leaves room
for the introduction of considerable error due to roundoff and truncation
in the course of the calculation. It is therefore very important to find a
more sophisticated method of matrix multiplication, if possible. One such
method is the Strassen-Winograd algorithm7.

To illustrate the Strassen-Winograd algorithm, let us first begin with the
special case n = 2. First, calculate

p0 = (a11 + a12)(b11 + b12) p1 = (a11 + a22)b11 p2 = a11(b12 − b22)
p3 = (a21 − a11)(b11 + b12) p4 = (a11 + a12)b22 p5 = a22(b21 − b11)
p6 = (a12 − a22)(b21 + b22)

and then note that C =
[

p0 + p5 − p4 + p6 p2 + p4

p1 + p5 p0 − p1 + p2 + p3

]

. In

this calculation, we used 7 multiplications and 18 additions/subtractions

7 Variants of this algorithm were discovered by the
contemporary German mathematician Volker Strassen and the contemporary Israeli
mathematician Shmuel Winograd, who later served as director of mathematical re-
search at IBM.
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(Winograd’s variant of this algorithm uses only 15 additions/subtractions,
but these are more interdependent, and so the algorithm is less amenable
to implementation on parallel computers) instead of 8 multiplications
and 4 additions/subtractions. In the early days of computers, when
multiplication was several orders of magnitude slower than addition, this
in itself was a great accomplishment. If n = 4, we write our matrices in

block form: A =
[

A11 A12

A21 A22

]

and B =
[

B11 B12

B21 B22

]

, where each

block is a 2×2 matrix. We now calculate 2×2 matrices P0, . . . , P6 and
then construct C = AB as above. To do this, we need 49 multiplications
and 198 additions/subtractions, as opposed to 64 multiplications and 46
additions/subtractions if one goes according to the definition. We continue
recursively. If n = 2h, then the number of multiplications needed is
M(h) = 7h and the number of additions/subtractions needed is A(h) =
6(7h − 4h) and so M(h) + A(h) < 7h+1. (If n is not a power of 2,
we can add rows and columns of 0’s in order to enlarge it to the desired
size.) Thus, we see that the number of arithmetic operations needed to
calculate AB is on the order of nc, where c ≤ log2 7 = 2.807 . . .
and so, for large n, we have a definite advantage over multiplication
following from the definition. Using even more sophisticated techniques,
it is possible to reduce the number of arithmetic operations to the order
of nc, where c ≤ 2.376 . . . , as was done by Winograd and Coppersmith
in 1986. The size of matrices for which the Strassen-Winograd algorithm
is significantly faster than the regular method depends, of course, on the
particular hardware on which it is being used. The Strassen-Winograd
algorithm can also be modified to multiplication of matrices which are not
necessarily square.

Unfortunately, the Strassen-Winograd algorithm is no less susceptible to
roundoff and truncation errors than the regular algorithm. On a computer
with seven-digit accuracy, the product







211 2 3 4
1 2 3 4

0.001 0.032 0.043 0.044
311 0.0032 1233 0.0324













50 0.32 0.0023 421
60 0.023 0.033 982
23 0.032 0.03 623
33 0.043 0.022 44







equals







10871 67.834 0.7293 92840
371 0.634 0.2463 4430
4.411 0.0043 0.0033 60.57
43910.3 138.977 37.7061 899094.0





 using the ordinary me-

thod of matrix multiplication, whereas, using the Strassen-Winograd algo-
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rithm, we obtain







10871 68.54 0.6294 92840
370.9 1.0 0.2463 4430.18
4.411 0.0043 0 62.0
43910.3 139.047 37.7 899095.0





 . This prob-

lem can be overcome to some extent by stopping the recursion in the
Strassen-Winograd algorithm early, and doing the bottom-level matrix mul-
tiplication using the ordinary method. Another disadvantage of this algo-
rithm is that it requires a much larger amount of scratch memory space to
perform its calculations.

There are other tricks that can be used to reduce the computations nec-
essarily in matrix multiplication. For example, if n is a positive integer
and if A,B,C,D ∈ Mn×n(R), then the matrix product (A+ iB)(C + iD)
in Mn×n(C) can be calculated using only three matrix multiplications in
Mn×n(R), rather than the expected four, by noting that

(A + iB)(C + iD) = AC − BD + i [(A + B)(C + D) − AC − BD] .

Again, we keep in mind that real and complex numbers are represented
in a computer by approximations having a limited degree of accuracy. The
longer calculations become, the error due to roundoff and truncation in-
creases and limits the correctness of the calculations. It is possible to
reduce the effect of roundoff and truncation errors as much as possible.
Let us recall how our algorithm for inverting a matrix A worked:

(1) We formed the matrix
[

I A
]

= [bij ];
(2) We interchanged the first row which one of the rows below it, if

necessary, such that b1,n+1 �= 0; we then multiplied this row by b−1
1,n+1 so

that this element is now equal to 1, and we subtracted multiples of this
row from the rows below it, in order to make bi,n+1 equal to 0 for all
1 < i ≤ n.

(3) We now go iterate this process for the elements bh,n+h, where
h = 2, 3, . . . and so forth. If we cannot do it, i.e. if there exists an h
such that bi,n+h for all h ≤ i ≤ n, the matrix A is nonsingular.
Otherwise, at the end of the process, we have brought the matrix to the
form

[
A−1 I

]
.

The elements bh,n+h are called pivots of the algorithm. If we are
working over the real or complex numbers, we can minimize roundoff and
truncation errors – to some extent – by making sure that each time we in-
terchange rows we choose to bring into the pivot position a nonzero number
having maximal absolute value. This strategy is known as partial pivot-
ing. We could do better by also interchanging columns in order to bring
into the pivot position bh,n+h the element bij (h ≤ i, j ≤ n) having
maximal absolute value. This strategy is known as full pivoting and it
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requires a certain amount of computational overhead on the side so that
the columns can be returned to their proper positions at the end of the
algorithm. Although there are matrices so pathological that full pivoting
rather than partial pivoting is needed in order to invert them, most ex-
perts believe that the effort is not worth the effort and the computational
overhead and that for such matrices it is best to use other methods alto-
gether. Several variants of pivoting strategies for matrices having specific
structures have, however, been developed and are in use.

Indeed, let us now consider another method. It is clearly easier to invert a
nonsingular upper-triangular or lower-triangular matrix – namely a matrix
in one of these forms all of the diagonal elements of which are nonzero.
Therefore our job would be much easier if we could write A in the form
LU, where L is lower triangular and U is upper triangular8, for then
A−1 = U−1L−1. This is not always possible. For example, one can see

that there is no way of writing the matrix
[

0 1
1 0

]

∈ M2×2(R) in this

form. However, it is always possible to write A in the form LU when A
equals a product of elementary matrices of the form Ei;c and Eij;c only.

How can this be done? Assume that A = [aij ], U = [uij ], and L = [vij ]
and that A = LU, where U is upper-triangular and L is lower-triangular.
Then for each 1 ≤ i, j ≤ n we have aij =

∑n
h=1 vihuhj . In each of L

and U there are only 1
2 (n2 +n) entries which can be nonzero and so our

problem is one of solving n2 nonlinear equations in n2 + n unknowns.
This means that we can allow ourself to choose the value of n of these
variables arbitrarily, and we will do so by insisting that vii = 1 for all
1 ≤ i ≤ n. Now we have a system of n2 + n nonlinear equations in
n2 + n unknowns, which can be solved by a method known as Crout’s
algorithm9:

(1) First set vii = 1 for all 1 ≤ i ≤ n;
(2) For all 2 ≤ j ≤ n and all 1 ≤ i ≤ j, first calculate uij = aij −

∑i−1
h=1 vihuhj and then vij = 1

ujj

(
aij −

∑j−1
h=1 vihuhj

)
for all j < i ≤ n.

8 The LU method was devised by British mathematician Alan Tur-
ing, who is better known as the founder of automata theory and one of the fathers of
the electronic computer. It appears implicitly in the work of Jacobi on bilinear forms.

9This algorithm was devised by 20th-century American mathematician Prescott
Crout.



154 9. The algebra of square matrices

We note that if A is a nonsingular matrix which can be written in
the form LU , where L = [vij ] is a lower-triangular matrix satisfying
vii = 1 for all 1 ≤ i ≤ n and U = [uij ] is upper-triangular, then this
factorization must be unique. Indeed, assume that L1U1 = L2U2 where
the Lh are lower triangular matrices with 1’s on the diagonal, and the
Uh are nonsingular upper-triangular matrices. Then L−1

2 L1 = U2U
−1
1 .

Since the product of lower-triangular matrices is lower triangular and the
product of upper-triangular matrices is upper triangular, this matrix must
be a diagonal matrix. But then L−1

2 L1 = I and so L1 = L2 and that
implies that U1 = U2, proving uniqueness.

Example: The above uniqueness result is no longer true if the matrix
A is singular. For example,




1 −1 2

−1 1 −1
2 −2 4



 =




1 0 0

−1 1 0
2 b 1








1 −1 2
0 0 1
0 0 −b





for any scalar b ∈ R.

As was previously remarked, not all nonsingular matrices can be written
in the form LU, but one can show that for any nonsingular matrix A
there exists a permutation matrix P such that A = PLU, where L is
lower triangular and U is upper triangular.

Example: It is easy to verify that







0 1 1 −3
−2 4 1 4

0 0 0 1
3 1 1 0





 = PLU, where

P =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





 is a permutation matrix, L =







1 0 0 0
0 1 0 0

− 3
2 7 1 0
0 0 0 1







is lower triangular, and U =







−2 4 1 4
0 1 1 −3
0 0 − 9

2 27
0 0 0 1





 is upper triangular.

Exercises
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Exercise 390 Let F = GF (5). Calculate




1 3 1
2 1 1
1 2 3








1 2 2
4 3 2
1 4 2





in M3×3(F ).

Exercise 391 Does there exist a real number b such that the matrices

A =







1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1





 and B =







b −1 −1 0
−1 b 0 −1

1 0 b
2 −1

0 1 −1 b
2







are a commuting pair in M4×4(R)?

Exercise 392 Let F = GF (7) and let K be the subalgebra of M2×2(F )

consisting of all matrices of the form
[

a b
−b a

]

, for a, b ∈ F. Show

that K is a field. Is it a field if F = GF (5)?

Exercise 393 Let A =
[

1 1
0 1

]

∈ M2×2(R). Find the set of all matri-

ces B ∈ Mn×n(R) satisfying BA = AB.

Exercise 394 Let A =
[

1 i
−i 1

]

∈ M2×2(C). Find a complex number

c satisfying (cA)2 = A.

Exercise 395 Let A =




0 1 0
0 0 1
1 0 0



 ∈ M3×3(R). Find a positive integer

k satisfying Ak = A−1.

Exercise 396 Let F be a field. Find all matrices A ∈ M3×3(F ) sat-

isfying A2 =




0 0 1
0 0 0
0 0 0



 . .

Exercise 397 Show that there are infinitely-many pairs (a, b) of real
numbers satisfying the condition




a 0 0
0 1 0
0 0 b








1 0 1
0 1 0
1 0 1



 =




1 0 1
0 1 0
1 0 1








a 0 0
0 1 0
0 0 b



 .

Exercise 398 Does there exist a positive integer k satisfying



0 1 0
0 0 1
1 0 0








0 0 1
0 1 0
1 0 0





k

=




0 0 1
1 0 0
0 1 0



?



156 9. The algebra of square matrices

Exercise 399 Let F = GF (3). Show that there exist at least 27 distinct
matrices A in M3×3(F ) satisfying A3 = I.

Exercise 400 Let n be a positive integer and let F be a field of charac-
teristic 0. Show that AB −BA �= I for all A,B ∈ Mn×n(F ) (in other
words, that I is not the product of any two elements of the Lie algebra
Mn×n(F )−).

Exercise 401 If F = GF (2), find the set of all pairs (A,B) of matrices
in M2×2(F ) satisfying AB − BA = I.

Exercise 402 For a field F, find
{
A ∈ M2×2(F ) | A2 = O

}
.

Exercise 403 Find a matrix A ∈ M3×3(R) satisfying

A




1 1 −1
2 1 0
1 −1 1



 =




1 −1 3
4 3 2
1 −2 5



 .

Exercise 404 Show that if A =




a 1 0
0 a 1
0 0 a



 ∈ M3×3(R) then for each

n > 1 we have An =




an nan−1 n(n−1)

2 an−2

0 an nan−1

0 0 an



 .

Exercise 405 Let (K, •) be an associative unital algebra over a field F
and let S be the subset of M3×3(K) consisting of all matrices of the

form




v11 0K v13

0K v22 0K

v31 0K v33



 . Is S an F -subalgebra of M3×3(K)?

Exercise 406 Let n be a positive integer and let F be a field. A matrix

in Mn×n(F ) of the form







a1 a2 . . . an

an a1 . . . an−1

. . .
a2 a3 . . . a1





 is called a circulant

matrix. Show that the set of all circulant matrices in Mn×n(F ) is an
F -subalgebra of Mn×n(F ).

Exercise 407 Let n be a positive integer and let F be a field. If
A ∈ Mn×n(F ) is a nonsingular circulant matrix, is A−1 necessarily a
circulant matrix?
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Exercise 408 Let K be the subset of M2×2(Q) consisting of all matrices

of the form
[

a b
2b a

]

, where a, b ∈ Q. Show that K is a Q-subalgebra

of M2×2(Q) which is, in fact, a field.

Exercise 409 Find a matrix A ∈ M2×2(R) satisfying A2 =
[

1 3
0 1

]

.

Exercise 410 Find all matrices A ∈ M3×3(R) satisfying

A




1 1 1
2 2 2
0 1 1



 = O.

Exercise 411 Let A =
[

a b
c d

]

∈ M2×2(R) be a matrix satisfying

A2 = A. Show that a + d ∈ {0, 1, 2}.

Exercise 412 Show that
[

1 1
1 1

]n

=
[

2n−1 2n−1

2n−1 2n−1

]

for all n ≥ 1.

Exercise 413 Let F be a field and let A =
[

0 b
c 0

]

∈ M2×2(F ). Find

An for all n ≥ 1.

Exercise 414 Find matrices A,B ∈ M2×2(Q) for which

(A − B)(A + B) �= A2 − B2.

Exercise 415 Let F be a field and let A =




1 0 0
1 0 1
0 1 0



 ∈ M3×3(F ).

Show that Ak+2 = Ak + A2 − I for all positive integers k.

Exercise 416 Let n be a positive integer and let F be a field. Let
A,B ∈ Mn×n(F ) satisfy A + B = I. Show that AB = O if and only
if A = A2 and B = B2.

Exercise 417 Let n be a positive integer and let (K, •) be an as-
sociative unital algebra over a field F . Define a new operation �
on Mn×n(K), called the Schur product (sometimes also called the
Hadamard product, especially in the context of statistics), by setting
[vij ] � [wij ] = [vij • wij ], for all 1 ≤ i, j ≤ n. Is (Mn×n(K),+,�) an
F -algebra? Is it associative? Is it unital? When is it commutative?

Exercise 418 Let n be a positive integer and for each A = [aij ] ∈
Mn×n(R), let µ(A) = max1≤i,j≤n |aij |. Show that µ(A2) ≤ nµ(A)2 for
all A ∈ Mn×n(R).



158 9. The algebra of square matrices

Exercise 419 Let F be a field. Find a matrix A ∈ M3×3(F ) satisfying

A2 =




0 1 0
0 0 0
0 0 0



 or show that no such matrix exists.

Exercise 420 Find a matrix A ∈ M2×2(Q) satisfying A

[
0 c
c 0

]

AT =
[

2c 0
0 − c

2

]

for all c ∈ Q.

Exercise 421 Let F be a field and let n be a positive integer. Show
that H11AH11BH11 = H11BH11AH11 for all A,B ∈ Mn×n(F ).

Exercise 422 Let F be a field and let n be a positive integer. Show that(∑n
i=1

∑n
j=1 HijAHji

)
B = B

(∑n
i=1

∑n
j=1 HijAHji

)
for all A,B ∈

Mn×n(F ).

Exercise 423 Is the set








1 1 0
0 0 0
0 0 0



 ,




1 1 1
0 0 0
0 0 0



 ,




0 0 0
1 1 0
0 0 0



 ,




0 0 0
1 1 1
0 0 0










of matrices in M3×3(Q) closed under taking products?

Exercise 424 Find infinitely-many triples (A,B,C) of nonzero matrices
in M3×3(Q), the entries of which are nonnegative integers, satisfying the
condition A3 + B3 = C3.

Exercise 425 Let F be a field. Find a matrix A ∈ M4×4(F ) satisfying
A4 = I �= A3.

Exercise 426 Let n be a positive integer and let F = GF (p) for some
prime integer p. Show that for any A ∈ Mn×n(F ) there exist positive
integers k > h satisfying Ak = Ah. Would this also be true if we chose
F = Q?

Exercise 427 Let A = [aij ] ∈ M2×2(C) be a matrix satisfying

1
2

[a11 + a22] �=
√

a11a22 − a12a21.

Show that there exist four distinct matrices B ∈ M2×2(C) satisfying
B2 = A.

Exercise 428 Let c be a given complex number. Find the set of all
matrices A ∈ M2×2(C) satisfying (A − cI)2 = O.
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Exercise 429 Show that




3 − 4c 2 − 4c 2 − 4c

−1 + 2c 2c −1 + 2c
−3 + 2c −3 + 2c −2 + 2c





2

= I for all

complex numbers c.

Exercise 430 Show that there is no matrix A ∈ M2×2(C) satisfying

A2 =
[

0 1
0 0

]

.

Exercise 431 Let n be a positive integer and let F be a field. How
many matrices A = [aij ] ∈ Mn×n(F ) having entries in {0, 1} satisfy
the condition that each row and each column contain exactly one 1.

Exercise 432 Show that for an integer n ≥ 4 and for a field F there
exist matrices A and B in Mn×n(F ) satisfying A2 = B2 = O but
AB = BA �= O.

Exercise 433 Let F = GF (2) and let F ′ be a field of characteristic
other than 2. Define a function ϕ : M2×2(F ′) → M2×2(F ) as follows:
if A = [aij ] ∈ M2×2(F ′) then set ϕ(A) = [bij ], where

bij =
{

1 if aij �= 0
0 otherwise .

Is ϕ(A + A′) = ϕ(A) + ϕ(A′) for all A,A′ ∈ M2×2(F ′)? Is ϕ(AA′) =
ϕ(A)ϕ(A′) for all A,A′ ∈ M2×2(F ′)?

Exercise 434 Find a matrix I �= A ∈ M3×3(Q) satisfying

A




1 0 0
1 1 0
0 0 1



 =




1 0 0
1 1 0
0 0 1



A and A




1 0 0
0 1 0
0 1 1



 =




1 0 0
0 1 0
0 1 1



A.

Exercise 435 For each real number a, find a matrix B(a) ∈ M2×2(R)

satisfying
[

cos(a) − sin(a)
sin(a) cos(a)

]

= B(a)
[

1 0
sin(a) 1

]

.

Exercise 436 Let A =
[

5 7
−3 −4

]

∈ M2×2(R). What is A1024?

Exercise 437 Find all pairs (a, b) of rational numbers such that the

matrix A =
[

2a −a
2b −b

]

∈ M2×2(Q) satisfies A2 = A.

Exercise 438 Let F be a field and let n be a positive integer. Show
that there do not exist nonsingular matrices P,Q ∈ Mn×n(F ) satisfying
PAQ = AT for all A ∈ Mn×n(F ).
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Exercise 439 Let F be a field and let A,B ∈ Mn×n(F ) be a commuting
pair of matrices, where B is nonsingular. Is (A,B−1) necessarily a
commuting pair?

Exercise 440 Let F be a field. Is S =
{[

a b
c d

] ∣
∣
∣
∣ a + c = b + d

}

an F -subalgebra of M2×2(F )?

Exercise 441 Let F be a field. Given an element a of F, show that

there exist elements b, c, d ∈ F such that
[

a b
c d

]2

= I in M2×2(F ).

Exercise 442 Find all rational numbers a, b and d satisfying the

condition that
[

a b
1 d

]2

= I in M2×2(Q).

Exercise 443 Let F be a field and let K be the subset of M3×3(F )
consisting of O and of all of the upper-triangular matrices [aij ] satisfying
0 �= a11 = a22 = a33. Is K an F -subalgebra of M3×3(F )? Is it a field?

Exercise 444 Let F = GF (p), where p is a prime integer, and let
K be the subset of M2×2(F ) consisting of all matrices of the form
[

a b
−b a

]

, where a, b ∈ F. Show that K, together with the operations

of matrix addition and multiplication, is a field when p = 3 and is not a
field when p = 5. What happens when p = 7?

Exercise 445 Let n be a positive integer, let F be a field, and let
O �= A,B ∈ Mn×n(F ). Show that there exists a matrix C ∈ Mn×n(F )
satisfying ACB �= O.

Exercise 446 Find all matrices A,B ∈ M2×2(R), the entries of which

are nonnegative integers, which satisfy AB =
[

1 1
0 1

]

.

Exercise 447 Let V = M3×3(Q). For each rational number t, let

αt : V → V be the linear transformation A �→ A




0 1 3
t 0 0
0 −1 4



 . Is

the function t �→ αt a linear transformation from Q to End(V ), both
considered as vector spaces over Q?
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Exercise 448 Let n be a positive integer, let F be a field, and for some
fixed c ∈ F , let A = [aij ] be the matrix in Mn×n(F ) defined by

aij =
{

c when i + j is even
0 otherwise .

Show that the subset {A,A2, A3} of Mn×n(F ) is linearly dependent.

Exercise 449 Let F = GF (2) and let A =







0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0





 ∈ M4×4(F ).

Let L = {O} ∪ {Ai | i ≥ 0} ⊆ M4×4(F ). Show that L is closed under
addition. Is L, under the usual definitions of addition and multiplication
of matrices, a field?

Exercise 450 Let K be the set of all matrices in M2×2(Q) of the form[
a −3b
b a

]

. Show that K is a subalgebra of M2×2(Q) which is in fact

a field.

Exercise 451 Find the set of all matrices A ∈ M2×2(Q) which satisfy

A2 + A =
[

1 1
1 1

]

.

Exercise 452 Let A =
[

0 1
−1 0

]

∈ M2×2(Q) and let B and C be

matrices in M2×2(Q) satisfying AB = BA and AC = CA. Show that
BC = CB.

Exercise 453 Find infinitely-many matrices A ∈ M3×3(Q) satisfying

A




1 −1 2
2 0 1
3 −1 3



 =




1 0 1

2
0 1 − 3

2
0 0 0



 .

Exercise 454 Let A =




1 −1 −1

−1 1 −1
−1 −1 1



 ∈ M3×3(Q). Find functions

f and g from the set of all positive integers to Q satisfying the condition

that An =




f(n) g(n) g(n)
g(n) f(n) g(n)
g(n) g(n) f(n)



 for all n ≥ 1.

Exercise 455 Let F = GF (2). Do there exist matrices A = [aij ] and
B = [bij ] in M2×2(F ) satisfying a11 + a22 = 1, b11 + b22 = 0, and
AB = I?
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Exercise 456 Let F be a field and let G be the set of all matrices in

M3×3(F ) of the form




1 0 0
a 0 0
0 0 b



 , where a, b ∈ F. Is G closed under

matrix multiplication? Does there exist a matrix J in G satisfying the
condition that AJ = A for all A ∈ G? If such a matrix J exists, is it
necessarily true that JA = A for all A ∈ G?

Exercise 457 Let n be a positive integer and let F be a field. Let

A and B be matrices in Mn×n(F ) of the form
[

I A′

O I

]

and
[

I B′

O I

]

respectively, where A′ and B′ are (not-necessarily square)

matrices of the same size. Find necessary conditions for A and B to
satisfy AB = BA.

Exercise 458 Let F be a field and let A,B ∈ M2×2(F ). Show that
(AB − BA)2 is a diagonal matrix.

Exercise 459 Let n be a positive integer and let F be a field. Let
A ∈ Mn×n(F ) be a diagonal matrix having distinct entries on the diagonal.
Let B ∈ Mn×n(F ) be a matrix satisfying AB = BA. Show that B is
also a diagonal matrix.

Exercise 460 Let n be a positive integer and let F be a field. For each
integer −n < t < n, let Dt(F ) be the set of all matrices A = [aij ] ∈
Mn×n(F ) satisfying the condition that aij = 0 when j �= i + t. Thus,
for example, D0(F ) is the set of all diagonal matrices in Mn×n(F ).
If A ∈ Dt(F ) and B ∈ Ds(F ), does there necessarily exist an integer
−n < u < t such that AB ∈ Du(F )?

Exercise 461 Let A =




1 2 3

−1 −2 −3
2 4 6



 and B =




1 2 3
0 0 0
0 0 0



 be

matrices in M3×3(R). Find infinitely-many lower-triangular matrices C
satisfying A = CB.

Exercise 462 Let n be a positive integer and let F be a field. Let
A1, . . . , An be upper-triangular matrices in Mn×n(F ) satisfying the con-
dition that the (i, i)-entry in Ai is equal to 0 for 1 ≤ i ≤ n. Show that
A1 · . . . · An = O.
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Exercise 463 Let F be a field in which we have elements a �= 0 and b.
Show that there exists an upper-triangular matrix C ∈ M2×2(F ) satisfying
[

0 a
0 0

]

C =
[

0 b
0 0

]

. Is C necessarily unique?

Exercise 464 Let F be a field. Find an element A of M2×2(F )
satisfying AAT �= AT A.

Exercise 465 Let F be a field and let n > 1. If a matrix A ∈ Mn×n(F )
satisfies AAT = O, does it necessarily follow that AT A = O?

Exercise 466 Let n be a positive integer, let F be a field, and let
A ∈ Mn×n(F ) satisfy the condition A = AAT . Show that A2 = A.

Exercise 467 Let n be a positive integer, let F be a field, and let A,B ∈
Mn×n(F ) be symmetric matrices. Is ABA necessarily symmetric?

Exercise 468 Let n be a positive integer and let F be a field. If
A ∈ Mn×n(F ) is symmetric, is Ah symmetric for all h > 1?

Exercise 469 Show that
{[

1 −2
−2 1

]

,

[
1 3
3 6

]

,

[
−1 1

1 −3

]}

forms

a basis for the subspace of M2×2(Q) consisting of all symmetric matrices.

Exercise 470 Does there exist a matrix A ∈ M2×2(R) satisfying AAT =[
1 9
9 1

]

?

Exercise 471 Given real numbers a, b, and c, find all real numbers d

such that







0 0 0 −1
0 0 −1 a
0 −1 a b

−1 a b c













a b c 1
1 0 0 0
0 d 0 0
0 0 1 0





 is symmetric.

Exercise 472 Find a matrix B ∈ M2×2(Q) such that the Nievergelt’s
matrix equals BT B.

Exercise 473 Calculate




1 2 −3
0 1 2
0 0 1





−1

in M3×3(R).

Exercise 474 Let a ∈ R�{1,−2}. Calculate




a 1 1
1 a 1
1 1 a





−1

∈ M3×3(R).

Exercise 475 Does there exist an a such that




−3 4 0

8 5 −2
a −7 6



 ∈

M3×3(R) is singular?
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Exercise 476 Let n be a positive integer. Each complex number c
defines a matrix A(c) = [aij ] ∈ Mn×n(C) given by aij = c(i−1)(j−1) for
all 1 ≤ i, j ≤ n. If w = e2πi/n ∈ C, show that A(w) is nonsingular and
satisfies A(w)−1 = 1

nA(w−1).

Exercise 477 Let n be a positive integer and let F be a field. Given
a matrix B ∈ Mn×n(F ), do there exist vectors u, v ∈ Fn such that the

matrix
[

B −Bv
−uT B uT Bv

]

is nonsingular?

Exercise 478 Is the matrix




1 − a2 1 − a 0

0 1 − a2 1 − a
1 − a 0 1 − a2



 ∈ M3×3(C) non-

singular, where a = − 1
2 + 1

2

√
−3 ∈ C.

Exercise 479 Let n be a positive integer and let F be a field. If
A ∈ Mn×n(F ) nonsingular, is the same necessarily true for A + AT ?

Exercise 480 Let n be a positive integer and let F be a field. Let
A = [aij ] ∈ Mn×n(F ) satisfy the condition that

∑n
i=1 aij = 1 for all

1 ≤ j ≤ n. Show that the matrix I − A is singular.

Exercise 481 Let n be a positive integer and let F be a field. If
A ∈ Mn×n(F ) is a Markov matrix, is A−1 necessarily a Markov matrix?

Exercise 482 Let n be a positive integer and let F be a field. For
A ∈ Mn×n(F ), show that A2 is nonsingular if and only if A3 is
nonsingular.

Exercise 483 Let F = GF (p), where p is a prime integer, and let n
be a positive integer. What is the probability that a matrix in Mn×n(F ),
chosen at random, is nonsingular?

Exercise 484 Let P =
[

0 −1
1 −1

]

∈ M2×2(R) and let A and Q be

nonsingular matrices in M2×2(R). Set B = AQ−1PQ. Show that B is
nonsingular and A−1 + B−1 = (A + B)−1.

Exercise 485 Show that there are infinitely-many matrices A ∈ M2×2(Q)
satisfying A = A−1.

Exercise 486 Let F = GF (2). Is the sum of all nonsingular matrices in
M2×2(F ) nonsingular?

Exercise 487 Let F be a field and let U be the set of all nonsingular
matrices in M2×2(F ). Is the function θ : U → U defined by θ : A �→ A2

a permutation of U?
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Exercise 488 Let n be a positive integer, let F be a field, and let A ∈

M2n×2n(F ) be a matrix which can be written in the form
[

A11 A12

A21 A22

]

,

where each Aij ∈ Mn×n(F ) is nonsingular. Is A necessarily nonsingu-
lar?

Exercise 489 Let n be a positive integer and let F be a field. Do there

exist matrices A,B ∈ Mn×n(F ) such that the matrix
[

A2 AB
BA B2

]

∈
M2n×2n(F ) is nonsingular?

Exercise 490 Let n be a positive integer and let F be a field. For
A,B ∈ Mn×n(F ) with A nonsingular, show that

(A + B)A−1(A − B) = (A − B)A−1(A + B).

Exercise 491 Let n and p be positive integers and let F be a field.
Let A ∈ Mn×n(F ) and let B,C ∈ Mn×p(F ) be matrices satisfying
the condition that A and (I + CT A−1B) are nonsingular. Show that
A + BCT is nonsingular, and that

(
A + BCT

)−1
= A−1 − A−1B(I + CT A−1B)−1CT A−1.

Exercise 492 Let n be a positive integer and let F be a field. If





0
...
0




 �= v ∈ Fn, show that there exists a nonsingular matrix in Mn×n(F )

the last row of which is v.

Exercise 493 Let F be a field. Show that every nonsingular matrix in

M2×2(F ) can be written as a product of matrices of the form
[

0 1
1 0

]

,
[

1 1
0 1

]

, or
[

a 0
0 1

]

for a ∈ F.

Exercise 494 For each real number t, let A(t) =




1 0 t

−t 1 − 1
2 t2

0 0 1



 ∈

M3×3(R). Show that each such matrix is nonsingular and that the set of
all such matrices is closed under taking products.

Exercise 495 Let n be a positive integer and let F be a field. Let
A ∈ Mn×n(F ) be a matrix for which there exists a positive integer k
satisfying Ak = O. Show that the matrix I − A is nonsingular and find
(I − A)−1.
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Exercise 496 Let n be a positive integer and let F be a field. Let
A ∈ Mn×n(F ) be a matrix for which there exists a matrix B ∈ Mn×n(F )
satisfying I + A + AB = O. Show that A is nonsingular.

Exercise 497 Let n be a positive integer and let F be a field. Let A,B ∈
Mn×n(F ) satisfy the condition that A and A+B are nonsingular. Show
that I + A−1B is nonsingular and that (I + A−1B)−1 = (A + B)−1A.

Exercise 498 Find matrices A and B in M2×2(R) satisfying A2 =
B2 = O and that A + iB is a nonsingular matrix in M2×2(C).

Exercise 499 Let F be a field and let A =




1 0 b
0 1 0
a 0 1



 ∈ M3×3(F ),

where ab �= 1. Show that A is nonsingular and calculate A−1.

Exercise 500 Let c �= 0 be an element of a field F and let A =






c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c





 ∈ M4×4(F ). Show that A is nonsingular and find

A−1.

Exercise 501 Let n > 1 and let B ∈ Mn×n(Q) be the matrix all
of the entries of which are equal to 1. Show that there exists a matrix
A ∈ Mn×n(Q) satisfying the condition that A + cB is nonsingular for
all rational numbers c.

Exercise 502 Let n > 1 and let B ∈ Mn×n(Q) be the matrix all of
the entries of which are equal to 1. Find a rational number t such that
(I − B)−1 = I − tB.

Exercise 503 Let n be a positive integer and let A = [aij ] ∈ Mn×n(R)
be the matrix defined by aij = min{i, j} for all 1 ≤ i, j ≤ n. Show that
A is nonsingular.

Exercise 504 Let A = [aij ] ∈ M4×4(R) be the matrix defined by

aij =
{

2 if i = j − 1
1 otherwise .

Show that A is nonsingular and calculate A−1.

Exercise 505 For each real number a, let G(a) =
[

cos(a) sin(a)
− sin(a) cos(a)

]

∈

M2×2(R). Given real numbers a, b, and c, show that G(a, b, c) =
[

G(a) G(b)
O G(c)

]

∈ M4×4(R) is nonsingular, and find G(a, b, c)−1.
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Exercise 506 Find a singular matrix in M3×3(Q) the entries of which
(in some order) are the integers 1, 2, . . . , 9.

Exercise 507 Let n be a positive integer and let F be a field. Given
elements b, c ∈ F, let A = [aij ] ∈ Mn×n(F ) be the matrix defined by

aij =
{

b if i = j
c otherwise .

Find necessary and sufficient conditions for A to be nonsingular.

Exercise 508 Let F be a field and let D =
[

0 1
−1 0

]

∈ M2×2(F ).

Let A ∈ M2×2(F ) satisfy the condition that AT DA = D. Show that A
is nonsingular.

Exercise 509 Let n be a positive integer and let F be a field. Is the
set of all singular matrices in Mn×n(F ) closed under taking products?

Exercise 510 Let n be a positive integer, let F be a field, and let
A,B ∈ Mn×n(F ). Show that A and B are both nonsingular if and only

if the matrix
[

A O
O B

]

∈ M(2n)×(2n)(F ) is nonsingular.

Exercise 511 Let A =




1 1 1
1 1 1
1 1 1



 ∈ M3×3(Q). Find a rational num-

ber c satisfying (I − A)−1 = I − cA.

Exercise 512 Write the matrix
[

1 −2
2 2

]

∈ M2×2(R) as a product of

elementary matrices.

Exercise 513 Find the change of basis matrix from the canonical basis B

of R
3 to the basis D =









1
1
1



 ,




1
1
0



 ,




1
0
0









and the change of

basis matrix from D to B.

Exercise 514 Let G =
{[

a a
a a

] ∣
∣
∣
∣ 0 �= a ∈ R

}

. Show that there

exists a matrix E ∈ G satisfying the condition that EA = A = AE for
all A ∈ G. For each A ∈ G, show that there exists a matrix A‡ ∈ G
satisfying AA‡ = E = A‡A.

Exercise 515 Let F be a field. Given matrices A,B ∈ M2×2(F ),
find the set of all matrices C ∈ M2×2(F ) satisfying (AB − BA)C =
C(AB − BA).
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Exercise 516 Let F be a field and let G be the set of all automorphisms
of F 2 which are represented with respect to the canonical basis by a matrix

of the form
[

a b
0 a−1

]

. Is G a group of automorphisms of F 2?

Exercise 517 Let G be the set of all automorphisms of Q
2 which

are represented with respect to the canonical basis by a matrix of the form
[

a b
0 d

]

, where a, d > 0. Is G a group of automorphisms of Q
2?

Exercise 518 Let W1 ⊆ W2 ⊆ . . . ⊆ Wn be a fixed sequence of subspaces
of a vector space V finitely generated over a field F, If α ∈ Aut(V ),
we say that given sequence is an α-fan if and only if each of the Wi is
invariant under α. Show that G = {α ∈ Aut(V ) | the given sequence is
an α-fan} is a group of automorphisms of V.

Exercise 519 For any real number t and any positive integer n, we can
define the matrix P (n, t) ∈ Mn×n(R) to equal the identity matrix I in
the case t = 0 and otherwise to equal the matrix [pij ] defined by

pij =
{

0 if i < j(
i−1
j−1

)
ti−j otherwise .

Show that P (n, s)P (n, t) = P (n, s + t) for all s, t ∈ R. In particular,
show that each matrix P (n, t) is nonsingular.

Exercise 520 Let F be a field and let X be an indeterminate over
F . Find matrices P and Q in M2×2(F [X]) such that the matrix

P

[
1 + X2 X

X 1 + X

]

Q is a diagonal matrix.

Exercise 521 Let n be a positive integer and let α : Mn(C) → M2n(R)
be the function defined by

α :
[

a + bi c + di
e + fi g + hi

]

�→







a b c d
−b −a −d c

e f g h
−f e −h g





 .

Show that α is a linear transformation of vector spaces over R. Is it a
homomorphism of unital R-algebras?



10
Systems of linear equations

The classical problem of linear algebra is to find all solutions (if any exist)
to a system of linear equations in n unknowns of the form

a11X1 + . . . + a1nXn = b1

a21X1 + . . . + a2nXn = b2

. . .
ak1X1 + . . . + aknXn = bk

where the aij and the bi are scalars belonging to some field F and the
Xj are variables which take values in F.

Example: Let a < b be real numbers and let V = C(a, b). If W
is a subspace of V of dimension n then the interpolation problem
of V is the following: given a function f ∈ V and given real numbers
a ≤ t1 < . . . < tn ≤ b, find a function g ∈ W satisfying f(tj) = g(tj)
for 1 ≤ j ≤ n. If we are given a basis {g1, . . . , gn} of W then we want
to find real numbers c1, . . . , cn satisfying

∑n
i=1 cigi(tj) = f(tj) for all

1 ≤ j ≤ n. In other words, we want to solve a system of linear equations
of the above form, where k = n, aij = gj(ti) and bi = f(ti) for all
1 ≤ i, j ≤ n.

Example: In Proposition 4.2 we noted that if F is a field and if f(X)
and g(X) �= 0 are elements of F [X], then there exist unique polynomials
u(X) and v(X) in F [X] satisfying f(X) = g(X)u(X) + v(X) and

169
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deg(v) < deg(g). If we set g(X) =
∑k

i=0 aiX
i and f(x) =

∑n
i=1 biX

i,

then the coefficients of u(X) =
∑n−k

i=0 ciX
i are found by solving the system

of linear equations

akY0 + ak−1Y1 + . . . + a0Yk = bk

akY1 + ak−1Y2 + . . . + a0Yk+1 = bk−1

. . .
akYn−k−1 + ak−1Yn−k = bn−1

akYn−k = bn

by any of the methods we will discuss.

Example: Sometimes we can transform systems of nonlinear equations
into systems of linear equations. For example, suppose that we want to find
positive real numbers r1, r2, and r3 satisfying the following nonlinear
system of equations:

r1r2r3 = 1
r3
1r

2
2r

2
3 = 27.

r3/r1r2 = 81

Since each of the integers on the right is a power of 3, we can take
the logarithm to the base 3 of both sides of each equation. Setting
Xi = log3(ri) for 1 ≤ i ≤ 3, the system now becomes linear

X1 + X2 + X3 = 0
3X1 + 2X2 + 2X3 = 3
−X1 − X2 + X3 = 4

and this has a unique solution (which we can find by methods to be dis-
cussed in this chapter) X1 = 3, X2 = −5, and X3 = 2, showing that
the original system has a solution r1 = 27, r2 = 1/243, and r3 = 9.

A system of linear equations of the above form is homogeneous if and
only if bi = 0 for all 1 ≤ i ≤ k; otherwise it is nonhomogeneous. At
this stage, we do not yet know answers to the following questions:

(1) Does a given system of linear equations have a solution?
(2) If it has a solution, is that solution unique?
(3) If the solution is not unique, can we characterize the set of all

solutions?
(4) If there are solutions, how do we compute them efficiently?

In order to answer these questions, we have to move to the language of
matrices. The use of matrices for this purpose was developed in Europe
in the 19th century by Cayley, Sylvester, and Laguerre. However, the real
pioneers were the Chinese and Japanese mathematicians. During the time
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of the Han dynasty in China, around 2000 years ago, the classical book

Nine Chapters on the Mathematical Art (Jiuzhang Suanshu, )
presented a method for solving systems of linear equations using matrices.
This was later expanded by the Japanese mathematician Seki1.

How is this done? Let us write the above system in the form






a11 . . . a1n

...
...

ak1 . . . akn











X1

...
Xn




 =






b1

...
bk




 .

The matrix A = [aij ] ∈ Mk×n(F ) is the coefficient matrix of the

system. If we set w =






b1

...
bk




 ∈ F k, then the matrix

[
A w

]
∈

Mk×(n+1)(F ) is called the extended coefficient matrix of the system.

The set of all vectors v =






d1

...
dn




 ∈ Fn satisfying Av = w is the

solution set of the system. This is clearly equal to α−1(w), where
α : Fn → F k is the linear transformation satisfying ΦBD(α) = A, where
B and D are the canonical bases of Fn and F k respectively. In
particular, if the system is homogeneous then its solution set is just the
kernel of α, and is called the solution space of the system.

We note the following simple but important point: if F is a subfield
of a field K and if k and n are positive integers, then any matrix A
in Mk×n(F ) also belongs to Mk×n(K) and any vector v ∈ Fn also
belongs to Kn. Therefore, if w ∈ F k, any element of the solution set
of Av = w, considered as a system of linear equations over F, remains
a solution when we consider this as a system of linear equations over K.

1 Edmond Laguerre, a 19th centry French math-
ematician, wrote an important book on systems of linear equations in 1867. Takakazu
Seki Kowa was a 17th century Japanese mathematician, the son of a samurai warrior
family, who developed matrix-based methods based on old Chinese texts.
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(10.1) Proposition: The solution set of a homogeneous system
of linear equations in n unknowns is a subspace of Fn.

Proof: This is a direct consequence of Proposition 6.4. �

For nonhomogeneous systems, the situation is a bit more complicated.

(10.2) Proposition: Let AX = w be a nonhomogeneous system
of linear equations in n unknowns over a field F and let v0 ∈ Fn

be a solution to this systems. Then the solution set of the system
is the set of all vectors in Fn of the form v0 + v, where v is a

solution to the homogeneous system AX =






0
...
0




 .

Proof: This is an immediate consequence of Proposition 6.6. �

We should emphasize that the solution set of a nonhomogeneous system
of linear equations is not a subspace of Fn but rather an affine subset of
that space.

Example: If we identify R
2 with the Euclidean plane by associating

each vector
[

a
b

]

with the point with coordinates (a, b), then we see its

subspaces of of dimension 1 are precisely the straight lines going through
the origin. The solutions of linear equations of the form a1X1 + a2X2 =
b, where b �= 0, and at least one of the ai is also nonzero, are the straight
lines in the plane which do not go through the origin.

We are still left with the question of how to actually find a solution
to a system of linear equations. Here we can distinguish between two
approaches:

(1) Direct methods. These methods involve the manipulation of the
matrix A, either replacing it with another matrix which is easier to work
with or factoring it into a product of matrices which are easier to work
with, and thus reducing the difficulty of the problem.

(2) Iterative methods. These methods involve selecting a likely solu-
tion for the system and then repeatedly modifying it to obtain a sequence
of vectors which (hopefully) will converge to an actual solution to the sys-
tem. Such methods work, of course, only if our vector space is one in which
the notion of convergence is meaningfully defined. As we shall see, this is
possible when the field of scalars equals R or C.
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We begin by looking at direct methods. Let P be a nonsingular matrix
in Mk×k(F ). A vector v ∈ Fn is a solution to the system AX = w
over F if and only if it is a solution to the system (PA)X = Pw. In
particular, this is true for elementary matrices. Thus, given a system of
linear equations, we can change the order of the equations, multiply one of
the equations by a nonzero scalar, or add a scalar multiple of one equation
to another, without changing the solution set of the system, so long as
we do the same thing on both sides of the equal sign. In order to do this
efficiently, it is best to work with the extended coefficient matrix

[
A w

]

and perform elementary operations on it to reduce it to a convenient form.

Which form should we choose? Let F be a field, let k and n be
positive integers, and let B = [bij ] ∈ Mk×n(F ). The matrix B is in row
echelon form if and only if the following conditions are satisfied:

(1) If 1 < s ≤ k then bs,j = 0 for all 1 ≤ j < s;
(2) If 1 ≤ s ≤ k and 1 ≤ t ≤ n satisfy the condition that bsj = 0 for

all 1 ≤ j < t, then bij = 0 for all s < i ≤ k and all 1 ≤ j ≤ t.

Example: The matrices







1 6 7 7 1
0 9 2 1 1
0 0 0 2 2
0 0 0 0 1





 and







8 0 0 0 0
0 0 0 2 6
0 0 0 0 0
0 0 0 0 0







are in row echelon form. The matrix







1 5 2 9 0
0 0 1 5 4
0 0 1 0 1
0 0 0 0 7





 is not in row

echelon form.

Example: If n is a positive integer and if B ∈ Mn×n(F ) is in row ech-

elon form, then B is surely upper triangular. However,







1 0 2 7
0 0 3 8
0 0 9 0
0 0 0 5







is an upper-triangular matrix which is not in row echelon form.

We claim that for any matrix A = [aij ] ∈ Mk×n(F ) is row equivalent
to a matrix in row echelon form. By Proposition 9.4, this is equivalent to
saying that A can be transformed into a matrix in row echelon form by a
series of elementary operations, as follows:

(1) Find the leftmost column of A which has a nonzero entry and
interchange rows if necessary, so that this entry is in the first row. Thus
we now have a matrix A in which a1h �= 0 and aij = 0 for all 1 ≤ i ≤ k
and all 1 ≤ j < h.
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(2) For each 1 < i ≤ k, if aih �= 0 then we multiply the first row by
−aija

−1
1h and add it to the ith row, which creates a new row in which the

(i, h)-entry is equal to 0. Thus, we now have a matrix in which aih = 0
for all 1 < i ≤ k.

(3) Now consider the submatrix of A from which we deleted the first
row and the first h columns, and repeat the above procedure.

Example: Let us begin with the matrix A =




1 2 3 1
2 1 4 2
1 −1 1 1



 ∈

M3×4(R). We already have a11 �= 0. Multiplying the first row by −2

and adding it to the second row, we obtain




1 2 3 1
0 −3 −2 0
1 −1 1 1



 and

then multiplying the first row by −1 and adding it to the third row,

we obtain




1 2 3 1
0 −3 −2 0
0 −3 −2 0



 . We also already have a22 �= 0. Multi-

plying the second row by −1 and adding it to the third row, we obtain



1 2 3 1
0 −3 −2 0
0 0 0 0



 , and this is in row echelon form.

If A = [aij ] ∈ Mk×n(F ) is a matrix in row echelon form, and if the hth
row of A contains nonzero entries, then the leftmost nonzero entry of the
row is the leading entry. The matrix A is in reduced row echelon
form if it is in row echelon form and, in addition, satisfies the following
additional conditions:

(1) The leading entry in each nonzero row is equal to 1;
(2) If ahj is a leading entry, then aij = 0 for all i �= h.

Any matrix in row echelon is row-equivalent to one in reduced row echelon
form; that is to say, such a matrix can be converted to one in reduced
row echelon form by performing additional elementary operations: first we
multiply each nonzero row by the multiplicative inverse of its leading entry,
to obtain a matrix in which the leading entry of each nonzero row equals
1. Then, if ahj is a leading entry and if i < h, we multiply the hth row
by −aij and add it to the ith row, which will give us a matrix with the
(i, j)-entry equal to 0. The reduced row echelon form of any given matrix
is clearly unique.
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Example: Let us go back and look at the matrix




1 2 3 1
0 −3 −2 0
0 0 0 0





in row echelon form. The leading entry of the first row is already equal to

1. Multiplying the second row by − 1
3 to obtain,




1 2 3 1
0 1 2

3 0
0 0 0 0



 , a

matrix in which the leading entry of the second row is equal to 1 as well.
Now multiply the second row by −2 and add it to the first row, to obtain



1 0 8

3 1
0 1 2

3 0
0 0 0 0



 , which is in reduced row echelon form.

Now let us return to the system of linear equations AX = w in n
unknowns and consider methods of solution. The most well-known is
Gaussian elimination or the Gauss-Jordan method.2 In this method,
we first perform elementary operations on the extended coefficient matrix[

A w
]

to bring it to reduced row echelon form. Having done this, we
now have a new system of linear equations A′X = w′, the solution set of
which is the same as that of the original system. Let t be the greatest
integer i such that the ith row has nonzero entries. There are several
possibilities:

(1) bt �= 0 but a′
tj = 0 for all 1 ≤ j ≤ n. Then the system has no

solutions and we are done.
(2) There is precisely one index j such that a′

tj �= 0. Then this must
in fact be the leading entry of the tth row and so a′

tj = 1. This means
that in any element of the solution set of the system we must have the jth
entry equal to bj . We can therefore substitute bj for Xj in each of
the other equations, and reduce the system to one of equations of n − 1
unknowns.

(3) There are several indices j such that a′
tj �= 0, say those in

columns h1 < h2 < · · · < hm. Then a′
th1

is the leading entry of the tth

2 Carl Friedrich Gauss, who lived in Germany at
the beginning of the 19th century, is considered to be the leading mathematician of all
times, as well as a physicist and astronomer of the first rank. He developed this method
in connection with his work in astronomy in 1809. Gaussian elimination first appeared
in print in a handbook by German geodicist Wilhelm Jordan, who applied the method
to problems in surveying.
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row and so equals 1. Moreover, for any values z1, . . . , zm we substitute
for Xh2 , . . . , Xhm

, we will get a solution to the system with these values
and with bt −

∑m
s=2 zs substituted for Xh1 . Thus we can consider the

zi as parameters of a general solution and again reduce the system to one
in a smaller number of unknowns.

(4) Having reduced the system, we now recursively apply the previous
steps until the system is solved.

Strassen’s insight that Gaussian elimination may not be the optimal
method of solving systems of linear equations, as had been previously
thought, led to the development of his method of matrix multiplication.

Example: Let us consider the system of linear equations

3X1 + 2X2 + X3 = 0
−2X1 + X2 − X3 = 2
2X1 − X2 + 2X3 = −1

over the field R. The extended coefficient matrix of this system is



3 2 1 0

−2 1 −1 2
2 −1 2 −1





and this is row equivalent to the matrix




1 2

3
1
3 0

0 7 −1 6
0 0 1 1



 in row echelon

form, which is in turn row equivalent to the matrix




1 0 0 −1
0 1 0 1
0 0 1 1



 in

reduced row echelon form. Thus we see that the solution set of the system

is









−1

1
1









.

Example: Let us consider the system of linear equations

X1 + X2 = 1
X1 − X2 = 3

−X1 + 2X2 = −2

over the field R. The extended coefficient matrix of this system equals



1 1 1
1 −1 3

−1 2 −2



 , and this is row equivalent to the matrix




1 1 1
0 −2 2
0 0 2
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in row echelon form, which is row equivalent to the matrix




1 0 0
0 1 0
0 0 1





in reduced row echelon form. Therefore this system has no solutions at all.

Example: Let us consider the system of linear equations

X1 + 2X2 + X3 = −1
2X1 + 4X2 + 3X3 = 3
3X1 + 6X2 + 4X3 = 2

over the field R. The extended coefficient matrix of this system is



1 2 1 −1
2 4 3 3
3 6 4 2





and this is row equivalent to the matrix




1 2 1 −1
0 0 1 5
0 0 0 0



 in row echelon

form, which is in turn row equivalent to the matrix




1 2 0 −6
0 0 1 5
0 0 0 0



 in

reduced row echelon form. From the second row we see that we must have
X3 = 5. From the first row we have X1 + 2X2 = −6 and so, for each
value X2 = z, we have a solution with X1 = −6 − 2z. Therefore the

solution set to our system is









−6 − 2z

z
5





∣
∣
∣
∣
∣
∣

z ∈ R





.

We note that if A ∈ Mk×n(F ) then the number of arithmetic opera-
tions needed so solve a system of linear equations of the form AX = w
using Gaussian elimination, is no more than 1

6k(k−1)(3n−k−2) if k < n
and no more than 1

6n
[
3kn + 3(k − n) − n2 − 2

]
otherwise3. Of course, if

3 The first computer program to solve a system of linear equations
by Gaussian elimination was written by Lady Augusta Ada Lovelace, a student of
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the matrix A is of a special form, this procedure can be much faster. For
example, if A ∈ Mn×n(F ) is a tridiagonal matrix, then a system of equa-
tions of the form AX = w can be solved using 3n additions/subtractions
and 5n multiplications.

Gaussian elimination can also be used to check if a set of vectors in F k

is linearly independent. Let {v1, . . . , vn} be a set of vectors in F k, where

vj =






a1j

...
akj




 for all j. We want to know if there exist scalars b1, . . . , bn

in F, not all equal to 0, satisfying
∑n

j=1 bjvj =






0
...
0




 . In other

words, we want to know if the homogeneous systems of linear equations

AX =






0
...
0




 has a nonzero solution, where A = [aij ] ∈ Mk×n(F ).

Example: Let us check if the subset












1
−1

3
4





 ,







3
−3

6
4





 ,







−1
1
0
4












of Q
4 is linearly dependent, and to do so we need to consider the matrix

A =







1 3 −1 0
−1 −3 1 0

3 6 0 0
4 4 4 0





 .

This matrix is row equivalent to the matrix







1 0 2 0
0 1 −1 0
0 0 0 0
0 0 0 0





 in reduced

row echelon form. Therefore the set of solutions to the homogeneous system

AX =






0
...
0




 is









−2z
z
z





∣
∣
∣
∣
∣
∣

z ∈ Q





so that if we pick one such

De Morgan and daughter of the poet Lord Byron, who developed software for Charles
Babbage’s (never completed) mechanical computer in the 19th century. Her program
was capable of solving systems of 10 linear equations in 10 unknowns.
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nonzero element, say




−2

1
1



 , we see that

(−2)







1
−1

3
4





 +







3
−3

6
4





 +







−1
1
0
4





 =







0
0
0
0





 ,

showing that the set is indeed linearly dependent.

If A ∈ Mk×n(F ) is a nonsingular matrix which can be written in the
form LU, where L is lower triangular and U is upper triangular, then
a system of linear equations of the form UX = w is easy to solve using
Gaussian elimination, since U is already in row-echelon form. Moreover,
since U must also be nonsingular, this system has a unique solution
y = U−1w. Then the system AX = w has a unique solution, which
is also the solution to the system LX = y and that system too is easy
to solve. We therefore see the importance of the LU -decomposition of
matrices, assuming that one exists.

Given a matrix A ∈ Mk×n(F ), we define the column space of A to
be the subspace of F k generated by the set of all columns of A. The
dimension of the column space of A is called the rank of A. Moreover,
there exists a linear transformation α : Fn → F k satisfying the condition
that ΦBD(α) = A, where B and D be the canonical bases of Fn and
F k respectively, and it is clear that the column space of A is just im(α).
Similarly, we define the row space of A to be the subspace of M1×n(F )
generated by the rows of A. We will show that the dimension of this space
is also equal to the rank of A.

(10.3) Proposition: Let F be a field, let k and n be positive

integers, and let A ∈ Mk×n(F ) and let w =






b1

...
bk




 ∈ F k. Then

the system of linear equations AX = w has a solution if and only
if w belongs to the column space of A.
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Proof: If v =






d1

...
dn




 is a solution of the system AX = w then

w =






∑n
j=1 a1jdj

...∑n
j=1 akjdj




 =

n∑

j=1

dj






a1j

...
akj






and so w is a linear combination of the columns of A. Conversely, if
we assume that there exist scalars d1, . . . , dn in F such that w =

∑n
j=1 dj






a1j

...
akj




 , then v =






d1

...
dn




 is a solution of the given system.

�

In particular, we get the following consequence of this result.

(10.4) Proposition: Let F be a field, let k and n be positive

integers, and let A ∈ Mk×n(F ) and let w =






b1

...
bk




 ∈ F k. Then

the system of linear equations AX = w has a solution if and only
if the rank of the coefficient matrix A is equal to the rank of
the extended coefficient matrix.

Now let us return to the problem of identifying the solution sets of ho-
mogeneous systems of linear equations.

(10.5) Proposition: Let F be a field, let k and n be positive
integers, and let A ∈ Mk×n(F ) be a matrix the columns of which
are vectors y1, . . . yn in F k. Assume these columns are arranged
such that {y1, . . . , yr} is a basis for the column space of A, for
some r ≤ n. Moreover, for all r < h ≤ n, let us select scalars
bh1, . . . , bhn such that:

(1) yh = bh1y1 + . . . + bhryr;
(2) bhh = −1;
(3) bhj = 0 otherwise.
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For each r < h ≤ n, let vh =






bh1

...
bhn




 ∈ Fn. Then {vr+1, . . . , vn}

is a basis for the solution space of the homogeneous system of

linear equations AX =






0
...
0




 .

(Comment before the proof: Since {y1, . . . , yn} is a set of generators
for the column space of A, it contains a subset that is a basis. The
assumption that this subset is {y1, . . . , yr} is for notational convenience
only.)

Proof: If r = n then the solution space of the system of linear

equations is











0
...
0










and so the result is immediate. Hence let us

assume that r < n. If r < h ≤ n, then Avh =
r∑

j=1

bhjyj − yh =






0
...
0






and so each vh belongs to the solution space of AX =






0
...
0




 . Moreover,

the set {vr+1, . . . vn} is linearly independent, since if
n∑

j=r+1

cjvj =






0
...
0






then for each r < h ≤ n we note that the hth entry on the left-hand
side is −ch whereas the corresponding entry on the right-hand side is 0,
proving that ch = 0 for all r < h ≤ n.

We are therefore left to show that {vr+1, . . . vn} is a generating set
for the solution space of the given homogeneous system. And, indeed, let

w =






d1

...
dn




 be a vector in this solution space. Then w +

n∑

h=r+1

dhvh =






e1

...
en




 , where er+1 = . . . = en = 0. Therefore, this vector belongs to
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solution space of the system, and so
r∑

h=q

ehyh =






0
...
0




 . However, since the

set {y1, . . . , yr} is linearly independent, this implies that e1 = . . . = er = 0

as well. Therefore w = −
n∑

h=r+1

dhvh, showing that {vr+1, . . . vn} is a

generating set for the solution space, as required. �

As an immediate consequence of Proposition 10.5, we obtain the following
result.

(10.6) Proposition: Let F be a field, let k and n be
positive integers, and let A ∈ Mk×n(F ). Then the dimension of
the solution space of the homogeneous system of linear equations

AX =






0
...
0




 is n − r, where r is the rank of the coefficient

matrix A.

We are now ready to prove the characterization of rank which we men-
tioned before.

(10.7) Proposition: Let F be a field, let k and n be positive
integers, and let A ∈ Mk×n(F ). Then the rank of A equals the
dimension of the row space of A.

Proof: Let v1, . . . vk be the rows of A, which generate a subspace
of M1×n(F ). We can reorder these rows in such a way that {v1, . . . vt}
is a basis for the row space, for some 1 ≤ t ≤ k. This, as we know,
does not change the solution space of the homogeneous system of linear

equations AX =






0
...
0




 and hence does not change the rank rA of A.

Let B ∈ Mt×n(F ) be the matrix obtained from A be deleting rows
t + 1, . . . , k. The columns of B belong to F t and so the rank rB of B
satisfies rB ≤ t, which implies that n− t ≤ n− rB . But we have already

seen that the homogeneous systems of linear equations AX =






0
...
0




 and
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BX =






0
...
0




 have the same solution space and so, by Proposition 10.6,

n− t ≤ n− rA. From this we conclude that rA ≤ t. We have thus shown
that the rank of any matrix is less than or equal to the dimension of its
row space. In particular, this is also true for AT . But the rank of AT is
t, while the dimension of its row space is rA, and so we have t ≤ rA as
well, proving equality. �

Example: Let us find a basis for the solution space of the system of lin-

ear equations
[

1 2 −3 1
1 1 1 1

]






X1

X2

X3

X4





 =

[
0
0

]

over R. We know that

the coefficient matrix is row-equivalent to the matrix
[

1 0 5 1
0 1 −4 0

]

in reduced row echelon form, and this matrix has rank 2. Therefore the
solution space of the system has dimension 4 − 2 = 2. Indeed, it is easy

to check that












−5
4
1
0





 ,







−1
0
0
1












is a basis for this solution space.

Gaussian elimination requires an order of magnitude of n3 arithmetic
operations to solve a system of n linear equations in n unknowns. This
computational overhead is quite significant if n is large (say, over 10, 000),
even with the use of supercomputers. As a result, there is considerable
continuing research into finding faster methods of computation, especially
in those cases in which we have additional information on the structure
of the matrix of coefficients, originating in knowledge of the particular
problem from which the system arose. Often this structural information is
immediately noticeable, but sometimes it appears only after a sophisticated
consideration of the problem.

Example: It is often possible to show that the matrix we are interested
in, while not itself having a special structure, is equal to the product of
two matrices having a special structure, a situation which arises in many
mathematical models. Let us consider one such case. An n×n symmet-
ric Toeplitz matrix is a matrix B = [bij ] ∈ Mn×n(R) satisfying the
condition that there exist real numbers c0, . . . , cn−1 such that bij = ch
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whenever |i − j| = h. Thus, for example, the matrix







1 2 0 7
2 1 2 0
0 2 1 2
7 0 2 1







is a symmetric Toeplitz matrix. Clearly the set of all symmetric Toeplitz
matrices is a subspace of Mn×n(R). However, it is not a subalgebra, since
the product of two such matrices need not be a symmetric Toeplitz matrix.
They are also convenient to store in a computer, since we need keep in
memory ony the n scalars c0, . . . , cn−1.

Many mathematical models in economics are built around solving sys-
tems of linear equations of the form AX = w, where A is a product of
two symmetric Toeplitz matrices.4

The proper use of mathematical techniques, and especially computa-
tional techniques, also depends very much on a deep understanding of the
particular problem one is dealing with. Also, it is crucial to emphasize
once again that any method we use to solve a system of linear equations
on a computer will induce errors as a result of roundoff and truncation
in our computations. With some methods – such as Gaussian elimination
– these errors tend to accumulate, whereas with others they often cancel
each other out, within certain limits. It is therefore necessary, especially
when we are dealing with large matrices, to have on hand several methods
of handling such systems of equations and to be able to keep track of the
way in which errors can propagate in each of the different methods at one’s
disposal.5

4 Otto Toeplitz was a 20th-century German mathematician who
studied endomorphisms of infinite-dimensional vector spaces.

5 The problem of the numerical stability of computed
solutions of systems of linear equations was the subject of considerable research in the
early days of computers. Among the outstanding contributors were the Russian husband-
and-wife team of Dimitri Konstantinovich Faddeev and Vera Nikolaevna Fad-
deeva.
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We now turn to iterative methods of solution of systems of linear equa-
tions. For simplicity, we will assume that our field of scalars is always R.
The basic idea is, as we have already noted, to guess a possible solution and
then use this initial guess to compute a sequence of further approximations
to the solution which, hopefully, will converge (in some topology) with rela-
tive rapidity. Usually, the initial guess is based on knowledge of the real-life
problem which gave rise to the system of equations, something that can of-
ten be done with good accuracy. In very large and computationally-difficult
situations (for example, weather prediction, chip design, large-scale eco-
nomic models, computational acoustics, or the modeling the chemistry of
polymer chains) one can even use Monte Carlo methods, based on statis-
tical sampling and estimation techniques, to come up with an initial guess
or even an approximate solution.

To illustrate this approach, let us consider the problem of solving a sys-
tem of linear equations of the form AX = w, where A = [aij ] ∈ Mn×n(R)

is a nonsingular matrix and w =






b1

...
bn




 ∈ R

n. We know that this system

has a unique solution, namely A−1w, but inverting the matrix A may
be computationally time-consuming and prone to error, so we are looking
for another method. Suppose that we can write A = E − D, where E
is some matrix which is easy to invert. Then if v ∈ R

n satisfies Av = w,
we know that Ev = Dv + w and so v = E−1(Dv + w). We now guess
a value for v, call it v(0). Then, using this formula, we can define new
vectors v(1), v(2), . . . iteratively by setting v(h) = E−1

(
Dv(h−1) + w

)
for

each h > 0. This can be done relatively quickly since, by assumption,
E−1 was relatively easy to compute and, having computed it once for the
first step of the iteration, we don’t need to recompute it for subsequent
steps. Our hope is that the sequence v(0), v(1), v(2), . . . will in fact con-
verge. Indeed, if this sequence does converge to some vector v then it is
easy to verify that v must be the unique solution of AX = w.

For example, let us assume that the diagonal entries aii of A are all
nonzero, and let us choose E to be the diagonal matrix having these
entries on the diagonal. Then E−1 is also a diagonal matrix having the

entries a−1
ii on the diagonal. If our initial guess is v(0) =







c
(0)
1
...

c
(0)
n





 ,

then it is easy to see that for h > 0 we have v(h) =







c
(h)
1
...

c
(h)
n





 , where
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c
(h+1)
i = a−1

ii

[
bi −

∑
j �=i aijc

(h)
j

]
for all 1 ≤ i ≤ n. This method is known

as the Jacobi iteration method6. Another possibility, again under the
assumption that the diagonal entries aii of A are all nonzero, is to choose
E to be the upper-triangular matrix [eij ] defined by setting

eij =
{

aij if i ≤ j
0 otherwise .

Given an initial guess v(0) =







c
(0)
1
...

c
(0)
n





 , we see that v(h) =







c
(h)
1
...

c
(h)
n





 for

h > 0, where c
(h+1)
i = a−1

ii

[
bi −

∑i−1
j=1 aijc

(h+1)
j −

∑n
j=i+1 aijc

(h)
j

]
for

all 1 ≤ i ≤ n. This method is known as the Gauss-Seidel iteration
method, since it was discovered independently by Gauss and by Jacobi’s
student Philipp Ludwig von Seidel.

In both of the above methods, and in other iteration methods (and there
are many of these), there is no guarantee that the sequence of approxima-
tions will always converge or that, even if it does converge, it will do so
rapidly. Understanding the conditions for convergence and analyzing the
speed of convergence requires sophisticated techniques in numerical analy-
sis, and indeed there are many examples of matrices for which one iteration
scheme converges whereas another doesn’t, as well as various necessary and
sufficient conditions for a given iteration method to converge.7 For exam-
ple, a sufficient condition for the Jacobi iteration method to converge for a

6 Carl Gustav Jacob Jacobi was a 19th-century German math-
ematician, who worked mostly in analysis and applied mathematics. His work in astron-
omy led him to solve large systems of linear equations, and his papers on determinants
helped make them well-known.

7 The convergence and accuracy of the Gauss-Seidel iteration
method was studied in detail by the Russian mathematician and engineer Alexan-
der Ivanovich Nekrasov at the beginning of the twentieth century, long before the
use of electronic computers.
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matrix A = [aij ] is that,
∑

j �=i |aij | < |aii| for all 1 ≤ i ≤ n. As a rule
of thumb, iteration methods work best for large sparse matrices – namely
matrices in which a very large majority of the entries are 0 – such as those
arising from the solution of systems of partial differential equations. As
previously remarked, in iteration methods truncation and roundoff errors
tend to cancel each other out, rather than accumulate.

Example: Let A =




4 2 1

−1 1 2
0 1 3



 ∈ M3×3(R) and let w =




7
2
4



 .

The system of linear equations Ax = w has a unique solution




1
1
1



 . If

we use the Jacobi iteration method beginning with the initial guess v(0) =



0
0
0



 , we get the sequence of vectors (written to 6 digit accuracy):




0
0
0



 ,




1.75000
2.00000
1.33333



 ,




0.41667
1.08333
0.66667



 ,




1.04167
1.08333
0.97222



 ,




0.96528
1.09722
0.97222



 ,




0.95833
1.02083
0.96759



 ,




0.99768
1.02314
1.01157



 ,




0.99016
1.01157
0.99228



 ,




0.99614
1.00559
0.99614



 ,




0.99816
1.00386
0.99814



 ,




0.99853
1.00190
0.99871



 , . . .

and if we use the Gauss-Seidel iteration method with the same initial guess,
we get the sequence of vectors (written to 6 digit accuracy):




0
0
0



 ,




1.75000

−0.66667
1.33333



 ,




1.04167
0.63889
1.55556



 ,




1.06944
0.80093
1.12037



 ,




1.01504
0.93672
1.06636



 ,




1.00829
0.97287
1.02109



 ,




1.00264
0.99020
1.00904



 ,




1.00113
0.99611
1.00326



 ,




1.00040
0.99853
1.00129



 ,




1.00016
0.99943
1.00049



 ,




1.00006
0.99978
1.00019



 , . . .

so we see that both methods converge, albeit quite differently.
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Example: Let A =




1 2 0
2 1 2
0 2 1



 ∈ M3×3(R) and let w =




0

−1
3



 .

The system of linear equations Ax = w has a unique solution




−2

1
1



 . If

we try to solve this system using the Gauss-Seidel method with the initial

guess




0
0
0



 , we get the sequence of vectors




0

−1
5



 ,




2

−15
33



 ,




30

−127
257



 ,




254

−1023
2049



 , . . .

which clearly diverges.

A more sophisticated iteration technique is, at each stage, not to replace
v(i) by the computed v(i+1) but rather by a linear combination of the
form rv(i+1) +(1−r)v(i), where 0 ≤ r is a relaxation parameter. Do-
ing this with Jacobi iteration gives us the Jacobi overrelaxation (JOR)
method, and doing it with the Gauss-Seidel method gives us the succes-
sive overrelaxation (SOR) method. The relaxation parameter r is
chosen on the basis of certain properties of the matrix A. By choosing
this parameter wisely, one can often achieve a considerable improvement
in convergence.

Example: In the beginning of this chapter we saw an example of how
a nonlinear system of equations can be turned into a linear system. This
can often be done in more general cases, producing large systems of linear
equations of the form AX = w, where the matrix A is usually sparse
and for which iteration methods are therefore appropriate. Consider, for
example, the problem of finding real numbers a, b, and c such that the
following conditions hold:

a2 − b2 + c2 = 6
ab + ac + 4bc = 29

a2 + 2ab − 2bc = −7
2a2 − 3ab + c2 = 5
b2 − c2 + 5ab = 5

2ac − 3b2 = −6

To linearize this, we begin by assigning variables to all of the terms appear-
ing in the equations: X1 = a2, X2 = b2, X3 = c2, X4 = ab, X5 = ac,
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and X6 = bc. This then yields the system of linear equations











1 −1 1 0 0 0
0 0 0 1 1 4
1 0 0 2 0 −2
2 0 1 −3 0 0
0 1 −1 5 0 0
0 −3 0 0 2 0











X =











6
29
−7

5
5

−6











which has a unique solution X1 = 1, X2 = 4, X3 = 9, X4 = 2, X5 = 3,
and X6 = 6, from which we deduce that a = 1, b = 2, and c = 3.

The iterative methods we have discussed so far are all linear, in the sense
that they involve only methods of linear algebra. There are, however, also
families of nonlinear iterative methods, involving the calculus of functions
of several variables, of which one should be aware. These include gradient
(steepest-descent) methods and conjugate-direction methods. A discussion
of these methods is beyond the scope of this book.

Finally, another important warning. When we attempt to solve systems
of linear equations on a computer, it is important to remember that the
system may be very sensitive, and small changes in the entries of the co-
efficient matrix may lead to large changes in the solution. Such systems
are said to be ill-conditioned. Applied mathematicians and others who
design mathematical models often take considerable pains to avoid creating
ill-conditioned systems.

Example: Consider the system of linear equations











1 −10 0 0 0 0
0 1 −10 0 0 0
0 0 1 −10 0 0
0 0 0 1 −10 0
0 0 0 0 1 −10
0 0 0 0 0 1











X =











−9
−9
−9
−9
−9

1











over R. This system has a unique solution, namely











1
1
1
1
1
1











. However, if we

alter the coefficient matrix by changing the (6, 6)-entry to 1
1.001 (which is
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roughly equal to 0.9990009), we will obtain a completely different solution,

namely











101
11
2

1.1
1.01

1.001











.

Since real-life computations are based, as a rule, on numbers gathered
through some sort of measurement process, which is as a matter of course
not completely accurate and certainly beyond our control, it is extremely
important to know how sensitive the system is to possible small variations
in the values of the entries. The numerical analysis of matrices deals ex-
tensively with this issue, and here we can only present a simplistic measure
of this sensitivity for nonsingular square matrices over R. To any ma-
trix A = [aij ] ∈ Mn×n(R), we will assign the number θ(A) defined by

θ(A) = max
1≤j≤n

{
n∑

i=1

|aij |
}

. The number θ(A)θ(A−1) is the condition

number8 of the matrix A. Note that A has the same condition number
as A−1 and as cA, for any 0 �= c ∈ R.

The condition number can be written in the form g× 10t. where 0.1 ≤
g < 1. If t > 0 then, as a rule of thumb, one can expect that the solution
of a system of linear equations AX = w will have t significant digits
fewer than that of the entries of A. Thus, if A is the matrix in the
previous example, then θ(A) = 11. Moreover,

A−1 =











1 10 100 1000 10000 100000
0 1 10 100 1000 10000
0 0 1 10 100 1000
0 0 0 1 10 100
0 0 0 0 1 10
0 0 0 0 0 1











8 Condition numbers were introduced by John von Neumann, one
of the great mathematical geniuses of the 20th century, who contributed to practically
all branches of mathematics – pure and applied. Von Neumann was a major force in
the the introduction of digital computers after World War II and the development of
numerical methods for them.
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and so θ(A−1) = 11, 1111. Therefore θ(A)θ(A−1) is roughly 12 × 107,
and so we cannot, as we have seen, expect any accuracy in our solution, if
we assume our data is only good to 6-digit accuracy.

Similarly, Nievergelt’s matrix
[

888445 887112
887112 885871

]

, which we have al-

ready encountered, has condition number roughly equal to 0.39 × 105.
Of course, computing the condition number of a given matrix may also

be a problem, since it involves calculating A−1. Fortunately, there are
many fairly-efficient condition number estimators, algorithms that give a
good estimate of the condition number of a matrix with relatively low
computational overhead.

Exercises

Exercise 522 Are the matrices




−3 4 1
−2 −4 −6

5 2 7



 and




1 0 1
0 1 1
0 0 0





in M3×3(R) row equivalent?

Exercise 523 Bring the matrix




1 2 3 4
1 2 4 3
2 3 1 4



 ∈ M3×4(R) to reduced

row echelon form.

Exercise 524 Let F = GF (5). Bring the matrix




1 2 1 0
2 3 1 1
1 2 4 0



 ∈

M3×4(F ) to reduced row echelon form.

Exercise 525 Solve the system of linear equations

(3 − i)X1 + (2 − i)X2 + (4 + 2i)X3 = 2 + 6i
(4 + 3i)X1 − (5 + i)X2 + (1 + i)X3 = 2 + 2i

(2 − 3i)X1 + (1 − i)X2 + (2 + 4i)X3 = 5i

over C.

Exercise 526 Solve the system of linear equations

X1 + 2X2 + 4X3 = 31
5X1 + X2 + 2X3 = 29
3X1 − X2 + X3 = 10

over R.



192 10. Systems of linear equations

Exercise 527 Solve the system of linear equations

3X1 + 4X2 + 10X3 = 1
2X1 + 2X2 + 2X3 = 0

X1 + X2 + 5X3 = 1

over GF (11).

Exercise 528 Find all solutions to the system






1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1













X1

X2

X3

X4





 =







5
1
1

−5







over R.

Exercise 529 Find all solutions to the system








1 2 3 4 5
2 1 2 3 4
2 2 1 2 3
2 2 2 1 2
2 2 2 2 1

















X1

X2

X3

X4

X5









=









13
10
11
6
3









over R.

Exercise 530 Find all solutions to the system




1 1 1 1
1 1 1 0
0 0 1 1











X1

X2

X3

X4





 =




1
0
1





over GF (2).

Exercise 531 Find all solutions to the system






1 3 2
2 −1 3
3 −5 4
1 17 4










X1

X2

X3



 =







0
0
0
0







over R.

Exercise 532 Find a real number a so that the system of linear equations

2X1 − X2 + X3 + X4 = 1
X1 + 2X2 − X3 + 4X4 = 2

X1 + 7X2 − 4X3 + 11X4 = a

has a solution over R.
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Exercise 533 Find all real numbers c such that the system of equations

X1 + X2 − X3 = 1
X1 + cX2 + 3X3 = 2

2X1 + 3X2 + cX3 = 3

has a unique solution over R; find those real numbers c for which it has
infinitely-many solutions over R; find those real numbers c for which it
has no solution over R.

Exercise 534 Solve the system of linear equations

X1 + 2X2 + X3 = 1
X1 + X2 + X3 = 0

over GF (3).

Exercise 535 Solve the system of linear equations

X1 + (
√

2)X2 + (
√

2)X3 = 3

X1 + (1 +
√

2)X2 + X3 = 3 +
√

2

X1 + X2 − (
√

2)X3 = 4 +
√

2

over Q(
√

2).

Exercise 536 Solve the system of linear equations

4X1 − 3X2 = 3
2X1 − X2 + 2X3 = 1

3X1 + 2X3 = 4

over GF (5).

Exercise 537 Solve the system of linear equations

4X1 + 6X2 + 2X3 = 8
X1 − aX2 − 2X3 = −5

7X1 + 3X2 + (a − 5)X3 = 7

over R, for various values of the real number a.

Exercise 538 For a given real number a, solve the system

aX1 + X2 + X3 = 1
X1 + aX2 + X3 = 1
X1 + X2 + aX3 = 1

over R.
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Exercise 539 For a ∈ R does the system of linear equations

aX1 + X2 + 2X3 = 0
X1 − X2 + aX3 = 1
X1 + X2 + X3 = 1

have a unique solution in R?

Exercise 540 Let a be an element of a field F. Find the set of all
solutions to the system of linear equations

X1 + X2 + aX3 = a

X1 + aX2 − X3 = 1
X1 + X2 − X3 = 1

over F.

Exercise 541 For which a ∈ Q does the system of linear equations

X1 + 3X2 − 2X3 = 2
3X1 + 9X2 − 2X3 = 2
2X1 + 6X2 + X3 = a

have a unique solution in Q?

Exercise 542 Find real numbers a, b, c, and d such that the points
(1, 2), (−1, 6), (−2, 38), and (2, 6) all lie on the curve y = ax4 + bx3 +
cx2 + d in the euclidean plane.

Exercise 543 Find a polynomial p(X) = a2X
2 + a1X + a0 ∈ R[X] sat-

isfying p(1) = −1, p(−1) = 9, and p(2) = −3.

Exercise 544 Find a polynomial p(X) = a3X
3+a2X

2+a1X+a0 ∈ R[X]
satisfying p(0) = 2, p(2) = 6, p(4) = 3, and p(6) = −5.

Exercise 545 Let F = GF (13). Find a homogeneous system of linear
equations over F satisfying the condition that its solution space equals

F














2
1
9
7
4









,









8
3
10
5
12









,









7
6
2
11
7














.

Exercise 546 Let F be a field. Let b ∈ F and let

A =
[

a11 a12 a13

a21 a22 a23

]

∈ M2×3(F )

be a matrix satisfying the condition that the sum of the entries in each row
and each column of A equals b. Show that b = 0.
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Exercise 547 Let p(X) = X5 − 7X3 + 12 ∈ Q[X]. Find a polynomial
q(X) ∈ Q[X] of degree at most 3 satisfying p(a) = q(a) for all a ∈
{0, 1, 2, 3}.

Exercise 548 Find the rank of the matrix













1 0 0 0 0 0
0 0 0 1 1 0
1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 1 1 0 1 0













∈

M7×6(GF (2)).

Exercise 549 Find the rank of the matrix








1 −1 2 3 4
2 1 −1 2 0

−1 2 1 1 3
1 5 −8 −5 −12
3 −7 8 9 13








∈ M5×5(R).

Exercise 550 Find the rank of the matrix








1 0 1 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 −1 0
0 1 0 1 1








∈ M5×5(R).

Exercise 551 Let F = GF (2). Find the rank of the matrix



1 1 0
0 1 1
1 0 1



 ∈ M3×3(F ).

Exercise 552 Let F = GF (5). Find the rank of the matrix






1 2 3 4 a
4 3 a 1 2
a 1 2 3 4
2 3a 2 4a 1





 ∈ M4×5(F )

for various values of a ∈ F.

Exercise 553 Do there exist a lower-triangular matrix L and an upper-
triangular matrix U in M3×3(Q) satisfying the condition LU =



1 −1 2
2 −1 3
0 1 8



?
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Exercise 554 Let F = GF (5). For which values of a ∈ F do there
exist a lower-triangular matrix L and an upper-triangular matrix U in

M3×3(F ) satisfying the condition that LU =




1 1 a
4 1 0
a 1 4



?

Exercise 555 Find the LU-decomposition of the matrix

A =







4 2 3 4
2 0 2 2
3 4 −4 5

−1 0 2 3





 ∈ M4×4(R).

Exercise 556 Let A ∈ Mn×n(R) be a tridiagonal matrix all diagonal
entries of which are nonzero. Can we write A = LU, where L is
a lower-triangular matrix and U is an upper-triangular matrix, both of
which are also tridiagonal?

Exercise 557 Let F be a field and let a, b, c ∈ F . Find the rank of the

matrix




1 1 1

b + c c + a a + b
bc ca ab



 ∈ M3×3(F ).

Exercise 558 Let F be a field and let a, b, c, d ∈ F. Find the rank of

the matrix




a c c
d a + b c
d d b



 ∈ M3×3(F ).

Exercise 559 Find the rank of the matrix







3 1 1 4
a 4 10 1
1 7 17 3
2 2 4 3





 ∈ M4×4(R)

for various values of the real number a.

Exercise 560 Find the rank of the matrix



a −1 2 1

−1 a 5 2
10 −6 1 1



 ∈ M3×4(Q)

for various values of the rational number a.

Exercise 561 Find the set of all real numbers a such that the rank of

the matrix




a 1 1

−1 −1 −1
1 1 a



 ∈ M3×3(R) equals 2.
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Exercise 562 Let n be a positive integer and, for each A ∈ Mn×n(R),
let r(A) be the rank of A. Define a relation � on Mn×n(R) by setting
B � A if and only if r(A − B) = r(A) − r(B). Is this a partial order
relation?

Exercise 563 Let F be a subfield of a field K. Let k and n be positive
integers and let A ∈ Mk×n(F ) be a matrix having rank r. If we now
think of A as an element of Mk×n(K), is its rank necessarily still equal
to r?

Exercise 564 Find an integer a such that the rank of the matrix






1 7 17 3
4 4 8 6
3 1 1 4

2a 8 20 2





 ∈ M4×4(Q)

is minimal.

Exercise 565 Let F be a field and let k and n be positive integers. For
a matrix A ∈ Mk×n(F ) having rank h, show that there exist matrices
B ∈ Mk×h(F ) and C ∈ Mh×n(F ) such that A = BC.

Exercise 566 Let k and n be positive integers and let F be a field.
For matrices A,B ∈ Mk×n(F ), show that the rank of A+B is no more
than the sum of the ranks of A and of B.

Exercise 567 Let k and n be positive integers and let F be a field.
Let A,B ∈ Mk×n(F ) be matrices satisfying the condition that he row
space of A and the row space of B are disjoint. Does it follow from this
that the rank of A + B equals the sum of the rank of A and the rank of
B?

Exercise 568 Find bases for the row space and column space of the matrix



1 2 −3 −7 −2

−1 −2 1 1 0
1 2 0 2 1



 ∈ M3×5(R).

Exercise 569 Find matrices P,Q ∈ M3×3(R) satisfying

P




1 2 3
2 −2 1
3 0 4



Q =




1 0 0
0 1 0
0 0 0



 .

Exercise 570 Write the rows of the matrix A =




1 2 0

i − 1 2 i
0 2 −i



 ∈

M3×3(C) as linear combinations of the rows of AT .
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Exercise 571 Calculate









1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1









−1

∈ M5×5(R).

Exercise 572 Let k and n be positive integers and let F be a field. Let

A =
[

B C
D E

]

be a matrix in Mk×n(F ), where B is a nonsingular

matrix in Mr×r(F ) for some 1 ≤ r < min{k, n}. Show that the rank of
A equals r if and only of DB−1C = E.

Exercise 573 Let F be a field and let a, b, c be distinct elements of F.
Furthermore, let d, e, f be distinct elements of F. What is the rank of

the matrix




1 a d ad
1 b e be
1 c f cf



 ∈ M3×4(F )?

Exercise 574 Let k and n be positive integers and let F be a field.
Let A ∈ Mk×n(F ) and let w ∈ F k be such that the system of linear
equations AX = w has a nonempty set of solutions and that all of these
solutions satisfy the condition that the hth entry in them is some fixed
scalar c. What can we deduce about the columns of the matrix A?

Exercise 575 Let n be a positive integer and let F be a field. Let
O �= A ∈ Mn×n(F ). Show that there exists a nonnegative integer k such
that the rank of Ah equals the rank of Ak for all h > k.

Exercise 576 Let A =




1 −1 1

−1 −1 1
1 1 1



 ∈ M3×3(R). Find the condition

number of A.

Exercise 577 Let a be a positive real number. It is necessarily true that

the condition number of A =




a 1 a
0 0 −1
a −1 a



 ∈ M3×3(R) is greater

than 2a + 1?

Exercise 578 Find a positive real number a for which the condition

number of A =




1 1 0
0 a a
1 1 1



 ∈ M3×3(R) is maximal.

Exercise 579 Does there exist a system AX = w of linear equations in
n unknowns (for some positive integer n) over R having precisely 35
distinct solutions?
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Determinants

Let F be a field and let n be a positive integer. We would like to find a
function from Mn×n(F ) to F which will serve as an oracle of singularity,
namely a function that will assign a value of 0 to singular matrices and
a value other than 0 to nonsingular matrices. Indeed, let F be a field
and let n be a positive integer. A function δn : Mn×n(F ) → F is a
determinant function if and only if it satisfies the following conditions:

(1) δn(I) = 1;
(2) δn(A) = 0 if A is a matrix having a row all of the entries of which

are 0;
(3) δn(EijA) = −δn(A) for all 1 ≤ i �= j ≤ n;
(4) δn(Eij;cA) = δn(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(5) δn(Ei;cA) = cδn(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F.

In particular, we note that for each 1 ≤ i �= j ≤ n and all c ∈ F
we have δn(Eij) = −1 = δn(ET

ij), δn(Eij;c) = 1 = δn(ET
ij;c), and

δn(Ei;c) = c = δn(ET
i;c).

We have yet to show that such functions exist for all values of n, but
certainly they exist for a few small ones.

Example: For n = 1, the function δ1 : [a] �→ a is a determinant

function. For n = 2, the function δ2 :
[

a11 a12

a21 a22

]

�→ a11a22 − a12a21

is a determinant function.

199
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As an immediate consequence of parts (1) and (5) of the definition, we see
that if A = [aij ] ∈ Mn×n(F ) is a diagonal matrix and if δn : Mn×n(F ) →
F is a determinant function, then δn(A) =

∏n
i=1 aiiδn(I) =

∏n
i=1 aii.

We now want to show that for each positive integer n there exists
determinant function δn : Mn×n(F ) → F, and indeed that this function
is unique. We will first establish the uniqueness of these functions and
check some of their properties, holding off on existence until later in this
chapter.

(11.1) Proposition: Let F be a field. For each positive integer
n there exists at most one determinant function δn : Mn×n(F ) →
F.

Proof: Let us assume that δn : Mn×n(F ) → F and ηn : Mn×n(F ) →
F are determinant functions and let β = ηn − δn. Then the function β
satisfies the following conditions:

(1) β(I) = 0;
(2) β(A) = 0 if A is a matrix having a row all of the entries of which

are 0;
(3) β(EijA) = −β(A) for all 1 ≤ i �= j ≤ n;
(4) β(Eij;cA) = β(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(5) β(Ei;cA) = cβ(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F.

In particular, if A ∈ Mn×n(F ) and E is an elementary matrix, then
β(A) and β(EA) are either both equal to O or both of them are different
from O. But for any matrix A we know that there exist elementary
matrices E1, . . . , Et in Mn×n(F ) such that either E1 · . . . ·EtA = I or
E1 · . . . ·EtA is a matrix having at least one row all of the entries of which
equal 0. Therefore β(A) = 0 for every A ∈ Mn×n(F ). Thus β is the
zero-function, and so δn = ηn. �

(11.2) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. Then δn(A) �= 0 if and only if A is
nonsingular.

Proof: If A is nonsingular, there exist elementary matrices E1, . . . , Et

in Mn×n(F ) such that E1 · . . . · EtA = I, and so, by the definition
of the determinant function, δn(A) = cδn(I) = c, where 0 �= c ∈ F,
and so δn(A) �= 0. Now assume that δn(A) �= 0 and that A is
singular. Then there exist elementary matrices E1, . . . , Et in Mn×n(F )
such that E1 · . . . · EtA is a matrix having at least one row all of the
entries of which equal 0. But then, for some 0 �= c ∈ F, we have
0 �= δn(A) = cδn(E1 · . . . ·EtA) = c0 = 0, which is a contradiction, proving
that A must be nonsingular. �
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Thus we see that the determinant function, to the extent it exists, is the
oracle we are seeking.

Example: The subset
{[

a + bi
c + di

]

,

[
−c + di
a − bi

]}

of C
2 is linearly

dependent if and only if A =
[

a + bi −c + di
c + di a − bi

]

∈ M2×2(C) is singular.

We have already noted that δ2 :
[

a11 a12

a21 a22

]

�→ a11a22 − a12a21 is a

determinant function, and so this happens if and only if δ2(A) = a2 + b2 +
c2 + d2 = 0, i.e. if and only if a = b = c = d = 0.

(11.3) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. If A is a matrix in Mn×n(F ) having
two identical rows then δn(A) = 0.

Proof: Suppose that rows h and k of A are identical. First assume
that the characteristic of F is other than 2. Then A = Ehk(A) and
so δn(A) = δn(EhkA) = −δn(A), which implies that δn(A) = 0. If the
characteristic of F equals 2 then δn(A) = δn(Ehk;1A), and Ehk;1A is
a matrix having a row in which the entries of one row are all 0. Therefore,
by Proposition 11.2, δn(A) = 0. �

(11.4) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. If A,B ∈ Mn×n(F ) then

(1) δn(AB) = δn(A)δn(B);
(2) δn(AB) = δn(BA).

Proof: (1) By Proposition 9.1, we know that AB is nonsingular if
and only if both A and B are nonsingular. Therefore δn(A) = 0
or δn(B) = 0 if and only if δn(AB) = 0. If δn(A) �= 0 �= δn(B)
then there exist elementary matrices E1, . . . , Et, G1, . . . , Gs in Mn×n(F )
such that B = E1 · . . . · EtI and A = G1 · . . . · GsI and so AB =
G1 · . . . ·GsE1 · . . . ·EtI, which implies that δn(AB) = δn(A)δn(B) from
the definition of a determinant function.

(2) This is an immediate consequence of (1), since δn(A)δn(B) =
δn(B)δn(A) in F . �

(11.5) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. If A ∈ Mn×n(F ) is nonsingular then
δn(A−1) = δn(A)−1.

Proof: By Proposition 11.4, we see that δn(A−1)δn(A) = δn(A−1A) =
δn(I) = 1 and from this the result follows immediately. �
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(11.6) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. If A ∈ Mn×n(F ) then:

(1) δn(AEij) = −δn(A) for all 1 ≤ i �= j ≤ n;
(2) δn(AEij;c) = δn(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(3) δn(AEi;c) = cδn(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F.

Proof: This is a direct consequence of the definition of the determinant
function and Proposition 11.4(2). �

(11.7) Proposition: Let F be a field and let δn : Mn×n(F ) → F
be a determinant function. If A ∈ Mn×n(F ) then δn(A) = δn(AT ).

Proof: If A is singular then so is AT and so δn(A) = 0 = δn(AT ).
If A is nonsingular then there exist elementary matrices E1, . . . , Et in
Mn×n(F ) such that E1 · . . . · EtA = I = IT = AT ET

t · . . . · ET
1 . By our

remarks in Chapter 9 concerning the transposes of elementary matrices,
and by the remarks at the beginning of this chapter, we see that δn(A) =
δn(E1 · . . . ·EtA) = δn(AT ET

t · . . . ·ET
1 ) = δn(AT ) and so δn(A) = δn(AT ).

�

Of course, at this stage we do not know that determinant functions
δn : Mn×n(F ) → F even exist for the case n > 2 and so we now
have to construct them. Let us denote the set of all permutations of the
set {1, . . . n} by Sn. We note that any π ∈ Sn is a bijective function
from {1, . . . n} to itself and so there exists a function π−1 ∈ Sn satisfying
the condition that ππ−1 and π−1π are equal to the identity function
i �→ i. We also note that if π, π′ ∈ Sn then ππ′ ∈ Sn.

(11.8) Proposition: If n is a positive integer then the number
of elements of Sn equals n!.

Proof: Suppose we wanted to construct an arbitrary element π of Sn.
There are n possibilities for selecting π(1). Once we have done that,
there are n − 1 ways of selecting π(2), then n − 2 ways of selecting
π(3), etc. Thus, the total number of ways in which we can define π is
n(n − 1) · . . . · 1 = n!. �

Now let π ∈ Sn and let 1 ≤ i < j ≤ n. The pair (i, j) is called an
inversion with respect to π if and only if π(i) > π(j). That is to say,
(i, j) is an inversion with respect to π if and only if

i − j

π(i) − π(j)
< 0.
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We will denote the number of distinct inversions with respect to π by
h(π), and define the signum of π to be sgn(π) = (−1)h(π). Thus

sgn(π) =






1
if there are an even number of inversions
with respect to π

−1
if there are an odd number of inversions
with respect to π

.

It is easy to check that sgn(π) = sgn(π−1) for all π ∈ Sn. If sgn(π) = 1,
the permutation π is even; if sgn(π) = −1, the permutation π is odd.

Example: Let π ∈ S4 be defined by 1 �→ 3, 2 �→ 4, 3 �→ 2, and
4 �→ 1. Then if we consider all possible pairs (i, j) with 1 ≤ i < j ≤ 4
we get

(i, j) (π(i), π(j)) inversion?
(1,2) (3,4) no
(1,3) (3,2) yes
(1,4) (3,1) yes
(2,3) (4,2) yes
(2,4) (4,1) yes
(3,4) (2,1) yes

and so we see that sgn(π) = −1.

Now let n be a positive integer and let (K, •) be an associative and
commutative unital F -algebra. Let A = [aij ] ∈ Mn×n(K). We then
define the function A �→ |A| from Mn×n(K) to K by setting

|A| =
∑

π∈Sn

sgn(π)aπ(1),1 • aπ(2),2 • . . . • aπ(n),n.

Note that, by the commutativity of K, if τ = π−1 then

aπ(1),1 • aπ(2),2 • . . . • aπ(n),n = a1,τ(1) • a2,τ(2) • . . . • an,τ(n)

and so |A| =
∑

τ∈Sn
sgn(τ)a1,τ(1) • a2,τ(2) • . . . • an,τ(n). Thus we see

immediately that |A| = |AT | for every A ∈ Mn×n(K). If K = C then,
since c + d = c + d and cd = cd, we also see that for A = [aij ] we
have |A| = |A|. Defining this function for an arbitrary commutative and
associative unital F -algebra is important for us, as we will need it in the
case that K = F [X], where F is a field.

Example: If A = [aij ] ∈ M3×3(K), for an associative and commuta-

tive unital F -algebra (K, •), then

|A| = a11 • a22 • a33 + a12 • a23 • a31 + a13 • a21 • a32

−a11 • a23 • a32 − a13 • a22 • a31 − a12 • a21 • a33.
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(11.9) Proposition: Let F be a field, let (K, •) be an associative
and commutative unital F -algebra, and let A = [aij ] ∈ Mn×n(K).
Pick 1 ≤ h ≤ n and write ahj = bhj + chj in K for all 1 ≤ j ≤ n.
For all 1 ≤ i ≤ n satisfying i �= h, set bij = cij = aij . Set B = [bij ]
and C = [cij ], matrices in Mn×n(K). Then |A| = |B| + |C|.

Proof: From the definition of |A|, we have

|A| =
∑

π∈Sn

sgn(π)a1,π(1) • . . . • ah,π(h) • . . . • an,π(n)

=
∑

π∈Sn

sgn(π)a1,π(1) • . . . •
[
bh,π(h) + ch,π(m)

]
• . . . • an,π(n)

=
∑

π∈Sn

sgn(π)a1,π(1) • . . . • bh,π(h) • . . . • an,π(n)

+
∑

π∈Sn

sgn(π)a1,π(1) • . . . • ch,π(h) • . . . • an,π(n)

= |B| + |C|,

as required. �

We are now ready to prove that determinant functions in fact always
exist.

(11.10) Proposition: For an integer n > 1 and a field F , the
function Mn×n(F ) → F defined by A �→ |A| is a determinant
function.

Proof: In order to simplify our notation, we will make the following
temporary convention: if π ∈ Sn and if A = [aij ] ∈ Mn×n(F ), we
will write u(π,A) = sgn(π)a1,π(1) · . . . · an,π(n). Now let us check the five
conditions of a determinant function.

(1) Clearly u(π, I) equals 1 if π is the identity permutation and 0
otherwise, and so |I| = 1.

(2) Let A be a matrix one of the rows of which has all of its entries
equal to 0. Since a factor from each row appears in every term u(π,A),
we conclude that all of these are equal to 0 and hence |A| = 0.

(3) Let A be a matrix and let B = EijA. Let ρ ∈ Sn be the
permutation which interchanges i and j and leaves all of the other
numbers between 1 and n fixed. Then sgn(πρ) �= sgn(π) for all
π ∈ Sn and so for each π ∈ Sn we have −u(π,A) = u(πρ,A) = u(π,B).
This implies that |B| = −|A|.

(4) Let A be a matrix and let B = Eij;cA. Then B = [bht], where
bht = aht when h �= j and 1 ≤ t ≤ n, and where bjt = ajt + cait for all
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1 ≤ t ≤ n. By Proposition 11.9, we have |B| = |A|+ |C|, where C is the
matrix all of the rows of which except the jth are identical with those of
A, and where in the jth row we have cjt = cait for all 1 ≤ t ≤ n. Then
|C| = c|D| where D is a matrix in which two rows, the ith and the jth,
are equal. If the characteristic of F is other than 2, then D = EijD
and so, by (3), we get |D| = −|D|, and so we get |C| = c|D| = 0 and
we have |A| = |B|, which is what we want. Therefore let us assume that
the characteristic of F equals 2. Let ρ ∈ Sn be the permutation which
interchanges i and j and leaves all other numbers between 1 and n fixed.
Let H be the set of all even permutations in Sn and let K be the set
of all odd permutations. The function from H to K defined by π �→ ρπ
is bijective since ρπ1 = ρπ2 implies that π1 = ρ−1ρπ1 = ρ−1ρπ2 = π2.
Moreover, since the characteristic of F is 2 and since u(π,D) = u(ρπ,D)
for all π ∈ H, we see that u(π,D) + u(ρπ,D) = 0 for all π ∈ H.
Therefore |D| =

∑
π∈H [u(π,D) + u(ρπ,D)] = 0 and this implies, again,

that |C| = 0 and so |A| = |B|.
(5) It is clear from the definition of |A| and if B = Ei;cA then

|B| = c|A|. �

Thus, in summary, we see that if F is a field and if n is a positive
integer, then there exists a unique determinant function Mn×n(F ) → F,
namely A �→ |A|. We call the scalar |A| the determinant1 of the matrix
A.

Example: Let n > 1 be an integer. If c1, . . . cn are distinct elements
of a field F and if A = [aij ] ∈ Mn×n(F ) is the Vandermonde matrix
defined by aij = cj−1

i for all 1 ≤ i, j ≤ n, then it is easy to verify that
|A| =

∏

i<j
(cj − ci) �= 0.

Example: As a consequence of Proposition 11.7, we note that if n > 0
is odd and if A ∈ Mn×n(F ) is a skew-symmetric matrix then |A| =

1 Determinants were first used in

The com-
mon properties of determinants were first studied by 19th-century German mathemati-

was done by the 19th-century French mathematician Augustin-Louis Cauchy, relying
on the work of many mathematicians who preceded him. His work was continued by
Cayley and Sylvester.

the work of the 17th-century German mathematician, philosopher, and diplomat Gott-

cian Heinrich Scherk, and the first systematic analysis of the theory of determinants

fried von Leibnitz, who developed calculus along with Sir Isaac Newton.
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∣
∣AT

∣
∣ = |−A| = − |A| and so |A| = 0. Therefore, by Proposition 11.2, A

is singular. If n is even, then one can use the definition of |A| to show
that |A| = b2 for some b which is a sum of products of the aij . Thus,
for example,

∣
∣
∣
∣
∣
∣
∣
∣

0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

∣
∣
∣
∣
∣
∣
∣
∣

= [a12a34 − a13a24 + a14a23]
2
.

This number b is called the Pfaffian2 of the matrix A. Pfaffians arise
naturally in combinatorics, differential geometry and other areas of math-
ematics.

We now give two examples of why it was worthwhile to define |A| for
matrices A with entries in an associative and commutative unital F -
algebra, and not just a field.

Example: Let V be a vector space of finite dimension n over a
field F and let B = {v1, . . . , vk} be a linearly-independent subset of
V. Let y1, . . . , yk be a list of vectors in V. We claim that there are at
most finitely-many elements a of F satisfying the condition that the
list v1 + ay1, . . . , vk + ayk is linearly dependent. To establish this claim,
we will consider determinants of matrices over F [X]. Indeed, extend B
to a basis D = {v1, . . . , vn} of V. Then, for each 1 ≤ i ≤ k, we can
write yi =

∑n
j=1 cijwj . For each 1 ≤ i, j ≤ k, define the polynomial

pij(X) ∈ F [X] by setting

pij(X) =
{

ciiX + 1 if i = j
cijX otherwise

and consider the matrix B = [pij(X)] ∈ Mk×k(F [X]). Then |B| is a
polynomial q(X) in F [X], which is not the 0-polynomial since q(0) = 1.
Moreover, for any a ∈ F, we see that q(a) = 0 whenever the list

v1 + ay1, . . . , vk + ayk

2 Pfaffians were first defined by Cayley, and named in honor of Jo-
hann Pfaff, an 18th-century German mathematician whose most famous doctoral stu-
dent was Gauss.
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is linearly dependent. Since a polynomial can have only finitely-many
distinct roots, this can happen only for finitely-many values of a.

Example: Let n > 1 be an integer and let U be an open interval
of real numbers. Let K be the set of all functions in R

U which are
differentiable at least n − 1 times. Then K is an associative and
commutative unital R-algebra which is not entire, let alone a field. We will
denote the derivative of a function f ∈ K by Df and, if h > 1, we
will denote the hth derivative of f by Dhf. Given f1, . . . , fn ∈ K, the
function

W (f1, . . . , fn) : t �→

∣
∣
∣
∣
∣
∣
∣
∣
∣

f1(t) f2(t) . . . fn(t)
(Df1)(t) (Df2)(t) . . . (Dfn)(t)

...
...

...
(Dn−1f1)(t) (Dn−1f2)(t) . . . (Dn−1fn)(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

is called the Wronskian3 of f1, . . . , fn. One can show that if we have
W (f1, . . . , fn)(t) �= 0 for some t ∈ U then the subset {f1, . . . , fn} of
K is linearly independent over R. The converse is false. To see this,
let U be an open interval containing the origin, let f1 : t �→ t3, and
let f2 : t �→

∣
∣t3

∣
∣ . Then {f1.f2} is linearly independent over R, but

W (f1, f2)(t) = 0 for any t ∈ U.

Example: Let n be a positive integer equal to 2 or divisible by 4. A
matrix A = [aij ] ∈ Mn×n(C) with |aij | ≤ 1 for all 1 ≤ i, j ≤ n having
maximal possible determinant (in absolute value) is known as a Hadamard
matrix (though in fact such matrices were studied by Sylvester a gener-
ation before Hadamard considered them). For such a matrix, we have
|A| = nn/2, and the entries of A are all ±1. Indeed, a matrix A is a
Hadamard matrix precisely when all of its entries are ±1 and AAT = nI.

Thus,







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1





 and







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





 are Hadamard

3 The insight of Josef Wronski, a 19th-century Polish mathemati-
cian living in France, was obscured by his decidedly eccentric philosophical ideas and
style of writing, and was recognized only after his death. The notion of a determinant
of functions was first used by Jacobi.
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matrices. Indeed, for each t ≥ 1, there exists a Hadamard matrix Ht

of size 2t × 2t, defined recursively by setting H1 =
[

1 1
1 −1

]

and

Ht =
[

Ht−1 Ht−1

Ht−1 −Ht−1

]

for each t > 1.

We also note immediately that if A is a Hadamard matrix so are
AT and −A. Hadamard matrices have important applications in al-
gebraic coding theory, especially in defining the error-correcting Reed-
Muller codes. Needless to say, the determinants of Hadamard matrices
get very big very quickly. If A is a 16 × 16 Hadamard matrix, then
|A| = 4, 294, 967, 296 and if B is a 32 × 32 Hadamard matrix, then
|B| = 1, 208, 925, 819, 614, 629, 174, 706, 176.

We still are faced with the problem of actually computing the determi-
nant of an n × n matrix A, especially when n is large. If we work
using the definition, we see that we must add n! summands, each of which
requires n−1 multiplications. The total number of arithmetic operations
need is therefore (n− 1)n! + (n!− 1) = n(n!)− 1, which is a huge number
even if n is relatively small. For example, if we are using a computer
capable of performing a billion arithmetic operations per second, it would
take us 12, 200, 000, 000 years of nonstop computation to compute the de-
terminant of a 25 × 25 matrix, based on the definition. Thus we must
find better methods of computing determinants, a task which became a
high priority for many nineteenth-century mathematicians.

Example: Let A = [aij ] ∈ Mn×n(F ) be a matrix in which a11 �= 0.
Then Chiò, Dodgson4, and others showed that |A| = a2−n

11 |B|, where
B ∈ M(n−1)×(n−1)(F ) is the matrix obtained from A by erasing the

first row and first column and replacing each other aij by
∣
∣
∣
∣

a11 a1j

ai1 aij

∣
∣
∣
∣ .

4 During the 19th century, matrix theory and the
theory of determinants attracted many gifted mathematicians and mathematical ama-
teurs. Felice Chiò was a 19th-century Italian mathematician and physicist. On the
other hand, Rev. Charles Lutwidge Dodgson was an amateur who is better known
by his pen name Lewis Carroll, the author of Alice in Wonderland. Dodgson published
several works on mathematics under his own name.
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Thus, for example,

∣
∣
∣
∣
∣
∣
∣
∣

1 2 3 4
8 7 6 5
1 8 2 7
3 6 4 5

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

1 2
8 7

∣
∣
∣
∣

∣
∣
∣
∣

1 3
8 6

∣
∣
∣
∣

∣
∣
∣
∣

1 4
8 5

∣
∣
∣
∣

∣
∣
∣
∣

1 2
1 8

∣
∣
∣
∣

∣
∣
∣
∣

1 3
1 2

∣
∣
∣
∣

∣
∣
∣
∣

1 4
1 7

∣
∣
∣
∣

∣
∣
∣
∣

1 2
3 6

∣
∣
∣
∣

∣
∣
∣
∣

1 3
3 4

∣
∣
∣
∣

∣
∣
∣
∣

1 4
3 5

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−9 −18 −27
6 −1 3
0 −5 −7

∣
∣
∣
∣
∣
∣

= −144.

This method can, of course, be iterated.

Let A = [aij ] ∈ Mn×n(K), where K is an associative and commutative
unital F -algebra. For each 1 ≤ i, j ≤ n, we define the minor of the entry
aij of A to be |Aij |, where Aij ∈ M(n−1)×(n−1)(K) is the matrix
obtained from A by erasing the ith row and the jth column.

Example: If A =




4 3 1
2 8 9
7 3 4



 , then A13 =
[

2 8
7 3

]

and A22 =

[
4 1
7 4

]

.

(11.11) Proposition: Let F be a field, let (K, •) be an associa-
tive and commutative unital F -algebra. If n is a positive integer,
and A = [aij ] ∈ Mn×n(K), then |A| =

∑n
j=1(−1)t+jatj • |Atj | for

each 1 ≤ t ≤ n.

Proof: In order to simplify our notation, let det(y1, . . . , yn) denote
the determinant of the matrix the rows of which are y1, . . . , yn. We will
first prove the theorem for the case t = 1. That is to say, we must show
that |A| equals

∑n
j=1(−1)1+ja1j • |A1j |. For each 1 ≤ h ≤ n, let

vh ∈ M1×n(K) be the matrix
[

d1 . . . dn

]
defined by

di =
{

1 if i = h
0 otherwise .
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Then the ith row of A can be written as wi =
∑n

j=1 aijvj . and so

|A| = det(w1, . . . , wn) = det




n∑

j=1

a1jvj , w2, . . . , wn





=
n∑

j=1

a1j • det(vj , w2, , . . . , wn).

Thus we will prove the desired result if we can show that

det(vj , w2, , . . . , wn) = (−1)1+j |A1j |

for each 1 ≤ j ≤ n. Denote the matrix the rows of which are vj , w2, , . . . , wn

by B = [bih], where

bih =






1 if i = 1 and h = j
0 if i = 1 and h �= j
aih if i > 1.

.

For 1 ≤ j ≤ n, set G1j = {π ∈ Sn | π(1) = j} .
Suppose that j = 1. Then, in particular, there is a bijective correspon-

dence between G11 and the set of all permutations of {2, . . . n} which
does not affect the signum of the permutation since if π ∈ G11 then 1
does not appear in any inversion of π. Since b11 = 1 and b1h = 0 if
h > 1, we thus have

|B| =
∑

π∈Sn

sgn(π)b1,π(1) • . . . • bn,π(n)

=
∑

π∈G11

sgn(π)b1,π(1) • . . . • bn,π(n)

=
∑

π∈G11

sgn(π)b2,π(2) • . . . • bn,π(n) = |A11|

and so we have shown, as desired, that |B| = (−1)1+1|A11|. If j > 1 put
column j of B in the position of the first column and shift columns 1
to j − 1 of B to the right by one column position. This involves j − 1
column interchanges, and we have

det(vj , w2, . . . , wn) = (−1)j−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 . . . 0
a2j a21 . . . a2n

...
...

...
anj an1 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)j+1 |A1j | .

Now assume that t > 1. Again, we can interchange the tth row with
the first row by t − 1 exchanges with the row above, and we get |A| =
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(−1)t−1|C|, where C is a matrix satisfying |C1j | = |Atj | for each
1 ≤ j ≤ n. Therefore

|A| = (−1)t−1|C| = (−1)t−1
n∑

j=1

(−1)j+1c1j • |C1j | =
n∑

j=1

(−1)j+tatj • |Atj |

as desired. �

Example: For A =







1 7 3 0
4 0 1 3
0 2 4 0
3 1 5 1





 we see that

|A| = 1

∣
∣
∣
∣
∣
∣

0 1 3
2 4 0
1 5 1

∣
∣
∣
∣
∣
∣
− 7

∣
∣
∣
∣
∣
∣

4 1 3
0 4 0
3 5 1

∣
∣
∣
∣
∣
∣
+ 3

∣
∣
∣
∣
∣
∣

4 0 3
0 2 0
3 1 1

∣
∣
∣
∣
∣
∣
− 0

∣
∣
∣
∣
∣
∣

4 0 1
0 2 4
3 1 5

∣
∣
∣
∣
∣
∣

= 16 + 140 − 30 + 0 = 126

and

|A| = 0

∣
∣
∣
∣
∣
∣

7 3 0
0 1 3
1 5 1

∣
∣
∣
∣
∣
∣
− 2

∣
∣
∣
∣
∣
∣

1 3 0
4 1 3
3 5 1

∣
∣
∣
∣
∣
∣
+ 4

∣
∣
∣
∣
∣
∣

1 7 0
4 0 3
3 1 1

∣
∣
∣
∣
∣
∣
− 0

∣
∣
∣
∣
∣
∣

1 7 3
4 0 1
3 1 5

∣
∣
∣
∣
∣
∣

= 0 − 2 + 128 − 0 = 126.

Even this method of computing determinants is not easy, however, unless
there is a row (or column) of the matrix a significant number of the entries
in which are equal to 0. To see the computational overhead of computing
the determinant of a general n × n matrix using minors, let us denote
the number of arithmetic operations needed to do so by pn. Clearly
p1 = 1 and p2 = 3. Suppose that we have already found pn−1. Then
by Proposition 11.11 we see that in order to compute the determinant of
an n × n matrix we have to compute the determinants of n matrices of
size (n − 1) × (n − 1) and then perform n multiplications and n − 1
additions/subtractions. That is to say, we obtain the recursive formula

pn = npn−1 + n + (n − 1) = npn−1 + 2n − 1,

when n > 2. Setting tn = 1
n!pn, we see that

tn − tn−1 =
2

(n − 1)!
− 1

n!
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and so

tn = [tn − tn−1] + [tn−1 − tn−2] + . . . + [t3 − t2] + t2

=
[

2
(n − 1)!

− 1
n!

]

+ . . . +
[

2
2!

− 1
3!

]

+ 1

= 2
[

1
(n − 1)!

+ . . . +
1
1!

]

−
[

1
n!

+ . . . +
1
1!

]

+ 1

=
1

(n − 1)!
+ . . . +

1
1!

+ 1 − 1
n!

=
[

1
n!

+
1

(n − 1)!
+ . . . +

1
1!

+ 1
]

− 2
n!

and thus we see that pn = n!
[

1
n! + 1

(n−1)! + . . . + 1
1! + 1

]
−2. But from cal-

culus we know that e, the base of the natural logarithms, has an expansion
of the form

e = 1 +
1
1!

+ . . . +
1
n!

+
ec

(n + 1)!
,

where 0 < c < 1, and so

pn = n!
[

e − ec

(n + 1)!

]

− 2.

If n > 2, we see that

0 <
ec

n + 1
<

e

n + 1
≤ e

3
< 1

and so we conclude that en! − 3 < pn < en! − 2. Since pn is a positive
integer, we see that pn = �en!�−2, where �r� denotes the largest whole
number less than or equal to r, for any real number r. In particular,
we see that pn grows even faster than exponentially, as a function of n,
which is very rapid growth indeed. For example, p10 = 9, 864, 094 and
p15 = 3, 554, 625, 081, 047.

In special cases, it is also possible to find bounds on the value of the
determinant of a matrix, without actually computing it. For example, we
will see below that if A ∈ Mn×n(R) and if g is a positive real number
greater than or equal to the absolute value of each of the entries of A,
then the absolute value of |A| is at most gn

√
nn.

(11.12) Proposition: Let n be a positive integer, let F be
a field, and let (K, •) be an associative and commutative unital
F -algebra. Let A = [aij ] ∈ Mn×n(K) be a matrix which can be



11. Determinants 213

represented in block form as







A1 O . . . O
O A2 . . . O

. . .
O O . . . Am





 , where m > 1

and each of the submatrices Ai is square. Then |A| =
m∏

h=1

|Ah| .

Proof: Let us first consider the case m = 2, and assume that A1 ∈
Mt×t(K) for some t < n. By definition,

|A| =
∑

π∈Sn

sgn(π)aπ(1),1 • aπ(2),2 • . . . • aπ(n),n.

However, if π ∈ Sn satisfies the condition that π(i) > t for some
1 ≤ i ≤ t, then the summand sgn(π)aπ(1),1 • aπ(2),2 • . . . • aπ(n),n equals
0. Therefore, we in fact have

|A| =
∑

π∈U

sgn(π)aπ(1),1 • aπ(2),2 • . . . • aπ(n),n,

where U is the subset of Sn consisting of all those permutations π
satisfying 1 ≤ π(i) ≤ t for all 1 ≤ i ≤ t and hence, perforce, t + 1 ≤
π(i) ≤ n for all t + 1 ≤ i ≤ n. In other words, each π ∈ U can be
considered as the combination of two permutations, one of {1, . . . t}, and
the other of {t + 1, . . . n}. Moreover, again as a direct consequence of the
definition, sgn(π) is the product of the signa of these two permutations.
From this, our result follows immediately.

Now assume, inductively, that the result has been established for m
and consider a matrix A ∈ Mn×n(K) which can be written in block form

as







A1 O . . . O
O A2 . . . O

. . .
O O . . . Am+1





 . If we set B =







A1 O . . . O
O A2 . . . O

. . .
O O . . . Am







then, by the case m = 2 and the induction hypothesis, we see that

|A| = |B| • |Am+1| =
m+1∏

h=1

|Ah| . �

Let A = [aij ] ∈ Mn×n(K) for some associative and commutative
unital F -algebra (K, •). We define the adjoint of A to be the matrix
adj(A) = [bij ] ∈ Mn×n(K), where bij = (−1)i+j |Aji| for all 1 ≤ i, j ≤ n.
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Example: If A =







1 0 3 5
−3 1 3 1

4 2 1 2
1 1 2 5





 ∈ M4×4(R) then

adj(A) =







−20 9 −17 25
50 −18 −16 −40

−40 −18 −16 50
10 9 13 −35





 .

(11.13) Proposition: Let F be a field and let n be a positive
integer. If A = [aij ] ∈ Mn×n(F ) then A[adj(A)] = |A|I. In partic-
ular, if the matrix A is nonsingular then A−1 = |A|−1 adj(A).

Proof: Suppose that adj(A) = [bij ]. Then A[adj(A)] = [cij ], where
cij =

∑n
k=1 aikbkj =

∑n
k=1(−1)j+kaik|Ajk|. If i = j, then, by Proposition

11.11, this is just |A|. If i �= j, this is just |A′|, where A′ is a matrix
identical to A in all of its rows except the ith row, and that is equal to
the jth row of A. Thus the matrix A′ has two identical rows, and so by
Proposition 11.3, |A′| is equal to 0. Hence A[adj(A)] = |A|I, from which
we also immediately deduce the second statement since if A is nonsingular
then |A| �= 0. �

(11.14) Proposition: Let F be a field, let (K, •) be a associa-
tive and commutative unital F -algebra, and let n be a positive
integer. If A = [aij ] ∈ Mn×n(K) is an upper-triangular matrix
then |A| =

∏n
i=1 aii.

Proof: We can prove this by induction on n. For the case n = 1,
it is immediate. Assume therefore that we have already established it for
all matrices in Mn×n(K). Then, by Proposition 11.11, |A| = |AT | =∑n

j=1(−1)1+jaj1 • |Aj1| = a11 • |A11|. But, by the induction hypothesis,
|A11| =

∏n
i=2 aii, and we are done. �

By Proposition 11.14 we see that in general, from a computational point
of view, it is much faster to first perform elementary operations on a matrix
to reduce it to upper-triangular form, and then calculate the determinant
(making use of the fact, from the definition of a determinant function and
from Proposition 11.4, we easily know the determinants of the elementary
matrices), than to calculate the determinant directly. When working in
associative and commutative unital algebras over a field, or when working
with matrices of integers, this presents somewhat of a problem since it is
not always possible to divide by nonzero scalars in such contacts. However,
various variants on Gaussian elimination which do not involve division have
been developed to overcome this.
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Combining Propositions 11.4 and 11.14, we see that if A ∈ Mn×n(F )
can be written in the form LU, where L is a lower-triangular matrix and
U is an upper-triangular matrix, then |A| is the product of the diagonal
elements of L and the diagonal elements of U.

(11.15) Proposition (Cramer’s Theorem5): Let F be a field
and let n be a positive integer. If A = [aij ] ∈ Mn×n(F ) is a

nonsingular matrix and if w =






b1

...
bn




 ∈ Fn, then the system of

linear equations AX = w has the unique solution v =






d1

...
dn




 in

which, for each 1 ≤ i ≤ n, we have di = |A|−1|A(i)|, where A(i)

is the matrix formed from A by replacing the ith column of A
by w.

Proof: If Av = w then |A|v =
(
|A|A−1

)
Av = adj(A)Av = adj(A)w

and so for each 1 ≤ i ≤ n, we have |A|di =
∑n

j=1(−1)i+jbj |Aji|. But the
expression on the right-hand side of this equation is just, by Proposition
11.11, |A(i)|, developed by minors on the ith column. �

Cramer’s theorem, published in 1750, was the first systematic method for
solving a system of linear equations, though special cases of it were known
to Leibnitz 75 years earlier. While it is elegant mathematically, it is clearly
not computationally feasible, even when n is only moderately large, as
was immediately realized by mathematicians of the time. Indeed, solving
a system of linear equations AX = w by Cramer’s method, where A is
a nonsingular n× n matrix over a field F, requires 1

3n4 − 1
6n3 − 1

3n2 +
1
6n additions and 1

3n4 + 1
3n3 + 2

3n2 + 2
3n − 1 multiplications, which is

considerably worse than the methods we have previously studied, for which
the number of arithmetic operations necessary grows as n3, rather than
as n4.

5 Gabriel Cramer was an 18th-century Swiss mathematician and
friend of Johann Bernoulli (one of the formulators of calculus) who was among the first
to study determinants and their use to solve systems of linear equations.
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Example: Consider the system of linear equations AX =




2
1
4



 ,

where A =




1 −1 1
1 2 0
1 0 −1



. Then |A| = −5 and

|A(1)| =

∣
∣
∣
∣
∣
∣

2 −1 1
1 2 0
4 0 −1

∣
∣
∣
∣
∣
∣
= −13, |A(2)| =

∣
∣
∣
∣
∣
∣

1 2 1
1 1 0
1 4 −1

∣
∣
∣
∣
∣
∣
= 4, and

|A(3)| =

∣
∣
∣
∣
∣
∣

1 −1 2
1 2 1
1 0 4

∣
∣
∣
∣
∣
∣
= 7.

As a consequence, we see that the unique solution to the equation is

1
5




13
−4
−7



 .

We end this chapter with an interesting application of determinants of
matrices over the R-algebra R[X]. Let c0, c1, . . . be real numbers and
let us consider the analytic function f : x �→

∑∞
i=0 cix

i, which converges
for all x in some subset U of R. We know that U �= ∅ since surely
0 ∈ U. Given positive integers k and n, we want to find polynomials
p(X), q(X) ∈ R[X] of degrees at most k and n respectively, such that
the function x �→ p(x)q(x)−1 − f(x) also converges for all x ∈ U and is
representable there by a power series of the form x �→

∑∞
i=1 dix

k+n+i. If
we find such p and q, then the function x �→ p(x)q(x)−1 is called the
Padé approximant6 to f of type k/n. Padé approximants are very
important tools in differential equations and in approximation theory.

Example: If f : x �→ ex =
∑∞

i=0
1
i!x

i then the function

g1 : x �→ x2 + 4x + 6
6 − 2x

6 Henri Padé was a 19th-century French engineer
who developed these approximants in the course of his work. Interest in them intensified
in the early 20th century when the French mathematician Émile Borel made exensive
use of them in his work on analysis.
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is a Padé approximant to f of type 2/1 and the function

g2 : x �→ x2 + 6x + 12
x2 − 6x + 12

is a Padé approximant to f of type 2/2. The following diagram shows a
part of the graph of f (broken line) and of g2 (solid line):

If we are given f as above, how do we calculate Padé approximants to
it? First of all, define c−i = 0 for all positive integers i. Then, given
positive integers k and n, define the matrices Pk/n(X), Qk/n(X) ∈
M(n+1)×(n+1)(R[X]) as follows:

Pk/n(X) =









ck−n+1 ck−n+2 . . . ck+1

ck−n+2 ck−n+3 . . . ck+2

. . .
ck ck+1 . . . ck+n∑k−n

i=0 ciX
n+i

∑k−n+1
i=0 ciX

n+i−1 . . .
∑k

i=0 ciX
i









and

Qk/n(X) =









ck−n+1 ck−n+2 . . . ck+1

ck−n+2 ck−n+3 . . . ck+2

. . .
ck ck+1 . . . ck+n

Xn Xn−1 . . . 1









.

Then the polynomials p(X) = |Pk/n(X)| and q(X) = |Qk/n(X)| are
of the desired size, and our approximant is given by x �→ p(x)q(x)−1.
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Exercises

Exercise 580 For real numbers a and b, calculate

∣
∣
∣
∣

sin(a) cos(a)
sin(b) cos(b)

∣
∣
∣
∣ and

∣
∣
∣
∣

cos(a) sin(a)
sin(b) cos(b)

∣
∣
∣
∣ .

Exercise 581 Calculate

∣
∣
∣
∣
∣
∣

1 i 1 + i
−i 1 0

1 − i 0 1

∣
∣
∣
∣
∣
∣
∈ C

3.

Exercise 582 For any real number a, calculate

∣
∣
∣
∣
∣
∣
∣
∣

a − 6 0 0 −8
5 a − 4 0 12
−1 3 a − 2 −6
0 − 1

2 1 1

∣
∣
∣
∣
∣
∣
∣
∣

.

Exercise 583 Find the image of the function f from R to itself defined

by f : t �→

∣
∣
∣
∣
∣
∣

1 0 −t
1 1 −1
t 0 −1

∣
∣
∣
∣
∣
∣
.

Exercise 584 For real numbers a, b, c, and d, show that

∣
∣
∣
∣
∣
∣
∣
∣

a2 (a + 1)2 (a + 2)2 (a + 3)2

b2 (b + 1)2 (b + 2)2 (b + 3)2

c2 (c + 1)2 (c + 2)2 (c + 3)2

d2 (d + 1)2 (d + 2)2 (d + 3)2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Exercise 585 Let n be a positive integer and let c be a fixed real number.
Let A = [aij ] ∈ Mn×n(R) be the matrix defined by

aij =






c if i < j
i if i = j
0 if i > j

.

Calculate |A|.
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Exercise 586 If n is a positive integer, we define the nth Hankel7 ma-
trix Hn ∈ Mn×n(R) to be the matrix [aij ] satisfying

aij =
{

0 if i + j − 1 > n
i + j − 1 otherwise .

Calculate |Hn|.

Exercise 587 For a, b ∈ R, calculate

∣
∣
∣
∣
∣
∣

a b a + b
b a + b a

a + b a b

∣
∣
∣
∣
∣
∣
.

Exercise 588 Let p(X) = a0+a1X+a2X
2 and q(X) = b0+b1X+b2X

2

be polynomials in C[X]. Show that there exists a complex number c

satisfying p(c) = q(c) = 0 if and only if

∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Exercise 589 Find the set of all pairs (a, b) of real numbers such that
∣
∣
∣
∣
∣
∣
∣
∣

a + 1 3a b + 3a b + 1
2b b + 1 2 − b 1

a + 2 0 1 a + 3
b − 1 1 a + 2 a + b

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Exercise 590 For a, b, c ∈ R, show that
∣
∣
∣
∣
∣
∣

0 (a − b)2 (a − c)2

(b − a)2 0 (b − c)2

(c − a)2 (c − b)2 0

∣
∣
∣
∣
∣
∣
≤ 0.

Exercise 591 Let n be a positive even integer and let c, d ∈ Q. Let
A = [aij ] ∈ Mn×n(Q) be the matrix defined by

aij =






c if i = j
d if i + j = n + 1
0 otherwise

.

Calculate |A|.

7 Nineteenth-century German mathematician Hermann Hankel
was among the first to recognize and popularize the work of Grassmann.
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Exercise 592 Let n be a positive integer and let A = [aij ] ∈ Mn×n(Q)
be the tridiagonal matrix defined by

aij =
{

1 if |i − j| ≤ 1
0 otherwise .

Show that

|A| =






−1 if n = 3k
1 if n = 3k + 1
0 if n = 3k + 2

for some nonnegative integer k.

Exercise 593 Find integers a, b, and c for which
∣
∣
∣
∣
∣
∣

a + b c c
a b + c a
b b a + c

∣
∣
∣
∣
∣
∣

is divisible by 8.

Exercise 594 Let n be a positive integer and let A ∈ Mn×n(Q) be
a nonsingular matrix satisfying the condition that all of the entries of A
and of A−1 are integers. Show that |A| = ±1.

Exercise 595 For elements a, b, and c of a field F, calculate
∣
∣
∣
∣
∣
∣

−2a a + b a + c
a + b −2b b + c
a + c b + c −2c

∣
∣
∣
∣
∣
∣
.

Exercise 596 We know that the integers 23028, 31882, 86469, 6327,

and 61902 are all divisible by 19. Show that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 0 2 8
3 1 8 8 2
8 6 4 6 9
0 6 3 2 7
6 1 9 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is also

divisible by 19.

Exercise 597 Let q ∈ Q. Show that there are infinitely-many matrices in

M3×3(Q) of the form




2 2 3

3q + 2 4q + 2 5q + 3
a b c



 , where a < b < c,

the determinant of which equals q.

Exercise 598 Let n be a positive integer and let F be a field. Let
A ∈ Mn×n(F ) be a nonsingular matrix which can be written in block form

A =
[

A11 A12

A21 A22

]

, where A11 ∈ Mk×k(F ) for some integer k < n.
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Write A−1 as
[

B11 B12

B21 B22

]

, where B11 ∈ Mk×k(F ). Show that

|A11| = |A| · |B22|.

Exercise 599 Find all real numbers a for which

∣
∣
∣
∣
∣
∣
∣
∣

a 1 1 1
1 a 2 3
0 −1 0 1

−1 1 1 2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Exercise 600 Let a1, a2, . . . be a sequence of real numbers. For each
positive integer n, define the nth continuant cn of the sequence to be
the determinant of the tridiagonal matrix An = [aij ] ∈ Mn×x(R) given
by

aij =






ai if i = j
−1 if i = j − 1

1 if i = j + 1
0 otherwise

.

Show that cn = ancn−1 + cn−2 for all n > 2.

Exercise 601 Let n > 1 be an integer, let d be a real number, and let
A = [aij ] ∈ Mn×n(R) be the matrix defined as follows:

aij =






0 if i = j
1 if i > 1 and j = 1 or i = 1 and j > 1
d otherwise

.

Show that |A| = (−1)n−1(n − 1)dn−2.

Exercise 602 Let b1, . . . , bn be nonzero real numbers and let A = [aij ] ∈
Mn×n(R) be the matrix defined as follows:

aij =
{

1 + bj if i = j
1 otherwise .

Calculate |A|.

Exercise 603 Let A = [aij ] ∈ M4×4(Q) be a matrix each entry of which
is either −2 or 3. Show that |A| is an integer multiple of 125.

Exercise 604 Let a, b, c, and d be real numbers not all of which are

equal to 0. Show that the matrix







a b c d
b −a d −c
c −d −a b
d c −b −a





 ∈ M4×4(R) is

nonsingular.
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Exercise 605 Does there exist a rational number a satisfying the condi-

tion that the matrix




1 a 0
a 1 1

−1 a −1



 ∈ M3×3(Q) is nonsingular?

Exercise 606 Find all matrices I �= A ∈ M2×2(R) satisfying A3 = I.

Exercise 607 Find all triples (a, b, c) of real numbers satisfying the con-

dition

∣
∣
∣
∣
∣
∣

1 a a3

1 b b3

1 c c3

∣
∣
∣
∣
∣
∣
= (b − c)(c − a)(a − b)(a + b + c).

Exercise 608 Let n be a positive integer, let A = [aij ] ∈ Mn×n(C) and
let B = [bij ] ∈ Mn×n(C) be defined by bij = aji for each 1 ≤ i, j ≤ n.
Show that |AB| is a nonnegative real number.

Exercise 609 Calculate
∣
∣
∣
∣

1 logb a
loga b 1

∣
∣
∣
∣ for given positive real numbers

a and b.

Exercise 610 Let F be a field. Calculate

∣
∣
∣
∣
∣
∣
∣
∣

1 a a2 a3

a3 a2 a 1
1 2a 3a2 4a3

4a3 3a2 2a 1

∣
∣
∣
∣
∣
∣
∣
∣

for

any a ∈ F.

Exercise 611 Calculate

∣
∣
∣
∣
∣
∣
∣
∣

cos(a) sin(a) cos(a) sin(a)
cos(2a) sin(2a) 2 cos(2a) 2 sin(2a)
cos(3a) sin(3a) 3 cos(3a) 3 sin(3a)
cos(4a) sin(4a) 4 cos(4a) 4 sin(4a)

∣
∣
∣
∣
∣
∣
∣
∣

for

a ∈ R.

Exercise 612 Let n be a positive integer and let A = [aij ] ∈ Mn×n(R)
be the matrix defined by

aij =
{

0 if i = j
1 otherwise .

Calculate |A|.

Exercise 613 Let A =




3 −1 1
0 2 4
1 −1 1



 ∈ M3×3(R). Calculate adj(A).

Exercise 614 Let F = GF (2) and let A =




1 1 0
0 1 1
1 1 1



 ∈ M3×3(F ).

Calculate adj(A).
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Exercise 615 Let F be a field, let n be a positive integer, and let
A,B ∈ Mn×n(F ). Is it necessarily true that adj(AB) = adj(A) adj(B)?

Exercise 616 Let F be a field, let n be a positive integer, and let
A ∈ Mn×n(F ). Is it necessarily true that adj(AT ) = adj(A)T ?

Exercise 617 Let F be a field, let n be a positive integer, and let the
matrices A,B ∈ Mn×n(F ) be nonsingular. Show that adj(B−1AB) =
B−1 adj(A)B.

Exercise 618 Let F be a field, let n be a positive integer, and let
A,B ∈ Mn×n(F ) be matrices satisfying B �= O and AB = O. Show
that |A| = 0.

Exercise 619 Let A =




1 2 3
1 3 4
1 4 3



 ∈ M3×3(R). Use the adjoint of A

to calculate A−1.

Exercise 620 Let F be a field, let n be a positive integer, and let A =
[aij ] ∈ Mn×n(F ). Let B = [bij ] ∈ Mn×n(F ) defined by bij = (−1)i+jaij

for all 1 ≤ i, j ≤ n. Show that |A| = |B|.

Exercise 621 Let F be a field, let n be a positive integer, and let
A = [aij ] ∈ Mn×n(F ). Let B = [bij ] ∈ Mn×n(F ) defined by bij =
(−1)i+j+1aij for all 1 ≤ i, j ≤ n. Show that (−1)n|A| = |B|.

Exercise 622 Let n be a positive integer and let π ∈ Sn. Let A ∈
Mn×n(Q) be the permutation matrix defined by π. Calculate |A|.

Exercise 623 Is the set of all permutation matrices in Mn×n(Q) closed
under multiplication? Is the inverse of a permutation matrix a permutation
matrix?

Exercise 624 Let A = [aij ] ∈ M3×3(R) be a matrix in which ai2 �= 0
for all 1 ≤ i ≤ 3. Denote the minor of aij for all 1 ≤ i, j ≤ n by Aij .
Show that

|A| =
1

a12

∣
∣
∣
∣

A21 A23

A31 A32

∣
∣
∣
∣ +

1
a22

∣
∣
∣
∣

A11 A13

A31 A33

∣
∣
∣
∣ +

1
a32

∣
∣
∣
∣

A11 A13

A21 A22

∣
∣
∣
∣ .

Exercise 625 Let F be a field, let n be a positive integer, and let
A = [aij ] ∈ Mn×n(F ) be nonsingular. Show that adj(adj(A)) = |A|n−2A.

Exercise 626 Let a and b be real numbers and let n be an integer
greater than 2. Let D = [dij ] ∈ Mn×n(R) be the matrix defined by
dij = sin(ia + jb) for all 1 ≤ i, j ≤ n. Show that |D| = 0.
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Exercise 627 Let F be a field and let a, b, c, d, e, f, g ∈ F. Show that
∣
∣
∣
∣
∣
∣

a b b
c d e
f g g

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

a b b
e c d
f g g

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

a b b
d e c
f g g

∣
∣
∣
∣
∣
∣
= 0.

Exercise 628 Let F be a field, let n be a positive integer, and let
A = [aij ] ∈ Mn×n(F ). Let B = [bij ] ∈ Mn×n(F ) be the matrix defined
by

bij =
{

aij + ai,j+1 if j < n
ain otherwise .

Show that |B| = |A|.

Exercise 629 Let k and n be integers greater than 1. Let F be
a field and let A = [aij ] be a matrix in Mk×n(F ), the upper row of
which contains at least one nonzero entry. For each 2 ≤ i ≤ k and each

2 ≤ j ≤ n, let dij =
∣
∣
∣
∣

a11 a1j

ai1 aij

∣
∣
∣
∣ . Show that the rank of the matrix

D =






d22 . . . d2n

...
...

dk2 . . . dkn




 ∈ M(k−1)×(n−1)(F )

is r − 1, where r is the rank of A.

Exercise 630 Let F be a field, let a �= b be elements of F, and let
A,B ∈ M2×2(F ) be matrices satisfying the condition that |A + hB| ∈
{a, b} for h = 1, 2, 3, 4, 5. Show that |A + 9B| ∈ {a, b}.

Exercise 631 Let F be a field and let a, b, c ∈ F. Make use of the

matrix




b c 0
a 0 c
0 a b



 in order to calculate the determinant of the matrix




b2 + c2 ab ac

ab a2 + c2 bc
ac bc a2 + b2



 .

Exercise 632 Let A ∈ Mn×n(C) be a nonsingular matrix, which we will
write in the form B + iC, where B,C ∈ Mn×n(R). Show that there is a
real number d such that the matrix B + dC ∈ Mn×n(R) is nonsingular.

Exercise 633 Let F be a field and let n be a positive integer. Let
A ∈ Mn×n(F ) be a matrix having the property that the sum of all even-
numbered columns (considered as vectors in Fn) of A equals the sum of
all odd-numbered columns of A. What is |A|?
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Exercise 634 Let V = R
2 and let f : V 3 → R be the function defined as

follows: if vi =
[

ai

bi

]

for i = 1, 2, 3, then f :




v1

v2

v3



 �→

∣
∣
∣
∣
∣
∣

a1 b1 1
a2 b2 1
a3 b3 1

∣
∣
∣
∣
∣
∣
.

Show that f(v1, v2, v3) = f(v4, v2, v3) + f(v1, v4, v3) + f(v1, v2, v4) for all
v1, v2, v3, v4 ∈ V.

Exercise 635 Let F be a field and let n be a positive integer. Let D =
[dij ] ∈ Mn×n(F ) be the matrix defined by dij = 1 for all 1 ≤ i, j ≤ n.
Show that for any matrix A ∈ Mn×n(F ) precisely one of the following
conditions holds: (1) There is a unique scalar a ∈ F such that A + aD
is singular; (2) A + aD is singular for all scalars a ∈ F ; (3) A + aD
is nonsingular for all scalars a ∈ F.

Exercise 636 Let A,B,C,D ∈ M2×2(R) and let M be the matrix
[

A B
C D

]

∈ M4×4(R). If all of the “formal determinants” AD − BC,

AD−CB, DA−BC, and DA−CB are nonsingular, is M necessarily
nonsingular?

Exercise 637 Let A,B,C,D ∈ M2×2(R) and let M be the matrix
[

A B
C D

]

∈ M4×4(R). If M is a nonsingular matrix matrix, is at least

one of the “formal determinants” AD−BC, AD−CB, DA−BC, and
DA − CB also nonsingular?

Exercise 638 Let n > 1 be an integer and let A = [aij ] ∈ Mn×n(Q) be
a matrix satisfying the condition that each aij is either equal to 1 or to
−1. Show that |A| is an integer multiple of 2n−1.

Exercise 639 If a, b, c, d, e, f are nonzero elements of a field F, show

that

∣
∣
∣
∣
∣
∣
∣
∣

0 a2 b2 c2

a2 0 f2 e2

b2 f2 0 d2

c2 e2 d2 0

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

0 ad be cf
ad 0 cf be
be cf 0 ad
cf be ad 0

∣
∣
∣
∣
∣
∣
∣
∣

.

Exercise 640 Let n be a positive integer and let c1, . . . , cn be distinct
real numbers transcendental over Q. For 1 ≤ h ≤ n, let ph(X) =
∑h−1

i=0 aiX
i ∈ Q[X] be a polynomial of degree h − 1. Let A = [pi(cj)] ∈

Mn×n(R). Show that |A| = (a0 · . . . · an−1)
∏

i<j
(cj − ci).

Exercise 641 Let n be a positive integer and let c1, . . . , cn be distinct
real numbers transcendental over Q. For each 1 ≤ i, j ≤ n, set dij =
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cj
i − c−j

i and let A = [dij ] ∈ Mn×n(R). Show that

|A| = (c1 · . . . · cn)−n
∏

i<j

[(ci − cj)(1 − cicj)]
n∏

i=1

(c2
i − 1).

Exercise 642 Let a, b, c, d be elements of a field F. Solve the equation
∣
∣
∣
∣
∣
∣
∣
∣

a b c d
b c d a
c d a b
d a b c

∣
∣
∣
∣
∣
∣
∣
∣

= X

∣
∣
∣
∣
∣
∣
∣
∣

0 1 −1 1
1 c d a
1 d a b
1 a b c

∣
∣
∣
∣
∣
∣
∣
∣

.

Exercise 643 Let a, b, and c be nonzero real numbers. Under which

conditions does the equation

∣
∣
∣
∣
∣
∣

0 a − X b − x
−a − X 0 c − X
−b − X −c − X 0

∣
∣
∣
∣
∣
∣
= 0 have more

than one solution?

Exercise 644 Use determinants to show that there is no matrix A ∈

M4×4(Q) satisfying the condition that A4 =







1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1





 .

Exercise 645 Let A = [aij ] ∈ Mn×n(R) be a matrix satisfying the
condition |aii| >

∑
j �=i |aij | for all 1 ≤ i ≤ n. Show that |A| �= 0.

Exercise 646 Let F be a field and let a, b, c ∈ F. Is it true that
∣
∣
∣
∣
∣
∣
∣
∣

a b c 0
b a 0 c
c 0 a b
0 c b a

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

−a b c 0
b −a 0 c
c 0 −a b
0 c b −a

∣
∣
∣
∣
∣
∣
∣
∣

?

Exercise 647 Let F be a field and let n > 2 be an integer. Give
an example of a matrix A ∈ Mn×n(F ) all of the entries in which are
nonzero, satisfying adj(A) = O.

Exercise 648 Let F be a field and let n > 2 be an integer. Show that
| adj(A)| = |A|n−1 for all A ∈ Mn×n(F ).

Exercise 649 Is the function adj : M2×2(R) → M2×2(R) epic?

Exercise 650 For real numbers s and t, let A(s, t) =




s 0 t
1 1 1
t 0 1





and let B(s, t) = adj(A(s, t)). Find the set of all real numbers s satisfying
the condition that |A(s, t)| �= |B(s, t)| for all t ∈ R.
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Exercise 651 Let F be a field. Does there exist a matrix A in M3×3(F )
satisfying the condition that the rank of adj(A) equals 2?

Exercise 652 Let n be a positive integer and for all 1 ≤ j ≤ n, let mj

be a positive integer. Define the matrix A = [aij ] ∈ Mn×n(Q) by setting
aij =

(
mj+i−1

j−1

)
for all 1 ≤ i, j ≤ n. Calculate |A|.

Exercise 653 Let a and b be distinct elements of a field F and let n
be a positive integer. Let A(n) = [aij ] ∈ Mn×n(F ) be the matrix defined
by

aij =
{

a if i = j
b otherwise .

Use induction on n to prove that |A(n)| = [a + (n − 1)b](a − b)n−1.

Exercise 654 Let n be a positive integer and pick integers 1 ≤ h, k ≤ n.
Let f, g ∈ R

R be the functions defined by

f : c �→
{

|Eh,c| if c �= 0
0 if c = 0

and g : c �→ |Ehk;c|. Are these functions continuous?

Exercise 655 Let n be a positive integer and let A ∈ Mn×n(Q) be a
nonsingular matrix the entries of which are integers and the determinant
of which is ±1. Show that all of the entries of A−1 are integers.

Exercise 656 Let F be a field and let A ∈ M2×2(F ). Show that the
matrix A2 + |A|I belongs to the subspace of M2×2(F ) generated by {A}.

Exercise 657 Let A = [aij ] ∈ M3×3(Q) be a matrix all of the entries
of which are nonnegative one-digit integers. Let d be a positive integer
dividing the three-digit integers a11a12a13, a21a22a23, and a31a32a33.
Show that d divides |A|.

Exercise 658 Let n be a positive integer and let F be a field. Let
A ∈ Mn×n(F ) be a matrix satisfying the condition that |A + B| = |A|
for all B ∈ Mn×n(F ). Show that A = O.

Exercise 659 Let n be an odd positive integer let A ∈ Mn×n(R). Show
that there exists a diagonal matrix B the diagonal entries of which are
±1 such that A + B is nonsingular.

Exercise 660 Let n > 1 be an integer and let F be a field. Show that
there exist subspaces W and Y of Mn×n(F ) satisfying Mn×n(F ) =
W ⊕ Y such that the restrictions of the determinant function δn to W
and to Y are linear transformations.
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Exercise 661 Let n > 1 be an integer and let B be the set of all of the
nonsingular matrices in Mn×n(R) all of the entries of which are either
1 or 0. Show that in every matrix in B there are at least n− 1 entries
which are equal to 0 and that there exists a matrix in B in which there
are precisely n − 1 entries equal to 0.

Exercise 662 Let A be a matrix formed by permuting the rows or columns
of a Hadamard matrix. Is A necessarily a Hadamard matrix?

Exercise 663 Let V be a vector space of finite dimension n over a field
F and let {v1, . . . , vn} be a given basis for V. Let U be the subset of
V consisting of all vectors of the form ya =

∑n
i=1 ai−1vi, for 0 �= a ∈ F.

Show that any subset of U having n elements is a basis for V.

Exercise 664 Let F be a field and let n be an even positive integer. Let
A ∈ Mn×n(F ) be a matrix which can be written in block form as [Aij ] ,

where Aij =
[

0 ci

−ci 0

]

if i = j, and Aij =
[

0 0
0 0

]

otherwise.

Calculate the Pfaffian of A.

Exercise 665 Let c = 1
2

(
1 + i

√
3
)
. Find the set of all real numbers a

such that

∣
∣
∣
∣
∣
∣

a 1 1
1 c c2

1 c2 c

∣
∣
∣
∣
∣
∣
∈ R.

Exercise 666 Let a, b, c, d be elements of a field F. Calculate
∣
∣
∣
∣
∣
∣
∣
∣

a b c d
b a d c
c d a b
d c b a

∣
∣
∣
∣
∣
∣
∣
∣

.



12
Eigenvalues and eigenvectors

One of the central problems in linear algebra is this: given a vector space
V finitely generated over a field F, and given an endomorphism α of
V, is there a way to select a basis B of V so that the matrix ΦBB(α)
is as nice as possible? In this chapter we will begin by defining some basic
notions which will help us address this problem.

Let V be a vector space over a field F and let α ∈ End(V ). A
scalar c ∈ F is an eigenvalue of α if and only if there exists a vector
v �= 0V satisfying α(v) = cv. Such a vector is called an eigenvector1 of α
associated with the eigenvalue c. Thus we see that a nonzero vector v ∈ V
is an eigenvector of α if and only if the subspace Fv of V is invariant
under α. Every eigenvector of α is associated with a unique eigenvalue
of α but any eigenvalue has, as a rule, many eigenvectors associated with
it. The set of all eigenvalues of α is called the spectrum of α and is
denoted by spec(α). Thus, c ∈ spec(α) if and only if the endomorphism
cσ1 − α of V is not monic.

1The terms “eigenvalue” and “eigenvector” are due to Hilbert. Eigenvalues and
eigenvectors are sometimes called characteristic values and characteristic vectors
respectively, based on terminology used by Cauchy. Sylvester coined the term “latent
values” since, as he put it, such scalars are “latent in a somewhat similar sense as vapour
may be said to be latent in water or smoke in a tobacco-leaf”.

229
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Example: The spectrum of α ∈ End(V ) may be empty. For example,

if α ∈ End
(
R

2
)

is defined by α :
[

a
b

]

�→
[

−b
a

]

then spec(α) = ∅.

More generally, if V is any vector space over R and if α ∈ End(V )
satisfies α2 = −σ1, then spec(α) = ∅. To see this, note that if v is
an eigenvector corresponding to an eigenvalue c then −v = α2(v) = c2v
and so (c2 + 1)v = 0V , implying that c2 = −1, which is impossible for a
real number c.

Example: Let α ∈ End
(
R

2
)

be defined by α :
[

a
b

]

�→
[

b
a

]

.

Then c ∈ spec(α) if and only if there exists a vector
[

a
b

]

satisfying
[

b
a

]

=
[

ca
cb

]

. Therefore we see that spec(α) = {−1, 1}, where
[

a
−a

]

is an example of an eigenvector of α associated with −1 and
[

a
a

]

is

an example of an eigenvector of α associated with 1, for any 0 �= a ∈ R.

Example: Let V be the vector space of all infinitely-differentiable
functions from R to itself and let δ be the endomorphism of V which
assigns to each such function its derivative. Then a function f, which
is not the 0-function, is an eigenvector of δ if and only if there exists a
scalar c ∈ R such that δ(f) = cf. For any real number c, there is indeed
such a function in V , namely the function x �→ ecx. Thus spec(δ) = R.
The set of all eigenvectors of δ associated with c is {aecx | a �= 0}. This
fact has important applications in the theory of differential equations2.

Let α be an endomorphism of a vector space V of a field F having
an eigenvalue c. If β ∈ Aut(V ) then c is also an eigenvalue of
βαβ−1. Indeed, if v is an eigenvector of α associated with c then

2 The first use of eigenvalues to
study differential equations is due to the French mathematician Jean d’Alembert,
one of the foremost researchers of the 18th century. Important solutions of eigenvalue
problems for second-order differential equations were obtained in the 19th century by
Swiss mathematician Charles-François Sturm and French mathematician Joseph
Liouville.
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βαβ−1(β(v)) = βα(v) = β(cv) = cβ(v) and β(v) �= 0V since β is an
automorphism. Therefore β(v) is an eigenvector of βαβ−1 associated
with c.

Similarly, let p(X) =
∑n

i=0 biX
i ∈ F [X]. If v ∈ V is an eigenvector

of α associated with an eigenvalue c, then v is also an eigenvector
of p(α) ∈ End(V ) associated with the eigenvalue p(c), since p(α)v =∑n

i=0 biα
i(v) =

∑n
i=0 bic

iv = p(c)v. In particular, we see that, for any
positive integer n, the vector v is an eigenvector of αn associated with
the eigenvalue cn.

Let V be a vector space over a field F and let α be an endomorphism
of V. A vector v ∈ V is a fixed point of α if and only if α(v) = v.
It is clear that 0V is a fixed point of every endomorphism of V and a
nonzero vector v is a fixed point of α if and only if 1 ∈ spec(α) and v
is an eigenvalue of α associated with 1.

(12.1) Proposition: Let V be a vector space over a field F and
let α be an endomorphism of V having an eigenvalue c. The
subset W composed of 0V and all eigenvectors of α associated
to c is a subspace of V.

Proof: If w,w′ ∈ W and a ∈ F then α(w + w′) = α(w) + α(w′) =
cw + cw′ = c(w + w′) and α(aw) = aα(w) = a(cw) = c(aw) and so both
w + w′ and aw belong to W, proving that W is a subspace of V.
�

Let V be a vector space over a field F and let α be an endomorphism
of V having an eigenvalue c. The subset W composed of 0V and all
eigenvalues of α associated with c, which we know by Proposition 12.1
is a subspace of V, is called the eigenspace of α associated with c. In
particular, if 1 is an eigenvalue of α then the fixed space of α is the
eigenspace associated with 1. If 1 /∈ spec(α) then the fixed space of α
is taken to be {0V }.

Example: Let α be the endomorphism of R
3 defined by

α :




a
b
c



 �→




a
0
c



 .

Then 1 ∈ spec(α) and the eigenspace of α associated with 1 (namely

the fixed space of α) is R









1
0
0



 ,




0
0
1









.
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Example: Let V = C(0, 1) and let α be the endomorphism of V
defined by α(f) : x �→

∫ x

0
cos(π[x − t])f(t)dt for all f ∈ V. To find the

eigenvalues of α, recall the trigonometric identity

cos(π[x − t]) = cos(πx) cos(πt) + sin(πx) sin(πt).

Using this identity, we see that if f ∈ V then

α(f) : x �→
[∫ x

0

cos(πt)f(t)dt

]

cos(πx) +
[∫ x

0

sin(πt)f(t)dt

]

sin(πx)

and so the image of α is contained in the subspace W = R{g1, g2}
of V, where g1 : x �→ cos(πx) and g2 : x �→ sin(πx). It is easy to
see that α(g1) = 1

2g1 and α(g2) = 1
2g2, so both of these functions are

eigenvectors of α associated with the eigenvalue 1
2 . Moreover, {g1, g2} is

linearly independent. Thus we see that spec(α) =
{

1
2

}
and the eigenspace

associated with this sole eigenvalue is W.

(12.2) Proposition: Let V be a vector space finitely generated
over a field F and let α be an endomorphism of V . Then the
following conditions on a scalar c are equivalent:

(1) c is an eigenvalue of α;
(2) cσ1 − α /∈ Aut(V );
(3) If A = ΦBB(α) for some basis B of V, then |cI − A| = 0.

Proof: (1) ⇔ (2): Condition (1) is satisfied if and only if there ex-
ists a nonzero vector v ∈ V satisfying α(v) = cv, i.e. if and only if
(cσ1 − α) (v) = 0V . This is true if and only if ker(cσ1 −α) �= {0V }. Since
V is finitely generated, by Proposition 7.3 we know that this is true if and
only if condition (2) holds.

(2) ⇔ (3): This is a direct consequence of the fact that a matrix is
nonsingular if and only if its determinant is nonzero. �

From Proposition 12.2, we see how to define eigenvalues of square matri-
ces over a field: if F is a field and n is a positive integer, then c ∈ F is an
eigenvalue of a matrix A ∈ Mn×n(F ) if and only if |cI−A| = 0, namely
if and only if the matrix cI − A is singular. The set of all eigenvalues of
A will be denoted by spec(A). In particular, we observe that a matrix

A is nonsingular if and only if 0 /∈ spec(A). A vector






0
...
0




 �= v ∈ Fn

is an eigenvector of A associated with the eigenvalue c if and only if
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Av = cv. The subset of Fn consisting of






0
...
0




 and all eigenvectors

of A associated with c is a subspace of Fn called the eigenspace
associated with c. In the case that F equals R or C, the number
ρ(A) = max{|c| | c ∈ spec(A)} is called the spectral radius of the matrix
A, and plays a very important part in the numerical analysis of matrices.
Note that if F = C, then ρ(A) is just the radius of the smallest circle in
the complex plane, centered at the origin, containing spec(A). Moreover,
spec(A) consists precisely of the poles of the function z �→ |zI − A|−1

.
This observation allows the use of powerful techniques of complex analysis
in the study of the spectra of complex matrices.

Example: It is not necessarily true that ρ(AB) = ρ(A)ρ(B) for square

matrices A and B. For example, if A =
[

0 2
0 0

]

and B =
[

0 0
2 0

]

in M2×2(R), then ρ(A) = 0 = ρ(B), whereas ρ(AB) = 4.

Given a matrix A ∈ Mn×n(F ), we note that |cI −A| = |(cI −A)T | =∣
∣cI − AT

∣
∣ and so spec(A) = spec(AT ). However, for each such common

eigenvalue, the associated eigenvectors may be different.

Example: Let F be a field and let n be a positive integer. If

v =






a1

...
an




 and w =






b1

...
bn




 are vectors in Fn, then we have already

noted that their exterior product v ∧ w = vwT ∈ Mn×n(F ) and their
interior product v � w, satisfies vT w = [v � w] ∈ M1×1(F ). Direct
calculation shows that (v∧w)v = (v�w)v and so v�w is an eigenvalue
of v ∧ w associated with the eigenvector v.

Example: Let A =




1 1 −2

−1 2 1
0 1 −1



 ∈ M3×3(R). Then spec(A) =

{−1, 1, 2} and so this is also spec(AT ).

(1) The eigenspace of A associated with −1 is R




1
0
1



 and the

eigenspace of AT associated with −1 is R




1
2

−7



 ;
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(2) The eigenspace of A associated with 1 is R




3
2
1



 and the

eigenspace of AT associated with 1 is R




−1

0
1



 ;

(3) The eigenspace of A associated with 2 is R




1
3
1



 and the

eigenspace of AT associated with 2 is R




−1

1
1



 .

Example: Let n be a positive integer and let A = [auj ] be an n×n
Markov matrix, which we will consider as an element of Mn×n(C). We

claim that ρ(A) ≤ 1. Indeed, let c ∈ spec(A) and let v =






b1

...
bn




 ∈ C

n

be an eigenvector associated with c. Let 1 ≤ h ≤ n satisfy the condition
that |bi| ≤ |bh| for all 1 ≤ i ≤ n. Then Av = cv implies, in particular,
that

∑n
j=1 ahjbj = cbh and so

|c| · |bh| = |cbh| =

∣
∣
∣
∣
∣
∣

n∑

j=1

ahjbj

∣
∣
∣
∣
∣
∣
≤

n∑

j=1

ahj |bj | ≤




n∑

j=1

ahj



 |bh| = |bh| .

Hence |c| ≤ 1, as claimed.

Example: Let n be a positive integer and let A ∈ Mn×n(R) be
a skew-symmetric matrix. We claim that spec(A) ⊆ {0}, with equality
when n is odd. Indeed, let c ∈ spec(A) and let v ∈ R

n be an
eigenvector of A associated with c. Then −AT v = Av = cv and
so −AT (Av) = −AT (cv) = c(−AT v) = c2v. Therefore −(Av � Av) =

−vT AT Av = c2vT v = c2(v � v). But if y =






b1

...
bn




 is any vector in R

n,

then y�y =
∑n

i=1 b2
i ≥ 0, with equality if and only if y =






0
...
0




 . Since v

is nonzero, we conclude that we must have c2 = 0 and so c = 0. Therefore
spec(A) ⊆ {0}. If n is odd then, by the remark after Proposition 11.7,
we know that A is singular and so 0 ∈ spec(A), establishing equality.
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Example: Let n be a positive integer and let A ∈ Mn×n(C). If c is a
nonzero eigenvalue of A and if v ∈ C

n is an eigenvector associated with c
then, by Proposition 11.13, we know that |A| v = adj(A)Av = c [adj(A)] v
and so [adj(A)] v = c−1 |A| v. Thus v is also an eigenvector of adj(A)
associated with the eigenvalue c−1 |A| .

If F is a field, if n is a positive integer, and if A ∈ Mn×n(F ) is a
matrix having eigenvalue c, then |cI−A| = 0 and so by Proposition 11.13
we see that (cI−A) adj(cI−A) = O, and so A[adj(cI−A)] = c[adj(cI−A)].
From this we conclude that each of the columns of adj(cI−A) must belong
to the eigenspace of A associated with c.

Example: Let A =




0 1 0
0 0 1
4 −17 8



 ∈ M3×3(R). Then one can

calculate that spec(A) = {2 −
√

3, 2 +
√

3, 4}. Moreover, adj(4I − A) =



1 −4 1
4 −16 4

16 −64 16



 and it is easy to check that the columns of this matrix

are indeed eigenvectors of A associated with 4.

(12.3) Proposition: If V is a vector space finitely generated
over a field F and if α, β ∈ End(V ) then spec(αβ) = spec(βα).

Proof: Let c ∈ spec(αβ). If c = 0, this means that αβ /∈ Aut(V ).
Therefore either α or β is not an automorphism of V, and so βα /∈
Aut(V ) as well. Therefore we can assume c �= 0. Let v be an eigenvector
of αβ associated with c and let w = β(v). Then α(w) = αβ(v) = cv �=
0V and so w �= 0V . Moreover, βα(w) = βαβ(v) = β(cv) = cβ(v) = cw
and so w is an eigenvector of βα associated with c. Thus spec(αβ) ⊆
spec(βα). A similar argument shows the reverse inclusion, and so we have
equality. �

In particular, as a consequence of Proposition 12.3, we see that if F
is a field, if n is a positive integer, and if A,B ∈ Mn×n(F ) then
spec(AB) = spec(BA).

As we noted at the beginning of the chapter, if we are given a vector
space V finitely generated over a field F and an endomorphism α
of V, we would like to find, to the extent possible, a basis B of V
such that the matrix ΦBB(α) is nice, in the sense that it is amenable
to quick and accurate calculations. Let V be a vector space over a field
F (not necessarily finitely generated) and let α ∈ End(V ). Then α is
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diagonalizable if and only if there exists a basis B of V composed of
eigenvectors of α.

Example: We have already seen that the set B of all functions in R
R

of the form x �→ eax, for some a ∈ R, is linearly independent. Therefore
W = RB is a subspace of R

R which is not finitely generated, and B is
a basis for W. Let α be the endomorphism of W which assigns to each
f ∈ W its derivative. Since each element of B is an eigenvector of α,
we see that α is diagonalizable.

The following result characterizes the diagonalizable endomorphisms of
finitely-generated vector spaces.

(12.4) Proposition: Let V be a vector space finitely generated
over a field F and let α ∈ End(V ). Then the following conditions
on a basis B = {v1, . . . , vn} are equivalent:

(1) vi is an eigenvector of α for each 1 ≤ i ≤ n;
(2) ΦBB(α) is a diagonal matrix.

Proof: (1) ⇒ (2): By (1) we know that for each 1 ≤ i ≤ n there
exists a scalar ci satisfying α(vi) = civi and so, by definition, ΦBB(α)
is the diagonal matrix [aij ] given by

aij =
{

ci if i = j
0 otherwise .

(2) ⇒ (1): If ΦBB(α) = [aij ] is a diagonal matrix then for each
1 ≤ i ≤ n we have α(vi) = aiivi and so vi is an eigenvector of α for
each 1 ≤ i ≤ n. �

Let V be a vector space over a field F and let α ∈ End(V ). If
B is a basis of V made up of eigenvectors of α then, as we have seen
above, the elements of B are also eigenvectors of p(α) for any polynomial
p(X) ∈ F [X]. We need not stick to polynomials: suppose that each v ∈ B
is an eigenvector of α associated with an eigenvalue cv of α. Given any
function whatsoever f : spec(α) → F, we can define the endomorphism
f(α) of V by setting f(α) :

∑
v∈B avv �→

∑
v∈B avf(cv)v and the

elements of B are also eigenvectors of f(α). We note that if f and g
are functions from spec(α) to F then f(α)g(α) = g(α)f(α).

Now assume that V is finitely generated over F and that B =
{v1, . . . , vn} is a basis of V made up of eigenvectors of α ∈ End(V ). For
each 1 ≤ i ≤ n, let ci be the eigenvalue of α associated with vi. We have
already seen that for each such i there exists a polynomial pi(X), namely
the Lagrange interpolation polynomial, satisfying the condition that

pi(cj) =
{

1 if i = j
0 otherwise .
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Thus, given a function f : spec(α) → F, the polynomial p(X) =∑n
i=1 f(ci)pi(X) satisfies p(ci) = f(ci) for all 1 ≤ i ≤ n, and so

p(α) = f(α). Thus, for finitely-generated vector spaces, the above general-
ization does not in fact contribute anything new; it is important however,
in the case of vector spaces which are not finitely generated.

We now show that the size of the spectrum of an endomorphism of a
finitely-generated vector space is limited.

(12.5) Proposition: Let V be a vector space over a field F
and let α ∈ End(V ). If c1, . . . , ck are distinct eigenvalues of α
and if vi is an eigenvector of α associated with ci for each
1 ≤ i ≤ k, then the set {v1, . . . , vk} is linearly independent.

Proof: Assume that the set {v1, . . . , vk} is linearly dependent. Since
v1 �= 0V , we know that the set {v1} is linearly independent. Thus there
exists an integer 1 ≤ t < k such that the set {v1, . . . , vt} is linearly
independent but {v1, . . . , vt+1} is linearly dependent. In other words,
there exist scalars a1, . . . , at+1, not all of which are equal to 0, such
that

∑t+1
i=1 aivi = 0V and so 0V = ct+1

(∑t+1
i=1 aivi

)
=

∑t+1
i=1 aict+1vi.

On the other hand, 0V = α
(∑t+1

i=1 aivi

)
=

∑t+1
i=1 aiα(vi) =

∑t+1
i=1 aicivi.

Therefore 0V =
∑t+1

i=1 aicivi −
∑t+1

i=1 aict+1vi =
∑t

i=1 ai(ci − ct+1)vi. But
the set {v1, . . . , vt} is linearly independent and so ai(ci − ct+1) = 0 for
all 1 ≤ i ≤ t. Since, by assumption, ci �= ct+1 for all 1 ≤ i ≤ t, this
implies that ai = 0 for all 1 ≤ i ≤ t and hence at+1 = 0 as well, which is
a contradiction. Thus the set {v1, . . . , vk} must be linearly independent.
�

Thus we see that if F is a field and if A ∈ Mn×n(F ), then spec(A) can
have at most n elements. In particular, if F has more than n elements,

then there exists an element c ∈ F � spec(A), and so (cI −A)v �=






0
...
0






for all v �=






0
...
0




 . This implies that cI − A is nonsingular.

From Proposition 12.5 we see that if α is a an endomorphism of a
vector space V over a field F having distinct eigenvalues c1, . . . , ck, and
if Wi is the eigenspace associated with ci for all 1 ≤ i ≤ t, then the
collection {W1, . . . ,Wk} of subspaces of V is independent. Moreover, If
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V is finitely generated over F then the number of elements in spec(α)
is no greater than dim(V ).

(12.6) Proposition: Let V be a vector space of finite dimension
n over a field F. Then any endomorphism α of V having n
distinct eigenvalues is diagonalizable.

Proof: This is a direct consequence of Proposition 12.4 and Proposition
12.5. �

Example: Let α ∈ End(R2) be defined by α :
[

a
b

]

�→
[

3a − b
3b − a

]

.

Then α

([
1
1

])

=
[

2
2

]

and so
[

1
1

]

is an eigenvector of α associated

with the eigenvalue 2. Also, α

([
1

−1

])

=
[

4
−4

]

and so
[

1
−1

]

is an eigenvector of α associated with the eigenvalue 4. Thus B =
{[

1
1

]

,

[
1

−1

]}

is a basis for R
2 and ΦBB(α) =

[
2 0
0 4

]

.

Example: Let α ∈ End(R2) be defined by α :
[

a
b

]

�→
[

a + b
b

]

. If
[

a
b

]

�=
[

0
0

]

and α

([
a
b

])

= c

[
a
b

]

then cb = b and a + b = ca,

and this can happen only when b = 0 and c = 1. Thus spec(α) = {1}

and the eigenspace associated with this sole eigenvalue is R

[
0
1

]

. Since

this is not all of R
2, we know that there is no basis of R

2 made up of
eigenvectors of α and hence α is not diagonalizable.

Note that the converse of Proposition 12.6 is false, as we easily see by
taking α = σ1.

From the above, we know that if A ∈ Mn×n(R) then the matrix has at
most n distinct eigenvalues. However, it may have many less than that.
If we assume that the entries of this matrix were chosen independently and
randomly from a standard normal distribution, how many distinct eigen-
values should we expect? American mathematicians Alan Edelman, Eric
Kostlan and Michael Shub have shown that if εn denotes the mathemati-
cal expectancy for the number of eigenvalues of such a matrix in R, then

lim
n→∞

1√
n
εn =

√
2
π . The situation over the complex numbers is quite dif-

ferent. Given a matrix A ∈ Mn×n(C) one can, with probability 1, pick
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a matrix B ∈ Mn×n(C) as near to A as we wish, which has n distinct
eigenvalues in C.

If F is a field, if n is a positive integer, and if A ∈ Mn×n(F ), then
we can consider the matrix of polynomials XI − A ∈ Mn×n(F [X]). The
determinant of this matrix, |XI −A|, is a polynomial in F [X] called the
characteristic polynomial of A. Note that this polynomial is always
monic and of degree n.

Example: The characteristic polynomial of




1 −1 0
2 1 5
4 2 1



 ∈ M3×3(R)

is X3 − 3X2 − 5X + 27.

Example: The characteristic polynomial of A =







1 2 1 2
0 1 2 3
3 2 1 1
1 1 2 0





 ∈

M4×4(R) is X4 − 3X3 − 11X2 − 25X − 15. If we sketch the graph of
the polynomial function t �→ t4 − 3t3 − 11t2 − 25t− 15, we see that it has
real roots in the neighborhoods of −0.8 and 5.8. (More precisely, they
are approximately equal to −0.8062070604 and 5.7448832706.) These
are the only real eigenvalues of the matrix A.

Example: Let F = GF (3). The characteristic polynomial of

A =







1 1 1 1
2 0 1 0
0 1 1 0
1 1 1 0





 ∈ M4×4(F )

equals X4 + X3 + 1 = (X + 2)(X3 + 2X2 + 2X + 2), and so A has only
one eigenvalue, namely 1.

Example: The characteristic polynomial of A =




5 4 2
4 5 2
2 2 2



 in

M3×3(Q) is (X − 10)(X − 1)2 and so spec(A) = {1, 10}. The eigenspace

of A associated with 10 is Q




2
2
1



 , while the eigenspace of A

associated with 1 is Q









−1

1
0



 ,




−1

0
2









.
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Example: Let F = GF (2) and let A =
[

0 1
1 1

]

∈ M2×2(F ).

The characteristic polynomial of A is p(X) = X2 + X + 1 and, since
p(0) = p(1) = 1 we see that spec(A) = ∅. In fact, it is possible to show
that for every prime integer p there is a symmetric 2× 2 matrix A over
GF (p) satisfying spec(A) = ∅. Later, we will show that any symmetric
matrix over R must have an eigenvalue.

Example: Let α be the endomorphism of C
2 represented with respect

to the canonical basis by the matrix A =
[

1 + i 1
1 1 − i

]

∈ M2×x(C).

The characteristic polynomial of A is (X − 1)2 and so spec(A) = 1

The eigenspace associated with it is C

[
i
1

]

, which has dimension 1.

Therefore α is not diagonalizable.

(12.7) Proposition: Let F be a field and let n be a positive
integer. If A ∈ Mn×n(F ) has characteristic polynomial p(X) =∑n

i=0 aiX
i, then |A| = (−1)na0.

Proof: We note that a0 = p(0) = |0I −A| = | −A| = (−1)n|A| and so
|A| = (−1)na0. �

Any monic polynomial in F [X] of positive degree is the characteristic
polynomial of some square matrix over F. To see this, consider a poly-
nomial p(X) =

∑n
i=0 aiX

i, for n > 0. If p(X) is monic, define the
companion matrix of p(X) to be the matrix comp(p) ∈ Mn×n(F ) to
be the matrix [aij ] given by

aij =






1 if i = j + 1 and j < n
−ai−1 if j = n

0 otherwise
.

Otherwise, define comp(p) to be comp(a−1
n p).

(12.8) Proposition: Let F be a field and let n be a positive
integer. If p(X) =

∑n
i=0 aiX

i ∈ F [X] is monic, then p(X) is the
characteristic polynomial of comp(p) ∈ Mn×n(F ).

Proof: We will proceed by induction on n. For n = 1, the re-
sult is immediate. If n = 2 and if p(X) = X2 + a1X + a0, then

comp(p) =
[

0 −a0

1 −a1

]

and so the characteristic polynomial of comp(p)
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is
∣
∣
∣
∣

X a0

−1 X + a1

∣
∣
∣
∣ = p(X) and we are done. Assume now that n > 2 and

the result has been established for n− 1. Then the characteristic polyno-

mial of comp(p) is

∣
∣
∣
∣
∣
∣
∣
∣
∣

X 0 . . . a0

−1 X . . . a1

. . . . . .
...

0 . . . −1 X + an−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. By Proposition 11.11,

this equals X|comp(q)| + a0(−1)n−1|B|, where q(X) =
∑n−1

i=0 ai+1X
i

and where B ∈ M(n−1)×(n−1)(F ) is an upper-triangular matrix with
diagonal entries all equal to −1. Thus |B| = (−1)n−1 and, by the induc-
tion hypothesis, |comp(q)| = q(X). Thus the characteristic polynomial of
comp(p) is Xq(X) + a0 = p(X), as desired. �

Let F be a field and let n be a positive integer. Every nonsingular
matrix P ∈ Mn×n(F ) defines a function ωP from Mn×n(F ) to itself
given by ωP : A �→ P−1AP. In fact, ωP ∈ Aut(Mn×n(F )), where
ω−1

P = ωP−1 . This is an automorphism of F -algebras and, indeed, it can
be shown that every automorphism of unital F -algebras in Aut(Mn×n(F ))
is of this form. Therefore the set of all automorphisms of the form ωP

is a group of automorphisms of Mn×n(F ) and so defines an equivalence
relation ∼ by setting A ∼ B if and only if B = P−1AP. In this case, we
say that the matrices A and B are similar. From what we have already
seen, two matrices in Mn×n(F ) are similar if and only if they represent
the same endomorphism of an n-dimensional vector spacer over F with
respect to different bases. One of the problems before us is to decide, given
two square matrices of the same size, if they are similar or not.

Note that if a matrix A ∈ Mn×n(F ) is similar to O, then it must
equal O. Indeed, if P−1AP = O then A = (PP−1)A(PP−1) =
P (P−1AP )P−1 = POP−1 = O.

Example: In M3×3(Q), the matrices A =




20 10 10
10 0 10
10 10 10



 and

B =




80 130 100
10 10 10

−50 −80 −60



 are similar, since B = P−1AP, where P =




1 2 1
1 0 1
2 3 3



 . Thus we note that a symmetric matrix may be similar to

a matrix which is not symmetric.
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Example: The matrices

A =




1 0 0

−1 1 1
−1 0 2



 and B =




1 1 0
0 1 0
0 0 2





in M3×3(Q) are not similar since, were they similar, the matrices A− I
and B − I would also be similar, and thus have the same rank. But it
is easy to see that the rank of A − I equals 1, while the rank of B − I
equals 2.

Example: If matrices A,B ∈ Mn×n(F ) are similar, it does not

follow that they commute. For example, let A =




1 0 −1
2 3 0

−1 0 −2



 ∈

M3×3(R). Then P =




1 0 0
0 1 0
0 1 1



 is nonsingular and so B = PAP−1 =




1 1 −1
2 3 0
1 5 −2



 is similar to A. However, AB �= BA.

(12.9) Proposition: Let F be a field and let k < n be positive
integers. Let A ∈ Mn×n(F ) be a matrix which can be written

in block form as A =
[

A11 A12

O A22

]

, where A11 ∈ Mk×k(F ) and

A22 ∈ M(n−k)×(n−k)(F ). Then spec(A) = spec(A11) ∪ spec(A22).

Proof: Let c ∈ spec(A) and let v ∈ Fn be an eigenvector associated

with c. Write v =
[

v1

v2

]

, where v1 ∈ F k and v2 ∈ Fn−k. Then

[
A11v1 + A12v2

A22v2

]

=
[

A11 A12

O A22

] [
v1

v2

]

= Av = cv =
[

cv1

cv2

]

.

From this we see immediately that if v2 �=






0
...
0




 then c ∈ spec(A22),

while if v2 =






0
...
0




 then c ∈ spec(A11). Therefore spec(A) is contained

in spec(A11) ∪ spec(A22).
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Conversely, let c ∈ spec(A11) and let v1 ∈ F k be an eigenvector

associated with c. Then A

[
v1

O

]

=
[

A11v1

O

]

= c

[
v1

O

]

, proving

that c ∈ spec(A). Now assume that d ∈ spec(A22) � spec(A11) and let
v2 ∈ Fn−k be an eigenvector associated with d. Since d /∈ spec(A11),
we know that the matrix B = A11 − dI ∈ Mk×k(F ) is nonsingular. Set

v1 = B−1A12(−v2). Then (A−dI)
[

v1

v2

]

=
[

Bv1 + A12v2

(A22 − dI)v2

]

=






0
...
0




 ,

showing that d ∈ spec(A). Therefore spec(A11) ∪ spec(A22) ⊆ spec(A),
proving equality. �

Example: Let A =







1 1 5 6
−1 1 7 3

0 0 2 1
0 0 −4 3





 ∈ M4×4(C). Then

spec(A) = spec

([
1 1

−1 1

])

∪ spec

([
2 1

−4 3

])

= {1 ± i} ∪
{

1
2

[
5 ± i

√
15
]}

.

(12.10) Proposition: Similar matrices in Mn×n(F ), where F
is a field and where n is a positive integer, have identical char-
acteristic polynomials.

Proof: If A,B ∈ Mn×n(F ) satisfy B = P−1AP then

|XI−B| = |XI−P−1AP | = |P−1(XI−A)P | = |P |−1|XI−A||P | = |XI−A|

as required. �

Example: The converse of Proposition 12.10 is false. Indeed, the

matrices
[

1 1
0 1

]

and
[

1 0
0 1

]

are not similar, despite the fact that

both of them have the same characteristic polynomial, (X − 1)2.

Example: If A and B are square matrices over a field F, then
we know that the matrices AB and BA are not necessarily equal.

They are also not necessarily similar. For example, if A =
[

1 0
1 0

]

and
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B =
[

0 0
1 1

]

then AB = O �= BA and so AB and BA are not similar.

Nonetheless, by Proposition 12.3, we see that spec(AB) = spec(BA).

Proposition 12.10 can be used to facilitate computation, as the following
example shows.

Example: Let n be a positive integer, let F be a field, and let
A = [aij ] ∈ Mn×n(F ) be a symmetric tridiagonal matrix. That is to say,
the entries of A satisfy the condition that aij = aji when |i − j| = 1
and aij = 0 when |i − j| > 1. Set p0(X) = 0 and, for each 1 ≤ k ≤ n,
let pk(X) be the characteristic polynomial of the k × k submatrix of
A consisting of the first k rows and first k columns of the matrix
XI −A ∈ F [X]. Then pn(X) is the characteristic polynomial of A and
we have p1(X) = X − a11 and pk(X) = (X − akk)pk−1(X) − a2

ijpk−2(X)
for each 2 ≤ k ≤ n. This recursion relation allows us to compute the
characteristic polynomial of A quickly. Therefore, if A is any symmetric
matrix, a good strategy is to try and find a symmetric tridiagonal matrix
similar to it and then compute its characteristic polynomial.

Let α be an endomorphism of a vector space V finitely generated over
a field F and let c ∈ spec(α). The algebraic multiplicity of c is the
largest integer k such that (X−c)k divides the characteristic polynomial
of α. The geometric multiplicity of c is the dimension of the eigenspace
of α associated with c. The geometric multiplicity of c is not greater
than its algebraic multiplicity, but these two numbers need not be equal,
as the following examples will show. If these two multiplicities are equal,
we say that c is a semisimple eigenvalue of α; an eigenvalue which
is not semisimple is defective. In particular, if the algebraic multiplicity
of c is 1 then the same must be true for its geometric multiplicity. In
that case, we say that c is a simple eigenvalue of α. If at least one
eigenvalue of α has geometric multiplicity greater than 1, then α is
derogatory.

Example: If α ∈ End(R2) is defined by α :
[

a
b

]

�→
[

a + b
b

]

then c = 1 is an eigenvalue of α with associated eigenspace R

[
0
1

]

and so the geometric multiplicity of c is 1. On the other hand, α is

represented with respect to the canonical basis by the matrix
[

1 1
0 1

]

,

so its characteristic polynomial is (X − 1)2, implying that the algebraic
multiplicity of c is 2.
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Example: Let α ∈ End(R3) be the endomorphism represented with

respect to the canonical basis by the matrix




2 3 1
3 2 4
0 0 −1



 . The char-

acteristic polynomial of α is (X − 5)(X +1)2 and so spec(α) = {−1, 5},
where the algebraic multiplicity of −1 equals 2 and the algebraic multi-

plicity of 5 equals 1. The eigenspace associated with −1 is R




−1

1
0





and the eigenspace associated with 5 is R




1
1
0



 . Thus both eigenvalues

have geometric multiplicity 1. Hence, 5 is a simple eigenvalue of α
whereas −1 is defective.

Let n be a positive integer. If α ∈ End(Rn) is represented with respect
to a given basis of R

n by a matrix all entries in which are positive, then
Perron, using analytic methods, showed that the eigenvalue of largest ab-
solute value of α is simple and positive, and has an associated eigenvector
all entries of which are positive. This result has many important appli-
cations in statistics and economics, especially in input-output analysis. It
was also used by Thurston in his classification of surface diffeomorphisms
in topology. Perron’s results were later extended by Frobenius to certain
matrices all entries in which are nonnegative, and later by Karlin to certain
endomorphisms of spaces which are not finite-dimensional.3

(12.11) Proposition: Let V be a vector space finitely gen-
erated over a field F and let α be an endomorphism of V
satisfying the condition that the characteristic polynomial of α

3 Twentieth-century
German mathematician Oskar Perron worked in many areas of algebra and geometry.
Fellow German mathematician Georg Frobenius is known for his important work in
group theory and his work on bilinear forms. He was also the first to consider the rank
of a matrix. William Thurston is a contemporary American geometer; contempo-
rary American applied mathematician Samuel Karlin has published extensively in
probability and statistics, as well as mathematical biology.
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is completely reducible. Then α is diagonalizable if and only if
every eigenvalue of α is semisimple.

Proof: Let spec(α) = {c1, . . . , ck}. First of all, we will assume that
there exists a basis D of V such that ΦDD(α) is a diagonal matrix. For
each 1 ≤ j ≤ k, denote by m(j) the number of times that cj appears on
the diagonal of ΦDD(α). Then

∑k
j=1 m(j) = n and by Proposition 12.4,

we know that for each 1 ≤ j ≤ k there exists a subset of D, having m(j)
elements, which is a basis for the eigenspace of α associated with cj .

Moreover, the characteristic polynomial of α is
∏k

j=1(X − cj)m(j) and so
m(j) equals both the algebraic multiplicity and the geometric multiplicity
of cj for each 1 ≤ j ≤ k, proving that each such cj is semisimple.
Conversely, assume that each cj is semisimple, and for each 1 ≤ j ≤ k
let m(j) be the algebraic (and geometric) multiplicity of cj . Let Dj be
a basis for the eigenspace of α associated with cj , and let D =

⋃k
j=1 Dj .

Then D is a linearly-independent subset of V having n elements, and
so is a basis of V over F. The result then follows from Proposition 7.5.
�

Example: The condition in Proposition 12.11 that the characteristic
polynomial of α be completely reducible is essential. To see this, consider
the endomorphism α of R

3 represented with respect to the canonical

basis by the matrix A =




0 1 0

−1 0 0
0 0 1



 . The characteristic polynomial

of α is (X − 1)(X2 + 1) ∈ R[X] and so spec(α) = {1}, where 1 is a
simple eigenvalue of α and so it is surely semisimple. The eigenspace of

α associated with this eigenvalue is R




1
0
0



 and so its dimension is 1.

Hence α is not diagonalizable.

Example: Consider the endomorphism α of R
3 represented with

respect to the canonical basis by the matrix




−1 −1 −2

8 −11 −8
−10 11 7



 and let

β be the endomorphism of R
3 represented with respect to the canonical

basis by the matrix




1 −4 −4
8 −11 −8

−8 8 5



 . These two endomorphisms have

the same characteristic polynomial X3 +5X2 +3X −9 = (X −1)(X +3)2.
Thus the algebraic multiplicity of the eigenvalue 1 equals 1 and the
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algebraic multiplicity of the eigenvalue −3 equals 2. But for α, the
geometric multiplicity of −2 equals 1, so α is not diagonalizable. On
the other hand, for β the geometric multiplicity of −2 equals 2, and
so β is diagonalizable.

Let F be a field and let (K, •) be an associative unital F -algebra. If
v ∈ K and if p(X) =

∑k
i=0 ciX

i ∈ F [X], then p(v) =
∑k

i=0 civ
i ∈ K.

For any polynomial q(X) ∈ F [X] we have p(v) • q(v) = q(v) • p(v).
In particular, v • p(v) = p(v) • v. It is clear that Ann(v) = {p(X) ∈
F [X] | p(v) = 0K} is a subspace of F [X]. If p(v) = 0K , we say that v
annihilates the polynomial p(X).

In particular, we note that all of the above is true for the associative
unital F -algebra Mn×n(F ), where n is a positive integer. We note that
if A ∼ B in Mn×n(F ) then there is a nonsingular matrix P such that
B = P−1AP and so p(B) = P−1p(A)P so that if p(A) = O then
p(B) = O. Thus we see that Ann(A) = Ann(B) whenever the matrices
A and B are similar.

Example: Let A =
[

2 1
1 0

]

∈ M2×2(R) and let p(X) = X2−X+2 ∈

R[X]. Then p(A) = A2 − A + 2I =
[

5 1
1 3

]

. If q(X) = X2 − 2X − 1

then q(A) = O so q(X) ∈ Ann(A).

(12.12) Proposition: Let F be a field and let (K, •) be an
associative F -algebra of finite dimension over F. Then Ann(v)
is nontrivial for each v ∈ K.

Proof: Let dim(V ) = n. If v ∈ K then v0, v1, . . . , vn must be
linearly dependent and so there exist scalars a0, . . . , an, not all equal to
0, such that

∑n
i=0 aiv

i = 0K . In other words, there exists a nonzero
polynomial p(X) =

∑n
i=0 aiX

i in Ann(v). �

We now show why one cannot define “three-dimensional complex num-
bers”.

(12.13) Proposition: If n is an odd integer greater than 1 then
there is no way of defining on R

n the structure of an R-algebra
which is also a field.

Proof: Assume that we can define an operation on R
n (which we will

denote by concatenation) which turns it into an R-algebra which is also a
field, and let v1 be the identity element for this operation. Then V �= Rv1

since dim(V ) > 1. Pick an element y ∈ V � Rv1 and let α ∈ End(V ) be
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given by α : v �→ yv, which is represented with respect to the canonical
basis of R

n by a matrix A. The characteristic polynomial p(X) of A
belongs to R[X] and has odd degree; therefore it has a root c in R. Thus
p(X) = (X − c)kq(X) for some k ≥ 1 and some q(X) ∈ R[X] satisfying
q(c) �= 0. Let β ∈ End(V ) be given by β : v �→ (y−cv1)kv. Then β �= σ0

since y /∈ Rv1 and 0V �= q(c) = q(cv1). But then (y − cv1)kq(cv1) = 0V ,
contradicting Proposition 2.3(12). �

Let F be a field and let (K, •) be an associative unital F -algebra.
If v ∈ K satisfies the condition that Ann(v) is nontrivial then Ann(v)
must contain a polynomial p(X) =

∑n
i=0 aiX

i of minimal degree. This
means, in particular, that an �= 0 and so the monic polynomial a−1

n p(X)
also belongs to Ann(v). We claim that it is the unique monic polynomial
of minimal degree in Ann(v). Indeed, if q(X) is a monic polynomial of
degree n belonging to Ann(v) not equal to a−1

n p(X), then r(X) =
q(X)−a−1

n p(X) ∈ Ann(v). But deg(r) < n, contradicting the minimality
of the degree n of p(X). Thus we see that Ann(v), if nonempty, contains
a unique monic polynomial of minimal positive degree, which we call the
minimal polynomial of v over F and denote by mv(X).

In particular, if F is a field and if n is a positive integer, then any
matrix A ∈ Mn×n(F ) has a minimal polynomial, which we denote by
mA(X). If A and B are similar matrices, then mA(X) = mB(X).
Similarly, if V is a vector space finitely generated over a field F, and if
α ∈ End(V ) then α has a minimal polynomial mα(X), and this equals
the minimal polynomial of ΦDD(α) for any basis D of V.

Example: Let (K, •) be an associative unital entire R-algebra. Assume
that v ∈ K has a minimal polynomial mv(X) ∈ R[X]. By the Proposition
4.4, we know that mv(X) =

∏t
i=1 pi(X), where the pi(X) are irreducible

polynomials of degree at most 2. But then
∏t

i=1 pi(v) = 0K and, since
K is entire, there is some index h such that ph(v) = 0K . By minimality,
this means that mv(X) = ph(X). We thus conclude that any element of
v having a minimal polynomial has one of degree at most 2.

(12.14) Proposition: Let F be a field and let (K, •) be
an associative F -algebra of finite dimension over F. If v ∈ K
satisfies the condition that Ann(v) is nontrivial and if p(X) ∈
Ann(v), then there is a polynomial q(X) ∈ F [X] satisfying p(X) =
mv(X)q(X).

Proof: If p(X) is the 0-polynomial, pick u(X) to be the 0-polynomial
and we are done. Therefore assume that deg(p) > 0. From Proposition
4.2, we know that we can write p(X) = mv(X)q(X) + r(X), where
q(X), r(X) ∈ F [X], with deg(r) < deg(mv). Since p(v) = 0K we
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see that 0K = mv(v) • q(v) + r(v) = r(v). Since deg(v) < deg(mA), we
must have deg(v) = −∞ and so p(X) = mv(X)q(X). �

(12.15) Proposition: Let F be a field and let (K, •) be an
associative unital F -algebra with multiplicative identity e. If
v ∈ K has a minimal polynomial mv(X) =

∑n
i=0 aiX

i then:
(1) v is a unit of K if and only if a0 �= 0; and
(2) If v is a unit of K then v−1 = g(v), where

g(X) =
n∑

i=1

(−a−1
0 ai)Xi−1 ∈ F [X].

Proof: If a0 �= 0 then mv(v) = 0K implies that

e = a−1
0

[

−
n∑

i=1

aiv
i

]

= a−1
0

[

−
n∑

i=1

aiv
i−1

]

• v = g(v) • v = v • g(v)

and so v is a unit and v−1 = g(v). Conversely, assume that v is a
unit. Had we a0 = 0, we would have 0V = mv(v) = v •

[∑n
i=1 aiv

i−1
]

and so 0K = v−1mv(v) =
∑n

i=1 aiv
i−1. Thus

∑n
i=1 aiX

i−1 ∈ Ann(v),
contradicting the minimality of the degree mv(X). Hence a0 �= 0. �

It is important to note that the minimal polynomial of a matrix over
a field need not equal its characteristic polynomial. For example, if we
consider I ∈ Mn×n(F ) for any field F and any integer n > 1, then the
characteristic polynomial of I is (X−1)n whereas its minimal polynomial
is X − 1.

Example: Let F be a field. The matrix A =
[

1 0
0 0

]

∈ M2×2(F )

annihilates the polynomial X(X − 1), and this is in fact its minimal
polynomial. It is also the characteristic polynomial of A. Thus we see
that the minimal polynomial of a matrix does not have to be irreducible.
Notice too that the rank of A equals 1, but the degree of its minimal
polynomial is 2. Thus the degree of the minimal polynomial of a matrix
may be larger than its rank.

Example: Let F be a field. The matrix A =




1 0 0
0 0 0
0 0 0



 ∈

M3×3(F ) annihilates the polynomial X(X − 1), and this is in fact its
minimal polynomial. The characteristic polynomial of A is X2(X − 1).
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Example: One can check that




1 0 0
0 3 0
0 0 3



,




1 0 0
0 1 0
0 0 3



 ∈ M3×3(Q)

are not similar, but they both have the same minimal polynomial, namely
(X − 1)(X − 3).

Example: Proposition 12.15 can be used to calculate the inverse of a
nonsingular matrix, though it is rarely the most efficient method of do-

ing so. For example, the matrix A =




2 −2 4
2 3 2

−1 1 −1



 has minimal

polynomial X3 − 4X2 + 7X − 10 = 0 so A−1 = 1
10

(
A2 − 4A + 7I

)
=

1
10




−5 2 −16

0 2 4
5 0 10



 .

(12.16) Proposition (Cayley-Hamilton Theorem): Let F be
a field and let n be a positive integer. Then every matrix in
Mn×n(F ) annihilates its characteristic polynomial.

Proof: Let A be a matrix in Mn×n(F ) having minimal polynomial
p(X) = Xn +

∑n−1
i=0 aiX

i. Let us look at the matrix

[gij(X)] = adj(XI − A) ∈ Mn×n(F [X]),

where each gij(X) is a polynomial of degree at most n− 1. Then we can
write this matrix in the form

∑n
i=1 BiX

n−i, where the Bi are matrices
in Mn×n(F ). Moreover, we know that

p(X)I = |XI − A|I = (XI − A) adj(XI − A)

= (XI − A)

(
n∑

i=1

BiX
n−i

)

.

Equating coefficients of the various powers of X, we thus see

B1 = I

B2 − AB1 = an−1I

B3 − AB2 = an−2I

. . .

Bn − ABn−1 = a1I

−ABn = a0I



12. Eigenvalues and eigenvectors 251

For 1 ≤ h ≤ n, multiply both sides of the hth equation in the above list
on the left by An+1−h and then sum both sides, to obtain O = p(A), as
desired. �

In particular, we conclude from Proposition 12.14 and Proposition 12.16
that the minimal polynomial of any n × n matrix over a field divides its
characteristic polynomial and so the degree of the minimal polynomial is
at most n.

Let V be a vector space finitely generated over a field F and let
σ0 �= α ∈ End(V ). In Proposition 12.4 we saw that α is diagonalizable
if and only if that basis is composed of eigenvectors of V. Moreover, if
spec(α) = {c1, . . . , ck} and if, for each 1 ≤ i ≤ k, we denote the eigenspace
of α associated with ci by Wi, then for each 1 ≤ i ≤ k we have a
projection πi ∈ End(V ) satisfying the following conditions:

(1) im(πi) = Wi;
(2) π1 + . . . + πn = σ1;
(3) πiπj = σ0 whenever i �= j;
(4) α = c1π1 + . . . + ckπk.

For each 1 ≤ h ≤ k, let ph(X) be the hth Lagrange interpolation
polynomial determined by c1, . . . , ck. Then we can check that πh = ph(α)
for each h, since ph(X)(X − ch) is just a scalar multiple of the minimal
polynomial of α.

Is it possible to simultaneously diagonalize two distinct endomorphisms
of V ? Indeed, let V be a vector space finitely generated over a field
F and let α and β be distinct elements of End(V ) � {σ0}. There
exists a basis D of V such that both ΦDD(α) and ΦDD(β) are
diagonal matrices if and only if the elements of D are eigenvectors of
α as well as of β. Suppose that we have in hand such a basis D =
{u1, . . . , uk}. Since diagonal matrices commute with each other, we see
that ΦDD(αβ) = ΦDD(α)ΦDD(β) = ΦDD(β)ΦDD(α) = ΦDD(βα) and so
αβ = βα. Therefore a necessary condition for both endomorphisms of V
to be represented by diagonal matrices with respect to the same basis is
that they form a commuting pair.

We also note that if D is be a basis for a vector space V over a field
F . Then the set of all endomorphisms α of V satisfying the condition
that ΦDD(α) is a diagonal matrix is a subspace of End(V ). Indeed, this
is an immediate consequence of the fact that the set of all diagonal n × n
matrices is a subspace of Mn×n(F ).

(12.17) Proposition: Let V be a vector space over a field
F and let (α, β) be a commuting pair of endomorphisms of V.
Then p(α)q(β) = q(β)p(α) for any p(X), q(X) ∈ F [X].
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Proof: Initially, we will consider the special case of q(X) = X. If
p(X) =

∑n
i=0 aiX

i then βα2 = (βα)α = (αβ)α = α(βα) = α(αβ) = α2β,
and by induction we similarly have βαk = αkβ for every positive integer
k. Therefore

βp(α) = β

(
n∑

i=0

aiα
i

)

=
n∑

i=0

aiβαi =
n∑

i=0

aiα
iβ =

(
n∑

i=0

aiα
i

)

β = p(α)β.

Now a proof similar to the first part shows that p(α)βk = βkp(α) for
every positive integer k and hence, by a proof similar to the second part,
we get p(α)q(β) = q(β)p(α) for any p(X), q(X) ∈ F [X]. �

As a consequence of this we note that if α, β ∈ End(V ) are commuting
projections then (αβ)2 = (αβ)(αβ) = α(βα)β = α(αβ)β = α2β2 = αβ
and so αβ is a projection as well.

(12.18) Proposition: Let V be a vector space finitely gener-
ated over a field F and let α, β ∈ End(V ) be diagonalizable
endomorphisms of V. Then there exists a basis of V relative to
which both α and β can be represented by diagonal matrices
if and only if αβ = βα.

Proof: We have already noted that if α and β can both be represented
by diagonal matrices with respect to a given basis of V then we must
have αβ = βα. Conversely, assume that α and β are diagonalizable
endomorphisms of V satisfying αβ = βα. Then, as we have already
seen, there exist distinct scalars c1, . . . , ck and projections π1, . . . , πk ∈
End(V ) such that π1 + . . .+πk = σ1, πiπj = σ0 for i �= j, and c1π1 +
. . . + ckπk = α. Similarly, there exist scalars d1, . . . , dt and projections
η1, . . . , ηk ∈ End(V ) such that η1 + . . . + ηk = σ1, ηiηj = σ0 for i �= j,
and d1η1 + . . . + dkηk = β. Therefore

α = ασ1 =

(
k∑

i=1

ciπi

)


t∑

j=1

ηj



 =
k∑

i=1

t∑

j=1

ciπiηj

and

β = βσ1 =




t∑

j=1

djηj





(
k∑

i=1

πi

)

=
t∑

j=1

k∑

i=1

djηjπi.

Since we saw that, for each 1 ≤ i ≤ k we have πi = pi(α) for some
pi(X) ∈ F [X] and similarly for each 1 ≤ j ≤ t we have ηj = qj(β) for
some qj(X) ∈ F [X], we conclude that πiηj = ηjπi for each such i and
j. Call this common value θij . By the comments after Proposition 12.17,
we see that θij is also a projection in End(V ).
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We note that θijθhm = πiηjπhηm = πiπhηjηm and this equals σ0

when i �= j or h �= m. We also note that

k∑

i=1

t∑

j=1

θij =

(
k∑

i=1

πi

)


t∑

j=1

ηj



 = σ1.

Thus we have shown that α and β are simultaneously diagonalizable,
using those projections θij which are nonzero (as some of them may be).
�

Algorithms for the computation of the eigenvalues and eigenvectors of a
given matrix are usually very complicated, especially if speed of computa-
tion is a major consideration. Therefore, we shall not go into the description
of such algorithms in detail. As a rule of thumb, it is best to try to compute
eigenvectors directly, and not through finding roots of the characteristic
polynomial, since small errors in the computation of eigenvalues may often
lead to large errors in the computation of the corresponding eigenvectors.
For matrices over R, there are often reasonably efficient iterative methods
to find at least some of the eigenvectors. We will bring here one example to
find an eigenvector associated with the real eigenvalue of a matrix over R

having greatest absolute value, under assumption that such an eigenvalue
indeed exists. The algorithm is based on the observation that if c is an
eigenvalue of a matrix A ∈ Mn×n(R) then ck is an eigenvalue of Ak.
Therefore, if k is sufficiently large, the matrix A(Ak) is approximately
equal to cAk. Therefore, if we select an arbitrary vector v(0) ∈ R

n and
successively define vectors v(1), v(2), . . . by setting v(i+1) = Av(i) for each
i ≥ 0, then Av(k) = Ak+1v(0) and this is roughly equal to cv(k). There-
fore, if the conditions are amenable (and we will not go into the precise
conditions necessary for this to happen), the vector v(k) is a reasonable
approximation to an eigenvector of A associated with c. Of course, we
must always remember that repeated computations lead to accumulating
roundoff and truncation errors; one way of combating these is to divide
each entry in v(i) by the absolute value of the largest entry, and use this
“normalized” vector in the next iteration4.

4 Of the many numerical analysts who studied com-
putational methods for finding eigenvalues, one of the most important is the British
mathematician James H. Wilkinson, a former assistant of Alan Turing and one of the
major early innovators in numerical linear algebra. The iteration algorithm given here
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Example: Consider A =
[

5 1
−3 1

]

∈ M2×2(R) and let us pick

v(0) =
[

1
1

]

then

Av(0) =
[

6
−2

]

and so we will take v(1) =
[

1
− 1

3

]

;

Av(1) =
1
3

[
14

−10

]

and so we will take v(2) =
[

1
− 5

7

]

;

Av(2) =
1
7

[
30

−26

]

and so we will take v(3) =
[

1
− 15

13

]

;

Av(3) =
1
13

[
62

−58

]

and so we will take v(4) =
[

1
− 29

31

]

;

Av(4) =
1
31

[
126

−122

]

and so we will take v(5) =
[

1
− 61

63

]

.

It seems that this sequence of vectors is converging to
[

1
−1

]

and,

indeed, one can check that this is an eigenvector of A associated with the
eigenvalue 4.

Example: Let n be a positive integer and let A ∈ Mn×n(R) be a
matrix of the form [cB + (1 − c)D]T , where B ∈ Mn×n(R) is a Markov

matrix, c ∈ R satisfies 0 ≤ c ≤ 1, and D =






1
...
1




 ∧






d1

...
dn




 for

nonnegative real numbers di satisfying
∑n

i=1 di = 1. Such matrices
have been called Google matrices since they are needed for the Page-
Rank algorithm used by the internet search engine Google

TM
to compute

an estimate of web-page importance for ranking search results (for these
purposes, a typical value for c is 0.85). The value of n can be very
large, often far larger than 109.

One can show that the eigenvalues e1, . . . , en of such a matrix satisfy
1 = |e1| ≥ |e2| ≥ . . . ≥ |en| ≥ 0 and so the power method mentioned above
can (and is) used by Google to rapidly compute an eigenvector associated
to e1. Recently, Stanford University researchers Taher Haveliwala and
Sepandar Kamvar have shown that for any Google matrix, |e2| ≤ c, with

was first studied in the 1920’s by the Austrian applied mathematician Richard von
Mises, who later emigrated to the United States.
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equality happening under conditions that hold in the case of those matrices
arising in this particular application. Eigenvectors corresponding to this
second eigenvalue can be used to detect and combat link spamming on the
internet.

One can also consider a generalization of the eigenvalue problem: given
endomorphisms α and β of a vector space V, find all scalars c such
that cβ − α is not monic. Problems of this sort arise naturally, for
example, in plasma physics and in the design of control systems. When
β is an automorphism, as is usually the case, this can be reduced to the
usual eigenvalue problem for the endomorphism β−1α, but there are
sometimes reasons for not wanting to do so. For example, even if both
α and β are represented with respect to a given basis by symmetric
matrices, the matrix representing β−1α may not be symmetric. Therefore,
some specialized algorithms have been developed to find solutions of the
generalized eigenvalue problem directly.

Exercises

Exercise 667 Find the characteristic polynomial of the matrix



3 2 2
1 4 1
2 −4 −1



 ∈ M3×3(R).

Exercise 668 Find the characteristic polynomial of the matrix








1 3 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 2 0
0 0 0 0 2








∈ M5×5(R).

Exercise 669 Let a, b, c ∈ R. Find the characteristic polynomial of the

matrix







0 0 0 a
a 0 0 b
0 b 0 c
0 0 c 0





 ∈ M4×4(R).

Exercise 670 Let n be a positive integer and let A ∈ Mn×n(Q). Let
c1, . . . , cn be the list of (not necessarily distinct) eigenvalues of A, con-
sidered as a matrix in Mn×n(C). Show that

∑n
i=1 ci and

∏n

i=1
ci are

rational numbers.
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Exercise 671 Let F be a field, let n be a positive integer, and let
A,B ∈ Mn×n(F ). Assume that A and B have the same character-
istic polynomial p(X) ∈ F [X]. Is it necessarily true that p(X) is the
characteristic polynomial of AB?

Exercise 672 Find infinitely-many matrices in M3×3(R), all of which
have characteristic polynomial X(X − 1)(X − 2).

Exercise 673 Let n be a positive integer. Show that every matrix A ∈
Mn×n(R) can be written as the sum of two nonsingular matrices.

Exercise 674 Let F = GF (3) and let n be a positive integer. Let D =
[dij ] ∈ Mn×n(F ) be a nonsingular diagonal matrix and let A ∈ Mn×n(F ).
Show that 1 /∈ spec(DA) if and only if D − A is nonsingular.

Exercise 675 Let F be a field of characteristic other than 2. For each
positive integer n, let Tn be the set of all diagonal matrices in Mn×n(R)
the diagonal entries of which belong to {−1, 1}. For any A ∈ Mn×n(R),
show that there exists a matrix D ∈ Tn satisfying 1 /∈ spec(DA).

Exercise 676 Let n be a positive integer and let α : Mn×n(C) → C
n

be the function defined by α : A �→






a0

...
an−1




 , where Xn +

∑n−1
i=0 aiX

i

is the characteristic polynomial of A. Is α a linear transformation?

Exercise 677 Let α be the endomorphism of R
3 defined by

α :




a
b
c



 �→




a − b

a + 2b + c
−2a + b − c



 .

Find the eigenvalues of α and, for each eigenvalue, find the associated
eigenspace.

Exercise 678 Let A is a nonempty set and let V be the collection of
all subsets of A, which is a vector space over GF (2). Let B be a
fixed subset of A and let α : V → V be the endomorphism defined by
α : Y �→ Y ∩B. Find the eigenvalues of α and, for each eigenvalue, find
the associated eigenspace.

Exercise 679 Let α be the endomorphism of R
4 defined by

α :







a
b
c
d





 �→







b + c
c
0
0





 .
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Find the eigenvalues of α. Do there exist two-dimensional subspaces W
and Y of R

4, both invariant under α, such that R
4 = W ⊕ Y ?

Exercise 680 Let V be a vector space finitely generated over a field F
and let α be an endomorphism of V having an eigenvalue c. For any
p(X) ∈ F [X], show that p(c) is an eigenvalue of p(α).

Exercise 681 Let V be the vector space of all functions in R
R which

are infinitely differentiable and let α : V → V be the endomorphism of
V defined by α : f �→ f ′′. If n is an integer, show that the function
f : x �→ sin(nx) is an eigenvector of α2 and find the associated eigenvalue.

Exercise 682 Let F be a field and let V = F (Z). Let α be the
endomorphism of V defined by α(f) : i �→ f(i + 1) for all i ∈ Z. Show
that spec(α) = ∅.

Exercise 683 Let V be the vector space composed of all polynomial func-
tions from R to itself, let a ∈ R, and let α be the endomorphism of V
defined by α(p) : x �→ (x − a) [p′(x) + p′(a)] − 2 [p(x) − p(a)] , where p′

denotes the derivative of p. Find the eigenvalues of α and for each such
eigenvalue, find the associated eigenspace.

Exercise 684 Let α be the endomorphism of M2×2(R) defined by

α :
[

a b
c d

]

�→
[

d −b
−c a

]

. Find the eigenvalues of α and for each

such eigenvalue, find the associated eigenspace.

Exercise 685 Let V be a vector space over Q and let α ∈ End(V ) be
a projection. Show that spec(α) ⊆ {0, 1}.

Exercise 686 Let V be a vector space of dimension n > 0 over a field
F. Let α be an endomorphism of V for which there exists a set A of
n + 1 distinct eigenvectors satisfying the condition that every subset of A
of size n is a basis for V. Show that all of the eigenvectors in V are
associated with the same eigenvalue c of α and that α = cσ1.

Exercise 687 For a, b ∈ R, let A =




a b 0
b a b
0 b a



 ∈ M3×3(R). Find

the eigenvalues of A.

Exercise 688 Let A ∈ M2×2(R) be a matrix of the form
[

a b
c a

]

,

where a > 0 and bc > 0. Show that A has two distinct eigenvalues in
R.
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Exercise 689 Find the eigenvalues of the matrix




5 6 −3

−1 0 1
2 2 −1



 ∈

M3×3(R) and, for each such eigenvalue, find the associated eigenspace.

Exercise 690 Find the eigenvalues of the matrix




0 2 1

−2 0 3
−1 −3 0



 ∈

M3×3(C) and, for each such eigenvalue, find the associated eigenspace.

Exercise 691 Let W be the subspace of R
∞ consisting of all convergent

sequences and let α be the endomorphism of W defined by

α : [a1, a2, . . .] �→
[(

lim
i→∞

ai

)
− a1,

(
lim

i→∞
ai

)
− a2, . . .

]
.

Find all eigenvalues of α and, for each eigenvalue, find the corresponding
eigenspace.

Exercise 692 Find the eigenvalues of the matrix




1 −1 1
1 0 0
0 1 0



 in

M3×3(C) and, for each such eigenvalue, find the associated eigenspace.

Exercise 693 Does there exist a real number a such that

spec








1 −1 0
0 a −1

−6 11 −5







 = {−2,−1, 0}?

Exercise 694 Let α be an endomorphism of a vector space V over a
field F and let v and w be eigenvectors of α. If v+w �= 0V , show that
v + w is an eigenvector of α if and only if both v and w correspond
to the same eigenvalue.

Exercise 695 Show that the matrix A =




1 0 a
a a a
a 0 −1



 has three dis-

tinct eigenvalues for any real number a.

Exercise 696 Let n be a positive integer and let t be a nonzero real
number. Let A ∈ Mn×n(R) be the matrix all of the entries of which
equal t. Find the eigenvalues of A and, for each such eigenvalue, find
the associated eigenspace.

Exercise 697 Let n be a positive integer and let F be a field. Let A
be a nonsingular matrix in Mn×n(F ). Given the eigenvalues of A, find
the eigenvalues of A−1.
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Exercise 698 Let n be a positive integer and let F be a field. Let
A = [aij ] ∈ Mn×n(F ), and let c ∈ spec(A). If b, d ∈ F, show that
bc + d ∈ spec(bA + dI).

Exercise 699 Let A =
[

a b
c d

]

∈ M2×2(R). If t ∈ R is a root of the

polynomial bX2+(a−d)X−c ∈ R[X], show that
[

1
t

]

is an eigenvector

of A associated with the eigenvalue a + bt.

Exercise 700 Let A ∈ M2×2(C) be a matrix having two distinct eigen-
values. Show that there are precisely four distinct matrices B ∈ M2×2(C)
satisfying B2 = A.

Exercise 701 Find all a ∈ R such that




a 0 0

2a 2a 2a
0 0 a



 has a unique

eigenvalue.

Exercise 702 Find a real number a such that the only eigenvalue of the

matrix




a 1 0

−1 0 −1
0 1 −a



 ∈ M3×3(R) is 0.

Exercise 703 For 1 ≤ i ≤ 3 and 2 ≤ j ≤ 3, find a real number aij

such that




1

−1
0



 ,




1
0

−1



 , and




1
1
1



 are all eigenvectors of the

matrix




1 a12 a13

1 a22 a23

1 a32 a33



 ∈ M3×3(R).

Exercise 704 Let 0 �= r ∈ C and let n and m be positive integers.
Let A = [aij ] ∈ Mn×n(C) be given and let B = [bij ] ∈ Mn×n(C) be
the matrix defined by bij = rm+i−jaij for all 1 ≤ i, j ≤ n. Show that if
d ∈ C is an eigenvalue of A then rmd is an eigenvalue of B.

Exercise 705 Let n be a positive integer and let F be a field. A
matrix A ∈ Mn×n(F ) is a magic matrix if and only if there exists a
scalar c ∈ F such that the sum of the entries in each row and each column
is c. Characterize magic matrices in terms of their eigenvalues.

Exercise 706 Show that all matrices of the form
[

a − 1 −1
a2 − a + 1 −a

]

∈
M2×2(C) have the same eigenvalues.
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Exercise 707 Let A ∈ M2×2(C) be a matrix having distinct eigenvalues
a �= b. Show that, for all n > 0,

An =
an

a − b
(A − bI) +

bn

b − a
(A − aI).

Exercise 708 Let A ∈ M2×2(C) be a matrix having a unique eigenvalue
c. Show that An = cn−1 [nA − (n − 1)cI] for all n > 0.

Exercise 709 Let n be a positive integer and let A ∈ Mn×n(C). Show
that every eigenvector of A is also an eigenvector of adj(A).

Exercise 710 Let n be a positive integer. Let G be the set of all
matrices A ∈ Mn×n(C) satisfying the condition that C

n has a basis
composed of eigenvectors of A. Is G closed under taking sums? Is it
closed under taking products?

Exercise 711 Let p(X) ∈ C[X] and let A ∈ Mn×n(C) for some posi-
tive integer n. Calculate the determinant of the matrix p(A) using the
eigenvalues of A.

Exercise 712 Let −1 �= a ∈ R and let A =
[

1 − a + a2 1 − a
a − a2 a

]

∈
M2×2(R). Calculate An for all n ≥ 1.

Exercise 713 Let n be a positive integer. Given a matrix A ∈ Mn×n(Q),
find infinitely-many distinct matrices having the same eigenvalues as A.

Exercise 714 Let c ∈ R. Find the spectral radius of

A =







1 0 0 0
0 0 c 0
0 −c 0 0
0 0 0 0





 ∈ M4×4(C).

Exercise 715 Let A ∈ Mn×n(R) be a matrix all entries in which are
positive and let c be a positive real number greater than the spectral radius
of A. Show that |cI − A| > 0.

Exercise 716 Let n be a positive integer. Show that 1 is an eigenvalue
of any Markov matrix in Mn×n(R).

Exercise 717 Let n be a positive integer. Let A = [aij ] ∈ Mn×n(R)
satisfy the condition that

∑n
j=1 |aij | ≤ 1 for all 1 ≤ j ≤ n. Show that

|c| ≤ 1 for all c ∈ spec(A).

Exercise 718 Let n be a positive integer and let F be a field. Let
A = [aij ] ∈ Mn×n(F ) be a matrix satisfying the condition that the sum of
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the entries in each row equals 1. Let 1 �= c ∈ spec(A) and let






b1

...
bn






be an eigenvalue of A associated with c. Show that
∑n

j=1 bj = 0.

Exercise 719 Give an example of a matrix A ∈ M2×2(R) satisfying the
condition that spec(A) = ∅ but spec(A4) �= ∅.

Exercise 720 Find an example of matrices A,B ∈ M2×2(R) satisfying
the condition that every element of spec(A)∪spec(B) is positive but every
element of spec(AB) is negative.

Exercise 721 Find a polynomial p(X) ∈ C[X] of degree 2 satisfying

the condition that all matrices in M2×2(C) of the form
[

1 − a 1
p(a) a

]

,

for a ∈ C, have the same characteristic polynomial.

Exercise 722 Let F be a field and let n be an even positive integer.
Let A,B ∈ Mn×n(F ) be matrices satisfying A = B2. Let p(X) be
the characteristic polynomial of A and let q(X) be the characteristic
polynomial of B. Show that p(X2) = q(X)q(−X).

Exercise 723 Let F be a field. Characterize the matrices in M2×2(F )
having the property that their characteristic polynomial is not equal to their
minimal polynomial.

Exercise 724 Let (K, •) be an associative unital F -algebra, let v ∈ K,
and let α : K → K be a homomorphism of F -algebras. Show that
Ann(v) ⊆ Ann(α(v)).

Exercise 725 Are the matrices
[

1 2
3 4

]

and
[

4 2
3 1

]

in M2×2(R)

similar?

Exercise 726 Are the matrices




1 i 0
i 2 −1
0 i 1



 and




1 + i 7 2

0 1 9
0 0 2 − i





in M3×3(C) similar?

Exercise 727 Let n be a positive integer and let A,B ∈ Mn×n(R).
Show that if A and B are similar when considered as elements of
Mn×n(C), they are also similar in Mn×n(R).

Exercise 728 Find a diagonal matrix in M3×3(R) similar to the matrix


1 0 1
0 1 0
1 0 1



 .
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Exercise 729 Find a diagonal matrix in M3×3(R) similar to the matrix


0 0 1
0 0 0
1 0 0



 .

Exercise 730 Is there a diagonal matrix in M3×3(R) similar to the

matrix




8 3 −3

−6 −1 3
12 6 −4



?

Exercise 731 Show that every matrix in the subspace of M2×2(R) gen-

erated by
{[

0 1
1 0

]

,

[
1 0
0 −1

]}

is similar to a diagonal matrix.

Exercise 732 Determine if the matrices




0 1 0
0 0 1
0 0 0



 and




0 0 0
1 0 0
0 1 0





in M3×3(GF (5)) are similar.

Exercise 733 Is there a diagonal matrix in M3×3(R) similar to the

matrix




1 −1 1

−2 1 2
−2 −1 4



?

Exercise 734 Let A =




1 0 0
0 1 1
0 1 1



 ∈ M3×3(R). Find a nonsingular

matrix P ∈ M3×3(R) such that P−1AP is a diagonal matrix.

Exercise 735 Show that the matrix A =
[

1 i
i −1

]

∈ M2×2(C) is not

similar to a diagonal matrix.

Exercise 736 Are the matrices




1 −1 0
0 2 5
0 0 3



 and




2 0 0

−1 4 0
0 3 7



 in

M3×3(Q) similar?

Exercise 737 Let k and n be positive integers and let F be a field.

Let A ∈ Mk×n(F ) and B ∈ Mn×k(F ). Is the matrix
[

AB O
B O

]

similar to the matrix
[

O O
B BA

]

?
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Exercise 738 Let F be a field and let A =




a 1 0
0 a 1
0 0 a



 ∈ M3×3(F ). For

any p(X) ∈ F [X], show that p(A) =




p(a) p′(a) 1

2p′′(a)
0 p(a) p′(a)
0 0 p(a)



 , where

p′(X) denotes the formal derivative of the polynomial p(X) and p′′(X)
is the formal derivative of p′(X).

Exercise 739 Find the characteristic and minimal polynomials of the ma-

trix




7 4 −4
4 −8 −1

−4 −1 −8



 ∈ M3×3(R).

Exercise 740 Let n be a positive integer. Let V be the vector space
over R consisting of all polynomial functions from R to itself having
degree at most n. Let α be the endomorphism of V which assigns to
each f ∈ V its derivative, and let A be a matrix representing α with
respect to some basis of V. Find the minimal polynomial of A.

Exercise 741 Find six distinct matrices in M2×2(R) which annihilate
the polynomial X2 − 1.

Exercise 742 Let n be a positive integer and let c be an element of
a field F. Find a matrix A ∈ Mn×n(F ) having minimal polynomial
(X − c)n.

Exercise 743 Use the Cayley-Hamilton Theorem to find the inverse of



5 1 −1

−6 0 2
0 0 2



 ∈ M3×3(R).

Exercise 744 Let n be a positive integer and let A ∈ Mn×n(F ) be a
matrix of rank h. Show that the degree of the minimal polynomial of A
is at most h + 1.

Exercise 745 Let n be a positive integer and let F be a field. Show
that a matrix A ∈ Mn×n(F ) is nonsingular if and only if mA(0) �= 0.

Exercise 746 Find the eigenvalues of the matrix







0 0 1 1
0 0 1 0
0 1 0 0
1 1 0 0





 ∈

M4×4(Q) and determine the algebraic multiplicity of each.
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Exercise 747 Find the minimal polynomial of the matrix




0 1 0
0 0 1
1 3 −3





in M3×3(R).

Exercise 748 Let α and β be the endomorphisms of Q
4 represented

with respect to the canonical basis by the matrices







1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1







and







4 −1 −1 0
−1 4 0 −1

1 0 2 −1
0 1 −1 2





 respectively. Does there exist a basis of Q

4

with respect to which both of them can be represented by diagonal matrices?

Exercise 749 Let α be the endomorphisms of R
3 represented with

respect to the canonical basis by the matrix




−6 2 −5

4 4 −2
10 −3 8



 . Calculate

the algebraic and geometric multiplicities of each of the eigenvalues of α.

Exercise 750 Let A = [aij ] ∈ Mn×n(C) be a symmetric tridiagonal
matrix having an eigenvalue c with algebraic multiplicity k. Show that
ai−1,i = 0 for at least k − 1 values of i.

Exercise 751 Let α be the endomorphisms of R
3 represented with

respect to the canonical basis by the matrix




−8 −13 −14
−6 −5 −8
14 17 21



 . Does

there exist a basis of R
3 with respect to which α can be represented by

a diagonal matrix?

Exercise 752 Let A =







17 −8 −12 14
46 −22 −35 41
−2 1 4 −4

4 −2 −2 3





 ∈ M4×4(Q). Find the

minimal polynomial A.

Exercise 753 For each t ∈ R, set A(t) =
[

cos2(t) cos(t) sin(t)
cos(t) sin(t) sin2(t)

]

∈
M2×2(R). Show that all of these matrices have the same characteristic and
minimal polynomials.
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Exercise 754 Let a, b, c ∈ C. Find a necessary and sufficient condition

for the minimal polynomial of




2 0 0
a 2 0
b c 1



 ∈ M3×3(C) to be equal to

(X − 1)(X − 2).

Exercise 755 Let A =




1 a 0
a a 1
a a −1



 ∈ M3×3(R). Find the set of all

real numbers a for which the minimal and characteristic polynomials of
A are equal.

Exercise 756 Let F = GF (5). For which values of a, b ∈ F are the
characteristic polynomial and minimal polynomial of the matrix









a b 4 2 0
b b b 3 3
3 4 2b 1 3
0 0 0 0 1
0 0 0 3b 0









equal? What if F = GF (7)?

Exercise 757 Let F be a field and let O �= A ∈ M3×3(F ) be a matrix
satisfying Ak = O for some positive integer k. Show that A3 = O.

Exercise 758 Let F be a field and let A ∈ M3×3(F ) be a matrix
which can be written in the form BC, where B and C are matrices
in M3×3(F ) satisfying B2 = I = C2. Show that A is nonsingular and
similar to A−1.

Exercise 759 Let A ∈ M3×3(Q) be a matrix satisfying the condition
that A5 = I. Show that A = I.

Exercise 760 Let n be a positive integer and let α be an endomorphism
of Mn×n(C), considered as a vector space over C, which satisfies the
condition that α(A) is nonsingular if and only if A is nonsingular. Show
that α is an automorphism.

Exercise 761 Let F be a field and let n be a positive integer. Let
A ∈ Mn×n(F ) be a matrix having characteristic polynomial p(X) = Xn+
∑n−1

i=0 ciX
i. Show that, for each k ≥ n, we have Ak =

∑n−1
j=0 bj(k)Aj ,

where
(1) bj(n) = −cj for all 0 ≤ j ≤ n − 1;
(2) b−1(k) = 0 for all k ≥ n;
(3) bj(k +1) = bj−1(k)−ajbn−1(k) for all k ≥ n and all 0 ≤ j ≤ n−1.
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Exercise 762 Show that there is no matrix A ∈ M2×2(R) satisfying the

condition that A2 =
[

−1 0
0 −c

]

, where c > 1.

Exercise 763 Let V be a vector space finitely generated over C and
let α ∈ End(V ) be diagonalizable. If W is a nontrival subspace of V
invariant under α, is the restriction of α to W necessarily diagonaliz-
able?

Exercise 764 Find all rational numbers a satisfying the condition the
endomorphism of Q

3 represented with respect to some basis by the matrix



1 0 0
1 a 0
0 0 1



 is diagonalizable.

Exercise 765 Let n be a positive integer and let B ∈ Mn×n(R) be a
matrix all entries of which are positive. Let r > ρ(B). Show that
(1) All the matrix A = rI − B is nonsingular;
(2) All nondiagonal entries of A are nonpositive;
(3) All entries of A−1 are nonnegative; and
(4) If a + bi ∈ C is an eigenvalue of A, then a > 0.

Exercise 766 Let V be a vector space of finite odd dimension over R and
let α1, . . . αk be distinct mutually-commuting endomorphisms of V, for
some k > 1. Show that these endomorphisms have a common eigenvector.

Exercise 767 Show that the endomorphisms α :







a
b
c
d





 �→







2b
2a
2d
2c





 and

β :







a
b
c
d





 �→







c
d
a
b





 of Q

4 are diagonalizable and commute. Find a

basis of Q
4 relative to which both α and β are represented by diagonal

matrices.

Exercise 768 Let A ∈ M3×3(Q) have characteristic polynomial X3 −
bX2 + cX − d. For all n ≥ 3, show that

An = tn−1A + tn−2adj(A) + (tn − btn−1)I,

where tn =
∑

2i+3j≤n(−1)i
(
i+j
j

)(
n−i−2j

i+j

)
bn−2i−3jcidj .
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Krylov subspaces

Let V be a vector space over a field F and let α ∈ End(V ). If
0V �= v0 ∈ V then the subspace F{v0, α(v0), α2(v0), . . .} of V is called
the Krylov1 subspace of V defined by α and v0. The elements of this
subspace are precisely those vectors in V of the form p(α)(v0), where
p(X) ∈ F [X], and so it is natural to denote it by F [α]v0. It is clear
that F [α]v0 is invariant under α. We claim that dim(F [α]v0) = 1 if
and only if v0 is an eigenvector of α. Indeed, if v0 is an eigenvector of
α associated with an eigenvalue c then for each p(X) =

∑k
j=0 ajX

j ∈
F [X] we have p(α)(v0) =

∑k
j=0 ajα

j(v0) =
∑k

j=0 ajc
jv0 ∈ Fv0, proving

that F [α]v0 = Fv0 and so dim(F [α]v0) = 1. Conversely, assume that
dim(F [α]v0) = 1. Then F [α]v0 = Fv0 since Fv0 is a one-dimensional
subspace of F [α]v0. In particular, α(v0) ∈ Fv0 and so there exists a
scalar c such that α(v0) = cv0, which proves that v0 is an eigenvector

1 Alexei Nikolaevich Krylov was a Russian applied mathemati-
cian who, at the end of the 19th century, developed many of the methods mentioned
here in connection with the solution of differential equations.
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of α. Note that in any case the set {v0, α(v0), α2(v0), . . .} is a generating
set for F [α]v0 over F and so dim(F [α]v0) can be used to measure how
“far” v0 is from being an eigenvector of α.

(13.1) Proposition: Let V be a vector space over a field F and
let α ∈ End(V ). If 0V �= v0 ∈ V then F [α]v0 is the intersection
of all subspaces of V containing v0 and invariant under α.

Proof: Since F [α]v0 contains v0 and invariant under α, it certainly
contains the intersection of all such subspaces of V. Conversely, if W
is a subspace of V which contains v0 and invariant under α, then
p(α)(v0) ∈ W for all p(X) ∈ F [X] and so F [α]v0 ⊆ W. Thus we have
the desired equality. �

As a first example of the use to which we can put Krylov subspaces,
we will see how to use the minimal polynomial to solve systems of linear
equations. Let V be a vector space over a field F and let V ∞ be
the space of all infinite sequences of elements of V. Every polynomial
p(X) =

∑k
j=0 ajX

j ∈ F [X] defines an endomorphism θp of V ∞ by

θp : [v0, v1, . . .] �→




k∑

j=0

ajvj ,

k∑

j=0

ajvj+1,

k∑

j=0

ajvj+2, . . .



 .

Note that if p(X) = c is a polynomial of degree no greater than 0,
then θp = σc. It is also easy to verify that θpq = θpθq = θqθp for all
p(X), q(X) ∈ F [X].

A sequence y ∈ V ∞ is linearly recurrent if and only if there exists a
polynomial p(X) ∈ F [X] with y ∈ ker(θp). In this case, we say that p(X)
is a characteristic polynomial of y. If p(X) ∈ F [X] is a characteristic
polynomial of y ∈ V ∞ and if q(X) ∈ F [X] is a characteristic polynomial
of z ∈ V ∞ then θpq(y + z) = θqθp(y) + θpθq(z) = [0, 0. . . .] and so
p(X)q(X) is a characteristic polynomial of y + z. It is also clear that
p(X) is a characteristic polynomial of cy for all c ∈ F. Thus we see
that the set of all linearly recurrent sequences in V ∞ is a subspace of
V ∞, which we will denote by LR(V ). If y ∈ LR(V ), there is precisely
one characteristic polynomial which is monic and of minimal degree. This
polynomial will be called the minimal polynomial of y. The degree of
the minimal polynomial of y will be called the order of recurrence of
y.

Example: Let F be a field, let n be a positive integer, and let
V = Mn×n(F ). If A ∈ V then a polynomial p(X) ∈ F [X] is a
characteristic [resp. minimal] polynomial of the sequence [I,A,A2, . . .] if
and only if it was the characteristic [minimal] polynomial of A in the
sense of the previous chapter.
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Example: Let V = F = Q and let y = [a0, a1, . . .] ∈ V ∞ be the
sequence defined by a0 = 0, a1 = 1, and ai+2 = ai+1 + ai for all i ≥ 0.
This sequence is called the Fibonacci sequence. Its minimal polynomial
is X2 −X − 1. The roots of this polynomial are 1

2 (1±
√

5). The number
1
2 (1 +

√
5) is called the golden ratio and artists consider rectangles the

sides of which are related by the golden ratio to be of high aesthetic value.
This ratio – which appears in ancient Egyptian and Babylonian texts –
appears in nature and is basic in the analysis of certain patterns of growth
in nature (such as the spirals of a snail shell or a sunflower), of Greek
architecture, of Renaissance painting2, and even such modern designs as
the ratio of the dimensions of a credit card or of A4 paper. Notice that

X2−X−1 is also the characteristic polynomial of the matrix
[

1 1
1 0

]

∈

M2×2(R), and so the eigenvalues of this matrix are also precisely 1
2 (1±

√
5).

The eigenspace associated with 1
2 (1 +

√
5) is R

[
1
2 (1 +

√
5)

1

]

and the

eigenspace associated with 1
2 (1 −

√
5) is R

[
1
2 (1 −

√
5)

1

]

.

We note that if V = F and if y ∈ LR(F ) is a sequence having order
of recurrence at most n, then there exist algorithms, which are essentially
extensions of the euclidean algorithm, to calculate the coefficients of the
minimal polynomial of y in an order of n2 arithmetic operations in F.

Now let V be a vector space of finite dimension n over a field F and
let α be an automorphism of V having minimal polynomial p(X) ∈
F [X]. If w ∈ V then the sequence y = [w,α(w), α2(w), . . .] belongs
to ker(θp) and hence to LR(V ). Therefore this sequence has a minimal
polynomial q(X) =

∑d
j=0 cjX

j , which divides the polynomial p(X) in
F [X]. Since α is an automorphism, we can assume that c0 �= 0 and
so we see that if u = −c−1

0

∑d
j=1 cjα

j−1(w) then α(u) = w and so

2 Leonardo Fibonacci was born in Italy in the
12th century and educated in Tunis, bringing back the fruits of Arab mathematics to
Europe. His book Liber Abaci, written in 1202, contained the first new mathematical
research in Christian Europe in over 1000 years. In 1509, Fra Luca Pacioli, one of
the most important Renaissance mathematicians, wrote a book, The Divine Proportion,
illustrated by his friend Leonardo da Vinci, about the golden ratio.
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u = α−1(w). In particular, if V = Fn for some positive integer n and
if α is represented by a matrix A with respect to the canonical basis,
then u = −c−1

0

∑d
j=1 cjA

j−1w is the unique solution of the system of

linear equations AX = w. If we set q∗(X) = −c−1
0

∑d
j=1 cjX

j−1 then
u = q∗(A)w, and this could be computed quickly were we to already know
q(X).

How does one calculate q∗(X) in practice? One method in use is
basically probabilistic: we randomly choose a vector u ∈ Fn and compute
the minimal polynomial qu(X) of the sequence

yu = [u � w, u � (Aw), u � A2w), . . .]

in F∞, something which can be done, as we have already observed, in an
order of n2 arithmetic operations in F. After that, we check whether
the minimal polynomial of yu is also the minimal polynomial of y. In
general, it will not be so, but it will divide the minimal polynomial of y
and so after a reasonable number of such attempts we will, usually, have
enough information on hand to reconstruct the minimal polynomial of y.

Example: Let F = GF (5), let A =




1 4 4
4 0 3
1 2 4



 ∈ M3×3(F ), and

let w =




3
1
2



 ∈ F 3. The sequence w,Aw,A2w, . . . looks like




3
1
2



 ,




0
3
3



 ,




4
4
3



 ,




2
0
4



 ,




3
0
3



 ,




0
1
0



 , . . . .

If we choose u =




1
0
0



 we obtain the sequence yu = [3, 0, 4, 2, 3, 0, . . .]

in F∞ and the minimal polynomial qu(X) of this sequence equals

X2 + 2X + 2. Since qu(A)w =




0
2
3



 , we see that this polynomial is

not the minimal polynomial of y. We will try again with u =




1
2
0



 .

For this choice, we get yu = [0, 1, 2, 2, 3, 2, . . .] and this has minimal
polynomial X3 + 3X + 1. Since the minimal polynomial of y has to be
a multiple of this polynomial, and has to be of degree 3, it must equal
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X3 + 3X + 1 and, indeed, qu(A)w =




0
0
0



 . Therefore q∗(X) = X2 + 3

and q∗(A)w = qu(A)w =




2
3
1



 .

Now let us return to an important problem which was considered in the
previous chapter. Let V be a vector space finitely generated over a
field F. Given an endomorphism α ∈ End(V ), how can we find a basis
of V relative to which α is represented by a matrix which is as nice
as possible? We have already found out when α is diagonalizable. But
what if α is not diagonalizable? Given a vector 0V �= w ∈ V, there
exists a positive integer k such that the set {w,α(w), . . . , αk−1(w)} is
linearly independent but the set {w,α(w), . . . , wk(w)} is linearly de-
pendent. Then {w,α(w), . . . , αk−1(w)} is a basis for the Krylov sub-
space F [α]w of V, which is called the canonical basis of this subspace.
The restriction of α to F [α]w is represented by a matrix of the form










0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3

. . .
0 . . . 1 0 ck−1

0 . . . 0 1 ck











with respect to the canonical basis, where the

scalars c1, . . . , ck satisfy αk(w) =
∑k

i=1 ciα
i−1(w). This, of course, is

just the companion matrix of the polynomial Xk −
∑k

i=1 ciX
i−1.

Krylov subspaces are also the basis for a family of iterative algorithms,
known as Krylov algorithms, used for approximating solutions to sys-
tems of equations of the form AX = w, where A ∈ Mn×n(R) or
A ∈ Mn×n(C). Similarly, Krylov subspaces are a basis for a family of iter-
ative algorithms, known as Lanczos3 algorithms, used for approximating
eigenvalues of sufficiently-nice (e.g. symmetric) matrices. Such algorithms

3 Hungarian-born applied mathematician Cornelius Lanczos de-
veloped many important numerical methods for computers in the period after World War
II, while working at the US National Bureau of Standards and, later, at the University
of Dublin in Ireland.
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work even under the assumption that we don’t even have direct access to
the entries of A but do have a “black box” ability to compute Av or
AT v for any given vector v ∈ R

n. Of course, they do not work for all
matrices, but when they work they tend to be fairly efficient and rapid,
and are especially good for large sparse matrices. Moreover, they are also
amenable to implementation on parallel computers.

Let V be a vector space over a field F. An endomorphism α ∈ End(V )
is nilpotent if and only if there exists a positive integer k satisfying
αk = σ0. The smallest such integer k, if one exists, is called the index
of nilpotence of the endomorphism.

Example: Let F be a field and let α be the endomorphism of F 3

defined by α :




a
b
c



 �→




0
a
b



 . Then α is a nilpotent endomorphism,

having index of nilpotence 3. The endomorphism β of F 3 defined by

β :




a
b
c



 �→




−a + 2b + c

0
−a + 2b + c



 is a nilpotent endomorphism, having index

of nilpotence 2.

Example: Let F be a field and let α and β be the endomorphisms

of F 2 defined by α :
[

a
b

]

�→
[

b
0

]

and β :
[

a
b

]

�→
[

0
a

]

. Both

endomorphisms are nilpotent, but α + β is clearly not nilpotent.

If α is a nilpotent endomorphism of a vector space V and w ∈
V � ker(α) then the restriction of α to F [α]w is represented with
respect to the canonical basis of F [α]w by a matrix of the form











0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0











.

(13.2) Proposition: Let V be a vector space over a field F
and let α be a nilpotent endomorphism of V having index of
nilpotence k. Then there exists a vector w ∈ V satisfying the
condition that dim(F [α]w) = k.
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Proof: We know that αk = σ0 but that there exists a vector 0V �=
w ∈ V such that αk−1(w) �= 0V . We will have proven the theorem
should we are able to show that the set {w,α(w), . . . , αk−1(w)} is linearly
independent. And, indeed, assume that we have scalars a0, . . . , ak−1 ∈ F

satisfying
∑k−1

i=0 aiα
i(w) = 0V . Let t be the smallest index such that

at �= 0. Then if we apply the endomorphism αk−t−1 to
∑k−1

i=0 aiα
i(w) we

get 0V = atα
k−1(w) + at+1α

k(w) + . . . + ak−2α
2k−t−2(w) and so at = 0,

which is a contradiction. Therefore we conclude that ai = 0 for all i,
and so the set is linearly independent, as required. �

In particular, we see that if V is a vector space of finite dimension over
a field F and if α is a nilpotent endomorphism of V, then the index of
nilpotence of α is no greater than dim(V ).

(13.3) Proposition: Let V be a vector space finitely generated
over a field F and let α be a nilpotent endomorphism of V
having index of nilpotence k. If w ∈ V satisfies the condition
that dim(F [α]w) = k then the subspace F [α]w of V has a
complement in V which is invariant under α.

Proof: We will proceed by induction on k. If k = 1 then α = σ0

and so F [α]w = Fw. Then there is a subset B of V � {Fw} such
that B ∪ {w} is a basis for V, and B is a basis for a complement of
Fw in V . Thus we can assume that k > 1 and that the result has
been established for any vector space finitely generated over F and any
nilpotent endomorphism of that space having index of nilpotence less than
k.

We know that im(α) is invariant under α and that the restriction of
α to im(α) is nilpotent, having index of nilpotence k−1. We know that
the set {w,α(w), . . . , αk−1(w)} forms a basis for F [α]w and so the set
{α(w), . . . , αk−1(w)} forms a basis for the image U of F [α]w under α.
Therefore, U = F [α]α(w) is a subspace of im(α) and, by the induction
hypothesis, it has a complement W2 in im(α) invariant under α.

Let W0 = {v ∈ V | α(v) ∈ W2}. This is a subspace of V containing
W2, since W2 is invariant under α. But α(v) ∈ W2 ⊆ W0 for all
v ∈ W0 and so W0 is also invariant under α.

Our first assertion is that V = F [α]w + W0. And, indeed, if x ∈ V
then α(x) ∈ im(α) = U ⊕W2 and so α(x) = u + w2, where u ∈ U and
w2 ∈ W2. But u = α(y) for some y ∈ F [α]w and x = y + (x − y).
The first summand belongs to F [α]w, whereas, as to the second, we have
α(x−y) = α(x)−α(y) = α(x)−u = w2 ∈ W2 and so x−y ∈ W0, proving
the assertion.

Our second assertion is that F [α]w∩W0 ⊆ U. Indeed, if x ∈ F [α]w∩W0

then α(x) ∈ U ∩ W2 = {0V } and so x ∈ ker(α). Since x ∈ F [α]w, we
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know that there exist scalars a0, . . . , ak−1 such that x =
∑k−1

i=0 aiα
i(w)

and hence 0V = α(x) =
∑k−2

i=0 aiα
i+1(w), which implies that a0 = . . . =

ak−2 = 0. Therefore x = ak−1α
k−1(w) ∈ U, proving the second assertion.

In particular, from what we have seen. we deduce that the subspaces
W2 and F [α]w ∩ W0 are disjoint. Therefore W2 ⊕ (F [α]w ∩ W0) is a
subspace of W0. This subspace has a complement W1 in W0. Thus we
have W0 = W1 ⊕ W2 ⊕ (F [α]w ∩ W0) .

Our third assertion is that W = W1 ⊕ W2 is a complement of F [α]w
in V which is invariant under α, and should we prove this, we will
have proven the proposition. Indeed, we immediately note that α(W ) ⊆
α(W0) ⊆ W2 ⊆ W and so W is surely invariant under α. Moreover,
F [α]w ∩ W = {0V } since this subspace is contained in the intersection of
W and F [α]w ∩W0, which, by the choice of W, equals {0V }. Finally,

V = F [α]w + W0 = F [α]w + [W1 + W2 + (F [α]w ∩ W0)]
= F [α]w + W1 + W2 = F [α]w + W

and so V = F [α]w ⊕ W. �

(13.4) Proposition (Rational Decomposition Theorem): Let V
be a vector space of finite dimension n over a field F let α
be a nilpotent endomorphism of V having index of nilpotence
k. Then there exist natural numbers k = k1 ≥ . . . ≥ kt satisfying
k1 + . . . + kt = n, and there exist vectors v1, . . . , vt in V such
that {v1, α(v1), . . . , αk1−1(v1), v2, α(v2), . . . , αk2−1(v2), . . . , vt, α(vt), . . . ,
αkt−1(vt)} forms a basis for V. The matrix which represents

α with respect to this basis is of the form







A1 O . . . O
O A2 . . . O

. . .
O O . . . At





 ,

where each Ai is of the form









0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0









in Mki×ki
(F ).

Proof: Choose k1 = k and choose v1 to be any vector not in
ker(αk1−1). Then U1 = F [α]v1 has a basis {v1, α(v1), . . . , αk1−1(v1)}. This
subspace is invariant under α and of dimension k1. By Proposition 13.3,
we know that we can write V = U1 ⊕ W1, where W1 is a subspace
of V which is also invariant under α. The restriction of α to W1 is
a nilpotent endomorphism of W1 having index of nilpotence k2 ≤ k1.
We now return on the above procedure for W1. We pick an element
v2 ∈ W1 � ker(αk2−1). Then the subspace U2 = F [α]v2 of W1 has a



13. Krylov subspaces 275

basis {v2, α(v2), . . . , αk2−1(v2)}. This subspace is invariant under α and
of dimension k2. Moreover, we can write W1 = U2 ⊕ W2, where W2 is
invariant under α. Continuing in this manner, we end up with a decom-
position V = U1 ⊕ . . .⊕Ut, where each Ui is a subspace of V invariant
under α having a basis of the form {vi, α(vi), . . . , αki−1(vi)} as above.
This proves the first contention of the proposition. The second one follows
since Ui = F [α]vi for all i, which leads to a matrix of the desired form.
�

A matrix of the form given in Proposition 13.4 is called a representation
of the nilpotent endomorphism α in Jordan4 canonical form. Let
V be a vector space over a field F and let α be an endomorphism
of V having an eigenvalue c. A vector 0V �= v ∈ V is a generalized
eigenvector of α associated with c of degree k > 0 if and only
if v is in ker((α − cσ1)k) � ker((α − cσ1)k−1). Thus, in particular, the
eigenvectors of α associated with c, in the previous sense, are just the
generalized eigenvectors of α of degree 1 associated with c.

Example: Let α be the endomorphism of R
4 represented with respect

to the canonical basis by the matrix







2 −2 1 1
0 1 1 1
0 0 2 1
0 0 0 2





 . This endomor-

phism has an eigenvector







2
1
0
0





 associated with the eigenvalue 1 and an

eigenvector







1
0
0
0





 associated with the eigenvalue 2. It also has a gener-

alized eigenvector







0
−1
−1

0





 of degree 2 associated with the eigenvalue 2

4 The 19th-century French mathematician Camille Jordan made
major contributions to linear algebra, group theory, the theory of finite fields, and the
beginnings of topology.
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and a generalized eigenvector







0
−1
−1
−1





 of degree 3 associated with the

eigenvalue 2.

We now prove a generalization of Proposition 12.1.

(13.5) Proposition: Let V be a vector space over a field F
and let α ∈ End(V ) have an eigenvalue c. Then the set of all
generalized eigenvectors of α (of all degrees) associated with c,
together with 0V , forms a subspace of V.

Proof: Let a ∈ F and let v, w ∈ V be generalized eigenvectors
of α associated with c, of degrees k and h respectively. Then
both v and w belong to ker(α − cσ1)h+k and hence the same is
true for v + w and av. This means that there exist positive integers
s, t ≤ h + k such that v + w ∈ ker((α − cσ1)s) � ker((α − cσ1)s−1)
and av ∈ ker((α − cσ1)t) � ker((α − cσ1)t−1), which is what we needed.
�

Let V be a vector space over a field F and let α ∈ End(V ) have an
eigenvalue c. The subspace of V defined in Proposition 13.5 is called
the generalized eigenspace of α associated with c.

(13.6) Proposition: Let V be a vector space over a field F and
let α ∈ End(V ) have an eigenvalue c. Let v be a generalized
eigenvector of degree k associated with c. Then the set of
vectors {v, (α−cσ1)(v), . . . , (α−cσ1)k−1(v)} is linearly independent.

Proof: Set β = α − cσ1 and, for each 1 ≤ j ≤ k, let vj = βk−j(v).
Assume that there exist scalars c1, . . . , ck ∈ F satisfying

∑k
j=1 cjvj = 0V .

Then 0V = βk−1
(∑k

j=1 cjvj

)
= βk−1(ckvk) = ckβk−1(vk) and so, since

βk−1(vk) �= 0V , we conclude that ck = 0. We work backwards in this
manner to see that cj = 0 for all 1 ≤ j ≤ k, and so the given set is
linearly independent. �

In particular, let V be a vector space of finite dimension n over a field
F and let α ∈ End(V ). If v is a generalized eigenvector of α of degree
k associated to an eigenvalue c of α, then we must have k ≤ n. Thus we
see that dim(V ) is an upper bound to the degree of generalized eigenvalue
of α and we see that the generalized eigenspace of α associated to an
eigenvalue c is just ker((α − cσ1)n).
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(13.7) Proposition: Let V be a vector space of finite dimension
n over a field F and let α ∈ End(V ) satisfy the condition that
the characteristic polynomial p(X) of α is completely reducible,
say p(X) =

∏m
j=1(X−cj)nj , where spec(α) = {c1, . . . cm}. Then there

exist subspaces U1, . . . , Um of V, each of which invariant under
α, such that:

(1) V = U1 ⊕ . . . ⊕ Um;
(2) dim(Uh) = nh for each 1 ≤ h ≤ m;
(3) For each 1 ≤ h ≤ m, the restriction of α to Uh is of the

form chτh + βh, where βh ∈ End(Uh) is nilpotent and τh is the
restriction of σ1 to Uh.

Proof: For each 1 ≤ h ≤ m, consider the endomorphism βh = α−chσ1

of V, and let Uh be the generalized eigenspace of α associated with
ch. Then Uh is a subspace of V invariant under βh and also invariant
under α since for all v ∈ Uh we have βn

hα(v) = αβn
h(v) = α(0V ) = 0V .

We claim that there exists a positive integer k, independent of h, such
that all elements of Uh are generalized eigenvectors of α of degree at
most k. Indeed, we see that ker(βh) ⊆ ker(β2

h) ⊆ ker(β3
h) ⊆ . . . and

since V is finitely-generated, there are at most a finite number of proper
containments. Thus there exists a k such that ker(βk

h) = ker(βk+1
h ) = . . . .

From here it is clear that ker(βk
h) = Uh, proving the claim.

In particular, this claim shows that the restriction of βh to Uh is a
nilpotent endomorphism having index of nilpotence k. More than that,
the restriction of α to Uh equals chτh + βh, proving (3). We now
notice that if t �= h then Ut is invariant under βh. We claim that
the restriction of βh to Ut is an automorphism. Since Ut is finite-
dimensional, it is sufficient to prove that it is a monomorphism. Indeed,
suppose that v ∈ Ut∩ker(βh). Then there exists a positive integer k such
that βk

t (v) = 0V and so 0V = βk
t (v) = [βh + (ch − ct)]k(v) = (ch − ct)k(v)

and, since ch − ct �= 0, we must have v = 0V , proving the claim.
The next step is to show that the collection {U1, . . . , Um} of

subspaces of V is independent. Indeed, let 1 ≤ h ≤ m and let
Y = Uh ∩

∑
j �=h Uj . Then Y is a subspace of V invariant under βh on

which βh is monic (since Y ⊆
∑

j �=h Uj) and nilpotent (since Y ⊆ Uh),
which is possible only if Y = {0V }. This proves independence, and we will
set U = U1⊕ . . .⊕Um. We want to show that U = V. Let v ∈ U. By the
Cayley-Hamilton Theorem (Proposition 12.16) we see that α annihilates
its characteristic polynomial p(X) and so [

∏m
i=1 βni

i ] (v) = 0V ∈ U. Sup-
pose that βn1

t (v) ∈ U, say that it is equal to
∑m

i=1 ui, where uh ∈ Uh

for all 1 ≤ h ≤ m. Since βn1
t is epic when restricted to Uh, for each

h �= 1, we can find an elements wh of Uh for each 1 < h ≤ m, such that
uh = βn1

t (wh) for all such h. Therefore βn1
t (u −

∑m
h=2 wh) = u1 ∈ U1.

By definition of U1, it follows that w1 = u −
∑m

h=2 wh ∈ U1. There-
fore v =

∑m
h=1 wh ∈ U. If, on the other hand, βn1

t (v) /∈ U, then let
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t be the smallest element of {2, . . . m} satisfying the condition that[∏t
i=1 βni

i

]
(v) ∈ U and

[∏t−1
i=1 βni

i

]
(v) /∈ U. A similar argument to the

preceding then shows that we must have v ∈ U.
We are left to show that dim(Uh) = nh for all 1 ≤ h ≤ m. Pick

a basis for V which is a union of bases of the Uh. With respect to
this basis, the endomorphism α is represented by a matrix of the form






A1 O . . . O
O A2 . . . O

. . .
O O . . . Am





 , where each Ah is a matrix representing the re-

striction of α to Uh. By Proposition 11.12, the characteristic polynomial
of α is therefore of the form |XI −A| =

∏m
h=1 |XI −Ah|. From this de-

composition and from the fact that each βh restricts to an automorphism
of Ut for all t �= h, it follows that the only eigenvalue of the restriction of
α to Uh is ch, and the algebraic multiplicity of this eigenvalue is at most
nh. Since

∑m
h=1 dim(Uh) =

∑m
h=1 nh, it then follows that dim(Uh) = nh

for each h. �

Proposition 13.7 shows that when conditions are right – for example
when the field F is algebraically closed – and when we are given an
endomorphism α of a finite-dimensional vector space, it is possible to
choose a basis for V relative to which α is represented in a particularly
simple form. We do this in two steps.

(I) Write V as a direct sum U1 ⊕ . . . ⊕ Um as above. By choosing
a basis for V which is a union of bases of the Uh, we get a matrix
representing α composed of blocks strung out along the main diagonal,
each representing the restriction of α to one of the subspaces Uh.

(II) For each h, we have α = chτh + βh, where βh is a nilpotent
endomorphism of Uh. We now choose a basis of Uh relative to which βh

is represented in Jordan canonical form.
Thus, in the end, we have a representation of α by a matrix of the form








A1 O . . . O
O A2 . . . O

...
O O . . . Am








, where each block Ah is a matrix with blocks of

the form










ch 0 0 . . . 0
1 ch 0 . . . 0
0 1 ch . . . 0

. . . . . .
0 . . . 0 1 ch










on its diagonal (these may be 1×1!)

and all other entries equal to 0. A matrix of this form is called the Jordan
canonical form of α. By Proposition 13.7, we see that if V is a vector
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space finitely generated over a field F and if α is an endomorphism
of V having a completely reducible characteristic polynomial in F [X],
then there is a basis of V relative to which α can be represented by
a matrix in Jordan canonical form. Thus, this can always be done if the
field F is algebraically closed. If F is not algebraically closed then it is
always possible to extend the field F to a larger field K such that the
characteristic polynomial of α is completely reducible in K[X].

Example: Consider the endomorphism α of R
4 which is represented

with respect to the canonical basis by the matrix A =







0 1 0 0
0 0 1 0
0 0 0 1

−1 4 −6 4





 .

The characteristic polynomial of this matrix is X4−4X3+6X2−4X +1 =
(X − 1)4 and so its only eigenvalue is 1. The matrix A is similar to

the matrix B =







1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1





 in Jordan canonical form. Indeed,

B = PAP−1, where P =







−1 3 −3 1
1 −2 1 0

−1 1 0 0
1 0 0 0





 .

Example: Consider the endomorphism α of R
5 which is represented

with respect to the canonical basis by the matrix A =









3 0 0 0 0
0 4 2 −1 4
0 0 2 0 0
0 1 3 2 1
0 0 0 0 2









.

The characteristic polynomial of this matrix is (X−3)3(X−2)2. The ma-

trix A is similar to the matrix B =









2 0 0 0 0
0 3 0 0 0
0 1 3 0 0
0 0 0 2 0
0 0 0 0 3









in Jordan canon-

ical form. Indeed, B = PAP−1, where P =









0 0 −3 0 −4
0 1 −1 −1 3
2 1 3 0 1
0 0 0 0 −1

−1 0 0 0 0









.
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Example: Consider the endomorphism α of C
4 which is represented

with respect to the canonical basis by A =







0 0 2i 0
1 0 0 2i

−2i 0 0 0
0 −2i 1 0





 . The

characteristic polynomial of this matrix is (X−2)2(X+2)2. The matrix A

is similar to the matrix B =







−2 0 0 0
1 −2 0 0
0 0 2 0
0 0 1 2





 . Indeed, B = PAP−1,

where P =
1
2







1 0 −i 0
0 1 0 −i
1 0 i 0
0 1 0 i





 .

We now use Jordan canonical forms to prove a result interesting in its
own right.

(13.8) Proposition: Let n be a positive integer and let A ∈
Mn×n(C). Then A can be written as a product of two symmetric
matrices.

Proof: By Proposition 13.7 we know that A is similar to a ma-
trix B in Jordan canonical form. In other words, there exists a non-
singular matrix Q ∈ Mn×n(C) satisfying A = QBQ−1. If we can
write B = CD, where both C and D are symmetric, then A =
QBDQ−1 = (QCQT )((QT )−1DQ−1) = (QCQT )((Q−1)T DQ−1), where
both QCQT and (Q−1)T DQ−1 are symmetric. Therefore, without loss
of generality, we can assume that A is in Jordan canonical form, say

A =







A1 O . . . O
O A2 . . . O

. . .
O O . . . Am





 , where each block Ah is of the form










ah 0 0 . . . 0
1 ah 0 . . . 0
0 1 ah . . . 0

. . . . . .
0 . . . 0 1 ah










∈ Mnh×nh
(C).

Define the matrix Dh ∈ Mnh×nh
(C) to be [dij ], where

dij =
{

1 if i + j = nh + 1
0 otherwise .
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Then Dh is a symmetric matrix satisfying D−1
h = Dh. Moreover, the

matrix D =








D1 O . . . O
O D2 . . . O

...
O O . . . Dm







∈ Mn×n(C) is also symmetric and

satisfies D−1 = D. Furthermore, the matrix

C =








A1D1 O . . . O
O A2D2 . . . O

...
O O . . . AmDm







∈ Mn×n(C)

is also symmetric and A = CD, as required. �

Exercises

Exercise 769 Let V = R
3. Find endomorphisms α and β of V

satisfying the condition that αβ is not nilpotent but cα + dβ is nilpotent
for all c, d ∈ R.

Exercise 770 Let V be a vector space over a field F and let α ∈
End(V ) be nilpotent, having index of nilpotence k > 0. Show that σ1+α ∈
Aut(V ).

Exercise 771 Let V be a vector space finitely-generated over C. Do
there exist endomorphisms α and β of V satisfying the condition that
σ1 + αβ − βα is nilpotent?

Exercise 772 Let F be a field. Give an example of a nilpotent endo-
morphism of F 5 having index of nilpotence 3.

Exercise 773 Let α be the endomorphism of V = R
4 represented with

respect to a basis B of V by the matrix







2 −8 12 −60
2 −5 9 −48
6 −17 29 −152
1 −3 5 −26





 .

Show that α is nilpotent and find its index of nilpotence.

Exercise 774 Let V be a vector space over a field F and let α ∈
End(V ) be nilpotent. Does βα have to be nilpotent for all β ∈ End(V )?

Exercise 775 Let V be a vector space over a field F and let α ∈
End(V ) be nilpotent. Find spec(α).
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Exercise 776 Let V be a vector space finitely generated over C and let
α ∈ End(V ) satisfy spec(α) = {0}. Show that α is nilpotent.

Exercise 777 Let V be a vector space over a field F and let α ∈
End(V ) be nilpotent, having index of nilpotence k. Find the minimal
polynomial of α.

Exercise 778 Let V be a vector space finitely generated over a field F
and let α ∈ End(V ) satisfy the condition that for each v ∈ V there
exists a positive integer n(v) satisfying αn(v)(v) = 0V . Show that α is
nilpotent.

Exercise 779 Let F be a field and let α be an endomorphism of F 3

represented with respect to a basis B of F 3 by the matrix




0 a 0
0 0 b
0 0 0



 ,

where a and b are nonzero scalars. Does there exist a endomorphism
β of F 3 satisfying β2 = α?

Exercise 780 Let α be a nilpotent endomorphism of a vector space V
over a field F having characteristic 0. Show that there exists an endo-
morphism β of V belonging to F [α] and satisfying β2 = σ1 + α.

Exercise 781 Let α ∈ End(R3) be represented with respect to the canon-

ical basis by the matrix




1 2 −2
3 0 3
1 1 −2



 . Calculate R[α]




1
0
0



 .

Exercise 782 Let V be the space of all infinitely-differentiable functions
from R to itself. Let δ be the endomorphism of V which assigns to
each function its derivative. What is R[δ] sin(x)?

Exercise 783 Define α ∈ End(R3) by α :




a
b
c



 �→




a + c
b − a

b



 . Find

R[α]




1
1
1



 .

Exercise 784 Let V be a vector space over a field F and let α ∈
End(V ). Let v ∈ V be a vector satisfying F [α2]v = V. Show that
F [α]v = V.
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Exercise 785 Given a ∈ R, let αa ∈ End(R4) be represented with

respect to the canonical basis by the matrix







0 a 1 0
1 −2 1 1
0 0 1 0
0 1 0 −2





 . For

which values of a is the dimension of R[αa]







0
0
0

−1





 equal to 3?

Exercise 786 Let α ∈ End(R3) be represented with respect to the canon-

ical basis by the matrix




1 1 1
0 1 0
0 0 2



 . Find the eigenvalues of α and

the generalized eigenspace associated with each.

Exercise 787 Let V be a vector space over a field F and let α, β ∈
End(V ) satisfy αβ = βα. Let W be the generalized eigenspace of α
associated with an eigenvalue a. Show that W is invariant under β.

Exercise 788 Let V be a vector space finitely generated over C and
let α ∈ End(V ). Show that V is diagonalizable if and only if every
generalized eigenvector of α is an eigenvector of α.

Exercise 789 Let B = {v1, v2, v3} be the canonical basis of R
3 and

let α be the endomorphism of R
3 satisfying ΦBB(α) =




1 0 2
0 1 0
0 0 1



 .

Show that W = R{v1, v3} and Y = Rv2 are complements of each other
in R

3 and that each of these spaces is invariant under α.

Exercise 790 Let A =




1 2 0
0 2 0
2 −2 −1



 ∈ M3×3(R). Find the Jordan

canonical form of A.

Exercise 791 Let A =




−2 8 6
−4 10 6

4 −8 −4



 ∈ M3×3(R). Find the Jordan

canonical form of A.

Exercise 792 Let O �= A ∈ M3×3(C) be of the form




0 a −b

−a 0 c
b −c 0



 ,

where a, b, and c are real numbers. What is the Jordan canonical form
of A?
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Exercise 793 Let n be a positive integer. If A ∈ Mn×n(C), show that
A and AT are similar.

Exercise 794 Let A ∈ M5×5(Q) be a matrix in Jordan canonical form
having minimal polynomial (X − 3)2. What does A look like?

Exercise 795 Give an example of a matrix in M4×4(R) which is not
similar to a matrix in Jordan canonical form.

Exercise 796 Let V be a vector space finitely generated over a field F
and let α and β be nilpotent endomorphisms of V represented with
respect to some given basis by matrices A and B respectively. If the
matrices A and B are similar, does the index of nilpotence of α have
to equal that of β?

Exercise 797 Let F be a field and let A =




a 0 0
1 a 0
0 1 a



 ∈ M3×3(F ).

Show that Ak =




ak 0 0

kak−1 ak 0
1
2k(k − 1)ak−2 kak−1 ak



 for all k > 0.

Exercise 798 Let n be a positive integer and, for all 1 ≤ i, j ≤ n,
let pij(X) ∈ C[X]. Let ϕ : C →Mn×n(C) be the function defined by
ϕ : z �→ [pij(z)]. Furthermore, let us assume that ϕ(z) is nonsingular for
each z ∈ C. Show that there exists a nonzero complex number d such
that |ϕ(z)| = d for all z ∈ C.

Exercise 799 For each t ∈ C, let αt be the endomorphism of C
3

represented with respect to the canonical basis by the matrix




0 1 0
0 0 0
t 0 0



 .

Is the representation of αt in Jordan canonical form dependent on t?

Exercise 800 Let A =




0 0 4
0 0 0
0 0 0



 ∈ M3×3(C). Find the set of all

c ∈ C satisfying the condition that cA is similar to A.



14
The dual space

Let V be a vector space over a field F. A linear transformation from
V to F (considered as a vector space over itself) is a linear functional
on V. The space Hom(V, F ) of all such linear functionals is called the
dual space of V and will be denoted by D(V ). Note that D(V ) is
a vector space over F, the identity element of which for addition is the
0-functional, v �→ 0. Since dim(F ) = 1, we immediately see that every
linear functional other than the 0-functional must be an epimorphism1.

Example: Let F be a field and let n be a positive integer. Any
v ∈ Fn defines a linear functional in D(Fn) by w �→ v � w.

1 Linear functionals were first studied systematically by the French
mathematician Jacques Hadamard, whose long life ranged from the mid 19th century
to the mid 20th century. His work on functionals turned them into an important tool
in analysis.

285
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Example: Let V be a vector space over a field F and let B be a
basis for V. Each u ∈ B defines a function fu ∈ FB defined by

fu : u′ �→
{

1 if u′ = u
0 otherwise

and by Proposition 6.2 we know that this function in turn defines a linear
functional δu ∈ D(V ). In particular, if V = Fn and if B = {u1, . . . , un}

is the canonical basis for V, then δuh
:






a1

...
an




 �→ ah for each 1 ≤ h ≤ n.

Example: Suppose that V = C(a, b) and that g0 ∈ V. Then the
function η : V → R defined by η : f �→

∫ b

a
f(x)g0(x)dx belongs to

D(V ). Hadamard’s initial work on linear functionals concerned those of
the form f �→ lim

n→∞

∫ b

a
f(x)gn(x)dx for suitable sequences g1, g2, . . . in

V.

Example: Let V be the subspace of R
R consisting of all infinitely-

differentiable functions f satisfying the condition that there exist real
numbers a ≤ b such that f(x) = 0 if x /∈ [a, b]. Then the function
f �→

∫∞
−∞ f(x)dx belongs to D(V ). Elements of D(V ) are known

as distributions and play an important role in analysis and theoretical
physics.

Let F be a field and let n be a positive integer. Then there exists
a linear functional tr : Mn×n(F ) → F which assigns to each matrix the
sum of the elements of its diagonal, i.e. tr : [aij ] �→

∑n
i=1 aii. This linear

functional is called the trace. This functional will play an important part
in our later discussion. Note that v � w = tr(v ∧ w) for all v, w ∈ Fn.

The set of all matrices A ∈ Mn×n(F ) satisfying tr(A) = 0 forms a
subalgebra of the general Lie algebra Mn×n(F )−, called the special Lie
algebra defined by Fn.

If A = [aij ] and B = [bij ] are matrices in Mn×n(F ), then it is
easy to see that tr(AB) =

∑n
i=1

∑n
h=1 aihbhi = tr(BA). We also notice

that tr(I) = n, where I is the identity matrix of Mn×n(F ). If the
characteristic of the field F does not divide n, we claim that these
conditions uniquely characterize the trace.

(14.1) Proposition: Let n be a positive integer and let F be
a field the characteristic of which does not divide n. Let δ be
a linear functional on Mn×n(F ) satisfying the conditions that
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δ(AB) = δ(BA) for all A,B ∈ Mn×n(F ) and that δ(I) = n. Then
δ = tr.

Proof: If {Hij | 1 ≤ i, j ≤ n} is the canonical basis of Mn×n(F ), then
it suffices to show that δ(Hij) = tr(Hij) for all 1 ≤ i, j ≤ n. In particular,
if 1 ≤ i, j ≤ n then δ(Hii) = δ(HijHji) = δ(HjiHij) = δ(Hjj).
Since I =

∑n
i=1 Hii, this implies that n = δ(I) =

∑n
i=1 δ(Hii) and so

δ(Hii) = 1 = tr(Hii) for all 1 ≤ i ≤ n. If i �= j then H1jHi1 = O and
so δ(Hij) = δ(Hi1H1j) = δ(H1jHi1) = δ(O) = 0 = tr(Hij) and we are
done. �

By the above, we see that if F is a field, if n is a positive integer, and
if A,B ∈ Mn×n(F ), then tr(A • B) = tr(AB) − tr(BA) = 0, where •
denotes the Lie product on Mn×n(F ). In fact, the converse of this result
is also true – namely that if a matrix C satisfies tr(C) = 0, then C is
the Lie product of two other matrices – as has been proven in several more
general contexts2.

If n is a positive integer, if F is a field, and if P is a nonsingular
matrix in Mn×n(F ), then tr(PAP−1) = tr(PP−1A) = tr(A) and so
similar matrices have identical traces. In general, if B and C are fixed
matrices in Mn×n(F ) then the functions A �→ tr(BA) and A �→ tr(AC)
belong to D(Mn×n(F )).

The following result shows that traces essentially define all linear func-
tionals on spaces of square matrices.

(14.2) Proposition: Let F be a field, let n be a positive
integer, and let δ ∈ D(Mn×n(F )). Then there exists a matrix
C ∈ Mn×n(F ) satisfying δ : A �→ tr(AC) for all A ∈ Mn×n(F ).

Proof: For each 1 ≤ i, j ≤ n, let Hij be the matrix having (i, j)-entry
equal to 1 and all of the other entries equal to 0. Then we know that the
set of all such matrices is a basis for Mn×n(F ). Let C = [cij ] ∈ Mn×n(F )
be the matrix defined by cij = δ(Hji) for all 1 ≤ i, j ≤ n. Then for each

matrix A = [aij ] ∈ Mn×n(F ) we have δ(A) = δ
(∑n

i=1

∑n
j=1 aijHij

)
=

2 The first of many proofs of this result was given by Kenjiro
Shoda, one of the major figures in 20th-century Japanese algebra.
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∑n
i=1

∑n
j=1 aijδ(Hij) =

∑n
i=1

∑n
j=1 aijcji = tr(AC), as we needed to

prove. �

(14.3) Proposition: Let F be a field, let n be a positive
integer, and let δ ∈ D(Mn×n(F )) be a linear functional satisfying
δ(AB) = δ(BA) for all A,B ∈ Mn×n(F ). Then there exists a scalar
c ∈ F such that δ(A) = c · tr(A) for all A ∈ Mn×n(F ).

Proof: Again, for each 1 ≤ i, j ≤ n, let Hij be the matrix having
(i, j)-entry equal to 1 and all of the other entries equal to 0. If 1 ≤ i �=
j ≤ n then δ(Hij) = δ(HiiHij) = δ(HijHii) = δ(O) = 0. Moreover, for all
1 ≤ j, k ≤ n we have δ(Hjj) = δ(HjkHkj) = δ(HkjHjk) = δ(Hkk). Thus
we see that there exists a c ∈ F such that δ(Hjj) = c for all 1 ≤ j ≤ n
and from Proposition 14.2 we conclude that δ(A) = tr(A · cI) = c · tr(A)
for all A ∈ Mn×n(F ). �

(14.4) Proposition: Let F be a field, let n be a positive
integer, and let A ∈ Mn×n(F ) be a matrix the characteristic
polynomial of which is completely reducible. Then tr(A) is the
sum of the eigenvalues of A (with the appropriate multiplicities).

Proof: Let p(X) =
∑n

i=0 ciX
i be the characteristic polynomial of

A. We know that this polynomial is completely reducible, say p(X) =∏n
i=1(X−bi), and after multiplying this out, we see that cn−1 = −

∑n
i=1 bi.

But from the definition of the characteristic polynomial, we also see that
cn−1 = −tr(A). Thus we see that, for any such matrix, tr(A) is the sum
of the eigenvalues of A (with the appropriate multiplicities). �

Example: Let n be a positive integer and let c and d be complex
numbers. Can we find all matrices A ∈ Mn×n(C) having the property
that c is an eigenvalue of A having geometric multiplicity n−1 and d is
an eigenvalue of A having geometric multiplicity 1? (Certainly one such
matrix always exists, namely a diagonal matrix with c appearing n − 1
times on the diagonal and d once.) In general, in order for c to be an
eigenvalue of A of geometric multiplicity n−1, the eigenspace connected
with it has to be of dimension n − 1. In other words, the nullity of the
matrix A− cI must equal n− 1. From this we see that the dimension of
the column space of A−cI must equal 1, and so there must exist nonzero

vectors u =






b1

...
bn




 and v =






e1

...
en




 in C

n such that A − cI = u ∧ v,

whence A = u∧v+cI. Conversely, if A is a matrix of the form u∧v+cI,
then c is an eigenvalue of A having multiplicity at least n − 1. Note
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that tr(A) =
∑n

i=1 biei + nc. But, as we just noted, tr(A) is also the
sum of the eigenvalues of A, counted by multiplicity, and so we want it
to equal d + (n − 1)c. Thus we are reduced to finding vectors u and v
as above satisfying the condition that

∑n
i=1 biei = d − c. This is easy to

do in concrete cases.

Example: Let F be a field, let Ω be a nonempty set, and let V = FΩ.
For each a ∈ Ω there exists a linear functional δa ∈ D(V ) defined by
evaluation: δa : f �→ f(a). In the case that F is R and Ω is the
unit interval of the real line, this functional is known to physicists as the
Dirac3 functional. In analysis, evaluation functionals are often used to
establish boundary conditions on classes of functions being studied.

The following proposition shows that there always enough linear func-
tionals to enable us to distinguish between vectors.

(14.5) Proposition: Let V be a vector space of a field F. If
v �= w are elements of V then there exists a linear functional
δ ∈ D(V ) satisfying δ(v) �= δ(w).

Proof: Since the set {v−w} is linearly independent, it can be completed
to a basis B of V. By Proposition 6.2, there exists a linear functional
δ ∈ D(V ) satisfying δ(v−w) = 1 and δ(u) = 0 for all u ∈ B � {v−w}.
This is the linear functional we want. �

In particular, if 0V �= v ∈ V then there is a linear functional δ ∈ D(V )
satisfying δ(v) �= 0.

We can also extend the idea we used in the proof of Proposition 14.5.
Let V be a vector space over a field F and let B be a given basis for
V. For each v ∈ B, let δv ∈ D(V ) satisfy δv(v) = 1 and δv(u) = 0
for all v �= u ∈ B. We claim that E = { δv | v ∈ B} is a linearly-
independent subset of D(V ). Indeed, if c1, . . . , cn are scalars in F and
u1, . . . , un are elements of B satisfying the condition that

∑n
i=1 ciδui

is

3 Paul Dirac, the Nobel-prize-winning 20th-century British physicist,
built the first accepted model of quantum mechanics, in which linear functions played a
fundamental part.
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the 0-functional. Then for all 1 ≤ h ≤ n we have

0 =

(
n∑

i=1

ciδui

)

(uh) =
n∑

i=1

ciδui
(uh) = ch.

This establishes the claim. If V is finitely-generated then B is finite and
so E is a basis for D(V ), since it is easy to check that δ =

∑
u∈B δ(u)δu

for all δ ∈ D(V ). Such a basis E for D(V ) is called the dual basis of
the basis B for V. If V is not finitely generated, then FE is a subspace
of D(V ) composed of all those linear functionals δ ∈ D(V ) satisfying
the condition that δ(u) �= 0 for at most finitely-many elements u of B.
This subspace is called the weak dual space of V.

As a consequence of these remarks, we immediately see:

(14.6) Proposition: If V is a vector space finitely generated
over a field F then dim(V ) = dim(D(V )).

Example: Let a < b be real numbers and let t1, . . . , tn be distinct
real numbers in the closed interval [a, b] of the real line and let W be
the subspace of R

R consisting of all polynomial functions of degree less
than n. Then dim(W ) = n. For each 1 ≤ i ≤ n, let δi ∈ D(W ) be
the linear functional defined by δi : p �→ p(ti). We claim that the subset
B = {δ1, . . . δn} of D(W ) is linearly independent. Indeed, if

∑n
i=1 ciδi is

the 0-functional and if 1 ≤ h ≤ n, then 0 = (
∑n

i=1 ciδi)
∏

j �=h
(X−tj) =

ch

∏

j �=h
(th − tj), which implies that ch = 0 since the ti are distinct.

Therefore, by Proposition 14.6, B is a basis for D(W ). Since the function
p �→

∫ b

a
p(x)dx also belongs to D(W ), we conclude that there exist real

numbers c1, . . . , cn satisfying
∫ b

a
p(x)dx =

∑n
i=1 cip(ti) for any p ∈ W.

Example: Let V be the vector space of all polynomial functions in
R

R having degree at most 4. Suppose that B = {a1, . . . , a5} is a set of
distinct positive real numbers and, for each 1 ≤ i ≤ 5, let δi ∈ D(V ) be
the linear transformation defined by δi : p(t) �−→

∫ ai

0
p(t)dt. We claim that

B = {δ1, . . . , δ5} is a basis for D(V ). Indeed, since we know by Proposition
14.6 that dim(D(V )) = 5, all we have to show is that the set B is linearly
independent. That is to say, we must show that if there exist real numbers
b1, . . . , b5 satisfying the condition that

∑5
i=1 biδi is the 0-functional,

then bi = 0 for all 1 ≤ i ≤ 5. Since
∑5

i=1 biδi(th) =
∑5

i=1

[
1

h+1ah+1
i

]
bi

for all 0 ≤ h ≤ 4, we must show that the matrix



14. The dual space 291

A =









a1
1
2a2

1
1
3a3

1
1
4a4

1
1
5a5

1

a2
1
2a2

2
1
3a3

2
1
4a4

2
1
5a5

2

...
a5

1
2a2

5
1
3a3

5
1
4a4

5
1
5a5

5









is nonsingular, which we know in fact to be the case since it is just a
Vandermonde matrix, which is always nonsingular.

Note that Proposition 14.6 is never true for vector spaces which are
not finitely generated. The proof of this fact requires a knowledge of the
arithmetic of infinite cardinals.

Now let V and W be vector spaces over a field F and let α ∈
Hom(V,W ). If δ ∈ D(W ) then δα ∈ D(V ). Moreover, if δ1, δ2 ∈ D(W )
and if v ∈ V then [(δ1 + δ2)α](v) = (δ1 + δ2)α(v) = δ1α(v) + δ2α(v) =
[δ1α + δ2α](v) and so (δ1 + δ2)α = δ1α + δ2α. Similarly, if c ∈ F and if
δ ∈ D(W ) then c(δα) = (cδ)α. Therefore we see that α defines a linear
transformation D(α) ∈ Hom(D(W ),D(V )) by setting D(α) : δ �→ δα.
If V, W, and Y are vector spaces over F and if α ∈ Hom(V,W )
and β ∈ Hom(W,Y ) then it is straightforward to show that D(βα) =
D(α)D(β). If α is an isomorphism, then D(α) is also an isomorphism,
where D(α)−1 = D(α−1).

(14.7) Proposition: Let F be a field and let V and W be
vector spaces finitely generated over F. Let B = {v1, . . . , vk} be
a basis for V, the dual basis of which is C = {δ1, . . . , δk}, and
let D = {w1, . . . , wn} be a basis for W, the dual basis of which
is E = {η1, . . . , ηn}. If α : V → W is a linear transformation then
ΦEC(D(α)) = ΦBD(α).

Proof: Let ΦBD(α) = [aij ]. For each 1 ≤ i ≤ k we have α(vi) =∑n
h=1 ahiwh and so for all 1 ≤ i ≤ k and all 1 ≤ j ≤ n we

have
[
D(α)(ηj)

]
(vi) = ηjα(vi) =

∑n
h=1 ahiηj(wh) = aji. But each

δ ∈ D(V ) satisfies δ =
∑k

i=1 δ(vi)δi and so, in particular, D(α)(ηj) =
∑k

i=1

[
D(α)(ηj)

]
(vi)δi =

∑k
i=1 ajiδi, which gives the desired result. �

We have already seen that, given a vector space V over a field F,
we can build the dual space D(V ). Since this too is a vector space over
F, we can go on to built its dual space, D2(V ) = D(D(V )). What do
some elements of this space look like? Each v ∈ V defines a function
θv : D(V ) → F by setting θv : δ �→ δ(v). This is indeed a linear function
and so is an element of D2(V ), which we call the evaluation functional
at v.
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(14.8) Proposition: Let V be a vector space over a field F.
The function v �→ θv is a monomorphism from V to D2(V ),
which is an isomorphism in the case V is finitely generated.

Proof: We first have to show that this function is a linear transforma-
tion. And, indeed, if v, w ∈ V , if a ∈ F, and if δ ∈ D(V ), then as
a direct consequence of the definitions we obtain θv+w(δ) = δ(v + w) =
δ(v) + δ(w) = θv(δ) + θw(δ) = [θv + θw](δ) and so θv+w = θv + θw.
Similarly, θav(δ) = δ(av) = aδ(v) = aθv(δ) and so θav = aθv. Thus we
have shown that we do indeed have a homomorphism. If v belongs to
the kernel of this function then θv(δ) = δ(v) for all δ ∈ D(V ) and so,
by Proposition 14.5, we know that v = 0V . Thus it is a monomorphism.
Finally, if V is finitely generated then by Proposition 14.6, we see that
dim(D2(V )) = dim(D(V )) = dim(V ) and so any monomorphism from V
to D2(V ) has to be an isomorphism. �

We should note that the importance of Proposition 14.8 lies not in the
existence of an isomorphism between V and D2(V ), which could be
inferred from dimension arguments alone, but in finding a specific, natural,
such isomorphism.

A proper subspace W of a vector space V over a field F is a maximal
subspace if and only if there is no subspace of V properly contained in
V and properly containing W. By the Hausdorff Maximum Principle we
know that any nontrivial vector space contains a maximal subspace. The
maximal subspaces of finitely-generated vector spaces are usually called
hyperplanes of the space. We will now use linear functionals in order to
characterize these subspaces of V.

(14.9) Proposition: A subspace W of a vector space V over a
field F is maximal if and only if there exists a linear functional
δ ∈ D(V ) which is not the 0-functional, the kernel of which equals
W.

Proof: Let us assume that W = ker(δ), where δ is a linear func-
tional which is not the 0-functional, and assume that there exists a proper
subspace Y of V which properly contains W. Pick y ∈ Y � W and
x ∈ V � Y. These two vectors have to be nonzero and the set {x, y} is
linearly independent by Proposition 5.3, since Fy ⊆ Y and x /∈ Y. Set
U = F{x, y}. Then ker(δ) and U are disjoint, so the restriction of δ
to U is a monomorphism, which is impossible since dim(U) = 2 and
dim(F ) = 1. Therefore W must be a maximal subspace of V.

Conversely, let W be a maximal subspace of V and let y ∈ V � W.
Then Fy ∩ W = {0V } and Fy + W = V by the maximality of W.
Therefore V = Fy ⊕ W and so every vector in V can be written in the
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form ay + w, where a ∈ F and w ∈ W. The function δ : ay + w �→ a
is a linear functional in D(V ) the kernel of which equals W, as we need.
�

(14.10) Proposition: Let V be a vector space over a field F
and let δ, δ1, . . . , δn be elements of D(V ). Then δ ∈ F{δ1, . . . , δn}
if and only if

⋂n
i=1 ker(δi) ⊆ ker(δ).

Proof: Assume that δ ∈ F{δ1, . . . , δn}. Then there exist scalars
a1, . . . , an such that δ =

∑n
i=1 aiδi. If v ∈

⋂n
i=1 ker(δi) then δi(v) = 0

for all 1 ≤ i ≤ n and so δ(v) =
∑n

i=1 aiδi(v) = 0. Thus v ∈ ker(δ).
Conversely, suppose that

⋂n
i=1 ker(δi) ⊆ ker(δ). We will proceed by in-

duction on n. First, assume that n = 1. If δ is the 0-functional;
then surely we are done. Thus let us assume that this is not the case
and let v ∈ V � ker(δ). Since ker(δ1) ⊆ ker(δ), this means that
δ1(v) �= 0. Set a = δ1(v)−1δ(v). Then δ(v) = aδ1(v) = (aδ1)(v) and so
v ∈ ker(δ − aδ1). But ker(δ1) ⊆ ker(δ − aδ1) and so this containment is
again proper. By Proposition 14.9, ker(δ1) is a maximal subspace of V
and so ker(δ − aδ1) = V, which shows that δ = aδ1.

Now let us assume that we have prove the result for a given n and
assume we have linear functionals δ, δ1, . . . , δn+1 in D(V ) satisfying
⋂n+1

i=1 ker(δi) ⊆ ker(δ). Set W = ker(δn+1) and for each 1 ≤ i ≤ n let
βi be the restriction of δi to W. Also, let β be the restriction of δ to W.
Then

⋂n
i=1 ker(βi) ⊆ ker(β) and so, by the induction hypothesis, we know

that there exist scalars a1, . . . , an such that β =
∑n

i=1 aiβi. Therefore
ker(δn+1) ⊆ ker(δ −

∑n
i=1 aiδi) and, as in the case n = 1, it follows that

there exists a scalar an+1 such that δ −
∑n

i=1 aiδi = an+1δn+1, proving
that δ =

∑n+1
i=1 aiδi. �

In the context of functional analysis, the following consequence of Propo-
sition 14.9, taken together with the Riesz Representation Theorem (Propo-
sition 16.13), is known as the Fredholm4 alternative, and has many im-
portant applications.

(14.11) Proposition: Let V and W be vector spaces over a
field F, let α ∈ Hom(V,W ), and let w ∈ W. Then w ∈ im(α) if
and only if w ∈ ker(δ) for any δ ∈ D(W ) satisfying im(α) ⊆ ker(δ).

4 Swedish mathematician Ivar Fredholm was active in the late
19th century and studied the solvability of integral equations.
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Proof: If w ∈ im(α) then the given condition clearly holds. Conversely,
assume that w /∈ im(α) and let B be a basis for im(α). By Proposition
5.3, the set {w} ∪ B is linearly independent and so there exists a subset
B′ of W containing B such that {w}∪B′ is a basis for W. Then FB′

is a maximal subspace of W and so, by Proposition 14.9, there exists a
δ ∈ D(W ) satisfying δ(w) �= 0 and im(α) ⊆ FB′ = ker(δ). �

Exercises

Exercise 801 Let V = C(0, 1). From calculus we know that each for
f ∈ V there exists a maximal element af of {f(t) | 0 ≤ t ≤ 1}. Is the
function f �→ af a linear functional on V ?

Exercise 802 Let F = GF (2) and let δ : F 3 → F be the function which

assigns to each vector v =




a
b
c



 the value (0 or 1) appearing in the

majority of entries of v. Is δ a linear functional?

Exercise 803 Let W be a subspace of Q[X] generated by a countably-
infinite linearly-independent set {p1(X), p2(X), . . .} of polynomials. Let
δ : W → Q be the function defined by δ :

∑∞
i=1 aipi(X) �→

∑∞
i=1 ai deg(pi)

(where only finitely-many of the ai are nonzero). Does δ belong to
D(W )?

Exercise 804 Find a linear functional δ ∈ D(R3) which is not the 0-

functional but which satisfies δ








3
2

−1







 = δ








3
2
1







 = 0.

Exercise 805 Let V = Q[X] and to each vector v = [b1, b2, . . .] ∈ Q
∞,

let us assign a linear functional δv ∈ D(V ) defined by

δv :
∞∑

n=1

anXn �→
∞∑

n=1

n!anbn+1.

Is the function α : Q
∞ → D(V ) defined by v �→ δv an isomorphism?

Exercise 806 Let V be a vector space over a field F and let α, β ∈
D(V ) satisfy the condition that ker(β) ⊆ ker(α). Show that α ∈ Fβ.

Exercise 807 Let F be a field and let 0 �= a ∈ F. Let α : F [X] → F be
the function defined by α : p(X) �→ p(a)−p(0). Is α a linear functional?
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Exercise 808 Let V = R
3 and consider the linear functionals

δ1 :




a
b
c



 �→ 2a − b + 3c, δ2 :




a
b
c



 �→ 3a − 5b + c and

δ3 :




a
b
c



 �→ 4a − 7b + c

on V. Is {δ1, δ2, δ3} a basis for D(V )?

Exercise 809 Let V be a vector space finitely generated over a field F
and let W be a subspace of V having a complement Y in V. Show
that D(V ) = W ′ ⊕ Y ′, where W ′ is a subspace of D(V ) isomorphic to
W and Y ′ is a subspace of D(V ) isomorphic to Y.

Exercise 810 Let n be a positive integer and let V be the vector space
of all polynomial functions from R to itself of degree no more than n.
For all 0 ≤ k ≤ n, let δn : V → R be the function defined by δk : p �→∫ 1

−1
tkp(t)dt. Show that {δ1, . . . , δn} is a basis of D(V ).

Exercise 811 Let B =









0
3

−2



 ,




0
1

−1



 ,




1

−1
3









⊆ R

3. Find the

dual basis of B.

Exercise 812 Let n be a positive integer and let V be a vector space of
dimension n over a field F. Let B = {δ1, . . . , δn} be a subset of D(V )
and assume that there exists a vector 0V �= v ∈ V satisfying δi(v) = 0
for all 0 ≤ i ≤ n. Show that B is linearly dependent.

Exercise 813 Let V be a vector space over a field F. For every subspace
W of V, let E(W ) = {δ ∈ D(V ) | ker(δ) ⊇ W}. Show that E(W ) is a
subspace of D(V ). Moreover, if W ′ and W ′′ are subspaces of V, show
that E(W ′ + W ′′) = E(W ′) ∩ E(W ′′).

Exercise 814 Let V be a vector space finitely generated over a field F
and let W be a subspace of V. For E(W ) = {δ ∈ D(V ) | ker(δ) ⊇ W},
show that dim(W ) + dim(E(W )) = dim(V ).

Exercise 815 Let A,B ∈ M2×2(R). Show that tr(AB) = tr(A) · tr(B)
if and only if |A + B| = |A| + |B|.

Exercise 816 Let n be a positive integer and let U be a finite subset
of Mn×n(C) which is closed under multiplication of matrices. Show that
there exists a matrix A in U satisfying tr(A) ∈ {1, . . . , n} .
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Exercise 817 Let n be a positive integer and let F be a field. For
any matrix A = [aij ] ∈ Mn×n(F ), define the antitrace of A to be
antitr(A) =

∑n
i=1 ai,n+1−i. Is the function A �→ antitr(A) a linear func-

tional on Mn×n(F )?

Exercise 818 Let F be a field and let A ∈ M2×2(F ) be a matrix
satisfying tr(A) = tr(A2) = 0. Is it necessarily true that A = O?

Exercise 819 Let k and n be positive integers. If O �= A ∈ Mk×n(R),
does there necessarily exist a matrix B ∈ Mn×k(R) satisfying tr(AB) �=
0?

Exercise 820 Let F be a field and let k �= n be positive integers.
Let A ∈ Mk×n(F ) and B ∈ Mn×k(F ). Are tr(AB) and tr(BA)
necessarily equal?

Exercise 821 Show that the matrices




1 2 − i 1 + i

4 + i 1 + i 0
1 + i 1 1



 and




1 1 + i 2 − i

3 − i 1 + i 0
1 27 1 − i



 in M3×3(C) are not similar.

Exercise 822 Let n be a positive integer and let V be the subspace of
R[X] composed of all polynomials of degree at most n. What is the dual
basis of {1,X, . . . ,Xn}?

Exercise 823 Let V be a vector space over a field F having a max-
imal subspace W. Show that there exists a linear functional δ ∈ D(V )
satisfying ker(δ) = W.

Exercise 824 Let V = R[X]. For all c ∈ R, let εc be the linear
functional on V defined by εc : p(X) �→ p(c). Is {εc | c ∈ R�{0, 1}} a
linearly-independent subset of D(V )?

Exercise 825 Let n be a positive integer. If B and C are elements
of Mn×n(R) satisfying tr(B) ≤ tr(C), and if A ∈ Mn×n(R), is it
necessarily true that tr(AB) ≤ tr(AC)?

Exercise 826 For a matrix A ∈ M3×3(R), find a positive integer c

satisfying |A| =
1
c

∣
∣
∣
∣
∣
∣

tr(A) 1 0
tr(A2) tr(A) 2
tr(A3) tr(A2) tr(A)

∣
∣
∣
∣
∣
∣
.

Exercise 827 Let k and n be positive integers and let F be a field.
Define a function α : Mkn×kn(F ) → Mn×n(F ) as follows: if A ∈
Mkn×kn(F ), write A = [Aij ] , where each Aij is a (k×k)-block. Then
set α(A) = [bij ] ∈ Mn×n(F ), where bij = tr(Aij) for each 1 ≤ i, j ≤ n.
Is α a linear transformation? Is it a homomorphism of unital F -algebras?
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Exercise 828 Let A be a nonempty set and let V be the collection of all
subsets of A, which is a vector space over GF (2). Is the characteristic
function of ∅ �= D ⊆ A a linear functional on V ?

Exercise 829 For each integer n > 1, find a nonsingular matrix A ∈
Mn×n(Q) satisfying tr(A) = 0.

Exercise 830 Let n > 1 be an integer and let A ∈ Mn×n(R). Find a
symmetric matrix B ∈ Mn×n(R) satisfying tr(A) = tr(B).

Exercise 831 Let V be a vector space finitely generated over Q and
let α ∈ End(V ) be a projection. Show that there is a basis D of V
satisfying the condition that the rank of α equals tr(ΦDD(α)).

Exercise 832 Let W be a proper subspace of a vector space V over
a field F and let v ∈ V � W. Show that there is a linear functional
δ ∈ D(V ) satisfying δ(v) �= 0 but δ(w) = 0 for all w ∈ W.

Exercise 833 Let V be a vector space finitely generated over a field F
and let W1 and W2 be proper subspaces of V satisfying V = W1⊕W2.
Show that D(V ) = E1 ⊕ E2, where Ej = {δ ∈ D(V ) | Wj ⊆ ker(δ)} for
j = 1, 2.

Exercise 834 Let F be a field and let A ∈ M2×2(F ). Show that we
always have A2 − tr(A)A + |A|I = O.

Exercise 835 Let V be the subspace of R
∞ consisting of all sequences

[a1, a2, . . .] ∈ R
∞ satisfying the condition that limi→∞ ai exists in R. De-

fine linear functionals δ1, δ2, . . . , δ∞ ∈ D(V ) by setting δh : [a1, a2, . . .] �→
ah for each h = 1, 2, . . . and δ∞ : [a1, a2, . . .] �→ limi→∞ ai. Is the subset
{δ1, δ2, . . . , δ∞} of D(V ) necessarily linearly independent?

Exercise 836 Let F be a field and, for each a ∈ F, let εa : F [X] → F
be the linear functional defined by εa : p(X) �→ p(a). Show that the subset
{εa | a ∈ F} of D(F [X]) is linearly independent.

Exercise 837 Let V be a vector space over a field F and let δ1, δ2 ∈
D(V ) be linear functionals satisfying the condition that δ1(v)δ2(v) = 0
for all v ∈ V. Show that one of the δi must be the 0-functional.

Exercise 838 Let n > 1 be an integer and let f : R
n → R be a

continuous function which maps the 0-vector to 0 and which satisfies the
condition that f(v +w)+ f(v−w) = 2f(v) for all v, w ∈ R

n. Show that
f ∈ D(Rn).

Exercise 839 Let a ∈ R, let n be a positive integer, and let A,B ∈
Mn×n(R). Does there necessarily exist a matrix C ∈ Mn×n(R) satisfying
AC + tr(C)A = B?
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Exercise 840 Let F be a field and let n be a positive integer. Let δ :
Mn×n(F ) → F be the linear functional given by δ : [aij ] �→

∑n
i=1

∑n
j=1 aij .

Find an endomorphism α of Mn×n(F ) satisfying the condition that
δ(A) = a · tr(α(A)) for all A ∈ Mn×n(F ).

Exercise 841 Let F be a field and let n be a positive integer. Let
A,B ∈ Mn×n(F ) be matrices satisfying A2+B2 = I and AB+BA = O.
Show that tr(A) = tr(B) = 0.

Exercise 842 Let F be a field and let n be a positive integer. Given
a positive integer k, is it necessarily true that tr(AB)k = tr(Ak)tr(Bk)
for all A,B ∈ Mn×n(F )?

Exercise 843 Let V be a vector space finitely generated over a field F
and let α ∈ End(V ). Show that α and D(α) have identical minimal
polynomials.

Exercise 844 Let V be a vector space over a field F and let n be
a positive integer. Let v1, . . . , vn be distinct vectors in V and assume
that there exist α ∈ End(V ) and δ ∈ D(V ) such that the matrix[
δαi−1(vj)

]
∈ Mn×n(F ) is nonsingular. Show that the set {v1, . . . , vn}

is linearly independent.

Exercise 845 Let W be a subspace of a vector space V over a field F.
Show that W is a maximal subspace of V if and only if every complement
of W in V has dimension 1.

Exercise 846 Let F be a field and let n be a positive integer. For
matrices A,B ∈ Mn×n(F ), calculate tr ([AB − BA][AB + BA]) .

Exercise 847 Let F be a field and let n be a positive integer. For ma-
trices A,B ∈ Mn×n(F ), do we necessarily have tr((AB)2) = tr(A2B2)?

Exercise 848 Let n be a positive integer. Can we find matrices A,B ∈
Mn×n(C) satisfying the condition that all eigenvalues of A and of B
are positive real numbers, but not all eigenvalues of A + B are positive
real numbers?

Exercise 849 Let k and n be positive integers, let F be a field, and let
O �= A ∈ Mk×n(F ). Does there necessarily exist a matrix B ∈ Mn×k(F )
satisfying tr(AB) �= 0.

Exercise 850 Let V be a vector space of finite dimension n over a
field F. A nonempty finite collection {W1, . . . ,Wk} of hyperplanes of V

is co-independent if and only if dim
(⋂k

i=1
Wi

)

= n − k. Is a non-

empty subcollection of an co-independent collectionof hyperplanes necessarily
co-independent?
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Inner product spaces

In this chapter, we will have to restrict the set of fields over which we
work. A subfield F of R is real euclidean if and only if for each
0 ≤ c ∈ F there exists an element d ∈ F satisfying d2 = c and a subfield
K of C is euclidean if and only if there exists a real euclidean field
F such that K = {a + bi | a, b ∈ F}. It is immediately clear that if K
is a euclidean field and c ∈ K, then c ∈ K. Being a euclidean field
is intimately tied in with the constructibility of elements of the complex
plane by straightedge and compass constructions, and in fact every real
euclidean field must contain all those real numbers which are then lengths
of line segments obtainable from the unit line segment by straightedge and
compass construction methods. Clearly R itself is real euclidean, while
Q, as we have already noted, is not; the set real numbers algebraic over Q

is real euclidean and properly contained in R. The field C is euclidean,
and set of all algebraic numbers is euclidean and properly contained in C.

Let V be a vector space over an euclidean field F. A function µ from
V × V to F is an inner product on V if and only if:

(1) For each w ∈ V, the function v �→ µ(v, w) from V to F is a
linear functional;

(2) If v, w ∈ V then µ(v, w) = µ(w, v);
(3) If v ∈ V then µ(v, v) is a nonnegative real number, which equals

0 if and only if v = 0V .

299
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Note that, in the above situation, if v, w ∈ V then, as a consequence
of (2), µ(v, w) + µ(w, v) = 2Re(µ(v, w)) is also always a real number,
though it may of course be negative.

In general, once we have fixed an inner product on a space, we will write
〈v, w〉 instead of µ(v, w). A vector space over an euclidean subfield F of
C on which we have an inner product defined is called an inner product
space. Another term for such spaces, coming from functional analysis, is a
pre-Hilbert spaces. Abstract inner product spaces were first studied in
an axiomatic manner by Von Neumann. While inner product spaces over
general euclidean fields may prove to be interesting in the future, at the
moment the study of such spaces is almost universally restricted to spaces
over R or C, and so from now on we will do the same and consider only
these as possible fields of scalars. When we talk about an inner product
space without specifying the field of scalars, we will always assume that it
is one of these two fields.

Example: Let n be a positive integer and let F be either R or
C. We define an inner product on Fn, called the dot product, as

follows: if v =






a1

...
an




 and w =






b1

...
bn




 , then we set v · w =

n∑

i=1

aibi.

Note that if F = R, then this product just coincides with the interior
product v � w which defined earlier. However, that is not true for the
case F = C, so we must be very careful to distinguish between the two
products. This modification of the definition is necessary since, over C,

we have
[

1
i

]

�
[

1
i

]

= 0, even though
[

1
i

]

�=
[

0
0

]

. Hence the

interior product � is not an inner product as we have defined it in this
chapter1.

We can generalize the previous example. If F is either R or C, and if
D = [dij ] is a nonsingular matrix in Mn×n(F ), we can define an inner

1 The problem arises because, in C, 0 can be writen
as the sum of squares of nonzero elements. A field F in which 0 cannot be the sum
of squares of nonzero elements of F is formally real; so R is formally real while C

is not. The theory of formally real fields was developed in the 1920’s by the Austrian
mathematicians Emil Artin and Otto Schreier.
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product on Fn by setting

〈





a1

...
an




 ,






b1

...
bn






〉

=
[

a1 . . . an

]
DDH






b1

...
bn




 ,

where DH = [dij ]T . The matrix DH is called the conjugate transpose
or Hermitian transpose of D, and it again belongs to Mn×n(F ). Con-
jugate transposes of matrices over C will play an important part in the
following discussion; of course, DH = DT for any matrix D ∈ Mn×n(R).

The properties of the conjugate transpose are very much like those of the
transpose. Indeed, we note that if A,B ∈ Mn×n(C) and c ∈ C, then
(A + B)H = AH +BH , (cA)H = cAH , AHH = A, and (AB)H = BHAH .
In particular, if A is nonsingular then I = IH = (AA−1)H = (A−1)HAH ,
proving that (A−1)H = (AH)−1.

Example: If we are given positive real numbers c1, . . . , cn and consider
the diagonal matrix D = [dij ] ∈ Mn×n(R) the diagonal entries of which
are given by dii =

√
ci for 1 ≤ i ≤ n, then, by the above, we have an

inner product on C
n given by

〈





a1

...
an




 ,






b1

...
bn






〉

=
n∑

i=1

ciaibi.

Such a product is called a weighted dot product. Weighted dot prod-
ucts are extremely important in statistics and data analysis, where we often
want to emphasize the values of certain parameters and de-emphasize oth-
ers.

Example: Let a < b be real numbers and let V = C(a, b). This
is, as we have seen, a vector space over R, on which we can define an
inner product 〈f, g〉 =

∫ b

a
f(x)g(x)dx. Continuity is important here. The

set Y of all functions from [a, b] to R which are continuous at all but
finitely-many points is a subspace of R

[a,b] properly containing C(a, b)
but 〈f, g〉 =

∫ b

a
f(x)g(x)dx is not an inner product on Y. Indeed, if

we select a real number c satisfying a < c < b and define the function
f ∈ Y by

f : x �→
{

1 if x = c
0 otherwise

then f is a nonzero element of Y but 〈f, f〉 = 0.
Similarly, if V be the set of all continuous complex-valued functions

defined on the closed interval [a, b] in R, then V is a vector space over
C, on which we can define an inner product 〈f, g〉 =

∫ b

a
f(x)g(x)dx.
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Example: Let F be R or C, and let V = Mn×n(F ), which
is a vector space over F . Define an inner product on V by setting
〈A,B〉 = tr(ABH) = tr(BHA). If A = [aij ] and B = [bij ], then
〈A,B〉 =

∑n
i=1

∑n
j=1 aijbij .

Example: Let V be the subspace of C
∞ composed of all those

sequences [c0, c1, . . .] of complex numbers satisfying
∑∞

i=0 |ci|2 < ∞.
This vector space is very important in analysis, and we can define an inner
product on it by setting 〈[c0, c1, . . .], [d0, d1, . . .]〉 =

∑∞
i=0 cidi.

Let F be R or C, and let W be a subspace of an inner product space
V over F. The restriction of this inner product to a function from W ×W
to F is an inner product on W. Thus we can always assume that any
subspace of an inner product space V inherits the inner-product-space
structure of V.

Example: Let V be an inner product space over R and let K be the

set of all matrices of the form
[

a v
w b

]

, where a, b ∈ R and v, w ∈ V.

Then K is a vector space over R, where addition and scalar multipli-

cation are defined by
[

a v
w b

]

+
[

a′ v′

w′ b′

]

=
[

a + a′ v + v′

w + w′ b + b′

]

and

c

[
a v
w b

]

=
[

ca cv
cw cb

]

. We create the structure of an R-algebra on

K by defining an operation • as follows:
[

a v
w b

]

•
[

a′ v′

w′ b′

]

=

[
aa′ + 〈v, w′〉 av′ + b′v
a′w + bw′ bb′ + 〈w, v′〉

]

. This algebra is a division algebra, called

the Cayley algebra, and it is not associative. Indeed, it is the only nonas-
sociative division algebra of finite dimension over R.

We now look at some properties of general inner product spaces.

(15.1) Proposition: Let V be an inner product space. For
v, w1, w2 ∈ V and for a scalar a, we have:

(1) 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉 ;
(2) 〈v, aw1〉 = a 〈v, w1〉 ;
(3) 〈0V , w1〉 = 〈v, 0V 〉 = 0.

Proof: From the definition of the inner product, we have

〈v, w1 + w2〉 = 〈w1 + w2, v〉 = 〈w1, v〉 + 〈w2, v〉
= 〈v, w1〉 + 〈v, w2〉 = 〈v, w1〉 + 〈v, w2〉 ,
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which proves (1). We also have

〈v, aw1〉 = 〈aw1, v〉 = a 〈w1, v〉 = a〈w1, v〉 = a 〈v, w1〉 ,

which proves (2). Finally, 〈0V , w1〉 = 〈00V , w1〉 = 0 〈0V , w1〉 = 0, and
similarly 〈v, 0V 〉 = 0, proving (3). �

By Proposition 15.1, we see that if V is an inner product space over R

then for each v ∈ V the function w �→ 〈v, w〉 from V to F is a linear
transformation, but that is not the case for inner product spaces over C.

Let V be a finitely-generated inner product space, having a basis
{v1, . . . , vn}. Given vectors v =

∑n
i=1 aivi and w =

∑n
j=1 bjvj in V,

we have

〈v, w〉 =
n∑

i=1

n∑

j=1

aibj 〈vi, vj〉 =
[

a1 . . . an

]
G






b1

...
bn




 ,

where G = [gij ] is the matrix defined by gij = 〈vi, vj〉 for all 1 ≤ i, j ≤ n.
This matrix is known as the Gram2 matrix defined by the given basis.

Example: Let V be the subspace of C[X] consisting of all polynomials
of degree at most 5, and let B be the canonical basis for V. Define an
inner product on V by setting 〈f, g〉 =

∫ 1

0
f(x)g(x)dx. (Note that we are

using the same notation for a polynomial and its corresponding polynomial
function in C

R.) Then the Gram matrix defined by B is precisely the
Hilbert matrix H6, which we have seen earlier.

2 Jorgen Gram was a Danish mathematician who, at the end of the
19th century, developed computational techniques for inner product spaces in connection
with his work for insurance companies.
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(15.2) Proposition (Cauchy-Schwarz-Bunyakovsky3 Theorem):
Let V be an inner product space. If v, w ∈ V, then | 〈v, w〉 |2 ≤
〈v, v〉 〈w,w〉 .

Proof: If v = 0V or w = 0V then the result is immediate, and so
we can assume that both vectors differ from 0V . Let a = −〈w, v〉 and
b = 〈v, v〉 . Then a = −〈v, w〉 and b = b so

0 ≤ 〈av + bw, av + bw〉 = aa 〈v, v〉 + ab 〈v, w〉 + ba 〈w, v〉 + b2 〈w,w〉
= aab − aba − aba + b2 〈w,w〉 = b [−aa + b 〈w,w〉] .

Since v �= 0V , it follows that b is a positive real number and so aa ≤
b 〈w,w〉 , which is what we want. �

Example: If a1, . . . , an, b1, . . . , bn, c1, . . . , cn are real numbers, with
ci > 0 for all 1 ≤ i ≤ n, then

∣
∣
∣
∣
∣

n∑

i=1

ciaibi

∣
∣
∣
∣
∣
≤





√
√
√
√

n∑

i=1

cia2
i









√
√
√
√

n∑

i=1

cib2
i



 .

Indeed, this is a consequence of the Cauchy-Schwarz-Bunyakovsky Theo-

rem, using the weighted dot product

〈





a1

...
an




 ,






b1

...
bn






〉

=
∑n

i=1 ciaibi

defined on R
n.

In general, the Cauchy-Schwarz-Bunyakovsky Theorem is an extremely
rich source of inequalities between real-valued functions of several real vari-
ables. For example, consider the vectors

v =
1√

a + b + c





√
a + b√
a + c√
b + c



 and w =




1
1
1





3 Herman Schwarz was a German mathemati-
cian who, in the late 19th century, studied spaces of functions and their structure as
inner product spaces. Viktor Yakovlevich Bunyakovsky was a Russian student of
Cauchy who proved this theorem a generation before Schwarz, but since his work was
published in an obscure journal, it was not widely recognized until the 20th century.
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in R
3, where a, b, and c are positive. Then, by the Cauchy-Schwarz-

Bunyakovsky Theorem, we see that
√

a + b

a + b + c
+
√

a + c

a + b + c
+

√
b + c

a + b + c
= v · w ≤

√
〈v, v〉 〈w,w〉 =

√
6.

Similarly, we note that the matrix D =
[ √

3 0
1

√
2

]

∈ M2×2(R) is

nonsingular and so, by a previous example, we have an inner product µ
on R

2 defined by

µ

([
a
b

]

,

[
c
d

])

=
[

a
b

]T

DDT

[
c
d

]

= 3(ac + bd) +
(√

3
)

(ad + bc).

Applying the Cauchy-Schwarz-Bunyakovsky Theorem, we see that for all
real numbers a, b, c, and d we have

[
3(ac + bd) +

(√
3
)

(ad + bc)
]2

≤
[
3(a2 + b2) +

(
2
√

3
)

ab
] [

3(c2 + d2) +
(
2
√

3
)

cd
]
.

In particular, if we take b = d =
√

3, we see that

(ac + a + c + 3)2 ≤ (a2 + 2a + 3)(c2 + 2c + 3)

for all real numbers a and c.

Let V be an inner product space. The norm of a vector v ∈ V is
defined to be the scalar ‖v‖ =

√
〈v, v〉. A vector v satisfying ‖v‖ = 1

is normal.

Example: Let V = R
n, and endow V with the dot product. Then

∥
∥
∥
∥
∥
∥
∥






a1

...
an






∥
∥
∥
∥
∥
∥
∥

=

√
n∑

i=1

a2
i . This norm is known as the euclidean norm on V.

Example: Let V = C(−π, π), on which we have defined the inner
product 〈f, g〉 =

∫ π

−π
f(x)g(x)dx. For each positive integer k, consider

the function fk : x �→ sin(kx). Then

‖fk‖ =
√

〈fk, fk〉 =

√∫ π

−π

sin2(kx)dx =
√

π

and so gk = 1√
π
fk is a normal vector in this space.
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We have seen how the vector space R
3, endowed the cross product ×,

is a Lie algebra. It is easy to check that the cross product is related to the
dot product on R

3 by the relations

u × (v × w) = (u · w)v − (u · v)w and (u × v) × w = (u · w)v − (v · w)u

for all u, v, w ∈ R
3. Moreover, we have the following identities:

(1) v · (v × w) = 0 for all v, w ∈ R
3;

(2) (Lagrange identity) ‖v × w‖2 = ‖v‖2 ‖w‖2 − (v · w)2.

There are only two possible anticommutative operations on R
3 which

turn it into an R-algebra satisfying these two identities, namely × and
the operation ×′ given by v ×′ w = −(v × w). Furthermore, if n > 3
no such operation can be defined on R

n, except for the case of n = 7. In
that case, we can define an operation × as follows: write elements of R

7

in the form




v
a
v′



 , where v, v′ ∈ R
3 and a ∈ R and then set




v
a
v′



×




w
b
w′



 =




aw′ − bv′ + (v × w) − (v′ × w′)

−v · w + v′ · w
bv − aw + (v × w′) − (v′ × w)



 .

We also note that if u =




a1

a2

a3



 , v =




b1

b2

b3



 and w =




c1

c2

c3



 in

R
3 then u · (v ×w) =

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣
. As an immediate consequence, we

observe that if u, v, w ∈ R
3 then:

(1) u · (v × w) = v · (w × u) = w · (u × v);
(2) u · (v × w) = 0 if and only if two of these vectors are equal or the

set {u, v, w} is linearly dependent.
The scalar value u · (v × w) is often called the scalar triple product
of the vectors u, v, w, to distinguish it from the vector triple product
u × (v × w).

(15.3) Proposition: Let V be an inner product space. If
v, w ∈ V and if a is a scalar, then:

(1) ‖av‖ = |a| · ‖v‖ ;
(2) ‖v‖ ≥ 0, with equality if and only if v = 0V ;
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(3) (Minkowski’s4 inequality): ‖v + w‖ ≤ ‖v‖ + ‖w‖ ;
(4) (Parallelogram law):

‖v + w‖2 + ‖v − w‖2 = 2
(
‖v‖2 + ‖w‖2

)
;

(5) (Triangle difference inequality): ‖v − w‖ ≥ |‖v‖ − ‖w‖| .

Proof: We see that ‖av‖ =
√
〈av, av〉 =

√
aa 〈v, v〉 = |a| ·‖v‖ , proving

(1). Inequality (2) follows immediately from the definition. As for (3), note
that if z = a + bi then z + z = 2a ≤ 2|a| = 2

√
a2 ≤ 2

√
a2 + b2 = 2|z|.

From the Cauchy-Schwarz-Bunyakovsky Theorem, it follows that

| 〈v, w〉 | = | 〈w, v〉 | ≤ ‖v‖ · ‖w‖

and so

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉 + 〈v, w〉 + 〈w, v〉 + 〈w,w〉
≤ ‖v‖2 + 2 ‖v‖ · ‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2

and that proves (3). Moreover, we know that

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉 + 〈v, w〉 + 〈w, v〉 + 〈w,w〉

and ‖v − w‖2 = 〈v − w, v − w〉 = 〈v, v〉− 〈v, w〉− 〈w, v〉+ 〈w,w〉 . Adding
these two gives us (4).

Finally, by (3) we have ‖w‖ = ‖w + (v − w)‖ ≤ ‖w‖ + ‖v − w‖ , and
so ‖v − w‖ ≥ ‖v‖ − ‖w‖ . Interchanging the roles of v and w and using
(1), gives us ‖v − w‖ = ‖w − v‖ ≥ ‖w‖ − ‖v‖ , and so we have (5).
�

Note that by Proposition 15.3 we see that if 0V �= v ∈ V then 1
‖v‖v is

a normal vector. Moreover, if v is normal and c is a scalar satisfying
|c| = 1, then cv is again normal.

Example: Let V be an inner product space, and let Ω be a nonempty
set. A function f ∈ V Ω is bounded if and only if there exists a real

4 Hermann Minkowski, a German mathematician at the end of
the 19th century, built an elegant mathematical framework for the theory of relativity,
using four-dimensional noneuclidean geometry.
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number bf satisfying ‖f(i)‖ ≤ bf for all i ∈ Ω. If f, g ∈ V Ω are
bounded functions then, from Minkowski’s inequality, we see that

‖(f + g)(i)‖ ≤ ‖f(i)‖ + ‖g(i)‖ ≤ bf + bg

for all i ∈ Ω. If c is a scalar then ‖(cf)(i)‖ = |c| · ‖f(i)‖ ≤ |c|bf for all
i ∈ Ω. Thus both f + g and cf are both bounded, and we see that the
set of all bounded elements of V Ω is a subspace of V Ω.

Example: We now return to a previous example. Let p be an integer
greater than 1, not necessarily prime, and let G = Z/(p), on which
we have an operation of addition as defined in Chapter 2. Let V = C

G,
which is a vector space of dimension p over C. On this space, we
can define an inner product by setting 〈f, g〉 =

∑
n∈G f(n)g(n). Every

element n ∈ G defines a function hn : k �→ cos
(

2πnk
p

)
+ i sin

(
2πnk

p

)

which belongs to V. Given a function f ∈ V, define a function f̂ ∈ V as
f̂ : n �→ 〈f, hn〉 =

∑
k∈G f(k)hn(−k). This function is called the discrete

Fourier transform of f of order p. One can show that the function

f �→ f̂ is an fact an automorphism of V. Moreover, f(n) = 1
p

̂̂
f(−n)

and ‖f‖ = 1√
p

∥
∥
∥ f̂

∥
∥
∥ for all f ∈ V and all n ∈ G.

Example: There are various generalizations of Theorem 15.2 which, as a
rule, require more sophisticated methods of complex analysis to prove. For
example, the contemporary Greek mathematicians Manolis Magiropoulos
and Dimitri Karayannakis have shown that if V is an inner product space
and if u, v, and w are distinct elements of V, then

2 |〈u, v〉| · |〈u,w〉| ≤ 〈u, u〉 [‖v‖ · ‖w‖ + |〈v, w〉|] .
In case the set {v, w} is linearly dependent, it is clear that this reduces
to the inequality in Proposition 15.2. Inequalities such as these allow us
to get better bounds on inner products. For example, let 0 < a < b are
real numbers and let V = C(a, b), on which we have the inner product
〈f, g〉 =

∫ b

a
f(x)g(x)dx. If u, v, w ∈ V are given by

u : x �→ 1
x

, v : x �→ sin(x), and w : x �→ cos(x)

then Proposition 15.2 gives us the bound

|〈u, v〉| · |〈u,w〉| ≤
(∫ b

a

dx

x2

)√
∫ b

a

sin2(x)dx

√
∫ b

a

cos2(x)dx

whereas this result gives us the better upper bound

1
2

(∫ b

a

dx

x2

)



√
∫ b

a

sin2(x)dx

√
∫ b

a

cos2(x)dx +

∣
∣
∣
∣
∣

∫ b

a

sin(x) cos(x)dx

∣
∣
∣
∣
∣



 .
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(15.4) Proposition: Let V be an inner product space and let
α ∈ End(V ) satisfy the condition that there exists a real number
0 < c < 1 such that ‖α(v)‖ ≤ c ‖v‖ for all v ∈ V. Then σ1 + α is
monic.

Proof: If 0V �= v ∈ V then, by Proposition 15.3,

‖v‖ = ‖v + α(v) − α(v)‖ ≤ ‖v + α(v)‖ + ‖α(v)‖
= ‖(σ1 + α)(v)‖ + ‖α(v)‖

and so ‖(σ1 + α)(v)‖ ≥ ‖v‖−‖α(v)‖ ≥ (1− c) ‖v‖ > 0, which shows that
v /∈ ker(σ1 + α). Thus σ1 + α is monic. �

In particular, if V is a finitely-generated inner product space and if
α ∈ End(V ) satisfies the condition that there exists a real number 0 <
c < 1 such that ‖α(v)‖ ≤ c ‖v‖ for all v ∈ V, then σ1 + α ∈ Aut(V ).
Let β = (σ1 + α)−1. If 0V �= v ∈ V then

‖v‖ = ‖(σ1 + α)β(v)‖ = ‖β(v) + αβ(v)‖ ≥ ‖β(v)‖ − ‖αβ(v)‖
≥ ‖β(v)‖ − c ‖β(v)‖ = (1 − c) ‖β(v)‖ .

Similarly, ‖v‖ ≤ ‖β(v)‖ + ‖αβ(v)‖ ≤ ‖β(v)‖ + c ‖β(v)‖ = (1 + c) ‖β(v)‖
and so 1

1+c ‖v‖ ≤ ‖β(v)‖ ≤ 1
1−c ‖v‖ for all v ∈ V.

Sometimes, however, we need a bit more generality. If V is a vector
space over R or C then, in general, a function v �→ ‖v‖ satisfying
conditions (1) - (3) of Proposition 15.3 is called a norm and a vector
space on which a fixed norm is defined is called a normed space or,
in a functional-analysis context, a pre-Banach space5. An immediate
question is whether every norm defined on a vector space comes from an
inner product. The answer is negative: if, for example, we define the

norm ‖ ‖1 on C
n by setting

∥
∥
∥
∥
∥
∥
∥






a1

...
an






∥
∥
∥
∥
∥
∥
∥

1

=
∑n

i=1 |ai|, then this cannot

5 Normed spaces were first studied
at the beginning of the 20th century by the Austrian mathematician Hans Hahn, and
then by the American mathematician Norbert Weiner and the Polish mathematician
Stefan Banach.
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come from an inner product since the parallelogram law is not satisfied
by this norm. In fact, satisfying the parallelogram law is necessary for a
norm to come from an inner product in the following sense: let V be
a vector space over R or C on which we have a norm ψ : V → R

satisfying ψ(v + w)2 + ψ(v − w)2 = 2
[
ψ(v)2 + ψ(w)2

]
for all v, w ∈ V,

and write λ(v, w) = 1
4

[
ψ(v + w)2 − ψ(v − w)2

]
. Then it is possible to

define an inner product on V relative to which the norm of a vector v
is precisely ψ(v). In the case the field of scalars is R, then this inner
product is defined by 〈v, w〉 = λ(v, w) and otherwise this inner product
is defined by 〈v, w〉 = λ(v, w) + iλ(v, iw).

We should point out, however, that for vector spaces V finitely generated
over R or C, all norms are equivalent, in the sense that if ‖ ‖a and
‖ ‖b are norms defined on V then there exist positive real numbers c
and d such that c ‖v‖a ≤ ‖v‖b ≤ d ‖v‖a for all v ∈ V. For vector spaces
which are not finitely generated the situation is different, as the following
example shows.

Example: Let V = C(0, 1), which is a vector space over R, and for
each positive integer n, let fn ∈ V be the function defined by

fn : x �→
{

1 − nx if 0 ≤ x ≤ 1
n

0 otherwise .

Let ‖ ‖ be the norm defined on V by the inner product 〈f, g〉 =
∫ 1

0
f(x)g(x)dx and let ‖ ‖∞ be the norm on V defined by ‖f‖∞ =

sup { |f(x)| | 0 ≤ x ≤ 1} . Then ‖fn‖ = 1√
3n

for all positive integers n,

whereas ‖fn‖∞ = 1 for all positive integers n. Thus there can be no real
number c satisfying ‖f‖∞ ≤ c ‖f‖ for all f ∈ V.

Example: Let V and W be normed spaces over the same field of
scalars F (which is either R or C). If α ∈ Hom(V,W ), set

‖α‖ = sup
{
‖α(v)‖
‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

where the norm in the numerator is the one defined on W and the norm
in the denominator is the one defined on V. We claim that this is a norm
defined on Hom(V,W ), called norm induced by the respective norms
on V and W. Indeed, as an immediate consequence of the definition we
see that ‖α‖ ≥ 0 for all α ∈ Hom(V,W ), with equality happening only
when α is the 0-function. We also note that if α is not the 0-function
then ‖α‖ is the smallest positive real number c such that ‖α(v)‖ ≤ c ‖v‖
for all v ∈ V.
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Now let α ∈ Hom(V,W ) and a ∈ F. Then

‖aα‖ = sup
{
‖aα(v)‖
‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

= sup
{
|a|·| ‖α(v)‖

‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

= |a| · ‖α‖ .

Finally, if α, β ∈ Hom(V,W ) then

‖α + β‖ = sup
{
‖(α + β)(v)‖

‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

= sup
{
‖α(v) + β(v)‖

‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

≤ sup
{
‖α(v)‖ + ‖β(v)‖

‖v‖

∣
∣
∣
∣ 0V �= v ∈ V

}

≤ ‖α‖ + ‖β‖ .

If V = Fn and W = F k, endowed with respective dot products and the
norms defined by them, then the induced norm on Hom(V,W ) is called
the spectral norm. If A ∈ Mk×n(F ), then the spectral norm of A
is defined to be the spectral norm of the homomorphism from Fn to F k

given by v �→ Av.

Example: If p is any positive integer, we can define a norm ‖ ‖p on

C
n by

∥
∥
∥
∥
∥
∥
∥






a1

...
an






∥
∥
∥
∥
∥
∥
∥

p

= p

√
n∑

i=1

|ai|p. For the case p = 2, this of course reduces

to the norm coming from the dot product. The proof that this is a norm
in the general case relies on a generalization of Minkowski’s inequality:
‖v + w‖p ≤ ‖v‖p + ‖w‖p for all v, w ∈ C

n and any positive integer p.

This norm can be used to define a norm on Hom(Cn, Ck) for positive
integers k and n, by setting

‖α‖p = sup

{
‖α(v)‖p

‖v‖p

∣
∣
∣
∣
∣

0V �= v ∈ V

}

for any α ∈ Hom(Cn, Ck).

Example: For positive integers k and n, we define the Frobenius
norm or Hilbert-Schmidt norm of a matrix A = [aij ] ∈ Mk×n(C) by
setting

‖A‖
F

=

√
√
√
√

k∑

i=1

n∑

j=1

|aij |2 =
√

tr(AAH).
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Note that this is precisely the norm coming from the inner product on
Mk×n(C) given by 〈A,B〉 = tr(ABH).

The norm ‖ ‖1 defined on C
n is important in other contexts as well.

Let n be a positive integer and let θ be the function from Mn×n(C) to
R defined by θ : [aij ] �→ max {

∑n
i=1 |aij | | 1 ≤ j ≤ n} , which we have

already seen when we defined condition numbers. Numerical algorithms
that compute the eigenvalues of a matrix, as a rule, make roundoff errors
on the order of cθ(A), where c is a constant determined by the precision
of the computer on which the algorithm is running. Since the eigenvalues
of similar matrices are identical, it is usually useful, given a square matrix
A, to find a matrix B similar to A with θ(B) is small. This can often
be done by choosing B of the form PAP−1, where P is a nonsingular
diagonal matrix.

Example: If A =




1 0 10−4

1 1 10−2

104 102 1



 , then θ(A) = 1002. However,

if we choose P =




102 0 0
0 1 0
0 0 10−2



 , then θ(PAP−1) = 3.

Let α be the endomorphism of C
n represented with respect to the

canonical basis by a matrix A ∈ Mn×n(C). Then for each v ∈ C
n we

have θ(A) ‖v‖1 ≥ ‖α(v)‖1 . In particular, if c is an eigenvalue of α
associated with an eigenvector v then θ(A) ‖v‖1 ≥ ‖α(v)‖1 = |c| · ‖v‖1

and so θ(A) ≥ |c|. Thus we see that θ(A) ≥ ρ(A), where ρ(A) is the
spectral radius of A. This bound is called the Gershgorin bound6. In
fact, we can sharpen this result.

(15.5) Proposition (Gershgorin’s Theorem): Let α be the
endomorphism of C

n represented with respect to the canonical

6 Semyon Aranovich Gershgorin was a 20th cen-
tury Russian mathematician. Gershgorin’s theorem was published in a Russian journal
in 1931 and was generally ignored, until it was noticed and publicized by the Austrian-
born American mathematician Olga Taussky-Todd, one of the most important re-
searchers in the development of numerical linear algebra methods for computers after
World War II. Similar results were obtained earlier by Minkowski and Hadamard.
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basis by the matrix A = [aij ] ∈ Mn×n(C) and, for each 1 ≤ i ≤ n,
let ri =

∑
j �=i |aij | . Let Ki be the circle in the complex plane

with radius ri and center aii. Then spec(α) ⊆ K =
⋃

i�=j Ki.

Proof: Let c be an eigenvalue of α and let v =






b1

...
bn




 be an

eigenvector of α associated with c. Let h be an index satisfying |bh| ≥ |bi|
for all 1 ≤ i ≤ n. Then bh �= 0 and Av = cv so (c−ahh)bh =

∑
j �=h ahjbj

and hence |c − ahh| |bh| ≤
∑

j �=i |ahjbj | ≤ |bh| rh. Thus |c − ahh| ≤ rh and
so c ∈ Kh ⊆ K, as desired. �

Example: Let α be the endomorphism of C
4 represented with respect

to the canonical basis by the matrix A =







3 1 2 0
4 15 0 −2

−3 0 0 −1
0 0 3 5





 . Then

spec(A) = {15.32, 4.49, 1.59 ± 2.35i} . These numbers are found in the
union K of the following circles in the complex plane: the circle of radius
3 around the point (3, 0); the circle of radius 6 around the point (15, 0),
the circle of radius 4 around the point (0, 0), and the circle of radius 3
around the point (5, 0). We furthermore note that spec(A) = spec(AT )
and so, by the same argument, we see that the eigenvalues of α lie in the
union K ′ of the following circles in the complex plane: the circle of radius
7 around the point (3, 0), the circle of radius 1 around the point (15, 0),
the circle of radius 5 around the point (0, 0), and the circle of radius 3
around the point (5, 0). These circles and the location of the eigenvalues
can be seen in the following pictures.

Thus, the eigenvalues of α lie in K ∩ K ′.
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Since any polynomial in C[X] is the characteristic polynomial of a
matrix, we can use Gershgorin’s Theorem to get a bound on the location
of the zeros of any polynomial. However, there are more sophisticated
methods available to get much better bounds.

There are several generalizations of Gershgorin’s Theorem, the best-
known of which is the following.

(15.6) Proposition (Brauer’s Theorem): Let α be the endo-
morphism of C

n represented with respect to the canonical basis
by the matrix A = [aij ] ∈ Mn×n(C) and, for each 1 ≤ i ≤ n, let
ri =

∑
j �=i |aij | . For each 1 ≤ i �= j ≤ n, let Kij be the Cassini

oval7 {z ∈ C | |z − aii| |z − ajj | ≤ rirj} in the complex plane. Then
spec(α) ⊆ K =

⋃
i�=j Kij .

Proof: Let c be an eigenvalue of α and let v =






b1

...
bn




 be an

eigenvector of α associated with c. Let h and k be indices such that
|bh| ≥ |bk| ≥ |bi| for all i �= h, k. We know that bh �= 0, and we can
assume, as well, that bk �= 0 for otherwise we would have ahh = c, in which
case surely c ∈ K. Since Av = cv, we have (c − ahh)bh =

∑
j �=h ahjbj

and so

|c − ahh| |bh| =

∣
∣
∣
∣
∣
∣

∑

j �=h

ahjbj

∣
∣
∣
∣
∣
∣
≤

∑

j �=h

|ahj | |bj | ≤
∑

j �=h

|ahj | |bk| = rh |bk| .

In other words, |c − ahh| ≤ rh |bk| |bh|−1
. In the same manner, we obtain

|c − akk| ≤ rk |bh| |bk|−1 and so, multiplying these two results together, we
see that |c − ahh| |c − akk| ≤ rhrk, so c ∈ Khk ⊆ K, as desired. �

Note that Gershgorin’s Theorem involves n circles, whereas Brauer’s
Theorem involves

(
n
2

)
= 1

2n(n − 1) ovals.

7 Twentieth-century German mathematician Al-
fred Brauer emigrated to the United States in 1939; his research was primarily in
matrix theory. Giovanni Domenico Cassini was a 17th-century Italian mathemati-
cian and astronomer.
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Example: It is sometimes useful to consider norms on vector spaces
V not over subfields of C, namely functions v �→ ‖v‖ from V to R

satisfying conditions (1) - (3) of Proposition 15.3. For example, let F be
a finite field and let V = Fn for some positive integer n. Define ‖v‖ to
be the number of nonzero entries in v, for each v ∈ V. This function is
called the Hamming8 norm and is of extreme importance in algebraic
coding theory, where one is interested in vector spaces over F in which
every nonzero vector has a large Hamming norm. In an example at the
beginning of Chapter 3, we showed a vector space of dimension 3 over
GF (2), every nonzero element of which has Hamming norm equal to 4.

If v and w are vectors in space V over which we have a norm defined,
then the distance between v and w is defined as d(v, w) = ‖v − w‖.
When V = R

n on which we have the dot product, this just gives us the
ordinary notion of euclidean distance. The ability to define the notion of
distance in such spaces is important, since it allows us to measure the degree
of error in algorithmic computations by measuring the distance between a
computed value and the value predicted by theory. It also allows us to
define the notion of convergence.

The following proposition shows that this abstract notion of distance
indeed has the geometric properties that one would expect from a notion
of distance.

Example: Let A be a finite set, and let V be the collection of all
subsets of A, which is a vector space over F = GF (2). We have a norm
defined on V by letting ‖B‖ be the number of elements in B. Then
the distance between subsets B and C of A is ‖B + C‖ , namely the
number of elements in their symmetric difference.

(15.7) Proposition: Let V be a normed space and let v, w, y ∈ V.
Then:

(1) d(v, w) = d(w, v);
(2) d(v, w) ≥ 0, where equality exists if and only if v = w;
(3) (Triangle inequality) d(v, w) ≤ d(v, y) + d(y, w).

Proof: This is an immediate consequence of Proposition 15.3. �

8 Richard Hamming, a 20th-century American mathematician
and computer scientist, is best known for his development of the theory of error-detecting
and error-correcting codes.
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Let n be a positive integer. If A = [aij ] ∈ Mn×n(C), and if k > 0 is

an integer, let us define the matrix P (k) =
[
p
(k)
ij

]
to be I +

∑k
h=1

1
h!A

h.

We claim that, for each fixed 1 ≤ i, j ≤ n, the limit lim
h→∞

p
(h)
ij exists in

C. Indeed, if B = [bij ] ∈ Mn×n(F ), set m(B) = max1≤i,j≤n |bij |. Then
every entry in the matrix A2 equals the sum of n products of pairs of
entries of A and so, in absolute value, is equal to at most m(A)2n. Thus we
see that m(A2) ≤ m(A)2n. Similarly, m(A3) ≤ m(A2)m(A)n ≤ m(A)3n2

and so forth. Thus, in general,

m

(
1
k!

Ak

)

≤ nk−1

k!
m(A)k ≤ 1

k!
[m(A)n]k

and so, in particular, m(P (k)) ≤
∑k

k=0
1
k! m(A)k for all k ≥ 1. But from

calculus we know that the series
∑∞

h=0
1
h!r

h converges absolutely to er

for each real number r. Therefore the limit we seek exists, and, at least

by analogy, we are justified in denoting the matrix
[

lim
h→∞

p
(h)
ij

]

by eA.

(15.8) Proposition: If n is a positive integer A = [aij ] ∈
Mn×n(F ) is a diagonal matrix, where F is R or C, then
eA = [bij ] is a diagonal matrix, where

bij =
{

eaii if i = j
0 otherwise .

Proof: This is an immediate consequence of the definition. �

In particular, this implies that if B ∈ Mn×n(F ) is similar to a diagonal
matrix then B and eB have the same eigenvectors, while the eigenvalues
of eB are the exponentials of the eigenvalues of B.

Actually, we can do a bit better: if A =








A1 O . . . O
O A2 . . . O

...
O O . . . Am








, where

each Ah is a square matrix, then eA =








eA1 O . . . O
O eA2 . . . O

...
O O . . . eAm








.

Example: If O �= A ∈ Mn×n(F ), where F is either R or C, is
a matrix for which there exists a positive integer t such that At = O,
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and if k is the least such integer, then eA = I +
∑k

h=1
1
h!A

h. Thus, for

example, if A =




0 1 2
0 0 −1
0 0 0



 , we have

eA = I + A +
1
2
A2 =




1 1 3

2
0 1 −1
0 0 1



 .

Example: If A =
[

0 k
0 0

]

∈ M2×2(R), then eA =
[

1 k
0 1

]

; if

B =
[

0 r
−r 0

]

then eB =
[

cos(r) sin(r)
− sin(r) cos(r)

]

.

Example: If A =




1 1 1
1 1 1
1 1 1



 ∈ M3×3(R), then

eA =






2
3 + 1

3e3 1
3e3 − 1

3
1
3e3 − 1

3
1
3e3 − 1

3
2
3 + 1

3e3 1
3e3 − 1

3
1
3e3 − 1

3
1
3e3 − 1

3
2
3 + 1

3e3




 .

If P ∈ Mn×n(F ) is nonsingular, where F is R or C, then

P−1

[

I +
k∑

h=1

1
h!

Ah

]

P = I +
k∑

h=1

1
h!

(P−1AP )h

for each k and so P−1eAP = eP−1AP . Thus we see that the exponentials
of similar matrices are themselves similar. This is very important in cal-
culations. In particular, if A is diagonalizable there exists a nonsingular
matrix P such that P−1AP is a diagonal matrix D = [dij ] and so
P−1eAP = eD is also a diagonal matrix. Thus eA is diagonalizable
whenever A is.

If (A,B) is a commuting pair of matrices in Mn×n(F ), then as a
direct consequence of the definition we see that eAeB = eA+B = eBeA.
But this is not true in general, as the following example shows.

Example: If A =
[

0 1
0 0

]

and B =
[

−1 0
0 0

]

, then eAeB =

[
1 1
0 1

] [
e−1 0
0 1

]

=
[

e−1 1
0 1

]

�=
[

e−1 1 − e−1

0 1

]

= eA+B .
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This fact is significant when it comes to calculating eA in many cases.
For example, suppose that A is an n×n matrix having a single eigenvalue
c of multiplicity n. Then for each scalar t, the matrices ctI and
t(A− cI) commute and so etA = etcIet(A−cI) = (etcI)

∑∞
k=0

tk

k! (A − cI)k

and, from the Cayley-Hamilton Theorem, we know that (A − cI)k = O

for all k ≥ n. Thus we see that etA = (etcI)
∑n−1

k=0
tk

k! (A − cI)k and so

there exists a polynomial p(X) ∈ F [X] satisfying etA = p(A).

We also note that if A is nonsingular then A and A−1 commute
so eAe−A = eA−A = eO = I, proving that eA is nonsingular and
e−A = (eA)−1.

A similar proof can be used to show that if A has distinct eigenvalues
{c1, . . . , cn} and if pk(X) =

∏
j �=k(ck − cj)−1(X − cjI) for all 1 ≤ k ≤ n

then for any scalar t we have etA =
∑n

k=1 etckpk(A).

We have thus seen that eA makes sense for any square matrix A
over the real or complex numbers. Indeed, matrix exponentials play an
important role in solutions of systems of linear differential equations.

What about, say, cos(A) and sin(A)? We know that the cosine function
has a Maclauren representation

cos(x) =
∞∑

i=0

(−1)i

(2i)!
x2i.

For each natural number n, let us consider the polynomial

pn(X) =
n∑

i=0

(−1)i

(2i)!
X2i.

Then we can surely calculate pn(A) for each n and see whether the
sequence of such matrices converges in some sense. However, there is an-
other possibility. We know that for any real or complex number z we
have cos(z) = 1

2 [eiz + e−iz] and so we can just define cos(A) to be the
matrix 1

2 [eiA + e−iA], which we know always exists.

Example: We see that cos(I) =




cos(1) 0 0

0 cos(1) 0
0 0 cos(1)



 and

cos








1 1 1
1 1 1
1 1 1







 =






2
3 + 1

3 cos(3) 1
3 cos(3) − 1

3
1
3 cos(3) − 1

3
1
3 cos(3) − 1

3
2
3 + 1

3 cos(3) 1
3 cos(3) − 1

3
1
3 cos(3) − 1

3
1
3 cos(3) − 1

3
2
3 + 1

3 cos(3)




 .
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Similarly, we know that sin(z) = −i
2 [eiz − e−iz] and so we can define

sin(A) to be −i
2 [eiA − e−iA].

Exercises

Exercise 851 Let V = C(−1, 1) and let a > − 1
2 be a real number. Is the

function µ : V × V → R defined by 〈f, g〉 =
∫ 1

−1

[
1 − t2

]a−1/2
f(t)g(t)dt

an inner product on V ?

Exercise 852 Is the function µ : R
2 × R

2 → R defined by

µ :
([

a1

a2

]

,

[
b1

b2

])

�→ a1(b1 + b2) + a2(b1 + 2b2)

an inner product on R
2?

Exercise 853 Is the function µ : R
2 × R

2 → R defined by

µ :
([

a1

a2

]

,

[
b1

b2

])

�→ a1b1 − a1b2 − a2b1 + 4a2b2

an inner product on R
2?

Exercise 854 Is the function µ : R
3 × R

3 → R defined by

µ :








a1

a2

a3



 ,




b1

b2

b3







 �→ a1b1 + 2a2b2 + 3a3b3 + a1b2 + a2b1

an inner product on R
3?

Exercise 855 Verify whether the function µ : R[X] × R[X] → R defined
by µ : (f, g) �→ deg(fg) is an inner product on R[X]?

Exercise 856 Give an example of a function µ : R
2 × R

2 → R which
satisfies the first two conditions of an inner product, which does not satisfy

the third, but does satisfy µ

([
1
0

]

,

[
1
0

])

= 1.

Exercise 857 Is the function µ : R[X] × R[X] → R defined by

µ :




∞∑

i=0

aiX
i,

∞∑

j=0

bjX
j



 �→
∞∑

i=0

∞∑

j=0

1
i + j + 1

aibj

an inner product on R[X]?
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Exercise 858 Let V be the vector space of all continuous functions from
R to itself. Let µ : V × V → R be the function given by µ : (f, g) �→
lim

t→∞
1
t

∫ t

−t
f(s)g(s)ds. Is µ an inner product?

Exercise 859 Let n be a positive integer and let v =






c1

...
cn




 ∈ R

n. Is

the function µv : R[X1, . . . , Xn] × R[X1, . . . , Xn] → R defined by

µv : (p, q) �→ p(c1, . . . , cn)q(c1, . . . , cn)

an inner product on R[X1, . . . , Xn]?

Exercise 860 Let a < b be real numbers and let V = C(a, b). Let
h0 ∈ V be a function satisfying the condition that h0(t) > 0 for all
a < t < b. Show that the function µ : V ×V → R defined by µ : (f, g) �→
∫ b

a
f(x)g(x)h0(x)dx is an inner product on V.

Exercise 861 Let c and d be given real numbers. Find a necessary

and sufficient condition that the function µ :
([

a1

a2

]

,

[
b1

b2

])

�→ ca1b1+

da2b2 be an inner product on R
2.

Exercise 862 Is the function µ : R
3 × R

3 → R defined by

µ :








a1

a2

a3



 ,




b1

b2

b3







 �→ a2
1b2 + b2

1a2 + (a3b3)2

an inner product on R
3?

Exercise 863 Let V be an inner product space over R and let n > 1
be an integer. For positive real numbers a1, . . . , an, define the function

µ : V n × V n → R by µ :











v1

...
vn




 ,






w1

...
wn









 �→

∑n
i=1 ai 〈vi, wi〉 . Is µ

an inner product on V n?

Exercise 864 Let n be a positive integer and let V be the subspace of
R[X] consisting of all polynomials of degree at most n. Is the function
µ : V ×V → R defined by µ : (p, q) �→

∑n
i=0 p

(
i
n

)
q
(

i
n

)
an inner product

on V ?

Exercise 865 Let 0 < n ∈ Z. Is the function µ : C
n ×C

n → C defined

by µ :











a1

...
an




 ,






b1

...
bn









 �→

∑n
i=1 aibn−i+1 an inner product?
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Exercise 866 Let {u, v} be a linearly-dependent subset of an inner prod-
uct space V, not containing 0V . Show that ‖u‖2

v = 〈v, u〉u.

Exercise 867 Let V = C
2 on which we have defined the dot product,

and let D = {v ∈ V | ‖v‖ = 1} . Find {〈Av, v〉 | v ∈ D} , where A =[
1 0
0 0

]

∈ M2×2(C).

Exercise 868 Let n be a positive integer and let {v1, . . . , vk} be a set
of vectors in R

n satisfying vi · vj ≤ 0 for all 1 ≤ i < j ≤ k. Show that
k ≤ 2n and give an example in which equality holds.

Exercise 869 Let n be a positive integer and let A ∈ Mn×n(C) satisfy
A2 = A. Is it necessarily true that

(
AH

)2 = AH?

Exercise 870 Let V be an inner product space and let v �= v′ be vectors
in V. Show that there exists a vector w ∈ V satisfying 〈v, w〉 �= 〈v′, w〉 .

Exercise 871 Let V be an inner product space finitely generated over its
field of scalars, and let B = {v1, . . . , vn} be a basis of V. Show that there
exists a basis {w1, . . . , wn} of V satisfying the condition that

〈vi, wj〉 =
{

1 if i = j
0 otherwise .

Exercise 872 Let W be a subspace of a vector space V over R and
let Y be a complement of W in V. Define an inner product µ on W
and an inner product ν on Y. Is the function from V ×V → R defined
by (w + y, w′ + y′) �→ µ(w,w′) + ν(y, y′) an inner product on V ?

Exercise 873 Let V = C(0, 1). Let A = {f1, . . . , fn} be a linearly-
independent subset of V and define a function u : R × R → R by
u : (a, b) �→

∑n
j=1 fj(a) cosj(b). Show that if h ∈ V and if there exists a

function g ∈ V such that h(x) =
∫ 1

0
u(x, y)g(y)dy for all x ∈ R, then

h ∈ RA.

Exercise 874 Let V be an inner product space over R. For each real
number a, set U(a) = {v ∈ V | 〈v, v〉 ≤ a}. Given a real number a, find
a real number b such that 〈v + w, v + w〉 ∈ U(b) for all v, w ∈ U(a).

Exercise 875 Let V be an inner product space and let α ∈ End(V ).
Show that 〈α(v), v〉 〈v, α(v)〉 ≤ ‖α(v)‖2 for every normal vector v ∈ V.

Exercise 876 For real numbers a1, . . . , an, show that

n∑

i=1

ai ≤





√
√
√
√

n∑

i=1

|ai|2/3









√
√
√
√

n∑

i=1

|ai|4/3



 .
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Exercise 877 (Binet-Cauchy identity) For u, v, w, y ∈ R
3, show that

(v × w)(y × u) = (v · y)(w · u) − (v · u)(y · w).

Exercise 878 Let v be a normal vector in R
3. Show that the function

αv : R
3 → R

3 defined by αv : w �→ v × (v × w) + w is a projection in
End(R3).

Exercise 879 For u, v, w, y ∈ R
3, show that

(u × v) · (w × y) =
∣
∣
∣
∣

u · w u · y
v · w v · y

∣
∣
∣
∣ .

Exercise 880 For nonnegative real numbers a, b, and c, show that

(a + b + c)
√

2 ≤
√

a2 + b2 +
√

b2 + c2 +
√

a2 + c2.

Exercise 881 For real numbers 0 < a ≤ b ≤ c, show that
√

b2 + c2 ≤
(√

2
)

a ≤
√

(b − a)2 + (c − a)2.

Exercise 882 Let n be a positive integer and let A ∈ Mn×n(R) be a
matrix the n Gershgorin circles of which are mutually disjoint. Prove
that all of the eigenvalues of A are real.

Exercise 883 Show that
[∫ 1

0
f(x)dx

]2

≤
∫ 1

0
f(x)2dx for any f ∈ C(0, 1).

Exercise 884 Let f : R →R be the constant function x �→ 1. Calculate
‖f‖ when f is considered as an element of C(0, π

2 ) and compare it to
‖f‖ , when f is considered as an element of C(0, π).

Exercise 885 Let V be an inner product space over R and let v, w ∈ V
satisfy ‖v + w‖ = ‖v‖ + ‖w‖ . Show that ‖av + bw‖ = a ‖v‖ + b ‖w‖ for
all 0 ≤ a, b ∈ R.

Exercise 886 Let V be an inner product space over R. Show that
〈u, v〉 = 1

4 ‖u + v‖2 − 1
4 ‖u − v‖2 for all u, v ∈ V.

Exercise 887 Let V = C(0, 1) on which we have defined the inner prod-
uct 〈f, g〉 =

∫ 1

0
f(t)g(t)dt. Let W be the subspace of V generated by the

function x �→ x2. Find all elements of W normal with respect to this
inner product.

Exercise 888 Let V be an inner product space over R and assume that
v, w ∈ V are nonzero vectors satisfying the condition 〈v, w〉 = ‖v‖ · ‖w‖ .
Show that Rv = Rw.

Exercise 889 Let V be an vector space over R on which we have two
inner products, µ and µ′ defined, which in turn define distance functions
d and d′ respectively. If d = d′, does it necessarily follow that µ = µ′?
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Exercise 890 (Apollonius’ identity9) Let V be an inner product
space. Show that ‖u − w‖2 + ‖v − w‖2 = 1

2 ‖u − v‖2 + 2
∥
∥ 1

2 (u + v) − w
∥
∥2

for all u, v, w ∈ V.

Exercise 891 Let V be an inner product space over R and let θ :
V × V × V → R be the function defined by

θ(v, w, y) = ‖v + w + y‖2 + ‖v + w + y‖2 − ‖v − w − y‖2 − ‖v − w + y‖2
.

Show that, for any v, w, y ∈ V, the value of θ(v, w, y) does not depend
on y.

Exercise 892 Let V be an inner product space over R and let n > 2.

Let θ : V n → V be the function defined by θ :






v1

...
vn




 �→ 1

n

n∑

i=1

vi. Show

that
n∑

i=1

∥
∥
∥
∥
∥
∥
∥
vi − θ











v1

...
vn











∥
∥
∥
∥
∥
∥
∥

2

=
n∑

i=1

‖vi‖2 − n

∥
∥
∥
∥
∥
∥
∥






v1

...
vn






∥
∥
∥
∥
∥
∥
∥

2

.

Exercise 893 Let V be an inner product space over R and let v and
w be nonzero vectors in V. Show that |〈v, w〉|2 = 〈v, v〉 〈w,w〉 if and
only if the set {v, w} is linearly dependent.

Exercise 894 Let n be a positive integer and let ‖ ‖ be a norm defined
on C

n. For each A ∈ Mn×n(C), let ‖A‖ be the spectral norm of
A. If A ∈ Mn×n(C) is nonsingular, show that every singular matrix
B ∈ Mn×n(C) satisfies ‖A − B‖ ≥

∥
∥A−1

∥
∥−1

. Does there necessarily
exist a singular matrix B for which equality holds?

Exercise 895 Let V be a vector space over R and let ‖ ‖ be a norm
defined on V. Show that |‖v‖ − ‖w‖| ≤ ‖v − w‖ for all v, w ∈ V.

Exercise 896 Let V be an inner product space finitely generated over R

and let δ ∈ D(V ). Pick v0 ∈ V. Show that for each real number e > 0

9 Greek geometer Apollonius of Perga, who worked in Alexandria
in the third century BC, in his famous book Conics, was the first to introduce the terms
“hyperbola”, “parabola”, and “ellipse”.
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there exists a real number d > 0 such that |δ(v) − δ(v0)| < e whenever
‖v − v0‖ < d.

Exercise 897 Let V be an inner product space. For any u, v, w ∈ V,

show that

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1
1 0 d(u, v)2 d(u,w)2

1 d(u, v)2 0 d(v, w)2

1 d(u,w)2 d(v, w)2 0

∣
∣
∣
∣
∣
∣
∣
∣

≤ 0.

Exercise 898 Let n > 1 be an integer. Show that there is no norm
v �→ ‖v‖ defined on C

n satisfying

‖A‖
F

= sup
{
‖Av‖
‖v‖

∣
∣
∣
∣ 0V �= v ∈ C

n

}

for all A ∈ Mn×n(C).

Exercise 899 Let n > 1 be an integer. For each A ∈ Mn×n(C), let
‖A‖ = ρ(A), the spectral radius of A. Does this turn Mn×n(C) into a
normed space?

Exercise 900 Let p > 2 be prime and let n be a positive integer. For
each 1 ≤ i ≤ n, define w(i) = min{i − 1, p − i + 1}. Does the function

GF (p)n → R defined by






a1

...
an




 �→

n∑

i=1

w(i)ai turn GF (p)n into a

normed space?

Exercise 901 Let 0 < p < 1 and let f : R
n → R be defined by

f :






a1

...
an




 →

(
n∑

i=1

|ai|p
)1/p

is not a norm but does satisfy the inequality

f(v + w) ≤ 2(1−p)/p [f(v) + f(w)]

for all v, w ∈ R
n.

Exercise 902 Let n > 1 and let A ∈ Mn×n(C). Show that there are
infinitely-many other matrices in Mn×n(C) having the same Gershgorin
circles as A.

Exercise 903 Let A = [aij ] ∈ M2×2(C) and let K be the Cassini
oval defined by A. Show that every point on the boundary of K is an
eigenvalue of a matrix B ∈ M2×2(C) defining the same Cassini oval.
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Let V be an inner product space and let 0V �= v, w ∈ V. From Proposition
15.2 we see that

−1 ≤ 〈v, w〉 + 〈w, v〉
2 ‖v‖ · ‖w‖ ≤ 1

and so there exists a real number 0 ≤ t ≤ π satisfying

cos(t) =
〈v, w〉 + 〈w, v〉

2 ‖v‖ · ‖w‖ .

This number t is the angle between v and w. Note that if we are
working over R, then

cos(t) =
〈v, w〉

‖v‖ · ‖w‖ .

Example: If V = R
n is endowed with the dot product, and if 0V �=

v, w ∈ V then, using analytic geometry, it is easy to show that the angle
as defined here is indeed the angle between the straight line determined by
v and the origin, and the straight line determined by w and the origin.
If we define different inner products on V, we build in this manner various
non-euclidean geometries in n-space.

Example: Let V = C(0, 1), on which we have defined the inner product
〈f, g〉 =

∫ 1

0
f(x)g(x)dx. In particular, consider the functions f : x �→ 5x2

325
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and g : x �→ 3x. Then ‖f‖ =
√

5 and ‖g‖ =
√

3, and the angle t

between f and g satisfies cos(t) =
√

1
15

∫ 1

0
(5x2)(3x)dx = 1

4

√
15.

Vectors v and w in an inner product space V are orthogonal if
and only if 〈v, w〉 = 0. In this case we write v ⊥ w. We note that if
v ⊥ w then ‖v + w‖2 = ‖v‖2 + 〈v, w〉 + 〈w, v〉 + ‖w‖2 = ‖v‖2 + ‖w‖2

. A
nonempty subset D of V is a set of mutually orthogonal vectors if
v ⊥ w whenever v �= w in D.

Example: We have already seen that if v, w ∈ R
3, then v ·(v×w) = 0.

This says that a vector v is orthogonal to v×w, for any vector w. The
same is also true for w and v × w and so we see that if {v, w} is a
linearly-independent subset of R

3 then the set {v, w, v × w} is linearly
independent and so is a basis of R

3.
Moreover, as an immediate consequence of the Lagrange identity on R

3,

we see that if v × w =




0
0
0



 and v · w = 0 then either v =




0
0
0



 or

w =




0
0
0



 . If v, w ∈ R
3, then the angle t between them satisfies the

condition that v · w = (‖v‖ · ‖w‖) cos(t). Using the Lagrange identity, we
see that

‖v × w‖2 = ‖v‖2 ‖w‖2 − (v · w)2 = ‖v‖2 ‖w‖2 [1 − cos2(t)
]

= ‖v‖2 ‖w‖2 sin2(t)

and so ‖v × w‖ = (‖v‖ · ‖w‖) | sin(t)|. Thus | cos(t)| =
‖v × w‖
‖v‖ · ‖w‖ .

Example: If V = C
2 on which we have the dot product, then it is

easy to see that
[

2 + 3i
−1 + 5i

]

⊥
[

1 + i
−i

]

.

Example: Let V = C(−1, 1), on which we have defined the inner
product 〈f, g〉 =

∫ 1

−1
f(x)g(x)dx. For all i ≥ 0, define the functions

pi ∈ V as follows: p0 : x �→ 1; p1 : x �→ x; and

ph+1 : x �→
(

2h + 1
h + 1

)

xph(x) −
(

h

h + 1

)

ph−1(x) whenever h > 1.

These polynomial functions are known as Legendre polynomials. It is
easy to verify that pi ⊥ ph whenever i �= h.
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On the same space, we can define another inner product, namely

〈f, g〉 =
∫ 1

−1

f(x)g(x)√
1 − x2

dx.

For each i ≥ 0, define the function qi ∈ V by setting q0 : x �→ 1;
q1 : x �→ x; and qh+1 : x �→ 2xqh(x) − qh−1(x) whenever h > 1. These
polynomial functions are known as Chebyshev1 polynomials. It is again
easy to verify that qi ⊥ qh whenever i �= h.

Both of the these products are special instances of a more general con-
struction. For any −1 < r, s ∈ R, it is possible to define an inner product
on C(−1, 1) by setting 〈f, g〉 =

∫ 1

−1
f(x)g(x)(1−x)r(1+x)sdx. The set of

polynomial functions which are mutually orthogonal with respect to this
inner product is called the set of Jacobi polynomials of type (r, s).
Such polynomials are important in many areas of numerical analysis, and
in particular in numerical integration.

(16.1) Proposition: Let V be an inner product space over a
field of scalars F .

(1) If v ∈ V satisfies v ⊥ w for all w ∈ V, then v = 0V .
(2) If ∅ �= A ⊆ V and if v ∈ V satisfies the condition that

v ⊥ w for all w ∈ A, then v ⊥ w for w ∈ FA.

Proof: (1) is an immediate consequence of the fact that if v �= 0V

then 〈v, v〉 �= 0. Now assume that ∅ �= A ⊆ V and that v ⊥ w for all
w ∈ A. If y ∈ FA then there exist elements w1, . . . , wn ∈ A and scalars
a1, . . . , an such that y =

∑n
i=1 aiwi and so 〈v, y〉 =

∑n
i=1 ai 〈v, wi〉 = 0,

whence v ⊥ y. �

(16.2) Proposition: Let V be an inner product space and let
A be a nonempty set of nonzero mutually-orthogonal vectors in
V. Then A is linearly independent.

1 Adrien-Marie Legendre was one of the first-
rate mathematicians who worked in France during the time of the revolution and the
generation after it. Among other things, he served on the committee that defined the
metric system. Pafnuty Lvovich Chebyshev, a 19th-century Russian mathematician,
made important contributions to both pure and applied mathematics.
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Proof: Let {v1, . . . , vn} be a finite subset of A and assume that there
exist scalars c1, . . . , cn such that

∑n
i=1 civi = 0V . Then, for 1 ≤ h ≤ n,

we have ch 〈vh, vh〉 =
∑n

i=1 ci 〈vi, vh〉 = 〈
∑n

i=1 civi, vh〉 = 〈0V , vh〉 = 0
and hence ch = 0. Thus any finite subset of A is linearly independent,
and therefore A is linearly independent. �

If V is an inner product space then any vector 0V �= w ∈ V defines
a function

πw : v �→ 〈v, w〉
〈w,w〉w

from V to itself, which is in fact a projection the image of which is the
subspace of V generated by {w}. This easily-checked remark is the basis
for the following theorem.

(16.3) Proposition (Gram-Schmidt Theorem): Any finitely-
generated inner product space V has a basis composed of mutu-
ally-orthogonal vectors.

Proof: We will proceed by induction on dim(V ). If dim(V ) = 1 the
result is immediate. Therefore we can assume that the proposition is true
for any inner product space of dimension k, and assume that dim(V ) =
k + 1. Let W be a subspace of V of dimension k. By the induction
hypothesis, there exists a basis {v1, . . . , vk} of W composed of mutually-
orthogonal vectors. Let v ∈ V � W and set vk+1 = v −

∑k
i=1 πvi

(v).
This vector does not belong to W since v /∈ W. Therefore {v1, . . . , vk+1}
is a generating set for V. Moreover, for 1 ≤ j ≤ k, we have

〈vk+1, vj〉 = 〈v, vj〉 −
k∑

i=1

〈v, vi〉
〈vi, vi〉

〈vi, vj〉 = 〈v, vj〉 −
〈v, vj〉
〈vj , vj〉

〈vj , vj〉 = 0

and so vk+1 ⊥ vj for all 1 ≤ j ≤ k. By Proposition 5.3, it follows that
the set {v1, . . . , vk+1} is linearly independent and so is a basis for V.
�

We should note that the proof of Proposition 16.3 is an algorithm, called
the Gram-Schmidt process, which is easy to implement by a computer
program to create a basis composed of mutually-orthogonal vectors of V,
when we are given a basis of any sort for the space.

Example: Let v1 =







3
0
0
0





 , v2 =







0
1
2
1





 , and v3 =







3
−1

3
2







be vectors in R
4, on which we have defined the dot product. The set
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{v1, v2, v3} is linearly independent and so generates a three-dimensional
subspace W of R

4. Let us use the Gram-Schmidt process to build a
basis for W composed of mutually-orthogonal vectors. Indeed, we define

u1 = v1, u2 = v2 − πu1(v2) =







0
1
2
1





 , and u3 = v3 − πu1(v3)− πu2(v3) =

1
6







0
−13

4
5





 then {u1, u2, u3} is a basis for W, the vectors of which are

mutually orthogonal.

Example: Let V = C(−1, 1), on which we have defined the inner
product 〈f, g〉 =

∫ 1

−1
f(x)g(x)dx. For all i ≥ 0, let fi be the polynomial

function fi : x �→ xi. Then for each n > 0, the set {f0, . . . , fn} is linearly
independent and so forms a basis for a subspace W of V. We now apply
the Gram-Schmidt process to this basis, to obtain a basis {p0, . . . , pn} of
vectors in V which are mutually orthogonal, where the pj are precisely
the Legendre polynomials we introduced earlier.

Actually, the assumption that we have a basis in hand when initiating
the Gram-Schmidt process is one of convenience rather than necessity. We
could begin with an arbitrary generating set {v1, . . . , vn} for the given
space. In that case, at the hth stage of the process we would begin by check-
ing whether vh is a linear combination of the set of mutually-orthogonal
vectors {u1, . . . , uh−1} we have already created. If it is, we just discard it
and go on to vh+1.

We should point out that the Gram-Schmidt process is not considered
computationally stable – small errors and roundoffs in the computational
process accumulate rapidly and can lead at the end to a significant dif-
ference between the true solution and the computed solution. There are,
fortunately, other more sophisticated methods of constructing a basis com-
posed of mutually-orthogonal vectors from a given basis.

(16.4) Proposition (Hadamard inequality): Let n be a positive
integer, let A = [aij ] ∈ Mn×n(R) be a nonsingular matrix, and let
e = |A|. Then |e| ≤ gn

√
nn, where g = max{|aij | | 1 ≤ i, j ≤ n}.

Proof: Denote the rows of A by v1, . . . , vn. Then {v1, . . . , vn} is
a basis for V = R

n and so, using the Gram-Schmidt method, we can
find a new basis {u1, . . . , un} for V , on which we consider the dot
product, composed of mutually-orthogonal vectors, and defined by setting
u1 = v1 and uh = vh −

∑h−1
j=1 chjuj , where chj = (vh · uj)(uj · uj)−1.
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If B ∈ Mn×n(R) is the matrix the rows of which are u1, . . . , un, then

A = CB, where C =







1 0 0 . . . 0
c21 1 0 . . . 0

. . .
cn1 cn2 . . . cn,n−1 1





 . Since C is a

lower-triangular matrix, its determinant is the product of the entries on its
diagonal, namely 1. Therefore e = |B|.

By looking at the Gram-Schmidt method, we see that ‖ui‖ ≤ ‖vi‖ for
all 1 ≤ i ≤ n. Moreover, since the ui are mutually orthogonal, we see that
BBT = D, where D = [dij ] is the diagonal matrix defined by dii = ‖ui‖2

for all 1 ≤ i ≤ n. Therefore (e)2 =
∣
∣BBT

∣
∣ | = |D| =

∏n
i=1 ‖ui‖2

. Now let
g = max{|aij | | 1 ≤ i, j ≤ n}. Then ‖ui‖ ≤ ‖vi‖ ≤ g

√
n for all 1 ≤ i ≤ n

and so |e| ≤ gn
√

nn, as desired. �

Let V be an inner product space having a subspace W. Let W⊥ =
{v ∈ V | 〈v, w〉 = 0 for all w ∈ W} . By Proposition 16.1, we know that
W⊥ is a subspace of V. Since 〈v, v〉 �= 0 for all 0V �= v ∈ V, it is
clear that W and W⊥ are disjoint. Also, again by Proposition 16.1,
we see that V ⊥ = {0V } and {0V }⊥ = V. The space W⊥ is called the
orthogonal complement of W in V, and this name is justified by the
following result:

(16.5) Proposition: Let W be a subspace of a finitely-generated
inner product space V. Then V = W ⊕ W⊥ and W =

(
W⊥)⊥ .

Proof: By Proposition 16.3, we know that it is possible to find a basis
{v1, . . . , vk} of W which is composed of mutually-orthogonal vectors, and
by the construction method used in the proof of this proposition, we see
that this can be extended to a basis {v1, . . . , vn} of V, the elements of
which are still mutually orthogonal. Thus vi ∈ W⊥ for all k < i ≤ n,
proving that V = W + W⊥. But we already know that W and W⊥ are
disjoint and so we have W ⊕ W⊥. Moreover, {vk+1, . . . , vn} is a basis
for W⊥ and so W =

(
W⊥)⊥ . �

In particular, if V is an inner product space having a subspace W then
we have a natural projection of W ⊕W⊥ onto W, called the orthogonal
projection. The image of a vector v ∈ W ⊕W⊥ under this projection is
the unique element of W closest to v, according to the distance function
defined by the inner product on V, in the sense of the following theorem.

(16.6) Proposition: Let W be a subspace of an inner product
space V and let v = w + y, where w ∈ W and y ∈ W⊥. Then
‖v − w′‖ ≥ ‖v − w‖ for all w′ ∈ W, with equality holding if and
only if w′ = w.
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Proof: If w′ ∈ W then

‖v − w′‖2 = ‖w − w′ + y‖2 = 〈w − w′ + y, w − w′ + y〉
= 〈w − w′, w − w′〉 + 〈y, w − w′〉 + 〈w − w′, y〉 + 〈y, y〉
= 〈w − w′, w − w′〉 + 〈y, y〉
= ‖w − w′‖2 + ‖y‖2 = ‖w − w′‖2 + ‖v − w‖2

and from here the result follows immediately. �

One of the important problems in computational algebra is the following:
given an endomorphism α of a finitely-generated inner product space and
a vector 0V �= v0 ∈ V, find an efficient procedure to define an orthogonal
projection onto the Krylov subspace F [α]v0. One of the first of these is the
Arnoldi process, a modification of the Gram-Schmidt process. Several
variants of this procedure have been devised, depending on special prop-
erties of α. This process is not considered as computationally efficient as
the Lanczos algorithm mentioned earlier. Arnoldi’s process is also the basis
for the GMRES algorithm (GMRES = generalized minimal residual) for
solution of systems of linear equations, devised by Yousef Saad and Martin
Schultz in 1986.

Note that Proposition 16.5 is not necessarily true if the space V is not
finitely generated, as the following example shows.

Example: Let V = R
(∞). For each h ≥ 0, let vh be the sequence

in which the hth entry equals 1 and all other entries equal 0. Then
B = {vh | h ≥ 0} is a basis for V composed of mutually-orthogonal
vectors. Let W = R{v0 − v1, v1 − v2, . . .}. This subspace of V is proper
since v0 ∈ V � W. If 0V �= y ∈ W⊥ then there exists a nonnegative
integer n such that y =

∑n
i=0 aivi. where the ai are real numbers and

an �= 0. But then an = 〈y, vn − vn+1〉 = 0, and that is a contradiction.
Therefore we have shown that W⊥ = {0V }, despite the fact that W �= V.
Moreover, in this case V �= W ⊕ W⊥ and (W⊥)⊥ = V �= W.

Let V be an inner product space. A nonempty subset A of V is
orthonormal if and only if the elements of A are mutually orthogonal,
and each of them is normal. Thus, for example, the canonical basis of R

n,
equipped with the dot product, is orthonormal.

Example: Let V = C(−π, π), on which we have an inner product
defined by 〈f, g〉 = 1

π

∫ π

−π
f(x)g(x)dx. Then We have an orthonormal

subset
{

1√
2

}
∪ {sin(nx) | n ≥ 1} ∪ {cos(nx) | n ≥ 1} of V .

Example: Let V be the subspace of R
R consisting of all functions f

for which
∫∞
−∞ |f(x)|2 dx is finite, where the norm is taken with respect
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to the inner product 〈f, g〉 =
∫∞
−∞ f(x)g(x)dx defined on V. Let h ∈ V

be the function defined by

h : x �→






1 for 0 < x ≤ 1
2

−1 for 1
2 < x ≤ 1

0 otherwise
.

This function is known as the Haar2 wavelet. For each j, k ∈ N define
the function hj

k ∈ V by setting hj
k : x �→ 2j/2h(2jx−k). Then the subset{

hj
k | j, k ∈ N

}
of V is orthonormal. Haar wavelets have important

applications in image compression.

(16.7) Proposition: Every finitely-generated inner product space
V has an orthonormal basis.

Proof: By Proposition 16.3, we know that V has a basis {v1, . . . , vn}
the elements of which are mutually orthogonal. For each 1 ≤ i ≤ n, let
wi = ‖vi‖−1

vi. Then each wi is normal and {w1, . . . , wn} is a basis for
V, the elements of which remain mutually orthogonal. �

We can modify the Gram-Schmidt method to provide an algorithm for
constructing an orthonormal basis from any given basis of a finitely-gene-
rated inner product space V, by normalizing each basis element as it is
created. This has the added advantage of tending to reduce accumulated
roundoff and truncation errors. The examples after Proposition 16.3 and
Proposition 16.6 show that inner product spaces which are not finitely
generated may have orthonormal bases as well, but this is not always true.
Making use of the Hausdorff Maximum Principle, it is possible to show
that every inner product space V has a maximal orthonormal set, which
must be linearly independent by Proposition 16.2. Such a subset is called
a Hilbert subset of V. Clearly, a subset A of V is a Hilbert subset
if and only if for every 0V �= y ∈ V there exists a v ∈ A satisfying
〈v, y〉 �= 0. If V is finitely generated then any Hilbert subset of V is a
basis for V, but this is not necessarily true for inner product spaces which
are not finitely generated.

2 The twentieth-century Hungarian mathematician Alfréd Haar
worked primarily in analysis.
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Example: It is of course possible that a finitely-generated inner prod-
uct space may have many different orthonormal bases. For example, the
canonical basis of R

4 is orthonormal, as is the basis











1
0
0
0





 ,







0
1√
2

1√
2

0





 ,







0
−1√

2
1√
2

0





 ,







0
0
0
1












.

(16.8) Proposition: Let V be a finitely-generated inner prod-
uct space having an orthonormal basis {v1, . . . , vn}. If x =∑n

i=1 aivi and y =
∑n

i=1 bivi are vectors in V, then 〈x, y〉 =∑n
i=1 aibi.

Proof: By the properties of the inner product, we have 〈x, y〉 =〈∑n
i=1 aivi,

∑n
j=1 bjvj

〉
=

∑n
i=1

∑n
j=1 aibj 〈vi, vj〉 =

∑n
i=1 aibi, as de-

sired. �

(16.9) Proposition: Let V be a finitely-generated inner prod-
uct space having an orthonormal basis {v1, . . . , vn}. Then each
v ∈ V satisfies v =

∑n
i=1 〈v, vi〉 vi.

Proof: We know that v =
∑n

i=1 aivi, for some scalars a1, . . . , an. Then
for each 1 ≤ h ≤ n we have 〈v, vh〉 = 〈

∑n
i=1 aivi, vh〉 =

∑n
i=1 ai 〈vi, vh〉 =

ah 〈vh, vh〉 = ah, which yields the desired result. �

The coefficients 〈v, vi〉 encountered in Proposition 16.9 are called the
Fourier coefficients of the vector v with respect to the given orthonormal
basis.

Example: Consider the vector space C(−1, 1) over R, on which
we have the inner product 〈f, g〉 =

∫ 1

−1
f(x)g(x)dx. We want to find a

polynomial function of degree at most 3 which most closely approximates
the function f : x �→ sin(x) on the interval [−1, 1]. To do so, consider
the subspace V of C(−1, 1) generated by the functions pi : x �→
xi for 0 ≤ i ≤ 3 and f. Apply the Gram-Schmidt process to the
basis {p0, . . . , p3, f} of V to get an orthonormal basis {q0, . . . , q3, g},
where q0 : x �→ 1

2 ; q1 : x �→
(√

3
2

)
x; q2 : x �→

(√
5
2

) (
3
2x2 − 1

2

)
; and

q3 : x �→
(√

7
2

) (
5
2x3 − 9

6x
)
. By Proposition 16.6 and Proposition 16.9,

we know that the polynomial function of degree at most 3 which most
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closely approximates the function f is
∑3

i=0 〈f, qi〉 qi, where the Fourier
coefficients 〈f, qi〉 are given by

〈f, q0〉 =
∫ 1

−1

1
2

sin(x)dx = 0;

〈f, q1〉 =
∫ 1

−1

(√
3
2

)

sin(x)x dx =
√

6 (sin(1) − cos(1)) = 0.738;

〈f, q2〉 =
∫ 1

−1

(√
5
2

)(
3
2
x2 − 1

2

)

sin(x)dx = 0;

〈f, q3〉 =
∫ 1

−1

(√
7
2

)(
5
2
x3 − 9

6
x

)

sin(x)dx

= (14
√

14) cos(1) − (9
√

14) sin(1) = −0.034;

Thus the polynomial function we seek is given by u : x �→ −0.315x3 +
0.998x. The following diagram shows the graphs sin(x) and u(x) over
a slightly larger interval, in which u(x) is represented by the dashed line
and sin(x) by the solid line.

(16.10) Proposition: Let F be R or C and let k and n be
positive integers. Let A ∈ Mk×n(F ) be a matrix the columns of
which are linearly independent in F k. Then there exist matrices
Q ∈ Mk×n(F ) and R ∈ Mn×n(F ) such that

(1) A = QR;
(2) The columns of Q are orthonormal with respect to the dot

product on F k;
(3) R is nonsingular and upper-triangular.
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Proof: Let u1, . . . , un be the columns of A. Apply the Gram-Schmidt
process to the set {u1, . . . , un} and then normalize each of the resulting
vectors to obtain an orthonormal set {v1, . . . , vn} of vectors in F k. Let
Q ∈ Mk×n(F ) be the matrix having columns v1, . . . , vn. Then, by
Proposition 16.9, we see that ui =

∑n
j=1(ui ·vj)vj for all 1 ≤ i ≤ n, and

so A = QR, where R = [rij ] ∈ Mn×n(F ) is given by rij = uj · vi for all
1 ≤ i, j ≤ n. This matrix is clearly nonsingular. Moreover, we note that
the Gram-Schmidt process is such that vj is orthogonal to u1, . . . , uj−1

for all 2 ≤ j ≤ n and so rij = 0 when i > j. Therefore R is also
upper-triangular. �

A decomposition of a matrix in the form given by Proposition 16.10
is called a QR-decomposition. Such decompositions form a basis of
many important numerical algorithms, and are widely used, for example,
in computing eigenvalues of large matrices. The use is primarily iterative.
If A is an n × n matrix over R or C the eigenvalues of which have
distinct absolute values and if we can indefinitely perform the iteration

(1) A1 = A;
(2) If Ai has a QR-decomposition Ai = QiRi then set Ai+1 = RiQi;

then, under rather mild conditions on A, the sequence A1, A2, . . . of
matrices tends to an upper triangular matrix in which the eigenvalues of
A appear in decreasing order of absolute value along the diagonal.3

One of the major advantages of QR-decompositions is that they are easy
to update. If we are given a decomposition A = QR, and then the matrix
A is altered slightly to obtain a matrix A′ by changing a few of its entries,
it is relatively easy to alter Q and R to get a QR-decomposition for
A′. This is important since many applications of linear algebra involve
solving successive systems of linear equations of the form A(i)X = w(i),
where A(i+1) and w(i+1) are obtained from A(i) and w(i) by relatively
minor modifications, based on data from some external source which is
periodically updated.

The following algorithm is used to compute a QR-decomposition of a
matrix A ∈ Mk×n(F ) with columns u1, . . . , un :

3 QR-decompositions were developed independently by
Swiss computer scientist Heinz Rutishauser, one of the fathers of ALGOL, by Russian
computer scientist Vera Kublanovskaya, and by J. G. F. Francis of the British
computer manufacturer Ferranti Ltd.



336 16. Orthogonality

For i = 1 to n do steps (1) - (3):
(1) vi = ui;
(2) For j = 1 to i − 1 set rji = ui · vj and vi = vi − rjivj ;
(3) Set rii = ‖vi‖ and vi = r−1

ii vi.

Then Q is the matrix with columns v1, . . . , vn and R = [rij ]. Note
that step (3) presupposes that we have already checked that the set of
columns of A is linearly independent. If not, then we have to add an
initial check to insure that rii is nonzero, before we attempt to invert it.
As already noted, the Gram-Schmidt method is not numerically stable and
hence neither is this algorithm for finding a QR-decomposition. It can be
modified to produce a somewhat more stable algorithm by replacing the
definition of rji in step (2) by rji = vi · vj .

(16.11) Proposition: Let V be a finitely-generated inner prod-
uct space having an orthonormal basis {v1, . . . , vn}. Then for all
v, w ∈ V :

(1) (Parseval’s identity) 〈v, w〉 =
∑n

i=1 〈vi, v〉 〈vi, w〉 ;
(2) (Bessel’s identity4) ‖v‖2 =

∑n
i=1 |〈vi, v〉|2 .

Proof: Parseval’s identity follows from the calculation

〈v, w〉 =

〈
n∑

i=1

〈v, vi〉 vi, w

〉

=
n∑

i=1

〈v, vi〉 〈vi, w〉 =
n∑

i=1

〈vi, v〉 〈vi, w〉

and Bessel’s identity derives from this in the special case v = w. �

The following results shows that orthogonality can be used to determine
the relation between two different inner products defined on a vector space
over R.

(16.12) Proposition: Let V be a vector space over R on which
we have defined two inner products, µ1 and µ2. For i = 1, 2, let

4 Wilhelm Bessel was a 19th century astronomer and friend of
Gauss; his mathematical work came as a result of his research on planetary orbits.
Little is known about the life of Marc-Antoine Parseval, a French mathematician
who published only five short papers at the end of the 18th century, and no picture of
him survives.
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Yi = {(v, w) ∈ V × V | µi(v, w) = 0}. Then the following conditions
are equivalent:

(1) There exists a positive real number c such that µ2 = c2µ1;
(2) Y1 = Y2;
(3) Y1 ⊆ Y2.

Proof: Since it is clear that (1) implies (2), and (2) implies (3), all we
have to prove is that (3) implies (1). Therefore, assume (3). First let us
consider the case dim(V ) = 1, i.e. the case in which V = R. Then, for
i = 1, 2, the scalar bi = µi(1, 1) is nonzero. Set d = µ2(1, 1)/µ1(1, 1).
If a, b ∈ R, then µ2(a, b) = abµ2(1, 1) = abdµ1(1, 1) = dµ1(a, b) and
so, taking c =

√
d, we have established (1). Thus we can assume that

dim(V ) ≥ 2. For each i = 1, 2, and each v ∈ V, let ‖v‖i =
√

µi(v, v) > 0.
Without loss of generality, we can assume that there exist elements v, w ∈
V and positive real numbers a < b such that ‖v‖2 = a ‖v‖1 and ‖w‖2 =
b ‖w‖1 , since otherwise we would immediately have (1). Suppose that
w = dv for some 0 �= d ∈ R. Then ‖w‖2 = |d| · ‖v‖2 = |d|a · ‖v‖1 a ‖w‖1

and so a = b, which is contrary to our assumption that a < b. Therefore
we conclude that the set {v, w} is linearly independent. Normalizing v
and w with respect to µ1 if necessary, we can furthermore assume that
‖v‖1 = 1 = ‖w‖1 .

We claim that (v, w) /∈ Y1. Indeed, assume otherwise. Then

µ1(v + w, v − w) = µ1(v, v) − µ1(w,w) = ‖v‖2
1 − ‖w‖2

1 = 0

and so (v + w, v − w) ∈ Y1. Therefore, by (3), (v + w, v − w) ∈ Y2. But
µ2(v + w, v − w) = ‖v‖2

2 − ‖w‖2
2 = a2 − b2 ∈ R � {0}, and so we have

a contradiction, establishing the claim. Set y = v − ‖v‖2
1 µ1(v, w)−1w.

Then µ1(y, v) = ‖v‖2
1 − rµ1(v, w) = 0, where r = ‖v‖2

1 µ1(v, w)−1, and
so (y, v) ∈ Y1 ⊆ Y2. Since the set {v, w} is linearly independent, we know
that y �= 0V . If we set y′ = ‖y‖−1

1 y, then (y′, v) ∈ Y1 ⊆ Y2 and so, as
before, µ1(y′ + v, y′ − v) = ‖y′‖2

1 −‖v‖2
1 = 0. Hence (y′ + v, y′ − v) ∈ Y1.

Thus ‖y‖2
1 + ‖v‖2

1 = ‖−y + v‖2
1 = ‖rw‖2

1 = ‖v‖4
1 |µ1(v, w)|−2 ‖w‖2

1 and so
‖y‖2

1 = ‖v‖4
1 |µ1(v, w)|−2 ‖w‖2

1 − ‖v‖2
1 . Since µ2(y, v) = 0, we see that

‖y‖2
2 + ‖v‖2

2 = ‖−y + v‖2
2 = ‖rw‖2

2 = ‖v‖4
1 |µ1(v, w)|−2 ‖w‖2

2

and so

‖y‖2
2 = ‖v‖4

1 |µ1(v, w)|−2 ‖w‖2
2 − ‖v‖2

2

= ‖v‖4
1 |µ1(v, w)|−2

b2 ‖w‖2
1 − a2 ‖v‖2

1

> a2
(
‖v‖4

1 |µ1(v, w)|−2 ‖w‖2
1 − ‖v‖2

1

)
= a2 ‖y‖2

1 .

Since µ2(y′, v) = 0, this implies that

µ2(y
′ + v, y′ − v) = ‖y′‖2

2 − ‖v‖2
2 > a2 − a2 = 0,
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contradicting (3) and the fact that µ1(y′ + v, y′ − v) = 0. From this
contradiction, we conclude that there can be no elements a and b as
above, so there must exist a positive real number c such that ‖v‖2

2 = c ‖v‖2
1

for each nonzero vector v ∈ V. Then for each v, w ∈ V we have

µ2(v, w) =
1
4

[‖v + w‖2 − ‖v − w‖2]

=
c2

4
[‖v + w‖1 − ‖v − w‖1] = c2µ1(v, w),

which proves (1). �

Let V be an inner product space. We have already seen that, for each
w ∈ V, the function from V to the field of scalars given by v �→ 〈v, w〉
belongs to D(V ). If V is finitely generated, we claim that every element
of D(V ) is of this form. The following result is actually a special case of
a much wider, and more complicated, theorem.

(16.13) Proposition (Riesz5 Representation Theorem): Let V
be a finitely-generated inner product space. If δ ∈ D(V ) then
there exists a unique vector y ∈ V satisfying δ(v) = 〈v, y〉 for all
v ∈ V.

Proof: Let {v1, . . . , vn} be an orthonormal basis for V and let
y =

∑n
i=1 δ(vi)vi. Then for all 1 ≤ h ≤ n we have

〈vh, y〉 =

〈

vh,

n∑

i=1

δ(vi)vi

〉

=
n∑

i=1

δ(vi) 〈vh, vi〉 = δ(vh)

and so 〈v, y〉 = δ(v) for all v ∈ V. The vector y is unique since if
〈v, x〉 = 〈v, y〉 for all v ∈ V then x =

∑n
i=1 〈x, vi〉 vi =

∑n
i=1 δ(vi)vi = y,

as desired. �

Example: Let n > 1 be an integer and let V be the subspace
of R

R consisting of all polynomial functions of degree at most n, on
which we have an inner product defined by 〈f, g〉 =

∫ 1

−1
f(t)g(t)dt. Let

δ ∈ D(V ) be the linear functional defined by δ : f �→ f(0). By Proposition

5 The 20th century Hungarian mathematician Frigyes Riesz was
one of the founders of functional analysis.
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16.13, there exists a polynomial function p ∈ V satisfying the condition
f(0) =

∫ 1

−1
f(t)p(t)dt for all f ∈ V. The function p is defined to be

∑n
i=0 pi(0)pi, where pi is the ith Legendre polynomial.

(16.14) Proposition: Let V and W be finitely-generated inner
product spaces, and let α : V → W be a linear transformation.
Then there exists a unique linear transformation α∗ : W → V
satisfying the condition 〈α(v), w〉 = 〈v, α∗(w)〉 for all v ∈ V and
all w ∈ W.

Proof: Let w be a given vector in W. It is easy to check that
the function δ from V to F defined by δ : v �→ 〈α(v), w〉 is a linear
functional. By Proposition 16.13, we know that there exists a unique vector
yw ∈ V satisfying δ(v) = 〈v, yw〉 for all v ∈ V. Define the function
α∗ : W → V by α∗ : w �→ yw. We have to prove that this function is
indeed a linear transformation. Indeed, if w1, w2 ∈ W then

〈v, α∗(w1 + w2)〉 = 〈α(v), w1 + w2〉 = 〈α(v), w1〉 + 〈α(v), w2〉
= 〈v, α∗(w1)〉 + 〈v, α∗(w2)〉 = 〈v, α∗(w1) + α∗(w2)〉

and this is true for all v ∈ V, we have α∗(w1 + w2) = α∗(w1) + α∗(w2)
for all w1, w2 ∈ W. If c is a scalar and if w ∈ W then

〈v, α∗(cw)〉 = 〈α(v), cw〉 = c 〈α(v), w〉 = c 〈v, α∗(w)〉 = 〈v, cα∗(w)〉

for all v ∈ V, and hence α∗(cw) = cα∗(w). Thus α∗ is a linear
transformation and, since yw is uniquely defined, it is also unique. �

Let V and W be inner product spaces and let α : V → W be a
linear transformation. A linear transformation α∗ : W → V satisfying
the condition 〈α(v), w〉 = 〈v, α∗(w)〉 for all v ∈ V and w ∈ W is called
an adjoint transformation of α. By Proposition 16.14, we know that
if V and W are finitely generated then every α ∈ Hom(V,W ) has a
unique adjoint.

(16.15) Proposition: Let V and W be finitely-generated
inner product spaces, having orthonormal bases B = {v1, . . . , vn}
and D = {w1, . . . , wk} respectively. Let α : V → W be a linear
transformation. Then ΦBD(α) is the matrix A = [aij ], where
aji = 〈α(vi), wj〉 and ΦDB(α∗) = AH .

Proof: For all 1 ≤ i ≤ n, let α(vi) =
∑k

h=1 ahjwh. Then for all

1 ≤ j ≤ k we have 〈α(vi), wj〉 =
〈∑k

h=1 ahjwh, wj

〉
= aji and also

〈α∗(wj), vi〉 = 〈vi, α∗(wj)〉 = 〈α(vi), wj〉 = aji, which is what we needed.
�
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Example: It is of course possible that a linear transformation between
inner product spaces can have an adjoint even if the spaces are not finitely
generated. For example, let [a, b] be a closed interval on the real line and
let V be the vector space of all differentiable functions from [a, b] to R.

Define an inner product on V by setting 〈f, g〉 =
∫ b

a
f(x)g(x)dx. This

is an inner product space which is not finitely generated over R. Let α

be the endomorphism of V satisfying α(f) : x �→
∫ b

a
e−txf(t)dt. Then

〈α(f), g〉 = 〈f, α(g)〉 for all f, g ∈ V, and so α∗ exists, and equals α.

(16.16) Proposition: Let V, W, and Y be inner product
spaces. Let α and β be linear transformations from V to W
having adjoints, let ζ be a linear transformation from W to
Y having an adjoint, and let c be a scalar. Then:

(1) (α + β)∗ = α∗ + β∗;
(2) (cα)∗ = cα∗;
(3) (ζα)∗ = α∗ζ∗;
(4) α∗∗ = α.

Proof: (1) For all v ∈ V and all w ∈ W , we have

〈v, (α + β)∗(w)〉 = 〈(α + β)(v), w〉 = 〈α(v) + β(v), w〉
= 〈α(v), w〉 + 〈β(v), w〉 = 〈v, α∗(w)〉 + 〈v, β∗(w)〉
= 〈v, (α∗ + β∗)(w)〉

and so by the uniqueness of the adjoint we get (α + β)∗ = α∗ + β∗.
(2) For all v ∈ V and all w ∈ W , we have

〈v, (cα)∗(w)〉 = 〈(cα)(v), w〉 = 〈c(α(v)), w〉 = c 〈α(v), w〉
= c 〈v, α∗(w)〉 = 〈v, cα∗(w)〉 = 〈v, (cα∗)(w)〉

and so (cα)∗ = cα∗.
(3) For all v ∈ V and all y ∈ Y , we have

〈v, (ζα)∗(y)〉 = 〈(ζα)(v), y〉 = 〈α(v), ζ∗(y)〉 = 〈v, α∗ζ∗(y)〉

and so (ζα)∗ = α∗ζ∗.
(4) For all v ∈ V and all w ∈ W , we have

〈w,α∗∗(v)〉 = 〈α∗(w), v〉 = 〈v, α∗(w)〉 = 〈α(v), w〉 = 〈w,α(v)〉

and so α∗∗ = α. �

For a finitely-generated inner product space V, we can consider the
assignment α �→ α∗ as a function from End(V ) to itself which satisfies
the following conditions:

(1) σ∗
1 = σ1;



16. Orthogonality 341

(2) (α + β)∗ = α∗ + β∗ and (αβ)∗ = β∗α∗ for all α, β ∈ End(V );
(3) α∗∗ = α for all α ∈ End(V ).

A function satisfying these conditions is called an involution on the F -
algebra End(V ). Another involution we have already seen is the function
A �→ AT on the F -algebra Mn×n(F ), for any field F. Of course, in the
case F = R, the relation between these two involutions can be seen from
Proposition 16.15. We have also seen that the function A �→ AH is an
involution of Mn×n(C), and its relation to the involution α �→ α∗ is also
immediate from Proposition 16.15.

(16.17) Proposition: Let α : V → W be a linear transformation
between finitely-generated inner product spaces. Then:

(1) ker(α∗) = im(α)⊥;
(2) ker(α) = im(α∗)⊥;
(3) im(α) = ker(α∗)⊥;
(4) im(α∗) = ker(α)⊥.

Proof: (1) We note that

ker(α∗) = {w ∈ W | α∗(w) = 0V }
= {w ∈ W | 〈v, α∗(w)〉 = 0 for all v ∈ V }
= {w ∈ W | 〈α(v), w〉 = 0 for all v ∈ V } = im(α)⊥.

(2) This follows from the same argument as (1), replacing α by
α∗.

(3) By (1) and Proposition 16.6, we have im(α) = (im(α)⊥)⊥ =
ker(α∗)⊥.

(4) This follows from (2) in the same way (3) follows from (1).
�

(16.18) Proposition: If α is an endomorphism of a finitely-
generated inner product space V then null(α) = null(α∗).

Proof: By Proposition 6.10 and Proposition 16.17, we know that

null(α) = dim(im(α∗)⊥) = dim(V ) − dim(im(α∗)) = null(α∗)

and so we are done. �

Example: Proposition 16.18 is not necessarily true for inner product
spaces which are not finitely generated. For example, let V = R

(∞) with
the inner product 〈[a0, a1, . . .], [b0, b1, . . .]〉 =

∑∞
i=0 aibi. Let α ∈ End(V )

be given by α : [a0, a1, . . .] �→ [0, a0, a1, . . .]. Then α∗ exists and is given
by α∗ : [a0, a1, . . .] �→ [a1, a2, . . .]. Clearly, ker(α) is trivial but ker(α∗)
is not.
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(16.19) Proposition: Let α : V → W be a linear transformation
between finitely-generated inner product spaces. Then

(1) If α is a monomorphism then α∗α is an automorphism
of V ;

(2) If α is an epimorphism then αα∗ is an automorphism of
W.

Proof: (1) It suffices to prove that the linear transformation α∗α is
monic. And, indeed, if v ∈ V satisfies α∗α(v) = 0V then 〈α(v), α(v)〉 =
〈α∗α(v), v〉 = 〈0V , v〉 = 0 and so α(v) = 0W . Since α is a monomorphism,
v = 0V and so we have shown that α∗α is monic, as we needed.

(2) First of all, we will show that α∗ is a monomorphism. Indeed, if
w1, w2 ∈ W are vectors satisfying α∗(w1) = α∗(w2) then for all v ∈ V
we have 〈α(v), w1 − w2〉 = 〈v, α∗(w1) − α∗(w2)〉 = 0 and since α is an
epimorphism, we conclude that 〈w,w1 − w2〉 = 0 for all w ∈ W. This
implies that w1 −w2 = 0V and so w1 = w2, showing that α∗ is indeed
monic. Now we will show that αα∗ is also monic, which will suffice to prove
(2). Indeed, if αα∗(w) = 0W then 〈α∗(w), α∗(w)〉 = 〈αα∗(w), w〉 = 0
and so α∗(w) = 0V , proving that w = 0W . �

(16.20) Proposition: Let α : V → W be an isomorphism be-
tween finitely-generated inner produce spaces. Then (α∗)−1 =(
α−1

)∗
.

Proof: Let β =
(
α−1

)∗
. Then for all v1, v2 ∈ V we have 〈v1, v2〉 =〈

α−1α(v1), v2

〉
= 〈α(v1), β(v2)〉 = 〈v1, α

∗β(v2)〉 and so α∗β(v2) = v2 for
all v2 ∈ V, which means that α∗β is the identity map on V. Thus
β = (α∗)−1. �

Finally, we note that in an inner product space over R we can also
project onto affine subsets and not just onto subspaces. Indeed, if V is
an inner product space over R then any element v of V defines a linear
functional δv ∈ D(V ) given by δv : w �→ 〈w, v〉 . If 0 �= c ∈ R, then
δ−1

c (c) is an affine subset of V . Define a function θv : V → V by setting

θv : y �→ y +

[
c − δv(y)
‖v‖2

]

v.

Then for all y ∈ V we have δvθv(y) = c and so we see that θv(y) ∈ δ−1
c (c),

so that im(θv) ⊆ δ−1
c (c). Moreover, θ2

v = θv. We call the function θv

the projection on the affine set δ−1
c (c). Such projections have many

applications, such as the algebraic reconstruction technique (ART), which
is very important in computerized imaging.
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Exercises

Exercise 904 Let A =
[

2 1
1 2

]

∈ M2×2(R). Does there exist a matrix

B ∈ M2×2(R) of the form
[

cos(t) − sin(t)
sin(t) cos(t)

]

such that the columns

of A + B are orthogonal, when considered as elements of the space R
2,

endowed with the dot product?

Exercise 905 Calculate the angle between the vectors




2
1
1



 and




3
1

−2





in the space R
3, endowed with the dot product.

Exercise 906 Calculate the angle between the vectors









1
1
1
2
1









and









1
−1

1
−1

1









in the space R
5, endowed with the dot product.

Exercise 907 Let A and B be nonempty subsets of R
3 which satisfy

the condition that u × v ∈ B whenever u ∈ A and v ∈ B. Is it true
that u × w ∈ B⊥ whenever u ∈ A and w ∈ B⊥.

Exercise 908 Let V = M2×2(R) and define an inner product on V

by setting
〈[

a11 a12

a21 a22

]

,

[
b11 b12

b21 b22

]〉

=
∑2

i=1

∑2
j=1 aijbij . Find the

angle between the matrices
[

1 1
1 1

]

and
[

1 1
−1 1

]

.

Exercise 909 Let V = C(0, 1) on which we have defined the inner prod-
uct 〈f, g〉 =

∫ 1

0
f(x)g(x)dx. Calculate ‖cos(t)‖ .

Exercise 910 Let V be the space R
4, together with the dot product.

Find a normal vector in V which is orthogonal to each of the vectors






1
1
1
1





 ,







1
−1
−1

1





 , and







2
1
1
3





 .
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Exercise 911 Let V = R
3 on which some inner product is defined. Does

there exist a vector 0V �= v ∈ V which is orthogonal to each of the vectors



2
1
3



 ,




1

−1
1



 , and




2
0
4



?

Exercise 912 Let f, g ∈ R
R be defined by f : x �→ x and g : x �→ x2− 1

2 .
Are f and g orthogonal as elements of C(0, 1)? Are they orthogonal
as elements of C(0, 2)?

Exercise 913 Find a real number c such that ‖v − w‖ = c for every
orthonormal pair {v, w} of vectors in R

n, on which the dot product is
defined.

Exercise 914 Let n be a positive integer and let c1, . . . , cn is a list
of real numbers. Let {v1, . . . , vn} be an orthonormal basis for R

n, let
d = min{c1, . . . , cn}. For each 1 ≤ i ≤ n, set di =

√
ci − d and let

wi = dvi. Let B ∈ Mn×n(R) be the matrix the columns of which are
d1, . . . , dn and let A = BBT + dI. For 1 ≤ i ≤ n, show that vi is an
eigenvector of A associated with the eigenvalue ci.

Exercise 915 Let V = C(0, 1) on which we have defined the inner prod-
uct 〈f, g〉 =

∫ 1

0
f(x)g(x)dx, and let W = R{ex} ⊆ V. Find an infinite

set of elements of W⊥.

Exercise 916 Let V = R
4 on which some inner product is defined. Find

distinct vectors v, w, y ∈ V such that v ⊥ w and w ⊥ y, but not v ⊥ y.

Exercise 917 Let V be an inner product space over R and let v and
w be vectors in V. Show that ‖v‖ = ‖w‖ if and only if (v+w) ⊥ (v−w).

Exercise 918 Let V = C(−1, 1) and define an inner product on V by
setting 〈f, g〉 =

∫ 1

−1
f(x)g(x)dx. Let W be the subspace of V composed

of all even functions. Find W⊥.

Exercise 919 Let n be a positive integer and let V = Mn×n(C), on
which we have an inner product defined by 〈A,B〉 = tr(AT B). Let W
be the subspace of V consisting of all those matrices A ∈ V satisfying
tr(A) = 0. Find W⊥.

Exercise 920 Let V be an inner product space having subspaces W and
Y. Show that (W + Y )⊥ = W⊥ ∩ Y ⊥.

Exercise 921 Define an inner product on R
2 with respect to which the

vectors
[

−1
2

]

and
[

2
4

]

are orthogonal.
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Exercise 922 Make use of the Gram-Schmidt process to find an orthonor-
mal basis for the space R

3 together with the dot product, beginning with

the initial basis









1
1
1



 ,




1

−2
1



 ,




1
2
3









.

Exercise 923 Let V be an inner product space and let A be an ortho-
normal subset of V. Show that A is a maximal orthonormal subset if and
only if for every 0V �= y ∈ V there exists a v ∈ A satisfying 〈v, y〉 �= 0.

Exercise 924 Let V be an inner product space of finite dimension n
over its field of scalars. Show that there exists a subset {v1, . . . , v2n} of
V satisfying the conditions that 〈vi, vj〉 ≤ 0 for all 1 ≤ i �= j ≤ 2n.

Exercise 925 Let V be the space of all polynomial functions in R
R of

degree less than 3, with inner product 〈p, q〉 = 1
2

∫ 1

−1
p(t)q(t)dt. Find

an orthonormal basis {p0, p1, p2} of V satisfying deg(ph) = h for
h = 0, 1, 2.

Exercise 926 Consider the function µ : R
3 × R

3 → R given by

µ :








a
b
c



 ,




a′

b′

c′







 �→ 2aa′ + ac′ + ca′ + bb′ + cc′.

Show that µ is an inner product and find a basis of R
3 orthonormal with

respect to µ.

Exercise 927 Let V be an inner product space over R and let W be
a finitely-generated subspace of V with orthonormal basis {w1, . . . , wn}.
Let α ∈ Hom(V,W ) be defined by α : v �→

∑n
i=1 〈v, wi〉wi. Show that

α(v) − v ∈ W⊥ for all v ∈ V and that ‖α(v) − v‖ < ‖w − v‖ for all
α(v) �= w ∈ W.

Exercise 928 Let W be the subspace of R
4 spanned by linearly-indepen-

dent subset












1
2
0
3





 ,







4
0
5
8





 ,







8
1
5
6












, which is an inner product space

with respect to the dot product. Make use of the Gram-Schmidt process to
find an orthonormal basis for W.

Exercise 929 Let n be a positive integer and let A ∈ Mn×n(R). If the
set of rows of A is orthonormal with respect to the dot product, is the
same true for the set of columns of A?
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Exercise 930 Let n > k be positive integers and let A ∈ Mk×n(R)
satisfy the condition that its set of rows is orthonormal with respect to the
dot product. Show that (AT A)2 = AT A.

Exercise 931 Let n be a positive integer and let A ∈ Mn×n(R). Show
that A is symmetric if and only if for some k < n there exists a matrix
B ∈ Mn×k(R) and a real number r such that A = BBT + rI and the
columns of B are mutually orthogonal.

Exercise 932 Let W be the subspace of R
4, which is an inner product

space with respect to the dot product, generated by











2
1
0
0





 ,







0
0
1
2





 ,







4
2
2
4





 ,







1
1
1
1












.

Find an orthonormal basis for W and an orthonormal basis for W⊥.

Exercise 933 Consider R
4 as an inner product space with respect to the

dot product. Add two vectors to the set






1
6







1
1
3

−5





 ,

1
2







1
1
1
1












in order

to get an orthonormal basis for this space.

Exercise 934 Let n be a positive integer and let V = R
n, which is an

inner product space with respect to the dot product. Let {v1, . . . , vn} be
an orthonormal basis for V, let a ∈ R, and let 1 ≤ h �= k ≤ n. Define
vectors w1, . . . , wn in V by setting

wi =






cos(a)vh − sin(a)vk if i = h
sin(a)vh − cos(a)vk if i = k
vi otherwise

.

Is {w1, . . . , wn} an orthonormal basis for V ?

Exercise 935 Consider R
3 as an inner product space with respect to the

dot product. Does there exist an integer k such that








4k
4

−k



 ,




0
k
4



 ,




−25
16k

−12k










is an orthonormal basis for this space.
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Exercise 936 Consider R
4 as an inner product space with respect to the

dot product. Find an orthonormal basis for R












1
0
1
0





 ,







1
1
2
1





 ,







0
1
1
2












.

Exercise 937 Define an inner product on R
2 by setting

〈[
a
b

]

,

[
c
d

]〉

= ac +
1
2
(ad + bc) + bd.

Find an orthonormal basis for this space.

Exercise 938 Consider R
3 as an inner product space with respect to the

dot product. Let a, b, c, d be nonzero real numbers satisfying the condi-
tions that a2 + b2 + c2 = d2 and ab + ac = bc. Show that the subset





1
d




a
b
c



 ,
1
d




b

−c
a



 ,
1
d




c
a

−b









of R

3 is orthonormal.

Exercise 939 Define an inner product on R
3 by setting

〈


a1

a2

a3



 ,




b1

b2

b3





〉

= a1b1 +2(a2b2 +a3b3)− (a1b2 +a2b1)− (a2b3 +a3b2).

Find an orthonormal basis for this space.

Exercise 940 Let m be a positive integer and let

W = {f ∈ C
Z | f(i + m) = f(i) for all i ∈ Z},

which is a subspace of the vector space C
Z over C. Define a function

µ : W × W → C by setting µ : (f, g) �→
∑m−1

h=0 f(h)g(h). For each
0 ≤ j < m, let fj ∈ W be the function defined by

fj(h) =
{

1 if h is of the form j + mi, for i ∈ Z

0 otherwise .

Show that µ is an inner product on W and that, with respect to that
product, {f0, . . . , fm−1} is an orthonormal basis for W.

Exercise 941 A function f ∈ R
R has bounded support if and only if

there exist real numbers a ≤ b such that f(x) = 0 for all x not in the
interval [a, b] on the real line. Let V be the set of all such functions and
define a function µ : V × V → R by setting µ (f, g) =

∫∞
−∞ f(x)g(x)dx.

For each k ∈ Z, let fk ∈ V be the function defined by

fk : x �→
{

1 if k ≤ x ≤ k + 1
0 otherwise .
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Show that µ is an inner product on V and that the subset {fk | k ∈ Z}
of V is orthonormal with respect to this inner product.

Exercise 942 Let V be the subspace of R
R consisting of all infinitely-

differentiable functions f which are periodic of period h > 0. (In other
words, f(x + h) = f(x) for all x ∈ R). Define an inner product on V

by setting 〈f, g〉 =
∫ h

−h
f(x)g(x)dx. Let α be the endomorphism of V

which assigns to every element of V its derivative. Find α∗.

Exercise 943 Let V be an inner product space over R and let {v1, . . . vn}
be a set of mutually-orthogonal nonzero vectors in V. Let a1, . . . , an be
positive real numbers satisfying

∑n
i=1 ai = 1, and let w =

∑n
i=1 aivi.

Suppose that w ⊥ vi − vj for all 1 ≤ i �= j ≤ n. Then show that
‖w‖−2 =

∑n
i=1 ‖vi‖−2

.

Exercise 944 Let V be a finitely-generated inner product space and let
α, β1, β2 ∈ End(V ) satisfy α∗αβ1 = α∗αβ2. Show that αβ1 = αβ2.



17
Selfadjoint Endomorphisms

Let V be an inner product space. An endomorphism α of V is
selfadjoint if and only if 〈α(v), w〉 = 〈v, α(w)〉 for all v, w ∈ V. Such
endomorphisms always exist since σc is selfadjoint for any c ∈ R. Selfad-
joint endomorphisms have important applications in mathematical models
in physics. For example, in mathematical models of quantum theory, self-
adjoint operators on the state space of a system represent measurements
which can be performed on the system. Note that if α ∈ End(V ) is
selfadjoint, then 〈α(v), v〉 = 〈v, α(v)〉 = 〈α(v), v〉 and so 〈α(v), v〉 ∈ R

for all v ∈ V.

Example: Let V = C(0, 1), which is an inner product space over R in
which 〈f, g〉 =

∫ 1

0
f(x)g(x)dx. Then the endomorphism α of V defined

by α(f) : x �→
∫ 1

0
cos(x − y)f(y)dy for all f ∈ V is selfadjoint.

(17.1) Proposition: Let V be an inner product space. Then:
(1) If α ∈ End(V ) has an adjoint α∗, then α+α∗ is self-adjoint;
(2) If α ∈ End(V ) is selfadjoint, so is cα for each c ∈ R;
(3) If α ∈ End(V ) is selfadjoint, so is αn for each positive

integer n;
(4) If α, β ∈ End(V ) are selfadjoint so are α + β and α • β,

where • is the Jordan product in End(V );
(5) If α ∈ End(V ) is selfadjoint and β ∈ End(V ) has an adjoint,

then βαβ∗ is selfadjoint.

349
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Proof: (1). If v, w ∈ V then

〈(α + α∗)(v), w〉 = 〈α(v), w〉 + 〈α∗(v), w〉
= 〈v, α∗(w)〉 + 〈v, α(w)〉 = 〈v, (α + α∗)(w)〉 .

(2) If v, w ∈ V then

〈(cα)(v), w〉 = c 〈α(v), w〉 = c 〈v, α(w)〉 = 〈v, (cα)(w)〉 .

(3) This follows by an easy induction argument, using Proposition
16.16(3).

(4) The selfadjointness of α+β is an immediate consequence of Propo-
sition 16.16(1). Also, recall that α •β = 1

2 (αβ +βα) and so, if v, w ∈ V
then

〈( α • β)(v), w〉 =
1
2
〈αβ(v), w〉 +

1
2
〈βα(v), w〉

=
1
2
〈v, βα(w)〉 +

1
2
〈v, αβ(w)〉 = 〈v, ( α • β)(w)〉 .

(5) By Proposition 16.16, we see that (βαβ∗)∗ = β∗∗αβ∗ = βαβ∗.
�

In particular, if α is a selfadjoint endomorphism of an inner product
space V, and if p(X) ∈ R[X], then p(α) is selfadjoint. The product of
selfadjoint endomorphisms of V need not be selfadjoint, as we will see in
the example after Proposition 17.4.

Example: Let V be an inner product space over R and let α ∈
End(V ) be selfadjoint. Let a, b ∈ R satisfy the condition that a2 < 4b.
Then, by the previous remark, we know that β = α2 + aα + bσ1 is again
a selfadjoint endomorphism of V. Moreover, if 0V �= v ∈ V then

〈β(v), v〉 =
〈
α2(v), v

〉
+ a 〈α(v), v〉 + b 〈v, v〉

= 〈α(v), α(v)〉 + a 〈α(v), v〉 + b 〈v, v〉
= ‖α(v)‖2 + a 〈α(v), v〉 + b ‖v‖2

.

By Proposition 15.2, we know that |〈α(v), v〉| ≤ ‖α(v)‖ · ‖v‖ and so

〈β(v), v〉 ≥ ‖α(v)‖2 − |a| · ‖α(v)‖ · ‖v‖ + b ‖v‖2

=
(

‖α(v)‖ − 1
2
|a| · ‖v‖

)2

+
(

b − 1
4
a2

)

‖v‖2
> 0.

Thus β(v) �= 0V for each 0V �= v ∈ V, showing that β is monic. In
particular, if V is finitely generated, this in fact shows that β is an
automorphism of V.
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Let V be a finitely-generated inner product space having an orthonormal
basis D. If α ∈ End(V ) and if ΦDD(α) = [aij ], then we know from
Proposition 16.15 that ΦDD(α∗) = ΦDD(α)H = [aij ]T . Therefore, if α
is selfadjoint we have aij = aji for all 1 ≤ i, j ≤ n. In particular,
aii = aii for all 1 ≤ i ≤ n and so the diagonal entries in ΦDD(α)
belong to R. Matrices A over C satisfying the condition that A =
AH are known as Hermitian matrices. When we are working over R,
these are of course just the symmetric matrices. It is clear that the sum
of Hermitian matrices is again a Hermitian matrix, but the product of
Hermitian matrices is not necessarily Hermitian, just as we have seen that
the product of symmetric matrices is not necessarily symmetric. We do
note, however, that if a matrix A ∈ Mn×n(C) is Hermitian then so is A2.
Indeed, if A and B are Hermitian matrices in Mn×n(C), then their
Jordan product 1

2 (AB +BA) is a Hermitian matrix and so, in particular,
the product of a commuting pair of Hermitian matrices is again Hermitian.
Moreover, any matrix D ∈ Mn×n(C) can be written in the form A+ iB,
where A = 1

2 (D + DH) and B = − 1
2 (D − DH) are both Hermitian

matrices. If A ∈ Mn×n(C) is Hermitian, then so is cA for any c ∈ R,
and so the set of all Hermitian matrices in Mn×n(C) is a subspace of
Mn×n(C), considered as a vector space over R; indeed, it is a subalgebra
of the commutative Jordan R-algebra Mn×n(C)+. However, this set is
not closed under multiplication by complex scalars, and so it is not a vector
space over C.

We have already seen that if V is an inner product space and if α ∈
End(V ) is selfadjoint, then 〈α(v), v〉 ∈ R for all v ∈ V. If V is
finitely generated, the reverse is also true, as follows immediately from the
following result.

(17.2) Proposition: Let V be an inner product space over C

and let α ∈ End(V ) have an adjoint. If 〈α(v), v〉 ∈ R for all v ∈ V ,
then α is selfadjoint.

Proof: For vectors v, w ∈ V, we have

〈α(v + w), v + w)〉 = 〈α(v), v〉 + 〈α(v), w〉 + 〈α(w), v〉 + 〈α(w), w〉

and since, by assumption, we know that the scalars 〈α(v + w), v + w)〉 ,
〈α(v), v〉 , and 〈α(w), w〉 are all real, we see that 〈α(v), w〉+〈α(w), v〉 ∈ R

as well. This implies that

〈α(v), w〉 + 〈α(w), v〉 = 〈w,α(v)〉 + 〈v, α(w)〉

and so i 〈α(v), w〉 + i 〈α(w), v〉 = i 〈w,α(v)〉 + i 〈v, α(w)〉 . Similarly,

〈α(v + iw), v + iw)〉 = 〈α(v), v〉 − i 〈α(v), w〉 + i 〈α(w), v〉 + 〈α(w), w〉
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and so −i 〈α(v), w〉 + i 〈α(w), v〉 ∈ R. This implies that

−i 〈α(v), w〉 + i 〈α(w), v〉 = i 〈w,α(v)〉 − i 〈v, α(w)〉

and so, multiplying by i and adding it to the previous result, we get
2 〈α(v), w〉 = 2 〈w,α(v)〉 , whence 〈α(v), w〉 = 〈w,α(v)〉 . Therefore α =
α∗. �

(17.3) Proposition: Let V be an inner product space and let
σ0 �= α ∈ End(V ) be selfadjoint. Then there exists a vector v ∈ V
satisfying 〈α(v), v〉 �= 0.

Proof: First assume that the field of scalars is C. Then it is easy to
check that if v, w ∈ V then

〈α(v), w〉 = 1
4 [〈α(v + w), v + w〉 − 〈α(v − w), v − w〉]
+ i

4 [〈α(v + iw), v + iw〉 − 〈α(v − iw), v − iw〉] .

Moreover, each term on the right-hand side of this equality is of the form
〈α(y), y〉 for some y ∈ V, so if all of these were equal to 0 we would see
that α(v) ⊥ w for all v, w ∈ V, which means that α(v) = 0V for all
v ∈ V, contradicting the hypothesis that σ0 �= α. Thus the desired result
must hold.

Now assume that the field of scalars is R. Then for all v, w ∈ V we
have 〈α(w), v〉 = 〈w,α(v)〉 = 〈α(v), w〉 and so

〈α(v), w〉 = 1
4 [〈α(v + w), v + w〉 − 〈α(v − w), v − w〉] .

Again, each term on the right-hand side of this equality is of the form
〈α(y), y〉 for some y ∈ V so if all of these were all equal to 0 we would
have α(v) ⊥ w for all v, w ∈ V which, as we have seen in the previous
case, leads to a contradiction. �

We now return to a new variant of a question we have already posed:
if α is an endomorphism of an inner product space V, when does there
exist an orthonormal basis of V composed of eigenvectors of α? If such
a basis exists, we say that α is orthogonally diagonalizable.

(17.4) Proposition: Let V be an inner product space and let
α ∈ End(V ) be selfadjoint. Then spec(α) ⊆ R and eigenvectors
of α associated with distinct eigenvalues are orthogonal.

Proof: Let c be an eigenvalue of α and let v be an eigenvector of
α associated with c. Then c 〈v, v〉 = 〈cv, v〉 = 〈α(v), v〉 = 〈v, α(v)〉 =
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〈v, cv〉 = c 〈v, v〉 and so, since v �= 0V , we see that c = c, proving that
c ∈ R. Thus we have shown the first assertion.

If c and d are distinct eigenvalues of α associated with eigenvectors
v and w respectively, then c 〈v, w〉 = 〈cv, w〉 = 〈α(v), w〉 = 〈v, α(w)〉 =
〈v, dw〉 = d 〈v, w〉 . Since c �= d, this implies that 〈v, w〉 = 0. �

Example: The endomorphisms α and β of C
2 which are given by

α :
[

a
b

]

�→
[

b
a

]

and β :
[

a
b

]

�→
[

a
−b

]

can easily be seen to be

selfadjoint. However, spec(βα) = {i,−i} and so, by Proposition 17.4, βα
is not selfadjoint.

We note the following consequence of Proposition 17.4: if the matrix
A ∈ Mn×n(R) is symmetric, then all eigenvalues of A are real, and so
the characteristic polynomial of A is completely reducible in R[X].

By Proposition 17.4 we see that if V is an inner-product space of
finite dimension n over C and if α ∈ End(V ) is selfadjoint, then the
eigenvalues of α can be written uniquely as an n-tuple (c1(α), . . . , cn(α))
of real numbers, the entries of which form a nonincreasing sequence. Weyl
showed that if α, β ∈ End(V ), if 1 ≤ k ≤ i ≤ n, and 1 ≤ j ≤ n − i + 1,
then ci+j−1(α) + cn−j+1(β) ≤ ci(α + β) ≤ ci−k+1(α) + ck(β) and so,
if j = k = 1, we have ci(α) + cn(β) ≤ ci(α + β) ≤ ci(α) + c1(β)
for each 1 ≤ i ≤ n. In particular, c1(α + β) ≤ c1(α) + c1(β) and
cn(α) + cn(β) ≤ cn(α + β).

We now turn to the problem of finding the eigenvalues of a selfadjoint
endomorphism of a finitely-generated inner product space. This problem
arises in many important applications. For example, let Γ be a (nondi-
rected) graph with vertex set {1, . . . , n}. We associate to this graph a
symmetric matrix, called the adjacency matrix [aij ], the entries of
which are nonnegative integers, by setting aij to be the number of edges
in Γ connecting vertex i to vertex j. The matrix represents a selfad-
joint endomorphism of R

n with respect to some basis and its spectrum
can be used to derive important information about Γ. This technique has
important applications in the analysis of computer networks and in such
areas as chemistry, where it is used to make rough estimates of the electron
density distribution of molecules.

(17.5) Proposition: If V is a nontrivial finitely-generated inner
product space, then spec(α) �= ∅ for any selfadjoint endomor-
phism α of V.

Proof: Let α be a selfadjoint endomorphism of V. Choose an or-
thonormal basis B = {v1, . . . , vn} for V and let A = ΦBB(α). Since
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α is selfadjoint, we know that A = AH . Let W = C
n on which we

have defined the dot product. Then the endomorphism β of W defined
by β : w �→ Aw is selfadjoint. The degree of the characteristic polyno-
mial |XI − A| of β is n > 0 and so, by the Fundamental Theorem of
Algebra, it has a root c ∈ C. Thus the matrix cI − A is singular and
so there exists a nonzero vector w ∈ W satisfying Aw = cw. In other
words, c ∈ spec(β). By Proposition 17.4, this implies that c ∈ R and so
c ∈ spec(α), even if V is an inner product space over R. �

In particular, we learn from Proposition 17.5 that every symmetric ma-
trix over R has an eigenvalue. Compare this to the example we have
already seen of a symmetric matrix in M2×2(GF (2)) having no eigenval-
ues.

Let V be an inner product space finitely generated over C and
let α be a selfadjoint endomorphism of V . We know, by Proposi-
tion 17.4, that the eigenvalues of α are all real and that eigenvectors
of α associated with distinct eigenvalues are orthogonal. Let us de-
note the eigenvalues of α by c1, . . . , cn where the indices are so cho-
sen that c1 ≥ . . . ≥ cn. An important result known as the Courant-
Fischer Minimax Theorem states that, for each 1 ≤ k ≤ n, we have
ck = sup {inf{〈α(w), w〉 | w ∈ W and ‖w‖ = 1}} , where the supremum
runs over all subspaces W of V having dimension k.

Let us look at this from a different perspective. The function which
assigns to each 0V �= v ∈ V the scalar Rα(v) = 〈v, α(v)〉 ‖v‖−2 is called
the Rayleigh1 quotient function. Note that the projection πv defined
in connection with the Gram-Schmidt theorem satisfies the condition that
πv : α(v) �→ Rα(v)v. By what we have already seen, the image D of this
function is contained in R. Moreover, if v is an eigenvector of α with
associated eigenvalue c, then Rα(v) = c, and so ∅ �= spec(α) ⊆ D. On
the other hand, it is possible to show – though we will not do it here –
that D is contained in the closed interval [cn, c1] bounded by the largest

1 Twentieth-century German mathe-
maticians Ernst Fischer and Richard Courant studied spaces of functions. Courant,
who headed the Mathematics Institute at the University of Göttingen, fled Germany in
1933 and founded a similar institute in New York City, which now bears his name.
John William Strutt, Lord Rayleigh, was a 19th-century British physicist and ap-
plied mathematician, who made important contributions to mathematical physics and
who won the Nobel prize in 1904 for his discovery of the inert gas argon.
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and the smallest eigenvalues of α, both endpoints of which in fact belong
to D. This observation can be used to define the Rayleigh quotient
iterative scheme to find eigenvalues of a selfadoint endomorphism α:

As an initial guess, choose a normal vector v0 and let d0 =
Rα(v0).

For k = 0, 1, 2, . . . repeat the following steps:
(1) If α− dkσ1 /∈ Aut(V ), then dk is an eigenvalue of α,

and we are done;
(2) Otherwise, α−dkσ1 ∈ Aut(V ). Set y = (α−dkσ1)−1(vk)

and then compute vk+1 = ‖y‖−2
y and dk+1 = Rα(vk+1).

This scheme will indeed produce an eigenvalue of α for all guesses of v0

except those in a set of measure 0, and when it converges, the convergence
is very rapid. Its main disadvantage is the time and effort needed in step
(1) of the iteration, to decide if α − dkσ1 is an automorphism of V or
not (usually, if the matrix representing this endomorphism is nonsingular
or not) and, if it is, to compute its inverse; the algorithm is therefore
worthwhile only if this can be done without major computational effort.

Example: Let α be the endomorphism of R
3 represented with respect

to the canonical basis by the symmetric matrix A =




2 1 1
1 3 1
1 1 4



 . Then

α is selfadjoint. Choose v0 =
1√
3




1
1
1



 . Using the above algorithm, we

see that d0 = Rα(v0) = 5, which is not an eigenvalue of α. Moreover,

v1 =




0.3841106399 . . .
0.5121475201 . . .
0.7682212801 . . .



 and d1 = 5.213114754 . . .

v2 =




0.3971170680 . . .
0.5206615990 . . .
0.7557840528 . . .



 and d2 = 5.214319743 . . .

The actual value of an eigenvalue of α is 5.214319744 . . . , so we see that
convergence was very rapid indeed.

(17.6) Proposition: Let V be a finitely-generated inner prod-
uct space and let α ∈ End(V ). If W is a subspace of V invariant
under α, then W⊥ is invariant under α∗.
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Proof: If w ∈ W and y ∈ W⊥. Then α(w) ∈ W and so 〈w,α∗(y)〉 =
〈α(w), y〉 = 0, whence α∗(y) ∈ W⊥. �

If V is a nontrivial inner product space finitely generated over R and
assume that α ∈ End(V ) is orthogonally diagonalizable. Then there
exists an orthonormal basis B = {v1, . . . , vn} composed of eigenvectors of
α. Thus ΦBB(α) is a diagonal matrix and so symmetric. In particular,
ΦBB(α∗) = ΦBB(α)T = ΦBB(α), which proves that α = α∗ and so
α is selfadjoint. The converse of this result follows from the following
Proposition.

(17.7) Proposition: Let V be a nontrivial finitely-generated
inner product space and let α ∈ End(V ) be selfadjoint. Then α
is orthogonally diagonalizable.

Proof: We will prove the result by induction on n = dim(V ). For
n = 1, we know y Proposition 17.5 that α has an eigenvector v ∈ V,
and so {v1} is the desired basis, where v1 = ‖v‖−1

v. Now assume
that n > 1 and that the proposition has been established for all spaces
of dimension less than n. Pick v1 as before and let W be the subspace
of V generated by {v1}. Then V = W ⊕ W⊥ and, by Proposition
17.6, we know that W⊥ is invariant under α∗ = α. Moreover, W⊥ is
an inner product space of dimension n − 1 and the restriction of α to
W⊥ is selfadjoint. Therefore, by the induction hypothesis, there exists an
orthonormal basis {v2, . . . , vn} of W⊥ composed of eigenvectors of α.
Since v1 is orthogonal to each of the vectors in this basis, we see that
{v1, . . . , vn} is an orthonormal basis of V. �

Let V be an inner product space. An endomorphism α ∈ End(V ) is
positive definite if and only if it is selfadjoint and satisfies the condition
that 〈α(v), v〉 is a positive real number for all 0V �= v ∈ V. Thus we see
that σc is positive definite for any positive real number c. We also note
that a positive-definite endomorphism must be monic since if α(v) = 0V

implies that 〈α(v), v〉 = 0 and so v = 0V . Therefore every positive-
definite endomorphism of a finitely-generated inner product space is in
fact an automorphism. Positive definite endomorphisms have important
applications in optimization and linear programming. Note that if α is
positive definite and if 0V �= v ∈ V then 0 < 〈α(v), v〉 = ‖α(v)‖·‖v‖ cos(t),
where t is the angle between α(v) and v, showing that 0 ≤ t < π

2 .

Example: Let V = R
n on which we have the dot product defined,

and let B be the canonical basis. An endomorphism α of V is positive
definite if and only if A = ΦBB(α) is a symmetric matrix satisfying the
condition that vT Av > 0 for all nonzero vectors v ∈ V. Such matrices
have nice properties. For example, it can be shown that if A is of this
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form then the Gauss-Seidel method applied to an equation AX = w will
converge to the unique solution v, for any initial guess v0 chosen.

Example: Even if σ0 �= α ∈ End(V ) is selfadjoint, it may be the case
that neither α nor −α is positive definite. For example, if V = R

2 and

if α ∈ End(V ) is defined by α :
[

a
b

]

�→
[

−a
b

]

, then

α

([
1
0

])

·
[

1
0

]

= −1 = (−α)
([

0
1

])

·
[

0
1

]

.

Let V an inner product space. If α, β ∈ End(V ) are selfadjoint, then
α−β is also selfadjoint. We will write α > β whenever α−β is positive
definite. Thus, α is positive definite if and only if α > σ0. We will
write α ≥ β if and only if α > β or α = β. We claim that this is
a partial-order relation on the set of all selfadjoint endomorphisms of V.
Indeed, it is sure that α ≥ α for all such endomorphisms α. Suppose
that α1, α2, and α3 are selfadjoint endomorphisms of V satisfying
α1 ≥ α2 ≥ α3. If α1 = α2 or α2 = α3 then it is clear that α1 ≥ α3.
Let us therefore assume that α1 > α2 > α3. Then for all v ∈ V we see
that

〈(α1 − α3)(v), v〉 = 〈α1(v) − α2(v) + α2(v) − α3(v), v〉
= 〈α1(v) − α2(v), v〉 + 〈α2(v) − α3(v), v〉 > 0

and so α1 > α3. Finally, assume that α1 ≥ α2 and α2 ≥ α1 but
α1 �= α2. Then α1 > α2 > α1 and so, as we have seen, α1 > α1, which is
a contradiction. Thus we have a partial order on the set of all selfadjoint
endomorphisms of V , called the Loewner2 partial order.

(17.8) Proposition: Let V be an inner product space and let
α ∈ End(V ) be an endomorphism for which α∗ exists. Then α
is positive definite if and only if the function µ : (v, w) �→ 〈α(v), w〉
from V × V to the field of scalars is also an inner product.

2 Karl Loewner was a Czech mathematician who emigrated to the
United States in 1933. His research concentrated in complex function theory and spaces
of functions.
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Proof: First, let us assume that α is a positive-definite endomor-
phism of V. If v1, v2, w ∈ V then µ(v1 + v2, w) = 〈α(v1 + v2), w〉 =
〈α(v1), w〉 + 〈α(v2), w〉 = µ(v1, w) + µ(v2, w) and, similarly, we show
that µ(cv, w) = cµ(v, w) for all scalars c. We also see that µ(v, w) =
〈α(v), w〉 = 〈v, α∗(w)〉 = 〈v, α(w)〉 = 〈α(w), v〉 = µ(w, v). If 0V �= v ∈ V
then, by the assumption of positive definiteness, we see that µ(v, v) =
〈α(v), v〉 is a positive real number, and it is clear that µ(0V , 0V ) = 0.
Thus µ is an inner product on V.

Conversely, assume that µ is an inner product on V. Then for all v, w ∈
V we have 〈v, α∗(w)〉 = 〈α(v), w〉 = µ(v, w) = µ(w, v) = 〈α(w), v〉 =
〈v, α(w)〉 and so α(w) = α∗(w) for all w ∈ V, proving that α is
selfadjoint. Moreover, for all v ∈ V we have 〈α(v), v〉 = µ(v, v) for all
0V �= v ∈ V and so α is positive definite. �

(17.9) Proposition: Let V be an inner product space, with
given inner product (v, w) �→ 〈v, w〉 , and let µ be another
inner product defined on V. Then there exists a unique positive-
definite endomorphism α of V satisfying the condition that
µ(v, w) = 〈α(v), w〉 for all v, w ∈ V.

Proof: Fix a vector w ∈ V. The function v �→ µ(v, w) belongs to D(V )
and so there exists a unique vector yw ∈ V satisfying µ(v, w) = 〈v, yw〉
for all v ∈ V. Define a function α : V → V by α : w �→ yw. Then
〈α(v), w〉 = 〈w,α(v)〉 = µ(w, v) = µ(v, w) for all v, w ∈ V. We claim that
α ∈ End(V ). Indeed, if w1, w2 ∈ V then for all y ∈ V we have

〈α(w1 + w2), y〉 = µ(w1 + w2, y) = µ(w1, y) + µ(w2, y)
= 〈α(w1), y〉 + 〈α(w2), y〉 = 〈α(w1) + α(w2), y〉

and so α(w1 +w2) = α(w1)+α(w2). Similarly we can show that α(cw) =
cα(w) for all w ∈ V and all scalars c. Thus we see that α is indeed an
endomorphism of V satisfying the condition µ(v, w) = 〈α(v), w〉 for all
v, w ∈ V, and so it is positive definite.

Finally, α has to be unique since if µ(v, w) = 〈β(v), w〉 for all v, w ∈ V,
then 〈(α − β)(v), w〉 = 〈α(v) − β(v), w〉 = 〈α(v), w〉 − 〈β(v), w〉 = 0 for
all v, w ∈ V, which implies that (α− β)(v) = 0V for all v ∈ V, showing
that α = β. �

(17.10) Proposition: Let V be a finitely-generated inner prod-
uct space and let α ∈ End(V ). Then α is positive definite if and
only if there exists an automorphism β of V satisfying α = β∗β.

Proof: Assume that there exists an automorphism β of V satisfying
α = β∗β. Then, as previously noted, α is selfadjoint. Moreover, for
all 0V �= v ∈ V we have 〈α(v), v〉 = 〈β∗β(v), v〉 = 〈β(v), β∗∗(v)〉 =
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〈β(v), β(v)〉 > 0 since β is an automorphism and hence β(v) �= 0V .
Therefore α is positive definite.

Conversely, assume that α is a positive-definite endomorphism of V.
Then the function µ : (v, w) �→ 〈α(v), w〉 is an inner product on V.
Let {v1, . . . , vn} be a basis for V which is orthonormal with respect
to the original inner product on V and let {w1, . . . , wn} be a ba-
sis for V which is orthonormal with respect to µ. By Proposition
6.2, we know that there exists a unique endomorphism β of V sat-
isfying β(wi) = vi for all 1 ≤ i ≤ n. Then β is an epimorphism
since its image contains a basis for V and so, since V is finitely-
generated, it is an automorphism of V. Therefore, if v =

∑n
i=1 aiwi

and w =
∑n

j=1 bjwj are vectors in V we see that 〈α(v), w〉 = µ(v, w) =

µ
(∑n

i=1 aiwi,
∑n

j=1 bjwj

)
=

∑n
i=1

∑n
j=1 aibjµ(wi, wj) =

∑n
i=1 aibi and

similarly 〈β∗β(v), w〉 = 〈β(v), β(w)〉 =
〈
β (

∑n
i=1 aiwi) , β

(∑n
j=1 bjwj

)〉
=

∑n
i=1

∑n
j=1 aibj 〈wi, wj〉 =

∑n
i=1 aibi, and so we see that 〈β∗β(v), w〉 =

〈α(v), w〉 for all v, w ∈ V, which shows that α = β∗β. �

Example: In order for an endomorphism to be positive definite, it is
not enough for it to be represented by a matrix all of the entries of which
are positive real numbers. For example, if V = R

2 with the dot product,
and if α is the endomorphism of V represented with respect to the

canonical basis by the matrix
[

2 2
2 1

]

, then α

([
−1

1

])

·
[

−1
1

]

=
[

0
−1

]

·
[

−1
1

]

= −1, so α is not positive definite.

From Proposition 17.10 we know that if A = [aij ] ∈ Mn×n(C) is a
matrix representing a positive-definite endomorphism of C

n, namely if
it is a Hermitian matrix satisfying the condition that v · Av > 0 for all
nonzero vectors v ∈ C

n, then there exists a nonsingular matrix B such
that A = BHB. Indeed, we can choose B to be upper triangular, so that
it is a form of LU-decomposition, though it takes only half as many arith-
metic operations to perform. This decomposition is known as a Cholesky3

3 Major André-Louis Cholesky was a cartographer in the French
army, who used this method in connection with the mapping of the island of Crete before
World War I. It had previously been used by other cartographers, including Myrick
H. Doolittle, of the computing division of the US Coast and Geodetic Survey, in 1878.
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decomposition of A. This decomposition need not be unique. Cholesky
decompositions are widely used in building economic and financial mod-
els. Because of this wide usage, there are many algorithms available to
efficiently calculate Cholesky decompositions of general matrices or of ma-
trices in special forms. Indeed, one of the computational advantages of
the Cholesky decomposition is that it is numerically stable, even with no
pivoting.

The following algorithm calculates a Cholesky decomposition for real
symmetric matrices.

For k = 1, . . . , n perform the following steps:

(1) For each 1 ≤ i < k define bik = b−1
ii

[
aik −

∑i−1
j=1 bjibjk

]
;

(2) Set bkk =
√

akk −
∑k−1

j=1 b2
jk;

(3) For each k < i ≤ n set bik = 0.

Note that if the matrix A did not satisfy v · Av > 0 for all nonzero
vectors v, the algorithm would hang up at some stage, trying to take the
square root of a negative number. Indeed, attempting a Cholesky decom-
position is often used as a test to see whether a given matrix represents a
positive-definite endomorphism or not.

Example: Let A =




5 2 3
2 1 1
3 1 4



 ∈ M3×3(R). This is a symmet-

ric matrix satisfying the condition that v · Av > 0 for all nonzero vec-
tors v ∈ R

3 and having a Cholesky decomposition BT B, where B =

1
5




5
√

5 2
√

5 3
√

5
0

√
5 −

√
5

0 0 5
√

2



 .

Notice that the Proposition 17.10 extends our ongoing analogy between
the operation ∗ and the conjugate operation on C, just as the notion
of “positive definite” is the analog of positivity of complex numbers: a
complex number z is (real and) positive if and only if there exists a
complex number y such that z = yy.

(17.11) Proposition: Let V be an inner product space. If
α ∈ End(V ) is positive definite, then every eigenvalue of α is a
positive real number. The converse holds if α is orthogonally
diagonalizable.
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Proof: Assume that α is positive define. By Proposition 17.4, the
eigenvalues of α are real numbers. If c ∈ spec(α) is an eigenvalue of α
associated with an eigenvector v, then 0 < 〈α(v), v〉 = 〈cv, v〉 = c 〈v, v〉
and so c > 0, since we know that 〈v, v〉 > 0. Conversely, assume that
every eigenvalue of α is positive and that there exists an orthonormal
basis B of V composed of eigenvectors of α. Let v =

∑n
i=1 aivi, where

{v1, . . . , vn} ⊆ B. For each 1 ≤ i ≤ n, let ci be an eigenvalue of α
associated with vi. We can assume that the vi are arranged in such a
manner that 0 < c1 ≤ c2 ≤ . . . ≤ cn. Then

〈α(v), v〉 =

〈
n∑

i=1

α(aivi),
n∑

j=1

ajvj

〉

=
n∑

i=1

n∑

j=1

aiaj 〈civi, vj〉

=
n∑

i=1

n∑

j=1

ciaiaj 〈vi, vj〉 =
n∑

i=1

ci|ai|2 ≥ c1

n∑

i=1

|ai|2 > 0

and so α is positive definite. �

.
From Propositions 17.11 and 17.7, we see that if V is an finitely-

generated inner product space over R or C and if α ∈ End(V ) is
positive definite, then there exists a basis of V relative to which α is
represented by a diagonal matrix in which the entries of the diagonal are
positive real numbers. Such a matrix is, of course, nonsingular.

(17.12) Proposition: Let V and W be inner-product spaces
finitely-generated over R and let α ∈ Hom(V,W ). Then ‖α‖ =

√
c,

where c is the largest eigenvalue of α∗α ∈ End(V ), and where
‖α‖ is the norm induced by the respective inner products on V
and W.

Proof: If c is an eigenvalue of β = α∗α then there exists a nonzero
vector v such that β(v) = cv and so c ‖v‖2 = 〈v, cv〉 = 〈v, α∗α(v)〉 =
〈α(v), α(v)〉 ≥ 0, and so c ≥ 0. By Proposition 17.7, we know that there
exists a basis {v1, . . . , vn} of V composed of orthonormal eigenvectors
of β. For each 1 ≤ i ≤ n, let ci be an eigenvalue of β associated
with vi. After renumbering, we can assume that 0 ≤ c1 ≤ . . . ≤ cn. If
v =

∑n
i=1 aivi ∈ V, then

‖α(v)‖2 = 〈v, β(v)〉 = 〈v, α∗α(v)〉 =
n∑

j=1

n∑

i=1

ajciai 〈vj , vi〉

=
n∑

i=1

cia
2
i ≤ cn

(
n∑

i=1

a2
i

)

= cn ‖v‖2
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and so ‖α(v)‖2
/ ‖v‖2 ≤ cn. Therefore, by definition of the induced norm,

‖α‖ ≤ √
cn. But one easily sees that ‖α(vn)‖2

/ ‖vn‖2 = cn and so√
cn ≤ ‖α‖ , proving equality. �

Example: Let α : R
3 → R

2 be the linear transformation defined

by α : v �→ Av, where A =
[

1 −2 1
3 0 −1

]

. Then α∗α is the

endomorphism of R
3 given by v �→




10 −2 −2
−2 4 −2
−2 −2 2



 v. The eigenvalues

of this endomorphism are 0 ≤ 8−2
√

2 ≤ 8+2
√

2 and so ‖α‖ =
√

8 + 2
√

2,
which is approximately equal to 3.291.

Let V and W be inner product spaces. A linear transformation
α : V → W preserves inner products if and only if 〈v1, v2〉 = 〈α(v1), α(v2)〉
for all v1, v2 ∈ V. Notice that any linear transformation which pre-
serves inner products also preserves distances: ‖v1 − v2‖ = ‖α(v1 − v2)‖ =
‖α(v1) − α(v2)‖ for all v1, v2 ∈ V. Also, as a direct consequence of the
definition, such a linear transformation preserves the angles between vec-
tors. Conversely, we have already noted that from the norm defined by an
inner product we can recover the inner product itself, so that any linear
transformation α : V → W satisfying ‖v1 − v2‖ = ‖α(v1) − α(v2)‖ for
all v1, v2 also preserves inner products. Such a linear transformation is
called an isometry.

We also note that if α is an endomorphism of an inner product space
V which is an isometry, and if c is an eigenvalue of α with associated
eigenvector v, then ‖v‖2 = ‖cv‖2 = |c|2 ‖v‖2 and so |c| = 1. Thus, if
V is an inner product space over C and if α ∈ End(V ) is an isometry,
then the eigenvalues of α lie on the unit circle {z ∈ C | |z| = 1}.

Example: Let V be an inner product space over R and let 0V �=
y ∈ V. This vector y defines an endomorphism αy of V by setting

αy : v �→ −v + 2
〈v, y〉
〈y, y〉y.

This endomorphism is an isometry which satisfies α2
y = σ1, and y is a

fixed point of αy.

(17.13) Proposition: Let V and W be finitely-generated inner
product spaces and having equal dimensions. Then the following
conditions on a linear transformation α : V → W are equivalent:

(1) α is an isometry;
(2) α is an isomorphism which is an isometry;
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(3) If {v1, . . . , vn} is an orthonormal basis of V then the set
{α(v1), . . . , α(vn)} is an orthonormal basis of W.

Proof: (1) ⇒ (2): If 0V �= v ∈ V then 〈v, v〉 = 〈α(v), α(v)〉 and so
α(v) �= 0W . Thus we see that ker(α) = {0V } and so α is an isomorphism,
since V and W have the same finite dimension.

(2) ⇒ (3): If {v1, . . . , vn} is an orthonormal basis of V then, since
α is an isomorphism, we see that {α(v1), . . . , α(vn)} is a basis for W.
Moreover, for all 1 ≤ i, j ≤ n we know that

〈α(vi), α(vj)〉 = 〈vi, vj〉 =
{

1 when i = j
0 otherwise

and so this basis is orthonormal.
(3) ⇒ (1): Let {v1, . . . , vn} be an orthonormal basis of V. If v =∑n
i=1 aivi and y =

∑n
j=1 bjvj , then 〈v, y〉 =

∑n
i=1 aibi. Moreover,

〈α(v), α(y)〉 =

〈

α

(
n∑

i=1

aivi

)

, α




n∑

j=1

bjvj





〉

=
n∑

i=1

n∑

j=1

aibj 〈α(vi), α(vj)〉 =
n∑

i=1

aibi = 〈v, y〉

and this proves (1). �

In particular, if V and W are finitely-generated inner product spaces
having equal dimensions, then every isometry α : V → W is an iso-
morphism. If w1, w2 ∈ W, then 〈w1, w2〉 =

〈
αα−1(w1), αα−1(w2)

〉
=〈

α−1(w1), α−1(w2)
〉

and so we see that α−1 is also an isometry. More-
over, there is always at least one isometry α from V to W. Just pick
orthonormal bases {v1, . . . , vn} for V and {w1, . . . , wn} for W and
define α by α :

∑n
i=1 aivi �→

∑n
i=1 aiwi.

Example: Let W be the set of all matrices A ∈ M3×3(R) satisfying
AT = −A, which is a subspace of M3×3(R) of dimension 3. Define
an inner product on W as follows: if A,B ∈ W then 〈A,B〉 =
1
2 tr(ABT ). Let V = R

3, which is an inner product space with respect
to the dot product. Define a linear transformation α : V → W by

setting α :




a
b
c



 �→




0 −c b
c 0 −a

−b a 0



 . If A =




0 −c b
c 0 −a

−b a 0



 and

B =




0 −f e
f 0 −d

−e d 0



 then ABT =




cf + be −bd −dc

ea cf + ad ec
−af fb be + ad
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and so we can check that 〈A,B〉 =




a
b
c



 ·




d
e
f



 and thus α is an

isometry and hence is an isomorphism.

Example: Proposition 17.13 is no longer true if we remove the condition
that the spaces are finitely generated. Indeed, let V = C(0, 1), on which
we have the inner product µ(f, g) =

∫ 1

0
f(x)g(x)x2dx, and let W be the

same space on which we have the inner product 〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

Let α : V → W be the linear transformation defined by α : f(x) �→ xf(x).
Then µ(f, g) = 〈α(f), α(g)〉 and so α is an isometry. But α is not an
isomorphism since the function x �→ x2 + 1 does not belong to the image
of α.

Let us now return to the case of inner product spaces the dimensions of
which are not necessarily equal.

(17.14) Proposition: Let V and W be inner product spaces
finitely-generated over R and let α ∈ Hom(V,W ). Then α is an
isometry if and only if α∗α = σ1 ∈ End(V ).

Proof: By Proposition 16.14, α∗ exists. If α∗α = σ1 ∈ End(V ), and
if v1, v2 ∈ V then

‖v1 − v2‖2 = 〈v1 − v2, v1 − v2〉 = 〈v1 − v2, α
∗α(v1 − v2)〉

= 〈α(v1 − v2), α(v1 − v2)〉 = ‖α(v1) − α(v2)‖2

and so ‖v1 − v2‖ = ‖α(v1) − α(v2)‖ , proving that α is an isometry.
Conversely, if α is an isometry and if v1, v2 ∈ V then 〈α∗α(v1), v2〉 =
〈α(v1), α(v2)〉 = 〈v1, v2〉. Therefore, by Proposition 16.13, we see that
α∗α(v1) = v1 for all v1 ∈ V, proving that α∗α = σ1 ∈ End(V ).
�

Exercises

Exercise 945 Let V = C[X] and define an inner product on V by
setting

〈∑∞
i=0 aiX

i,
∑∞

i=0 biX
i
〉

=
∑∞

i=0 aibi. Let α be the endomorphism
of V defined by α : p(X) �→ (X + 1)p(X). Calculate α∗, or show that
it does not exist.
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Exercise 946 Let V = C[X] and define an inner product on V by
setting

〈∑∞
i=0 aiX

i,
∑∞

i=0 biX
i
〉

=
∑∞

i=0 aibi. Let β be the endomorphism
of V defined by β : p(X) �→ p(X + 1). Calculate β∗, or show that it
does not exist.

Exercise 947 Let p > 1 be an integer, let G = Z/(p), and let V = C
G,

which is an inner product space over C with inner product defined by
〈f, g〉 =

∑
n∈G f(n)g(n). Let α be the endomorphism of V defined by

α(f) : n �→ f(n + 1) + f(n − 1). Is α selfadjoint?

Exercise 948 Let V be a vector space over R. A nonempty subset K
of V is convex if and only if cv + (1 − c)w ∈ K whenever v, w ∈ K
and 0 ≤ c ≤ 1. Is the set of all selfadjoint endomorphisms of an inner
product space Y over R necessarily a convex subset of the vector space
End(Y )?

Exercise 949 Let V be an inner product space and let α be an endo-
morphism of V. Is the endomorphism α∗α − σ1 of V selfadjoint?

Exercise 950 Let n be a positive integer and let V be the space of all
polynomial functions in R

R of degree at most n. Define an inner product
on V by setting 〈f, g〉 =

∫ 1

−1
f(t)g(t)dt. Let α ∈ End(V ) be defined by

α(f) : x �→
(
1 − x2

)
f ′′(x) − 2xf ′(x). Show that α is self-adjoint.

Exercise 951 Let V be an inner product space finitely generated over C

and let α be an endomorphism of V satisfying αα∗ = α2. Show that
α is selfadjoint.

Exercise 952 Let V be an inner product space finitely generated over
C and let α and β be selfadjoint endomorphisms of V satisfying the
condition that αβ is a projection. Is βα necessarily also a projection?

Exercise 953 Give an example of nonzero Hermitian matrices A and
B satisfying AB = O = BA, or show no such matrices exist.

Exercise 954 Let A ∈ M2×2(C) be Hermitian. Find real numbers w,
x, y, and z satisfying |A| = w2 − x2 − y2 − z2.

Exercise 955 Let n be a positive integer and let A ∈ Mn×n(C). Show
that A is a Hermitian matrix if and only if the matrix B = iA satisfies
B = −BH .

Exercise 956 Let O �= A ∈ M3×3(C) be a Hermitian matrix. Show that
Ak �= O for all positive integers k.

Exercise 957 Find complex numbers a and b such that




a 0 b
0 2a a
i 1 a



 ∈

M3×3(C) is a Hermitian matrix.
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Exercise 958 A matrix A ∈ Mn×n(C) is anti-Hermitian if and only
if AH = −A. Show that A is anti-Hermitian if and only if iA is
Hermitian.

Exercise 959 If matrices A,B ∈ Mn×n(C) are anti-Hermitian, show
that the Lie product of A and B is also anti-Hermitian.

Exercise 960 Let n be a positive integer and let A ∈ Mn×n(C). Show
that every eigenvalue of AHA is a positive real number.

Exercise 961 Let V be an inner product space and let α ∈ End(V ) be
selfadjoint. Show that ker(α) = ker(αh) for all h ≥ 1.

Exercise 962 Let V be a nontrivial finitely-generated inner product space
and let α ∈ End(V ) be orthogonally diagonalizable and satisfy the condi-
tion that each of its eigenvalues is real. Is α necessarily selfadjoint?

Exercise 963 Let V = R
2, endowed with the dot product. Is the endo-

morphism α of V defined by α :
[

a
b

]

�→
[

a + b
a + b

]

positive definite?

Exercise 964 Let α ∈ End(R3) be represented with respect to the canoni-

cal basis by the matrix




1 2 3
2 a 4
3 4 5



 . For which values of a is α positive

definite?

Exercise 965 For each complex number z, let αz be the endomorphism

of C
3 represented with respect to the canonical basis by




1 1 −1
1 1 z

−1 z 1



 .

Does there exist a z for which this endomorphism is positive definite?

Exercise 966 Let V be an inner product space and let α ∈ End(V ) be
positive definite. Is α2 necessarily positive definite?

Exercise 967 Let α be a positive definite automorphism of an inner
product space V. Is α−1 necessarily positive definite?

Exercise 968 Let k and n be positive integers. A symmetric matrix

in Mk+n,k+n(R) is quasidefinite when it is of the form
[

−B AT

A C

]

where B is a matrix representing a positive-definite endomorphism of
R

k with respect to the canonical basis, and C is a matrix representing
a positive-definite endomorphism of R

n with respect to the canonical
basis. Show that a quasidefinite matrix is nonsingular, and that its inverse
is again quasidefinite.



17. Selfadjoint Endomorphisms 367

Exercise 969 Let V = R
2 together with the dot product. Find positive-

definite endomorphisms α and β of V satisfying the condition that
their Jordan product is not positive definite.

Exercise 970 Let V be an inner product space over R and let α ∈
End(V ). Show that α is positive definite if and only if α+α∗ is positive
definite.

Exercise 971 Let V be an inner product space finitely generated over C

and let α and β be positive-definite endomorphisms of V satisfying
αβ = σ0. Is it necessarily true that α = σ0 or β = σ0?

Exercise 972 Let V =












a
b
b
c







∣
∣
∣
∣
∣
∣
∣
∣

a, b, c ∈ R






and let W = R
3, both

of which together with the dot product, are inner product spaces of dimen-
sion 3 over R. Find an isomorphism α : V → W which is also an
isometry.

Exercise 973 Let V be an inner product space and let α be an endo-
morphism of V which is an isometry. Does α also preserves angles
between vectors?

Exercise 974 Let α be a positive-definite endomorphism of a finite-
dimensional inner product space V represented with respect to some fixed

basis by an n × n matrix A = [aij ]. Show that |A| ≤
n∏

i=1

aii.

Exercise 975 Let n be a positive integer and let α be a positive-definite
endomorphism of C

n represented with respect to the canonical basis by the
matrix A = [aij ] ∈ Mn×n(C). Show that aii is a positive real number
for all 1 ≤ i ≤ n.

Exercise 976 Let α : R
3 → R

2 be the linear transformation defined by

α :




a
b
c



 �→
[

b − 2c
a + c

]

. Calculate spec(αα∗) and spec(α∗α).

Exercise 977 Let n be a positive integer and let V = R
n, on which we

have defined the dot product. Let α be a positive-definite endomorphism of
V represented with respect to the canonical basis by the matrix A = [aij ] ∈
Mn×n(R). Show that |A| > 0. Is it necessarily true that tr(A) > 0?

Exercise 978 Let V = C
2. Find endomorphisms α, β ∈ End(V ) satis-

fying α > β (in the sense of Loewner) but not α2 > β2.
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Exercise 979 Let V be an inner product space and let α, β ∈ End(V )
be positive definite. Is it necessarily true that α + β > β?

Exercise 980 Let V and W be inner product spaces finitely generated
over C. Let α ∈ Hom(V,W ), θ ∈ Aut(V ), and ϕ ∈ Aut(W ), where the
automorphisms θ and ϕ are positive definite. Show that the automor-
phism θ−α∗ϕα of V is positive definite if and only if the automorphism
ϕ − αθα∗ of W is positive definite.

Exercise 981 Let V be the vector space of all infinitely-differential func-
tions in R

R, on which we define the inner product 〈f, g〉 =
∫ π

0
f(x)g(x)dx.

Let W be the subspace of all functions f ∈ V satisfying f(0) = f(π) = 0.
Show that the endomorphism of W defined by f �→ f ′′ is selfadjoint.

Exercise 982 Let V be a finitely-generated inner product space and let
α ∈ End(V ) be selfadjoint. Show that ‖α(v)‖ ≤ ‖v‖ for all v ∈ V.

Exercise 983 Let V be an inner product space finitely generated over R

of dimension greater than 1, and let α be a selfadjoint endomorphism
of V. Show that there are eigenvalues c < d of α satisfying c ‖v‖2 ≤
〈α(v), v〉 ≤ d ‖v‖2 for all v ∈ V.

Exercise 984 Let V be an inner product space finitely generated over R

and let α, β ∈ End(V ) be selfadjoint. Assume that the eigenvalues of α
all lie in the interval [a, b] on the real line and that the eigenvalues of β
all lie in the interval [c, d] on the real line. Show that the eigenvalues of
α + β all lie in the interval [a + c, b + d] of the real line.

Exercise 985 Let V be an inner product space finitely generated over C

and let α be a positive-definite selfadjoint automorphism of V. Show that〈
(α + α−1)(v), v

〉
≥ 2 〈v, v〉 for all v ∈ V.

Exercise 986 Let V be an inner product space finitely generated over R

and let α be a positive-definite selfadjoint automorphism of V. Show that〈
α−1(v), v

〉
= max{2 〈v, w〉 − 〈α(w), w〉 | w ∈ W} for all v ∈ V.

Exercise 987 Let V be a vector space finitely-generated over R and let
α ∈ End(V ) be selfadjoint. Show that at least one of the values ±‖α‖ is
an eigenvalue of α and any eigenvalue c of α satisfies −‖α‖ ≤ c ≤ ‖α‖ .

Exercise 988 Let A =
[

a b

b c

]

∈ M2×2(C) be Hermitian and let r ≥ s

be the (necessarily real) eigenvectors of A. Show that |b| ≤ 1
2 (r − s).



18
Unitary and Normal endomorphisms

Let V be an inner product space. An automorphism of V which is an
isometry is called a unitary automorphism. It is easy to see that if α
and β are unitary automorphisms of V then αβ and α−1 are also
unitary automorphisms of V. It is also clear that σ1 is unitary. Therefore,
the set of all unitary automorphisms of V is a group of automorphisms.

(18.1) Proposition: Let V be an inner product space and let
α ∈ Aut(V ) have an adjoint. Then α is unitary if and only if
α∗ = α−1.

Proof: If α is unitary then 〈α(v), w〉 =
〈
α(v), αα−1(w)

〉
=

〈
v, α−1(w)

〉

for all v, w ∈ V and so α∗ = α−1. Conversely, if α∗ = α−1 then
〈α(v), α(w)〉 = 〈v, α∗α(w)〉 = 〈v, w〉 for all v, w ∈ V and so α is unitary.
�

As a direct consequence of Proposition 17.13, we see that if V is an
inner product space finitely generated over its field of scalars then for α ∈
End(V ) the following conditions are equivalent:
(1) α is an isometry;
(2) α is unitary;
(3) α maps an orthonormal basis of V to an orthonormal basis of V.

If V is an inner product space finitely generated over its field of scalars
F, and if α is a unitary automorphism of V represented by a matrix

369
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A = [aij ] ∈ Mn×n(F ) with respect to a given orthonormal basis. Then
we see that A−1 = AH ∈ Mn×n(F ). A matrix of this form over F
is called a unitary matrix. If A is a unitary matrix then so is A−1

since (A−1)H = (AH)−1. Also, if A and B are unitary matrices then
(AB)−1 = B−1A−1 = BHAH = (AB)H so AB is also unitary. The

converse is false. For example, the matrix A =
[

−1 1
0 1

]

∈ M2×2(R)

is not unitary, but A2 = I is.
Thus we see that the set of unitary matrices in Mn×n(F ) define a group

of automorphisms of Fn and so an equivalence relation ∼ defined by
the condition that A ∼ B if and only if there exists a unitary matrix P
such that A = P−1BP. Matrices equivalent in this sense are unitarily
similar. As an immediate consequence of the definition, we see that A is
unitary if and only if the set of columns [resp. rows] of A is an orthonormal
basis of Fn [resp. M1×n(F )] endowed with the dot product.

(18.2) Proposition: Let n be a positive integer and let A = [aij ]
and B = [bij ] be unitarily-similar matrices in Mn×n(C). Then∑n

i=1

∑n
j=1 |aij |2 =

∑n
i=1

∑n
j=1 |bij |2.

Proof: We note that
∑n

i=1

∑n
j=1 |aij |2 = tr(AHA). If P is a unitary

matrix satisfying B = P−1AP then tr(BHB) = tr(P−1AHPP−1AP ) =
tr(P−1AHAP ) = tr(AHAP−1P ) = tr(AHA), and we are done. �

Example: If c, d ∈ C satisfy the condition that |c|2 + |d|2 = 1, then

the matrix
[

c d

−d c

]

∈ M2×2(C) is unitary. A matrix of this form is

known as a Givens1 rotation matrix. More generally, if n > 3 then a
matrix A = [aij ] ∈ Mn×n(C) is a Givens rotation matrix if and only if
there exist integers 1 ≤ h < k ≤ n and nonzero complex numbers c and

1 James Wallace Givens, a former assistant to Von Neumann, is
considered to be one of the fathers of 20th-century American numerical analysis, who
made major contributions to numerical matrix computation.



18. Unitary and Normal endomorphisms 371

d satisfying |c|2 + |d|2 = 1 such that

aij =






c if i = j ∈ {h, k}
1 if i = j /∈ {h, k}
d if i = h and j = k

−d if i = k and j = h
0 otherwise

.

These matrices play important roles in numerical algorithms.

Example: The matrix A = 1
2

[
1 − i 1 + i
1 + i 1 − i

]

∈ M2×2(C) is uni-

tary. This matrix has important applications in the modeling of quantum

computing, where it is often denoted by
√

NOT, since A2 =
[

0 1
1 0

]

represents the negation operator in this context.

Example: It is easy to show that Ab =
[ √

1 + b2 bi

−bi
√

1 + b2

]

∈

M2×2(C) satisfies AbA
T
b = I for any real number b, but, except for the

case of b = 0, it is not unitary.

Unitarily-similar matrices are surely similar, but the converse is not true.

Example: The matrices
[

3 1
−2 0

]

and
[

1 1
0 2

]

in M2×2(R) are

similar but not unitarily similar, as we can see from Proposition 18.2.

(18.3) Proposition (Schur’s Theorem2): If n is a positive
integer, then every matrix in Mn×n(C) is unitarily similar to an
upper-triangular matrix.

Proof: We will proceed by induction on n. For n = 1, the result
is trivial since every 1 × 1 matrix is upper triangular. Assume now that
n > 1 and that the result has been established for M(n−1)×(n−1)(C). Let
A = [aij ] ∈ Mn×n(C). Since we are working over C, we know that the

2 Issai Schur was a 20th-century German mathematician who is
known primarily for his work in group theory.
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characteristic polynomial of A is completely reducible, and so A has an
eigenvalue, call it c1. Corresponding to that eigenvalue, we have a normal

eigenvector v1 =






d1

...
dn




 in which we can assume that d1 ∈ R. We now

are able to construct a basis {v1, . . . , vn} for C
n to which we can apply the

Gram-Schmidt procedure, and thus assume that it is in fact an orthonormal
basis (the vector v1 doesn’t change, since it was assumed to be normal
to begin with). The matrix P1, the columns of which are these vectors, is
therefore unitary. Now set A1 = P−1

1 AP1. It is easy to see that the first

column of A1 is of the form








c1

0
...
0








so we can write A1 in block form as

[
c1 x
O A2

]

, where A2 ∈ M(n−1)×(n−1)(C). By the induction hypothesis,

there is a unitary matrix Q ∈ M(n−1)×(n−1)(C) such that Q−1A2Q is

an upper-triangular matrix. Now set P2 =
[

1 O
O Q

]

. Then P2 is a

unitary matrix in Mn×n(C) and P−1
2 P−1

1 AP1P2 =
[

c1 y
O Q−1A2Q

]

is

an upper triangular matrix in Mn×n(C). Since P1P2 is again unitary,
we are done. �

If we are working over R, then a matrix A representing a unitary
automorphism of R

n satisfies A−1 = AT . Such a matrix is called an
orthogonal matrix. It is clear that the matrix I is orthogonal and
that A−1 is orthogonal whenever A is orthogonal. If A and B are
orthogonal matrices then (AB)−1 = B−1A−1 = BT AT = (AB)T and so
AB is also orthogonal. As an immediate consequence of the definition,
we see that A is orthogonal if and only if the set of columns [resp. rows]
of A is an orthonormal basis of R

n [resp. M1×n(R)] endowed with the
dot product. It is also clear that A is orthogonal if and only if AT is
orthogonal.

Example: Permutation matrices, which we considered earlier, are clearly
orthogonal.

Example: The matrices
[

cos(t) sin(t)
− sin(t) cos(t)

]

and
[

cos(t) sin(t)
sin(t) − cos(t)

]

are orthogonal for every t ∈ R, and one can show that these are the
only orthogonal matrices in M2×2(R). Indeed, suppose that the matrix
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[
a11 a12

a21 a22

]

∈ M2×2(R) is orthogonal. Then a2
11+a2

12 = 1 = a2
21+a2

22 so

−1 ≤ a11 ≤ 1. Hence there exists a real number t such that a11 = cos(t).
Then a2

12 = 1 − a2
11 = 1 − cos2(t) = sin2(t) and so a12 = ± sin(t). Also,

a11 = cos(−t) and sin(−t) = − sin(t). Thus, replacing t by −t if
necessary we can assume that a11 = cos(t) and a12 = sin(t). Similarly,
there exists an angle s such that a22 = cos(s) and a21 = sin(s).

Since 0 = a11a21 + a12a22 = cos(t) sin(s) + sin(t) cos(s) = sin(t + s), we
see that t + s = 0 or t + s = π. If t + s = 0, we obtain

A =
[

cos(t) sin(t)
− sin(t) cos(t)

]

.

If t + s = π, then s = π − t and so A =
[

cos(t) sin(t)
sin(t) − cos(t)

]

since

sin(t) = sin(π − t) and − cos(t) = cos(π − t).
One can also show that every orthogonal matrix in M3×3(R) is similar

to a matrix of the form




cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 ±1



 for some t ∈ R.

Example: Let n be a positive integer. If 0 ≤ c ≤ 1 is a real number,

the matrix
[

(
√

c) I
(
−
√

1 − c
)
I(√

1 − c
)
I (

√
c) I

]

∈ M2n×2n(R) is orthogonal,

where I denotes the identity matrix in Mn×n(R).

Example: Let n be a positive integer and let V = R
n, on which

we have defined the dot product. If v ∈ V is a normal vector, then the
matrix A = I − 2(v ∧ v) is a Householder3 matrix. These matrices are
clearly symmetric. Moreover, if A = I − 2(v ∧ v) then

AT A = A2 = (I − 2[v ∧ v])2 = I − 4v(vT v)vT + 4v(vT v)vT = I

and so A is orthogonal. Householder matrices have important uses in
numerical analysis. We should also mention that if u �= v are vectors

3 Alston Householder, a 20th-century American mathematician,
was among the pioneer researchers of the numerical analysis of matrices using computers,
who developed many of the basic algorithms used in this field.
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in V satisfying ‖u‖ = ‖v‖ , then the vector w = ‖v − u‖−1 (v − u)
defines a Householder matrix A = I − 2(w ∧ w) satisfying Au = Av.
Since a Householder matrix is totally determined by one vector, it is easy
to store in a computer. One of the important uses of Householder matrices
is to compute QR-decompositions of matrices in a manner far more stable
numerically than via the use of the Gram-Schmidt method.

The complex analog of Householder matrices are matrices of the form
I −2wwH , where w ∈ C

n. Such matrices are Hermitian and unitary and,
too, have an important role in numerical computation.

Example: A general method for the construction of orthogonal ma-
trices, due to contemporary American mathematician George W. Soules,
is given as follows: Let n > 1 be an integer and let w1 ∈ R

n be a
normal vector all of the entries of which are all positive. Let 1 ≤ k < n

and write w1 =
[

u
v

]

, where u ∈ R
k and v ∈ R

n−k. Set a =
‖v‖
‖u‖

and w2 =
[

au
−a−1v

]

. Then it is easy to see that w2 is normal and

orthogonal to w1. Moreover, by further partitioning the vectors au and
−a−1v, we can eventually construct a mutually-orthogonal normal vec-
tors w1, w2, . . . , wn. The matrix with these vectors as columns is then
orthogonal.

Notice that if F is either R or C, and if A ∈ Mn×n(F ) is a unitary
matrix the columns of which are v1, . . . , vn, then the identity AAH = I
implies that {v1, . . . , vn} is an orthonormal set of vectors in Fn, on which
we have the dot product, and hence it is a basis for this space. Conversely,
if {v1, . . . , vn} is an orthonormal basis of Fn then the matrix the columns
of which are these vectors is unitary. Similarly, a matrix in Mn×n(R) is
orthogonal if and only if the set of its columns forms an orthonormal basis
for R

n with the dot product. Another way of putting this is that a matrix
in Mn×n(R) the columns of which are v1, . . . , vn is orthogonal if and
only if

∑n
i=1 vi ∧ vi = I.

(18.4) Proposition: Let V be an inner product space of finite
dimension n over R. Let α be a unitary automorphism of V,
which is represented by a matrix A ∈ Mn×n(R) with respect to
a given orthonormal basis of V. Then |A| = ±1.

Proof: We know that if α is represented by A = [aij ] with respect to
the given basis, then α∗ is represented by AT . From Proposition 18.1,
we deduce that AAT = I and so |A|2 = |A| · |AT | = |I| = 1, and so
|A| = ±1. �
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The orthogonal matrices in Mn×n(R) having determinant equal to 1
are known as the special orthogonal matrices, and the set of all such
matrices is denoted by SO(n). This subset of Mn×n(R) is clearly closed
under taking products as well as taking inverses, since if A ∈ SO(n) then
|A−1| = |AT | = |A| = 1. If A ∈ Mn×n(R) is a special orthogonal matrix,
where n is an odd integer, then 1 ∈ spec(A). To see this, we note that

|A − 1I| = |A − I| = |A − AAT | = |A| · |I − AT | = |I − AT | = |I − A|

and, since n is odd, |I−A| = (−1)n|A−I|. Thus we must have |A−I| = 0,
and so 1 ∈ spec(A).

Example: We have already noted that the only orthogonal matrices in

M2×2(R) are of the form
[

cos(t) sin(t)
− sin(t) cos(t)

]

or
[

cos(t) sin(t)
sin(t) − cos(t)

]

for some t ∈ R. Matrices of the first type are special, whereas matrices
of the second type are not.

Let V be an inner product space. An endomorphism α ∈ End(V )
is normal if and only if α∗ exists and satisfies α∗α = αα∗. From this
definition, it is clear that α is normal if and only if α∗ is normal. Clearly
selfadjoint endomorphisms of V are normal, as are unitary automorphisms.

Example: If a, b ∈ R satisfy b �= 0 and a2 + b2 �= 1, then the

automorphism α of R
2 defined by

[
c
d

]

�→
[

ac + bd
ad − bc

]

is normal but

neither unitary nor selfadjoint.

Example: If 0 �= a, b ∈ R then the automorphism α of C
2 defined

by
[

c
d

]

�→
[

c + id
c − id

]

is normal but neither unitary and nor selfadjoint.

(18.5) Proposition: Let V be an inner product space. An
endomorphism α ∈ End(V ) for which α∗ exists is normal if and
only if ‖α(v)‖ = ‖α∗(v)‖ for all v ∈ V.

Proof: If α is normal and v ∈ V, then ‖α(v)‖2 = 〈α(v), α(v)〉 =
〈v, α∗α(v)〉 = 〈v, αα∗(v)〉 = 〈v, α∗∗α∗(v)〉 = 〈α∗(v), α∗(v)〉 = ‖α∗(v)‖2

and so ‖α(v)‖ = ‖α∗(v)‖ . Conversely, assume that this condition holds.
Then for each v ∈ V we have

〈(αα∗ − α∗α)(v), v〉 = 〈αα∗(v), v〉 − 〈α∗α(v), v〉
= 〈α∗(v), α∗(v)〉 − 〈α(v), α(v)〉 = 0.



376 18. Unitary and Normal endomorphisms

But αα∗ − α∗α is selfadjoint and so, by Proposition 17.3 we see that
αα∗ − α∗α = σ0, and so αα∗ = α∗α. �

We now take a short look at the extensive theory of eigenvalues of normal
endomorphisms of inner product spaces. We will restrict our attention to
finite-dimensional spaces, since the theory for infinite-dimensional spaces
requires additional topological assumptions.4

(18.6) Proposition: Let V be an inner product space and let
α ∈ End(V ) be normal. Then every eigenvector of α is also an
eigenvector of α∗ and if c is an eigenvalue of α then c is an
eigenvalue of α∗.

Proof: If v ∈ V then, as we have noted, ‖α(v)‖ = ‖α∗(v)‖ . For a
scalar c, we see that

(α − cσ1)∗(α − cσ1) = (α∗ − cσ1)(α − cσ1) = (α − cσ1)(α∗ − cσ1)
= (α − cσ1)(α − cσ1)∗

and so α−cσ1 is also normal. Thus, ‖(α − cσ1)(v)‖ = ‖(α∗ − cσ1)(v)‖ for
v ∈ V and so, in particular, we see that v ∈ ker(α − cσ1) if and only if
v ∈ ker(α∗ − cσ1). In other words, v is an eigenvector of α associated
with the eigenvalue c if and only if it is an eigenvector of α∗ associated
with the eigenvalue c. �

Since α∗∗ = α for any endomorphism α of V , we see from Proposition
18.6 that if α is normal then a scalar c is an eigenvalue of α if and only
if c is an eigenvalue of α∗.

Another interesting consequence of Proposition 18.6 is the following: let
V be a finitely-generated inner product space and let α ∈ Aut(V ) be
unitary. Then α is surely normal. If c ∈ spec(α) then c �= 0 since
α is an automorphism. If v is an eigenvector associated with c then
v = (α∗α)(v) = α∗(cv) = cα∗(v) and so α∗(v) = c−1v. This shows that
c−1 is an eigenvalue of α∗ and hence, by Proposition 18.6, c−1 ∈ spec(α).

4 The study of eigenvalues of normal and selfadjoint endomorphisms
of inner product spaces was developed simultaneously by the American mathematician
Marshall Stone and by John von Neumann, inspired by problems in quantum theory.
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Example: In Proposition 17.5 we saw that if α is a selfadjoint en-
domorphism of an inner product space V finitely generated over R,
then spec(α) �= ∅. This is not necessarily true for normal endomor-
phisms of inner product spaces which are not selfadjoint. For example, let
V = R

2 together with the dot product, and if α ∈ End(V ) is defined by

α :
[

a
b

]

�→
[

−b
a

]

, then we have already seen that spec(α) = ∅. One

can easily check that α is normal but not selfadjoint.

(18.7) Proposition: Let V be an inner product space finitely
generated over C and let α ∈ End(V ). Then α is normal if and
only if it is orthogonally diagonalizable.

Proof: Assume that α is normal. We will proceed by induction on
n = dim(V ). First assume that n = 1. Since we are working over C,
we know that spec(α) �= ∅ and so there exists a normal eigenvector v1

of α. Then V = Cv1 and we are done. Now assume that n > 1 and
that the result has been proven for subspaces of dimension n − 1. Again,
there exists a normal eigenvector v1 of α. Set W = Cv1. The subspace
W of V is invariant under α, and so, by Proposition 18.6, it is also
invariant under α∗. Therefore W⊥ is invariant under α∗∗ = α. The
restriction of α to W⊥ is a normal endomorphism, the adjoint of which
is the restriction of α∗ to W⊥. By induction, we know that there exists
an orthonormal basis {v2, . . . , vn} composed of eigenvectors of α, and
so {v1, . . . , vn} is the basis of V we are seeking.

Conversely, assume that there exists an orthonormal basis of B =
{v1, . . . , vn} composed of eigenvectors of α. Then ΦBB(α) = [aij ] is a
diagonal matrix satisfying the condition that each aii is an eigenvalue of
α. Moreover, ΦBB(α∗) = ΦBB(α)H and this too is a diagonal matrix.
Since diagonal matrices commute, we see that αα∗ = α∗α and so α is
normal. �

Note that Proposition 18.7 does not imply that if V is an inner product
space finitely generated over C and if α ∈ End(V ) is normal, then every
basis B of V composed of eigenvectors of α is necessarily orthonormal
or that its elements are even necessarily mutually orthogonal, merely that
one such basis exists.

Example: Let α be the endomorphism of C
4 represented with respect

to the canonical basis by the matrix A =







1 2 0 0
−2 1 0 0

0 0 3 −1
0 0 1 3





 . One easily
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checks that AAH = AHA and so α is a normal automorphism of C
4.

The characteristic polynomial of A is

X4 − 8X3 + 27X3 − 50X + 50 = (X2 − 6X + 10)(X2 − 2X + 5)

and so spec(α) = {3 ± i, 1 ± 2i}. The set
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0
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is an orthonormal basis for C
4 composed of eigenvectors of α.

(18.8) Proposition: Let V be a finitely-generated inner prod-
uct space. Then the following conditions on a projection α ∈
End(V ) are equivalent:

(1) α is normal;
(2) α is selfadjoint;
(3) ker(α) = im(α)⊥.

Proof: (1) ⇒ (2): From (1) we know that ‖α(v)‖ = ‖α∗(v)‖ for all
v ∈ V. In particular, α(v) = 0V if and only if α∗(v) = 0V so that
ker(α) = ker(α∗). If v ∈ V and w = v−α(v) then α(w) = α(v)−α2(v) =
α(v) − α(v) = 0V and so α∗(w) = 0V . Therefore α∗(v) = α∗α(v) for
all v ∈ V , whence α∗ = α∗α. This implies that α = α∗∗ = (α∗α)∗ =
α∗α∗∗ = α∗α = α∗, which proves (2).

(2) ⇒ (3): If v, w ∈ V then, from (2), we see that 〈α(v), w〉 = 〈v, α(w)〉 .
In particular, if v ∈ ker(α) then 〈v, α(w)〉 = 0 for all w ∈ V, which is
to say that v ∈ im(α)⊥. Conversely, if v ∈ im(α)⊥ then 〈v, α(w)〉 = 0
for all w ∈ V, which implies that α(v) is orthogonal to every element of
V. Therefore α(v) = 0V and so v ∈ ker(α). This proves (3).

(3) ⇒ (1): Let v, w ∈ V . Since α is a projection, we have v −α(v) ∈
ker(α). It is also clear that α(w) ∈ im(α). Therefore

0 = 〈v − α(v), α(w)〉 = 〈v, α(w)〉 − 〈α(v), α(w)〉 = 〈v, α(w)〉 − 〈v, α∗α(w)〉

and since this is true for all v, w ∈ V, we have α = α∗α. This implies that
α = α∗ is selfadjoint and therefore surely normal, proving (1). �

We note that if V is a finitely-generated inner product space and if
α ∈ End(V ) is normal, then, by Propositions 16.5, 16.7. and 18.5, we
have V = ker(α) ⊕ im(α), and, in particular, {im(α), ker(α)} is an
independent set of subspaces of V. Moreover, v ⊥ v′ for all v ∈ ker(α)
and v′ ∈ im(α). While the direct-sum decomposition is valid for any
projection, it is the nomality which ensures the orthogonality.
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(18.9) Proposition: Let V be a finitely-generated inner prod-
uct space. Let W1, . . . ,Wn be subspaces of V and, for each
1 ≤ i ≤ n, let αi be the projection of V onto the subspace
Wi coming from the decomposition V = Wi ⊕ W⊥

i . Then the
following conditions are equivalent:

(1) V =
⊕n

i=1
Wi and W⊥

h =
⊕

j �=h Wj for all 1 ≤ h ≤ n;
(2) α1 + . . . + αn = σ1 and αiαj = σ0 for all i �= j;
(3) If Bi is an orthonormal basis of Wi for each i, then

B =
⋃n

i=1 Bi is an orthonormal basis of V.

Proof: This has essentially already been established when we talked
about the decomposition of a vector space into a direct sum of subspaces.
�

(18.10) Proposition: Let F be either R or C and let V be
a finitely-generated inner product space over F . If p(X) ∈ F [X]
and if α is a normal endomorphism of V, then p(α) is a normal
endomorphism of V.

Proof: If p(X) =
∑n

i=0 aiX
i. Then p(α) =

∑n
i=0 aiα

i and p(α)∗ =∑n
i=0 ai(α∗)i. Since αα∗ = α∗α, it follows from the definition of the

product that p(α)p(α)∗ = p(α)∗p(α). Therefore p(α) is a normal endo-
morphism of V. �

(18.11) Proposition: Let V be a finitely-generated inner prod-
uct space and let α be a normal endomorphism of V. If the
minimal polynomial of α is completely reducible, then it does
not have multiple roots.

Proof: Let p(X) be the minimal polynomial of α, which we assume is
completely reducible. Assume that there exists a scalar c and a polynomial
q(X) such that p(X) = (X − c)2q(X). Since p(α) = σ0, we have
(α − cσ1)2q(α) = σ0 and so ker((α − cσ1)2q(α)) = V. By Proposition
18.10, we know that β = α − cσ1 is a normal endomorphism of V.
Let v ∈ V and let w = q(α)(v). Then β2(w) = 0V and so β(w) ∈
im(β) ∩ ker(β) = {0V }. Thus we see that βq(α)(v) = 0V for all v ∈ V
and hence α annihilates the polynomial (X − c)q(X), contradicting the
minimality of p(X). �

(18.12) Proposition (Spectral Decomposition Theorem): Let
V be an inner product space finitely generated over C and let
α be a normal endomorphism of V . Then there exist scalars
c1, . . . , cn and projections α1, . . . , αn of V satisfying:

(1) α = c1α1 + . . . + cnαn;
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(2) σ1 = α1 + . . . + αn;
(3) αhαj = σ0 for all h �= j.
Moreover, these cj and αj are unique. The cj are precisely

the distinct eigenvalues of α and each αj is the projection of
V onto the eigenspace Wj associated with cj coming from the
decomposition V = Wj ⊕ W⊥

j .

Proof: Let p(X) be the minimal polynomial of α, which we will write
in the form p(X) =

∏n
i=1(X − ci), where the ci are complex numbers

which, by Proposition 18.11, are distinct. For each 1 ≤ j ≤ n, let pj(X)
be the jth Langrange interpolation polynomial determined by the ci.

Let f(X) be a polynomial of degree at most n − 1. Then the poly-
nomial f(X) −

∑n
i=1 f(ci)pi(X) is of degree at most n − 1 and has

n distinct roots c1, . . . , cn. Thus it must be the 0-polynomial and so
f(X) =

∑n
i=1 f(ci)pi(X). In particular, we see that 1 =

∑n
i=1 pi(X)

and X =
∑n

i=1 cipi(X). Set αj = pj(α). Then σ1 =
∑n

i=1 αi and
α =

∑n
i=1 ciαi. Note that αj �= σ0 since αj = pj(α) and the degree

of pj(X) is less than the degree of the minimal polynomial of α. More-
over, if h �= j then there exists a polynomial u(X) ∈ C[X] satisfying
αhαj = u(α)p(α) = u(α)σ0 = σ0. Thus we see that for all 1 ≤ j ≤ n we
have αj = αjσ1 =

∑n
i=1 αjαi = α2

j and so each αj is a projection. Thus
we see that {im(αj) | 1 ≤ j ≤ n} is an independent set of subspaces of
V.

Since the minimal polynomial and the characteristic polynomial of α
have the same roots, we know that spec(α) = {c1, . . . , cn}. To show that
Wh = im(αh), we have to prove that a vector v belongs to im(αh) if
and only if α(v) = chv. Indeed, if α(v) = chv then ch

[∑n
j=1 αj(v)

]
=

chv = α(v) =
∑n

j=1(cjαj)(v) and so
∑n

j=1 [(ch − cj)αj ] (v) = 0V . Thus,
for all j �= h, we have αj(v) = 0V and so v = αh(v) ∈ im(αh).

Finally, we note that αh is the projection coming from the decomposi-
tion V = Wj ⊕ W⊥

j since αh is a polynomial in α and hence normal
and so the result follows from the remark after Proposition 18.8. �

Note that we could have deduced Proposition 18.12 directly from Propo-
sition 18.7. What is important in the above proof is the explicit construc-
tion of the projection maps as polynomials in α.

If α =
∑n

i=1 ciαi is as in Proposition 18.12, then αk = (
∑n

i=1 ciαi)
k =∑n

i=1 ck
i αi for any positive integer k, and from this we see that if p(X) ∈

C[X] then p(α) =
∑n

i=1 p(ci)αi.

(18.13) Proposition: Let V be an inner product space finitely
generated over C. A normal endomorphism α of V is positive
definite if and only if each of its eigenvalues is positive.
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Proof: If α is positive definite then, by Proposition 17.11, each of
its eigenvalues is positive. Conversely, assume each of the eigenvalues of
α is positive. By Proposition 18.12, we write α =

∑n
i=1 ciαi, where

the ci are the eigenvalues of α and the αi are projections in End(V )
satisfying αiαj = σ0 for i �= j. If 0V �= v ∈ V then 〈α(v), v〉 =
∑n

i=1

∑n
j=1 ci 〈αi(v), αj(v)〉 =

∑n
i=1 ci ‖αi(v)‖2

> 0 and so α is positive
definite. �

Example: Let V = R
3. For each a ∈ R, let αa ∈ End(V ) be

the normal endomorphism of V represented with respect to the canonical

basis by the matrix




1 a a
a 1 a
a a 1



 . Then spec(α) = {2a+1, 1−a} and so,

by Proposition 18.13, α is positive definite precisely when −1 < 2a < 2.

As a consequence of Proposition 18.13 and the comments before it, we
see that if α is a positive-definite endomorphism of a finitely-generated
inner product space V over C then there exists an endomorphism

√
α

of V satisfying (
√

α)2 = α. This endomorphism is defined by
√

α =∑n
i=1

(√
ci

)
αi, where the ci are the eigenvalues of α, and where the αi

are defined as in Proposition 18.12. In particular, if β is an automorphism
of V then, by Proposition 17.10, we can talk about

√
β∗β, which is also

positive definite by Proposition 18.13.

(18.14) Proposition: Let V be an inner product space finitely
generated over C and let α ∈ Aut(V ). Then there exists a unique
positive-definite automorphism θ of V and a unique unitary
automorphism ψ of V satisfying α = ψθ.

Proof: By Proposition 17.10, we know that the automorphism α∗α of
V is positive definite and so we can set θ =

√
α∗α. Let ϕ = θα−1. Then

ϕ∗ = (α−1)∗θ∗ = (α∗)−1θ so ϕ∗ϕ = (α∗)−1θθα−1 = (α∗)−1α∗αα−1 = σ1,
proving that ϕ is unitary by Proposition 18.1, and hence belongs to
Aut(V ). If we now define ψ = ϕ−1, we see that α = ψθ. Moreover,
we note that θ ∈ Aut(V ) since θ = ϕα. To prove uniqueness, assume
that ψθ = ψ′θ′, where ψ and ψ′ are unitary automorphisms of V
and where θ and θ′ are positive-definite automorphisms of V. Then
ψ2 = ψθ∗θψ = ψ′(θ′)∗θ′ψ′ = (ψ′)2. Since ψ is positive definite, this
implies that ψ = ψ′ and so, since ψ is an automorphism, we have
θ = ψ−1ψθ = ψ−1ψθ′ = θ′. �

The representation of an automorphism α of an inner product space fi-
nitely generated over C in the form given in Proposition 18.14 is sometimes
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called the polar decomposition of α. If we move over to matrices, we see
that the polar decomposition of a nonsingular matrix A ∈ Mn×n(C)
is of the form A = UM, where U is a unitary matrix and M is a
Hermitian matrix satisfying the condition that vMv > 0 for all nonzero
v ∈ C

n. Similarly, there exists a unitary matrix U ′ and a Hermitian
matrix M ′ satisfying AH = U ′M ′ and ao A = M ′(U ′)H , where (U ′)H

is again unitary.
In the case we are working over R, the matrix U is orthogonal,

and M is symmetric and satisfies vT Mv > 0 for all nonzero v ∈
R

n. Because polar decompositions are important in applications, several
iterative algorithms exist to compute them.

(18.15) Proposition (Singular Value Decomposition Theorem5):
Let V and W be inner product spaces of finite dimensions k
and n respectively, and let α ∈ Hom(V,W ). Then there exists
an integer t ≤ min{k, n}, together with positive real numbers
c1 ≥ c2 ≥ . . . ≥ ct and with orthonormal bases {v1, . . . , vk} of V
and {w1, . . . wn} of W satisfying

α(vi) =
{

ciwi if 1 ≤ i ≤ t
0W otherwise

and

α∗(wi) =
{

civi if 1 ≤ i ≤ t
0V otherwise .

Proof: If α is the 0-map, then the result is immediate, so assume that
that is not the case. We note that β = α∗α is a selfadjoint endomorphism
of V and so, by Proposition 17.7, it is orthogonally diagonalizable. Hence
V has an orthonormal basis {v1, . . . , vk} composed of eigenvectors of
β, where each vi is associated with an eigenvalue bi. By Proposition
17.10, we know that each bi belongs to R. Moreover, for each i we
note that bi = bi 〈vi, vi〉 = 〈bivi, vi〉 = 〈β(vi), vi〉 = 〈α(vi), α(vi)〉 ≥ 0.
Indeed, renumbering if necessary, we can assume that there exists an integer
t ≤ k such that b1 ≥ b2 ≥ . . . ≥ bt > 0 while bt+1 = . . . = bk = 0.
For each 1 ≤ i ≤ t, set ci =

√
bi and let wi = c−1

i α(vi) ∈ W. If

5 The first version of the Singular Value Decomposition Theorem
was proven by the 19th-century Italian mathematician Eugenio Beltrami. It was
subsequently extended by many others, including Camille Jordan and Sylvester.
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i �= j then 〈wi, wj〉 = (cicj)−1 〈α(vi), α(vj)〉 = (cicj)−1 〈β(vi), vj〉 =
(cicj)−1bi 〈vi, vj〉 = 0 while, for each 1 ≤ i ≤ t, we have 〈wi, wi〉 =
c−2
i 〈α(vi), α(vi)〉 = c−2

i 〈β(vi), vi〉 = c−2
i 〈bivi, vi〉 = 〈vi, vi〉 = 1. Thus we

see that the set {w1, . . . wt} is orthonormal. Moreover, for each 1 ≤ i ≤ t

we have ‖α(vi)‖2 = bi so ‖α(vi)‖ = ci and α∗(wi) = α∗ (c−1
i α(vi)

)
=

c−1
i α∗α(vi) = c−1

i β(vi) = c−1
i bivi = civi. For t + 1 ≤ i ≤ k we have

α∗α(vi) = β(vi) = 0V and so 0 = 〈β(vi), vi〉 = 〈α(vi), α(vi)〉, which
implies that α(vi) = 0W . Thus vi ∈ ker(α) for each t + 1 ≤ i ≤ k.

We are therefore left with the matter of defining wt+1, . . . , wn in the
case t < n. By Proposition 16.17, we know that ker(α∗) = im(α)⊥ and
so, if we pick an orthonormal basis {wi+1, . . . wn} for ker(α∗) we see that
{w1, . . . wn} is an orthonormal basis for W having the desired properties.
�

The scalars c1 ≥ c2 ≥ . . . ≥ ct given in the Proposition 18.15 are
called the singular values of the linear transformation α. The number
c1/ct, called the spectral condition number, is used as a measure of
the numerical instability of the matrix representing α∗α ∈ End(V ) with
respect to the given basis.

If we consider the special case of a linear transformation α : C
k → C

n

represented with respect to the canonical bases by a matrix A ∈ Mn×k(C),
the Singular Value Decomposition Theorem says that there exist unitary
matrices P ∈ Mn×n(C) and Q ∈ Mk×k(C) such that A can be written

as P

[
D O
O O

]

QH , where D ∈ Mt×t(R) is a diagonal matrix having the

singular values of α on the diagonal. These singular values are precisely
the square roots of the eigenvalues of AHA. The columns of Q form
an orthonormal basis for C

k consisting of eigenvectors of AHA, and the
columns of P form an orthonormal basis for C

n.
If α : R

k → R
n then of course the matrices P and Q are orthogonal

and A = P

[
D O
O O

]

QT .

Example: The matrix A =
1
10




20 20 −20 20
1 17 1 −17

18 6 18 −6



 can be writ-

ten as a product P




4 0 0 0
0 3 0 0
0 0 2 0



Q, where P =
1
5




5 0 0
0 3 −4
0 4 3





and Q =
1
2







1 1 −1 1
1 1 1 −1
1 −1 1 1
1 −1 −1 −1





 are orthogonal and where the singular

values of A are 4, 3, 2.
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Singular value decompositions have many applications, and play impor-
tant roles in the mathematics of optimization, of data compression, and of
image processing. They are especially useful since accurate and relatively-
efficient algorithms for computing these decompositions are readily avail-
able in many common linear-algebra software packages.

Exercises

Exercise 989 Let A ∈ Mn×n(C) be similar to a unitary matrix. Is A−1

necessarily similar to AH?

Exercise 990 Let n > 1 be an integer and let V be the subspace of
C[X] consisting of all polynomials of degree at most n. Let 0 �= c ∈ C

and let α be the endomorphism of V defined by α : p(X) �→ p(X + c).
Is it possible to define an inner product on V relative to which α is
normal?

Exercise 991 Let a, b, c ∈ C. Find the set of all triples (x, y, z) of

complex numbers satisfying the condition that the matrix




a x y
0 b z
0 0 c





represents a normal endomorphism of C
3, endowed with the dot product,

with respect to the canonical basis.

Exercise 992 Let n be a positive integer. A matrix A ∈ Mn×n(C)
is normal if and only if AHA = AAH . Show that every normal upper-
triangular matrix is a diagonal matrix.

Exercise 993 Let V = R
2, together with the dot product. Show that a

matrix in M2×2(R) is of the form ΦBB(α) for some normal endomor-
phism α of V which is not selfadjoint if and only if it is of the form
[

a −b
b a

]

for real numbers a and b �= 0.

Exercise 994 Let V be an inner product space finitely generated over
R and let S be the set of all isometries V . Is S an R-subalgebra of
End(V )?

Exercise 995 Let n be a positive integer and let V = C
n on which we

have the dot product. If α ∈ End(V ), let G(α) = {〈α(v), v〉 | ‖v‖ = 1}.
For the special case n = 2, find G(α) and G(β), where α is represented
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with respect to the canonical basis by the matrix
[

1 0
0 0

]

and β is

represented with respect to the canonical basis by the matrix
[

0 2
0 0

]

.

Exercise 996 Let V = R
3 on which we have the dot product, and let

W be the space of all polynomial functions in R
R of degree at most

2, on which we define the inner product 〈f, g〉 =
∫ 1

0
f(x)g(x)dx. Let

α ∈ Hom(V,W ) be defined by α








a
b
c







 : x �→ 1+
b

2
+

c

6
+(b−c)x+cx2.

Is this linear transformation an isometry?

Exercise 997 Let V be an inner product space and let α be an en-
domorphism of V satisfying the condition that α∗α = σ0. Show that
α = σ0.

Exercise 998 Let V = R
3 with the dot product, and let α be the auto-

morphism of V defined by α :




a
b
c



 �→




−c
−b
−a



 . Is α unitary?

Exercise 999 Is the matrix







0 0 0 i
0 0 1 0
0 1 0 0
i 0 0 0





 ∈ M4×4(C) unitary?

Exercise 1000 Find a real number a satisfying the condition that the

matrix a




−9 + 8i −10 − 4i −16 − 18i
−2 − 24i 1 + 12i −10 − 4i

4 − 10i −2 − 24i −9 + 8i



 ∈ M3×3(C) is unitary.

Exercise 1001 Find a real number a satisfying the condition that the

matrix
1
24







12 6 − 12i 12 + 6i 6 − 6i
6 + 12i a 5i 3 + i
12 − 6i −5i a 1 − 3i
6 + 6i 3 − i 1 + 3i −22





 ∈ M4×4(C) is unitary.

Exercise 1002 Given a real number a, check if the matrix
[

− sin2(a) + i cos2(a) (1 + i) sin(a) cos (a)
(1 + i) sin(a) cos (a) − cos2(a) + i sin2(a)

]

∈ M2×2(C)

is unitary.
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Exercise 1003 Find all possible triples (a, b, c) of real numbers, if any

exist, such that the matrix
1
3




1 −2 2
2 −1 2
a b c



 is orthogonal.

Exercise 1004 Is the matrix







0.5 0.5 0.5 0.5
0.5 0.5 −0.5 −0.5
0.5 −0.5 0.5 −0.5
0.5 −0.5 −0.5 0.5





 ∈ M4×4(R)

orthogonal?

Exercise 1005 If v =
[

c
d

]

∈ R
2, show that there exists an orthogonal

matrix A ∈ M2×2(R) and a real number b satisfying the condition that

Av =
[

b
0

]

.

Exercise 1006 Let a and b be real numbers, not both equal to 0.

Show that the matrix
1

a2 + ab + b2




ab a(a + b) b(a + b)

a(a + b) −b(a + b) ab
b(a + b) ab −a(a + b)



 ∈

M3×3(R) is orthogonal.

Exercise 1007 Find all a ∈ R such that the matrix




2a −2a a

−2a −a 2a
a 2a 2a



 ∈

M3×3(R) is orthogonal.

Exercise 1008 Let A =




4 −1 1

−1 4 −1
1 −1 4



 ∈ M3×3(R). Find an or-

thogonal matrix P such that PT AP is a diagonal matrix.

Exercise 1009 A =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





 ∈ M4×4(R). Find an orthogonal

matrix P such that PT AP is a diagonal matrix.

Exercise 1010 Let n be a positive integer and let A and B be or-
thogonal matrices in Mn×n(R) satisfying |A| + |B| = 0. Show that
|A + B| = 0.
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Exercise 1011 Let A =
1
2




1 −1 2

√
2

2
√

2 2
√

2 0
−1 1 2

√
2



 ∈ M3×3(R). Find an

infinite number of pairs (P,Q) of orthogonal matrices such that PAQ
is a diagonal matrix.

Exercise 1012 Find an a ∈ R such that the matrix




a − 4

5 0
4
5 a 0
0 0 1



 ∈

M3×3(R) is orthogonal.

Exercise 1013 Let A,B ∈ Mk×n(R) be matrices such that the columns
of each form orthonormal bases for the same subspace W of R

k. Show
that AAT = BBT .

Exercise 1014 Let A,B ∈ Mn×n(R) be orthogonal matrices. Is the

matrix
[

A O
O B

]

∈ M2n×2n(R) necessarily orthogonal?

Exercise 1015 Let n be a positive integer and let A ∈ Mn×n(R) be
a skew-symmetric matrix. Show that (A − I)−1(A + I) is an orthogonal
matrix which does not have 1 as an eigenvalue.

Exercise 1016 Find two distinct functions f1, f2 : R
4

�












0
0
0
0












→ R

satisfying the condition that

fi













a
b
c
d
















a2 + b2 − c2 − d2 2(bc − da) 2(bd − ca)

2(bcda) a2 + b2 − c2 − d2 2(cd − ba)
2(bd − ca) 2(cd − ba) a2 + b2 − c2 − d2





is always an orthogonal matrix.

Exercise 1017 Let O �= A ∈ M3×3(C) be a matrix satisfying adj(A) =
AH . Show that A is a unitary matrix having determinant 1.

Exercise 1018 Let n be a positive integer and let α be the endomor-
phism of C

n defined by α : v �→ iv. Is α normal?

Exercise 1019 Let V be an inner product space and let α, β ∈ End(V )
be normal. Is βα necessarily normal?

Exercise 1020 Let V be an inner product space finitely-generated over
C and let α ∈ End(V ) satisfy the condition that every eigenvector of
β = α + α∗ is also an eigenvector of γ = α − α∗. Prove that α is
normal.
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Exercise 1021 Let α be the endomorphism of C
2 represented with

respect to the canonical basis by the matrix A =
[

2 i
i 2

]

. Is α normal?

Exercise 1022 Let V be an inner product space over C and let α ∈
End(V ) be normal. If c ∈ C, is the endomorphism α− cσ1 necessarily
normal?

Exercise 1023 Let V be an inner product space finitely generated over
C and let σ0 �= α ∈ End(V ) be normal. Show that α is not nilpotent.

Exercise 1024 Let a, b ∈ R let α ∈ End(R3) be represented with respect

to the canonical basis by




a −2 b
b a −2

−2 3 a



 . For which values of a and

b is this endomorphism normal?

Exercise 1025 Let α ∈ End(R3) be represented with respect to the

canonical basis by the matrix 1
3




14 2 14
2 −1 −16

14 −16 5



 . Show that α is

selfadjoint and find an orthonormal basis of R
3 composed of eigenvectors

of α.

Exercise 1026 Let α be the endomorphism of C
3 represented with

respect to the canonical basis by the matrix




6 −2 3
3 6 −2

−2 3 6



 . Show

that α is normal and find an orthonormal basis of C
3 composed of

eigenvectors of α.

Exercise 1027 Let V be an inner product space and let σ0 �= α ∈
End(V ) be a normal projection. Show that ‖α(v)‖ ≤ ‖v‖ for all v ∈ V,
with equality whenever v ∈ im(α). Give an example where this does not
hold for α which is not normal.

Exercise 1028 Let α ∈ End(R4) be defined by α :







a1

a2

a3

a4





 �→







a1

a2

a3 + a4

a4 − a3





 .

Show that α is normal but not selfadjoint.



19
Moore-Penrose pseudoinverses

Let V and W be inner product spaces, and let α : V → W be a
linear transformation. We know that there exists a linear transformation
β : W → V satisfying the condition that βα is the identity function on V
and αβ is the identity function on W if and only if α is an isomorphism;
in this case, β = α−1. If both spaces are finitely generated, we also know
that such an isomorphism can exist only when dim(V ) = dim(W ). If α
is not an isomorphism, it is possible to weaken the notion of the the inverse
of a function. Given a linear transformation α : V → W, we say that a
linear transformation β : W → V is a Moore-Penrose1 pseudoinverse
of α if and only if the following conditions are satisfied:

(1) αβα = α and βαβ = β;
(2) The endomorphisms βα ∈ End(V ) and αβ ∈ End(W ) are selfad-

joint.

1 Eliakim Hastings Moore developed this construction in 1922, but
it did not receive much attention at the time; it was rediscovered independently in 1955
by Sir Roger Penrose, a contemporary British applied mathematician, best known
for his collaboration with the physicist Stephen Hawking.
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Example: The two parts of condition (2) in the definition of the Moore-
Penrose pseudoinverse are independent. To see this, consider the linear

transformation α : R
3 → R

2 defined by α : v �→
[

1 2 3
0 1 0

]

v. For

any c, d ∈ R, let β : R
2 → R

3 be the linear transformation defined

by β : w �→




1 − 3c −2 − 3d

0 1
c d



 . Then one can check that αβα = α

and βαβ = β and that αβ = σ1 in End(R2). On the other hand,

βα : v �→




1 − 3c −6c − 3d 3 − 9c

0 1 0
c 2c + d 3c



 v, and it is easy enough to choose

c and d so that this matrix is not symmetric and hence βα is not
selfadjoint.

We will denote the Moore-Penrose pseudoinverse of α by α+. Of
course, in order to justify this notation we have to show that β exists
and is unique, which we will do for the case that V and W are finitely
generated. We will begin with uniqueness.

(19.1) Proposition: Let V and W be inner product spaces
and let α : V → W be a linear transformation. If α has a
Moore-Penrose pseudoinverse, it must be unique.

Proof: Suppose that β, γ ∈ Hom(W,V ) are Moore-Penrose pseudoin-
verses of α. Then β = βαβ = (βα)∗β = α∗β∗β = (αγα)∗β∗β =
(γα)∗α∗β∗β = γαα∗β∗β = γα(βα)∗β = γαβαβ = γαβ = γαγαβ =
γ(αγ)∗αβ = γγ∗α∗αβ = γγ∗α∗(αβ)∗ = γγ∗(αβα)∗ = γγ∗α∗ = γ(αγ)∗ =
γαγ = γ and so we have proven uniqueness. �

In particular, if α : V → W is an isomorphism, then, by Proposition
19.1, we have α+ = α−1. If α is the 0-function then so is α+.

(19.2) Proposition: Let V and W be finitely-generated inner
product spaces and let α : V → W be a linear transformation.

(1) If α is a monomorphism, then α+ exists and equals
(α∗α)−1α∗. Moreover, α+α is the identity function on V ;

(2) If α is an epimorphism, then α+ exists and equals
α∗(αα∗)−1. Moreover, αα+ is the identity function on W.

Proof: (1) From Proposition 16.19, we see that if α is a monomorphism
then α∗α ∈ Aut(V ) and so (α∗α)−1 exists. Set β = (α∗α)−1α∗. Then
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βα is the identity function on V and so βα is a selfadjoint endomorphism
of V which satisfies αβα = α and βαβ = β. Finally, (αβ)∗ =[
α(α∗α)−1α∗]∗ = α

[
(α∗α)−1

]∗
α∗ = α [(α∗α)∗]−1

α∗ = α(α∗α)−1α∗ = αβ
and so αβ is also selfadjoint. Thus β = α+.

(2) From Proposition 16.19, we see that if α is an epimorphism then
αα∗ ∈ Aut(W ) and so (αα∗)−1 exists. As in (1), we see that α∗(αα∗)−1 =
α+. �

Example: Let α : R
2 → R

3 be the linear transformation represented

with respect to the canonical bases by the matrix




1 2

−1 3
2 4



 . This is a

monomorphism and so, by Proposition 19.2, α+ exists and is represented

with respect to the canonical bases by the matrix
1
25

[
3 −10 6
1 5 2

]

.

(19.3) Proposition: Let V and W be finitely-generated inner
product spaces. Then every α ∈ Hom(V,W ) has a Moore-Penrose
pseudoinverse α+ ∈ Hom(W,V ).

Proof: Let Y = im(α), and write α = µβ, where β : V → Y is an
epimorphism given by β : v �→ α(v), and µ : Y → W is the inclusion
monomorphism. By Proposition 19.2, we know that β+ ∈ Hom(Y, V )
and µ+ ∈ Hom(W,Y ) exist and satisfy the conditions that ββ+ and
µ+µ are equal to the identity function on Y. Therefore we see that
(µβ)(β+µ+)(µβ) = µβ and (β+µ+)(µβ)(β+µ+) = β+µ+ and we see that
(β+µ+)(µβ) = β+β and (µβ)(β+µ+) = µµ+ are selfadjoint. Thus α+

exists and equals β+µ+. �

As an immediate consequence of this, we note that if α is an endomor-
phism of a finitely-generated inner produce space V then, by Proposition
6.11, we see that rk(αα+) ≤ rk(α) and rk(α) = rk(αα+α) ≤ rk(αα+)
and so rk(αα+) = rk(α). Similarly, rk(α+α) = rk(α).

If F is either R or C, and if we are given a linear transformation
α : F k → Fn which is represented with respect to the canonical bases
by the matrix A = [aij ], then we will denote the matrix representing α+

with respect to these bases by A+. Thus the matrix A+ has the following
properties:

(1) AA+A = A and A+AA+ = A+;
(2) The matrices AA+ and A+A are symmetric (in the case F = R)

or Hermitian (in the case F = C).
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Example: Let A =




1 −1 2
2 1 −2
3 0 0



 ∈ M3×3(R). This matrix is

clearly singular and hence A−1 does not exist. However, we can check

that A+ =
1
45




5 5 10

−5 4 −1
10 −8 2



 .

For nonsingular square matrices of the same size A and B, we know
that (AB)−1 = B−1A−1. A similar equality does not hold for the Moore-
Penrose pseudoinverse, as the following example shows.

Example: If A =
[

2 6
1 3

]

and B =
[

1 2
2 4

]

in M2×2(R), then

AB =
[

14 28
7 14

]

. Then A+ =
1
50

[
2 1
6 3

]

and B+ =
1
25

[
1 2
2 4

]

so B+A+ =
7

1250

[
2 1
4 2

]

, while (AB)+ =
1

175

[
2 1
4 2

]

.

Example: If A(t) =
[

1 0
0 t

]

for all real numbers t then we see

that A(t)+ =
[

1 0
0 t−1

]

when t �= 0, but is equal to
[

1 0
0 0

]

for

t = 0. Thus we see that not only is lim
t→0

A(t) not equal to A(0), but

indeed that the value of A(t) moves farther and farther away from A(0)
as t approaches 0.

Thus we see that the Moore-Penrose pseudoinverse is not computation-
ally stable. This means that one has to be very careful in actual applica-
tions. Because of the importance and utility of Moore-Penrose pseudoin-
verses, there exists a considerable literature on techniques for computing
A+ or A+A, given a matrix A. One of the methods used in practice
for computing the Moore-Penrose pseudoinverse over R is a recursive one,
known as Greville’s method2, which is based on the following result: if

2 In the 1970’s, American mathematician Thomas
N. E. Greville and American/Israeli mathematician Adi Ben-Israel popularized and
reinvigorated the use of the Moore-Penrose pseudoinverse as a computational tool.
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A ∈ Mk×n(R), and if we write A =
[

B v
]
, where B ∈ Mk×(n−1)(R),

then A+ =
[

B+(I − v ∧ w)
w

]

, where

w =






(‖(I − BB+)v‖)−2 (I − BB+)v if ‖(I − BB+)v‖ �= 0
(
1 + ‖B+v‖2

)−1

(B+)T B+v otherwise
.

Another technique is to break A up into blocks, if possible. Indeed, if

A =
[

A11 A12

A21 A22

]

, where A11 is a nonsingular square matrix the rank

of which equals the rank of A, then, by Zlobec’s formula, we have A+ =

[
A11 A12

]∗
B∗

[
A11

A21

]∗
, where B =

(
[

A11 A12

]
A∗

[
A11

A21

])−1

.

One can also use convergence methods to compute the Moore-Penrose
pseudoinverse of a matrix. If A ∈ Mk×n(C) then, by Proposition 17.4,
we know that the eigenvalues of A∗A are real. Let c be the largest such
eigenvalue and pick a real number b satisfying 0 < bc < 2. For each
integer p ≥ 2, define the sequence Y0, Y1, . . . of matrices in Mn×k(C) as
follows:

(1) Y0 = bA∗;
(2) If k ≥ 0 and Yk has already been defined, set Tk = I − YkA and

set Yk+1 = Yk +
∑p−1

i=1 T i
kYk. Then the sequence Y0, Y1, . . . converges to

A+.
Another method is the following: if A ∈ Mn×n(R) is an arbitrary

symmetric matrix we can define matrices A0, A1, . . . by setting A0 = A
and Ak+1 =

[
I + (I − Ak)(I + Ak)−1

]
Ak for all k ≥ 0. Also, we can

define real numbers c0, c1, . . . by setting c0 = 1 and ci+1 = 2ci + 1
for each i ≥ 0. Then the Kovarik algorithm states that if none of the
numbers −c−1

i is an eigenvalue of A, the sequence A0, A1, . . . converges
to A+A.

Let F be either R or C, let k and n be positive integers, and
let A ∈ Mk×n(F ). We now look at what the matrix A+ says about a
solution (if any) to a system of linear equations of the form AX = w,
where w ∈ F k. First of all, we note that in general

(19.4) Proposition: Let F be either R or C, let k and
n be positive integers, let A ∈ Mk×n(F ), and let w ∈ F k. The
system of linear equations AX = w has a solution if and only if
(AA+)w = w.
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Proof: If there is a vector v ∈ Fn satisfying Av = w then (AA+)w =
(AA+)(Av) = (AA+A)v = Av = w. Conversely, if (AA+)w = w then
A(A+w) = w and so Av = w, where v = A+w. �

We also note that, in the situation above, if y ∈ Fn then A(I−A+A)y =




0
...
0




 and so we also see that A+w + (I − A+A)y is also a solution to

the system AX = w, assuming that the system has any solutions at all.
Conversely, any solution to this system is of the form A+w + u, where

Au =






0
...
0




 , and so (I − A+A)u = u.

(19.5) Proposition: Let F be either R or C, let k and n
be positive integers, and let A ∈ Mk×n(F ). Let w ∈ F k. If the
system AX = w has a solution then in the set of all solutions
to this system of linear equations there is precisely one having a
minimal norm, and it is A+w.

Proof: If u is a solution to this system, then we have already seen
that it is of the form A+w + (I − A+A)y. But we note that

〈
A+w, (I − A+A)y

〉
=

〈
A+AA+w, (I − A+A)y

〉

=
〈
A+w, (A+A)(I − A+A)y

〉

=
〈
A+w, (A+A − A+AA+A)y

〉

=

〈

A+w,






0
...
0






〉

= 0

so

‖u‖2 = 〈u, u〉 =
〈
A+w + (I − A+A)y,A+w + (I − A+A)y

〉

=
〈
A+w,A+w

〉
+
〈
(I − A+A)y, (I − A+A)y

〉

=
∥
∥A+w

∥
∥2 +

∥
∥(I − A+A)y

∥
∥2

,

which implies that ‖u‖ ≥ ‖A+w‖ . �
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Example: Let A =
[

2 −1 1
1 1 1

]

and w =
[

1
2

]

. Then A+ =

1
14




4 2

−5 8
1 4



 and so the solution to the system AX = w having minimal

norm is A+w =
1
14




8

11
9



 . Its norm is 1
14

√
266.

But what happens if the system AX = w doesn’t have a solution?
Suppose that F is either R or C and that A ∈ Mk×n(F ), and w ∈ F k,
where k and n be positive integers. Then the system (A+A)X = A+w
always has a solution, namely A+w, and by Proposition 19.5 this is
in fact the solution of minimal norm of this equation, which is the best
approximation to a solution of AX = w.

In order to emphasize the use of Proposition 19.5, we briefly consider
the least squares method, which is an important tool in many areas of
applied mathematics and statistics. This method was developed at the
beginning of the nineteenth century by Gauss and Legendre and, indepen-
dently, by the American mathematical pioneer Robert Adrain3. Suppose
that we have before us the results of several observations, which, depending
on values t1, . . . , tn of a real parameter, give us real values c1, . . . , cn.
Our theory tells us that the set of points {(ti, ci) | 1 ≤ i ≤ n} in the
euclidean plane should lie on a straight line. However, because of measur-
ing and/or computational errors, this doesn’t quite work out. So we want
to find the equation of the line in the plane which best fits our observed
data. In other words, we want to find a solution of minimal norm to the
system of linear equations {X1 + tiX2 = ci | 1 ≤ i ≤ n}, which can be

written as








1 t1
1 t2
...

...
1 tn








[
X1

X2

]

=








c1

c2

...
cn








. As we have seen, the solution

3 Irish-born Robert Adrain emigrated to the United States in
1798. He published his own mathematics journal but his work received no international
attention at the time.
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of minimal norm, if it exists, is








1 t1
1 t2
...

...
1 tn








+ 






c1

c2

...
cn








. Otherwise, this is

the best approximation to the solution the system.

Example: To find the equation of the line in the euclidean plane which
best fits the set of points {(1, 3), (2, 7), (3, 8), (4, 11)}, we calculate







1 1
1 2
1 3
1 4







+ 





3
7
8

11





 =

(
1
20

[
20 10 0 −10
−6 −2 2 6

])






3
7
8

11





 =

1
2

[
2
5

]

so the line we want is given by {(t, 1 + 5
2 t) | t ∈ R}.

We can use the same method to find the best fit of any polynomial of a
higher degree to a set of points. For example, if we wish to find a parabola
which best fits the set of points {(ti, ci) | 1 ≤ i ≤ n} in the euclidean
plane, we have to find a best approximation to a solution of the system of
linear equations {X1 + tiX2 + t2i = ci | 1 ≤ i ≤ n}, which we know is







1 t1 t21
1 t2 t22
...

...
...

1 tn t2n








+ 






c1

c2

...
cn








.

Example: To find the equation of the parabola in the euclidean plane
which best fits the set of points {(1, 3), (2, 7), (3, 8), (4, 11)}, we calculate







1 1 1
1 2 4
1 3 9
1 4 16







+ 





3
7
8
11





 =



 1
20




45 −15 −25 15

−31 23 27 −19
5 −5 −5 5















3
7
8

11







=
1
4




−1
15
−1



 .

and so the parabola we want is given by {(t,− 1
4 + 15

4 t − 1
4 t2) | t ∈ R}.

Needless to say, we can also consider a much more general context. Sup-
pose that W is a finitely-generated subspace of R

A. Given a set of
observations {(ti, ci) | 1 ≤ i ≤ n} ⊆ A × R, we want to find the function
g ∈ W which best approximates these observations.
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To do this, we pick a basis {f1, . . . fk} for W . Then we want to find
a best approximation to a solution of the system of linear equations

{X1f1(ti) + . . . Xkfk(ti) = ci | 1 ≤ i ≤ n},

which can be written as






f1(t1) . . . fk(t1)
...

...
f1(tn) . . . fk(tn)











X1

...
Xk




 =






c1

...
cn




 . As

we have seen, this is






f1(t1) . . . fk(t1)
...

...
f1(tn) . . . fk(tn)






+ 




c1

...
cn




 .

Least-squares approximations are often used to find best-fit solutions
to very large systems of linear equations of the form AX = w which,
in theory, have an exact solution but in practice that solution cannot be
found because of errors in measurement of the data and computational
errors. Indeed, Gauss developed this method for finding solutions to the
very large systems of linear equations which resulted from laying down a
triangulation grid for a geodetic survey of the state of Hanover he conducted
in 1818. In 1978, the American National Geodetic Survey used it to solve
a system of over 2.5 million linear equations in 400,000 unknowns which
resulted from the updating of the triangulation grid for the continental
United States.

Exercises

Exercise 1029 Let A =




1 1

−1 1
2 3



 ∈ M3×2(R). Calculate A+.

Exercise 1030 Let A =
[

5 0 0
]
∈ M1×2(Q). Calculate A+.

Exercise 1031 Let A =
[

a1 . . . an

]
∈ M1×n(C), where n is a

positive integer. Show that A+ = (AAH)−1AH .

Exercise 1032 Let A =




2 2 0
1 2 1
1 2 1



 ∈ M3×3(R). Calculate A+.

Exercise 1033 Let V and W be finitely-generated inner product spaces,
and let α ∈ Hom(V,W ). For any nonzero scalar c, show that (cα)+ =
1
cα+.
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Exercise 1034 Let n be a positive integer and let A ∈ Mn×n(R) be a
diagonal matrix. Calculate A+.

Exercise 1035 Let V and W be finitely-generated inner product spaces,
and let α ∈ Hom(V,W ). Show that (α∗)+ = (α+)∗.

Exercise 1036 Let V = R
2, which is endowed with the dot product and

let α : V → R be the linear functional defined by α :
[

a
b

]

�→ a. Let

β : R →V be the linear transformation defined by β : a �→
[

a
a

]

. Show

that (αβ)+ �= β+α+.

Exercise 1037 Let n be a positive integer and let A = [aij ] ∈ Mn×n(R)
be the matrix all entries of which are equal to 1. Show that A+ = n−2A.

Exercise 1038 Let A ∈ Mk×n(R) be a matrix of the form
[

C O
O O

]

,

where C is a t × t nonsingular diagonal matrix. Show that A+ =
[

D O
O O

]

, where D = C−1.

Exercise 1039 Let V = R
n on which we have the dot product defined,

and let α ∈ End(V ) satisfy the condition that ker(α) = im(α)⊥. Show
that the restriction β of α to im(α) is an automorphism of im(α) and
that the restriction of α+ to im(α) equals β−1.

Exercise 1040 Let n be a positive integer and let A,B ∈ Mn×n(R) be
matrices satisfying the conditions ABA = A, BAB = B, and A2 = A.
Is it necessarily true that B2 = B?

Exercise 1041 Let h, k,m, and n be positive integers, let A ∈ Mh×k(R),
let B ∈ Mm×n(R), and let C ∈ Mh×n(R). Show that there exists a matrix
X ∈ Mk×m(R) satisfying AXB = C if and only if AA+CB+B = C.

Exercise 1042 Let k and n be positive integers and let B ∈ Mk×k(R)
and C ∈ Mn×n(R) be orthogonal matrices. For A ∈ Mk×n(R), show
that (BAC)+ = CT A+BT .

Exercise 1043 Let k and n be positive integers and let A ∈ Mk×k(R)
and B ∈ Mk×n(R). Let C ∈ Mn×n(R) be nonsingular. Prove that

[
A AB
O C

]+

=
[

A+ −A+ABC−1

O C−1

]

.
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Bilinear transformations and forms

Let V, W, and Y be vector spaces over a field F. We say that a
function f : V × W → Y is a bilinear transformation if and only if
the function v �→ f(v, w0) belongs to Hom(V, Y ) for any given vector
w0 ∈ W and the function w �→ f(v0, w) belongs to Hom(W,Y ) for any
given vector v0 ∈ V. The set of all bilinear transformations from V × W
to Y will be denoted by Bil(V × W,Y ). If f, g ∈ Bil(V × W,Y ) and
if c ∈ F then f + g and cf also belong to Bil(V × W,Y ), and so
Bil(V ×W,Y ) is a subspace of the vector space Y V ×W over F. Also, any
bilinear transformation f : V ×W → Y defines a bilinear transformation
fop : W ×V → Y, called the opposite transformation of f, by setting
fop : (w, v) �→ f(v, w). It is clear that the function

( )op : Bil(V × W,Y ) → Bil(W × V, Y )

is an isomorphism of vector spaces. We say that a bilinear transformation
f ∈ Bil(V × V, Y ) is symmetric if and only if f = fop.

In particular, if we consider a single vector space V over a field F,
then we note that f ∈ Bil(V × V, V ) if and only if the operation • on
V defined by v • w = f(v, w) turns V into an F -algebra. This algebra
is commutative if and only if f is symmetric.

Example: Let F be a field and let k, n, and t be positive integers.
Set V = Mk×n(F ), W = Mt×n(F ), and Y = Mk×t(F ). Then there

399
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exists a bilinear transformation V × W → Y defined by (A,B) �→ ABT .
In particular, we have a bilinear transformation Fn × Fn → Mn×n(F )
given by (v, w) �→ v ∧ w. More generally, if V, W, and Y are as
mentioned, every matrix C ∈ Mn×n(F ) defines a bilinear transformation
V × W → Y by setting (A,B) �→ ACBT .

Example: For vector spaces V and W over a field F, the function
Hom(V,W )×V → W given by (α, v) �→ α(v) is a bilinear transformation.

Let V, W, and Y be vector spaces over a field F. The image of a
bilinear transformation f ∈ Bil(V × W,Y ) is not necessarily a subspace
of Y, as the following example shows.

Example: Consider the bilinear transformation f : R
2×R

2 → M2×2(R)

defined by f : (v, w) �→ v ∧ w. The image of f contains
[

0 1
0 0

]

and
[

0 0
1 0

]

, but is not a subspace since
[

0 1
1 0

]

/∈ im(f).

As with linear transformations, bilinear transformations are totally de-
termined by their behavior on bases. That is to say, let V and W
be vector spaces over a field F, and let B = {vi | i ∈ Ω} and
D = {wj | j ∈ Λ} be bases of V and W respectively. Let Y be
a vector space over F and let f0 : B × D → Y be a function. Then
there exists a unique bilinear transformation f ∈ Bil(V ×W,Y ) satisfying
f(vi, wj) = f0(vi, wj) for all i and j, namely the function defined by

f :
(∑

i∈Ω aivi,
∑

j∈Λ bjwj

)
�→

∑
i∈Ω

∑
j∈Λ aibjf0(vi, wj). In the case that

V = W = Y, we have already noted this fact in Proposition 5.5.

(20.1) Proposition: If V, W, and Y are vector spaces over a
field F, then Bil(V ×W,Y ) is isomorphic to Hom(V,Hom(W,Y )).

Proof: Define a function θ : Bil(V ×W,Y ) → Hom(V,Hom(W,Y )) as
follows: given a bilinear transformation f ∈ Bil(V × W,Y ) and a vector
v ∈ V, then θ(f)(v) : w �→ f(v, w). It is straightforward to check that
indeed θ(f)(v) ∈ Hom(W,Y ) for all f ∈ Bil(V ×W,Y ) and all v ∈ V.
Moreover, θ(f)(v1 + v2) = θ(f)(v1) + θ(f)(v2) and θ(f)(cv) = cθ(f)(v)
for all v, v1, v2 ∈ V and all c ∈ F, so θ(f) ∈ Hom(V,Hom(W,Y )) for
all f ∈ Bil(V ×W,Y ). Finally, θ(f +g) = θ(f)+θ(g) and θ(cf) = cθ(f)
for all f, g ∈ Bil(V × W,Y ) and all c ∈ F, and so we have shown that
θ is a linear transformation.

It is also possible to define a function

ϕ : Hom(V,Hom(W,Y )) → Bil(V × W,Y )
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by setting ϕ(α) : (v, w) �→ α(v)(w) for all v ∈ V and w ∈ W, and
again it is easy to show that this is a linear transformation. If α ∈
Hom(V,Hom(W,Y )) and v ∈ V, then θϕ(α)(v) : w �→ ϕ(α)(v)(w) =
α(v)(w) and so θϕ(α)(v) = α(v) for all v ∈ V. Thus θϕ(α) = α for
all α ∈ Hom(V,Hom(W,Y )), and so θϕ is the identity function on
Hom(V,Hom(W,Y )). Conversely, if f ∈ Bil(V × W,Y ) then

ϕθ(f) : (v, w) �→ θ(f)(v)(w) = f(v, w)

for all v ∈ V and w ∈ W and so ϕθ(f) = f for all f ∈ Bil(V ×W,Y ),
proving that ϕθ is the identity function on Bil(V ×W,Y ). Thus we have
established that θ is an isomorphism, with θ−1 = ϕ. �

Let V and W be vector spaces over a field F. A bilinear transformation
f : V × W → F is called a bilinear form. We will denote the set of all
such bilinear forms by Bil(V ×W ), instead of Bil(V ×W,F ). By what we
have seen above, Bil(V ×W ) is a subspace of FV ×W which is isomorphic
to Hom(V,D(W )). If V and W are vector spaces over a field F, then
a bilinear form f ∈ Bil(V,W ) is nondegenerate if and only if for each
0V �= v ∈ V there exists a w ∈ W satisfying f(v.w) �= 0 and for each
0W �= w ∈ W there exists a v ∈ V satisfying f(v.w) �= 0.

Example: If V is an inner product space over R, then the function
(v, w) �→ 〈v, w〉 belongs to Bil(V × V ). This is not true, of course, if our
field of scalars is C.

Example: If F is a field and V = Fn for some positive integer n,
then the function (v, w) �→ v�w belongs to Bil(Fn×Fn). This function
is particularly useful in the case F = GF (2). Indeed, if v ∈ GF (2)n, then

v � v =
{

0 if an even number of entries in v are equal to 1
1 if an odd number of entries in v are equal to 1 .

This value is known as the parity of v.
More generally, let A be a finite set and let V be the collection of all

subsets of A. Define a bilinear form f : V × V → GF (2) by setting

f(A,B) =
{

0 if A ∩ B has an even number of elements
1 if A ∩ B has an odd number of elements .

Then f ∈ Bil(V, V ).

Example: If V is a vector space over a field F , we have a nonde-
generate bilinear form in Bil(D(V ) × V ) given by (δ, v) �→ δ(v). Simi-
larly, if δ1, δ2 ∈ D(V ), we have a bilinear form in Bil(V × V ) given by
(v, w) �→ δ1(v)δ2(w), which is nondegenerate if δ1 and δ2 are not the
0-functional.
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Example: If F is a field and if k and n are positive integers, then
each matrix A ∈ Mk×n(F ) defines a bilinear form in Bil(F k × Fn) by
(v, w) �→ v � Aw.

If V and W are vector spaces of finite dimension k and n respectively
over F, then any bilinear form on V × W can be represented as in the
previous example. Indeed if we fix bases B = {v1, . . . , vk} for V and
D = {w1, . . . , wn} for W, then for any f ∈ Bil(V × W ) we define the
matrix TBD(f) = [f(vi, wj)] ∈ Mk×n(F ) and check that if v =

∑k
i=1 aivi

and w =
∑n

j=1 bjwj , then f(v, w) = v � TBD(f)w. Indeed, for fixed B
and D, the function f �→ TBD(f) is an isomorphism from Bil(V × W )
to Mk×n(F ).

Example: Let F be a field and let V = F 2. Consider the bases

B =
{[

1
0

]

,

[
0
1

]}

and D =
{[

1
−1

]

,

[
1
1

]}

of V. If f ∈ Bil(V, V )

is given by f :




[

a
b

]

,

[
c
d

]


 �→ (a + b)(c + d), then it is easy to verify

that TBB(f) =
[

1 1
1 1

]

and TDD(f) =
[

0 0
0 4

]

.

(20.2) Proposition: Let V and W be vector spaces finitely
generated over a field F and having bases B = {v1, . . . , vk}
and D = {w1, . . . , wn} respectively. Let C = {x1, . . . , xk} and
E = {y1, . . . , yn} also be bases for V and W respectively, and
let P = [pir] ∈ Mk×k(F ) and Q = [qjs] ∈ Mn×n(F ) be nonsingular

matrices satisfying






x1

...
xk




 = P






v1

...
vk




 and






y1

...
yn




 = Q






w1

...
wn




 .

Then for f ∈ Bil(V × W ) we see that TCD(f) = PTBD(f)QT .

Proof: As a direct consequence of the definitions, we see that

f(xi, yj) =

(
k∑

r=1

pirvr,

n∑

s=1

qjsws

)

=
k∑

r=1

n∑

s=1

pirf(vr, ws)qjs,

and this is precisely the (i, j) entry of PTBD(f)QT . �

In particular, we see that if f ∈ Bil(V × V ), where V is a vector
space of finite dimension n over a field F, and if B and D are bases
of V, then there exists a nonsingular matrix P ∈ Mn×n(F ) satisfying
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TDD(f) = PTBB(f)PT . In general, matrices A and C in Mn×n(F ) are
congruent if and only if there exists a nonsingular matrix P ∈ Mn×n(F )
satisfying C = PAPT . Congruence is easily checked to be an equivalence
relation on Mn×n(F ), which joins the relations of equivalence and simi-
larity, that we have already defined. Congruent matrices clearly have the
same rank, so that the rank of a matrix of the form TBB(f) depends only
on f and not on the choice of basis B. Therefore we call this the rank of
the bilinear form f. Thus, for example, the bilinear forms in Bil(V × V )
of rank 1 are precisely those of the form (v, w) �→ α(v)β(w), where
α, β ∈ D(V ).

A matrix congruent to a symmetric matrix is again symmetric. Indeed,
if A ∈ Mn×n(F ) is symmetric, then for any nonsingular matrix P we
have (PAPT )T = PTT AT PT = PAPT .

Example: The matrix A =




1 −6 −6

−6 40 39
−6 39 39



 ∈ M3×3(R) is congru-

ent to I, since PAPT = I, where P =







1 0 0
3 1

2 0
√

3 −
√

3
2

2
√

3
3





 .

As was the case with inner products, we can define orthogonality with
respect to an arbitrary bilinear form. This concept has important applica-
tions when we are working over fields other than R or C, and especially in
areas such as algebraic coding theory, where all of the work is done over fi-
nite fields. Let V be a vector space over a field F and let f ∈ Bil(V ×V ).
Vectors v, w ∈ V are f -orthogonal if and only if f(v, w) = 0. In this
case, we will write v ⊥f w. (One has to be careful here, it may be true
that v ⊥f w but false that w ⊥f v; this will not happen, of course,
if f is symmetric.) If A is a nonempty subset of V , then we can
talk about the right f -orthogonal complement of A to be the set
A⊥f = {w ∈ V | v ⊥f w for all v ∈ A}. Complements of this form may
behave very differently than complements defined by inner products, as the
following example shows.

Example: Let F = GF (2) and let V = F 4. Define f ∈ Bil(V × V )

by setting f(v, w) = v�w. Then W =












0
0
0
0





 ,







1
1
1
1





 ,







1
0
1
0





 ,







0
1
0
1












is a subspace of V which satisfies W⊥f = W.

We note that V ⊥f is trivial if and only if for any 0V �= w ∈ V there
exists a vector v ∈ V satisfying f(v, w) �= 0. This condition is not a
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consequence of our definitions, and we must explicitly state it when we
need it. It holds, of course, if f is nondegenerate.

Example: Let V = R












1
1
1
1





 ,







1
1

−1
−1












⊆ R
4. If f ∈ Bil(V × V )

is defined by f :













a1

a2

a3

a4





 ,







b1

b2

b3

b4











 �→ a1b1 + a2b2 + a3b3 − a4b4, then







0
0
1
1





 ∈ V ⊥f and, indeed, V ⊥f = R












1
−1

0
0





 ,







0
0
1
1












.

(20.3) Proposition: Let V be a vector space finitely generated
over a field F and let f ∈ Bil(V × V ) satisfy the condition
that V ⊥f is trivial. Then each subspace W of V satisfies the
following conditions:

(1) If δ ∈ D(W ) there exists a v ∈ V such that δ(w) = f(v, w)
for all w ∈ W ;

(2) dim(W ) + dim(W⊥f ) = dim(V ).

Proof: (1) Every vector v ∈ V defines a linear functional δv ∈ D(V )
by setting δv : y �→ f(y, v). Moreover, the function v �→ δv from V to
D(V ) is a linear transformation, which is a monomorphism as a result of
the condition that V ⊥f is trivial. But dim(V ) = dim(D(V )) since V is
finitely generated, and hence this is an isomorphism. Now let δ ∈ D(W )
and let Y be a complement of W in V. Then the function from V
to F given by w + y �→ δ(w) belongs to D(V ) and so there exists a
vector v ∈ V such that it equals δv. In particular, δ(w) = f(v, w) for
all w ∈ W, proving (1).

(2) The function from V to D(W ) which assigns to each v ∈ V
the restriction of δv to W is a linear transformation which, by (1), is
an epimorphism. The kernel of this epimorphism consists of all vectors
v ∈ V satisfying f(w, v) = 0 for all w ∈ W, and that is precisely W⊥f .
Therefore, by Proposition 6.10, we have (2). �

In particular, we see from Proposition 20.3, that a necessary and sufficient
condition for us to have V = W ⊕W⊥f is that W and W⊥f be disjoint.

(20.4) Proposition: Let V and W be vector spaces finitely
generated over a field F and let f ∈ Bil(V ×W ) be a bilinear form
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which is not the 0-function. Then there exist bases {v1, . . . , vk}
and {w1, . . . , wn} of V and W respectively and there exists a
positive integer 1 ≤ t ≤ min{k, n} such that

f(vi, wj) =
{

1 if i = j ≤ t
0 otherwise .

Proof: Since f is not the 0-function, there exist vectors v1 ∈ V and
y1 ∈ W such that f(v1, y1) �= 0. Therefore, if we set w1 = f(v1, y1)−1y1,
we have f(v1, w1) = 1. Let V1 = Fv1 and W1 = Fw1. If we set
W2 = {w ∈ W | f(v1, w) = 0}, then W1 ∩ W2 = {0W } since cw1 /∈ W2

for all 0 �= c ∈ F. We claim that W = W1 ⊕W2. Indeed, if w ∈ W and
if c = f(v1, w) then we see that

f(v1, w − cw1) = f(v1, w) − cf(v1, w1) = c − c = 0

and so w − cw1 ∈ W2, which proves the claim. In a similar way, we have
V = V1 ⊕ V2, where V2 = {v ∈ V | f(v, w1) = 0}. Thus we see that
f(v, w) = 0 whenever (v, w) ∈ [V1 × W2] ∪ [V2 × W1].

By passing to the oppose form if necessary, we can assume without loss
of generality that k ≤ n. If k = 1, we choose {v1} as a basis for V
and {w1, . . . , wn} as a basis for W, where {w2, . . . , wn} is an arbitrary
basis for W2. This proves the proposition, with t = 1. Now assume that
k > 1 (which implies n > 1) and that the proposition has been proven
whenever dim(V ) < k. In particular, we will look at the restriction of f
to V2 × W2. By the induction hypothesis, there exist bases {v2, . . . , vk}
of V2 and {w2, . . . , wn} of W2 such that

f(vi, wj) =
{

1 if 2 ≤ i = j ≤ t
0 otherwise .

Then {v1, . . . , vk} and {w1, . . . , wn} are the bases we want. �

We see that if V and W are vector spaces finitely generated over a
field F and if f ∈ Bil(V × W ), then Proposition 20.4 says that there
exist bases of V and W with respect to which f is represented by a

matrix of the form
[

I O
O O

]

.

We will be particularly interested in symmetric bilinear forms. As an
immediate consequence of the definition, we see that if V is a vector space
finitely generated over a field F and if B is a given basis for V, then
a bilinear form f ∈ Bil(V × V ) is symmetric if and only if the matrix
TBB(f) is symmetric. Moreover, every symmetric matrix is TBB(f) for
some symmetric bilinear form f ∈ Bil(V × V ).
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Example: Let B be the canonical basis of R
3 and let A =




1 −5 3

−5 1 7
3 7 4



 . Then A = TBB(f), where f ∈ Bil(R3 × R
3) is

defined by

f








a1

a2

a3



 ,




b1

b2

b3







 = a1b1 + a2b2 − 5(a1b2 + a2b1)

+3(a1b3 + a3b1) + 7(a2b3 + a3b2) + 4a3b3.

(20.5) Proposition: Let F be a set of characteristic other
than 2 and let V be a vector space finitely-generated over F.
Let f ∈ Bil(V × V ) be symmetric. Then there exists a basis
B = {v1, . . . , vn} of V such that TBB(f) is a diagonal matrix.

Proof: The proposition is trivially true if f is the 0-function, and so
we can assume that that is not the case. We will proceed by induction on
n = dim(V ). For n = 1, the result is again immediate, and so we can
assume that n > 1 and that the result has been established for all spaces
having dimension less than n. We first claim is that there exists a vector
v ∈ V satisfying f(v, v) �= 0. Indeed, assume that this is not the case.
Then if v and w are arbitrary vectors in V we have

0 = f(v + w, v + w) = f(v, v) + 2f(v, w) + f(w,w) = 2f(v, w)

and since the characteristic of F is not 2, this implies that f(v, w) = 0,
contradicting our assumption that f is not the 0-function. Hence we can
select a vector v1 ∈ V satisfying f(v1, v1) �= 0.

Let V1 = Fv1 and let V2 = V
⊥f

1 . From the definition of V1 it is clear
that V1 and V2 are disjoint, and from Proposition 20.3 it follows that
V = V1 ⊕ V2. In particular, dim(V2) = n − 1 and so, by the induction
hypothesis, there exists a basis C = {v2, . . . , vn} of V2, such that, if f2

is the restriction of f to V2, then TCC(f2) is a diagonal matrix. Since
f(v1, vi) = 0 for all 2 ≤ i ≤ n, it follows that B = {v1, . . . , vn} does
indeed give us the desired result. �

Thus we see that every symmetric matrix over a field of characteristic
other than 2 is congruent to a diagonal matrix.

(20.6) Proposition: Let V be a vector space finitely-generated
over C and let f ∈ Bil(V × V ) be a symmetric bilinear form of
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rank r. Then there exists a basis B = {v1, . . . , vn} of V satisfying
the following conditions:

(1) TBB(f) is a diagonal matrix;

(2) f(vi, vi) =
{

1 if 1 ≤ i ≤ r
0 otherwise .

Proof: By Proposition 20.5, we know that there is a basis B =
{v1, . . . , vn} of V satisfying the condition that TBB(f) is a diago-
nal matrix. This matrix is of rank r and so, renumbering the basis
elements if necessary, we can assume that f(vi, vi) �= 0 when and only
when 1 ≤ i ≤ r. For each 1 ≤ i ≤ r, define ci = f(vi, vi)−1/2 ∈ C, and
replace vi by civi to get a basis satisfying (2) as well. �

Let V be a vector space finitely-generated over a field F of char-
acteristic other than 2 and let f ∈ Bil(V × V ) be a bilinear form.
The function q : V → F defined by q : v �→ f(v, v) is called the
quadratic form defined by f. Note that if a ∈ F and v ∈ V then
q(av) = f(av, av) = a2f(v, v) = a2q(v). Moreover, if f ∈ Bil(V ×V ) and
if g ∈ Bil(V × V ) is the symmetric bilinear form given by

g : (v, w) �→ 1
2 [f(v, w) + f(w, v)]

then the quadratic forms defined by f and g are the same. Therefore,
without loss of generality, we will always assume that all quadratic forms
over such fields are defined by symmetric bilinear forms. We further see
that different symmetric bilinear forms define different quadratic forms,
since, for any v, w ∈ V, we have f(v, w) = 1

2 [q(v + w) − q(v) − q(w)] .
The classification of quadratic forms is of great importance in analytic
geometry and in number theory.1

Example: If V is an inner product space over R, then we have already
noted that the function f : (v, w) �→ 〈v, w〉 is a symmetric bilinear form.
The quadratic form defined by f is given by v �→ ‖v‖2

.

1 The theory of quadratic forms over R was de-
veloped by Gauss and his student Eisenstein, and the need to study such forms was
one of the factors which led to the development of determinant theory. Their work was
extended to quadratic forms over C by the 19th-century British mathematician Henry
Smith. The fundamental development in the theory of symmetric bilinear forms on vec-
tor spaces over fields of characteristic other than 2 is due to the 20th-century German
mathematician Ernst Witt.
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Example: If V is the vector space of all polynomial functions from
R to itself, then we have a symmetric bilinear form from V × V to R

defined by (f, g) �→
∫ 1

0
f(t)g(t)dt, which in turn defines the quadratic

form f �→
∫ 1

0
f(t)2dt.

Example: Let V = R
4 and let f ∈ Bil(V × V ) be the symmetric

bilinear form defined by












a1

a2

a3

a4





 ,







b1

b2

b3

b4











 �→ a1b1 + a2b2 + a3b3 − a4b4,

which lies at the center of Minkowski’s mathematical formulation of Ein-
stein’s relativity theory. The quadratic form defined by this bilinear form

is







a1

a2

a3

a4





 �→ a2

1 + a2
2 + a2

3 − a2
4. A similar symmetric bilinear form is

the Lorentz2 form













a1

a2

a3

a4





 ,







b1

b2

b3

b4











 �→ a1b1 + a2b2 + a3b3 − c2a4b4,

where c is the speed of light. The quadratic form defined by this bilinear

form is







a1

a2

a3

a4





 �→ a2

1 + a2
2 + a2

3 − c2a2
4.

A more general result, also based on the work of Lorentz and Minkowski,
gives a fascinating “reversal” of the Cauchy-Schwarz-Bunyakovski inequal-
ity. Let n be a positive integer and consider the subset (not subspace)

U of R
n+1 consisting of all vectors of the form

[
a
v

]

, where a is a

nonnegative real number and v ∈ R
n satisfies ‖v‖ ≤ a. For u =

[
a
v

]

2 Dutch physicist Hendrick Antoon Lorentz, the first to conceive
of the notion of the electron, won a Nobel prize in 1902. His work formed a basis for
much of Einstein’s theory.
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and y =
[

b
w

]

in U, let us define u � y to be ab − v · w. By our

assumption on U, we note at u � u ≥ 0 for every u ∈ U. Then one can
show that u � y ≥

[√
u � u

] [√
y � y

]
. This inequality is often known as

the lightcone inequality, because of its applications in physics.

By Proposition 20.6 we see that if V is a vector space finitely generated
over C and if f ∈ Bil(V ×V ) is symmetric and has rank r, we can find
a basis {v1, . . . , vn} of V such that the quadratic form q defined by f
is given by q :

∑n
i=1 aivi �→

∑r
i=1 a2

i .

Example: Let F be either R or C. Let n be a positive integer
and let A ∈ Mn×n(F ) be symmetric. Let f ∈ Bil(Fn, Fn) be the
symmetric bilinear form given by f : (v, w) = vT Aw, and let q be the
quadratic form defined by f. The set {q(v) | ‖v‖ = 1} (here the norm is
the one defined by the dot product on Fn) is called the numerical range
of the matrix A. In the case F = C, this is always a bounded convex
subset which contains all of the eigenvalues of A. For the special case
n = 2, this set is an ellipse with its foci at the eigenvalues of A, assuming
that they are distinct, or a circle with center at the sole eigenvalue of A,
assuming that A has only one eigenvalue of multiplicity 2. For n > 2,
the characterization of the numerical range is much more complicated.

(20.7) Proposition: Let n be a positive integer and let A ∈
Mn×n(R) be symmetric. Let f ∈ Bil(Rn ×R

n) be the symmetric
bilinear form given by f : (v, w) = vT Aw, and let q be the
quadratic form defined by f. Let c1 ≥ c2 ≥ . . . ≥ cn be the
eigenvalues of A. Then the numerical range of A lies in the
closed interval [cn, c1]. Moreover, both endpoints of this interval
belong to the numerical range of A.

Proof: By Proposition 17.7, we know that there exists an orthonormal
basis B = {v1, . . . , vn} of V consisting of eigenvectors of A. Moreover, if
v ∈ V then v =

∑n
i=1 〈v, vi〉 vi by Proposition 17.9, and so 1 = ‖v‖2 =

〈v, v〉 =
∑n

i=1 〈v, vi〉2 . We also see that Av =
∑n

i=1 〈v, vi〉A(vi) =
∑n

i=1 ci 〈v, vi〉 vi. Thus vT Av = 〈v,Av〉 =
∑n

i=1 ci 〈v, vi〉2 . Since

c1 = c1

(
n∑

i=1

〈v, vi〉2
)

≥
n∑

i=1

ci 〈v, vi〉2 ≥ cn

(
n∑

i=1

〈v, vi〉2
)

= cn.

Therefore the numerical range of A lies in the closed interval [cn, c1].
If v is a normal eigenvector of A corresponding to cn, then vT Av =

〈v,Av〉 = 〈v, cnv〉 = cn 〈v, v〉 = cn, and similarly for the case of an eigen-
vector of A satisfying ‖v‖ = 1 and corresponding to c1. �
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In order to see the geometric significance of quadratic forms, let us recall
that a general quadratic equation in three unknowns over R is one of
the form

(
a11X

2
1 + a22X

2
2 + a33X

2
3

)
+ 2 (a12X1X2 + a13X1X3 + a23X2X3)

+b1X1 + b2X2 + b3X3 + c = 0

in which not all of the aij are equal to 0. Such an equation can be
written in the form f(v, v) + w · v + c = 0, where f ∈ Bil(R3, R3) is
the symmetric bilinear form defined with respect to the canonical basis by

the matrix A =




a11 a12 a13

a12 a22 a23

a13 a23 a22



 , where w =




b1

b2

b3



 , and where

v =




X1

X2

X3



 . The graph of such an equation is a quadratic surface.

The various quadratic surfaces in R
3 can then be classified by considering

congruence classes of the matrices A, a task very important in analytic
geometry.

We will now return to the general case of bilinear transformations. Let
F be a field, let V and W be vector spaces over F, and let G = F (V ×W ).
Then G is a subspace of FV ×W having a basis {gv,w | (v, w) ∈ V ×W},
where

gv,w : (v′, w′) �→
{

1 if (v′, w′) = (v, w)
0 otherwise .

Let H be the subspace of G generated by all functions of the form

gv1+v2,w − gv1,w − gv2,w, gv,w1+w2 − gv,w1 − gv,w2 , gav,w − agv,w,

or gv,aw − agv,w

for all v, v1, v2 ∈ V, w,w1, w2 ∈ W, and a ∈ F. Let us pick a complement
of H in G, and call it V ⊗ W. By Proposition 7.8, we know that
V ⊗ W is unique up to isomorphism. Let α be the projection of G
with image V ⊗ W coming from the decomposition G = H ⊕ (V ⊗ W )
and, for all v ∈ V and w ∈ W, denote α(gv,w) by v ⊗ w. Then
B = {v⊗w | (v, w) ∈ V ×W} is a generating set for V ⊗W. It is important
to emphasize that the elements of V ⊗ W are linear combinations of
elements of B. In quantum physics, elements of V ⊗W � B, for suitable
spaces V and W, are known as entangled tensors and these have
important physical interpretations. Elements of B are known as simple
tensors.

If v1, v2 ∈ V and w ∈ W, then

[v1 + v2] ⊗ w − (v1 ⊗ w) − (v2 ⊗ w) = α (gv1+v2,w − gv1,w − gv2,w) = 0G
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and so [v1 + v2] ⊗ w = (v1 ⊗ w) + (v2 ⊗ w) . Similarly, if v ∈ V and
w1, w2 ∈ W then v ⊗ [w1 + w2] = v ⊗ w1 + v ⊗ w2. We also see that if
v ∈ V, w ∈ W and c ∈ F, then cv⊗w = c(v⊗w) = v⊗ cw. The vector
space V ⊗ W is called the tensor product3 of V and W.

From the definition of the tensor product, we see that the function tV W

from V × W to V ⊗ W given by (v, w) �→ v ⊗ w is a bilinear trans-
formation. This transformation has a very special significance, due to the
following theorem, which allows us to move from bilinear transformations
to linear transformations.

(20.8) Proposition: Let V, W, and Y be vector spaces over
a field F. For each bilinear transformation f ∈ Bil(V × W,Y )
there exists a unique linear transformation α ∈ Hom(V ⊗ W,Y )
satisfying f = αtV W .

Proof: Given f ∈ Bil(V ×W,Y ), there exists a linear transformation
β ∈ Hom(G,Y ) defined on the elements of a basis of the space G defined
above, given by the condition that β : gv,w �→ f(v, w). Since f is
a bilinear transformation, H ⊆ ker(β) and so we can define the linear
transformation α ∈ Hom(V ⊗ W,Y ) by setting

α :
n∑

i=1

ai [vi ⊗ wi] �→
n∑

i=1

aif(vi, wi).

This function is well-defined since if
∑n

i=1 ai [vi ⊗ wi] =
∑n

i=1 bi [vi ⊗ wi]
in V ⊗ W then

∑n
i=1(ai − bi)gvi,wi

∈ H ⊆ ker(β). Therefore

α

(
n∑

i=1

ai [vi ⊗ wi]

)

= α

(
n∑

i=1

bi [vi ⊗ wi]

)

Clearly α is a linear transformation and satisfies f = αtV W .

3 There are many equivalent defi-
nitions of the tensor product. The definition given here is due to the 20th-century
French mathematician, Claude Chevalley. The notion of a tensor was first intro-
duced in differential calculus by the 19th-century Italian mathematicians Gregorio
Ricci-Curbastro and Tullio Levi-Civita and became a central tool in relativity the-
ory.
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We are left to prove uniqueness. Suppose that γ ∈ Hom(V ⊗ W,Y )
satisfies f = γtV W . In particular, α(v ⊗ w) = γ(v ⊗ w) for all (v, w) ∈
V × W. That is to say, α and γ act identically on a generating set
for V ⊗ W and so, in particular, on a basis for V ⊗ W contained in
this generating set. Therefore, by Proposition 6.2, it follows that α = γ.
�

The following proposition is very important, and is often used as a basis
for the definition of the tensor product.

(20.9) Proposition: If V, W, and Y are vector spaces
over a field F then the vector spaces Hom(V ⊗ W,Y ) and
Hom(V,Hom(W,Y )) are isomorphic.

Proof: It is easy to see that the function

Hom(V ⊗ W,Y ) → Bil(V × W,Y )

defined by β �→ βtV W is a linear transformation and from Proposition
20.8 it follows that this is an isomorphism. Therefore the result follows
from Proposition 20.1. �

Example: Let V and W be vector spaces over a field F and let
δ1 ∈ D(V ) and δ2 ∈ D(W ) be linear functionals. Then there exists
a bilinear form in Bil(V × W ) defined by (v, w) �→ δ1(v)δ2(w). From
Proposition 20.8, it follows that there exists a linear functional δ1 ⊗ δ2 ∈
D(V ⊗ W ) satisfying δ1 ⊗ δ2 :

∑n
i=1 ai [vi ⊗ wi] �→

∑n
i=1 aiδ1(vi)δ2(wi).

Example: More generally, let V and W be vector spaces over a field
F , let α be an endomorphism of V, and let β be an endomorphism of
W. The function from V × W to V ⊗ W defined by

(v, w) �→ α(v) ⊗ β(w)

is a bilinear transformation and so defines an endomorphism α ⊗ β of
V ⊗ W satisfying α ⊗ β :

∑n
i=1 ai [vi ⊗ wi] �→

∑n
i=1 ai [α(vi) ⊗ β(wi)] .

By Proposition 5.13, we know that if V ⊕ W is a vector space finitely-
generated over a field F, then dim(V ⊕ W ) = dim(V ) + dim(W ). We
now prove the “multiplicative” analog of this assertion for tensor products.

(20.10) Proposition: Let V and W be vector spaces finitely
generated over a field F. Then V ⊗W is also finitely generated,
and dim(V ⊗ W ) = dim(V ) dim(W ).

Proof: Let us choose bases {v1, . . . , vk} of V and {w1, . . . , wn}
of W. Then for any v =

∑k
i=1 aivi ∈ V and w =

∑n
j=1 bjwj ∈
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W, we see that v ⊗ w =
∑k

i=1

∑n
j=1 aibj(vi ⊗ wj). Thus we see that

{vi ⊗ wj | 1 ≤ i ≤ k and 1 ≤ j ≤ n} is a generating set for V ⊗W, show-
ing that V ⊗W is finitely-generated. Moreover, by Proposition 20.9 and
Proposition 14.6, we see that the dimension of V ⊗ W is equal to the
dimension of D(V ⊗W ) and hence to the dimension of Hom(V,D(W )),
and this is equal to the dimension of Hom(V,W ), which is precisely
dim(V ) dim(W ). �

In particular, we see that in the context of Proposition 20.10, the set
{vi ⊗ wj | 1 ≤ i ≤ k and 1 ≤ j ≤ n} is in fact a basis of V ⊗ W.

Example: Let F be a field and let k and n be positive integers. Then,
by Proposition 20.10, we know that dim(F k⊗Fn) = kn = dim(Mk×n(F )),
and so the vector spaces F k⊗Fn and Mk×n(F ) are isomorphic. Indeed,
if we choose bases {v1, . . . , vk} of V and {w1, . . . , wn} of W, then the
function vi ⊗wj �→ vi ∧wj extends to an isomorphism between these two
spaces.

Example: Let F be a field, let n be a positive integer, and let V be
a vector space finitely generated over F and having a basis {v1, . . . , vk}.
The dimension of the vector space Mn×n(V ) over F is n2k. Consider
the bilinear transformation f : Mn×n(F ) × V → Mn×n(V ) defined by
([aij ], v) �→ [aijv]. By Proposition 20.8, we know that this bilinear trans-
formation defines a linear transformation α : Mn×n(F )⊗ V → Mn×n(V )
and it is clear that this is an epimorphism. But, by Proposition 20.10, we
see that the dimension of Mn×n(F ) ⊗ V is also equal to n2k and so α
must be an isomorphism.

Example: Let F be a field and let k, n, s, and t be positive integers.
Let f : Mk×n(F ) ×Ms×t(F ) → Mks×nt(F ) be the function defined by

f : (A,B) �→






a11B . . . a1nB
...

...
ak1B . . . aknB




 . This is a bilinear transformation

of vector spaces over F and so by Proposition 20.8, it defines a linear
transformation α : Mk×n(F )⊗Ms×t(F ) → Mks×nt(F ) which, again, can
be shown to be an isomorphism. In the literature, it is usual to write A⊗B
instead of f(A,B). This matrix is called the Kronecker product of the
matrices A and B. Kronecker products are very important in matrix
theory and its applications. It is easy to see that for all such matrices A
and B we have (A ⊗ B)T = AT ⊗ BT . Moreover, if k = n and s = t
and if A and B are nonsingular, then A ⊗ B is nonsingular, and
(A⊗B)−1 = A−1 ⊗B−1. We also note that if A and B are symmetric
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then so is A ⊗ B. Furthermore, Cholesky or QR-factorizations of A ⊗ B
come immediately from the corresponding factorizations of A and B.

Let V, V ′, W and W ′ be vector spaces over a field F. If α ∈
Hom(V, V ′) and β ∈ Hom(W,W ′) then we have a bilinear transformation
V ×W → V ′⊗W ′ defined by (v, w) �→ α(v)⊗β(w) and so, by Proposition
20.8, there exists a linear transformation from V ⊗W to V ′⊗W ′ satisfying
v⊗w �→ α(v)⊗β(w). We will denote this linear transformation by α⊗β.

(20.11) Proposition: Let V, V ′, W, and W ′ be vector
spaces finitely generated over a field F. Any element of the
space Hom(V ⊗ W,V ′ ⊗ W ′) is of the form

∑n
i=1 αi ⊗ βi, where

αi ∈ Hom(V, V ′) and βi ∈ Hom(W,W ′) for each 1 ≤ i ≤ n.

Proof: The function (α, β) �→ α⊗β from Hom(V, V ′)×Hom(W,W ′)
to Hom(V ⊗W,V ′⊗W ′) is bilinear and so defines a linear transformation
ϕ : Hom(V, V ′)⊗Hom(W,W ′) → Hom(V ⊗W,V ′ ⊗W ′). We are done if
we can show that ϕ is an isomorphism. By Propositions 8.1 and 20.10,
we know that

dim(Hom(V, V ′) ⊗ Hom(W,W ′))
= dim(Hom(V, V ′)) dim(Hom(W,W ′))
= dim(V ) dim(V ′) dim(W ) dim(W ′)
= dim(V ⊗ W ) dim(V ′ ⊗ W ′)
= dim(Hom(V ⊗ W,V ′ ⊗ W ′)

and so it suffies to prove that ϕ is a monomorphism.
Indeed, assume that

∑n
i=1 αi⊗βi ∈ ker(ϕ), where the set {β1, . . . , βn}

is linearly independent, and where none of the αi is the 0-function. Then∑n
i=1 αi(v) ⊗ βi(w) = 0V ′⊗W ′ for all v ∈ V and all w ∈ W. Pick

v ∈ V satisfying α1(v) �= 0V ′ . By renumbering if necessary, we can
assume that {α1(v), . . . , αk(v)} is a maximal linearly-independent subset
of {α1(v), . . . , αn(v)}. Therefore, for each k < h ≤ n there exists a scalar
bhj , not all of them being equal to 0, such that αh(v) =

∑k
j=1 bhjαj(v)

and so

0V ′⊗W ′ =
k∑

i=1

αi(v) ⊗ βi(w) +
m∑

h=k+1




k∑

j=1

bhjαj(v)



⊗ βh(w)

=
k∑

i=1

αi(v) ⊗ βi(w) +
k∑

j=1

αj(v) ⊗
(

m∑

h=k+1

bhjβh(w)

)

=
k∑

i=1

αi(v) ⊗
(

βi(w) +
m∑

h=k+1

bhjβh(w)

)

.
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Since the set {α1(v), . . . , αk(v)} is linearly independent, we must have
βi(w)+

∑m
h=k+1 bhjβh(w) = 0W ′ for all 1 ≤ i ≤ k and all w ∈ W. Hence

βi +
∑m

h=k+1 bhjβh is the 0-function for all 1 ≤ i ≤ k, contradicting
the assumption that the set {β1, . . . , βn} is linearly independent. We
therefore conclude that ker(ϕ) is trivial, which is what we needed to
prove. �

(20.12) Proposition: If U, V and W are vector spaces over
a field F, then U ⊗ (V ⊗ W ) ∼= (U ⊗ V ) ⊗ W.

Proof: The bilinear transformation U × (V ⊗ W ) → (U ⊗ V ) ⊗ W
defined by (u, v ⊗ w) �→ (u ⊗ v) ⊗ w induces a linear transformation
α : U ⊗(V ⊗W ) → (U ⊗V )⊗W which satisfies u⊗(v⊗w) �→ (u⊗v)⊗w.
Similarly we have a linear transformation β : (U ⊗V )⊗W → U ⊗ (V ⊗W )
which satisfies (u⊗ v)⊗w �→ u⊗ (v ⊗w). Since αβ and βα are clearly
the respective identity maps, we see that α must be the isomorphism we
seek. �

(20.13) Proposition: If V and W are vector spaces over a
field F, then V ⊗ W ∼= W ⊗ V.

Proof: The bilinear transformation V × W → W ⊗ V defined by
(v, w) �→ w ⊗ v induces a linear transformation α from V ⊗ W to
W ⊗ V satisfying α : v ⊗ w �→ w ⊗ v. Similarly, there exists a linear
transformation β : W ⊗V → V ⊗W satisfying β : w⊗v �→ v⊗w. Since
αβ and βα are clearly the respective identity maps, we see that α must
be the isomorphism we seek. �

Finally, let us briefly mention two algebras built on the notion of the
tensor product. The study of these algebras is beyond the scope of this
book. However, the reader should be aware of them and will find it fruitful
to explore them further. In what ensues, V is an arbitrary vector space
over a field F.

(I) For each nonnegative integer k, we define the vector space V ⊗k

over F by setting V ⊗0 = V and V ⊗k = V ⊗(k−1) ⊗ V if k > 0. Let
T (V ) =

∐∞

k=0
V ⊗k. We can define a product • on T (V ) by setting

(v1 ⊗ . . . ⊗ vk) • (vk+1 ⊗ . . . ⊗ vm) = v1 ⊗ . . . ⊗ vk+m

for all v1, . . . , vk+m ∈ V and extend linearly. This is an F -algebra,
known as the tensor algebra of V over F. The tensor algebra has
several important properties, one of which is that if K is any algebra over
F then any linear transformation α : V → K can be uniquely extended
to a homomorphism of F -algebras from T (V ) to K. Moreover, if W
is a vector space over F then any linear transformation α : V → W
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can be uniquely extended to a homomorphism of F -algebras from T (V )
to T (W ). (In the language of category theory, this says that T ( ) is
a functor from the category of vector spaces over F to the category of
F -algebras.)

(II) Let Y be the subspace of V ⊗ V generated by {v ⊗ v | v ∈ V }.
Then a complement of Y in V ⊗ V is called an exterior square of
V and is denoted by V ∧ V . This space is unique up to isomorphism. If
α is the projection of V ⊗ V with image V ∧ V and kernel Y, denote
α(v ⊗ w) by v ∧ w. Since

(v + w) ⊗ (v + w) = v ⊗ v + v ⊗ w + w ⊗ v + w ⊗ w

for all v, w ∈ V, we see that v ∧ w = −w ∧ v for all v, w ∈ V.
Therefore, if V is finitely-generated over F with basis {v1, . . . , vn},
we see that {vi ∧ vj | 1 ≤ i < j ≤ n} is a basis for V ∧ V, and hence
dim(V ∧V ) =

(
n
2

)
= 1

2n(n− 1). This construction can be iterated to more
than two factors. If k > 0 is an integer, we can consider the subspace Y
of V ⊗k generated by all expressions of the form v1 ⊗ . . . ⊗ vk in which
vi = vj for some i �= j. A complement of Y is denoted by ∧kV and
is called the kth exterior power of V. If V has finite dimension n,
then dim(∧kV ) =

(
n
k

)
. In particular, we note that ∧kV is trivial when

k > n. The subspace ∧(V ) =
∐n

k=0

(
∧kV

)
of T (V ) is known as the

exterior algebra of V, and has important applications in geometry and
cohomology theory. One can show that if (K, •) is a unital F -algebra
and if α : V → K is a linear transformation satisfying the condition that
α(v) • α(v) = 0K for all v ∈ V, then α can be uniquely extended to a
homomorphism of unital F -algebras from ∧(V ) to K.

Exercises

Exercise 1044 Find a real number a such that the matrices



1 a a
0 1 a
0 0 1



 and




1 −1 −1

−1 1 −1
−1 −1 1





define the same bilinear form in Bil(R3, R3).

Exercise 1045 Let V = Q
Q. Is the function from V × V to Q given

by (f, g) �→ (f + g)(1
2 )(f − g)(2) a bilinear form?



20. Bilinear transformations and forms 417

Exercise 1046 Let F be a field and let u : N × N → F be an arbitrary
function. Is the function fu : F [X] × F [X] → F [X] defined by

fu :




∞∑

i=0

aiX
i,

∞∑

j=0

bjX
j



 �→
∞∑

k=0




∑

i+j=k

u(i, j)aibjX
k





a bilinear transformation?

Exercise 1047 Let B be the canonical basis for the vector space V = R
2.

Find a bilinear form f ∈ Bil(V × V ) satisfying the condition

TBB(f) =
[

2 2
4 −1

]

.

Exercise 1048 Let B be the canonical basis for R
3. Find TBB(f),

where f : R
3 × R

3 → R is the bilinear form defined by

f :








a
b
c



 ,




a′

b′

c′







 �→ aa′ + 2bc′ + cc′ + 2cb′ − ab′ + bb′ − ba′.

Exercise 1049 Let f : R
3 × R

3 → R be the bilinear form defined by

f : (v, w) �→ v ·




0 1 0
1 0 2
0 1 1



 w. Find the matrix representing f with

respect to the basis









1
0
0



 ,




0
1
1



 ,




1
0
1









of R

3.

Exercise 1050 Let V and W be vector spaces over a field F and let
α ∈ Hom(V,W ). For each g ∈ Bil(W × W ), let us define the bilinear
form gα ∈ Bil(V × V ) by setting gα : (v, v′) �→ g(α(v), α(v′)). Is the
function g �→ gα a linear transformation?

Exercise 1051 Let F be a field of characteristic other than 2 and let
V be a vector space over F. Let f ∈ Bil(V ×V ). Show that f(v, v) �= 0
for all 0V �= v ∈ V if and only if for every nontrivial subspace W of
V and for every 0V �= w ∈ W there exists a vector w′ ∈ W satisfying
f(w,w′) �= 0.

Exercise 1052 Show that if V and W are vector spaces finitely gener-
ated over a field F of unequal dimensions, then there is no nondegenerate
f ∈ Bil(V,W ).
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Exercise 1053 Let F be a field of characteristic 0 and let the bilinear
form f ∈ Bil(F 3 × F 3) be defined by

f :








a
b
c



 ,




a′

b′

c′







 �→ aa′ + bb′ − cc′.

Is there a nontrivial subspace W of V satisfying f(w,w′) = 0 for all
w,w′ ∈ W?

Exercise 1054 Let f ∈ Bil(R4×R
4) be defined by f : (v, w) �→ v ·(Aw),

where A =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





 . Find a basis {v1, v2, v3, v4} of R

4

satisfying the condition that f(vi, vi) = 0 for all 1 ≤ i ≤ 4.

Exercise 1055 Let f : Mn×n(F ) × Mn×n(F ) → F be the function
defined by f : (A,B) �→ tr(AB), where F is a field and n is a positive
integer. Is f a bilinear form?

Exercise 1056 Let n be a positive integer and let

f : Mn×n(C) ×Mn×n(C) → C

be the function defined by f : (A,B) �→ n · tr(AB) − tr(A)tr(B). Show
that f is a symmetric bilinear form.

Exercise 1057 Let V be a vector space over a field F and let f ∈
Bil(V, V ) be a symmetric bilinear form. Let Y = F × V and define an
operation • on Y by setting (a, v) • (b, w) = (ab + f(v, w), aw + bv) for
all a, b ∈ F and all v, w ∈ V. Show that (Y, •) is a Jordan algebra.

Exercise 1058 Let V be a vector space over Q. Is the function V ×V →
V defined by (v, v′) �→ v + v′ a bilinear transformation?

Exercise 1059 Are the matrices




0 0 0
1 1 0
1 1 1



 and
1
25




25 −5 35
0 −3 21
0 −4 28





in M3×3(R) congruent?

Exercise 1060 Find an upper-triangular matrix in M3×3(R) congruent

to




1 0 −2

−1 1 0
0 −2 4



 or show that there is no such matrix.
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Exercise 1061 Let F be a field and let n be a positive integer. A matrix
A = [aij ] ∈ Mn×n(F ) is an upper Hessenberg matrix if and only if
aij = 0 whenever i − j ≥ 2. Is every matrix in Mn×n(R) necessarily
congruent to an upper Hessenberg matrix?

Exercise 1062 Let F be a field. Show that every upper triangular matrix
in M3×3(F ) is congruent to a lower triangular matrix.

Exercise 1063 Let n be a positive integer and let A be a nonsingular
symmetric matrix in Mn×n(C). Show that A is congruent to A−1.

Exercise 1064 Find a matrix P ∈ M3×3(R) such that the matrix

P




2 1 3
1 0 1
3 1 3



PT is diagonal.

Exercise 1065 Let A =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1





 ∈ M4×4(R). Find a nonsin-

gular matrix P ∈ M4×4(R) such that PAPT is diagonal.

Exercise 1066 Find a diagonal matrix in M4×4(R) congruent to the

matrix







1 2 3 2
2 3 5 8
3 5 8 10
2 8 10 −8





 .

Exercise 1067 Is the matrix




1 i 1 + i
i 0 2 − i

1 + i 2 − i 10 + 2i



 ∈ M3×3(C) con-

gruent to I?

Exercise 1068 Let n be a positive integer and let α be a positive-definite
endomorphism of R

n represented with respect to the canonical basis by the
matrix A. If A′ is a matrix congruent to A, does it too represent a
positive-definite endomorphism of R

n with respect to the canonical basis?

Exercise 1069 Let V be a vector space finitely generated over be a field
F of characteristic other than 2. If f ∈ Bil(V, V ) is symmetric and not
the 0-function, show that there exists a vector v ∈ V satisfying f(v, v) �= 0.

Exercise 1070 Let V be a vector space finitely generated over be a field
F of characteristic other than 2. If f ∈ Bil(V, V ), show that f(v, v) = 0
for all v ∈ V if and only if f(v, w) = −f(w, v) for all v, w ∈ V.



420 20. Bilinear transformations and forms

Exercise 1071 Let n be a positive integer, let F be a field, and let
A ∈ Mn×n(F ). Show that there exists a symmetric matrix B ∈ Mn×n(F )
satisfying v · Av = v · Bv for all v ∈ Fn.

Exercise 1072 Find a bilinear form f ∈ Bil(R3, R3) which defines the

quadratic form




a
b
c



 �→ a2 − 2ab + 4ac − 2bc + 2c2.

Exercise 1073 Let f ∈ Bil(R3, R3) be the symmetric bilinear form de-

fined by the matrix




−3 1 0

1 −6 1
0 1 7



 . Find the quadratic form defined by

f.

Exercise 1074 Let f ∈ Bil(R3, R3) be the symmetric bilinear form de-

fined by the matrix




2 −1 5

−1 0 1
3

5 1
3 −3



 . Find the quadratic form defined

by f.

Exercise 1075 Find a symmetric bilinear form f ∈ Bil(R3, R3) which

defines the quadratic form




a
b
c



 �→ 2ab + 4ac + 6bc.

Exercise 1076 Let F be a field of characteristic other than 2, and let
V be a vector space over F. Let q : V → F be a function satisfying
the condition that q(v + w) + q(v − w) = 2q(v) + 2q(w) for all v, w ∈ V.
Show that the function f : V × V → F defined by

f : (v, w) �→ 1
4 [q(v + w) − q(v − w)]

is a symmetric bilinear form.

Exercise 1077 Let V be a vector space over a field F of characteristic
other than 2, and let f ∈ Bil(V, V ) be a symmetric bilinear form which
defines a quadratic form q : V → F. Show that

q(u + v + w) = q(u + v) + q(u + w) + q(v + w) − q(u) − q(v) − q(w)

for all u, v, w ∈ V.

Exercise 1078 Find the numerical range of the quadratic form q : R
2 →

R defined by q : v �−→ vT

[
1 0
0 0

]

v.
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Exercise 1079 Let V be a vector space over a field F. Show that
V ∼= F ⊗ V.

Exercise 1080 Let V and W be vector spaces over a field F. Let
x ∈ V ⊗W be written in the form x =

∑n
i=1 vi⊗wi, where n is minimal

in the sense that there is no way to express x in the form
∑k

i=1 v′
i ⊗ w′

i

for any k < n. Show that {v1, . . . vn} is a linearly-independent subset of
V and that {w1, . . . wn} is a linearly-independent subset of W.

Exercise 1081 Let K be a field containing F as a subfield. If V is
a vector space over F, show that K ⊗ V is a vector space over K.

Exercise 1082 Let V be a vector space of finite dimension n over a
field F and let Y be the subspace of V ⊗ V generated by all elements
of the form v ⊗ v′ − v′ ⊗ v, where v, v′ ∈ V. Find the dimension of Y.

Exercise 1083 Let V and W be finite dimensional vector spaces over a
field F . Let v, v′ ∈ V and w,w′ ∈ W be vectors satisfying the condition
v⊗w = v′⊗w′ and this is not the identity element of V ⊗W with respect
to addition. Show that there exists a scalar c ∈ F such that v = cv′ and
w′ = cw.

Exercise 1084 Let F be a field and, for all A,B ∈ M2×2(F ), denote
the Kronecker product of A and B by A ⊗ B. If {H1, . . . , H4} is the
canonical basis for M2×2(F ), is {Hi ⊗ Hj | 1 ≤ i, j ≤ 4} a basis for
M4×4(F ).

Exercise 1085 Let n be a positive integer and let F be a field. If A ∈
Mn×n(F ) is a magic matrix, is the same true for A ⊗ A ∈ M2n×2n(F )?

Exercise 1086 Let F be a field and let k and n be positive integers.
If matrices A ∈ Mk×k(F ) and B ∈ Mn×n(F ) have eigenvalues a and
b respectively, show that ab is an eigenvalue of A ⊗ B.

Exercise 1087 Let F be a field and let k and n be positive integers.
If matrices A ∈ Mk×k(F ) and B ∈ Mn×n(F ) have eigenvalues a and
b respectively, find a matrix C ∈ Mkn×kn(F ) with eigenvalue a + b.

Exercise 1088 Let F be a field of characteristic other than 2 and
let V be a vector space over F. Find the minimal polynomial of the
endomorphism α of V ⊗ V defined by

α :
n∑

i=1

ai(vi ⊗ wi) �→
n∑

i=1

ai(wi ⊗ vi).

Exercise 1089 Let F be a field, let k, n, s, and t be positive integers,
and consider matrices A ∈ Mk×n(F ) and B ∈ Ms×t(F ). Is the rank of
A ⊗ B necessarily equal to the product of the ranks of A and B?
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Exercise 1090 Let V, V ′,W,W ′ be vector spaces over a field F and let
α : V → V ′ and β : W → W ′ be monic linear transformations. Let
α ⊗ β be the linear transformation from V ⊗ V ′ to W ⊗ W ′

α ⊗ β :
n∑

i=1

ai(vi ⊗ v′
i) �→

n∑

i=1

ai [α(vi) ⊗ β(v′
i)] .

Is α ⊗ β necessarily monic?

Exercise 1091 Let F be a field and let (K, •) and (L, ∗) be F -algebras.
Define an operation � on V ⊗ W by setting

(v ⊗ w) � (v′ ⊗ w′) = (v • v′) ⊗ (w ∗ w′).

for all v.v′ ∈ K and w,w′ ∈ L. Is (K ⊗ L, �) an F -algebra?

Exercise 1092 Let V = R
2 and let W = V ⊗V. If w ∈ W is normal,

do there necessarily exist normal vectors v, v′ ∈ V such that w = v ⊗ v′?

Exercise 1093 Let V be an inner product space over R having a basis
{vi | i ∈ Ω} and let W be an inner product space over R having a basis
{wj | j ∈ Λ} Define a function µ : (V ⊗ W ) × (V ⊗ W ) → R by setting

µ :




∑

i∈Ω

∑

j∈Λ

aij(vi ⊗ wj),
∑

i∈Ω

∑

j∈Λ

bij(v′
i ⊗ w′

j)



 �→

∑

i∈Ω

∑

j∈Λ

aijbij

[
〈vi, v

′
i〉 +

〈
wj , w

′
j

〉]
.

Is µ an inner product on V ⊗ W?

Exercise 1094 Let V be a vector space over a field F and let α ∈
End(V ). Is the function V ∧ V → V ∧ V defined by

n∑

i=1

ci (vi ∧ wi) �→
n∑

i=1

ci (α(vi) ∧ α(wi))

a linear transformation?
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Summary of Notation

Re(z), 7
im(z), 7
z, 8
Q(

√
p), 9

Z/(p), 9
GF (p), 9∏

i∈Ω Vi, 19
Mk×n(V ), 20
V Ω, 19
χB, 21∐

i∈Ω Vi, 22
V (Ω), 22
Fv, 23
FD, 24∑

i∈Ω Wi, 27
K−, 36
v × w, 36
K+, 37
deg(f), 38
F [X], 38
F [g(X)], 38
Φq(X), 42

423



424 Appendix A. Summary of Notation

µ(d), 42
F [X1, . . . , Xn], 44
dim(V ), 64
U ⊕ W, 66⊕

i∈Ω Wi, 67
gr(f), 81
Hom(V,W ), 82
ker(α), 84
im(α), 85
AT , 85
Aff(V,W ), 87
∼=, 87
rk(α), 89
null(α), 89
V/W, 98
End(V ), 99
σc, 99
Aut(V ), 101
εhk, 102
εh;c, 102
εhk;c, 102
ΦBD, 118
v � w, 121
v ∧ w, 121
Ehk, 137
Eh;c, 137
Ehk;c, 137
Sn, 202
sgn(π), 203
|A|, 203
adj(A), 213
spec(α), 229
ρ(A), 233
comp(p), 240
A ∼ B, 241
Ann(v), 247
mA(X), 248
F [α]v0, 267
LR(V ), 268
D(V ), 285
tr(A), 286
〈v, w〉 , 300
v · w, 300
DH , 301
‖v‖ , 305
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eA, 316
cos(A), 15
sin(A), 15
v ⊥ w, 326
W⊥, 330
α∗, 339
Rα, 354
SO(n), 375√

α, 381
α+, 390
Bil(V × W,Y ), 399
fop, 399
Bil(V × W ), 401
TBD(f), 402
v ⊥f w, 403
A⊥f , 403
q(v), 407
V ⊗ W, 410
v ⊗ w, 410
A ⊗ B, 413
V ∧ V, 416
V ⊗k, 415
∧kV, 416
∧(V ), 416
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addition
in a field, 6
vector, 17

adjacency matrix, 353
adjoint matrix, 213
adjoint transformation, 339
affine subset, 86
affine transformation, 86
algebra, 33

anticommutative, 34
associative, 33
Cayley, 302
commutative, 34
division, 45
entire, 38
exterior, 416
Jordan, 37
Lie, 35
optimization, 10
quaternion, 58
tensor, 415
unital, 33

algebraic, 65
algebraic multiplicity, 244
algebraically closed, 43

alphabet, 20
angle, 325
annihilate, 247
anti-Hermitian matrix, 366
anticommutative algebra, 34
antitrace, 296
Apollonius’ identity, 323
Arnoldi process, 331
associative algebra, 33
automorphism, 101

elementary, 102
of algebras, 101
unitary, 369

Axiom of Choice, 3

band matrix, 133
basis, 55

canonical, 57, 271
dual, 290
Hamel, 61

Bernstein function, 94
Bessel’s identity, 336
best approximation, 395
bijective, 2
bilinear form, 401
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nondegenerate, 401
bilinear transformation, 399

symmetric, 399
Binet-Cauchy identity, 322
binomial formula, 16
block form, 123
bounded, 60, 307
bounded support, 347
bra-ket product, 121
Brauer’s Theorem, 314

canonical basis, 57, 271
Cantor set, 61
cartesian product, 2
Cassini oval, 314
Cauchy-Schwarz-Bunyakovsky The-

orem, 304
Cayley algebra, 302
Cayley-Hamilton Theorem, 250
chain, 53
chain subset, 53
change-of-basis matrix, 146
characteristic, 10
characteristic function, 21
characteristic polynomial, 239, 268
characteristic value, 229
characteristic vector, 229
Chebyshev polynomial, 327
Cholesky decomposition, 360
circulant matrix, 156
co-independent hyperplanes, 298
coefficient, 38

Fourier, 333
leading, 38
Taylor, 104

coefficient matrix, 171
column equivalent, 145
column space, 179
combination

linear, 24
commutative algebra, 34
commuting pair, 36
companion matrix, 240
complement, 68

orthogonal, 330

completely reducible, 43
complex conjugate, 8
complex number, 7
condition number, 190

spectral, 383
congruent matrices, 403
conjugate transpose, 301
conjugate,

complex, 8
continuant, 221
convex subset, 365
coproduct

direct, 22
Courant-Fischer Minimax Theo-

rem, 354
Cramer’s Theorem, 215
cross product, 36
Crout’s algorithm, 153
cyclic, 104
cyclotomic polynomial, 42

decomposition
Cholesky, 360
direct sum, 67
LU, 153
polar, 382
QR, 335
singular value, 382
spectral, 379

defective eigenvalue, 244
degree

of a generalized eigenvector,
275

of a polynomial, 38
of a polynomial function, 41

derivation, 100
derogatory endomorphism, 244
determinant, 205
determinant function, 199
diagonal matrix, 132
diagonalizable endomorphism, 236
difference set, 2
differential, 80
differential operator, 100
dimension, 63
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Dirac functional, 289
direct coproduct, 22
direct product, 19
direct sum, 66
direct sum decomposition, 67
discrete cosine transform, 137
discrete Fourier transform, 136, 308
disjoint subspaces, 23
distance, 315
distribution, 286
division algebra, 45
Division Algorithm, 40
domain, 2

integral, 10
dot product, 300

weighted, 301
dual basis, 290
dual space, 285

weak, 290
dyadic product, 130

eigenspace, 231, 233
generalized, 276

eigenvalue, 229, 232
defective, 244
semisimple, 244
simple, 244

eigenvector, 229, 232
generalized, 275

Eisenstein’s criterion, 42
elementary automorphism, 102
elementary matrix, 137
elementary operation, 143
endomorphism, 99

bounded, 112
derogatory, 244
diagonalizable, 236
nilpotent, 272
normal, 375
orthogonally diagonalizable,

352
positive definite, 356
selfadjoint, 349

entangled tensors, 410
entire, 38

epic, 2
epimorphism, 85
equal functions, 2
equivalence relation, 106
equivalent matrices, 145
euclidean

norm, 305
subfield, 299

evaluation functional, 291
even function, 69
even permutation, 203
Exchange Property, 26
extended coefficient matrix, 171
exterior algebra, 416
exterior power, 416
exterior product, 121
exterior square, 416

factor space, 98
fan, 168
fast Fourier transform, 136
Fibonacci sequence, 269
field, 6

algebraically closed, 43
formally-real, 300
Galois, 9
orderable, 16

field of algebraic numbers, 65
finite dimensional, 63
finitely generated, 26
fixed point, 231
fixed space, 231
form

bilinear, 401
Lorentz, 408
quadratic, 407

formal differentiation, 104
formally real field, 300
Fourier coefficient, 333
Fredholm alternative, 293
Frobenius norm, 311
full pivoting, 152
function, 2

characteristic, 21
determinant, 199
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even, 69
inverse, 2
odd, 69
periodic, 62
piecewise constant, 30
spline, 48

functional
Dirac, 289
evaluation, 291
linear, 285
zero, 285

Fundamental Theorem of Algebra,
43

Galois field, 9
Gauss-Jordan method, 175
Gauss-Seidel iteration method, 186
Gaussian elimination, 175
general Lie algebra, 131
general quadratic equation, 410
generalized eigenspace, 276
generalized eigenvector, 275
generating set, 25
geometric multiplicity, 244
Gershgorin bound, 312
Gershgorin’s Theorem, 312
Givens rotation matrix, 370
GMRES algorithm, 331
golden ratio, 269
Google matrix, 254
Gram matrix, 303
Gram-Schmidt process, 328
Gram-Schmidt Theorem, 328
graph, 81
Grassmann’s Theorem, 69
Greville’s method, 392
group of automorphisms, 107
Guttman’s Theorem, 138

Haar wavelet, 332
Hadamard inequality, 329
Hadamard matrix, 207
Hadamard product, 157
Hamel basis, 61
Hamming norm, 315

Hankel matrix, 219
Hausdorff Maximum Principle, 60
Hermitian matrix, 351
Hermitian transpose, 301
Hibert subset, 332
Hilbert matrix, 144
Hilbert-Schmidt norm, 311
homogeneous system of linear equa-

tions, 170
homomorphism, 79

of algebras, 79
of unital algebras, 79

Householder matrix, 373
hyperplane, 292

ill-conditioned, 189
image, 85
imaginary part, 7
improper subspace, 22
independent subspaces, 67
indeterminate, 38
index of nilpotence, 272
induced norm, 310
infinite dimensional, 63
inner product, 299
inner product space, 300
integral domain, 10
interior product, 121
interpolation problem, 169
intersection, 2
invariant subspace, 103
inverse function, 2
inversion, 202
involution, 341
irreducible, 41
isometry, 362
isomorphic vector spaces, 87
isomorphism, 85

of algebras, 85
of unital algebras, 85

iteration method
Gauss-Seidel, 186
Jacobi, 186

Jacobi identity, 36
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Jacobi iteration method, 186
Jacobi overrelaxation method, 188
Jacobi polynomial, 327
JOR, 188
Jordan algebra, 37
Jordan canonical form, 275, 278
Jordan identity, 37
Jordan product, 37

Karatsuba’s algorithm, 39
kernel, 84
ket-bra product, 121
Kovarik algorithm, 393
Kronecker product, 413
Krylov algorithm, 271
Krylov subspace, 267

Lagrange identity, 306
Lagrange interpolation polynomial,

146
Lanczos algorithm, 271
leading coefficient, 38
leading entry, 174
least squares method, 395
Legendre polynomial, 326
Lie algebra, 35

general, 131
special, 286

Lie product, 36
lightcone inequality, 409
linear combination, 24
linear functional, 285
linear transformation, 79

adjoint of, 339
linearly dependent, 49

locally, 82
linearly independent, 49
linearly recurrent sequence, 268
list, 1
locally linearly dependent, 82
Loewner partial order, 357
Lorentz form, 408
lower-triangular matrix, 134
LU-decomposition, 153

Möbius function, 42

magic matrix, 259
Markov matrix, 135
matrices

column-equivalent, 145
congruent, 403
equivalent, 145
row-equivalent, 145
similar, 241
unitarily similar, 370

matrix, 20
adjacency, 353
adjoint, 213
anti-Hermitian, 366
band, 133
change-of-basis, 146
circulant, 156
coefficient, 171
companion, 240
determinant of, 205
diagonal, 132
elementary, 137
extended coefficient, 171
Givens rotation, 370
Google, 254
Gram, 303
Hadamard, 207
Hankel, 219
Hermitian, 351
Hilbert, 144
Householder, 373
in block form, 123
in reduced row echelon form,

174
in row echelon form, 173
lower-triangular, 134
magic, 259
Markov, 135
Nievergelt’s, 144
nonsingular, 135
normal, 384
orthogonal, 372
permutation, 142
quasidefinite, 366
scalar, 132
singular, 135
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skew-symmetric, 134
sparse, 187
special orthogonal, 375
stochastic, 135
symmetric, 134
symmetric Toeplitz, 183
transpose, 85
tridiagonal, 133
unitary, 370
upper Hessenberg, 419
upper-triangular, 133
Vandermonde, 147
zero, 21

maximal, 53
maximal subspace, 292
minimal, 53
minimal polynomial, 248, 268
Minkowski’s inequality, 307
minor, 209
Modular Law, 28
monic

function, 2
polynomial, 38

monomorphism, 85
Moore-Penrose pseudoinverse, 389
multiplication

in a field, 6
scalar, 17

multiplication table, 58
multiplicity

algebraic, 244
geometric, 244

mutually orthogonal, 326

Nievergelt’s matrix, 144
nilpotent, 272
nondegenerate bilinear form, 401
nonhomogeneous system of linear

equations, 170
nonsingular matrix, 135
nontrivial subspace, 22
norm, 305, 309

euclidean, 305
Frobenius, 311
Hamming, 315

Hilbert-Schmidt, 311
induced, 310
spectral, 311

normal endomorphism, 375
normal matrix, 384
normal vector, 305
normed space, 309
nullity, 89
number

complex, 7
rational, 5
real, 5

numerical range, 409

odd function, 69
odd permutation, 203
operation

elementary, 143
opposite transformation, 399
optimization algebra, 10
order of recurrence, 268
orderable field, 16
orthogonal, 326
orthogonal complement, 330

right, 403
orthogonal matrix, 372
orthogonal projection, 330
orthogonality with respect to a bi-

linear form, 403
orthogonally diagonalizable, 352
orthonormal, 331

Padé approximant, 216
pairwise disjoint, 24
Parallelogram law, 307
parity, 401
Parseval’s identity, 336
partial order, 53

Loewner, 357
partial pivoting, 152
partially-ordered set, 53
periodic function, 62
permutation, 2

even, 203
odd, 203
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permutation matrix, 142
Pfaffian, 206
piecewise constant, 30
pivot, 152
pivoting

full, 152
partial, 152

Poincaré-Birkhoff-Witt Theorem,
36

polar decomposition, 382
polynomial, 38

characteristic, 239, 268
Chebyshev, 327
completely reducible, 43
cyclotomic, 42
in several indeterminates, 44
irreducible, 41
Jacobi, 327
Lagrange interpolation, 146
Legendre, 326
minimal, 248, 268
monic, 38
reducible, 41
zero, 38

polynomial function, 40
positive definite, 356
power

exterior, 416
pre-Banach space, 309
pre-Hilbert space, 300
primitive root of unity, 136
process

Arnoldi, 331
Gram-Schmidt, 328

product
bra-ket, 121
cartesian, 2
cross, 36
direct, 19
dot, 300
dyadic, 130
exterior, 121
Hadamard, 157
inner, 299
interior, 121

Jordan, 37
ket-bra, 121
Kronecker, 413
Lie, 36
scalar triple, 306
Schur, 157
tensor, 411
vector triple, 306

projection, 104
onto an affine set, 342
orthogonal, 330

proper subspace, 22
pseudoinverse

Moore-Penrose, 389

QR-decomposition, 335
quadratic form, 407
quadratic surface, 410
quasidefinite matrix, 366
quaternion

algebra, 58
real, 58

range, 2
numerical, 409

rank, 89, 179, 403
Rational Decomposition Theorem,

274
rational number, 5
Rayleigh quotient

function, 354
iteration scheme, 355

real euclidean, 299
real number, 5
real part, 7
real quaternion, 58
reduced row echelon form, 174
reducible, 41
relation

equivalence, 106
partial order, 53

relaxation method, 188
restriction, 2
Riesz Representation Theorem, 338
right orthogonal complement, 403
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row echelon form, 173
row equivalent, 145
row space, 179

scalar, 18
scalar matrix, 132
scalar multiplication, 17
scalar triple product, 306
Schur product, 157
Schur’s Theorem, 371
selfadjoint, 349
semifield, 10
semisimple eigenvalue, 244
sequence, 2

Fibonacci, 269
linearly recurrent, 268

set
difference, 2
generating, 25
partially-ordered, 53
spanning, 25

Sherman-Morrison-Woodbury The-
orem, 138

signum, 203
similar matrices, 241
simple eigenvalue, 244
simple tensors, 410
singular matrix, 135
singular value, 383
Singular Value Decomposition The-

orem, 382
skew symmetric matrix, 134
solution set, 171
solution space, 171
SOR, 188
space

dual, 285
inner product, 300
normed, 309
pre-Banach, 309
pre-Hilbert, 300
solution, 171

spanning set, 25
sparse matrix, 187
special Lie algebra, 286

special orthogonal matrix, 375
spectral condition number, 383
Spectral Decomposition Theorem,

379
spectral norm, 311
spectral radius, 233
spectrum, 229
spline function, 48
Steinitz Replacement Property, 52
stochastic matrix, 135
Strassen-Winograd algorithm, 150
subalgebra, 35

unital, 35
subfield, 7

euclidean, 299
real euclidean, 299

subset
affine, 86
bounded, 60
chain, 53
convex, 365
Hilbert, 332
orthonormal, 331
underlying, 2

subspace, 22
cyclc, 104
generated by, 25
improper, 22
invariant, 103
Krylov, 267
maximal, 292
nontrivial, 22
proper, 22
spanned by, 25
trivial, 22

subspaces
disjoint, 23
independent, 67
pairwise disjoint, 24

successive overrelaxation method,
188

Sylvester’s Theorem, 89
symmetric bilinear transformation,

399
symmetric difference, 21
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symmetric matrix, 134
symmetric Toeplitz matrix, 183
system of linear equations, 169

homogeneous, 170
nonhomogeneous, 170

Taylor coefficient, 104
tensor algebra, 415
tensor product, 411
tensors

entangled, 410
simple, 410

trace, 286
transcendental, 65
transform

discrete cosine, 137
discrete Fourier, 136, 308
fast Fourier, 136

transformation
affine, 86
bilinear, 399
linear, 79
opposite, 399

transpose, 85
conjugate, 301
Hermitian, 301

Triangle difference inequality, 307
Triangle inequality, 315
tridiagonal matrix, 133
trivial subspace, 22

underlying subset, 2
union, 2
unit, 34
unital algebra, 33
unital subalgebra, 35
unitarily similar matrices, 370
unitary automorphism, 369
unitary matrix, 370
upper Hessenberg matrix, 419
upper-triangular matrix, 133

Vandermonde matrix, 147
vector, 18

normal, 305

vector addition, 17
vector space, 18

finite dimensional, 63
finitely generated, 26
infinite dimensional, 63

vector triple product, 306
vectors

orthogonal, 326
orthogonal with respect to a

bilinear form, 403

wavelet
Haar, 332

weak dual space, 290
weighted dot product, 301
Well Ordering Principle, 53
width of a band matrix, 133
word, 20
Wronskian, 207

Zlobec’s formula, 393
Zorn’s Lemma, 60
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