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Preface 

The IUTAM Symposium on "Discrete Structural Optimization" 
was devoted to discuss optimization problems for which design va
riables may not be sought among continuous sets. Optimum sizing 
from lists of available profiles, segmentation; as well as allocation 
and number of supports, sensors or actuators, are good exam
ples of such problems for which design variables may be chosen 
only from finite sets. The above problems are having not only 
important practical applications. They are also inspiring scienti
fic research in the field of discrete applied mathematics. Among 
them are controlled enumeration methods, subgradient approach, 
genetic programming, multicriteria optimization, neural nets etc. 

Along with its tradition of promoting and supporting new im
portant fields of research in mechanics and its application, General 
Assembly of IUTAM decided in 1990 to support the Sumposium. 
It is worthy to note that this is the second IUTAM Symposium on 
structural optimization, organized in Poland. The first one was 
held in Warsaw twenty years ago and was organized by Profe
ssors Sawczuk and Mroz. It was devoted mostly to problems with 
continuous design variables. 

The Symposium which gathered 40 participants from 12 coun
tries was sponsored by several institutions listed below. However 
support by IUTAM should be specially appreciated. It helped se
veral scientists to contribute to the Symposium which other way 
wouldn't attend the meeting. 

Finally let me express my appreciations to members of Scienti
fic Committee, members of Local Organizing Committee for their 
contribution for the successful scientific meeting. Thanks also to 
Springer - Verlag for very active cooperation in publishing this 
book. 

December 1993 
Witold Gutkowski 

Symposium Chairman 
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Optimal Damping of Beams and Plates 
by Genetic Algorithms 

Ph. Trompette, lL. Marcelin, C. Schmeding 

Laboratoire 3S URA CNRS 1511 BP 53 X 38041 GRENOBLE FRANCE 

Abstract:This paper is concerned with the optimal damping of beams or plates partially 

covered by viscoelastic constrained layers. The objective function is to maximize the 

modal damping factor of one (or several) mode(s). During the optimization process, the 

selected mode shapes are those of the undamped associated structure. A convenient fmite 

element model for the beam or the plate dynamic analysis is used. The possible 

dimensions and locations of the viscoelastic layers are determined by the use of a genetic 

algorithm. 

Keywords. Optimal Damping, Viscoelastic, Beams and Plates, Genetic Algorithms. 

1 Introduction 

Structural vibration control is a major design problem for a variety of structures. This 

control may be approached in several ways as active attenuators, structural damping, 

etc... In most cases the objective of the designers is to minimize the vibration amplitudes 

on a ~ide range of frequencies to prevent damage by fatigue. For such a purpose, the use 

of viscoelastic constrained layers may be an interesting solution compatible with 

technological constraints. In 131, the optimal modal damping of beams partially covered by 

viscoelastic layers has been studied; the minimization was performed using a 

conventional non-linear programming algorithm. 

For plates, a very few number of papers have been previously published. 141 and 151 

present theoretical and experimental studies of plates with complete covering, and 161 with 

partial one, but without an optimization step. For this kind of optimization problem, 

because of the difficulty to define a convenient design variable set able to initiate an 

appropriate initial design point, the usual non-linear programming methods are not well 

suited. 
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Constrained viscoelastic layer 

Main plate 

Figure 1 - Plate damped by viscoelastic constrained material 

In this paper, both partial covering and optimization are considered. For such a 

purpose, special plate finite elements are dermed which represent the behavior of the 

sandwich parts ; they are described in the next section. On the other hand, a genetic 

algorithm is used to optimize the dimensions and the locations of the viscoelastic layers. 

As in 111 or in 161 the main conclusion in achieving an optimal damping consists of the 

realization that it is useless to cover the whole structure; in 161 • both theory and 

experiment show that for stiff viscoelastic layers, the loss factor is greater with a partial 

coverage than with a full one. 

2 The finite element model 

The dynamical behavior -Le.- frequencies and mode shapes- of partially covered plates, 

is calculated from a modal finite element model. The homogeneous parts of the plate are 

discretized by conventional C1 F.E. and the heterogeneous or sandwich ones by specific 

F.E. designed to represent accurately the viscoelastic core shear damping effect; such 

elements were proposed previously in 121 and 131 for beams and are extended here to 

plates. 

2.1 The finite elements 

2.1.1 Homogeneous plate F.E. 

It is an usual Kirchhoff plate bending element with four nodes. The degrees of freedom 

are w, ow/ox,ow/oy where w is the transverse plate displacement. The interpolation 

function w is, 

w = a1 + a2x + a3Y + 3.jxy + asx2 + ll6y2 +a,x3 + asy3 + a9x2y + alOxy2 

+ aux3y +a12xy3 (1) 
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In the following applications the in-plane displacements of the main plate are neglected. 

Z,w 

___ -1:. __ _ 

OL-______________________________________________ __ 

x,u 

Figure 2 - Displacements of the layers 

2.1.2 Heteregeneous F.E. 

It is built on the following assumptions: 

-the transverse plate displacement w is independent of the transverse coordinate z 

-the viscoelastic layer bending stiffness is negligible and the strains are only shear.strains 

-the longitudinal displacements of the different parts of the plate (Figure 2) are given by 

UA = U3 + h3(ow/ox), UB = -hl(ow/ox) (2) 

and VA = v3 + h3(ow/oy), VB = -hl(ow/oy) 

- the viscoelastic core material is characterized by a complex shear modulus G which can 

be frequency and temperature dependent 

- the thicknesses h3 « hI and h2 < hI 

-the shear strain energy of the elastic layers is neglected. 

-the longitudinal displacements u and v of the plate medium surface are set to be O. 

-the constrained viscoelastic layer is only subjected to shear strains "In and "lyz. 

At each node the degrees of freedom are w, ow/ox,ow/oy and the longitudinal 

displacements u and v of the constraining layer. The interpolation function for w is the 

same as that for the homogeneous element The interpolation functions for u and v are 

those of the bilinear plane element 

The element stiffness matrix is the sum of the 3 contributions: bending, in-plane 

traction of the constraining layer, and in-plane shear of the constrained viscoelastic layer. 
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The first two are usual, the last is obtained from the following in-plane shear strain 

energy: 

with: 

so: 

in the same manner: 

2.2 Element mass matrix 

dU2 _ uA - UB 

az-~ 

with d = hi + 2h2 + h3 

(3) 

(4) 

(5) 

A consistent mass matrix M is used which takes account of the bending contribution 

and of the in-plane effects of the different parts, i.e. the calculated kinetic energy is: 

(6) 

2.3 Assembly 

Due to the viscoelasticity of the core material the global dynamic equilibrium equations 

are simple only if the displacements are periodic: x = xoeiOlt• In this case, the viscoelastic 

modulus is written G = Go (1 + j~) and the corresponding stiffness matrix is 

1Kvl = 1Kvrl + j 1Kvjl (7) 

The dynamic behavior of the whole plate (or beam) is given by the matrix equation 

(-IMIr02 +IKII + jIK21){u} = {F} (8) 

in which the imaginary part K2 of the total stiffness matrix is equal to Kvi. 

2.4 Modal response 

Frequencies and mode shapes of the undamped associated structure can be 

considered as a good and simple modal basis to be used for predicting the dynamic 

behavior of the damped structure 191. 
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Oli and 0i i = I, n are the undamped frequencies and corresponding mode shapes 

obtained from the matrix equation: 

(-IMIr02 + IKll ){x} = {OJ (9) 

Performing the usual transformation {x} = I~I {q}, and premultiplying by I~rr, equation 

(10) is obtained for free vibrations 

(-IIlIr02 + IlCll + jllC21 ){q} = {OJ (10) 

Because of the orthogonality of the modes, IIlI and IlCll are diagonal matrices, but not IlC2L 

Generally for beams and plates the frequencies are well separated, so the full matrix can 

be considered as diagonal dominant. In these conditions the modal system (10) is the sum 

of n uncoupled equations. It follows that in a modal response, a good approximation of 

the structural loss factor may be easily calculated from each equation of (10)1. 

3 The Optimization Method 

The objective funct\on to maximize is the modal damping factor of a single mode i or a 

linear combination of modal damping factors for several i. 

(11) 

In 1111 SEVi is the elastic strain energy stored in the viscoelastic material when the 

structure vibrates on its ith undamped mode, and S& is the corresponding elastic strain 

energy of the entire composite structure, ai is a weighting coefficient.As all the matrices 

are diagonal and the mode shapes are non-variable during the optimization process, the 

calculation of the damping factors is obviously straightforward. 

By using conventional optimization procedures (non linear programming) it is impossible 

to solve this optimization problem because of the great difficulty in determining a 

convenient starting point in the design space and also an efficient optimization strategy. 

This is the reason why here, a genetic algorithm is used. Genetic algorithms (GAs) are 

random search procedures based on natural selection (171 and 181). 

llf the shear modulus of the viscoelastic core is frequency and temperature dependant, an ilenltive method 
to calculate the resonance frequencies and mode shapes must be used 121. 
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A simple genetic algorithm consists of three operators: reproduction, crossover, and 

mutation.They are particulary well suited to represent simply the dimensions and the 

locations of the viscoelastic layers. 

In the present paper, heterogeneous plate elements are coded by 1 and homogeneous plate 

elements by 0, so a design point - a chromosome- is a n binary number in which n is the 

number of fmite elements. The genetic algorithm used is as described in 181. There are no 

particular limitations and constraints. 

4 Results 

4.1 Results with a fixed mesh 

At first, tests are conducted on a beam (or a narrow plate) defined in 111. The purpose is 

to compare the results given by the present work (using a GA) and those obtained in 111 

by both experimental and theoretical methods. The dimensions of the plate are the 

following: Length L = 508 mm, width b = 50.8 mm, hi = 3.175 mm, h2 = 1.27 mm, 

h3 = 0.787 mm. 
The viscoelastic material shear modulus GO is equal to 16.3 MPa, the loss factor /3 = 1 (in 

this example both are supposed constant) and the specific gravity of the viscoelastic 

material is 2500 kglm3 . The elastic material is steel. Nine plate elements of length 28.22 

mm are used to model half of the plate. 

The optimization is conducted on the first clamped-clamped mode. Only half of the beam 

is studied; the length of the chromosome is 9, the population size is 10, the maximum 

number of generation is 8, the crossover probability is 6.0E-Ol and the mutation 

probability is 3.33E-02. For this first mode, the results are quantitatively good when 

compared with those of Ill. The fmal size and location of the viscoelastic layers are given 

in Fig. 3. The optimal structure (genetic solution) is made of 3 heterogeneous plate 

elements followed by 1 homogeneous plate element, followed by 10 heterogeneous 

elements followed by 1 homogeneous element, followed by 3 heterogeneous elements. It 

is coded by 111011111 for half of the plate. The damping factor, as defined by (4), 

increases from 0.16705 (for the whole plate covered) to 0.20205. The optimal 

continuous solution of 111 is also given in figure 3 (damping factor 0.17044). In this 

example the genetic solution is better than the continuous one. 

Then, the optimization is conducted for the first free-free mode. For this first mode, the 

results are quantitatively good as compared with 111. All the results are given in figure 4. 

It is found that the continuous solution is the same as the genetic solution. 

The damping factor, as defined by (4), increases from 0.22240 (for the whole plate 

covered) to 0.28400. During the genetic procedure another interesting solution occurs for 
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which the damping factor is 0.28338.This solution is coded by 010111111 for the half 

plate. 

Optimal solution of ref. 1: 

11 = 0.17044 (all covered 11 = 0.16705) 

11 = 0.1698 

Optimal genetic algorithm solution MESH 1 

~ 
~ 
~ 

11 = 0.20205 (mesh 2: 11 = 0.2005) 

Optimal genetic algorithm solution MESH 2 

h = 0.2049 ( + 3 %) 

I~I ----., 
- ---- -- - _. . - -.~--: 

1 1 1 1 1 1 1 0 ,'---________ -' 

this part is covered and is not coded 

Loss factor 11 

0.2 0.17044 

0.1 

MESH 1 
9 elements 

MESH 2 
18 elements 

o ~--------------------------------------
Fraction of length covered ( 1/ L) 1 

Figure 3 - Optimal covering for the first clamped-clamped bending mode 
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The second example is concerned with a square plate dimensions of which are : length 

L = 6 m, width b = 6 m, hi = 0.003 m, h2 = 0.OO15m, h3 = 0.0002 m. 

The viscoelastic material shear modulus GO is equal to 126.7 MPa, the loss factor P =1 

(both are constant) and the specific gravity of the viscoelastic material is 2500 kglm3 . 

The elastic material is aluminium. 

Nine plate elements are used to model a quarter of the plate. The optimization is 

conducted for the first clamped-clamped mode. Only a quarter of the plate is studied; the 

length of the chromosome is 9, the population size is 10, the maximum number of 

generation is 10, the crossover probability is 8.0E-Ol and the mutation probability is 

6.0E-02. All the results of this case are given in figure 5 . 

The final structure (genetic solution) is coded by 101010101 for the quarter plate. The 

damping factor, as defined by (4), increases from 0.00413 (for the whole covered plate) 

to 0.00688 for the optimal solution. 

4.2 Results with a mesh refinement strategy 

In the preceeding results it can be pointed out that some blocks of binary digits do not 

change in the chromosoms. This observation can be associated to a FE mesh refinement 

strategy. These blocks are not coded and optimization is performed only on the variable 

parts of the chromosomes. In this manner, the dimensions of the chromosomes become 

less important when the mesh is refmed. 

With this mesh refinement strategy, all the preceding examples were studied again 

(Figures 3, 4 and 5). For the beam, results (mesh 2) are improved to a proportion of 3 at 

4 %, and for the plate to a proportion of 28%. 

5 Conclusion 

The optimal modal damping of beams or plates, partially covered by constrained 

viscoelastic layers, is calculated using a genetic algorithm. The size and locations of the 

layers are the design variables. It is demonstrated that the genetic algorithm is an efficient 

procedure for solving a problem for which the classical non linear programming methods 

are unadapted. 



Optimal solution of ref. I and genetic optimal solution: 

TJ = 0.28400 (all covered = 0.2224) 

TJ = 0.28597 
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Secondary genetic algorithm solution MESH 1 

TJ = 0.28338 (mesh 2 : TJ = 0.28424) 

Optimal genetic algorithm solution MESH 2 
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Figure 4 - Optimal covering for the free-free fIrst bending mode 
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MESH 1 9 elements MESH 2 

T\ = 0.00688 

Only the 12 
elements of 
the central 
part where 
coded 

(all covered T\ = 0.004l3) 

MESH 2 : quarter of the plate 

T} = 0.00773 (+28%) 

FIGURE 5 : clamped-clamped plate 

36 elements 

T\ = 0.00605 

Figure 5 - Optimal damping and mesh refinement 
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Optimization by the Voting Method of Structures 
Formed of Planar Constitutive Parts 

J. Mottl, 
Tererova 6, 61200 Brno, CZECH REPUBLIC 

1. Introduction 

Numerous approaches are known to exist in structural optimization. To the 
oldest ones belongs the full stress method, it consists in successive steps of 
calculations and corrections. Later methods originated which use methods of 
linear and nonlinear programming. Often methods of linear approximation 
are used and these transform nonlinear problem into a sequence of linear 
programming solutions. No neglect of either methods or their authors is 
intended in this paper but a few only may be mentioned. 

Most treatments introduced work mainly with continuous parameters 
(thicknesses of walls, profiles etc.). However, normalized dimensions are used 
when manufacturing plates and profiles. Therefore the optimization as a pro
blem with discrete parameters is closer to reality. The methods of integer 
programing are the methods used in this field. The following contribution is 
concerned with the discrete optimization of space structures formed of planar 
parts. 

2. The problem formulation 

Let us consider a space structure formed of planar parts (Fig.l). This 
structure is partitioned into I = 1, N2C "bodies 1" (in Fig.l N2C = 8). 
Each body I consists then of J M E(I) triangular elements e.(In Fig.l is 
J M E(I) = 2, 1= 1, N2C). The first N2 of these bodies are then the "bo
dies" the thickness b of which will be changed during the solving (in the 
remaining bodies the thicknesses will be maintained). Each body 1= 1, N2 
can select its own thickness b from the sample of variants, given by the list 
of input 

B2(I,IZ), 1= 1, N2; IZ = 1, IZM. 

Within the considered structure we shall require that the maximal reduced 
stress in each body should be less than the admissible stress UD and that 
simultaneously the structure should be of minimum weight. This can be 
expressed by following relationships: 
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G(l1) = 0'~4·(I = 11.e) - O'D ~ 0 11 = 1, N2C (1) 

N2 

f = G(N2C + 1) = L B2(I, IZ)BA(I) - min. (2) 
=1 

Here the G(l1) denotes the 11 constraint (the 11 index is reserved for the 
constraint counter. Because this condition is written for each body 11,11 = I 
also holds, the notation I being reserved for body counter). O'~/J·(Il, e) means 
the reduced stress in the element e of the body I where it reaches the maximal 
value. O'D is the admissible stress. N2C is the total number of "bodies" , N2 
is the number of such bodies where the thickness bi is selected from the list 
B2(I,IZ)j BA(I), I = I, N2 are the plane areas of individual bodies I. 

The (1),(2) formulation represents a problem of nonlinear programming 
with the system of constraint conditions (1) and the objective function (2). 
The goal is to find such variants I Z of thicknesses of individual bodies I that 
the weight of the structure attains a minimum. 

3. The determination of stress in the wall 

A plane state of stress is assumed to occur in the "bodies" constituting 
the structure. We shall consider a finite element e in a body I (triangular 
in form with nodal points i, j, k and with z, y coordinate system fixed in it -
see Fig.2). Then, according to (9) we can find the direction cosines (of the 
local coordinate system z, y of the element e consided with respect to the 
global coordinate system X, Y, Z) in the form se (with dimensions 6 x 9), 
the matrix B (with dimensions 3 x 9) follows from the coordinates of nodal 
points i, j, k in local coordinates z, y ofthe element e. 

Then the rigidity matrix of the element e in local coordinate system (with 
dimensions 6 x 6) is: 

(3) 

where A is the of the element area, b1 is its thickness (e is a part of body 
I), D (3 x 3) is the matrix of physical constants. 

Then the rigidity matrix of the element e in the global coordinate system 
is (9 x 9) 

(4) 

The rigidity matrix K of the whole structure is assembled by summation 
over all elements kG' Then the system of equations for the displacements of 
the construction nodal points Q has the form 

KQ=F (5) 

Here F is the loading vector. Taking support conditions into account we 
obtain from Eq.(5) the vector of the displacements of the nodal points in the 
global coordinate system. 
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where IBM is the number of the nodal points of the construction. The di
mension ofQ is 1 x N, N = 3 x IBM. 

Let us return to the element e considered in body I. From Q can be obtained 
Qe = {Ui, Vi, Wi, ui, vi, wi, Ut, Vt, Wt, } i.e. the displacements of nodal points 
i, j, Ie of element e in global coordinate system X, Y, Z. From them can be 
obtained qe = {Ui' Vi, Wi, ui, vi, wi, Ut, Vt, Wt,} i.e. the displacements of the 
nodal points i, j, Ie of the element e in its local coordinate system x, y in form: 

(6) 

Then the vector of stresses in the element e considered has the form 

(7) 

or the qe in the element e is the function of displacements of its nodal 
points in global coordinate system Qe. Am has dimensions 3 x 6. 

Then using components of qe we can find the value of reduced stress in 
element e. 

(8) 

4.1 The determination of the sensitivity matrix 

In the following considerations we shall need the characteristics, which 
would define with what intensity will an individual constraint G(Il) in (1) 
change when the thicknesses bi of individual bodies I of the structure are 
modified. Let us denote: 

G(Il = 1) 

G= b= Q= 
G(Il = N2C) 

Then the searched for characteristic can be found from the relation 

where 

lJG 
Tb = 

lJG lJG lJQ 
= 7ib lJQ Tb 

8G(I1=N2C) 
abr=l 

8G(I1=1) 
a6,=N2 

8GV1=N2C) 
br=N2 

(9) 

(10) 

(11) 



8G 
8Q = 

8G(I1=N2C) 
8'h 
~ 

8G 861=1 

lib = 

4.2 Determination of ~g 

8G(I1=N2C) 
8AN 

~ 
8bl=N2 

15 

(12) 

(13) 

The row 11 of the matrix ~g according to (12) is 8~~1). Because of (1) 

8G(Il) _ 8CT~a':(I = 11, e) _ 8CT~a':(I = 11, e) 
8Q - 8Q 8Qe 

CTr is defined according to (8) and can be written in matrix form: 

2CT~ = [CT.:.:CTyyCT.:y][CTn - CT.:.:CTyy 3CT.:y]T 

The matrix A~ according to (7) has the following components 

Further we shall define the matrices (each with dimensions 4 x 6) 

[ G.:.: 1 [G':': 1 A~ = g:: Ai = c~yy 
G.:y 3G.:y 

Then (15) can be written in the form 

L = 2CT~ = (AiQe)T AiQe 

(14) 

(15) 

(16) 

(17) 

(18) 

Then for :J. (where Qe, 1 = 1,9 are the components of the displacements 
of nodal points of element e in global coordinate system) holds: 

:~r = (AgAi + Ai)ADQe, 1 = 1,9 (19) 

In this expression Ai e (Ai e respectively) means the l-th column of the Ai 
(Ai respectively) matrix. . 
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Using (19) the Il-th row can be determined in I = 1,9 column in matrix 
8%1). If it is performed for all 11 = 1, N2C we get the ~ matrix. 

4.3 The determination of ~ 

For ~ with respect to (5) is valid: 

8Q _ !!..(K-1 F) _ 8K-1 F 
8b - 8b - 8b 

The difficulty of finding 8~;1 can be obviated using the relation 

Therefore 

From here we can find ~ and by its substitution into (20) we obtain 

8Q = _K-18K K-1F = _K-18K Q = 
8b 8b 8b 

= _K-11 8K 8K ... 8K IQ 
8bl=1 8bl=2 8bl=N2 

(20) 

(21) 

(22) 

(23) 

For example at!1 in (23) is the matrix in which all components are zero 
with exception of those which correspond to those finite elements e which 
form the body 1=1 (and bl=1 equal 1) etc. 

5. The steps of the proposed optimization 

1. The solving has an iterative character. We shall begin with iteration 
IT = 1 and put IMC = N2C. 

2. We choose the arbitrary starting solution IX(I), I = 1, N2 - which 
means a certain selection of IZ variants (from possibles) in bodies I. For 
example the meaning of IX(I) = (3 26 ... ): in 1= 1 is its variant IZ = 3, 
in body 1= 2 is its variant IZ = 2 etc. 

In this way we know the concrete thicknesses b. = B2(I,IX(I» in indivi
dual bodies I and we can find the values of ke _ k~ _ K _ Q _ Qe _ 
(1'e _ (1'~ in all finite elements e of the construction, step by step, according 
to Chapter 3. 

3. In each body 1= 1, N2C the element e with maximal (1'~ will be found 
and in this way according to (1) we can find the values of limiting conditions 
G(I1), 11 = 1, N2C in the iteration considered. 
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4. Now the test of feasibility of solution IX(I) follows. The criterion is 
that all constraints must be negative Le. 

G(Il) ~ 0; I = I, IMC (24) 

If (24) is not fulfilled for all Il the process goes to point No.5. If (24) 
is fulfilled then the solution IX(I), I = I, N2 is printed together with the 
message FEASIBLE DOMAIN. In the following we put IMC = N2C + 1 
and from the objective function (2) a supplementary constraint is created in 
the form: 

G(N2C + 1) = G(N2C + I} + [-G(N2C + 1) : IZ = IX(I) + DELT] (25) 

where DELT is a chosen positive number. In this way to the system G(11) ~ 0 
for 11 = I, N2C is added a new constraint G(N2C + 1) = DELT > 0 
which compels the searching algorithm to search a new solution IX(I). This 
new solution should have the property that by preservation of feasibility (i.e. 
negative values) of constraints G(Il) introduced also the G(N2C + 1) will be 
negative (feasible), or the f with smaller value (weight of the construction). 
See [5]. 

5. The own "voting process": Each "body I" which functions in certain 
limitation Il will "vote" for its own individual variants IZ according to the 
rule: 

H L(Il, I, IZ} = 10(11} 8~~~1} I(! SZ(I,IZ}} (26) 

In this expression H L(I1, I, IZ} is the value of the vote which gives the 
body I in limitation Il to its certain variant IZ. SZ is a chosen function 
according to the Fig.2. The +SZ has for increasing coordinates IZ the values 
mostly positives (beginning with the coordinate IZ = IX(I». For IZ lesser 
than IX(I) the values of +SZ are negative. The -SZ has the distribution 
introduced inverse (see Fig.2). Further the parameter ID is introduced, which 
defines how many ofthe first elements in SZ (beginning from IX(I» will be 
used in voting. The problem how to choose the SZ we shall discuss later. 

The rule for the choice of+SZ or -SZ in the relation (26) is the following 
one 

8~~~1} > 0 -+ -SZ(I, IZ) 

8~~~1) < 0 -+ +SZ(I,IZ) 

or G(Il) in (26) is taken 

G(Il) > 0 -+ 0(11) = G(I1) 

(27) 

G(Il) < 0 -+ 0(11) = C20(G(I1) > O)min/(1 + IG(Il)1) (28) 
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The relation (26) can be interpreted as follows: if 8~~~1) > 0 is valid then 
the increase of 61, would lead in this case to a increase of G{ 11) and therefore 
to the increase of the unfulfilment ofthis constraint. To prevent this situation 
we will choose - in the considered body I - its variants I Z with lesser variants 
61 - and this is identical with the choice of -SZ{I, IZ) for voting. 

If 8~~11) < 0 is valid, then an opposite situation is created and we prefer 
rather t'lie variants IZ with greater 61 it means that we use +SZ{I, IZ) for 
voting in (26). 

For G(11) in (26) we take G(11) in case if G(I1) > 0 and if G(11) < 0 the 
relation (28b) (independently if 8~~11) is positive or negative). The constant 
C20 in (28b) is given some attenti~n below. The goal in the "voting" so 
defined is that such variants I Z of individual bodies I are preferred, which 
can contribute to the situation that the values of constraints G(11) will be 
lowered - therefore become closer to negative (feasible) domain (solution). 

This voting has in fact to be performed only in case of G( 11) > 0 con
straints - i.e. in case of unfulfilment of certain constraint. But according 
to (28b) the voting is performed also in case of G(11) < 0, i.e. in case of 
fulfilled constraint, but with a lower weight than the unfulfilled constraints. 
According to (28b) the weight decreases with the increase of the fulfillment 
i.e. G(11) < O. The reason is to prevent the constraint from turing positive 
in the next iteration. 

6. The next step is obvious. We have to find 

[Me 

HLV(I,IZ) = E HL(I1,I, IZ) (29) 
11=1 

This expression represents the result voting evaluation of individual va
riants I Z of the body I from the view point of all limitations 11 = 1, 1M C. 
See Fig.3. Then the new solution will be evidently: 

IX(I) = IZ: HLVmIJ:l'(I,IZ), I = 1,N2 (30) 

i.e. the new variant IZ of body I is this IZ for which the vote H LV(I, IZ) 
is maximal. 

7. The next iteration IT - -T + 1 follows and with the new IX(I) we go 
into the point 2 of the procedure. The last one from the sequence of solutions 
obtained in this way IX(I) with the message FEASIBLE DOMAIN is then 
the required extremum. The process terminates if during of IT M iterations 
after the last F.D. the new F.D. is not attained. 

5.1 Convergence of the process 
The practical realization -of the process showed, that for finding the next 

feasible solution IX(I) (with F.D.) several iterations are necessary and the 
values (and signs) of individual G(11) oscillate during iterations. This process 
(reaching ofF.D.) is positively influenced by the situation, when "the votes for 
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the change" - i.e. generated from G(Jl) > 0 constraints - are in approximate 
equilibrium with votes which are against the change of IX(I) (G(I1) < 0). 

This requirement can approximately be formulated by relation for the con
stant C20 determination in (28b) in form 

N2 

BK E E IG(11) a~~Jl) 1= C20(G(I1) > O)min' 
G(Il»O 1;1 1 

N2 

. L L IG(I1) a~~I1) /(1 + IG(Jl)I)1 
G(l1)<O [=1 1 

(31) 

Here BK is the chosen weight (1-1.2) for the relation of the votes for and 
against the change. 

5.2 Illustration example 

F F 
Fig.1 IZ 

-SZ +SZ 

IZ 
11 

I x III 

Fig.2 

"" . '" y 

.~ 
I " k 

"-)( 

Fig.3 
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As an illustration example a simple example according to Fig.1 was cho
sen with F = 103 N lTD = 3.1 MPa. The structure is split into 8 bo
dies and each of them consists of 2 finite elements (see Fig.1). All bo
dies are considered as variables (N2 = N2C = 8) and their thicknesses 
can be taken from the sample B2(I, IZ) = 0.6,0.8,1.,1.2, lA, 1.6 mm iden
tical for all I = 1 to 8 (IZM = 6). The SZ function was chosen in 
form SZ(I,IZ) = 1.,1.1,1.2,0.8,004,0.1 (also identical for all I = 1,8). 
DELT = 1.2, BK = 0.5. 

The following tables give the solution IX(I) in individual iterations IT 
(the first solution is the chosen starting one). The solution denoted as F.D. 
is the feasible solution. The last one from the sequence of IX(I) with F.D. 
is the required extremum. 

Example 1 ID = 1 Example 2 ID = 1 

5 6 5 6 5 6 5 6 FD 1 2 1 2 1 2 1 2 
4 5 4 5 4 5 4 5 FD 2 3 2 3 2 3 2 3 FD 
3 4 3 4 5 6 5 6 FD 1 2 1 2 3 2 3 2 
2 3 2 3 4 5 4 5 FD 1 2 1 3 4 3 4 3 
1 2 1 2 3 4 3 4 FD 1 2 1 2 3 4 3 4 
1 1 1 1 2 3 2 3 FD 1 1 1 1 2 3 2 3 FD 
1 1 1 1 2 1 2 1 
1 2 2 2 2 3 2 3 
1 2 2 2 2 3 2 3 
1 1 1 1 2 1 1 2 

The solution of Ex.1 is therefore IX(I) = 11 11 2 3 2 3 i. e. in the body 
I = 1 is its variant IZ = 1, in body 1= 2 its variant 1 etc. The solution of 
Example 2 is the same. 

6. Conclusion 

The described treatment is similar because of (26) for G(Il) = 1 and SZ 
for ID = 1 to the gradient treatment. For &~~~1) = 1 and SZ = 1 it is close 
to the treatment by the full stress method. The generalized factor in (26) is 
the SZ function and here a series of open problems arises. There evidently 
can be chosen a series of tentative hypotheses how to choose SZ - with the 
aim to accelerate the convergence or to increase the probability to attain the 
global extremum. One possibility is to choose several patterns of SZ function 
with greater or lesser slope of the increase and with the greater or lesser 
scope (ID). Then the program itself can chose individual SZ at an individual 
constraints 11: for example by G{Il) » 0 and &1~~1) < 0 to use SZ with 
a larger gradient and with a widez scope. At G(Il) > 0 then SZ with lesser 
scope etc. 
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Neuro-Optimizer, Its Application to Discrete 
Structural Optimization 

KISHI Mitsuo, KODERA Toshiyuki, IW AO Yoshiyuki, and HOSODA Ryusuke 

Department of Marine System Engineering, College of Engineering, 
University of Osaka Prefecture, Sakai, Osaka 593, JAPAN 

Abstract. Some discrete optimization problems can be programmed and solved 
on artificial neural networks. The NEURO-OPTIMIZER attains good (not 
necessarily optimal) solutions for general nonlinear discrete optimization 
problems through neurons state transitions. The simulated annealing method is 
introduced to escape from local minima. In this paper the number 
representation of the discrete variable by using neurons is investigated, and a 
mapping technique is proposed for irregularly discrete variables. 

Keywords. discrete optimization, neural network, structural optimization, 
number representation 

1 Introduction 

In the middle 1980's Hopfield [1] showed that some combinatorial/discrete 
optimization problems can be programmed and solved on artificial neural 
networks minimizing the quadratic energy function. The basic concept of the 
Hopfield neural network is a combination of the input-output neuron model 
and the steepest descent method. 

Based on the concept of the Hopfield neural network we have already 
proposed an optimization method named NEURO-OPTIMIZER [2] which is 
expected to be able to attain good solutions for general nonlinear discrete 
optimization problems. The NEURO-OPTIMIZER needs some algorithm to 
escape from local minima of the energy function. The simulated annealing 
method [3] is introduced here. 

The discrete variable is represented numerically by neurons in the NEURO
OPTIMIZER. The neuron state takes binary values of one or zero. In this 
paper the number representation of the discrete variable is investigated by a 
stability analysis, and a mapping technique is proposed as a redundant 
representation for irregularly discrete variables. Numerical examples for 
structural optimization are provided to illustrate the applicability of the 
NEURO-OPTIMIZER with the mapping technique. 



23 

2 NEURO-OPTIMIZER 

2.1 Neuron Model 

The neural network consists of mutually interconnected neurons. In the 
NEURO-OPTIMIZER based on the concept of the Hopfield model, the system 
behaviour is formulated with state equations as follows: 

Vi(t) = <l>[Ui(t)] 

dUi(t)/dt = -aE/aVi 

(1) 

(2) 

where Vi(t) is the state/output of neuron i at the instant t, Ui is the input 
from other neurons, and E is the energy function defmed for the neural 
network. Input-output function <l> is a monotonic increasing function which 
takes values between zero and one, for example, in the following form: 

<l>(u) = 1/(1 + e - U ). (3) 

Energy function E must be differentiable with respect to the neuron state Vi. 
Then the neurons change their state decreasing the energy E, i.e. dE/dt;;O. 

2.2 Discrete Optimization 

Consider a discrete optimization problem such as: 

Find 

Such that 
Subject to 

X 
f(X) ~ minimize 
g(X) ~ 0 
h(X) = 0 

X e X 

(4) 
(5) 

(6) 

(7) 

where X is the discrete variable, f is the objective function, g and h are the 
constraint functions, and solution space X denotes the finite set of all possible 
solutions. 

The Lagrangean function L is defined as: 

L(X, 1.., p) = f(X) + I..g(X) + ph(X). (8) 

I..(~O) and p are the Lagrange multipliers. The optimal solution X· can be 
obtained minimizing L with respect to X (ex). The Lagrange multipliers I.. and 
p are improved in the following way [4]: 

t:J.. oc g(X) 

dp oc h(X) 

where d denotes the increment. Negative I.. is treated as zero. 

(9) 
(10) 
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Suppose that the discrete variable X( E X) can be represented by neurons state 
V, and let the energy function E of the neural network be the Lagrangean 
function L. Then the neurons change their state decreasing the Lagrangean. 
This means that the above mentioned discrete optimization problem can be 
solved on the neural network. The equality constraint VT(l-V)=O, where 1 
denotes the vector whose elements are unity, is added for the binarization of 
V so that each neuron i has a state: Vi=O or Vi=1. 

2.3 Fluctuating Neuron Model 

The discrete optimization problem involves local optima. The energy function 
of the neural network has a very large number of local minima because of 
the binarization constraint on the neuron state. Some fluctuating neuron models 
have been proposed in order to escape from local minima. 

One approach to fluctuating neurons is to use a probabilistic state transition 
mechanism. The Boltzmann machine [3] is a probabilistic model, where the 
input-output function <I> gives the probability of the neuron state Vi being one, 
i.e.: 

<I>(u) = 1/(1 + e' u IT) 

<I>(Ui) = PrOb[Vi=l]. 
(11) 

(12) 

The parameter T is the so-called temperature which is controlled in an 
annealing schedule. 

The Langevin equation model [2] is another probabilistic model, in which 
the random noise is added to the input Ui of the form: 

dUi(t)/dt = -'iJEfc)Vi + Ui. (13) 

The noise Ui is the zero-mean normally distributed random variable, and the 
variance O'ui2 is given by 

(14) 

where a. is a positive constant, and T is the temperature. 
The other approach to fluctuating neurons is to use a chaotic dynamics. 

State equations of neural networks have an affinity for the chaos. That 
approach is attractive; however, at present much investigation should be done 
in order to control chaotic system parameters. 

In the following, we introduce the Langevin equation model because of its 
simplicity. The temperature is slowly lowered in the annealing schedule, for 
example: 

T(q) = To/ln(l+q) (15) 

where T(q) denotes the temperature during the q-th stage, and To is some 
positive constant. 
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3 Number Representation of Discrete Variable 

3.1 Number Representations 

In the NEURO-OPI'IMIZER each discrete variable is represented by neurons 
which take binary values of one or zero. There are various ways of 
representing discrete variables numerically, for example: 

(A) Distributed representation - For the variable X which takes regularly 
discrete values, e.g. d, d+c, ... , d+(n-1)c, the distributed representation is 
introduced of the form: 

X = d + cLVi (16) 

where the sum is over n-1 values, and each neuron is independent. 
(B) Local representation - For the variable X which takes irregularly 

discrete values, e.g. dl, ... ,dn (di<di+l), the local representation is 
introduced of the form: 

x = LdiVi, subject to LVi = 1 (17) 

where the sum is over n values, and each neuron is exclusive. 

3.2 Stability Analysis 

From Eqs.(1) and (2) we have 

dVi/dt = -Vi(1-Vi)dLlOVi • pi(V). (18) 

Let V be a neurons state vector whose elements take binary values of one or 
zero. By expanding Eq.(18) in a Taylor series and retaining only the linear 
terms we obtain 

dVi/dt ... piCY) + (dpil(Wh:Y~V = (2Vi-1)(dLIdVq!)~Vi 
• q~Vi. (19) 

Thus, it is natural to arrive at the following conclusions for the neural 
network system subjected very small fluctuations: i) If qi<O for any i, the 
system is stable. ii) If qi>O for some i, the system is unstable. 

Simple example of the stability analysis is now given. Consider an 
optimization problem such as: 

Find X 
Such that f(X) -+ minimize 
Subject to X E x={n, ... ,n.:·, •.. ,rn} 

(20) 

(21) 

where X is a scalar variable, and f is a convex function whose minimal point 



26 

is X=n·. Let n, ... , rn be an ordered series with equal difference c. Thus, the 
distributed representation can be used here. The Lagrangean function is defined 
as: 

D-I D-I 

L(V, pI) = f(n+cLVi) + pILhi(Vi). (22) 
1=1 1=1 

The constraint functions hi(Vi)=Vi(1-Vi) (i=I, ... ,n-l) are added for the 
binarization of neuron state Vi, and pi is the Lagrange multiplier. We want 
to let the optimal solution X=n* be stable and the other binary solutions be 
unstable. As a result of the stability analysis, we have the following feasible 
bounds on the Lagrange multiplier Pi: 

o < pi < min Icf'(X)I 

Xex. X*'"k* 

where f' indicates the derivative of f. 

(23) 

On the other hand the local representation is used for the discrete variable 
X. Then the Lagrangean function is defined as: 

D D D 

(24) 
i=1 1=1 i=1 

where Jl2 is the Lagrange multiplier for the constraint function in Eq.(17). As 
a result of the stability analysis, we found that it is impossible to let only the 
optimal solution be stable. 

3.3 Mapping Technique 

The industrial standard often involves 
irregularly discrete values. The 
distributed number representation is 
desirable even for irregularly discrete 
design variables in the NEURO
OPTIMIZER. Here we propose a 
mapping technique in order to 
transform the sequence of irregularly 
discrete values to a sequence of 
regularly discrete values. 

Suppose that the variable X takes 
irregularly discrete values, dl, ... ,dn. We 
introduce a mapping F by which 
integer i-I (i=I, ... ,n) has a one-to-one 
correspondence to discrete value di (see 
Fig. 1). Hence, the optimization 
problem with respect to X is 
transformed to the optimization problem 
with respect to the integer variable Y 
by the mapping F: Y ~X. The spline 

y 

n-1 ------------------------

i-1 
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I 
I 

---------------------- I 
I I 

-------------------- I I 
II : 

---------------- __ ,I I 

x dl I 
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I : ": 1 
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Fig. 1. Mapping technique 
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function or the Lagrange interpolation can be used in order to represent F. 
Then, the integer variable Y is represented by Eq.(16) with binary neurons V, 
and the NEVRO-OPTIMIZER can solve the optimization problem. 

The mapping technique is applicable when the discrete variable takes linear 
ordered values. Conversely, for the discrete variable which takes unordered 
values, the technique is not proper. 

4 Application to Structural Optimization 

Numerical examples for structural optimization are presented to demonstrate the 
applicability of the NEVRO-OPTIMIZER. The structural members are uniform 
and homogeneous. The failure criteria are deterministic. The configuration of 
the structure, the materials to be used, and the loading conditions are assumed 
to be given. The size of each member is singled out of the candidates. 

4.1 Optimal Design of Ship Structure 

The optimal design problem is solved for the ship structure as shown in Fig. 
2. The design problem is to determine the optimal size of the longitudinal 
members which minimize the cross-sectional area of the midship under the 
constraint of structural section modulus. The rule requirement by the ship 
classification society is adopted. The member candidates satisfy the rule 
requiremeot of the local strength. 

The number of design variables is twenty-three considering the members 
grouping, and each design variable has five candidates. The mapping technique 
is used to represent the discrete design variables. The state transition of the 
neural network is simulated by using the Euler method. Neurons state 
transitions occur synchronously. The temperature and the Lagrange multipliers 
are renewed at every iteration. The objective function and the constraint 
functions are scaled to keep the input increment dUi/d~t at appropriate 
level(=O(lO-I». The numerical data are given as a.=1/1t in Eq.(14), To=20.0 in 
Eq.(15), and the simulation time step ~t=O.05. Every Lagrange multiplier takes 
zero-initial-value. The initial condition of the neurons is generated randomly. 

For the design problem one hundred simulations are carried out. On the 
other hand twenty thousand feasible solutions are found by the Monte Carlo 
method. The NEVRO-OPTIMIZER finds solutions which are better than the 
best solution by the Monte Carlo method with 77% probability of success. 

4.2 Optimal Design of Truss Structure 

The optimal design problem is solved for the truss structure as shown in Fig. 
3 [6]. The design problem is to determine the optimal cross-sectional size of 
the members minimizing the structural weight/mass under the yielding and 
buckling constraints [5]. 
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The material data and the loading conditions are given following the 
reference [6]. The number of design variables is eight considering the 
symmetric structure, and each design variable has ten candidates. 

For the optimal design problem fifty simulations are carried out. The 
optimal solution [6] is found with 48% probability of success. The average 
number of state transitions of the neural network until convergence is 124.7. 
Although the NEURO-OPTIMIZER does not guarantee to attain the optimal 
solution, the quality of the obtained solutions is satisfactory. 

5 Conclusions 

This paper is concerned with the discrete optimization method, NEURO
OPTIMIZER. The number representation of the discrete design variable by 
neurons is investigated through a stability analysis, and the mapping technique 
is proposed as a distributed representation. The NEURO-OPTIMIZER is 
applied to discrete structural optimization problems, and good solutions are 
found with a high probability of success. 

This paper is silent on scaling mechanisms of the Lagrangean function; 
however, the scaling is related to the following two quantities: i) the quality 
of the solution obtained by the NEURO-OPTIMIZER, and ii) the 
computational time until convergence. Actually the scaling is problem
dependent, the general mechanism should be proposed. 

A part of this work is financially supported by a Grant-in-Aid for the 
Scientific Research, the Ministry of Education, Science and Culture of Japan. 
All the computations were processed by using the NEC PC-9800 system. 
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Abstract. The present paper describes the use of genetic algorithms (GA's) in 
determining the optimal layout and sizing of grillage structures for stress and 
displacement constraints. The design space for this problem is highly nonconvex, and 
not readily amenable to traditional methods of nonlinear programming. The approach 
develops an optimal topology from a set of predefined structural elements so as to 
satisfy kinematic stability requirements in addition to the usual constraints of structural 
strength and stiffness. A two-level GA based search is used, wherein the kinematic 
stability constraints are imposed at one level, followed by the treatment of stress and 
displacement constraints at a second level of optimization. Since GA's search for an 
optimal design from a discrete set of alternatives in the design space, their adaptation 
in the topological design problem is natural, and is governed only by issues related to 
computational efficiency. Strategies designed to alleviate the computational 
requirements of a GA based search are discussed in the paper. 

Keywords. Genetic algorithms, grillage topological optimization, discrete design 
variables 

1. Introduction 

In pursuing optimal design of flexural systems, one has to contend with problems 
associated with multimodal design spaces, and a force distribution that is highly 
sensitive to the cross-sectional dimensions [1-3]. These problems are further 
compounded when the topology of the structure is allowed to change during the design 
process, as members can be removed or added to the structural system. Kirsch [4] used 
the force method formulation in the topological design of grillage structures, as it 
facilitated a study of the influence of compatibility conditions on the optimal design. In 
the equilibrium linear programming approach (ELP) used in that work, the 
compatibility conditions were ignored, making it possible to state the stress constrained 
problem as one of linear programming, with the redundant forces in the members as 
design variables. While this approach works well for the class of stress constrained 
problems, its extension to more general response constraints is not readily apparent. 
Rozvany [5] proposed the use of the optimality criteria approach in this problem. For 
multiple response constraints, the solution splits up into distinct regions, each governed 
by a different optimality criterion. Partial resolution of this problem was obtained by 
use of layout theory, as shown in Reference 6. 
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While the nonlinear programming approach can be used to address the problem of 
multiple response constraints, its effectiveness is limited to smaller problems, as an 
increase in the number of design variables (increasing the number of admissible 
structural elements) is detrimental to the search efficiency. The present study was 
motivated by the need to develop a more general approach for structural topology 
development in the context of static and dynamic structural response constraints. These 
include structural topology determination and sizing for strength, stiffness, dynamic 
response, and energy dissipation capacity. 

A genetic algorithm based global search strategy for generating near-optimal 
structural topologies is proposed, and may be considered a derivative of the ground 
structure approach used in the topological design of truss structures [7]. The application 
of this approach is particularly potent, in that structural members can be both added 
and removed during the search process. The method is applicable to general design 
constraints, and has been shown to offer an increased probability of locating the global 
optimum in the presence of nonconvexities in the design space [8]. Subsequent sections 
of the paper discuss an implementation of this strategy in the topological design of 
grillage structures. The principal concern resides in selecting strategies that reduce the 
overall computational requirements. 

2. Problem Statement 

The approach used in the present work is a derivative of the ground structure approach, 
where the ground structure specifies all possible structural elements and connectivities. 
The role of the optimizer is to retain only those elements that would yield a minimal 
weight design that also meets the design requirements. A general mathematical 
statement of this problem is as follows: 

J 

Minimize F(Y) = L ipljYj 
j - 1 

Subject to: 

k = 1,K 

P = l,P 

Here, J is the total number of structural elements that can be used in establishing the 
topology; ij are components of a J-vector I, and a value of 1 or 0 indicates the presence 
or absence, respectively, of the j-th structural member; Yj is the cross-sectional area of 
the j-th element, and superscripts 'L' and 'U' indicate lower and upper bounds, 
respectively; p is the material density and lj is the length of the j-th member; hp and gk 
are equality and inequality constraints on the response quantities. In the problem under 
consideration, only inequality constraints on stress and displacements are considered, 
where these response quantities are obtained in a displacement based finite element 
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analysis. Additional requirements on structural geometry may also be stipulated in the 
constraint set. Such requirements may include, for example, that all support points be 
utilized in the load bearing process. Addition or removal of elements from the ground 
structure can result in kinematically unstable structures. In a displacement based 
analysis fonnulation, the requirement of a positive definite stiffness matrix would be 
violated as a result of this instability. 

A two-stage optimization process was adopted, involving topological design for 
kinematic stability requirements at the first level (S1). At the second stage (S2), both 
member resizing and addition/removal of members was considered. As shown in 
subsequent sections of the paper, genetic algorithms are particularly well suited for this 
task. 

3. Genetic Search 

Genetic algorithms, first proposed by John Holland in 1975 [9], have been adapted for 
a number of applications involving optimal design. The method can be best described 
as belonging to a general category of stochastic search techniques, and has its 
philosophical basis in Darwin's theory of survival of the fittest. A set of design 
alternatives which represent a generation in the natural analoque are allowed to 
reproduce and cross among themselves, with bias allocated to the most fit members of 
the population. Combinations of the most desirable characteristics of the mating pairs 
of the population result in progenies that are more fit than either of the parents. If the 
measure which indicates the fitness of the population is also the desired goal of the 
design process, successive generations will result in better objective function values. 
While a detailed description of the method is beyond the scope of the present paper, the 
basic operations are included here for completeness. 

The process is initiated with the random generation of an initial population of 
candidate designs; very often, this pool is enhanced by the introduction of a number of 
known good designs. A fitness function based on the objective function and constraint 
values of each design is evaluated (in present work, constraint violations were 
appended to the function to be minimized in a penalty function format), and on the basis 
of this fitness, each design was assigned a probability of being selected as a mating 
parent. Genetic algorithms apply selection pressure through this process, allowing 
designs that are more fit in one generation to increase their presence in subsequent 
generations. In a fixed population simulation of the search, designs with lower fitness 
are eliminated from subsequent generations. An elitist selection strategy is often 
applied, wherein a fixed number of best designs is always retained from one generation 
to another. Once a mating pool is selected, the crossover operation is performed. 
Crossover is the primary mechanism to introduce new designs into the population. The 
traditional two point crossover operation involves selecting two crossover sites on each 
string at random, and interchanging the binary substrings bracketed by the crossover 
sites between the mating strings. The population is finally subjected to the mutation 
operation, which constitutes random selection of a bit location on a string, and changing 
the 0 to a 1 or vice versa; this operation is performed with a low probability (less than 
2% of the designs are typically affected). These operations comprise one generation of 
genetic evolution. The genetic search is typically terminated when the best design does 
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not improve over a specified number of generations or when a chosen maximum 
number of function evaluations have been performed. 

The method does not require the use of gradients of objective and constraint functions, 
and is therefore potent in problems where the design space may be nonconvex or 
discontinuous. Genetic search uses a chromosome-like binary string to represent an 
actual design. The physical design variables are first mapped into binary strings, genetic 
transformation operations are performed on these strings, and the physical variables 
recovered in an inverse transformation for function evaluation. It is obvious that a 
binary string of finite length is only able to represent a finite number of design 
alternatives. While this characteristics may require long strings to adequately represent 
continuous variables, it is ideally tailored for the representation of discrete or integer 
variables. Finally, in genetic search, information from all members of a current 
generation is used to update the population. Since these members are distributed all 
over the design space (at least initially), there is a reduced possibility of convergence to 
a relative optimum. 

In the present application, the representation of design variables by binary strings is 
relatively straightforward. For the stage S 1, a binary string of length J given by the total 
number of admissible elements was used. A position on the string corresponds to a 
particular structural element, and a value of 0 or 1 indicates the absence or presence of 
the element in the topology. When the number of elements in the grillage increases, this 
string can become quite large. In the S2 problem, where member sizing is included, the 
length of the binary string is a function of the number of elements, and the precision 
with which each element is to be represented. Since an M-digit binary string is capable 
of generating 2M distinct combinations, the lirecision Ac with which a variable Yj can 
be represented is given by Ac=(yF -yjL)/(2 -1). Note that a higher precision requires 
that either the range of design variable variation be reduced, or the string length M be 
increased. For large sized problems, where Yj are to be considered continuous 
variables, the string lengths can be quite large. Larger string length imply a larger 
number of design alternatives for the GA to evaluate, and a larger population size is 
required to perform adequate sampling at each generation of evolution. 

In the present work, the genetic search code EVOLVE [10] was used for optimization, 
which includes a number of advanced strategies in addition to the basic operations 
described above. Among these strategies is the directed crossover (replaces random 
crossover by using generational record of how crossover at certain sites performed) and 
a multistage search. The latter successively increases the precision of design variable 
representation without having to increase the population size as would be otherwise 
required. Another useful feature in this code is an implementation of a sharing function 
strategy. Use of this strategy allows the location of multiple relative optima in the 
design space in a single trial of GA search. Since the sharing approach is based on 
preventing all members of the population from converging to a single optimum point, 
it was used in a rather unique way in the present application to maintain diversity in 
smaller sized populations for a larger number of generations, preventing premature 
convergence, and allowing more design alternatives to be evaluated during the search 
process. These advanced strategies are more beneficial as the problem dimensionality 
is increased. 



34 

4. Description of Test Problems 

The GA based search was implemented in two test problems - a three beam grillage and 
a ten beam grillage structure as shown in Figures 1 and 2. These problems were studied 
in the context of stress constraints in Reference 4, where an Equilibrium Linear 
Programming approach (ELP) was used to derive the optimal topologies. In the 
present numerical work, the designs obtained were compared to those in [4] and were 
extended to include displacement constraints. For each of the two problems presented 
here, arbitrary units were assumed to simplify the discussion. 

4.1 Three-Beam Grillage 

For this structure, two concentrated loads of magnitude P=10.0 were applied as shown. 
Note that this choice of applied loads allows elimination of either the longitudinal or 
the transverse beam elements. A rectangular cross-section was prescribed for the beam 
elements with a constant width of 12.0; the depth of the longitudinal and transverse 
beams, denoted by Xl and X2' respectively, were the design variables for the problem. 
Geometry of the grillage was defined by choosing 1y=1.4 and 1x=1.0. Excluding the 
torsional deformations of the beam elements, and considering only the stress 
constraints with allowable stress levels of 0a1=1.0, the design space for the problem is 
as shown in Figure 3. Even in this simple problem, the design space is nonconvex due 
to the presence of multiple load paths in the structure. Three distinct topologies could 
be candidates for the optimal design, and are identified as follows: 

a) A determinate structure in the Ix direction with X2=O (denoted as Zl *) 

b) A determinate structure in the Iy direction with XI=O (denoted as q *) 

c) An indeterminate structure with nonzero Xl and X2 (denoted as Z3 *) 

While this problem offers only a small number of possible topologies, for even a 
moderate increase in the problem size, the number of relative optima would be large and 
not amenable to exhaustive enumeration. 

4.2 Ten-Beam Grillage 

For this structure, a total of21 concentrated loads (each P=1O.0) are to be carried at the 
node points indicated in Figure 2. A total of 3 longitudinal and 7 transverse beam 
elements can be used for this purpose, and a number of different geometric variations 
were considered. These variations were introduced by a parameter a=I.Jlx, where the 
lengths Iy and Ix were also constrained as ly lx=1. As in the previous example, torsional 
deformations of the beam elements were excluded. A rectangular cross-section of the 
beam elements was again assumed; a fixed depth was specified, and the widths of the 
beam cross-section were considered as the design variables. For this choice of design 
variables, the bending moments in the beam are proportional to the cross-sectional area, 
and it is easier to vizualize the effects of the bending moment distribution on the 
topology of the grillage structure. For this test problem, the values of stress and 
displacement aIIowables were specified as 0a1=1.0 and wa1=O.3, respectively, were 
used; a Young's modulus value of E=1.0 was used in computing the displacements. 
Note that this topology is symmetric with respect to the x-y axes system, and a quarter 
model shown in Figure 2a was employed for all analysis. 
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S. Discussion of Results 

For the three-beam grillage structure, the GA based solution to S 1 problem was trivial. 
and identified each of the three possible stable topologies. Here, a 2 digit binary string 
was sufficient to represent the design variables; the first digit pertained to the 
longitudinal member and the second digit corresponded to the transverse member. A a 
or 1 implied the absence and presence, respectively, of the structural member 
corresponding to that location. A small population size of 15 was sufficient for this 
stage of the solution. For the S2 problem, where member sizing was considered in 
addition to the topology identification problem, the sharing function approach was used 
to locate each of the three relative optima in a single GA based search. In this search, 
two different population sizes of N=120 and N=210 were used; probabilities of 
crossover and mutation, Pc=O.8 and Pm=O.02, were selected. The results obtained by 
Kirsch [4] are compared with the two GA trials in Table 1. Note that the results of 
Reference 4 are based on a continuous variation of the design variables Xl and X2, 
while the GA results are based on a discrete representation of these variables with a 
precision of 0.02. To achieve this precision, a 7 digit binary string was used to 
represent each design variable, where upper and lower bounds of 2.54 and 0.0 were 
specified for the latter. When the sharing function approach was invoked to locate 
multiple relative optima, each of the three locally optimal designs were identified. 
Without the use of the sharing function, the globally optimal design was found. 

A number of different experiments, including problems with stress constraints only as 
in [4], and a combination of stress and displacement constraints, were conducted with 
the ten-beam grillage structure. Symmetry of load and support conditions allows a 
reduction in the number of design variables to 6, as is obvious from the quarter model 
of Figure 2a. The probabilities of crossover and mutation were retained from the 
previous example for the set of numerical experiments. A popUlation size ofN=30 was 
used in the S 1 problem. In this stage, variables Xi, i=I,6, were assigned nominal values 
of 1.0. A 6 digit binary string was used to denote the presence or absence of the 
structural members. A total of 19 stable topologies are possible, and each was identified 
in the first level of search. For each of these 19 stable topologies, 8 different 
combinations of design variables were randomly generated to create the initial 
population of size N=152 for the S2 problem. Note that this choice attempts to preclude 
any bias in the starting population. For the S2 problem, each design variable was 
represented with a precision of 0.1, which for design variable lower and upper bounds 
of 0.0 and 6.3, respectively, required each variable to be represented by a 6 digit binary 
string. Hence, a 36 digit binary string was required to represent the grillage design. Note 
that this string length implies that the GA is searching for an optimal design from 236 

possible designs, not all of which are feasible. 

For the stress constrained problem, several values of (l were considered, and a 
summary of these results is shown in Table 2. The table shows the optimal weights for 
the assumed rectangular cross section of the beams. In Reference 4, the objective 
function was obtained as F'=lTMm, where 1 is the length of any segment of the grillage 
beam, and Mm is the maximum bending moment for that segment. For each of the 
optimal designs obtained in the present study, and for the assumed cross section, a 
corresponding value of F' is presented in Table 2 for comparison with results of [4]. 
Note that for statically determinate structures, where cross section dimensions do not 
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figure in computing F', the results are identical. Note that good agreement exists with 
results presented in [4]. In some cases, as for a=1.2, the topologies are slightly 
different. Member Xl, however, is small, and hence the slight difference in the 
objective function value. It is important to bear in mind that the optimal topologies 
obtained in this work can also be different from those of Reference 4 due to the fact that 
discrete variations in member dimensions were admitted in the present work. 

In the ELP approach used in [4], it is not possible to include displacement constraints 
in the design problem. This presents no additional challenge in the present approach, 
and a constraint on vertical displacement under each of the applied loads was included 
in the problem statement. The design variables were each encoded by a 7 digit binary 
string for this problem, as an expanded range of variation of design variables had to be 
considered. The lower and upper bounds on the variables were 0.0 and 12.7, 
respectively. A summary of results for a=l.O, 1.5, 2.0, and 2.5 is presented in Table 3. 
For a=1.0, the optimal topology is the same as that obtained for stress constraints only, 
with the weight increasing by a small amount to a value of 364.0. When a continuous 
variation in design variables was admitted for this problem in a NLP based search, the 
weight was reduced to 354.67. For a=1.5, a statically indeterminate topology was 
obtained. While it was not possible to confirm if this is indeed the optimal design, 
several other topologies generated in the GA search were subjected to a NLP based 
design optimization. Although no lower weight topology was identified, it is still 
possible that the optimal design was not found due to the nonconvexities in the design 
space for the member sizing problem. For values of a=2.0 and 2.5, the topologies 
identified as optimal were statically indeterminate. As shown in Table 3, for a=2.0, 
members ~ and Xs were added to the optimal grillages obtained for stress constraints 
only (Table 2). Similarly, the optimal topology for a=2.5, for stress constraints only, 
was a determinate structure. If that determinate structure is simply stiffened to account 
for displacement constraints, an optimal objective function value of 819.66 is obtained. 
This compares to an optimal weight of 750.1 obtained by going to an indeterminate 
structure shown in Table 3. 

It is interesting to note that the largest increment in the structural weight obtained for 
stress constraints due to the inclusion of displacement constraints is for a=2.0. This 
ratio results in maximum lengths for both the longitudinal and transverse members, and 
since deflection at the mid point of these members is proportional to the cube of their 
lengths, greater stiffening is required to meet the requirements imposed by the 
displacement constraint. 

6. Closing Remarks 

The paper describes an application of genetic algorithms to the topological design of 
grillage structures. This problem has a highly nonconvex design space, which 
effectively precludes the use of the more traditional mathematical programming 
methods for the most general problem. Genetic algorithms which work effectively with 
discrete variables, and which do not require computation of the response gradients, are 
shown in the present work to be effective in locating near-optimal designs. Numerical 
results obtained for two grillage design problems are presented in support of the 
proposed approach. An extension of the approach to problems with larger number of 
design variables is presently being pursued. This effort uses specialized strategies of 
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directed crossover and multistage search to circumvent an inordinate increase in 
computational effort. 
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Table 1. Results for Three Beam Grillage (stress constraints only) 

Design Results of Reference 4 Results of Present study 

Identifier 11 = continuous 11 = 0.02 

XI X2 Objective fn. XI X2 Objective fn. 

ZI* 2.24 0.0 80.6 2.24 0.0 80.6 

Z2* 0.0 1.87 125.7 0.0 1.88 126.3 

Z3* 1.63 1.28 144.7 1.74 1.24 146.0 
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Table 2. Results for the ten beam grillage (stress constraints only) 

XI Xl Xl X. Xs X6 
Weight ITMm ITMm Optimal Optimal 

a topology to~ology 
present present Ref. 4 present Re.4 

1.0 0.0 0.0 1.2 1.2 1.2 1.2 336.0 490.0 490.0 
1111111 IIIIIII 

1.2 0.4 0.5 0.0 0.6 3.0 0.2 419.2 570.5 582.7 ~ -HtH-H-
1.5 0.6 0.5 0.0 0.7 1.6 3.1 488.4 623.6 688.3 - -
2.0 1.0 2.4 0.0 0.0 0.0 4.5 503.6 725.6 710.0 =*= * 2.3 3.2 3.2 0.0 0.0 0.0 0.0 506.4 652.2 652.2 

---
2.5 3.1 3.1 0.0 0.0 0.0 0.0 470.5 600.0 600.0 ---

---

Table 3. Results for the ten beam grillage (stress and displacement constraints) 

Increment Optimal Optimal 
a XI Xl Xl X4 Xs X6 Weight in weight topolog topology 

stress 8;: sp. stress 
constraints constraints 

1.0 0.0 0.0 1.3 1.3 1.3 1.3 364.0 +28.0 
1111'" 1111'" 

1.5 0.5 0.8 0.0 0.0 4.4 3.1 700.6 +212.2 * -
2.0 0.5 4.4 0.0 0.1 0.7 11.5 1047.0 +543.4 =1= =*= 
2.5 0.5 11. 2 0.1 0.0 0.7 0.5 750.1 +279.6 It 



Optimization of a Linear Objective Function 
with Logical Constraints 

J acek F. M~czYDski 
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Abstract. When structural safety is assimilated by Inclusion Principle to 
a problem in discretized topology constraints of logical type may be taken 
account of. This problem is assimilated at least in part to a problem in 
Design Automation. This in turn is reduced to that of finding a path on a 
weighted lattice. 

1 Preliminaries 
The condition of structural safety or to be explicit, the safety of the building, 
the bridge, the aircraft, the automobile is usually expr~ed by referring to 
abstract topology which in soft parlance is: we have to abide within safety 
limits! Any load on a structure produces a field of stress in it and stress 
may have 6 components. Sometimes 3 suffice either in a planar case in a 
case of a homogeneous material. Thus, in any physi~al, or E3 , point of the 
structure there is a mapping from the global load space into the local stress 
space. When various static or quasistatic loads are applied to the structure 
within a period of time (0, T), the said mapping produces various points in 
the stress space of a structure point which may be referred to as physical and 
local. Thus, a history of loads is mapped onto a swarm of points in the stress 
.space of a physical point. Since the structure is visualized as a continuous 
body there is a continuum of such swarms. It is the duty of the designer to 
ensure that the structure will not be damaged or collapse under the effect of 
any state of stress that may occur in any of the swarms at any point of the 
structure. This means that we have to find bounds of all swarms and these 
bounds must abide within the safety bounds. 

Since consideration of the whole continuum of physical points of a structure 
is rarely feasible (unless the structure is suitably parametrized) only a discrete 
set of physical control points is usually selected to represent a structure in a 
numerical application. 

Safety bounds are given by limit surfaces in the stress space. Some people 
doubt the existence of distinct limit surfaces and speak about regions in stress 
space where disastrous damage happens to the material and other regions 
where the damage is slower to incur and a safe lifetime may be assumed to 
exist. These latter regions are those of admissible stress. 
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There are theories which suggest unbounded (or partly unbounded) admis
sible stress, or safe, regions, but they do not seem to be physically justified. 

Swarms either discrete or even continuous may be repre$ented by their least 
convex hull. 

The vital question of safety, or safety over a lifetime, may thus be formu
lated briefly in terms of an Inclusion Principle in the stress space, viz.: 

The convex hull of all the local swarms of points in the stress space must be 
totally included within the region of admissible stress which isa material cha
racteristic, it is a convex region and it may, partially at least, be reproduced 
from sample destruction tests in a laboratory. 

This Inclusion Principle may serve as a common notion for extensive inve
stigations carried for a very long time and Tresca, Huber, Mises and Hencky 
are among the earliest in the field. 

This Principle is in the spirit of Hausdorff since it emphasizes topological 
aspects such as inclusion and convexity. 

Again, in order to obtain a numerical algorithm, the convex hull of a swarm 
of points in the stress space may be replaced without loss to safety by a 
circumscribed hyperpolyhedron and similarly the convex admissible region 
may be assimilated to an inscribed hyperpolyhedron. Both polyhedra are 
convex and this is an elementary consequence of the hull and the admissible 
region being convex. 

As a direct consequence of the convex hyperpolyhedra being intersections 
of halfhyperspaces, a formulation in terms of linear inequalities is readily 
obtained. Obviously we are looking here for a sufficient condition of safety 
and not for a necessary one. 

Imposing an extremum condition (or at times a minimum such as least 
overall weight, called dead load, of the structure) a problem in the spirit of 
Kantorovitch is obtained although not necessarily in the spirit of van Dantzig. 
This latter remark is due to the relative number of the constraints and the 
number of unknowns. There are usually many more constraints that there 
are unknowns. This implies that conventional linear programming simplex 
methods may prove unsuitable. 

It is known that the Inclusion Principle may, at times, under other names 
be translated into other formulations including those based on penalty func
. tions, augmented Lagrangian or complementarity, nevertheless the bounqary 
. of the admissible region being somewhat vaguely defined, a somewhat cruder 
approach is fully justified if safety is preserved and computation efficiency is 
enhanced thereby. 

Thus an affinity is demonstrated to exist between the problem of structural 
safety and that of optimisation under linear constraints or inequalities. 

Safety requirements demand considering all the relevant cases of loading. 
This is facilitated when each element of the swarm is a linear combination 
of some load images as elements of a basis of a linear space because loads 
themselves are linear combinations of elementary loads. 
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Again, some combinations of loads are bound to occur and other combina
tions are highly improbable or excluded by rules of past experience accumu
lated in Codes of Practice. 

To be specific, a nuclear power station may have to withstand its own 
dead load, high winds and earthquakes. The dead load is always present 
but high wind and an earthquake have a very low probability of occurring 
simultaneously. This is only an example and we are not concerned here with 
setting up regulations of a Code of Practice but, on the contrary, our main 
concern is the use of the existing Codes in engineering computations. 

A list of constraints may be much longer in engineering practice. Occur
rence of load events may be represented by a set of rules stating mutual 
exclusion or simultaneous occurrence, rather than by say, probabilities which 
are, due to our short experience with some structure in question, vastly unk
nown. 

Such rules are written as verbal propositions and thus we arrive into the 
realm of Wittgenstein and his frequently quoted statement: "Alles was sich 
iiberhaupt sagen liisst, liisst sich klar sagen .... ". It is our objective to explain 
such rules to a computer and it takes some extra clarity to achieve this. 

2 Logical constraints, statement of the pro
blem. 

After we have gone through the heuresis outlined in Sec. 1. we may be co
nvinced that some problems in design optimisation are quite naturally related 
to finding an optimum of an objective function f with imposed constraints 
which are logical rather than algebraic or functional in nature (d.also [5]). 
Usually the objective function is a measure of some overall cost but some
times it is a physical parameter, such as stress, whose extreme values are 
required. 

The constitutive components of a complex piece of equipment are to be 
found in various" a priori admissible" sets such as catalogues, pricelists &c. 
The unavoidable selection or'decision process is not solely based on individual 
merits of the items concerned but it is to a great extent concerned with sOl;ne 
compatibility conditions. As we said, this by far is not the only possible 
application but a frequent and seemingly illustrative one. The optimisation 
problem may be stated as follows: 

(i) Minimize (or by sign change, maximize): 

N 

f= L A,z, (1) 
;=1 

where the parameters Ai (or "prices") are not known beforehand and Zi 

are some "intensities " particular to the problem. 
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(ii) The parameters ~i of the objective function f assume values from di
screte a priori admissible sets ("catalogues"): 

~i E Ai, i E {1, ... ,N} (2) 

When necessary, let us introduce subsets ("subcatalogues") such that they 
exaust the catalogues Ai, thus: 

OtiN 

U Ari = Ai {i E {1, ... ,N}} (3) 
Otal 1 

The intersections of the sub catalogues may be void but not necessarily so. 
(iii) Introducing propositions (cf. [5] and [7]) of the form: 

sri = (Ai E Ari) where Ari C Ai, (4) 

we may relate such propositions by binary (or two-argument) relations 
(from a relation set 'R. ): 

(5) 

where 
'R.:·t E 'R. (6) 

The set 'R. of binary relations is isomorphic with some subset of JC2 or 
Cartesian product of the union of statements: 

N OtiN 

JC = U U (7) 
i 11 Oti 11 

since there is a one-to-one mapping of 'R. onto a subset of JC2• 
The logical binary relations between statements of belonging to subcata

logues have usually a verbal form stating some natural compatibility rule 
of pieces of equipment or of rules of the relevant Code of Practice, such as 
implication and mutual exclusion. 

To complete this set of notions we bear in mind that a design V is a set 
composed of individual items: 

N 
V = U Ai, {Ai E Ai} 

ill 
for all i E {I, ... , N} 

(8) 

The set of all designs ("good" and "bad") is as rich as the Cartesian pro
duct: 
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(9) 

Obviously a vast majority of the elements of this set have to be rejected on 
,grounds of compatibility and optimality. 

3 Binary relations and tautologies 

Implication constraints may be written in the form 

(10) 

where -+ denotes the logical operator of implication with the usual logical 
values. Since we expect that A'S belong to some catalogue we write the 
tautology of counterposition in the form: 

[(Ai e Aii) -+ (Aj e Ajj)] 

..... (11) 

[(Aj e Aj \ Aji) -+ (Ai e Ai \ Aii)] 

Some further tautologies are useful, e.g.: 

[(Ai e Aii) NAND (Aj e Aji)] 

NOTK~ e ~) AND ~ E ~~ 

(12) 

[NOT(Ai e Aii) OR NOT(Aj E Aji)] 

Here NOT denotes negation, AND conjunction, NAND exclusion, 
OR alternative and ..... equivalence. We have A \ A = 0 for any A. 

Manipulation of the logical constraints consists in first, writing them down 
as statements and relations and next some ordering in the way the A's are 
numbered. This is made easier by the tautologies such as Eq.(l1) or Eq.(12). 
Next a graphic representation is used to visualize the constraints. Implication 
appears in the form of Fig.!. 

Semi-thick arrows intend to emphasize that implications refer to the ele
ments of the sets and stand for expanding implication fans which would 
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Figure 1: Graph edge representation of logical constraints 

otherwise be confusing. By linking together graphs of the type shown in 
Fig.l a (prohibitively large) tree structure would be arrived at. This would 
show all the feasible designs. Any such design corresponds to a path from 
the first element to the last over the successive stages of ramifications. 

Fortunately the tree obtained is an avalanche (cf.[6]) of a directed network 
type graph which is assimilable with a lattice (cf.[3] and below). 

The actual construction of such a directed network requires some permu
tations since implications have to be written so as to have left hand side ~ 's 
precede the ~'s on the right-hand side on the list. Counterposition is used 
for this purpose. Another obvious economy rule demands that the relations 
should link ~'s as close to each other on the list as possible. 

After this ordering has been performed the implication chain is checked 
for such features as sub catalogues overlapping or whether the chain is not a 
simple sum of disjoint chains. 

4 Ordering the set IC. 

The steps outlined above are best justified by discussing the set in more 
detail. The relation set 'R is endowed with reflexivity (8 -+- 8) and 
transitivity. This latter property is a direct result of the ordering of the ~'s. 
The manipulation consists in: 

- (i) enlarging the set Ie to comprise the least (L) and greatest (G) 
element, 

- (ii) when j = i + 1 in Eq.(lO) no enlarging at level j is necessary, 
- (iii) when j > i + 1 additional intermediate levels are introduced so 

as to make rule (ii) apply. 
The lattice is a representation of the set of propositions Ie and contains 

ordered chains of arcs running from L to G. 
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In practical applications ordered chains of arcs are called paths; a lattice 
is conveniently called a network [3] and for the purpose of optimisation the 
paths have computable lengths since weights are ascribed to arcs. 

5 Optimisation on a lattice. 

Any chain on the lattice corresponds to a class of admissible designs since 
compatibility is ensured, the logical constraints having been used to construct 
the lattice. 

Optimisation ascribes a weight or an intensity to every arc which is incident 
to a statement S. When minimizing, the weight is given a lowest value 
from the sub catalogue Ar; . Conversely the largest value is taken when 
. maximizing. Thus no more than two elements from the sub catalogues are 
considered. Sublattices may be eliminated at an early stage. The cost of the 
whole design arises as the sum over a path in the lattice. 

The automation occurs as yet when the lattice has been fully organized 
a.nd then the minimum (resp. maximum) path length is found by a version 
of path optimisation in a network. An illustrative example may be found in 
[2]. 
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ABSTRACT Large structures are usually composed of elemen
ts assembled on the construction site by properly desig
ned connections. The problem arises to provide optimal 
size and number of elements provided the global structure 
dimensions and loading are specified. The problem is for
mulated by assuming the element cost to be a non-linear 
function of its size and cost of connection forced. The 
number of elements, element sizes and their layout now 
constitute the design parameters. A two-level procedure 
is developed which allows to determine number of elements 
and optimal segmentation for beam, plate or truss struc
tures. Some illustrative examples are treated in details. 

1. INTRODUCTION 

The present paper is concerned with an optimal design 
problem for which the number of structural elements and 

I 
unsegmented beam cost 

segment cost 

~o_s_t_,....- r~ 

L 

Figure 1. Cost of segmented and unsegmented structure 

their size are to be determined besides the usual dimen
sional or shape variables. As large structures are compo-
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sed of elements interconnected at joints, their number 
can be varied provided technological and service constra
ints are satisfied. The cost function is assumed to in
crease non-linearly. with the element size, thus repre
senting not only the material cost, but also the cost of 
transportation, manufacture and assemblage. The connect
ion cost is assumed either to be constant or to depend on 
generalized forces transmitted by the connections. The 
mean idea of the above formulated problem is shown in 
Fig. 1. It is observed that for increasing size of ele
ment the cost of structure is increased very fast in com
parison to segmented structure with joints for which the 
total cost can be reasonably reduced. Though the number 
of elements is a discrete design parameter, in the analy
sis it will be treated as a continuous function. A two
level procedure developed in this paper provides a syste
matic approach in specifying the number of elements and 
optimal segmentation for beam, disk and truss structures. 
Some examples provide the illustration of optimization 
procedure. 

2. BEAM AND FRAME SEGMENTATION PROBLEM 

Let us start from a simple case, namely a beam struc
ture with specified support and loading conditions, Fig. 
2. Assume the beam to be divided into p segments connect
ed at p-l joints. As the total beam length L is specif
ied, there is 

p 

I li - L = 0 

i=l 

L 

Figure 2. Segmented beam structure 

(1 ) 

The cost function of the i-th segment is assumed in the 
form 

s = s + s -! + s -! ( 1.) (l.)m 
i 0 1 10 m 10 i=l,2, .. , p (2) 

where 10 is the characteristic segment length, so' sl' sm 
are the segment cost coefficients and m denotes the cost 
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exponent. The coefficients sl and sm are assumed to de

pend on cross-section parameters. 
In particular, when sl= Ailo' so= 0, sm= 0, where Ai 

is the cross-section area, then si =Ai Ii represents the 

segment material volume. The optimal segmentation prob
lem, for which material volume was minimized subject to 
specific constraint on elastic compliance or stress was 
already considered by Masur [1,21 and Dems and Mr6z 
[7,9]. The slightly similar problem was also considered 
by Rozvany and Mr6z [3,4], Szel~g and Mr6z [5] and Gars
tecki and Mr6z [8]. Prager [6] discussed the optimal lay
out of truss with finite number of joints. 

The cost of joint connecting two segments is now assu
med in the form 

k=1,2, .. ,p-1 ( 3) 

where co' c 1 , cn are joint cost coefficients, Mk is the 

bending moment at k-th joint, Mo denotes the reference 

moment and n is the joint cost exponent. The total cost 
of the segmented beam is 

P 

I = L si 
i=l 

p-1 

+ L ck 
k=l 

( 4) 

The optimal design problem for minimum compliance will 
now be formulated as follows 

Minimize I 

subject to 
(5 ) 

where C denotes the global structural compliance measured 
by the complementary energy of the beam. In writing (5) 
it was assumed that the global compliance does not depend 
on connection stiffness but only on cross-sectional stif
fness and length of structure members. 

In order to obtain as insight into the problem, let us 
assume for the moment that the mean compliance constraint 
does not affect the beam segmentation. This assumption is 
valid when the design is uniform with all cross-sectional 
parameters constant along the beam. Then the variation of 
complementary energy equals 

LJOW LJ oC = .aM oM dx = x OM dx = ° 
o 0 

( 6 ) 
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for any statically admissible variation 6M. To obtain an 
analytical solution, assume uniform segmentation and the 
connection cost as constant, thus 

Ii = h i=1,2, .. ,p ck = Co k=1,2, .. p-1 
P 

Sl~ sm(ptJ
m 

(7) 
si = So + + i=l, .. p 

where p denotes the number of segments. The total cost 
(4) now equals 

I = pSo + pS1~t~ + PSm~tJm + (p-1)co (8) 

Introducing non-dimensional quantities 

s 
fJ =--1 

1 So 

we have 

a o ( 9 ) 

In order to ~n1m1ze I(p), let us assume that p E [0,00] 
is a continuous variable and differentiate (10) with res
pect to p. Then we obtain the optimality condition in the 
form 

dI = 
dp (11 ) 

The stationarity conditions (11) now provides the value 
of p 

(12) 

corresponding to a strong minimum of I(p). We have thus 
obtained an analytical assessment of the optimal number 
of segments. After selection of p as a closest integer to 
(12), we may pass to the standard optimal design of a be
am by determining Ai from the optimality conditions. 

The assumption (7) can now be generalized by account
ing for varying connection cost with the bending moments 
transferred by the connections. Assume instead of (7) 
that for the uniform segmentation, li= LIp, we have 

k=1,2; .. ,p-1 
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i=l, .. p (13) 

The non-dimensional cost function (10) now equals 

I(p) = p[l + 111~tj + Pm(ptjm] + (p-1)ao + 

:~~ [a 1 ( :: ) + an ( :: ) nJ 

( 14) 

where a1 : c1 1so and an = cn/so ' The stationarity condi

tion for I(p) can now be generated similarly as previous
ly. However, the analytical solution for p can not be ob
tained in a closed form. 

A more general formulation can be proposed by assuming 
unspecified segment lengths Ii for a given number of seg-

ments p. Instead of (14) we now have 

subject to 

(li1m 
+ Pm 1~ ] + (p-1)ao + 

p 

L 1i - L = 0 

i=l 

The augmented cost function now is 

p 

ia(1.,~) = i + ~(\' 1. - L) 
J L 1 

i=l 

and the optimality conditions 

j=1,2, .. ,p 

( 15) 

( 16) 

(17) 

(18) 

provide the set of non-linear algebraic equations for 1. 
1 

and the Lagrange multiplier ~. The optimality conditions 
now take the form 
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where 

Qi = 
dMi 
dl i 

p 

L li - L = 0 
i=l 

= ( :: ) i 

x.= L ]. 

j=l 

(19 ) 

(20) 

lj 

is the shear force transferred at the connection between 
the segments i and i+1. 

Consider now a more general case when the compliance 
of connections is included into the formulation. Assume 
that each connection now constitutes an elastic ~ing~ 
with the discontinuity in deflection slope [9] = e - 9 
related to connection stiffness D by the relation Mi = 
D[9]i' so that the connection stress energy now is 

2 
1l5_ = ! M. [9]. = 1 Mi 
-~ 2 ]. 1 2 D 

M~ = 1 ]. 
2EI d (21 ) 

where EI denotes the beam bending stiffness and d = D/EI 
is the relative connection stiffness. The total connect
ion stress energy is 

p-1 

~ = L 
p-1 M~ 

~ = 2~I L ~ (22) 

i=l i=l 

and the total complementary beam energy equals 

p 

"M = ~ + ~ = 2~I [ L (23 ) 

i=l o i=l 

Let us now assume that the beam cross-sectional area A is 
related to cross-sectional area Ao in reference configu-

ration and the cross-sectional moment of inertia is pro
portional to a square of cross-sectional area A. Thus, we 
can write 

A = IlA o (24) 
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where p can be treated as additional design parameter and 
d is a relative connection stiffness in reference confi
guration. In view of (24), the total complementary energy 
(23) can be rewritten in the form 

o 
J} (25) 

i=1 

We should note now that the segmentation affects the mean 
compliance of beam through varying number of elastic jo
ints and varying beam cross-section. Then the mean comp
liance constraint can be written now in the form 

( 26 ) 

where ~ denotes the total complementary energy of unseg

mented beam in reference configuration and is expressed 
by 

= 1 
2EIo 

(27) 

Introducing the non-dimensional cost coefficients 

a 
o a 

n (28) 

the non-dimensional cost function of segmented beam can 
be expressed in the form similar to (15), namely 

= I 
Aoso 

Ip (1.) (1.)m = P[l + Pi 11 + ~m 11 ] + (p-l)a + 
o 0 0 

i=l (29) 

The optimization problem can now be stated in the form 

Minimize I(li'P) P 

subject to I Ii - L = 0 

i=1 (30) 

e -M 
eO 

M = 0 
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where 

( 31 ) 

The augmented cost function can now be written in the 
form 

P 

I + A1 ( I 
i=l 

( 32) 

where A1 and A2 are the Lagrange multipliers. Thus, the 

optimality conditions following from the stationarity of 
functional (32) 

aI + A1 + A2 
a eM 

= 0 aI + A2 
a eM 

= 0 aI, ali aji ap 
~ 

p (33) 

I Ii - L = 0 e -M 
0 

eM = 0 

i=l 

provide the set of non-linear algebraic equations for Ii' 

p and Lagrange multipliers A1 , A2' 

3. EXAMPLES OF OPTIMAL BEAM SEGMENTATION 

Let be given a beam of length L and uniform cross
section A shown in Fig, 3, The beam is clamped on the 
left end, supported on the right end and subjected to 
uniform load t, The beam is divided into p segments of 
length Ii connected at p-1 joints. 

t 

~ I 
! 

I 
l l t I} t J l i 

L 

Figure 3. Uniformly loaded segmented beam 

Consider first the case of uniform segmentation and 
constant joint cost in which the optimal number of seg
ments will be derived. The optimal values of p follow 
then from (12) and are given in Tab.1 for some prescribed 
values of Pm = 2.0 and Lllo = 4. In Figure 4 the distri-
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Figure 4. Cost of beam versus number of segments 
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bution of beam cost versus varying number of segments is 
plotted for some prescribed values of m, ~1' ~m' LIla and 

Table 1. Values of p for uniform design 

a a 1. 00 5.00 20.00 100.00 

m number of segments 

2 4 2 1 1 
3 5 3 2 1 
4 5 4 3 2 
5 5 4 3 2 
6 5 4 4 3 
7 5 4 4 3 
8 5 4 4 3 

ao ' It is easy to observe that the optimal number of se

gments corresponds to that shown in Table 1. 
As the second example consider the optimization prob

lem (30) for the beam from Figure 3. Thus we have now a 
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beam composed from initially given number of segments of 
unspecified in advance optimal lengths and cross
sectional area, connected with elastic joints of stif
fness D. The optimal values of segment lengths Ii and 

cross-sectional area coefficient p are derived from opt
imality conditions (33). The results of calculations for 
loading intensity t = 10, exponents m = 4 and n = 2, cost 
coefficients ~l= 1, ~ = 2, ("( = ("(1= 0, ('( -= 20, relativ~ m 0 n 
joint stiffness d = 100 and L = 1, I = 0.25 are presented o 0 
in Figure 5. The curve 'initial' corresponds to the ini
tial beam composed from p segments of uniform length, 
whereas the 'optimal' curve corresponds to the beam with 
optimal segment lengths. As it can be observed, for some 
initial numbers of segments, its optimal number (and also 
the number of joints) is reduced due to the fact that the 
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Figure 5. Initial and optimal beam cost 

length of some segments was tending to zero during the 
optimization process. In Table 2, the initial and optimal 
lengths of segments are presented for initial number of 
segments equals to 8. This number was reduced to 7 during 
the optimization process. The corresponding cross
sectional area coefficient p took the optimal value 
1.012, and the decreasing of total beam cost in compari
son to initial design was about 36%. 
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T bl 2 0 a e . Iptl.ma I segment 1 h engt s 

Segment Segment length 
number initial optimal 

1 0.125 0.221 
2 0.125 0.034 
3 0.125 0.012 
4 0.125 0.147 
5 0.125 0.283 
6 0.125 0.238 
7 0.125 0.065 
8 0.125 -

4. OPTIMAL DISK SEGMENTATION 

In this Section the problem of disk segmentation will 
be outlined using as an example a rectangular disk of di
mensions a and b, subjected to uniform load t on upper 
edge, Fig. 6. The disk is divided into rectangular seg
ments by p-1 vertical and q-1 horizontal connection li
nes, so that the dimensions of typical disk segment are 
a i and b j , i=l, .. ,p, j=l, .. q. 

l ! l 1 

f lbj b 

0, 
a 

Figure 6. Segmented disk 

The cost of segments and connection lines can be as
sumed in the form similar to (13) for segmented beam. 
Thus, the non-dimensional segment cost is assumed in the 
form 

i=l, .. ,p 

j=l, .. ,q (34) 

where a o and bo denote the characteristic segment dimen 

sions and ~1 and ~2 are the cost coefficients. Similarly, 

the cost of horizontal and vertical connection lines are 
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expressed by 

a/2 

~~ = J [ao 
-a/2 

( 
0 ( x , y .) ) ( 0 ( x , y .) ) n] dx +a r J +a r J 

1 0 0 n 0 0 

(35) 

(0 (x. y) ) (0 (x.,y) )n] + a r 1 , + a r 1 dy 
1 0 n 0 o 0 

where a o ' a 1 , an denote the connection line cost coeffi

cients, 0 is the reference stress and reduced stress a o r 
equals 

Here 0 and T denote the normal and tangential stress com
ponents along connection line. 

The total non-dimensional cost of segmented disk can 
now be expressed in the form 

p q-1 

i = L \' "h 
L.. c j + (37) 

i=l j=l 

and the following optimization problem can be stated 

Minimize I 
p q (38) 

subject to L a i - a = 0 "L b j - b = 0 

i =1 j=l 

The optimality conditions for the problem (38) follow 
from stationarity of augmented cost fun~tional. 

Let consider as the first case the uniform segmenta
tion of a disk in x and y directions and constant connec
tion line cost. Thus we have 

a =.! i p b. = !? 
J q 

and the total cost (37) takes the form 

I = pq + fl ( ab) + fl (~) m ( pq ) 1-m + 
1 aobo m aobo 

[(q -l)a + (p - l)b) 

(39) 

(40) 
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whereas both geometrical constraints are satisfied iden
tically. Treating the numbers of segmentation p and q as 
continuous variables, their optimal values can be obtain
ed as the solution of the following set of non-linear 
equations 

(41) 

Selecting for p and q the closest integer values to solu
tion of (41) we obtain the optimal numbers of segments in 
x and y directions. An example of obtained resul ts is 
presented in Table 3. 

Table 3. Values of p and q for uniform design 
a=1.0 b=0.5 a o =0.25 bo =0.125 ~1=1.0 ~2= 2.0 

ex 1.0 2.0 20.0 100.0 a 
m optimal segmentation numbers 

p q p q p q p q 

2 5 4 6 3 5 2 3 1 
3 6 4 6 4 5 3 4 2 
4 6 4 6 4 6 3 4 3 
5 6 4 6 4 6 3 5 3 
6 6 4 6 4 6 3 5 3 
7 7 3 7 3 6 3 5 3 
8 7 3 7 3 6 3 5 3 

Assume now that the numbers of segments p and q are 
specified in advance. Thus the optimization problem (30) 
is reduced to selecting the optimal values of a i and b j . 

The optimality conditions are then written as 

ar aa:- + A1 = 0 
l. 

i=1, .. ,p 

p 

L a i - a = 0 

i =1 

q 

L b j - b = 0 
j=1 

j=1, .. ,q 

(42) 

and constitute a set of non-linear algebraic equations 
for ai' b j and Lagrange multipliers A1 , A2 . The results 

of calculations for some problem data are presented in 
Table 4. We should note the reduction of optimal segmenta
tion number in y direction. The calculated decreasing of 
total optimal cost in comparison to cost of initial de
sign was about 29\. 
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Table 4. Optimal segment lengths p=5 q=5 m=4 t=l 
~1=1 ~2=2 a=100 a=l b=0.5 ao = 0.25 bo= 0.125 

i = 1 2 3 4 5 

a i initial 0.200 0.200 0.200 0.200 0.200 
optimal 0.195 0.199 0.212 0.199 0.195 

j = 1 2 3 4 5 

b. initial 0.100 0.100 0.100 0.100 0.100 
J optimal 0.244 0.223 0.032 0.001 -
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1. Introduction 

In optimizing composite structures particular considerations must be given to the 
manufacturing possibilities and the distinctive features of the materials applied. 
To meet all requirements and to gain practicable results for industrial and 
technical purposes, mixed continuous-discrete optimization problems will often 
occur. 

Usually these problems can be solved by purely continuous optimization 
algorithms. Difficulties, however, will arise if the design obtained by rounding to 
discrete values is infeasible or if the objective function is highly sensitive to 
changes of the discrete design variables or if discrete variables cannot be 
interpolated. As a consequence, continuous-discrete optimization algorithms have 
to be employed. 

At the lnstitut for Mechanik und Regelungstechnik in Siegen several 
optimization algorithms have been programmed and applied to solve mixed 
structural optimization problems. 

2. Mathematical Definition 

The methods of mathematical programming should be applied early on, during 
the technical design process of composite structures, because the involved 
materials offer a lot of producible combinations. First an abstract mathematical 
formulation of the problem is necessary, one which assumes a quantitative 
coherence between the objective functions, the technical and physical constraints 
and the design variables. The following general formulation of a continuous
discrete vector optimization problem covers all special cases, even the scalar 
continuous problem 

min { f(x)} 

xc E Xc 
xd E Xd 

with the continuous and the discrete design spaces Xc and Xd 

(1) 

(2) 
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and the Nd discrete subsets 

X· .- { Xd·(I) Xd·(2) xd·(nj)} X· c R 1 \-I J' = 1 Nd J .- ~' ~ , ... , ~ , J v , ... , (4) 

where 

f(x) = ( fl (x), ... , fK(x) )T 
x = (xc T, xd T )T 

Xc 
xd 
xl, Xu 
g(xc' xd), h(xC' xd) 
nj 

objective function vector, 

vector of (Nc +Nd) design variables, 
vector of Nc continuous design variables, 
vector of Nd discrete design variables, 
vectors of lower and upper bounds of xc' 
vectors of inequality and equality constraints, 
number of discrete values of the subset Xj. 

Compared with a purely continuous optimization problem, the continuous
discrete optimization problem (1) has some severe drawbacks, e.g. the well
known Kuhn-Tucker optimality criteria cannot be applied. Although the design 
space of the discrete design variables contains a finite number of values, there 
exists an infinite number of solutions in the case of vector optimization problems. 
Additionally, the functional efficient boundary may not be joined together. 

Fig. 2.1 shows the influence of continuous, discrete or mixed design variables 
on the solution of vector optimization problems, by means of the following two
dimensional mathematical example 

min { f(x)} 

xc E Xc 
xd E Xd 

with 

where fl =2 -xl, f2 =xl +x2 -2x2 -1, 
gl =4xl -'XI 2 +X2- 5 2: 0 , g2=-xl- 2x2+ 7 2: 0 

(a) continuous problem, Nc=2: X=xc=(Xl,X2)T, 
Xl = ( 0,0 )T, Xu = ( 3.5, 4.0 )T 

(b) discrete problem, Nd=2: X = xd = ( x .. x2 )T, 
Xl := { 0., 0.3, 0.6, ... , 3.3 } 

X2 := { 0., 0.2, 0.4, ... , 4.0 } 

(c) continuous-discrete problem, Nc=l, Nd=l: x = (xcT, xdT)T , 

Xc = ( Xl), xd = ( x2) , 
Xl = (0) , Xu = (3.5) , 

Xl := { 0., 0.2, 0.4, ... , 4.0 } 

(5) 
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To solve the vector problem (1), it must be reduced to a scalar optimization 
problem by means of a substitute function, which describes the individual 
preferences of a decision-maker (see [3]). The substitute problem yields one 
functional efficient solution f* =(f 1 *, f2 *, ... , fK *) T which is a single compromise 
solution from the functional efficient solution set F*. 

3. Applied continuous-discrete Optimization Algorithms 

Two different ways may be applied to solve continuous-discrete optimization 
problems. 

(a) Obviously, continuous optimization algorithms, which are available in a 
large number, may be employed. Yet an additional strategy is necessary, to 
consider several discrete design variables. 

(b) On the other hand, there exists several integer optimization algorithms, 
which may be extended to solve mixed optimization problems as well. 

The optimization algorithms described in the following have been applied on 
structural optimization problems. An important measure of their applicability is 
the total number of function evaluations (function calls) to achieve an optimal 
solution, because structural analyses are often time-consuming. 

3.1 Continuous Algorithms with Enumeration or Penalty Method 

Method 1: If the mixed optimization problem can be treated as if it is purely 
continuous, a continuous algorithm can be employed on the condition that a 
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structural analysis yields results for the objective functions and the constraints for 
anyone single continuous value of ~<!i. Finally the solution is rounded according 
to the discrete design sets of xd. Unfortunately infeasible solutions are often 
obtained. According to Fig. 3.1 this may be overcome by performing a partial 
enumeration within the discrete design set, while keeping the continuous design 
variables constant. 

In doing so, every continuous optimization algorithm can be employed. On the 
other hand, an additional enumeration is time-consuming, even if it is restricted 
to a small set of discrete values, because the optimization problem may contain 
many discrete design variables. 

Fig. 3.1. Rounding and partial 
enumeration 

Fig. 3.2. Penalty function and enhanced 
function of the penalty method 

Method 2: The well-known penalty function method for the unconstrained 
minimization of constrained problems can be utilized to solve discrete or mixed 
optimization problems [3 J. The main intention is to formulate an enhanced 
function p in place of the objective function (see Fig. 3.2) which will then include 
the conditions of discrete design sets, such as 

(6) 

where penalty parameter of iteration s, 
penalty function of the discrete variable Xdj. 

As with method 1, every continuous optimization algorithm can be employed 
with the penalty function method. But in practice, difficulties will occur with 
high-grade algorithms, as for example sequential quadratic programming 
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algorithms (SQP). The substitute function (6) causes these algorithms to come to 
a dead stop at a subminimum of the optimization problem. 

3.2 SLP-Algorithm with Partial Enumeration 

Method 3: If a sequential linear optimization algorithm (SLP) is applied, the 
disadvantages of method 1 can be overcome. Here the opportunity is given to 
carry out an enumeration within the linear subproblem of each iteration. After the 
solution of the linear subproblem, a partial enumeration within the linearized 
problem is performed, while the continuous design variables are kept constant. 
Therefore, each iteration results in a nearly optimal continuous-discrete solution 
of the linearized subproblem. It is advantageous that no additional structural 
analyses are necessary, because the linearized objective function and constraints 
are already known. Additional strategies for finding the best continuous-discrete 
solution of the linearized subproblem can easily be implemented. 

3.3 Integer Gradient Method 

Method 4: The integer gradient method [2] is analogous to the steepest descent 
approach. An important difference, however, is that the search directions are 
achieved by means of integer gradients. The special rules for the calculation of 
integer gradients guarantee that the conditions of discrete design values are 
satisfied, even whilst evaluating the gradients. Amir and Hasegawa [4] show that 
the approach is applicable to mixed continuous-discrete problems. It is assumed 
that the continuous design variables can be regarded as if they are discrete 
variables with discrete subsets XJ These subsets are part of the continuous design 
space, but contain only a finite number of values with small increments Lhcj. 

First the optimization problem has to be transformed into an unconstrained 
problem with the substitute objective function p, by means of a penalty function 
which covers the constraints of the original problem. The algorithm contains 
different search strategies, see Fig. 3.3, which have the following priority. 

(a) Integer gradient search (lG-search): in the direction of the integer gradient 
des), an unidirectional line search is performed to find the optimal step width A * 
of the problem 

min { p [ f(x(s) + A(s). des») ]} 

A E 1N 
(7) 

(b) Subsequential search (SS-Search): this search refers to discrete points in the 
design space which lie near the integer gradient search direction but are not 
covered by (7). 

(c) Neighbourhood point search (NP-search): in the neighbourhood ofa discrete 
solution, a partial enumeration is performed. In addition, the algorithm may 
evaluate a new integer gradient direction by using the best neighbourhood point 
and the solution point of one search before (NPG-search). 
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Fig 3.3 illustrates the progress of the described method within a two
dimensional design space. 

Points of function evaluation: 

o IG-search 
o SS-search 
co NP-search 

• NPR-search 

(0) (0) 
I ,r 

o-______ ~ 

l. IG-search 

discrete design space, Nd = 2 

o 

(I) 

I x(i+')=i\A.(l)d(~ --Xdl 

Fig 3.3. Iteration history of the integer gradient method for a two-dimensional example 

4. Applications on Composite Structures 

4.1 General Optimization Model for Composite Structures 

Composite material offers a wide range of design and combination facilities. In 
this case a general optimization model for composite structures, see [3], is 
proposed. The following model types may be distinguished. 

(a) Material model: as summarized in Table 4.1, the material model covers all 
design variables which are useful to describe the selection of each material 
component. In particular, reference is made here to material attributes which are 
dependent on time and temperature. 

(b) Layer model: the layer model deals with the individual construction of a 
composite layer. Design variables are layer attributes, such as fibre orientation or 
layer thickness. Additional variables can be found in Table 4.l. 

(c) Geometric model: in analogy to the shape optimization of isotropic 
structures, the geometric model contains those design variables which describe 
the shape of the composite structure. 

For practical applications, design variables of the different models described 
above will occur simultaneously in one optimization model. 
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Table 4.1. Exemplary design variables of the material model and the layer model 

Type of variable: 

Material model: 
Fibre volume ratio 

Type of fibre 

Type of matrix 

reinforcement 

Layer model: 
Layer thickness 
t = (t 1, t." .. , tN)T 

Amount of Layers 

continuous 

<l>F 

Young's modulus, 
EF = function of £ 

Young's modulus, 
EM = tlmction of 
time, temperature 

(a) linear model 
t=Ax+to 
(b) geometric model 
t = functions of x 

Fibre orientation (a) linear model 
a=(u, , ~, ... , UN)T a = B x + no 

(b) geometric model 
U = functions of x 

4.2 Composite Plate 

discrete 

<l>F 

ti out of production 
tables 

Uj out of production 
tables 

integer 

fibre of carbon, 
glass, ararnid etc, 

resin of epoxy, 
polyester etc. 

unidirectional, 
crossed, syrrunetrical 

constant total 
thickness with 
variation of the total 
number of layers N 

N 

A quadratic sandwich plate, simply supported, and under constant pressure Po 
(see Fig 4.1) is to be optimized relative to its weight fl=G and its maximum 
displacement f2=W. 

z~ Po= 5 kN/m2 

x 

facing 

Fig. 4.1. Sandwich plate under constant pressure Po (dimension 1000nun x 1000nun) and 
the discrete subsets X I :={OO, 5°, 10°, ... , 90°}, X2:={O.25nun,O.3nuu,O.35nun, ... ,2.5nuu}, 
X3:={lOmm, I hum, 121mu, ... , 40nuu} 



68 

The design variables of this vector optimization problem are the fibre 
orientation ex, the layer thickness t and the height h of the aluminium core. 
Several inequality constraints ensure that no breaking of the fiber or matrix 
occurs and that the core will not be damaged by shear. The structural analysis is 
performed by finite element methods. 

The vector optimization problem is solved by means of the bounded objective 
method [4]. A comparison between the continuous functional efficient boundary 
and some discrete solution points (1-8) is given in Fig 4.2. The discrete solutions 
come very near to the choosen objective bounds b(i) and the boundary F*, because 
the discrete values of the design sets are close together. 

t :: +---+-t-I-+decision spac~IR2 to~~: \ 
E \0 - F*. continuous--I--+----i '5°.4 ~ 
~6 ~ . 
1i :b" § 0,3 
E I E 

.M 4 8 .l 7) g 
~ IF' ~0,2 

'i; :1 (6) ; : POlllts 1-8 'i; 

~ 7 ~ P'(5) (4 m (2\(1) ~ 
E 2 q Ih' E 0.1 :f v I 0 I b b b 

....... SLP + meth, 1 (nlol=96) 

-0- SQP + meth . 1 (nlol=91) 

-<>- method 3 (l\ot"'49) 

-0- method 4 (nlol=94) 

I:: 'l ~l 2 1 
O ~~~~~~~--~ 0+---.--.---.--.---1 

o 40 80 120 160 200 
weight IN] ---

Fig 4.2. Continuous and discrete 
functional efficient solutions 

° 20 40 60 80 100 
no. of fune calls ---

Fig. 4.3. Iteration history of point 2 

An exemplary iteration history for solution point 2 is ploUed in Fig. 4.3 for the 
methods proposed. As it happens, the penalty method (method 2) fails, The 
comparison between the applied methods shows that the smallest amount of 
function evaluations, namely 49, is achieved by method 3 (SLP-algorithm with 
partial enumeration) whereas the purely continuous solution with the same 
algorithm requires 69 function calls. 

4.3 Curved Composite Beam 

As presented in [3], a curved composite beam is to be optimized relative to the 
material costs (objective function f 1 =C) and the maximum displacement 
(objective function f2=W) which is analytically calculated. Load and displace
ment conditions are illustrated in Fig 4.4. In addition, Fig 4.4 shows the layer 
thicknesses of the curved and the straight part of the beam (index c and b) and 
the fibre orientation, which is identical for both parts. Fibres made of carbon or 
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glass are employed. The model results in the following for continuous and seven 
discrete design variables of x = ( Xc T, xd T ) T , 

where 

and the following details referring to the design space 

Nc = 4, xI=(30mm, l20mm, O°,oo)T, xu=(lOOmm, 160mm, 90°,900 )T, 

Nd = 7, Xl =X2 = X3 := {O.Imm, 0.2mm, 0.3mm, ... , 2mm}, 

X4 = X5 = X6 := {0.5mm, l.Omm, 1.5mm, ... , 30nun}, 

X7 :={O.4mm, 0.8mm,l.2mm, .. . , 2.4mm}. 

design 
variables 

layer thicknesses : 
straight part curved part 
1 tb = 7tb = 2mm 1 Ie = 7 te = 2mm 
2tb = 6 tb 2 te' 31e 
3 lb = slb 41e = 41b 

4 tb = 4te Slb' 6 tb 

straight part 

---curved part 

fibre orientation: 

1 a = 7 a = ± 45° 
2 a = 6 cx 
3CX = sa 
4a = ± 45° 

Fig. 4.4. Curved composite beam with the used layer construction 

reinforcement: 

crossed 
unid irectiona I 
unid irectiona I 
crossed 

Apart from several couplings of the layer thicknesses, as listed in Fig 4.4, the 
restrictions for the maximum layer thickness as well as for the total beam 
thickness ~ot=Lit are given. Additional inequality constraints consider the break
down criteria of the used fibre and matrix materials, see [3]. 

The continuous functional efficient solutions are achieved by means of the 
bounded objective method (trade-off method). The continuous counterpart of the 
continuous-discrete solution point 4 in Fig. 4.5 is reached after 103 function 
evaluations. whereas the continuous-discrete solution of method 3 leads to a 
smaller amount of 90 function calls. 

Here. the application of method I (SLP algorithm with partial enumeration 
within the original problem) is very time-consuming, because the total amount 
will come to no less than 103+37=2290 function evaluations. 
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Fig. 4.5. Continuous and continuous-discrete flmctional efficient solutions 

5. Conclusion 

If the mathematical representation of the original optImIzation problem is 
satisfactory, discrete design variables should be only considered within the 
subproblem of the optimization algorithm, as is proposed by method 3 or with 
dual algorithms. The assumption is, however, that the continuous-discrete 
optimization problem can be lead back to a purely continuous problem. 

Otherwise, an algorithm of such a kind should be employed which profits from 
gradient information or works with a qualified line search direction (see method 
4). A total enumeration, as proposed for method 1, is much too time-consuming 
than to be applied in structural optimization. 

Method 2 (penalty method) offers a compromise between method 1 and method 
3, but is very sensitive to the continuous optimization algorithm employed and 
the given problem. 
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Abstract. In the paper the random search method is used for generating a set of 
feasible solutions for general nonlinear programming models with discrete 
decision variables. From this set all Pareto optimal solutions are selected using 
the algorithm based on contact theorem. For most engineering design problems 
the set of Pareto optimal solutions obtained in this way is large and it is difficult 
and tiresome to make the right decision while looking through all of them. Thus a 
method for selecting a preferred subset of Pareto optimal solutions is proposed. 
The computer program for this method has been developed. The program has an 
interactive character and all optional parts of the method are run on the basis 
of a dialogue with the computer. Finally the real - life application example 
dealing with an optimum design of a gear set is discussed. 

Keywords. Multicriteria optimization, random search,Pareto optimal set, discrete 
model, gear design. 

1 Introduction 

Solving nonlinear single criterion optimization models with discrete 
decision variables is a fairly difficult task [1]. The problem becomes more 
complicated when multicriterion optimization models are considered [2],[3]. In 
this case the solution of the problem is represented by a set of Pareto optimal 
solutions (nondominated solutions) and the problem is to find all of them or 
some representative subset. If the set of Pareto optimal solutions is large [4]. In 
the paper a method for seeking a preferred subset of Pareto optimal solutions for 
discrete nonlinear models is proposed. 

The problem under consideration is formulated as follows: find x = [XI' 
X2,. '" xn]T such that 

and such that 

f(x· ) = min f(x) 
xeRn 

g(x)~O 

(1) 

(2) 
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under assumption that X;EX; for i=I,2, ... ,n, 

where: x·= [XI', x.z', ... , x,.']T is the vector of decision variables, 

f(x) = [fl(x), fix), ... , fk(x)]T is the vector of objective functions, 

g(x) = [gl(x), & x), ... , &n(xW is the vector ofinequality constraints, 

X; - is the given set of discrete values of the i-th decision variable. 

2 Method of solution 

The method consists in two stages. At the first stage the set of all Pareto 
optimal solutions is generated using the random search method. The aim of the 
second stage is to select the preferred subset of Pareto optimal solutions on the 
basis of which it is easy to make the final decision as to the choice of the final 
solution with the respect to designer's preferences. 

2.1 Method for generating the set of Pareto optimal solutions 

Using the random search methods the set of Pareto optimal solutions 
can be generated as follows: 

1. Generate a random point i using the formula: 

where: ",I - lower bound on the i-th decision variable, 

xt -upper bound on the i-th decision variable, 

ri - random number between zero and one. 

for i=l, 2, ... , n 

2. Round the value of Xli to the nearest value from the discrete set X; , for 

i=l, 2, ... , n. 

3. If the point Xl satisfies constraints (2) go to 4. Otherwise go to 1. 

(3) 

4. Evaluate the values of the objective functions for the point Xl, i.e., evaluate 

fl (Xl ), f2 (Xl ), ... , fk (Xl ). 

5. If the point Xl represents a Pareto optimal solution add it to the existing set of 

Pareto optimal solutions and go to 1. Otherwise go straight to 1. 

The procedure is repeated until the assumed number of points L is 
generated. For realization of point 5 of this method PARETO algorithm as 
presented in [4] is developed. As the result of the above procedure T Pareto 
optimal solutions are obtained. From the theoretical point of view all these 
solutions are nondominated and the choice of one of them belongs to the 
decision maker. This choice may be difficult and tiresome if T represents a 
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large number, which is a typical situation in many engineering tasks. Thus the 
method of selecting a representative subset of Pareto optimal solutions is 
presented below. 

2.2 Method for selecting the preferred subset of Pareto optimal solutions 

The method consists of three independent steps which can be used 
optionally depending on the knowledge the decision maker has at his disposal. 
In the extreme case, he may only state the number of solutions he wants to be 
output and the method will select them in the way that they will be more or less 
evenly distributed on the plane designated by the whole set of Pareto optimal 
solutions. 

Step 1 - Displacement of the ideal vector. 
Each multicriterion optimization problem is characterized by an ideal 
vector which represents the separately attainable minima and which 
will be denoted by fO = [flO, f2° , ... , fkO]T , where: 

'fO = min f(x) 
I XEX I 

(4) 

where: X is the set of feasible solutions. 
In this step the decision maker may want to restrict the set of Pareto 
optimal solutions to the boundary defined by the given vector f 01 = [flO" 
ft, ... ,fkOl]T for which for every i, ~ots; ~ . The method will discard all 
the solutions which are out of the boundary defined by the new ideal 
vector f 01 (see Fig.2.1). 

o 
f2 (x) P: 

10: 
I I 

1 1:1 
:tI 

I I 

I : tI 
I: tI 
I I tI 

: tI 

tI - solution after displacing 
the ideal vector 

A'(:\ I: tI 
12 ~~(~)~-l---------------EJ--O--~ 0 0 

~-------------------O---o 
I 

Fig.2.1 Example of the displacement of the ideal vector for bicriterion 
minimization 
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Step 2 - Defining the undifIerentiation threshold. 
The designer fixes the value of the undifIerentiation threshold u in 
percentage for all the criteria,for example 1.5 % or 2 %. lfthere a more 
solutions than one within the assumed theshold u only one of them is 
selected (see Fig.2.2). 

u - undifferentiation threshold, 
1, ... ,21 - numbers of solutions, 

o - the discarder solutions 

.20 .21 

u 

Fig.2.2 Example of applying the undifIerentiation threshold for bicriterion 
minimization 

Ox (2(x)=[~x),~x)]'1' 
o 
o 

o 

)( - solutions evenly 
distributed 

o 0 f·(x)=[f~(x),f;(x)]'1' 
'------4It 

f1(x)=[f{(x),f;(x)]'1' 

Fig.2.3 Calculation of representative solutions using the min-max approach for 
bicriterion minimization 

Step 3 - Searching a representative subset of solutions. 
In this step the min-max approach is used for finding a representative 
subset of Pareto optimal solutions. The method consists of several 
phases depending on the number of solutions the designer wants to 
select. In phase I the solution optimal in the min-max sense is found .. 
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For this solution the vector of the objective functions is f' . In phase 2 
the k-th ideal vectors are created using the vectors f 0 and f' .For each 
of these vectors the solution optimal in the min-max sense are found. In 
this way k-solutions are selected. The procedure is repeated and in the 
n-th phase n ·k ideal vectors are created and n·k solutions are selected 
and added to the existing set. 

The idea of this approach is shown in Fig.2.3 where a bicriterion 
optimization problem is considered. 

The general diagram of the method described above is presented in 
Fig.2.4. On the basis of this diagram the computer program has been developed. 
The program is coded in FORTRAN and can be treated as a part of Computer 
Aided Multicriterion Optimization System (CAMOS) [6]. The structure of the 
program is similar to the structure of CAMOS, i.e., the program is run on the 
basis of the dialogue with the computer. 

( START ) 'Red f'12 I ., a x, or 1= , , ... ,n I • 

ft for i=l .... ,k 

Create a new se of solutions x for 
t=l,2,oo.,T' for which all solutions 

are within the bound of vector ft 

Create a new set of solutions x 
r::::'-:-~;..I:==::;:=:::;-1 for t=l,2, ... ,T" for which the difference 

Enter the number between ob' ective functions is less than u 

of Pareto oftimal Uaf.... th min h 
solutions T you I----f ~ e -D18l: approac 
want to select 1-..._---=s:.;:e;::le;.:;ct~T""l" ~s;=:ol:::u::::ti=.:ons=---..J 

STOP Display and print the solutions 
xt for t=l 2'00 T" 

Fig.2.4 General flaw diagram of the method 
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3 Application to gear set design 

3.1 Optimization model 

The method of generating a Pareto optimal set and the method for 
selecting a representative subset of solutions is applied to solving the problem 
of designing a gear set. Due to page limitation only a short description of the 
optimization model is provided here. This model is based on formulae presented 
in the book [5] which are similar to those, presented in [7]. The scheme of the 
gear set under consideretion is presented in Fig.3.1. 

Elements of a vector function f(x) represent the following objective 
functions: 
fl (x) - volume of the gear [mm3 ], 

f2 (x) - distance between axes [mm], 

f3 (x) - width oftoothed rim [mm]. 
The vector of decision variables x represents the following overall 

dimensions (all are discrete): 
XI - width of the toothed wheel rim [mm], XI ={24,24.5,25,25.5, ... ,42}, 

X2 - diameter the of driving shaft [mm], X2 ={32,33,34, ... ,70}, 

X3 - diameter of the driving shaft [mm], X) ={48,49,50, ... ,95}, 

x4 - number of teeth of the driving wheel [-], X4 ={14,15,16, ... ,25}, 

Xj - module pitch [mm], Xs ={4,4.5,5,5.5,6}. 

t--

x 

r--

Fig.3.1 Scheme of the gear set 

The decision variables are restricted by 13 inequality constraints 
which refer to: 
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- geometrical dimensions of the gear, 
- permissible stress in the shaft and in the intermeshing teeth. 

The basic data of the gear are: 
- basic data: input power, 12 [kW], rotation input speed, 280 [rev.lmin.], 

transmission ratio, 0,317, allowable deviation of the transmission ratio, 0.01, 
- material data: allowable bending stress of the driving and the driven wheel, 105 

[MPa], allowable surface pressure for the driving and the driven wheel, 62 
[MPa], allowable torsional strength of the shaft, 70 [MPa], 

3.2 Optimization results 

Step 1 - First the set of Pareto optimal solutions is generated, it has the 22 
elements, the ideal vector fO = [307140 145 24f. To restrict 

the set of Pareto optimal solutions a new ideal vector f 00=[310000 145 
25]T is assumed. For this ideal vector the Pareto optimal set is reduced 
to 13 solutions. 

Step 2 - Assuming the value of the undifferentiation threshold for all criteria 
u = 1,7% . The Pareto optimal set is further reduced to the 11 elements. 

Step 3 - For finding a representative subset of Pareto optimal solutions the min
-max approach is used. In this way four following solutions are 
obtained: 

Solution a 

Solution b 

Solution c 

Vector of objective functions 

f" (x) = [333536 174,00 29,5]T 

Vector of decision variables 

XI =29,5, x2 =38, X3 =54, x4 =21, Xs =4.0 

Vector of objective functions 

f"1 (x) = [340522 182,00 27,0]T 

Vector of decision variables 

XI =27,0, ~ =39, X3 =54, x4 =22, Xs =4.0 

Vector of objective functions 

f"2 (x) = [313421 186,75 26,5]T 

Vector of decision variables 

XI =26,5, ~=37, X3 =53, x 4 =20, Xs =4.5 
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Solution d 

Vector of objective functions 

f·) (x) = [347534 166,00 32,5]T 

Vector of decision variables 

XI =32,5, X:! =38, x) =55, x 4 =20, Xs =4.0 

The graphical representation of these solutions is shown in Fig. 3.2. 
From this set of solutions the designer can easIly make the right decision. 

a) b) . 

CIl 
co .... 

c) 

Fig.3.2 Graphic outline of the optimal solutions 

d) 

co 
co -
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4 Conclusions 

The method discussed solves multicriterion optimization problems for 
nonlinear models with discrete decision variables providing the designer with a 
preferred subset of Pareto optimal solutions, which are helpful in making the 
right decision in conflicting situations. 

The method does not require the information about the preferences as to 
importance of the criteria. The obtained subset of solutions is generated almost 
automatically and the process of generation reqiures only the information the 
designer is able to provide. 

Although the method is designed to solve the discrete models there is no 
restriction in using it for the other models, i.e., the models with continuous and 
mixed continuous-discrete variables. The computer program is prepared to solve 
all these models. 

The only disadvantage of this method is that the number of decision 
variables considered in the model can not be large. This is the general restriction 
for all random search methods. 
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1. Introduction 
Rib reinforcement of plates and shells is commonly used in machinery, 

in building structures and in other branches of technology. A problem of 
an optimal arrangement of ribs in thin rigid-plastic plates with hinged edges 
was studied in the paper! in such a formulation: a volume V of material in 
an initially non-reinforced structure of constant thickness is presented, it is 
necessary so to distribute an added volume Q Vasto obtain the construction 
of greatest load carrying capacity. 

Constructions of variable thickness will be excluded here as unsuitable for 
technological reasons. Thus two possibilities arise. The first of them may be 
a plate or a shell of constant (augmentable) thickness. The other may involve 
stiffening by ribs. In a general case we can devise quite a few patterns of rib 
arrangement and it is rarely possible to transform one pattern into another 
by some continuous change of one or several parameters. Therefore such 
patterns may be considered as independent data a priori given in a design 
optimization problem. 

In addition, in part 2 of the present paper we consider a square plate 
supported at its four comer points only, the external load being uniformly 
distributed. In part 3 a shallow shell of revolution with radial, circular or 
spiral ribs is considered. 

2. Plate 
A square plate of constant thickness h has the side length 2b. Its material 

is rigid - perfectly plastic and in general with differing yield limits u 0 in 
tension and pu 0 - in compression. The intensity of the distributed load is 
denoted by q. We also introduce the notations: p = qu;lj h = !b. 
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When p = 1 the upper bound of dimensionless limit load intensity may 
be expressed as 

(1) 

and the volume of the material is given by V = 4b3c. 
Our first case is that of a plate with constant thickness so the upper bound 

of the dimensionless limit load becomes 

(2) 

In order to compare results obtained below with the same results in paperl 
we express them in the form 

p = O,5e2tP(a,e)2 (3) 

Thus for the plate of constant thickness (2.2) we have: 

(4) 

while for the unreinforced plate it is: 

tP(a, e) = 1/3 

2.1 The First Rib Arrangement Pattern 
We assume that all the ribs have a rectangular cross section with a height 

hr and a width br. The ribs are symmetrically situated with respect to the 
middle surface of the plate. Let br = {ihr and hr = lib, so br = {i n b. 

Four ribs are arranged along each side in the first pattern. A volume 
of the added material contained in the ribs is equal to 8b3 (ill 2 • Taking into 
account the expression v,. = 4b3ea it follows that 

(5) 

2.1.1 The First Collapse Mode 
Boundary conditions and a load distribution allow to consider several 

failure modes. The first of them is shown in fig. 2.1,a. 

b 

0) b) c) d) 

Fig. 2.1 
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The kinematical method of limit analysis is used in the form of the yield 
line theory so we can calculate the energy dissipation D1 and external force 
power De. 

Taking into account the notations introduced above one can obtain 

then 
Pll = 0.S(e2 + IISfJ) 

According to (1) and (3) we can finally see from (6) 

rPu(a, fJ, e) = 1/3 + a(afJ-1e/2)1/2/6e. 

2.1.2 The Second Failure Mode 

(6) 

(7) 

This form is shown in fig. 2.1,b. It has an indefinite value b{ in a corner 
portion of the plate. Therefore the dissipation D1 and the external load 
power De are functions of the variable e 

One could obtain the dimensionless limit load intensity from these expres-
slons 

(8) 

and in accordance with the kinematical method oflimit analysis it is necessary 
to minimize pu bye. A value e which minimized the expression (8) depends 
on the parameters fJ, e and II. For instance when fJ = O.S, II = 0.1 and 
€ = 0.05 one finds P12 min = 2.03;8 ~nd e = 0.8 but if II = 0.2 then P12 min = 2.1 
and e = 1. 

By taking (3) and (S) into account the following expression can be obta-
ined for the second failure mode .) 

(9) 

2.1.3 The Third and the Fourth Failure Modes 
These modes are shown in fig. 2.1,c and d. The first of then means failure 

of ribs and plate, the other is only concerned with plate failure. These modes 
have been studied in 1 so we can write the final expressions 

rPls(a, fJ, e) = 8[2 - (afJ-1 e/2)1/2t1; 

rP14(a, fJ, e) = 1 + (0, 12SaSfJ-1e-1 )-1. (10) 
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In order to obtain the final estimate of the limit load of a stiffened plate 
it is necessary to compare the right-hand parts of the expressions (4), (7), 
(9) and (10). 

A preliminary analysis of these expressions allows us to exclude the es
timate <P14 by virtue of <P14 = 3<pll. One can finally write for the first rib 
pattern 

P1 = 1,5e2<p1i <P1 = min(<pll, min <P12,<P13)' 
( 

(11) 

2.2 The Second Rib Pattern Arrangement 
Now we consider a pair of diagonal ribs with the same initial assumptions 

as in part 2.1. It may be shown that 

(12) 

2.2.1 The First and the Second Failure Modes 
In these cases failure modes coincide with the same modes in parts 2.1.1 

and 2.1.2. Therefore we can write 

(13) 

(14) 

The estimation <P22 is similar to <P12 and should be minimized bye. For 
example if {3 = 0,5, e = 0,5, and 1/ = 0,1 one can find <P22min = 1.092 and 
e = 0.7. 

2.2.2 The Third Failure Mode and the Final Estimate 
In addition to the two failure modes considered above there may exist a 

failure mode shown in fig. 2.2. The circular hinge yield line has a radius 

r = 0, 5b(21/2 - {31/). (15) 

Using a well k,nown estimate for limit load q = bmor2 

.a 

Fig. 2.2 
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and taking (15) into account, it may be obtained after simple transformation 

(16) 

finally the estimate of load carrying capacity for the plate with diagonal ribs 
may be written 

ifJ2 = min( ifJ21, min ifJ22, ifJ23)' 
e 

2.3 Optimal Rib Arrangement and Discussion 

(17) 

The next expression represents a solution of an design optimization pro
blem for a ribbed plate 

(18) 

Calculations were made according to Eq. (18) for two rib configurations 
(3 = 0,33 and (3 = 0,5. Parameters a and e were chosen from the range 
0.1 ~ a ~ 1.5 and 0.01 ~ c ~ 0.05 in these calculations. Some of the results 
obtained are represented in table 2.1. An upper entry means ifJopt and the 
lower entry of a pair means the optimal pattern of stiffening in each cell of 
table 2.1 (zero denotes unribbed plate). 

Table 2.1 

a 
c 0.1 0.2 0.3 0.5 1.0 
0.01 0.410 0.550 0.732 1.192 2.145 

2 2 2 2 2 
0.02 0.403 0.487 O. 615 0.940 2.050 

0 2 2 2 2 
0.03 0.403 0.480 0.564 0.829 1.735 

0 0 2 2 2 
0.04 0.403 0.480 0.563 0.762 1.547 

0 0 0 2 2 
0.05 0.403 0.480 0.563 0.750 1.419 

0 0 0 0 2 

We notice that for the right-hand upper part of the table the optimal 
pattern of ribs is a diagonal arrangement but also a range of parameters 
a, c exists when unreinforced plate of constant thickness is optimal. This 
conclusion is similar to that for plates with hinged edges obtained before!. 

One can compare the data in table 2.1 with the same data in paper! and 
one can find therefrom that optimally reinforced plates with hinged edges 
have a load carrying capacity which exceeds by a factor of 2.9 to 4.1 the load 
carrying capacity of a plate with four point supports. This ratio is exactly 3 
for unreinforced plates. 
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3. Shells of Revolution 
A shallow shell of revolution with a constant thickness is considered. Its 

surface is formed by rotating a t-degree parabola around its axis. The circular 
edge may be hinged or clamped I R-I , e = hI-I. Taking into consideration 
a shallow form of the shell a transversal load may be distributed arbitrarily 
along the meridian while preserving axial symmetry. 

Notations are introduced in accordance t02 • R is a radius of a circular 
edge, fis the largest altitude, -y = a shell we can assume its volume of material 
to be V = 7r R3e-y and the added volume of material may be expressed as 

(19) 

A mesh of circular and radial lines is used for discretization. This mesh has 
nl steps along the radial line and 4n2 steps in the circumferential direction. 
We consider three patterns of rib arrangement: a radial, a circular and a 
spiral one. 

The spacings of the radial ribs (fig.3.1,a) in the circumferential direc
tion are denoted by 1, so that the number of ribs will be m = 4n21-1. 
Their total length is L = mR and the area of the cross section equals to 
Fr = 7rR2ae-ym- 1 • 

a) b1 

Fig. 3.1 

In accordance with the selected mesh the reduced dimensionless height of a 
rib may be represented as 

(20) 

In this expression er = hr{rR)-l. From (20) it follows that er is a function 
of i which numbers the circular lines ofthe mesh. For spiral ribs (fig. 3.1, b ) 
and for circular ribs one can similarly find 

(21) 

nIl 

er = ean~(21I:k)-1 (22) 
1:=1 
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When a system of ribs is formed, the dimensionless value of er (in a defi
nite point of a the mesh) must be chosen in accordance with the expressions 
(20), (21) or (22), it depends upon the ribs pattern. 

3.1 Calculations of the Load Carrying Capacity 
We make use of the functional obtained in the paper2 which describes 

the upper bound of the limit load. This functional is defined over a set of a 
great number of kinematically admissible fields of displacement velocities. It 
is based on the generalized Iohansen yield criterion. Further the variational 
problem is replaced by a problem for minimization of some function of many 
variables prior to introducing of the discretization mesh. 

The upper bound of the total limit load may be expressed as 

Q = 1r(J'oR2 min K. 
w(r,e) 

(23) 

When the external load and boundary conditions are axisymmetric one 
can assume that at any node of the mesh only a normal displacement may 
exist. These displacements are taken as independent variables. 

For each rib pattern arrangement two alternative cases are considered: 
i.e. total plastic failure of the shell together with some ribs and on the 
other hand a failure of the shell between ribs only. In this last case we use 
logical R-functions in order to describe the kinematically admissible fields of 
displacement velocities. A method for minimization of K (23) was described 
in3 . 

3.2 Numerical Results and Discussion 
Results of the calculations are presented for parabolic cupolas i.e. shells 

with a meridian shaped as a parabola of the second degree. In these examples 
a rigid - plastic material was assumed to have differing yield limits in tension 
and in compression (similar in this respect to reinforced concrete). A constant 
thickness of the shell, its convexity parameter and the magnitude of the 
added material relative volume a were varied in a wide range. For instance 
0,5 ~ a ~ 4,0. 

For the shell with parameters e = 0,5, i = 0, 1 and a = 0,5 upper 
bounds of the limit load 103 K are presented in table 3.1 (letter "L" means a 
local failure) 

Table 3.1 

The Ribs 

Radial 
Spiral 
Circular 

2 
0.394 
0.338 
0.321 

The Spacing of the Ribs 
346 

0.394 0.388-L 0.336-L 
0.340 0.342 0.338-L 
0.310-L 0.247-L 

8 
0.322-L 
0.323-L 

Unreinfor
ced shell 

0.301 
0.301 
0.301 
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Results similar to presented in tab. 3.1 were obtained for other combi
nations of parameters and for shells with the equal yield points of material 
(p = 1). 

The main results obtained are as follows. 
1. The lowest effectiveness was found when circular ribs were used only. 
2. The system ofradial ribs has the greatest effectiveness but only in the case 
when a total failure of the whole shell together with ribs occurs i.e. when an
gular spacing of ribs and a-value of the added material are both small. When 
local failure occurs both radial and circular ribs have a similar effectiveness. 
3. If a shell material has equal yield limits both in tension and in compres
sion and value a is fixed, the load carrying capacity of the shell is almost 
independent of the number of its ribs. 
4. If the added material parameter a is relatively small an optimal pattern 
of radial ribs can be found. 
5. When a increases there might apper a tendency excessively to decrease 
the angular spacing of radial ribs which means that a "smooth" shell with a 
constant thickness is preferable in this case. 
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Abstract. The paper presents the problems associated with the 
discrete optimization of halls covered with a space truss. A 
particular attention is paid to functions which, in the optimization 
analysis, are performed by the expert system and to tools this system 
makes use of. The expert module allows the interactive cooperation 
with optimization programs, facilitates introducting a task, allows 
the adoption of optimization algorithm control, creates and uses the 
knowledge base while computing and also handles results. The prepared 
procedures for the information selection and reduction as well as for 
the inference and decision - making allow the system knowledge base 
to "self-teach" and be updated. 

Keywords. Discrete optimization, expert system, space truss. 

1. Introduction 

The paper presents an expert system of controlling a process of 
optimization. Expert system helps to choose of a preferred vector of 
control in the orho-diagonal method. The system bases on a dialog 
with the user [8]. Special attention is payed to time analysis and a 
change of vector of control during the process of optimization. The 
vector of control parameters consists of several elements, which 
provide the information on the feasible region, objective function 
character, problem starting point, time for computing, optimization 
algorithm parameters, conditions of stop-page, type of a task 
performed. 

The OPTIH program [8] used for the optimization was developed 
basing on the algorithm of the O-D (ortho-diagonal) method for 
seeking minimum of nonlinear function wi thin the discrete feasible 
domain. The discrete values used in a problem being analysed, are a 
vector of decision variables of the problem. The task objective 
function is determined in multidimensional space. Two steps are 
distinguished in the O-D method: test step and working step. During 
the test step, the neighbourhood of given point Xl (especially that 
of starting point xo) is investigated in order to determine the 
direction of objective function value correction. Every succesive 
step utilizes results from the preceding one, checking thereby the 
neighbourhood more accurately, but yet is more time-consuming. During 
the working step, minimization of the objective function along the 
direction of correction takes place in one of three ways possible. 
The vector Xrl that minimizes the value of objective function in the 
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correction direction becomes the starting point XI+t in succesive 
test step which determines a new direction of correction. This 
process proceeds up to the moment when, in the neighbourhood of point 
XI, the value of objective function cannot be corrected. 

2. Expert System of Structure Optimization 

In the presented expert system, a knowledge base that stores data 
on the optimization process was formed on information data which were 
received from an expert and which resulted from his experience and 
knowledge [2,4,8,91. 

The following are the features of the applied system: 
- knowledge base on algorithm controlling made of the information 

obtained from an expert, 
- knowledge acquired by means of decision tables and trees [2,31, 
- representation of the knowledge is a based on the principle of 

base-rules, 
- knowledge base updating by the means intermediate solutions of 

problems being analised as well as selection and optimization of 
obtained control states, 

- dialog with the user are applied, is performed by the means explain 
procedures for data input, answering process assistance and 
visualization of the expert system results. 

The range and quantity of control variables give quite a high 
number of possible algorithm control states, i.e. approx. 200. The 
expert system determines the method control (which is varied during 
the analysis) so that the solution be time - optimum and satisfactory 
for the user. 

EXPLANATION 
SUBSYSTEM 

KNOWLEDGE BASE 
UPDATING AND 

TEACHING 
PROCEDURES 

Fig.l. Expert system components 

An important factor to be taken into account in the expert systems 
is the analysis time. Therefore, controlling the optimization 
analysis should restrict the number of computations of time 
consuming elements (e.g. values of objective function) in given 
method. 

The expert determines the way of moving within the decision 
variables space with an option to omit steps that are needless at 
given state of the analysis, according to his experience. The 
declared computation time, type of solution and the analysis of 
initial course of the task are based on the prepared by the expert 
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knowledge base and influence both the course and computation time of 
the optimization task. 

In continuous development of the knowledge base. an important 
element is the possibility of making use of completed optimization 
analyses. The prepared procedures for the information selection and 
reduction as well as for the inference and decision making allow 
the system knowledge base to "self-teach" and to be updated. One of 
the tasks to be performed by the teaching procedures is to select. 
basing on a limited initial course of the optimization task. a 
further course of the task that is most probable for given class of 
solutions and. next. to accept it. A measure of division into control 
classes is the dimension of the decision space determined by number 
of decision variables. 

At this definited Euklidian space with the discrete elements. the 
weight quadratic loss function R is determined. The estimator 
minimizing the loss functiop at the initial values of the solution 
path of the given control S was assumed. 

The optimization of controls selection using the O-D method is 
performed so that the loss function ~ will be the least. The loss ~ 

is associated wih functional relationship between the erratic 
classification of initial control SI and the control S· that exists 
in the knowledge base. The loss functions ~ere assu~ed basing on 
computed values of the objective functions fJ(x) and fJ(x) [7] 

I· . q I • 2 ~(S .S ) = mm L a. (f (x) - f (x») • 1={1.2 ..... n). (1) 
I J=l J J J 

Introduced weight coefficients assume their maximum values in the 
final phase of the analysis by the 0-0 method. for the sake of their 
decisive significance to the final result. 

The selection of that control to which a higher probability of 
correct classification ~ can be attributed was based on decision 
procedures that employ the Bayes' rules [1.5.10]. The quality of the 
classifier is considered on assumption that there are two classes: 51 
and 5 of the "a priori" probabilites (pi and p.) of which are equal. 
On account of a finite teaching set that results from finite quantity 
of calculations of the objective function values. the conditional 
probabilities in these rules were replaced with frequencies. The 
images f are one-dimensional and can assume discrete values f~(x). 
and. moreover. every conditional discrete distribution P(fJ(x)15 ) is 
equiprobable 

~(q.51.5·) = 1 - ~ max (P(f l (x)151)'P(SI») (2) 
J=l {l •• } J 

p(f~(x)IS}" sl/ml. P(f~(x)ls}" s·/m*. p(SI) + P(S*) = 1. (3) 

where: m:. m: designate numbers of elements in cltsses Sl and S·. 
s • s are ap'pearance numbers for values f (x). in classes Sl 

and S respectively. J 
j=1.2 •...• q. q - number of objective function computations. 

To determine the number of elements of the control class the 
threshold value do distinguishing the values of the function f~(x) 
was assumed. It was assumed that two points f~(x) and f~(x) are 
nondistinguished if the measure d is smaller than value do 
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d(fl(xl - fl(xl)< d • k " J. 
J k 0 

(4l 

The value do can be determined by the expert system depending on the 
average distance within the control and on the declared by the user 
accuracy of the solution . 

Restarted analysis follows that track which. after the initial 
analysis. prov i des the highest probability of a correct 
classification ~. As the entire task is completed. the probability of 
a correct classification and the loss function are computed. 
Acceptance of given control to the preferable controls set of the 
knowledge base takes place when this control has been classified. by 
the decision rules . as being new or belonging to given class of 
controls. In such a case . also the number of statistic elements of 
control models for various optimization tasks is increased. 

3. Subject of Optimization 

The subject of analysis is an exhibition hall the dimensions of 
which. in horizontal plane. are 48 m x 48 m [6) . The roof of the hall 
is formed by a double -layer spatial truss (Fig.2l. The truss is 
supported by pin-Joint bearings placed . at 12 . 0 m intervals. in the 
upper layer joints . The truss members were designed as made of hot
rolled steel pipes (Table 1). 

Fig.2. Layout of covering of exibition hall 

In designing the truss members the following loads were 
considered: the weight of truss members and Joints. the weight of 
roof covering and purlins. the snow load and the technological load . 

The optimization ana l ysis was carried out for the decision 
variables vector composed of three elements: x = [so Z. tIT. where 
the form of roofing s e {1.2 • . . . • s}. the camber z e <0.5. 12.0 m> and 
the size of members cross-section cataloque t e {s.9.17 . 33} . The 
considered forms of roofing: s e {1 . 2 ... . . s} are shown in Fig.3. 
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Table 1 

- .. ... 0 ~ '" '" ~ ~ 0 Q '" ... Q - .. .. .. 0 '" 0 ... 00: 0 0 '" '" r- oo: - ,., ... '" . ..: g ..; R ,.; ri .; .; ri " . ;:; ::: .. ~ .. .. ;;; ;)!; ... :e :: 2 2 .. .. .. Ii!; ~ '" '" '" '" .. .. ,., ... on ... ... 2 ::! 
,., 

'" ! ! ~ ~ .. .. - - - N N N N 

-] 0: '" 0: '" .. '" .. .. '" N N N N N ... ... ... 0 0 Q 0 ~ '" '" 0 0 '" '" " " - - 0 

N N N N N N N N N ri ri ri ri ..; ..; ri ..; .. .. .. .. .. .. .. '" .Ii .Ii .Ii ,.; ,.; ..: ..: .; 

TtJJ) I 2 3 4 S 6 7 8 9 10 II 12 IJ It IS 16 17 18 19 20 21 22 2J 24 2S 26 27 28 29 JO JI 32 3J 

T(17. 1 2 3 • S 6 7 8 9 10 1\ 12 13 14 IS 16 \7 

T(9) I 2 3 • S 6 7 B 9 

TIS) 1 

D} 
2 J 4 S 

Ttl) 1 2 J 

The feasible domain of the task was determined assuming constrains 
resulting from design-related, technological and computational 
conditions [4J. 

s 2 

5==3 5=5 

Fig.3. The considered forms of roofing 
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4. Optimization Analysis 

The above formulated problem of selection of spatial truss 
geometry is of discrete-continuous nature. The decision variables s 
and t are typical discrete variables while the variable t is of 
continuous nature. It has been found that an increment in the value 
of t is equal 6z=1.2 m basing on initial analysis of sensitivity of 
the objective function elements. In the further course of the 
analysis the variable z is considered as being discrete. 

The cross-sections of the truss members are selected automatically 
by a computational program from the declared series of types. In 
designing, the local stability was taken into account. 

The minimum of the following objective functions are computed: 
1° minimum mass of steel elements per 1 m2 of the horizontal 

projection 

f (x)= 
m 

(5) 

2° the rate of utilization of the cross-section of the members 

Sl 

SI 

t =9 SI 
fix 

f 
S2 

m S2 

SI 

t =9 SI 
fix 

f 
S2 

P S2 

SI 

s =4 SI 
fix 

f 
S2 

m S2 

SI 

s =4 SI 
fix 

f 
S2 

P S2 

f (x) = 
p 

Lp 

L 
Lp k=1 

q 
:R(SI,S·) 

0: =1 
j 

4 0.002 --
11 0.006 

5 0.058 

11 0.109 

10 0.048 --
20 0.048 

10 0.273 

18 0.680 

5 0.074 --
10 0.075 

5 0.244 

11 0.027 

5 0.619 --
9 0.734 

5 7.908 

11 8.462 

(6) 

Table 2 

:R(SI,S·) • I I • q m m 7'(q,S ,S ) 
0: <1 

j 

0.000 4 5 5 0.400 --
- -- 9 12 11 0.958 

0.005 6 5 5 0.100 

- -- 11 12 11 0.390 

0.002 11 10 10 0.400 --
- -- 16 20 20 0.425 

0.019 11 10 10 0.200 

- -- 17 20 18 0.419 

0.008 7 5 5 0.100 --
- -- 11 10 13 0.319 

0.023 8 5 5 0.000 

- -- 13 10 8 0.150 

0.068 10 5 5 0.000 --
- -- 13 11 9 0.273 

0.846 7 5 5 0.001 

- -- 16 11 13 0.276 



94 

Q) 

b) 

Z 
(m) 
i2.0 

{O.8 

9.6 

8.4 

7.2. 

6.0 

It.s 

3.6 

2.~ 

1.0 

z 
[mJ 

{2.0 

10.8 

9.6 

B.1t 

7.2 . 

b.O 

~.8 

;.b 

2.1t 

1..0 

fp(X) 

A.6S 

.1.&5 

A.10 

.&0 

f--/--~----9---""::-~---:~ (B5 

z 4 5 s 

,,-" ".'2. 

1 2 3 '.:l s 

Fig.4. The tracks 51 of moving for the fixed t=9 
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4.8 

3.6 

2.'1 
~o 

1.0 
!j.0 ".5" ".0 1M' 

}p(X) 5 9 17 3~ t 

Fig.S. The tracks 51 of moving for the fixed s=4 
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where: 

r - mass of density of steel, r = 7850 kg/m3 , 

lk - lenght of k-th member of truss, 
Ak - cross-section area of k-th member of truss, 
Lp - number of truss members, Lp e <128, 1152>, 
Pk - force in k-th member of truss, 
pkr_ critical force in k-th member. 

Optimization was performed independently fo~ of the functions 
fm(x) and fp(x). Figure 4 and 5 show the tracks 5 of moving within 
the feasible domain of the task with the use of the O-D method, at 
different starting points. The selection of solution track carried 
out using the knowledge base selectlon-and-comparison procedures is 
presented for th~ initial control 5 . The computed values of the loss 
function ~(51, 5 ) for particular controls and the probability of 
correct classification ~I allocated to them are shown in Table 2. For 

Table 3 

z s t f f 
m p 

2 
m - - kq/m kN 

t 
12,0 5 9 1.61 3.80 

----
fix 

7.2 2 9 1.76 3.19 ----
12.0 4 33 1.43 2.91 s ----fix 7.2 4 33 1.52 2.55 ----

the objective functions fm(x) and fp(x), a further course of the 
analysis was assumed for the control 51. After reaching the minimum 
objective function, the values of both the loss function and 
probability of correct classification were recalculated for entire 
course of the task (Table 2). 

Minimum of fm and fp was determined for the variables z and s, 
with fixed size of the cross-sections catalogue of t=9 being assumed 
(fig.4) and for the variables z and t with fixed type of roofing of 
s=4 being assumed (fig.5). 

The preferable vector of decision variables is shown in Table 3. 
The preferable solutions for fixed size of the cross-sections are a 
double-curvature truss for function fm and a four-sloping truss for 
fp. When form of roofing is a cylindrical roof, then the preferable 
cambers of the crowning are equal 12 m for fm and 7.2 m for fp. 

5. Conclusions 

The choice of the optimization path based on the analysis of the 
initial path in the decision variables space can be done by the means 
of the comparison and selection procedures introduced in the expert 
system. It decreases the search time necessery to find the minimum of 
the objective function, which is of great significance in the case of 
large structures. 

The computer program OPTIM based on the Ortho-Diagonal Method of 
the discrete optimization makes an effective instrument for the 
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structural designing. The expert system controlling the process of 
the analysis enables satisfactory solution to be obtained in time 
acceptable for user. 

The expert system used in the OPTIM helps a user to formulate 
tasks of discrete optimization. It is active during the analysis and 
influences on the time and character of solutions obtained. In sets 
of results it informs on the analysis and the solution. The OPTIM in 
many cases can help in optimum discrete designing. 
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Abstract. Many real-life structural optimization problems have the following 
characteristic features: (i) some or all design variables can be defined as a set of 
discrete parameters, (ii) the objective function and constraints are implicit functions 
of design variables, (iii) to calculate values of these functions means to use some 
numerical response analysis technique which usually involves a large amount of 
computer time, (iv) the function values and (or) their derivatives often contain noise, 
i.e. can only be estimated with a finite accuracy. To cope with above problems, the 
multipoint approximation method has been developed. It is considered as a general 
iterative technique, which uses in each iteration simplified approximations of the 
original objective/constraint functions. They are obtained by the multiple regression 
analysis methods which can use information being more or less inaccurate. The 
technique allows to use in each iteration the information gained in several previous 
design points which are considered as a current design of numerical experiments 
defined on a given discrete set of parameters. It allows to consider instead of the 
initial discrete optimization problem a sequence of simpler mathematical 
programming problems and to reduce the total number of time-consuming numerical 
analyses. The obtained approximations are considered to be valid within a current 
subregion of the space of design variables defined by discrete values of move limits. 
This approach provides flexibility in choosing design variables and 
objective/constraint functions and allows the designer to use his experience and 
judgment in directing the optimization process. 

1 Formulation of a discrete-continuous optimization problem 

Consider a general discrete-continuous structural optimization problem: 

Minimize 

Fo (x) 

subject to 

FJ (x) ~ Cj , (j = 1, ... , M) 

(1) 

(2) 
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and 

Ai :s: xi :s: B i , (i = 1, ... , N) (3) 

where 

x = (xc ' xD ) is a vector of design variables which can be varied in the course 
of the design procedure, where the subvector Xc = (xl"'" XNC)' Xc E RNC presents 
continuous design variables and the subvector xD presents the discrete values of ND 
design variables chosen from the given finite set: xDi = (x/,x/"'" xini), i = 

1, ... ,ND. Without imposing restrictions of the generality of our considerations, we 
assume that x!+] > xl i = 1, ... ,ND, j = 1, ... ,ni -1. The total number of design 
variables N = NC + ND. 

Fo (x) is an objective function which provides a basis for choice between alternative 
acceptable designs; 

Fj (x), (j = 1, ... , M) are the constraint functions which impose limitations on various 
behavioral characteristics of the structure; 

Ai and Bi are side constraints, describing physical upper and lower limitations on 
design variables. Note that for the discrete variables Ai = x/ and Bi = xini, i = 

NC+1, ... ,N 

Depending on the specific problem under consideration, functions Fj (x), (j = 

0, ... , M) can describe various structural response quantities. 

2 Multipoint approximation technique 

2.1 Introduction 

The formulated optimization problem has the following characteristic features: 

• some or all design variables can be defined as a set of discrete parameters; 

• the objective function and constraints are implicit functions of design 
variables; 

• to calculate values of these functions means to use some numerical response 
analysis technique which usually involves a large amount of computer time; 

• function values and (or) their derivatives often contain noise, i.e. can only be 
estimated with a finite accuracy. 

The prohibitive computational cost of the direct combination of numerical analysis 
programs with conventional methods of mathematical programming stimulated the 
idea of sequential approximation of the initial optimization problem (1) - (3) by 
explicit subproblems. Nowadays this concept has proven to be very efficient and it is 
widely used in structural optimization (see a recent review [1 D. It is based on the 
information obtained by numerical response analysis and first order design 
sensitivity analysis (i.e. values of functions and their derivatives) at a current 
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point of the design variable space (single point approximations). At present, 
several first order approximation techniques are known, which are based upon the 
function value and its derivatives at the current and the last previous design points 
(two-point approximations) [I]. The drawback of these approaches is that the 
convergence of optimization algorithms can be very slow if the objective/constraint 
function values present a considerable level of noise. Moreover, quite often it is very 
difficult (or even impossible) to obtain the values of derivatives of the objective 
and/or constraint functions with respect to discrete design varibles. 

A different approach to complex engineering systems optimization [2], [3] is to 
create approximate explicit expressions by analysing a chosen set of design points 
(design of experiments). This approach is based on the multiple regression analysis 
methods which can use information being more or less inaccurate. They are global 
in nature and allow to construct explicit approximations valid in the entire design 
space. The numerical experiments are performed at a pre-selected set of discrete 
points which can be allocated at individual points of a grid of discrete design 
variables. The drawback of this approach is that it is restricted by relatively small 
optimization problems (up to ten design variables [2]). 

The remainder of this section presents a general iterative technique which has been 
used for various complex engineering systems optimization problems. The 
simplified approximations of the original objective/constraint functions are obtained 
by the weighted least-squares method. It uses in each iteration the information 
about function values gained in several previous design points (multipoint 
approximations [4]) which are considered as a current design of numerical 
experiments defined on a given discrete set of parameters. It allows to consider 
instead of the initial discrete optimization problem a sequence of simpler 
mathematical programming problems and to reduce the total number of time
consuming numerical analyses. We believe that it combines the advantages of two 
above mentioned basic approaches. 

2.2 Basic approximation concept 

The approximation concept leads to the iterative approximation of the original 
-

functions Fj (x), (j = 1, ... , M) by the simplified functions Fj (x). The initial 
optimization problem (I) - (3) is replaced with the succession of simpler 
mathematical programming subproblems as follows: 

Find the vector x * k that maximizes the objective function 

'F/(x) 
subject to 

Ff(X)~Cj' (j=1, ... ,M) 

(4) 

(5) 



101 

and 

Al s: xi s: Bl, Al ~ Ai, Bl s: Bi , (i = 1 •...• N) , (6) 

where k is the current iteration number. Note that the current move limits Al 
and Bik define a subregion of the design space where the simplified functions 

F! (x) can be considered as adequate approximations of the initial functions Fj (x). 
In the case of discrete design variables, the move limits correspond to nodes of a grid 
of these variables .. To estimate the order of the adequacy of simplified functions in 
comparison with the initial functions, the error parameters 

can be evaluated. 

Various discrete (or continuous-discrete) optimization techniques can be used to 
solve the subproblem (4) - (6) because these functions are very simple. 

The next, (k+ l)-th iteration is started from the obtained point x k . 
* 

2.3 Multipoint approximations 

To construct the simplified expression F!(x) in the subproblem (4) - (6), we shall 
implement the methods of regression analysis [5]. These methods are intended for 
obtaining an expression that reflects the behaviour of an object considered as a 
function of its parameters, based on a discrete set of experimental results. Here 
and in the remainder of this section, an experiment means a numerical experiment 
using some numerical response analysis. It is essential to note that we do not intend 
to construct simplified expressions that are adequate in the whole of the search 
region determined by side constraints Ai and Bi in (3) because it takes too large 
number of numerical experiments in the case of a multiparameter problem. 
Therefore, we construct such expressions iteratively only for separate search 
subregions which are determined by move limits Al and Bl at each k-th step 

of the problem in (4) - (6). Thus, the functions F!(x) , 0 = 0 •...• M) give 
piece-wise approximation of the initial functions Fj(x). 

To simplify notation, we will suppress the indices k and j on the functions F!(x). 
Assume that the functions (4), (5) are expressed in the following general form: 

- -
F = F(x, a) (8) 

The vector a = (ao • a 1 •...• aJT in expression (8) consists of so-called tuning 
parameters, that is, free parameters the value of which is determined on the basis of 
numerical experiments at points located at several individual nodes of a grid of 
design variables. Then the weighted least-squares method leads to the following 
problem: 
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Find the vector a that minimizes the function 

p -
G(a) = L Wp [F(xp) - F(xp a)] 2, 

p=l 
(9) 

where p is the number of a current point in the plan of experiments, P is the total 
number of such points, wp is the weight coefficient that characterizes the relative 
contribution of the p-th experiment information. The solution of the optimization 
problem (9) is the vector a which makes up the simplified function (8). 

Let us formulate the problem of vector a evaluation if in addition to values of 
funct~on F (xpJ their first order derivatives F (x), i = a F (x) / a Xi ' (i = 1 ....• N) 
at pomts xp ' (p = 1 •.... P) are known. 

In this case we shall minimize the function 

where wiD) and wp(i) are the weight coefficients which characterize the relative 
contribution of information about F(xpJ and F(xpJ,; correspondingly in the p-th 
experiment. An experiment means in this case a numerical analysis analysis 
including the design sensitivity analysis. Note that the formula (10) could easily be 
extended if higher order sensitivities would become available. 

The quality of approximations depends strongly on values of weight coefficients W l) 
in (10), they reflect the inequality of data obtained in different design points. 
Usually, the point that corresponds to the solution of a complex engineering 
systems optimization problem (1) - (3) lies on a boundaty of the feasible region. 
Therefore, the quality of approximations should not be the same within the current 
search subregion. On the contraty, it should be the best in a domain, which is 
located along the boundaty of the feasible region. This is possible if the weights 
depend on the distance of a current point from the boundaty of the feasible 
region, i.e. on the values of F(x) . Similarly, weights can reflect the difference in 
the contribution of the information given by different experiments depending on 
the objective function value at individual design points. Then the maximum 
value of the weight coefficient corresponds to the design point with the maximum 
value of the objective function. 

2.4 Choice of the simplified expression structure 

-
To construct the simplified expressions F, it is necessaty to define them as a 
function of tuning parameters a. Apparently, the efficiency of the optimization 
technique depends greatly on the accuracy of such expressions. The simplest case is 
a linear function of parameters a: 



L 
F(a) = ao + L al 'PI . 

1=1 
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(11) 

If the results F (xp) , (p = 1, ... ,P), of P numerical experiments are known, then 
the minimization problem in (9) or (10) is equivalent to the solving of the linear 
system of L+ 1 normal equations with L+ 1 unknowns ar 

[tli]T [W] [tli] a = [tP]T [W] f, (12) 

where [tP] is the rectangular matrix consisting of values of individual functions 'PI 
(regressors) from the expression (11) at every plan point; f is the vector containing 
information from experiments obtained at P plan points, i.e. values of implicit 
functions F (xp ); [W] is the diagonal matrix consisting of weight coefficients 

wp' 

Note that the structure of the simplified expression (11) is rather general because the 
individual regressors 'PI can be arbitrary functions of design variables. 

The procedure described above can be further generalized by the application of 
intrinsically linear functions [5]. Such functions are nonlinear, but they can be led 
to linear ones by simple transformations. For example, the multiplicative function 

requires the logarithmic transformation 

L 
In F(a) = In ao + L alln 'PI' 

1=1 

(13) 

(14) 

Several particular forms of intrinsically linear functions were implemented for the 
solution of various complex engineering systems optimization problems [6]. The 
obtained results indicate that the multiplicative function (13) is the most 
universal one. It should be noted, however, that the structure of the simplified 
function need not necessarily be linear (as in (11» or intrinsically linear (as in 
(13». If there are arguments for the application of nonlinear expressions in the 
general form, then the problem of the least-square estimation (9) or (10) would 
become a standard problem of nonlinear programming, which can be solved 

-
by any available technique. Moreover, the simplified functions F need not necessarily 
be explicit. There can be numerical procedures involved in their formulation, such as 
numerical integration. But, the basic requirements to such simplified models are: 

• its description of the simplified process must depend on the same parameters x 
as the initial numerical model, presented by functions F(x); 

• they have to contain some tuning parameters a, which are obtained by solving 
the optimization problem (9) or (10); 



104 

• they have to be simple enough to be used in numerous repeating calculations; 

• in order to achieve fast convergence of the algorithm, they have to be accurate 
enough in comparison with the original functions (1), (2); 

• they have to be noiseless or, at least, the level of noise must not cause problems 
with convergence of an algorithm used to solve the optimization problem (4) -
(6). 

2.5 Choice of a search subregion 

After formulation of the simplified functions (8), the current mathematical 
programming problem in (4) - (6) is solved and the error parameters rf in (7) for 
the point x k are estimated. 

* 
Then the task is to determine the move limits Al and Bl for the next iteration. 
First, the condition 

rf :5: ef, (j = O, ... ,M) (15) 

is checked, where ef are small positive values which define the feasible accuracy of 

approximation of functions F(x) by functions F fpc) . If this condition is not 
satisfied even for one of the active constraints or objective function, (i.e. 
approximations are inaccurate), then the size of the search subregion of the 
(k+ J)-th step must be reduced. When the conditions (15) are satisfied for all 
active constraints and the objective function, we must decide upon the movement of 
the search subregion. If the point obtained, x * k , is located inside the k-th search 

subregion (none of the move limits are active), then this point can be considered as 
the current approximation of the solution x*. In that case, the next search subregion 

should be reduced and the other conditions of the search termination should be 
checked. Otherwise, the search must be continued. This means that the search 
subregion must be moved in the direction x k - x k-J. The search process is 

* * 
terminated when (i) the conditions (15) are satisfied, (ii) none of move limits 
are active and (iii) the subregion has reached a required small size. 

3 Example: Optimization of a Stirling engine 

The above described optimization technique was used for the performance 
optimization of small Stirling engines developed at the Technical University of 
Denmark. They are designed to be used as individual combined heat and power 
plants (co-generation plants). Such engines driven from natural gas or biomass can 
supply a single family house with heat and power with a high level of energy 
utilization. It is considered a one of possible ways of decentalization of energy supply 
in rural areas. 
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The basic Stirling engine working cycle (Fig. 1) is a closed cycle, where the working 
gas is kept inside the cylinders, and heat is added and removed from the working 
space through heat exchangers. The Stirling engine differs therefore from 
conventional internal combustion engines by having external combustion, like in a 
boiler (Fig.2). All sorts of gas, liquid and solid fuels can be used depending on the 
proper external burner system only. 

The ideal Stirling working cycle has the maximum obtainable efficiency defined by 
Carnot efficiency, and highly efficient Stirling engines can therefore be built, if 
designed properly. Heat exchangers, regenerators and cylinder volumes have to be 
optimized carefully for heat transfer, flow losses, dead volume, etc. To analyse the 
power output and the efficiency of a Stirling engine under consideration, numerical 
simulation programs (NSP) have been developed, which calculate power output, 
efficiency and heat flow from the thermodynamic equations. These differential 
equations are solved by means of the fourth order Runge-Kutta method. The initial 
pressure and temperatures for steady state operation are found by iterative procedure. 
To verify NSP, the numerical results have been compared to the results of laboratory 
experiments with a 10 kW natural gas driven Stirling engine. The comparison 
showed that NSP allows to predict the Stirling engine performance quite accurately. 

To describe the engine design realistically for the optimization purposes, it is 
necessary to consider several tens of design variables. Some of these design 
parameters describe a number of individual parts of the engine, therefore, they have 
the discrete nature. Furthermore, objective and constraint functions of the 
optimization problem present some level of noise, i.e. can only be estimated with a 
finite accuracy due to the iterative nature of NSP. 

The efficiency has been maximized, while the power output has been controlled by 
two constraints. The first constraint forces the power output not to be less than 10 
kW, and the second constraint keeps the specific power above a certain minimum. 
Other constraints ensure the strength characteristics of the engine components. 

The objective and constraint functions have been approximated by multiplicative 
expressions (12) in the simplest form: 

-
F(a) = aOXjaj",Xj8aj8. 

Table 1 shows the results of the optimization of the Stirling engine, which has been 
used for tests in the laboratory. The optimization was carried out using 18 design 
parameters, the results showed that the efficiency increased from 30.1% to 41.2% 
with the same power output without changing the important design parameters like 
bore and stroke by more than 20%. Solutions were found which had never occurred 
by the traditional "trial and error" approach. Also the optimization helped the 
designer to understand the fundamentals of Stirling engine performance in a 
completely new way, and the possibilities for improvements were found to be numer
ous. 
The number of calls for the numerical simulation program in all runs has not been 
greater than 200. 
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Table 1. Results of the optimization process 

No Design variable Unit Starting Optimum 
value value 

1 Bore, displacer piston mm 105 121 
2 Bore, power piston I mm 95 I 125 
3 Stroke, displacer piston I mm 51 I 63 
4 Stroke, power piston I mm 60 I 63 
5 Phase angle 

I 
deg. 70 

I 
66.8 

6 Mean pressure MPa 8 4.73 
7 Speed I rpm 1550 I 1050 
8 Displacer gap I mm 0.75 I 0.7 
9 Regenerator with I mm 25.4 I 39.2 
10 Regenerator length I mm 44 I 66 
11 Regenerator filler factor I 0.22 I 0.224 
12 Regenerator thread diameter I mm 0.04 I 0.71 
13 Number of heater tubes I 24 I 45 
14 Number of cooler tubes I 216 I 270 
15 Length of heater tubes I mm 365 I 477 
16 Length of cooler tubes I mm 180 I 146 
17 Internal diameter of heater tubes I mm 8 I 5.1 
18 I Internal diameter of cooler tubes mm 2.5 2.68 

EFFICIENCY % 30.1 40.2 
POWER OUTPUT kW 10.1 10.0 
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1. Introduction 
Connecting turbomachinery rotor blades by interblade linkage is a widely 

used technique of boosting reliability and strength of axial flow impellers 
of gas engines and power generating turbines. Stress levels from forced vi
brations are highly sensitive to small deviations in blade geometry and the 
dimensions of the blade-shroud assembly. Deviations by 1-2% may lead to a 
change of stress levels by a factor 1.5 to 2.0. Therefore knowledge of most 
favorable and most disadvantageous deviations in sets of blades, such as may 
occur within manufacture tolerances, is of importance. 

Influence of blade geometry and dimensions on amplitudes of forced vibra
tions of turbomachine impellers with an interblade linkage and a stiff disc 
is considered in this paper. A technique is put forward to calculate either 
the optimal or the most adversely disadvantageous sets of blade perturba
tion within existing manufacture tolerances, from the point of view of stress 
levels. A technique is developed of forced vibration calculation enabling to 
study systems with an arbitrary number of blades and with any distribu
tion and magnitude of the imposed deviations (parameter perturbations or 
mistuning). Any design of blade linkage as used in turbomachinery may be 
treated, say, e.g. circular, packet, "chess bond" and others, including such 
interconnection designs that disturb the cyclic symmetry of the impeller (Fig. 
1a,b). 

The coupled bending-torsional-longitudinal vibrations of blades and inter
blade linkage is studied in the paper and a blade model of a high degree of 
completeness is used. Inhomogeneity of excitation loads and the fact that 
these loads may have various phase shifts are taken into account so as also 
fluid damping, blade interaction through fluid flow, damping in blade mate
rial and in blade-shroud joints. 
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2. Statement of the Optimization Problem 
Finding the perturbation of the blade geometry such that maximum or 

minimum stress amplitudes are reached is an optimization problem. The ob
jective function of such a problem is the maximum stress amplitude UmIJII:' 

These amplitudes are found within the sets of blade system points and of 
excitation frequencies within a given frequency range. Datum sections used 
in manufacturing for defining blade shape are used for controlling deviations. 
The perturbation parameters which characterize size deviations of blade sec
tions from standard design values pjn are adopted as parameter variables 
related to the n-th cross section of j-th blade. The constraints imposed are 
given by extreme deviations from admissible geometrical dimensions within 
tolerance limits (Fig. Ic). 

b) 

Fig.I. Example of shrouded blade systems (a), (b) 
and of vibration of blade geometry (c). 

c) 

Thus the problem is that of calculating a set of perturbation parame
ters {Pjn} which make the objective function K attain an extreme value. 
The objective function is given by K({pjn}) = UmIJII: - min(ma:z:) where 
UmIJII: = maxu(O E [0-,0+]; :z:, y, Z E V) and 0 is the excitation frequ
ency, V - the space region occupied by the impeller blades; 0-, 0+ are the 
bounds of admissible excitation frequencies. The constraints on parameter 
variables may be written: Pin :5 Pjn :5 ptn' For solution's sake this constra
ined optimization problem IS transformed into an unconstrained one by the 
penalty function method. The constraints are incorporated into the objective 
function which becomes in this case: 

(1) 

where the penalty function is written as 

N n. 

g({Pjn}) = CL:L: /< pjn -Pin >/ + /< ptn -Pjn >/ (2) 
j=1j=1 

where N is the number of blades in the system under scrutiny; n, is the 
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number of blade datum sections; <> denotes a so called truncation function: 

<Ct>= -{ Ct, when Ct < 0 
0, when Ct> 0 

C is the penalty coefficient or weight. It is a large positive number for finding 
a minimum of iT and it is negative for calculating a maximum. A few methods 
of direct search as in [1] are used. 

3. Reducing the Number of Parameter Variables 

The number of parameter variables is restricted by requirements of effec
tiveness of optimization method and computer time consumption needed for 
computation of forced impeller vibrations for every set of {~in}. Reducing 
the number of parameter variables can be performed by assuming that only 
some of the blade datum sections differ from their standard, the rest being 
perfect. It may further be assumed that the perturbation parameters differ 
for different blades but remain the same for various sections of a single blade. 
Thus (~in = ~i)' In the latter case the number of the perturbation parame
ters equals the number of the blades in the system. Usually the number of 
blades of a system is high, e.g. it is the number of all impeller blades. The 
need arises to further lower the number of parameter variables. This is done 
by a Fourier series expansion of the perturbation parameters: 

n. 
~(cp) = 1 + 'E aA: sin(kcp + fA:), (3) 

A:=1 

where cp is the circumferential angle coordinate, np is the number of harmonic 
modes retained. The parameter variables aA:, fA: are np in number. The 
constraints become ~- ~ aA: ~ ~+; 0 ~ fA: ~ 211'. Thus dimensionality of the 
optimization problem may be brought down to suit any needs. This impairs 
the generality of the problem somewhat since in order accurately to represent 
a set of N numbers such as {~i} N /2 harmonic nodes are needed. This may 
however be obviated to some extent by working with selected single harmonic 
modes or arbitrarily selected blade parts. 

4. Calculating the Forced Vibrations 

The maximum stress resulting from forced vibration is calculated for a cur
rent set of perturbation parameters in every iteration step of the optimiza
tion search. The main difficulties encountered when investigating vibrations 
of blade systems of real complexity are: the large dimensions of matrices 
of resolving equations, computation complexity and also those difficulties 
which arise from the necessity to provide accuracy when calculating complex 
dynamic systems with closely spaced eigenfrequencies. Optimization makes 
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computation speed limitations particularly restrictive. Difficulties encoun
tered determine many details of forced vibration computation technique to 
a high degree. A combination of the Transfer Matrix Method (TMM), the 
Finite Element Method (FEM) and a partition into substructures form the 
basis of the computation technique. 

4.1 Excitation of Blade Vibrations 
Forced steady state vibrations of blade system are being investigated These 

vibrations are excited by circumferential and radial inhomogeneous loads 
appearing during impeller rotations: 

P(z, cp) = {Pz(z, cp), Py(z, cp), P,,(z, cp)}T , 

where Pz(z, cp), Py(z, cp) are the distributions along a blade of those forces 
which act in the axial and the circumferential directions respectively; P,,(z, cp) 
is the distribution of the torsional moment along the blade. Loads are next 
expanded into Fourier series. Since the coordinates of vibration reference 
rotate with the angular velocity w we have the series: 

00 

P(z, cp, t) = Po(z) + L: P1:(z)ei 1:('P+wt ) + P1:(z)e- i 1:('P+wt) (4) 
1:=1 

where P1:(z) = {P~1:)(z), pi1:)(z), p~1:)(z)}T - column- vector of complexfunc
tions which describe the variations of amplitudes and phases of k-th harmonic 
component along the blade wherein i = A. Responses are calculated for 
each harmonic component separately. 

4.2 The Matricial Relationship for a Blade 

The blade considered is modelled as a twisted variable cross section rod 
(cf. [2]). Damping in the rod material is introduced by making the moduli of 
elasticity and of shear assume complex values. Fluid damping and interaction 
between vibrating blades and the surrounding flow are taken care of by fluid 
damping influence coefficients (FDIC). Equations of longitudinal, flexural 
and torsional vibrations at a frequency {} = kw may be written in the form: 

[E(Aw' + To JptP')] " - p{}2 Aw = 0 

[E(Jyu" + JZll v" - To JyrtP')] " + p{}2 Au = p~1:)(z) - Rz 

[E(Jzll u" + J,I v" - ToJzrtP')]" + p{}2 Av = p~1:)(z) - Ry (5) 

[GJttP' + ETo(Jpw' - Jyru" - Jzrv")]" - p{}2JptP = p~1:)(z) - Rv. 

h R - 1 2 ",nJ k(E) k(E) + bk(E) .1. r f fl ·d d were E - '2PJVJC ~j=-nJ jz Uj + jll Vj N Y'j are lorces 0 Ul am-
ping and of interaction with the gas flow (cf. [3]). Here e = :1:, y, tP; C = 
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1 when e = z, y; c = b when e = 1/J; b is the characteristic size of blade 
profile; P is the blade material density; kW, kW, k~~ is the dimensionless 
complex FDIC; PI, VI is the density and velocity of undisturbed flow; n I is 
the maximum number difference between blades interacting through the flow; 
E = Eo{l+i1/JE/21r) and G = Go{1+i1/JG/21r) are the complex moduli of ela
sticity wherein 1/JE,1/JG are the damping or dissipation coefficients. Further 
A, JII:' Jy, JII:Y' Jp , JII:r, Jyr , Jt,"'o are the area, inertia and torsional stiffness 
moments of a cross section and the velocity of twist propagation along the 
blade. The matricial relationship for a blade is calculated by means of the 
transfer matrix method. In order to perform semianalytical integration of 
the equations Eq.(5) and to obtain expressions of the transfer matrix entries 
in the form of definite integrals the blade is partitioned into finite elements 
with concentrated masses. Large enough number of such elements is chosen 
so as to provide an accurate description of inertia properties within the whole 
range of forced vibration frequencies being analyzed, wherein both the low 
and high natural modes may be appreciable. The transfer matrix of a n-th 
element of a blade relates vibration parameters at both end sections of such 
an element: 

(6) 

where Xn = {u,v,w,tp,8,1/J, FII:' Fy, Fz, Mil:, My, Mz}T is a column vector of 
complex amplitudes of displacements both linear u, v, wand angular tp, 8, 1/J, 
forces: lateral FII:' Fy and longitudinal Fz, moments: flexural Mil:, My and 
torsional M z • Further Ln is the (12 x 12) transfer matrix and Pn is the 
vector of load components. 

The recursive property of the relation (6) is conducive to a relation for a 
whole blade or for a part of it: 

X'o., = Cn. L.) X,+ t. Ct L.) P; (7) 

where ne denotes the number of elements constituting the blade either whole 
or a part of it. 

Eq.(7) is next put into a form which is used in the finite element method: 

1 _ - 12 11, 12 q1 + - 12 pq { Q } [ I-II I-I ] { } { I-I } 
Qn.+1 - 121 -/22/121/11, 122/1l qn.+l PQ -/22/121pq 

(8) 
where qn = {u,v,w,C),8,1/J}T, Qn = {FII:,FII,Fz, Mil:, MII,Mz)T are the co
lumn vectors of generalized displacements and generalized forces at the n-th 
node; Imj are (6 x 6) blocks of the transfer matrix; PIJ , PQ(6z/) are portions 
of column vector of loadings components. 

4.3 The Matricial Relation of Interblade Linkage 
The matricial relation of interblade linkage is obtained by different techni

que depending on design peculiarities of linkage. For rod model of linkage the 
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relation is obtained by TMM as it is valid for the blade. When plate model 
is adopted a technique based on FEM is used. This technique allows to take 
into account different contact conditions of shrouds and their intricate shape 
[4]. 

4.4 The Blade-Shroud Assembly Analysis 

The set of resolving equations is formed by finite element method procedure 
which allows to consider any kind of interblade connections used in turbo
machinery. The unknowns are displacement amplitudes of superelements. 
The superelements represent parts of blades and parts of interblade linkage 
between their joints. The equation system takes the form: 

K(n)qIl = P (9) 

where K(n) - dynamic stiffness matrix of system; P - column vector of system 
loadings; qIl = {qt, q2, ... , qN}T - column vector of displacements at nodes of 
the superelements. 

To provide for calculations of blading with a large number of blades, the 
profile storage technique is used. For circular linkage of blades assembly 
the number of stored values is 180N-144 and for blade packet it is 108N-72, 
therefore the calculations may be performed even using personal computers. 

Here, it should be noted next that: 
1) Matrix computation (7) (8) is performed for blades with different charac

teristics only. Further tedious computations of definite integrals for transfer 
matrix components are made for the standard blade only. Section charac
teristics of other blades are related with characteristics of standard blade: 
A = 1'2 AD, JlI:i = J.l4J2; Jp = J.l4J~ etc. Therefore the integrals of perturbed 
blades are calculated by multiplying integrals by perturbation parameters. 

2) The forces of fluid damping and blade interaction through flow are 
expressed by displacements of the blades considered and of a few of their 
neighbors. To calculate the blade transfer matrix it is necessary to know the 
relationship for displacements of these blades. An iterative calculation pro
cess is used to perform these calculations. First, the amplitudes of the blade 
system are calculated by taking into account the aerodynamic forces which 
only result from the vibrations of the blade considered. The information ob
tained about the amplitude relationship is used to calculate the vibration by 
taking into account those aerodynamic forces which result from the displace
ments of the considered and of the neighboring blades. The iterative process 
converges very quickly - one or two iterations suffice as a rule. 

3) Matrix of the system has a symmetrical form, but it has complex and 
non-symmetric matricial blocks. The lack of matricial symmetry and complex 
number values take care of blade material damping and phase shift in the 
forcing loads. 
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5. Results and Conclusions 

The above presented numerical approach has been implemented in FOR
TRAN software. The numerical simulation was concerned with forced vibra
tions of perturbed blade packets and optimal perturbation parameters were 
looked for. By way of an example a 5 blade packet was considered. The 
blades were interlinked by a shroud, load distributions along each blade was 
assumed to be uniform and the damping (or dissipation) coefficients of the 
blade material was 0.03. Amplitude-frequency characteristics of maximum 
stresses are shown in Fig.2, Figs.2a and 2c respectively show the response 
characteristic of a tuned (unperturbed) standard blade packet when excited 
by harmonic components for number Ie = 6 and 38. There are five natural 
frequencies in the frequency range considered, such that one is the frequency 
of "in-phase" vibration and the other four are closely spaced frequencies of 
the so-called "in-packet" vibration. In order to compute optimal sets of per
turbation parameters a few direct search methods were assessed such as the 
Hooke-Jeeves, the Powell and the coordinate descent method. Powell's me
thod proved to be most effective for the problems considered. This method 
enables computation of optimal solutions in 40 to 100 iterative steps, the 
accuracy obtained being 0.1% which is satisfactory enough. Table 1 shows 
the calculated sets of shape perturbation parameters {p }mlu: and {p }min for 
which O'ma.1: attains a maximum and a minimum respectively within the ad
missible sets. O'ma" values of the unperturbed blade packet are also given for 
comparison. The admissible values of perturbation parameters range from 
0.95, ... ,1.05 and O'ma.1: is found within the frequency range of 0 to 2 kHz. 
Response characteristics for the calculated sets are shown in Fig.(2b) (Ie = 6) 
and Fig.(2d) (Ie = 38). Solid lines denote the sets {p; }ma.1: and dashed lines 
are for {p; }min. 

In order to demonstrate the stress response to parameter perturbation maps 
of equal levels of O'ma" have been drawn for selected perturbation parameters. 
The maps shown in Fig. 3a and 3b are for Ie = 6 and Ie = 38 respectively. 
These parameters are taken for two blades of a packet. Subscripts of p give 
the blade numbers. Values on the lines are those of 10-1 X O'ma:l1 in MPa. The 
figures show the highly complex multi-extremal (or multimodal) character of 
the dependence of O'ma.1: on {p;}. A change of the perturbation parameters 
within 5 to 8% may produce a change of the stress value by a factor of two. 

The above simulation technique developed and the implemented software 
may serve to solve a number of important problems of turbomachinery engi
neering such as 

- calculating the stresses which are likely to occur when the blade para
meters are perturbed within manufacturing tolerances, 

- determining the response of stress amplitudes in forced vibrations to 
perturbations of geometry, 
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- to estimate probable discrepancies of experimental and analytical re
sults of investigations which may be due to some imprecision in descri
bing the perturbation of the impeller blade parameters in such compu
tations, 

- to help such assembly techniques of impeller blades as to provide mi
nimum stress levels, in particular when the manufacturing provides for 
control of geometry or of natural frequencies of all impeller blades either 
alone or in the assembly. 

Table 1. The calculated sets of most favorable and most adverse perturbation 
parameters and the corresponding maximum stress levels. 

k=6 k = 38 
blades 

numbers {/lj }maz {/lj}o {/lj }min {/lj }maz {/lj}o {/lj }min 

1 0,959 1,0 1,039 1,005 1,0 1,050 
2 0,961 1,0 1,019 0,964 1,0 0,992 
3 1,039 1,0 0,976 0,956 1,0 1,003 
4 1,025 1,0 0,981 0,989 1,0 1,002 
5 0,995 1,0 1,050 0,999 1,0 0,997 

umaz,MPA 824 575 355 2116 1316 975 
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of excitation (c,d) for the 38-th harmonic mode. 
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New Discretized Optimality Criteria Method 
State of the Art 

G .I.N. Rozvany and M. Zhou, FB 10, Essen University, D-45117 Essen, Germany 

Abstract. It was shown recently that the optimization capability for sizing 
structural systems can be increased dramatically by the introduction of new 
optimality criteria methods which achieve the conect optimal solution while 
treating active stress constraints at the element level. This means that their 
optimization capability is only limited by the number of global (e.g. displacement 
or natural frequency) constraints. Since the latter is usually small for typical 
structural systems, these new techniques increase our optimization capability 
by several orders of magnitude, whilst reducing drastically both CPU time and 
storage requirements. 

The versatility of the new optimality criteria methods is demonstrated by 
considering a variety of problems in sizing optimization. The proposed methods 
become highly economical if the considered system is very large, with many 
thousands of variables and active stress constraints. Moreover, the considered 
methods are found to be almost unavoidable in topological optimization, which 
will be discussed in a separate lecture at this meeting. 

The paper also reviews a two-phase DCOC algorithm for structures with com
plex cross-sections, having several design variables and stress constraints per el
ement. This algorithm solves the relevant equations alternately at the element 
level and system level. 

Finally, the proposed algorithm is compared with an approach by Gutkowski, 
Bauer, Dems and Iwanow. 

Keywords. Structural optimization, optimality criteria, Kuhn-Tucker condi
tions, stress constraints, displacement constraints, Lagrange multipliers, dual 
methods, approximations, finite elements. 

1 Introduction: Methods of Structural Optimization 

In this section, we discuss the advantages and disadvantages of optimality criteria 
methods. 

Methods of structural optimization fall into one of three broad categories, 
namely 
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• optimality criteria methods; 

• mathematical programming methods using gradients (sensitivities); and 

• random search methods. 

In optimality criteria methods, all necessary (and sometimes sufficient) condi
tions of optimality are generated for a given problem. The corresponding set of 
equations are then solved, partly explicitly (if possible) and partly iteratively. 

In gradient-based mathematical programming methods, the gradients of objec
tive (cost) function and constraint gradients are calculated for a given design and 
then the next design is generated in a systematic way, by trying to maximize 
the reduction in cost in the feasible domain (or to minimize the computational 
effort to find an optimum). The above procedure is repeated until the change in 
cost or design parameters becomes small. 

Random search techniques (e.g. genetic algorithms) are based on some ran
domized procedure which generates systematically a large number of designs, 
out of which the best one is selected. 

A method is termed robust, if it can be used "blindly" or as a "black box" for 
a broad range of problems, without having to understand at depth the partic
ular mathematical structure of the optimal solutions involved. Clearly, search 
methods are, in general, the most robust and optimality criteria methods the 
least robust. 

A method is called efficient if it has a higher optimization capability in terms 
of number of variables or number of active constraints, or alternatively, if it 
uses less computer time and/or storage space than other methods. The relative 
efficiency of optimality criteria methods is usually the highest and that of search 
methods is, in general, the lowest. However, search methods may be unavoidable 
if the number of local minima is very high. 

Gradient-based mathematical programming methods may also be divided into 
two subclasses, i.e. 

• primal methods, in which the variable space contains the design variables; 
and 

• dual methods, in which the variables are the Lagrange multipliers of the 
constraints. 

Clearly, primal methods are uneconomical if the number of variables is large 
and dual methods are inefficient if the number of active constraints is too high. 
This means, however, that for problems with many variables and many active 
constraints, both primal and dual methods are inadvisable. This situation may 
appear hopeless; fortunately, however, most active behavioural constraints for 
structural systems are local (stress or side) constraints and these can often be 
eliminated in modern optimality criteria methods (COC/DCOC) through ex
plicit calculations at the element level. This means that, in effect, only global 
constraints contribute to the size of the dual space, and hence the above meth
ods become several orders of magnitude more efficient for very large structural 
systems than traditional techniques. 
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Another way of avoiding stress constraints in the dual space is to use a fully 
stressed design (FSD) for stress controlled elements and to treat other constraints 
properly in the dual space. This method, however, is known to result, in general, 
in non-optimal solutions. 

We may add that the above classifications are somewhat oversimplified. It 
can be shown that certain dual programming methods and optimality criteria 
methods are, in fact, identical. Moreover, optimality criteria can be expressed 
through sensitivities and hence the distinction between programming and opti
mality criteria methods is far from being sharp. 

The newest optimality criteria method (DCOC) can also be regarded as a 
modified version of the older discretized optimality criteria (DOC) method com
bined with fully stressed design (DOC-FSD). The difference is that DCOC is 
based on rigorous fulfilment of the Kuhn-Tucker conditions, whereas DOC-FSD 
is an intuitive method. Whilst both methods use the same redesign formulae, 
in DCOC the virtual load systems, corresponding to displacement constraints, 
are modified through the application of prestrains, in order to fulfil the above 
conditions. The details of this operation are explained in Section 3. 

2 The Origins of Optimality Criteria Methods 

The earliest optimality criteria methods were somewhat heuristic. These intu
itive optimality criteria methods included the already mentioned fully stressed 
design (FSD), as well as uniform energy dissipation (UED), and unifom mutual 
energy dissipation (UMED). All the above methods give the correct optimal so
lution for a limited class of problems: FSD for statically determinate structures, 
UED for a compliance (total work) constraint and UMED for a displacement 
constraint, but all three are restricted to a single load condition. 

Rigorous optimality criteria were derived for discretized systems by Berke and 
others (e.g. Berke 1970; Venkayya, Khot and Berke 1973). These optimality 
conditions were then modified, on a somewhat intuitive basis, into very efficient 
redesign formulae. This group of methods will be termed here DOC (discretized 
optimality criteria) methods. 

Surprisingly, entirely independently from the above development but almost 
at the same time, a research school around Prager derived optimality criteria for 
continua (e.g. Prager and Shield 1967; Prager and Taylor 1968; for eigenvalue 
problems, see e.g. Olhoff 1981). The above conditions were derived usually for 
a single criterion and often for plastic design. However, they were gradually 
extended to general elastic systems with simultaneous stress and displacement 
constraints (e.g. Rozvany 1989). 

One of the obvious differences between the above developments was the fact 
that one (DOC) used a discretized formulation in a finite dimensional vector 
space and the other one (COC) a continuum formulation in an infinite dimen
sional design space. Correspondingly, the branch of mathematics involved is 
differential calculus in one case (DOC) and calculus of variations in the other 
(COC). A recently found, more intrinsic difference is that, whereas in DOC the 
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only variables are the cross-sectional dimensions (design variables), in COC an 
extended design space includes also the real and virtual internal forces. Another 
improvement is the introduction of an "adjoint structure" in COC, which is 
used for giving the optimality conditions some physical meaning. The external 
loads on the adjoint structure depend on active displacement constraints and 
the fictitious prest rains in members on active stress constraints (see Section 3). 

The COC algorithm was applied iteratively to large discretized systems (Roz
vany and Zhou et al. 1989, 1990; Rozvany and Zhou 1991b; Zhou and Rozvany 
1993a), by first deriving the optimality criteria for continua and then discretizing 
the results for FE methods. This transformation introduced extra work and the 
results were only valid for a continuous variation of the design variables along 
the members or elements involved. For these reasons, it represented a consider
able improvement when Zhou reformulated the new optimality criterion method 
directly in terms of matrix methods of the finite element approach (Zhou and 
Rozvany 1992, 1993b). The new discretized continuum type optimality criteria 
method has been termed DCOC for historical reasons. As will be seen in Sec
tion 3, DCOC was first derived using the flexibility formulation of structural 
analysis and the fundamental features of COC, employing a stiffness method in 
the implementation only. This has had the drawback that it was difficult to 
understand by researchers familiar with traditional optimality criteria (DOC) 
methods. Moreover, the implementation was cumbersome for more advanced 
elements whose flexibility relationships are not readily available in the modern 
FE technology. These difficulties have been removed by recent work of Zhou and 
Haftka (1994) who showed that DCOC can, in fact, be derived from the tradi
tional DOC formulation. In the above paper anew, "derivative-based" DCOC 
formulation is also presented, which avoids the flexibility formulation completely, 
as well as the concept of adjoint structure, replacing the latter with sensitivity 
analysis of certain functions. This way, implementation of DCOC becomes very 
convenient. 

It should be mentioned in any text on modern optimality criteria methods that 
another important group of dual methods was developed by a Polish research 
team (Bauer, Gutkowski and Iwanow 1981; Gutkowski, Bauer and Iwanow 1985; 
Dems and Gutkowski 1993). One of the differences between COCjDCOC and 
the above methods is that in the latter the formulation includes compatibility 
conditions, whilst in the former they turn out to be optimality criteria. 

In the next section, however, COCjDCOC will be outlined on the basis of 
their original formulation, because this will have some conceptual advantages in 
discussing topology optimization in later sections. 

3 The COC/DCOC Algorithm: a Brief Review 

3.1 The Role of the "Adjoint Structure" 

As mentioned in Section 2, a fundamental conceptual feature of the new optimal
ity criteria methods is the adjoint structure, which is a fictitious system having 
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the same analysis equations as the real structure but different loads, prest rains 
and possibly support settlements. The analysis of the adjoint structure replaces 
the usual sensitivity analysis of other methods, although it can be shown in 
some cases to reduce to conventional sensitivity analysis by the adjoint variable 
method. The implementation of the adjoint method is rather efficient, because 
the stiffness matrix is the same for the real and adjoint structures. As pointed 
out earlier, this concept can also be avoided to suit existing computational tech
nology. 

In this paper, we shall not include the derivation or the general formulae of 
eoe and DeOe, because they are summarized in a comprehensive form else
where (Zhou and Rozvany 1992, 1993a; for a detailed summary see Rozvany 
and Zhou 1994). For didactic reasons, we are only considering herein truss 
structures, and illustrations through very simple examples. The DCOC method 
is, however, available for most static and some dynamic problems, including a 
number of refinements (see Rozvany and Zhou 1994 or Section 6 herein). 

To explain the concept of the adjoint structure, consider the elementary prob
lem in Fig. la, in which a three-bar truss is subject to the horizontal force PI 
and the vertical force P2 = kP and the weight of the truss is minimized subject 
to constraints on the stresses in compression and tension (O'c and O'T), and on 
the vertical deflection (U2 $ t). The horizontal displacement (Ud is uncon
strained. One of the shortcomings of this problem is the fact that a vertical 
displacement constraint is equivalent to a stress constraint for the vertical bar 
"2". This means that, in general, depending on the limiting values O'T and t in 
the above problem, only one of the above constraints can be active. However, 
this restricting feature does not disturb the illustration of the DCOC method. 

The adjoint structure for the above problem is shown in Fig. lb. The load
ing on the adjoint structure is the Lagrange multiplier v for the displacement 
constraint, acting at the location and in the direction of that constraint. The 
initial displacements (caused by fictitious prestrains) for the adjoint structure 

-.(1) -.(2) -.(3) . . . 
are b , band b , whIch are non-zero only If a stress constramt for a bar 
is active. For trusses, the above initial displacement is given by (Rozvany and 
Zhou 1994) 

-*e e e L e [ fe-fe 1 
b = O'e p - (x e)2Ee sgn (J ), (1) 

where U, O'e , pe , E e and x B are the bar length, permissible stress, specific weight, 
Young's modulus and cross-sectional area for the truss element e, whilst rand 
t are the corresponding bar forces in the real and adjoint trusses. 

It can be seen that the adjoint structure is equivalent to the usual virtual load 
system with a scaling factor v (in DOC or adjoint variable method of sensitivity 
analysis), and prestrains added for active stress constraints. 

3.2 Iterative Procedure for COCjDCOC 

The basic steps in the new optimality criteria methods are as follows. 
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Details of the latter two operations are given below. 

• Analysis of the real and adjoint structures. 

• Updating cross-sectional parameters. 

• Updating Lagrange multiplier(s} for global eonstraint(s}. 
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3.3 Updating Cross-Sections 

The redesign formula used depends on the type of active constraints for a given 
element. In numerical procedures, it is usually necessary to impose at least a 
lower limit on the cross-sectional parameter, e.g. 

(2) 

where xl is a given minimum cross-sectional area for a bar e. Such restrictions 
are termed side constraints. 

For trusses with stress and side constraints and a displacement constraint (e.g. 
Fig. 1), we have the following redesign formulae: 

(xe )2 = max {(Xd)2, (x~)2, (x1)2} , (3) 

with 

(4) 

(5) 

Clearly, (5) determines the cross-sections controlled by the stress constraint. 
The redesign relation (4) refers to truss members controlled by the displacement 
constraint. In general, elements of a truss fall into one of the three element sets, 
namely [see (3) above] 

Rd: elements controlled by the displacement constraints, 

Ru: elements controlled by a stress constraint, 

R,: elements controlled by a side constraint. 

3.4 Updating Lagrange Multipliers 

Since r in (4) depends on the Lagrange multiplier II (see Fig. Ib), the updated 
value of xd also depends on it, whereas zl and x: are independent of II. This 
means that by any change of II only the elements in Rd are affected. The new 
value of II can therefore be calculated by satisfying the displacement constraint 
as an equality using a work equation, substituting the cross-sectional areas from 
(4) and expressing II from the above relation: 

(6) 

in which je = r /11, with the value of II taken from the prior iteration. 
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Using the above procedure for the elementary problem in Fig. la, with LO = 
EO = pO = 1 and (T: = (Te = 1.3 for all elements as well as P = Pl = 1, k = 
P2 = 8 and t = 1, the iteration history is shown in Fig. 1c, in which an almost 
uniform convergence is achieved in spite of scale magnifications by 10000 and 
2000. The optimal weight Wopt after 9 iterations was found to be 9.2148037239 
and the cross-sectional areas z(l) = 0.882077, z(2) = 7.430649 and z(3) = 0.01. 
In iteration 9, the weight value changed only from 9.2148037242 to the above 
value, satisfying the very stringent convergence criterion 

IWnew - Wold I < T 
Wnew -, (7) 

with T = 10-1°. For practical applications such high accuracy is not necessary. 
The above iteration history (Fig. 1c) shows that after two iterations the (scaled) 
weight differs by only one per cent from the optimal weight. 

3.5 Some Philosophical Remarks about Conceptual Clarity vs. Com
putational Expediency 

The above dilemma will be illustrated through the formula for calculating the 
adjoint initial displacement in (1). Since for stress-controlled truss elements we 
have r /zo = (T°sgn (r), the relation in (1) reduces to 

(8) 

However, the external load on the adjoint truss causes an elastic member 
elongation of Lor /ZO EO. Adding the prestrain to the strain due to external 
load, we obtain the total adjoint strain 

(9) 

which is simply the mtio of the specific weight and the permissible stress, with the 
sign of the real force in the considered truss element. Whilst the result in (9) is 
conceptually very valuable due to its simplicity, in an itemtive procedure various 
quantities in (8) originate from different computational steps. This means that 
for intermediate itemtive values of r (involving II) and zO, to does not reduce 
to (9). Moreover, it is difficult to model the requirement that the total adjoint 
strain in stress-controlled members is independent of the adjoint force in the same 
member. Surprisingly, relation (1) is therefore more efficient computationally 
than (9). 

Naturally, in all practical computations the most expedient formulae should 
be used, even when the latter completely obscures conceptually fundamental 
features of an optimal solution. In order to be able to check the correctness 
of discretized numerical solutions, or with a view to obtaining exact, explicit 
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solutions (for example, in topology optimization), researchers should also be 
thoroughly familiar with the original, exact relations leading to a computational 
procedure. 

4 Iterative COC/DCOC: Approximations Used and Their 
Effect on Computational Stability 

Update formulae in the above iterative procedures involve a certain approxi
mation, because the effect of the cross-sectional areas on the internal forces is 
temporarily ignored. The same applies to more complicated DCOC procedures 
for several load conditions and multiple displacement constraints, where the La
grange multipliers for displacement constraints are calculated in a subiteration 
(Zhou and Rozvany 1993b). All the above formulae would be exact if the above 
dependence did not exist, that is, in the case of statically determinate struc
tures. It follows from the above approximation concept that DCOC converges 
very satisfactorily if the distribution of the internal forces does not depend sig
nificantly on the cross-sectional areas. Convergence problems arise, and further 
refinements become necessary, if the problem is ill-conditioned in the sense that 
the internal forces are highly dependent on the cross-sectional areas. To avoid 
computational instability in the latter case, a procedure for automatic adjust
ments of the move limits can be adopted. A better solution of this problem is 
to introduce an improved approximation for the updating procedure. 

It is further to be remarked that the redesign formula (4) is based on first 
order sensitivities but the relation in (5) is not related to derivatives. The 
latter, therefore, results in a slower convergence. In DOC and dual methods, 
stress constraints are usually replaced by equivalent displacement constraints, 
and hence first order redesign formulae are involved. This way the number 
of iterations is reduced, but the total computer time is increased because the 
calculation of the corresponding Lagrangians, which are coupled at the system 
level, becomes much more expensive. 

5 Iterative COC/DCOC: a Review of Test Examples 

A number of test examples based on DCOC were presented in recent publications 
(Zhou and Rozvany 1992, 1993b; Rozvany and Zhou 1994). Since for trusses 
and beams the COC and DCOC procedures are somewhat similar, earlier test 
examples using an iterative COC procedure are also relevant (Rozvany, Zhou et 
al. 1989, 1990). The above examples included 

• a clamped beam with stress constraints and a displacement constraint; 

• ten-bar truss examples with (i) stress constraints and one displacement 
constraint, (ii) stress constraints and two displacement constraints, (iii) 
only stress constraints with different permissible stress values, and (iv) 
two displacement constraints and a variable point load; 
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• a ten-storey, three-bay frame with stress constraints and a horizontal dis-
placement constraint; 

• the standard 25-bar truss; 

• the standard 72-bar truss; 

• the standard 200-bar truss problem and a modified version of it. 

Out of the above test problems, the 25-bar and 72-bar trusses will be reviewed 
here in detail. 

5.1 25-bar truss 

The standard 25-bar truss is shown in Fig. 2. The material properties are: E 
= 107 psi, r = 0.1, lbsjin3 and the lower limit on the design variables yL = 0.01 
in2 • 

a = 63.5 em (25 in) 

8a 

8a 

y .---

Fig. 2. 25-bar truss. 

The allowable displacements for all nodes are ± 0.35 in in the X, Y and Z 
directions. The loading and allowable stresses are given, respectively, in Tables 
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1 and 2. The 25 members are linked to 8 variables. For additional details see 
Fleury and Schmit (1980). 

Table 1. Allowable stresses for 25-bar truss (psi) 

Member Tension Compression 
1 40000 -35092 

2-5 40000 -11590 
6-9 40000 -17305 

10, 11 40000 -35092 
12, 13 40000 -35092 
14-17 40000 -6759 
18-21 40000 -6759 
22-25 40000 -11082 

Table 2. Nodal load components (Ibs) for the 25-bar truss 

Load case Node x y z 
1 1 1000 10000 -5000 

2 0 10000 -5000 
3 500 0 0 
6 500 0 0 

2 1 0 20000 -5000 
2 0 -20000 -5000 

The final solutions are given in Table 3. The cross-sectional distribution of 
the final design for DCOC and DUAL is shown in Fig. 3. For all three methods, 
the final design has the following constraints active: the displacements at node 
1 and 2 in the Y direction for both load cases and the compression stresses at 
elements 19 and 20 for the second load case. 

Table 3. Results for the 25-bar truss 

Linked Member Cross-sectional area (in:.!) 
variables DCOC DUAL DOC-FSD 

1 1 0.0100 0.0100 0.0100 
2 2-5 1.9870 1.9870 1.9747 
3 6-9 2.9935 2.9935 3.0120 
4 10, 11 0.0100 0.0100 0.0100 
5 12, 13 0.0100 0.0100 0.0100 
6 14-17 0.6840 0.6840 0.6848 
7 18-21 1.6769 (s) 1.6769 (s) 1.6789 (s) 
8 22-25 2.6621 2.6621 2.6557 

No. of analyses 41 15 38 
Weight (lb) 545.162710 545.162710 545.167087 

CPU Opt. 0.22 0.10 0.16 
time 
(sec. ) Total 1.05 0.38 0.94 
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Fig. 3. Distribution of the final cross-sections for the 25-bar truss, Xmin = 0.01, 
Xmax = 2.993. 

5.2 72-bar truss 

The considered problem is shown in Fig. 4. The material properties are: E = 107 

psi, 'Y = 0.1, Ibsjin3 , (J'a = 25000 psi and the lower limit on the design variables 
yL = 0.1 in2 . 

The loading is shown in Table 4. The allowable displacements for all nodes 
in x and y directions are ±0.25 in. 72 members are linked to 16 variables. For 
additional detials see Fleury and Schmit (1980). 

Table 4. Nodal load components (lbs) for the 72-bar truss 

Load case Node x y z 
1 1 5000 5000 -5000 
2 1 0 0 -5000 

2 0 0 -5000 
3 0 0 -5000 
4 0 0 -5000 

The final solutions are given in Table 5. The cross-sectional distribution of 
the final design for DCOC and DUAL is shown in Fig. 5. For all three methods, 
the final design has the following constraints active: displacements at node 1 in 
both X and Y directions for load case 1, and the stress constraints at elements 
1-4 for load case 2 (four dependent constraints). 
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Table 5. Results for the 72-bar truss 

Linked Member Cross-sectional area (in:.!) 
variables DCOC DUAL DOC-FSD 

1 1-4 0.15646 (s) 0.15646 (s) 0.15712 (s) 
2 5-12 0.54560 0.54560 0.53559 
3 13-16 0.41038 0.41038 0.40960 
4 17, 18 0.56975 0.56975 0.56927 
5 19-22 0.52368 0.52368 0.50666 
6 23-30 0.51710 0.51710 0.51997 
7 31-34 0.10000 0.10000 0.10000 
8 35,36 0.10000 0.10000 0.10000 
9 37-40 1.26835 1.26835 1.28016 
10 41-48 0.51165 0.51165 0.51478 
11 49-52 0.10000 0.10000 0.10000 
12 53, 54 0.10000 0.10000 0.10000 
13 55-58 1.88619 1.88619 1.89726 
14 59-66 0.51231 0.51231 0.51576 
15 67-70 0.10000 0.10000 0.10000 
16 71, 72 0.10000 0.10000 0.10000 

No. of analyses 10 10 18 
Weight (lbs) 379.614802 379.614802 379.657382 

CPU Opt. 0.06 0.06 0.18 
time 
(sec.) Total 1.21 0.98 1.98 

6 Recent Extensions of the DCOC Method 

Current extensions of DCOC include (e.g. Rozvany and Zhou 1994) 

• stress constraints, 

• several load conditions, 

• several displacement constraints per load condition, 

• elastic supports, 

• given support settlements, 

• contact problems, 

• allowance for the cost of reactions, 

• variable loads, 

• variable prestrains, 

• variable support settlements, 
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Fig. 4 . 72-bar truss. 

• allowance for the cost of variable loads, 

b 

b 

/y 

b 

b 

• allowance for the cost of variable prestrains, 

• allowance for the cost of variable support settlements, 

• allowance for selfweight, 

• allowance for member buckling, 

• system stability constraints, 

• natural frequency constraints, 

• material nonlinearity, 

• structures with complex cross-sections. 
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Fig. 5. Distribution of the final cross-sections for the 72-bar truss, Xmin = 0.1, 
Xmax = 1.886. 

Extensions to geometrical nonlinearity and to probabilistic design (which is sub
ject of this meeting) are being developed currently. 

As regards the type of structures used in test examples, DCOC has been 
applied to trusses, beams, frames, grillages, disks and plates. Extensions to 
shells and other structures are straightforward. 

The last extension is reviewed briefly below. 

6.1 DCOC Algorithm for Sizing Structures with Complex Cross-Sections 

For problems involving several sizing variables for each element (e.g. typical 
frame elements used in practice), the element level variables, i.e. cross-sectional 
dimensions and Lagrangian multipliers associated with stress and side con
straints, are governed by several simultaneous nonlinear equations. Moreover, 
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these element level equations are also influenced by Lagrangian multipliers as
sociated with displacement constraints. The solution of the governing equa
tions in the DCOC method becomes, therefore, more complicated. Moreover, a 
two-phase iterative algorithm, which solves alternately the equations at the ele
ment level and system level, can be used. For both phases the Newton iterative 
algorithm is employed. For given values of Lagrangian multipliers associated 
with displacement constraints, the element level solver solves the same number 
of separable sets of equations as the number of elements, to obtain the cross
sectional dimensions and Lagrangian multipliers associated with stress and side 
constraints, and also provides the sensitivities of design variables with respect 
to multipliers associated with displacement constraints. The latter is needed in 
the system level solver to generate iteratively the Lagrangian multipliers asso
ciated with active displacement constraints on the basis of equations governing 
those constraints. After each analysis, the above two phases have to be per
formed alternately until the overall iterations converge. Then a new analysis is 
performed and the above procedure 'is applied again. This iterative algorithm is 
repeated until an optimal solution is achieved. It is important to note that the 
high efficiency of the DCOC method holds for this class of problems as well since 
the computational effort associated with the element level operation increases 
only linearly with the increase of the number of design variables, and the system 
level dual problem involves only Lagrangian multipliers associated with active 
displacement constraints, the number of which is usually much smaller than the 
number of active stress constraints. 

7 Concluding Remarks 

A brief state-of-the-art review of the new optimality criteria methods COC/ 
DCOC was given in this lecture. Applications of these methods in topology 
optimization will be discussed in the second lecture. 
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Discretized Method for Topology Optimization 

G.I.N. Rozvany and M. Zhou, T. Birker, T. Lewinski, FB 10, Essen University, 
Postfach 103764, 0-45117 Essen, Germany 

Abstract. After discussing the aims and significance of topology optimization, 
layout optimization of grid-like structures is discussed in detail. In the proposed 
method, the ground structure (structural universe) approach is used, together 
with continuum-type optimality criteria. Layout optimization may be carried 
out using (i) analytical methods for exact, often closed-form, continuum-type 
solutions or (ii) numerical methods for approximate, discretized solutions. Due 
to the high optimization capability of modern OC methods, the latter provides 
simultaneous optimization of geometry and topology, with a high degree of accu
racy. Finally, a new, extended optimal layout theory for multiload, multipurpose 
structures is outlined and applications to particular classes of problems given. 

Keywords. Structural optimization, toplogy optimization, layout optimization, 
shape optimization, finite elements, trusses, displacement constraints, stress 
constraints, multiple loads, multipurpose structures, perforated plates, adjoint 
methods .. 

1 Introduction 

In this section, we shall discuss the scope, aims and significance of topology 
optimization. 

Topology of a structural system means the spatial sequence or configuration 
of members and joints or internal boundaries. The two main fields of applica
tion of topology optimization are layout optimization of grid-like structures and 
generalized shape optimization of continua or composites. 

A grid-type structure has the basic feature that it consists of a system of inter
secting members, the cross-sectional dimensions of which are small in compari
son to their length, and hence the members can be idealized as one-dimensional 
continua. Consequences of this fea,ture are that 

• the influence of member intersections on strength, stiffness and structural 
weight can be neglected, and 

• the specific cost (e.g. structural weight per unit area or volume) can be 
expressed as the sum of the costs (weights) of the members running in 
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various directions. Examples of grid-type structures are trusses, grillages 
(beam systems), shell-grids and cable nets. 

Layout optimization of grid-type structures consists of three simultaneous op
erations, namely 

• topological optimization involving the spatial sequence of members and 
joints, 

• geometrical optimization involving the coordinates of joints, and 

• sizing, i.e. optimization of cross-sectional dimensions. 

The above concepts are explained on an example in Fig. 1, in which all three 
trusses have the same topology, whilst the trusses in Figs. 1b and c have the 
same geometry but different cross-sectional dimensions. 

(c) 

Fig. 1. Example illustrating topological, geometrical and cross-sectional prop
erties of a grid-type structure. 

Prager (Prager and Rozvany 1977b) regarded layout optimization as the most 
challenging class of problems in structural design because there exists an infi
nite number of possible topologies which are difficult to classify and quantify; 
moreover, at each point of the available space potential members may run in 
an infinite number of directions. At the same time, layout optimization is of 
considerable practical importance, because it results in much greater material 
savings than pure cross-section (sizing) optimization. 

The other important field of application of topology optimization is generalized 
shape optimization, in which a simultaneous optimization of both topology and 
shape of boundaries is required for continua and of interfaces between materials 
for composites. Fig. 2a, for example, shows the initial boundary shape and 
topology and Fig. 2b a hypothetical optimal shape and topology for a composite 
plate in plane stress, where the dotted regions denote the less stiff, weaker and 
lighter material. For a cellular structure (here: perforated plate), the dotted 
regions denote cavities (or "holes"). Generalized shape optimization is discussed 
elsewhere (e.g. Rozvany, Zhou and Sigmund 1994). 

In the next two sections, a general description of a general theory of optimal 
layouts is given and its application to the derivation of exact analytical solutions 
is presented. 
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(a) (b) 
Fig. 2. Example illustrating generalized shape optimization. 

2 Theory of Optimal Structural Layouts 

Optimal layout theory, developed in the seventies by Prager and the first au
thor (e.g. Prager and Rozvany 1977a and b) as a generalization of Michell's 
(1904) theory for trusses, was originally formulated for grid-like structures on 
the basis of the simplifying assumptions listed in Section 1. These simplifica
tions were removed in a more advanced version of layout theory (e.g. Rozvany, 
Olhoff, Cheng and Taylor 1982; Rozvany, Olhoff, Bends~e et al. 1987), which 
was applied to structures in which a high proportion of the available space was 
occupied by material. One could also say that the original, "classical" layout 
theory is concerned with structures having a low "volume fraction" (i.e. mate
rial volume/available volume ratio), whilst advanced layout theory deals with 
structures having a high volume fraction. In the latter, first the microstruc
ture is optimized for a given ratio of the stiffnesses or forces in the principal 
directions and in a second operation, the optimal macroscopic distribution of 
microstructures is determined using methods of the layout theory. 

The classical layout theory is based on two underlying concepts, namely 

• the structural universe (in numerical methods: ground structure), which 
is the union of all potential members or elements, and 

• continuum-type optimality criteria (COC), expressed in terms of a ficti
tious system termed adjoint structure, which were discussed in detail in 
the first lecture). 

Since the above optimality criteria also provide adjoint strains for vanishing 
members, their fulfilment for the entire structural universe represents a necessary 
and sufficient condition of layout optimality if the problem is convex and certain 
additional requirements (e.g. existence) are satisfied. The above condition of 
convexity is fulfilled for certain so-called "self-adjoint" problems, the analytical 
treatment of which will be discussed in Section 3.6. 

On the basis of optimal layout theory, two basic approaches have been devel
oped using, respectively, 

• analytical methods for deriving closed form continuum-type solutions rep
resenting the exact optimal layout, and 
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• numerical, discretized iterative methods for deriving approximate (but usu
ally highly accurate) optimal layouts. 

Fundamental differences between these two methods are listed in Table 1. 

Table 1. A comparison of analytical and numerical methods based on layout 
theory 

Computational Analytical Numerical 
Method 

Structural Continuum Discretized 
Model (Finite Elements) 

Simultaneous Iterative 
Procedure Solution of Solution 

All Equations 
Infinite Finite but 

Structural Number Large Number 
Universe of of Members 

Members (Several Thousands) 
Prescribed Non-Zero 
Minimum Zero but Small 

Cross-Sectional Area (10-8 to 10-12) 

Layout optimization methods used by the numerical school (e.g. Kirsch 1989; 
Kirsch and Rozvany 1993) are usually based on the following two-stage proce
dure. 

• First the topology is optimized for a given geometry (i.e. given coordinates 
of the joints), and then 

• for this selected topology the geometry is optimized. 

A drawback of this procedure is, of course, that for the new, optimized geom
etry the old topology may not be optimal any more. Until the introduction of 
COCjDCOC methods, however, the two-stage procedure was necessary because 
of the limited optimization capability of other methods, particularly for realistic 
problems with active stress constraints for a very large number of members in 
the structural universe. 

The new optimality criteria methods (COC/DCOC), which were discussed in 
the first lecture, enable us to carry out a simultaneous optimization of topology 
and geometry, because the number of elements in the structural universe is either 
infinite (analytical methods) or very large (numerical COC /DCOC methods) and 
hence topological optimization achieves, in effect, also geometrical optimization. 

The theory of optimal structural layouts has been covered extensively in the 
past, in particular in principal lectures at NATO meetings [Iowa 1980 (Rozvany 
1981); Troia 1986 (Rozvany and Ong 1987); Edinburgh 1989 (Rozvany, Gollub 
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and Zhou 1992); Berchtesgarden 1991 (Rozvany, Zhou and Gollub 1993); Ses
imbra 1992 (Rozvany 1993)], and also in greater detail at a CISM course in 
Udine in 1990 (Rozvany 1992b) as well as in books (Rozvany 1976, 1989) and in 
book chapters (e.g. Rozvany 1984). Although the above exposure in the techni
cal literature may appear excessive, the development in this field has also been 
both rapid and extensive, even during the last few months. In this lecture, an 
extended layout theory for the exact layouts of multiload, multipurpose struc
tures is presented. Numerical, discretized layout solutions for a variety of design 
conditions (see Table 1) were discussed elsewere (e.g. Zhou and Rozvany 1991; 
Rozvany, Zhou, Birker and Sigmund 1993; Rozvany, Zhou and Sigmund 1994). 

3 An Extended Layout Theory for Multiload, Multipurpose 
Structures: Exact Analytical Solutions 

3.1 Fundamental Features 

The general formulation given here can be applied to any combination of design 
constraints for multiple load conditions, but will be discussed here in the context 
of either multiple displace constraints or stress constraints. 

A new unified formulation of the structural layout theory is presented in this 
section. It was mentioned in Table 1 that for layout problems we consider a 
structural universe with an infinite number of members, that is, with members 
running in all possible directions at all points of the available space. Moreover, 
any cross-sectional area can take on a zero value. The difference between this 
class of problems and cross-section optimization by DCOC is that in the latter 
case the number of elements is finite and a lower limit is imposed on cross
sectional areas. 

The proof of the optimality conditions listed in this section can be based 
on energy theorems or calculus of variations but can also be derived from the 
standard optimality conditions of DCOC. In doing so, the following two limiting 
processes are employed: 

• the lower limit on cross-sectional parameters tends to zero: xl -+ 0, and 

• the number of members passing through a point of the available space 
tends to infinity. 

It follows from the first of the above operations that for a zero cross-section 
we have an inequality in the optimality criterion (as in the case of xe = xl in 
DCOC). 

The second step above implies, due to the kinematic admissibility requirement 
of the adjoint strains in DCOC, that we can replace separate adjoint strains in 
bars running in all possible directions at a point with a single strain field (for 
plane trusses, for example, with a single plane strain field). Some mathemati
cians prefer avoiding the above transitions. For example, in a mathematically 
outstanding contribution, Strang and Kohn (1983) describe the "Michell truss" 
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problem as minimizing the integral J J(IO'll + 10'21) dxdy for a plane stress field. 
Michell's original problem would reduce to the Strang-Kohn problem after 

• making the second transition above; and 

• showing that the optimal member directions must coincide with the prin
cipal stress (and strain) directions. 

The above steps are actually part of the standard optimal layout theory (e.g. 
Prager and Rozvany 1977a and b). 

For all layout problems considered by the authors, the fundamental layout 
optimality criterion can be stated in terms of a "criterion function" ¢e for a 
given element e in the following form (Rozvany 1992a) 

¢e = 1 (for Ae # 0), ¢e $ 1 (for Ae = 0), (I) 

where Ae is the cross-sectional area of an element e. The element e as well as 
the criterion function r (and Ae) are location and direction dependent, that is, 
<p e = <pe{x,y,fJ) in the plane and <p e = ¢e{x,y,z,fJ,11) in 3D space where (x,y,z) 
are spatial coordinates and (O, 11) define the orientation of a line element. 

3.2 Applications to a Simple Class of Structures 

For illustration purposes, we consider here grid-type structures with one design 
variable x e and one nodal force r per element. Moreover, we assume that the 
element cost (weight) can be expressed as eeL exe , where ce is a given constant 
and L e is the length of the element, and the element stiffness takes the form 
rexe I Le, where r e is a given constant. For trusses, for example, xe is the cross
sectional area (xe := Ae), ce is the specific weight (ce := pe) and r e is Young's 
modulus (re := Ee). For grillages with beams of given depth de but variable 
width xe, we have A e:= xede, ce := depe, r e := E e(de)3/12. 

The generalized strains ce used below mean axial strain (usually ce) for trusses 
and curvatures (ce := lI:e) for grillages. Moreover, the generalized forces r refer 
to member forces (previously r) in the case of trusses and to bending moments 
(fe := Me) in the case of grillages. 

Stress constraints can be formulated as (Ir II ae - xe ) $ 0, in which for trusses 
ae := O'e and for grillages of given depth ae := O'e(de)2/6, where O'e is the 
permissible stress. For plastic design, ae = O'e(de)2j4 and O'e is the yield stress. 

For various classes of design conditions the criterion functions are given below. 

3.3 Criterion Functions for Displacement Constraints 

(a) Structures with several load conditions (k = 1, ... , K) and multiple dis
placement constraints (j = 1, ... , 1,:). For this class of problems, the criterion 
function becomes (Rozvany 1992a) 

K 

<p e = (re Ice) z)ctek), (2) 
k=l 
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with 

(3) 

where e:~ and l~ are the real and adjoint strains for the element e and load 
condition k, I: the corresp onding generalized forces, i:; is the virtual generalized 
force for load k and displacement j, h is the adjoint generalized force for the 
load and 11k; the Lagrange multiplier for the load k and displacement constraint 
j. The value of 11k; is nonzero only if the j-th displacement condition for the 
k-th load is active, that is, it is satisfied as an equality. For the optimal design 
variable xe, we have from COC/DCOC (e.g. Rozvany 1992a; Rozvanyand Zhou 
1994): 

x e = Lk t: L; 11k; h; = 
rece (4) 

(b) Structures with proportional displacement constraints. These constraints re
strict a weighted combination of displacements at the location and in the direc
tion of point loads, with weighting factors proportional to the magnitude of the 
loads. For a single point load, this means constraints on a single displacement 
at and in the direction of that load. Proportional displacement constraints can 
be transformed into a compliance constraint, restricting the total e2:ternal work. 

Considering structures with several load conditions (k = 1, ... , K) and a pro
portional displacement constraint or compliance constraint for each load condi-

• -=e 
tion, we have I: = I:, fA: = 111:, ~ = lIke:t and hence (2)-(4) reduce to 

K 

f/Je = (re Ice) L lIk(e:k?, (5) 
k=l 

~ 111: e: ---
k - rexe ' (6) 

(7) 

(c) Structures with one single proportional displacement constraint or compliance 
constraint (one load condition). In this case, (5) and (7) reduce to 

f/Je = (re Ice)1I(e:e)2 , (8) 

(9) 
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3.4 Criterion Functions for Stress Constraints 

(a) Structures with several load conditions and stress constraints. For this prob
lem, we have 

K 

¢e = (a· Ice) EClk sgn In, (10) 
k=l 

where the meaning of sgn I: is sgn I: = 1 for I: > 0, sgn I: = -1 for I: < 0 
and (-1) ~ sgn fk ~ 1 for I: = O. Since for Ae = 0 we have I: = 0 (for all k) 
and (10) must be fulfilled for any values of the "sgn" functions, for Ae = 0 (1) 
and (10) reduce to 

K 

¢e = (ae Ice) E Ilkl ~ 1 (for Ae = 0), lk i: 0 only if 1/:l/ae = :e. . (11) 
k=l 

Important Note. In the derivation of DCOC, only statical admissibility is 
assumed (Zhou and Rozvany 1992) and kinematic admissibility becomes an op
timality criterion if a displacement constraint is active. Since in the considered 
class of problems no displacement constraint is involved, the optimality condi
tions in (1) with (10) represent an optimal solution only if the strains ck in 
nonvanishing members are kinematically admissible. This condition is always 
satisfied for statically determinate solutions, which is the case for a single load 
condition (ignoring non-unique optima) and sometimes for several load condi
tions. However, in optimal plastic design no kinematical admissibility of the 
real structure is required and hence a solution satisfying (1) and (10) always 
represents (in convex problems) the optimum. 
(b) Structures with one load condition and stress constraints. In this case the 
criterion function becomes 

¢e = (ae Ice)le sgn r , (12) 

and then (1) and (12) imply 

-ge = (ce lae) sgn r (for A i: 0), Il"l ~ c· lae (for A = 0). (13) 

For trusses with ce = const., a e:= (Te (13) reduces to the optimality conditions of 
Michell (1904). For grillages, (13) reduces to optimality conditions of Rozvany 
(1972; for a review see Prager and Rozvany 1977a). 

3.5 General Procedure for Exact Layout Optimization 

(a) Adopt continuum type strain fields ck and lk covering the entire available 
space and satisfying kinematic boundary and continuity conditions, such that 
(b) the criterion function ¢e takes on a directionally maximum value of ¢e = 1 
at each point. 
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(c) Place members along lines with ~e = 1, calculate the member forces and di
mension the members using optimality criteria for the cross-sectional parameters 
[e.g. for ze in (4)]. 
(d) Check that the strains and adjoint strains in nonvanishing members (with 
Ae =I 0) equal those given by the strain fields under (a). 

Naturally, the above operations must be carried out simultaneously because 
all the conditions above must be fulfilled by the solution. 

3.6. Self-Adjoint Problems 

(a) One loading Condition. If we square both sides of (13) and adopt (~e)2 as a 
modified criterion function, we can see that structures of the type considered here 
(e.g. plane trusses, and grillages of given depth) have the same optimal layout 
for one load condition and either a proportional displacement (or compliance 
constraint) or a stress constraint. 

Moreover, it follows from (14) that for one loading condition, the optimal mem
ber directions must coincide with the principal directions of the adjoint strain 
field. 

This property was pointed out, in the context of trusses, already by Michell 
(1904) and was used by Hemp (1973) and Prager (1974) for deriving some least
weight plane truss layouts for one load condition. A more comprehensive treat
ment of the above class of problems was given by Rozvany and Gollub (1990), 
Lewinski, Zhou and Rozvany (1993, 1994) and Rozvany, Lewinski et al. (1993). 
For numerical examples, see the above references. 

The optimal layout of grillages for one load condition has been discussed ex
tensively in the literature (e.g. Rozvany 1972; Prager 1974; Prager and Rozvany 
1977a; Rozvany 1976, 1981, 1984, 1989). The latest extension treated allowance 
for the cost of supports (Rozvany 1994). 
(b) Several Loading Conditions. In the case of proportional displacement con
straints or compliance constraints, optimal layouts have been determined for 
plane trusses with several load conditions (Rozvany, Zhou and Birker 1993; Roz
vany, Birker and Lewinski 1994). It has been found that, even in the case of 
nonproportional displacement constraints, at any point of the optimal layout for 
plane trusses, members may run in at most two directions, which are in gen
eral non-orthogonal. A theory for non-orthogonal, generalized Hencky-nets for 
the layout of plane trusses with several load conditions has also been developed 
(Rozvany and Birker 1994). Numerical examples can be found in the above 
references. 

3.7 Non-Self-Adjoint Problems 

The above result have been extended to problems with nonproportional dis
placement constraint, which are in general non-self-adjoint and non-convex (e.g. 
Rozvany, Sigmund, Lewinski et al. 1993). It was found that 
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• due to nonuniqueness, several solutions satisfying the optimality critria 
may need to be investigated; 

• the global optimal solution may be nonstationary if too few displacement 
constraints are prescribed; and 

• the solution given by the optimality criteria may represent a local maxi
mum (and not a local minimum). 

4 Concluding Remarks 

In this paper, an extended layout theory for deriving exact, analytical solutions 
for multipurpose, multiload structures was presented. These solutions are useful 
in checking the validity and convergence of the discretized numerical methods 
presented in this paper. The alternative method of optimizing the topology for 
compliance only, and then the geometry for a combination of design conditions, 
has been shown to lead to grossly nonoptimal solutions (e.g. Sankaranarayanan, 
Haftka et al. 1992). 
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Abstract. A new method of homology design based on finite element sensitivity 
analysis is proposed in static problems. The stiffness equation is sepuated into 
two equations by introducing homologous constraint. The governing equation of 
the design variables is derived from the condition for the two equations to hold. 
The Moore-Penrose genernlized inverse is employed to determine the design 
variables, as the governing equation is expressed in a rectangular matrix form. The 
validity of the proposed method is demonstrated by the numerical example 
concerning with out-of-plane bending of a planar frame structure, for which the 
homologous constraint is set to keep a member straight 

Keywords. Homology design, Moore-Penrose generalized inverse, 
Optimum design, Finite element method, 
Sensitivity analysis, Flexible structure 

1. Introduction 

One of the basic purposes of conventional structural optimization is to enhance 
the integrity of structure against external loads[l]. Sophisticated design 
methodology is required in the design of large flexible structures such as the space 
structure, where simultaneous optimum design of the structures and their control 
system to fulfill stringent demands is to be taken into consideration[2]. Homology 
design is expected to be a candidate of the optimum design for such structures. The 
methodology to utilize homologous deformation is called homology design in this 
paper. When a prescribed geometrical property at the whole or in particular part of 
a structure is kept before, during and after deformation, the deformation is called 
homologous[3]. The cost to control structural deformation mode would be 
mitigated by realizing some homologous deformation specified adequately 
corresponding to the demand to the structure. The performance of large radio 
telescope was greatly improved by applying homology design to shape control of 
tiltable parabolic antenna[3][4]. Hangai proposed a method of homology design by 
utilizing finite element method, which is based on the existence condition of the 
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solution for modified stiffness equation and requires computation of derivative of 
generalized inverse, resulting in long CPU timerS]. 

As a kind of finite element synthesis, a formulation is presented herein for the 
homology design in static problems. The formulation is different from the 
Hangai's method, and is based on the separation of the stiffness equation and the 
finite element sensitivity analysis. The validity and versatility of the proposed 
formulation is demonstrated through the numerical examples in problems of 
out-of-plane bending of a planar frame structure. The homologous deformation to 
keep a central member of the structure straight is realized by changing the diameter 
of cross section or nodal position of the structure in the examples. 

2. Governing Equation for Homology Design 

The stiffness equation of a linear structure by the baseline design after the 
incorporation of the geometrical boundary conditions is given in the form of eq.(1) 
by finite element discretization in static problems, 

[K]{u} = {f} (1) 

where [K] is the stiffness matrix, (u) the unknown nodal displacement vector and 
(f) the external load vector. The displacement vector of N ingredients is partitioned 
into two parts due to the constraint of homologous deformation. The first part of 
it is denoted by (Ui) with N-J ingredients. The second part (UII) consists of J 
ingredients subjected to the homologous constraint 

{u}={~} (2) 

The constraint of homologous deformation is dealt with in the form of eq.(3) 
through constraint [e) matrix in this study. 

{ UII } = [ e]{ uJ (3) 

The stiffness equation of eq.(l) is partitioned as eq.(4) corresponding to the 
partitioning of the displacement vector of eq.(2). 

[Kii Ku.]{Ui}={h} 
KIU KM ull In 

(4) 
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Equation (4) is sepuated into two eqs.(5) and (6) when the expression of eqs.(7) 
aOO (8) is employed. 

[K.]{u;} = {fa (5) 

[K,]{ U;} = {/,.} (6) 

[K.] = [Kii] + [Kjh][C] (7) 

[Kr] = [K,.J + [KAAIC] (8) 

[K.] is a (JV..J)x(N-J) square and asymmetric matrix, and [K,] is a Jx(JV-J) 
rectangular one. Equation (5) can be solved in the usual manner with respect to the 
square and nonsingular matrix [K.]. H eq.(6) holds after substituting the solution 
(u;J of eq.(5), the objective homologous deformation can be said realized per se. In 
most case, eq.(6) is not satisfied. Hence, the baseline design is to be changed so as 
to eqs.(5) and (6) are satisfied by the same (Ui). In doing so, M structural 
parameters P", are chosen judiciously, and design variables a", are assigned to 
them in the fonn of eq.(9) fa- the homologous deformation realization. 

(9) 

The upper bar means the quantities concerning with baseline design hereafter. 
First-order approximation method is employed to decide a",. The change of {u;} 

is expressed in the ftrst-order approximation form of eq.(lO) in the vicinity of the 
baseline design. 

(10) 

The SUperfIX I and suffIX m mean the first-order sensitivity with respect to am 
hereafter. (uJ..)is determined so that eq.(5) holds regardless of the design change. 
The change of the matrix [K,] is similarly expressed in the fonn of eq.(11). 

M 

[K,] = [K,] + L[K:"'p", (11) 
", .. 1 

The governing equation of a", is obtained as eq.(12) by means of substituting 
eqs.(lO) and (11) into eq.(6), which must hold after the design change, and 
truncating second-ader term of a",. 
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M 

L([K:"']{~}+[Kr]{ui..}pm ={.t;.}-[Kr]{~} (12) 
m=1 

Equation (12) is summarized in the following matrix form, 

[A]{a} = {b} (13) 

where [A] is a JxM rectangular matrix and {a} a design variable vector consisting 
of M unknowns. As (~} and (u£") are proportional to Vj}, the design variables 
are governed by the mode of loading, irrespective of the magnitude of it. 

The solution of eq.(13) is obtained by using the Moore-Penrose generalized 
inverse [Ar. When the existence condition of the solution in the form of eq.(14) 
holds, the general solution of eq.(13) is given as eq.{I5), 

([I]-[A][Ar){b} = {OJ (14) 

{a} = [Af {b} + ([/] - [Af[A]){h} (15) 

where [I] is an identity matrix and {h} an arbitrary vector consisting of M 
ingredients[6]. The first term and the second one of right hand side of eq.{I5) are 
called particular solution and complementary solution, respectively. Aiming at 
minimum design change, we employ only the particular solution, which is so 
determined as to minimize the norm of the design variable vector, owing to the 
property of the Moore-Penrose generalized inverse. 

The design variables thus obtained are affected by the deficiency of the flfSt-order 
approximation. The deficiency can be overcome by iterative renewal of the 
baseline design. For the judgment of the realization of homologous deformation, 
the norm ofvectorial difference between the ochieved {UII} and the objective {UII}= 
[C]{uil, as is given by eq.(16), is evaluated in this study. 

{e} = {ulI}-[C]{Uj } (16) 

The renewal of the design is carried out until the norm of vectorial error {e} 
becomes equal to nil satisfactorily. 

3. Numerical Examples 

Validity of the proposed formulation is examined in problems of out-of-plane 
bending of the planar frame structure illustrated in Fig. I. It is simply supported at 
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four comers marked by solid triangle and subjected to a concenttated force p = 500 
N at the center node. The cross section of all members is kept circular whose 
diameter is equal to d = 50.0 mm for the initial baseline design. Each member is 
represented by a finite beam element with torsion. Young's modulus and modulus 
of rigidity of the material are taken as E = 70.0 GPa and G = 26.9 GPa, 
respectively. The defonnation at the initial baseline design is shown in Fig.2. 

The homologous deformation aimed at in this example is to keep the center 
member, which is indicated by s-s and encircled by the broken line in Fig.I, 
straight always. This example is associated with a scenario that the center member 
mounted with laser optical system is to be kept straight notwithstanding the 
disturbance load of system weight The control cost to maintain the straightness 
would be lowered substantially by the realization of the homologous deformation. 
Design change is carried out in two ways, that is, by changing the diameter of all 
elements and by changing the nodal position of the structure. The error index for 
homologous deformation {J is defined as the norm of the vectorial enor normalized 
by the vertical deflection at center node denoted by WI in the form of eq.(17) in this 
study. 

(17) 

Fig.I Planar frame structure 

20 

o 

-20 

Fig.2 Deformation at baseline design 
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3.1 Homologous Deformation by Changing the Diameters 

The effect of the diametral change is discussed flfSt Figure 3 shows the defonned 
frame after the flfSt renewal, which is almost the same with that in Fig.2. Figure 
4 depicts the deformed frame after the fifth renewal, in which the center member is 
kept straight as is aimed at. The amount of the change of the diameter to realize 
the objective homologous deformation is shown as a ratio to the initial value in 
Figs.S and 6 for the members arrayed along the x direction and y direction, 
respectively. A simple way to realize the objective homologous deformation is to 
set the flexural rigidity of the center member sufficiently large, which leads to 
inevitable increase of total weight The results of Figs.S and 6 indicate that the 
objective homologous deformation is realized by increasing the diameter by SO% 
at most and total weight by 12.4% of initial baseline design. This subtle change 
in total weight owes to the property of the particular solution of the design 
variable vector whose norm is minimum. Figure 7 shows the monotonic 
convergence of the error index for homologous deformation to zero with iterative 
renewal. 

20 

o 

-20 

Fig.3 Deformation after first renewal in diameter 

20 

o 

-20 

Fig.4 Homologous deformation realized by changing the diameter 
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Fig.5 Amount of design change in diameter (x direction) 

Fig.6 Amount of design change in diameter (y direction) 
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Fig.7 Convergence of error index by changing diameter 
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3.2 Homologous Deformation by Changing the Nodal Position 

The objective homologous defonnation is aimed at by changing the shape of the 
structure, that is, the nodal position. The design change in this case is carried out 
by assigning design variables independently to the length of members arrayed 
along y direction. Figure 8 shows the deformed frame viewed in the y direction, 
and indicates that sagging is left after the fIrst renewal. Because of the symmetry 
of the defonnation, the nodes marked by blank square in Fig.l are not plotted. 
Nine renewals is required to realize the objective homologous defonnation shown 
in Fig.9 in this case. The shape of the structure after the realization is shown in 
Fig. 10 as viewed in the z direction. It is inferred qualitatively that a simple way to 
realize the objective homologous defonnation is to make the center member 
sufficiently short. The result of Fig.l0 indicates that the center member is 
lengthened conversely for the realization. Homology design in this case makes 
structure so flexible that the vertical deflection of center node is increased 
remarkably. If demanded, some constraint condition for the overall stiffness to 
maintain the structural integrity should be added to the governing equation of the 
design variables. Figure 11 depicts that the convergence of the error index for 
homologous defonnation is also monotonic in this case. 

L Om" 
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Fig.8 Defonnation after fIrst renewal in nodal position 
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Fig.9 Homologous defonnation realized by changing nodal position 
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Fig. 10 Top view of frame for homologous deformation 
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4. Concluding Remarks 

Homology design in static problems is inveStigated. The new methodology by 
means of ftnite element synthesis is proposed. The validity and versatility of the 
proposed method is examined in problems of out-of-plane bending of planar flame 
structure, in which the homologous defonnation to keep the center member 
straight is realized by two ways of changing the diameter of all members and nodal 
position of the structure. The realization is carried out by changing structural 
parameters subtly, owing to the property of the design variables with the 
minimum norm. A numerical example suggests that homology design sometimes 
results in low stiffness structure which needs some constraint in order to maintain 
the structural integrity. 
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Abstract Problems encountered when developing some distributed produc
tion systems (or service systems), so as to make them capable of performing 
definite types of tasks are considered in the paper. These systems can be 
described by mathematical models used in the solution of problems of de
velopment and allocation of manufacturing tasks. Use is made of models 
describing events occurring at discrete time instants. The problem is redu
ced to an optimization of task distribution structure and to the choice of 
variants for the development of a system within the framework of allocated 
resources. 

Keywords. Distributed systems, system development, manufacturing sys
tems, discrete time, simulation, assignment problem, suboptimal solution, 
modified Lagrange function. 

1. Problem formulation and mathematical models 
There are some tasks, which are characterized by a set of required pa

rameters at fixed time instants. All possible variants of the development 
with indication of cost and increase in parameter values at the considered 
time intervals have been prescribed for each manufacturing unit of the sys
tem (service center). The fulfilment of prescribed tasks requires some extra 
expenses resulting from the necessary interconnection between the task so
urce and the service center. These expenses may be those of transcription 
costs, communication costs and etc. 

One of the natural criteria in the solution of this problem is that the total 
expenses for the development of a service system and for the fulfilment of all 
tasks should be a minimum. 

Another possible criterion may be that of considering the quality of func
tioning of the system as described by the downtime of the task sources waiting 
for the begining of servicing and also there may also be losses caused by equ-
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ipment failure incurred at the servicing center and so on. The value of this 
criterion can be determined through a simulation modeling on the basis of 
the solution derived from the previous criterion. 

Thus, we obtain a highly complex problem of optimization and simulation. 
Here, in the first stage, the structure of the servicing system and the task 
distribution are determined from the optimization problem. In the second 
stage the quality of the obtained solution is determined using the simulation 
model. 

The equilibrium state of the criteria can be defined in the course of itera
tive interaction of the problems pointed out to by making use of the method of 
concessions and by changing the possible level of centralization in the system 
through a restriction of ultimate technical abilities of the service centers. 

Let us consider the mathematical formulation of the optimization pro
blem. Suppose, a set of adjustable time instants T = {tl. t2, ... } has been 
prescribed. There are known the sets oft asks If = {il. i2, i3, ... }, t E T, with 
the required characteristics of {Will:}, i E If, k E K, where K is a multitude 
of types of such characteristics. Here J is a set of points selected for the 
location of service centers. For each point j E J the multitude of possible 
variants of the center development {Pfj} has been prescribed in the form 
of the sets, reflecting the technical characteristics {Bpj II:} and the expenses 
required for the realization {Apj}. The matrix of transformation expenses 
{Cijf} has been constructed on the multitudes It x J. 

The looked for variants of the system development and of the distribution 
of tasks between the service centers will be prescribed using the following 
logical variables 

{
I if i-th task source is handled in the 

Zijt = j-th center at a time t, 
o otherwise 

{
I if p-th variant of the development is used in 

Ypjt = the j-th center at a time t, 
o otherwise 

Then the mathematical model of this problem can be given in the following 
form: 

S = min E Vt[E[E CijfZijf + E[Apj + 9pj(Ojt)]Ypjt]] (1) 
f j p 

is to be found under the following constraints: 

EZijt=l, iEIt , tET (2) 
j 

f 

EWill:Zijf $ EEBpjJ:YpjT, k E K, j E J, t E T (3) 
T=l p 
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~~CijfXijf $ C~, t e T 
j 

~~ApjYPjf $ A~, t e T 
j p 

~YPjf $ 1, j e J, t e T 
p 

Xijf, Ypjfe{O,I}, ieIf pePfj, jeJ, teT. 

(4) 

(5) 

(6) 

(7) 

Here njf is a vector, reflecting the total throughput of the j-th center 
according to the types of productions output: 

njf = {nkjf} = {~Wi1Xijf' ~Wi2Xijf' ... }, 
i i 

gpj 0 is a function representing the current expenses in the j-th center accor
ding to the p-th variant of the fulfilment of the prescribed tasks, lit - are the 
cost discounting coefficients. 

The mathematical model (1)-(7) represents a problem of the integer non
linear programming with Boolean variables. The problems on development 
and location of production are considered to be known extensions of similar 
models. 

Using the approach suggested in [1],[2] we shall partition the initial pro
blem into a number of subproblems of the following type: 

Wj(ej) = min ~ lIt[~ CijfXijf + ~[Apj + gpj(njf)]Ypjt] (8) 
f p 

is to be found under the constraints: 

f 

~WikXijf $ ~ ~BpjkypjT' k e K, t e T, 
T=l P 

~ Ypjf $ 1, t e T, 
p 

Xijf, Ypjf e {O, I}, i e If, p e Pfj, t e T. 

(9) 

(10) 

(11) 

(12) 

This problem describes the j-th service center. Its solution allows to de
termine the optimal variant of the center development for the prescribed 
distribution vector ej = {eijf}' It also allows to find the sub gradient com
ponents 8Wj (ej) = {-Uij f} of the function S = Lj Wj (ej) as the Lagrange 
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factor values of constraints (9) in the stationary point of the Lagrange func
tion of the subproblem taking into account the obtained solution. Then, the 
following coordinating problem gives an opportunity to change the existing 
distribution in the direction of the antisubgradient of the objective function 
of the initial problem 

max E E E Uijteijt 
j 

is to be found under the following constraints: 

Eeijt=l, iEIt , tET, 
j 

t 

(13) 

(14) 

E Wikeijt ~ E E B pjk1]pjT, k E K, j E J, t E T, (15) 
T=l p 

E E Cijteijt ~ C:, t E T, 
j 

~~Apj1]pjt ~ A~, t E T, 
j p 

~ 1]pjt ~ 1, j E J, t E T, 
p 

(16) 

(17) 

(18) 

eijt, TJpjt E {O, I}, i E It, p E Ptj, j E J, t E T, (19) 

There, the variables eijt and 1]pjt are the analog of the corresponding 
variables Xijt and Ypjt. The coordinating problem represents a linear distri
bution problem with the Boolean variables or an assignment problem. 

2. The Procedure of the solution of an assignment 
problem 

Let us consider the problem of coordination (13)-(19). This problem is 
an NP-complete one. Therefore, the development of effective algorithms for 
fast derivation of suboptimal solutions is of special interest. We suggest such 
an approach to the solution of the problem considered as follows from the 
transformation of the initial problem using a modified Lagrange function. 
Let us construct the Lagrange function for the truncated problem (13)-(19). 

L = Ei E j Ef Uijfeijf + E j Ek Et[E~=l Ep B pjk1]pjT+ 

EiWikeijt]Akjf + Ef[[A~ - E j E p A pj1]pjf],pt + [C~+ 
+ E j Ei Cijteijt}rt] = Et E j Ei[Uijt - Cijt'Yt - Ek WikAkjt]eijt+ 

+ Et E j Ep[Ek Bpjk E;=t AkjT - A pj,pt)1]pjt + Et[AttPt + cf'Yt). 
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The constraints (14), (18), (19) prescribe the region where the function 
is to be determined. 

The analysis ofthe obtained expression shows that if the optimal values of 
factors A = {{Akjt}, Nt}, btD then, owing to the action of constraints (14), 
(19) the unit values of variables eijt, appear in the optimal solution with the 
maximum coefficients under the unknown quantities for each i E It, t E T. 

A similar conclusion can be drawn for the variables 7]pjt, if the additional 
requirement of the positivity of these coefficients is met according to the 
condition (18). 

However, the use of the Lagrange functions for discrete programming does 
not guarantee an optimal solution of the problem on account of duality di
scontinuity. Let us also note, that the main purpose of the coordinating 
problem is the determination of the task distribution among the service cen
ters prescribed by the e = {eijt}. The variants of the development are being 
chosen in the subproblems along with the general estimation of this choice in 
the form of subgradient components of the objective function. 

Moreover, the calculation experience shows that the constraints imposed 
on the total cost of equipment as well as those imposed on the total trans
portation expenditures are better to be taken into account according to the 
algorithm of intensities and also by introducing the corresponding weight fac
tors for the arrays of {Cijt}, {Apj} for the purpose of postoptimal analysis. 
Therefore, let us assume that '¢t = It = 0, t E T. Then it is suggested to use 
the mentioned principles of variables assignment in the course of successive 
iterations using the following modification of the Lagrange function: 

Lm = :L:L :L[Uijt - Aijt]eijt + :L:L:L BpjkBjt'T/pjt 
t j i t j p 

here Bjt = E;=t max; AijT' 
We shall start the search for the required distribution from the assign

ment formed under Aijt = 0, this corresponds to the constraint relaxation 
(15)-(17). Each subsequent assignment should differ from the preceding one 
by the value of one component, minimum change of the objective function 
and closer location to the admissible region. For this purpose we shall vary 
the introduced coefficients {Aijt}. 

This will provide for the change of the assignment components with the 
same name, this assignment was obtained according to the regulations fore
seen for the case when the corresponding constraints are not met. 

Let us show the procedure of the choice of values for the main variables 
of the problem. Let us find 

j* = arg m!IX{ Uijt - Aijt} , i E It, t E T. 
J 

(20) 

Then 
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{ I ifj=j* 
eijf = 0 otherwise. (21) 

Let's calculate Ojf, j E J, t E T and determine: 

If EI: Bpjl:Ojf = 0 for p = p. then 'tip: '1pjf = O. 
Otherwise 

{ I if p = p. 
'1pjf = 0 otherwise. 

For the realization of the proposed algorithm it is necessary to form a search 
vector <pr = {<prjf} for each r-th iteration. This search vector prescribes 
the assignment coordinates which may be subject to change. The vector 
components <P can be prescribed in the following way: 

{ I if 3k E Kj ~ < 0 and eijf = 1, 
<Pi'f = /oJ' 

J 0 otherwise. 

We shall obtain new values of components ~r+l = Pjj~l} for the next itera
tion. For this purpose we shall define the scalar value of p. = miIlp>o p under 
the condition that ~r+l = ~r + p.<pr provides for the admissible change of 
the assignment of one order in terms of the expressions (20)-(21). If the next 
change of the distribution is inadmissible then ~r is recalculated in terms 
of given relationship and the vector <pr is redetermined and afterwards the 
process is continued. 

The execution of this procedure allows to find the suboptimal solution 
of the problem (13)-(19) over a finite number of steps. This can be done 
owing to the minimum changes of the functional being optimized during the 
approximation to the admissible region. Let us note, that the components 
~ijf obtained using this approach carry the information about the conditional 
losses to the objective function in the course of assignment change relative 
to the initial value. If the iteration process will be continued after the deri
vation of admissible solution until only one assignment component remains 
unchanged, then we shall come to the inverse problem of the following type: 
to maximize the sum of indemnifield conventional losses by the restoration 
of the assignment components taking into account the constraints imposed 
on the productive capacities of the service centers. 

Formally the inverse problem can be described by the following mathe
matical model. 
Find 

p(e·) = max E E E ~ijfeijf (22) 
f jeJ' i 
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under the constraints 

E eijf :5 1, i E If, 
jEJ' 

(23) 

(24) 

eijf E {O, I}, i E If, j E J', t E T. (25) 

The expressions (22)-(25) represent the problem oflinear integer program
ming with Boolean variables which has a considerably smaller dimension in 
comparison with the initial one. Indeed, if the admissible set of problems 
(13}-(19) is not an unfounded one then IJ'I < IJI, since J' = {j E Jj Aijt > O} 
and J' is defined by the quantity of violated constraints in the course of di
stributions shaping. Besides, the variables of the choice of the development 
variant whose values are found at the stage of determination of admissible di
stribution (Bj"f - are the capacities corresponding to them) are absent in the 
problem (22}-(25). The transformations suggested allow not only to reduce 
the dimension but also to construct the simple algorithm for the derivation 
of the approximate solution of inverse problem. In combination with the 
branch - and - bound method this algorithm allows to estimate the inter
mediate solution and to obtain the optimal solution after a finite number of 
steps. 

Let us consider the content of this algorithm. The criterion of assign
ment is a maximum of Aijf value and the condition is the realization of the 
corresponding constraints (23). 

The solution found can be used as a lower estimate (of the record) in the 
scheme of branch - and - bound method. 

To obtain the upper estimate one can solve the problem of linear program
ming (22}-(24) under condition of nonnegative variables. Taking into account 
the constraints of a "Knapsack" type (23) we suggest a simpler algorithm in 
comparison with the algorithm of the simplex - method. Its essence consists 
in successive assignment of units i E If according to the maximum criterion 
Aijt under condition of (23). If under the next assignment some constraint 
(23) is violated the admissible part of the order is assigned and the rest is 
considered as a new order which is distributed on general terms. 

3. The Procedure of the subproblem solution 
Let us write the Lagrange function for j-th subproblem. 

Lj = Ef Vt[Ei CijfZijf + Ep[Apj + Upj(nfj}]Ypjt]+ 

+ Ef E,,[EiWiI:Zijf - E~=l Ep Bpj"YpjT]Pl:t. 

Following the transformations we shall obtain 
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Lj = Et Ei[Vtcijt + EI: Pl:tWil:]Xijt+ 
+ Et Ep[Vt[Apj + gpj(Ojt)] - EI:[Bpjl: . E;=t PI:T]]Ypjt. 

(26) 

Here, {Pl:t} are the Lagrange factors of constraints (10). The conditions 
(11)-(12) shape the area of function determination. Taking into consideration 
the constraints (9) the terms of the Lagrange function with the variables Xijt 
will not be further considered. 

Taking into account the above-mentioned remarks about the possibility 
of Lagrange function usage for the discrete programming we shall use the 
obtained expression for the choice of a branching variable in the branch - and 
- bound method. 

In order to provide that the succession of variants is being exhausted in 
terms of increase of the objective function of subproblem we shall assume 
that in the expression (26) Bpjl: = Ol:jt, if Ol:jt > O. This will make the 
constraints (10) active without changing the area of optimal solutions for the 
j-th subproblem. 

Then we shall find P = minp>o(max{O, Po + p"V pLj}), where "V pLj- is 
a vector - gradient of the Lj function in terms of Lagrange factors, p- is a 
value of step at which at least one coefficient in the expression (26) will be 
equal to 0 at Ypjt. Evidently, the corresponding variable would produce the 
maximum influence on the demand satisfaction within the time interval being 
considered. 

Let us shape two sets on the basis of the opposite values of this variable 
that allow for the realization of the branching mechanism. The portion of 
variables fixed in this way will be called the partial solution. Then, if the 
value of the objective function of a subproblem will be taken as a estimate 
of a set chosen for the branching at the corresponding partial solution then 
the first admissible partial solution of one of the sets with the minimum 
estimation will be the optimal solution for j-th subproblem. 
Thus, the algorithm will take the following form 

1. Suppose, the index of the branching level is 1=0 and the corresponding 
set is G' = O. 

2. From the sets GO ... G' we choose the set Gil with the minimum estimate. 
3. If the partial solution from the set Gil is admissible, then it is opti

mal. Therefore, the solution process is completed, otherwise, the iteration is 
continued. 

4. In case of the order being not met 

t 

O~jt = max{O, Ol:jt - I: I: Bpjl:Ypjt} 
T=l p 

we shall find the variable for the branching Y;jt and form two sets Gil 

Gil U {Y;jt = O}, G'+l = Gil U b;jt = I} taking into account the partial 
solution from the set Gil. 

5. Let us assume 1 := 1 + 1 and pass on to the item 2. 
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4. The general algorithm for the problem solution 
For the solution of the optimization problem we used the algorithm given 

below: 
1. To obtain the initial admissible distribution of tasks e = {eijt}. 
2. To solve the subproblems (8)-(12) and to determine the subgradient 

components c5W(e) = {c5Wj(ej)} = {-Uijt}. 
3. To obtain a new distribution of tasks using the solution of the coordi

nating problem (13)-(19). 
4. If a new distribution does not coincide with the preceding one we are 

to go over to item 2. 
5. The solutions of subproblem corresponding to the minimum value of 

the functional S = Ej Wi (ej) is a solution of initial problem. 
The obtained solution of the initial problem can be subjected to the es

timation using the simulation models that allow for the estimation of such 
difficult - to - formalize index values as total losses due to the idling of task so
urces, waiting for the servicing or total losses due to the idling in consequence 
of service centers refusal, etc. 

The balanced state between the minimum cost criteria and the minimum 
losses criteria can be reached through a successive use of the suggested ge
neral algorithm with the simultaneous change of the centralization level in 
the system. This change can be reached through the variation of the power 
increment variants within the framework of prescribed technical data of the 
equipment installed in the service centers. 

5. Conclusion 
The algorithms suggested have been realized in the form of program pac

kages functioning under the medium VM-370 of the computer EC-I061 (an 
analog of IBM-PC desktop computer). The first variant was used for the 
determination of prospective development of helicopter maintenance system 
in Tyumen and the second variant was used for the determination of software 
- hardware of a distributed multiprocessor system exercising control over the 
technological equipment. 

As an estimate of the efficiency of the algorithms being suggested we shall 
note that approximately 70% of the total time required for the solution of a 
problem is consumed by the coordinating problem (13)-919). And the esti
mation of " labor intensity" of the problem solution constitutes O(m2n2tm ), 

where m = maxt{lItl}, n = IJI, tm = ITI. 
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Support Number and Allocation 
for Optimum Structure 
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Warsaw, Poland 

1. Introduction 

In structural optimization most of the attention has been paid so far to 
structure itself. However in many cases the type and number of supports 
are having an important influence on minimum cost of the total system 
- structure plus supports. To make the problem more clear let consider 
two different structures - bridge and guyed mast. The bridge symbolically 
presented on Fig.1 may be supported at seven structural joints 1,2, ... ,7. 
Depending on the conditions each of the seven supports may be of different 
price. One might be on rock other one on sand or bottom of river or sea. We 
have then to answer how to support our bridge to achieve the lowest cost, 
both of structural material and supports. With assumed configuration of 
structural nodes and members we may assume that the cost of assembling 
is constant and may be omitted in cost function. 

6 x 10m 

0.75 P 10m 

Xl Xs X6 

Fig. 1. 

Height of a radio guyed mast, symbolically presented in Fig.2, is fixed 
as related to the radio wave. Other structural parameters may be seen as 
design variables. Among them is the number of supporting guys. Increasing 
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guy number we are increasing also number of guy anchors and insulators. In 
the same time we are decreasing dimensions of mast members. This in turn 
causes decrease not only material volume but also external loading arising 
from wind pressure and icing. 

Fig. 2. 

Two above examples are showing that the problem in question is multi
disciplinary one coupling together expenses on material and supports toge
ther with structural mechanics specifying forces, stresses and displacements. 
Other words in order to solve this kind of the problem, the relation between 
costs of particular structural members and structural supports with phy
sical properties of these members and support must be known. In general 
these relations are nonlinear. In the paper with out loosing generality we 
are assuming these relations linear to make the reasoning more clear. 

The idea of optimal allocation of structural supports is not a new one. 
However papers dealing with this problem [1], [2] were limited to relatively 
simple structures in form of a. beam. So far to our knowledge no conside
ration dealing with an arbitrary structure and optimum number of support 
have been published. 

Designing the structure from a finite set of available rolling profiles ( list 
on catalogue of prefabricated steel cross section) our optimiza.tion problem 
becomes a discrete one. We also assume that in real structural design we 
may have to our disposal only a finite number of given kinds of supports 
with price of each of them related to maxi~ force it can bear. 

There are several methods to solve a problem of discrete optimization. 
However only few of them efficient for relatively large problem. As large 
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problems we mean here order of magnitude 1010 _1020 of possible combina
tions. One of the efficient method is controlled enumeration method which 
allows to solve such large problem within hours on PC [4]. The computing 
time depends of course on number of degrees of freedom of structural sys
tem. The method elaborated by authors in their earlier works was checked 
already on several examples [3] showing its practical effectiveness. 

The computing time of discrete optimization problem is relatively long 
comparing with the some problem but with continuous variables. For this 
reason it is often better to apply as a first step of the solution the conti
nuous approach, using it in discrete computation as lower bound value cost 
function. 

The paper is illustrated with an example of bridge - like structure with 
three unknown structural cross section area and seven possible support po
sitions. 

2. Statement of the Problem 

Consider structure of given configuration with 10 structural members 
or linking groups and io joints at which supports may be applied. Cross 
section area AI of f-th structural member at cost of cl per unit length may 
be chosen from a list of available rolled profiles defined by ordered pair 

with 
1= 1, ···,10; if = 1, ... ,kl 

where 
kl - number of available profiles from which f-th 

structural element is chosen. 

(1) 

Support bearing maximum reaction Ri at cost ei may be chosen from 
a list defined by ordered pair 

(Ri, ei) E [(0,0), ... , (RL, efJ, ... , (R!n., em.)] 

with 
i = I, ... , io; Ii = I, ... , mi 

where 
mi - number of available supports 

in a list from which i-th support may be chosen. 
We assume that cf, and ct. are ordered as follows 

(2) 

(3) 



The discussed problem may be stated as follows. 
Find minimum of the cost Cd 

I. ,. 

Cd = Eelil + EC, 
1=1 i=1 

where II -length off-th structural member. 
The structure is subjected to following constraints 

K(A)u- P = 0 
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(4) 

(5) 

(6) 

(7) 

and sets of available profiles and supports defined by (1) and (2). Xi
stands for reaction at i-th support. 

3. Methods of Solution 

At least two methods may be applied to the solution of problem in 
question. The first one consists in finding an ordered sequence of values of 
the cost function (4). The combination of structural members and supports 
which gives the smallest value of the cost function (4) and at the same time 
fulfills all of the constraints (5)-(7) is the solution of our problem. It must be 
pointed out that there condition. The method of finding mentioned above 
sequence of values of the cost function was presented by Z. Iwanow [4] and 
will not be discussed in this paper. Bellow we will present an approach for 
case when continuous solution may be found and is considered to be the 
lower bound for the discrete one. Denoting by C: minimum of the cost 
obtained by continuous approach and by Cd minimum discrete solution we 
have 

C; !5 Cd· (8) 

4. Controlled Enumeration Method with Given C; 
With above specified notations the cost function in this particular case 

the cost Cd of structure and its supports is given by (4). In order to present 
all possible values of Cd let consider a graph with tree structure constructed 
as follows (Fig.3) 
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(0,0) 

Fig. 3. 

(i) Start with a root with pair of indices (0,0). 

(ii) Subsequent vertices of the graph representing 10 it structural members 
are defined in such a way that the vertex with indices (I, j) becomes 
a parent of vertex (I + 1, k) for k = 1, ... , kJ+l up to 1=10' 

iii Subsequent vertices of the graph representing supports are defined in 
such a way that vertex with indices (10 + I,j) becomes a parent of 
vertex (10 + I + 1, k) for k = 1,2, ... , ki+l. The vertices with the first 
index (10 + io) don't have children. 

(iv) Assign to the edge between the child with (I,j) and its parents the 
cost equal to lIe{. and to the edge between the child with (10 + I,j) 

J 

the cost equal to C:n .. 
J 

(v) Assign to the vertex with first index I (or 10 + i) the number equal to 
the sum of costs represented by all edges joining the vertex with the 
root (0,0). All vertices with the first index I (or 10 + i) are said to 
belong to the layer I (or 10 + i). 
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Under above definitions vertices with the first index /0 + io represent all 
possible combinations of values of the cost function Cd. 

The number N of these combinations is equal to: 

(9) 

According to (3) and (v) the extreme vertices belonging to the same layer 
ofthe graph (subgraph) represent the smallest and the largest cost from all 
possible costs included in the layer. This important property of the graph 
(subgraph) will be very useful in further considerations aimed to find the 
minimum of our discrete problem. Let now apply the described graph to an 
algorithm allowing to find minimum cost Cd of discussed structure together 
with its supports from lists of available structural members and supports. 
As it has been said the lower bound of our problem is the minimum cost 
of a structure for continuous design variables. First of all we then to find 
continuous relation between unit cost of structural members and their cross 
section areas, as well between cost of supports and their bearing reaction. 
This can be done by filleting curve method presented on FigA. This gives as 
needed relations which in our case, without loosing generality are assumed 
to be linear 

C • - rlA~ C' = z'R' JJ - 1/ Ii Ii 

Fig. 4. 

(10) 

This is not aim of the present paper to discuss the minimum continuous 
solution C;. It may be found applying algorithm presented in earlier Au
thors paper [3]. Other words for the purpose of presented paper we assume 
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that continuous minimum solution C: is known. If so the minimum discrete 
solution Cd may be seen as minimum of all differences 

(11) 

for which all constraints are satisfied. 
Below is the outline of an algorithm based on Iwanow algorithm [4] adapted 
to the purpose of discrete structural optimization. 

STEP 1. 
Find the continuous solution for minimum cost C: of the conside
red structure. The minimum cost C: is the lower bound for discrete 
solution Cd. 

STEP 2. 
Consider all subgraphs with roots (1, k) k = 1,2, ... , k1 belonging to 
the layer 1. Extreme vertices in this layer lo+io represent the extreme 
values of the cost Cd and are as follows 

/0 
Cmin - I 1 + ~ I I d1,i - 1eil L.J le1 

/=2 

/0 /0+1 

(12) 

C:n~f = hell + E llc{J + E Cmi (13) 
1=2 i=/o+1 

There are three possible relations between these numbers and conti
nuous minimum solution C: 

C~ = cmi,! (a)· cmi,! < C· < c ma1' (b)· c ma1' < C· (e)· (14) 
I dl,1 , dl,1 - C - dl,1 , dl,1 C , 

If (a) is true the combination of member sizes and supports represented 
by CXi,7 and fulfilling constraints is solution of the problem if such a 
solution does not exist in subgraph (l,j - 1). 
If (b) is true go to STEP 3. 
If (e) is true there is no solution of our problem among vertices of this 
layer. 

STEP 3,4, ... ,/o+io. 
Apply the some procedure as in STEP 2 up to layer 10 + io - 1. 

STEP 10 + io + 1. 
Enumerate vertices of 10 + io layer which are children of vertices (/0 + 
io - 1, j) and check following relation. 

(15) 

Store vertices of each subgraph (/o+io-l,j) for which Cd,Jo+i,j-C: = 
mIn. 
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STEP 10 + io + 2. 
Successively verify if structures related to these combinations do not 
violate any of constraints. First structure fulfilling this condition is 
the solution of discrete minimum weight solution. If no one of these 
combinations fulfills constraint conditions go back to STEP 2 replacing 
C: by the first stored combination of Cd [5]. 

5. Numerical Example 

Let consider bridge -like structure of given configuration (Fig.l). There 
are seven lower structural nodes at which supports may be applied. The 
problem consists in finding number and allocations of supports giving mi
nimum cost Cd of the total system equal to the cost of structural material 
together with the cost of supports: 

fo io 

Cd = Leill + LCi 
1=1 i 

Design variables of the problem are as follows: 
A 1 j A 2 - cross section areas of upper and lower structural members respec
tively 
A 3 - cross section area of vertical and diagonal members 
Ri (i=1,2, ... ,7) reaction force which may be carried by i-th support. 

The problem is subjected to following constraints. 
Equilibrium equations 

K(A)u- P = 0 

where K, u, P are stiffness matrix, nodal displacement vector and P exter
nalloading vector respectively. 
Cross section are a Af versus cost cf of unit length of listed profiles and 
reaction capacity R; versus cost of the i-th support Ci 

Cf = 7500A/[zl/m] for all 1 

cli = ziRL 
Inequality constraints are imposed on displacements u and stresses 0' as 
follows 

where 
u? = O.lm; uJ = 294300.0kPa 

Beside that constraints are imposed on possible selection of design varia
bles. Cross section areas of each structural member AI may be chosen from 
following set 

AI := [0.001; 0.0014; 0.0018; 0.0028; 0.0033; 0.0040; 0.0047; 0.0063; 0.008; 0.01]m2 
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Caring capacity Ri of each i-th support may be chosen from the set 

Rt := [0; 490.0; 981.0; 1962.0]kN 

with d~fferent price for each i-th support 

zi := [18.3490; 8.155; 12.232; 10.194; 8.155; 15.291; 12.232]zljkN 

The problem has been solved by algorithm [4] searching for increasing va
lues of the cost function C. Each of these values is related to a certain 
combination of cross sections areas of structural members and supports. 
Each of these combinations in turn is checked if assumed constraints are 
not violated. The check is perform by ABAQUS program for FEM. 

First value of the cost function containing support is the structure sup
ported just at the middle of the structure. However this combination does 
not fulfil constraint imposed on the middle support which may carry up to 
1962kN with the total reaction Ro equal to 2550.6kN. 

Finally after many iterations we come to the solution of minimum cost of 
our structure which is Cd = 32050zl. In this case the structure is supported 
at supports No 2 and 5 (Fig.5) and cross sections of structural members are 
Ai = 0.0033m2; A2 = 0.004m2; A3 = 0.0028m2. 

6 x10m 

10m 

Fig. 5. 

6. Conclusions 

Presented approach allows to solve practically important problems of 
minimum cost for which not only the cost of structural material but also 
of structural supports must be taken into account. The presented method 
is based on controlled enumeration which helps to avoid the enumeration 
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of all possible combinations arising in the problem. The consideration of 
all combinations makes the solutions of these type of problem practically 
impossible as their number may 'be of the order 1010 and more. 
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Abstract. This paper deals with the sensors allocation problem for the state 
estimation and parameter identification in non-linear stochastic distributed 
parameter systems described by parabolic partial differential equations. In 
order to pose the sensors location problem, a mathematical model of distri
buted systems is briefly considered. Then, a concise general review of several 
methods and approaches considered in the current literature for the state 
and parameter estimation is discussed. Some typical illustrative numerical 
example is presented in the final part of this survey type paper. 

Keywords. Distributed parameter systems, sensors location, identification, 
state estimation. 

1 Introduction 

Many real physical systems are inherently distributed and their adequate 
mathematical description requires using the .1ormalism of Partial Differential 
Equations (PDEs). Such systems are commonly called Distributed Para
meter Systems (DPSs) (see e.g. Omatu and Seinfeld, 1989; Korbicz and 
Zgurowski, 1991), and typical examples are many industrial processes where 
heat and mass transfer and chemical reactions are considered. They also 
include e.g. structural analysis and design where vibrations and dynamic 
behavior are central, acoustics problems, underground water and oil explo
ration, air and water pollution propagation and nuclear energetics (see e.g. 
Tzafestas, 1982; EI Jai and Amouroux, 1989). 

A fundamental problem in distributed systems control is measurement. In 
many industrial processes the nature of the state variables does not allow 
much flexibility as to which states can be measured. For variables that can 
be measured on-line, it is usually possible to make the measurements conti
nuously in time. However, since it is generally impossible to measure process 
states over the entire spatial domain of the systems, the spatial location of 
sensors and the information content of the resulting signals with respect to 
the distributed state and PDE model become the primary questions. 
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The measurement strategies which have been considered in the literature 
are as follows: 

• stationary location of a given number of sensors (e.g. Kubrusly and 
Malebranche, 1985), 

• movable sensors (e.g. Carotenuto et al., 1987), 

• scanning, i.e. using only some part of all the stationary located sensors 
at the moments when the measurements can be taken (e.g. Nakano and 
Sagara, 1988; Korbicz, 1991). 

As a matter of fact, every real transducer averages over some portion of the 
spatial domain. In most applications, however, this averaging is approxima
ted by considering that pointwise measurements are available at a number of 
spatial locations. In other case, the problem of finding the optimal geometry 
of the sensor support has been posed by El Jai and Pritchard (1988), and 
El Jai (1991). 

The above mentioned techniques involve the following problems, respecti-
vely: 

• how to choose the minimal number of the sensors 'and their location, 

• how to choose their optimal trajectories and velocities, 

• how to choose optimal location of the sensors at given moments. 

Furthermore, from the engineering point of view the sensors must be loca
ted so that the configuration fulfils the requirements of system identification, 
state estimation and optimal control, and in addition the technical constra
ints. 

A vast amount of literature has been produced dealing with the optimal 
sensor location problem for DPS, especially in the context of state estimation 
(see e.g. Kubrusly and Malebranche (1985) for the survey of the state of the 
art in the mid 1980s or the book by El Jai and Pritchard (1988». There 
have been much fewer works on this subject related to parameter identifica
tion. This is mainly because the direct extension of the appropriate results 
from state estimation is not straightforward and has not been pursued. The 
problems are essentially different since in the latter case the state depends 
strongly non-linearly on unknown parameters. 

In this paper the sensor location problem for the state estimation and 
identification in non-linear stochastic distributed systems is discussed. In 
order to pose the sensor location problem, at the beginning the distributed 
systems described by parabolic partial differential equations are considered. 
Then, a concise general review of several methods and approaches known 
in the current literature for state estimation and identification is presented. 
Special attention is paid to suboptimal solutions which can be obtained for 
most of the practical problems, e.g. air pollution monitoring, control of 
flexible space structures et al. An illustrative numerical example is shown in 
the last part of this survey type paper. 
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2 System Description 

Let n be a simply connected, open set in m.r with smooth boundary 
an, {} = n u an. Points of n (spatial coordinate vectors) will be denoted 
by z = (Zl,Z2, ... ,zr), and the time by t, t E (O,t,]. The system is assu
med to be described by the non-linear stochastic partial differential equation 
(Korbicz et al., 1988) 

ay(z,t) at =N~(y,z,t,6) +B(z,t)w(z,t), zEn, t E (O,t,] (1) 

where y(z, t) denotes the n-dimensional state vector, B(z, t) is a known 
(n x q)-matrix function, N~(·) is a non-linear spatial n-dimensional dif
ferential operator vector and w(z, t) is the q-dimensional vector of the 
Gaussian stochastic processes with zero mean and the covariance matrix 
Q(z,s,t), z,s E n, and 6(z,t) is the s-dimensional unknown parame
ter vector. 

The initial and boundary conditions for (1) are given, respectively, by 

y(z, t)1 = Yo(z), zEn 
'=0 

(2) 

(3) 

where Nb(·) is a non-linear spatial n'-dimensional differential operator 
vector defined on an, n' is dimension defined by the boundary condition 
type, and Yo(z) is the n-dimensional vector of the Gaussian stochastic 
processes with known statistics given by Yo (:z:), Po(z,s), and 6 b(t) is the 
s'-dimensional parameter vector. 

Furthermore, the system described by (1)-(3) is assumed to be well-posed 
in the sense of Hadamard, i.e. the solution exists uniquely and depends 
continuously both on the initial (2) and boundary conditions (3). 

As regards observations, we assume that measurements of the state y( z, t) 
are made continuously in time at N fixed points zi, j = 1, ... , N of {} 
and the observation system is non-inertial, i.e. 

z(t) = H(t)YN(t) + vet) (4) 

where z(t) = col{z(zi,t), j = 1,2, ... ,N} is the N·m-dimensional me
asurement vector, YN(t) = col{y(zi, t), j = 1,2, ... ,N} is an N· n
dimensional state vector at the measurement points, H(t) = diag{Hi(t) = 
H(zi, t), j = 1, 2, ... , N} is a known (Nm x Non) block-diagonal matrix and 
v(t)=col{vj(t)=v(zi,t), j=I,2, ... ,N} is the N·m-dimensional vector of 
white Gaussian processes with zero mean and the covariance matrix R(t). 

The white Gaussian processes w(z, t) and vet} are assumed to be sta
tistically independent of one another and also independent of the stochastic 
initial condition Yo(z). 
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Taking into account the foregoing, we wish to obtain estimates y(z, t; 6) of 
the state y(z, t; 8) based on all the past measurements %(t'), t' E (0, t). The 
estimate y(z, t; 6) which minimizes the variance Elly(z,t; 6) - y(z, t;ii)1I 2 

is called the optimal one, where II· II denotes the Euclidean norm. It is a 
strongly non-linear estimation problem which can be solved only by using 
some approximation methods (Tzafestas, 1982; Omatu and Seinfeld, 1989; 
Korbicz and Zgurovsky, 1991). On the other hand, these solutions depend 
on the measurement vector %(t) and therefore we should look for the points 
zj E 0, j = 1,2, ... , N of sensors location which are optimal in some sense. 
Below, the sensors location problem for identification and state estimation 
are considered separately. 

3 Sensors Location for State Estimation 

Up to date the optimal sensor location problem has been solved by many 
authors using different methods and approaches. Basic results have been 
obtained for the linear filtering theory of DPS (see Tzafestas, 1982; Omatu 
and Seinfeld, 1989). A common feature of the methods applied in these 
books is the necessity to solve the non-linear Riccati-type equations for 
the covariance matrix of the estimation error resulting from the Kalman 
filter. A great computation burden of these algorithms has stimulated many 
authors to look for suboptimal solutions of the sensors location problem. 
A computationally efficient procedures have been proposed by Kumar and 
Seinfeld (1978), Nakamori et al. (1980) which minimize an upper bound of 
the estimation error variance. The allocation algorithm which incorporates 
the recursive selection of the sensors location into the equation which defi
nes the evolution of the covariance has been considered by Carotenuto et al. 
(1990). Contrary to the methods mentioned above, Magami's et al. (1990) 
approach reduces the problem of sensor positioning to a solution of a non
linear mathematical programming problem. This method was applied to the 
sensor positioning of a large-order flexible space structure. 

Although the optimal measurement problem for movable sensors is very 
attractive from the viewpoint of the degree of optimality, only a few authors 
have examined this topic. Carotenuto et al. (1987) have minimized their 
complex optimality criterion and the resulting mathematical statement of 
moving sensors problem has been transformed to an optimal control problem 
for a lumped-distributed parameter system. An alternative approach to mo
ving sensors is to assume that several sensors are placed in predetermined 
locations, and the state is measured from one of them at a time (Nakano and 
Sagara, 1988; Korbicz, 1991). It is called the scanning observation problem. 

The majority of known research has been devoted to the optimal measu
rement problem for the linear DPS and with less work on the non-linear 
systems. Using the suboptimal Kalman filtering algorithm for DPS, a com
putationally efficient method was proposed by Korbicz et al. (1988). Below, 
main features of this method are discussed. 
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3.1 Sensors Location Problem 

It is necessary to define a minimal number of sensors N and fixed points of 
their location zopt = [z1z 2 ... zH] at domain n = n u an which minimize 
the cost function 

(5) 

where tr [.] denotes the trace of matrix [.], P(z, s, T) is the covariance 
matrix function estimate, with respect to restrictions given by the suboptimal 
Kalman filter (Korbicz et al., 1988) 

ay~:,t) = N,;(Y, z, t) + PN(z,t)HT(t)R- 1 [z(t) - H(t)YN(t)] 

acy~:, t) = (N,;)y Cy(z, t) _ PN(Z, t)HT(t)R-1(t) 

ap(z,s,t) 1 ~ 1 11 T at = -T, P(z,s,t)+ T,T T cy(-y,t) cy (p,t)dpd, 
t t ,; , 0," o. 

(6) 

(7) 

(8) 

with known boundary and initial conditions. Above y(z,t) denotes the 
n-dimensional state estimation vector; c5y(z,t) = y(z,t) - y(z,t) is the 
filtering error vector; (N,;)y = aN,;/ayly=y denotes the Jacobian matrix; 

Tt,T,; and T. are the chosen constant coefficients; P(z,s,t) is the (nxn) 
filtering error covariance matrix and PN(Z, t) denotes the matrix at the 
measurement points. It should be noticed that filter equations (6)-(8) are 
obtained for DPS model (1)-(4) assuming that parameter vector 6 is known. 

Solution of optimization problem (5)-(8) can be done by its transforming 
to the bang-bang optimal control problem. After that, one can obtain the 
computational effective recursive algorithm of the sensors location (Korbicz 
et al., 1988). The computational efficiency of this algorithm is defined by 
using the suboptimal filtering algorithm (6)-(8) which does not require so
lution of the Riccati-type equations for the filter error covariance. Up to 
now there have been many practical applications of this recursive algorithm 
of sensors location (see e.g. the monitoring stations location problem for 
air pollution processes (Korbicz and Gawlowicz, 1989), the minimal number 
choice of drilling rigs at the oil and gas deposit (Zgurovsky et al., 1985). 

4 Optimal Sensors Allocation for Parameter 
Identification 

Unlike the optimal sensors location problem for state estimation discussed 
above, only a few papers have appeared on this problem for DPS identifica
tion. This is caused by serious difficulties related to the non-linear depen
dence between the system state and the unknown parameters to be identified. 
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Nevertheless, the existing methods can be divided into three main groups, 
namely: 

• methods leading to state estimation, 

• methods using theory of optimum experimental design, 

• methods leading to random fields analysis. 

The methods belonging to the first group consist in transforming the pro
blem into the state estimation one (by augmentation of the state space), 
and then using one of the methods considered in Section 3. However, since 
the state and parameter estimation are then carried out simultaneously, 
the whole problem becomes strongly non-linear. To overcome this diffi
culty, a sequence of linearizations at suitable trajectories is performed by 
Malebranche (1988) and a special suboptimal filtering algorithm is used by 
Korbicz et a/., (1988). 

The second class of the methods is closely related to classical optimum 
experimental design. The optimal sensors location criteria are essentially the 
same: maximization of a scalar measure of the Fisher information matrix 
associated with the parameters to be identified. It is worth noting that the 
inverse of this information matrix is a solution of the Riccati equation, re
lated to the state estimation problem, for the case of no input noise. Two 
simple examples are given by Quereshi (1980). In (Rafajlowicz, 1981) the in
formation matrix was associated to the system eigenvalues rather than to the 
system parameters. Conditions for optimality of the experiment design were 
derived after some simplifications (among others the infinite observation time 
and restricted form of the inputs were assumed). The sensor placement pro
blem from the standpoint of a structural dynamicist who must use the data 
collected from the sensors to validate a large space structures finite element 
model was studied by Kammer (1990). There, the sensors configuration tends 
to maximize the determinant of the appropriate Fisher information matrix. 

The third group of the methods is very interesting for applications. This 
approach is based on random fields theory. Since DPS are described by PDEs, 
direct use of that theory is impossible, and therefore this decription should 
be replaced by the characteristics of the random field, e.g. the mean and the 
covariance function. Such method for some mechanical system subjected to 
the action of a random load has been considered by Kazimierczyk (1989). For 
optimum sensors placement in random fields analysis the theory of optimum 
experimental design turns out to be very effective (Brimkulov et a/., 1986). 

All the above-mentioned techniques concerning parameter identification 
are limited to the case of stationary sensors, but the optimal measurement 
problem for spatially movable sensors has been studied, as well. Rafajlowicz's 
(1986) approach is closely related to the methods of optimum experimental 
design for lumped-parameter system identification and it is based on loo
king for the optimal time-dependent measure rather than for the trajectories 
themselves. Nevertheless, their use is restricted to relatively simple systems. 
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On the other hand, Uchiski et al. (1993) have presented an algorithm for 
the choice of movable sensor trajectories maximizing the trace of the Fisher 
information matrix as a measure of the parameter identification accuracy for 
two-dimensional distributed systems. In the next section the main features 
of this approach are considered. 

4.1 Sensors Allocation Problem 

Assume that system description (1)-(4) is given in the form of deterministic 
PDE's with noisy observations, i.e. only 11(t) is stochastic, whereas 110(:1:) 
and w(:I:, t) are completely known. The measurements are usually of the 
form 

%j(t) = hj(Y(:l: j , t), t) + 11(:l:j , t), t E [0, tf]' j = I, ... , N (9) 

where spatially uncorrelated white noise is considered with covariance 
5cjA:c(t - r), where CjA: and c(t - r) denote the Kronecker and Dirac 
delta functions, respectively. 

The Fisher information matrix M for the unknown parameter vector 6 
to be identified is then given by Quereshi et al. (1980) 

M = l. t f'! 8yT(:l:j ,t) 8hf(Y(:l: j ,t),t) x 

tf j=1 Jo 86 8y 

5 -1 8hj(Y(:l:j ,t), t) 8Y(:l:j , t) d 
8y 86 t 

(10) 

It is worth noting that the inverse of M is the solution of the Riccati 
equation, related to the state estimation problem, for the case of no input 
noise. 

For fixed inputs, M is only a function of the sensor characteristics (i.e. 
their structure) and the sensor location. In practical cases the former ones 
are fixed for the given type of sensors. This fact implies that the Fisher 
matrix depends only on the sensors locations and these can be optimized by 
choosing :l:j , j = I, '" N so as to maximize some scalar measure of the 
information matrix. Various choices exist for such scalar function including 
the following (Yermakov and Zhiglavsky, 1987; Zarrop and Goodwin, 1975): 
i) -tr [LM- 1], ii) det [M], and iii) tr [LM] , where L is a positive definite 
weighting matrix. The advantage of using choice (iii) above is that it leads 
to simple design algorithms (Kalaba and Spingarn, 1982). Its maximixation 
increases sensitivity of the outputs with respect to the unknown parameters. 
The criterion ii) seems to be preferred by most researchers (this leads to the 
well-known D-optimal designs). It is noteworthy to add that in the case 
of one unknown parameter all the above criteria are equivalent. In order 
to determine the elements of matrix M, it is necessary to know how to 
compute the measurements sensitivities (or state sensitivities) with respect 
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to the unknown parameters. Some simple procedure is described by Ucinski, 
(1992). 

There are two main difficulties complicating the problem of optimizing the 
identification accuracy by the appropriate sensors location. First, in most ca
ses the solution depends on the unknown parameters (Quereshi et al., 1980) 
which only should be identified. One can doubt that the optimization of the 
sensors location makes sense in such a case. The implication is simply that 
the design should be based on nominal parameters values which can be obtai
ned by a preliminary experiment or by physical analysis. Another problem is 
that under the optimal experimental conditions one can observe sensors clu
sterization, i.e. sensors are assembled at some points of the spatial domain. 
But this occurence is only apparently strange. It results from the assumption 
that measurement from one sensor have no influence on measurements from 
the other one (the measurement noise is Gaussian, spatial uncorrelated and 
white) and that spatial dimensions of the sensors can be neglected. 

5 Example 

In order to illustrate the foregoing, let us consider a simple two-dimensional 
heat conduction process described by the equation 

(Zl' Z2) E n = (0, 2) x (0, 2), t E (0,0.5] 

I.C. Y(Zl' Z2, o) = 0, 

B.C. Y(Zl,z2,t) = { 

(Zl,Z2}En 

100, (Z1. Z2) E (0, 2) x {O}, t E (0,0.5] 
0, (Zl' Z2) E an \ (0, 2) x {O}, t E (0,0.5] 

(11) 

This case may correspond to a thin square copper plate, one side of which is 
heated up (e.g. with the use of an infra-red heater) and the other ones are 
insulated. 

The measurements made by a thermocouple can be considered to be poin
twise and are given by 

(12) 

where (zL z~) denotes the location ofthe thermocouple. We assume that 
the measurement noise v is Gaussian, spatial uncorrelated and white with 
known characteristics. 

The objective of the measurements is to estimate the unknown parameter 
JJ (assumed to be constant) from the output data as accurately as possible 
over the period of observation. 
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For the D-optimality criterion, this optimum measurement location pro
blem reduces to determining the location (zl, zn such that detM is 
maximized. Figures la and Ib show the appropriate surface plot and con
tour map obtained with the use of an algorithm described by Ucinski (1992) 
for I' = 1.0. The results suggest that the best choice is to locate the sensor 
at the point (1.0,0.5) which fully agrees with our intuition. 

6 Conclusions 

From engineering point of view it is clear that sensor placement is an in
tegral part of the control design, particulary in the control of distributed 
parameter systems, e.g. the flexible structures, the air pollution processes, 
the oil and gass production from deposit. On the other hand, the engineering 
judgement and trial and error analysis are quite often used to determine the 
optimal locations of sensors. It seems to us that two inain reasons can explain 
why strongly formal methods do not work in engineer's practice. First, only 
relatively simple engineering problems can be solved using the linear appro
ximation of the practical problem. Second, the numerical complexity of most 
of the sensor location algorithms does not encourage engineers to apply them 
in their practice. 

This paper briefly reviewed the state of the art in the sensors location 
problem for state and/or parameter estimation in distributed systems. Two 
methods presented in more detail (see Sees. 3.1 and 4.1) showed that their ap
plication in practice can be simpler (methods of the sensors location which do 
not need solution of the Riccati-type equations) and, what is very important, 
both the sensors location for state estimation (Sec. 3.1), and for identification 
(Sec. 4.1) can be applied to solve complex non-linear problems. 

Furthermore, as it was emphasized by Kubursly and Malebranche (1985), 
more attention should be paid to the problem of sensor allocation for pa
rameter idenfitication of DPS. The use of the existing methods is restricted 
because they usually involve compbtational and/or realizing difficulties. Lit
tle literature has been written about the results regarding two- or three
dimensional spatial domains and spatially-varying parameters. Thus, some 
generalizations are still expected in this connection. Apart from that, some 
strategies in the case of arbitrary (not only Gaussi",n) probability distribu
tions for the measurement noise are still lacking. As already remarked, most 
of the contributions deal with the choice of stationary sensors positions. On 
the other hand, the optimal measurement problem for spatially movable sen
sors seems to be very attractive from the viewpoint of the degree of opti
mality and should receive more attention. Finally, more efforts towards the 
joint optimization of the input signals and the sensors location should be 
attempted. 
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Abstract. A new model of flexible plate (equipped with piezoelectric wafers) 
applicable for design and simulation of active control process is demonstrated. 
In particular, a concept of continuously distributed 'active distortions' de
scribing interactions between piezoelectric wafers and the structure itself al
lows us to formulate properly the problem of optimal distribution for these 
control devices. The standard way to describe the interaction between piezo
electric devices and the controlled structure by means of concentrated forces 
applicable at the edge of actuator is not suitable to discuss the optimal lo
cation problem. Restricting control action to a chosen set of independently 
modificable eigenmodes of vibration and applying the criterion of maximiza
tion of available substitutive control action the discrete optimization problem 
can be finally formulated. A numerical procedure for solving this problem 
and corresponding testing example is presented. 

Keywords. Active control, Piezoelectric actuators, Discrete optimization, 
Integer programming, Branch-and-bound metchod. 
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1 Introd uction 

The main problem in design of active control of flexible structures is optimal 
location of sensors and actuators (cf. Ref. 1, 2,4, 6, 9, 10) as well as robost 
control strategy. The robostnes of the control process can be strongly affected 
if the position of actuators are not defined precisely. The application of piezo
electric wafers to control vibration of flexible plates has been discussed in Ref.3. 
The mechanical model considered there allows us to simulate the behavior of 
the plate with two sticked p-e wafers (on the both, upper and bottom surfaces). 
However, it does not supply us with a tool necessary for design of optimalloca
tion for these p-e actuators. 

The aim of this paper is to present a model of the plate equipped with 
the p-e devices applicable to design and simulation of the active control pro
cess. In particular, a new method for optimal design of locations for actuators 
(controlling chosen eigenmodes) based on the discrete optimization technique 
is applied. The presented method explores the concept of 'active distortions' 
generated by actuators and therefore, the main effort of this paper is dedicated 
to determination of these active distortions (distributed continuously along the 
plate) simulating the influence of the p-e wafers on the structure. The presented 
method, tested in this paper on the one dimensional example of beam vibra
tion will be discussed more generally in application to active damping of plate 
vibration in Ref. 7. 

2 The 'Active Distortion' Model of Plate 
Equipped with Piezoelectric Wafers 

Let us consider a thin plate equipped with two p-e wafers sticked to the upper 
as well as to the bottom surface of the plate (cf. Fig.l). Assuming the Kirchoff
Love kinematic hypothesis according to the components of the displacement 
field: 

U3 = U3(Zl, Z2) 

Ui = -Z3U3,i 

where i=1,2, the equilibrium equation can be written in the following form 

mij ,ij = P ·u· 3 - f 

(1) 

(2) 

where p denotes the mass density per unit area and mij denotes the components 
of the bending moment tensor related to the planar stresses as follows: 

(3) 

(4) 
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Restricting our considerations to the case O"ij(X3) = -O"ij(-X3) and there
fore, constraining the discussion to the only pure bending actions of the p-e 
devices the relations (4) can be written in the form 

mij = jh X30"ij dx3 + 2 {h+O/ X30"ij dx3 
-h ih 

(5) 

Introducing the reduced stiffness tensor (for planar stresses) for the plate Rijk 

and for the p-e wafer "R:jkl, the expression (5) can be written in the following 
form (see Ref. 3): 

where: 

IPkl 

f h -
Ri'kldx3 -h J 

U3,kl 

hij -denotes the piezoelectric coefficients of the p-e wafer 
c- denotes the dielectric constant of the p-e wafer 
V -denotes the electric potential applied to the twin wafers 

(6) 

Since the thickness of the p-e wafers are very small comparing to the plate 
thickness (a « h), the term X3 can be approximated by h + a/2 in the last 
component of the moment value in equation (6). Also considering 'CZlp = 'CZl what 
give us stronger actuation effect the constitutive equation can be expressed as 
follows: 

mij = -RijkllPkl - 2(h + a/2)hi j/!l.v/c (7) 

F P P rh+a 2 [-P / ] where Rijkl = R ijk1 + R ijk1 , R ijk1 = 2 Jh x3 R ijk1 + hijhkl C dX3 ,and D. V 
denotes the difference of potentials between the two p-e wafers (the upper and 
the bottom wafer, respectively). 

Let us now discuss the possibility of transformation of the equation (7) to 
the following form (cf. Ref.5): 

(8) 

where active distortions IP21 = IP21(D.V) describing the influence of the p-e 
wafers on the distribution of moments will play the key role in the method of 
determining the optimal position for actuators. 

In the case of isotropic plate the non-zero components of the stiffness tensor 
R~kl are the following (cf. Ref.12): 



Rfl11 = 
Rf122 

R1212 

Rf222 

Rf2l1 
Eh3 /3(I+v) 

2Eh3 /3(1 - V 2) 

= 2Evh3 /3(1 - V 2 ) 
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(9) 

where E and v denote the Young's modulus and the Poisson's coefficient, re
spectively. 

In the case of uni-oriented p-e wafers the electromechanical constant takes 
the following form (choosing the axis Xl for instance) 

hij = H DliD1j (10) 

and non-zero components of the stiffness tensor Rf;kl are the following: 

(11) 
where Ep and vp denote the Young's modulus and the Poisson's coefficient of 
the p-e wafer, respectively. 

Substituting Eqs.9-11 to Eq.7 and comparing the result with Eq.8 the fol
lowing conditions determining the active distortions CP~1 can be determined 

Rl111CP~l + R l122cpg2 

R2211 CP~1 + R2222cpg2 

Rl212 CP~2 

_(2h+a)H av 
c 

o 
o 

(12) 

Finally, the tensor of active distortions calculated from the Eqs.(12) takes the 
following form 

~. __ H(2h + a) RaV [1 0] 
CP., - c 0 e (13) 

where: R = R2222/(RllUR2222 - RU22R2211) and e = R2211/ R2222. Therefore, 
mostly one component CPt1 of the tensor of deformations can be controlled by 
our uni-oriented twin p-e wafers. As we can see, the influence of the p-e wafers 
on the behavior of the plate can be formally interpreted as the influence of 
some hypothetical fields of imposed distortions, taken into account through the 
modified constitutive relation (8). 
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3 Optimal Location for Piezoelectric 
Actuators 

Let us formulate the problem of the optimal location for piezoelectric wafers 
assuming that: 

• only n first modes of free vibration is going to be controlled 

• each of these n modes is going to be controlled independently and therefore 
actuation controlling one mode is not going to affect other chosen modes, 

• to maximize the total actuation efect it is assumed that the whole surface 
of the plate is covered by piezoelectric wafers. 

Restricting considerations to the uni-oriented wafers (the control of maximal 
principal deformations can then be most effective) let us concentrate on the case 
of simple supported vibrating beam. However, the applied method can be easily 
generalized on the two-dimensional case of plate vibration, where uni-oriented 
p-e wafers should be distributed along the principal curvatures of deformation. 
Also, analogous application to quasistatical problems of shape control can be 
discussed. The modified constitutive relation (8) can be specified in the following 
form: 

(14) 

where: 

(15) 

Let <Pi (x), i = 1, ... n be an eigenmode (a component of structural deformation 
to be controlled) determined by the free vibrational problem, and D(x, y) be an 
influence function determining deformation <pR(x) = D(x, y)<p0(y) caused in the 
location x of the beam by the unit distortion <po = 1 generated in the location y. 
The best location problem can be now formulated as the following optimization 
problem (cf.Ref.7. for more explanations) 

I:~=l I~ ai<Pi (x) I~ D(x, y)<p?(y)dydx max 

/\ /\ <p?(x)<pJ(x) 0 
",e[O,I]i,i ' 

.*; 
/\ -6::; I~ <Pi (x) I~ D(x, y)<pJ(y)dydx < 6 
i,i 
i*; 

(16) 

where /\y <p?(y) E {-I, 0, I}, ai-scalar weighting coefficients, n-number of cho
sen eigenmodes to be controlled, 6-the tolerance of satisfying the orthogonality 
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problem. In order to do that we assume that on each subinterval [Ym, Ym+1) of 
the subdivision mentioned the functions I{)~ are constant and equal er (where 
er = 1, -1, or 0). That is why we can present any integral J~ D(x, Y)I{)~(y)dy = 
2:~-:;0 g::+l D(x, Y)I{)~(y)dy (which appears in the objective function as well 

as in the constraints of the problem(16» as a sum 2:::=10 er g::+l D(x, y)dy. 
Thus 

(( k-1 (l Ym+1 

Jo I{);(x) Jo D(x,Y)I{)?(y)dydx= Ler Jo 1{);(x)D(x,y)dydx 
o 0 m=O 0 Ym 

Under our assumptions the value of any particular integral 

111Ym+1 cr := 1{);(x)D(x, y)dydx 
o Ym 

can be pre-computed numerically quite easily. Then, the objective function of 
our main problem (16) can be presented as a linear function of the decision 
variables er (i = 1, ... , n; m = 0, ... , k - 1) of the following form 

n k-1 

L L a;crer where er E {-1,0, I}. (17) 
;=1 m=O 

In the same way we can turn the constraints of our original problem. The 
first set of constraints t\xe[o,l] A-ti 1{)~(x)I{)J(x) = 0 for (1 :$ i,j :$ n) can be 
presented in the equivalent form 

erej=Ofor m=O, ... ,k-l, l:$i,j:$n(ii=j) (18) 

Similarly, the last set of constraints (16)3 can be converted into a set of linear 
constraints of the form 

k-1 

1\ -8 < " c'!'(:'!' < 8 - L...J ''', - (19) 
19,i:5n m=O 

;-ti 

As we can see, our problem (16) has been reduced to the integer programming 
problem (with linear objective function ). This new form is still very difficult 
to solve, because a huge number of nonlinear constraints (18). It is much more 
convenient to convert the problem presented above to the form of (0-1) lin
ear programming problem (with linear objective function and linear constrains 
only). Next, we will use branch-and-bound method (see Ref.l1) to solve it. 

To do that we will introduce new decision variables ej+ and ej- such that 

ej = ej+ - em - and ej+, ej- E {O, I} . After that we can present the final 
discretized form of our continuous problem (16) i.e. 
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condition (16)3. The control function <p~(y) can take the values -1,0, or 1 what 
corresponds to the following three possible cases: 

• <p~(y) = -1 what means that the twin p-e wafers in the location y control 
the mode i and generate the maximal available (negative) difference of 
potentials .6. V, 

• <p~(y) = 0 means that the twin p-e wafers in the location y do not control 
the mode i 

• <p?(y) = 1 means that the twin p-e wafers in the location y control the 
mode i and generate the maximal possible (positive) difference of potential 
.6.V. 

The set of conditions (16)3 means that each state of deformation <pf = 
f~ D(x, y)<pJ(y)dy caused by actuators is orthogonal (with accuracy defined by 
the tolerance 6) to all eigenmodes <Pi, except one (i = j). It follows from this 
condition that the control process can be uncoupled and therefore each chosen 
eigenmode can be damped independently. The tolerance 6 will help us to satisfy 
the orthogonality condition for the discretized problem. 

Let us now discuss the mechanical meaning of the optimization problem 
(16). The criterion (16)1 requires maximization of a substitutive actuation cor
responding to each mode separately with due weighting coefficient ai and with 
eigenvectors <Pi playing the role of the (shape) weight functions. Constraints 
(16)2 mean that in each point x of the beam only one piezoelectric twin wafer 
(related to one, defined mode control) can be bounded. Therefore, the whole sur
face of the beam can be finally covered (cf.(16)1 ,(16)2) by piezoelectric actuators 
divided on sections where each section corresponds to one actuator controling 
one eigenmode. 

4 Discretization of the Best Location 
Problem 

Let us consider the best location problem (16) again. In practice the analytic 
forms ofthe functions <pi(X) (i = 1, ... , n) are unknown. We have only the values 
of these functions determined on the same regular grid of points {ym} ~=o . We 
will assume that 0 = Yo < Yl < ... < Yk = I. Similarly we have only values of 
the function D(x, y) determined on the set of points (y;, Ym) (j, m = 0, ... , k) 
(i.e. on the product of the grid defined above). The analytic form of the 
function D is usually unknown as well. On the basis of the information available, 
we would like to substitute the original problem (16) by an auxiliary discrete 
optimization problem. After that we will try to solve this simplified problem 
numerically. Then we will obtain an approximate solution of the best location 



max 

subject to: 

AO$m$k-1 

A1Si,j'$n 
i~j 

n k-1 n k-1 

2: 2: aiCrer+ - 2: 2: aiCre;n-
i=l m=O i=l m=O 

~n tm+ ~n tm
wi=l "i + wi=l "i 

_c < ~k-1 ~t~+ _ ~k-1 ~t~-
U wm=O C, "J wm=O C, "J 

e;n+, e;n- E {O, I} 
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(20) 

< 1 

< {) 

Without loss of generality we can assume that all of the components of the ob
jective function and constraints are integer (we can multiply them by a big 
integer scalar if it is necessary). Under this assumption our maximization 
problem is a classical 0-1 linear programming problem and it can be solved 
directly. The algorithm we have used to solve this problem generally follows 
Zielinski's implementation of the Hammer and Rudeanu method. At every 
stage of it we have a partial solution and the corresponding (current) problem 
derived from the original one. In the partial solution, some variables are as
signed fixed values (0 or 1) and the others remain free. The partial solution 
corresponding to the original problem has all the variables free. A partial so
lution is completed if all variables are fixed. Given a partial solution, we try 
to complete it. If there is a completion, we change the suplementary constraint 
~n ~k-1 mtm + ~n ~k-1 mtm - > b (h b· I· h wi=l wm=O aici"i - wi=l wm=O aici"i _ 0 were 0 IS equa elt er to 
the value of the objective function at a feasible point or to the lower bound of 
it) and bactrack. If there is no completion, we also backtrack. In both cases, 
we go back to the last branching point and examine the new partial solution 
with the complementary value of the branching variable. As a result, either we 
find a maximizing point and maximum value of the objective function or the 
problem has no solution (which takes place when, for example parameter {) in 
(19) is too small). In [6] we explain how to determine appriopriate value of this 
parameter in the beginning (when the problem is formulated). 

Of course the accuracy of the solution obtained this way depends on the 
diameter of the subdivision of the interval [0, ~ . The smaller the diameter the 
better approximation of the solution of the original problem (16) can be ob
tained. 

5 Numerical Example 

The presented method of identification of optimal location for piezoelectric ac
tuators is tested here on the example offree vibration of simply supported beam. 
Constraining the control process to the first three modes and assuming these 
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modes in the following form: !f11(X) = sin(x), !f12(X) = sin(2x), !f13(X) = sin(3x) 
where x=7re//, e E (0, I) and 1 denotes the length of the beam (cf. Fig.l), the 
optimal distribution of p-e actuators containing each mode separately is deter
mined. The influence function D(x, y) is approximated in this example by the 
following piece-wise-linear function: 

{ 
_i!. + U. + 1 for x> y 

D(x y) - ...... -
, - ~ - ~ +1 for x < y 

(21) 

and the beam is divided on ten uniformly distributed finite elements. 
The optimal result is strongly dependent on the weight coefficients ai. Nat

urally, assuming ai = 1 for i=I,2,3 the first mode is dominating and almost the 
whole beam is covered by the p-e wafer controlling this mode. Therefore, let 
us chose the following distribution of coefficients: al = 1, a2 = 3, a3 = 4. The 
corresponding optimal distribution of actuators is presented in Fig.I. 
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The scaled (due to the weight coefficients ai) eigenmodes and the distri
bution of piezoelectric wafers containing each mode separately is shown. In 
real applications the proportion between coefficients ai could be related to the 
corresponding eigenvalues (eigenfrequences).Further discussion of the problem 
presented above will be contained in the separate paper [7] . 
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Optimal Discrete Design of Elastoplastic 
Structures 

Algirdas Ciias and Stanislav Stupak 
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Vilnius Technical University, 
Sauletekio al. 11,2054, Vilnius, Lithuania 

Abstract. A technique of an optimal design of elastoplastic framed structure is 
proposed if the axes of all the members of a frame are known and the optimal 
cross sections are to be chosen from a specific set. The optimality criterion is a 
minimum volume of a structure. Various limit states of a structure are 
considered in the design problem: the ultimate values of displacements, 
strains and slenderness ratios. The design problem is formulated as a 
problem of discrete linear programming and its solution is iterative. 

Keywords. Discrete programming, elastoplastic structure, optimal design 

1. Introduction 

Beams and frames are usually assembled of commercially fabricated standard 
bars. A structure is' seldom optimal if its cross sections are chosen according 
to the solution of any non-discrete design problem. The deviation from the 
optimum is more significant when in addition to the strength requirements the 
stiffness and stability requirements are included into a design problem. The 
strength of a structure depends on the section modulus, while its stiffness and 
stability are influenced by other geometric properties of the cross section (the 
moment of inertia and the radius of gyration). The relationships between 
these properties of each section are different. It is possible to take into account 

a 

£tI =fv/E 

. Fig. 1 

the requirements of the strength, stiffness and 
stability simultaneously only when all the cross 
sections of a structure are known. Therefore the 
best way of solving such a problem is an iterative 
search for a discrete solution. 

Plane framed structures made of an elastoplastic 
£ material are under consideration. The stress-strain 

diagram of the behaviour of the material is bilinear 
(Fig. 1; the initial stage is elastic, the second 
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perfectly plastic or linear strain hardening). All the parameters of the diagram are 
known. 

The shape of the sections of the set is symmetric, all dimensions there are 
related to the section number or to its main design characteristic, namely 
the cross-sectional area. The plane of symmetry of any bar coincides with the 
bending plane in the structure. 

A quasi static load is acting in the plane of the structure. The state of stress 
and strain of the structure should satisfy the restrictions of strains, displacements 
and slenderness. 

2. Elastoplastic framed structure 

2.1. Discrete analogue of the structure 

The framed structure is divided into straight members connected with one 
another by nods. The load forces (and couple moments) are applied only to nods; 
any load distributed along the bar (beam) is reduced to several concentrated 
loads, and the bar is divided into several members so that the loads are applied to 
the nods between the members. 

The design is based on the conventional assumptions: the displacements are 
small, the Bernoulli hypothesis is accepted, the influence of shearing stresses is 
negligible. 

The stress state of any member k is defined by the axial force, which is 
constant along the whole member, and by two bending moments at the ends (i 

and j) of the member: Q(k) = (Mkl, Mkj, Nd (a tilde above a symbol 

marks transposed vector or matrix). 

The strain state of the member k is defined by the elastic (IC~ i' lC~j) and 

plastic (lC~j'~) parts of the curvature, by the elastic part of the axial 

longitudinal strain (&~ k) and by its two plastic parts at the ends of the member 

(~kj, ~k): q(k) = (~j' ~i' ~k' lC~j' 1C~i' ~kj' et:k)' or by the rotations 

of both ends ( [) ki' [) k) and the elongation of the central axis ( Ok ): 

(/k) = (f)kj, f)ki' Ok)' A relationship between those two vectors has been 

determined: cfk) = lfk)q(k). where the coefficient matrix lfk) may be 

calculated according to [1. 2]. 
The strain state of the whole structure is defined by the vector 

- (;.,(1) ;.,(2) ;.,(k) -(t» h t· th be f be q= '1,'1''''.'1 .... ,q ,were 1S enum romem rs. 
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A non-linear relationship between the stress and strain states of the structure 
can be approximated by the linear law in a limited interval of the values of the 
internal forces: 

q=GQ+G, (1) 

- _ /'iO) /'i(2) /'ilk) /'ill) where Q - (~. ,~' , ... ,~. , ... ,~. ), the coefficient matrix G and the 

vector Gbeing calculated according to [2]. 
The displacements of the free nods of the structure are related to the strains by 

the equations of the geometric compatibility: 

Cu = q, (2) 

where ii = (up ~, ... , uw ) is the vector of the components of the nod 
displacements, m is the degree of freedom of the structure, C is the matrix of the 
geometric compatibility. 

The state of stress of the structure is related to the load by the equilibrium 
equations: 

CQ = F, (3) 

where F = <F;, ~, ... , Fm) is the vector of the load components. 
If the mechanic and geometric characteristics of the members are known the 

matrices C, G, G, H are known too. Then, if the load F is given, on solving 
the equations (1) - (3) the values of all the parameters of the stress and strain 
state can be calculated. 

2.2. Discrete set of cross sections 

Some members of the structure may be supposed to have the same cross sections, 
therefore r ;5; t different sections should be fixed in the solution of a design 
problem. A constraint for the selection of cross sections is fixed in the design 
problem: the cross section of any member of the group s (s = 1, 2, ... , r) may 

be chosen from the ordered set of sections IP): As E Us); the sections are put 

into the set in the order of increasing area values: A(BJS» < A<BJ~ 1 ). 

Any set Us) is not numerous, because linear approximations of the 
relationships between the geometric characteristics of its cross sections (the 
moment of inertia I , the section modulus W, the radius of gyration i ) should 
be acceptable within it: 

Is = asAs+ bs' ~ = a~As+b~, is = a;As + b;. (4) 
If a large set of sections is taken for a general use, it should be decomposed 

into smaller sets with overlaps, for example, in such a manner: 



pI) If3) 

·""'R:----r;lh:----i'&~, &'----;&1<""<' a 'B7 B8. 'B; R~ 
[j.2) 
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A solution is considered to be unreliable if it contains a boundary section (the 
first or the last one) from any set. Such a problem should be resolved after 
attaching the shady group to another ordered set of sections, the one in which the 
required cross-sectional area value is by the middle. 

3. Optimal design problem 

3.1. Mathematical analogue of the problem 

r 
The minimum volume of the structure 'LLs As is the optimality criterion (there 

s= I 

Ls is the total length of the members of the group s). The strength and stiffness 
of the structure and the stability of some (compressed) members are guaranteed 
by the restrictions for: 
the longitudinal strains in the outermost fibers (or the plastic parts of strains) 

&j S &~, j = I, 2, ... , 2 (, 

the slenderness ratios of the compressed members 

A.k S A.~, k = 1, 2, ... , t1 S t, 
the displacements of the structure nods 

< 0 '-12 < Uj _ Uj , 1 - , , ... , 11lt _ m. 

Other restrictions may also be included into the design problem. 

(5) 

(6) 

(7) 

The solution of an optimal design problem is iterative. For the first iteration 
the cross sections of all the member groups of the structure (with the 

characteristics A;, ~, w: ) are chosen from given sets on the basis of an 

engineer's experience or some approximate solution. When we have all the 
geometric characteristics we solve the equations (1) - (3) and estimate the values 

of the structure parameters to be restricted: the nod displacements u; and their 

elastic parts u;e, the strains of the outermost fibers &~ and their elastic parts <' 
and others. Using the relationships (4) and some assumptions we can express the 
constraints (5) - (7) in such a way that they will become the restrictions of the 

decision variables A,. By relating the maximum strain at some cross section to 

the change of the section modulus of this cross section we rearrange the 
constraint (5): 
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*e *e e. e. 
--'- a' A < e~ + -'- b' - e~ - e*.e, (5a) w*88-, w*8 , " 

8 8 

and by relating the slenderness ratio to the change of the radius of gyration we 
rearrange the constraint (6) 

2* 2* 
-.-!.. a" A ..- ,0 + .-!..b" 2'* .. 8 8 ~ /10 k .. 8 - /10 k , (6a) 

18 18 

We suppose that: 1) the displacement of any nod is related to the moments of 
inertia of the cross sections of all the members; 2) this relationship is separable; 
3) with the change of the moments of inertia the change of the nod displacement 

. 
is proportional to the change of its elastic part tlu: = f 0) I. M. where {OJ. is 

8~1 I; S 

calculated as a sum (related to the group s) of the products of the elements from 

the row i of the matrix (CKC)-I C and of the corresponding elements of the 

vector Qe = KC(CKCrI F , because u·e = f (j);s (K is the stiffness matrix 
.f = 1 

of the structure). We rearrange the constraint (7) in the following manner: 

. . 
r CO;I 0 r ro is'" *e - L - a A < u· + L - b - UI - UI (7a) 

3= 1 J* .J S -. s= 1 J'" ., , 
s • 

Thus, a mathematical analogue of an optimal design problem is formulated in 
the following way: 

min, 

(5a), (6a), (7a), (8) 
As E B(S) , s = 1, 2, ... , r. 

It is a linear discrete programming problem, a generalised expression of which is 
the following: 

r 
L LsAs => min, 

s = 1 

r 
L Ck s As :s; d k, k = 1, 2 , ... , p = 2t + fJ + m1 , (9) 

s = 1 

As E B(s), s = 1, 2, ... , r. 
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3.2. Algorithm/or solving the problem 

Any attempt to check all feasible combinations of cross sections are not a 
reasonable way of solving the discrete programming problem (9). Thus we apply 
a special algorithm [3] based on the ideas of the Gomory method. The solution 
consists of two stages: a reduction of the searching region and a checking of the 
solutions in the reduced region. 

Fie. 2 

An explanation of the algorithm will be illustrated 
by an example of a frame design (Fig. 2); 

E = 200·1<Y, E' = 5·1<Y, h = 200, 
eO = 0,0026, A~ = 120, u2 = 0,020. 

A Reduction 0/ searching region 

AI. A combination of the cross sections A[Cl is chosen; there in the example 

A[Cl = (A1[O] , AJOl) = (12,0; 43,2). The relationships (4) acceptable in the 

proximity to A[O] are formulated. 

A2. The step v with A[v] begins. We formulate the problem (9). By solving the 

problem without the requirement As E B(s) we achieve the solution A(v). If the 

solution A(v) is close to the initial A[vl in the step v = h, it is acceptable and we 
pass to the item A4. There in the example (Fig. 3) h = 3, 

A[3] = (17,4; 72,6), A(3) = (14,6; 68,8). 

A.2 

84,7 

72.6 

61.9 

12,0 14.7 17.4 20.2 23.4 

Fig. 3 
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A3. If any element of the solution A (v) is remote from the corresponding element 

of the initial A[v] , the latter should be corrected to a new A[v+ I] , and we begin 
the step v + 1 (from A2). 

A4. The value of the objective function l'(1) = V<b) is fixed. There in the 

example l'(1) = V<3) = 1200·14,6 + 600·68,8 = 58800. We determine the 

factors 'PI' 'P2' 'P3 that depend on the deviations (1 - A~b) / A.~b]) and the 

density of area values in the sets Iis). 
A5. The iteration z of the final step begins. We reduce the searching region by 
two restrictions of the objective function value: 

r 

(1 - 'PI) l'(z) = l'('z) !S: V = L Ls As!S: l'(~) = (1 + 'P2) l'(z)' (10) 
s= 1 

In this way the whole region 0 of the sets Iis) is reduced up to the region O(z). 

There in the example: 'PI = 0,05, 'P2 = 0,10 and l'(;) = 55860, 

l'(;') = 64680 (z= 1). 

A6. We solve a series of linear programming problems with the same constraints 
as in (9) - (10) but the objective functions are different: 

As => min, As => max, s = I, 2, ... , r. 

After solving each pair of the problems we obtain the set JC.z ) that contains all 

the cross sections satisfYing the inequalities: 

nls) 
(1 - 'PI )As, min !S: A(D' ) !S: (1 + 'PI )As, max' (11) 

If any set ~Z)is empty we pass to the item A7. If all the sets ~Z) are not 

empty the iterative procedure is completed (z == u). There in the example when 

z = 1: AI, min = 14,6, AI, max = 20,1, A2, min = 67,6, A2, max = 78,6; and 

the sets of both cross sections are not empty, n(KiI» = 3, n(JqI» = 1, the 

iterative procedure is completed (u = 1). 
We fix the region R for checking the discrete solutions. The number of 

r 

solutions subject to checking is n(R) = n n(K.); there in the example 
s= I 

n(R) = 3. We pass to the checking of the solutions, to the item Bl. 
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A7. After detennining a new value l1z+ I) = If:) a new iteration of the final 

step begins (from A5). 
B. Checking discrete solutions 
B 1. The objective function value is calculated for each possible discrete solution: 

v (g) - ~L A(g) - 1 2 (R) - ~ s s ' g - , , ... , n . 
s= 1 

All the values which satisfy the inequalities 

Vr' < V(g) < (l+m)v,:" (u) - - 'f"3 (u) (12) 

are put into such an order that V(g) :::;; V(g+ I). There in the example fP3 = 

0,025, the inequalities (12) are satisfied by the solutions A(I) = (14,7; 72,6) and 

A(2) = (17,4; 72,6); but they are not satisfied by the solution A(J) = (20,2; 72,6). 
B2. A solution with a minimum value of the objective function is checked first of 
all. For this purpose a linear programming problem is to be solved: 

x(g) ~ max, 

( ) r ( ) 
-dkx g :::;; L cksA/, k = 1,2, ... , v. (13) 

s = 1 

The solution A (g) is the optimal solution of the discrete programming problem 

(9) if x:! ;;:: 1. There in the example x~~ < 1, x~ > 1; thus, the optimal 

solution is A(2) = (17,4; 72,6). 

B3. The solution A (g) is not within the more exactly defined feasible region of 

the problem (9) if x:! < 1. If g< n(R), we check the solution A (o!*l) (from the 

item B2). If both x:! < 1 and g = n(R), there is no discrete solution in the 

feasible region Q(u) of the problem (9), and we should determine a new region 

O(z) (z = u+ 1) beginning from the item A 7. 

4. Conclusion 

The applied algorithm of discrete programming ensures an optimal discrete 
design of an elastoplastic frame. The algorithm is suitable for other discrete 
programming problems with an objective function including only the variables 

that are to satisfy the condition Xj E Bi' 



208 

References 

1. Ciw A.: An algorithm for design of the elasto-plastic frame with due 
regard for the form of cross-sections (in Russian). Litovskii 
Mekhanicheskii Sbornik, 16, 104-113 (1976). 

2. Stupak S.: Approximation of the law of the elastoplastic bending when 
sections of the frame are of any real shape (in Russian). Litovskii 
Mekhanicheskii Sbornik, 24, 39-43 (1981). 

3. Cizas A.: An algorithm of discrete programming for optimization of 
framed structures compiled of the certain member set (in Russian). VIII 
Internationaler Kongress tiber Anwendungen der Mathematik in den 
Ingenieurwissenschafien. Berichte, 1. Weimar, 1978, pp. 171-176 



Multicriterion Discrete Optimization of Space 
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Abstract~ The paper deals with discussion of discrete optimization 
problem in structural space-truss design. The cross-sectional areas 
of truss bars are taken as design variables. A catalogue of circular 
hollow sections for truss bars and a numbers of the series of types 
of cross-sections of bars are taken as discrete decision variables. 
The stress, local stablli ty, displacement (design) constraints as 
well as technological and computational constraints are taken into 
account. The mass of truss bars including mass of joints as well as 
exploitation and maintenance costs are" chosen as optimization 
criteria. A numbers of the series of types of cross-sections of bars 
t is also taken as a criterion of optimization. The sets of 
non-dominated (efficient) and compromise (Pareto optimal) solutions 
and the preferable solution for space truss are found. The results 
are presented in the form of diagrams. 

Keywords. discrete optimization, multicriterion optimization, space 
truss design 

1. Introduction 

The double-layer space trusses are used for covering the exhibition, 
sport, shopping center and "industrial halls [9]. Design in elastic 
range of such metallic structures is based on choosing the 
appropriate cross-sectional areas of bars to satisfy stress and local 
stability constraints. Next, the displacements of nodes under 
combined characteristic loads are calculated and compared with the 
allowable displacements occurring in codes [12]. If they are violated 
it "is necessary to modify the structure by increasing the stiffness 
of structure. 

The optimal structure should satisfy the limit state Gapacity and 
serviceability conditions [2,3]. Many papers in this area of research 
are only concerned with limit state capacity of structure. If the 
serviceabili ty conditions are violated the structure is eliminated 
from considerations. 

In this paper, a new method is presented that allows to tread 
concurrently the 11mi t state capacity and serviceabi11 ty conditions. 
It means that in the first stage of design, the minimal 
cross-sectional areas of truss bars satisfying the limit state 
capacity conditions are found. In the second stage the serviceability 
condi tions are checked. If they are not satisfied the structure is 
modified. This modification can be done in a few ways. 
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2. Truss Design with Serviceability Constraints 

The paper deals with optimal design of double-layer steel space 
trusses which can be used for covering of large span halls. The 
design codes require that the displacements of truss nodes under 
combined characteristic loads can not be larger than some specified 
permissible values as follows [12] 

Usually. 
appropriate 
constraints 

under given 

b. 2:$ Ll250. b. :$ H/150 
3 

(1) 

for small truss depth (h) it is easy to find the 
cross-sectional areas of truss bars to satisfy the stress 
but the displacement constraint (1)1 is often violated 

loads (Fig. 1). 

Fig. 1. Layout of double-layer space truss 

The stiffness of double-layer space truss can be increased by the 
following means: i) increasing of depth of truss (h) [6.7]. ii) 
increasing of distance between truss nodes (a) [6.7]. iii) increasing 
a number of vertical supports [1]. iv) changing supporting points 
from upper layer to lower layer [1]. v) using a material with lower 
yield stress [7]. vi) decreasing a numbers of the series of types of 
cross-sections for truss bars (t) [11]. vii) decreasing a number of 
stiffness zones [10]. viii) increasing the cross-sectional areas of 
truss bars with maximal stresses [7]. Ix) changing a truss topology 
(a type of bar net) [9]. x) introducing an initial truss camber [8]. 
xi) using the convex shapes of layers. xii) varying a shape of convex 
layers. xiii) applying truss joints with larger stiffness [4]. 

The most effective way to increase the truss stiffness D is to 
increase the truss depth (h) i.e .• 

D 
h2 EA 

u 

aO+A fA ). 
u 1 

(2) 
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where Au and Al are the cross-sectional areas of upper and lower 

layer bars, E is the Young's modulus for steel. But , increasing the 
truss depth (h) causes the increasing of hall height (H) . Therefore, 
the exploitation and maintenance costs are also increased. Some 
structural systems, e.g. , Hero system (9) have a fixed ratio between 
truss bar lengths , i. e . , it is not possible to increase the truss 
depth (h) without increasing the distance between truss nodes (al in 
the upper and lower layers (Fig. 1) . 

In truss optimization problem each mean listed above concerns with 
increasing a truss stiffness can be treated as independent decision 
variable. The domain of feasible solutions can be increased tak i ng 
into account the stress, displacement and stability constraints. 

3. Hulticriterion Optimization of Space Truss 

The paper deals with optimization of steel space truss used for 
covering of exhibition halls (Fig. 2). The orthogonal double-layer 
space truss is pinned supported at the corners of upper layer. 
Circular hollow sections of truss bars are made from hot-rolled steel 
with a strength of material fd=210 MPa. The five single-layer 

parabolic lattice-work domes are used as abatJours and they are 
placed on the roof (Fig. 2). 
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Fig. 2. Layout of covering of exhibition hall 

The maximal loading condition which causes the maximal displacements 
~1 and ~2 (see Fig. 1) consists of the following loadings: the weight 

of roof covering 0 . 5 kN/m2 , the snow loading 0. 72 kN/m2 , the 
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technological loading 0.2 kN/m2 and the concentrated loadings 
transmitted from abatjours· to truss nodes shown in Figure 3. The 
supporting structure has a crucial influence on the horizontal 
displacement 113 •. But 113 is not constrained in this paper and it is 

not checked in static analysis of space truss. One quarter of space 
truss is only considered because of the symmetry of structure and 
loadings. 

- --
6Z~N - ~O ""1- 2.0kN \ 

~ 0 
~ ~ 

Fig. 3. The concentrated loadings transmitted from abatjours to 
double-layer truss nodes 

The mul ticri terion optimization problem of space truss can be 
formulated as follows [5]. Find such catalogue of circular ho~low 
sections for truss bars which minimizes the mass of truss for 1 m of 
horizontal projection and a numbers of elements t in the catalogue 
1. e. , 

H 
t k 

=~ 
b 

f1 (x) 
t 1.1t +O • 1 L Ak lk' 

(O.5L)2 L2 k=l 
(3.1) 

f2 (x) t, (3.2) 

where: H is the total mass of bars and joints, r=7850 kg/m3 is the 
t. 

bulk density of steel, Ak is cross-sectional area of k-th truss bar, 

lk is the length of k-th truss bar. kb =168 denotes the number of 

truss bars in one quarter of spase truss, L=30 m is the truss span. 
The mass of truss joints for 1 m of horizont~l ~roiection .is taken 
into account by the empirical coefficient 1.1t.1 t+.1 which is equal 
approximately lOr. of mass of truss bars. 
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Vector of objective function has the following form 

(4) 

Vector of decision variables has the form 

x = [t, TJ E X, (5) 

where T is a catalogue of circular hollow sections for truss bars 
with a numbers of elements t (see Fig. S). 

The domain of feasible solutions is determined by the set of 
design. computational and technological constraints (Table 1). 

Table 1. Optimization constraints for space truss design 

Design constraints (6) Technological constraints (7) 

uC=N m IA :Sf =210 HPa (6. i) A E TcT cT (7. i) 
k k bk k d k B K 

ut=N IA :S f = 210 HPa (6.2) 2.9 :s g :s S. S rnrn (7.2) 
k k k d 31. S:s D :s 244.5 (7.3) rnrn 

A = 1 Ii :s 250 
k k k 

(6.3) 1 :s t ':s 34 (7.4) 

[KJ {a} = {P} (6.4) (S) n n n Computational constraints 

!J. :s ~ Ll250=16.97 cm(6.5) n E {l,2, ... ,N} (S. 1) 
1 1 :s N :s 10 (S.2) 

!J. 
2 

:s Ll250 = 12.0 cm (6.6) 1 :s T :s 14 (S.3) 

The following notation in Table 1 is used: Cut) and (uc ) are the 
k k 

tensile and compressive stresses in k-th truss bar, respectively. mbk 

is the buckling coefficient for k-th compressed truss bar, fd 210 

HPa is the strength of material, Ak is a slenderness ratio for k-th 

compressed truss bar, i k is a radius of inertia of cro.ss-sectional 

area of k-th truss bar, {P} is a loading vector, n is a number of 
n 

iteration, T is the catalogue of circular hollow sections for truss 
bars, TB is the basic catalogue of cross-sectional areas of truss 

bars and TK is the metallurgical series of types of hot-rolled steel 

circular hollow sections, g and D are wall thickness and diameter of 
circular hollow section, respectively (Fig. 4). 

The static analysis computer program is based on displacement 
method. The cross-sectional areas of truss bars are chosen 
automatically from a given the series of types of circular hollow 
sections. The local stability constraint (6.3) is taken into account. 
The internal forces in truss bars are determined. The appropriate 
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cross-sectional areas of truss bars satisfying the constraints 
(6.1-6.4) and (7.1) are chosen in n-th iteration for the known 
stiffness matrix [K] which was determined in the previous iteration. 

n 
The optimization process is terminated when the results of two 
following iterations are identical or maximal number of iterations N 
is reached. Next, the calculated loadings are replaced by 
characteristic loadings to find the actual displacements of truss 
nodes. If the displacement constraints (6.5) and (6.6) are not 
satisfied than a next catalogue is chosen and iteration process is 
repeated. It is assumed that the displacement constraints can be 
satisfied by choosing the appropriate catalogue of cross-sectional 
areas of truss bars. 

Based on paper [11] the basic catalogue of cross-sectional areas 
of truss bars TB is determinated. The basic catalogue TB has the 

following feature: the ratio of cross-sectional areas An+l IAn is 

constant and the corresponding cri tical NC and limit Nt forces 
increase simultaneously. The maximal cross-sectional area is 
determinated on the base of maximal force which occurs in the truss 
wi th the same cross-sectional areas for each bar, 1. e., t=1. The 
dimensions of cross-sections in the basic catalogue TB and segment of 

metallurgical catalogue are shown in Figure 4. 
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Fig. 4. The segment of metallurgical catalogue TK and the basic 

catalogue TB 

Optimization process starts from a basic catalogue TB. The 

displacement constraints for the assumed depth of double-layer space 
truss h=1. 8 m are violated (Fig. 5). The sequential catalogues are 
created from the previous one by erasing every second cross-section 
(Fig. 6). The displacement constraints are only satisfied by the 
ca talogues wi th a numbers t::s4 (Fig. 5) . Among these catalogues the 
four non-dominated catalogues are chosen. 
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Fig. 5. Diagrams of the displacement ~1 and truss mass fl (x) versus a 

numbers of of elements t in the catalogue T 
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The space of decision variables lit and the objective space 2l are 
shown in Figure 7. 
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The active constraints' (6.2). (6.5). (7.1). (7.4) and (8.3) 
determine the domain of feasible solutions XcA.The image of the set 
of constraints listed above in objective space creates the attainable 
domain Yc~. The discrete solutions xeX and the corresponding pOipts 
yeY are marked by circles. The non-dominated (efficient) points y • 

ND 

i=1 •...• 4 and the corresponding Pareto optimal (compromise) solutions 
xl =[f(x»)-1 are linked by dash lines. 

ND 

The curves ~1 (x) and f1 (x) for catalogues T with a numbers t=2 and 

t=3 are shown in Figure 8. The numbers corresponding to circular 
hollow sections occurring in basic catalogue TB are given for each 

the series of types of cross-sectional areas of truss bars. 
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Fig. 8. The curves ~1 (x) and f1 (x) for catalogues T with a numbers of 

elements t=2 and t=3 

The controlled enumeration method based on structural design 
knowledge is used to find the set of compromise solutions. The 
performance of this method is schematically shown in Figurg 9. The 
searching for minimum of {(x) starts from the fixed x =x. Next. 

1 1 1 
after finding the optimal value for x2 =x2 ' the searching is continued 

along x for the fixed x =x1 and so on. A more accurate solution can 
1 2 2 

be found by reducing a mesh density of net. 
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f(x) 

Fig. 9. The performance of the controlled enumeration method 

One can choose a preferable solution x from the set of compromise 
p 

solutions XND using a utility function (3), i.e., 

U(X ) 
p 

min U(Mt , x) = min f (x)(l - 0.4e- O. 35t ), 
XEXND XND EX 1 

(9) 

The coefficient C(t)=(1 - O. 4e- O. 35t ) occurring in the utllity 
function (9) and shown in Figure 10 describes the influence of labor 
cost concerning with a numbers of elements t in the catalogue of 
circular hollow sections T .. 

The 'preferable truss is build from the catalogue of 
cross-sectional areas of 2truss bars with a numbers t=3. The mass of 
truss is f (x)=36.64 kg/m and the displacement of central truss node 

1 

~1=17.02 cm. The displacement of central node is 0.3Yo larger than the 

allowable one but it is still less than the permissible violation 
which is equal 2 Yo. 
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Fig. 10. !h:x~iagram of utility function 'and the preferable solution 

p HD 

4. Conclusions 

The domain of feasible solutions should be determinated not only by 
stress constraints but also by displacement (serviceablli ty) 
constraints. Optimum design of truss structure with respect to 
serviceablli ty constraints requires the another algorithm than one 
concerns with stress constraints only. The displacement constraints 
can be satisfied by increasing the stiffness of the structure. The 
displacement of truss nodes can be decreased by a few independent 
means listed in the introduction. Optimum design of trusses with 
respect. to serviceability constraints leads to increasing of truss 
mass but decreasing of labor cost and exploitation cost of object. 
Multicriterion optimization approach allows to find the compromise 
and non-dominated solutions. The preferable solution can be chosen 
taking into account the labor costs. 
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Applied to Discrete Optimization 
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Abstract: A coupling symbolic and numeric computation approach in the 
discrete optimization of problems with linear objective function is presented. An 
enumeration method according to the non decreasing values of the objective 
function is supplied with an additional symbolic module containing the domain 
oriented knowledge. This module eliminates the constraints verification for "non
promising" propositions and enables a significant reduction in number of design 
variables variants that must be checked for feasibility to ftnd the global 
minimum. An optimization example for a simple truss sttucture and a few 
effective heuristic rules are presented. 

Keywords. knowledge-based optimization, discrete optimization 

1 Introduction 
The main idea of the controlled enumeration methods applied to the discrete 
optimization consists of using such algorithms which give the optimal solution by 
partial enumeration, without checking all feasible variants. Generally an ordered 
sequence of design variable vectors is generated using some combinatorial 
techniques. For these vectors the constraints of the problem are checked until a 
criteria for solution is satisfted. The number of design variable sets that must be 
verified to ftnd the global optimum can be very significant in real problems and 
implies a considerable time of calculus. A piece of knowledge can often 
substantially reduce the computational effort. This statement motivates the 
present paper. 
The enumeration technique would be more efficient if "non promising" 
candidates were eliminated from the checking constraints procedure. However a 
knowledge about the problem to solve is necessary to remove "a priori" 
unrealistic, redundant and infeasible variants. The ArtifICial Intelligence 
techniques enable powerful processing of symbolic data. They can be used to 
represent the knowledge that will enhance the controlled enumeration algorithms. 
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The discrete optimization of problems with linear objective function is 
considered in the paper. The problem-oriented knowledge is used to eliminate a 
priori some candidates issued from the controlled search procedure. The 
enumeration module. the knowledge-based module and the numerically oriented 
module for constraints checking are separated. The truss optimization example 
demonstrates the potential of the proposed approach applied to engineering 
problems. A significant reduction in number of design variables variants that 
must be checked for feasibility to find the global minimum has been observed. 
The presented method can be included into the class of knowledge-based 
optimization algorithms. joining advantages of knowledge-based systems and 
"traditional" system of numerical analysis. 

2 Formulation of the problem 
The optimization problem considered here can be generally formulated for N 
discrete design variables as follows 

(1) 

(2) 

N 
F= L c·x· =cx~min • 

i=1 I I 

XE S , 

{ 1.2.3. mil (3) Xi E Xi ,xi ,xi •... ; Xi • i=I •...• N 

where F is the linear objective function to be minimised. x is the vector of N 
discrete design variables. c is the vector of N constant real coefficients 
characterising components of the objective function. S is a set of feasible 
solutions determined by the arbitrary constraints. The design variables x. 
(i=I, ... ,N) are to be chosen from a finite set of m. feasible discrete values (3)! 
where m. stands for the number of discrete valuel which can be taken by x.-th 

. bill vana e. 
The solution of the problem under consideration proposed in the present paper 
joins a combinatorial algorithm of controlled enumeration. a knowledge based 
module and a constraint verification part. 

3 Enumeration method according to the non-decreasing values 
of the objective function. 
A version of the enumeration method according to the non decreasing values of 
the objective function (Iwanow 1990) has been adapted to the discrete 
optimization problem (1-3). 
The idea of the method is to find an ordered sequence of design vectors 
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according to the non-decreasing values of the corresponding objective functions 

(5) Fl S F2 S F3 S ... ; F; = F(xj). 

If min is the smallest natural nEN, for which the condition xeS is satisfied, then 
the solution of the minimization problem is 

(6) xopt = x min ; Fopt = F(xopt). 

For ordered coefficients ci of the objective function the algorithm constructs 
recursively a tree structure, assigning a unique value of F and x to each vertex. 
The suitable vertices (or all groups of vertices) are examined making use of the 
monocity properties of the created graph. At each step all variants equivalent 
with respect to the objective function are found. The search can be started from 
any arbitrary value, stated as a lower bound for objective function values to be 
generated in non-decreasing order. The algorithm does not require much memory 
and is more efficient from the numerical point of view than another algorithm of 
enumeration based on the same principle used by the author for similar 
optimization problems (pyrz 1990). 

4 Coupling symbolic and numeric computations 
In the enumeration method described in the previous chapter the constraints of 
the problem have to be checked for all subsequently generated design variables 
vectors Xl ~ ~ ... until reaching a xm' satisfying (2). The optimization 
procedure would De more efficient if one eWminated non promising candidates 
without checking them numerically for feasibility. A lot of design variable sets 
can be removed "a priori" thanks to an understanding of the expected results and 
a knowledge about the problem to solve. Many decisions of skipping non
promising variants can issue from technology, manufacturing, mechanical or 
other problem oriented properties that can be stated without calculus. The 
different forms of incorporated "domain oriented" knowledge can improve the 
efficiency of the optimization process. 
The main idea of the proposed approach is to create three separate modules 
corresponding to different levels of processing. The explicit separation of 
modules is a natural consequence of the application of the controlled 
enumeration method. 

4.1 Enumeration module 
The enumeration method algorithm presented in the previous chapter is the first 
part of the program. It needs only the coefficients c and discreteness conditions 
of type (3) defining sets of available discrete values. As a result a sequence of 
design variable vectors corresponding to the non-decreasing values of objective 
function is generated. For these variants the constraints of the problem have to be 
verified. 
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4.2 Knowledge module 
A separate symbolic processing module acting as a filter between generation of 
candidates and verification of the constraints is the second part of the program. 
This module removes the candidates from the checking constraints procedure if 
they are considered infeasible on the basis of the "problem oriented" information 
contained in the knowledge base. The knowledge base consists of domain facts, 
rules and heuristics associated with the problem and accompanied by a reasoning 
technique. An IF condition THEN action rule-based production system 
representation has been chosen. It accesses many facilities in manipulating 
knowledge, provided by symbolic computing. Its content is represented in a 
pseudo-natural language of the problem. It is easy to change or actualize thanks 
to the declarative characteristics: one should only precise what the system has to 
know. An adequate strategy of filtering has to be defined SO as none of "good" 
candidates (with respect to some corresponding criteria) be skipped. 

4.3 Constraints module 
The check for feasibility part is generally connected with heavy numeric 
processing. In this module the design variable variants issued from the 
knowledge module are subsequently checked for feasibility. The first design 
vector satisfying the constraints (2) of the problem gives the optimal solution. 

5 Problem oriented knowledge 
The symbolic processing module is created to limit a combinatorial explosion of 
possible discrete design variables variants that must be verified to find the 
optimal solution. It disposes a very specific knowledge connected with the 
characteristics of the problem to solve, however some general rules or heuristics 
can be included. 
The domain oriented knowledge useful in the optimization of engineering 
problems can issue from: 
- technological, mechanical behaviour or manufacturing constraints (e.g. some 
combinations of design variables are not allowed because of manufacturing 
limitations or given target technology; there exists some preferable variants for a 
given type or range of design variables etc.); 
- rules (or heuristic formalism) of modelling the considered class of structures; 
- database of previous results calculated for similar problems; 
- the priorities between equivalent (with respect to the objective function value) 
solutions or a criteria to choose the best possibility among the equivalent ones 
(some sets of design variables can be preferable in comparison with the others 
however all of them have the same value of the objective function); 
- the design variables interrelations difficult to include into numerically 
represented constraints (utilities aspect, functional specifications, simplicity, 
aesthetic functions, visual characteristics, etc.). 
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6. Dlustrative example 

6.1 Formulation of the truss optimization problem 
The weight minimization of a 10 bar truss structure (Fig.l) is presented to 
illustrate the proposed approach. The design variables are cross-sectional areas of 
10 bars. The inequality constraint has been imposed on the vertical displacements 
of nodes as an upper limit of 2 in. The maximal allowable stress has been limited 
to 2,5*10S psi. For the dimensions and material characteristics presented on 
Fig.l the structure has been investigated for different applications of two vertical 
forces P=lOSlb (including the case of loading a node by 2P) acting in downward 
direction. The number of design variables variants that must be checked for 
feasibility to fmd the global optimum has been studied. The results from the 
"standard" enumeration method application and from the knowledge-based 
enumeration approach have been compared. 

2 

Fig.l Ten-bar truss 

6.2 Heuristic rules 

Malarial: 

E_107 psi 

p-O.1pcl 

2 loads: 

P=lO'1b 

360" Stress constraint: 

OS; 2.5.104 psi 

Displacement constraint: 

u .... s;21n 

The following heuristic rules have been formulated on the basis of the static of 
the structure and the constraints imposed on displacements . They can be viewed 
as a predimensionning of the cross sectional areas of the bars, where two sections 
AS and A6 have been chosen as reference values. The rules take into account the 
loads poSItions and tend to prevent the displacement limit excess. For loading 
cases classified as leading to relatively small displacements, a combination of 
areas of bars 1,3,7,8 (lithe left part of the structure") has to be increased with 
respect to AS. If displacements are classified as big, "the right part of the 
structure" has to be additionally reinforced i.e. sections ~ and AlO or A4 and 
~ have to be greater than the section of reference A6. 
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IF loads_in _ nodes(l,1) or loads_in _ nodes(2,2) or loads_in _ nodes(l,2) 
THEN displacements_are _big. 

IF not(displacements _ are_big) 
THEN displacements_are _small. 

IF displacements_are _ small 
THEN reinforce_'eft yart. 

IF displacements_are _big 
THEN reinforce -'eft yart and reinforce Jight yart. 

IF reinforce_'eft yart 
THEN (A1>AS andA3>AS andA7>AS) or (A1>AS andA3>AS andA8>AS) 

IF reinforce Jight Jart 
THEN (A2>A6 and A 10>A6> or (A4>A6 and A9>A6>. 

6.3 Results for 4th-element catalogues 
The above rules have been included to the symbolic module of the algorithm and 
the optimal solutions have been found for different loading cases. An additional 
condition on A5 <15.0 and A6 <15.0 has been included on reference values. The 
4-th-element caialogue of discrete cross-sections (12.0 19.027.036.0) (in square 
inches) has been chosen for all design variables. The full survey of all possible 
variants would need the checking of 410::1048376 propositions. The results 
compared with those obtained without the knowledge-based module are 
presented in Table 1. The loading case is described by two numbers of nodes, 
where two forces P = 105 Ib are acting. The number of equivalent solutions is 
given but only the number of the first optimal solution is referenced. 

Loaded nodes 24 2 2 1 2 
Optimal weight [lb] 6769.1435 9747.5232 9507.8764 

Nr of equivalent solutions 2 1 4 
Nr of checked variants for 4347 490236 410558 

"standard" enumeration 
Nr of checked variants for 150 15974 13315 
knowledge-based enum. 

Table 1. Comparison between the number of variants that must be checked 
to fmd the optimum for different loading. 
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6.4 Conclusions 
It shows from the presented examples that the knowledge-based approach implies 
an enonnous reduction in the number of variants that must be checked even for a 
very simple knowledge base. The average economy with respect to the 
"standard" enumeration version was about 96,5%. It means that the constraints 
for only about 3,5% of generated variants needed to be verified to reach the 
optimum. 
In the prototype version of the discrete optimization method proposed in the 
paper the enumeration and constraint checking modules have been coded in 
Fortran 77 while the knowledge-based part has been written in Turbo Prolog 
(version 2.0 of Borland). 

7. Final remarks 
A prototype knowledge-based discrete optimization method has been presented. 
A domain-specific knowledge is an active component of the algorithm and has 
been used to eliminate a priori "incorrect" design variables sets. The potential of 
symbolic computations applied to problems of discrete optilmization has been 
emphasised, however an additional development work is necessary. The 
linearization methods existing for the non-linear optimization (e.g. Walukiewicz 
1991) enables the above general fonnulation to be applied to a much larger class 
of discrete problems. It is hoped that the knowledge-based approach used in 
conjunction with numerical techniques would considerably enhance the 
efficiency of optimization procedures. The further studies of the knowledge 
acquisition, formalization of heuristics or automated learning from the database 
of optimization examples are indispensable to code and utilise this knowledge 
properly. 
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General p-~ Method in Discrete Optimization 
of Frames 

Andrew T. Janczura • 

ABSTRACT 

The general P-A approach (GAPN) for the finite element method 
(FEH) in discrete optimization of frames has been presented in this 
paper. 

It has been shovn that P-A effects and suitable solutions 
algorithms comes from some modifications of the standard secant 
stiffness method for the second order theory (HNII) in general. 

The GAPN method is accurate approximation of the HNII with opposite 
to a standard (SAP) and a modified (HAP) P-A methods. Horeover SAP 
and HAP methods are use to be applied to the rectangular frame. 
with oposite to the GAPN. 

The GAPN approach is highly recomended for discrete optimization 
models of frames because is much effective as fastest in computer 
time, enough accurate and convergent even in critical area then 
the HNIIN. 

With respect to structures, especially rectangular frames ,the 
GAPN method, its first linearization (GAPL) , standard and modified 
P-A methods , full nonlinear HNII and its linearization NHIIL has 
been compared . 

One representative example of the frame has been chosen. A beha
viour of GAP methods in noncritical and critical area of loading 
with respect to their convergence has been considered. 

A numerical example shows that all P-delta methods with 
comparison to the exact second order analysis gives satisfied 
results in noncritical area but received by the GAP methods are 
the best. Horeover from the P-A approaches, only the general P-A 
is convergent in a critical area of loading. 

1. Discrete optimization model 

The optimization model of a steal frames is defined as nonlinear, 
discrete programming with constraints. 

Th~ design variables are defined by the linear dimensions of the 
cross sections and they have a discrete character. 

One type of the cross sections is shown on a figure 1. 

suitable identification of the variable dimensions for the 
cross sections of all members, creates variable vector X. 

Phd.elv.eng_, M8c ••• th., Co.puter Method. In Civil En91neerlng, 
Building Engineering In8tltute, Technical Unlver.lly of Wroclaw, 
tel: (071)20-36-54,(071)20-38-92, E •• II:ATJANePLWRTUII.BITNET 
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0"1,2 - normal stress 
4' 3 

1:4 ,3 - ens ion stress 

then a 
I 

is a component 

of a design vector X I 

then a is a component 
I 

of a parameter vector 1:. 

Fig, 1. T-cross section with the design variable. parameter 
definition and calculations points. 

This identification is equivalent to existence of one permutation 
matrix B which leads to disclose the X and 1: vectors [8): 

B • X = { X , 1: } ( 1 ) 

where X {XI , X2 , ••• , Xm }, XI 

and M is a number of members. 

Further with the definition of the object function ~ as the weight 

or the volume of the structure, it leads to the quadratic form : 

~m = ~m(X P)=J:..* v! * A * x..+ x;!; * A + A -,- 2 I>!" I - """2 3 ( 2 ) 

where AI is a matrix, ~ is a vector, A3 is a scalar, and they are 

functions of the cross sections parameters. The function (2) is 
called the global object function. 

An admissible set of solutions G is composed by: 

(i) a statics nonlinear matrix equation : 

K(X,~) * ~ = ~ I =l,Lstb ( 3 ) 

where Lstb is a number of loading, BI is a displacement vector 

of joints and ~ is a external loading vector, 

(ii) a displacement constraints 

B:S B 
d 

I =l,lstb ( 4 ) 
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(iii) a geometrical inequalities 

where XL, X, Xu E E ,and E is the finite 

linear vector space, 

( 5 ) 

(iv) a stresses constraints gets from the Polish Steel Standard 
written in form: 

F(X,l) := (1(T(X,l) II R )-1 <= 0 

Let G denotes admissible set of the solutions for 1 - state of 
1 

loading. Then G is equal 
Latb 

1 =1 

G 
1 

6 ) 

( 7 ) 

with the definition of the optimal criterium as the minimum, the 

optimization model has the form [9]: 

~ (X·) MIN ~(X,~) 

X E G 

Introducing additional file n° defined as 

n° : = { X E V' : ~ (X) < ~ (X· ) 

( 8 ) 

( 9 ) 

the necessary and sufficient condition for the existance the optimal 

solution y. can be written as [8]: 

~ (X·) = MIN ~(X,~) ~. n° n G = 0 

X E G 

The "Back-Track" algorithm has been used [2], for looking the 

optimal discrete solutions in optimization of frames expressed 

by the equation (8). 

2. The fundamental p-~ approach. 

( 10 ) 

The statics analysis of frames, expressed by the equation (3) 
in optimization model, is considered for the small displacements, 
linear-elastic condition, prismatic members, deterministic loading 
with the influence of the geometrical nonlinearity [4]. 
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These so called second order factors which has an influence on 
the internal forces distribution, are caused by displacements and 
deflections of a construction, and finally leads to increasing the 
value of internal forces with comparison to linear static analysis. 

For example in two dimensional structural analysis, these 
increments are relate to shear forces and overturning moments but in 
three dimensional structures it concern to torsional moments also. 

The overturning and torsional moments, acting at a given story 
of the structure have two components: 

(i) primary moments received from the linear static analysis in 
which suitable differential or finite element equations are 
deviated of formula for undeformed state of structure, 

(ii) second-order moments calculated for deformed state of the 
structure and are caused by the vertical forces acting over 
their respective incremental lever arms. 

This additional second order 
P-delta (P-6) effects (12). 

components are called as the 

For matrix displacement method, the P-6 factors are introduced 
into linear elastic stiffness matrix for one member, before it 
transformation from the local to the global coordinate system. 
However for small deflection, i.e., when the influence of the local 
member curvature on the second order effects are negligible small, 
the P-delta effect can be introduced into matrix equilibrium 
equations after the assembly the global matrix Ks (10). 

Let the matrix equilibrium equation has the form (6): 

( 11) 

where Y ={ ~ ""'Yx } is nodal displacement vector of construction, 
YI is displacement vector for i-node (i.e. ={VIX ' Vly,OI} for plane 
structures), E = { EI , ••• ,~} is lateral nodal loading vector and EI 
is lateral loading acting on i-node (i.e. ={Plx,Ply,MI } for plane 
structures), N is a the total number of nodes. 

Equations (11) is linear and present the standard linear method 
(LM). The P-6 method modifies the right hand side of this equations 
by one factor. Let consider j-column and i-story of a rectangular 
structure, and assume that each story has 1 -columns. The P-6 effe
cts involved a second order moment M which have to be calculated 
at each frame story. This moment has the form [1, 4) : 

lJ 
( 1: HI , J ). (VI x - v( 1 -1 ) x ), 1 = 1 , •••• III I 

J ~ 1 

( 12 ) 

where NI • J is an axial force in j-column of i-story, VI and VI _1 

are horizontal displacements of the i and i-l" stories and"m"is a 
number of stories. 

Let define a lateral force couples F.I at each story as: 

F 
.1 

( 13 ) 
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where hi is a story height. Then lateral P-6 vector has the form: 

, 
F , .•• , 
.1 

} , F' = F -F 
_I .(1-1) 81 

( 14 ) 

where i is a story number, M is a number of stories. 
Making the transformation of the l. vector, using the T matrix, 
into the vector space for lateral loading l, the influence of the 
P-6 effects in (11) can be express then in form : 

( 15 ) 

3. Iterative solution for P-6 method. 

In the standard P-delta (S6P) method, when the influence of 
the axial force for deformation is neglected coefficient a l is used 
to take as equal 1 or 1.21 [3]. In modified (M6P), it is calculated 
from geometrical stiffness matrix [4], has an algebraic form and is 
dependent only on the suitable rotations of nodes of stories for 
linear>model LM [12].It can be write as: 

( 16 ) 

Hence and (15) the fundamental P-6 matrix equations can be writ-
ten: 

Ks· Y = l + Ed ~Y) ( 17 ) 

and its solution has an iterative form as follow 

( i) first step V K )-1. E 18 
""'II 5 

(ii) l-step V ( K )-1. ( l + Ed 1 (Y( I - 1 ) ) ) ( 19 ) ., 5 

The iteration process stops when: 

~-Y(\_l)1 < c ( 20 ) 

where c is a tolerance and I· I is euclidean norm. 
A convergence of S6P method was considered in a papers [7],[14]. 
It can be found that for some structures, the process over five 
iterations, is not convergent and structure could loose its global 
stability. 

4. Generalization of the P-6 iterative procedure. 

For small displacements under linear - elastic conditions, prismatic 
members with neglecting the share shape deformation, the stress
strain relations for construction can be written in a form [15]: 
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21 ) 

where K(Y) is tangent stiffness matrix nonlinear dependent on a 
displacement vector Y, En is the loading vector acting on the nodes, 
lee Y) is loading vector acting on the elements. 

This equations can be solve by incremental iterative technique, 
which steps are as follow : 

(i) first step 

next are calculated I;, : = KT ( Yo) • Yo ' I·: = r - Ie 

11r;:= ~ - EO 

~ = Yo. 11~ 
(H) i-step I( I _ 1) : = KT (Y( I - 1 » • Y( I - 1 ) 

I1E( i-I) := l· - l( I -1) 

All process is finished ~hen 

for small arbitrary chosen 0 < C « 1. 

22 

23 

24 

25 

26 

27 

28 

29 

30 

( J1 ) 

This iterative increment procedure direct leads to the secant pro
cess (NMII), in which i-iteration is described as : 

= K 
T 

v ) -1 ",. 
- II-I) • &. 

what has been presented on figure 2. 

( 32 ) 
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Fig. 2. General P (G PN) and standard secant stiffness 
(NMII) approaches for the II order theory. 

y. 

Now let assume that on each iteration in (32), the inverse matrix 
will be calculated from elastic matrix Ks Then from (32) 

( 33 ) 

This equation is called the generalization of the P-~ method. 
It can be note that it has similar form then equation (17). 
After introducing incremental loading defined as : 

where r: - I II -1 ) 

equation (34) can be written as : 

34 

35 

I 

= I- + 1: 
J=O 

( 36 

which give the sense of the p-~ effects in general nonlinear 
expression (G~PN). 

When the global stiffness matrixKT is linearized by elastic matrix 

Ks and geometric matrix KG i.e.: 

( 37 ) 

then substituting this expression into (35), it can be obtained 
a linearized general P-~ method (G~PL), which for i iterati~n has 
the form: 
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l."+K(V »"V 
G -(1-11 -(I-I) 

( 38 ) 

It can be noted that both GAPN and GAPL methods are convergent. 

5. Numerical example 

As an example of an effectivity of the discrete optimiztion model 
with the comparison of all, P-A approaches for the LM, MNII and MNIIL, 
it has been choossen simple plane frame shown on a figure 3. 

In this example ,the Vtx displacement, for x direction in joint 

number 1 and the Mt2 internal moment in joint number 12, are taken 
under consideration. 

There are two groups of materials and cross sections for the 
frame. One is composed by the exterior columns, the second by the 
rest of members. Ich group has double symmetric T section with all 
variable dimensions so the design vector X is six dimensional. 

The initial values for X vector are {S,l,l,S,S,l,l,S} and itera
tions step is equal O.S. Lower and upper geometrical bounds has been 
taken as follow : ~ ~ { 3,0.S,0.S,4,3,0.S,0.S,4}, 

XU ~ { 6,1,1,6,6,1,1,4} 
and the maximum number of iteration was assummed as 6. 

The object function was defined as the volume of the frame. 
It has been introduced a relative error defined as [5]: 
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Fig. 3. Topology, geometry, material properties and loading 
of a three-bay, five-storey frame. 

( 39 ) 
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where w is a solution received by the MNII method and w' is a 

calculated value by the rest methods. 

This relative error gives the information about effectivity of the 
one method (in an accuracy sense of the one value) due to accurate 
solution. 

In this example the time of the computer operations has been 
measured also. For this purpose the relative coefficient has been 
defined : 

( 40 

where tK ,tLK are times of calculations for chosen and ML method 

respectively. This definition gives the proper look for an 
effectivity of one method because the direct calculation time is 
.in great manner perturbed by the chosen compiler, linker and the 
type of a computer. 

All calculation has been made under FOPT PC computer 
program written in MS FORTRAN v.5.0, MS C v.G.O and MASM v5.0, 
on the base of PC 486/25MHz/EVGA unit. 

with the use of the "Back-Track" technique of the solution the 
FOPT_PC program has founded the optimal solution almost at the 
boundary, for all cases in point x· ={ 3,l,l,4,3,O.5,O.5,4}.The object 
function has been changed its value from 75600 in3 to 36000 in3 which 
occured the optimal. 

In a table 1 are presented results for loading case I, and loading 
case III is in the critical area. This critical loading is Rl=O [kips) 
and P= 830[kips) for NMII • 

Table 1 

CobAaIod dIICoIoc_f._" LM SLlP".u. MLlP,,_ GLlPL NMIIL GLIPN NMII '_11 ..... '01". 

Vb ( In J 0.7634 0.8864 0.8869 0.8878 0.8909 a~877 r 0.89" E. ( · J 14.32 0.51 0.46 0.36 0.01 0.28 0.0 
_·_ ... ____ • __ ·'H. __ --_._---- -- --------- .. ----------- _"H" ___ ._. ____ ._ ... .-, "._.H·_H"' •• N. 

1153.4749 153.9069 I MI2 ( ....... ) -136.9456 -139.4758 -148.5531 H53.5158 153.9283 
E. ( • J 11.02 9.38 3.48 0.25 0.01 0.28 0.0 --_ ..... __ ._-_ ...... _-- -_._------1-._---- -_._------- _ .. _ .. _._. 
E, (. J 1. 2.41 2.86 3.01 3.44 3.6 4.16 

Vb ( .. J 0.00026 0.00030 0.00030 0.00033 0.0630, 0.0003 0.23069 
E. ( · J 99.89 80.68 80.87 83.21 1.18 83.24 0.0 

---.---.. -- ._- ---------_. _. __ H. __ • 
•••• N. ---_ ... ", ..... .. . .... 

III MI2 './P-"'J -0.0237 -0.02419 -0.02577 -0.02788 -2.26497 -0.02789 -8.00549 
E. ( · J 99.7 99.87 99.87 99.86 72.66 99.86 0.0 

------,- --.. ----_. _____ • ___ •••• ___ 'N ... _-_ .. _-_ .•. _-_.- ... .. , .. " ...... " 
E, ( • J 1.0 2.72 3.23 3.4 3.9 4.11 4.77 
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It has been assumed that c, which ends the iterations, is equal to 
the value 1E-5. 

For each step of the optimization it has been the four iterations 
for the solutions of nonlinear statics analysis equation. 

Finally received results shows that: 

(i) In non critical area standard and modified P-~ methods gives 
relative error in the range of 3.5 - 9.5 %, but general P-b 
methods are much more accurate with relative errors in the 
range of 0.25-0.28 % • 

(ii) For of the relative time coefficient, the differences between 
G~PL and MbP are small (relative range ~ 2.4%), but between 
G~PN and M~P are considerable (relative range ~ 20.3%). 

(iii) In critical area of loading, within the four iterations, only 
the MNII method has given the results near the analytical solu
tion. The MNIIL with relation to the MNII has given 1.18 % error 
but all P-b have given this error huge, in a range of 80.7 -83.2 

(iv) Increasing iterations untill 50, the MNII has oscillated around 
value received in fourth iteration (table 1), MNIIL, GbPN and GbP 
has been convergent to solutions of MNII method, but 5bP and MbP 
methods have not been convergent at all. 

6. Conclusions 

The general P-~ approaches, described in this paper, are more 
effective then the standard and modified P-b methods. 

It is not the consequence of the direct comparison of these 
methods on the base of a rectangular frames only but the general 
form of the matrix equation [33,36]. 

This form : 
(i) doesn't require any special topology and geometry of the 

structure, so any structure can be consider, 

(ii) is convergent if the HNII and HNIIL methods are convergent 

(iii) has general form what caused that all second order factors 
are considered, not only those mentioned in SbP and HbP 
methods. 

(iv) is highly recomended for discrete optimization models of 
frames with opposite to HNIIN as fast, enough accurate and 
convergent even in critical area. 
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A More General Optimization Problem 
for Uniquely Decodable Codes 

Ahmed A. Belal 
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Abstract: The problem of finding the integers r (i), 
N 

i = 1.2 •.....• N that minimize the cost function J = ~ A (i) f [r (i)] 
i=1 

N 
under the constraint ~ b- r(i) S bt where t is a non-negative 

i=1 

integer and b is an integer ~ 2. is shown to have a very 

simple solution when the function f [r] is an exponential 

function of r and A (1). A (2) •....• A (N) is any set of positive 

real numbers. 

It is shown that when f [r] = ar where a is any real 

positive number. a simple procedure based on the theory of 

uniquely decodable compact codes can be used to 

determine the integers r (1). r (2) •... when t = O. A minor 

modification on the already obtained values for the r' s. will 

allow for other values of t. 

1- INTRODUCTION 

It is well known from the theory of uniquely decodable 

codes [1]. [2]. [3] that the lengths r (1). r (2) •.....• r (N) of the 
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N 
code words must satisfy the condition L b- r(i) S 1 where b 

i=1 

is the size of the code alphabet. 
In the case of binary codes, b = 2, the condition 

N 
becomes L 2-r(i) S 1. (1) 

In this case, given any set of positive real 
numbers A (1), A (2), .... , A (N) the integers r (1), r (2), .... , 

r (N) satisfying equation (1) and minimizing the cost function 
N 

J = L A (i) r (i) will be the set of word lengths of a compact 
i=1 

code obtained from a complete code tree of order two, and 
satisfying equation (1) with equality [1], [4]. 

For N = 2 and N = 3 there is only one complete binary 
code tree giving the solution sets {1,1} and {1, 2, 2} 

respectively. For N > 3 more than one solution set exists. 
Fig. 1 shows the three possible trees for N = 5, giving 
the solution sets {2, 2, 2, 3, 3}, {1, 3, 3, 3, 3}, {1, 2, 3, 4, 4}. 

3 

4 4 

Fig. 1 
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It is easy to see that the solution sets obtained for 

binary compact codes will also minimize the cost function 
N 

J = 1: A (i) f [r (i)) 
i=1 

subject to the constraint of equation (1) for any function 

satisfying the condition f [r (i)] ~ f [r (j)] for r (i) ~ r (j) by simply 

assigning the smaller r (i) to the larger A (i). 

In the next section. it will be shown that a Huffman like 

procedure for compact codes [2]. [3] can be used to uniquely 

determine the solution set r (1). r (2), ....• r (N) when f is the 

exponential function f [r (i)) = ar(i) where a is any positive 

integer greater than 1. 

Extensions to non-binary cases when b > 2 will also be 

given. 

2.1 The Binary Case b=2 
Without any loss of generality. assume that the real 

positive coefficients A (i) are such that A (1) ~ A (2) ~ A (3) ~ 

.... ~ A (N - 1) ~ A (N). 

Let r (1). r (2), ....• r (N) be the set of integers that 
N 

minimizes the cost function J = 1: A (i) f [r (i)). under the 
i ... 1 

N 
constraint 1: 2- r(i) s; 1. when the function f satisfies the 

condition 

f [r (i)] ~ f [r (j)] when r (i) ~ r (j) (2) 

From the properties of the complete binary code tree. it 

is clear that r (N-1) = r (N). 

We now form a reduction of the problem by replacing 

the two coefficients A (N-1). A (N) with the coefficient 
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A (0) = a [A (N-1) + A (N)] (3) 

where a is any positive real number. 

We would like now to solve the reduced problem and 
find the (N-1) integers r' (1). r' (2) •....• r' (N-2), r (0) that will 

minimize the cost function. 

N-2 
J' = A (0) f[r (0)] + 1: A (i) f [r' (i)] 

i=1 
(4) 

N-2 
under the constraint 2- reO) + 1: 2- rei) ~ 1 (5) 

i=1 

then use the same binary code tree obtained. to get the 
solution to the original problem by just adding two branches 
to the node representing r (0). Thus the solution set to the 
original problem will be 

r (i) = r' (i) for i = 1. 2, ....• N-2 

r (N-1) = r (N) = r (0) + 1 (6) 

In order to be able to do this. the two cost functions J of 

the original problem and J' of the reduced problem must 
differ by at most a constant value. 

From equations (3), (4), (6) we obtain 

J - J' = {A (N-1) + A (N)} {f [r (0) + 1] - a f [r (Om (7) 
Setting his difference equal to a constant irrespective 

of the value of r (0) gives the difference equation 

f [r + 1] - a f [r] = k (8) 

where k is any constant value. 
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Equation (8) has the two solutions 

f [r] = kr when a = 1 (9a) 

f [r] = ar a:t: 1, k = 0 (9b) 
Solution (9a) produces the Huffman encoding method 

where the cost function is the average code length. 
The other solution (9b) shows that the simple 

procedure outlined can be used to optimize the cost function 

N 
1: A (i) ar(i) (10) 

i=1 

Since this last solution was obtained with k=O, both 

cost functions J,J' will have identical values in this case. 

Solution to the problem is found by making successive 
reductions, until we reach the trivial case of three variables 

having the one solution set {1, 2, 2}. 
The following example shows .the procedure for 

minimizing the cost function 

J =330 (4)r(1)+70(4)r(2)+ 15 (4)r(3)+ 10 (4)r(4) + (4)r(5) + (4)r(6) 
6 

subject to the constraint 1: 2-r(i) S 1 
i=1 

HereA(1 )=330,A(2)=70,A(3)=15,A(4)=10,A(5)=A(6)=1 and a=4. 
First, we arrange the coefficients in descending order, 

then the first reduction is obtained by replacing the two 
smallest coefficients A (5), A (6) with one coefficient of value 

A (0) = a [A (5) + A (6)] = 8. 

The coefficients are again arranged in descending 

order as in the second column. The process is repeated 

until we reach the final stage with the three coefficients 

340, 330, 72 for which the solution set is {1, 2, 2}. 
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Moving backwards we obtain the solution set {2, 2, 2, 2} 

for the stage with coefficients 330, 72, 70, 15 then the set 

{2, 2, 2, 3, 3} for the stage with coefficients 330, 70, 15, 10,8 
and firially the solution {2, 2, 2, 3, 4, 4} for the original 

problem. 

We note that the cost function ~ A (i) 4r(i) has the same 
I 

value of 7792 in all the stages. 

340 (0 
0 330 330 0 330 

ffi 72 72 

0 0 70 70 70 

0 15 15 0 
0 10 10 0 
8 :b-a 

X4 

8 0 
Solution sets for several different coefficients are given 

below for the case f [r] = 4r. The first entry corresponds to the 

previous example. 



Coefficients A (1). A (2)"" .. A (N) 

330,70,15,10,1,1 
349,75,15,10,1,1 
42,8,6,6,4,2,1 
1,1,1,1,1,1,1,1 
128,64,32,16,8,4,2,1 
65,15,8,8,6,4,1,1,1 
3841,200,100,76,60,40,8,1,1 
3839, 200, 100, 76, 60, 40, 8, 1,1 

Solution set 

{2, 2, 2, 3, 4, 4} 
(1,2,3,4,5,5} 

245 

{2, 3, 3, 3, 3, 3, 3} 
(3,3,3,3,3,3,3,3} 
{2,2,3,3,4,4,4,4} 
{2,3,3,3,3,4,4,4,4} 
{1,3,3,4,4,4,5,6,6} 
{2,3,3,3,3,3,4,5,5} 

The given procedure will minimize the cost function J, 

provided that the function f satisfies the condition given in 

equation (2) namely, that f [r] increases when r increases. 
Thus for the exponential function ar, the value of a must be 
greater than 1. 

For values of a less than 1, the previous procedure will 
N 

maximize the cost function J under the constraint 1: 2- rei} = 1. 
i=1 

The following example gives the solution set 

{1, 2, 3. 4. 4} to maximize the cost function 

J = 9 (3/4)r(1) + 8 (3/4)r(2) + 5 (3/4)r(3) + 4 (3/4)r(4) + 4 (3/4)r(5) 

(0 9 

0 8 

0 5 
5 

0 4 

0 4 
~ 
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The case a s 1/2 is of special interest, since in this 

case the new coefficient A (0) = a [A (N-1) + A (N)] that 

replaces the two smallest coefficients A (N-1), A (N) will 

always be smaller or equal to the coefficient A (N-2). 

With this condition satisfied in every reduction, the only 

possible solution set when a S 112 is the set 

r (k) = k 

r (N-1) = N-1 

r (N) = N-1 

, k = 1, 2, ... , N-2 

(11 ) 

Since the solution set always forms a complete code 

tree satisfying condition (1) with equality, the given 

procedure can still be used to minimize the cost function J 

N 
under the constraint I: 2- r(i) = 1, when the value of the 

i=1 

exponent a is less than 1, by simply assigning the 

bigger r (i) to the bigger coefficient A (i). This is achieved 

by arranging the coefficients A (1), A (2), ... , A (N) in 

ascending order then forming a reduction by replacing 

the largest two coefficients A (1), A (2) with the 

coefficient A (0) = a [A (1) + A (2)]. 

The following example demonstrates the procedure to 
6 

minimize the cost function J under the condition I: 2- r(i) = 1, 
i=1 

with the coefficients 45, 36, 30, 24, 21, 16 and the function 

f [r] = 3- r 

The solution {2, 2, 2, 3, 4, 4} gives the minimum cost 

function 
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J (min)=16 (3r2 + 21 (3r2 + 24 (3r2 + 30 (3r3 + 36 (3)-4 + 45 (3)-4 = 8019 

15 8 
0 16 0 
0 19 0 21 

0 24 

0) 30 

8 36 

8 45 

2.2 Extension to the Non-Binary Case b > 2 

When b is greater than 2. the same results of the 
previous section still apply provided that the number of 
coefficients N can form a complete code tree of order 
b [1]. [5]. 

A complete code tree of order b. is one in which every 
node has b branches coming out of .it. It is clear that the 
number of leaves N in such tree must satisfy the condition 

N = b + (b - 1) k where k = O. 1. 2 •.... (12) 

By reducing the number of variables by (b-1) in every 
step. the process will end after k steps leaving a problem 
with b variables having the solution set r (1) = r (2) = r (3) 

N 
= ....... = r (b) = 1 and satisfying the condition 1: b-r(Q = 1. 

i=1 
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When the number of given coefficients N, does not 

satisfy equation (12), additional coefficients having value 

equal to zero are added so that (12) is satisfied. 

FiDally, if the constraint of equation (1) is of the form 
N 
!: b- r(i) ~ bt 

i=1 

where t is an integer, then the optimization procedure will 

give the solution set for the integers r (i) + t. 

CONCLUSION 

It was shown that the theory of uniquely decodable 

codes can be used to optimize a more general cost function 

than the average length of the code. 

The problem of optimizing the cost function 
N N 

J = !: A (i) f [r (i)], under the constraint !: b- r(i) ~ bt, was 
~1 ~1 

solved when f [r] is the exponential function ar. 

It was proved in this case, that the value of the cost 

function remains unchanged under a reduction of the 

problem from N variables to (N-b+ 1) variables. 
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