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Introduction 1

When writing about ovals the first thing to do is to make sure that the reader knows

what you are talking about. The word oval has, both in common and in technical

language, an ambiguous meaning. It may be any shape resembling a circle stretched

from two opposite sides, sometimes even more to one side than to the other. When it

comes to mathematics you have to be precise if you don’t want to talk about

ellipses, or about non-convex shapes, or about forms with a single symmetry axis.

Polycentric ovals are convex, with two symmetry axes, and are made of arcs of

circle connected in a way that allows for a common tangent at every connection

point. This form doesn’t have an elegant equation as do the ellipse, Cassini’s Oval,

or Cartesian Ovals. But it has been used probably more than any other similar shape
to build arches, bridges, amphitheatres, churches and windows whenever the circle

was considered not convenient or simply uninteresting. The ellipse is nature, it is

how the planets move, while the oval is human, it is imperfect. It has often been an

artist’s attempt to approximate the ellipse, to come close to perfection. But the oval

allows for freedom, because choices of properties and shapes to inscribe or circum-

scribe can be made by the creator. The fusion between the predictiveness of the

circle and the arbitrariness of how and when this changes into another circle is

described in the biography of the violin-maker Martin Schleske: “Ovals describe

neither a mathematical function (as the ellipse does) nor an arbitrary shape. [...]

Two elements mesh here in a fantastic dialectic: familiarity and surprise. They
form a harmonic contrast. [. . .] In this shape the one cannot exist without the other.”
(our translation from the German, [15], pp. 47–48).

Polycentric ovals are and have been used by architects, painters, craftsmen,

engineers, graphic designers and many other artists and specialists, but the knowl-

edge needed to draw the desired shape has been—mostly in the past—either spread

by word of mouth or found out by methods of trial and error. The question of what

was known about ovals in ancient times has regained interest in the last 20 years. In

[4] the idea of a missing chapter about amphitheatres in Vitruvius treatise De
Architectura Libri Decem is put forward by Duvernoy and Rosin, while in [7]

López Mozo argues that at the time the Escorial was built the know-how had to be
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better than what appears looking at the sources available today. In [6] the authors

show how the oval shape has been used in the design of Spanish military defense,

while in [8] the author suggests that methods of drawing ovals with any given

proportion were within reach, if not known, at the time Francesco Borromini

planned the dome for S.Carlo alle Quattro Fontane, since they only required a

basic knowledge of Euclidean geometry (the whole of Chap. 7 of this book is

dedicated to this construction). In any case, traces of polycentric curves date back

thousands of years (see for example Huerta’s extensive work on oval domes [5]).

For everything that has come down to us in terms of treatises on the generic oval

shape (la forma ovata as she calls it), with constructions explained by the architects
in their own words, the book by Zerlenga [17] is a must.

The idea of this book is not to dispute whether and when polycentric ovals were

used in the past. It is to create a compact and structured set of data, both geometric

and algebraic, covering the single topic of polycentric ovals in all its mathematical

aspects, and then to illustrate two very important case studies. Basic constructions

and equations have been used and/or derived by those who needed them, but such a

collection has—to the best of our knowledge—never been put together. And this is

why this book can help those using the oval shape to make objects and to design

buildings, as well as those using it as a means of their artistic creation, to master and

optimise the shape to fit their technical and/or artistic requirements. The author

went deep into the subject and the book contains many of his contributions, some of

which apparently not investigated before.

The style chosen is that of mathematical rigour combined with easy-to-follow

passages, and this could only have been done because basic Euclidean geometry,

analytic geometry, trigonometry and calculus have been used. Non-mathematicians

who can benefit from the constructions and/or formulas on display will thus be able,

with a bit of work, to understand where these constructions and formulas

come from.

The main published contributions to this work have been: the author’s paper on

the construction of ovals [8], Rosin’s papers on famous oval constructions [11, 13],

and on the comparison of an ellipse with an oval [11–14], Dotto’s survey on oval

constructions [2] and his book on Harmonic Ovals [3], López Mozo’s paper on the

various general purpose constructions of polycentric ovals in history [7], Ragazzo’s

works on ovals and polycentric curves [9, 10]—which triggered the author’s

interest in both the subjects—and finally the monograph on the Colosseum [1].

Totally new topics displayed in this monograph are Constructions 10 and 11, the
organised collection of formulas in Chap. 4, the inscription and circumscription of

rectangles and rhombi with ovals, the Frame Problems and the constructions of

ovals minimising the ratio and the difference of the radii for any choice of axes. An

organized approach to the problem of nested ovals is also presented, what the author

calls the Stadium Problem, as well as a new oval form by the author. The main

contribution is though the study on Borromini’s dome in the church of San Carlo

alle Quattro Fontane in Rome: together with Margherita Caputo a whole new

hypothesis on the steps which Borromini took in his mysterious project for his

complicated oval dome is put forward.

2 1 Introduction
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Chapter 2 is dedicated to the basic properties of four-centre ovals and to their

proofs.

Chapter 3 lists a whole set of ruler/compass constructions systematically

ordered. They are divided into: constructions where the axis lines are given,

constructions where the oval has an undefined position on the plane but some

parameters are given, special constructions involving inscribed or circumscribed

rectangles and rhombi—including the direct and inverse Frame Problem—and

finally an illustration of possible solutions to the Stadium Problem.
In Chap. 4 we prove the formulas corresponding to the constructions of ovals

with given axis lines presented in Chap. 3. Then we derive the formulas solving the

direct and inverse Frame Problems. Finally we derive formulas for the area and the

perimeter of an oval.

Chapter 5 features two new optimisation problems regarding the difference and

the ratio between the two radii of an oval with fixed axes and the corresponding

constructions.

Chapter 6 presents famous oval shapes and their characteristics as deduced from

the formulas of Chap. 4, with a final comparison illustration.

Chapter 7—co-written with Margherita Caputo—is about reconstructing the

project for the dome of San Carlo alle Quattro Fontane as Borromini developed

it. We suggest that he modified an ideal oval dome using a deformation module to

adapt it to the space he had and to his idea on what the visitor should perceive, in

terms of patterns, light and depth.

Chapter 8 illustrates a possible use of 8-centre ovals in the project for the

Colosseum—as suggested by Trevisan in [16]—after a short introduction on the

properties of ovals with more than four centres.

The use of freeware Geogebra by which all the figures in this book were

produced, has proved itself crucial in the representation, in the understanding and

in the discovery of possible properties.
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Properties of a Polycentric Oval 2

In this chapter we sum up the well-known properties of an oval and add new ones, in

order to have the tools for the various constructions illustrated in Chap. 3 and for the

formulas linking the different parameters, derived in Chap. 4. All properties are

derived by means of mathematical proofs based on elementary geometry and

illustrated with drawings.

We start with the definition of what we mean in this book by oval:

A polycentric oval is a closed convex curve with two orthogonal symmetry axes (or simply
axes) made of arcs of circle subsequently smoothly connected, i.e. sharing a common
tangent.

The construction of a polycentric oval is straightforward. On one of two orthog-

onal lines meeting at a point O, choose point A and point C1 between O and

A (Fig. 2.1). Draw an arc of circle through A with centre C1, anticlockwise, up to

a point H1 such that the line C1H1 forms an acute angle with OA. Choose then a

point C2 on line H1C1, between C1 and the vertical axis, and draw a new arc with

centre C2 and radius C2H1, up to a point H2 such that the line C2H2 forms an acute

angle with OA. Proceed in the same way eventually choosing a centre on the

vertical axis—say C4. The next arc will have as endpoint, say H4, the symmetric

to the previous endpoint w. r. t. the vertical line, sayH3, and centre C4. From now on

symmetric arches w.r.t. the two axes can be easily drawn using symmetric centres.

The result is a 12-centre oval. This way of proceeding allows for common tangents

at the connecting points Hn. The number of centres involved is always a multiple of

four, which means that the simplest ovals have four centres, and to these most of

this book is dedicated, considering that formulas and constructions of the latter can

already be quite complicated. It is also true that eight-centre ovals have been used

by architects in some cases in order to reproduce a form as close as possible to that

of an ellipse. Chapter 8 is devoted to those shapes and to the possibility of extending

properties of four-centre ovals to them.

# Springer International Publishing AG 2017
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The above definition implies that this is a polycentric curve, in the sense that it is

made of arcs of circle subsequently connected at a point where they share a

common tangent (and this may include smooth or non-smooth connections). In

[2] a way of forming polycentric curves using a more general version of a property

of ovals is presented.

One of the basic tools by which ovals can be constructed and studied is the

Connection Locus. This is a set of points where the connection points for two arcs

can be found. It was conjectured by Felice Ragazzo (see [4, 5]) for ovals,

egg-shapes and generic polycentric curves. A Euclidean proof of its existence

was the main topic in [2], along with constructions of polycentric curves making

use of it. In this book the version for four-centre ovals is displayed, along with all

the implications, the main one being that the oval is a curve defined by at least three

independent parameters, even when a four-centre oval is chosen.

To make this clearer let us consider an ellipse with half-axes a and b. These two
positive numbers are what is needed to describe the ellipse, whose equation in a

Fig. 2.1 Constructing a 12-centre oval
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Cartesian plane with axes coincident to those of the curve and the origin as

symmetry centre, is

x2

a2
þ y2

b2
¼ 1;

this curve is perfectly inscribed in a rectangle with sides 2a and 2b. However, a
four-centre oval inscribed in the same rectangle is not uniquely determined, an

independent extra parameter is needed, and in the case of eight-centre ovals the

extra parameters needed are three, giving a total of five. This means more freedom

in the construction and at the same time more uncertainty in the recognition of the

form (see Fig. 2.2).

2.1 Four-Centre Ovals1

Let us devote our attention to four-centre ovals, from now on called simple ovals or
just ovals (Fig. 2.3).

The double symmetry implies that it is enough to deal with the top right-hand

section, a quarter-oval. In this respect, using Fig. 2.4 as reference, we define

– O as the intersection of the two symmetry axes

– A and B as the intersection points between the quarter-oval and the horizontal

and vertical axes. Let OA > OB
– K and J as the centres respectively of the small and big circles, with radii r1 and

r2, whose arcs form the quarter-oval

– H as the connecting point of the two arcs.

The above definitions and well-known Euclidean geometry theorems imply that:

Fig. 2.2 In any given

rectangle there is only one

inscribed ellipse (the dotted
curve), and an infinite number

of four-centre ovals

1Parts of this section have already been published in the Nexus Network Journal (see [2]).
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– tangents to the circles in A and B are parallel to the other axis

– J and K belong respectively to the vertical and horizontal axis, with K inside OA
and J opposite to B w.r.t. O

– J, K and H are co-linear.

A further well-known property or condition on K is proved by the following

argument, inspired by Bosse’s construction of an oval in [1], which we will present

in Chap. 3. Draw from K the parallel to the chord BH and let F be the intersection

with the line OB (see Fig. 2.4). Since JH ¼ JB, we have that J B
_
H ¼ JH

_
B, which

means that BFKH is an isosceles trapezoid, implying that BF ¼ KH. Since F has to

be inside the segment OB, we have the following:

OB > FB ¼ KH ¼ AK ¼ AO� OK,

the first and the last terms yielding that OK > AO� OB, which is a condition on

point K.
Finally let us assume that for the same K a different second centre J0 existed (and

thus a different oval). Then—see the bottom of Fig. 2.4—the connecting point

would be H0, and the same construction as the one just performed would yield a

different chord BH0 and thus a different point F0 inside OB, but this is impossible,

Fig. 2.3 An oval, with its four centres and the tangents at the connecting points

8 2 Properties of a Polycentric Oval
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because it would still have to be F0B ¼ KH0 ¼ AK. This means that the choice of a

feasible K uniquely determines the quarter oval.

Felice Ragazzo’s work on ovals [4], and, later on, the one on polycentric curves

[5], made it possible to find new properties and to solve un-tackled construction

problems. His 1995 paper presents a property of any connection point and a

conjecture on the locus described by all the possible connection points of an oval

with given axis measures.

We will present the first property in the form of a theorem.

Theorem 2.1 In a quarter oval (see Fig. 2.5) the connection point H, the end point
B of the smaller axis, and the point P (inside the rectangle inscribing the quarter

Fig. 2.4 Determination of a condition for K and proving the uniqueness of J and H

2.1 Four-Centre Ovals 9



oval) lying on the smaller circle and on the parallel to the smaller axis through the
centre K, are co-linear.

Proof Let us connect B andH. Since BH is not a tangent either to the circle through

H with centre K or to the circle through H with centre J, it will have an extra

common point with both. For the bigger circle this is clearly B. According to

Archimedes’ Lemma2 the intersection with the smaller circle has to lie on the

parallel to BJ through K. Since it has to lie on the same side of H and B, it has to be
P. □

The same argument can be used to prove that H, A and Q are also co-linear,

Q being the intersection between the bigger circle and the parallel to the longer axis

through its centre J (see again Fig. 2.5).

Ragazzo’s conjecture on ovals reduces the problem to quarter ovals inside

rectangles. It is the following (our translation from the Italian):

The locus of the connection points for the arcs [of a quarter oval [Ed.]] [. . .] is the circle,
which we will call Connection Locus, defined through the following three points [points 1, 2
and 3 in Ragazzo’s original drawing (Fig. 2.6)]

– intersection between the half major axis and the half minor side [of the rectangle
inscribing the oval [Ed.]]

– endpoint of the half minor side transported compass-wise onto the major side
– intersection between the half major side and the half minor axis

Fig. 2.5 Co-linearity of B,
H and P, and of A, H and Q

2Given two tangent circles, any secant line through the tangency point intersects the two circles at

points whose connecting lines with the corresponding centres are parallel.
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(taken from [4], copyright of the Department of Representation and Survey of the
university “La Sapienza” of Rome, with kind permission).

In other words, any quarter oval inscribed in a given rectangle will have the

corresponding connection point on the above defined Connection Locus, vice versa

any point on it (as long as it lies between points 1 and 2, as we will see later) can be

chosen as connection point for a quarter oval inscribed in the given rectangle.

We first wrote the proof of this conjecture, then managed to extend it to

egg-shapes and to polycentric curves. So it has become in [3] a corollary of one

of the theorems contained in [2]. In the framework of those works the chosen tool

was that of Euclidean geometry. Another proof based on analytic geometry was

presented by Ghione in the appendix to [4]. We present here both proofs, to show

the two different possible approaches to the study of ovals, with just a couple

additions to the second one to make it equivalent to the first.

Theorem 2.2 Let OATB be a rectangle with BT > AT. Let S be the point on BT

such that ST ¼ AT.

1. The necessary and sufficient condition for H to be the connecting point for two

arcs of circle with centres inside BbTA and tangent in H, one tangent to the line
AT in A and the other one tangent to the line TB in B, is for H to belong to the
open arc AS of the circle through A, B and S.

2. The angle originating at the centre C of such a circle corresponding to the arc
AB is a right angle.

3. The line OC forms a
π

4
angle with OA

Proof 1 (Mazzotti 2014) Let us consider Fig. 2.7. We will start from the second part

of the theorem. Let C be the centre of the circle through A, B and S; since ST ¼ AT

we have that TbSA ¼ π

4
, which implies that CbSAþ CbSB ¼ AbSB ¼ 3

4
π and so, since

Fig. 2.6 Inscribing a quarter

oval inside a rectangle:
Ragazzo’s circle through

points 1, 2 and 3 is where all

possible connection points lie.

Figure taken from [4]

(copyright of the Department
of Representation and Survey
of the university “La

Sapienza” of Rome, with kind

permission)
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CbSA ¼ CbAS andCbSB ¼ CbBS,CbASþ CbBS ¼ 3

4
π; looking at the quadrilateral CASB

we can deduce that

AbCB ¼ 2π � 3

4
π � 3

4
π ¼ π

2
: ð2:1Þ

For the necessary condition we will show that two generic arcs of circle enjoying

the properties stated have their connection point on the described circle. If K on OA
is the centre of one of the two, we have (see the remarks preceding the present

theorem) OA� OB < OK < OA.

The connection point belongs to the circle with centre K and radius KA. We will

prove that it is the other intersection between this circle and the one through A,
B and S. Let H be this intersection and detect point J lying on both KH and OB; if

one proves that JH ¼ JB then the second circle uniquely determined by A, B and

K (see again the remarks preceding the present theorem), having its centre in J and

radius equal to BJ, will be found; the connection point of the two arcs is then

clearly H.
Summing up, if H is the (second) intersection of the circle through A, B and S,

with the circle with centre K and radius KA, we have (see Fig. 2.7):

Fig. 2.7 The quarter oval
resulting from a choice of

H on the Connection Locus of

the given rectangle
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Hypothesis :
BC ¼ CS ¼ CA ¼ CH

TA ¼ TS
KA ¼ KH

8<
: Thesis : HJ ¼ JB: ð2:2Þ

Equality of the triangles CKA and CKH implies thatK bHC ¼ KbAC, which added
to CbHB ¼ CbBH yields

KbHB ¼ KbACþ CbBH: ð2:3Þ
Equality (2.1) implies that triangles BOF and FAC are similar, and so that

JbBC ¼ KbAC ; by substitution of this equality in (2.3) we obtain that

KbHB ¼ JbBCþ CbBH ¼ JbBH, hence the thesis.

With regard to the sufficient condition it is enough to choose a point H on arc AS
and determine the intersection K of the axis of the segment HA with OA; the circle

with centre K and radius KH will then pass through A and have AT as tangent; once

we show that K exists and is such that

OA� OB < OK < OA ð2:4Þ
calling J the intersection of KH with OA, the proof that H is the connection point

proceeds formally as the second part (2.2) of the proof of the necessary condition.

In order to prove (2.4) we will call V the intersection of the parallel to OB
through S with OA; we start by pointing out that the equality of triangles AVC and

VCS implies that VC divides ZbVO in two equal parts, and so that

ObVC ¼ CbVZ ¼ π

4
ð2:5Þ

Point C is on the axis of BS, thus inside the strip determined by BO and SV. If it
were on the same side as H w.r.t. OA, we would have a non-tangled quadrilateral

AOBC having the angle in O measuring
π

2
and the one in C measuring

3

2
π—the

concave version of AbCB ¼ π

2
(notice that (2.1) has been proved independently of

K)—which is unacceptable. This implies, since C belongs to KQ (see Fig. 2.7), that

point K exists and lies between A andM (intersection of the axis of the segment BS

with OA), and so that OK < OA. On the other hand K�V is no possible option,

since ifAV ¼ VS, we would haveAK ¼ KS and the circle with centre K would have

S in common with the circle through A, B and S, i.e. H� S, impossible according to

our hypotheses. Moreover, it is also impossible that OM < OK < OV, otherwise

ObKC would be an external angle of the triangle KVC, and for a known theorem it

would be ObKC > ObVC; this would imply, since AeKQ ¼ ObKC, that AbKQ > ObVC,
and thus—observing the triangle QAK—that
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QbAK ¼ π

2
� AbKQ <

π

2
� ObVC ð2:6Þ

But SbAK is a part of QbAK, and so QbAK > SbAK ¼ π

4
; comparing this with (2.6)

we obtain
π

2
� ObVC >

π

4
, implying ObVC <

π

4
, in contrast with (2.5).

Finally, using (2.5), since OMC¼VMC, we get that CbOA also measures
π

4
, and

the third part has also been proved. □

Proof 2 (Ghione 1995) In order to use Cartesian coordinates, a better reference is

that of Fig. 2.8. ATBD is the rectangle—with BD < AD—where we are going to

inscribe a quarter-oval with symmetry centre D, where A is made to be the origin of

an orthogonal coordinate system, AD and AT are chosen as the x-axis and the y-axis,
and is set equal to one. In addition let S be the point on the segment TB such that

TS ¼ TA. After having chosen the centre of the smaller circle K on AD, we have the
following points:

Fig. 2.8 Proving Ragazzo’s conjecture by means of analytic geometry (Ghione)
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A ¼ 0; 0ð Þ, B ¼ 1; bð Þ, S ¼ b; bð Þ and K ¼ k; 0ð Þ, where 0 < k < b < a:

TA is tangent to the circle with centre K and radius AK, which is one of the two

circles needed to draw the quarter-oval. We draw the parallel to AT through K and

call P the intersection with the circle, then the line through B and P to detect point

H as its intersection with the circle. Theorem 2.1 tells us now that H has to be the

connecting point for the (only) quarter-oval that can be inscribed in ATBD with K as

one of the centres.

The circle has centre K¼ (k, 0) and radius k, thus the equation

x2 þ y2 ¼ 2kx; ð2:7Þ
point P has coordinates P¼ (k, k), and the line through P and B can be described, in

parametric form, by the equations

x ¼ k þ 1� kð Þ � t
y ¼ k þ b� kð Þ � t

�
ð2:8Þ

where t varies over real numbers, and P and B are obtained when t¼ 0 and t¼ 1

respectively. By substitution of these equations in that of the circle (2.7) we obtain

the two points corresponding to the values of the parameter t¼ 0 (yielding point P)
and

t ¼ �2k b� kð Þ
b� kð Þ2 þ 1� kð Þ2 ,

which corresponds to the connection point H. Substituting these values into (2.8)

we get the following coordinates of H:

x ¼ b� 1ð Þ2k
b� kð Þ2 þ 1� kð Þ2

y ¼ k b� 1ð Þ 2k � b� 1ð Þ
b� kð Þ2 þ 1� kð Þ2

8>>><
>>>:

which allow for different positions of H when a different point K is chosen (with

0< k< b). To get an equation of the locus of the set of H points for different

feasible positions of K, we eliminate k from the last equations: dividing the first one

by the second one we get

y

x
¼ 2k � bþ 1ð Þ

a� 1ð Þ , which implies k ¼ b� 1ð Þyþ bþ 1ð Þx
2x

:

Substitution of the latter into the first in (2.8) yields
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x2 þ y2 � bþ 1ð Þx� b� 1ð Þy ¼ 0, ð2:9Þ
which is clearly the equation of a circle, and it is solved by the coordinates of all

three points

A ¼ 0; 0ð Þ,B ¼ 1; bð Þ and S ¼ b; bð Þ:
As k varies continuously in the open interval ]0; b[ the coordinates of H vary

continuously according to formulas (2.8); performing the two limits for k! 0 and

for k! b we get that

lim
k!0

x; yð Þ ¼ 0; 0ð Þ � A and that lim
k!b

x; yð Þ ¼ b; bð Þ � S,

which means that all points in the open arc AS of the circle through A, B and S are

connecting points for some quarter-oval, and that there are no other such points

outside it. The preceding argument works thus as proof of both the necessary and

the sufficient condition.

From (2.9) we derive the following coordinates of the centre C of the circle

through A, B and S:

xC ¼ bþ 1ð Þ
2

and yC ¼ b� 1ð Þ
2

;

calculating the slope of the lines CB and CA we get

mCB ¼
b�1
2

� b
bþ1
2

� 1
¼ � bþ 1

b� 1
and mCA ¼

b�1
2

� 0
bþ1
2

� 0
¼ b� 1

bþ 1

which implies, since mCB �mCA¼ � 1, that BbCA ¼ π

2
.

Finally we observe that the coordinates of C, for any value of b belong to the

bisector of AbDJ whose equation is y¼ x� 1. The proof is now complete.□

The fact that CO bisects JbOA is another result already conjectured by Ragazzo

and proved by Ghione in [4].

Definition From now on we will call the circle through A, B and S, following
Ragazzo’s work (1995), Connection Locus (our translation), or simply CL (as in

[3]).

Rosin found the same set of points after Ragazzo did (see [6]) proving its

properties, and called it Locus of continuous tangent joints. Simpson used it in

1745, to solve a problem posed by Stirling (in [7]) without realizing its full

properties.

If H� S the closed convex curve is not an oval anymore, since the arcs of the

bigger circle degenerate into segments, and becomes what we call a running track.
In Sect. 3.4 we will talk about such a shape.
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If H�A the curve cannot be considered an oval because the arcs of the small

circles disappear and the shape becomes pointed.

We now observe in Fig. 2.7 that QK, the axis of the chord AH of the circle with

centre K has to be the same as the axis of the chord AH of the circle with centre C,

therefore CQ divides the angle HbKA into two equal parts, and does the same with

the opposite angleObKJ. Noting also that (2.5) holds for point V (see again Fig. 2.7),

and that AbVT ¼ π

4
, we have proved the following theorem.

Theorem 2.3 The centre C of the Connection Locus for a quarter oval is the
incentre of triangle OKJ. Moreover the line connecting C with T—the point where

the perpendiculars to the axes through A and B meet—forms with OA an angle of
π

4
.

We can now sum up all the properties listed and proved in the previous pages, in

order to get a complete picture. These are the properties that have been used to

derive parameter formulas (in Chap. 4) and to find easier or new constructions

(in Chap. 3), especially in the case where the axis lines are not known.

We use for this purpose Fig. 2.9, where the important points in a full oval have

been highlighted, although the properties will be listed only for the points needed to

draw a quarter-oval.

In a quarter oval with the segments OA and OB as half-axes (with OB < OA), T
as fourth vertex of the rectangle having O, A and B as vertices, K as the centre of the
smaller arc, J as the centre of the bigger arc and H as the connection point, in
addition to the properties listed at the beginning of this section, the following hold:

Fig. 2.9 Properties of an oval and its points

2.1 Four-Centre Ovals 17

http://dx.doi.org/10.1007/978-3-319-39375-9_4
http://dx.doi.org/10.1007/978-3-319-39375-9_3


– AO� OB < OK < OA

– if S is the point on segment BT such that TS ¼ TA, then H belongs to the open arc
AS of the circle through A, B and S—the Connection Locus

– the centre C of the Connection Locus is the incentre of triangle OKJ

– AbCBis a right angle, which implies that the radius of the Connection Locus is
equal to the side of a square with the same diagonal as that of the inscribing
rectangle OATB

– if P is the intersection between the parallel to OB through K and the smaller
circle, then P, H and B are co-linear

– if Q is the intersection between the parallel to OA through J and the bigger
circle, then Q, H and A are co-linear

– since AbHB and AbSB cut the same chord AB in the CL circle, we have that

AbHB ¼ 3

4
π

As we will see in Chap. 3, there are some hidden constraints on the numbers

involved, for example, there does not exist a corresponding quarter-oval for any

points A, B and J satisfying the above conditions. Moreover other parameters

involved, including angles for example, do play a part in the possibility of drawing

an oval subject to specific constraints.
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Ruler/Compass Constructions of Simple
Ovals 3

We can now show how most ovals can be drawn with ruler and compass if enough

parameters are known. And after having mastered the basic ones, one is ready to

tackle more complicated problems, such as the two Frame Problems or the Stadium
Problem, which we will discuss in the second part of this chapter. All the following
constructions have been made with freeware Geogebra and most of them are linked

through the website www.mazzottiangelo.eu/en/pcc.asp, as described further. The

much used Connection Locus—the CL—has just been defined in Chap. 2. All

constructions in this chapter are general purpose constructions, in the sense that

any combination of parameters, constrained within some values, can be chosen.

Further combinations of parameters then those illustrated here are listed in the

Appendix, for the reader to try out and find the corresponding constructions.

Selected oval forms will then be presented in Chap. 6.

Sources for this chapter include our recent work [7] and Dotto’s paper [5]. New

issues include two of the basic constructions which were missing in [7] (nos. 10 and

11) and the formulation and solution to the (direct and inverse) Frame Problem.
Issues left open are the “missing” ruler/compass Constructions 8 and 13, and

some kind of proof of the suggested limitations for the parameters in the

constructions listed in Sect. 3.2.

All the constructions are meant for a quarter oval, and then simply reflected

w.r.t. the two axes. When a ruler/compass construction of a whole oval is to be

performed, slight changes may have to be made in order to minimize the number of

passages required.

Considering only a quarter oval we will use the following parameter. If O is the

centre of symmetry, let

– a ¼ OA the length of half the major axis

– b ¼ OB the length of half the minor axis

– k ¼ OK the distance from O of the centre of the smaller circle

– j ¼ OJ the distance from O of the centre of the bigger circle
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– h the distance of the connecting point H from OB
– m the distance of the connecting point H from OA

– r1 the length of the radius AK

– r2 the length of the radius BJ

– β ¼ AbKHthe angle formed by the line of the centres and the major axis

– p¼OB

OA
the ratio of the two axes

3.1 Ovals with Given Symmetry Axis Lines1

First of all we will deal with ovals with known symmetry axis lines with O as

symmetry centre. The formulas connecting the different parameters, corresponding

to the 23 constructions described in this section are derived in the next chapter,

numbered in the same way.

The conjecture stated in [7] was:

The first six parameters are independent of one another, and any choice of three of them—
constrained within certain values—will determine a unique oval.

This conjecture has proved not to be true, because two of the four unsolved cases in
[7] (out of 20) were solved and one of them delivered values for the parameters

involved which allow for two ovals (Construction 11). Moreover Cases 8 and 13 are

still partially unsolved. The main six parameters are independent just the same and

they form an efficient way of representing a four-centre oval and classifying

constructions on the basis of given data.

Table 3.1 lists the 20 different choices of three out of the first six of the above

parameters, and the number of the corresponding Case/Construction, for further

easier references. Constructions 8 and 13 are the ones missing, while Constructions

9 and 10 are completely new. After these constructions others follow, including

Constructions 23b and 72, which have been presented for the first time in [7].

In the following constructions some parameters are subject to constraints, but

feasible values always exist. Exact limitations are justified—via analytic

calculations—in Chap. 4.

Sometimes more than one construction is displayed in order to present the work

of different scientists. Constructions very similar to others already shown are left to

the reader.

Construction 1—given a, b and k, with 0< a� b< k< a
1a. Bosse’s construction (Fig. 3.1). Bosse’s construction (1655) may be the first

published general purpose construction (see [1]). It is the same as the one published

by Tosca in 1712 (see [9]):

1Most of this section has already been published in the Nexus Network Journal (see [7])

20 3 Ruler/Compass Constructions of Simple Ovals

http://dx.doi.org/10.1007/978-3-319-39375-9_4


Table 3.1 The oval

construction numbers

according to the given

parameters, with known

symmetry axis lines

Construction no. a b k h j m

1 ● ● ●

2 ● ● ●

3 ● ● ●

4 ● ● ●

5 ● ● ●

6 ● ● ●

7 ● ● ●

8 ● ● ●

9 ● ● ●

10 ● ● ●

11 ● ● ●

12 ● ● ●

13 ● ● ●

14 ● ● ●

15 ● ● ●

16 ● ● ●

17 ● ● ●

18 ● ● ●

19 ● ● ●

20 ● ● ●

Fig. 3.1 Construction 1a—Bosse’s method
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– find F on segment BO such that BF ¼ KA
– draw the axis of segment FK
– let J be the intersection of this line with BO
– draw the line KJ and let H be the intersection with the circle having centre K and

radius KA
– arc HB with centre J and arc AH with centre K form the quarter-oval.

1b. Ragazzo’s construction (Fig. 3.2). Theorem 2.1 has proved what Ragazzo

has stated in [8]. This is his way of constructing on oval given a, b and k.

– let P be the intersection of the parallel to line BO from K and the circle with

centre K and radius AK
– draw the line BP and let H be the intersection with the drawn circle

– let J be the intersection of KH with the line BO
– arc HB with centre J and arc AH with centre K form the quarter-oval.

1c. Yet another method (Fig. 3.3) uses Ragazzo’s CL and is thus mathematically

supported by Theorem 2.2; see also the link to the Geogebra animation video on

www.mazzottiangelo.eu/en/pcc.asp):

– draw the perpendiculars to OA through A, and to OB through B; let T be their

intersection

– find S inside segment TB such that TS ¼ TA
– draw the circle through A, B and S —the CL

– draw the circle with radiusAK and centre K and letH be the intersection between

the two

– let J be the intersection of lines KH and OB
– arc HB with centre J and arc AH with centre K form the quarter-oval.

We already know that the connection point H is between A and S on the CL (see

Fig. 2.7), hence the following limitations for h.
Construction 2—given a, b and h, with 0< a� b< h< a
In this construction (Fig. 3.4) we use the CL again (see the link to the Geogebra

animation video on www.mazzottiangelo.eu/en/pcc.asp):

– let T be the intersection of the perpendiculars to OA through A, and to

– OB through B;

– find S inside segment TB such that TS ¼ TA
– draw the circle through A, B and S —the CL

– find the only point H on arc AS to have distance h from OB
– draw the axis of segment AH and let K be the intersection with OA
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Fig. 3.2 Construction 1b—Ragazzo’s method

Fig. 3.3 Construction 1c
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– let J be the intersection of lines KH and OB
– arc HB with centre J and arc AH with centre K form the quarter-oval.

When a and b are given not every value of j can be used. The following

limitation will be proved in Chap. 4 when studying Case 3.

Construction 3—given a, b and j, with 0< b< a and j > a2�b2

2b

3a. Bosse’s construction (Fig. 3.5). We use Construction 1a reversing the roles

of the parameters

– find G on OA beyond O such that AG ¼ JB (note that the limitation on j implies

that BJ > OA as can be easily proved)

– draw the axis of segment GJ
– let K be the intersection of this line with AO
– draw the line KJ and let H be the intersection with the circle having centre K and

radius KA
– arc HB with centre J and arc AH with centre K form the quarter-oval

3b. An alternative is to use the CL (Fig. 3.6).

– let T be the intersection of the perpendiculars to OA through A, and to OB
through B

– find S inside segment TB such that TS ¼ TA

Fig. 3.4 Construction 2
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Fig. 3.5 Construction 3a

Fig. 3.6 Construction 3b
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– draw the circle through A, B and S —the CL

– draw the circle with radius BJ and centre J and let H be the intersection between

the two

– let K be the intersection of lines JH and OA
– arc HB with centre J and arc AH with centre K form the quarter-oval.

Construction 4—given a,b and m, with 0<m< b< a
One proceeds as in Construction 2 (see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp).

Obviously k cannot exceed h, KH would otherwise intersect OB on the

wrong side.

Construction 5—given a, k and h, with 0< k< h< a
It is straightforward (see Fig. 3.7 and the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp):

– H is the point—in the top right quadrant—on the circle with radiusAK and centre

K having distance h from the vertical axis

– let J be the intersection of KH with the vertical axis

– an arc in the top-right quadrant with centre J and radius JH up to the intersection

B with the vertical axis, and arc AH with centre K form the quarter-oval.

Since b is not known, any positive value for j and any value for k not exceeding
a are feasible.

Construction 6—given a, k and j, with 0< k< a and j> 0

This construction (Fig. 3.8) is also very simple (see the link to the Geogebra

animation video on www.mazzottiangelo.eu/en/pcc.asp):

– H is the intersection—inside the right angle formed by AO and the vertical axis,

containing K but not J—of JK and the circle with radius AK and centre K

– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and arc AH with centre K form the quarter-oval.

Point H lies on the circle with radius a� k, therefore it can’t be that distant from
OA. Hence the following limitation for m.

Construction 7—given a, k and m, with 0< k< a and 0<m< a� k
This construction (Fig. 3.9) is as follows (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp):

– H is the nearest point to A on the circle with radius AK and centre K having

distance m to OA
– let J be the intersection of lines KH and OB
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– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and arc AH with centre K form the quarter-oval

Construction 8—given a, h and j, with 0< h< a and j> 0

This construction has not been found yet. As will be seen in the next chapter

(Case 8) only an implicit solution for one of the missing parameters could be

derived.

The following condition on parameter m will be explained in Chap. 4, Case 9.

Construction 9—given a, h and m, with a , h> 0 and

0 < a� h < m <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
This construction (Fig. 3.10) is as follows (see the link to the Geogebra anima-

tion video on www.mazzottiangelo.eu/en/pcc.asp):

– K is the intersection between the axis of AH and OA
– let J be the intersection of lines KH and OB

Fig. 3.7 Construction 5

3.1 Ovals with Given Symmetry Axis Lines 27

http://dx.doi.org/10.1007/978-3-319-39375-9_4
http://www.mazzottiangelo.eu/en/pcc.asp


Fig. 3.8 Construction 6

Fig. 3.9 Construction 7
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– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and arc AH with centre K form the quarter-oval.

The three following constructions, nos. 10, 11a and 11b, are totally new ones,

and they have been deduced from the formulas derived for Case 10 and Case 11 in

Chap. 4. With additional work one should come up with simpler ones.

Construction 10—given a, j and m, with j> 0 and 0<m< b
This lengthy construction (Fig. 3.11) is as follows (see the link to the Geogebra

animation video on www.mazzottiangelo.eu/en/pcc.asp):

– draw the top half circle having segment AO as diameter and find the intersection

C with the circle with centre O and radius OM ¼ m

– on the line OC find a point R beyond C such that CR ¼ OJ
– draw the triangle ACR and the height CH1 w.r.t. AR
– build a right-angled triangle CLD having CL//OA, CL¼CH1 as cathetus and the

hypothenuse CD lying on the line OC

– find E on line AC beyond C such that CE ¼ CD
– build a right-angled triangle EAG having segments EA and AG as catheti where

AG ¼ AC

– let N inside EC be such that EN ¼ DL

Fig. 3.10 Construction 9
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– finally let S be the intersection between the perpendicular to EC through N and

EG

– K is now found inside segment OA such that OK ¼ NS
– H is found as the intersection between JK and the parallel to OA through M

– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and arc AH with centre K form the quarter-oval.

The following conditions on the parameters come from the formulas which will

be presented in Chap. 4—Case 11. A further oval can be found if h> b also holds

(see Construction 11b).

Construction 11a—given b, k and h, with b> 0 and 0 < k < h <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
.

This construction (Fig. 3.12) is also rather complicated (see the link to the

Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp). It finds one of

the two ovals which match any feasible combination of the above parameters,

corresponding to the first solution in (4.11):

– let M be the point on KO beyond K such that OM ¼ h
– draw the bottom half-circle having segment MO as diameter and find the

intersection P with the circle with centre O and radius OB

Fig. 3.11 Construction 10
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– let F be the intersection between the circle with centre B and radius BK and the

parallel to OB through M
– let T be the intersection between the perpendicular to OB through B and MF
– connect PwithM and draw the parallels to this line through F and T; letW be the

intersection between the first parallel and BT, and let X be the intersection

between the second one and the parallel to OB through W

– let Y be the intersection between MT and the circle with centre T and radius TX,
on the opposite side of M w.r.t. T

– letQ be the intersection between the parallel toOM through Y and the orthogonal

line to MP through M
– draw from Q the perpendicular to QM and let Z be the intersection of it withMY

– point J is the point on line BO beyond O such that OJ ¼ YZ.

– H is the point where JK and FM meet; an arc with centre J and radius JH from

H to B, and arc AH with centre K form the quarter-oval.

Fig. 3.12 Construction 11a
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What makes the described situation special is that Construction 11a delivers one

of the two possible ovals—given b, k and h—because, as we will justify in Chap. 4,

if h> b, an additional one can be drawn. The following construction shows how.

Construction 11b—given b, k and h, with 0< b< h and 0 < k < h <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
.

This construction (Fig. 3.13) (see the link to the Geogebra animation video on

www.mazzottiangelo.eu/en/pcc.asp) delivers a second oval matching any feasible

combination of the above parameters, corresponding to the second solution in

(4.11):

– follow Construction 11a until point X is found

– let Y
0
be the intersection between MT and the circle with centre T and radius TX

on the same side of M w.r.t. T
– let Q

0
be the intersection between the parallel to OM through Y

0
and the

orthogonal line to MP through M
– draw from Q

0
the perpendicular to Q ’M and let Z’ be its intersection with MY

0

– point J
0
is the point on line BO beyond O such that OJ0 ¼ Y0Z0 .

– H’ is the point where J
0
K and FMmeet; an arc with centre J

0
and radius J0H0 from

H
0
to B, and arc AH

0
with centre K form the quarter-oval.

Fig. 3.13 Construction 11b
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Check Case 12 in Chap. 4 for the following limitations on k.

Construction 12—given b, k and j with b , j> 0 and 0 < k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2bj

p
One proceeds as in Construction 6 (see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp).

Construction 13—given b, k and m, with 0<m< b and k> 0

This construction has not been found yet. As will be seen in the next chapter

(Case 13) only an implicit solution for one of the missing parameters could be

derived.

Check Case 14 in Chap. 4 for the following limitations on h.

Construction 14—given b, h and j, with b , j> 0 and 0 < h <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2bj

p
One proceeds as in Construction 5 (see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp).

The following limitations are needed in order for J to be on the opposite side of

B w.r.t. O.

Construction 15—given b, h and m, with h> 0 and 0 < m < b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ m2

p
One proceeds as in Construction 9 (see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp).

Construction 16—given b, j and m, with j> 0 and 0<m< b
We proceed as in Construction 7 (see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp).

Construction 17—given k, h and j, with j> 0 and 0< k< h
The construction (Fig. 3.14) is as follows (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp):

– H is the point KbOB on line JK with distance h from OJ, opposite to J w.r.t. K

– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and an arc with centre K and radius KH up to the intersection A with the

horizontal axis form the quarter-oval.

Construction 18—given k, h and m, with m> 0 and 0< k< h
The construction (Fig. 3.15) is as follows (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp):

– let J be the intersection of KH with the vertical axis

– an arc with centre J and radius JH up to the intersection B with the vertical axis,

and an arc with centre K and radius KH up to the intersection A with the

horizontal axis form the quarter-oval.

Construction 19—given k, j and m, with k , j ,m> 0

One proceeds as in Construction 17 (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp).
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Fig. 3.14 Construction 17

Fig. 3.15 Construction 18
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Construction 20—given h, j and m, with h , j ,m> 0

One proceeds as in Construction 18 (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp).

Although the six parameters seem to share the same dignity—hence the conjec-

ture at the beginning of this chapter—when a mixed combination is given (b and

k with either h or m, or a and j with either h or m) the solutions become complicated

and/or give way to exceptions.

If one considers any possible choice of three among the ten parameters listed at

the beginning of this chapter, the construction problems amount to a total of 116—
four less than the number of combinations because in four cases the parameters are

not independent of one another (e.g. a, k and r1). We have given numbers to these

combinations, for future references, and the list is in the Appendix of this book. For

many of them one can automatically use one of the above constructions, but this is

not always the case.

Three of these constructions are presented here, numbered as in the Appendix2.

The first one is presented in Huygens’ version and in a similar version that the

author came up with using the CL. The second one is a new construction, already

presented in [7], while the third one is a very simple construction involving the two

radii.

The limitation for β will be discussed in Chap. 4, Case 23.

Construction 23—given a, b and β, with 0< b< a and 2arctgab � π
2
< β < π

2

23a. Huygens’ construction (Fig. 3.16). This construction, as explained in [5],

was originally intended for an angle β ¼ π
3
, but the extension to (nearly) any angle β

is automatic: in this paper Dotto cites as sources [2, 3] and [4] (where a table is

dedicated to different constructions of polycentric ovals, including arches with 5, 7

or 11 arcs):

– draw an angle equal to β onto OA, with vertex O

– draw a circle with centre O and radius OA and name D and C the intersections

with OB and the second side of the β angle

– draw the segment DC and its parallel from B, and call H the intersection of this

line with the segment AC
– the parallel to OC through H is the line where K and J can be found as

intersections with the two axes; the construction ends as usual.

Triangle ODC is built to be isosceles, which is why BHJ, similar to ODC, also
has the two needed equal sides JB and JH. In addition to this AHK, being similar to

OCA, is also isosceles, and AK ¼ KH. The arcs can thus be drawn and they share a

common tangent because K, H and J are co-linear.

2This numbering differs from that in [7]
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23b. It is similar to Huygens’ construction (Fig. 3.17), in the sense that an

isosceles triangle is drawn, but the point H is found using the CL (see the link to

the Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

– draw a half line with origin O forming the given angle β
– with centre O draw an arc with radius b intersecting the half line in D
– let C be the vertex of the right-angled isosceles triangle with hypotenuse AB (the

one on the same side of O w.r.t. AB)

– draw the CL with centre C and radius CB, letting H be the intersection with BD
– draw from H the parallel to OD; intersections with the axes are the centres K and

J of the arcs forming the quarter-oval.

Construction 72 is a very recent construction (see [7]), drawing the quarter-oval

given the centres of the arcs and the ratio p between the half axes (Fig. 3.18).

Theorem 2.3 implies that point C is the intersection between the bisectors of ObKJ

and KbOJ, and that T is on the line through C forming an angle of π
4
with OK. The

limitations for the value of p have to do with the existence of a point T in the right

quadrant, and they will be explained in Chap. 4 (Case 72).

Construction 72—given k, j and p, with k , j> 0 and
jþkð Þ j�kþ

ffiffiffiffiffiffiffiffi
j2þk2

p� �
2jk < p < 1

Fig. 3.16 Construction 23a—Huygens’ method

36 3 Ruler/Compass Constructions of Simple Ovals

http://www.mazzottiangelo.eu/en/pcc.asp
http://dx.doi.org/10.1007/978-3-319-39375-9_4


Fig. 3.17 Construction 23b

Fig. 3.18 Construction 72
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This construction (Fig. 3.18)—given k, j and p—is as follows (see the link to the

Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

– having fixed K, J and the half line with origin O along which point T is to be

found, start by finding the incentre C of triangle OKJ
– the intersection between the orthogonal line to OC from C and the half line with

origin O yield point T
– points A and B and the arcs forming the quarter-oval can now be drawn.

Drawing an oval using the radii and one of the centres is very simple.

Construction 78—given r1, r2 and k, with 0< r1 and 0< k< r2� r1
See Fig. 3.19 to follow the easy steps (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp):

– having fixed K, draw a circle with radius r2� r1 and find the intersection J with
the vertical axis

– the two arcs can now be drawn

Another interesting class of useful constructions is that of ovals for which a point

is given, other than the connection point, or a point and the tangent to the oval at

that point, together with some other parameter. Since they correspond to inscribing

or circumscribing ovals, we have left some of these to Sect. 3.3.

Fig. 3.19 Construction 78
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3.2 Ovals with Unknown Axis Lines3

We will now consider the problem of drawing an oval on a plane without any given

symmetry axes; material from this section is taken from [7]. We now have three

more degrees of freedom and so a much bigger variety of combinations. We will

nevertheless show with a few examples that parameters that look independent

aren’t always so.

The CL and the constructions used in the first part of this chapter are the tools to

tackle this problem. Limitations conjectured for the parameters involved are maybe

the most interesting part. We consider constructions U21, U22 and U23 to be the

most interesting ones.

Fig. 3.20 is going to be our new reference.

An oval in a plane is determined by six independent parameters, although

limitations do occur. We will again try to be systematic and give numbers to the

different problems/solutions.

In what follows A and A
0
are opposite vertices on the longer axis, B and B

0
on the

shorter one, J and J
0
centres of the arcs with longer radii, K and K

0
of the ones with

shorter radii, and finally H, H
0
, H

00
and H

000
the connection points. We will again use

C to indicate the centre of a CL.

Fig. 3.20 A generic oval in a plane

3Most of this section has already been published in the Nexus Network Journal (see [7])
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Given on a plane A and A
0
opposite vertices of an oval—corresponding to four

parameters—the symmetry centre O will be their midpoint, and lines AA’ and its

orthogonal through O will be the symmetry axes. One continues now by choosing

any two parameters other than a from Table 3.1 using the corresponding

constructions already listed. The ten possible choices will be numbered from U1

to U104 following the order in which they appear in Table 3.1.

Constructions U1 to U10—given A, A
0
and any other two independent

parameters other than a—follow the above guidelines once O and the two axes

have been drawn. As an example we will draw Construction U7 (see the link to the

Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

Construction U7—given A, A
0
, k and m with the limitations of Construction 7.

See Fig. 3.21 to follow the construction:

– O is the midpoint of AA
0
, from which we draw the orthogonal to it

– a parallel distant m from AA
0
, and the circle with a centre point K—on AA

0
distant

k from O—meet in H.
– we find now J intersecting HK and the already drawn perpendicular to AA

0
, and

draw the complete oval as usual, using symmetry properties

The same ideas allow for constructions when B and B
0
are given.

Constructions U11 to U20—given B, B
0
and any other two independent

parameters other than b—follow the above guidelines for Constructions U1 to

U10, with a similar numbering method.

When two non-opposite vertices are given the situation is more interesting, and

we can make use of the properties of the CL listed and proved in Chap. 2. From now

on the numbering of the constructions proceeds with no specific criterion, other

than that of their appearance in this book (similarly to what has been done in [7].

Given any two non-opposite vertices, say A and B, a double CL is automatically

determined, since Theorem 2.2 (part 2) implies only two choices for C on opposite

sides of AB, leaving us only the choice of which side to choose for the centre C. We

then have still two more parameters to choose, but we cannot use them both to

choose H because the connection point must be on an arc of the CL. So we can still

choose the symmetry centre O, which has to be on the half-circle with diameter AB
already containing point R. Here is how it is done.

Construction U21—given any A, B and then (feasible) H and O
See Fig. 3.22 to follow the construction (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp):

4Again the numbering differs from that in [7]: the letter U has been added and 99 has been

subtracted (e.g. Oval 105 has become Construction U6)
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– let C and C1 be the vertices of the two right-angled isosceles triangles with

hypotenuse AB, centres of a CL; choose one of them, say C, and choose any

point H on the arc AB with centre C
– let P be the intersections of the parallel to BH through A with the circle having

diameter AB, and Q the intersection of the parallel to AH through B with the

semi-circle; choose O, the symmetry centre, on the arc PQ.
– one way of drawing our arcs is now, for example, to find J as the intersection of

the axis of BH with OB, and then K as the intersection of JH with OA.

Limits for O on the arc PQ are based on construction evidence, not on mathe-

matical proof. Choosing the centre of symmetry between C and Q exchanges the

Fig. 3.21 Construction U7
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roles of A and B. If, on the other hand, one wants to choose O first, then H will have

to be taken inside AS after having found S (see Fig. 2.7).

It is also possible to choose either K or J, after having chosen A and B, each
counting for two extra parameters, since they can be freely chosen inside two

dimensional areas, as we have learned—although not proved—via construction

evidence. We believe that when feasible values for O in Construction U21 are

proved, then feasible values for K in U22 can be derived. See the following

constructions U22 and U23.

Fig. 3.22 Construction U21
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Construction U22—given any A, B and then (feasible) K
In Fig. 3.23 note the supposed area of feasibility for K bordered in green (see the

link to the Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

– let C and C1 be the vertices of the two right-angled isosceles triangles with

hypotenuse AB; choose one of them, say C, draw the CL arc between A and B,
and then mirror the smaller of the two CA arcs—of the circle with diameter AB—
w.r.t. the line CA

Fig. 3.23 Construction U22
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– choose any point K inside the just determined segment corresponding to the
chord CA

– AK is now the symmetry axis, and the connecting point H is the intersection

between the CL with centre C and the circle with centre K and radius AK
– determine O as the intersection between AK and the circle with diameter AB, and

then J as the intersection of OB—the other axis—with line HK and so on.

Construction U23—given any A, B and then (feasible) J
In Fig. 3.24 note the supposed area of feasibility for J bordered in green (see the

link to the Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

– let C and C1 be the vertices of the two right-angled isosceles triangles with

hypotenuse AB; choose one of them, say C, draw the CL arc between A and B,
and then the line CB, which forms an angle of π

4
with CC1

– choose any point J inside the angle opposite to BbCC1

– JB is now the symmetry axis,O is the intersection between JB and the circle with

diameter AB, and so on.

Another choice for a starting pair is that of two centres of non-equal circles, say

J and K. Constructions are very straightforward and we will just outline the starting
steps. Limitations for the points are conjectured.

Construction U24—given any J, K and A
In Fig. 3.25 note the supposed area of feasibility for A bordered in green:

– choose any J and K, then either

– A inside the open half-plane determined by the perpendicular to JK through K
not containing J, but not on line JK, or

– A inside the open half-plane determined by the perpendicular to JK through K,
containing J but not on JK, and outside the circle with centre J and radius JK

– draw the axis KA and find O as the intersection between KA and the perpendicu-

lar to it from J; if O lies between A and K what you have is actually A’, and to get
the real A you need to mirror it w.r.t. O.

Construction U25—given any J, K and B
In Fig. 3.26 note the supposed area of feasibility for B bordered in green; the

construction is equivalent to U24:

– choose any J and K

– then choose B inside the open half-plane determined by the perpendicular to JK
through J containing K, excluding JK and excluding the circle with centre J and
radius JK
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– draw the axis BJ and find O as the intersection between BJ and the perpendicular
to it from K; in half the cases you get a mirrored version of Fig. 3.21.

Constructions U26, U27 and U28 - given any J, K, (feasible) H and either O or
A or B

Fig. 3.24 Construction U23
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In Fig. 3.27 see how these constructions should start (see the link to the

Geogebra animation video on www.mazzottiangelo.eu/en/pcc.asp):

– choose any J and K

– choose H on JK beyond K
– choose either

– O on the circle with diameterJK excluding J and K, or
– A on the open half circle YHZ excluding H, or
– B on the open half-circle WHX excluding H.

Fig. 3.25 Initial steps for

Construction U24

Fig. 3.26 Initial steps for

Construction U25
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As a last example we will consider a given tangent and its tangent point, in

addition to points A and K. Bosse’s construction is also used here.

Construction U29—given any K, A, an extra point C supposed to lie on the
same half oval as A, and the tangent to the oval in C

It is as follows (see Fig. 3.28; also see the link to the Geogebra animation video

on www.mazzottiangelo.eu/en/pcc.asp):

– choose any A and K

– draw the circle with centre K and radius AK; let D be the point opposite to A
– draw the tangent through D and the two other tangents perpendicular to the first

one

– choose C inside one of the right angles formed by the first and second, or the first
and third tangent, in both cases opposite to the one containing the circle (see

Fig. 3.28)

– draw from C the tangent to the first circle (the one on A’s side), and the parallel to
KA

– draw the desired tangent through C between the two lines just drawn (see

Fig. 3.28)

– take a segment CF¼KA on the normal line through C (on the side of the first

circle) find J intersecting the normal line from C and the axis of segment KF, etc.

Point C can be also chosen on the other side of the tangent through D, but in that
case the possible choices for the tangent through C are more limited. We believe

that the above limitations for C are somewhat conservative, but further

investigations need to be made.

Fig. 3.27 Initial steps for

Constructions U26, U27 and

U28

3.2 Ovals with Unknown Axis Lines 47

http://www.mazzottiangelo.eu/en/pcc.asp


A lot more combinations of the parameters listed can be chosen, and

constructions found, using the new tool of the CL and its properties along with

the previously known properties and constructions.

Fig. 3.28 Construction U29
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3.3 Inscribing and Circumscribing Ovals: The Frame Problem

Inscribing an oval in a rectangle is as easy as circumscribing an oval around a

rhombus. The axis lengths a and b are automatically given and one is free to choose

an extra parameter among the remaining seven (excluding p) thus using for example

one among Constructions 1, 2, 3, 4, 21, 22 and 23. An infinite number of ovals can

be drawn (see Fig. 3.29).

It is more interesting to study how many different ovals can be inscribed in a

rhombus or circumscribed around a rectangle, or constrained to fill the gap between

two rectangles.

An oval inscribed in a rhombus has to be tangent to all of the sides, but due to

symmetry it is enough to study the case of a single side. First of all it is important to

understand which of the two diagonals of the rhombus is met first by the perpen-

dicular to the side from the chosen point of tangency. In the special case of the

centre of the rhombus O lying on this perpendicular, the only inscribed oval is. . . a
circle, and no other choices can be made. In all other cases the diagonal which is

first met by the perpendicular is going to be the line containing the longer axis. Let

this be the horizontal diagonal (Fig. 3.30). One chooses the corresponding intersec-

tion as the centre of the smaller circle K, and the endpoint A of the longer axis is

now determined by the radius KP. An extra choice can now be made as long as the

limitations for the chosen parameter are met, in addition to some other (e.g.b < OD

or j > OR). Figure 3.31 illustrates a set of possible solutions. Note that for one of

these we can choose H�P.
There is, however, another possibility: the intersection with the vertical axis of

the same perpendicular can be chosen as centre J of the bigger circle, yielding a

whole new set of 11 ovals (see Fig. 3.32), again with some restrictions on the

parameters.

Let P now be a point on sideDG such that the perpendicular to the side meets the

vertical diagonal first. In this case we can either use this point as K, or the

intersection with the horizontal axis as J. In the first case we get an infinite number

of possible ovals among which the three shown in Fig. 3.33. In the second case we

get another group, which the ones selected for Fig. 3.34 belong to.

Fig. 3.29 An oval inscribed

in a rectangle and

circumscribing a rhombus
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Circumscribing a rectangle with an oval doesn’t require any particular skill,

since one can draw any segment from a vertex to one of the symmetry axes and then

proceed in exactly the same ways as with the ovals inscribed in a rhombus (see

Fig. 3.35 for a set of possible solutions among the 12).

The situation becomes much more interesting when an oval is required which is

inscribed in a rectangle and circumscribes a second rectangle inside the first one,

sharing the same symmetry axes. When the outer rectangle is given we call this the

frame problem. The construction is straightforward once the right conditions are

met for the vertices of the inner rectangle.5 The proof of the limitations for the inner

rectangle will be given at the end of Chap. 4, via analytic calculations (Case 117).

Fig. 3.31 A set of inscribed

ovals corresponding to the

choice made in Fig. 3.30

Fig. 3.30 Choosing the

centre of a small circle for an

oval inscribed inside a

rhombus

5Since a point does not come in the form of a parameter, we number this construction 117.
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Fig. 3.33 The case when the

perpendicular meets the

vertical diagonal first:

choosing K on it

Fig. 3.34 The case when the

perpendicular meets the

vertical diagonal first:

choosing J on the other one

Fig. 3.32 Another set of

infinite ovals inscribed in the

same rhombus given the same

tangency point on one of the

sides
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Figure 3.36 shows the two areas where in the top right hand side a vertex of the

inner rectangle can be chosen, whether one wants a bigger circle to run through this

vertex (blue area) or a smaller circle (green area).

The green area is delimited by the arc AS of the circle with centre Q and radius

AQ—where Q is the point inside OA such that QA ¼ OB—and the arc AS of the

CL. The blue area is delimited by the latter, by the segment BS and by the arc AB of

the circle with centre P and radius PB, where P is the point on BO beyond O such

that BP ¼ PA.
Construction 117 (the Frame Problem)—given positive a, b and a point �x; �yð Þ

such that

either a
� �x2 þ �y2 þ �y

a2 � b2

b

� �
� a2 > 0

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab < 0

0 < �y < b

8>><
>>:

or b
� �x2 þ �y2 þ 2�x b� að Þ þ a2 � 2ab < 0

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab > 0

�

If our point X �x; �yð Þ satisfies a) (corresponding to the blue area in Fig. 3.37), then

J is found as the intersection of the axis of the segment BX with OB and we can go

on as in Construction 3. If our point Y �x; �yð Þ satisfies b) (corresponding to the green

area in Fig. 3.38), then K is found as the intersection of the axis of the segment AY
with OA and we can go on as in Construction 1.

Fig. 3.35 Some solutions to

the problem of

circumscribing a rectangle

with an oval
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When the inner rectangle is given we have the inverse frame problem,
corresponding to Constructions 118a and 118b.

Construction 118 (the Inverse Frame Problem)
This is about finding feasible axis measures for an oval circumscribing a given

rectangle. 118a.

Fig. 3.36 Areas where a vertex can be chosen to solve the frame problem

Fig. 3.37 A solution to the frame problem choosing a vertex in the blue section
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The arcs with shorter radius should run through the vertices of the inscribed

rectangle. Starting from a vertex P �x; �yð Þ (see Fig. 3.39), a point A to share the same

arc as P can be chosen (on the green segment) as long as the resulting K lies inside

the right half of the rectangle. That is if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
< a < �xþ �y:

Once K has been determined, the missing axis endpoint B can then be taken

according to the following limitations:

a� k < b <
a �x� kð Þ � k �x� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� �xð Þ aþ �x� 2kð Þp� �
�x� k

:

Both inequalities will be proved in Chap. 4.

118b. The arcs with longer radius should run through the vertices of the

inscribed rectangle. Starting from a vertexP �x; �yð Þ (see Fig. 3.40), a point B to share

the same arc as P can be chosen (on the green segment) as long as the resulting J lies
on the other side of B with respect to O. That is if

�y < b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
,

as will be proved in Chap. 4.

Once J has been determined, the missing axis endpoint A can then be taken

according to the following limitations:

Fig. 3.38 A solution to the frame problem choosing a vertex in the green section
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Fig. 3.39 A solution to the inverse frame problem choosing first A then B on the green segments

Fig. 3.40 A solution to the inverse frame problem choosing B and then A on the green segments
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�y jþ bð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� �yð Þ bþ �yþ 2jð Þp
jþ �y

< a <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2jþ bð Þ

p
:

Both inequalities will be proved in Chap. 4.

3.4 The Stadium Problem and the Running Track

Polycentric ovals were popular when it came to planning amphitheatres (see also

Sect. 8.2, dedicated to the use of 8-centre ovals in the plan of the Colosseum). They

were used for the inside arena, the outside perimeter, and for the intermediate rows

of sitting (or standing) places. The use of this shape is back in fashion for sports

arenas, after a time when many stadiums have been built using the form of a

rectangle prolonged with two half circles, what one could call a running track.
We can find an application of theorems and techniques presented in this chapter in

The Stadium Problem. It is a problem of ovals subject to constraints, but the choice

of which forms and proportions to use is left to the architect, as long as he/she

knows what can be drawn and how.

Suppose we have a well-defined area where a stadium should be built. Suppose

then, as it is often the case, that the layout of the stadium is supposed to be a set of

cased simple ovals with common symmetry axes. In geometrical terms, this would

mean inscribing an oval in an outer rectangle and circumscribing a smaller rectan-

gle with a different oval (Fig. 3.41). Between those two one can imagine a series of

intermediate ovals. We will analyse four different classes of solutions without

Fig. 3.41 The area where the layout of a stadium should be planned
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going into the details of the constructions (see the link to the Geogebra animation

video on www.mazzottiangelo.eu/en/pcc.asp).

One way of doing so (see Fig. 3.42) is to start with one of the infinite ovals that

can be inscribed in the outer rectangle, and then draw the only circumscribing oval

similar to the first one. Three intermediate ovals are then added as an example of the

structure of a stadium layout. These ovals all have the same shape, but arcs of

different ovals have different centres.

Another way is to start with an inscribed oval and then use the same set of

centres to draw the circumscribed one (Fig. 3.43). The intermediate ones will also

have the same set of centres. These are called concentric ovals, and Sect. 4.4 is

devoted to them. This was the most common choice in roman amphitheatres, as we

will show in the case study of the Colosseum, in Chap. 8, although with 8-centre

ovals. But two pairs of concentric ovals probably also appear in Borromini’s project

for San Carlo alle Quattro Fontane as suggested at the end of Sect. 7.2.4.

A third possibility is again to start with an oval inscribed in the outer rectangle

and then to project the outer rectangle and create a solvable Frame Problem (see

previous section) around the inner rectangle, in order to find a circumscribing oval.

See Fig. 3.44 for the complete drawing.

Starting from the inside is also possible. Choose one of the 11 ovals

circumscribing the inner rectangle having a horizontal longer axis (see Fig. 3.35),

and then choose a line where the connection points should lie (Fig. 3.45).

As already said, the running track has come a bit out of fashion as a stadium

shape, but it is often still used as a starting shape from the inside, since many

stadiums are used for athletics competitions. By running track we mean a shape

Fig. 3.42 A first set of solutions to the stadium problem
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Fig. 3.43 A second set of solutions to the stadium problem

Fig. 3.44 A third set of solutions to the stadium problem
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which is made of two segments and two half circles (see Fig. 3.46), so it is not an
oval in the sense used here. Once the rectangle is fixed (12 choices), the arcs have

to be taken with one of the two axes (usually the shorter one) as diameter. But one

can consider it as a borderline case of an oval, since the segments can be considered

as arcs of a circle having its centres at infinity. We can go back to Fig. 3.4 and

imagine what the oval would look like if H were pushed up to point S on the

Connection Locus.

By regular running track we mean a running track such that DQ is equal to arc

QC, as is often the case in sports events. This yields DQ ¼ π
2
QC.

Fig. 3.45 A fourth set of solutions to the stadium problem

Fig. 3.46 A running track

3.4 The Stadium Problem and the Running Track 59



Using these observation we can try finding a criterion to generate a series of

nested ovals having a running track as their inner limit, and any chosen inscribed

oval as their outer limit. Thinking ofQ in Fig. 3.46 as a connection point for an oval,

a possible construction would look like that of Fig. 3.47.
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Parameter Formulas for Simple Ovals
and Applications 4

Many tools for drawing a polycentric oval subject to geometrical or aesthetical

constraints have been presented in Chap. 3. In this chapter we derive formulas

which on the other hand allow to calculate all important parameters when the value

of three independent ones is known, as well as the limitations the given parameters

are subject to. These formulas allow for a deeper insight in the properties of any

oval, as will be shown on the chosen forms of Chap. 6. Cases included are

numbered consistently with the construction numbers of Chap. 3. Also included

is the proof of the formulas yielding the solution to the frame problem presented in

Sect. 3.3 as well as formulas for the length of an oval and for the area surrounded by

it. The final section is devoted to concentric ovals and their properties.

The best framework to use to derive formulas for the different parameters

involved in an oval is the Cartesian plane.

4.1 Parameter Formulas for Simple Ovals

The material presented here has mostly been deduced, by means of solving simple

analytic geometry problems, from the constructions presented in Chap. 3, but the

converse is also true: formulas derived from other formulas have been the basis for

elaborate constructions which would not otherwise have been found. It is also true

that a direct application of the constructions may lead to rather complicated

formulas, so sometimes a different method needs to be used. Many of these

formulas have also been derived and used by Rosin in [5], Dotto in [1], Ragazzo

in [4], López Mozo in [2] and many others.

Again in this section two cases are left partly unsolved; these have solutions

which at the moment are only in implicit form, but the most important one is the

exception of Case 11, where quite surprisingly two sets of solutions have been

found, proving the conjecture at the beginning of Chap. 3 (first stated in [3]) to be

false. The different cases are numbered in the same way as the corresponding

constructions in Chap. 3.
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The procedures to obtain such formulas are in some cases explained and in some

other cases left to the reader, when they are similar to the ones previously described.

Again the ten parameters involved are the ones listed at the beginning of

Chap. 3:

a, b, k, j, h, m, r1, r2, β andp,

defined as (see the left hand picture in Fig. 4.1)

– a ¼ OA the length of half the major axis

– b ¼ OB the length of half the minor axis

– k ¼ OK the distance from O of the centre of the smaller circle

– j ¼ OJ the distance from O of the centre of the bigger circle

– h the distance of the connecting point H from OB
– m the distance of the connecting point H from OA

– r1 the length of the radius AK

– r2 the length of the radius BJ

– β ¼ AbKH the angle formed by the line of the centres and the major axis

– p ¼ OB
OA

the ratio of the two axes

Before showing how to obtain three of the first six parameters once the

remaining three are known, we will write down the elementary formulas to calcu-

late the last four parameters when a, b, k and j are known.
For r1, r2, β and p we have:

r1 ¼ a� k, r2 ¼ bþ j, β ¼ arctg
j

k
, p ¼ b

a
¼ tgγ: ð4:1Þ

The most convenient way to fix a coordinate system for deriving the formulas

connecting the different parameters is that of Fig. 4.1 (right hand picture).

A formula which we will use is the equation of the CL (see the definition after

the two proofs of Theorem 2.2), whose centre C (see for example Theorem 2.2) lies

at the intersection of the axis of the segment BS with the bisector of the fourth

quadrant, which yields the coordinates C ¼ a�b
2
; b�a

2

� �
. The radius is equal to the

distance

AC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b

2
� a

� �2

þ b� a

2

� �2
s

¼
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
:

Simple calculations deliver the following equation of the CL:
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x2 þ y2 þ x b� að Þ þ y a� bð Þ � ab ¼ 0: ð4:2Þ
Another useful equation linking parameters a, b, j and k is the following one:

a� b ¼ jþ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
, ð4:3Þ

which comes from the equalities (see Fig. 4.1) OBþ OJ ¼ JK þ KH ¼ JK þ KA,

the last and first term yielding bþ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
þ a� kð Þ and so equation (4.3).

From this equation another useful one can be derived, as Rosin did in [5],

k ¼ j� a�b
2

j
a�b � 1

which eventually leads to

k ¼ 2j� aþ bð Þ a� bð Þ
2 j� aþ bð Þ :

Before listing the different cases corresponding to the constructions presented in

Chap. 3, we derive the formula for r2 as a function of r1, for any fixed a and b.
Deriving j and k from the first two equalities in (4.1) and substituting them into

(4.3) yields

b ¼ a� r2 � bð Þ � a� r1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ b2 � 2br2 þ a2 þ r12 � 2ar1

q
,

which evolves into

Fig. 4.1 Parameters of an oval and the coordinates of the points determining a quarter-oval
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r2 � r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ b2 � 2br2 þ a2 þ r12 � 2ar1

q
,

and after taking squares—note that r2> r1—into

ar1 þ br2 � r1r
12 ¼ a2þb2

2,

where r2 can be seen as the following function of r1:

r2 r1ð Þ ¼ ar1 � a2þb2

2

r1 � b
:

Since a� b< k we have that 0< r1¼ a� k< b, and the graph of the above

function, for r1 ∈ ]0; b[ —considering that lim
r1!0þ

r2 r1ð Þ ¼ a2 þ b2

2b
and that lim

r1!b�
r2

r1ð Þ ¼ þ1—is the hyperbola segment represented in Fig. 4.2.

The following cases have the same numbering as the constructions in Chap. 3, so

Table 3.1 can still be used as reference for the first 20, and the Appendix for the

remaining cases.

Case 1—Given a, b and k, where a� b< k< a (Fig. 4.3).

Define point F as the point inside the segment OB such thatKA ¼ BF. Point F¼
(0, b� (a� k)) is the same point described at the beginning of Chap. 2 (see also

the top right-hand side of Fig. 2.4), because the oval determined by a, b and k is

unique, therefore J is the vertex of an isosceles triangle with base FK. Point J is then
the intersection between the y-axis and the axis of FK. Since the slope of the FK
line is

mFK ¼ yF � yK
xF � xK

¼ b� aþ k

�k
¼ a� b� k

k

and the midpoint of segment FK isM ¼ k
2
; b�aþk

2

� �
, we have that the wanted line has

slope � k
a�b�k and equation

y� b� aþ k

2
¼ � k

a� b� k
x� k

2

� �
,

intersection with the line x¼ 0, yield for J the coordinates

J ¼ 0;
a� bð Þ a� b� 2kð Þ

2 bþ k � að Þ
� �

:

Remembering that j ¼ OJ we get the value of the parameter j
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j ¼ a� bð Þ 2k þ b� að Þ
2 bþ k � að Þ : ð4:4Þ

Once j is also known there are different ways to calculate h and m. To avoid

tedious calculation it is probably better to find H as the intersection between KJ and
PB, where P is the point defined at the end of Chap. 2 (see also Fig. 2.9). Since the

coordinates of P are P¼ (k, a� k) we get, for lines PB and KJ respectively, the

equations

y� b

a� k � b
¼ x

k
and

y

�j
¼ x� k

�k
,

solving the corresponding system we get the coordinates of the connection point H:

H ¼ k bþ jð Þ
b� aþ k þ j

;
j a� kð Þ

b� aþ k þ j

� �
,

which are the values of h and m

Fig. 4.2 The graph of r2 as a
function of r1, considering
acceptable values
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h ¼ k bþ jð Þ
b� aþ k þ j

and m ¼ j a� kð Þ
b� aþ k þ j

ð4:5Þ

Case 2—Given a, b and h, where 0< a� b< h< a (Fig. 4.4).

We just need to find the positive solution y to the system formed by the CL (4.2)

and x¼ h. After substituting we get

y2 þ y a� bð Þ þ h2 � h a� bð Þ � ab ¼ 0,

and the positive solution is given by

m ¼
b� að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ2 � 4h h� aþ bð Þ

q
2

:

Having calculated m, to find k we can look for the intersection with the x-axis of
the axis of segment AH whose equation is

y� m

2
¼ a� h

m
x� aþ h

2

� �
;

and this yields for k the value

Fig. 4.3 Solving Case 1
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k ¼ a2 � m2 � h2

2 a� hð Þ : ð4:6Þ

Finally intersecting KH (whose equation is y(h� k)¼m(x� k)) with the y-axis

one gets

j ¼ mk

h� k
: ð4:7Þ

Case 3—Given a, b and j, where 0< b< a and j > a2�b2

2b .

To justify the above limitations for j let us consider, for fixed a and b, how
j varies as a function of k. Let us consider formula (4.4). We perform the derivative

with respect to k:

d

dk

a� bð Þ bþ 2k � að Þ
2 bþ k � að Þ

� �
¼ a� bð Þ

2
� 2 bþ k � að Þ � bþ 2k � að Þ

bþ k � að Þ2 ¼

Fig. 4.4 Solving Case 2
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¼ � a� bð Þ2
2 bþ k � að Þ2 < 0

which means that j(k) is a decreasing function. Performing now the limits as

k approaches its limit values of a and a� b we get

lim
k!a�b

a� bð Þ bþ 2k � að Þ
2 bþ k � að Þ

� �
¼ þ1

and

lim
k!a

a� bð Þ bþ 2k � að Þ
2 bþ k � að Þ

� �
¼ a2 � b2

2b

thus the continuous function j(k) is bounded below by a2�b2

2b , as stated (see also

Fig. 4.5). The following formula for k comes directly from (4.3) after some simple

calculations, and then for h and m we can use (4.5):

k ¼ j2 � bþ j� að Þ2
2 bþ j� að Þ , h ¼ k bþ jð Þ

b� aþ k þ j
and m ¼ j a� kð Þ

b� aþ k þ j
: ð4:8Þ

Case 4—Given a, b and m, where 0<m< b< a.
We proceed similarly as in Case 2. We just need to find the positive solution x to

the system formed by the CL (4.2) and y¼m. After substituting we get

Fig. 4.5 Studying j as a
function of k to justify the

limitations for j
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x2 � x a� bð Þ þ m2 þ m a� bð Þ � ab ¼ 0,

and the positive solution is given by

h ¼
a� bð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ2 þ 4 b� mð Þ aþ mð Þ

q
2

:

Having calculated h, to find k and j formulas (4.6) and (4.7) can be used :

k ¼ a2 � m2 � h2

2 a� hð Þ , j ¼ mk

h� k
:

Case 5—Given a, k and h, with 0< k< h< a.
We need the positive solution y of the equation system of the circle with

centre K and radius KA, (x� k)2 + y2¼ (a� k)2 and the line x¼ h (Fig. 4.6), and

this yields

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� kð Þ2 � h� kð Þ2

q
:

Again we can then use

Fig. 4.6 Solving Case 5
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j ¼ mk

h� k

and derive b, for example, from (4.3)

b ¼ a� j� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
: ð4:9Þ

Case 6—Given a, k and j, with 0< k< a and j> 0.

Formulas already derived are enough: we need (4.9) and (4.5):

b ¼ a� j� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
, h ¼ k bþ jð Þ

b� aþ k þ j
and m ¼ j a� kð Þ

b� aþ k þ j
:

Case 7—Given a, k and m, with 0< k< a and 0<m< a� k.

PointH has to lie on the circle with centre K and radiusKA; that is why it must be

m< a� k. Intersecting this circle with the line y¼m yields the solution

h ¼ k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� kð Þ2 � m2

q
,

then again formulas (4.7) and (4.9)

j ¼ mk

h� k
and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

Case 8—Given a, h and j, with 0< h< a and j> 0.

This case has not been completely solved yet, and there may also be additional

limitations on the parameters. An implicit formula can be found in the following

way. We call m the unknown second coordinate of point H (see Fig. 4.7) and

Fig. 4.7 The unsolved

Case 8
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calculate the x-coordinate of K by writing the equation of the axis of the segment

AH

y� m

2
¼ a� h

m
x� aþ h

2

� �
and letting y¼ 0. We get for K the coordinates

K ¼ a2 � h2 � m2

2 a� hð Þ ; 0

� �
,

and when we use the condition for K, J and H to be on the same line

yH � yJ
xH � xJ

¼ yK � yJ
xK � xJ

we end up with the equation for m

m3 þ jm2 þ h2 � a2
� �

m� j h� að Þ2 ¼ 0,

which may in general have up to three solutions such that 0<m< a. At this time no

closed form for the solutions has been found.

Case 9—Given a, h and m, with 0 < a� h < m <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
.

Repeating Construction 9, we see that the x-coordinate of the intersection K of

the axis of AH with the x-axis, which as in Case 8 is given by

K ¼ a2 � h2 � m2

2 a� hð Þ ; 0

� �
,

has to be such that

0 <
a2 � h2 � m2

2 a� hð Þ < h:

This condition becomes

ða� hÞ2 < m2 < a2 � h2,

which yields, since a>h, 0 < a� h < m <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
, the condition stated for m.

Using again (4.7) and (4.9) we then sum up the formulas for this case:

k ¼ a2 � h2 � m2

2 a� hð Þ , j ¼ mk

h� k
and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
: ð4:10Þ

Case 10—Given a, j and m, with 0<m< a and j> 0.
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Formulas for this case are derived using equations previously calculated. We

take the second in (4.5)

m ¼ j a� kð Þ
b� aþ k þ j

obtaining the following equation for k:

k2 m2 � j2
� �þ 2akjþ j2 m2 � a2

� � ¼ 0

whose solutions are

k1;2 ¼ �aj2 � jm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ a2 � m2

p
m2 � j2

;

multiplication of the numerator and of the denominator by ajþ jm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ a2 � m2

p
delivers the formulas

k1 ¼ j a2 � m2ð Þ
ajþ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ a2 � m2

p and k2 ¼ j a2 � m2ð Þ
aj� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ a2 � m2

p ;

keeping in mind that m< a it is easy to prove that 0< k1< a, therefore that it is

feasible. On the other hand k2 is negative when m< j, non existent when m¼ j and
greater than a if m> j. The formulas for this case are thus

k ¼ j a2�m2ð Þ
ajþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2þa2�m2

p , j ¼ mk
h�k and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
:

Case 11—Given b, k and h, with b> 0 and 0 < k < h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
.

This case is the one that proved that the author’s conjecture on the unicity of

ovals whenever three out of six fundamental parameters are given (see beginning of

Sect. 3.1) is false. We will show that certain choices of parameters b, k and

h (an infinite number actually) yield two quarter ovals. Again we derive an equation

for j and then observe that a real solution can be obtained under the conditions

listed. Deriving a from formula (4.3) and substituting in the first of the (4.5) yields

h ¼ k þ
k bþ j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

p
and eventually

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

q
¼ k bþ jð Þ:

Taking the square of both positive quantities we end up with the following equation

for j:
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j2 h2 � k2
� �� 2bjk2 þ k2 h2 � b2

� � ¼ 0:

The two solutions are

j1 ¼
k bk þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2 � h2

p� �
h2 � k2

and j2 ¼
k bk � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2 � h2

p� �
h2 � k2

: ð4:11Þ

The quantity b2 + k2� h2 having to be non negative, h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
has to hold. The

solution j1 is clearly positive, while j2 is positive if

bk � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2 � h2

p
> 0,

that is if (h2�k2)(h2�b2)> 0, which in our case is true if and only if h> b, which is
of course possible. The surprising situation is therefore illustrated in Fig. 4.8.

Obviously, if b< k in the first place, then any feasible value for h yields two

ovals. As an example of this situation let us consider the parameter values k¼ 8,

b¼ 10 and h¼ 12. Formulas (4.11) give us the values

j1 ¼
4 10þ 3

ffiffiffi
5

p� �
5

and j2 ¼
4 10� 3

ffiffiffi
5

p� �
5

,

both positive. This means that there are two ovals with k¼ 8, b¼ 10 and h¼ 12, and

they are shown in Fig. 4.9.

Case 12—Given b, k and j, with b , j> 0 and 0 < k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2bj

p
.

The formula for a is simply derived from (4.3), and at that point the (4.5) can be

used:

a ¼ bþ jþ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
, h ¼ k bþ jð Þ

b� aþ k þ j
, m ¼ j a� kð Þ

b� aþ k þ j
: ð4:12Þ

The limitation for k is explained as follows. Since k has to be such that

a� b< k< a, then the above formula for a yields

j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
< 0 < bþ j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
which corresponds to the system

Fig. 4.8 Number of solutions to Case 11 according to the values of h
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j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
< 0

bþ j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p(

whose solutions are k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2bj

p
.

Case 13—Given b, k and m, with k> 0 and 0<m< b.
This case has not been completely solved yet, and there may also be additional

limitations on the parameters. An implicit formula can be found in the following

way. Keeping in mind Fig. 4.1 we find a general formula for h which we will use in

a moment. The circle with centre J and radius JB has equation

x2 þ yþ jð Þ2 ¼ bþ jð Þ2;
since H¼ (h,m) has to lie on this circle, h and m must solve the equation

h2 þ mþ jð Þ2 ¼ bþ jð Þ2; ð4:13Þ
solving for h we get

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � mþ jð Þ2

q
: ð4:14Þ

We now use (4.7) to derive the following formula for k

Fig. 4.9 The two ovals of Case 11 resulting from the parameter choice k¼ 8, b¼ 10 and h¼ 12.
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k ¼ jh

mþ j
, ð4:15Þ

and substitute (4.14) in it:

k ¼
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � mþ jð Þ2

q
mþ j

:

Straightforward calculations yield for j the equation

2j3 b� mð Þ þ j2 b2 � m2 � k2
� �� 2mjk2 � m2k2 ¼ 0,

which may in general have up to three positive solutions. At this moment no explicit

form for the solutions has been found.

Case 14—Given b, h and j, with b , j> 0 and 0 < h <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ bj

p
.

Solving (4.13) for m we get

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � h2

q
� j: ð4:16Þ

We can now use formula (4.15) and solve (4.3) for a:

k ¼ jh

mþ j
, a ¼ bþ jþ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
: ð4:17Þ

Since though 0<m< b has to hold, we get

0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � h2

q
� j < b;

after adding j, and taking squares of the three positive members, we get

j2 < b2 þ j2 þ 2bj� h2 < b2 þ 2bjþ j2;

now addition of h2� j2 yields

h2 < b2 þ 2bj < b2 þ 2bjþ h2,

the first inequality yielding the above limitations for h, the second one being true for
any value of h.

Case 15—Given b, h and m, with h> 0 and 0 < m < b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ m2

p
.

Formula (4.16) yields

jþ m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � h2

q
,

and taking squares on both sides we get eventually
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j ¼ m2 þ h2 � b2

2 b� mð Þ
and formulas (4.17) complete the set

k ¼ jh

mþ j
, a ¼ bþ jþ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

In order for j to be positive, we have to have m2+ h2� b2> 0 which yields the above

condition on b.
Case 16—Given b, j and m, with j> 0 and 0<m< b.
Formulas (4.14), (4.15) and the first of the (4.12) are what we need here:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ jð Þ2 � mþ jð Þ2

q
, k ¼ jh

mþ j
and a ¼ bþ jþ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

Case 17—Given k, h and j, with j> 0 and 0< k< h.
We derive m from (4.7)

m ¼ j h� kð Þ
k

,

and a from the first of (4.10):

k ¼ a2 � h2 � m2

2 a� hð Þ ! a1;2 ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ h2 þ m2 � 2hk

p
where only a1 is such that a1> h> k> 0, so the acceptable value is

a ¼ k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� kð Þ2 þ m2

q
; ð4:18Þ

finally one can use formula (4.9)

b ¼ a� j� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
: ð4:19Þ

Case 18—Given k, h and m, with m> 0 and 0< k< h.
We need (4.7), (4.18) and (4.19):

j ¼ mk

h� k
, a ¼ k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� kð Þ2 þ m2

q
and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

Case 19—Given k, j and m, with k , j ,m> 0.

We invert (4.15) and use (4.18) and (4.19):
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h ¼ k mþ jð Þ
j

, a ¼ k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� kð Þ2 þ m2

q
and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

Case 20—Given h, j and m, with h , j ,m> 0.

We use the first of the (4.17), and formulas (4.18) and (4.19):

k ¼ jh

mþ j
, a ¼ k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� kð Þ2 þ m2

q
and b ¼ a� j� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
:

We now proceed with the analysis of the three more cases we have dealt with in

Chap. 3. Consistent with the numbering, we have called them Cases 23, 72 and 78.

Case 23—Given a, b and β, with a> b> 0 and 2arctanab � π
2
< β < π

2
.

To find the formulas for the remaining parameters we use Construction 23b in

Chap. 3 and the corresponding Fig. 3.17. Let ϕ be the angle that BD forms with the

x-axis. The equation of the line BD is

y� b ¼ x � tanϕ:
To find point H we need to solve the system with the equation of the CL (4.2)

y� b ¼ x � tanϕ
x2 þ y2 þ x b� að Þ þ y a� bð Þ � ab ¼ 0

	
,

the solutions are x1¼ 0, the x-coordinate of B, and x2 ¼ a�b�a� tanϕ�b� tanϕ
1þtan 2ϕ , the

x-coordinate of H. After having calculated

ϕ ¼ AbOBþ ObBD ¼ π

2
þ 1

2
π � π

2
� β

� �� �� �
¼ 3

4
π þ β

2
,

we get for h the following formula

h ¼ a� bþ aþ bð Þ � tan π
4
� β

2

� �
1þ tan 2 π

4
� β

2

� � :

In order for BD to meet the CL inside arc AS we have to have π
2
> ObBD > ObBA

which means that

π

2
>

π

4
þ β

2
> arctan

a

b

must hold, that is for β the condition

2arctan
a

b
� π

2
< β <

π

2
:
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The missing formulas for m, k and h are then copied from Case 2:

m ¼
b� að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ2 � 4h h� aþ bð Þ

q
2

,

k ¼ a2 � m2 � h2

a a� hð Þ and j ¼ mk

h� k
:

Case 72—Given k, j and p, with k , j> 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
� j

k
< p < 1

To find a formula for a we just consider that b¼ ap and substitute it inside (4.3).
What we get is

a ¼ k þ j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
1� p

,

and for the remaining parameters use from Case 6

b ¼ a� j� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
, h ¼ k bþ jð Þ

b� aþ k þ j
and m ¼ j a� kð Þ

b� aþ k þ j
:

In order to explain the limitation for p we can repeat Construction 72. We need to

find the centre C of the CL. Let α ¼ arctan j
k (see from now on Fig. 4.10). The

equation of the bisector of α is y ¼ tan α
2
x� kð Þ; we find C by intersection with

y¼ � x (see Theorem 2.3):

C ¼ k � tan α
2

1þ tan α
2

;� k � tan α
2

1þ tan α
2

� �
:

We now need the line through C having slope m¼ 1 and we need to intersect it

with the line r through O with given slope p in order to find T: the solution to the

system

y ¼ px

yþ
k � tan α

2

1þ tan
α

2

¼ x�
k � tan α

2

1þ tan
α

2

8>><>>: ð4:20Þ

exists and it is feasible if r has a slope p lesser than 1, in order to intersect the line

coming from C, and on the other hand greater than the slope of the line OG (see
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Fig. 4.10), in order for T to have an x-coordinate greater than k. The coordinates of
G are, substituting k into the second equation in (4.20):

G ¼ k; k
1� tan α

2

1þ tan α
2

� �� �
,

that is OG has slope

mOG ¼ 1� tan α
2

1þ tan α
2

� �
: ð4:21Þ

We now need to express tan α
2
in terms of j and k. Since tan α ¼ j

kwe get, from well-

known trigonometry formulas,

sin α ¼ tan αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2α

p ¼ jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p and cos α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2α

p ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p ,

and consequently that

tan
α

2
¼ 1� cos α

sin α
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
� k

j
: ð4:22Þ

Setting now mOG< p< 1, and using (4.21) and (4.22) one gets

Fig. 4.10 Finding the

limitations for p in Case 72
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1�
ffiffiffiffiffiffiffiffi
j2þk2

p
�k

j

1þ
ffiffiffiffiffiffiffiffi
j2þk2

p
�k

j

< p < 1

which leads after some calculation toffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
� j

k
< p < 1:

4.2 Limitations for the Frame Problem

Let’s go back to the Direct Frame Problem of Sect. 3.3. We want to find proof of the

limitations for the point which should belong to an oval with given axes.

Case 117—Given a, b and a point �x; �yð Þ such that

either a)
�x2 þ �y2 þ �y

a2 � b2

b

� �
� a2 > 0

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab < 0

0 < �y < b

8>><>>:
or b)

�x2 þ �y2 þ 2�x b� að Þ þ a2 � 2ab < 0

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab > 0

	
.

We are looking for an oval with half axes a and b through a given point. Such a

point will have to belong to either an arc with a J centre or to an arc with a K centre

(as a special case to both).

Case 117a We want to show that for the oval to be drawn and for M ¼ �x; �yð Þ to
belong to an arc with a longer radius, conditions a) have to be met; in such a case

Construction 117a in Chap. 3 works.

The equation of the axis of segment BM (see Fig. 4.11) is

y� �yþ b

2
¼ �x

b� �y
x� �x

2

� �
and its intersection with the y-axis is

0;
�yþ b

2
þ �x2

2 b� �yð Þ
� �

:

For this point to be a feasible J point, the condition of Case 3 has to hold:

�yþ b

2
þ �x2

2 b� �yð Þ < � a2 � b2

2b
,

and after some simple calculations this becomes
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�x2 þ �y2 þ �y
a2 � b2

b

� �
� a2 > 0,

which is the set of points outside the circle with centre

P ¼ b2 � a2

2b
; 0

� �
and radius

b2 þ a2

2b
¼ PB,

P being the point on BO such that PB ¼ BA.

On the other hand the CL and the circle with centre J and radius JB both run

through H and B, so the two AS arcs are one outside the other. Since S is a point on

the CL which can easily be proved to be outside the circle with centre J and radius

JB, then the same has to hold for any points on the two arcs. This means thatM �x; �yð Þ
is inside the CL, and this condition, remembering (4.2), can be written

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab < 0:

Case 117a corresponds thus to choosing M ¼ �x; �yð Þ inside the blue area in

Fig. 3.37.

Fig. 4.11 Finding the

limitations for M ¼ �x; �yð Þ in
Case 117a
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Case 117b. Now we show that for the oval to be drawn and for M ¼ �x; �yð Þ
to belong to an arc with smaller radius, conditions b) have to be met. The

corresponding K, the intersection of the axis of segment AM with the horizontal

axis, would have to meet the conditions of Case 1, which mean, for the solution x of
the system

y� �y

2
¼ a� �x

�y
x� aþ �x

2

� �
y ¼ 0

8><>:
to satisfy a� b< x< a. This corresponds to finding �x and �y such that

a� b <
a2 � �x2 � �y2

2 a� �xð Þ
a2 � �x2 � �y2

2 a� �xð Þ < a

8>><>>: ;

calculations yield the equivalent inequality

�x2 þ �y2 þ 2�x b� að Þ þ a2 � 2ab < 0,

which is half of what we wanted to prove. Now just note that the CL and the circle

having centre any feasible K¼ (k, 0) and radius a� k, always meet only in A and H,
as seen in Chap. 2. These two points divide the circle with centre K into two arcs,

one of which is inside the CL and the other outside. Being, for example, P in

Fig. 2.9 inside the CL, since it belongs to the chord BH, and because the connection
point H is between M and P, then M ¼ �x; �yð Þ has to be outside, which means that

�x2 þ �y2 þ �x b� að Þ þ �y a� bð Þ � ab > 0

has to hold.

Case 118a. Finding an oval circumscribing a rectangle with arcs with
smaller radius through the vertices. To prove the limitations for a in the first

part of the Inverse Frame Problem of Chap. 3 we take a generic point P ¼ �x; �yð Þ,
representing the vertex of the inscribed rectangle (Fig. 4.12, top). A feasible A¼
(a, 0) is a point such that a > �x and such that the axis of segment PA lands on the

horizontal axis—to produce point K—between the centre of symmetry and the right

edge of the rectangle. The equation of the axis is

y� �y
2
¼ a� �x

�y x� aþ�x
2

� �
,

and the point where it intersects the horizontal axis has the coordinate
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k ¼ �y2 þ �x2 � a2

2 �x� að Þ ;

imposing for this value to be between 0 and �x yields for a the cited limitationsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
< a < �x:

To find the resulting limitations for b we must first derive a general formula for

h as a function of a, b and k. To do so we look for the intersection of the CL with the

Fig. 4.12 Finding the

limitations for a and then for

b in Case 118a (top); finding

the limitations for b and then

for a in Case 118b (bottom)
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circle with centre K and radius KA (see for example Fig. 4.4). After lengthy

calculations one gets, as a solution for

x2 þ y2 þ x b� að Þ þ y a� bð Þ � ab ¼ 0

x� kð Þ2 þ y2 ¼ a� kð Þ2
	

,

apart from A¼ (a, 0), the point H¼ (h,m) with coordinates

h ¼ a� bð Þ2 2k � að Þ þ a 2k þ b� að Þ2
a� bð Þ2 þ 2k þ b� að Þ2

and

m ¼ 2 a� kð Þ a� bð Þ 2k þ b� að Þ
a� bð Þ2 þ 2k þ b� að Þ2 :

If we now impose the condition for H to lie before P but beyond K, that is that
k < h < �x, after some work we get for b the limitations

a� k < b <
a �x� kð Þ � k �x� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� �xð Þ aþ �x� 2kð Þp� �
�x� k

,

where the first part, since �y < a� k automatically implies that b > �y as it should be.
Case 118b. Finding an oval circumscribing a rectangle with arcs with longer

radius through the vertices. To prove the limitations for b in the second part of the
Inverse Frame Problem we take a generic point P ¼ �x; �yð Þ, representing the vertex

of the inscribed rectangle (Fig. 4.12, bottom). A feasible B¼ (0, b) is a point such
that b > �y and such that the axis of segment PB lands on the vertical axis—to

produce point J—beyond the centre of symmetry. The equation of such axis is

y� �yþ b

2
¼ �x

b� �y
x� �x

2

� �
and it intersects the vertical axis in

j ¼ �x2 � b2 þ �y2

2�x
;

imposing j> 0 yields for b the condition

�y < b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
,

represented as a green segment in Fig. 4.12 (bottom).
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To find the resulting limitations for a this time we look for the intersection of the

CL with the circle with centre J and radius JB. The other solution of

x2 þ y2 þ x b� að Þ þ y a� bð Þ � ab ¼ 0

x2 þ yþ jð Þ2 ¼ bþ jð Þ2
	

,

apart from B¼ (0, b), is found as the point H¼ (h,m) with coordinates

h ¼ a� bð Þ bþ jð Þ b� aþ 2jð Þ
a� b� jð Þ2 þ j2

and m ¼ j 2bjþ b2 � a2
� �
a� b� jð Þ2 þ j2

:

If we now impose the condition for H to lie beyond P but to remain inside the

first quadrant, that is that 0 < m < �y, after some work we get for a the limitations

�y jþ bð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� �yð Þ bþ �yþ 2jð Þp
jþ �y

< a <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2jþ bð Þ

p
,

also represented as a green segment in Fig. 4.12 (bottom).

4.3 Measuring a Four-Centre Oval

We obtain here formulas for the length of the perimeter and for the area of an oval.

The length of an arc of a circle with radius r and angle at the centre α is given by

l¼ rα, if α is measured in radiants (otherwise multiply by π
180�). So in Fig. 4.13 we

can calculate arcs l1¼AH and l2¼BH as follows:

Fig. 4.13 Calculating

perimeter and area of a simple

oval
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l1 ¼ β � r1 and l2 ¼ π

2
� β

� �
� r2:

So a straightforward formula for the whole length is

L ¼ 2πr2 � 4β r2 � r1ð Þ:
In order to get formulas for the whole length depending on three of the funda-

mental parameters we remember that

r1 ¼ a� k, r2 ¼ a� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
and β ¼ arctan

j

k
,

using (4.1) and Fig. 4.13. This yields for the whole oval the formula

L ¼ 4 l1 þ l2ð Þ ¼ 4
π

2
a� kð Þ þ π

2
� arctan

j

k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q
 �
An interesting problem is that of finding an oval where point H divides the

quarter oval into two arcs of equal length. This is obviously achieved when

β � r1 ¼ π

2
� β

� �
� r2:

Using the same formulas as above for r1 and r2, we get

β 2a� 2k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q� �
¼ π

2
a� k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q� �
,

and so for β

β ¼
π
2

a� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p� �
2 a� kð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p :

Considering now that β ¼ arctan j
k, and letting z ¼ k

j and s ¼ a
j we obtain

arctan
1

z
¼ π

2
� s� zþ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

2 s� zð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p ,

and solving for s

s ¼ zþ
π
2
� arctan1z

� � ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p

2arctan1z � π
2
:
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Not all values for z yield a positive value for s, but those in the intervalffiffi
3

p
3
; 1

h h
definitely do, since the above formula can be written

s ¼ arctan1z 2z� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p� �þ π
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p � z
� �

2arctan1z � π
2
,

and the first term in the nominator is not negative for z �
ffiffi
3

p
3
, the second term is

always strictly positive and the denominator is positive for z< 1.

So, in order to find such an oval shape one chooses a value for z and calculates s.

For z ¼
ffiffi
3

p
3

for example, corresponding to an angle β ¼ π
3
, one gets s ¼ ffiffiffi

3
p

. This

means that, given a value for a, the oval having j ¼ a
s ¼

ffiffi
3

p
3
a and k ¼ jz ¼ a

3
is an

oval where the connection point H divides the quarter oval into two arcs of equal

length. This is the famous 4th construction by Serlio, which is described in Chap. 6

among other remarkable four-centre ovals. It is this property that made Borromini

choose it as a guideline for his plan of the dome of the church of San Carlo alle
Quattro Fontane in Rome, as suggested in Chap. 7. But this is not the only possible

choice: a choice of z ¼ 3
4
yields approximate values, given a, of j� 0.28 � a and

k� 0.21 � a, forming another oval shape where the connection point H divides the

quarter oval into two arcs of equal length.

For the area of an oval we use the formula for a sector, which is S ¼ α�r2
2
. From

Fig. 4.13 we get, for the sectors corresponding to arcs AH and BH,

S1 ¼ a� kð Þ2
2

arctan
j

k
and S2 ¼ bþ jð Þ2

2

π

2
� arctan

j

k

� �
:

Adding the two sectors, subtracting the area of the triangle OJK and then

multiplying by 4 we get the area of the whole oval

S ¼ bþ jð Þ2 π � 2arctan
j

k

� �
þ 2 a� kð Þ2arctan j

k
� 2jk:

To obtain a formula with only three parameters we use (4.9) for b, and get

S ¼ a� k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

q� �2

π � 2arctan
j

k

� �
þ 2 a� kð Þ2arctan j

k
� 2jk:

The version depending on parameters r1, r2 and β is also easily obtained:

S ¼ π � r222
4

� β � r2
2 � r1

2ð Þ
2

� r2 � r1ð Þ2 sin β � cos β
2
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4.4 Concentric Ovals

Given an oval with parameters a
0
, b

0
, k

0
, h

0
, j

0
and m

0
, a whole set of other ovals can

be drawn just by keeping fixed k
0
and j

0
and adding to a

0
and b

0
the same amount r,

which will turn the starting oval into another one with four arcs made of the two

starting radii both increased by r. These are called concentric ovals in the sense that
they share the same centres J and K for the arcs that form them, but as we will see,

other than concentric circles, they do not have the same shape and their axes change

their ratio all the time.

There is a limit for ovals lying inside the given one since k cannot exceed a,
while concentric ovals outside the first one can be as big as one wishes.

In Fig. 4.14 we consider the starting oval with its symmetry centre on the origin

of a coordinate system whose axes coincide with the oval axes. The main points

forming the quarter oval have coordinates

A0 ¼ a0; 0ð Þ, B0 ¼ 0; b0ð Þ, K0 ¼ k0; 0ð Þ, J0 ¼ 0;�j0ð Þ and H0 ¼ h0;m0ð Þ:

Taking then any number r (positive or negative) such that r> k� a, we find a

concentric oval just by adding r to a
0
(or b

0
) getting

A ¼ a0 þ r; 0ð Þ, B ¼ 0; b0 þ rð Þ, K ¼ k0; 0ð Þ and J ¼ 0;�j0ð Þ;
while the new connection point H has coordinates (see (4.5))

Fig. 4.14 The first of a

number of concentric ovals
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h ¼ k0 b0 þ r þ j0ð Þ
b0 � a0 þ k0 þ j0

¼ k0 b0 þ j0ð Þ
b0 � a0 þ k0 þ j0

þ rk0

b0 � a0 þ k0 þ j0
¼

¼ h0 þ rk0

b0 � a0 þ k0 þ j0

and

m ¼ j0 a0 þ r � k0ð Þ
b0 � a0 þ k0 þ j0

¼ m0 þ rj0

b0 � a0 þ k0 þ j0
,

see Fig. 4.15.

The shape of this oval is rounder, when r is positive, while the two ovals are

parallel in the sense that the area between them is scanned by a segment of constant

length r. This was the idea, for example, when planning Roman amphitheatres,

although eight-centre ovals were also often used (see Sect. 8.2 on the Colosseum).

The new value of the axis ratio p is

p ¼ b0 þ r

a0 þ r
,

Fig. 4.15 Constructing an oval concentric with the first one
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which means that, as a function of r, its graph is the one in Fig. 4.16. The function

nears itself to the value 1, which means that for big values of r the oval resembles

more and more a circle.

A selection of concentric ovals is displayed in Fig. 4.17.

Fig. 4.16 The graph of p(r) for concentric ovals

Fig. 4.17 A selection of concentric ovals
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Optimisation Problems for Ovals 5

Once formulas describing parameters or other characteristics of an oval have been

derived (in Chap. 4), calculus can be used to consider them as functions of a certain

quantity and see how they vary. In this short chapter as an example we present here

the solution to the problems of minimising the difference and the ratio of the radii of

a simple oval with given axes a and b. The first of these two problems being

suggested by Edoardo Dotto.

We know from (4.1) that r2¼ b+ j and r1¼ a� k. We will study d¼ r2� r1 as a
function of j. Letting q¼ a� b we get

d ¼ bþ j� aþ k ¼ jþ k � q,

then using the first of (4.8) we get

k ¼ j2 � bþ j� að Þ2
2 bþ j� að Þ ¼ j2 � j� qð Þ2

2 j� qð Þ ¼ q 2j� qð Þ
2 j� qð Þ

and so for d, after simple calculations,

d ¼ j� qþ q 2j� qð Þ
2 j� qð Þ ¼ jþ q2

2 j� qð Þ :

In this context the function

d jð Þ ¼ jþ q2

2 j� qð Þ

is defined in the open interval D ¼� a
2 � b2

2b
;þ1½ (see Case 3 in Sect. 4.1) and its

graph is contained in the I quadrant. We perform the limits as j approaches the

endpoints of D:
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lim
j!a2�b2

2b

d jð Þ ¼ a2 � b2

2b
þ a� bð Þ2

2 a2�b2

2b � aþ b
� � ¼ a2 � b2

2b
þ b ¼ a2 þ b2

2b

and

lim
j!þ1

d jð Þ ¼ þ1:

We now differentiate with respect to j:

d0 jð Þ ¼ 1� q2

2 j� qð Þ2 ¼
2j2 � 4jqþ q2

2 j� qð Þ2 ,

and find that the function decreases until j2 ¼ q 1þ
ffiffi
2

p
2

� �
and then increases as

j! þ1 (note that the other root of the derivative j1 ¼ q 1�
ffiffi
2

p
2

� �
is never feasible

since j1 < q ¼ a� b ¼ a2 � b2
� �
aþ bð Þ <

a2 � b2
� �

2b
).

So the function d( j) has a minimum for

�j ¼ a� bð Þ 1þ
ffiffiffi
2

p

2

� �
only if j ∈ D, i.e. if

a� bð Þ 1þ
ffiffiffi
2

p

2

� �
>

a2 � b2
� �

2b
ð5:1Þ

otherwise d decreases as j ! a2 � b2

2b
but never reaches a minimum value because

a2 � b2

2b
is an unfeasible value for j. Condition (5.1) yields

a

b
< 1þ

ffiffiffi
2

p
: ð5:2Þ

This means that ovals satisfying (5.2) allow for an oval with the minimum

difference between the radii, the others don’t. Figure 5.1 shows the two different

cases. The oval with the minimum radius difference has a value d of

d jMINð Þ ¼ d a� bð Þ 1þ
ffiffiffi
2

p

2

� �� �
¼ a� bð Þ 1þ

ffiffiffi
2

p� �
:
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The corresponding value of k cam be found substitutingq 1þ
ffiffiffi
2

p

2

� �
for j in (4.3)

and solving for k:

a ¼ bþ a� bð Þ 2þ ffiffiffi
2

p

2

� �
þ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� bð Þ2 2þ ffiffiffi

2
p

2

� �2

þ k2

s

and what one gets is

�k ¼ a� bð Þ 1þ
ffiffiffi
2

p

2

� �
¼ �j,

which means that such an oval has β ¼ π

4
and when a and b satisfy (24) it is very

easy to draw (Fig. 5.2), either using Constructions (23a) and (23b) (see Chap. 3), or

using a method developed by Lopez Mozo (see [2]).

Finding the oval of given axes minimizing the ratio of the two radii makes more

sense if one is interested in the oval which is rounder. We can proceed as follows.

Consider a and b as fixed. Using for r1, r2 and k the same formulas as above, we

get for the ratio t of the radii, as a function of j,

t jð Þ ¼ bþ j

a� k
¼ bþ j

a� j2� bþj�að Þ2
2 bþj�að Þ

¼ 2 bþ jð Þ bþ j� að Þ
b2 � a2 þ 2bj

;

this function is also defined in D ¼� a
2 � b2

2b
;þ1½ and taking the limits to the

endpoints of D we get

lim
j!a2�b2

2b

t jð Þ ¼ lim
j!þ1

t jð Þ ¼ þ1:

Differentiation of t( j) yields, after some calculations

Fig. 5.1 The graph of d(j) when a¼ 7 and b¼ 5 and when a¼ 8 and b¼ 3
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t0 jð Þ ¼ 4bj2 þ 4j b2 � a2
� �þ 2a a� bð Þ2
b2 � a2 þ 2bj

;

considering that the denominator is always positive in D it is enough to study the

sign of the numerator. Of the two roots of the numerator, the only one inside D for

any values of a and b is

bj ¼ a� bð Þ aþ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� �
2b

, ð5:3Þ

and the function t( j) reaches its minimum there. The corresponding value of k is

bk ¼
a� bð Þ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� �
a� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� �
while the minimum value of the ratio is

t bj� �
¼ a� bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
þ a2 þ b2 � ab
� �

b2
:

When we now calculate
bjbk using the derived formulas we get, after some

calculation,

bjbk ¼ a

b
,

Fig. 5.2 An oval with

minimum radius difference,

for feasible values of a and b
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which means that for given a and b, the oval with minimum radius ratio is the only

one where the lines AB and JK are orthogonal, or in other words, the oval where the

triangles OAB and OJK have the same angles.

The remaining parameters can be calculated by means, for example, of formulas

(4.5).

Figure 5.3 shows the very easy construction which makes use of Construction

23b in Chap. 3, and of the fact that for such an oval

β ¼ arctan
bjbk ¼ arctan

a

b
:

Construction of the oval with minimum radius ratio, for any given a and
b (see the link to the Geogebra animation video on www.mazzottiangelo.eu/en/pcc.

asp):

– draw segment AB and the half-circle with diameter AB containing O
– let C be the point on this half circle dividing it into two equal parts

– draw the perpendicular to AB through O and let E be its intersection with the

circle with centre O and radius OB
– find the intersection H between the Connection Locus—the arc of circle AB with

centre C—and the line EB
– H is a connection point for the oval, and the corresponding line of the centres is

the parallel to OE through H

Fig. 5.3 Constructing an oval with minimum ratio between the radii
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The above construction means that there are an infinite number of oval

shapes with OAB similar to OJK, one for every value of p< 1, since the above

construction, corresponding to Case 23 in Chap. 3 always works because the choice

of β ¼ arctanab automatically verifies the condition for β.
In Chap. 6 we will present three such ovals, the Diatessaron oval, the inscribed

equilateral oval, and an oval presented by the author.

Fig. 5.4 Comparing the oval with minimum radius difference (in red, with d as subscript for the

corresponding parameters) to the oval with minimum radius ratio (in green, with t as subscript for

the corresponding parameters), for three different choices of a and b
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Figure 5.4 compares the oval with minimum radius difference with the oval with

minimum radius ratio, given the same a and b. In all three examples a and b satisfy
condition (5.2).

In [1] Fernández Gómez proposes the construction of two particular ovals given

any values for a and b. These two ovals are actually the minimum radius difference

oval and the minimum radius ratio oval although the author does not know it. Both

constructions are as straightforward as the ones presented here.

Formulas proved in Chap. 4 allow for more similar investigations.
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Remarkable Four-Centre Oval Shapes 6

There are 13 simple ovals of given axis lines, and since any of them has infinite

versions with the same shape (you just need to multiply all parameters except p and
β by the same positive number), we can say that there are 12 different shapes of

four-centre ovals. What we have dealt with in Chaps. 3–6 are general purpose

constructions and formulas, where you can end up with any oval varying the

parameter values. This chapter is dedicated to particular oval shapes, chosen either

for their use in architecture and/or for their geometric elegance. Parameter formulas

in Chap. 4 help in investigating the properties of these specific oval shapes. If, on

the other hand, one fixes some kind of relation between two parameters, or fixes a

value for p or for β, then one gets an oval shape family of11 shapes with something

in common. Cases in the literature include Serlio’s first construction (see [13]), the

oval shape families by Gridgeman and Franchi (used to fit a given ellipse—see [9]

for references and comments), those by Bianchi, Kitao and the third study by

Hewitt (see [10] for references and comments) as well as studies by Zerlenga

(in [16]) of variations of single parameters and borderline cases of Bosse’e

constructions. In this book both the minimal radius ratio and the minimal radius

difference can be considered examples of oval shape families.

The main references for this chapter are [3, 8, 10, 13]. References [2, 5] also

contain a selection of oval shapes in use in architecture the sixteenth and seven-

teenth centuries. The order follows no specific logic. The point and the parameter

names are those used in the preceding chapters.

The celebrated work by Serlio [13] displays four different constructions (1545).

Since the first one is a method for drawing a family of infinite (11) oval shapes, we

will start by his second construction.

Serlio 2 A circle is drawn and the four intersections with the axes are chosen as the

four centres for the arcs. The arcs with centres on the longer axis are chosen on

circles identical to the previous one (see Fig. 6.1). Given then a generic value for k,
we use β ¼ π

4
and r1¼ k to obtain, also via the formulas in Chap. 4.
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a ¼ 2k, b ¼ k
ffiffiffi
2

p
, j ¼ k, h ¼ k

2þ ffiffiffi
2

p

2

� �
, m ¼ k

ffiffiffi
2

p

2
, r2 ¼ kð1þ

ffiffiffi
2

p
Þ, p

¼
ffiffiffi
2

p

2
:

Since β ¼ π
4
, as shown in Chap. 5, this is the oval form minimizing the difference

between the radii whenever p ¼
ffiffi
2

p
2
:

Serlio 3 Two adjacent squares are drawn (Fig. 6.2). Their centres and the vertices

of the common sides are chosen as centres for the arcs, while the four remaining

vertices are chosen as connection points. This means that given k, we haveβ ¼ π
4
and

r1 ¼ k
ffiffiffi
2

p
; the remaining parameters are

a ¼ k 1þ ffiffiffi
2

p� �
, b ¼ k 2

ffiffiffi
2

p � 1
� �

, j ¼ k,

h ¼ 2k, m ¼ k, r2 ¼ 2k
ffiffiffi
2

p
, p ¼ 5� 3

ffiffiffi
2

p
:

Again, this construction minimizes the difference between the radii whenever

p ¼ 5� 3
ffiffiffi
2

p
.

The following is also known as the equilateral oval (see for example [3]). In

Chap. 7 we will use the term canonic translating the adjective “canonico” widely

used in the Italian literature on the subject of baroque architecture, and show how

this shape has been the invisible reference for Borromini‘s dome of San Carlo alle

Quattro Fontane in Rome.

Serlio 4 Once a centre of an arc with the smaller radius has been chosen (Fig. 6.3),

and its symmetrical w.r.t. the vertical axis, two circles are drawn having centres in

Fig. 6.1 Serlio’s second construction
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each one of these through the other one. Their intersections are chosen as centres of

the other arcs. Two equilateral triangles are formed. From β ¼ π
3
and r1¼ 2k we get

a ¼ 3k, j ¼ k
ffiffiffi
3

p
, h ¼ 2k, m ¼ k

ffiffiffi
3

p
,

b ¼ k 4� ffiffiffi
3

p� �
, r2 ¼ 4k, p ¼ 4� ffiffiffi

3
p

3
:

Point H divides the top right-hand side quarter oval into two arcs of equal length

(see Sect. 4.3).

Extensions of Serlio’s ideas concerning inner circles and squares have been

presented by Rosin in [10]. We display them here as Rosin 1 and Rosin 2.

Rosin 1 This time three squares adjacent to one another are drawn. The two arcs

with the smaller radius have centres at the centre of the left and right squares, while

the other centres are on the lines of their diagonals. The connection points are

chosen on the other vertices of these diagonals (Fig. 6.4). From β ¼ π
4
and r1 ¼ k

ffiffi
2

p
2

we get

a ¼ k 2þ ffiffiffi
2

p� �
2

, j ¼ k, h ¼ 3

2
k, m ¼ k

2
,

b ¼ k 3
ffiffiffi
2

p � 2
� �

2
, r2 ¼ 3k

ffiffiffi
2

p

2
, p ¼ 4

ffiffiffi
2

p
� 5

And this is another oval enjoying the minimal radius difference property.

Rosin 2 Two more circles are added to Serlio’s fourth construction, and these are

used for two of the arcs. The centres of the other two arcs are chosen as in Serlio’s

version (Fig. 6.5). Given k we have a ¼ 5
3
k and j ¼ k

ffiffi
3

p
3
, from which we calculate

r1 ¼ 2

3
k, h ¼ k

3þ ffiffiffi
3

p

3

� �
, m ¼ k

3
,

b ¼ k
2þ ffiffiffi

3
p

3

� �
, r2 ¼

2k 1þ ffiffiffi
3

p� �
3

, p ¼ 2þ ffiffiffi
3

p

5
:

Fig. 6.2 Serlio’s third

construction
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We come now to a selection from Dotto’s work dedicated to Harmonic Ovals [3]

and their use in historical buildings. They are ovals where the ratio p is a rational

number. In order for this to happen the hypotenuse of the triangle OJK is chosen to

be rational. Which is why one starts with a Pythagorean triangle1 to build a

harmonic oval. According to the ratio p these ovals receive a different name,

deriving from Pythagorean musical theory. We have chosen two of them, both

Fig. 6.3 Serlio’s fourth construction

Fig. 6.4 Rosin’s three square construction

1A right triangle with integer side lengths.
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based on the simplest Pythagorean triangle, and decided to keep the Greek names

suggested by the author of the book, which refer to musical intervals.

Many roman amphitheatres were built using a Pythagorean triangle with 3-4-5

proportional side lengths to place the centres of the arcs (see [15]). We will go more

in detail about it in Sect. 8.2, dedicated to the Colosseum.

We start with an oval attributed (see [2, 7]) to Jacopo Barozzi da Vignola.

Diapente (Oval of the Fifth) We start with OKJ as a 3-4-5 triangle, then use a

symmetric copy of it and use the vertex opposite to J as B. We thus have k, j ¼ b

¼ 4
3
k (Fig. 6.6), which yield

a ¼ 2k, r1 ¼ k, h ¼ 8
5
k, m ¼ 4

5
k, r2 ¼ 8

3
k, β ¼ arctan4

3
, p ¼ 2

3
:

The next oval enjoys two very special properties.

Diatessaron (Oval of the Fourth) After j ¼ 4
3
k we take r1 ¼ 5

3
k; what we get are

the following values for the parameters:

a ¼ 8
3
k, h ¼ 2k, m ¼ 4

3
k, b ¼ 2k, r2 ¼ 10

3
k, β ¼ arctan4

3
, p ¼ 3

4
:

For k¼ 3 (as in Fig. 6.7) all the basic points have integer coordinates, since

k¼ 3 , j¼ 4 , a¼ 8 , h¼ 6 , m¼ 4 , b¼ 6

and this is also the case with the Diapente oval when k¼ 15, for example, but the

Diatessaron oval delivers the simplest possible combination2—it is in some sense a

superharmonic oval.What is evenmore special, is that in this casewehavej ¼ bj, wherebj
is given in Chap. 5 by formula (5.3), which means that of all the ovals with axis

proportion p ¼ 3
4
this is the one with the smallest radius ratio, in some sense the one

closest to a circle.

Fig. 6.5 Rosin’s four circle

construction

2Using a reversed 3-4-5 triangle one can get another integer combination of the same six

parameters two of which are smaller than in the Diatessaron example presented (a¼9, b¼7,

k¼4, j¼3, h¼8, m¼4)
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These last two are simple harmonic ovals, but any Pythagorean triangle and an

integer (or even rational) value for r1, will yield a rational value for p, and thus a

harmonic oval (see again [3] for comparisons between different harmonic ovals).

The next shape also contains equilateral triangles, and enjoys, as the Diatessaron

oval, the minimal ratio property for ovals of the same proportion. It was also quite

popular for roman amphitheatres (see [15] where the name was given by Wilson

Jones).

Inscribed Equilateral Draw four identical equilateral triangles, two with a com-

mon side on the vertical axis, forming a rhombus inscribed in the oval, and two with

a common side on the horizontal axis, forming a rhombus with the four vertices as

arc centres (see Fig. 6.8). We have then a ¼ j ¼ b
ffiffiffi
3

p ¼ k
ffiffiffi
3

p
yielding

Fig. 6.6 Diapente oval

Fig. 6.7 Diatessaron oval
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h ¼ 1þ ffiffiffi
3

p

2
b, m ¼ 3� ffiffiffi

3
p

2
b, r1 ¼ b

ffiffiffi
3

p
� 1

� �
,

r1 ¼ b
ffiffiffi
3

p þ 1
� �

, β ¼ π

3
, p ¼

ffiffiffi
3

p

3

:

Another famous oval (see again for example [3, 9]) is the one called the Golden

Oval, or Vignola’s Golden Oval (see for example [2]) and this is because

p ¼
ffiffi
5

p �1
2

¼ 1
Φ, where Φ is the famous Golden Ratio.

Vignola’s Golden Oval Both A and J are taken at a distance from O equal to twice

the distance KO (Fig. 6.9). So a¼ j¼ 2k yields

r1 ¼ k, h ¼ k
5þ ffiffiffi

5
p

5
, m ¼ 2k

ffiffiffi
5

p

5
,

b ¼ k
ffiffiffi
5

p � 1
� �

, β ¼ arctan2, p ¼
ffiffiffi
5

p � 1

2
¼ 1

Φ
:

For the next four ovals we have used the paper [8] by López Mozo as reference.

From the original 1560 table in [11] she deduces the following construction.

Ruiz’s Oval As in Serlio’s fourth construction there are two equilateral triangles

inside the oval (Fig. 6.10). Draw them with a common side on the horizontal axis

and choose B and J to be the two other opposite vertices. Since j ¼ b ¼ k
ffiffiffi
3

p
we get

a ¼ k 2
ffiffiffi
3

p � 1
� �

, h ¼ k
ffiffiffi
3

p
, m ¼ k 3� ffiffiffi

3
p� �

, β ¼ π
3
, p ¼ 6þ ffiffi

3
p
11

:

The next construction appeared in Vandelvira’s work [14] in 1580 as a drawing

for an arch.

Fig. 6.8 Inscribed

equilateral oval
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Vandelvira’s Oval Two tangent circles are drawn as the ones determining the left

and right arcs, and their centres are chosen as two vertices of two equilateral

triangles (Fig. 6.11). Each third vertex is chosen as the centre of one of the other

arcs. We have a¼ 2k and β ¼ π
3
, yielding

r1 ¼ k, j ¼ k
ffiffiffi
3

p
, r2 ¼ 3k, b ¼ k 3� ffiffiffi

3
p� �

,

h ¼ 3

2
k, m ¼ k

ffiffiffi
3

p

2
, p ¼ 3� ffiffiffi

3
p

2
:

Fig. 6.9 Vignola’s golden

oval

Fig. 6.10 Ruiz’s oval
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With the 1639 construction by San Nicolás in [12] we go back to inscribed

squares.

San Nicolás Oval A square is divided into two equal rectangles, the centres of

which are used as centres for the arcs with a shorter radius. The midpoints of the

horizontal sides of the square are used as the other two centres needed (Fig. 6.12).

The vertices of the square are chosen as connection points. From j¼ 2k and h¼ 2k
we get

m ¼ 2k, a ¼ k 1þ ffiffiffi
5

p� �
, b ¼ 2k

ffiffiffi
5

p � 1
� �

,

r1 ¼ k
ffiffiffi
5

p
, r2 ¼ 2k

ffiffiffi
5

p
, β ¼ arctan2, p ¼ 3� ffiffiffi

5
p

:

Fig. 6.11 Vandelvira’s oval

Fig. 6.12 San Nicolás oval
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The oval proposed by Gelabert in 1653 in [4] is somewhat more original,

although the equilateral triangle is still present.

Gelabert’s Oval The desired longer axis length is divided into five parts. The first

two and the last two are chosen as diameters of the circles used for the left and right

arcs, while the middle three are used as the basis of two equilateral triangles whose

third vertices are the centres of the other two arcs. So we have (see Fig. 6.13)a ¼ 5
3
k

and β ¼ π
3
, which imply

j ¼ k
ffiffiffi
3

p
, h ¼ 4

3
k, m ¼ k

ffiffiffi
3

p

3
, b ¼ k

8� 3
ffiffiffi
3

p

3

� �
,

r1 ¼ 2

3
k, r2 ¼ 8

3
k, p ¼ 8� 3

ffiffiffi
3

p

5
:

We end up this list of ovals found in the literature with an oval from an

illustration in the Wiener Sammlung, the richest collection of medieval drawings.

It can be found in Huerta’s paper [6], where the work by Bucher on medieval

architectural design methods [1] is mentioned.

Gothic Arch Oval This time the idea is not to draw ovals with forms other than

circles inside. Easy-to-use methods were probably more advisable when building an

arch, as opposed to forms which had to have some kind of perfection. In any case

this oval also features two circles each going through the centre of the other, as in

Serlio’s fourth oval. The desired longer axis is divided into three parts. The two

inner points are chosen as centres for the shorter radius circles (Fig. 6.14); take then

Fig. 6.13 Gelabert’s oval
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two points at a distance equal to half the longer axis to choose the centres of the

remaining arcs. Given a choose k ¼ a
3
and j¼ a, we can then calculate

h ¼ a
5þ ffiffiffiffiffi

10
p

15
, b ¼ a

ffiffiffiffiffi
10

p � 1
� �

3
, m ¼ a

ffiffiffiffiffi
10

p

5
,

r1 ¼ 2

3
a, r2 ¼ a

2þ ffiffiffiffiffi
10

p

3
, β ¼ arctan3, p ¼

ffiffiffiffiffi
10

p � 1

3
:

Normalized versions (the ovals all have the same value for a) of the preceding
ovals are displayed in Fig. 6.15 to enable comparison.

The end of this chapter is dedicated to a construction by the author, which makes

use of the properties of ovals with minimum radius ratio, developed at the end of

Chap. 5. It is a golden oval in the sense that the Golden Ratio appears in the

formulas for the parameters; the longer axis is taken twice the length of the

shorter axis.

Having chosen the smaller axis OB one constructs OA with double the size. The

procedure now follows the construction at the end of Chap. 5, as in Fig. 5.3, and the

result is displayed in Fig. 6.16. Having chosen a¼ 2b and β¼ arctan 2, the

remaining parameters can be calculated via formulas (5.3) and (4.8), the value of

the Golden Ratio being Φ ¼ 1þ ffiffi
5

p
2

,

j ¼ 1þΦð Þb, k ¼ 1þΦð Þ
2

b, h ¼ Φb, m ¼ Φ� 1ð Þb, and p ¼ 1
2
:

Note that h¼ b+m, that j¼ b+ h and thatk ¼ bþh
2
; this means that another way of

drawing this oval is possible, starting with b, then a¼ 2b and then b ’s golden ratio

h and m by subtraction of b from h, yielding point H; K is then found considering

Fig. 6.14 Gothic arch oval
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Fig. 6.15 The 14 selected ovals
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Fig. 6.15 (continued)
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that k is the average between b and h and J is found considering that j¼ b + h. In
Fig. 6.17 the procedure is implemented.

As anticipated it is the oval with p ¼ 1
2
with minimum radius ratio.

Fig. 6.16 The author’s oval

Fig. 6.17 Determining the

parameters of the author’s

oval in the following order: b,
a, h, m, k, j
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Borromini’s Ovals in the Dome of San Carlo
alle Quattro Fontane in Rome 7

We have always been surprised, fascinated and intrigued by Borromini’s architec-

ture, especially if we consider how carefully his drawings were made, whether they

were perspective sketches made with a pen or orthogonal projections made with a

pencil, where shapes, dimensions and proportions were displayed. Graphite, “which

had been used since the last thirty years of the sixteenth century” (Joseph Connors)

is what enabled Borromini to make clear, precise and detailed representations,

increasing his control over the project. That is why it makes sense to ask which

drawing was the basis for the building of the dome, or at least which elements or

data he needed for the purpose. His precision and his obsessive control of the

project and of its realisation, as well as his marginal notes on the drawings where he

illustrates his lines of reasoning, allow, justify and legitimate this study of ours.

Aware that we cannot be totally sure of our results, we can suggest a method which

can be the basis for further investigations and new hypotheses.

The complex of San Carlo alle Quattro Fontane, also known as San Carlino, was

the first independent work of Francesco Castelli known as Borromini, who had

worked until then on the construction sites of Carlo Maderno and Gianlorenzo

Bernini in Rome. The architect, who was born in 1599 in Bissone (in the Swiss

Canton of Ticino), was given the assignment for the project of the church and for

the annexed cloister of the Trinitarians in 1634, and worked on it at various stages

until his death in 1667, leaving the façade unfinished; it would be completed in the

following ten years by his nephew Bernardo.

Joseph Connors (in [7], contained in [12]1), one of the most enthusiastic

and distinguished researchers of Borromini’s work, asserts that in the church of

(Written with Margherita Caputo—Freelance architect. Roma, Lecce, Carpignano Salentino

(Italy). margherita.caputo@gmail.com)

1This is a collection of the researches made in connection of the exhibition "Il giovane Borromini.

Dagli esordi a San Carlo alle Quattro Fontane" organised at the Museo Cantonale d’Arte in Lugano

from Sept. 5th to Nov. 14th 1999.
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San Carlo alle Quattro Fontane we find ourselves “inside an enigma”. This enigma

has stimulated a number of researchers into investigating various aspects of this

work of art, according to their respective interests and competences.2

This study aims at giving an answer to the questions which we think have, so far,

been left unanswered: how did the project of the dome surmounting the church

develop?3 Which parameters are involved in its shape and in the shape of the coffers

at the intrados? Why are there so few drawings of the dome in comparison with

those regarding the Trinitarians’ complex, and why do none of these answer our

questions? Is it enough to assert that the shape of the dome was determined by the

models which Borromini used to control the project? How did he work on the

building site?

Our starting point is the theory formulated in 1999 by Alessandro Sartor together

with Margherita Caputo ([18]) using the data of the 1998 survey; the incomplete

results were presented at the 2000 workshop at the Biblioteca Hertziana in Rome

and subsequently published in the proceedings of the workshop. The problems that

emerged during the research made it necessary to involve a mathematician for a

specific contribution on polycentric curves. The theory was then reconsidered

together with Angelo A. Mazzotti, after it was realised that a simple and effective

procedure4 for the project and the construction of the dome was not in sight. Even

after the main curves for the impost of the dome and the lantern and for the outline

of the two vertical sections, had been detected, it wasn’t clear how the project and

the building had been planned. But Borromini’s competence in mastering the oval

shape was evident, as suggested by one of the authors in [13].5 From that time on

other researchers have tried to solve the puzzle, either making use of Sartor’s data

or carrying out surveys with more advanced techniques. But none of them has

come, in our opinion, to satisfying conclusions.6 After 16 years the study which

begun in 1999 has been resumed and completed. What follows are the results.

San Carlino’s “Fabbrica”, like other projects by Borromini, is documented by a

significant number of drawings preserved in the Graphische Sammlung Albertina in

2For references on San Carlo alle Quattro Fontane see [10, 12].
3As pointed out by Paola Degni, who has directed the restoration site of the entire complex of the

Trinitarians, in different times between 1986 and 2000, it is more precise to call it a vault and not a

dome ([9], p. 378); we will carry on calling it a dome as indicated by Borromini himself in his

drawings.
4It is important to stress that we were not looking for an abstract rule; instead we wanted to

simulate the process made by Borromini when trying to control the form by means of the

properties of the chosen geometrical shapes.
5In the cited paper Mazzotti deduces a value of 1.4461 for the ratio of the impost axes from a

preliminary drawing by Caputo. Calculations presented in Subsection 7.2.1 yield the more reliable

value of 1.4636.
6Notable examples are: McCrossan’s dissertation [14], where he examines Borromini’s drawings

for the church using Sartor’s survey, concentrating on the ground plan constructions, and Hill’s

paper [11], where San Carlino’s ground plan is analysed to discover Borromini’s ideas for the

construction.
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Vienna (labelled with the initials AZRom). In many of them7, mainly concerning

the ground plan, the geometrical construction is evident, leading one to think that

there are no mysteries to be solved. But these are the drawings, the more clear and

readable ones, that Borromini made between 1660 and 1662, many years after the

building site had opened, at the time when he was preparing the publication of his

“opera omnia”; these drawings are purely theoretical and do not correspond to the

present building.8

The drawing which, it is agreed, illustrates the genesis of the project for the

church is AzRom171 (Fig. 7.1). In this drawing, according to J. Connors (who in [7]

dates it back to 1634, with revisions in 1638) at least three different levels can be

distinguished, as in an archaeological dig. These correspond to three different

possibilities for a ground plan of the church and for the buildings surrounding

it. From a central plan church with a hemispherical dome supported by corner

pillars, similar to St Peter’s in the Vatican, one moves on to a four-leafed clover

shape (see again Connors in [7], pp. 478–479), on a plan with four equal arms with

deep semicircular apses on two axes and again a hemispherical dome; and finally to

the compression of the cross axis to obtain a plan based on an irregular octagon

surmounted by a dome having polycentric curves as horizontal sections (that is,

made of arcs of a circle sharing a common tangent at the connection points). To sum

up we can say that a central-plan church with a hemispherical dome was converted

into a rectangular plan church with a polycentric dome (Fig. 7.2). In this respect it is

useful here to quote Bellini’s interpretation of Borromini’s oval, which should not

be considered as another regular shape, in the tradition of Peruzzi-Serlio-Vignola,

but the result of an empirical distortion of the circle [1]. This supports the idea that

Borromini had mastered the use of ovals, allowing him to adapt them to his needs

without having to use codified shapes9 (see the examples on display in Chap. 6).

If we accept this hypothesis and the consequent mixtilinear shape of the ground

plan of the church up to the cornice and over the columns which give rhythm to the

space, the ceiling over the big arches supporting the polycentric cornice on top of

which the dome was to be built remains to be defined (Fig. 7.3). Borromini knew the

effect he wanted to create, as can be read in the marginal notes to drawing

AZRom218 (which probably refers to San Carlino) where different types of

coffered vaults are sketched: “Questo e un modo di/fare alzare et/slontanare pi�u/
le volte con farle/parere pi�u che/non sono alte” (“This is a way to lift and distance

vaults, making them look higher than they are” our trans.); a light-weight roofing

7Drawings AZRom168, 169, 170r, 173, 175, 176, 177. See J. Connors, in [7], p. 478.
8Comparison of these drawings with the survey has revealed that a church built according to them

would have been larger than the present one.
9Bellini’s opinion on the subject can be read in [2] p. 28: "Borromini uses geometry as an

instrument, his only goal being the visual effect [...] Whenever a conflict arises between architec-

ture and geometry Borromini and his contemporaries always give priority to the former"(our

transl).
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over the church, making it as luminous and airy as possible (Fig. 7.4). The dome’s

intrados would not be smooth, or painted, or ribbed in any way. The obvious

reference is to the Pantheon in Rome, where, as well as in S. Peter’s, “Borromini

spent most of his time [. . .] directly contributing to what were considered at the time

the two most important architecture textbooks in the world’s history” (our transl.

from [8], p. 200), but also to domes with a more complex intrados, where the eye,

following various pattern lines, is led to believe that what it sees is different than

what really is.

7.1 The 1998 Survey

As the 1999 Borromini celebrations approached (400 years since his birth), the

Accademia di Architettura di Mendrisio commissioned Alessandro Sartor, profes-

sor of Photogrammetry at the Università degli Studi “La Sapienza” of Rome, to

Fig. 7.1 The first drawing for San Carlo alle Quattro Fontane where at least three different

solutions can be seen as in a watermark. The compression of the plan along the minor axis is clear.

In this image the entrance is to the left and the high altar to the right (detail of the drawing
AZRom171, copyright Graphische Sammlung Albertina, Vienna, with kind permission)
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Fig. 7.2 San Carlino’s ground plan according to the 1998 survey (drawing by Caputo)

Fig. 7.3 The façade and the inside (at the side of the altar) of the church of San Carlo alle Quattro

Fontane, also known as San Carlino (copyright Sophie P€uschmann, with kind permission)
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survey the complex of San Carlo alle Quattro Fontane. The graphic outcome would

then be the base for the 1:1 scale model which the Ticino architect Mario Botta

wanted to build on the Lake of Lugano, as a homage to Franceco Borromini, who

was born in neighbouring Bissone in 1599, and as a basis for historical studies.

They would also be partially used for the restoration by the Soprintendenza ai Beni

Architettonici, directed by the architect Paola Degni, which was taking place at

the time.

The survey, carried out using stereoscopic photogrammetry—the most advanced

technique of the time, as well as the most suitable one for baroque architecture—

and integrated by a direct topographic survey, was coordinated by the architects

Margherita Caputo and Elena Ippoliti. Other people involved were: architect

M. Unali and photographer A. Di Felice for the pictures and the stereo-

photogrammetric project; architects L. Bogliolo, P. Ciurluini, V. Cao and junior

architect R. D’Eredità for the photogrammetric restitutions, the direct surveys and

the 3D elaborations, and surveyor C. Avallone and architect R. Pace for the

topographic surveys.

When the graphic restitution process was complete it was essential to compare

the survey data with the numerous drawings, many of them by Borromini himself,

of the San Carlino building site, in order to understand the genesis of the project and

to identify the ones which matched what was actually built.10

Fig. 7.4 The dome of San Carlino as seen from below. The entrance is to the left (copyright
Sophie P€uschmann, with kind permission)

10Comparison between the survey and the project drawings has also been carried out by

Margherita Caputo for another of Borromini’s works: Palazzo Carpegna in Rome, location

today of the Accademia Nazionale di San Luca; the corresponding results have been published

in [6].
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Surprisingly enough, the plan which best matched the survey of the building was

the one drafted in AZRom172, dated 1638 and revised in 1641 and in 1660-1662 as

specified by Connors (in [7], pp. 479–480) in his fact sheet for the 1999 Mendrisio

exhibition, and not those in AZRom168, 169, 170r, 173, 175, 176, 177 where the

geometric construction is made evident.

It was also surprising to discover that other drawings could be considered

“execution plans” so close were they to the survey, such as AZRom190 (see

Fig. 7.7), describing the plan of the lantern11, AZRom206r, the final drawing of

the niche in the transept pillar, AZRom185, illustrating the metal structure

supporting the cross at the top of the church12, and finally AZRom199 showing

the façade of the cloister overlooking the garden, corresponding exactly to the

present building, with the exception of the middle cornice.

The survey of the dome showed a series of irregularities: for example the

intrados appears in its horizontal projection as having an egg-shaped impost rather

than an oval one, being somewhat compressed along the longitudinal axis on the

side of the altar; moreover its longitudinal axis does not correspond to that of the

lantern, which is slightly rotated; finally the four levels of the coffer decoration do

not belong to perfectly horizontal planes, probably because of problems that had

occurred on such a complicated site and of changes on the way caused by second

thoughts or corrections. The study carried out during the restoration pointed out, as

revealed by Degni ([9], p. 377), that a “deep and branched” crack crossed the dome

along the longitudinal section “extending all the way down to the top [. . .] of the
arcs of the niches” (our translation from the Italian). This was an old crack that had

already occurred shortly after the building was completed; moreover Degni reports

that during restoration a “change of mind of the architect emerged, in the form of a

perspective adjustment on top of the vertical arm of the coffer crosses close to the

impost, where a bit of mortar was subsequently added, to correct the optical

impression of the height, as seen from below” (our translation, [9], p. 380).

In order to understand the three dimensional geometry of the church, software

products suitable to represent the complex surfaces were employed, concentrating

on the transition between the mixtilinear cornice and the dome, where the arcs

around the bowl-shaped coffers support the dome, which rests on the oval cornice.13

While constructing this virtual model it became clear that a hypothesis on the

geometry behind the project of the dome was needed, in order to understand and

simulate how it was actually built.

11Among the drawings of the Albertina collection, AZRom192 is said to correspond to the lantern

of San Carlino. This is not the case, in our opinion, since the shape of the oval is somewhat

rounder, the displayed spiral staircase could not be built in the actual wall, the double columns

between the niches are missing and most of all, the axis of the oval is much longer.
12On this sheet one can read: "no(n) si metera vetriata/nel campo della croce/p(er)che la polvere lo

im(bratta?)” (“no glass window shall be put inside the cross, because dust would soil it” our

translation); this indicates that scenographic details were important to Borromini, but he was ready

to give them up if they might cause unwanted effects.
13These models have been published in [18] pp. 385–386.
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7.2 The Project for the Dome

Before beginning we should illustrate our starting data.

Examination of the vertical sections corresponding to the main axes of the

church and of the horizontally projected data points surveyed has identified the

sizes of the impost axes and helped to analyse the geometric elements (axes,

heights, curves, centres and alignments) necessary to formulate our hypothesis,

data partly highlighted by Sartor in 1999 that we here clarify and correct.14

We have then studied the horizontal sections of the dome (photographed in

Fig. 7.5 together with the arches supporting it) which we believe were used by

Borromini to keep control of its shape and to determine the four levels of coffers.

We will here describe the oval of the impost, the oval at the base of the lantern, the

ovals defining the coffer levels and their position in space. More ovals are visible on

the dome, but we consider it plausible that, for example, those in the limited space

between the base of the lantern and the end of the decoration, where the dedication

to San Carlo Borromeo is written, were outlined on the dome and not drawn and

constructed beforehand. Of the chosen seven ovals the largest one was subjected to

two unavoidable constraints—the dimensions of the two axes, which derive, as

previously illustrated, directly from the measurements of the church—while the

others were the architect’s choice for the decoration (four levels of coffers, each

consisting of eight crosses and eight octagons and a lantern intended to illuminate

the dome from the top).

The authors’ research of a simple, logical and practical construction

corresponding, with a good degree of approximation, to the survey data, has

taken a very long time. Many lines of reasoning have followed in the attempt to

simulate the artist’s procedure, and just as many constructions have been drawn. It

is possible that Borromini went along a similar path, in the end choosing—among

many simple, logical and practical constructions—the one which best suited his

taste, keeping in mind constructive and static requirements.

7.2.1 The Dimensions of the Dome

For a dome with a circular impost it is enough to fix the centre and a single

parameter, the radius15; for a dome with an oval drum it is necessary to fix two

parameters (the lengths of the axes) and a connection point between two consecu-

tive circle arcs. It is then clear that the choice is not only numerical but also

14A more rigorous examination of the survey revealed that the longitudinal section has a profile

made of two circle arcs, forming (part of) an ogival arch, as Bellini (in [1] p. 393) had acutely

conjectured.
15To keep it simple we imagine domes where the longitudinal section is obtained by rotation of

half the drum shape.
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aesthetic, since different choices of a connection point for the same choice of the

oval axes yield different shapes of the oval, making it either more or less flat.

We have seen that it is the ground plan of the church which determines the

dimensions of the axes of the dome. Borromini needs to choose an oval inscribed in

the rectangle of the impost, with properties helping him to draw the grid of coffers

with which he intends to “decorate” the intrados of the dome. He is acquainted with

the construction of an oval whose perimeter can be easily divided into equal parts,

but he cannot use it because its minor axis exceeds by about 4 Roman palms

(3.8285) the minor axis of the needed curve. Nevertheless he decides to use it as

reference for the entire project that we are about to describe. It is Serlio’s fourth

construction (see Fig. 6.3 in Chap. 6). As conjectured for the Colosseum in the next

chapter, a special oval shape is chosen with the only purpose of using it as a basis

for the development of the actual, more complicated, realization.

From the surveyed data we have derived the axis lengths of the impost oval

11.7871 m and 8.0535 m, corresponding respectively to 52.7623 Roman palms16

(52 and 3/4) and 36.0497 Roman palms (36 and 1/20), as well as the corresponding

height.17 We draw the corresponding rectangle with those same sides and we draw

Fig. 7.5 A view of the church from below, at the side of the entrance, including part of the dome

and the corresponding supporting arcs and pendentives over the mixtilinear cornice (copyright
Sophie P€uschmann, with kind permission)

16The value we are using here for the Roman palm is 0.2234 m.
17In the drawing AZRom203, ascribed to Borrominni’s nephew Bernardo, the indicated

measurements in palms of the axes of the “ovato” of the dome are 52 and 1/2 and 35 and 3/4.

Both these values differ about 1/4 of a palm (6 cm) from the measured ones. The axes as surveyed

by Canciani in [5] are again different. This may have to do with the fact that the height that he uses

for the impost (the height of the level containing the centre of the curvature of the vertical section)

is 16.38 m from the floor of the church. We maintain that the impost level is about 2 palms under
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an oval following Serlio’s fourth construction having the major axisAC ¼ 11:7871.
As anticipated, this oval cannot be used by Borromini as oval for the impost, since

its minor axis exceeds the value BD ¼ 8:0535 (see Fig. 7.6).

Nevertheless let us assume that the impost does have exactly the same axes as

such an oval and go on considering the eight equal parts into which the perimeter is

divided by its intersections with the symmetry axes and by the connection points, as

proved in Sect. 4.3. This oval is not, for any given axis measurement, the only one

divided into equal parts by its connection points (see again the cited paragraph), but

it is the most geometrically elegant one, also a reference to the Trinitarians (the

division of the axis into three equal parts, as well as the 120� angles, a third of the

perigon angle)18. Further divisions of these eight arcs into two equal parts can be

obtained using the bisectors of the angles corresponding to such arcs. We now

consider the intermediate points, located once more by means of bisectors, of the

sixteen obtained so far. These last identified points on the oval determine the

vertices of the wedges considered by Borrromini when imagining a coffer decora-

tion for a dome having Serlio’s oval as impost. In a different manner to that of a

hemispherical dome, the radii do not converge to the centre of the picture (with the

exception of those nearer to the minor axis), but rather to points on the major axis

having a distance of 1, 2 and 3 Roman palms from it. The complete picture is

displayed in Fig. 7.6.

A similar way of constructing radii governing the forms inside an oval can be

clearly seen in the drawing where Borromini plans the lantern for the same church,

although the ovals here have different shapes than those in Serlio’s fourth construc-

tion (Fig. 7.7); the axes of the openings and of the wall sections converge to points

on the major axis at fixed distances from the minor one.

Still imagining that there is enough space to build a dome using Serlio’s fourth

oval, we draw the longitudinal section by means of a semi-circle having AC as

diameter. Our assumption is that this ideal shape of a dome with Serlio’s fourth oval

as impost was deformed by Borromini to adapt it to the space available and to his

ideas for the project. The architect used a deformation module to radially squeeze

the base (as required by the project data) and thrust the longitudinal section

upwards, as shown in Fig. 7.8. This deformation of the ground plan generates a

flatter oval preserving the wedge directions, as we will see later.

The difference between the minor axis in Serlio’s oval and the minor axis of the

impost oval that needs to be drawn, represented by the segment BM in Fig. 7.9,

measuring 0.4287 m—that is 1 Roman palm and 11/12 (precisely 1.9190, nearly

2 palms)—is used as a deformation module in the longitudinal section to determine

the level where the coffer decoration starts. Canciani chooses some specific sections of the dome

and draws the ovals and their most likely constructions, but he does not relate them with one

another, not attempting to explain Borromini’s choices. Our attempt is to suggest a logical

sequence describing the project development. Dimensions of the geometric shapes are thus

secondary to the constructions determining them.
18We believe that symbolic references, even when obvious, are nonetheless secondary with respect

to constructive or formal choices.
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two new points P and Q having this distance from the centre of the impost. Using

them as centres of two circle arcs with radius UP, each one through the further

endpoint of the major axis, one obtains the new profile of the longitudinal section.

This deformation module calls to mind the idea of correction expressed by Simona

in [19].

The outline of the resulting longitudinal section is not a single semicircle

anymore, it is formed by two symmetric arcs which provide for a leap towards

the sky and for an ogival profile diminishing the vertical load exactly on the section

where it is greater19. This surprising statement is confirmed by the survey which

clearly indicates, notwithstanding the asymmetry of the dome previously

illustrated, that the project did not include a single semicircle.

7.2.2 The Impost Oval and the Lantern Oval

Regarding the impost, as observed in a paper by one of the authors ([13]), the

problem was to draw an oval starting from the dimensions of the two axes, a

Fig. 7.6 Serlio’s fourth construction overlapping the impost rectangle of the dome of San

Carlino, and a way of dividing the enclosed area into pseudo-sectors

19About the statics of Borromini’s domes see [1] (p. 391) or the more detailed [2] (p. 136).
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problem which, according to the literature we have access to today, was officially

solved some twenty years after work had begun in the church, by the French

printmaker Abraham Bosse20 ([3]). The question is how much was actually

known at the beginning of the seventeenth century—although unpublished, or

published but not known—and how much Borromini was able to discover by

himself. In any case we speculate that he chose as centres on the minor axis line

the two points having the distance to the centre equal to half the major axis,

proceeding then with one of the two constructions illustrated in Chap. 3

(Constructions 3a and 3b). In this way he was using measurements already present

in the drawing and choosingOA ¼ OJ (i.e. a¼ j using the notation at the beginning
of Chap. 3) as in other oval shapes known at the time, such as Vignola’s golden

oval, the inscribed equilateral oval and the gothic arch oval, all analysed in Chap. 6.

So having determined J as the intersection between the circle with centre O and

radius OA and the vertical axis of the impost rectangle, and then having found,

for example by means of the Connection Locus21 method (see Construction 3b in

Fig. 7.7 Borromini’s drawing for the plan of the lantern. Note the radial directions for the axes of

the openings and of the wall sections and where they converge (detail of AZRom 190, copyright
Graphische Sammlung Albertina, Vienna, with kind permission)

20The construction is actually derived from the one appearing in [3], it is Construction 3a in Chap.

3.
21First conjectured by Ragazzo in [16], see also Fig. 2.6.
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Sect. 3.1), a connecting pointH and a centre K on the major axis, the construction of

the oval is automatic (Fig. 7.10).

In order to draw the oval for the lantern Borromini could either fix its height,

consequently determining the length of its major axis intersecting a horizontal plane

with the drawn vertical section profile, or instead choose the major axis making use

of elements already in his drawing. The survey shows that the major axis

corresponds almost perfectly to the difference of the impost axes values, and this

is somewhat confirmed by the notes of Borromini’s nephew Bernardo

(on AZRom203) where the corresponding sizes verify perfectly this relation:

(52 and 1/2)� (35 and 3/4)¼ (16 and 3/4). Moreover, the axis lengths for the

impost in Bernardo’s notes differ only by 0.5 and 0.8% from the surveyed values,

while the difference between his major axis of the lantern and the one suggested

here is minimal (0.835 cm corresponding to 0.04 Roman palms), an “error” of

0.2%. It should also be stressed that in this way Borromini uses a circle which he

may have already drawn (if he drew the impost oval by means of the Connection
Locus method) this time with centre A (parts of both circles can be found in

Fig. 7.8 Horizontal and longitudinal sections of an imaginary dome having Serlio’s fourth

construction as impost oval, and the suggested deformation of it by means of the deformation
module
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Fig. 7.11). Supposing this was the actual choice, there were two parameters left to

be chosen.

Supported by the surveyed data (we will perform a comparison once the con-

struction is completed), we suggest that two centres may have been chosen on the

horizontal axis four Roman palms away from the centre of symmetry—suppose K
0

is one of them—continuing the sequence used to divide Serlio’s oval in pseudo-

sectors, also trying to keep the workers’ job simple. We also think that the endpoints

of the minor axis of the impost were chosen as the centres on the vertical axis. Now

to get the connection point H
0
in the first quadrant one needs to intersect DK

0
with

the circle having centre K
0
and radius A0K0 (see again Fig. 7.11). It is interesting to

note that the resulting triangle inscribed in the half oval is very close to an

equilateral one, since the angle at the vertex A
0
measures 59.69� (relative error of

0.5%), which suggests that Borromini wanted once more to use the angles

contained in the canonic oval.

Having determined the oval for the impost of the lantern, the ground plan now

looks like Fig. 7.12. The longitudinal section, after closing it on top with the lantern

level, via transportation of the major axis as determined on the ground plan, appears

in Fig. 7.13.

Fig. 7.9 Lifting the contour of the imaginary dome built on the canonic oval by means of the

deformation module, indicated by the small circle

130 7 Borromini’s Ovals in the Dome of San Carlo alle Quattro Fontane in Rome



7.2.3 Determining the Height of the Rings of Coffers

Having fixed the two main ovals of the impost and of the lantern, and having drawn

the longitudinal section which is used as a frame for the construction of the dome22

Borromini proceeds to determine the levels for the coffering.

The study for the organisation of the coffers is documented in AZRom224

(Fig. 7.14) where the architect draws four rings on five wedges23. At the margin

of the drawing he writes: “E si (?) viene meglio in/ quattro (?) / overo in tre”: (“And

it is best (done) by four instead of three” our translation). The decision of using four

Fig. 7.10 The suggested impost oval

22We maintain that the cross section, as well as the other vertical sections through the axes of the

wedges, are a consequence of the construction of the ovals framing the coffer rings.
23The same pattern of crosses, octagons and hexagons cam be found as part of the mosaic

decoration of the barrel vault covering the ambulatory of the Santa Costanza mausoleum in Rome.
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instead of three levels as initially planned, is probably made because he realizes

that, since the first ring is almost vertical, one would anyway appreciate only the top

three ones from below, the bottom one being visible only close to the major axis. In

this drawing Borromini also indicates the height of the coffers of the bottom ring,

9 palms, equal to the sixteenth part of the length of Serlio’s oval.

In order to determine the shape and placement of the four rings of coffers that he

had in mind, Borromini uses expedients that allow the coffer decoration to be

appreciated from below by modulating their shapes. As recommended in the

treatises24 he leaves some vertical space between the impost and the first level of

coffers, choosing the deformation module for this purpose. The height of the first

ring, being almost vertical, is then chosen as the width of the central grid square.

This corresponds in Fig. 7.15 to choosing the length of the arc WY, which he

approximates to the slightly deformed measurement RS ¼ 2:05137 m,

Fig. 7.11 The suggested oval for the base of the lantern.

24It was common, in hemispherical domes, to start the first coffer ring slightly over the equator

level, as recorded nearly two hundred years afterwards by Rondelet in his treaty on the art of

building [17].
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Fig. 7.12 The ground plan with the impost and the lantern ovals.

Fig. 7.13 The longitudinal section.
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Fig. 7.14 Original drawing by Borromini: at the top the study for the coffer decoration, at the

bottom a horizontal section at the height of the middle of the first ring, with the drawing of the

window in the axis octagon and the corresponding view from the outside. Notes on the margins

illustrate project choices (AZRom224, copyright Graphische Sammlung Albertina, Vienna, with
kind permission)
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corresponding to 9 palms and 1/5 (9.1825). This measurement is then modulated by

transporting it onto point V, the intersection of the current level with the new profile

curve. Point X, obtained by intersecting this circle with the longitudinal section

outline, determines the height of the lower band of the coffer decoration, which

measures now 1.99697 m, that is nearly 9 Roman palms (8.9390).

The heights of the remaining three rings, which need to leave space for the

lantern, are determined by drawing the outline of the central wedge on the longitu-

dinal section, and then proceeding in a similar way, after measuring the width of the

central wedge at the current level. As occurs with hemispherical domes, Borromini

imagines that the central wedge is seen from the front as an ellipse which is

symmetrical with respect to the line of the impost. But in this case, in order to

amplify the effect, he chooses as vertex a point which is 0.4287 palms beyond the

intersection of the summit of the ogival arch making up the profile, again the

deformation module.

To sum up, this ellipse, commonly drawn at the time by means of single points,

has WY as the minor axis length, a vertex in Z and the base of the longitudinal

section as symmetry axis (Fig. 7.16). It is now enough to measure the distance

between the two intersections with the height of the last drawn ring, and transfer it

onto the profile arc to obtain the next height level—point N—and so on.

It is now possible to compare the above construction with the surveyed data

(Fig. 7.17). Note that, because of the asymmetry of the dome as it is today, no

construction allows for a perfect match, since we have drawn symmetrical shapes.

The variance along the left arch, corresponding to the front of the church (the

comparison should me made with the intrados curve), is somewhat compensated by

the variance on the opposite side. Note also that the ellipse has been traced with the

Fig. 7.15 Determining the levels which define the first coffer ring
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sole purpose of determining the decoration levels; nevertheless its adherence to the

middle wedge is quite good.

7.2.4 The Ovals of the Rings of Coffers

Before describing the procedure used to draw the ovals which border the coffer

rings, we should remember once again that Borromini was trying to adjust the usual

and simpler constructions for domes with a circular drum to his polycentric dome.

In the research that began in 1999 we tried to detect polycentric ovals which

could best represent the surveyed data. Because of the asymmetry of the dome, we

performed our analysis on an area where the data appeared to be more regular. The

result was that the centres did not appear to have a simple arrangement, that the

Fig. 7.16 Determining the heights of the remaining levels.
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connection points did not lie on the same line, and that the rectangles inscribing the

ovals were not similar. We obviously had to look in another direction.

We now project onto the horizontal section the points on the longitudinal section

profile corresponding to the different levels, since they determine the length of the

major axes of the ovals of the corresponding horizontal sections (Fig. 7.18). Had

this been the procedure followed by Borromini so far, he would now be free to

choose two more parameters for each oval. Apart from the oval where the coffering

starts, basically identical to the impost oval (the bottom part of the dome being, as

surveyed, almost vertical), the others were chosen gradually shifting the set of

centres on the horizontal axis, using in general a limited number of points on the

drawing and keeping a relationship with the original oval at the impost.

We start by using the same centres of the impost oval J, K and their symmetrical

points with respect to the axes to draw the oval where the coffering starts, whose

major axis is only 6 cm shorter: as can be seen in Fig. 7.19 the two ovals are

indistinguishable.

Let’s now draw the other ovals bordering the rings of the coffering. Setting I as
the centre of the left arc of the impost oval and of the one just drawn (symmetrical

to K with respect to the vertical axis), determine four more points on the same axis

with distances from it of multiples of one and a half Roman palms towards the

centre of the drawing. We now draw the circles having such points as centres

through the points projected from the longitudinal section. If we now choose D as

the common centre for the circles containing the top-side arcs, it is enough to detect

the intersections of the four half lines originating at D through the different centres

chosen, each with the corresponding circle, in order to detect the four connection

points (see Fig. 7.19). The remaining three connection points for each oval are

symmetrical to the one in the top left quadrant with respect to the symmetry axes

Fig. 7.17 Overlapping of the construction hypothesis and the longitudinal section of the survey
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and the symmetry centre; through these four points we can now draw the two circle

arcs and their symmetrical ones making up each single oval (Fig. 7.20). All of these

are constructions of type 6, following the classification in Chap. 3.

Note that the six connection points lying in the same quadrant do not belong to a

single line, contrary to the first 1999 hypothesis that they may have been chosen in

this way. The two ovals bordering the bottom ring are also very close to each other

around the minor axes, causing the corresponding two octagon windows, meant to

capture the external light, to be nearly vertical25. Finally, note that the most internal

oval of the ones just drawn shares only two centres with that of the lantern bottom

(points K
0
and K

00
), which means that these two ovals are not concentric (see also

Sect. 4.4).

We believe that these were the shapes for the frame of the dome, and that the

remaining ovals have used them as reference. The dedication to San Carlo

Borromeo between the coffer decoration and the beginning of the lantern (in the

middle of Fig. 7.4), most likely drawn on the premises, is where Borromini connects

the ovals at the end of the decoration and at the start of the lantern in a brilliant way:

the margin closer to the lantern is a moulding which follows its oval and is thus

concentric to it, while the margin closer to the coffering is concentric to the oval

Fig. 7.18 Determining the major axes of the rings of coffering on the ground plan.

25Borromini wanted to use four octagons as windows, but the one on the side of the entrance has

always been shut by the façade.
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ending the coffering. As an example we use points already on the drawing to define

the length of the major axes of the two ovals, namely point I and point L one and a

half Roman palms to its right. The result is shown in Fig. 7.21, where the two most

internal ovals—sharing common centres K
00
, D and their symmetrical points—and

the two next ones—with common centres T, D and their symmetrical points—are

on display. What follows is that the dedication cannot be on a strip of constant

width, which is confirmed by the survey.

The ovals drawn to determine the coffering levels, together with the segments

subdividing the dome area into wedges in Fig. 7.6 as described at the beginning of

Subsection 7.2.1, form a grid defining the space on the dome surface for the main

coffers, the ones including either a cross or an octagon. In Fig. 7.22 these lines

overlap the ground plan of the 1998 survey. In this picture, as in Fig. 7.17, one can

detect the asymmetry of the survey ground plan, which doesn’t allow for a perfect

match with any project hypothesis. The area where the least adherence is evident is

the one around the dedication strip, which, as previously stressed, is the area of

greatest distortion in the dome.

Fig. 7.19 The circles containing the left arcs of the intermediate ovals
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7.3 Conclusions

This study would not be valid, had it not been founded on the carefully analysed

data of a scientific survey. Validation has come from Borromini’s drawings, where

constructions and texts have been detected and interpreted, directing our way.

Constantly finding clues for the interpretation of the drawings, by analysing the

survey, we have finally identified the geometric cornerstones responsible for the

transformation of an idea into a building, by an architect who was a modern artist

working on a scientific basis ([15] p. 443).

We maintain that the theory presented here is a convincing answer to the

questions posed at the beginning, the sequence of logical steps being compatible

with Borromini’s way of proceeding. These can be summed up as follows:

Fig. 7.20 The ground plan of the dome, including the impost oval, the lantern oval and the five

ovals defining the coffering
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1. determination of the project data on the horizontal section at the impost height of

the dome and on the longitudinal section;

2. drawing of the canonic oval, whose points and properties are going to be useful

throughout the procedure;

3. drawing of the impost oval using Bosse’s method (or another one) having

shortened the minor axis by roughly two palms and having moved the centres

lying on it outside of it, thus deforming the canonic oval;

4. drawing of the longitudinal section, also deformed in order to obtain an ogival

outline. This correction also corresponds roughly to two palms;

5. determination of the lantern oval, probably choosing for the major axis the

difference of the impost axes; the centres on the major axis are then chosen at

a distance of four palms from the symmetry centre, while for the other two the

endpoints of the minor axis of the impost, already on the drawing, are used. Such

an oval inscribes a pair of nearly equilateral triangles;

6. definition of the levels of the coffering rings using the width of the central

wedge, thought of as an ellipse in its projection onto the longitudinal section.

Fig. 7.21 A suggestion for the ovals enclosing the dedication
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The corresponding heights determine the lengths of the major axes of the ovals

outlining the border between the coffer rings;

7. choice of a criterion to draw the ovals of the coffer rings using the major axes

and other known points or fixed distances from them, without imposing the

measurements of the minor axes. We observe that, differently from what has

been suggested in [4], the dome surface cannot be represented by a mathematical

function unless one is ready for either very complicated forms or excessive

approximations, and we are convinced that art is never the consequence of a

straightforward algorithm ([2] p. 100).

Fig. 7.22 Overlap of the authors’ project hypothesis and the 1998 survey. The top part is the side

of the entrance
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We can thus imagine that Borromini prepared on his building site:

1. the drawing of the plan at the impost level including the ovals and the wedges, as

in Fig. 7.22;

2. timbers for the centring corresponding to the major axis according to the profile

in Fig. 7.13;

3. seven wooden oval shapes as in Fig. 7.22—corresponding to the intrados of the

coffers—at levels determined in Fig. 7.17;

4. possibly the timbers for the centring determining the wedges of the coffering, in

order to create the grid where the octagons and the crosses were meant to be. The

ability of the workforce and the organisation of the site might however have

permitted the drawing of the coffers avoiding these;

It is likely that to make things cheaper and easier because of the limited space

inside the dome, Borromini organised the timber of points 3) and 4) for only half or

a quarter of the dome. In this case we would have in a partial collapse of such a

structure a possible reason for the irregularities on the dome surface. This hypothe-

sis does not exclude that Borromini may have produced a model for the three-

dimensional check, but we think that it is likely that he made a drawing containing

the data of Fig. 7.22, similar to the one for the lantern in Fig. 7.7.

Our theory agrees with some known aspects of Borromini’s architectural culture:

the union between theory and practice, the knowledge of the rules and practice on

building sites and the use of geometry to turn an idea into a project and a form. In

this respect we find what Virgilio Spada26 writes about Borromini, in his letter to

cardinal Cesare Rasponi in 1656 very much appropriate:

“Nella scrittura del Cav.re Borromino [. . .]
la melodia delle voci è appoggiata a’ numeri;

come in misura la bellezza delle fabbriche [. . .] pretende,
nascer parimenti da numeri,

e che tutte le parti habbino una tale proportione,

che un[a sola] apertura di compasso—senza mai muoverlo—le misuri tutte”.

(“In Cavalier Borromini’s writting [. . .]
the melody of the voices leans on numbers;

as beauty in buildings [. . .] is expected,
born at the same way to numbers,

and all parts should have such proportions,

that a single compass opening

-without moving it- could measure them all.” our transl.)

26Document cited by Tabarrini in [20] (p. 115). Virgilio Spada (Brisighella 1596—Roma 1662),

non-professional architect, from 1622 in the Oratorio romano of S. Filippo Neri, played a decisive

role in its construction, along with P. Marucelli and, after 1637, with F. Borromini.
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Ovals with 4n Centres and the Ground Plan
of the Colosseum 8

Ovals must have a number of centres which are a multiple of 4. Ovals with more

than four centres have been used to align important points in a building and/or to

make the oval look more like an ellipse. In this chapter we will extend a property

presented in Chap. 2 which allows solving some construction problems for ovals

with more than four centres, and illustrate a procedure to draw eight-centre ovals

once two of the three radii are known. We will then illustrate the procedure that,

according to Trevisan, may have been adopted for the ground plan of the Colos-

seum, where one four-centre oval and more eight-centre ovals were used.

8.1 The Construction of Ovals with 4n Centres

When the axis lines are given the number of parameters needed to draw an oval with

4n centres is 1 + 2n. For an eight-centre oval (see Fig. 8.1) this may mean closing a

quarter oval for which an arc has already been drawn, that is by adding two more

arcs to reach the vertical axis. In this case four parameters are given: OA, OB, OC1

and one of the distances of H from one of the axes—the second one being

automatically deduced by the fact that H belongs to the circle with centre C1 and

radiusC1A. In [9]—following an original idea by Ragazzo in [12]—the Connection
Locus (CL) has proved to work for egg-shapes (closed convex polycentric curves

with one symmetry axis) and for generic polycentric curves, when it comes to

joining two points with two arcs of a circle imposing the tangents at these two

points. What one draws is called a system of tangents, which is what one needs to

draw the CL where the meeting point of the two missing arcs must be chosen. The

infinite choices account for the fifth degree of freedom of eight-centre ovals.

Following [9] we draw the tangent and the normal to the existing arc at point H1

and call W and X their intersections respectively with the parallel and the perpen-

dicular to AC1 through B. Find point Y on segment BW such that WY ¼ WH1 . The

arc YH1 of the circle through H1, Y and B is the CL for the two missing arcs. That is,
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for any chosen point on it there exist a couple of arcs which can be used to create a

quarter oval. After choosing such a point P we find the second centre C2 by

intersecting the axes of segment PH1 with the line through H1 and C1. Then we

draw the line PC2 to find the next centre C3 at the intersection with the line of the

shorter axis. Arc PB with centre C3 completes the quarter oval. The last section of

Fig. 8.1 shows the complete eight-centre oval obtained, and the eight centres.

This technique can be used whenever two consecutive arcs of any kind of oval

are missing.

Suppose instead that one has the two axis measures and the radius measures r1
and r3 of the first and third arc, and one needs to know if and where a third arc can

be inserted and smoothly connected to the two. We are in a situation described on

the left hand sife of Fig. 8.2: looking for a point F such that there must be H and I,

respectively on FC1 and on FC3, for which FI ¼ FH. As both Rosin in [13] and

Trevisan in [15] remarked, such a point lies on the ellipse having foci in C1 and C2,

Fig. 8.1 Closing up an eight-centre oval using the CL
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as can easily be shown by observing that sinceFH ¼ FC1 þ r1 andFI ¼ r3 � FC3 ,

this yields

FC1 þ FC3 ¼ r3 � r1,

which is the expected equation. Having chosen point F on this ellipse the rest is easy

(see the right hand side of Fig. 8.2).

Not all points on this ellipse are feasible centres for the intermediate arc. They

also have to be inside the OC1C3 triangle.

This second kind of problem is also a very special case of those investigated by

Ragazzo in [12], where a complete set of constructions of general polycentric

curves can be found.

Ovals with more than four centres have been widely used: they can be so close to

ellipses that many researchers argue whether famous buildings were in fact

designed (and/or built) either as eight (or more) -centre ovals or as ellipses: within

the common work on the Colosseum [1], Trevisan (see [15]) compares the ground

plan of various Roman amphitheatres and discusses the four- and eight-centre

options, while Benedetti (see [2]) suggests an eight centre oval construction for

Antonio da Sangallo’s Vatican dome, as also reported by Migliari in [10], where in

general the oval vs ellipse dispute is discussed. Due probably to technical

advantages, arches and bridges have often been built using half ovals with 5, 7,

9 or more centres (the formula for a half oval is 2n+ 1 centres): see for example

Fig. 8.2 Conditions for point F and the quarter oval deriving from a choice of F on the ellipse
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Breymann’s studies of lowered arches [3] or Zerlenga’s reproductions of the

building of the bridge at Neuilly by Perronet in [17].

The next section is devoted to Trevisan’s hypothesis on the ground plan of the

Colosseum. A series of eight-centre concentric ovals describing the outer perimeter,

the arena and other intermediate curves are suggested. As with four-centre concen-

tric ovals (see Sect. 4.4) to draw an oval concentric to a given one—that is with the

eight arcs having the same eight centres as the given oval—it is enough to take any

number r (positive or negative) such that r> k� a, wherea ¼ OAandk ¼ OC1 , and

add it to the three previous radii. The resulting oval will not have the same form as

the previous one, and the ratio
p ¼ OB

OA
will approach 1 for increasing values of r,

just as in the four-centre case, which is illustrated in Sect. 4.4.

To see four eight-centre concentric ovals go to Fig. 8.12.

8.2 The Ovals in the Ground Plan of the Colosseum

The huge amphitheatre that was inaugurated by the emperor Titus in Rome in

80 AD had been started and nearly completed by his father Vespasian, between

69 and 79 AD. Titus’ younger brother Domitian, who became emperor in 81 AD,

completed the building. The commitment of this family of emperors, the Flavian

dynasty, to the construction of this home of entertainment for the people of ancient

Rome, gave it the name of Flavian Amphitheatre (Latin: Amphitheatrum Flavium).

The name by which it is known today—the Colosseum (or Coliseum)—may have

originated from a nearby colossal statue of the emperor Nero, or may simply refer to

the capacity and dimensions: it is nearly 50 m high, 160 m wide and 190 m long,

and could host tens of thousands of spectators.

After nearly 2000 years most of the Colosseum is still standing (see Fig. 8.3),

having survived earthquakes and neglect (see [5] for a study of the effects of

earthquakes on the Colosseum), and it was possible, by means of a survey made

by the Department of Representation and Survey of the university “La Sapienza” of
Rome and described in [11], to derive precise information on the points composing

the basic shapes of the ground plan of the amphitheatre.

8.2.1 References and Data Used: The Two-Step Method

The data collected in the above cited survey have been used to formulate

hypotheses on the design of the Colosseum, many of them contained in the

collective work [1] published in 1999. Of the papers included in it we will refer

to [15, 14], and [4] respectively by Trevisan, Sciacchitano and Casale, who have

used the same data although with different mathematical and computational

approaches. In particular we will reproduce the construction described by Trevisan

in [15]—who cites, among others, the works byWilson Jones [16] and Golvin [8]—

where he considers the possibility that the architects used, wherever possible,
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integer values of the Roman foot (Latin: Pes), one of the units of measure used at

the time.

The perimeter of the Colosseum consists of three stories surmounted by an attic,

forming a closed ring. Each of the three storeys is made up of 80 arcades, the ones

on the ground floor used as entrances for the spectators. The seating inside was

organised on different levels, the lowest rows being reserved for the highest ranks in

society. The ambulatories were curved passages circling the arena at different

distances and levels. Figure 8.4 offers a view of the inside of the building as it is

now.

Following [15], where [16] is cited as inspiration, we consider a two-step

procedure supposedly carried out by the architects of the Colosseum when they

decided what the ground plan of the building should look like. The first step was to

decide which four-centre oval should be considered in order to plan the division of

the perimeter into 80 equal arcades (we have seen in Chap. 7 that a similar idea was

probably used by Borromini—sixteen centuries later—for his plan of the church of

San Carlo alle Quattro Fontane, also in Rome). The second step was to find an

eight-centre oval as close as possible to the first one (or an ellipse, as some

researchers speculate) for the actual perimeter of the amphitheatre and then draw

smaller ones to define the ambulatories and the arena.

8.2.2 The Four-Centre Oval Guideline

As was often the case (see for example [16]) a right-angled triangle with

proportions 3, 4 and 5 was chosen as the base for the construction, as in the case

Fig. 8.3 The Colosseum in 2016 (copyright Sophie P€uschmann, with kind permission)
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of the simplest harmonic ovals described in [7]—two of which have been presented

in Chap. 6. The one for the Colosseum is assumed to have sides measuring 81, 108

and 135 Roman feet (in [15] a Roman foot/centimetre conversion coefficient of

29.673 is used). Having chosen the centre of the building and the two symmetry

axes, four such triangles are drawn (see Fig. 8.5). Prolongation of the hypotenuses

yields the four sectors XCY
0
, XDX

0
, X

0
C

0
Y and YD

0
Y

0
. We then draw the oval with

centres C, D
0
, C

0
and D having a full major axis of 636 Roman feet, which we

imagine as a guideline for this stage of the plan (Construction 6 in Chap. 3 can be

used). The parameters of this oval, using the same notation as in Chap. 4, are the

following:

a ¼ AO ¼ 318, j ¼ OD ¼ 108 and k ¼ OC ¼ 81

which yield for the remaining ones (by means of the formulas from Case 6 in

Chap. 4)

b ¼ 264, h ¼ 223:2 and m ¼ 189:6,

and, by means of formula (4.1),

Fig. 8.4 A view of the inside of the Colosseum (copyright Gabriel P€uschmann, with kind
permission)
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r1 ¼ 237, r2 ¼ 372, β ¼ arctg
4

3
, p ¼ 44

53
:

According to Trevisan, this choice of shape had a certain number of advantages,

one of which was the possibility of calculating the perimeter with a good deal of

precision.

The formula proposed in Sect. 4.3 could be used, since for π the value of
22

7
suggested byWilson Jones in [16] is a very good approximation, and since the angle

β and its complementary are also well approximated by fractions of the right angle,

namely
13

22
and

9

22
.

At this point of the process, the arcade directions were obtained by the division

of angles XbDX0 and YbD0Y0 into 21 equal parts and of angles XbCY0 and YbC0X0 into
19 equal parts, making a total of 80 rays which are supposed to have been the axes

of the pillars of the arcades (with the exception of the four main entrances, which

were intended to be wider than the others). See Fig. 4 in [14] for a geometrical

reconstruction based on the actual data. Casale in [4] suggests that Ippia’s trisector

may have been used for the purpose. The result is shown in Fig. 8.6.

Fig. 8.5 The imaginary four-centre oval used as a guideline for the radial components of the

Colosseum and for the actual perimeter form
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8.2.3 From a Four-Centre to an Eight-Centre Oval

The problem with the four-centre oval used to define the directions of the arcades is

that, as researchers today agree, its form does not fit the data of the survey. The

relatively abrupt way the curve changes its curvature at point X is not what the

interpolated curves based on the recorded points show. Other curves close to the

four-centre oval—therefore with a value very close to the computed measure of the

perimeter—are either an oval with more centres (8, 12 etc. . .) or the ellipse with the
same axis measures. Following the guidelines in [15] the eight-centre oval hypoth-

esis is described, although there are some researchers who consider the ellipse

hypothesis plausible. Migliari’s paper [10] on the ellipse-oval dilemma is worth

reading.

So, still making use of the points found in the four-centre oval construction, we

keep D as a centre for an arc and we discard C using instead a point E chosen

9 Roman feet to the right of C. For two of the three radii we have (see Fig. 8.7)

r1 ¼ AE ¼ AO� OCþ OE
� � ¼ 228 and r2 ¼ BD ¼ 372; ð8:1Þ

as observed in Sect. 8.1 (see Fig. 8.2), the third centre has to lie on the ellipse which

is the locus of the points having the sum of their distances to D and E equal to

r2�r1¼ 144. Such an ellipse runs through C, since CDþ CE ¼ 144. Of the

different choices for the third centre G, at the end of his paper [15] Trevisan

suggests a feasible point yielding another 3-4-5 triangle, similar to the one used

Fig. 8.6 The 80 radial divisions used to define the arcades
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for step 1 of the plan, namely point L inside OD such that OL ¼ 67:5, forming the

3-4-5 triangle OLE with sides 67.5, 90 and 112.5. Point G is now the intersection of

LE with the above described ellipse (see Fig. 8.8). This choice leads to what

Trevisan calls the “ideal configuration” (our translation) of the whole setup of

eight-centre ovals describing the perimeters around and inside the Colosseum.

The drawing of the corresponding quarter oval is now straightforward. An arc

with centre E and radius r1 ¼ EA is drawn up to the intersection I with the line

GE, yielding for the intermediate radius the value r3¼ 350.5. A second arc with

centre G and radius r3 ¼ GI is drawn up to the intersection with DG, yielding the

point J. The third arc with centre D and radius r2 is part of the original four-centre
oval (see Fig. 8.9).

It is suggested that the choice of this oval (or of an ellipse as some believe)

instead of the 4-centre oval originated in the desire to have a rounder form halfway

around each quadrant and at the same time a very close value to the already

calculated one for the outer perimeter of the building. The resulting shape is

represented in Fig. 8.10, together with the previously drawn four-centre oval.

Fig. 8.7 Choosing two of the

three centres of the eight-

centre quarter-oval
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Fig. 8.8 Choosing the third

centre G using a convenient

point L

Fig. 8.9 Construction of the

eight-centre quarter oval with

r1¼ 228, r2¼ 372 and

r3¼ 350.5
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It is then assumed that all the other closed curves belonging to the horizontal

sections (for example those defining the ambulatories) are eight-centre ovals

sharing the same centres as the oval describing the outer perimeter. As explained

in Sect. 8.1, where Sect. 4.4 is cited as reference, it is enough to choose a common

value to add to or subtract from the three radii to define another oval, which as

explained will not share the same shape with the others. Trevisan suggests that

multiples of the number 27 were used to decide where these ovals should lie,

observing that this rule could be used on both axes still using the same centres.

Choosing for example 135 Roman feet as half axis ON for the inner oval (see

Fig. 8.11), the one defining the arena (for which unfortunately no data could be

collected), the radius EN is 45, that is 183 shorter than the corresponding radius of

the outer perimeter oval. Subtraction of the same number from the other two radii of

the outer oval (see (8.1)) one gets the values 167.5 and 189, the latter value

indicating that OR has to lie on a circle with centre O and radius 27� 3¼ 81, since

OR ¼ RD� OD ¼ 189� 108 ¼ 81:

The resulting oval is represented in Fig. 8.11, where concentric circles of radii

27, 54, 81, 108 and 135 are also drawn; the centres of the arcs are D, G and E as

before. The oval supposed to represent the arena has an axis ratio of

p ¼ OR

ON
¼ 3

5
;

simpler ratio values can be derived by choosing the right numbers and adding them

to or subtracting them from the three radius values in Fig. 8.9. In [15] it is suggested

that addition of 6 Roman feet yielded the oval used to trace the first step off the

Fig. 8.10 The resulting

eight-centre oval (in blue) and
the previously constructed

four-centre oval (in red)

8.2 The Ovals in the Ground Plan of the Colosseum 155

http://dx.doi.org/10.1007/978-3-319-39375-9_4
http://dx.doi.org/10.1007/978-3-319-39375-9_8


Fig. 8.11 The eight-centre oval supposed to describe the vanished arena

Fig. 8.12 Four eight-centre concentric ovals describing: the outer perimeter (in blue), the arena
(in green), one of the ambulatory perimeters (in red) and the first step outside the amphitheatre

(in orange)
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outer perimeter of the amphitheatre, while subtraction of 102 Roman feet yielded

one of the curves describing one of the ambulatories. These two more closed curves

have axis ratios respectively of

270

324
¼ 5

6
and

162

216
¼ 3

4
:

The four concentric ovals are represented together in Fig. 8.12.

Superimposing Figs. 8.6 and 8.12 onto the results of the survey displayed in [6]

we can get an idea of how the hypotheses on the plan of the Colosseum fit the

recorded data. The result is displayed in Fig. 8.13. Note that the suggested oval for

the vanished arena is not supposed to coincide with the still visible underground

chamber—the hypogeum.

Fig. 8.13 Combination of the four-centre oval radial construction and the eight-centre concentric

ovals superimposed onto the ground floor plan resulting from the 1999 survey taken from [6]

(copyright of the Department of Representation and Survey of the university “La Sapienza” of
Rome, with kind permission)
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Appendix

A suggestion for the numbering of constructions of four-centre ovals with given

axes according to the parameters known, in addition to that of Chap. 3.

Non-independent groups have been left out.

Table A.1 Numbering oval constructions according to the given parameters, cases 21–52

Construction no. Parameters Construction no. Parameters

21 a b r1 37 a m β

22 a b r2 38 a m p

23 a b β 39 a r1 r2
24 a k r2 40 a r1 β

25 a k β 41 a r1 p

26 a k p 42 a r2 β

27 a h r1 43 a r2 p

28 a h r2 44 a β p

29 a h β 45 b k r1
30 a h p 46 b k r2
31 a j r1 47 b k β

32 a j r2 48 b k p

33 a j β 49 b h r1
34 a j p 50 b h r2
35 a m r1 51 b h β

36 a m r2 52 b h p
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Table A.2 Numbering oval constructions according to the given parameters, cases 53–84

Construction no. Parameters Construction no. Parameters

53 b j r1 69 k h p

54 b j β 70 k j r1
55 b j p 71 k j r2
56 b m r1 72 k j p

57 b m r2 73 k m r1
58 b m β 74 k m r2
59 b m p 75 k m β

60 b r1 r2 76 k m p

61 b r1 β 77 k r1 r2
62 b r1 p 78 k r1 r2
63 b r2 β 79 k r1 p

64 b r2 p 80 k r2 β

65 b β p 81 k r2 p

66 k h r1 82 k β p

67 k h r2 83 h j r1
68 k h β 84 h j r2

Table A.3 Numbering oval constructions according to the given parameters, cases 85–116

Construction no. Parameters Construction no. Parameters

85 h j β 101 j r1 r2
86 h j p 102 j r1 β

87 h m r1 103 j r1 p

88 h m r2 104 j r2 β

89 h m β 105 j r2 p

90 h m p 106 j β p

91 h r1 r2 107 m r1 r2
92 h r1 β 108 m r1 β

93 h r1 p 109 m r1 p

94 h r2 β 110 m r2 β

95 h r2 p 111 m r2 p

96 h β p 112 m β p

97 j m r1 113 r1 r2 β

98 j m r2 114 r1 r2 p

99 j m β 115 r1 β p

100 j m p 116 r2 β p
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