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Preface

Information security techniques are indispensable in a world that relies, in a con-
tinuously increasing extent, on digital information processing and communication
systems. The use of cryptographic primitives enables us to reduce information se-
curity goals to physical security requirements, such as secure algorithm execution,
and the secure generation and storage of secrets. Physically unclonable functions, or
PUFs, are innovative physical security primitives which produce unclonable and in-
herent instance-specific measurements of physical objects; PUFs are in many ways
the inanimate equivalent of biometrics for human beings. Since they are able to
securely generate and store secrets, PUFs allow us to bootstrap the physical imple-
mentation of an information security system. In this book, we discuss PUFs in all
their facets: the multitude of their physical constructions, the algorithmic and phys-
ical properties which describe them, and the techniques required to deploy them in
security applications.

We first give an extensive overview and classification of PUF constructions,
with a focus on intrinsic PUFs. We identify significant subclasses, implementation
properties and general design techniques used to amplify sub-microscopic physical
distinctions into observable digital response vectors. We list the useful properties
attributed to PUFs and capture them in descriptive yet clear definitions. Through
an elaborate comparative analysis, PUF-defining properties are distinguished from
nice-to-have but not strictly required qualities. Additionally, a formal framework
for deploying PUFs and similar physical primitives in cryptographic reductions is
described.

In order to objectively compare the quality of different PUF constructions, we
contributed to the development of a silicon test platform carrying six different in-
trinsic PUF structures. Based on experimental data from 192 distinct test devices,
including measurements at temperature and supply voltage corner cases, the reli-
ability, the uniqueness and the unpredictability of each of these constructions is
assessed, and summarized in concise yet meaningful statistics.

Their instance-specific and unclonable nature enables us to use PUFs as entity
identifiers. In combination with appropriate processing algorithms, they can even
authenticate entities and securely generate and store secrets. We present techniques
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to achieve PUF-based entity identification, entity authentication, and secure key
generation. Additionally, we propose practical designs that implement these tech-
niques, and derive and calculate meaningful measures for assessing the performance
of different PUF constructions in these applications, based on the quality of their
response statistics. Finally, as a proof of concept, we present a fully functional pro-
totype implementation of a PUF-based cryptographic key generator, demonstrating
the full benefit of using PUFs and the efficiency of the introduced processing tech-
niques.
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Chapter 1
Introduction and Preview

1.1 Introduction

1.1.1 Trust and Security in a Modern World

Trust is a sociological concept expressing the positive belief that a person or a sys-
tem we interact with will behave as expected. In our day-to-day life, we constantly
and often implicitly put our trust in other parties, e.g.:

• When we drive a car, we trust that the car will function as expected, that the brakes
will work and that the car goes right when we turn the steering wheel right. We
also trust that the other people driving cars around us are qualified to drive a car
and are paying attention to traffic.

• When we deposit our money in a bank account, we trust that the bank will keep
the money safe.

• When we send someone a letter, we trust the postal services to deliver the letter
in a timely manner to the right person, and to keep the letter closed such that no
one else can read its content.

• When we buy something in a shop, we trust the shop owner to deliver the product,
e.g. when we pay in advance, and that we receive the genuine product we paid
for. On the other hand, the shop owner trusts that we will pay for all products we
carry out.

In the majority of situations, such trust-based interactions work out in the right way,
because the parties we interact with are trustworthy. In fact, our entire complex
society is based on such trust relations between people and systems, and it would
not last very long if no one or no thing could be trusted.

However, we don’t live in an ideal world, and it would be very naive to think
that everyone is intrinsically trustworthy. Many parties have external motives to be-
have in a trustworthy manner, e.g. the shop and the bank won’t get many customers
when they cannot be trusted, and the other car owners will primarily drive carefully
for their own safety. Some parties cannot be trusted at all; we immediately think of
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criminals and terrorists, but this can also include e.g., disgruntled employees, envi-
ous colleagues or nosy neighbors, or even normally honest people who are tempted
to abuse a situation when it presents itself. We need systems that induce, guarantee
or even enforce trustworthiness of parties in our non-ideal world. This is what we
call security, i.e. security is a means to enable trust.

In the past, and to a large extent still today, security is either based on physi-
cal protection and prevention measures, on observation and detection of untrusted
elements, or on legal and other reprimands of trust violations, and often on a com-
bination of these techniques. For example, in order to keep its (your) money secure,
a bank will store it in a vault (physical protection). The access to this vault is more-
over strictly limited to the bank’s employees and protocols are in place to keep other
people away (detection). Finally, by law, trying to rob a bank is also a criminal act
for which one will be prosecuted if caught (legal reprimands). In our rapidly digi-
talizing modern world, these security techniques are by themselves often no longer
sufficient to adequately enable trusted interactions, both due to (i) the nature of these
interactions, and (ii) the scale of the possible threats.

(i) The remote and generic nature of many digital interactions lacks physical pro-
tection and assurance measures, many of which are even implicitly present in
non-digital communications. For example, in the past, most interactions with
your bank would take place inside the bank’s building, face-to-face with one
of the bank’s employees. You (implicitly) trusted the authenticity of this inter-
action, e.g. because the building was always in the same place, and perhaps
because you physically recognized the clerk from previous transactions, and
vice versa. However, in the last couple of years, interactions with your bank
have shifted largely to online banking systems. In such an online system, e.g. a
website, this implied notion of authenticity no longer exists, since anyone could
set up a website resembling that of your bank, and even fake its web address.
The same holds from the bank’s perspective: anyone could log in to the web-
site and claim to be you. Other security measures are needed to guarantee the
authenticity of this interaction.

(ii) The main success of digitalization is that it enables automation of information
processes to very large scales and speeds. However, this is also one of the main
risk factors when it comes to digital crime. For example, in the real (non-digital)
world, there is a risk of having your wallet stolen on the street. However, a thief
will have to focus on one victim at a time, and for each attempt there exists a
significant risk of failure which often ends in getting caught. In a vastly inter-
connected computer network like the Internet, with hundreds of millions of si-
multaneously active users, a digital thief can deploy a computer program which
targets thousands or millions at a time at an incredibly fast pace. Moreover,
failed attacks typically go by unnoticed or are hard to trace back, and even with
a very small success rate the thief will get a significant return due to the vast
number of targeted victims. Like the threat, the security measures will also need
to be digitized and automated in order to offer adequate protection.
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1.1.2 Information Security and Cryptology

Information Security

Information security deals with securing interactions involving the communication
of information. The need for information security has existed for a long time, histor-
ically in particular for matters of love and hate, i.e. secret love letters and sensitive
warfare communication. However, in the last couple of decades this need has risen
exponentially due to our vast and ever increasing reliance on digital information
processing and communication systems. Unimaginable quantities of private and of-
ten sensitive information are stored and communicated over the Internet and other
digital networks every second. Through the pervasiveness of smart mobile personal
devices, digital technology impacts our daily lives in ways we could not have fore-
seen, and with the introduction and tremendous success of social networks, it has
even become an integral part of our lives. In many ways our society has become a
flow of digital information, and reliable information security techniques are indis-
pensable to enable trust in this digital world.

Information security techniques are most comprehensibly classified by means of
the goals they aim to achieve. The most important goals are:

• Data confidentiality relates to keeping information secret from unauthorized par-
ties, e.g. when accessing your bank account statements online, you don’t want
anyone else to see this information.

• Entity authentication deals with obtaining proof of the identity and the presence
of the entity one is interacting with, e.g. in an online banking system, you need
proof that you’re dealing with the real website of your bank, and your bank needs
proof that you are who you claim to be before granting access to your account.

• Data integrity and authentication is aimed at preventing and detecting unautho-
rized alteration of data (integrity) and ensuring the origin of the data (authentica-
tion), e.g. when you issue an online bank transfer, your bank needs to be sure that
it was you who issued the transfer, and that the data of the transfer (amount, ac-
count number, . . . ) has not been changed by someone who could have intercepted
the transfer message before it reached the bank.

Cryptology

Cryptography, a subfield of cryptology, deals with the construction of protocols and
algorithms to achieve information security goals, typically on a mathematical basis.
The other subfield of cryptology is cryptanalysis, which analyzes the security of
cryptographic constructions by attempting to break their anticipated security. Both
subfields are intimately linked, often exercised by the same persons, and a close in-
terplay between both is invaluable. One of the, if not the basic principle of modern
cryptology is the understanding that a cryptographic construction can only be con-
sidered secure if its internal workings are general knowledge and have successfully
withstood elaborate cryptanalysis attempts from independent parties. This is also
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called Kerckhoffs’ principle after Auguste Kerckhoffs who first stated it [66], and
stands in contrast to so-called security-through-obscurity which attempts to reach
security goals with undisclosed and hence unanalyzed constructions.

A basic design principle for many cryptographic constructions is to reduce the
security goal they attempt to achieve to the secrecy of a single parameter in the con-
struction, called the key. The obtained level of security is typically expressed by the
required effort to break it without knowing the key, which should be an exponential
function of the key’s length in bits. An important aspect in these security reductions
is the assumptions one makes about the power of the adversary, e.g. whether he can
observe a number of inputs and/or outputs of a primitive and whether he is only a
passive observer or if he can actively or even adaptively interfere with the execution
of the primitive. Based on the nature of a reduction, different security notions can
be distinguished:

• Heuristic security means that even after elaborate cryptanalysis of a construction,
no attacks can be found which break its security with a computational effort less
than expressed by the key length.

• Provable security means that, through logical reasoning, the construction’s secu-
rity can be shown to be equivalent to a mathematical problem which is perceived
to be hard, with the problem’s hardness expressed by the key length. Examples
of such hard mathematical problems for which no efficient algorithms are known,
and which are actually used in cryptographic constructions, are factorization of
large integers (e.g. as used in the RSA algorithm [111]) and computation of dis-
crete logarithms (e.g. as used in the Diffie-Hellman key exchange protocol [31]).

• Information-theoretical security means that it can be shown through information-
theoretical reasoning that an adversary does not have sufficient information to
break the construction’s security. This basically means the construction is un-
breakable, even to an adversary with unlimited computational capabilities.

For an extensive overview of the construction and properties of cryptographic
primitives, we refer to [96]. Cryptographic primitives can be classified based
on the nature of their key. We respectively distinguish (i) unkeyed primitives,
(ii) symmetric-key primitives, and (iii) public-key primitives and list some of their
most important instantiations and achieved security goals.

(i) Unkeyed primitives are constructions which do not require a key. Following
Kerckhoffs’ principle, their operation is hence completely public and can be
executed by everyone. Their security is basically grounded in the difficulty
of finding an input which matches a given output. The most used unkeyed
primitives are cryptographic hash functions, which provide data integrity and
also often serve as a building block in larger cryptographic constructions.

(ii) Symmetric-key primitives are based on a single key which is only known to
authorized parties and secret to anyone else. Symmetric-key encryption algo-
rithms, such as block ciphers and stream ciphers, provide data confidentiality
between parties knowing the secret key. Symmetric-key message authentica-
tion codes provide data integrity and authentication and entity authentication
between parties knowing the key.
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(iii) Public-key primitives are based on a key pair, one of which is public and the
other is kept private. In a public-key encryption scheme, everyone can encrypt
a message with the public key, but only the party which knows the private key
can decrypt it. In a public-key signature scheme, only the party knowing the
private key can generate a signature on a message, and everyone can use the
public key to verify that party’s signature. Signature schemes provide entity
authentication, among other goals.

1.1.3 Physical Security and Roots of Trust

Physical Security

To use a cryptographic primitive in practice, it needs to be implemented on a dig-
ital platform in an efficient manner. Unlike Kerckhoffs’ principle for the general
construction, for the implementation it is typically assumed that the primitive be-
haves like a black box, i.e. one is only able to observe the input-output behavior of
the implementation, not its internal operations. In particular, for nearly all (keyed)
cryptographic primitives, it is assumed that:

• A secure (random, unique, unpredictable, . . . ) key can be generated for every in-
stantiation of the primitive. This is called secure key generation.

• The key can be assigned to, stored and retrieved by the instantiation without being
revealed. This is called secure key storage.

• The instantiation can execute the cryptographic algorithm without revealing any
(partial) information about the key or about internal results, and without an out-
sider being able to influence the internal execution in any possible way. This is
called secure execution.

While these are convenient assumptions for mathematical security reductions, from
a practical perspective they are very hard to attain. Moreover, it is clear that none
of these three black-box assumptions can be achieved through information secu-
rity techniques, but require physical security measures. In a way, one could say that
cryptographic primitives reduce information security objectives into physical secu-
rity requirements.

The fact that none of the three identified physical security objectives are trivial is
made clear by the numerous cases where information security systems are attacked
by breaking the security at a physical level.

• The fact that secure key generation is difficult was just recently made clear again
by Lenstra et al. [77], who show that there is a significant shortage in randomness
in a large collected set of actually used public keys from a public key signature
scheme, likely caused by badly implemented key generators. For some of the keys
in the analyzed collection, this leads to an immediate loss of security.
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• Storing secret keys in a highly secure manner partially contradicts the fact that
they still need to be in some (permanent) digital format to be usable in an al-
gorithm. For typical digital implementations, this means that the key bits re-
side somewhere in a non-volatile digital memory on a silicon chip. Even with
extensive countermeasures in place, it is very difficult to stop a well-equipped
and/or determined adversary from gaining physical access to key memories, e.g.
as demonstrated by Torrance and James [143] and Tarnovsky [138].

• There are many ways an adversary can break the secure execution assumption,
both on the software and on the hardware level. Modern cryptographic imple-
mentations can no longer ignore side-channel attacks, which abuse the fact that
all actions on a digital platform leak information about their execution through
so-called side channels, e.g. through their execution time [68], their power con-
sumption [69], their electro-magnetic radiation [107], etc. Fault attacks [10] on
the other hand seek to disrupt the expected execution of a cryptographic algorithm
through physical means, and learn sensitive information from the faulty results.

Physical Roots of Trust

In order to provide these physical security objectives, we cannot rely on mathe-
matical reductions anymore. Instead, we need to develop physical techniques and
primitives which, based on physical reasoning, can be trusted to withstand certain
physical attacks and can hence provide certain physical security objectives. We call
such primitives physical roots of trust. Figure 1.1 shows how information security
objectives can be achieved from physical security and eventually from physical roots
of trust, i.e. trusted primitives which are rooted in the actual physical world. Possible
candidates of physical roots of trust are:

• True random number generators or TRNGs [37, 122] harvest random numbers
from truly physical sources of randomness and can therefore be trusted to produce
highly random keys for cryptographic purposes.

• Design styles for digital silicon circuits have been developed which minimize and
ideally eliminate certain physical side channels [141].

• Physically unclonable functions or PUFs produce unpredictable and instance-
specific values and can be used to provide physically secure key generation and
storage. They are the main subject of this book.

1.2 Preview

1.2.1 Introducing Physically Unclonable Functions

A physically unclonable function or PUF is best described as “an expression of an
inherent and unclonable instance-specific feature of a physical object”, and as such
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Fig. 1.1 Relations between information security, cryptography, physical security and physical
roots of trust

has a strong resemblance to biometric features of human beings, like fingerprints.
To be specific, PUFs show qualities which cannot be obtained from cryptographic
reductions, but require a physical basis to establish them, the most noteworthy being
physical unclonability. This means that through physical reasoning it is shown that
producing a physical clone of a PUF is extremely hard or impossible.

PUF Constructions The physical motivation for claiming unclonability of an in-
herent instance-specific feature is found in the technical limitations of the produc-
tion of physical objects. Even with extreme control over a manufacturing process,
no two physically exactly identical objects can be created due to the influence of ran-
dom and uncontrollable effects. Typically, these influences are very small and only
take effect at (sub-)microscopic scales, but leave their random marks nonetheless.
A high-precision measurement of these marks serves as an inherent and instance-
specific feature. Moreover, creating a second object which produces a similar mea-
surement is infeasible from a physical perspective, and often even technically im-
possible. Generating such a measurement with an accuracy high enough to distin-
guish these instance-specific features is the primary goal in the study of PUF con-
structions. The basic technique which is typically used is to design a construction,
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either external or internal to the object, which amplifies these microscopic differ-
ences to practically observable levels.

PUF Properties A wide variety of PUF constructions based on this principle are
possible and have been proposed, considering objects from many different materials
and technologies, each with their own specific intricacies and useful properties. In
order to apply PUFs to reach physical security objectives, a generic and objective
description of these PUF properties is required. Moreover, it is important to distin-
guish truly PUF-specific properties from other useful qualities which are inherent to
specific constructions but cannot be generalized to all PUFs.

PUF Applications Based on their unclonability and other useful properties, PUFs
can fulfill a number of physical security objectives when applied in the right way.
Besides taking advantage of the physical security properties of PUFs, such PUF-
based applications also need to deal with the practical limitations of the construc-
tion. This is accomplished by deploying a PUF in a scheme together with other
primitives that enhance its qualities. Deploying a PUF in a larger system typically
leads to trade-offs, and hence optimization problems, between the aspired security
level and the implementation restrictions of the application. Based on an analysis of
such a scheme, some PUF constructions will offer better trade-offs than others.

1.2.2 Book Outline

In this book, we study PUF constructions, properties as well as applications, both
from a conceptual and from a very practical perspective. Figure 1.2 shows how these
subjects relate to each other and are organized in this text.

In Chap. 2, we explain the details of the PUF concept and provide an extensive
overview of existing PUF constructions with a focus on so-called intrinsic PUFs.
This overview is of an unprecedented completeness and serves as a great aid in un-
derstanding the true nature of what we rather intuitively have called a PUF. Based on
this overview, we also manage to identify significant subclasses, design techniques,
implementation properties and even open problems related to PUF constructions.

In Chap. 3, we identify and define different meaningful properties attributed to
PUFs and, based on Chap. 2, we analyze if and to what extent actual PUF construc-
tions attain them. From this analysis, a number of these properties are found to be
defining for the concept of a PUF, while others are mere convenient qualities but are
in no way guaranteed for all PUFs. In order to increase their potential in theoretical
constructions, a highly formal framework for using PUFs and their most important
properties is also discussed.

In Chap. 4, we discuss the implementation of a significant subset of studied in-
trinsic PUF constructions on a realistic silicon platform (65 nm CMOS ASIC) and
experimentally verify their behavior at nominal condition and at extreme tempera-
ture and voltage corners. We capture the qualities of each studied construction in
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Fig. 1.2 Organization of the subjects in this book and its chapters

a small number of meaningful statistics. Additionally, we analyze the unpredictabil-
ity of each PUF by introducing heuristic upper bounds on their entropy density.

In Chap. 5, we investigate how PUFs can be used to identify distinct objects,
and ultimately provide entity authentication. Quality metrics for assessing identifi-
cation performance are discussed and applied on the PUF constructions studied in
Chap. 4, yielding a classification of their identifying capabilities. We discuss a PUF-
based authentication protocol innovatively combining a PUF and other primitives.
Authentication performance metrics similar to those for identification are assessed
for the constructions from Chap. 4.

In Chap. 6, it is explained how PUFs can be used to obtain secure key generation
and storage. Existing notions and techniques for key generation are discussed, and
a practical new variant is proposed which yields a significant gain in efficiency.
Based on the design constraints of a convenient construction of a practical PUF-
based key generator, the PUF implementations from Chap. 4 are assessed for their
key generation capacities. To conclude, we present a front-to-back PUF-based key
generator design and a fully functional FPGA reference implementation thereof.

In Chap. 7, we summarize the most important aspects of this book and propose a
number of interesting future research directions in this topic.



Chapter 2
Physically Unclonable Functions: Concept
and Constructions

2.1 Introduction

2.1.1 The PUF Concept

Since it is the main subject of this book, it is important to clarify and define the
basic concept of a physically unclonable function or PUF. However, for a variety
of reasons, this task turns out to be less straightforward than expected. The collec-
tion of proposed constructions labelled ‘PUF’ is growing at such a pace, both in
depth and breadth, that one can easily call it a zoo at this moment.1 There is also
an equally substantial group of constructions which could, but are for the moment
not, called ‘PUFs’, among other reasons because they were proposed before the
acronym ‘PUF’ had been coined, or because they were proposed by authors unfa-
miliar with the acronym, e.g. in fields outside hardware security engineering. All
these differing constructions are moreover proposed in a greatly varying patchwork
of implementation materials, technologies and platforms. Finding similar or even
identifying properties which accurately capture what is understood to be a PUF is
hence far from trivial. In this chapter and the next, we discuss the PUF concept in
great detail in order to do exactly that: first, by extensively studying existing PUF
constructions in Chap. 2, and next by describing, assessing and finally formalizing
the observed properties of PUFs in Chap. 3.

On PUFs and Fingerprints

In an attempt to express the concept of a PUF in a single phrase, one of the best
possible descriptions would be: “a PUF is an object’s fingerprint”. PUFs are similar
to fingerprints for more than one reason:

1By analogy with the Complexity Zoo [139] and the SHA-3 Zoo [140].
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• A human fingerprint is a feature which strongly expresses individualism, i.e. it
answers the question “Which human is this?” as opposed to other features such
as having two eyes and ears and walking on two legs, which express essentialism,
i.e. answering the question “What is a human?”. In a more inanimate sense, a PUF
bears the same meaning for a class of objects: a PUF is an identifying feature of a
specific instance of a class of objects, or for short is an instance-specific feature.

• As an individualising feature, a fingerprint is also inherent, i.e. every human being
is born with fingerprints, unlike other identifying qualities like a name or a written
signature, which are bestowed upon or acquired by an individual after birth. In
the same way, PUFs are inherently present in an object from its creation, as a
result of unique variations during its creation process.

• Finally, as an inherent individualising feature, fingerprints are also unclonable,
i.e. the physical and biological processes which determine a human being’s fin-
gerprints are beyond any level of meaningful control which would allow us to
create a second individual with the same inherent fingerprints.2 This even holds
for human beings sharing the same genetic material, like identical twins. Hence
even a (hypothetical) biological clone of a person would not share that person’s
fingerprints. In this aspect PUFs are very similar to fingerprints. In fact, by its be-
ing the central specifier in the term ‘physically unclonable functions’, (physical)
unclonability is one of the core properties of a PUF.

Following this discussion, we propose the following colloquial dictionary defini-
tion of the PUF concept: “a PUF is an expression of an inherent and unclonable
instance-specific feature of a physical object”. By indicating that a PUF is always
object-related, we explicitly distinguish PUFs from fingerprints and other biometric
parameters which naturally reflect on human beings. However, as discussed above,
in many aspects PUFs and biometrics are equivalent.

2.1.2 Chapter Goals

Order in the PUF Zoo

The amount of published results on physically unclonable functions has increased
exponentially over the last few years, and the need for a synthesizing effort presents
itself. This chapter presents an objective, large-scale and in-depth overview of the
myriad of PUFs which have been proposed over the years. The main goals of this
overview are:

• Present an as complete as possible reference list of PUF and PUF-like proposals
to date, with a focus on so-called intrinsic PUFs.

2By unclonable we do not mean that it is impossible to create or obtain a facsimile of a person’s
fingerprints; in fact human beings create copies of their fingerprints every time they touch a smooth
surface.
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• Introduce and apply a classification of PUF constructions based on practical con-
siderations.

• Present a common descriptive framework for assessing the basic functionality and
quality of a PUF, and use it to produce an as fair as possible comparative quantita-
tive analysis of different PUF implementations based on published experimental
results.

Besides these clear objectives, this overview will also be of great aid in identifying
interesting subclasses, properties, applications, and even open problems in the field
of PUFs.

2.1.3 Chapter Overview

Before we start describing different PUF constructions and their qualities, we will
in Sect. 2.2 introduce the basic nomenclature and notational conventions related to
PUFs which we will use throughout this book. These conventions make it much
easier to relate and compare identical concepts in often widely differing implemen-
tations and data sets, and it is therefore highly recommended you read this section
first. In Sect. 2.3, we delve deeper into the semantics of the acronym ‘PUF’ and also
discuss a number of possible classifications in the large variety of PUF constructions
which have been proposed over time. The main body of this chapter is a very exten-
sive overview of known PUF constructions,3 detailing the implementation of each
proposal and reporting experimental results, if any. In this book, we mainly focus on
intrinsic PUF constructions which are discussed in Sect. 2.4. For more information
on existing non-intrinsic PUF constructions we refer to Appendix B. In Sect. 2.5,
a number of concepts are discussed which present extensions or modes of operation
of PUFs. Finally, we conclude this chapter in Sect. 2.6.

2.2 Preliminaries

2.2.1 Conventions on Describing PUFs

Formally describing the operation of a PUF is a tedious yet important task. Due to
the multitude of different PUF constructions and different ways of considering a
PUF outcome, one quickly runs the risk of either introducing confusion due to an
ambiguous description or losing important details due to a too sparse description.
Here, we introduce the verbal and notational description of PUFs which we will
use and build upon throughout the rest of this book. Since this is only intended as

3We aim at giving an exhaustive overview of PUF proposals to date, but with the plethora of new
constructions appearing in recent years, it is very likely that some are missing.
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a convenient but clear notation format, we refrain at this point as much as possible
from making assumptions or putting restrictions on the underlying notions. Instead,
we limit these conventions to the most basic concepts required to formally talk about
PUFs. For completeness, the basic mathematical notations and definitions used in
this section and the rest of this book are shortly introduced in Appendix A.

PUF Class

We first introduce the notion of a PUF class, denoted by P , which is the complete
description of a particular PUF construction type. A PUF class provides a creation
procedure P .Create which is invoked to create instances of P . In general P .Create
is a probabilistic procedure, which we make explicit when necessary by providing

it with a randomized input P .Create(rC), with rC $← {0,1}∗ representing an unde-
termined number of fair coin tosses.

From a practical point of view, P represents the detailed structural design or
blueprint of a PUF construction and P .Create the detailed (physical) production
process to build the design.

PUF Instance

A PUF instance puf is a discrete instantiation of a PUF class P , as generated by its
creation procedure P .Create. In all respects, a PUF class can be considered to be
the set of all its created instances:

P ≡ {
pufi ← P .Create

(
rC
i

) : ∀i, rC
i

$← {0,1}∗}.
A PUF instance puf is considered as a particular crystallized state of the construc-
tion described by its PUF class P . The construction of many PUF classes makes
it possible to configure part of the PUF instance’s state, i.e. it is not fixed by the
creation procedure but can be set and easily modified by means of an external input.
When required, we specify the configurable state x of a PUF instance puf as puf(x).

From a practical point of view, the state represented by a PUF instance puf is the
exact (physical) structure of a produced PUF construction. The configurable part of
a PUF instance’s state is generally called the challenge which is applied to the PUF
instance, and we will use the same terminology in this book. The set of all possible
challenges x which can be applied to an instance of a PUF class P is denoted as XP .

PUF Evaluation

Every PUF instance puf provides an evaluation procedure puf.Eval which produces a
quantitative outcome representing a measurement of the PUF instance. The outcome
produced by puf.Eval depends on the state represented by the PUF instance. When
the PUF instance is challengeable, we write: puf(x).Eval. In general puf(x).Eval
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is also a probabilistic procedure which we again make explicit when necessary as

puf(x).Eval(rE $← {0,1}∗).
From a practical point of view, a PUF instance evaluation is the outcome of a

(physical) experiment, generating a particular measurement of the PUF instance’s
physical state at that moment. Such a measurement is generally called the response
of the PUF instance and we will use the same terminology. The class of all possible
response values which a PUF instance of a PUF class P can produce is denoted
as YP .

For many PUF classes, the outcome of a PUF instance evaluation is also affected
by external physical parameters, e.g. environment temperature, supply voltage level,
etc. We call this the condition of the evaluation. When required, we denote this as
puf(x).Evalα , e.g. with α = (Tenv = 80 °C), meaning that this evaluation took place
at an environment temperature of 80 °C. When the condition specifier α is omitted,
one may assume an evaluation at nominal operating conditions.

Shorthand Notation

To avoid the rather verbose use of the randomization variables rC and rE, we intro-
duce a more convenient and compact notation using random variables.

Creation of a random PUF instance:

pufi ←P .Create
(
rC
i

$← {0,1}∗) becomes

PUF ←P .Create, or the even shorter PUF ←P .

Random evaluation of PUF instance pufi on challenge x:

y
(j)
i (x) ← pufi (x).Eval

(
rE
j

$← {0,1}∗) becomes

Yi(x) ← pufi (x).Eval, or the even shorter Yi(x) ← pufi (x).

Random evaluation of a random PUF instance on challenge x:

Y(x) ← PUF(x).Eval, or the shorter Y(x) ← PUF(x).

2.2.2 Details of a PUF Experiment

A PUF response is generally considered a random variable. To assess the usability
of a PUF class, information about the distribution of its PUF responses is needed.
A possible way to obtain such knowledge is through experiment,4 i.e. estimating
distribution statistics from observed PUF response values.

4An alternative method of learning information about PUF response distributions is through phys-
ical modeling of the PUF class construction.
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Definition and Parameters of a PUF Experiment

PUF response values observed in an experiment can be ordered in a number of
different ways. Three important ‘dimensions’ in an array of observed PUF responses
are discernable: (i) responses from different PUF instances; (ii) responses from the
same PUF instance but on different challenges; and (iii) responses from the same
PUF instance on the same challenge but from distinct evaluations.

Definition 1 (PUF Experiment) An (Npuf,Nchal,Nmeas)-experiment on a PUF class
P is an array of PUF response values obtained through observation. An (Npuf,Nchal,

Nmeas)-experiment contains Npuf × Nchal × Nmeas values, consisting of response
evaluations on Npuf (random) PUF instances from the considered PUF class P , chal-
lenged on the same set of Nchal (random) challenges, with Nmeas distinct response
evaluations for each challenge on each PUF instance.

ExperimentP (Npuf,Nchal,Nmeas) → YExp(P) = [
y

(j)
i (xk) ← pufi (xk).Eval

(
rE
j

)]
,

with

∀1 ≤ i ≤ Npuf : pufi
$←P,

∀1 ≤ k ≤ Nchal : xk
$← XP ,

∀1 ≤ j ≤ Nmeas : rE
j

$← {0,1}∗.

If the conditions of a PUF experiment are of importance, the condition speci-
fier is mentioned as ExperimentαP (Npuf,Nchal,Nmeas), which expresses that all PUF
responses of the experiment are evaluated under these conditions.

2.2.3 PUF Response Intra-distance

Intra-distance Definition

Definition 2 A PUF response intra-distance is a random variable describing the
distance between two PUF responses from the same PUF instance and using the
same challenge:

Dintra
pufi

(x)
�= dist

[
Yi(x);Y ′

i (x)
]
,

with Yi(x) and Y ′
i (x) two distinct and random evaluations of PUF instance pufi on

the same challenge x. Additionally, the PUF response intra-distance for a random
PUF instance and a random challenge is defined as the random variable:

Dintra
P

�= Dintra
PUF←P (X ← XP ).
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dist[·; ·] can be any well-defined and appropriate distance metric over the re-
sponse set Y . In this book, responses are nearly always considered as bit vectors
and the distance metric used is the Hamming distance or the fractional Hamming
distance (cf. Sect. A.1.1).

Intra-distance Statistics

For the design of nearly all PUF-based applications, knowledge about the distri-
bution of Dintra

P is of great importance for characterizing the reproducibility of a
PUF class (cf. Sect. 3.2.2). Therefore, estimated descriptive statistics of this distri-
bution are commonly presented as one of the most important basic quality metrics
for a PUF class. Based on the observed responses YExp(P) of a PUF experiment
ExperimentP (Npuf,Nchal,Nmeas), a new array Dintra

Exp(P)
of observed response intra-

distances can be calculated:

Dintra
Exp(P) = [

dist
[
y

(j1)
i (xk);y(j2)

i (xk)
]]

∀1≤i≤Npuf;∀1≤k≤Nchal;∀1≤j1 
=j2≤Nmeas
.

From this array of observed response intra-distances, the following descriptive
statistics are often calculated to provide an estimation of the underlying distribution
parameters of Dintra

P :

• An estimate of the distribution mean of Dintra
P or E[Dintra

P ] is obtained from the
sample mean of Dintra

Exp(P)
:

μintra
P = Dintra

Exp(P)
= 2

Npuf · Nchal · Nmeas · (Nmeas − 1)
·
∑

Dintra
Exp(P).

• Equivalently, an estimate of the standard deviation of the distribution of Dintra
P or

Σ[Dintra
P ] is obtained as:

σ intra
P =

√
2

Npuf · Nchal · Nmeas · (Nmeas − 1) − 2
·
∑(

Dintra
Exp(P)

− μintra
P

)2
.

• A estimate of the shape of the underlying distribution of Dintra
P is given by the

histogram of Dintra
Exp(P)

.

• Order statistics of Dintra
Exp(P)

give more robust information about the distribution

of Dintra
P when it is skewed. Regularly used order statistics are the minimum, the

maximum and the median, and for more detail the 1/4- and 3/4-quantiles and the
1 %- and 99 %-percentiles. In particular the maximum and the 99 %-percentile
of Dintra

Exp(P)
are of interest since they provide a good estimate of the largest PUF

response intra-distances, i.e. the ‘least reliable’ PUF response one can expect.
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Intra-distance Statistics Under Variable Evaluation Conditions

Variations in evaluation conditions such as environment temperature and supply
voltage generally influence the intra-distance between PUF responses. The distance
between two PUF responses evaluated on the same PUF instance and for the same
challenge, but under different conditions α1 and α2, is typically larger than the
intra-distance between the same responses evaluated under one fixed condition. For
PUF-based applications, it is important to learn the worst-case, i.e. the largest, intra-
distance which can arise for a given range of evaluation conditions with respect to a
particular reference condition αref.

Definition 3 The PUF response intra-distance under condition α with respect to a
reference condition αref is a random variable defined as:

Dintra
pufi ;α(x)

�= dist
[
Y

αref
i (x);Yα

i (x)
]
,

with Y
αref
i (x) ← pufi (x).Evalαref and Yα

i (x) ← pufi (x).Evalα two distinct evalua-
tions of PUF instance pufi on the same challenge x but under different conditions
αref and α. The PUF response intra-distance for a random PUF instance and a ran-
dom challenge is defined as the random variable:

Dintra
P;α

�= Dintra
PUF←P;α(X ← XP ).

All earlier introduced intra-distance statistics can be extended in the same manner
to obtain estimates of the distribution of Dintra

P;α . In practice, the nominal operating
condition is selected as the reference condition. To find the worst-case intra-distance
in a given range of conditions, one typically evaluates the intra-distance under the
extrema of this range. This makes sense under the reasonable assumption that intra-
distance with respect to the reference condition increases if one moves further away
from the reference. The extrema of a range of conditions are called the corner cases.
As an example, assume one needs to find the worst-case intra-distance behavior
over the environment temperature range Tenv = −40 °C . . .85 °C. The reference
condition is set at room temperature, αref = (Tenv = 25 °C), and the intra-distances
at the corner cases α1 = (Tenv = −40 °C) and α2 = (Tenv = 85 °C) are studied.

2.2.4 PUF Response Inter-distance

Inter-distance Definition

Definition 4 A PUF response inter-distance is a random variable describing the
distance between two PUF responses from different PUF instances using the same
challenge:

Dinter
P (x)

�= dist
[
Y(x);Y ′(x)

]
,
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with Y(x) and Y ′(x) evaluations of the same challenge x on two random but distinct
PUF instances PUF ← P and PUF′(
= PUF) ← P . Additionally, the PUF response
inter-distance for a random challenge is defined as the random variable:

Dinter
P

�= Dinter
P (X ←XP ).

Inter-distance Statistics

Again, the distribution of the random variable Dinter
P is an important metric for a

PUF class, in this case to characterize the uniqueness of its instances. Based on the
observed responses YExp(P) of a PUF experiment ExperimentP (Npuf,Nchal,Nmeas),
a new array Dinter

Exp(P)
of observed response inter-distances can be calculated:

Dinter
Exp(P) = [

dist
[
y

(j)
i1

(xk);y(j)
i2

(xk)
]]

∀1≤i1 
=i2≤Npuf;∀1≤k≤Nchal;∀1≤j≤Nmeas
.

From this sample array of response inter-distances, the following descriptive
statistics can be calculated to provide an estimation of the underlying distribution
parameters of Dinter

P :

• The sample mean of Dinter
Exp(P)

as an estimate of E[Dinter
P ]:

μinter
P = Dinter

Exp(P)
= 2

Npuf · (Npuf − 1) · Nchal · Nmeas
·
∑

Dinter
Exp(P).

• Equivalently, an estimate of Σ[Dinter
P ] is obtained as:

σ inter
P =

√
2

Npuf · (Npuf − 1) · Nchal · Nmeas − 2
·
∑(

Dinter
Exp(P)

− μinter
P

)2
.

• A estimate of the shape of the underlying distribution of Dinter
P is given by the

histogram of Dinter
Exp(P)

.

• The order statistics of Dinter
Exp(P)

again give more robust information about the dis-

tribution of Dinter
P when it is skewed. For PUF response inter-distances, in partic-

ular the minimum and the 1 %-percentile of Dinter
Exp(P)

are of interest since they are
good estimates of the smallest inter-distance, i.e. the ‘least unique’ PUF instance
pair, one can expect.

Inter-distance Statistics Under Variable Evaluation Conditions

The inter-distance between PUF responses is also susceptible to variations in evalu-
ation conditions. However, for typical PUF-based applications, the initial generation
or enrollment is done in a secure environment under controlled conditions, and only
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the inter-distance of evaluations under the reference condition αref is of importance.
Therefore, no extension of the definition of inter-distance to varying conditions is
required in that case. In applications where the initial enrollment is done in the
field, the susceptibility of the inter-distance to the evalution conditions does need
to be taken into account. In this book, we only consider enrollment at reference
conditions.

2.3 Terminology and Classification

In Sect. 2.3.1, we elaborate on the origin and the meaning of the acronym ‘PUF’.
As will become clear from this chapter, the growing popularity of PUFs has caused
a proliferation of different constructions and concepts all labelled as PUFs. In an
attempt to bring some order into this zoo, a number of classification attempts were
made:

• Based on the implementation technology of the proposed construction: non-
electronic PUF versus electronic PUFs versus silicon PUFs, as discussed in
Sect. 2.3.2.

• Based on a more general set of physical construction properties: non-intrinsic
versus intrinsic PUFs, as discussed in Sect. 2.3.3.

• Based on the algorithmic properties of their challenge-response behavior: weak
versus strong PUFs, as discussed in Sect. 2.3.4.

2.3.1 “PUFs: Physical(ly) Unclon(e)able Functions”

To PUF or Not to PUF?

In addition to proposing a new optics-based PUF construction, Pappu [104] in 2001
was the first to also describe and define the more general concept of a PUF, which
he introduced at the time as a physical one-way function. Shortly after, Gassend
et al. [42] proposed a new silicon-based PUF construction and defined it similarly as
a physical random function, but they opted for the acronym PUF, standing for phys-
ical unclonable function, to avoid confusion with the concept of a pseudo-random
function which in cryptography is already abbreviated as PRF.

In the meantime, the acronym ‘PUF’ has become a catch-all for a variety of often
very different constructions and concepts, but which share a number of interesting
properties. Some of these constructions were proposed before the term PUF was
coined, and were hence not called PUFs from the beginning. Other constructions
were proposed in fields other than cryptographic hardware, where the term PUF is
yet unknown. Depending on which properties are assumed to be defining for PUFs
(and depending on whom you ask), such constructions are still called PUFs.
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PUF having been used as a label for many different constructions, the literal se-
mantic meaning of the acronym as “physical unclonable function” has been partially
lost, up to the point where some consider it a misnomer. Moreover, slight variations
in the actual wording were introduced over time, as expressed in the title of this sec-
tion. In this book, the acronym PUF does not generally refer to its literal meaning.
Instead, it is used as the collective noun for the variety of proposed constructions
sharing a number of interesting properties. One of the main goals of the next chap-
ter is to list known PUF constructions and identify a least common subset of such
defining properties.

Physical Versus Physically?

Originally, the acronym PUF stood for physical unclonable function, but later the
variant physically unclonable function also got into use. Both terms are still used
today and refer to the same concept. The choice for one or the other depends mainly
on the preference of the author. However, from a strictly semantic point of view,
there is a small difference in meaning. A physical unclonable function is ‘a physical
function which is unclonable’ whereas a physically unclonable function is ‘a func-
tion which is physically unclonable’. In Sect. 3.2.10, we argue why we consider the
second interpretation to be a more fitting description of the actual concept of a PUF.

Unclon(e)able?

The adjective unclonable is the central specifier in the acronym, reflecting the dis-
tinguishing property of a PUF. However, the actual meaning of unclonable is not
clearly defined. In a broader sense, one first needs to define what one considers
a clone. Especially in the context of PUFs, this has led to some debate. In many
scenarios, one solely observes the input-output (or challenge-response) behavior
of a PUF and only rarely the actual physical entity. In that respect, any construc-
tion which accurately mimics the behavior of a particular PUF could be considered
a clone thereof. On the other hand, if one takes the physical aspect into account,
cloning gets a different meaning, e.g. one could require a clone to have the same
behavior and the same physical appearance as the original, or even more strictly,
one could require a clone to be manufactured in the same production process as the
original. The distinction between the former and latter interpretation of a clone is
often made specific as a mathematical versus a physical clone.

Whether or not to write the silent ‘e’ in unclon(e)able is somewhat arbitrary.
Generally, the terminal, silent -e is dropped when appending the suffix -able to a
verb [35], e.g. movable, blamable, unless the verb ends in -ce or -ge, which is not
the case here. However, in scientific literature on computing the form (un)cloneable
is more common, likely due to the existence of an homonymous but unrelated inter-
face in the popular Java programming language [58]. A web search gives roughly a
five-to-one preference of unclonable over uncloneable, although peculiarly for clon-
able versus cloneable these odds are reversed. In this book, the form unclonable is
preferred.
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Function?

In the pure mathematical sense, a PUF is not even strictly a function, since a sin-
gle input (challenge) can be related to more than a single output (response) due to
the uncontrollable effects of the physical environment and random noise on the re-
sponse generation. Therefore, a more fitting mathematical description of a PUF is
as a probabilistic function, i.e. a function for which part of the input is an uncontrol-
lable random variable. This is sometimes made explicit by providing an additional
input r to a function, representing an (undetermined) number of fair coin tosses:

r
$← {0,1}∗. Alternatively, one can consider the outcome of a probabilistic func-

tion to be a random variable with a particular probability distribution, instead of a
deterministic value.

2.3.2 Non-electronic, Electronic and Silicon PUFs

PUFs and PUF-like constructions have been proposed based on a wide variety of
technologies and materials such as glass, plastic, paper, electronic components and
silicon integrated circuits (ICs). A possible classification of PUF constructions is
based on the electronic nature of their identifying features.

Non-electronic PUFs

A first, relatively large class contains PUF proposals with an inherently non-
electronic nature. Their PUF-like behavior is based on non-electronic technologies
or materials, e.g. the random fiberstructure of a sheet of paper or the random re-
flection of scattering characteristics of an optical medium (cf. Sect. B.1). Note that
the denomination non-electronic reflects the origin of the PUF behavior, and not the
way PUF responses are processed or stored, which often does use electronics and
digital circuitry.

Electronic PUFs

On the other side of the spectrum are electronic PUFs, i.e. constructions contain-
ing random variations in their electronic characteristics, e.g. resistance, capaci-
tance, etc. These variations are generally also measured in an electronic way. Note
that there is not always a sharp distinction between electronic and non-electronic
PUFs, e.g. a construction called RF-DNA [29] consists of randomly arranged cop-
per wires fixated in a flexible silicone medium which could be considered non-
electronic, whereas LC-PUFs [46] are in fact passive LC resonance circuits which
could be considered electronic in nature. However, the manner in which they gen-
erate responses is practically the same, i.e. the random influence they have on an
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imposed wireless radio-frequency field (cf. Sect. B.2). Another side note is that
variation in electronic behavior is practically always a consequence of variations in
non-electronic parameters at a lower level of physical abstraction, e.g. the length
and section of a metal wire determine its resistance, the area and distance between
two conductors determine their capacitance, etc.

Silicon PUFs

A major subclass of electronic PUFs are the so-called silicon PUFs, i.e. integrated
electronic circuits exhibiting PUF behavior which are embedded on a silicon chip.
The term silicon PUF and the first practical realization of a PUF structure in silicon
were introduced by Gassend et al. [42]. Since silicon PUFs can be directly connected
to standard digital circuitry embedded on the same chip, they can be immediately
deployed as a hardware building block in cryptographic implementations. For this
reason, it is evident that silicon PUFs are of particular interest for security solutions
and they are the main type of PUF construction we focus on in this book.

2.3.3 Intrinsic and Non-intrinsic PUFs

An important classification of PUFs based on their construction properties is that of
intrinsic PUFs as initially proposed by Guajardo et al. [45]. In a slightly adapted
form, we consider that a PUF construction needs to meet at least two conditions to
be called an intrinsic PUF: (i) its evaluations are performed internally by embedded
measurement equipment, and (ii) its random instance-specific features are implicitly
introduced during its production process. Next, we discuss both properties in more
detail and highlight the specific practical and security advantages of intrinsic PUFs.

External Versus Internal Evaluations

A PUF evaluation is a physical measurement which can take many forms. We dis-
tinguish between external and internal evaluations. An external evaluation is a mea-
surement of features which are externally observable and/or which is carried out
using equipment which is external to the physical entity containing the features. On
the other side are internal evaluations, i.e. measurements of internal features which
are carried out by equipment completely embedded in the instance itself. This might
seem a rather arbitrary distinction, but there are some important advantages to inter-
nal evaluations:

• The first is a purely practical advantage. Having the measurement equipment em-
bedded in every PUF instance means that every PUF instance can evaluate itself
without any external limitations or restrictions. Internal evaluations are typically
also more accurate since there is less opportunity for outside influences and mea-
surement errors.
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• Secondly, there is a rather important security advantage to internal evaluations,
since the PUF responses originate inside the embedding object. This means that,
as long as an instance does not disclose a response to the outside world, it can be
considered an internal secret. This is of particular interest when the embedding
object is a digital IC, since in that case the PUF response can be used immediately
as a secret input for an embedded implementation of a cryptographic algorithm.

A possible disadvantage of an internal evaluation is that one needs to trust the em-
bedded measurement equipment, since it is impossible to externally verify whether
the measurement takes place as expected, this as opposed to an external evaluation,
for which it is often possible to actually observe the measurement in progress.

Explicit Versus Implicit Random Variations

A second construction-based distinction considers the source of the randomness of
the evaluated features in a PUF. The manufacturing process of the PUF instances
can contain an explicit randomization procedure with the sole purpose of introduc-
ing random features which will later be measured when the PUF is evaluated. Al-
ternatively, the measured random features can also be an implicit side effect of the
standard production flow of the embedding object, i.e. they arise naturally as an ar-
tifact of uncontrollable effects during the manufacturing process. Again, there are
some subtle but interesting advantages to PUF constructions based on implicit ran-
dom variations:

• From a practical viewpoint, implicit random variations generally come at no ex-
tra cost since they are already (unavoidably) present in the production process.
Introducing an explicit randomization procedure on the other hand can be costly,
particularly due to timing constraints in the manufacturing flow of high-volume
products.

• Implicit random variability in manufacturing or so-called process variations
which occur during a production process are generally undesirable since they
have a negative impact on yield. This means that manufacturers already take elab-
orate measures to reduce process variations as much as possible. However, as it
turns out, completely avoiding any random effect during manufacturing is tech-
nically impossible and process variations are always present. As a consequence,
PUF constructions based on implicit process variations have the interesting se-
curity advantage that even the manufacturers, having all details and full control
over their production process, cannot remove or control the random features at
the core of the PUF’s functionality.

Non-intrinsic PUF Constructions

A variety of PUF constructions have been proposed which we label non-intrinsic
according to this classification, e.g.:
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• The optical PUF as proposed by Pappu et al. [104, 105], which is based on the
unique speckle pattern which arises when shining a laser on a transparent material
with randomly solved scattering particles.

• The coating PUF as proposed by Tuyls et al. [147], which is based on the unique
capacitance between two metal lines in a silicon chip whose top layer consists of
a coating with randomly distributed dielectric particles.

The optical PUF is non-intrinsic since it is externally evaluated (by observing the
speckle pattern) and its random features are explicitly introduced (by solving the
scattering particles). The coating PUF is also non-intrinsic: although it can be inter-
nally evaluated on a silicon chip, its randomness is still explicitly generated during
production (by solving the dielectric particles). Since our main focus is on intrinsic
PUFs, we will not go into more detail on the construction of non-intrinsic PUFs in
the main text of this book. For completeness, we have added a detailed description
of many known non-intrinsic PUF constructions in Appendix B.

2.3.4 Weak and Strong PUFs

A last classification of PUFs we discuss here is explicitly based on the security prop-
erties of their challenge-response behavior. The distinction between strong and weak
PUFs was first introduced by Guajardo et al. [45], and further refined by Rührmair
et al. [116]. Basically, a PUF is called a strong PUF if, even after giving an adversary
access to a PUF instance for a prolonged period of time, it is still possible to come
up with a challenge to which with high probability the adversary does not know the
response. Note that this implies at least that: (i) the considered PUF has a very large
challenge set, since otherwise the adversary can simply query all challenges and no
unknown challenges are left, and (ii) it is infeasible to built an accurate model of
the PUF based on observed challenge-response pairs, or in other words the PUF is
unpredictable. PUFs which do not meet the requirements for a strong PUF, and in
particular PUFs with a small challenge set, are consequentially called weak PUFs.
An extreme case is a PUF construction which has only a single challenge. Such
a construction is also called a physically obfuscated key or POK (cf. Sect. 2.5.1).
It is evident that the security notion of a strong PUF is higher than that of a weak
PUF, hence enabling more applications. However constructing a practical (intrinsic)
strong PUF with strong security guarantees turns out to be very difficult, up to the
point where one can consider it an open problem whether this is actually possible.

2.4 Intrinsic PUF Constructions

All known intrinsic PUF constructions are silicon PUFs based on random process
variations occurring during the manufacturing process of silicon chips. The known
intrinsic silicon PUF constructions can be further classified based on their operating
principles:
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• A first class of constructions measures random variations on the delay of a digital
circuit; the constructions are therefore called delay-based silicon PUFs.

• A second class of silicon PUF constructions use random parameter variations be-
tween matched silicon devices, also called device mismatch, in bistable memory
elements. These constructions are labelled memory-based silicon PUFs.

• Finally, we classify a collection of intrinsic silicon PUF proposals consisting of
mixed-signal circuits. Their basic operation is of an analog nature, which means
an embedded analog measurement is quantized with an analog-to-digital conver-
sion to produce a digital response representation.

2.4.1 Arbiter PUF

Basic Operation and Construction

The arbiter PUF, as proposed by Lee et al. [43, 75, 78], is a type of delay-based
silicon PUF. The idea behind an arbiter PUF is to explicitly introduce a race condi-
tion between two digital paths on a silicon chip. Both paths end in an arbiter circuit
which is able to resolve the race, i.e. it determines which of the two paths was faster
and outputs a binary value accordingly. If both paths are designed or configured to
have (nearly) identical nominal delays, the outcome of the race, and hence the out-
put of the arbiter, cannot be unambiguously determined based on the design. Two
scenarios are possible:

1. Even when designed or configured with identical nominal delays, the actual de-
lay experienced by an edge which travels the two paths will not be exactly equal.
Instead, there will be a random delay difference between the two paths, due to
the effect of random silicon process variations on the delay parameters. This ran-
dom difference will determine the race outcome and the arbiter output. Since
the effect of silicon process variations is random per device, but static for a given
device, the delay difference and by consequence the arbiter output will be device-
specific. This is the basis for the PUF behavior of an Arbiter PUF.

2. Due to their stochastic nature, there is a non-negligible possibility that by chance
both delays are nearly identical. In that case, when two edges are applied simul-
taneously on both paths they will reach the arbiter virtually at the same moment.
This causes the arbiter circuit to go into a metastable state, i.e. the logic output of
the arbiter circuit is temporarily undetermined (from an electronic point of view,
the voltage of the arbiter output is somewhere in between the levels for a logic
high and low). After a short but random time, the arbiter leaves its metastable
state and outputs a random binary value which is independent of the outcome of
the race. Although random, in this case the arbiter’s output is not device-specific
and not static. This phenomenon is the cause of unreliability (noise) of the re-
sponses of an arbiter PUF.

Lee et al. [43, 75, 78] propose implementing the two delay paths as chains of
switch blocks. A switch block connects two input signals to its two outputs in one of
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Fig. 2.1 Construction of a basic arbiter PUF as proposed by Lee et al. [43, 75, 78]

two possible configurations, straight or crossed, based on a configurable selection
bit. The logic functionality of a switch block can be implemented in a number of
ways, the most straightforward being with a pair of 2-to-1 multiplexers (muxes).
By concatenating n switch blocks, a total of n configuration bits are needed to con-
figure any of 2n possible pairs of delay paths. This n-bit setting is considered the
challenge of the arbiter PUF. Since the input-output delays of the two configurations
of a switch block are slightly different and randomly affected by process variations,
each of these 2n challenges leads to a new race condition which can be resolved by
the arbiter. The resulting output bit of the arbiter is considered the response of the
arbiter PUF to the given challenge. However, it is immediately clear that these 2n

different configurations are not independent, since they are only based on a num-
ber of underlying delay parameters linear in n. This will lead to challenge-response
modeling attacks on arbiter PUFs as we will discuss later. The arbiter circuit can
also be implemented in a number of ways, the most straightforward being as an SR
NAND latch. Most types of digital latches and flip-flops exhibit arbiter behavior.
The construction of the basic arbiter PUF is depicted in Fig. 2.1

Ideally, an arbiter PUF response is solely determined by the random effect of
process variations on the delay parameters of the circuit. This can only happen when
two conditions are met:

1. The delay lines are designed to be nominally perfectly symmetrical, i.e. any dif-
ference in delay is solely caused by process variations.

2. The arbiter circuit is completely fair, i.e. it does not favor one of its inputs over
the other. Lin et al. [80] conclude that a basic SR latch is the best option since it
is unbiased due to its symmetric construction.

If either of the two conditions is not met, the arbiter PUF is biased, which results
in a lower uniqueness of its responses. Designing a perfectly unbiased arbiter PUF
is highly non-trivial since it requires very low-level control over implementation
choices. In some technologies, e.g. on FPGAs [100], this is not possible, which
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greatly impedes the successful deployment of arbiter PUFs on them. If bias is un-
avoidable, some unbiasing techniques are possible. A tunable delay circuit in front
of the arbiter PUF can counteract the deterministic bias of the delay paths or the
arbiter, e.g. if the arbiter favors the upper delay path then the tunable delay can give
the lower path a head start. A relatively simple way of doing this is by fixing a num-
ber of challenge bits in the beginning of the switch block chain in such a way as to
counteract the bias.

Discussion on Modeling Attacks

The basic arbiter PUF construction with n chained switch blocks provides us with
2n different challenges. However, the number of delay parameters which determine
the arbiter PUF response is only linear in n, which means that these 2n challenges
cannot produce independent responses. In practice, when one learns the underlying
delay parameters and one can model the interaction with the challenge bits, one is
able to accurately predict response bits to random challenges, even without access to
the PUF. In many ways, such a model can be considered a clone of the arbiter PUF,
be it a mathematical clone. Arbiter PUF responses are only considered unpredictable
as long as such a model cannot be accurately built.

It was immediately realized by Lee et al. [75] that their basic arbiter PUF can
indeed be easily modeled and they even present modeling attack results for their
own implementation. This and later modeling attacks assume a simple but accurate
additive delay model for the arbiter PUF, i.e. the delay of a digital circuit is modeled
as the sum of the delays of its serialized components. This turns out to be a very
accurate first-order approximation for the relatively simple switch block chains.
The unknown underlying delay parameters are learned from observing challenge-
response pairs of the PUF. Every challenge-response pair constitutes a linear in-
equality over these parameters and is used to obtain a more accurate approximation.
Moreover, the unknown parameters do not need to be calculated explicitly, but they
are learned implicitly and automatically by an appropriate machine-learning tech-
nique. Machine-learning techniques such as artificial neural networks (ANNs) and
support-vector machines (SVMs) are able to generalize behavior based on applied
examples. Numerous results have been presented which successfully apply different
machine-learning techniques in order to model the behavior of an arbiter PUF. The
ultimate goal of such modeling attacks is to predict unknown responses as accurately
as possible after having been trained with as few examples as possible. We say that
a PUF is (pmodel, qtrain)-modelable if a known modeling attack exists which is able
to predict unseen responses of the PUF with a success rate pmodel, after training the
model with qtrain known challenge-response pairs.

Experimental Results and Extended Constructions

Arbiter PUFs were initially implemented by Gassend et al. [43] on a set of 23
FPGA devices. From experimental results, the average intra- and inter-distance of
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the responses were estimated as μintra
P = 0.1 % and μinter

P = 1.05 %. The inter-
distance is particularly low, with on average only one in 100 challenges produc-
ing a response bit which actually differs among different PUF instances. This ar-
biter PUF implementation is hence very biased, which is a result of the lack of
low-level control over the placement and routing of the delay lines on the FPGA
platform. A following implementation by the same team on a set of 37 ASICs
proves to be less biased with μinter

P = 23 %, but is still far from the ideal of
50 %. The reliability of this implementation is very high, with μintra

P = 0.7 % un-
der reference conditions. This worsens to μintra

P = 4.82 % when temperature rises
to Tenv = 67 °C. Lim [78] demonstrates that this arbiter PUF implementation is
(pmodel = 96.45 %, qtrain = 5000)-modelable by applying an SVM-based machine-
learning modeling attack. This result is problematic for this implementation, since
the expected prediction error of 100 % − 96.45 % = 3.55 % is smaller than the av-
erage unreliability of the PUF under temperature variation. In practice, this means
this implementation is not secure (after observing qtrain = 5000 challenge-response
pairs).

All subsequent work on arbiter PUFs is an attempt to make model-building at-
tacks more difficult, by introducing non-linearities in the delays and by control-
ling and/or restricting the inputs and outputs to the PUF. Lee et al. [75] propose
feed-forward arbiter PUFs as a first attempt to introduce non-linearities in the delay
lines. They are an extension of their basic arbiter PUF, where the configuration of
some switch blocks in the delay chains is not externally set by challenge bits, but is
determined by the outcome of intermediate arbiters evaluating the race at interme-
diate points in the delay lines. This was equivalently tested on 37 ASICs, leading
to μinter

P = 38 % and μintra
P = 9.84 % (at Tenv = 67 °C). Note that the responses are

much noisier, which is caused by the increased metastability since there are mul-
tiple arbiters involved. It was shown that the simple model-building attacks which
succeeded in predicting the simple arbiter don’t work any longer for this non-linear
arbiter PUF. However, later results by Majzoobi et al. [93] and Rührmair et al. [118]
show that with more advanced modeling techniques it is still possible to build an
accurate model for the feed-forward arbiter PUF. Based on simulated implemen-
tations of feed-forward arbiter PUFs, Rührmair et al. [118] demonstrate them to be
(pmodel > 97.5 %, qtrain = 50000)-modelable, with the actual success rate depending
on the delay path length and the number of feed-forward arbiters. More advanced
feed-forward architectures are proposed by Lao and Parhi [74].

Majzoobi et al. [94] present an elaborate discussion on techniques to make
arbiter-based PUFs on FPGA more resistant to modeling. They use an initial device
characterization step to choose the optimal parameters for a particular instantiation
and use the reconfiguration possibilities of FPGAs to implement this. To increase
randomness and to thwart model-building attacks, they use “hard-to-invert” input
and output networks controlling the inputs to and outputs of the PUF, although
these are not shown to be cryptographically secure. In particular, they consider
multiple arbiter PUFs in parallel and take the exclusive-or (XOR) of the arbiter
evaluations as the new response. By simulation, they show that this construction
gives desirable PUF properties and makes model-building much harder. However,
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Rührmair et al. [118] again show that model-building of these elaborate structures
might be feasible by presenting a (pmodel = 99 %, qtrain = 6000)-model building at-
tack based on a simulated implementation consisting of n = 64 switch blocks and
three parallel arbiters which are XOR-ed together. For longer delay paths and more
parallel arbiters, this modeling attack keeps on working but requires a considerable
larger qtrain.

Finally, a different approach towards model-building attacks for arbiter PUFs is
taken by Öztürk et al. [48, 102, 103]. Instead of preventing the attack, they use the
fact that a model of the PUF can be constructed as part of an authentication pro-
tocol. The proposed protocol is a variant of the protocol by Hopper and Blum [54],
with security based on the difficulty of learning parity with noise. This is a highly
unconventional use of a PUF as it explicitly assumes the PUF can be cloned mathe-
matically, with the cloned PUF model acting as a noisy shared secret.

2.4.2 Ring Oscillator PUF

Basic Operation and Construction

A second type of delay-based intrinsic PUF is the ring oscillator PUF. A number of
different constructions can be placed under this type, all based on measuring ran-
dom variations on the frequencies of digital oscillating circuits. The source of this
randomness is again the uncontrollable effect of silicon process variations on the
delay of digital components. When these components constitute a ring oscillator,
the frequency of this oscillation is equivalently affected. A typical ring oscillator
PUF construction has two basic components, ring oscillators and frequency coun-
ters, which are arranged in a particular architecture and are often combined with a
response-generating algorithm.

The first type of ring oscillator PUF was proposed by Gassend et al. [40, 42]. The
ring oscillator they use is a variant of the switch block-based delay line as proposed
for the arbiter PUF (cf. Sect. 2.4.1). This delay circuit is transformed into an oscil-
lator by applying negative feedback. An additional AND-gate in the loop allows us
to enable/disable the oscillation. The oscillating signal is fed to a frequency counter
which counts the number of oscillating cycles in a fixed time interval. The resulting
counter value is a direct measure of the loop’s frequency. The construction of such a
very basic ring oscillator PUF is shown in Fig. 2.2. Gassend et al. [40, 42] propose
using a synchronously clocked counter. The oscillating signal is first processed by a
simple edge detector which enables the counter every time a rising edge is detected.
This architecture is robust, but the use of an edge detector limits the frequency of
the ring oscillator to half the clock frequency.

The measured frequency of equally implemented ring oscillators on distinct de-
vices shows sufficient variation due to process variations to act as a PUF response.
However, it was immediately observed that the influence of environmental condi-
tions on the evaluation of this construction is significant, i.e. changes in temperature



2.4 Intrinsic PUF Constructions 31

Fig. 2.2 Construction of a
simple ring oscillator PUF as
proposed by
Gassend et al. [42]

and voltage cause frequency changes which are orders of magnitude larger than
those caused by process variations. To counter this influence, Gassend et al. [40, 42]
propose an important post-processing technique called compensated measuring.
The principle behind compensated measuring is to evaluate the frequency of two
ring oscillators on the same device simultaneously and consider a differential func-
tion, i.c. the ratio, of both measurements as the eventual response. The reasoning
behind this is that environmental changes will affect both frequencies in roughly the
same way, and their ratio will be much more stable. Note that this type of differential
measurement was already implied in the arbiter PUF construction considering two
delay paths in parallel, which explains its relatively high reliability. For the proposed
ring oscillator PUF construction, the compensated measurements based on the ratio
of two frequencies also proves to be particularly effective. The average observed
intra-distance (Euclidean) between evaluations is roughly two orders of magnitude
smaller than the average inter-distance, even under varying temperature and voltage
conditions.

Variants and Experimental Results

The results from Gassend et al. [42] clearly show the potential of ring oscillator
PUFs. However, their proposed construction has some minor drawbacks. Firstly,
since the ring oscillator is based on the same delay circuit as the simple arbiter PUF,
this construction will also be susceptible to modeling attacks and similar counter-
measures need to be included. Moreover, the produced response is an integer counter
value, or a real value in the case of compensated measurement, and cannot be used
directly as a bit string in subsequent building blocks. It first needs to be quantized in
an appropriate way to obtain a bit string response with desirable distribution prop-
erties. Both these additions are indispensable in order to use this construction in an
efficient and secure manner, but require additional resources.

Suh and Devadas [136] propose an alternative ring oscillator PUF architecture
that is not susceptible to these modeling attacks and that naturally produces bitwise
responses. Instead of a challengeable ring oscillator based on the delay circuit of
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Fig. 2.3 Construction of a
comparison-based ring
oscillator PUF as proposed by
Suh and Devadas [136]

an arbiter PUF, their architecture contains an array of n fixed but identically im-
plemented inverter chains. The architecture also contains two frequency counters,
which can be fed by each of the n inverter chains. Two n-to-1 muxes control which
oscillators are currently applied to the two counters. The selection signals of these
muxes constitute the PUF’s challenge. The schematic construction of this PUF is
depicted in Fig. 2.3. As in the earlier proposal, both frequency counters are en-
abled for a fixed time interval and their resulting counter values are measures of the
frequencies of the two applied oscillators. The PUF’s response bit is generated by
comparing the two counter values. Since the exact frequencies of the inverter chains
are influenced by process variations, the resulting comparison bit will be random
and device-specific. Note that the comparison operation is a very basic form of a
compensated measurement, i.e. an inverter chain which is faster than another one
under certain conditions is likely to be faster under all conditions.

By considering many pairwise combinations of inverter chains, this ring oscilla-
tor PUF construction can produce many response bits. If the PUF implements n ring
oscillators, a total of

(
n
2

) = n·(n−1)
2 pairs can be formed. However, it is clear that all

these pairs do not produce independent evaluations, e.g. if oscillator A is faster than
B and B is faster than C, then it is apparent that A will also be faster than C and
the resulting response bit is dependent on the previous two. Suh and Devadas [136]
correctly state that the number of independent comparisons one can make is limited
by the number of possible ways the frequencies of the oscillators can be ordered.
If the frequencies are independent and identically distributed, each of n! possible
orderings is equally likely and the maximal number of independent comparisons
one can make is log2 n!. However, the list of independent comparisons is difficult
to obtain and is moreover device-specific, i.e. different oscillator pairs need to be
compared on each instance of the PUF. A simpler and device-generic approach is to
compare fixed pairs and use every oscillator only once. In this way, a ring oscillator
PUF consisting of n oscillators will only produce n

2 response bits which are how-
ever guaranteed to be independent. Suh and Devadas [136] reduce the number of
response bits even further by applying a post-processing technique called 1-out-of-k
masking, i.e. they evaluate k oscillators and only consider the pair with the largest
difference in frequency and output the result of this comparison. This technique
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greatly enhances the reliability of the responses, but it comes at a relatively large
resource overhead, i.e. out of n oscillators only �n

k
� response bits are generated.

Experiments on a set of 15 FPGAs with k = 8 produce responses with an average
inter-distance of 46.15 % and a very low average intra-distance of merely 0.48 %
even under large temperature (Tenv = 120 °C) and voltage (Vdd + 10 %) variations.

Maiti et al. [91] present results from a large-scale characterization of the ring
oscillator PUF construction from Suh and Devadas [136] on FPGA. They do not ap-
ply the masking technique, but instead compare all neighbouring oscillators on the
FPGA, yielding n − 1 response bits from n oscillators. Their results are particularly
valuable as they are based on a large population of devices (125 FPGAs), which
is rare in other works on PUFs. They present an average inter-distance of 47.31 %
and an average intra-distance of 0.86 % at nominal conditions. However, chang-
ing temperature and especially voltage conditions have a significant impact on the
intra-distance. At a 20 % reduced supply voltage, the average intra-distance goes
up to 15 %. The measurement data resulting from this experiment is made publicly
available [110].

Yin and Qu [157] build upon the construction from Suh and Devadas [136] and
propose a number of adaptations which significantly improve the resource usage
of the ring oscillator PUF. Firstly, they propose a generalization of the 1-out-of-k
masking scheme which is much less aggressive in ignoring oscillators but achieves
similar reliability results. The group of oscillators is partitioned into mutually ex-
clusive subsets such that the minimal frequency difference between two members
of a subset is above a certain threshold. An evaluation between a pair of oscillators
from the same subset is therefore guaranteed to be very stable. Yet by using a clever
grouping algorithm, practically all oscillators contribute to a response bit and only a
few are ignored. Secondly, they propose a hybrid architecture for arranging ring os-
cillators and frequency counters. This allows us to find an optimal trade-off between
the speed of generating responses and the resource usage of oscillators, counters and
multiplexers.

Maiti and Schaumont [89, 90] also expand upon the construction from Suh and
Devadas [136] and present some significant improvements. Firstly, they propose a
number of guidelines for reducing systematic bias when implementing arrays of ring
oscillators on an FPGA, and study the effect of each guideline on the uniqueness of
the responses. Secondly, they propose a very efficient but highly effective variant
of the 1-out-of-k masking scheme based on configurable ring oscillators. Instead of
considering the most reliable pair out of k distinct oscillators, they make use of the
oscillators’ configurability and consider the most reliable out of k configurations of
a single pair of oscillators. This achieves similar or even better reliability results
than the original masking scheme, however without any sacrifice in resources.

A further improvement in the post-processing of ring oscillator PUFs is pro-
posed by Maiti et al. [67, 92]. They go beyond ranking-based methods of oscillator
frequencies by extracting a response based on the magnitude of the observed fre-
quency differences. An elaborate post-processing algorithm based on test statistics
of the observed frequency values and an identity mapping function is proposed.
This substantially increases the amount of challenge-response pairs which can be
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considered for a limited set of ring oscillators. Maiti et al. [92] acknowledge that re-
sponses to different challenges are no longer information-theoretically independent,
but they still show strong PUF behavior in terms of their inter- and intra-distance dis-
tributions. Experimental data obtained from an implementation on 125 FPGAs with
65519 challenge evaluations demonstrates an average inter-distance of 49.99 % and
an average intra-distance of 10 % at Tenv = 70 °C. The proposed post-processing
technique is computationally intensive, requiring a sophisticated datapath architec-
ture.

2.4.3 Glitch PUF

A third type of delay-based PUF construction is based on glitch behavior of com-
binatorial logic circuits. A purely combinatorial circuit has no internal state, which
means that its steady-state output is entirely determined by its input signals. How-
ever, when the logical value of the input changes, transitional effects can occur, i.e. it
can take some time before the output assumes its steady-state value. These effects
are called glitches and the occurrence of glitches is determined by the differences in
delay of the different logical paths from the inputs to an output signal. Since the ex-
act circuit delays of a particular instance of a combinatorial circuit are influenced by
random process variations, the occurrence, the number and the shape of the glitches
on its output signals will equivalently be partially random and instance-specific.
When accurately measured, the glitch behavior of such a circuit can be used as a
PUF response.

Anderson [1] proposes a glitch-based PUF construction specifically for FPGA
platforms. A custom logical circuit is implemented which, depending on the de-
lay variations in the circuit, does or does not produce a single glitch on its out-
put. The output is connected to the preset signal of a flip-flop which captures the
glitch, should it occur. This is the circuit’s single response bit. Placing many of these
(small) circuits on an FPGA allows us to produce many PUF response bits. A chal-
lenge selects a particular circuit. Experimental results of 36 PUF implementations
each producing 128 response bits show an average inter-distance of 48.3 % and an
average intra-distance of 3.6 % under high temperature conditions (Tenv = 70 °C).

Shimizu et al. [129, 137] present a more elaborate glitch PUF construction and
also introduce the term glitch PUF. They propose a methodology to use the glitch
behavior of any combinatorial circuit as a PUF response and apply it specifically
to a combinatorial FPGA implementation of the SubBytes operation of AES [28].
Their initial proposal [137] consists of an elaborate architecture which performs an
on-chip high-frequency sampling of the glitch wave form and a quantization circuit
which generates a response bit based on the sampled data. They propose using the
parity of the number of detected glitches as a random yet robust feature of a glitch
wave form. In a later version of their PUF construction [129], they propose a much
simpler implementation which achieves basically the same functionality and results.
By simply connecting a combinatorial output to a toggle flip-flop, the value of the
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Fig. 2.4 Construction of a glitch PUF as proposed by Shimizu et al. [129]

toggle flip-flop after the transitional phase will equal the parity of the number of
glitches that occurred. This construction is shown in Fig. 2.4. To improve the relia-
bility of the PUF responses, a bit-masking technique is used. During an initial mea-
surement on every instance, unstable response bits are identified as responses that
do not produce a stable value on m consecutive evaluations. In later measurements,
these response bits are ignored, i.e. they are masked. The mask information needs to
be stored alongside each PUF instance or in an external storage. This type of mask-
ing also causes a resource overhead, as the identified unstable bits are not used in the
PUF responses. However, the resulting unmasked bits show a greatly improved reli-
ability. Experimental results from 16 FPGA implementations of this glitch PUF con-
struction on 2048 challenges show an average inter-distance of 35 % and an average
intra-distance of 1.3 % at nominal conditions, when bit-masking is applied. The bit-
masking results in about 38 % of the response bits being ignored. Under variations
of the environmental conditions, the average intra-distance increases substantially,
to about 15 % in the worst-case corner condition of Tenv = 85 °C and Vdd + 5 %.

2.4.4 SRAM PUF

SRAM Background

Static Random-Access Memory or SRAM is a digital memory technology based
on bistable circuits. In a typical CMOS implementation, an individual SRAM cell
is built with six transistors (MOSFETs), as shown in Fig. 2.5a. The logic memory
functionality of a cell comes from two cross-coupled inverters at its core, shown in
Fig. 2.5c, each built from two MOSFETs, one p-MOS and one n-MOS. From an
electronic viewpoint, this circuit contains a positive feedback loop which reinforces
its current state. In a logic sense, this circuit has two stable values (bistable), and
by residing in one of the two states the cell stores one binary digit. Two additional
access MOSFETs are used to read and write its contents. Typically, many SRAM
cells are arranged in large memory array structures, capable of storing many kilobits
or megabits. An SRAM cell is volatile, meaning that its state is lost shortly after
power-down.

The detailed operation of an SRAM cell is best explained by drawing the voltage
transfer curves of the two cross-coupled inverters, shown in Fig. 2.5b. From this
graph, it is clear that the cross-coupled CMOS inverter structure has three possi-
ble operating points of which only two are stable and one is metastable. The sta-
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Fig. 2.5 Construction and power-up behavior of an SRAM cell

ble points are characterized by the property that deviations from these points are
reduced and the stable point condition is restored. This does not hold for the
metastable point, i.e. any small deviation from the metastable point is immediately
amplified by the positive feedback and the circuit moves away from the metastable
point towards one of the two stable points. Since electronic circuits are constantly
affected by small deviations due to random noise, an SRAM cell will never stay in
its metastable state very long but will quickly end up in one of the two stable states
(randomly).

Basic Operation

The operation principle of an SRAM PUF is based on the transient behavior of an
SRAM cell when it is powered up, i.e. when its supply voltage VDD comes up. The
circuit will evolve to one of its operating points, but it is not immediately clear to
which one. The preferred initial operating point of an SRAM cell is determined by
the difference in ‘strength’ of the MOSFETs in the cross-coupled inverter circuit.
The transient behavior of an SRAM cell at power-up is shown in Fig. 2.5d. For effi-
ciency and performance reasons, typical SRAM cells are designed to have perfectly
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matched inverters. The actual difference in strength between the two inverters, the
so-called device mismatch, is caused by random process variations in the silicon pro-
duction process and is hence cell-specific. Each cell will have a random preferred
initial operating point.

When one of the inverters is significantly stronger than the other one, the pre-
ferred initial operating point will be a stable state and the preference will be very
distinct, i.e. such a cell will always power-up in the same stable state, but which
state this is (‘0’ or ‘1’) is randomly determined for every cell. When the mismatch
in a cell is small, the effect of random circuit noise comes into play. Cells with a
small mismatch still have a preferred initial stable state which is determined by the
sign of the mismatch, but due to voltage noise there is a non-negligible probability
that they power-up in their non-preferred state. Finally, cells which, by chance, have
a negligible mismatch between their inverters, will power up in, or very close to, the
metastable operating point. Their final stable state will be largely random for every
power-up.

The magnitude of the impact of process variations on random device mismatch
in SRAM cells causes most cells to have a strongly preferred but cell-specific initial
state, and only few cells have a weak preference or no preference at all. This means
that the power-up state of a typical SRAM cell shows strong PUF behavior. Large
arrays of SRAM cells are able to provide thousands to millions of response bits for
this SRAM PUF. The address of a specific cell in such an array can be considered
the challenge of the SRAM PUF.

Results

SRAM PUFs were proposed by Guajardo et al. [45] and a very similar concept was
simultaneously presented by Holcomb et al. [52]. Guajardo et al. [45] collect the
power-up state of 8190 bytes of SRAM from different memory blocks on different
FPGAs. The results show an average inter-distance between two different blocks
of 49.97 %, and the average intra-distance within multiple measurements of a sin-
gle block is 3.57 % at nominal conditions and at most 12 % for large temperature
deviations. Holcomb et al. [52, 53] study the SRAM power-up behavior on two
different platforms: a commercial off-the-shelf SRAM chip and embedded SRAM
in a microcontroller chip. For 5120 blocks of 64 SRAM cells measured on eight
commercial SRAM chips at nominal conditions, they obtained an average inter-
distance of 43.16 % and an average intra-distance of 3.8 %. For 15 blocks of 64
SRAM cells from the embedded memory in three microcontroller chips, they ob-
tained μinter

P = 49.34 % and μintra
P = 6.5 %.

SRAM PUFs were tested more extensively by Selimis et al. [126] on 68 SRAM
devices implemented in 90 nm CMOS technology, including advanced reliability
tests considering the ramp time of the supply voltage (tramp) and accelerated ageing
of the circuit for an equivalent ageing time (tage) of multiple years. Their test results
show an average inter-distance μinter

P ≈ 50 % and intra-distances of μintra
P < 4 %

(nominal), μintra
P < 19 % (Tenv = −40 °C), μintra

P ≈ 6 % (Vdd ± 10 %), μintra
P < 10 %
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(tramp = 1 ms) and μintra
P < 14 % (tage = 4.7 years) respectively. Schrijen and van der

Leest [124] also perform a large investigation into the reliability and uniqueness of
SRAM PUFs across implementations in five different CMOS technologies (from
180 nm to 65 nm) coming from different SRAM vendors. For results we refer to
their paper. Both these extensive studies prove the generally strong PUF behavior of
SRAM power-up values over widely varying conditions and technologies.

2.4.5 Latch, Flip-Flop, Butterfly, Buskeeper PUFs

Besides SRAM cells, there are a number of alternative, more advanced digital stor-
age elements which are based on the bistability principle. They all have the potential
to display PUF behavior based on random mismatch between nominally matched
cross-coupled devices.

Latch PUFs

Su et al. [135] present an IC identification technique based on the settling state
of two cross-coupled NOR-gates which constitute a simple SR latch. By asserting
a reset signal, this latch is forced into an unstable state and when released it will
converge to a stable state depending on the internal mismatch between the NOR
gates. Experiments on 128 NOR-latches implemented on 19 ASICs manufactured
in 130 nm CMOS technology yield μinter

P = 50.55 % and μintra
P = 3.04 %. An equiv-

alent latch PUF cell structure based on cross-coupled NAND gates is possible, as
shown in Fig. 2.6a.

A practical advantage of this latch PUF construction over SRAM PUFs is that the
PUF behavior does not rely on a power-up condition, but can be (re)invoked at any
time when the device is powered. This implies that secrets generated by the PUF
need not be stored permanently over the active time of the device but can be recre-
ated at any time. Moreover, it allows us to measure multiple evaluations of each
response, which makes it possible to improve reliability through post-processing
techniques such as majority voting. An interesting approach is taken by Yamamoto
et al. [156], who use multiple evaluations of a latch PUF on FPGA to detect unre-
liable cells. Instead of discarding these cells, they consider them as a third possible
power-up state, besides stable at ‘0’ and stable at ‘1’, which effectively increases
the response length of the PUF by a factor of at most log2(3).

Flip-Flop PUFs

In [84], we propose a PUF based on the power-up behavior of clocked D flip-flops
on an FPGA platform. Most D flip-flop implementations are composed of a number
of latch structures which are used to store a binary state, as shown in Fig. 2.6b. These
internal latch structures cause the PUF behavior of a D flip-flop as for the basic latch
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Fig. 2.6 Different PUFs based on bistable memory elements

PUF. We measure the power-up values of 4096 D flip-flops from three FPGAs and
apply simple majority voting post-processing techniques, generating one response
bit from 5 measurements on 9 flip-flops, to improve the uniqueness of the responses.
This yields μinter

P ≈ 50 % and μintra
P < 5 %.

van der Leest et al. [150] perform a more elaborate experimental study, measur-
ing the power-up values of 1024 flip-flops on each of 40 ASIC devices and under
varying conditions. Their experiments yield an average inter-distance of 36 % on
the raw flip-flop values, and an average intra-distance strictly smaller than 13 %
even under large temperature variations. They also propose a number of basic post-
processing techniques to increase the uniqueness of the responses, including von
Neumann extraction [153] and XOR-ing response bits.

Butterfly PUFs

For FPGA platforms, SRAM PUFs are often impossible because the SRAM arrays
on most commercial FPGAs (when present) are forcibly cleared immediately after
power-up. This results in the loss of any PUF behavior. In an attempt to provide
an SRAM PUF-like construction which works on standard FPGAs, we propose the
butterfly PUF [72]. The behavior of an SRAM cell is mimicked in the FPGA recon-
figurable logic by cross-coupling two transparent data latches, forming a bistable
circuit depicted in Fig. 2.6d. Using the preset/clear functionality of the latches, this
circuit can be forced into an unstable state and will again converge when released.
Measurement results on 64 butterfly PUF cells on 36 FPGAs yield μinter

P ≈ 50 %
and μintra

P < 5 % under high temperature conditions. It must be noted that, due to
the discrete routing options on FPGAs, it is not trivial to implement the cell in such
a way that the mismatch by design is small. This is a necessary condition if one
wants the random mismatch caused by manufacturing variability to have any effect.
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Buskeeper PUFs

Simons et al. [132] propose yet another variant of a bistable memory element PUF
based on buskeeper cells. A buskeeper cell is a component that is connected to a bus
line on an embedded system. It is used to maintain the last value which was driven
on the line and prevents the bus line from floating. Internally, a buskeeper cell is a
simple latch with a weak drive-strength. A cross-coupled inverter structure at their
core, as shown in Fig. 2.6c, is again the cause of the PUF behavior of the power-up
state of these cells. An advantage of this PUF over other bistable memory cell PUFs
is that a basic buskeeper cell is very small, e.g. in comparison to typical latches and
D flip-flops.

2.4.6 Bistable Ring PUF

The bistable ring PUF as proposed by Chen et al. [22] presents a combination of
elements from both ring oscillator PUFs and SRAM PUFs. Its structure is very sim-
ilar to that of a ring oscillator PUF, consisting of a challengeable loop of inverting
elements. However, in contrast to the ring oscillator PUF, the number of inverting
elements is even, which implies that the loop does not oscillate but exhibits bista-
bility, like the SRAM PUF. Using reset logic, the bistable ring can be destabilized
and after a settling time it stabilizes to one of the two stable states. The preferred
stable state is again a result of process variations and hence instance-specific and us-
able as a PUF response. A single loop structure can be configured in many different
ways, each exhibiting its own preferred stable state, and the exact configuration is
controlled by the PUF’s challenge. Chen et al. [22] observe that the settling time to
reach a stable state is very challenge-dependent. Evaluating a response too quickly,
before the ring is completely settled, results in severely reduced uniqueness. An im-
plementation of a 64-element bistable ring PUF was configured on eight FPGAs and
evaluated 12 times for each of 50000 different challenges. With a settling time of
47 µs, this results in an average observed intra-distance of 2.19 % at nominal condi-
tions and 5.81 % at Tenv = 85 °C, and an average inter-distance of 41.91 %. Due to
the structural similarities between the bistable ring and a challengeable delay chain,
as for the arbiter PUF, modeling attacks could be possible. Currently, no modeling
results are known, but further analysis is required before strong claims regarding the
unpredictability of the bistable ring PUF can be made.

2.4.7 Mixed-Signal PUF Constructions

Next, we describe a number of integrated electronic PUF proposals whose PUF
behavior is inherently of an analog nature. This means that they also require em-
bedded analog measurement techniques, and an analog-to-digital conversion if their



2.4 Intrinsic PUF Constructions 41

responses are required in digital form, making them mixed-signal electronic con-
structions. While they are technically labelled as intrinsic PUFs, since they can be
integrated on a silicon die and take their randomness from process variations, it is
not straightforward to deploy these constructions in a standard digital silicon circuit,
due to their mixed-signal nature and possibly due to non-standard manufacturing
processes.

ICID: A Threshold Voltage PUF

To the best of our knowledge, Lofstrom et al. [82] were the first to propose an
embedded technique called ICID which measures implicit process variations on in-
tegrated circuits and uses them as a unique identifier of the embedding silicon die.
Their construction consists of a number of equally designed transistors laid out in an
addressable array. The addressed transistor drives a resistive load and because of the
effect of random process variations on the threshold voltages of these transistors, the
current through this load will be partially random. The voltage over the load is mea-
sured and converted to a bit string with an auto-zeroing comparator. The technique
was experimentally verified on 55 ASICs produced in 350 nm CMOS technology.
An average intra-distance under extreme environmental variations of μintra

P = 1.3 %
is observed, while μinter

P is very close to 50 %.

Inverter Gain PUF

Puntin et al. [106] present a PUF construction based on the variable gain of equally
designed inverters, caused by process variations. The difference in gain between a
pair of inverters is determined in an analog electronic measurement and converted
into a single bit response. The proposed construction is implemented in 90 nm
CMOS technology and an experimentally observed average intra-distance <0.07 %
at nominal conditions and <0.4 % at (Tenv = 125 °C, Vdd + 10 %) is reported; how-
ever, this already includes a masking of the 20 % least stable response bits. The
inter-distance is not presented, but it is mentioned that the correlation between re-
sponse strings from different PUF instances is less than 1 %.

SHIC PUFs

Rührmair et al. [117, 121] propose a circuit consisting of an addressable array of
diodes which is implemented as a crossbar memory in the aluminium-induced layer
exchange (ALILE) technology. They observe that the read-out time of each memory
cell, consisting of a single diode, is influenced by process variations and hence us-
able as a PUF response. Since each crosspoint in a dense grid of metal lines creates
a diode, a very high physical density of response bits of up to 1010 bit/cm2 can be
obtained; hence the name Super-High Information Content or SHIC PUF. The per-
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formance of the construction is very low, with read-out speeds limited to merely
100 bit/s. The authors claim that the combination of high density and low perfor-
mance provides protection against full read-out attacks, but it is unclear whether the
particularly low performance makes any practical application possible. The physi-
cal mechanisms to produce such a SHIC PUF were tested, but no experimental PUF
data is provided.

SRAM Failure PUF

An SRAM PUF variant is proposed by Fujiwara et al. [38]. The static noise margin
(SNM) of an SRAM cell is a key figure of merit describing the resistance of a cell
to voltage noise. Voltage noise exceeding the SNM alters a cell’s state and hence
deletes the information it is storing, resulting in a bit failure. The exact value of a
cell’s SNM is also influenced by silicon process variations; hence each cell in an
SRAM array will produce a bit failure at a slightly different noise level. Fujiwara
et al. [38] apply this observation to build a PUF. By gradually increasing the word
line voltage of an SRAM array, the SNM of a cell is reduced until it produces a
bit failure. They do this for a large array of cells and identify the first n failing
cells. The addresses of these cells are random and are used as the PUF’s responses.
They present experimental results from 53 test ASICs, each producing 128 response
bits, and report an average inter-distance of 49.92 %. The average observed intra-
distance is as low as 0.1 %, but this is already after an elaborate majority voting
post-processing. A very similar concept is proposed by Krishna et al. [70] as the
MECCA PUF. They shorten the word line duty cycle of the SRAM array to induce
failures.

2.4.8 Overview of Experimental Results

Table 2.1 summarizes all experimental results on intrinsic PUF constructions that
are discussed in this section. We compare the average response intra- and inter-
distances of the proposals since they are the most important quality parameters of a
PUF and are therefore nearly always mentioned for a PUF experiment. When pos-
sible, we also mention the details of the experiment which produced these statistics,
i.e. the condition under which the experiment was performed (α), and the size of the
experiment in terms of number of different PUF instances (Npuf), number of chal-
lenges measured per instance (Nchal), and number of evaluations of each challenge
(Nmeas).

Although the intra- and inter-distance means give a good first notion of the qual-
ity of a PUF, there are a number of other measures which need to be considered when
objectively comparing different PUF proposals. For one, the PUF proposals listed
in Table 2.1 represent a wide variety of different implementations. Besides the basic
PUF quality, the implementation efficiency and performance are equally important
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for most applications. However, for many PUF constructions, detailed implementa-
tion parameters are not provided, or implementation efficiency is even sacrificed to
improve the PUF quality. This gives a distorted picture when comparing different
PUFs solely based on Table 2.1. Moreover, the listed PUF constructions are also
implemented on a variety of platforms and technologies. We differentiate the used
platforms between field-programmable gate arrays (FPGAs), application-specific
integrated circuits (ASICs), commercial off-the-shelf products (COTS) and micro-
controllers (μCs). However, even within a single platform, different technologies
can be used, e.g. the different scaling CMOS technology nodes. Finally, as is clear
from the experiment details, the size of the experiments and hence the statistical sig-
nificance of the obtained results also varies greatly. To overcome these issues and
provide an objective comparison between intrinsic PUFs, we present an extensive
experimental analysis of a number of intrinsic PUF constructions in Chap. 4.

2.5 PUF Extensions

2.5.1 POKs: Physically Obfuscated Keys

The concept of a physically obfuscated key or POK was introduced by Gassend [40],
and generalized to physically obfuscated algorithms by Bringer et al. [14]. The only
condition for a POK is that a key is permanently stored in a ‘physical’ way instead
of a digital way, which makes it hard for an adversary to learn the key by a probing
attack. Additionally, an invasive attack on the device storing the key should destroy
the key and make further use impossible, hence providing tamper evidence. It is
clear that POKs and PUFs are very similar concepts, and it has already been pointed
out by Gassend [40] that POKs can be built from (tamper-evident) PUFs and vice
versa.

2.5.2 CPUFs: Controlled PUFs

A controlled PUF or CPUF, as introduced by Gassend et al. [41], is in fact a mode of
operation for a PUF in combination with other (cryptographic) primitives. A PUF is
said to be controlled if it can only be accessed via an algorithm which is physically
bound to the PUF in an inseparable way. Attempting to break the link between the
PUF and the access algorithm should preferably lead to the destruction of the PUF.
There are a number of advantages by turning a PUF into a CPUF:

• A (cryptographic) hash function to generate the challenges of the PUF can pre-
vent chosen-challenge attacks, e.g. to make model-building attacks more difficult.
However, for arbiter PUFs it has been shown that model-building attacks work
equally well for randomly picked challenges.



46 2 Physically Unclonable Functions: Concept and Constructions

• An error-correction algorithm acting on the PUF measurements makes the final
responses much more reliable, reducing the probability of a bit error in the re-
sponse to virtually zero.

• A (cryptographic) hash function applied on the error-corrected outputs effectively
breaks the link between the responses and the physical details of the PUF mea-
surement. This makes model-building attacks much more difficult. When hashing
a PUF’s response, error-correction is indispensable since any minor deviation on
the response gives an entirely unrelated hash result.

• The hash function generating the PUF challenges can take additional inputs, e.g.
allowing to give a PUF multiple personalities. This might be desirable when the
PUF is used in privacy-sensitive applications.

2.5.3 RPUFs: Reconfigurable PUFs

Reconfigurable PUFs or RPUFs were introduced by Kursawe et al. [73]. The idea
behind an RPUF is to extend the regular challenge-response behavior of a PUF with
an additional operation called reconfiguration. This reconfiguration has the effect
that the partial or complete challenge-response behavior of the PUF is randomly and
preferably irreversibly changed, leading to a new PUF. Kursawe et al. [73] propose
two possible implementations of RPUFs where the reconfiguration mechanism is an
actual physical reconfiguration of the randomness in the PUF. One is an extension of
optical PUFs, where a strong laser beam briefly melts the optical medium, causing
a random rearrangement of the optical scatterers, which leads to a completely new
optical challenge-response behavior. The second proposal is based on a type of non-
volatile storage called phase change memory. Writing to such a memory amounts
to physically altering the phase of a small cell from crystalline to amorphous or
somewhere in between, and it is read out by measuring the resistance of the cell.
Since the resistance measurements are more accurate than the writing precision, the
exact measured resistances can be used as responses, and rewriting the cells will
change them in a random way. Both proposals are rather exotic at this moment and
remain largely untested. A third proposed option is actually a logical extension of a
regular PUF. By fixing a part of a PUF’s challenge with a fuse register, the PUF can
be reconfigured by blowing a fuse, which optimally leads to a completely changed
challenge-response behavior for the remaining external challenge bits.

Katzenbeisser et al. [64] generalize this last option in a logically reconfigurable
PUF (LRPUF). An LRPUF consists of a regular PUF, a portion of non-volatile mem-
ory that stores a state and state-dependent input- and output-transformations respec-
tively on the PUF’s challenge and response. By updating the state of an LRPUF
using an appropriate state-update mechanism, the input- and output-transformations
change, resulting in a completely different challenge-response behavior for the
whole construction. This state update is hence a logical form of reconfiguring the
PUF. Katzenbeisser et al. [64] propose a number of practical input and output trans-
formations and state update mechanisms which achieve interesting security proper-
ties. LRPUFs have some drawbacks with respect to actual physically reconfigurable
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PUFs as proposed by Kursawe et al. [73]: (i) it is debatable whether the reconfig-
uration of an LRPUF is truly irreversible, since if an old internal state is restored,
the same challenge-response behavior will reappear, and (ii) the security of the log-
ical reconfiguration relies on the integrity of the state memory, which needs to be
guaranteed by independent physical protection measures. However, their relatively
easy construction in comparison to the rather exotic physically reconfigurable PUF
proposals makes them immediately deployable.

A more specific form of a reconfigurable PUF is introduced by Rührmair et al.
[120] as an erasable PUF. An erasable PUF is best described as a reconfigurable
PUF with a reconfiguration granularity of a single challenge-response pair, i.e. the
behavior of a single challenge-response pair of an erasable PUF instance can be
(irreversibly) altered while keeping the behavior of all other pairs fixed. As demon-
strated by Rührmair et al. [120], this construction enables some interesting security
features for protocols based on erasable PUFs.

2.5.4 PPUFs: Public PUFs and SIMPL Systems

A number of attempts to use PUFs as part of a public-key-like algorithm have been
made. SIMPL systems were proposed by Rührmair [112] and are an acronym for
Simulation Possible but Laborious. Two potential implementations of such a system
are discussed by Rührmair et al. [114]. A very similar concept was proposed by
Beckmann and Potkonjak [6] as Public PUFs or PPUFs. Both SIMPL systems and
PPUFs rely on physical challenge-response systems (PPUFs) which can be modeled
explicitly, but for which evaluating the model is laborious and takes a detectably
longer amount of time than the evaluation of the PPUF itself.

2.6 Conclusion

2.6.1 Overview of PUF Constructions

In this chapter, we have extensively studied the physically unclonable function con-
cept through an elaborate overview and discussion of known constructions. This
overview provides a deep exploration of the great diversity of different PUF pro-
posals, each with its own implementation details, practical considerations, security
characteristics and performance results. The listing and comparison of these fea-
tures, which by itself already serves as a convenient reference work, will be of great
value when trying to determine a set of common defining properties of PUFs in
Chap. 3. We also propose an interesting classification of PUFs into intrinsic and
non-intrinsic based on certain practical qualities of their construction. It is argued
why intrinsic PUFs are considered advantageous with regard to security and cost-
efficiency. In the presented overview, as is the case in PUF-related literature, the
focus is therefore on intrinsic PUFs.
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2.6.2 Insight into PUF Constructions

The presented overview also provides a lateral insight into PUF implementation
techniques and their effect on the quality of the PUF behavior. When we focus on
the intrinsic PUF proposals, a number of interesting observations can be made:

• Most intrinsic PUF constructions deploy a differential measurement technique,
e.g. the arbiter PUF and the ring oscillator PUF, and all of the PUFs based on
bistability. This turns out to be beneficial, both for the uniqueness and the relia-
bility of their responses. Considering uniqueness, a (small) differential structure
is often much more strongly affected by the locally random influence of process
variations, and less prone to exhibit bias due to deterministic variations which
mostly manifest at larger scales. For reliability, it is wellknown that a differen-
tial measurement exhibits a much lower sensitivity to measurement noise and is
able to even completely compensate the effect of some external conditions on a
measured value.

• For a given PUF construction, the quality of its PUF behavior can be enhanced
in one of two ways to amplify uniqueness and reduce noise: (i) by physically
tweaking the implementation details, and (ii) by algorithmically post-processing
the measured values into responses.

• For physical enhancements of a given PUF construction, it is a rule of thumb that
the quality of a construction’s PUF behavior is directly influenced by the degree
of low-level physical control one has over the implementation technology. The
reasoning behind this is that the source of the PUF behavior is always of a purely
physical nature, and the closer to bare physics one can design a construction, the
more possibilities one has of accurately capturing this behavior. This is clear from
the results on the mixed-signal-based intrinsic PUF constructions in Sect. 2.4.7:
by evaluating the PUF behavior at the analog level, one is able to build more
reliable and more unique PUFs. However, on the down side, the development
effort also rises exponentially when designing an implementation at increasingly
lower levels of physical abstraction. Additionally, many standard manufacturing
flows do not provide low levels of physical manufacturing detail.

• Simple algorithmic improvements such as masking of unreliable responses and
majority voting over many responses to improve reliability and/or uniqueness
are in some proposals considered an inherent part of the PUF construction. As
will become clear in the following chapters, algorithmic post-processing of PUF
responses, to make them fit for being used in an application, can take very elab-
orate forms and is typically not considered as part of the PUF construction, but
as a separate primitive. Algorithmic improvements nearly always imply a trade-
off between the efficiency and/or performance of the PUF construction and the
quality of its output, e.g. to obtain a number of PUF-derived bits with a very high
reliability level, the required number of actual PUF response bits needed can be
tenfold or even much more.



Chapter 3
Physically Unclonable Functions: Properties

3.1 Introduction

3.1.1 Motivation

In Chap. 2, we introduced the PUF concept and illustrated it by means of an ex-
tensive enumeration of exemplary constructions which have been proposed over the
years. From this list it is clear that the term ‘PUF’ has been used, in printed publica-
tions but even more so in colloquial speech, as a label for a wide variety of different
constructions. However, intuitively it is clear that all these constructions share a
number of specific properties. When properly and unambiguously described, these
properties allow us to define a PUF, i.e. to identify the specific attributes which make
us intuitively label certain constructions as PUFs and others not.

In many publications which introduce a new PUF construction, a definition for
the more general PUF concept is attempted, using varying degrees of formalism.
While often fitting for the construction proposed in the same publication, most of
these definitions run into problems when applied to the wider group of different
PUF constructions, as discussed in Chap. 2:

• Some proposed definitions are too strict since they clearly exclude a number of
constructions which are labelled as PUFs, e.g. the early definition of a physical
one-way function as proposed by Pappu [104] includes a one-wayness property,
but almost none of the PUF constructions proposed afterwards meet this very
strict condition.

• Other definitions are too loose, i.e. they apply equivalently to constructions which
are generally not considered as PUFs, e.g. true random number generators.

• Many of the proposed definitions are an ad hoc listing of the perceived quali-
ties of the simultaneously proposed new PUF construction, and lack a degree of
generalization.

These issues, combined with the fact that there are nearly as many different PUF
definitions as there are PUF constructions, have caused confusion and even lead to
problematic situations. One particular problem which occurs regularly is that some
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of these ad hoc properties which often appear in PUF definitions are quickly gener-
alized to all PUFs, whereas many proposed PUF constructions do in fact not meet
them. It becomes even worse when some recurring properties are in practice even
assumed for a newly proposed PUF construction, without ever actually verifying
if the construction meets them. It goes without saying that this can lead to disas-
trous failures when security-sensitive systems using such a PUF construction rely
on these properties.

Most of these PUF definitions are moreover of an informal nature. While not
problematic by itself, this does cause issues when PUFs are deployed in formal
systems such as cryptographic algorithms and protocols. Designers of such formal
systems are typically not familiar with the physical intricacies of a PUF construction
and need to rely on a strictly defined formal model of the PUF. On the other hand,
it turns out to be particularly difficult to capture the physical behavior in an un-
ambiguous and meaningful formal description. Either the description is not formal
enough, which significantly reduces the usability for a formal designer, or it is too
formal, which makes it impossible for practice-oriented PUF developers to evaluate
the strict formal conditions for their PUF construction. Especially in the latter case,
there is the risk of introducing a model which is picked up in the formal world, but
which has no realistic connection to actual implementations any more.

3.1.2 Chapter Goals

Whereas Chap. 2 was intended as an exploration of the expanding field of physically
unclonable functions, the goal of this chapter is to introduce a classification in this
large and widely differing collection of PUF proposals based on the algorithmic
properties of their challenge-response behavior. In this chapter we aim to:

• Give a detailed overview of significant properties which have, at one point or
another, been attributed to PUFs, and propose a semi-formal definition of these
properties based on their intuitive description.

• Make a comparative analysis of the defined properties on a representative sub-
set of PUF proposals in order to distinguish between defining and nice-to-have
characteristics. This analysis will yield a much more tactile definition of what we
have intuitively called a PUF in Chap. 2.

• Discuss a formal framework for deploying PUFs in formal security models, which
is partially based on this semi-formal study. The objective is to develop a frame-
work which is formal enough to allow meaningful security reductions, but at the
same time sufficiently realistic and flexible to actually demonstrate the formally
defined properties for real PUF implementations.

3.1.3 Chapter Overview

In Sect. 3.2, we do a study on the many different PUF properties which have been
proposed over time. By means of a comparative analysis over a representative set
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of PUF constructions, we identify which properties are defining and which are only
nice to have. This study is an extended and updated version of our earlier work in
[83, Sect. 4]. In Sect. 3.3, we propose a set of formal definitions of the most im-
portant PUF properties, which is intended as a carefully balanced interface between
practical PUF developers and theorists. This section is based on our work in [3]. We
conclude this chapter in Sect. 3.4.

3.2 A Discussion on the Properties of PUFs

In this section, we start by listing a number of properties which are sensible to
assess for PUFs, and most of them have therefore been attributed at one or more
occasions to particular PUF constructions. We define these properties in a semi-
formal way using the notation introduced in Sect. 2.2. The definitions are semi-
formal in the sense that, while attempting to be as unambiguous as possible, we
refrain from introducing a plethora of quality parameters which would make the
notation needlessly complex. In that respect, we use informal qualifiers like easy
and hard, small and large, and high and low to express the bounds imposed by most
properties.

To avoid confusion, we want to state explicitly that at this moment we only define
a number of properties, and we make no claims yet as to which PUF constructions
satisfy which properties, or as to which properties are naturally implied for all PUFs.
Such an analysis is only done in Sect. 3.2.9 based on a representative subset of
proposed PUF constructions and is discussed in Sect. 3.2.10.

3.2.1 Constructibility and Evaluability

The notion of evaluability of a PUF construction is a purely practical and rather
basic consideration expressing the fact that the required effort to obtain a meaningful
outcome of a PUF instance should be feasible. Before defining evaluability, we first
want to introduce the even more basic notion of constructibility, i.e. the condition
that it is actually possible to produce instantiations of a particular PUF design.

Constructibility

Definition 5 A PUF class P is constructible if it is easy to invoke its Create pro-

cedure and produce a random PUF instance puf ← P .Create(rC $← {0,1}∗).

It is hard to discuss the remaining properties for proposals which have no feasible
instantiations. Constructibility is therefore a conditio sine qua non for evaluability,
and by extension for all of the following properties listed here. The qualifier ‘easy’
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in the definition is context-dependent. Since PUFs are physical objects, their con-
structibility requires at least that they be possible within the laws of physics. From
a more practical viewpoint, ‘easy’ relates to the cost of producing an instance of a
particular PUF class. An important detail in the definition of constructibility is that
it is merely easy to construct a random PUF instance, i.e. without any specific re-
quirements on its challenge-response behavior, whereas constructing a specific PUF
instance can be infeasibly hard. In Sect. 3.2.4, we will discuss why it is even desir-
able that this is hard.

Evaluability

Definition 6 A PUF class P exhibits evaluability if it is constructible, and if for
any random PUF instance puf ∈ P and any random challenge x ∈ XP it is easy to

evaluate a response y ← puf(x).Eval(rE $← {0,1}∗).

Since the following properties all deal with the challenge-response behavior of
PUF instances, it is hard to discuss the meaningfulness of constructions which are
not evaluable. The ‘easiness’ expressed in the definition is again context-dependent.
In a theoretical treatise, this typically points to some variant of ‘in polynomial time
and effort’. Practically however, an easy evaluation means an evaluation which is
possible within the strict timing, area, power, energy and cost budget imposed by the
application. From this point of view, an evaluation which is easy for one application
could be infeasible for another one.

3.2.2 Reproducibility

The first property of a PUF’s challenge-response behavior we will discuss is its
reproducibility, which is technically also of a practical nature. However, as will
become clear later on, it also has strong repercussions on the attainable security
parameters of PUF-based applications.

Definition 7 A PUF class P exhibits reproducibility if it is evaluable, and if

Pr
(
Dintra

P is small
)

is high.

Reproducibility is defined with respect to the distribution of the response intra-
distance of the entire PUF class, i.e. considering evaluations of random challenges
on random PUF instances. This means that with high probability, responses resulting
from evaluating the same challenge on the same PUF instance should be similar,
i.e. close in the considered distance metric. If the evaluation condition (α) has an
impact on the responses, the definition is extended by considering the response intra-
distance under condition α: Dintra

P;α . The qualifiers ‘small’ and ‘high’ in the definition
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are context-specific. Whether an intra-distance is ‘small’ is generally determined in
relation to similar notions in other properties such as uniqueness (cf. Definition 8),
e.g. as made explicit in the definition of identifiability (cf. Definition 9). How ‘high’
the probability needs to be typically follows from the application requirements.

3.2.3 Uniqueness and Identifiability

The most basic security-related property of PUFs is uniqueness: the observation that
a PUF response is a measurement of a random and instance-specific feature.

Uniqueness

Definition 8 A PUF class P exhibits uniqueness if it is evaluable, and if

Pr
(
Dinter

P is large
)

is high.

In the same way as reproducibility, uniqueness is defined with respect to the
distribution of the response inter-distance random variable of the entire PUF class,
i.e. considering evaluations of random challenges on random pairs of PUF instances.
This means that, with high probability, responses resulting from evaluating the same
challenge on different PUF instances should be dissimilar, i.e. far apart in the con-
sidered distance metric. Uniqueness is generally assessed at nominal operating con-
ditions; hence there is no need to extend this definition to varying evaluation condi-
tions. The qualifiers ‘large’ and ‘high’ are again context-specific.

Identifiability

When a PUF class exhibits both reproducibility and uniqueness, it follows that its
PUF instances can be identified based on their responses. We express this in the
separate property of identifiability.

Definition 9 A PUF class P exhibits identifiability if it is reproducible and unique,
and in particular if

Pr
(
Dintra

P < Dinter
P

)
is high.

Identifiability expresses the fact that responses (to the same challenge) coming
from a single PUF instance are more alike than responses coming from different
instances. This means that, using their response evaluations, instances of the PUF
class can state a static identity which is with high probability unique. The details
of how such an identification scheme can be implemented are given in Sect. 5.2.
The extent to which a PUF class is identifiable is often quickly estimated based on
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experimental results, by comparing the average observed intra- and inter-distances
and demonstrating that μintra

P � μinter
P . From this and the following definitions, it

is also evident why the distributions of Dinter
P and Dintra

P play a pivotal role in the
assessment of the usability of a particular PUF class, and why it is important to get
accurate information about these distributions from experimental statistics.

3.2.4 Physical Unclonability

Assume an adversary which has control over the creation procedure of a PUF class,
i.e. it can influence the conditions, parameters and randomness sources of P .Create
to a certain (feasible) extent. When considering identification based on PUF re-
sponses in the presence of such an adversary, a stronger argument is required to
ensure that all PUF-based identities are unique with high probability. This is be-
cause this adversary can use its control over the instance creation process to attempt
to produce two PUF instances which are more alike than one would expect based
on the uniqueness property. To avoid this, one would like to enforce the uniqueness
property, i.e. to ensure that the uniqueness property is met, even in the presence of
such an adversary. This is what we call physical unclonability.

Definition 10 A PUF class P exhibits physical unclonability if it is evaluable, and
if it is hard to apply and/or influence the creation procedure P .Create in such a way
as to produce two distinct PUF instances puf and puf′ ∈ P for which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is high,

for X ← XP . In extremis, it should be very hard to produce two PUF instances for
which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is low.

The qualifier ‘hard’ in this definition reflects the physical and technical difficul-
ties (or impossibility) in creating such a PUF instance pair. These difficulties need
to be evaluated with respect to the technical capabilities of the adversary, which
ultimately is a function of its expertise and its equipment budget. Note that the dif-
ficulty of producing a non-unique PUF instance pair, as described in the definition,
implies the difficulty of producing a single PUF instance which is more alike to
a given PUF instance than expressed by the uniqueness property. When combined
with constructibility, physical unclonability can be summarized as: it is easy to cre-
ate a random PUF instance, but hard to create a specific one.

A PUF class which exhibits physical unclonability has the interesting security ad-
vantage that even the genuine manufacturer of PUF instances has no way of breaking
the uniqueness property. This means that one does not need to trust the manufacturer
to make sure every PUF instance is unique with high probability, since this is im-
plied by the physical unclonability of the PUF class. This advantage of ‘physically
unclonable PUFs’ is called manufacturer resistance.
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3.2.5 Unpredictability

Many applications of PUFs rely on their challenge-response functionality, i.e. the
ability to apply a challenge and to receive a random response in reply. In that re-
spect, uniqueness, and by extension physical unclonability, are often not sufficient
to ensure security. One also requires unpredictability between responses on a sin-
gle PUF instance, i.e. unobserved responses remain sufficiently random, even after
observing responses to other challenges on the same PUF instance.

Definition 11 A PUF class P exhibits unpredictability if it is evaluable, and if it is
hard to win the following game for a random PUF instance puf ∈ P :

• In a learning phase, one is allowed to evaluate puf on a limited number of chal-
lenges and observe the responses. The set of evaluated challenges is X ′

P and
the challenges are either randomly selected (weak unpredictability) or adaptively
chosen (strong unpredictability).

• In a challenging phase, one is presented with a random challenge X ← XP \X ′
P .

One is required to make a prediction Ypred for the response to this challenge when
evaluated on puf. One does not have access to puf, but the prediction is made by
an algorithm predict which is trained with the knowledge obtained in the learning
phase: Ypred ← predict(X).

• The game is won if

Pr
(
dist

[
Ypred ← predict(X);Y ← puf(X)

]
< Dinter

P (X)
)

is high.

Note the similarity in the expressions involving the distribution of the inter-
distance in this definition and the definition of physical unclonability. However,
instead of considering the distance to a second created PUF instance puf′, here we
consider the distance to a prediction algorithm predict which is trained on an ear-
lier observed set of challenges and responses on the same PUF instance. We use a
game-based description for unpredictability to avoid having to put any restrictions
on the prediction algorithm, i.e. unpredictability is defined with respect to the best
conceivable prediction algorithm which can be built, trained and evaluated within
the capabilities of the adversary. In the best case, one can show that responses to
different challenges are completely independent, which means they cannot be pre-
dicted by any prediction algorithm. However, such a strong quality can rarely be
proven for a PUF construction, and at best one can assume it for certain PUFs based
on a physical motivation.

For other PUF constructions, responses are not independent and their unpre-
dictability relies on the computational difficulty of constructing, training and evalu-
ating an appropriate prediction algorithm. In that case, the extent of unpredictability
can only be estimated in relation to the currently best-known modeling attack, since
there is no guarantee that no better attacks exist. This is similar to the situation for
most cryptographic symmetric primitives, e.g. a block cipher like AES, where a
primitive is only as secure as indicated by the currently best-known attack. Kerck-
hoffs’ principle typically also applies to PUFs, i.e. an adversary has full knowledge
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about the design and implementation details of a particular PUF construction, except
for the instance-specific random features introduced during the creation process.
The efficiency of a practical model building attack aimed at breaking the unpre-
dictability of a PUF is typically expressed by their prediction accuracy as a function
of the size of the training set, e.g. as done in the description of modeling attacks on
arbiter PUFs in Sect. 2.4.1.

3.2.6 Mathematical and True Unclonability

In the definition of unpredictability, an adversary is restricted to learning a lim-
ited number of (possibly random) challenge-response pairs which it uses to train its
prediction algorithm. This is typically the case in a challenge-response-based pro-
tocol where the adversary eavesdrops on the protocol communications. However,
a stronger adversarial model needs to be considered when the adversary has unlim-
ited physical access to a PUF instance. This means it can learn as many challenge-
response pairs as it is capable of storing and possibly even make useful observations
of the PUF instance beyond the challenge-response functionality.

Definition 12 A PUF class P exhibits mathematical unclonability if it is unpre-
dictable, even if there is no limit on the access to the PUF instance during the learn-
ing phase (as described in Definition 11), besides one’s own capacities.

Mathematical unclonability is hence the extension of unpredictability to an ad-
versary with unlimited physical access to a PUF instance. It is therefore evident that
mathematical unclonability implies unpredictability.

A direct condition for a PUF class P to be mathematically unclonable is that its
challenge set XP be very large, preferably exponential in some construction param-
eter of P . If this is not the case, an adversary with unlimited physical access to a PUF
instance can evaluate the complete challenge set and store the observed responses
in a table. This table then serves as a perfect prediction model of the considered
PUF instance and the unpredictability property is broken (technically, there are no
challenges left to play the challenging phase of the unpredictability game with).
The same argument holds if the challenge set is large, but if a near-perfect response
prediction algorithm can be trained based on a small subset of these challenges.

True Unclonability

We have defined two different notions of unclonability: physical and mathematical
unclonability. Both describe a property with the same objective, i.e. it is hard to
clone a PUF instance, but from completely different perspectives. Physical unclon-
ability deals with actual physical clones of PUF instances, whereas mathematical
unclonability deals only with cloning the challenge-response behavior of a PUF in-
stance. For a PUF class to exhibit true unclonability, both properties need to be
met.
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Definition 13 A PUF class P exhibits true unclonability if it is both physically and
mathematically unclonable.

3.2.7 One-Wayness

We describe a one-wayness property for PUFs similar to the one in the definition of
physical one-way functions as proposed by Pappu [104].

Definition 14 A PUF class P exhibits one-wayness if it is evaluable, and if given
a random PUF instance puf ∈ P , there exists no efficient algorithm invertpuf :
YP → XP which is allowed to evaluate puf a feasible number of times and for
which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf

(
invertpuf(Y )

)]
> Dintra

P (X)
)

is low,

for X ←XP .

Hence, given a PUF instance and a random response of that instance, there exists
no efficient inversion algorithm acting on the PUF instance, that finds a challenge
that would produce a response close to the given response. This definition resembles
the classic definition of a one-way function in theoretical cryptography, but takes
the unreliability and the uniqueness of a PUF instance into account. However, the
notion of one-wayness is somewhat ambiguous for PUF constructions since, besides
depending on the actual algorithmic complexity of inverting a PUF instance, it also
depends very much on the attainable sizes of the challenge and response sets of the
PUF constructions. For PUF constructions with a small challenge set, one-wayness
is not achievable since the inversion algorithm can easily evaluate every possible
challenge and perform an inverse table lookup to invert a given response. On the
other hand, if the response set is small, the inversion algorithm can evaluate random
challenges on the PUF instance and will quickly encounter one which inverts a given
response.

3.2.8 Tamper Evidence

Tampering is the act of permanently altering the physical integrity of a system,
e.g. of a PUF instance, with the intent of modifying its operation in an unautho-
rized and possibly harmful manner. It is hence a type of physical transformation
which we denote as puf ⇒ puf′ to make clear that physical changes were made.
Directed tampering represents a powerful attack against security implementations.
It can be used to remove or bypass protection mechanisms and leave the imple-
mentation vulnerable, or to obtain information about sensitive internal values and
parameters. Protection against tampering is a matter of detecting tampering and
providing an appropriate reaction, e.g. clearing confidential data and/or blocking all
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functionality. In order to detect tampering, a security system needs to have some
level of tamper evidence, i.e. a tampering attempt will have an unavoidable and
measurable impact on the system. Certain types of PUF constructions, which rely
on sensitive measurements of random physical features of an instance, cannot be
physically tampered with without significantly changing their challenge-response
behavior.

Definition 15 A PUF class P exhibits tamper evidence if it is evaluable, and if
given a random PUF instance puf ∈P , any physical transformation of puf ⇒ puf′
has the effect that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is high,

and ideally that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is low.

Informally, tamper evidence means that it is very hard to physically alter a
PUF instance without having a noticeable effect on its challenge-response behavior,
i.e. an effect which with high probability is larger than the unreliability of the PUF
as expressed by the distribution of Dintra

P . Ideally, such an alteration even causes the
PUF instance to become a completely different one, i.e. the effect on its challenge-
response behavior is indiscernible from replacing the PUF instance with a different
unique instance as expressed by the distribution of Dinter

P .
In a sense, tamper evidence is an orthogonal property to physical unclonability.

Physical unclonability states that it is very hard to make two distinct PUF instances
more alike than is to be expected from physically different instances. Tamper evi-
dence on the other hand states that it is very hard to physically alter a single PUF
instance resulting in a different PUF instance which is more alike to the original than
is to be expected from physically different instances. Tamper-evident PUFs are self-
protecting in the sense that a tampering attack on their implementation unavoidably
and substantially alters their responses, which generally results in a blocked func-
tionality or a loss of secret information. Moreover, they can also be deployed as
to make a larger security system tamper-resistant by encapsulating the system in a
tamper-evident PUF instance.

3.2.9 PUF Properties Analysis and Discussion

We will now evaluate the properties defined in this section on a representative set
of proposed PUF constructions described in Chap. 2, as well as on a number of
non-PUF reference cases. This analysis will clarify which of these properties are
met by all PUF proposals, which are only met by a few or by none at all, and most
importantly, which subset of properties differentiates the PUF and non-PUF con-
structions.
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Representative Subset of Constructions

We have selected a representative set of both non-intrinsic and intrinsic PUF con-
structions to do this comparative analysis on. We have only selected proposals for
which actual implementations have been done and for which experimental data is
available. The PUF constructions we will consider are:

1. The optical PUF as proposed by Pappu et al. [105].
2. The coating PUF as proposed by Tuyls et al. [147].
3. The simple arbiter PUF as proposed by Lee et al. [75].
4. The feed-forward arbiter PUF as proposed by Lee et al. [75].
5. The XOR arbiter PUF as proposed by Majzoobi et al. [94].
6. The basic ring oscillator PUF as proposed by Suh and Devadas [136].
7. The enhanced ring oscillator PUF as proposed by Maiti et al. [92].
8. The SRAM PUF as proposed by Guajardo et al. [45].
9. The latch, flip-flop, butterfly and buskeeper PUFs as respectively proposed by

Su et al. [135], Maes et al. [84], Kumar et al. [72] and Simons et al. [132].
It is clear that these PUFs will have identical properties since they only differ
slightly in their construction details. Therefore we treat them simultaneously.

10. The glitch PUF as proposed by Shimizu et al. [129].
11. The bistable ring PUF as proposed by Chen et al. [22].

To be able to differentiate between PUFs and non-PUF constructions which are
used to achieve similar objectives, we have selected a representative set of non-PUF
reference constructions. In order to be able to assess the properties of this section on
these non-PUF references, we explicitly state what we consider to be the challenge
and the response. The non-PUF reference cases we consider are:

1. A true random number generator or TRNG. A TRNG is a process which gen-
erates a stream of uniformly random numbers based on measurements of a dy-
namically random physical process. A TRNG’s output is truly random since it
results from a non-deterministic physical process, as opposed to the output of a
mathematical algorithm, known as a seeded pseudo-random number generator,
which only appears random but can in fact be deterministically calculated if the
seed is known. For easy comparison, we say the single challenge of the TRNG is
a request for a random number and the response is a fixed-length random output
string.

2. A very simple, unsecured radio-frequency identification (RFID) scheme. In this
most basic form, an RFID tag is nothing more than a small non-volatile memory
which upon deployment is programmed with a unique identifier string. When
triggered by a reader, the tag broadcasts this string to identify itself. For easy
comparison, we say the single challenge of this RFID scheme is the reader’s
trigger and the response is the identifier string broadcasted by the tag.

3. An implementation of a secure (unkeyed) cryptographic hash function. We say
the challenge is a (fixed-length) message string and the response is the resulting
hash digest of that message.
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4. An implementation of a secure cryptographic block cipher, with a randomly gen-
erated encryption key which is programmed in a non-volatile memory in the
implementation. We say the challenge of this block cipher is a single block of
message data and the response is the resulting block of ciphertext data.

5. An implementation of a secure cryptographic public-key signature algorithm,
with a randomly generated public/private key pair of which the private key is pro-
grammed in a non-volatile memory in the implementation. We say the challenge
of this signature algorithm is a (fixed-length) message string and the response is
the resulting signature on this message.

Comparative Analysis

For every construction listed above, we have assessed whether it meets the different
properties discussed in this section. The resulting analysis is shown in Table 3.1. We
make four distinctions as to what extent a construction exhibits a certain property:

• V: the construction exhibits the property fully or to a large extent
• X: the construction does not exhibit the property
• !: the construction only exhibits the property under certain conditions
• ?: it is not clear or unknown whether the construction exhibits the property

Note that the assessments presented in Table 3.1 are only a reflection of the current
state of the art, to the best of our knowledge. However, due to the natural progress in
mathematical and physical attacks, and in manufacturing techniques, some of these
classifications can change over time. We will shortly discuss the presented results
for each property and the reasoning behind certain classifications.

Constructibility All considered constructions are constructible since for all of
them known implementations exist. However, some of them require more construc-
tion effort than others. The optical and coating PUFs rely on explicitly introduced
randomness during manufacturing and are therefore non-intrinsic; the other consid-
ered PUF constructions are intrinsic. The RFID scheme, the block cipher and the
signature algorithm also require explicit programming of a random string.

Evaluability All considered constructions are also evaluable since experimental
results are available for all of them. However, some of them require more evaluation
effort than others. The optical PUF evaluation procedure is quite elaborate, requiring
a laser and a very accurate mechanical positioning system. The SRAM PUF and the
flip-flop and buskeeper PUFs require a power cycle to evaluate them, since they rely
on the power-up behavior of their construction.

Reproducibility This is the first differentiating property between PUFs and non-
PUFs, since it clearly distinguishes the PUF constructions from the TRNG. A TRNG
is by definition not reproducible, since this would make it deterministic. The other
non-PUF reference cases are perfectly reproducible, i.e. with zero intra-distance.
The reproducibility of the PUF proposals varies from more than 25 % average intra-
distance for the optical PUF to less than 1 % for the ring-oscillator PUF.
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Uniqueness All PUF proposals exhibit uniqueness with average inter-distances
of merely 23 % and 38 % respectively for the simple and the feed-forward arbiter
PUFs, and very close to 50 % for the other constructions. The TRNG evidently also
exhibits ideal uniqueness. Uniqueness is a differentiating feature between PUFs and
hash functions. Because the considered hash function has no random elements, ev-
ery implementation instance will exhibit exactly the same challenge-response be-
havior. The other three non-PUF constructions are unique if and only if they have
been programmed with a unique bit string, which is true with high probability in the
regular manufacturing process.

Identifiability This is the combination of reproducibility and uniqueness. TRNGs
and hash functions do not meet this property, respectively for not being reproducible
and not being unique. All other constructions exhibit identifiability, with for most of
them even a large separation between the distributions of intra- and inter-distance,
allowing an unambiguous identification based on their responses.

Physical Unclonability As expected, physical unclonability is the great divider
between PUF and non-PUF constructions. The uniqueness of all PUF proposals re-
sults from random physical processes during their manufacturing process, either
implicitly or explicitly, which are so complex that it is considered infeasible to
have any meaningful influence on them. Moreover, for all considered PUF con-
structions, these random processes take effect at microscopic and (deep) submicron
levels, which makes it even more technically infeasible to analyse them or exert any
control over them. This is in great contrast to the uniqueness of the RFID scheme,
the block cipher and the signature algorithm which is based on the programming of
a relatively short random bit string. For an adversary which controls the manufac-
turing process, and hence this programming step, it is not at all difficult to program
more than one instance with the same string. For this reason, these constructions are
not considered physically unclonable.

Unpredictability Following the modeling attacks on simple and feed-forward ar-
biter PUFs as discussed in Sect. 2.4.1, these two constructions only remain unpre-
dictable as long as an adversary does not learn enough challenge-response pairs to
accurately train its model. The actual number of unpredictable responses depends
on the details of the implementation and on the state of the art in modeling attacks,
but this can be very limited: modeling attacks have been presented which achieve
better than random accuracy after less than 100 training responses and improve to
near-perfect accuracy when more responses are learned. For the XOR arbiter PUF
with a sufficient number of XOR-ed arbiters (≥5), no effective modeling attacks are
yet known, and the same holds for the enhanced ring oscillator PUF, the glitch PUF
and the bistable ring PUF, although for none of these four PUFs can strong claims of
independence between response bits be made. For the optical PUF, reasonable argu-
ments are presented by Škorić et al. [133], Tuyls et al. [146] that modeling attacks
are computationally infeasible. For the remaining PUFs, response bits are produced
by physically distinct elements, which is a strong motivation to assume that differ-
ent responses are independent and hence inherently unpredictable. Consequently, no
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modeling attacks are known for these PUFs. All the non-PUF constructions except
for the RFID scheme and the hash function exhibit unpredictability, the TRNG be-
cause of random physical influences and the block cipher and the signature scheme
because of a secret element and computational complexity arguments. The RFID
scheme is trivially predictable since it only has one single fixed response. The hash
function construction contains no unique element (key) and is easily predicted.

Mathematical Unclonability Simple and feed-forward arbiter PUF constructions
are not mathematically unclonable since they are only conditionally unpredictable.
The coating PUF, the ring oscillator PUF, the SRAM PUF and the four other bistable
memory element PUFs do not exhibit mathematical unclonability because the size
of their challenge sets is small, which means they can be fully evaluated to pro-
duce a lookup table as a trivial mathematical clone. For the XOR arbiter PUF, the
enhanced ring oscillator PUF, the glitch PUF and the bistable ring PUF, no practi-
cal mathematical cloning attacks are known, but more research is required before
any strong claims can be made. Škorić et al. [133], Tuyls et al. [146] argue that
the optical PUF is to a large extent mathematically unclonable, since even if (hy-
pothetically) a mathematical model of an optical PUF instance could be created,
it would be computationally too complex to be evaluated. However, this turns out
to be very implementation-dependent, as Rührmair [113] states that a variant of an
optical PUF with reduced randomness can in fact be modeled. Finally, the block
cipher and the signature algorithm are assumed to be mathematically unclonable
under the condition that an adversary is not able to extract the secret key during
its unlimited physical access to an instance. This implies that, besides being algo-
rithmically secure, the implementations of these cryptographic primitives also need
to be physically protected, e.g. against side-channel and fault attacks, and against
reverse-engineering.

True Unclonability This is the combination of physical and mathematical un-
clonability. The optical PUF is the only one of the considered PUF constructions for
which strong claims of true unclonability can be made.

One-Wayness Besides the optical PUF, none of the other studied PUF proposals
can be considered one-way since they either have a small challenge or a small re-
sponse set. Pappu [104] presents strong arguments why his optical PUF construction
does exhibit one-wayness, hence being labelled a physical one-way function. If the
block cipher is algorithmically secure and its key remains secret, it is considered to
be hard to invert. The same holds for the unkeyed hash function. A public-key sig-
nature algorithm is not guaranteed to be one-way, since everyone with knowledge
of the public key can verify the signature, which possibly involves recovering the
signed message.

Tamper Evidence A certain level of tamper evidence was only experimentally
demonstrated for optical PUFs by Pappu [104] and for coating PUFs by Tuyls et al.
[147]. For all other proposed PUF constructions no results on tamper evidence, nei-
ther in the positive nor in the negative sense, are known. Hence no sensible claims
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Fig. 3.1 Relations between the different described PUF properties and an indication of the PUF
defining properties

on tamper evidence can be made for them. For TRNGs, tamper evidence is not well
defined. The remaining non-PUF proposals are not inherently tamper-evident, but
can be implemented in a tamper-evident fashion by applying tamper detection mea-
sures.

3.2.10 Discussion on PUF Properties

PUF Defining Properties

Looking at the results of the comparative property study in Table 3.1, and assuming
these are representative for all PUF and non-PUF constructions, we can determine
the properties which are defining for PUFs, i.e. which properties do all PUFs meet
that distinguish them from all conceivable non-PUF constructions? The answer to
this question turns out to be identifiability, and to a larger extent physical unclon-
ability, which is in fact the enforcement of uniqueness in the presence of an adver-
sary with control over the instance creation process. Note that these two properties
imply that PUFs are also constructible, evaluable, reproducible and unique. The re-
lations between all discussed properties, as well as an indication of the PUF defining
properties, are shown in Fig. 3.1. Based on this analysis, we tentatively propose a
definition of a PUF class.

Definition 16 A class of physical entities with a challenge-response functional-
ity is called a PUF class if it exhibits identifiability (cf. Definition 9) and physical
unclonability (cf. Definition 10).

In the light of this definition, we argue that the acronym ‘PUF’ as standing for
physically unclonable function, i.e. with the qualifier ‘physically’ reflecting on ‘un-
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clonable’, not on ‘function’, is particularly fitting for the concept. This strong em-
phasis on physical unclonability being the core PUF property also implicates that if
at one point the physical unclonability of a particular PUF construction is disputed,
e.g. due to the natural advancement of manufacturing techniques, it will cease to be
a PUF.

Nice-to-Have PUF Properties

Since only identifiability and physical unclonability actually define PUFs, the re-
maining properties of unpredictability, mathematical and true unclonability, one-
wayness and tamper evidence are merely desirable extras, but are not guaranteed
for any PUF construction. In fact, there currently seems to be only one PUF pro-
posal which meets all these properties, and that is the optical PUF as proposed by
Pappu [104]. This observation, combined with the fact that it was one of the very
first PUF proposals, grants the optical PUF the status of prototype PUF. All fol-
lowing PUF constructions aim to achieve as many of the desirable properties of
the optical PUF as possible, but at the same time aim to provide more integrated
implementations.

Since these remaining properties are only nice-to-have qualities, they cannot sim-
ply be assumed to be present in any PUF. This means that PUF designers need to
present strong arguments, preferably of an experimental nature, if they claim any of
these extra properties for their PUF proposal. (In fact, they also need to show iden-
tifiability and physical unclonability to demonstrate that their proposal is a PUF to
begin with.) For developers of PUF-based applications, this entails that they need to
state explicitly if, and to what extent, they rely on any of these nice-to-have proper-
ties, since it means that not all PUF constructions can be used for their application.

Improving PUF Properties

From Table 3.1 it is clear that mathematical unclonability, and in consequence true
unclonability, and one-wayness are hard to come by for most PUF proposals. When
these properties are required in a PUF-based application, they can be provided by
extending the raw physical PUF instance with an algorithmic primitive exhibiting
these properties, and enforcing that the resulting PUF-system only be evaluated with
this primitive. This is what was defined as a controlled PUF in Sect. 2.5.2.

3.3 Formalizing PUFs

In Sect. 3.2, we described meaningful properties of PUFs, and after a broad com-
parison identified the ones which define a PUF. Based on this analysis, we pro-
ceed towards a strictly formal description of PUFs and their key properties. First,
we study earlier proposed attempts at formally describing PUFs and point out how
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they fall short. Next we discuss our approach in setting up the framework and in
Sect. 3.3.3 we introduce the basic primitives of the framework itself. Using the
introduced framework, we propose formal definitions respectively for the notions
of robustness, physical unclonability and unpredictability. The rationale behind the
definitions of all concepts and properties in this section is to provide a meaningful
formal model for both hardware engineers (developing PUFs) and cryptographers
(deploying PUFs).

Background The development of the formal framework for physical functions
and the formal definitions of their properties as initially proposed in [3] and dis-
cussed in this section are the shared results of numerous fruitful discussions and
an intense research collaboration between the author and Prof. Frederik Armknecht
(Universität Mannheim), Prof. François-Xavier Standaert (Université catholique de
Louvain), Christian Wachsmann and Prof. Ahmad-Reza Sadeghi (both Technische
Universität Darmstadt).

3.3.1 Earlier Formalization Attempts

Throughout PUF literature, many authors have attempted to generalize the concept
of a PUF in a more or less formal definition, mainly as a means to highlight the
advantageous properties of a simultaneously proposed new PUF construction. We
briefly introduce these definitions and point out why we believe none of them cap-
tures the full spectrum of proposed PUFs and their properties, either by being too
restrictive, i.e. excluding certain PUFs, or by being too ad hoc, i.e. listing perceived
and even assumed properties of certain PUFs instead of providing a generalizing
model. A similar overview and discussion has been presented by Rührmair et al.
[115]. However, we do not completely follow all their arguments and moreover
point out why the new models they propose are still insufficient.

Another approach toward defining the functionality of a PUF comes from the
theoretical corner. Theorists, in an attempt to deploy PUFs in their algorithms and
protocols, provide rather rigid formal descriptions of PUFs on which they can built
security reductions. We also discuss these proposals and their drawbacks.

Physical One-Way Functions

To the best of our knowledge, the first generalizing definition of the PUF concept
is given by Pappu [104], based on the properties of his optical PUF construction.
He focuses on the one-wayness property of this construction and labels it a physical
one-way function (POWF). The first part of the definition of a POWF states that it is
a deterministic physical interaction that is evaluable in constant time but cannot be
inverted by a probabilistic polynomial time adversary with a non-negligible proba-
bility. The second part of the definition focusses on the unclonability of the POWF:
both simulating a response and physically cloning the POWF should be hard. The
POWF definition is solely based on the optical PUF, which at that time was the only
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known PUF. As other PUFs were introduced shortly after, it became clear that this
definition was too stringent, in particular regarding the one-wayness assumption.
While the optical PUF has very large challenge and response sets, many of the later
introduced PUFs do not. For these constructions, one-wayness does not hold any
longer since inverting such a PUF with non-negligible advantage becomes trivial,
as discussed in Sect. 3.2.7. It is also noteworthy that, as pointed out by Rührmair
et al. [115], for most PUF-based security applications, one-wayness is not a re-
quired condition. A final issue with the POWF definition is that it lacks any notion
of noise; in fact it even describes a POWF as a deterministic interaction. This is
contradicted by the fact that virtually all PUF proposals, including the optical PUF,
produce noisy responses due to uncontrollable physical influences affecting a re-
sponse evaluation.

Physical Random Functions

With the introduction of delay-based intrinsic PUFs, Gassend et al. [42], propose the
definition of physical random functions to describe PUFs. In brief, a physical ran-
dom function is defined as a function embodied by a physical device which is easy to
evaluate but hard to predict from a polynomial number of challenge-response obser-
vations. Note that this definition replaces the very stringent one-wayness condition
from POWFs with a more relaxed unpredictability condition. However, the presen-
tation of modeling attacks on simple arbiter PUFs by Lee et al. [75] and on more
elaborate arbiter PUFs by Rührmair et al. [119] demonstrate a significantly reduced
unpredictability of these types of PUFs. Moreover, the later introduced memory-
based intrinsic PUFs only possess at most a polynomial number of challenges and
hence do not classify as physical random functions since they can be easily modeled
through exhaustive readout. Finally, the definition of physical random functions as
proposed by Gassend et al. [42] also does not capture the possibility of noisy re-
sponses.

Weak and Strong PUFs

With the introduction of memory-based intrinsic PUFs, Guajardo et al. [45] fur-
ther refine the formal specification of a PUF. They describe PUFs as inherently
unclonable physical systems with a challenge-response behavior. It is assumed that:
(i) responses to different challenges are independent of each other, (ii) it is difficult
to come up with responses which have not been observed before, and (iii) tamper-
ing with a PUF instance substantially changes its challenge-response behavior. For
the first time, it is made explicit that PUF responses are observed as noisy mea-
surements. This definition also comes with a division of strong and weak PUFs,
depending on how many challenge-response pairs an adversary is allowed to obtain
in order to model the PUF. If the number is exponentially large in some security pa-
rameter, the PUF is called a strong PUF; otherwise the PUF is called weak. It can be
argued that some of the assumptions made in this description do not have a solid ex-
perimental basis, in particular regarding tamper evidence, which has not been tested
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in practice for any of the intrinsic PUF proposals. Also, strong PUFs are difficult to
characterize in general, as the idea of a security parameter is specific to each PUF
instance, and no practical procedure is proposed to exhibit the required exponential
behavior in practice.

Rührmair et al. [115] build upon the distinction between strong and weak PUFs
from Guajardo et al. [45] and redefine both notions in terms of a security game with
an adversary. Weak PUFs are called obfuscating PUFs and are basically considered
as physically obfuscated keys, as described in Sect. 2.5.1. The main statement in
the definition of obfuscating PUFs is that an adversary cannot learn the key after
having had access to the PUF for a limited amount of time. Strong PUFs are defined
similarly, but here the adversary needs to come up with the response to a randomly
chosen challenge after having had access to the PUF and a PUF oracle for some
limited time. Some issues are again left unresolved in this formalization: first, de-
spite building upon the work of Guajardo et al. [45], responses are not considered
to be noisy. Next, the use of a PUF oracle in the definition of a strong PUF seems
questionable. It is argued that this oracle is introduced to circumvent practical ac-
cess restrictions to the PUF. However, if a PUF-based system is secured against any
attacks possible with the current state of technology, the access to such an oracle
is an unrealistic advantage to the adversary, which weakens the proposed defini-
tion.

PUFs and PUF-PRFs

In [2] we have introduced a first formal PUF model which starts from a theoretical
application perspective, rather than from a practical construction-based perspective
as most earlier proposals. In [2], we aim to use a PUF as part of a cryptographic
algorithm, i.c. a block cipher, and for that goal the previously discussed definitions
prove to be insufficient. We explicitly make a distinction between algorithmic and
physical properties of a PUF. From the algorithmic side, a PUF is said to be a noisy
function for which the distribution of responses is indistinguishable from a random
distribution with a certain amount of min-entropy. From the physical side, a PUF
is assumed to be physically unclonable and tamper-evident. A PUF-PRF is then
defined as a PUF-based system with pseudo-random function-like qualities. We al-
ready pointed out the lack of experimental proof for tamper evidence of intrinsic
PUFs in practice, and the same argument applies to this definition. The description
of uniqueness and unpredictability by means of min-entropy provides convenient
qualities for the theoretical application of PUFs, but as it turns out it is hard to give
strong proof of min-entropy levels for actual PUF constructions. Contrarily to most
of the previous definitions, PUFs are explicitly defined as noisy functions with a
strictly bounded noise magnitude.

PUFs in the Universal Composition Framework

Brzuska et al. [15] continue the theoretical application viewpoint approach to-
ward defining PUFs, and propose a very formal definition which allows them to
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model PUF functionality in the universal composition framework as proposed by
Canetti [20]. As in our definition from [2], they define PUFs based on response
distributions having a certain level of min-entropy and also incorporate a noise
threshold. However, the presented formulation is utterly theoretical, which makes it
unattractive for practice-oriented designers of PUF constructions. Consequentially,
there is a significant probability that an actual PUF construction which lives up to
this stringent definition will never be proposed. Moreover, the strong min-entropy
assumptions on the PUF responses rule out many known PUF constructions and put
strong restrictions on others, leading to practical inefficiency.

3.3.2 Setup of the Formal Framework

Objective

The basic objective of the formal framework presented in [3], and which is discussed
in detail in the following, is to provide a workable model for both practice-oriented
PUF designers as well as theory-oriented cryptographers deploying PUFs in algo-
rithms and protocols. Ideally, the model is sufficiently realistic, capturing measur-
able properties of actual PUF proposals, while at the same time providing sufficient
formalism and rigor to allow theoretical security reductions of systems deploying
a PUF as a primitive. Such a framework could serve as an interface between hard-
ware engineers and theoretical cryptographers, which would be very beneficial for
the continued successful deployment of PUFs in security systems.

Approach

The approach we take is to start from a minimalistic axiomatic framework to de-
scribe physical functions and increment it in a flexible manner; first, by hierar-
chically expanding the notion of a physical function to more extensive construc-
tions, and secondly by defining modular properties of these constructions within the
framework.

The particular difficulty experienced by formal modeling attempts of PUFs is
dealing with the physical aspect. It is hard to argue about the security properties
of a physical object because they typically cannot be captured by classical cryp-
tographic notions such as security parameters or computationally hard problems.
To isolate this difficulty, we capture the physical aspect at the lowest formal level
when we axiomatically describe the notion of a physical function. All higher-level
properties can then be defined using the formalism introduced to describe physical
functions. The particular properties which we consider are robustness, physical un-
clonability and unpredictability. Note that what we call a physical function is a very
general concept, which is broader than PUFs, and physical unclonability is merely
one possible property of a physical function.
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3.3.3 Definition and Expansion of a Physical Function

Physical Function (pf)

A physical function pf consists of a physical component p and an evaluation pro-
cedure Evalaev . A physical component can be physically stimulated, resulting in a
measurable effect. The evaluation procedure Evalaev translates the physical stimulus
and resulting measurement into digital forms, respectively called the challenge x

and the response y of the physical function. The exact challenge-response behavior
of a pf is determined by both the static and the dynamical physical states of its phys-
ical component, and by an evaluation parameter aev which controls the challenge
and response translation, e.g. the quantization step size of an analog measurement.

Definition 17 A physical function pf is a probabilistic procedure

pfp,aev
: X → Y,

consisting of an evaluation procedure Eval acting upon a physical component p:

y ← pfp,aev
(x) = Evalaev(p;x).

When the physical component and the evaluation parameter are clear from the
context, we simply write pf instead of pfp,aev

.

Extraction Algorithm (Extract)

A physical function is not a function in the classical sense since, when challenged
with the same challenge x twice, it may produce different responses. This is an effect
of the response representing a measurement of a physical component whose physi-
cal state is partially dynamic, e.g. as a result of non-deterministic random physical
noise during the measurement. However, for many applications this is an undesir-
able feature of a physical function, and it is dealt with by an appropriate extraction
algorithm Extractaex for which it is possible to guarantee the reproducibility of its
output. Many instantiations of extraction algorithms exist, including the seminal
fuzzy extractor as proposed by Dodis et al. [32, 33]. As with physical functions, we
describe extraction algorithms as generically as possible to allow the greatest pos-
sible flexibility of the framework. An extraction procedure extracts an output z ∈ Z
from a response y of a pf, and in the process it can also consume and/or produce
some additional side information which we call helper data and denote as w ∈ W .
We also introduce an extraction parameter aex which is used to exactly specify all
the deployment details of the extractor.

Definition 18 An extraction algorithm Extract is a probabilistic procedure

Extractaex : Y ×W → Z ×W,
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which operates in one of two modes depending on the format of the presented helper
data:

[setup] (z,w) ← Extractaex(y, ε),

[reconstruction]
(
z′,w′ = w

) ← Extractaex

(
y′,w 
= ε

)
,

with ε denoting the empty string.

When the extraction parameters are clear from the context, we simply write
Extract instead of Extractaex .

In setup mode, when no helper data is presented as an input (w = ε), the extrac-
tion algorithm produces an output z and helper data w. In reconstruction mode, an-
other possibly noisy evaluation of the response y′ is presented together with helper
data w which was produced in an earlier setup mode of the extractor. The extraction
algorithm re-extracts the output z′ and additionally outputs the unchanged helper
data w. The power of most extraction algorithms is that, under certain conditions
on the pf response distribution, they succeed in recreating exactly the same output
in both setup and reconstruction mode: z = z′, given that the helper data generated
by the setup mode is used during reconstruction mode. Besides this reconstruction
property, an extraction algorithm can also provide guarantees about the randomness
of its output z. The actual implementation of the extraction algorithm, as is the case
for the physical function, is left up to the practical developer. The generic nature of
the definition allows a wide variety of extractor implementations, including using
no extractor at all by making it the identity function.

Physical Function System (pfs)

In many application scenarios, the use of an extraction algorithm is indispensable,
and by consequence a user will only be aware of the challenge provided to the phys-
ical function and the output generated by the extractor. The existence of an inter-
mediate physical function response is transparent to him. Additionally, the relevant
security notions in such a scenario will be determined by the combination of both
the used physical function and the deployed extraction algorithm. For these reasons,
it makes sense to abstract away the separate notions of a physical function and an
extraction algorithm and consider their combination as a single building block. We
call such a combination a physical function system pfs.

Definition 19 A physical function system pfs is a probabilistic procedure

pfsp,aev,aex
:X ×W →Z ×W,

consisting of the concatenation of a physical function (cf. Definition 17) with an
extraction algorithm (cf. Definition 18):

(
z,w′) ← pfsp,aev,aex

(x,w) = Extractaex

(
pfp,aev

(x),w
)
.
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When the physical component and the parameters are clear from the context, we
write pfs(x,w) instead of pfsp,aev,aex

(x,w).
We believe that, from a theoretical perspective, it is easier to reason about phys-

ical function systems than to deal with the technical peculiarities of physical func-
tions and extractors. Therefore we will define formal properties over physical func-
tion systems, rather than over physical functions, and we only refer to the underlying
physical functions and extractors when necessary.

Physical Function Infrastructure (F )

The physical component p in a physical function pf is the result of a physical cre-
ation process Createacr . The exact manifestation of a created physical component is
determined by stochastic influences during the creation process, and by a controlled
deterministic creation parameter acr which defines the full details of the creation
process.

Definition 20 For a fixed tuple of parameters (acr, aev, aex), the physical function
infrastructure F(acr,aev,aex) refers to the creation process Createacr and the set of all
physical function systems consisting of the extraction algorithm Extractaex , and a
physical function pfp,aev

with a physical component created by Createacr :

F(acr,aev,aex)
�= (

Createacr , {pfsp,aev,aex
: p ← Createacr}

)
.

Finally, a family of physical function infrastructures is defined as a generalization
of a physical function infrastructure for more than one single creation parameter acr:

F(Acr,aev,aex)
�= {Facr,aev,aex : acr ∈ Acr}.

If the parameters aev and aex are clear from the context, we simply write Facr and
FAcr . We use a family of physical function infrastructures to express the control
one has over the creation procedure Createacr , by being able to pick the creation
parameter acr from a certain set Acr.

Overview

In Fig. 3.2, we schematically show the concept of a physical function as the com-
bination of a physical component and an evaluation procedure. Also shown is the
expansion to a physical function system, by combining it with an extraction pro-
cedure, and further to a physical function infrastructure, by combining it with a
creation procedure. Each of the three proposed procedures is possibly probabilistic
and is for the remainder fully determined by its inputs and the respective parameters
aev, aex and acr.
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Fig. 3.2 Schematic overview of the concept of a physical function and its extension to a physical
function system and a physical function infrastructure

3.3.4 Robustness of a Physical Function System

Robustness as defined in this section is the formal counterpart of reproducibility as
described in Sect. 3.2.2, with the difference that reproducibility allows a certain error
between evaluations as long as it is small, whereas robustness describes error-free
reconstructions. In practice, an appropriate extraction algorithm is able to transform
a reproducible PUF into a robust physical function system.

The robustness of a physical function system is defined as the probability that an
output z produced during setup mode can later be reproduced exactly in reconstruc-
tion mode.

Definition 21 The challenge robustness of pfs with respect to x ∈X is defined as

ρpfs(x)
�= Pr

(
(z,w) ← pfs(x,w) : (z,w) ← pfs(x, ε)

)
.

When considering a subset of challenges X ′ ⊆ X , the following related robust-
ness notions can be defined:

• Minimum robustness of pfs with respect to X ′:

ρmin
pfs

(
X ′) �= min

x∈X
{
ρpfs(x)

}
.

This is useful when one requires every considered challenge to exhibit a minimal
level of robustness.

• Average robustness of pfs with respect to X ′:

ρav
pfs

(
X ′) �=

∑

x∈X
ρpfs(x) · Pr

(
x ←X ′).
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From a practical viewpoint it is often sufficient to have a high enough average
robustness.

This notion of robustness can even be extended further to physical function in-
frastructures. The average robustness of a physical function infrastructure F is de-
fined as:

ρav
F

(
X ′) �=

∑

pfs∈F
ρav
F

(
X ′) · Pr(F ← Create).

When X ′ = X or when the content of X ′ is clear from the context, we simply
write ρmin

pfs , ρav
pfs and ρav

F .

3.3.5 Physical Unclonability of a Physical Function System

Defining a (Physical) Clone

Before we define unclonability, we first need to agree on what we consider to be a
clone. Intuitively, we consider two instances clones if they show ‘similar behavior’.
However, there are a number of technical details which have to be taken into account
in order to turn this intuition into a formal definition.

First of all, we need to make explicit that we consider physical unclonability,
and therefore also only physical clones. Given the definition of a physical function
system, there are a number of non-physical ways one can think of to create ‘similar
instances’. For example, a physical function system deploying an extraction algo-
rithm which outputs a fixed constant is trivial to clone, but it is obvious that we do
not consider this a physical clone. A similar argument holds for the evaluation proce-
dure of the physical function, e.g. imagine an evaluation procedure which quantizes
a physical measurement into a zero bit response, which is basically a fixed value.
We explicitly only consider physical clones by stating that two physical function
systems which are considered clones can only differ in their physical component p,
while their evaluation and extraction procedures and parameters need to be identical.

Secondly, there are many levels of ‘similarity’: two physical function systems can
be ‘less different than expected’ or they can be truly ‘indistinguishable’. This needs
to be captured by a quantitative parameter. Also, we need to consider similarity
with respect to a subset of challenges. If two physical function systems happen to
coincide on a subset of challenges which is critical for a particular application, they
need to be considered clones, even if they show completely different behavior on
the remainder of challenges.

Finally, when attempting to formalize the notion of ‘similarity’ for physical func-
tion systems, we will run into robustness again. How does one define similarity with
respect to a physical function system which even by itself does not always gener-
ate similar outputs? To tackle this issue, we are guided by two intuitive arguments:
(i) every physical function system pfs should be a clone of itself (except for not
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deploying a different physical component), and (ii) a clone of a physical function
system pfs cannot be more similar to pfs than pfs is to itself, as expressed by its
robustness. In other words, the robustness of pfs is a natural upper bound for how
similar a clone can be to pfs. Therefore, we express the similarity of a clone to pfs
relative to its robustness.

Definition 22 For a fixed tuple of parameters (aev, aex), let pfs(= pfsp,aev,aex
) and

pfs′(= pfsp′,aev,aex
) be two physical function systems which are identical except for

their physical components, p 
= p′. We say pfs is a δ-clone of pfs′ with respect to
X ′ ⊆ X , if ∀x ∈ X ′ it holds that

Pr
(
(z,w) ← pfs′(x,w) : (z,w) ← pfs(x, ε)

) ≥ δ · ρpfs(x),

with 0 ≤ δ ≤ 1. In shorthand notation, we write: pfs
δ;X ′
≡ pfs′.

By p 
= p′ we mean that p and p′ are distinct physical entities, i.e. occupying
different positions in space-time, but they are allowed to be physically similar to
any level of precision. Note that, except for their not deploying different physical
components, every physical function system is a (δ = 1,X ′ = X )-clone of itself.

Defining Physical Unclonability

Now that we have a formal definition of a clone, we can define physical unclon-
ability by formalizing the statement: ‘it is difficult to produce a clone’. However,
again some technicalities need to be considered before a formal description can be
presented.

We first need to specify the capabilities of the adversary A that is trying to pro-
duce a clone. In practice, such an adversary will have access to a number of exe-
cutions of the creation procedure of physical components. Possibly, it even has an
amount of control over it, i.e. it can influence the physical processes taking place
during creation within certain boundaries. We capture this formally by allowing the
adversary to select the creation parameter acr from a particular subset Acr. We use
the notion of a family of physical function infrastructures FAcr to describe this. The
adversarial model is described by means of a security game between the adversary
and a creation oracle.

We also need to distinguish between two variants of unclonability:

• Existential unclonability means that it is hard to create a pair of physical function
systems such that one is a clone of the other.

• Selective unclonability means that given a particular physical function system, it
is hard to create a second one which is a clone of the first one.

Note that in general, existential unclonability implies selective unclonability and is
therefore a stronger security notion. We will give a formal definition for existential
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unclonability, but the same approach as presented here can be applied to describe
selective unclonability.

To formally define (existential) unclonability (or cloning resistance), we first de-
scribe the adversary model A by means of a cloning game Gameclone

A (Acr, q):

• In the cloning game Gameclone
A (Acr, q), an adversary is allowed to make up to q

queries to a creation oracle OCreate
Acr

, with q ≥ 2.

• The creation oracle OCreate
Acr

expects a creation parameter acr as query input. If
acr ∈ Acr, then the oracle invokes the physical component creation procedure with
the queried parameter to create a single physical component Createacr → p and
answers the query with p.

• The adversary is allowed to adaptively change the creation parameter acr of its
queries.

• When the game ends, the adversary is required to output a pair of physical com-
ponents (p,p′) both of which it received as a query reply from the creation oracle
during the game.

Definition 23 A family of physical function instantiations F(Acr,aev,aex) is (γ, δ, q)-
cloning-resistant with respect to X ′ ⊆ X if for every probabilistic polynomial time
adversary A it holds that:

Pr
(
pfsp,aev,aex

δ;X ′
≡ pfs′

p′,aev,aex
: (p,p′) ← Gameclone

A (Acr, q)
) ≤ γ.

The level of control an adversary has over the creation process will to a large
extent determine the cloning resistance of a physical function infrastructure family.
As explained, the influence an adversary has over the creation is represented by Acr.
We distinguish a special case when Acr = {acr}, i.e. the creation process is fixed.
This is typically so for the genuine manufacturer of the physical function systems
and therefore we call this the honest manufacturer adversary model. Note that even
the honest manufacturer can coincidentally create clones but this should only happen
with low probability. In all other cases with more than one element in Acr, it means
that the manufacturer is deliberately influencing the creation process in order to
create a clone. This is called the malicious manufacturer adversary model.

3.3.6 Unpredictability of a Physical Function System

When using a physical function system pfs in a security application, the unpre-
dictability of its output is the most basic expected security requirement. In classic
cryptography, unpredictability is a well-established concept, e.g. for random func-
tions, and it expresses the difficulty of predicting an unobserved output of a func-
tion after having observed different function evaluations. Due to the peculiarities
of physical function systems, as discussed in detail in the previous paragraphs, the
classical definition of unpredictability does not directly apply. We will adapt it in an
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appropriate manner as to make it capture the notion of unpredictability for physical
function systems.

Types of Unpredictability

We distinguish between two different types of unpredictability for physical function
systems: unpredictability with respect to different outputs on the same system, and
unpredictability with respect to the same outputs on different systems. The first type
is typically important when the physical function system is used as a challenge-
response entity, e.g. in an authentication protocol. It would be highly undesirable
if the response in the next run of the protocol could be predicted based on previ-
ously observed runs of the protocol. The second type is mainly of significance when
the physical function system is used as a secure storage mechanism, e.g. to gen-
erate cryptographic keys. In that case, the independence of outputs from different
physical function systems is of the utmost importance to ensure the randomness of
the derived keys. Note that the first type of unpredictability is a direct extension of
the classical unpredictability notion to physical function systems, and a theoretical
definition will be a formal variant of the unpredictability property of PUFs as dis-
cussed in Sect. 3.2.5. The second type of unpredictability, on the other hand, could
be regarded as a generalization of the uniqueness property of PUFs as discussed in
Sect. 3.2.3. Whereas uniqueness only requires that different PUF instances produce
sufficiently different responses, this type of unpredictability additionally requires
a more stringent apparent independence between the outputs of different physical
function systems. The formalization we propose next captures both types of unpre-
dictability in a single definition, as well as the continuum of intermediate cases.

Defining Unpredictability for Physical Function Systems

We again use a game-based approach to describe a model for the adversary A. We
distinguish between a weak and a strong prediction game, based on the control the
adversary has over picking the physical function systems and challenges which are
evaluated.

• The weak prediction game Gamepredict;weak
A (Plearn,Pchal, q) is a game between an

adversary A and an evaluation oracle OEval
Plearn,Pchal

which takes place in two phases:
a learning phase and a challenge phase.

• During the learning phase, A is allowed to query the oracle up to q times. When

queried, OEval
Plearn,Pchal

randomly selects pfsi
$← Plearn and xi

$← X and evaluates
(zi ,wi) ← pfsi (xi, ε). For each of these q queries, the adversary A is allowed to
observe the tuple (pfsi , xi, zi ,wi).

• During the challenge phase, OEval
Plearn,Pchal

randomly selects pfs
$← Pchal and

x
$← X , making sure that the combination (pfs, x) was never evaluated during
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the learning phase, and evaluates (z,w) ← pfs(x, ε). The adversary A is now al-
lowed to observe the tuple (pfs, x,w).

• At the end of the game, the oracle outputs the tuple (pfs, x, z) and the adversary
outputs a prediction z′.

The strong prediction game Gamepredict;strong
A (Plearn,Pchal, q) is completely equiv-

alent to the weak prediction game, only now physical function systems and chal-
lenges are no longer randomly selected by the oracle, but are adaptively queried by
the adversary. In the learning phase, the adversary queries the oracle with up to q

tuples (pfsi ∈ Plearn, xi,wi) and learns the full evaluations (zi,w
′
i ) ← pfsi (xi,wi)

from the oracle. In the challenge phase, the adversary queries the oracle with a sin-
gle tuple (pfs ∈ Pchal, x,w) such that the combination (pfs, x) was never queried
during the learning phase. The oracle evaluates (z,w′) ← pfs(x,w) but A can only
observe w′ this time.

Definition 24 Let Plearn and Pchal be subsets containing physical function systems
from the same physical function infrastructure F . We say the physical function sys-
tems in Pchal are (λ, q)-weakly unpredictable with respect to Plearn if for every
probabilistic polynomial time adversary A, it holds that:

Pr
(
z = z′ : ((pfs, x, z), z′) ← Gamepredict;weak

A (Plearn,Pchal, q)
) ≤ λ · ρpfs(x).

Similarly, we say the physical function systems in Pchal are (λ, q)-strongly unpre-
dictable with respect to Plearn if for every probabilistic polynomial time adversary A,
it holds that:

Pr
(
z = z′ : ((pfs, x, z), z′) ← Gamepredict;strong

A (Plearn,Pchal, q)
) ≤ λ · ρpfs(x).

Note that Pchal and Plearn do not need to be mutually exclusive and can even be
identical. In fact, if Pchal = Plearn = {pfs}, i.e. we only consider the unpredictabil-
ity of a single pfs with respect to itself, then Definition 24 closely resembles the
classical notion of unpredictability of a random function.

3.3.7 Discussion

Most of the concepts and properties defined in this section are more rigid formal-
izations of concepts and properties which we introduced earlier in a more intuitive
way, respectively in Sects. 2.2.1 and 3.2.

• The formally defined notion of a physical function infrastructure (F ) coincides
almost completely with what we, rather intuitively, have called a PUF class (P) in
Sect. 2.2.1. Both describe a set of instantiations and a creation procedure (Create).

• A PUF instance (puf), described in Sect. 2.2.1 as having a physical state which
can be measured by an evaluation procedure (Eval), is equivalent to a formal phys-
ical function (pf) consisting of a physical component (p) and the same evaluation
procedure.
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• Concrete extractor constructions have not yet been described, but are treated in
detail in Chap. 6. It is evident that they are captured formally by the rather generic
extraction procedure introduced in this section. The formal concept of a physical
function system coincides with the concatenation of a PUF with an extractor im-
plementation.

• The formally defined property of robustness of a physical function system is an
extension of the earlier introduced PUF property of reproducibility (cf. Defini-
tion 7), taking into account the effect of the extractor.

• Equivalently, the formal definition of cloning resistance is the extension of phys-
ical unclonability (cf. Definition 10), related to the formal version of robustness.

• The formal notion of unpredictability is defined in a broad sense, considering
both unpredictability with respect to the same instance as well as regarding other
instances. In that aspect, the formal unpredictability is to be considered as the
formalization of the earlier introduced unpredictability notion (cf. Definition 11,
describing unpredictability with regard to different responses on the same PUF in-
stance) in combination with a generalized version of uniqueness (cf. Definition 8,
describing differentness of responses with regard to other PUF instances).

The resemblance between these formal definitions and the rather intuitive con-
cepts and properties which we have defined earlier makes clear that the proposed
framework is of a significant practical value. This is strengthened by the fact that
most of the intuitive properties have been experimentally verified for many PUF
implementations and can hence be directly translated to their formal counterparts.
Evidently, to do this, the effect of the extractor needs to be taken into account.

3.4 Conclusion

Following an extensive study of 11 meaningful PUF properties on a representa-
tive subset of PUF constructions, and on a reference set of non-PUF constructions,
we are able to extract the defining properties of a PUF: identifiability and physical
unclonability, and by implication constructibility, evaluability, reproducibility and
uniqueness. The remaining properties of unpredictability, mathematical and true un-
clonability, one-wayness and tamper evidence are classified as nice-to-have, but are
not strictly required for a construction to be called a PUF. This also means that many
PUF proposals in fact do not exhibit these nice-to-have properties, or at the very best
it remains as yet unclear whether they do. In this light, the optical PUF as proposed
by Pappu et al. [105] serves as an exemplary prototype PUF, meeting all mentioned
properties to a major extent. Most intrinsic PUFs fall short on the property of math-
ematical unclonability, and the existence of a strong intrinsic PUF with motivated
and verified security guarantees remains an open question. One-wayness turns out
to be a particularly unfitting property for intrinsic PUFs, which is partially caused
by the ambiguity of considering the one-wayness of PUFs. Tamper evidence, while
often proclaimed as one of the major advantages of using PUFs, remains a question
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mark for all intrinsic PUF proposals, as no experimental results on any construction
are known.

Based on these results and with the aim of formalizing these particularly inter-
esting properties, we introduce a framework for working with PUFs (and physical
functions in general) in a theoretical security setting. Using the introduced primi-
tives in this framework, we formally define robustness, physical unclonability and
unpredictability of a physical function.



Chapter 4
Implementation and Experimental Analysis
of Intrinsic PUFs

4.1 Introduction

4.1.1 Motivation

All currently known intrinsic PUF implementations are silicon-based and obtain
their PUF behavior from process variations during the manufacturing of silicon
chips. These PUFs are of particular interest, because their response values can be
used as a secret element in a larger security implementation on the same silicon chip.
Deploying an intrinsic PUF in a security application in this way provides interesting
practical and security advantages. We will discuss applications of intrinsic PUFs
and their added value in great detail, respectively for PUF-based authentication in
Chap. 5 and PUF-based key generation in Chap. 6.

The realization that a silicon intrinsic PUF can serve as an integral hardware
security primitive with valuable properties such as uniqueness and unpredictabil-
ity, and in particular physical unclonability, which cannot be obtained solely from
algorithmic constructions, has led to a great interest into its constructions. Many
intrinsic PUF implementations were proposed over time and are discussed in de-
tail in Sect. 2.4. When one actually wants to deploy an intrinsic PUF in a hardware
security system, interest goes out to the levels of efficiency and performance of
all these different constructions, both from a PUF perspective (which construction
shows the best PUF behavior) as well as from a typical hardware design perspective
(which construction offers the lowest area, highest speed, lowest power use, etc.).
Section 2.4.8 provides an overview of known experimental results concerning PUF
behavior, but it is also made clear that a comparison of different proposals solely
based on these results is not entirely objective, for a number of reasons:

1. For all known intrinsic PUF constructions, as for nearly all hardware security
primitives, there exists a trade-off between area/speed and security, i.e. larger
and/or slower implementations typically offer higher levels of security. In the
overview in Sect. 2.4.8, which lists experimental PUF results available in liter-
ature, some of the considered implementations are heavily biased towards opti-
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mizing their PUF behavior by greatly sacrificing on implementation area and/or
speed, while others are not.

2. Experimental PUF results always focus on two properties, reliability and unique-
ness, which are mostly summarized by calculating the average response intra-
distance (μintra

P ) and inter-distance (μinter
P ) of the experiment. Good PUF behavior

is expressed by a small μintra
P and a large μinter

P . However, it is not immediately
clear how to combine both measures into a single quality parameter for a partic-
ular PUF construction.

3. The results presented in Sect. 2.4.8 come from implementations using a variety
of different technologies and platforms. It is typically hard to accurately scale
implementation results such as area and speed from one technology to another,
e.g. between different CMOS technology nodes, and scaling between different
platforms, e.g. from FPGA to ASIC, can only be done very roughly. Extrapola-
tion of PUF behavior results to different technologies and platforms is virtually
impossible.

The first two issues cannot be dealt with for bare PUFs, but need to be considered
in the application context of the bigger system deploying the PUF. The optimal
trade-off between security and efficiency, as well as the relation between reliability
and uniqueness, are determined by the requirements and constraints of the security
system as a whole. Optimizing the PUF implementation is an entangled part of a
bigger design optimization process which will be discussed in detail for PUF-based
authentication systems in Chap. 5 and for PUF-based cryptographic key generation
in Chap. 6.

The last issue can be approached by implementing different intrinsic PUF pro-
posals on the same platform and using the same technology. This will be the main
topic of this chapter. A selection is made of intrinsic PUF proposals which were
proven to show acceptable PUF behavior, and a number of instantiations of each
of them is integrated in an ASIC design. This ASIC design is processed and a sig-
nificant set of silicon chips implementing it is manufactured. Based on this set of
devices, valuable experimental PUF data is gathered which can be cross-compared
without restraint, since it results from PUF constructions implemented on the same
silicon die.

Background Designing and manufacturing an ASIC is a complex, time-consum-
ing, and costly undertaking with significant risk of failure. The findings presented
in this chapter are the joint successful result of a European research project called
‘UNIQUE’ in which the author’s institution was a partner [149]. We definitely want
to acknowledge the other project partners which contributed heavily to the design,
production and evaluation of the test chip discussed in this chapter.

4.1.2 Chapter Goals

The main goal of this chapter is to produce a practical and an objective analysis and
comparison of different intrinsic PUF constructions, by implementing them on the
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same platform, evaluating them under the same conditions, and assessing them on
the same characteristics. In this chapter we plan to:

• Discuss the design process and implementation details of a custom test chip car-
rying instantiations of six different intrinsic PUFs.

• Present an in-depth analysis of the uniqueness and reproducibility of the evalu-
ation results of the test chip implementations, including the influence of varying
evaluation conditions. This analysis should result in a practically usable charac-
terization of these properties for every PUF instance, which can be immediately
plugged into the design and optimization process of an application seeking to
deploy one of these PUF implementations.

• Discuss the notion of PUF response entropy and introduce a number of practi-
cal entropy bounds which can be computed based on experimentally obtained
response evaluations, including a method to calculate a PUF response entropy
bound based on the results of a modeling attack.

4.1.3 Chapter Overview

Section 4.2 discusses the realization of the intrinsic PUF test chip, from its initial
design rationale and requirements, through its architecture and the description of its
building blocks, to its manufacturing flow details. In Sect. 4.3, we describe how the
test chip samples were evaluated and we present a complete analysis of uniqueness
and reproducibility based on a large data set of evaluation results. The entropy of
a PUF response is described in Sect. 4.4 as a measure of its unpredictability. We
introduce a number of increasingly tighter bounds on the response entropy of a
PUF, based on considering increasingly more advanced adversary models. Finally,
the main results of this chapter are summarized in Sect. 4.5.

4.2 Test Chip Design

4.2.1 Design Rationale

The rationale behind the design of the test chip is guided by two main considera-
tions:

(i) In the end, the goal of the test chip is to collect statistically significant ex-
perimental data from intrinsic PUF implementations. Ideally, we would like
to implement as many and as large instances as possible from as many different
intrinsic PUF proposals as possible and evaluate them in a quick, easy and real-
istic manner, taking into account that the available area budget should be more
or less evenly distributed among the different PUFs.
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(ii) Designing and producing an ASIC is a very complex process with a minimal
margin for error. The probability of critical failures increases steadily with the
size and complexity of the design. Since the coordinating project provides only
a single opportunity for ASIC production, it needs to be first-time-right and any
risk of failure should be minimized.

These two considerations lead to the following design choices:

• To minimize risk, the overall architecture is kept minimalistic, with the major
portion of the silicon area budget devoted to implementations of PUF instances.

• We mainly choose to implement PUF constructions which (at the time) were
proven to show PUF behavior in earlier experiments.

• The additional components are kept to the bare minimum required to realistically
evaluate the PUFs. This leaves the most area to the actual PUF implementations.
All measurement post-processing is done off-line.

• The measurement communication interface, being a single-point-of-failure in the
whole design, is kept as simple as possible to minimize all risk. This comes at a
significant sacrifice in measurement speed.

• Whenever possible, standard design flows are used. Except for the low-level im-
plementation of some of the PUFs, the whole design is described at the RTL level
and synthesized using reliable third-party standard cell libraries for the consid-
ered technology.

4.2.2 Design Requirements

PUF Selection

Six intrinsic PUF structures are selected for integration on the test chip:

1. The ring oscillator PUF as proposed by Suh and Devadas [136].
2. The latch PUF as proposed by Su et al. [135].
3. The SRAM PUF as proposed by Guajardo et al. [45].
4. The D Flip-Flop PUF as proposed by Maes et al. [84].
5. The arbiter PUF as proposed by Lee et al. [75].
6. The buskeeper PUF as proposed by Simons et al. [132].

The first five PUF constructions are selected because they were proven to show
PUF behavior in earlier implementations. The buskeeper PUF is a newly proposed
PUF construction by Simons et al. [132]. For the ring oscillator and the arbiter PUF
structures, we analyse two different evaluation methods (cf. Sect. 4.3.1) resulting in
a total of eight different PUF constructions on the chip.

Evaluation Control

Additional control over the evaluation conditions of the selected PUF implementa-
tions is desirable:
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• In order to study the effects of the power-up conditions on the PUF constructions
which depend on power-up behavior, a number of PUF instances are grouped
under a separate power supply on the chip. This allows us to test instances on the
same chip under different supply voltage conditions.

• In a realistic application, a PUF is integrated on the same silicon die implementing
the complete hardware system, including a large amount of rapidly switching
logic. This might have an effect on the PUF’s behavior, e.g. because it introduces
switching noise on the supply voltage. To mimic this behavior, we implement an
active core on the test chip whose sole purpose is to generate switching activity
while the PUFs are evaluated.

Interfacing

To transfer the measurement data off-chip we require a communication interface
which offers reasonable transfer rates at minimal design complexity and low pin-
count. We prefer a standardized interface for easy integration with other compo-
nents. A Serial Peripheral Interface (SPI) [98] was selected.

Internally, the different building blocks on the chip need to be accessible in a
straightforward manner. However, since all blocks operate in slave-mode, we don’t
require advanced communication control and we don’t want to dedicate silicon area
to complex bus interfaces. We opted for a memory-mapped organization, with a sin-
gle address decoder controlling which building block is being read from or written
to. Since most selected PUF blocks are inherently memory elements, they are triv-
ially integrated in this organization. For the other building blocks, input and output
ports are being accessed through addressable registers.

4.2.3 Top-Level Architecture

Figure 4.1 indicates the top-level architecture of the test chip design. All data com-
munication is done through the SPI/memory-mapped interface, except for the basic
clock and power domain controls which has dedicated control and status pins. The
SPI encoder and decoder is a standard design supporting the SPI protocol. The ac-
tive core is basically an implementation of a large number of unrolled rounds of a
random substitution/permutation layer, with the only intention of generating a lot of
switching activity. The memory mapper consists of a large multiplexer and demul-
tiplexer which direct data to and from the addressed building block. Internally, data
interfaces are 32-bit signals and the address is a 19-bit signal.

Figure 4.2 details the memory map of the different building blocks onto the ad-
dress space. The three most significant address bits are used to select a particular
building block. The next four address bits select a particular instance within the
building block, e.g. a particular instance of a PUF type. The remaining 12 address
bits are used for addressing within a single instance.
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Fig. 4.1 Top-level block diagram of the test chip

Fig. 4.2 Address structure of the internal memory map of the test chip

4.2.4 PUF Block: Arbiter PUF

We design the arbiter PUF according to the original construction from Lee et al. [75],
as shown in Fig. 2.1. The switch blocks are constructed using two 2-to-1 multiplex-
ers. The arbiter is an SR latch consisting of two cross-coupled NAND-gates. Each
arbiter PUF has a delay chain consisting of 64 concatenated switch blocks, which
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is long enough to accumulate sufficient delay randomness in order to exhibit an
observable difference between the two lines and with high probability avoid the ar-
biter going into the metastable state. This also means the arbiter PUF takes 64-bit
challenges. Using more switch blocks gives even longer challenges, but does not
substantially increase the arbiter PUF’s unpredictability and does result in larger
area use and slower evaluation. To minimize bias in the delay lines and in the arbiter
circuit, the whole arbiter PUF is a full custom design, i.e. all design steps including
the geometrical sizing, placement and routing of the transistors and interconnecting
metal lines are done by hand. Special attention is paid to the symmetry of the arbiter
circuit and to balancing the parasitic capacitances of the delay lines as closely as
possible. The test chip contains 256 instantiations of this arbiter PUF design, which
are grouped into eight instances of 32 arbiter PUFs each. This grouping is only
for evaluation performance reasons (32 arbiter PUF response bits can be read out
simultaneously over the 32-bit data bus), since all instantiations are identical.

4.2.5 PUF Block: Ring Oscillator PUF

The design of the ring oscillator PUF is based on the construction from Suh and De-
vadas [136] which is depicted in Fig. 2.3. A ring oscillator consists of 80 chained in-
verters and one NAND gate to control the oscillation. The number of looped invert-
ers roughly determines the nominal frequency of the ring oscillator, and in the order
of 60∼80 inverters are required to obtain frequencies in the range of 500∼700 MHz,
which are countable with regular digital counters in the targeted technology. Of this
ring oscillator, 4096 identical copies are implemented on the test chip, arranged
in 16 batches of 256 oscillators each. Every batch has a single frequency counter
and a 256-to-1 multiplexer connects one of the batch’s oscillators to the counter.
To cope with the high frequency oscillations, the counter is implemented as a 32-
bit toggle counter which has a very short critical path. Since there are 16 batches,
each with its own counter, 16 oscillation frequencies can be measured in parallel.
The measurement time during which oscillations are counted is determined as a
particular number of oscillations of an independent, slightly faster, oscillator (64 in-
verters + NAND) which feeds a timer. The exact number of oscillations of this
timing loop can be set by the user. The actual response bit generation is not imple-
mented on the test chip, but the counter values are measured directly. The response
bit generation based on the measured frequencies is performed off-line, using an
algorithm of one’s choice. The response evaluation methods we use are detailed in
Sect. 4.3.1.

4.2.6 PUF Block: SRAM PUF

The SRAM PUF, as proposed by Guajardo et al. [45], basically consists of standard
SRAM cells of which the power-up value is measured. We implement an SRAM
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PUF using a third-party (TSMC) SRAM IP block implementing an addressable ar-
ray of 2048×32 SRAM cells, each cell consisting of six MOSFETs. Each of these
blocks can generate 65536 response bits (64 kbit). Four of these SRAM PUF in-
stances are placed on the test chip.

4.2.7 PUF Blocks: D Flip-Flop PUF, Latch PUF
and Buskeeper PUF

The design of these three PUFs basically consists of instantiations of the basic el-
ements: D flip-flops, latches and buskeeper cells. For our test chip, the operation
of all three of these PUFs is based on the power-up behavior of their basic cells.
The design of each of these cells comes from a third-party (TSMC) standard cell
library. The only other difference between these PUFs is the number of cells which
are instantiated and the way the cells are organized in arrays.

D Flip-Flop PUF Block

One D flip-flop PUF is designed containing 8192 D flip-flop standard cells. Four of
these PUFs are instantiated on the test chip. In the first two instances, the D flip-flops
are organized in a long scan chain, allowing them to be read out sequentially. In the
last two instances, the flip-flops are organized in a large multiplexer tree, allowing
them to be addressed individually. The flip-flops in the multiplexer tree have their
data inputs connected to the write input of the memory map, which is grounded
when the D flip-flop PUF is not addressed.

Latch PUF

We design a latch PUF which consists of 8192 standard cell latches, and four of
these latch PUFs instances are implemented on the test chip. Again, the first two
instances have a scan chain-based organization while the latter are organized in a
multiplexer tree. For latches, the scan chain design is slightly more advanced. Be-
cause latches are level-triggered, as opposed to flip-flops which are edge-triggered,
they cannot be all clocked at the same time to shift their values in a chain. The
latches in the multiplexer tree have their data inputs grounded.

Buskeeper PUF

The buskeeper PUF design contains 8192 buskeeper cells, and two of the buskeeper
PUFs are instantiated on the test chip. Both are organized in an addressable mul-
tiplexer tree, since buskeeper cells cannot be chained (they have only a single-bit
bidirectional port).
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Practical Comparison

D flip-flop, latch and buskeeper PUFs are very similar in design, the main difference
being the implementation of their basic cells. The following practical considerations
can be made:

• Buskeeper cells, consisting of two inverters, are the smallest of the three, which
makes the buskeeper PUF the most area-efficient in terms of response bits per
silicon area. However, since they cannot be chained, they do require a (rather
large) multiplexer tree to read them out.

• Latches, which consist of two cross-coupled NAND or NOR gates, are larger than
buskeeper cells, but smaller than D flip-flops. They can be chained, but this is not
trivial.

• D flip-flops are typically constructed from two latches and are therefore the
largest of all three basic cells, but they can be easily chained. Moreover, D flip-
flops are also a very common cell in regular digital designs, which could make
them reusable for other purposes after they have generated their PUF response bit
at power-up.

In comparison to SRAM PUFs, these three PUF types are less efficient since SRAM
arrays are heavily area-optimized. However, their cell-based design allows us more
flexibility since they can be instantiated one cell at a time, while SRAM only comes
in bulky arrays. This also allows us to spread, e.g. a D flip-flop PUF, randomly over
the whole area of a silicon die, which adds a layer of physical obscurity against
optical scrutiny attacks. SRAM arrays on the other hand are easily spotted due to
their large and very regular matrix structure.

Besides these practical observations, the PUF behavior of each of these memory-
based PUFs should of course also be taken into account. This is the goal of the test
chip as discussed in this chapter.

4.2.8 Power Domains

The test chip design contains two separate core power domains. The primary goal of
the separated power domain is to ease reading out the memory-based PUFs which
require a power cycle. This way, the main part of the test chip core containing the
communication interface can stay active while some of the memory-based PUFs in
the separate power domain are power-cycled to generate a new response. Besides
this goal, the separate power domain is also convenient when performing reliability
tests under varying supply voltages.

The separate power domain contains one SRAM PUF instance (out of four), one
D flip-flop PUF instance (out of four), one latch PUF instance (out of four), and one
buskeeper PUF instance (out of two). The separate power domain has independent
supply voltage and ground pins. Moreover, all signal lines connecting the two power
domains can be blocked, effectively electrically isolating the PUF instances in the
separate power domain.
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Fig. 4.3 Floor plan of the structures on the test chip

4.2.9 Implementation Details

Floor Plan

The schematic floor planning for the different PUF instances and other building
blocks on the test chip’s silicon die area is shown in Fig. 4.3. The separate power do-
main is also depicted, and as shown it contains one instance from all four memory-
based PUFs. The active core is placed in the free space in between the different
instances, in order to increase the impact of its toggling activity on the PUF evalua-
tions.

Development Flow

Except for the arbiter and ring oscillator PUF blocks, the whole test chip design
is described at the RTL level using a hardware description language (VHDL) and
synthesized using a standard cell library. The back-end design is done by an external
party (Invomec). The arbiter PUF is designed as a full-custom layout to have the
most control over delay line and arbiter circuit balancing. The ring oscillator PUF is
designed as an array of identically laid out hard-macro copies of an inverter chain.
This is to make sure that all oscillators have the same nominal frequency, and any
frequency difference is only caused by silicon process variations.

Implementation Technology

The final design of the test chip is implemented in 65 nm low-power CMOS tech-
nology (TSMC 65 nm CMOS Low Power MS/RF and TCBN65LP (nominal Vt)
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Table 4.1 Silicon area breakdown of the different test chip building blocks

Building block Silicon area
(mm2)

Relative area
(·/total logic)

Building block content

Ring Oscillator PUF 0.241 10.7 % 4096 ring oscillators + 16 ×
32-bit counters + control

Latch PUF 0.272 9.5 % 4 × 8192 latches + 2 ×
multiplexer tree

SRAM PUF 0.213 12.1 % 4 × 64 kbit SRAM array

D Flip-Flop PUF 0.392 17.4 % 4 × 8192 D flip-flops + 2 ×
multiplexer tree

Arbiter PUF 0.279 12.4 % 256×64-bit arbiter PUF+control

Buskeeper PUF 0.076 3.4 % 2 × 8192 buskeeper cells + 2 ×
multiplexer tree

Active Core 0.353 15.7 % 32 × 128-bit substitution-
permutation rounds

Additional Blocks 0.425 18.9 % SPI interface, memory mapping,
power control, . . .

Total Logic Area 2.251 100.0 % all of the above

Overhead 1.405 62.4 % I/O pads, power/ground rings,
empty space, . . .

Complete Test Chip 3.656 162.4 % 1912 µm × 1912 µm silicon die

standard cell library). Both power domains of the core logic are nominally powered
by Vdd = 1.2 V, and the I/O voltage is Vio = 2.5 V. The resulting silicon die is
packaged in an LQFP64 package. In total, 192 packaged chips are produced.

Area Breakdown

Table 4.1 shows an estimate of the silicon die area breakdown of the different build-
ing blocks on the test chip. The estimates in this table are used in Chaps. 5 and 6
to estimate the required PUF size for a PUF-based application with given require-
ments. This provides an as objective as possible comparison between the different
PUF constructions.

4.3 Experimental Uniqueness and Reproducibility Results

4.3.1 Evaluation of Delay-Based PUFs

Before we present the statistics of the experimental data, we first need to describe the
manner in which we evaluate bit responses for the delay-based PUF constructions,
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i.e. the arbiter and the ring oscillator PUFs. The evaluation of the memory-based
PUFs follows trivially from their design.

Arbiter PUF Evaluation Modes

The basic arbiter PUF already produces single bit responses. We also consider
2-XOR arbiter PUFs as proposed by Majzoobi et al. [94] by pairing up arbiter PUFs
and perform an XOR-operation on their outputs to produce a single bit response.
The XOR-operation is not implemented on the test chip but is performed off-line on
the evaluated response bits of the basic arbiter PUFs.

Ring Oscillator PUF Evaluation Modes

As mentioned in Sect. 4.2.5, the ring oscillator PUF design outputs the frequency
counter values directly. While these values already show some PUF behavior, it is
difficult to use them as such in an application. For ease of integration, the frequency
counter values need to be encoded in a meaningful binary response format. This will
also make the comparison with the other PUF types more relevant. Ring oscillator
PUF response bits are typically generated based on the relative comparisons be-
tween measured frequencies, as these comparisons are much more resilient to noise
and varying evaluation conditions than the absolute frequency values. We present
two encoding methods based on relative orderings of the frequency counter values.

The first method is a basic pairwise comparison (P.C.) between counted frequen-
cies from different but simultaneously measured oscillators, as was proposed by
Suh and Devadas [136] (but without the 1-out-of-k masking technique). A single
response bit is generated based on the outcome of each comparison. To ensure in-
dependent responses, every oscillator is only used for the generation of a single
bit. The arrangement of our ring oscillator PUF design in 16 batches, with 256
oscillators and one frequency counter per batch, allows us to measure 16 frequen-
cies simultaneously and hence produce eight response bits in one evaluation. Us-
ing this evaluation method, the complete ring oscillator PUF design can generate
256 × 8 = 2048 response bits.

In [87], we developed a new response bit generation method for ring oscillator
PUFs based on the ordering of the measured frequencies. Suh and Devadas [136]
and Yin and Qu [157] observed that the amount of information in the ordering of n

independent and identically distributed frequencies is as high as log2 n!. If one can
find an efficient and noise-resilient encoding of such an ordering, this will lead to
a significant increase in the number of independent response bits, since log2 n! =∑n

i=2 log2 i ≈ n · log2
n
e

is superlinear in n, as opposed to the pairwise comparison
method, which can only produce a number of response bits that is linear in n, i.e. n

2 .
In [87], we propose using a Lehmer encoding [76, 125] to represent the ascending

order of a vector of simultaneously measured frequencies, followed by a Gray en-
coding [44] of the Lehmer coefficients. A Lehmer code is a unique numerical repre-
sentation of an ordering (permutation) which is moreover efficient to obtain since it
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does not require explicit value sorting. If f n = (f1, . . . , fn) is a vector containing n

frequency measurements, then the Lehmer code of the ascending order of these val-
ues is a coefficient vector rn−1 = (r1, . . . , rn−1) with ri ∈ {0,1, . . . , i}. It is clear that
rn−1 can take 2 × 3 × · · · × n = n! possible values, which is exactly the number of
possible orderings of f n; hence each ordering has a unique Lehmer code represen-
tation. The Lehmer coefficients are calculated from f n as rj = ∑j

i=1 gt(fj+1, fi),
with gt(x, y) = 1 if x > y and 0 otherwise. The Lehmer encoding has the nice
property that a minimal change in the sorted ordering, caused by two neighbor-
ing values swapping places after sorting, only changes a single Lehmer coefficient
by ±1. Using a binary Gray encoding for the Lehmer coefficients, this translates to
only a single bit difference, which makes the overall response bit generation particu-
larly noise-resilient. The length of the binary representation becomes

∑n
i=2�log2 i�,

which is a nearly optimal representation of the actual amount of information in the
ordering, i.e.

∑n
i=2 log2 i.

For our ring oscillator PUF design on the test chip, we apply this Lehmer-Gray
(L.G.) encoding off-line on each vector of n = 16 simultaneously measured fre-
quencies, yielding 49 response bits. In total, the ring oscillator PUF can generate
256 × 49 = 12544 response bits using this method, which is over six times more
than when using the pairwise comparison method.

4.3.2 PUF Experiment: Goals, Strategy and Setup

Experiment Goals

The goal of the experiments on the test chip is to characterize the meaningful prop-
erties of the eight studied PUF constructions as realistically and as accurately as
possible. As explained in Sect. 4.1.1, it is not possible to make a comprehensive
ranking of the different PUFs solely based on their bare characteristics. In order to
make such an objective comparison, the envisioned application needs to be taken
into account as well. We will do this respectively in Chaps. 5 and 6 for PUF-based
authentication and PUF-based key generation. However, a common interface is de-
sirable, i.e. a uniform set of characterization parameters for the meaningful prop-
erties of every PUF construction, which can be used in an unambiguous manner to
determine their usability in a particular application. Here, we will provide such char-
acterization parameters for the uniqueness and reproducibility of all studied PUF
constructions, respectively in Sects. 4.3.3 and 4.3.4. The unpredictability of the dif-
ferent PUF constructions is discussed based on the response entropy in Sect. 4.4.

Experiment Strategy and Setup

To realistically determine the behavior of the different PUFs, in particular regarding
their reproducibility, they need to be tested under varying conditions. In particu-
lar, we consider variations in test chip’s supply voltage, Vdd = 1.02 V . . .1.32 V,
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and environment temperature, Tenv = −45 °C . . .85 °C, during evaluation. These
conditions are created by powering the test chip with a variable power supply and
placing it in a climate chamber with temperature control. To comprehensibly as-
sess the PUF’s behavior over these intervals, we test it at the four extreme corner
conditions:

• The low-low corner (LL) or αLL = (Tenv = −45 °C,Vdd = 1.02 V).
• The low-high corner (LH) or αLH = (Tenv = −45 °C,Vdd = 1.32 V).
• The high-low corner (HL) or αHL = (Tenv = 85 °C,Vdd = 1.02 V).
• The high-high corner (HH) or αHH = (Tenv = 85 °C,Vdd = 1.32 V).

In addition, the test chip is also evaluated at the nominal reference condition: αref =
(Tenv = 25 °C,Vdd = 1.20 V).

At all considered conditions, all PUF constructions on all Npuf = 192 test chips
are evaluated for all their possible challenges, except for the arbiter PUFs, which
are only evaluated on a set of 256 randomly generated challenges. In fact, for
the memory-based PUFs, the notion of ‘number of challenges’ is rather arbitrary
since it depends on how many bits one considers to be in a response, which we
denote by 	resp. In that respect, it is much more natural to detail the total num-
ber of generated response bits instead, denoted as Nbits ≡ Nchal × 	resp. Since all
considered evaluation methods for the delay-based PUFs also generate bitwise re-
sponses, we also describe them in this manner. For the arbiter PUFs, we consider
all bits generated by all arbiter PUFs at the same time; hence for the basic ar-
biter PUF experiment, Nbits = 256 × 256 = 65536, and for the 2-XOR arbiter PUF,
Nbits = 256 × 128 = 32768. All response bits are evaluated Nmeas = 20 times under
each condition for all PUFs on all chips.

4.3.3 Experimental PUF Uniqueness Results

Uniqueness Quantifiers

As expressed in Definition 8, the uniqueness of a PUF class is determined by the
distribution of its inter-distance, in particular at nominal conditions. To study this
distribution, we calculate the inter-distances Dinter

Exp(P)
on the measured responses for

all PUF constructions and report the most important statistics on the observed inter-
distances in Table 4.2. Since all responses are bitwise, all inter-distances are mea-
sured using Hamming distances. However, to make it easier to compare the different
PUF constructions, we report them as fractional Hamming distances, i.e. the Ham-
ming distances are expressed as a ratio of the total number of evaluated response
bits Nbits.

The basic inter-distance statistics we report in Table 4.2 are:

• The sample mean μinter
P and the sample standard deviation σ inter

P , respectively
expressing the location and dispersion of the inter-distance distribution.
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• The first percentile P [1 %]inter
P of the samples and the sample minimum mininter

P .
These two order statistics give a good idea of the left tail of the distribution, which
is of interest when quantifying identifiability later.

In addition to these standard statistics, we introduce a custom statistic which will be
of use later on: the inter-distance binomial probability estimator p̂inter

P . For many ap-
plications, we need to make assumptions about the distribution of the inter-distance
of a PUF construction. In particular, we often need to extrapolate the observed em-
pirical distribution to very small or large probabilities for which we have no reliable
measurements. For efficiency reasons it is important that this be done as accurately
as possible. However, any overestimation of the uniqueness could be disastrous for
the security requirements of an application and should be avoided at all cost. For
extrapolations beyond the observed inter-distance values, we make the assumption
that the inter-distance is binomially distributed with parameter p̂inter

P . This param-
eter is chosen to be as large as possible, but sufficiently small such that all three
following constraints are met, with Fbino(x;n,p) the cumulative binomial distribu-
tion function with parameters n and p, evaluated in x:

1. Fbino(μ
inter
P · Nbits;Nbits, p̂

inter
P ) ≥ 50 %, i.e. the estimated binomial distribution

should produce values smaller than or equal to the observed sample mean with a
probability of at least 50 %.

2. Fbino(P [1 %]inter
P · Nbits;Nbits, p̂

inter
P ) ≥ 1 %, i.e. the estimated binomial distribu-

tion should produce values smaller than or equal to the observed first percentile
with a probability of at least 1 %. If this is not the case, values smaller than
or equal to the first percentile of the samples are unlikely to occur as often as
they do in the experiment, which means the estimated binomial distribution is an
overestimation.

3. Fbino(mininter
P ·Nbits;Nbits, p̂

inter
P ) ≥ 10−6, i.e. the estimated binomial distribution

should produce values smaller than or equal to the observed sample minimum
with a probability of at least 10−6 (the total number of observed samples is in
the order of one million). If this is not the case, the observed sample minimum is
unlikely to occur in the experiment according to the estimated binomial distribu-
tion, which is hence an overestimation.

The largest value for p̂inter
P meeting all these three constraints is computed for all

the PUF constructions and reported in Table 4.2. When the inter-distance is ap-
proximately binomially distributed, the value for p̂inter

P should closely match that
for μinter

P . When this is not the case, the three constraints make sure that the bino-
mial estimation based on p̂inter

P at least accurately models the left tail of the actual
inter-distance distribution, to avoid overestimation for extrapolations to small prob-
abilities.

Discussion on Uniqueness Results

When presented as fractional Hamming distance, the optimal inter-distance is 50 %,
which indicates two response bit vectors are maximally uncorrelated. A reported
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inter-distance sample mean (and binomial probability estimator) close to 50 %
hence indicates high uniqueness. In this respect, the SRAM PUF and the buskeeper
PUF perform particularly well, whereas the D flip-flip PUF and the latch PUF show
slightly reduced uniqueness. In particular latch PUF instance number 3, with an
average inter-distance of merely 16 %, shows strikingly little uniqueness, even in
comparison to the other latch PUF instances. This is a sign of a possible imple-
mentation error in this latch instance. The basic arbiter PUF shows high uniqueness,
which is an indication that the full-custom design approach succeeded in minimizing
the arbiter PUF bias. For the 2-XOR arbiter PUF the uniqueness is evidently even
higher. Both ring oscillator PUF evaluation methods also offer high uniqueness. The
pairwise comparison approach has slightly better uniqueness than the Lehmer-Gray
encoding, but the latter method of course produces significantly more response bits
from the same amount of oscillators. For all the PUFs, the comparison between the
inter-distance sample mean and binomial probability estimator is also an indication
of how closely their inter-distance distribution resembles a binomial distribution.

4.3.4 Experimental PUF Reproducibility Results

Reproducibility Quantifiers

The reproducibility of a PUF class is determined by the distribution of its intra-
distance (cf. Definition 7), in particular at the most extreme reference corner condi-
tions. To study these distributions, we calculate the intra-distances Dintra

Exp(P)
on the

measured responses for all PUF constructions at the reference condition αref, and at
all four corner conditions, αLL, αLH, αHL, αHH, and report the most important statis-
tics on the observed intra-distances. Tables 4.3, 4.4, 4.5, 4.6 and 4.7 respectively
report the intra-distance statistics for the experiments under conditions αref, αLL,
αLH, αHL and αHH.

The basic intra-distance statistics we report in these tables are:

• The sample mean μintra
P and the sample standard deviation μintra

P , respectively
expressing the location and dispersion of the intra-distance distributions.

• The 99th percentile P [99 %]intra
P of the samples and the sample maximum

maxintra
P . These two order statistics give a good idea of the right tail of the dis-

tribution, which is of interest when quantifying identifiability later.

In addition to these standard statistics, we again introduce a custom statistic for re-
alistically approximating the observed distribution by a binomial distribution: the
intra-distance binomial probability estimator p̂intra

P . This time, this estimator is con-
strained to at least accurately model the right tail of the distribution to avoid un-
derestimation of the intra-distance distribution at high values. The reported values
for p̂intra

P are computed to be as small as possible, but sufficiently large such that all
three following constraints are met.
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1. Fbino(μ
intra
P · Nbits;Nbits, p̂

intra
P ) ≤ 50 %, i.e. the estimated binomial distribution

should produce values larger than or equal to the observed sample mean with a
probability of at least 50 %.

2. Fbino(P [99 %]intra
P · Nbits;Nbits, p̂

intra
P ) ≤ 99 %, i.e. the estimated binomial distri-

bution should produce values larger than or equal to the observed 99th percentile
with a probability of at least 1 %. If this is not the case, values larger than or
equal to the 99th percentile of the samples are unlikely to occur as often as they
do in the experiment, which means the estimated binomial distribution is an un-
derestimation.

3. Fbino(maxintra
P ·Nbits;Nbits, p̂

intra
P ) ≤ 1−10−6, i.e. the estimated binomial distribu-

tion should produce values larger than or equal to the observed sample maximum
with a probability of at least 10−6 (the number of samples in the experiment is
in the order of one million). If this is not the case, the observed sample maxi-
mum is unlikely to occur in the experiment according to the estimated binomial
distribution, which is hence an underestimation.

When the intra-distance is approximately binomially distributed, the value for p̂intra
P

should closely match that for μintra
P . When this is not the case, the three constraints

make sure that the binomial estimation based on p̂intra
P at least accurately models

the right tail of the actual intra-distance distribution, to avoid underestimation for
extrapolations to larger probabilities.

Discussion on Reproducibility Results

The intra-distance statistics reported in Tables 4.3 to 4.7 clearly show that the eval-
uation conditions impact the reproducibility of a PUF. For integration in a realistic
application, we are particularly interested in the worst-case reproducibility behavior
over all considered conditions. In Table 4.8, we summarize the worst-case results
from Tables 4.3 to 4.7, i.e. the statistics from these tables which show the largest
intra-distances. Note that different worst-case results can come from different con-
ditions.

Studying the worst-case intra-distance statistics in Table 4.8, we see that of all the
memory-based PUF constructions the SRAM PUF is particularly reproducible, with
even worst-case maximal intra-distances smaller than 10 %. The buskeeper, D flip-
flop and latch PUFs have a considerably worse reproducibility. We also remark two
outlying behaviors:

1. Latch PUF instances numbers 2 and 3 show lower intra-distances than the other
two, which is a side effect of them already having low uniqueness. This is most
likely a result of an implementation fault in these instances, which we also al-
ready spotted based on the outlying uniqueness results. Note that latch instances
numbers 2 and 3 deploy the rather complex scan chain-based read-out technique,
as opposed to the other two which use a multiplexer tree, which is likely the
cause of this problem.
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2. D flip-flop PUF instance number one shows considerably larger intra-distances
than the other three instances. The cause for this is unknown, but is likely also
due to an implementation fault.

To prevent these outlying results from affecting this objective comparison between
different PUF constructions, we will ignore them in all following analysises.

The delay-based PUFs also show relatively good reproducibility. The worst-case
statistics of the basic arbiter PUF are nearly identical to those of the SRAM PUF. For
the 2-XOR arbiter PUF, the intra-distances get approximately twice as large, which
follows from their construction: when one of the two XOR-ed arbiter PUFs produces
a faulty bit, the XOR-ed result will also be wrong. The ring oscillator PUF response
bits based on pairwise comparison of frequencies are extremely reproducible, which
proves the strength of this method. The Lehmer-Gray encoding method has worse
reproducibility than the pairwise comparison method, but is still fairly good with a
worst-case average smaller than 10 %.

4.4 Assessing Entropy

For many applications, and in particular for PUF-based key generation, it is im-
portant to accurately estimate the entropy of a random PUF response. Entropy is a
function of the distribution of a random variable and expresses the amount of un-
certainty one has about the outcome of the random variable. In the case of PUF
responses, it represents a generalized and unconditional upper bound on the aver-
age predictability of an unobserved random outcome Y of a response evaluation.
However, in general it is also very difficult or even impossible to calculate the en-
tropy of a PUF response exactly. In the end, the distribution of most PUF responses
is determined by very complex and even chaotic physical processes, and it cannot
be learned in the complete detail which is required to calculate its entropy exactly.
Typically, only estimated upper bounds on the underlying entropy can be provided.
These bounds are either derived from a high-level physical model of the PUF con-
struction, or based on the experimental data one observes.

In this section, we will present increasingly tighter upper bounds on the entropy
of a PUF response based on increasingly more powerful adversary models, i.e. ad-
versaries which gain more and more insight into the underlying distribution of the
PUF’s responses. We do this for all eight PUF constructions studied on the test chip
and we compute entropy bounds based on the experimentally observed response
distributions of these PUFs.

4.4.1 Adversary Models and Basic Entropy Bounds

In the following, Yn represents a random bit vector of length n, and Yi ←
{0,1} is a binary random variable whose distribution is completely determined by
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pi
�= Pr(Yi = 1). We also use the following notation for the conditional distribu-

tion of Yi conditioned on the previous bits Y (i−1) = (Y1, . . . , Y(i−1)) : pi|y(i−1)
�=

Pr(Yi = 1|Y (i−1) = y(i−1)). An overview of the general notions of probability the-
ory and information theory used in this section is found in Appendix A.

Completely Ignorant Adversary

An adversary which is completely ignorant of the underlying distribution of the
responses can make no better prediction than just guessing every bit completely at
random. To him, it looks as if the PUF response has full entropy. Based on this
adversary, we can introduce the following trivial response entropy bound:

H(Yn) ≤ n.

Using entropy density, this bound is denoted as

ρignorant(Y
n)

�= 100 %,

such that ρ(Y n) ≤ ρignorant(Y
n). This ignorant entropy bound is very trivial, but we

include it nonetheless for completeness and to detail the manner in which we will
discuss the following bounds.

Adversary Knows Global Bias

The most basic deviation from a completely uniform and independent distribution
of the response bits is caused by an overall global bias, i.e. on average every bit is
more likely to be either ‘0’ or ‘1’. Such a global bias in the response Yn can be
expressed as:

pglobalbias = 1

n
E

[
n∑

i=1

Yi

]

.

An adversary with knowledge of this global bias can make better than random pre-
dictions by guessing in favor of the bias, i.e. if pglobalbias < 50 % it predicts a ‘0’
and else a ‘1’. To the adversary, it looks as if all PUF response bits are independent
and identically distributed (i.i.d.) according to a Bernoulli distribution with parame-
ter pglobalbias. Based on such an adversary, the following response entropy bound is
introduced:

H(Yn) ≤ n · h(pglobalbias).

This global bias entropy bound is expressed using entropy density as ρ(Yn) ≤
ρglobalbias(Y

n), with:

ρglobalbias(Y
n)

�= h(pglobalbias).
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Adversary Knows Bit-Dependent Bias

In a more realistic setting, every bit position in a PUF response vector will have its
own bias, as expressed by pi = Pr(yi = 1). An adversary knowing these individual
bit-dependent biases can make a more accurate prediction by guessing individual
bits in favor of these biases. To the adversary, it looks as if all PUF response bits are
independently, but no longer identically distributed, with each bit sampled from its
own Bernoulli distribution with parameter pi . Taking into account this adversary,
the response entropy bound can be refined further:

H(Yn) ≤
n∑

i=1

h(pi).

Again we rewrite this bit-dependent bias entropy bound using entropy density as
ρ(Y n) ≤ ρbitbias(Y

n), with:

ρbitbias(Y
n)

�= 1

n

n∑

i=1

h(pi).

Adversary Knows Inter-Bit Dependencies

In the previous three adversary models, we moved from an adversary that sees a
PUF response as an i.i.d. uniformly random bit vector to one that observes it as a
vector of independently distributed bits which are no longer uniform or identically
distributed. The next improvement to the adversary model would be to give it insight
into the dependencies between different response bits, i.e. it no longer assumes that
the response bits are completely independently distributed. It is clear that full knowl-
edge of all inter-bit dependencies is generally unattainable since that would give the
complete and exact distribution of the responses. Instead, we assume an adversary
which has a certain realistic yet only partial model of the inter-bit dependencies. We
consider two such partial dependency models:

1. The adversary has insight into the pairwise joint distributions p(yi, yj ) of all
possible pairs of response bits in Yn. This is a natural extension of insight into
the bit-dependent bias of individual bits.

2. The adversary has partial insight into the conditional distribution p(yi |y(i−1)) of
a response bit Yi given the observation of the previous response bits Y (i−1) =
y(i−1). This is typically the case when the adversary deploys a successful next-
bit modeling attack on response bits, with a prediction model which is trained on
earlier observed responses.

We discuss both these adversarial models separately.
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Adversary Knows Pairwise Joint Distributions

When an adversary knows all pairwise joint distributions between the response bits
in Yn, the response entropy bound is further lowered to:

H(Yn) ≤
n∑

i=1

h(pi) −
n−1∑

i=1

I (Yi;Yi+1).

We call this the pairwise joint distribution entropy bound and using entropy density,
we write ρ(Y n) ≤ ρpairjoint(Y

n), with:

ρpairjoint(Y
n)

�= 1

n

(
n∑

i=1

h(pi) −
n−1∑

i=1

I (Yi;Yi+1)

)

.

The mutual information values, i.e. the information shared by consecutive pairs of
random bits, are subtracted from the bit-dependent bias entropy bound since they are
in a way counted twice. The mutual information between two consecutive random
bits can be computed from their pairwise joint distribution. Note that the subtracted
amount is dependent on the way the individual random bit variables are ordered
in Yn, since the mutual information is computed over consecutive pairs (Yi, Yi+1)

from Yn = (Y1, . . . , Yn). Without loss of generalization, we assume that the bits are
ordered in such a way as to maximize the subtracted amount. This yields the tightest
lower bound on the response entropy.

Adversary Deploys Next-Bit Modeling Attack

In this model, we assume an adversary can perform a modeling attack on the PUF
response bits, which after having been trained with (i − 1) previously observed
response bits, can predict the i-th bit with an average success probability of pmodel(i).
This results in a response entropy bound of:

H(Yn) ≤
n∑

i=1

h(pmodel(i)).

We call this the model entropy bound, and in terms of entropy density this becomes
ρ(Y n) ≤ ρmodel(Y

n), with:

ρmodel(Y
n)

�= 1

n

n∑

i=1

h(pmodel(i)).

The tightness of this bound depends on the strength of the assumed model, and
hence on the information and computational power available to the adversary in
order to build this model. The goal of the model is to exploit dependencies be-
tween bits in order to make a better than random prediction for the next bit. In gen-
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eral, the model’s success rate gets better and better as it is trained on more re-
sponses, i.e. pmodel(i) increases with i. This also means that ρmodel(Y

n), unlike
for the previously discussed bounds, is not a constant, but is dependent on n. In
general, ρmodel(Y

n) decreases for increasing n. For example, if a model produces
near-perfect predictions after having been trained with a large number of observed
response bits, all following response bits will no longer contribute any meaningful
entropy since they are perfectly predictable. Hence, producing more response bits
will only increase the response length and not the entropy, i.e. the entropy density
of the response decreases.

4.4.2 Entropy-Bound Estimations Based on Experimental Results

Next, we evaluate the different entropy bounds on the measured responses obtained
from the performed experiments which were discussed in Sect. 4.3. All entropy
bounds are expressed using entropy density, allowing us to make an easy comparison
between different PUF constructions.

Bound Estimation Strategy

For all memory-based PUF instances, we consider a response bit vector containing
n = 5000 bits to estimate the following entropy bounds:

• The ignorant entropy bound is trivially equal to 100 % for all PUFs.
• For the global bias entropy bound, we estimate the global bias by computing the

response bit sample mean over all 5000 considered bits on all 192 devices.
• For the bit-dependent bias entropy bound, we estimate the bit-dependent biases

by computing the response bit sample mean over all 192 devices for every bit
individually.

• For the pairwise distribution entropy bound, we estimate the pairwise joint dis-
tributions of all possible pairs of the considered response bits, by counting the
occurrences of each of the four possible outcomes (0,0), (0,1), (1,0) or (1,1)

for each considered pair on all 192 devices.

We do not consider the model entropy bound for memory-based PUFs, as no suc-
cessful modeling attacks on memory-based PUFs are known. All bound estimations
are done based on responses measured at nominal conditions.

For the delay-based PUF instances, we differentiate between the arbiter and the
ring oscillator PUFs. For both response generation methods of the ring oscilla-
tor PUF, we perform the same bound estimations as for the memory-based PUFs,
only on different sizes of response bit vectors, respectively n = 2048 for the pair-
wise comparison method and n = 12544 for the Lehmer-Gray method. No model-
building attacks for these ring oscillator PUFs are known.
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For the arbiter PUF we take a slightly different approach. The first four bounds
are computed for response bit vectors of only n = 256 bits, for each of the 256 ar-
biter PUF instances and 128 2-XOR arbiter PUF instances on the test chip individ-
ually, but we report only the results for the worst observed instance. Besides these
four bounds, we also consider the model entropy bound for both types of arbiter
PUFs. This is discussed in more detail in Sect. 4.4.3.

Bound Estimation Results

The results for the estimations of the ignorant entropy bound, the global bias entropy
bound, the bit-dependent bias entropy bound and the pairwise distribution entropy
bound are presented in Table 4.9. From these results, it is evident that these four
estimates represent consecutively tighter upper bounds on the real response entropy.

4.4.3 Modeling Attacks on Arbiter PUFs

From the initial introduction of arbiter PUFs, it was recognized that they are sus-
ceptible to modeling attacks. This is a result of the reduced complexity of the de-
pendency between arbiter PUF challenges and responses. For the basic arbiter PUF
it was made clear, e.g. by Lee et al. [75], that this dependency is to a high level
of accuracy even a linear system. In that case, the unpredictability of the responses
results only from the unknown parameters of this underlying system, since once
they are learned every response bit is easily predictable with high accuracy. A mod-
eling attack attempts to estimate the unknown model parameters as a function of
observed challenge-response pairs. For more advanced arbiter PUF constructions,
e.g. the 2-XOR arbiter PUF, the underlying model becomes more complex, but as
shown by Rührmair et al. [118], it is still modelable with more advanced modeling
techniques.

Modeling with Machine Learning Techniques

A particularly interesting set of modeling techniques are based on machine learn-
ing [99]. Machine learning algorithms are able to automatically learn complex be-
havior and unknown model parameters by generalizing on presented training exam-
ples. Another strong motivation for using machine learning algorithms in modeling
attacks is that they are generic, i.e. they have the ability to learn any complex be-
havior and are not a priori restricted to a particular model description (e.g. a linear
model).

In [55], we apply two basic machine learning techniques to our experimental ar-
biter PUF results to test for modelability: (i) artificial neural networks or ANNs [99],
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Fig. 4.4 Average success
rate of a machine-learning
attack on basic and 2-XOR
arbiter PUFs. The success
rate pmodel(n) presents the
probability of correctly
predicting the n-th response
bit after having been trained
with (n − 1) previously
observed bits

and (ii) support-vector machines or SVMs [26]. Both techniques have been demon-
strated to be able to effectively model basic arbiter PUFs, respectively by Gassend
et al. [43] and Rührmair et al. [118]. However, we apply these attacks on PUF re-
sponses resulting from a modern implementation (65 nm CMOS), as opposed to
these earlier results which work with older technologies [43] or only with simulated
data [118]. For this analysis of the model entropy bound, we are mainly interested
in the results of these modeling attacks. For more details on their implementation,
we refer to [55].

Modeling Results

Using both ANN and SVM, we were able to successfully model both basic and
2-XOR arbiter PUFs. Both ANN and SVM first take a number of known arbiter
PUF challenge-response pairs which they use to train their model. Afterwards, their
modeling performance is evaluated by their success rate of accurately predicting
unobserved responses when presented with a challenge from a large test set. It is
evident that, the more training examples a machine learning algorithm is allowed
to use, the better its modeling accuracy becomes. In Fig. 4.4, we summarize the
outcome of our machine learning modeling attacks on the experimental data from
the basic and the 2-XOR arbiter PUFs. It shows the average success rate (pmodel(i))
of the best machine learning technique, ANN or SVM, after having been trained
with (i − 1) earlier observed response bits.

We can draw some conclusions on the machine learning results as represented in
Fig. 4.4:

• The 2-XOR arbiter PUF is more difficult to model with our techniques than the
basic arbiter PUF, as expressed by the larger number of training examples re-
quired to achieve the same modeling success rate. This is a result of the challenge-
response relation being more complex for the 2-XOR arbiter PUF.
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Fig. 4.5 Estimated entropy
density bounds for the basic
and 2-XOR arbiter PUFs,
based on a modeling
adversary deploying the
machine-learning attack
results presented in Fig. 4.4

• The basic arbiter PUF can be modeled with ≈90 % accuracy after training with
≈500 examples and with ≈95 % accuracy after training with ≈2000 examples.
Note that the maximal attainable success rate of any modeling attack is naturally
limited by the reproducibility of the considered PUF instance. In that respect, the
obtained modeling accuracy of ≈97 % after training with ≈5000 examples can
be considered perfect, given that the average intra-distance of the basic arbiter
PUF at nominal conditions is about 3 % (cf. Table 4.3). This means that all fol-
lowing response bits do not contribute any entropy except for their reproducibility
uncertainty.

• The 2-XOR arbiter PUF can be modeled with ≈75 % accuracy after training with
≈4000 examples and with nearly 90 % after training with 9000 examples.

Modeling Entropy Bound

Using the machine learning modeling attack results as presented in Fig. 4.4, we
can calculate the model entropy bound as ρmodel(Y

n) = 1
n

∑n
i=1 h(pmodel(i)). The

resulting entropy bound, as a function of n, is presented in Fig. 4.5.
From Fig. 4.5 we learn that for the basic arbiter PUF, ρmodel(Y

100) < 90 % and
ρmodel(Y

1000) ≈ 50 %. For response bit vectors of more than 1000 bits, the en-
tropy density drops drastically as each additional response bit adds very little en-
tropy. After about 5000 bits, each additional response bit only adds a little noise
entropy, which is not useful. For the 2-XOR PUF, the results are less severe with
ρmodel(Y

5000 < 90 %) and ρmodel(Y
8000 < 80 %).

As a final remark, we want to make clear that the obtained model entropy bounds
are likely not very tight, since our machine-learning modeling attacks are not op-
timal. More advanced or more fine-tuned modeling techniques are likely to obtain
even higher success rates, and hence lower model entropy bounds, than our results,
which are based on relatively basic machine learning algorithms.
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4.5 Conclusion

In this chapter, we have presented a detailed discussion on the realization, evalua-
tion and analysis of a collection of different PUF constructions in a realistic, practi-
cal and objective manner. We have developed and produced a test chip carrying six
different intrinsic PUF implementations: four memory-based PUFs (SRAM, latch,
D flip-flop and buskeeper) and two delay-based PUFs (arbiter and ring oscillator).
Both delay-based PUFs are evaluated (off-line) using two different methods, giving
a total of eight studied PUF constructions. A large-scale experimental evaluation
is performed of all eight PUF constructions on 192 manufactured test chips un-
der different temperature and supply voltage conditions. The large response data
set produced by this experiment is meticulously analyzed in order to assess the be-
havior of the different PUF constructions, with regard to their reproducibility, their
uniqueness and the entropy of their responses.

4.5.1 Summary of PUF Behavior Results

As a final conclusion, we present a concise summary of the most important results
related to the PUF behavior of the different intrinsic PUF implementations which
we studied in this chapter. We characterize the different PUFs for each of the three
analyzed properties (reproducibility, uniqueness and response entropy) in a single
quantifier which will be of particular practical use in the following chapters, which
discuss PUF-based applications. The three quantifiers we consider are:

1. The intra-distance binomial probability estimator p̂intra
P as a characterization of

reproducibility. This will allow us to accurately and safely estimate the right
tail of the intra-distance distribution, i.e. the probability that the intra-distance
becomes very large.

2. The inter-distance binomial probability estimator p̂inter
P as a characterization of

uniqueness. This quantifier allows us to accurately and safely estimate the left tail
of the inter-distance distribution, i.e. the probability that very low inter-distances
occur.

3. The tightest upper bound on the response entropy density ρ(Y n) as a characteri-
zation of response entropy.

For all three quantifiers, we selected the worst-case measured values over all im-
plemented instances of the individual PUF types, respectively from Tables 4.8, 4.2
and 4.9. Note that we discarded all results from latch PUF instances numbers 2 and
3 and from D flip-flop PUF instance number 1, since they exhibit a strong outlier
behavior which is likely caused by an implementation error. For the entropy density
bound on the basic and 2-XOR arbiter PUFs, we cannot provide a single constant
quantifier, since their entropy density bound depends on the considered response
length. Instead, we refer to Fig. 4.5, which shows this relation for the machine-
learning modeling attacks we performed. Relating to the reported entropy density
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Table 4.10 Summary of the most important results on the PUF behavior of the implemented
intrinsic PUFs

PUF class P p̂intra
P p̂inter

P ρ(Y n)≤

SRAM PUF 7.78 % 48.72 % 94.09 %

Latch PUF 26.33 % 30.77 % 71.92 %

D Flip-Flop PUF 19.23 % 39.50 % 81.34 %

Buskeeper PUF 19.07 % 48.27 % 93.00 %

Arbiter PUF (basic) 7.75 % 46.43 % Fig. 4.5

Arbiter PUF (2-XOR) 14.25 % 49.71 % Fig. 4.5

Ring Oscillator PUF (P.C.) 3.88 % 49.54 % 94.69 %

Ring Oscillator PUF (L.G.) 9.89 % 46.45 % 86.63 %

results, we also point out that these are merely upper bounds and that the actual
response entropy is smaller.

The summary of PUF behavior results in Table 4.10, together with the overview
of the area breakdown of the different PUF implementations on the test chip pre-
sented in Table 4.1, will be of great value for assessing and optimizing the deploy-
ment of these PUF constructions in actual applications.



Chapter 5
PUF-Based Entity Identification
and Authentication

5.1 Introduction

5.1.1 Motivation

Due to its combination of uniqueness and reproducibility, a PUF embedded by an
entity serves as an identifying feature of that entity, as already intuitively expressed
by Definition 9. Moreover, the physical unclonability exhibited by an embedded
PUF construction provides even strong security guarantees regarding this expressed
identity, which could be used for authentication purposes. However, in order to be
of any practical value, the security and robustness of a PUF-based identification or
authentication needs to be quantified based on its experimentally verified behavioral
characteristics.

Entity Authentication

In information security, the term ‘authentication’ has a very broad meaning, which
often leads to confusion when not described in more detail. First of all, authen-
tication can relate to entities or to data. In the former case one speaks of entity
authentication, while the latter is called message authentication. Since a PUF pro-
vides a measure of an entity-specific physical feature, we particularly consider entity
authentication in this chapter. Whenever we talk about PUF-based authentication,
entity authentication is implied.

Entity authentication by itself is still a catchall for a collection of techniques
used to check and be assured of the identity of an entity. The Handbook of Applied
Cryptography [96] defines entity authentication as:

Definition 25 An entity authentication technique assures one party, through acqui-
sition of corroborative evidence, of both: (i) the identity of a second party involved,
and (ii) that the second party was active at the time the evidence was created or
acquired.

R. Maes, Physically Unclonable Functions, DOI 10.1007/978-3-642-41395-7_5,
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Besides giving convincing proof of its identity, an entity authentication technique
also needs to guarantee that the authenticating entity is actively present in the au-
thentication.

Identification

The Handbook of Applied Cryptography [96] treats ‘identification’ and ‘entity au-
thentication’ as synonyms. However, in this book, as in many other treatises of the
subject, we consider identification to be a related but significantly weaker concept
than authentication (see also [96, Remark 10.2]). Identification is the mere claim-
ing or stating of its identity, without necessarily presenting any convincing proof
thereof. While not strictly a security technique since it doesn’t fulfill any meaning-
ful security objective, identification still has very useful qualities:

• Identification is in many cases a necessary precondition for entity authentication
and hence an inherent part of most entity authentication techniques. An entity that
cannot be identified, cannot be individually authenticated.1

• For applications without strict security objectives, identification can be a suffi-
cient condition, e.g. for applications which involve the tracking of products in a
closed system.

• In certain situations, identification is sufficient to achieve entity authentication,
since the authentication conditions are implicitly met.

For this reason, we will first discuss PUF-based identification in this chapter, before
we treat PUF-based authentication.

5.1.2 Chapter Goals

The primary goal of this chapter is to propose practical methods for achieving entity
identification and authentication based on the uniqueness and unpredictability of a
PUF’s challenge-response behavior, and introduce a methodology for quantifying
the resulting identification and authentication performance in terms of security and
robustness. More specifically, we aim to:

• Study how to use an entity’s inherent PUF responses as an identifying feature in
an identification system, and how this relates to classic identification based on
assigned identities.

• Derive performance metrics for such a PUF-based identification system and apply
these on the experimentally derived intrinsic PUF characteristics from Chap. 4, to
provide an objective comparison of the identification performance and efficiency
of the studied PUFs.

• Develop an entity authentication protocol which: (i) uses a PUF’s unique and un-
predictable responses directly as an authentication secret, (ii) can be deployed

1In an anonymous credential scheme, an entity can prove its group membership without revealing
its individual identity.
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based on existing intrinsic PUFs, and (iii) is sufficiently lightweight to be imple-
mented on resource-constrained devices.

• Derive the performance metrics of the developed authentication scheme and
equivalently apply them to the experimental intrinsic PUF characteristics from
Chap. 4 to make an objective comparison of their authentication performance.

5.1.3 Chapter Overview

How to safely and reliably identify an entity based on its inherent PUF responses
is discussed and analyzed in Sect. 5.2, and a performance overview of the different
intrinsic PUFs studied in Chap. 4 is given. In Sect. 5.3, we first describe the op-
eration of an earlier proposed basic PUF-based challenge-response authentication
scheme and point out its perceived shortcomings. Based on this analysis, we pro-
pose a new and more practical PUF-based mutual authentication scheme and study
its authentication performance. Finally, we conclude this chapter in Sect. 5.4.

5.2 PUF-Based Identification

5.2.1 Background: Assigned Versus Inherent Identities

When we compared PUFs to human fingerprints in Sect. 2.1.1, we introduced the
concept of an inherent identifying feature, i.e. an entity-specific characteristic that
arises in the creation process of the entity. As opposed to inherent identities, an
entity can also have assigned identities. In the analogy with human beings, this is the
distinction we make between fingerprints, which are inherent, and, e.g. a person’s
name, which is ‘assigned’ after birth. The inherency of its instance-specific behavior
was indicated as one of the key conditions for a construction to be called a PUF.

An inanimate object can also have an assigned identity, e.g. a unique serial num-
ber or barcode which is printed on its surface, and in most applications that require
entity identification, assigned identities are currently standard practice. In particular
for digital silicon chips, unique bit strings which are programmed in a non-volatile
memory embedded on the chip were until recently the only way of identifying a spe-
cific chip in a digital interaction. With the introduction of silicon PUF technology,
it is now possible to also use inherent unique features of a silicon chip for instance
identification.

Identity Provisioning Versus Enrollment

Identification techniques based on assigned as well as on inherent identities typically
work in two phases. The first phase is different for both types:

• For assigned identities, the first phase of any identification technique consists
of providing every entity that needs to be identified with a permanent unique
identity. We call this the provisioning phase.
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• For inherent identities, the first phase of any identification technique consists of
collecting the inherent identities of every entity that needs to be identified. We
call this the enrollment phase.

The second phase is very similar for both types and consists of an entity presenting
its identity, either assigned or inherent, when requested. This is called the identifi-
cation phase.

Practical Advantages of Inherent Identities

The differences between provisioning, for assigned identities, and enrollment, for
inherent identities, highlight interesting practical advantages of the latter:

• A unique assigned identity needs to be generated before it is assigned to an en-
tity. To ensure that all generated identities are unique (with high probability), the
provisioning party either needs to keep state, e.g. using a monotonic counter, or
requires a randomness source, e.g. a true random-number generator. For inher-
ent identities this is not required, since their uniqueness results from the creation
process of the entities.

• When assigning an identity to an entity, the provisioning party needs to make per-
manent (or at least non-volatile) physical changes to each entity. This needs to be
supported by the entity’s construction. In particular for silicon chips, the inclusion
of a non-volatile digital memory can induce a non-negligible additional cost. Ev-
idently, inherent identities do not require additional physical storage capabilities.

• Enrollment (reading an identity) is generally less intrusive than provisioning
(writing an identity); hence it can be done faster and with a higher reliability.
This is of particular interest for entities created in high-volume manufacturing
flows (like silicon chip products), where unit cost is directly affected by the yield
and processing time of each manufacturing step.

On the downside, there is no direct control over the actual values taken by inherent
identifiers. This is an issue if one wants to assign a meaning to an identifier value,
e.g. a serial number which is based on an entity’s creation date. For assigned identi-
ties, one has absolute control over the identifier values. Another peculiarity of most
inherent identities is their so-called fuzzy nature, which we discuss next.

5.2.2 Fuzzy Identification

Fuzzy Nature of Inherent Identifiers

A particular trait of most types of inherent identifying features which needs to be
dealt with is that they show fuzzy random behavior.2 We say that a random vari-

2When we use the term ‘fuzzy’ in this book, we relate to the notion of fuzziness as introduced
by Juels and Wattenberg [61] to describe fuzzy commitment, which was later extended to fuzzy
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able, like a PUF response or a biometric feature, shows fuzzy behavior if: (i) it
is not entirely uniformly distributed, and (ii) it is not perfectly reproducible when
measured multiple times. For PUF responses, both fuzzy characteristics are caused
by the physical nature of their generation. Random physical processes that intro-
duce entity-specific features during manufacturing are typically not uniformly dis-
tributed. Also, as already discussed in detail in Sect. 3.2.2, the response evaluation
mechanisms of a PUF construction are subject to physical noise and environmental
conditions which cause a non-perfect reproducibility of a PUF response value.

Assigned identities on the other hand are typically not fuzzy. The provisioning
party can make sure that the assigned identities are generated from a uniform distri-
bution. Also, once provisioned, an entity can typically reproduce its assigned iden-
tity with near-perfect reproducibility.

Fuzzy Identification with a Threshold

The fuzziness of a PUF response is most clearly depicted by its inter- and intra-
distance distributions. When we consider binary response vectors and fractional
Hamming distance as a distance metric, then perfectly uniformly random responses
would have an expected inter-distance of exactly 50 %. It is clear from our litera-
ture overview of intrinsic PUF results in Sect. 2.4.8, as well as from our summa-
rized experimental results on intrinsic PUFs in Sect. 4.5, that none of the existing
intrinsic PUF constructions meet this condition, although some have an average
inter-distance very close to 50 %. Equivalently, no intrinsic PUF exhibits perfect
reproducibility with a fixed intra-distance of 0 %, and many are only reproducible
up to an average intra-distance of 10 % or even more.

To assess the extent to which a PUF response can be used as an inherent identifier,
we need to take its fuzziness into account. This is where the earlier discussed PUF
property of identifiability comes into play (cf. Definition 9). We defined a PUF class
to exhibit identifiability if with high probability its responses’ intra-distances are
smaller than their inter-distances. In this section, we make this intuitive definition
very tangible, by computing the identifying power of a PUF’s responses based on
their intra- and inter-distance distributions.

Figure 5.1 shows an example of an estimated distribution of the inter- and intra-
distances of a PUF’s response. For this example, we consider a D flip-flop PUF
which produces a 16-bit response. As an estimate for both distributions, we assume
a binomial distribution with parameters the binomial probability estimators p̂inter

P
and p̂intra

P resulting from the experimental analysis from Chap. 4 and summarized in
Sect. 4.5. The process by which we computed these estimators guarantees that the
assumed binomial distributions provide an accurate estimation, in particular for the

vaults by Juels and Sudan [60] and finally to fuzzy extractors by Dodis et al. [32, 33]. We are not
referring to the homonymous but unrelated use of the word ‘fuzzy’ as used in fuzzy logic and fuzzy
set theory. To avoid any confusion, we will also not use the ambiguous term fuzzy random variable
in this context.
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Fig. 5.1 Example: estimated
inter- and intra-distance
distributions for 16-bit
responses from the
D flip-flop PUF

right tail of the intra-distance distribution and for the left tail of the inter-distance
distribution. As will become clear, this is specifically the region of interest for most
applications.

From Fig. 5.1, it is clear that this PUF construction exhibits some level of iden-
tifiability, since the expected intra-distance is noticeably smaller than the expected
inter-distance. However, there is also a significant overlap between the curves of
the two distributions, which points out the issue of identification based on fuzzy
responses. When an observed distance between responses from the enrollment and
the identification phase falls in this overlapping region, it can be a result of intra-
distance, in which case it is the same entity, or of inter-distance, in which case it
concerns a different entity, and there is no way of distinguishing between the two
cases. In a practical identification system for fuzzy identities, one needs to deter-
mine a rather pragmatic response distance threshold. Distances smaller or equal to
this threshold are assumed to be intra-distances between responses from a single en-
tity, while distances above this threshold are assumed to be inter-distances between
responses from different entities. We call this threshold the identification threshold.

False Acceptance, False Rejection, and Equal Error Rates

During the identification phase of a PUF-based identification system, the generated
response of an entity is checked against a list of enrolled responses. When an en-
rolled response is found whose distance from the presented response is smaller than
or equal to the identification threshold, then the entity is identified as the matching
entry in the list. It is clear that a fuzzy identification system based on such a prag-
matic identification threshold is not 100 % reliable, especially when there is a large
overlap between inter- and intra-distance distribution, as for the example in Fig. 5.1.
When comparing a presented entity response to a response from the enrollment list,
four possible situations can arise:

1. The presented entity is the same entity that produced the enrolled response, and
manages to reproduce the enrolled response with an intra-distance smaller than
the identification threshold. The presented entity is correctly identified. This is
called a true acceptance.
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2. The presented entity is the same entity that produced the enrolled response, but
is not able to reproduce the enrolled response with an intra-distance smaller than
the identification threshold. The presented entity is mistakenly rejected. This is
called a false rejection.

3. The presented entity is not the same entity that produced the enrolled response,
but happens (by chance) to produce a response whose inter-distance to the en-
rolled response is smaller than the identification threshold. The presented entity
is mistakenly identified. This is called a false acceptance.

4. The presented entity is not the same entity that produced the enrolled response,
and it produces a response whose inter-distance is larger than the identification
threshold. The presented entity is correctly rejected. This is called a true rejec-
tion.

It is clear that false rejections and false acceptances are both undesirable for a practi-
cal identification system. The probability that a random identification attempt results
in one of these cases is respectively expressed as the false rejection rate or FRR and
as the false acceptance rate or FAR of the system. FAR expresses the security of an
identification system, since a low FAR means that there is little risk of misidenti-
fication which could lead to security issues. FRR on the other hand expresses the
robustness or usability of a system, as it expresses the risk of wrongfully reject-
ing legitimate entities, which would be very impractical. For a usable identification
system, both FAR and FRR need to be as small as possible, but it is evident that
they cannot be both minimized at the same time. As is often the case, an acceptable
trade-off between security and usability needs to be made.

For a given identification system, FAR and FRR depend on the choice for the
identification threshold value, which we denote as tid. A high threshold minimizes
the risk of a false rejection but increases the likelihood of false acceptances, and vice
versa for a low threshold. When the distributions of the inter- and intra-distances of
the considered PUF are known, the respective relations between FAR, FRR and tid
can be computed:

• FAR is the probability that the inter-distance is smaller than or equal to tid. This
is equivalent to the evaluation of the cumulative distribution function of the inter-
distance at tid.

• FRR is the probability that the intra-distance is larger than tid. This is equivalent
to the complement of the evaluation of the cumulative distribution function of the
intra-distance at tid.

For the example presented in Fig. 5.1, we have assumed a binomial distribution for
both inter- and intra-distances; hence FAR and FRR become:

FAR(tid) = Fbino
(
tid;16, p̂inter

P
)
,

FRR(tid) = 1 − Fbino
(
tid;16, p̂intra

P
)
,

with Fbino(t;n,p) the cumulative binomial distribution function with parameters n

and p evaluated in t , and p̂inter
P and p̂intra

P the binomial estimators for the D flip-flop



124 5 PUF-Based Entity Identification and Authentication

Fig. 5.2 Example: identification metrics for a threshold identification system based on the PUF
described by Fig. 5.1

PUF taken from Table 4.10. The resulting FAR and FRR for every identification
threshold value between 0 and 16 are plotted in Fig. 5.2a. From this figure it is clear
that there is a threshold, and a corresponding error rate, where the plots of FAR and
FRR intersect. We call this the equal error threshold tEER and the corresponding
error rate the equal error rate or EER. For discrete distributions, FAR and FRR will
never be exactly equal for a discrete threshold, and in that case tEER and EER are
defined as:

tEER
�= argmint

{
max

{
FAR(t),FRR(t)

}}
,

and

EER
�= max

{
FAR(tEER),FRR(tEER)

}
.

The equal error rate is also indicated in Fig. 5.2a.
When designing a PUF-based identification system, the FAR and FRR plots as

shown in Fig. 5.2a can be used to find a suitable trade-off meeting the application
requirements. This can, but does not need to be the EER, e.g. in some applications
more care is given to security than to usability, or vice versa. A more convenient
way for assessing the FRR-vs-FAR trade-off is the plot of FRR as a function of FAR
as shown in Fig. 5.2b. Such a plot is also called the receiver-operating characteris-
tic or ROC plot of the system. In a ROC plot, the EER is found as the intersection
with the identity function which we have labelled the equal error line in Fig. 5.2b.
ROC curves completely summarize the identification performance of an identifica-
tion system and are particularly useful for comparing the performance of different
systems. A more condensed performance qualifier of a particular identification sys-
tem is given by its EER value.
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Fig. 5.3 Comparison of ROC curves for identification systems based on 64-bit responses from
each of the eight experimentally verified intrinsic PUFs which are summarized by Table 4.10

5.2.3 Identification Performance for Different Intrinsic PUFs

In Sect. 5.2.2 we presented a toy example of a 16-bit D flip-flop PUF identification
system and used it to introduce the different performance metrics of fuzzy identifica-
tion systems. Now, we will use these introduced metrics to objectively compare the
identification performance of the different intrinsic PUFs which were experimen-
tally studied in Chap. 4. As in Sect. 5.2.2, we will assume a binomial distribution
for both the inter- and intra-distances of these intrinsic PUFs and use the binomial
probability estimators as summarized in Table 4.10. This assumption is justified by
the fact that these estimators where derived to accurately describe the critical region
of both distributions, i.e. the part where both probability mass functions overlap.

We will first compare the identification performance of all considered PUFs for
a fixed length response. Afterwards, we compare the required parameters of the
different PUFs in order to obtain the same identification performance. Ultimately,
we combine these obtained parameters with each PUF’s area estimation to generate
an objective as possible comparison of identification performance versus silicon
area use for each of the intrinsic PUF constructions.

Comparison of ROC Curves for 64-bit Identification with Different PUFs

We consider an identification system based on 64-bit PUF responses and apply the
methods introduced in Sect. 5.2.2 to derive the ROC curves for all eight considered
intrinsic PUFs, based on their parameters from Table 4.10. All eight ROC curves
are plotted on the same graph in Fig. 5.3.
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When reading a ROC curve, it is important to know that the more one moves to
the left (up) on a curve, the more secure an identification system becomes, i.e. the
less likely that a misidentification will happen. On the other hand, moving down (to
the right) on a ROC curve gives more robust systems, i.e. systems which are less
likely to result in an unjustified rejection. In this respect, the closer to the lower
left corner a particular ROC curve is situated, the better its overall identification
performance and the easier to make a meaningful security-usability trade-off.

Analyzing the ROC curves from Fig. 5.3, it is clear that an identification sys-
tem based on 64-bit responses from the ring oscillator PUF with pairwise compar-
ison greatly outperforms all the other PUFs and is the only PUF which obtains an
EER ≤ 10−6. Looking at Table 4.10, the high identification performance of this ring
oscillator PUF is caused by a combination of having nearly the highest inter-distance
parameter (second to the 2-XOR arbiter PUF) and by far the best intra-distance pa-
rameter. The ROC curves of the SRAM PUF and the basic arbiter PUF follow at
a considerable distance, both reaching an EER ≤ 10−4. Notable is the fact that the
2-XOR arbiter PUF, while having a better inter-distance parameter than the basic
arbiter PUF, performs significantly worse due to its much worse intra-distance be-
havior. At the bottom of the ranking we find the latch PUF which performs very
weakly. It does not even reach an EER ≤ 10 %, which means that over one in ten
identification attempts will either be rejected or misidentified. In fact, looking at the
inter- and intra-distance parameters of the latch PUF in Table 4.10, we may con-
clude that the latch PUF hardly exhibits identifiability (and can hence only barely
be called a PUF), since its average intra-distance is only slightly smaller than its
average inter-distance.

Comparison of PUF Parameters and Areas for Practical Identification
Requirements

The required identification performance of an identification system is determined by
its application, but for most practical applications FAR and FRR both ≤ 10−6, and
hence EER ≤ 10−6, is minimally desired. For many applications, EER even needs to
be considerably smaller, e.g. EER ≤ 10−9 or even EER ≤ 10−12 can be required for
critical systems. Aiming for a lower EER also provides more freedom in selecting
an optimal FAR-vs-FRR trade-off. The results from Fig. 5.3 show that with a 64-bit
PUF response, only the pairwise-comparison ring oscillator PUF achieves EER ≤
10−6. In order to obtain a better identification performance based on the same PUF,
longer responses need to be considered as identifiers. In the following we examine
which response lengths, denoted as nid, are needed for every considered PUF to
reach an identification performance of respectively EER ≤ 10−6, EER ≤ 10−9 and
EER ≤ 10−12.

To ultimately obtain an objective comparison of the identification performance
of the different considered PUFs, we also need to take their silicon area efficiency
into account. After determining the minimal required response length nid to achieve
a certain identification performance, we estimate the required silicon area a PUF
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construction needs to occupy in order to produce a response of that length. These
area estimations are based on the area breakdown of our test chip as presented in
Table 4.1. We use the following approach for scaling the area of the different PUFs:

• For the memory-based PUFs, we scale the area completely bitwise, i.e. the esti-
mated silicon area of the entire PUF block as presented in Table 4.1 is divided by
the total number of bit cells of the considered PUF implemented on the test chip
and multiplied by nid. This is a very rough estimation as it does not take fixed
overhead into account, and it assumes bit cells can be instantiated one by one. Es-
pecially for the SRAM PUF this is not very accurate since it neglects the overhead
of the address decoder, sense amplifiers, readout circuitry, etc. Moreover, typical
SRAM array implementations come in multiples of kilobytes, not bits. However,
given the limited knowledge we have about the implemented PUF areas, this is
the best estimate we can give. For the other memory-based PUFs the estimate is
better since they can be instantiated on a bit by bit basis. For the D flip-flop PUF
with the chained read-out implementation, this estimation is even fairly accurate.

• For both arbiter-based PUFs, the silicon area is relatively independent of the re-
quired number of response bits, since a single 64-bit arbiter PUF can technically
produce 264 response bits. It will become clear that for most applications, large
problems arise when too many response bits of a single arbiter-based PUF are
used, but for plain identification (no authentication) this is not an issue. This
means that the identification performance of a single arbiter PUF is virtually
unlimited. The area of a single basic arbiter PUF is estimated by dividing the
estimated area of the entire arbiter PUF block as reported in Table 4.1 by the total
number of instantiated arbiter PUFs on the test chip. The estimated area of the
2-XOR arbiter PUF is that of two basic arbiter PUFs.

• For both ring oscillator PUFs, responses are bit vectors which are computed
from 16 simultaneously measured ring oscillator frequencies. The pairwise com-
parison method produces 8 bits per response, and the Lehmer-Gray method
49 bits. Multiples of these response lengths are obtained by incrementing the
number of oscillators in each of the 16 batches by the same amount. The required
area for these ring oscillator PUFs is estimated by dividing nid by 8 and 49 re-
spectively, and multiplying the ceiled outcome of this division with the area of a
set of 16 oscillators. The area of a single oscillator is estimated by dividing the
total area of the ring oscillator block from Table 4.1 by the number of oscillators
implemented on the test chip. This estimation is not very accurate as it neglects
the overhead of the frequency counters.

The results of these estimations are presented in Tables 5.1, 5.2 and 5.3, respectively
for EER ≤ 10−6, EER ≤ 10−9 and EER ≤ 10−12. We want to point out again that
the reported silicon area results need to be considered as rough estimates at best,
and even better as indications of order of magnitude.

From Tables 5.1 to 5.3 we conclude that, even though only based on rough esti-
mations, SRAM PUFs exhibit by far the best area efficiency for a required identifica-
tion performance, being an order of magnitude smaller than the next best PUF. This
is due to a combination of their relatively strong PUF behavior, and in particular
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Table 5.1 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−6

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 89 21 −6.00 −6.03 72.3

Latch PUF 9344 2664 −6.00 −6.01 77562.5

D Flip-Flop PUF 448 128 −6.05 −6.16 5359.4

Buskeeper PUF 223 72 −6.03 −6.05 1034.4

Arbiter PUF (basic) 101 23 −6.13 −6.21 1089.8

Arbiter PUF (2-XOR) 142 42 −6.06 −6.12 2179.7

Ring Oscillator PUF (P.C.) 62 12 −6.06 −6.20 7531.3

Ring Oscillator PUF (L.G.) 121 30 −6.12 −6.24 2824.2

Table 5.2 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−9

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 143 34 −9.11 −9.04 116.2

Latch PUF 14881 4243 −9.00 −9.02 123523.9

D Flip-Flop PUF 703 201 −9.00 −9.09 8409.9

Buskeeper PUF 355 115 −9.02 −9.09 1646.7

Arbiter PUF (basic) 160 37 −9.04 −9.39 1089.8

Arbiter PUF (2-XOR) 226 67 −9.15 −9.09 2179.7

Ring Oscillator PUF (P.C.) 104 20 −9.83 −9.28 12238.3

Ring Oscillator PUF (L.G.) 192 48 −9.13 −9.36 3765.6

Table 5.3 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−12

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 196 47 −12.0 −12.1 159.3

Latch PUF 20464 5835 −12.0 −12.0 169867.2

D Flip-Flop PUF 968 277 −12.0 −12.1 11580.1

Buskeeper PUF 488 158 −12.1 −12.0 2263.7

Arbiter PUF (basic) 217 50 −12.1 −12.1 1089.8

Arbiter PUF (2-XOR) 312 93 −12.1 −12.3 2179.7

Ring Oscillator PUF (P.C.) 155 29 −14.8 −12.4 18828.1

Ring Oscillator PUF (L.G.) 260 65 −12.1 −12.2 5648.4
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their very small cell area. Pairwise comparison ring oscillator PUFs, though show-
ing the overall best identification performance in Fig. 5.3, are very area-inefficient,
which makes them almost the least favorable choice for a required performance.
Latch PUFs still behave the worst, even when taking into account their silicon area,
because they require huge response lengths to provide meaningful levels of identifi-
cation performance.

5.3 PUF-Based Entity Authentication

5.3.1 Background: PUF Challenge-Response Authentication

When an entity wants to authenticate itself to an another party, typically called the
verifier, it needs to provide, besides plain identification, also corroborative evidence
of its presented identity, i.e. evidence which could only have been created by that
particular entity. An entity typically achieves this goal by proving to the verifier
that it knows, possesses or contains a particular secret which only that entity can
know, have or contain. In addition, the entity also needs to convince the verifier
that it was actively, i.e. at the time of authenticating, involved in creating that ev-
idence. In this section, we discuss how an entity can authenticate itself based on
the possession/containment of a unique PUF instance. An authentication scenario is
considered with a centralized verifier and entities which authenticate to the central
verifier, not to each other.

There are two main approaches towards developing a PUF-based authentication
system. The first approach is to develop an authentication scheme which directly
deploys the unique and unpredictable challenge-response behavior of a particular
PUF instance. The second approach consists of deriving a robust and secure crypto-
graphic key from a PUF response and using this key in an existing classic key-based
cryptographic authentication protocol. PUF-based key generation is discussed in de-
tail in Chap. 6. In this section, we focus on the challenge-response approach, which
is usually more efficient, since it does not require an additional implementation of a
key generation algorithm and other keyed cryptographic primitives.

Basic PUF-Based Challenge-Response Authentication

The basic PUF-based challenge-response entity authentication scheme, among oth-
ers described by Gassend et al. [42], Ranasinghe et al. [108] and Devadas et al. [30],
consists of two phases, enrollment and verification:

1. Before deployment, every entity goes through enrollment by the verifier. During
the enrollment phase, the verifier records the identity3 ID of every entity, and

3Identification can happen with both assigned or inherent identifiers, as discussed in detail in
Sect. 5.2. For simplicity, but without loss of generality, we assume an entity identifies with an
assigned identifier ID in this section.
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collects a significant subset of challenge-response pairs of every entity’s PUF,
for randomly generated challenges. The collected challenge-response pairs are
stored in the verifier’s database DB, indexed by the entity’s ID.

2. During the verification phase, an entity identifies itself to the verifier by sending
its ID. The verifier looks up the ID in its DB, and selects a random PUF challenge-
response pair stored with that ID. The PUF challenge is sent to the entity; the en-
tity evaluates its PUF with that challenge and replies with the obtained response.
The verifier checks whether the replied response is close to the response it has
in its database, i.e. both responses differ no more than some predetermined au-
thentication threshold tauth. If this check succeeds, the entity is authenticated,
otherwise the authentication is rejected. The used challenge-response pair is re-
moved from DB.

The correctness of this authentication scheme is ensured by the fact that PUF re-
sponses are reproducible over time, up to a small intra-distance. If tauth is set large
enough such that with high probability the intra-distance is smaller, the authentica-
tion of a legitimate entity succeeds. For the security of the authentication, the verifier
relies on the fact that PUFs are unique and unclonable, and only the genuine PUF
can with high probability reproduce a close response to a previously unobserved and
random challenge.

Drawbacks of the Basic Protocol

Unfortunately, while strikingly simple and low-cost, this basic protocol exhibits a
number of major shortcomings and drawbacks:

• It is clear that challenge-response pairs cannot be reused in order to avoid replay
attacks, and a used pair is therefore removed from DB after the protocol finishes.
This entails that the verifier needs to store a large number of pairs for each entity
to make sure that every entity can be authenticated a reasonable number of times.
Maintaining such a large database is a significant effort. Moreover, it requires that
the considered PUF construction has a large challenge set to begin with, which
already rules out a significant number of proposed PUF constructions.

• When the stored challenge-response pairs in DB of an entity run out, the entity
can no longer be authenticated by the verifier. To make further authentications
possible, the entity needs to be re-enrolled. This requires either a physical with-
drawal of the entity from the field to undergo re-enrollment at the verifier’s se-
cured premises, or an elaborate and costly extension of the basic protocol to make
remote re-enrollment possible.

• The basic protocol only provides authentication of an entity to the verifier; no
mutual authentication can be supported without significantly extending the basic
protocol.

• The basic protocol is only secure for truly unclonable PUFs (cf. Definition 13),
i.e. PUFs which are also mathematically unclonable. PUFs which can be cloned
in a mathematical sense (and which are hence still considered PUFs according to
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Definition 16) do not offer secure authentication, since the basic protocol can no
longer distinguish between the real entity with the physical PUF and an imper-
sonator with a mathematical clone of that PUF. From Table 3.1, it is clear that
only the optical PUF presents convincing evidence to be considered mathemati-
cally unclonable, which means the basic scheme is currently only secure when an
optical PUF is deployed.4

Improvements and extensions of this basic protocol have been proposed, e.g. by
Bolotnyy and Robins [9] and Kulseng et al. [71], to relax the strict requirements
on the PUF construction and the database. However, these proposals do not com-
pletely succeed in overcoming the shortcomings of the basic protocol, or they intro-
duce new restrictions. Some of these proposals are moreover shown to be insecure,
e.g. Kardas et al. [63] point out significant security weaknesses of the proposal by
Kulseng et al. [71].

Motivation

The simplicity of the basic PUF-based challenge-response authentication protocol
is very appealing, especially when entities are heavily constrained silicon devices
such as RFID tags, which cannot dedicate many resources to implementations of
cryptographic building blocks. A possibly significant improvement in the resource-
security trade-off of such devices is possible, if they can be authenticated only based
on an efficient embedded intrinsic PUF implementation. Unfortunately, no intrinsic
PUF candidates currently exist which meet the very strong requirement of mathe-
matical unclonability needed to make the basic challenge-response authentication
protocol secure. Constructing a practical intrinsic PUF for which strong guarantees
of mathematical unclonability can be provided is currently considered an important
open problem in the study of PUFs and their constructions.

Instead of attempting to tackle this difficult open problem, we will propose an
alternative PUF-based authentication protocol in this section, which has consider-
ably relaxed requirements for the PUF used, and which moreover provides mutual
authentication. We need a little more complexity than the basic protocol (less is vir-
tually impossible), but aim to keep it at a minimum, especially on the entity’s side,
which we consider to be a resource-constrained device like an RFID tag.

5.3.2 A PUF-Based Mutual Authentication Scheme

Rationale

The premise on which we base our proposed protocol is that the amount of unpre-
dictability in the challenge-response behavior of an intrinsic PUF instance is strictly

4Intrinsic PUF constructions have been proposed which are candidates for mathematical unclon-
ability, but currently they lack convincing argumentation to be classified as such.
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limited, and increasing it comes at a high relative implementation cost. Note that
this is the case for all currently known intrinsic PUF constructions. It is therefore
not recommendable to publicly disclose challenge-response pairs in the protocol’s
communications, as the basic protocol does, since every disclosed pair significantly
reduces the remaining unpredictability of the PUF’s behavior. This quickly results in
a situation where the PUF-carrying entity can no longer be securely authenticated.

In classic cryptographic challenge-response authentication protocols based on
symmetric-key techniques (cf. [96, Sect. 10.3.2]), an entity also does not authen-
ticate itself by disclosing its secret key, since this would render the authentication
insecure after one protocol run. Instead, an entity only proves its knowledge of the
secret key by showing that it can calculate encryptions or keyed one-way func-
tion evaluations of randomly applied challenges, without revealing any information
about the key’s value. We follow the same line of thought in our protocol: an entity
demonstrates its possession of a PUF instance by demonstrating that it can calculate
a function evaluation which takes an unpredictable PUF response as input, with-
out fully disclosing the unpredictable nature of the response in the result of this
evaluation.

An obvious choice for such a concealing function would be a one-way function,
e.g. instantiated as a cryptographic hash function, since a one-way function eval-
uation of a PUF response does not disclose any significant information about the
response value. The verifier could then calculate the same one-way function evalu-
ation on the response in its database and check if this matches the entity’s response.
However, this runs into the problem of the non-perfect reproducibility of the PUF’s
responses. Whereas the entity’s PUF response value will typically be close to the
enrolled PUF response value in the verifier’s database, the one-way function evalu-
ations of both are completely independent and cannot be meaningfully matched to
each other. This is also a consequence (in this case negative) of the one-way function
destroying any predictability between input and output.

To overcome this issue, we need to deploy some form of error-correction in the
protocol to make sure that both parties, the entity and the verifier, compute the one-
way function on exactly the same PUF response value. In order to be able to do this,
the entity and the verifier need to publicly exchange an amount of information about
the PUF response. This is typically called side information, or also helper data in
the context of PUF-based key generation algorithms (cf. Chap. 6). We show that it
is possible for some intrinsic PUFs to find a good balance between the amount of
side information one needs to disclose and the amount of unpredictability that is left
in the PUF response after observing the side information, to obtain a reliable but
secure authentication. Note that at no point in our proposed protocol do we derive a
cryptographically secure key or do we use a keyed cryptographic primitive. More-
over, while being related to the key-generation algorithms discussed in Chap. 6, the
used error-correction technique in this protocol is considerably less computationally
expensive, especially on the entity’s side.

Background The mutual authentication scheme as described in [151], of which a
slightly adapted version is presented in this section, is the shared result of numerous
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fruitful discussions and an intense research collaboration between the author and
Anthony van Herrewege, Roel Peeters and Prof. Ingrid Verbauwhede (all of the
University of Leuven), and Christian Wachsmann, Prof. Stefan Katzenbeisser and
Prof. Ahmad-Reza Sadeghi (all of the Technische Universität Darmstadt). The key
idea and development of the “reverse” secure sketch is due to the author.

“Reversed” Secure Sketching Based on Linear Block Code Syndromes

The error-correction technique we deploy in the protocol is a practical version of
the syndrome construction of a secure sketch, as described by Dodis et al. [32, 33],
with the sketching procedure executed by the entity, and the recovery procedure
executed by the verifier. Note that this execution order implies that the entity gener-
ates the “correct” version of the PUF response and the verifier needs to correct his
stored response value to match that of the entity. This is the opposite way, as secure
sketching is typically deployed, e.g. in PUF-based key generation, with the verifier
storing a single fixed secret key and helper data string and requiring the entity to
correct its noisy response, with the help of the helper data, to generate the same key
as the verifier. For this reason, we call this a reverse secure sketch. The use of such
a reverse secure sketch has some peculiar and interesting side effects:

• Since the entity’s PUF response is only non-perfectly reproducible, the actual
response value on which the authentication is based will possibly be different for
each run of the protocol. This means the exchanged side information will also be
different for each run. Since the side information partially discloses the response
value, we need to consider this when showing the security of the protocol, i.e. we
do not want multiple runs of the protocol to disclose the full response value.
We are able to prove that even after an indeterminate number of protocol runs,
with each a possibly different side information string based on a different noisy
response value, the remaining unpredictability of the PUF response remains high.

• Since the sketching procedure of a secure sketch is typically much less computa-
tionally complex than the recovery procedure, it can be efficiently implemented
by each entity using a small amount of resources. The central verifier is assumed
to be less resource-constrained and easily capable of implementing the recovery
procedure.

Secure sketch constructions based on linear block codes are explained in detail
in Sect. 6.2.1. We refer to that section for more background on the operation of the
syndrome construction used in our protocol. Summarized very briefly:

• The sketching procedure of the syndrome construction, executed by an entity,
consists of a binary matrix multiplication of the entity’s PUF response evaluation
with the parity-check matrix of a linear block code, resulting in the side informa-
tion for the protocol run: wi := y′

i · HT.
• The recovery procedure, as executed by the verifier, consists of three steps:

(i) a syndrome is calculated based on the received side information and the stored
PUF response value from the verifier’s database: si := wi ⊕yi ·HT ≡ ei ·HT, with
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Entity Enti : IDi ,pufi Verifier Ver : DB

pufi → y′
i

wi := y′
i · HT

r1
$← {0,1}	 IDi ,wi ,r1−−−−−−−−−−→ Identify IDi : DB[IDi ] → yi

y′′
i := Recover(yi ,wi)

r2
$← {0,1}	

Hash(IDi ,wi, y
′
i , r1, r2)

?= u1
u1,r2←−−−−−−−−−− u1 := Hash(IDi ,wi, y

′′
i , r1, r2)

· No match → Abort
· Match → Accept Ver

u2 := Hash(IDi , y
′
i , r2)

u2−−−−−−−−−−→ Hash(IDi , y
′′
i , r2)

?= u2

· No match → Abort
· Match → Accept Enti

Fig. 5.4 A PUF-based mutual authentication scheme between a PUF-carrying entity and a central
verifier

ei = (y′
i ⊕ yi); (ii) the syndrome is decoded to an error string: Decode(si) → e′

i ,
with e′

i = ei if HD(yi;y′
i ) ≤ tauth, with tauth the bit error correction capacity of

the underlying code; (iii) the response reconstruction: y′′
i := yi ⊕ e′

i , with y′′
i = y′

i

if HD(yi;y′
i ) ≤ tauth.

The Mutual Authentication Protocol

The execution flow of our proposed PUF-based mutual authentication protocol is
shown in Fig. 5.4. This is a modified version of the protocol we have introduced
in [151], the main difference being the reversal of the authentication checks such
that an entity will only authenticate to a legitimate verifier. We explain the different
operations in more detail:

• Each entity (Enti ) is assigned a unique identifier ID and equipped with a unique
PUF instance pufi . We only require a single challenge-response pair per PUF;
hence we do not explicitly write the challenge: pufi → y′

i .• Prior to deployment, all entities are enrolled by the verifier (Ver), which keeps
a database DB of a single response evaluation yi of every entity’s PUF, indexed
by the entity’s ID. PUF responses can only be enrolled once. This is enforced
by physically blocking or even destroying the entity’s enrollment interface which
directly outputs the PUF response.

• Each entity implements the sketching procedure of the secure sketch, which is
simply a binary matrix multiplication with a parity-check matrix HT of a linear
block code. Due to the special structure of these matrices for many block codes,
this multiplication can often be very efficiently implemented in digital hardware.

• The verifier implements the recovery procedure of the secure sketch: Recover(yi,

wi). This procedure contains an error-correction decoding algorithm which typi-
cally requires a considerable computational effort.
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• Each entity, as well as the verifier, implements a cryptographically secure hash
function: Hash(·).

• Each entity, as well as the verifier, has access to a cryptographically secure ran-
dom bit generator which they use to generate random nonces used in the protocol:
ri ← {0,1}	. The nonces are used to introduce freshness in the protocol’s mes-
sages in order to avoid replay attacks. Later we propose a possible optimization in
which entities do not need to produce a nonce and hence do not require a random
bit generator.

Correctness

The correctness of the protocol is guaranteed by the error-correction capability of
the underlying linear block code of the secure sketch. If, with high probability, the
intra-distance between the PUF response produced by a legitimate entity during a
protocol run and the response in the legitimate verifier’s database is smaller than
or equal to the error-correcting capacity tauth of the underlying block code, then
the verifier is able to recover the same response value produced by the entity. In
that case, both hash value checks will succeed and mutual authentication is accom-
plished. Based on the intra-distance distribution of the deployed PUF construction, a
code with an appropriate error-correction threshold is selected. This will ultimately
result in a false rejection rate, in a manner equivalent to PUF-based identification as
discussed in Sect. 5.2.2.

Security

Next, we discuss the different security aspects of the protocol. We refer to [151] for
a detailed security analysis, including a security proof, of a variant of the presented
protocol.

Physical Unclonability Due to the physical unclonability of the deployed PUFs,
an impersonation attempt of an entity carrying a different PUF will fail with high
probability. Equivalently to the identification system discussed in Sect. 5.2.2, a false
acceptance rate can be computed which depends on the inter-distance distribution
of the PUFs, the number of bits nauth in the considered PUF responses, and the se-
lected error-correction threshold tauth. Note that this false acceptance rate expresses
the probability that two different PUFs are, coincidentally, similar enough to im-
personate each other. The actual false acceptance rate of the overall protocol also
depends on the collision resistance of the used hash function and could be consider-
ably higher.

Replay Attacks The random nonces r1 and r2 respectively generated by the entity
and the verifier preclude replay attacks from both sides, by introducing freshness in
the protocol communications. An adversary trying to replay protocol messages in
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order to impersonate the verifier will fail since the entity will present a different
nonce value and the adversary cannot recompute the hash evaluation over this new
nonce since he doesn’t know the PUF response. The same holds for an adversary
trying to impersonate an entity by replaying earlier recorded messages from a suc-
cessful entity authentication. Under certain conditions, the nonce generated by the
entity can even be omitted. This is the case if the expected intra-distance on the en-
tity’s PUF response is large enough such that it is highly unlikely that exactly the
same response value will ever be reproduced. In that case, the freshness of the pro-
tocol is guaranteed by the noise on the entity response, given that it is large enough.
A practical advantage of this variant is that entities do not need access to a random
bit generator any longer, which reduces the resource requirements of the protocol.

Response Unpredictability We still need to assess the unpredictability of re-
sponses, given that the adversary can observe multiple side information strings
from many successful authentication attempts of an entity. We first consider the
unpredictability of a response after observing one side information string. After ob-
serving a protocol run, an adversary can launch an offline attack on the unknown
response value y′

i based on the observed quartet (IDi , r1,wi, u1), by guessing a re-

sponse value y∗
i and checking whether Hash(IDi ,wi, y

∗
i , r1)

?= u1. Note that, by ob-
serving the side information, an adversary gains quite some information about the
response value y′

i , since every bit of wi is a linear combination of bits from y′
i ,

which helps it in the guessing attack. We express the remaining unpredictability of
the response as its conditional entropy when conditioned on the side information.
It is rather trivial to show that H(Y ′

i |Wi) ≥ H(Y ′
i ) − |Wi |. This means that to en-

sure there is any unpredictability left, the length of the side information needs to
be smaller than the response’s entropy. Now we show that the unpredictability of
the PUF response remains this high even after observing many side information
strings computed over different (possibly noisy) evaluations of the same response,
by proving the following lemma:5

Lemma 1 If ∀j : Y ′
i and Dintra

j are pairwise independently distributed, then:
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5Note that this proof differs from the security proof given in [151].
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The assumption of independence between the distributions of response values
and intra-distances is very reasonable since they originate from different physical
processes. This lemma is directly applicable to our situation, since every helper data
string is a linear function of a response evaluation. Based on a similar reasoning,
one can also show that the remaining min-entropy remains high. This is proven in
a generalized form by Boyen [13]. The response’s unpredictability as expressed by
H(Y ′

i |Wi) measures the resistance against an offline attack; hence it needs to be
sufficiently large to offer long-term security.

5.3.3 Authentication Performance of Different Intrinsic PUFs

Proposed Entity Design

We first determine a concrete and realistic design of an entity which is used to
compare the authentication performance of different intrinsic PUFs in the proposed
protocol. The main design choice is the selection of the underlying error-correcting
linear block code of the secure sketch. We refer to Burr [18, Chap. 6] for a detailed
introduction to block codes. We propose using a concatenation of a simple repeti-
tion code followed by a BCH code as introduced by Hocquenghem [51] and Bose
and Ray-Chaudhuri [12], which yields an overall syndrome construction with a rel-
atively high error correction performance. The BCH code’s parameters are [nBCH,

kBCH, tBCH], which means that it has code words of length nBCH and dimension kBCH,
and up to tBCH bit errors in a single code word can be corrected. The corresponding
parameters of the repetition code are [nREP,1, nREP−1

2 ], with nREP odd.
An [n, k, t] binary linear block code can be fully described by its generation

matrix Gk×n or its corresponding parity-check matrix H(n−k)×n, which meet the
condition G · HT = 0. For a repetition code, a multiplication of an nREP-bit word
with the code’s parity-check matrix can be implemented straightforwardly in hard-
ware using (nREP − 1) 2-input XOR gates. Due to its special algebraic structure, the
multiplication of an nBCH-bit word with the parity-check matrix of a BCH code can
also be implemented very efficiently using an (nBCH − kBCH)-bit linear feedback
shift register (LFSR) with the feedback taps determined by the generator polyno-
mial of the BCH code. The overall side information generation of a concatenated
repetition and BCH code can hence be efficiently implemented using only minimal
resources on the entity’s side. A schematic representation of the side information
generator is shown in Fig. 5.5. Note that in the proposed design, the BCH code’s
side information and the verifier authentication hash value are only computed over
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Fig. 5.5 Design of an entity’s side information generator, based on a concatenated repetition and
BCH block code, and the corresponding verifier authentication check

every nREP’th response bit. Since the remaining nREP − 1 bits are immediately dis-
closed by the repetition code’s side information, it makes no sense to consider them
further for authentication and they are discarded.

For the hash function implementation, we propose using a lightweight hash
function. In our prototype implementation in [151] we used the SPONGENT hash
function as proposed by Bogdanov et al. [8]. To keep the side information gen-
erator small, we constrain the repetition code to nREP ≤ 11 and the BCH code to
nBCH ≤ 255. We now investigate the implementation parameters of this proposed
design, within these constraints, when the deployed PUF is one of the intrinsic PUFs
studied in Chap. 4. In particular, we determine the required code parameters based
on the intrinsic PUFs’ statistics summarized in Table 4.10. Based on these code
parameters, the required number of PUF response bits, and ultimately the required
PUF silicon area to reach a particular authentication performance, can be calculated.

Example of Authentication Performance Calculation

We demonstrate how the authentication performance is calculated for a single PUF
in an exemplary but realistic scenario. Next, we present the results of the same
calculations for all the intrinsic PUFs studied in a number of possible scenarios.

As an example, we consider the SRAM PUF, and we aim for an authentica-
tion performance with EER ≤ 10−9 and an unpredictability of at least 128 bits,
i.e. H(Y |W) ≥ 128. Searching the design space constrained by the proposed entity
design above yields the following parameters:

• A [nREP = 3,1,1] repetition code and a [nBCH = 223, kBCH = 83, tBCH = 21]
BCH code are used. In total, 3× a BCH code length is required.
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• These code parameters achieve an overall FRR = 10−9.63 and FAR = 10−104.84.
• The total number of required PUF response bits is nauth = 3 × nREP × nBCH =

2007.
• The total number of exchanged side information bits is 	auth = 3 × (nREP ×

nBCH − kBCH) = 1785.
• The remaining entropy is calculated as H(Y |W) ≥ H(Y) − |W | = nauth ×

ρ(Y nauth) − 	auth = 2007 × 94.09 % − 1758 = 130.4 bits.

Note that these parameters are optimized within the given constraints to yield to
smallest possible number of required PUF bits. For most intrinsic PUFs, the entropy
density ρ(Y nauth) is a constant and independent of the number of considered re-
sponse bits, as shown in Table 4.10. However, for both arbiter-based PUFs, ρ(Y nauth)

is a decreasing function of the required number of bits nauth, of which an upper
bound is given by Fig. 4.5.

Performance Comparison of Different Intrinsic PUFs

Now we apply the same calculation as in this example on all studied intrinsic PUFs
for three different authentication performances:

1. A low-cost security scenario with EER ≤ 10−6 and H(Y |W) ≥ 80.
2. A realistic security scenario with EER ≤ 10−9 and H(Y |W) ≥ 128.
3. A critical security scenario with EER ≤ 10−12 and H(Y |W) ≥ 256.

Based on the number of response bits needed, the required silicon area is also cal-
culated in the same manner (and with the same disclaimers) as in Sect. 5.2.3. The
results are presented in Table 5.4.

From Table 5.4, it is clear that for many studied intrinsic PUFs, no parameter
solutions meeting the presented design constraints can be found. This is mostly a
result of a too high average intra-distance, a too low entropy density, or a combina-
tion of both. Only the SRAM PUF and the pairwise comparison ring oscillator PUF
succeed in providing a solution for all three considered scenarios. The SRAM PUF
solution offers a better area efficiency than the ring oscillator PUF by almost two
orders of magnitude.

5.4 Conclusion

In Sect. 5.2 of this chapter, we have successfully demonstrated that a PUF response
can be used as a secure and reliable inherent identifier of a PUF-embedding en-
tity. The identification performance, in terms of false acceptance, false rejection and
equal error rate, scales only with the bit length of the PUF response. For the intrinsic
PUFs studied in Chap. 4, this ultimately comes down to a scaling with the required
silicon area needed to implement the PUF. The scaling factor is different for ev-
ery intrinsic PUF construction and is determined by the characteristics of its inter-
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and intra-distance distributions. A comparative analysis, as presented in Tables 5.2
and 5.3, indicates that for a given silicon area, the SRAM PUF provides the best
identification performance in terms of equal error rate. The latch PUF on the other
hand exhibits very poor identification capabilities, which severely undermines its
usage as a PUF.

We build upon these identification capabilities of intrinsic PUFs to provide se-
cure entity authentication. In order to obtain a cryptographic level of authentication
security, we proposed a new authentication protocol between a central verifier and
a deployed entity, shown in Fig. 5.4, that utilizes a unique and unpredictable re-
sponse of a PUF instance embedded by each entity as an authentication secret. The
protocol requires some form of error-correction which we accomplish by using a
secure sketch in a ‘reversed’ mode of operation, i.e. an entity generates new side
information in each protocol run and the verifier uses this side information to mod-
ify its fixed PUF response to match the current response evaluation of the entity.
Based on the linearity of the sketching procedure, we are able to prove that even
after many protocol runs, the unpredictability of the PUF response remains high.
The authentication performance metrics of this protocol are derived in a similar
way as for the PUF-based identification, and applied on the experimental intrinsic
PUF results. From this analysis, summarized in Table 5.4, it is clear that most of the
intrinsic PUFs studied in Chap. 4 are not able to achieve a high-level authentica-
tion performance within a resource-constrained environment. The SRAM PUF and
the pairwise-comparison ring oscillator PUF, and to a lesser extent also the 2-XOR
arbiter PUF, are the only constructions which are sufficiently unpredictable and re-
producible to be practically usable in the protocol, with the SRAM PUF exhibiting
the best silicon area efficiency.



Chapter 6
PUF-Based Key Generation

6.1 Introduction

6.1.1 Motivation

An indispensable premise for a large majority of cryptographic implementations
is the ability to securely generate, store and retrieve keys. While often considered
trivial in the description of cryptographic primitives, the required effort to meet
these conditions is not to be underestimated. The minimal common requirements
for secure key generation and storage are: (i) a source of randomness to ensure that
freshly generated keys are unpredictable and unique, and (ii) a protected memory
which reliably stores the key’s information while shielding it completely from unau-
thorized parties. From an implementation perspective, both requisites are non-trivial
to achieve. The need for unpredictable and unique randomness is typically filled by
applying a (seeded pseudo-)random bit generator (PRNG). However, the fact that
such generators are difficult to implement properly was just recently made clear
again by the observation by Lenstra et al. [77] that a large collection of “random”
public RSA keys contains many pairs which share a prime factor, which is imme-
diately exploitable and would not occur if they had been generated based on true
randomness. On the other hand, implementing a protected memory is also a con-
siderable design challenge, often leading to an increased implementation overhead
and/or restricted application possibilities in order to enforce the physical security of
the stored key. Countless examples can be provided of broken cryptosystems due to
poorly designed or implemented key storages, or bad handling of keys. Moreover,
even high-level physical protection mechanisms are often not sufficient to prevent
well-equipped and motivated adversaries from discovering digitally stored secrets,
e.g. as demonstrated by Tarnovsky [138], Torrance and James [143].

A PUF-based key generator tries to tackle both requirements at once by using
a PUF to harvest static but device-unique randomness and processing it into a cryp-
tographic key. This avoids the need for both a PRNG, since randomness which is
already intrinsically present in the device is used, and the need for a protected non-
volatile memory, since the used randomness is considered static over the lifetime of
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the device and can be measured again and again to regenerate the same key from
the otherwise illegible random features. Due to these very interesting properties,
cryptographic key generation is one of the main applications of (intrinsic) PUFs
and various PUF-based key generation techniques have been proposed by numerous
authors, among others by Bösch et al. [11], Guajardo et al. [45], Tuyls and Batina
[144], Yu et al. [158]. Since PUF responses are generally not perfectly reproducible
and not uniformly distributed, they can evidently not be used directly as crypto-
graphic keys. A PUF-based key generator faces two main challenges: increasing the
reliability to a practically acceptable level and compressing sufficient entropy in a
fixed length key.

6.1.2 Chapter Goals

Developing a PUF-based key generator is a process involving many design deci-
sions and trade-offs, of both a pragmatic nature (e.g. information-theoretical versus
computational security) and a quantitative nature (e.g. key reliability versus required
silicon area). The main goal of this chapter is to investigate the available techniques
and methods for generating a usable cryptographic key from a PUF’s response, and
apply the obtained insight to develop practical PUF-based key generation method-
ologies, building blocks and systems. In more detail:

• We will study existing notions and constructions used for generating crypto-
graphic keys from entropic sources.

• We will propose improvements and extensions for some of these existing con-
structions.

• We aim to develop a methodology for practical PUF-based key generation by
adopting an as realistic as possible model, both for the randomness source and
for the envisioned application requirements, and explicitly stating the security
design constraints for a given efficient construction in this model.

• Finally, we plan to apply this methodology, first to provide an assessment of the
performance and efficiency of the intrinsic PUFs tested in Chap. 4 with regard
to key generation, and then to develop a complete and practical PUF-based key
generation system.

6.1.3 Chapter Overview

In Sect. 6.2, we give an overview of existing notions and constructions which
are of interest for PUF-based key generation, such as secure sketches, strong and
fuzzy extractors and entropy accumulators. In Sect. 6.3, we present the main re-
sults of our work in [85, 86], which lead to a significantly improved secure sketch
implementation based on the use of soft-decision information from the PUF re-
sponse bits. A complete practical PUF-based key generation system is discussed in
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Sect. 6.4. The main contribution of this last section is the presented transition to
a more efficient practical PUF-based key generation methodology by abandoning
the information-theoretical security requirement. In this new mindset, we provide
a comparative overview of the key generation performance of the intrinsic PUFs
studied in Chap. 4 and finally develop and implement a complete yet efficient and
flexible, practical PUF-based key generator. Section 6.5 concludes this chapter.

6.2 Preliminaries

6.2.1 Secure Sketching

Concept

Dodis et al. [32, 33] introduce the concept of a secure sketch as:

Definition 26 A (Y,m,m′, t)-secure sketch is a pair of randomized procedures,
Sketch and Recover, with the following properties:

• The sketching procedure Sketch on input y ∈ Y returns a bit string w ∈ {0,1}∗.
• The recovery procedure Recover takes an element y′ ∈ Y and a bit string w ∈

{0,1}∗, and returns a bit string y′′ ∈ Y .
• The correctness property of secure sketches guarantees that if dist[y;y′] ≤ t ,

then Recover(y′,Sketch(y)) = y. If dist[y;y′] > t , then no guarantee is provided
about the output of Recover.

• The security property guarantees that if y is randomly selected from Y according
to a distribution with min-entropy m, then the value of y can be recovered by
the adversary who observes w with probability no greater than 2−m′

. That is,
H̃∞(Y |Sketch(Y )) ≥ m′.

A secure sketch is efficient if Sketch and Recover run in expected polynomial time.

The key notion of a secure sketch is that a ‘noisy’ version y′ of an earlier ob-
served value y can be exactly recovered by a recovery procedure when some side
information w about the original value is available, without having this side in-
formation reveal the complete unpredictability of the value of y. Dodis et al. [33]
also propose two practical constructions of secure sketches for a Hamming distance
metric. Both constructions are based on the use of a binary error-correcting linear
block code. Let C be a binary error-correcting block code with parameters [n, k, t],
i.e. C contains 2k different codewords of length n bits which are each at least 2t − 1
bits apart, and an efficient correction procedure exists which can correct up to t bit
errors on each code word. The code is completely characterized by its generator
matrix Gk×n and its parity-check matrix H(n−k)×n, with G · HT = 0. This code can
be used to construct an ({0,1}n,m,m − (n − k), t)-secure sketch, as demonstrated
by the following two constructions.
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The Code-Offset Construction

• Sketch(y) → w: the sketching procedure samples uniformly at random a code-

word c
$← C (independently from the value of y) and the n-bit side information

string is the binary offset between y and c: w := y ⊕ c.
• Recover(y′,w) → y′′: the recovery procedure calculates a noisy codeword as

c′ := y′ ⊕ w ≡ (y′ ⊕ y) ⊕ c and applies the error-correcting procedure of the
code C to correct c′: c′′ := Correct(c′). The recovered value is computed as y′′ :=
w ⊕ c′′ = y ⊕ (c ⊕ c′′).

• The correctness property of the construction follows from the error-correction
capacity of the underlying code: if HD(y;y′) ≤ t then HD(c; c′) ≤ t and the
correction procedure can perfectly correct the noisy codeword: c′′ = c, and hence
y′′ = y.

• The security property of the construction is intuitively explained by the fact that
w discloses at most n bits of which k (≤n) are independent from y; hence the
remaining min-entropy is H̃∞(Y |W) ≥ H∞(Y ) − (n − k) = m − (n − k). For a
formal proof we refer to [33].

The Syndrome Construction

• Sketch(y) → w: the sketching procedure generates an (n − k)-bit helper data
string as w := y · HT.

• Recover(y′,w) → y′′: the recovery procedure calculates a syndrome s of the
code C as s := y′ ·HT ⊕w ≡ (y⊕y′) ·HT. The syndrome decoding procedure of C
finds the unique error word e such that s = e · HT and HW(e) ≤ t . The recovered
value is computed as y′′ := y′ ⊕ e.

• The correctness property of the construction follows from the fact that, if
HD(y;y′) ≤ t , then e = y ⊕ y′ and hence y′′ = y.

• The security property of the construction follows immediately by application of
Lemma 3 from Appendix A.

6.2.2 Randomness Extraction

Concept

In many situations high entropy or nearly uniform bit strings are required, e.g. to
serve as a key in key-based security applications. However, often only a low en-
tropy random source is available, e.g. a source which produces heavily biased and/or
dependent bits. A method is required to extract near-uniform or ‘high quality’ ran-
domness from ‘low quality’ randomness sources with only a limited entropy per bit.
This is the purpose of a randomness extractor. We first discuss randomness extrac-
tion from a theoretical perspective and next some recommended methods which are
often used in practice.
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Information-Theoretically Secure Randomness Extraction

The notion of a strong randomness extractor was introduced by Nisan and Zucker-
man [101].

Definition 27 Let Ext : {0,1}n → {0,1}	 be a polynomial time probabilistic func-
tion which uses r bits of randomness. We say that Ext is an efficient (n,m,	, ε)-
strong extractor if for all random variables Y ← {0,1}n with H∞(Y ) ≥ m, it holds
that

SD
((

Ext(Y ;R),R
); (U	,R)

) ≤ ε,

where R is uniform on {0,1}r and U	 is uniform on {0,1}	.

An (n,m,	, ε)-strong extractor with a small ε is hence able to extract high qual-
ity (ε-uniform) random strings from a low-quality source whose randomness is ex-
pressed by its min-entropy.

Randomness extractors can be constructed from so-called universal hash function
families as introduced by Carter and Wegman [21]. A hash function family, which
is a set of indexed functions H = {hr : {0,1}n → {0,1}	}r∈R, is called universal if

∀a 
= b ∈ {0,1}n : Prr∈R
(
hr(a) = hr(b)

) ≤ 2−	.

An important property of universal hash functions is given by the left-over hash
lemma, which actually states that a universal hash function is a strong randomness
extractor.

Lemma 2 If H = {hr : {0,1}n → {0,1}	}r∈R is a universal hash function family,
then for any random variable Y ← {0,1}n it holds that:

SD
((

hR(Y ),R
); (U	,R)

) ≤ 1

2

√
2	−H∞(Y ).

From the left-over hash lemma, it follows directly that a universal hash func-
tion is a (n,m,	, ε)-strong extractor if 	 ≤ m − 2 log2(

1
ε
) + 2. Moreover, from an

information-theoretical perspective this is the maximal number of nearly uniform
bits which can be extracted from a source with min-entropy m. Observe that one
pays a high price in min-entropy to obtain such information-theoretically strong
claims. For example, consider that one desires an extracted bit string of length 	 =
128 which is ε = 2−128-close to uniform, which by itself will have a min-entropy
very close to 128 bits. To derive such a string with a strong extractor, one requires
a randomness source with a min-entropy of at least m ≥ 	 + 2 log2

1
ε

+ 2 = 382.
Hence, at least 382 − 128 = 254 bits of min-entropy are lost in the extraction pro-
cess. Moreover, to obtain good randomness extraction, the index r of the used uni-
versal hash function (also called the seed) needs to be uniform random for every
extraction, i.e. one already requires a high-quality random value (of smaller length)
to bootstrap the extraction process.
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Practical Randomness Extraction

High-quality randomness is often required in practical security applications, e.g. for
session keys, random nonces, randomized procedures, etc. However, the earlier de-
scribed information-theoretic approach is often too restrictive. In many practical
systems, entropy collection from truly random physical sources is limited and comes
at a rather high cost. It either needs to be collected over relatively long periods of
time, or in the case of PUFs, more randomness comes at a direct area cost. The
rather wasteful operation of a strong extractor is hence undesirable. It is moreover
very difficult or impossible to accurately estimate the (min-)entropy of a randomness
source, as required to have strong guarantees for the extractor. This entails that one
needs to work with pessimistic underestimations, which causes even more entropy
losses.

A more practical approach is considered in the construction of seeded crypto-
graphic pseudo-random number generators. Such PRNGs also take their seed from
physical sources of entropy, but abandon the very strict requirement of generating
information-theoretically secure randomness. Instead, they are based on a collection
of randomness, measured by an estimation of its (Shannon) entropy, and the appli-
cation of cryptographic primitives to accumulate sufficient entropy in a fixed-length
buffer. Through the use of well-studied design principles and after considerable pub-
lic scrutiny, a number of practical PRNG-constructions are developed which are
considered cryptographically secure, and which are widely used in practical appli-
cations. These design principles and current best-practice techniques for such con-
structions are discussed, e.g. by Barker and Kelsey [4], Eastlake et al. [34], Kelsey
et al. [65]. We also refer to Gutmann [47, Chap. 6] for an extensive overview of
existing PRNG-constructions and a discussion on their (in)security.

The building block of these PRNG-constructions which is of interest to us is
the so-called entropy accumulator, i.e. the primitive which operates directly on the
physical source of randomness in order to produce a highly random seed for the
PRNG. Kelsey et al. [65] describe the properties an entropy accumulator should
have. Based on this description, we formulate the following informal definition of
an entropy accumulator:

Definition 28 An m-bit entropy accumulator is a procedure Acc : {0,1}∗ → {0,1}m
with an internal state of m bits which is called the entropy pool, and which meets
the following conditions:

• It is expected that nearly all entropy of the input bitstream is accumulated in the
pool, up to the size of the pool, even when the entropy is distributed in various
odd ways in this bitstream, e.g. only entropy in every 100th bit, or no entropy in
a long stream of bits and then suddenly 100 bits with full entropy, etc.

• An adversary that has momentary control over the input bitstream must not be
able to undo the effect of the previous unknown bits which were accumulated in
the pool.

• An adversary that has momentary control over the input bitstream must not be
able to force the pool into a weak state such that no further entropy can be accu-
mulated.
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• An adversary that can choose which bits in the bitstream will be unknown to it,
but still has to allow n unknown bits, must not be able to narrow down the number
of states of the pool to substantially fewer than 2−n.

When the entropy accumulator assesses that it has accumulated at least m bits of
entropy in its entropy pool, the current state of the pool is outputted. This decision
can be based on internal (conservative) entropy estimation methods, or on a realistic
entropy model of the input bitstream.

In [4, Sect. 10.4], constructions for entropy accumulators based on a generic
cryptographic hash function or a block cipher are provided. Kelsey et al. [65] and
Ferguson and Schneier [36, Chap. 10] also propose a PRNG design which deploys
a cryptographic hash function as an entropy accumulator.

6.2.3 Fuzzy Extractors

Dodis et al. [32, 33] define a fuzzy extractor as:

Definition 29 An (Y,m, 	, t, ε)-fuzzy extractor is a pair of randomized proce-
dures, Generate and Reproduce, with the following properties:

• The generation procedure Generate on input y ∈ Y outputs an extracted string
z ∈ {0,1}	 and a helper data string w ∈ {0,1}∗.

• The reproduction procedure Reproduce takes an element y′ ∈ Y and a bit string
w ∈ {0,1}∗ as inputs and outputs an extracted string z′ ∈ {0,1}	.

• The correctness property of fuzzy extractors guarantees that if dist[y;y′] ≤ t and
z,w were generated by (z,w) ← Generate(y), then Reproduce(y′,w) = z. If
dist[y;y′] > t , then no guarantee is provided about the output of Reproduce.

• The security property guarantees that if y is randomly sampled from Y ac-
cording to a distribution with min-entropy at least m, the extracted string z is
nearly uniform even for those who observe w: if (Z,W) ← Generate(Y ), then
SD((Z,W); (U	,W)) ≤ ε.

A fuzzy extractor is efficient if Generate and Reproduce run in expected polynomial
time.

A more generic description of a fuzzy extractor for continuous random variables,
in the context of biometrics, was introduced as a shielding function by Linnartz and
Tuyls [81]. From its definition, it is clear that a fuzzy extractor is a generalization
of both a secure sketch, generating a highly random output instead of reconstruct-
ing the original input, and a strong extractor, operating on a noisy input instead of
a fixed value. Consequently, the basic construction of a fuzzy extractor as proposed
by Dodis et al. [32, 33] consists of a straightforward combination of a secure sketch
with a randomness extractor. The secure sketch respectively executes its sketching
and reconstruction procedures in the fuzzy extractor’s generation and reproduction
procedures. The strong extractor is the same, and uses the same seed, in both proce-
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Fig. 6.1 Construction of a fuzzy extractor from a secure sketch and a strong extractor

dures. The side information produced by the secure sketch and the strong extractor’s
seed, both produced during the generation procedure, are passed to the reproduction
procedure as helper data. This construction is shown in Fig. 6.1.

Taking two realizations of the same fuzzy secret as an input, this fuzzy extrac-
tor construction is able to generate the same (nearly) uniformly random output,
i.e. given that the fuzzy source meets the distance and min-entropy conditions of
the fuzzy extractor, z = z′. Since the full unpredictability of the output is guaran-
teed even when the helper data is known, the helper data does not need to be kept
confidential. This makes it possible to store and transfer the helper data in a public
manner. The integrity of the helper data needs to be guaranteed though.

The correctness property of this construction of a (Y,m, 	, t, ε)-fuzzy extractor
is evidently guaranteed by the correctness property of the used (Y,m,m′, t)-secure
sketch. The security property is taken care of by deploying an (n,m′, 	, ε)-strong ex-
tractor, given that Y = {0,1}n. In other words, the strong-extractor compresses the
remaining min-entropy, after publication of the side-information, into a fully ran-
dom output which can be used as a secret key. Due to the deployment of a random-
ness extractor, a fuzzy extractor provides the same very high information-theoretic
guarantees, but also suffers from the same very stringent min-entropy requirements
and losses.

6.3 A Soft-Decision Secure Sketch Construction

6.3.1 Motivation

When deploying a secure sketch to generate a reliable version of a noisy PUF re-
sponse, it is typically assumed that every single PUF response bit is equally likely
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to be erroneous in a given evaluation. This is often expressed by a static bit error
rate pe which is estimated as the average ratio of the number of bit errors in the
total number of evaluated response bits. Secure sketches are designed to cope with
the given bit error rate of the PUF. In particular the error-correcting code parame-
ters, e.g. of the code-offset or syndrome construction, are adapted to this fixed error
rate.

In [86], we argue that at least for SRAM PUFs, the assumption of a single fixed
error rate is too simplistic and too pessimistic. When analyzing experimental data
from an SRAM PUF experiment, it is readily observed that the large majority of
the response bits are extremely robust, i.e. they never or hardly ever will change
their value between evaluations. A minority of bits are more noisy, occasionally
presenting a bit error, and a few bits have no preferred value at all and are basically
completely random at each evaluation. This means that every SRAM PUF response
bit has its own individual error probability, and the values of these error probabilities
are themselves randomly distributed for each bit. In [86] we succeeded in deriving
an expression for this distribution based on a simplified model of the construction
and operation of an SRAM PUF, and experimentally verified the accuracy of this
distribution.

From this observation, it follows that an assumed fixed error probability of pe

for every SRAM PUF response bit is an overestimation for a large majority of bits.
A secure sketch designed for such a fixed error rate will hence be overly conser-
vative for most bits. A more efficient secure sketch would take into account the
individual likelihood of every response bit being wrong. This is precisely what
a secure sketch based on a soft-decision error correction decoder could achieve,
given that soft-decision information for the response bits is available. We call this
a soft-decision secure sketch. For an SRAM PUF, soft-decision information for the
response bits can be obtained by measuring every bit many times and publish-
ing the observed individual error probabilities as helper data for the soft-decision
secure sketch. In [86], we have demonstrated that at least for SRAM PUFs this
is a possibility, since the publication of these probabilities does not induce any
additional min-entropy loss for the actual unpredictable values of every response
bit.

6.3.2 Soft-Decision Error Correction

Soft-decision error correction is a generalization of discrete (hard-decision) error
correction. Besides using the redundancy in a codeword to achieve error correction,
like a hard-decision decoder, a soft-decision decoder will also consider the estimated
reliability of every bit in a codeword and will adapt its correction strategy based on
this soft-decision information. As a result, soft-decision decoders are typically more
efficient than their hard-decision counterparts, i.e. they can correct more bit errors
based on the same amount of redundancy, or equivalently they can achieve the same
correction capability by using a code with less redundancy. For the code-offset and



152 6 PUF-Based Key Generation

syndrome constructions of secure sketches, based on a binary linear block code
with parameters [n, k, t], the redundancy of (n − k) bits is precisely the amount of
(min-)entropy which is lost due to the publication of the helper data. When a soft-
decision decoder is used, less redundancy is needed and hence less (min-)entropy
is lost. This results in a relaxed requirement on the number of PUF response bits
which are needed to derive a key of a particular length, and ultimately in a smaller
PUF implementation.

Two well-known soft-decision decoding algorithms are the Viterbi algorithm for
convolution codes, as proposed by Viterbi [152], and the belief propagation algo-
rithm for LDPC codes, as proposed by Gallager [39]. However, the two types are
not really adequate for use in typical secure sketch constructions since they require
very long data streams to work efficiently, while the length of a fuzzy secret such
as a PUF response is often limited. We would like to use a soft-decision decoding
algorithm for rather short linear block codes in order to maintain efficiency. Al-
though less common, soft-decision decoding techniques for short linear block codes
exist.

Soft-Decision Maximum-Likelihood Decoding (SDML)

Soft-decision maximum-likelihood decoding (SDML) is a straightforward algo-
rithm that selects the code word that was most likely transmitted based on the bit re-
liabilities. SDML achieves the best error-correcting performance possible, but gen-
erally at a decoding complexity exponential in the code dimension k. Repetition
codes (k = 1) can still be efficiently SDML-decoded. Conversely, for k = n, SDML
decoding degenerates to making a hard decision on every bit individually only based
on its reliability, and for k = n− 1 the block code is a parity-check code and SDML
decoding is done efficiently by flipping the least reliable bit to match the parity. This
last technique is also known as Wagner decoding and is described by Silverman and
Balser [130].

Generalized Multiple Concatenated (GMC) Decoding of Reed-Muller Codes

An r-th order Reed-Muller code RM(r,m) is a binary linear block code with param-
eters [n = 2m,k = ∑r

i=0

(
m
i

)
, t = 2m−r−1 − 1]. It is well known that RM(r,m) can

be decomposed into the concatenation of two shorter inner codes, RM(r − 1,m− 1)

and RM(r,m − 1), and a simple length-2 block code as outer code. This decompo-
sition can be applied recursively until one reaches RM(0,m′), which is a repetition
code, or RM(r ′−1, r ′) (or RM(r ′, r ′)), which is a parity check (or degenerated) code,
all of which can be efficiently soft-decision-decoded with SDML. This technique,
introduced as Generalized Multiple Concatenated decoding (GMC) by Schnabl and
Bossert [123], yields a much lower decoding complexity than SDML, but only a
slightly decreased error-correcting capability.
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6.3.3 Soft-Decision Secure Sketch Design

Soft-Decision Secure Sketch

In [85], we propose a practical soft-decision secure sketch based on the code-offset
construction deploying a concatenated soft-decision decoding of an inner repetition
code and an outer Reed-Muller code. Soft-decision information is obtained from re-
sponse bits during the initial generation procedure and published as helper data. The
soft-decision information represents the log-likelihood of every bit being wrong,
which is calculated from the estimated error probability pe(i) of response bit i as:

Ki =
⌊

logβ

1 − pe(i)

pe(i)

⌉
.

The log-likelihoods are represented as an 8-bit two’s-complement integer value and
the logarithm base β is chosen to avoid overflows in this representation.

In the recovery phase of the secure sketch, the regular helper data is combined
with the PUF response evaluation to construct a noisy codeword c′ as for the regular
code-offset construction described in Sect. 6.2.1. The bits of this noisy codeword
are now combined with the log-likelihood soft-decision helper data to derive the
soft-decision input of the decoder algorithms as follows:

Li = (−1)c
′
i · Ki,

i.e. ‘0’ code bits become positive log-likelihoods, and ‘1’ code bits become negative
ones.

Soft-Decision Decoding Algorithms

SDML repetition decoding of soft-decision information L amounts to calculating
L∗ = ∑n−1

i=0 Li . The most likely transmitted code word was all zeros if L∗ > 0 and
all ones if L∗ < 0. Moreover, the magnitude of L∗ gives a reliability for this decision
which allows us to perform a second soft-decision decoding for the outer code.
Algorithm 1 outlines the simple operation for the SDML decoding of a repetition
code. As an outer code, we use an RM(r,m) code and decode it with an adapted
version of the soft-decision GMC decoding algorithm as introduced by Schnabl
and Bossert [123]. The soft-decision output of the repetition decoder is used as
input by the GMC decoder. The operation of the GMC decoder we use is given by
Algorithm 2. Note that this a recursive algorithm, calling itself twice if 0 < r < m.

Decoder Architecture

We propose a resource-optimized hardware architecture to efficiently execute the
soft-decision decoders given by Algorithms 1 and 2. As a general architecture, we
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Algorithm 1 SDML-DECODE-Repetitionn(L) with soft output

L∗ := ∑n−1
i=0 Li

return (L∗, . . . ,L∗)n

Algorithm 2 GMC-DECODE-RM(r,m)(L) with soft output
define F(x, y) := sign(x · y) · min{abs(x), abs(y)}
define G(s, x, y) := � 1

2 (sign(s) · x + y)�
if r = 0 then

L∗ = SDML-DECODE-Repetition2m(L)

else if r = m then
L∗ = L

else
L

(1)
j = F(L2j−1,L2j ),∀j = 0 . . .2m−1 − 1

L(1)∗ = GMC-DECODE-RM(r − 1,m − 1)(L(1))

L
(2)
j = G(L

(1)∗
j ,L2j−1,L2j ),∀j = 0 . . .2m−1 − 1

L(2)∗ = GMC-DECODE-RM(r,m − 1)(L(2))

L∗ = (F (L
(1)∗
0 ,L

(2)∗
0 ),L

(2)∗
0 , . . . ,F (L

(1)∗
2m−1−1

,L
(2)∗
2m−1−1

),L
(2)∗
2m−1−1

)

end if
return L∗

Fig. 6.2 Architecture design of the soft-decision decoder

opt for a highly serial execution of the algorithms using a small 8-bit custom datap-
ath. The summation in Algorithm 1 is implemented by means of a serial accumula-
tor. The functions F(x, y) and G(s, x, y) in Algorithm 2 are respectively evaluated
in a 3-cycle execution and a 2-cycle execution. The high-level architecture is shown
in Fig. 6.2. The algorithm execution is controlled by a programmable controller tak-
ing instructions from an instruction ROM, which allows support for different code
parameters. The size of both data RAMs depends on the used codes.
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Table 6.1 Overview of the implementation results of our reference design soft-decision secure
sketch, and an efficiency comparison to an earlier proposed hard-decision secure sketch imple-
mentation

Our design [85] Bösch et al. [11]

FPGA slices 164 580

FPGA block RAMs 2 ?

Cycles for one decoding 1248 1716

Critical path 19.9 ns 6.6 ns

SRAM PUF response size 192 264

Min-entropy after sketching 22 13

6.3.4 Implementation Results on FPGA

Table 6.1 presents the implementation results for a reference design of our soft-
decision secure sketch on a Xilinx Spartan-3E500 FPGA platform. The reference
design implements a concatenation of a [3,1,1] repetition soft-decision decoder
and an RM(2,6) ≡ [64,22,7] Reed-Muller soft-decision decoder. This combination
is able to correct all errors in an SRAM PUF response with a simulated bit error rate
of 15 %, with a failure rate ≤10−6. These parameters are chosen to objectively com-
pare our results against the hard-decision secure sketch implementation presented
by Bösch et al. [11].

From Table 6.1 it is clear that the use of soft-decision information results in a
significant efficiency gain. Whereas the earlier proposed hard-decision decoder is
left with 13 bits of min-entropy from a (full-entropy) 264-bit SRAM PUF response
after sketching, our soft decision reference design keeps 22 bits of min-entropy from
a 192-bit response. Moreover, as it turns out, the implementation of our soft-decision
decoder is also significantly more area-efficient.

6.4 Practical PUF-Based Key Generation

6.4.1 Motivation

The main rationale behind what we call practical PUF-based key generation is
that we abandon the requirement of generating information-theoretically random
keys and instead aim for cryptographically secure randomness based on reason-
able assumptions and best-practice techniques, aiming to gain in overall efficiency.
While representing a certain sacrifice in security from a theoretical perspective, the
abandonment of information-theoretical randomness can be convincingly motivated
from a practical viewpoint:
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• As argued in Sect. 6.2.2, the choice for information-theoretical randomness
comes at a direct implementation cost for the randomness source due to the un-
avoidable and large min-entropy losses in the strong extractor.

• Information-theoretical randomness is conditioned on strong min-entropy guar-
antees for the randomness source. In practice it is very often impossible to provide
a reasonably accurate estimation of a source’s min-entropy, let alone a guarantee
thereon. If such guarantees cannot be provided, it doesn’t make much sense to
consider information-theoretical randomness any further.

• For most applications, information-theoretical randomness is not strictly required.
In fact, apart from a few notable exceptions, nearly all practical cryptographic
primitives are themselves not information-theoretically secure operations, which
makes the requirement of information-theoretical randomness a practical exag-
geration.

• Most currently deployed security systems and key generators do not use
information-theoretical randomness, but instead apply a more pragmatic prac-
tical approach based on seeded PRNGs, as detailed in Sect. 6.2.2.

6.4.2 Practical Key Generation from a Fuzzy Source

Practical Secure Sketch

The secure sketch, as defined in Definition 26, is already practical in the sense that
it can be constructed quite efficiently, as demonstrated by the code-offset and the
syndrome construction described in Sect. 6.2.1, and its efficiency is typically only
limited by the efficiency of the underlying error-correcting codes. We propose a
slightly more generalized definition of a secure sketch which will prove its use in
the practical fuzzy extractor we describe next.

Definition 30 An (	,pe,μ,pfail,μ
′)-practical secure sketch is a pair of efficient

(possibly randomized) procedures Sketch : {0,1}	 → {0,1}∗ : y → w and Recover :
{0,1}	 × {0,1}∗ → {0,1}	 : (y′,w) → y′′, with the following two properties:

• The correctness property of a practical secure sketch guarantees that if

Pr
(
HD(Y ;Y ′) ≤ t

) ≥ Fbino(t;	,pe),

then

Pr
(
Y 
= Recover

(
Y ′,Sketch(Y )

)) ≤ pfail.

• The security property of a practical secure sketch guarantees that if ρ(Y ) ≥ μ

then ρ(Y |W) ≥ μ′.

It is clear that a practical secure sketch is very similar to a secure sketch as de-
fined in Definition 26, and can be built with the same constructions described in
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Sect. 6.2.1. However, both the correctness and the security property are slightly re-
laxed:

• The correctness property is no longer conditioned on a hard limit on the number
of errors, but instead on an error rate parameter pe which describes the proba-
bility of a number of differing bits by means of a binomial distribution. An even
further generalization can be made by considering a generic cumulative distribu-
tion function of the errors on the fuzzy secret, but the binomial case will suffice
for our use. Equivalently, the recovery is no longer hard-guaranteed, but is only
certain up to a certain failure probability pfail. This generalization more accurately
captures realistic scenarios where hard bounds on error rates can only rarely be
provided.

• The security property is also more relaxed since it is no longer conditioned on
the min-entropy, but only on the Shannon entropy (density) of the fuzzy secret.
Equivalently, it only provides a guarantee about the Shannon entropy (density) of
the output.

Practical Fuzzy Extractor

In analogy to practical secure sketches, we also propose a practical fuzzy extractor:

Definition 31 An (	,pe,μ,pfail,m)-practical fuzzy extractor is a pair of efficient
(possibly randomized) procedures

Generate : {0,1}	 → {0,1}m × {0,1}∗ : y → (z,w),

and

Reproduce : {0,1}	 × {0,1}∗ → {0,1}m : (y′,w
) → z,

with the following two properties:

• The correctness property of a practical key generator guarantees that if

Pr
(
HD(Y ;Y ′) ≤ t

) ≥ Fbino(t;	,pe),

and (Z,W) ← Generate(Y ), then

Pr
(
Z 
= Reproduce

(
Y ′,W

)) ≤ pfail.

• The security property of a practical key generator states that if ρ(Y ) ≥ μ, then
Z is the result of an entropy accumulation over at least m bits of entropy:
Z ← Acc(S), with H(S|W) ≥ m.

It is clear that this practical fuzzy extractor is a variant of a fuzzy extractor with
relaxed conditions. As a consequence, the practical key generator no longer pro-
duces an information-theoretically secure random output. However, through the use
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Fig. 6.3 Construction of a practical fuzzy extractor from a practical secure sketch and an entropy
accumulator

of a secure entropy accumulator as described in Sect. 6.2.2, the produced output is
still at least as random as that of secure cryptographic PRNGs which are currently
widely used in practice to generate secure keys from low-entropy physical random-
ness sources.

It is evident that an (	,pe,μ,pfail,m)-practical fuzzy extractor can be straightfor-
wardly constructed from an (	,pe,μ,pfail,μ

′)-practical secure sketch and an m-bit
entropy accumulator with m ≤ μ′	, in the same way as a regular fuzzy extractor is
constructed from a secure sketch and a randomness extractor. The construction of a
practical fuzzy extractor is shown in Fig. 6.3.

Design and Design Constraints of a Practical Fuzzy Extractor Construction

We propose a design of a (	,pe,μ,pfail,m)-practical fuzzy extractor based on a
syndrome construction for the practical secure sketch and an m-bit cryptographic
hash function for the entropy accumulator. When the syndrome construction deploys
an [n, k, t] linear block code C, a number of design constraints on the parameters of
usable codes can be derived:

1. Practicality constraint: an efficient decoding algorithm for C[n, k, t] is known.
2. Rate constraint: k

n
> 1 − μ, and 	 ≥ r · n with r = � m

k−n(1−μ)
�.

3. Correction constraint: t ≥ F−1
bino((1 − pfail)

1
r ;n,pe).

Any binary linear block code which meets these constraints can be used to build
the practical fuzzy extractor. It will become clear that an efficiency optimization in
practice comes down to selecting an appropriate code which minimizes the required
length 	 of the input from a fuzzy source with given characteristics (pe,μ), in order
to meet the desired requirements (pfail,m) for the output. This optimization hence
needs to be performed over these three constraints.
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The Practicality Constraint Is an evident requirement. If the used code is not
efficiently decodable, the syndrome construction cannot be practically executed.

The Rate Constraint Expresses the requirement that not all unpredictability of
the fuzzy secret can be leaked through the helper data. For every n bits of the fuzzy
secret, a helper data string of (n − k) bits is generated. The remaining conditional
entropy in the n bits of the fuzzy secret is at least n ·μ− (n− k) = k −n(1 −μ). To
have any arguable entropy left which can be accumulated, this quantity needs to be
strictly positive, from which the first part of the rate constraint immediately follows.
Even if the remaining entropy per n-bit fuzzy input is positive, the construction still
requires at least r = � m

k−n(1−μ)
� such n-bit inputs from the fuzzy source in order to

accumulate m bits of entropy.

The Correction Constraint Expresses the requirement that the used code needs
to be able to correct a minimal amount of bit errors for the construction to meet
the overall failure rate. The probability of a successful recovery of a single n-bit
fuzzy input is at least Pr(HD(Y n;Y ′n) ≤ t) = Fbino(t;n,pe), and for the over-
all construction this is repeated r times; hence the overall success rate is at least
Fbino(t;n,pe)

r ≥ 1 − pfail. From this, the correction constraint on the used code
immediately follows.

Extension to Concatenated Codes

Often, fuzzy sources, e.g. intrinsic PUFs, have relatively high error rates, up to 10 %
and even more. Single linear block codes have difficulties in reducing such high
error rates to a practically acceptable failure rate, which means that only excessively
long codes and/or codes with relatively low rates can be used. This restriction can
be relaxed through the use of code concatenation, i.e. using two (or more) block
codes one after the other. Typically, a simple but robust inner block code brings
down the relatively high error rate to a lower intermediate error probability, and a
more advanced outer block code can then achieve a very low final failure rate much
more efficiently. The power of code concatenation in the context of fuzzy extractors
was first discussed by Bösch et al. [11].

We extend our proposed practical fuzzy extractor construction by deploying code
concatenation. In particular, we consider using a [nREP = 2tREP + 1,1, tREP] repe-
tition code as the inner code. A repetition code en/decoder is trivially simple to
implement with a very low overhead, and is more efficient on high error rates than
more advanced block codes. The outer code can still be any [n2, k2, t2] binary linear
block code C2. Following the same reasoning as above, the design constraints for
this extended construction then become:

1. Practicality constraint: an efficient decoding algorithm for C2[n2, k2, t2] is
known. (Efficient decoding of the repetition code is trivial.)

2. Rate constraint: k2
nREPn2

> 1 − μ, and 	 ≥ r · nREPn2 with r = � m
k2−nREPn2(1−μ)

�.

3. Correction constraint: t2 ≥ F−1
bino((1 − pfail)

1
r ;n,p′

e), with p′
e = 1 − Fbino(tREP;

nREP,pe).
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6.4.3 Comparison of Key Generation with Intrinsic PUFs

A practical fuzzy extractor can be directly used to generate PUF-based keys of cryp-
tographic quality when an accurate characterization of the used PUF’s response
distribution in terms of binary error rate (pe) and response entropy density (μ)

is available. These are exactly the quantifiers we obtained from the eight experi-
mentally verified intrinsic PUF constructions discussed in Chap. 4 and which are
summarized in Table 4.10. We will now use these quantifiers in combination with
the practical fuzzy extractor design presented in Sect. 6.4.2 to assess the key gener-
ation efficiency of the different intrinsic PUFs.

Concrete Practical Fuzzy Extractor Implementation

We consider a practical fuzzy extractor design that deploys the syndrome con-
struction practical secure sketch based on a concatenation of a binary repetition
code as an inner code and a binary BCH code as an outer code. BCH codes are a
class of particularly efficient linear block codes for which efficient decoding algo-
rithms exist. Binary BCH codes with parameters [nBCH, kBCH, tBCH] are defined for
nBCH = 2u − 1, but through the use of code word shortening, BCH codes of any
length [nBCH = 2u − 1 − s, kBCH − s, tBCH] can be constructed. For the comparison,
we assume that a generic BCH decoder is available which can efficiently decode
code lengths up to nBCH = 2047. In Sect. 6.4.4 we argue that this is a reasonable as-
sumption by presenting a hardware design and an efficient implementation of such
a decoder. For the entropy accumulator we consider an implementation of a secure
cryptographic hash function which generates m-bit outputs. The output of the prac-
tical fuzzy extractor is the running hash value of the recovered fuzzy inputs.

Comparison of Optimized Key Generation Efficiencies

A PUF-based key generator is constructed from each of the eight studied in-
trinsic PUFs with parameters (p̂intra

P , ρ(Y 	)) as summarized in Table 4.10, and a
(	, p̂intra

P , ρ(Y 	),pfail,m)-practical fuzzy extractor design as presented above. For a
given key requirement (pfail,m), the overall construction is optimized to need the
smallest possible number of PUF response bits 	, since the implementation cost of
the PUF generally scales with 	. For both arbiter-based PUFs, the optimization goal
is slightly different: they require the least amount of fuzzy inputs, as expressed by
r in the constraints, since each input needs to be generated from a different arbiter
PUF. This is a result of the decreasing entropy density of an arbiter PUF’s responses
when their length increases. In both cases, the optimization is performed over the
constraints expressed in Sect. 6.4.2 (the extended construction with code concate-
nation).

The obtained optimal code selections and corresponding implementation results
for each of the eight intrinsic PUF constructions, and for each of three key require-
ments, is presented are Table 6.2. The considered key requirements are:
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1. A 128-bit generated key with failure rate at most 10−6;
2. A 128-bit generated key with failure rate at most 10−9;
3. A 256-bit generated key with failure rate at most 10−12.

The required silicon area is also calculated in the same manner (and with the same
disclaimers) as that described in Sect. 5.2.3. It is immediately clear that the latch
PUF, the D flip-flop PUF and the basic arbiter PUF are not able to generate a key
even for the most relaxed key requirements, i.e. no combination of code parameters
can be found meeting the design constraints. This is either due to a too large intra-
distance, a too low entropy density, or a combination of both. The SRAM PUF again
performs particularly well, but so does the 2-XOR arbiter PUF. Both types of ring
oscillator PUFs also manage to produce a key for all three key requirements, but at a
considerably higher silicon area cost than the SRAM and the 2-XOR arbiter PUFs.
The buskeeper can only produce a key for the first two requirements, and only at a
very large area cost which is the result of its relatively large intra-distance.

Note that the results presented in Table 6.2 are based on the estimated entropy
densities for the different PUF constructions as summarized in Table 4.10 and in
Fig. 4.5, and these estimations are only upper bounds. Any more accurate (i.e. lower)
entropy upper bounds will also affect these key generation results. Especially for
the arbiter-based PUFs, we want to point out that the considered entropy bounds are
only based on rather basic modeling attacks, and more advanced modeling attacks
will result in lower entropy density estimations. The results presented in Table 6.2
should be interpreted in that context.

6.4.4 A Full-Fledged Practical Key Generator Implementation

In [87], we demonstrate the practical nature of the methods and primitives intro-
duced in Sect. 6.4.2 by designing and implementing a complete, front-to-back PUF-
based cryptographic key generation module which we have titled ‘PUFKY’. A ref-
erence implementation of PUFKY is developed for a modern FPGA platform. The
PUFKY module integrates:

• An implementation of an intrinsic ring oscillator PUF with Lehmer-Gray re-
sponse encoding and additional entropy condensing.

• An implementation of a practical secure sketch based on the syndrome construc-
tion with concatenated linear block codes.

• An implementation of an entropy accumulator as a lightweight cryptographic
hash function.

• The required communication and controller blocks which orchestrate the key gen-
eration.

Besides being a convincing proof-of-concept, the result of this development is a
complete and practically usable hardware security primitive which can be imme-
diately deployed in an FPGA-based system. Moreover, the applied modular design
methodology allows for an easy reconfiguration using other PUFs, error correction
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Fig. 6.4 Top-level architecture of a PUF-based key generator

methods or entropy accumulators which can be described in the model presented
in this section. It is also straightforward to adapt the design parameters in order to
obtain other key requirements.

Top-Level Architecture

Figure 6.4 shows the top-level architecture of the design of PUFKY, based on a
concatenated repetition and BCH code. The helper data interface can be used to
both read and write helper data, depending on which phase of the practical fuzzy
extractor is executed (Generate or Reproduce). Only every nREPth corrected bit of
the repetition decoder is passed on to the BCH block, since the remaining (nREP −1)

bits are leaked through the repetition code’s helper data and will not contribute any
entropy.1 They are discarded in the remainder of the construction.

PUF Building Block

As a PUF in the FPGA reference implementation, we take a ring oscillator PUF
according to the design as described in Sect. 4.2.5. The individual oscillators are
implemented in a single FPGA slice and are arranged in b = 16 batches of a oscil-
lators each. The overall design of the implemented ring oscillator PUF is shown in
Fig. 6.5. To generate binary response vectors, we apply the Lehmer-Gray encoding
of the ordering of 16 simultaneously measured oscillator frequencies, as introduced
in Sect. 4.3.1. However, we deploy two additional techniques to improve the en-
tropy density of the generated responses: (i) frequency normalization prior to the
Lehmer-Gray encoding, and (ii) entropy condensing after the encoding.

1Note that it is a convenient property of repetition codes in this situation that the entropy-bearing
bits can be very straightforwardly separated from the redundant bits, which is in fact a highly
efficient lossless form of randomness extraction. This is in general not possible for other codes.
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Fig. 6.5 Design of PUFKY’s ring oscillator PUF with frequency normalization, Lehmer-Gray
response encoding and entropy condensing

Frequency Normalization Only a portion of a measured frequency Fi will be
random, and only a portion of that randomness will be caused by the effects of
process variations on the considered oscillator. The analysis from Maiti et al. [91]
demonstrates that Fi is subject to both device-dependent and oscillator-dependent
structural bias. Device-dependent bias does not affect the ordering of oscillators
on a single device, so we will not consider it further. Oscillator-dependent struc-
tural bias on the other hand is of concern to us since it may have a severe impact
on the randomness of the frequency ordering. From a probabilistic viewpoint, it is
reasonable to assume the frequencies Fi to be independent, but due to the oscillator-
dependent structural bias we cannot consider them to be identically distributed since
each Fi has a different expected value E[Fi]. The ordering of Fi will be largely de-
termined by the deterministic ordering of E[Fi] and not by the effect of random
process variations on Fi . Fortunately, we are able to obtain an accurate estimate μ̃Fi

of E[Fi] by averaging over many measurements of Fi on many devices. Embed-
ding this estimate permanently in the design and subtracting it from the measured
frequency gives us a normalized frequency F ′

i = Fi − μ̃Fi
. Assuming μ̃Fi

≈ E[Fi],
the resulting normalized frequencies F ′

i will be independent and identically dis-
tributed (i.i.d.).

Entropy Condensing Based on the i.i.d. assumption of the normalized frequen-
cies, the resulting Lehmer-Gray encoding will have a full entropy of H(S	′

) =∑b
i=2 log2 i expressed in a vector of length 	′ = ∑b

i=2�log2 i�. This means the en-
tropy density of this vector is already quite high; for the considered design with
b = 16, this becomes ρ(S	′

) = 44.25
49 = 90.31 %. However, this density can be in-

creased further by compressing it to Y 	 with 	 < 	′. Note that S	′
is not quite uni-

form over {0,1}	′
since some bits of S	′

are biased and/or dependent. This results
from the fact that most of the Lehmer coefficients, although uniform by themselves,
can take a range of values which not integer powers of two, leading to a subop-
timal binary encoding. We propose a simple compression by selectively XOR-ing
bits from S	′

which suffer the most from bias and/or dependencies, leading to an
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overall increase of the entropy density. The price one pays for this entropy condens-
ing operation is a slight reduction in absolute entropy of the responses, since XOR
is a lossy operation, and a slight increase of the error rate of the response bits, by
at most a factor 	′

	
. For our reference implementation, we consider a condensing to

	 = 42, yielding ρ(Y 	) = 97.95 %.

Error-Correction Building Blocks

Both the repetition code parity-check multiplication and the syndrome decoder are
implemented very efficiently in a fully combinatorial manner. The parity-check mul-
tiplication of a BCH code is also implemented efficiently by means of an LFSR,
which results from the special structure of a BCH code’s parity-check matrix. This
was discussed in Sect. 5.3.3, where we implemented such a multiplication as part of
our authentication protocol. The most complex part of the practical secure sketch is
the BCH syndrome decoder.

Decoding a BCH syndrome into the minimum Hamming weight error word is
typically performed in three steps. First, so-called syndrome evaluations zi are cal-
culated by evaluating the syndrome as a polynomial for α, . . . , α2tBCH , with α a gen-
erator for F2u . The next step is using these zi to generate an error location polyno-
mial Λ. This is generally accomplished with the Berlekamp-Massey algorithm. First
published by Berlekamp [7] and later optimized by Massey [95], this algorithm re-
quires the inversion of an element in F2u in each of its 2tBCH iterations. A less
computationally intensive inversionless variant of the Berlekamp-Massey algorithm
was proposed later by Burton [19]. Finally, by calculating the roots of Λ, one can
find the error vector en. This is done with the Chien search algorithm, which was
proposed by Chien [23], by evaluating Λ for α, . . . , αtBCH . If Λ evaluates to zero for
αi then the corresponding error bit enBCH−i = 1.

The computationally demanding BCH decoding algorithm is typically imple-
mented with a focus on performance since it is generally applied in communication
applications which require high throughput. However, in our context of a practical
PUF-based key generator, an area-efficient implementation is much more desirable
since only a few decodings need to be computed. In [87], we propose a BCH de-
coder coprocessor which is highly optimized for area efficiency, but still achieves a
reasonable performance. The coprocessor is programmable with a most specialized
instruction set in order to support many different code parameters with the same
implementation. The presented decoder supports BCH code lengths at least up to
nBCH = 2047. The architecture of this coprocessor is shown in Fig. 6.6.

Entropy Accumulator

We use a cryptographic hash function as an entropy accumulator. For our reference
implementation, we implemented the lightweight SPONGENT-128 hash function
which was proposed by Bogdanov et al. [8].
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Fig. 6.6 Architecture of an area-optimized BCH decoding coprocessor

Reference Implementation

The presented PUFKY reference design was synthesized and implemented on a
Xilinx Spartan-6 FPGA (XC6SLX45), which is a modern low-end FPGA in 45 nm
CMOS technology, specifically targeted for embedded system solutions.

Ring Oscillator PUF Characterization The ring oscillator PUF implementa-
tion, with a = 64 oscillators per batch, is characterized through an experiment on
Npuf = 10 identical FPGA devices by measuring every 	 = 42-bit response on every
device Nmeas = 25 times at nominal condition. A single FPGA was also measured
at two temperature corners αL = (Tenv = 10 °C) and αH = (Tenv = 80 °C) in order
to assess temperature sensitivity. A conservative worst-case bit error rate estimation
of 13 % (at the αH corner) is obtained. The entropy density of the PUF responses is
assumed to be the optimal ρ(Y 	) = 97.95 % as a result of frequency normalization
and entropy condensing.

FPGA Implementation Results Based on the PUF characterization, we can op-
timize the number of required PUF response bits over the constraints for the code
parameters. We aim for a key length m = 128 with failure rate pfail ≤ 10−9. After a
thorough exploration of the design space with these parameters, we converge on the
following PUFKY reference implementation:

• A practical secure sketch applying a concatenation of a [7,1,3] repetition code
and a [318,174,17] BCH code. The repetition block generates 36 bits of helper
data for every 42-bit PUF response and outputs 6 bits to the BCH block. The BCH
block generates 144 bits of helper data once and feeds 318 bits to the entropy ac-
cumulator. The BCH decoder is only executed once (r = 1). The required number
of bits is 	 = 7 × 318 = 2226, which can be provided by using a = � 2226

42 � = 53
oscillators per batch of the ring oscillator PUF, totalling to 53 × 16 = 848 oscil-
lators for the whole ring oscillator PUF.

• The PUF generates in total a × 	 = 2226 bits containing a × 	 × ρ(Y 	) =
2180.4 bits of entropy. The total helper data length is 53 × 36 + 144 = 2052. The
remaining entropy after secure sketching is at least 2180.4 − 2052 = 128.4 bits,
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Table 6.3 Area consumption and runtime of our reference PUFKY implementation on a Xilinx
Spartan-6 FPGA. Due to slice compression and glue logic the sum of module sizes is not equal to
the total size. The PUF runtime is independent of clock speed

(a) Area consumption

Module Size (slices)

ROPUF 952

REP decoder 37

BCH syndrome calc. 72

BCH decoder 112

SPONGENT-128 22

Data RAM 38

Total 1162

(b) Runtimes

Step of extraction Time (cycles)

PUF output 4.59 ms

REP decoding 0

BCH syndrome calc. 511

BCH decoding 50320

SPONGENT hashing 3990

Control overhead 489

Total @ 54 MHz 5.62 ms

which are accumulated in an m = 128-bit key by the SPONGENT-128 hash func-
tion implementation.

The total size of our PUFKY reference implementation for the considered FPGA
platform is 1162 slices, of which 82 % is taken up by the ring oscillator PUF. Ta-
ble 6.3a lists the size of each submodule used in the design. The total time spent to
extract the 128-bit key is approximately 5.62 ms (at 54 MHz). Table 6.3b lists the
number of cycles spent in each step of the key extraction.

6.5 Conclusion

In this chapter we have studied in detail the constructions and methodologies re-
quired to generate a cryptographically secure key in a reliable manner from a PUF
response, and we have presented a variety of new techniques and insights which
make PUF-based key generation more efficient and practical.

In Sect. 6.3, we have introduced an important extension to secure sketches by tak-
ing the soft-decision information of PUF response bits into account. This results in a
significant improvement with regard to the entropy loss induced by secure sketches,
leading to a large gain in PUF response efficiency as expressed by the results in
Table 6.1. Moreover, a practical design and implementation of such a soft-decision
secure sketch has been presented which turns out to be more area-efficient than all
previously proposed implementations.

The notions of a practical secure sketch and a practical fuzzy extractor are in-
troduced in Sect. 6.4. These present a number of generalizations of the traditional
concepts, the most important one being the abandonment of information-theoretical
security requirements in favor of the more practical and efficient technique of en-
tropy accumulation, which is also widely used in implementations of cryptographic
PRNGs. We propose an efficient generic construction of a practical secure sketch
and a practical fuzzy extractor and derive a number of parameter constraints for
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this construction. We use these derived constraints to assess the key generation per-
formance of the intrinsic PUFs studied in Chap. 4 in the newly proposed practical
fuzzy extractor construction and present a comparative analysis in Table 6.2. From
this analysis, it is clear that SRAM PUFs and also 2-XOR arbiter PUFs can be used
to efficiently generate cryptographic keys.

Finally, to demonstrate the practicality of the newly proposed construction, we
present a complete front-to-back PUF-based key generator design, which we have
called ‘PUFKY’, and a reference implementation on an FPGA platform. This im-
plementation contains a functional ring oscillator PUF with Lehmer-Gray response
encoding, an efficient, practical, secure sketch implementation deploying a newly
developed low-weight BCH decoder and an entropy accumulator implemented as
a lightweight cryptographic hash function. This reference system generates 128-bit
secure keys with a reliability ≥1 − 10−9, and can be directly instantiated as a hard-
ware security IP core in an FPGA-based digital system.



Chapter 7
Conclusion and Future Work

7.1 Conclusions

PUFs are physical security primitives which enable trust in the context of digital
hardware implementations of cryptographic constructions, in particular they are able
to initiate physically unclonable and secure key generation and storage. In this book
we have studied physically unclonable functions or PUFs, in particular: (i) their con-
cept and constructions, (ii) their properties, and (iii) their applications as a physical
root of trust, and the relations between these three.

In Chap. 2 we introduced the concept of a physically unclonable function in great
detail through an extensive study and analysis of earlier work and existing construc-
tions. Based on similar and distinguishing construction characteristics, we discussed
strengths and weaknesses and possible classifications. The most noteworthy identi-
fied subclass is so-called intrinsic PUFs, i.e. PUF constructions which are based on
internal evaluations of implicitly obtained random creation features, because they
are particularly well-fit for integration in larger security systems. It is however diffi-
cult to compare the practical value of different proposals from the literature due to a
wide variety of implementation technologies and experimental considerations. The
lateral overview does present a good insight in recurring intrinsic PUF implemen-
tation techniques: (i) amplification of microscopic unique features through differ-
ential measurement, (ii) physical enhancement of PUF behavior through low-level
(design-intensive) implementation control, and (iii) algorithmic behavioral improve-
ment through adapted post-processing techniques.

In Chap. 3 we identified the most important usability and physical security prop-
erties attributed to PUFs and we introduced clear definitions pointing out what ex-
actly each of these properties signify. Through a comparative analysis on a represen-
tative subset of PUF constructions and a number of important non-PUF reference
cases, we discovered which properties are really defining for a PUF construction,
and which are convenient additions but are in no way guaranteed for every PUF.
As it turns out, the core defining property of a PUF is its physical unclonability.
A second contribution of this chapter was the introduction of a formal framework
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for using PUFs, and more general physical security primitives, in theoretical secu-
rity reductions at a higher level. We defined robustness, physical unclonability and
unpredictability in this framework.

With the goal of testing their security and usability characteristics as accurately
and as objectively as possible, we implemented and evaluated eight different in-
trinsic PUF constructions on a 65 nm CMOS silicon platform. The design process
and the experimental results of this ASIC chip are described in detail in Chap. 4.
The measurements of each of these eight constructions were tested for their repro-
ducibility and their uniqueness through a characterization of their respective intra-
and inter-distance distributions using well-chosen statistical parameters. The unpre-
dictability of the studied PUFs is also estimated by proposing and evaluating a num-
ber of increasingly tighter upper bounds of the entropy density of their response bit-
strings. The experiments in this chapter yielded the first-ever objective comparison
between multiple different intrinsic PUF constructions on the same platform, and
a quantitative representation of their primary characteristics which can be directly
used to assess their efficiency and performance in the following physical security
applications.

The first PUF-based security applications we considered in Chap. 5 were entity
identification and authentication, as defined in Sect. 5.1.1. We first elaborated on
the identifiability property of PUFs and demonstrated how a fuzzy identification
scheme based on PUF responses can be set up, equivalent to biometric identifica-
tion. Based on the measured characteristics of the eight intrinsic PUF construction
studied in Chap. 4, we evaluated their identifying capabilities based on the typi-
cal fuzzy identification performance metrics of false acceptance and rejection rates
which are combined in receiver-operating characteristics and equal error rates. Next,
we proposed a new mutual authentication protocol for PUF-carrying entities with
significantly relaxed security conditions for the used PUF such that it can deploy
any intrinsic PUF construction. The primary innovative aspect of this protocol is
an atypical use of an error-correction technique which results in a secure yet very
lightweight authentication solution. Based on this scheme, the authentication per-
formance and efficiency of the eight studied intrinsic PUFs was again compared.

Next, in Chap. 6, we discussed in detail the prerequisites and security consid-
erations for PUF-based secure key generation and storage, and presented and eval-
uated practical constructions and implementations. We first studied existing tech-
niques and constructions for enhancing the reliability of fuzzy data, so-called se-
cure sketches, and for boosting the unpredictability of a derived key, either from an
information-theoretic perspective, based on strong and fuzzy extractors, or from a
practical perspective, based on entropy accumulators. The first main contribution of
Chap. 6 was a new and significantly improved construction of a secure sketch based
on the innovative idea of using available soft-decision information of the PUF’s re-
sponse bits. Secondly, we introduced a practical generalization of fuzzy extractors
in which we traded information-theoretical security for a large gain in efficiency,
while still retaining adequate security based on widely used best-practice entropy
accumulation. Again, we tested the key generation capacity of the eight studied
intrinsic PUFs, based on a proposed design of a practical fuzzy extractor. Lastly,
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to demonstrate the feasibility and applicability of this design, we made a fully func-
tional, efficient, yet flexible FPGA reference implementation of a PUF-based key
generator, including a newly proposed ring-oscillator PUF with Lehmer-Gray re-
sponse encoding, a practical secure sketch based on a new highly optimized BCH
decoder, and entropy accumulation with a lightweight hash function.

7.2 Future Work

The generic concept of a physically unclonable function was presented little over
a decade ago, but the major research contributions on this topic are situated in the
last couple of years. PUFs are hence a relatively new subject in the field of physical
security, and a number of interesting future research directions, as well as some
encountered open problems can be identified.

PUF Constructions As pointed out a number of times in this book, one of the
major open questions on the side of PUF constructions is if, and how, an efficient
truly unclonable intrinsic PUF, also called a strong PUF by some authors, can be
built. Some candidate circuits have been proposed, but they are currently lacking
any convincing argumentation of being unpredictable which is required for achiev-
ing mathematical and true unclonability. Due to the difficulty of mathematically
proving unpredictability based on physical arguments, it is more convenient to as-
sess unpredictability in relation to the best known attack. This method has been
applied successfully in recent decades to cryptographic symmetric-key primitives.
However, to make independent analysis possible, Kerckhoffs’ principle needs to be
obeyed. For physical security primitives like PUFs, this entails that the full design
and implementation details of a proposed construction need to be disclosed. A more
practical alternative is to publish, in an easily accessible electronic format, extensive
datasets of experimental PUF evaluations for public scrutiny. We hope that the prac-
tical performance evaluation methods proposed in this book can contribute to more
meaningful and objective assessments of the value of different PUF constructions.

Another open issue is the construction of a physically reconfigurable PUF, as
discussed in Sect. 2.5.3. Rather exotic suggestions were proposed but never tested.
A logically reconfigurable PUF is a good emulation from the behavioral perspective,
but does not achieve the same strong physical security qualities.

Finally, as with all hardware (security) primitives, continuing research effort
is required to develop increasingly more efficient constructions which offer better
trade-offs and enable applications in resource-constrained environments.

PUF Properties For PUF properties, we see the need for research effort on two
levels. Firstly, on a practical level, more detailed methods and techniques need to be
developed and investigated for assessing if, and to what extent, a proposed PUF con-
struction meets a particular property. For some properties, this is based on an anal-
ysis of the inter- and intra-distance distributions of measured PUF responses, and a
number of evaluation methods have been proposed in this book. Presenting detailed
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and accurate statistics of these distributions is hence indispensable when proposing
a new PUF construction. In-depth and independent analysis of a PUF’s construction
and experimental results is required to assess its unpredictability, e.g. by means of
tighter response entropy bounds.

For other properties, an assessment is based on physical arguments and this is
again difficult to approach from a mathematical perspective. Qualities like physical
unclonability and tamper evidence can, and should only be assessed in a heuristic
manner. Especially the core property of physical unclonability requires special at-
tention in that regard. A PUF which, through improved physical insights or techno-
logical progress, is found to be no longer physically unclonable, ceases to be a PUF.

On a more theoretical level, it needs to be further investigated how PUFs can be
deployed as formal primitives in a security system, i.e. allow theoretical designers
to reason about PUFs in a formal way without having to worry about their physical
aspects, which are often beyond their expertise. We have proposed such a formal
framework for describing physical functions and have applied this to PUFs and their
core properties. Extending this framework to other primitives and properties will be
an interesting and fruitful exercise.

PUF Applications In this book, we have demonstrated how to achieve two pri-
mary PUF-based security objectives: entity authentication and secure key genera-
tion/storage. We see further developments possible, both in trying to achieve basic
security objectives based on PUFs, as well as attempting to integrate PUFs and
PUF-based primitives securely and efficiently into larger security systems. A note-
worthy direction of the former which was not further discussed in this book is so-
called hardware-entangled cryptography, i.e. designing basic cryptographic primi-
tives which directly deploy a PUF as a building block. We introduced this approach
in [2] and illustrated it with a secure design of a PUF-based block cipher.

To facilitate the further deployment of PUFs in security systems, we see the fol-
lowing interesting and essential future challenges:

• A greater insight and effort on the low-level silicon circuit design of intrinsic
PUF constructions will result in increasingly more efficient (smaller, more robust,
more random) structures.

• Both incremental and fundamental progress in the development and application
of post-processing techniques required to use a PUF (reliability enhancement,
randomness extraction, . . . ) is possible, e.g. the use of alternative error-correction
techniques (non-binary codes, non-linear codes, . . . ) and more insight into en-
tropy accumulation techniques.

• Other physical security qualities of PUFs need to be considered, in particular their
resistance to side-channel attacks. Initial work on side-channel analysis of PUFs
was recently introduced by Karakoyunlu and Sunar [62], Merli et al. [97], but
more elaborate research efforts are required.

To conclude, we expect that the continuous improvements and better understanding
of their practicality and of the physical as well as algorithmic security of PUFs
will enable and accelerate their further transition into common and new security
applications.



Appendix A
Notation and Definitions from Probability
Theory and Information Theory

A.1 Probability Theory

A.1.1 Notation and Definitions

Variables and Sets In this book we use the standard notions and definitions of
probability theory, such as a random event, a random variable and a probability
distribution. A random variable is typically denoted as an upper case letter, Y , and
a particular outcome thereof as the corresponding lower case letter, Y = y. The set
of all outcomes of Y is denoted by a calligraphic letter, Y . The number of elements
in Y , also called the cardinality of Y , is denoted as #Y .

Vectors and Distances If Y is a (random) vector, we denote its length (number
of elements) as |Y |. Hamming distance is a distance metric between two vectors of
equal length and is defined as the number of positions in both vectors with differing
values:

HD
(
Y ;Y ′) �= #

{
i : Yi 
= Y ′

i

}
.

Often, the Hamming distance is expressed as a fraction of the vectors’ length, also
called the fractional Hamming distance:

FHD
(
Y ;Y ′) �= HD(Y ;Y ′)

|Y | .

The Hamming weight of a single vector is the number of positions with non-zero
values:

HW(Y )
�= #{i : Yi 
= 0}.

The Euclidean distance between two real-values vectors is defined as:

∥∥Y − Y ′∥∥ �=
|Y |∑

i=1

√(
Yi − Y ′

i

)2
.
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To make explicit that we consider a vector of length n, we also write Yn =
(Y1, Y2, . . . , Yn). Sometimes, we need to refer to the first portion of a vector Yn,
up to and including the i-th element, we denote this as Y (i) = (Y1, Y2, . . . , Yi).

Distributions and Sampling The probability distribution of a discrete random
variable1 is specified by its probability mass function:

p(y)
�= Pr(Y = y),

or its corresponding cumulative distribution function:

P(y)
�= Pr(Y ≤ y).

Note that random variables, probability distributions and probability mass functions
are intimately linked and are often used as synonyms of each other. We write Y ← Y
to signify that Y is a random variable which is distributed over Y according to its
corresponding distribution. Equivalently, we write y

$← Y to signify that the value y

is randomly sampled from Y according to the distribution of Y . If no explicit distri-
bution is given, the sampling of y is considered according to a uniform distribution
over Y .

Distribution Parameters The expected value or expectation of a random variable
Y is defined as:

E[Y ] �=
∑

y∈Y
yp(y),

and equivalently the expected value of a function of Y , f (Y ) is defined as:

Ey∈Y
[
f (Y )

] �=
∑

y∈Y
f (y)p(y).

The variance of a random variable is defined as:

Σ2[Y ] �= Ey∈Y
[(

Y − E[Y ])2]
,

and the standard deviation of Y as:

Σ[Y ] �=
√
Σ2[Y ].

Statistical Distance The difference between the distributions of two discrete ran-
dom variables A and B which take samples from the same set V is often quantified

1We only use discrete random variables in this work, hence we do not elaborate on continuous
extensions.
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by means of their statistical distance:

SD(A;B)
�= 1

2

∑

v∈V

∣∣Pr(A = v) − Pr(B = v)
∣∣.

Based on their statistical distance, a number of useful statistical and information-
theoretic properties of the relation between two random variables can be shown. Of
particular interest is the statistical distance between a random variable V ← V and
U which is the uniformly distributed variable over V . This is an effective measure
for the uniformity of the distribution of V .

A.1.2 The Binomial Distribution

A discrete probability distribution which is of particular interest and recurs a number
of times in this book is the binomial distribution. The binomial distribution describes
the number of successes in n independent but identical Bernoulli experiments with
success probability p. The probability mass function of the binomial distribution
function is given by:

fbino(t;n,p)
�=

(
n

t

)
pt(1 − p)n−t ,

and the corresponding cumulative distribution function by:

Fbino(t;n,p)
�=

t∑

i=0

fbino(t;n,p).

The expectation of a binomially distributed random variable Y is given by
E[Y ] = np and its variance by Σ2[Y ] = np(1 − p).

A.2 Information Theory

A.2.1 Basics of Information Theory

In this book, we use the standard information-theoretical entropy and mutual infor-
mation definitions and relations, e.g. as given by Cover and Thomas [27].

Entropy is a measure of the uncertainty one has about the outcome of a random
variable distributed according to a given distribution. In that sense, it quantifies the
average amount of information one learns when observing the outcome. In the con-
text of security, entropy is also used to express the unpredictability of a secret ran-
dom variable. The concept of entropy as a measure of information was introduced
by Shannon [127] and is therefore also called Shannon entropy.
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Definition 32 The (Shannon) entropy H(Y) of a discrete random variable Y ← Y
is defined as:

H(Y)
�= −

∑

y∈Y
p(y) · log2 p(y).

With, by convention, 0 · log2 0 ≡ 0.
The entropy of a binary random variable Y ← {0,1}, with p(y = 1) = p and

p(y = 0) = (1 − p), becomes H(Y) = −p log2 p − (1 − p) log2(1 − p). We call
this the binary entropy function h(p):

h(p)
�= −p log2 p − (1 − p) log2(1 − p).

For random vectors Yn it is sometimes convenient to express the average entropy
per element, or its entropy density. We denote this as

ρ
(
Yn

) �= H(Yn)

n
.

Definition 33 The joint entropy H(Y1, Y2) of two discrete random variables
Y1 ← Y1 and Y2 ← Y2 with a joint distribution given by p(y1, y2) is defined as:

H(Y1, Y2)
�= −

∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2 p(y1, y2).

Definition 34 The conditional entropy H(Y2|Y1) of Y2 given Y1 is defined as:

H(Y2|Y1)
�= Ey1∈Y1

[
H(Y2|Y1 = y1)

]

= −
∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2 p(y2|y1).

Theorem 1 The chain rule for entropy states that:

H(Y1, Y2) = H(Y1) + H(Y2|Y1),

and more generally for an arbitrary collection of random variables:

H
(
Yn

) = H(Y1, Y2, . . . , Yn) =
n∑

i=1

H(Yi |Yi−1, . . . , Y1).

Definition 35 The mutual information I (Y1;Y2) between two random variables Y1
and Y2 is defined as:

I (Y1;Y2)
�=

∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2
p(y1, y2)

p(y1)p(y2)
.
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The mutual information between two random variables is a measure for the
amount of information which is shared by both variables, or in other words, the
average amount of information (reduction in uncertainty) we learn about one vari-
able when observing the other, and vice versa.

Theorem 2 The following relations exist between entropy and mutual information:

I (Y1;Y2) = I (Y2;Y1),

I (Y1;Y1) = H(Y1),

I (Y1;Y2) = H(Y1) − H(Y1|Y2) = H(Y2) − H(Y2|Y1),

I (Y1;Y2) = H(Y1) + H(Y2) − H(Y1, Y2).

Definition 36 The conditional mutual information I (Y1;Y2|Y3) between Y1 and Y2
given a third random variable Y3 is defined as:

I (Y1;Y2|Y3)
�= H(Y1|Y3) − H(Y1|Y2, Y3).

Theorem 3 The chain rule for mutual information states that:

I
(
Yn;Yn+1

) = I (Y1, . . . , Yn;Yn+1) =
n∑

i=1

I (Yi;Yn+1|Yi−1, . . . , Y1).

A.2.2 Min-entropy

Min-entropy, as introduced by Rényi [109], is a more pessimistic notion of the un-
certainty of a random variable than Shannon entropy. We use the definitions of min-
entropy and average min-entropy as defined by Dodis et al. [33].

Definition 37 The min-entropy H∞(Y ) of a random variable Y ← Y is defined as:

H∞(Y )
�= − log2 max

y∈Y
p(y).

If Y is uniformly distributed, its min-entropy is equal to its Shannon entropy:
H∞(Y ) = H(Y) = log2 #Y . For other distributions, min-entropy is strictly upper-
bounded by Shannon entropy: H∞(Y ) < H(Y ). For two independent random vari-
ables Y1 and Y2 it holds that H∞(Y1, Y2) = H∞(Y1) + H∞(Y2). However, when
Y1 and Y2 are not independent, no prior statement can be made about this relation:
H∞(Y1, Y2) ≶ H∞(Y1) + H∞(Y2).

Definition 38 The average min-entropy H̃∞(Y |W) of Y given W is defined as:

H̃∞(Y |W)
�= − log2 Ew∈W

[
2−H∞(Y |W=w)

]
.



178 A Notation and Definitions from Probability Theory and Information Theory

Note that this definition of average min-entropy differs from the way conditional
entropy is typically defined in Definition 34, in particular the order of the expec-
tation operator and the logarithm operator are reversed. To make this distinction
explicit, the tilde sign (˜) is added to the average min-entropy operator: H̃∞(·). The
following useful lemma about average min-entropy is proven by Dodis et al. [33]:

Lemma 3 If W ←W and #W ≤ 2λ, then:

H̃∞(Y |W) ≥ H∞(Y,W) − λ ≥ H∞(Y ) − λ.



Appendix B
Non-intrinsic PUF(-like) Constructions

In this appendix we discuss non-intrinsic PUF constructions proposed in the lit-
erature. According to the classification proposed in Sect. 2.3.3, they are labelled
‘non-intrinsic’ because they either are not completely integrated in an embedding
device, or they are not produced in the standard manufacturing process of their em-
bedding device, or both. A great variety of different constructions which could be
listed here have been proposed over time. Some even long before the concept of
a PUF was introduced. We made an extensive selection and have grouped them
based on their operating principles. Section B.1 lists a number of PUF proposals
which use optical effects to obtain PUF behavior. Section B.2 describes PUFs using
radio-frequency effects and Sect. B.3 lists non-intrinsic PUFs based on electronics.
In Sect. B.4, we discuss a number of unrelated proposals which are of independent
interest.

B.1 Optics-Based PUFs

B.1.1 Optical PUF

The interaction of visible light with a randomized microstructure quickly becomes
very complex to describe, as it is a result of several physical phenomena such as
absorption, transmission, reflection and scattering. If the microstructure contains
random elements, the resulting interaction will often also contain a high degree of
randomness and unpredictability. Optical PUFs capture the result of such a complex
interaction and use it as a PUF response.

Well before the introduction of the PUF concept, Simmons [131], Tolk [142]
proposed an unclonable identification system based on random optical reflection
patterns. These so-called reflective particle tags were specifically developed for the
identification of strategic arms in arms control treaties. A similar solution for smart-
cards based on an optical token with a unique three-dimensional reflection pattern

R. Maes, Physically Unclonable Functions, DOI 10.1007/978-3-642-41395-7,
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Fig. B.1 Operation of the optical PUF as proposed by Pappu et al. [105]

and stereoscopic measurement was commercialized already in 1994 by Unicate BV
as 3DAS® [148].

An optical PUF based on a transparent medium was proposed by Pappu et al.
[104, 105] as a physical one-way function (POWF). They construct tokens contain-
ing an optical microstructure consisting of microscopic refractive particles randomly
mixed in a small transparent epoxy plate. When irradiated with a laser, the token
produces an irregular random speckle pattern due to the multiple scattering of the
beam with the refractive particles. The pattern is digitally captured and processed
into a binary feature vector using an image processing technique known as Gabor
hashing. The resulting feature vector turns out to be highly unique for every token
and is moreover very sensitive to minute changes in the relative positioning of the
token and the laser beam. The authors propose to use different orientations of the
laser to produce multiple vectors per token. In PUF terminology, the laser position-
ing is considered the PUF challenge and the resulting feature vector the response.
The operation of this optical PUF is shown in Fig. B.1.

In his thesis, Pappu [104, Chap. 3] lists a number of earlier proposed similar
constructions which served as inspiration. Following the introduction of the optical
PUF by Pappu et al. [105], the construction and security aspects of optical PUFs
were further studied by Ignatenko et al. [56], Škorić et al. [133], Tuyls et al. [146].
A more practical integrated design of an optical PUF was proposed by Gassend
[40, Sect. 3.1.3] and also by Tuyls and Škorić [145], but no known implementations
exist.

It is clear that the use of an optical PUF as proposed by Pappu et al. [105] is
rather laborious, requiring a large and expensive external measurement setup involv-
ing a laser and a tedious mechanical positioning system. The reliability of optical
PUF responses is also relatively low in comparison to other proposals. However, in
many ways this optical PUF construction can be considered as the prototype PUF.
The physical functionality of the PUF is obvious, including a well-defined physi-
cal challenge and response, and all desirable PUF properties are achieved: tokens
produced by the same process exhibit responses with a high level of uniqueness,
yet responses can be relatively easily and reliably measured. These optical PUFs
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also have a very large challenge space, and it was shown [133, 146] that predicting
unseen responses for a particular token is computationally hard, even when an ad-
versary has a lot of information about the token. Pappu et al. [105] moreover claim
that their PUF exhibits a degree of one-wayness, hence their name physical one-way
function, however this is not one-wayness in the cryptographic sense. Ultimately, it
was shown [105] that the tokens are tamper evident, i.e. a physical modification
of the token, e.g. drilling a microscopic hole in it, alters its expected responses by
nearly 50 %.

From the discussion in Chap. 3, it will be clear that no single other PUF con-
struction achieves all these properties at once. In this respect, the optical PUF can
be considered a benchmark for PUF properties. The goal of all following PUF pro-
posals is to match the properties of an optical PUF as closely as possible, but using
a more integrated and practical construction.

B.1.2 Paper-Based PUFs

The basic idea behind all paper-based PUFs is scanning the unique and random
fiber microstructure of regular or modified paper. As with the optical PUF, also for
paper PUFs there were a number of early proposals, among others by Bauder [5],
the Commission on Engineering and Technical Systems (CETS) [25], and Simmons
[131], well before the introduction of the PUF concept. These were mainly con-
sidered as an anti-counterfeiting measure for currency notes. Buchanan et al. [16]
propose a construction where the reflection of a focused laser beam of the irregu-
lar fiber structure of a paper document is used as a fingerprint of that document to
prevent forgery. A similar approach is used by Bulens et al. [17], but they explic-
itly introduce ultraviolet fibers in the paper during the manufacturing process. This
makes it possible to measure the paper structure using a regular desktop scanner
instead of an expensive laser. Bulens et al. [17] also introduce a method to strongly
link the data on the document with the paper by constructing a combined digital
signature of the data and the paper’s fingerprint, which is printed on the document.
A very similar concept was already proposed much earlier by Simmons [131] based
on quadratic residues. Recently, Sharma et al. [128] proposed a technique which
enables to read unique microfeatures of regular paper using low-cost commodity
equipment. They also give a good overview of many earlier proposed similar con-
structions. Yamakoshi et al. [155] describe a very similar concept using infrared
scans of regular paper.

B.1.3 Phosphor PUF

Chong et al. [24, 59] propose to randomly blend small phosphor particles in the ma-
terial of a product or its cover. The resulting random phosphorescent pattern can be
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detected using regular optical equipment and used as a unique fingerprint to identify
the product.

B.2 RF-Based PUFs

B.2.1 RF-DNA

A construction called RF-DNA was proposed by Dejean and Kirovski [29]. They
construct a small inexpensive token comparable to that used for the optical PUF,
but now consisting of a flexible silicon sealant containing thin randomly arranged
copper wires. Instead of observing the scattering of light as with optical PUFs, the
near-field scattering of electromagnetic waves by the copper wires at other wave-
lengths is observed, notably in the 5∼6 GHz band. The random scattering effects
are measured by a prototype scanner consisting of a matrix of RF antennas.

B.2.2 LC PUF

An LC PUF as proposed by Guajardo et al. [46] is a small glass plate with a metal
plate on each side, forming a capacitor, serially chained with a metal coil on the plate
acting as an inductive component. Together they form a passive LC resonator circuit
which will absorb an amount of power when placed in an RF field. A frequency
sweep reveals the resonance frequencies of the circuit, which depend on the exact
values of the capacitive and inductive component. Due to manufacturing variations
in the construction of the tokens, this resonance peak will be slightly different and
unique for equally constructed LC PUFs.

B.3 Electronics-Based PUFs

B.3.1 Coating PUF

Coating PUFs were introduced by Tuyls et al. [147] and consider the randomness
of capacitance measurements in comb-shaped sensors in the top metal layer of an
integrated circuit. The construction of this coating PUF is shown in Fig. B.2. In-
stead of relying solely on the random effects of manufacturing variability, random
elements are explicitly introduced by means of a passive dielectric coating sprayed
directly on top of the sensors. Moreover, since this coating is opaque and chemi-
cally inert, it offers strong protection against physical attacks as well. An experi-
mental security evaluation [147] reveals that the coating PUF is also tamper evi-
dent, i.e. after an attack with a focused ion beam (FIB) the responses of the PUF
are significantly changed. A more theoretical evaluation of coating PUFs was done
by Škorić et al. [134].
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Fig. B.2 Construction of a coating PUF as proposed by Tuyls et al. [147]

B.3.2 Power Distribution Network PUF

Helinski et al. [50] propose a PUF based on the resistance variations in the power
grid of a silicon chip. Voltage drops and equivalent resistances in the power distri-
bution system are measured using external instruments and it is observed that these
electrical parameters are affected by random manufacturing variability.

B.4 More Non-intrinsic PUFs

B.4.1 CD-Based PUF

Hammouri et al. [49] observed that the measured lengths of lands and pits on a
regular compact disk (CD) exhibit a random deviation from their intended lengths
due to probabilistic variations in the manufacturing process. Moreover, this devia-
tion is even large enough to be observed by monitoring the electrical signal of the
photodetector in a regular CD player. This was tested for a large number of CDs
and locations on every CD. After an elaborate quantization procedure, an average
intra-distance of μintra

P = 8 % and an average inter-distance of μinter
P = 54 % on the

obtained bit strings is achieved.

B.4.2 Acoustical PUF

Acoustical delay lines are components used to delay electrical signals. They con-
vert an alternating electrical signal into a mechanical vibration and back. Acoustical
PUFs, as proposed by Vrijaldenhoven [154], are constructed by observing the char-
acteristic frequency spectrum of an acoustical delay line. A bit string is extracted by
performing principal component analysis (PCA).
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B.4.3 Magstripe-Based PUF

The concept of a magnetic PUF was introduced by Indeck and Muller [57]. They use
the inherent uniqueness of the particle patterns in magnetic media, e.g. in magnetic
swipe cards. Magstripe-based PUFs are used in a commercial application to prevent
credit card fraud [88].



References

1. Anderson, J. (2010). A PUF design for secure FPGA-based embedded systems. In Asia and
South-Pacific design automation conference—ASP-DAC 2010 (pp. 1–6). New York: IEEE.

2. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., & Tuyls, P. (2009). Memory leakage-
resilient encryption based on physically unclonable functions. In Lecture notes in com-
puter science (LNCS): Vol. 5912. Advances in cryptology—ASIACRYPT 2009 (pp. 685–702).
Berlin: Springer.

3. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., & Wachsmann, C. (2011). A for-
mal foundation for the security features of physical functions. In IEEE symposium on security
and privacy—SP 2011 (pp. 397–412). New York: IEEE.

4. Barker, E., & Kelsey, J. (2012). Recommendation for random number generation using de-
terministic random bit generators. NIST special publication 800-90A. http://csrc.nist.gov/
publications/nistpubs/800-90A/SP800-90A.pdf.

5. Bauder, D. (1983). An anti-counterfeiting concept for currency systems (Technical Report
PTK-11990). Albuquerque, NM, USA: Sandia National Labs.

6. Beckmann, N., & Potkonjak, M. (2009). Hardware-based public-key cryptography with pub-
lic physically unclonable functions. In Lecture notes in computer science (LNCS): Vol. 5806.
International workshop on information hiding—IH 2009 (pp. 206–220). Berlin: Springer.

7. Berlekamp, E. (1965). On decoding binary Bose-Chadhuri-Hocquenghem codes. IEEE
Transactions on Information Theory, 11(4), 577–579.
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