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Foreword

At the dawn of the new millennium, robotics is undergoing a major transforma-
tion in scope and dimension. From a largely dominant industrial focus, robotics
is rapidly expanding into the challenges of unstructured environments. Interact-
ing with, assisting, serving, and exploring with humans, the emerging robots will
increasingly touch people and their lives.

The goal of the new series of Springer Tracts in Advanced Robotics (STAR) is
to bring, in a timely fashion, the latest advances and developments in robotics on
the basis of their significance and quality. It is our hope that the wider dissemina-
tion of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

The monograph written by Martijn Wisse and Richard van der Linde is the
first in the series devoted to biped robots. Research in this area has a great po-
tential for biomechanics (understanding human locomotion), prosthetics (aiding
human locomotion), and robotics (building human-like robots for entertainment
and for assistance tasks). A number of pneumatic robots and bipeds based on
passive dynamic walking, developed in the Delft Biorobotics Laboratory, are de-
scribed in detail to understand the principles of dynamic, two-legged walking,
and to use that knowledge to build human-like walking robots.

Remarkably, the monograph is based on two doctoral theses, one of which
received the prize of the Fifth Edition of the EURON Georges Giralt PhD Award
devoted to the best PhD thesis in Robotics in Europe. A fine addition to the
Series!

Naples, Italy Bruno Siciliano
December 2006 STAR Editor



Preface

This book reports our research on pneumatic bipeds (=two-legged robots) based
on the concept of passive dynamic walking. The research was done between 1998
and 2004 at Delft University of Technology, funded by the Dutch Technology
Fund STW. We, Martijn Wisse and Richard van der Linde, both obtained our
PhD degrees during the project under the supervision of Prof. dr. ir. H.G. Stassen
and Prof. dr. F.C.T. Van der Helm. This book is a rewritten, compacted version
of the combined PhD theses.

The European robotics research community EURON awarded our research
with the Georges Giralt PhD Award, which included an offer to publish the
work as a monograph in the Springer Tracts on Advanced Robotics.

This book is intended for researchers who are considering to start research on
two-legged robots based on passive dynamic walking. We hope that this book
will convene the key ideas behind our research. We would like you to avoid our
mistakes and build on our results.

This book is organized in seven chapters. The chapters 2 to 6 each present one
key idea and one new robot. The background theory and computer simulations are
presented where they are needed throughout the book. Some explanations may
appear in more than one place so that the chapters remain mostly independent.

Many people contributed to the work that we report here. Special mention
goes to Arend Schwab, our teacher of multibody dynamics and stability analysis,
and to Jan van Frankenhuyzen, who designed and built the robots.

We much enjoyed our research work, and we hope that we can transmit some
of that enthusiasm to you with this book.

Delft, Martijn Wisse
March 2007 Richard Quint van der Linde
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1. Introduction

1.1 Motivation for Biped Robot Research

This is a book about biped robots. Why would someone research biped robots? In
ancient Dutch, the answer would be: ‘Ter leering ende vermaeck’, which means
‘for learning and for fun’. From the research, we can learn the principles of
dynamic two-legged walking. This knowledge can be used for biomechanics (un-
derstanding human locomotion), prosthetics (aiding human locomotion), and
robotics (building human-like robots for entertainment and for assistance tasks).

Biomechanics

By building robots, we can learn more about human locomotion. The approach
of robot construction complements the usual approach of studying actual human
beings, i.e. the area of gait analysis. Let’s first review what has been done in
that area, and then provide an argument in favor of building robots.

The human gait has been studied since early history1, such as Hippocrates’ [73]
treatment of people with a hip joint dislocation around 400 BC. The early mod-
ern times have produced beautiful treatments on human motion (e.g., Borelli [16]
in 1680). As soon as photography became available in the late nineteenth century,
Marey [103] and Muybridge [118] applied it to perform two-dimensional (2D) kine-
matic analyses. The first 3D kinematic analysis was performed in 1891 by Braüne
and Fischer [18]. Elftman [47] developed the force plate in 1938 which he used
to perform the first inverse-dynamics gait analysis. Although the tools have im-
proved enormously since then (e.g. with the introduction of the 3D computerized
data acquisition and even real-time inverse-dynamics analysis), the basic analyt-
ical approach has remained the same ever since; the motions and ground reaction
forces aremeasured and the joint torques or muscle forces are then calculated using
a model of the human body.

1 The remarks with respect to the history of gait analysis and prosthetics in this chapter
are based on the Clinical Gait Analysis webpages, http://www.univie.ac.at/cga/

M. Wisse and R.Q. van der Linde: Delft Pneumatic Bipeds, STAR 34, pp. 1–5, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 1. Introduction

Although human gait analysis is indispensable, we believe that by itself it is
not sufficient for creating an understanding of the principles of dynamic walking.
First, it is hard to discriminate between essential and non-essential features, be-
cause the system has to be studied in its entirety. Second, some essential features
might be overlooked because of their sustained presence in all experiments. For
example, many studies based on inverse-dynamics calculations ignore the prob-
lem of stability and thus fail to recognize the importance of related features such
as local feedback control loops.

We believe that the best way to gain insight is to build up an artificial walk-
ing system. By adding one feature (e.g. hip actuation, or an upper body) at a
time, we ensure a focus on the essential features for successful walking. For each
additional feature it is known exactly why it is necessary and how it contributes
to human-like walking. This is the approach taken throughout the research pre-
sented in this book.

Prosthetics

There are two types of artificial limbs: prostheses (limb replacement) and or-
thoses (limb function support). Artificial limbs have two purposes: to restore
the function of the limb (prostheses and orthoses) and to hide the weakness or
disfiguredness of a missing limb (mostly prostheses). In ancient history, most of
the amputations were a result of human conflicts, and this is not different in
the more recent history, as World Wars I and II brought tens of thousands of
amputees each, while other parts of the world continue to suffer from large scale
conflicts. In addition, the late 1950’s saw the ‘Thalidomide tragedy’; approxi-
mately ten thousand babies were born with deformed or missing limbs due to
the disastrous side effects of this insomniac drug taken during pregnancy2. In
the Netherlands, currently most amputations are a result of an accident or are
necessary because of a vascular disease (mostly elderly patients), and add up to
over 2000 amputations per year in the Netherlands alone [95], a country with 17
million inhabitants.

For most part of history, leg protheses have been constructed the same way,
with a wooden peg leg, leather straps and a soft leather or linen lining. In the six-
teenth century Paré heralded an era of mechanical refinement comprising better
materials and more degrees of freedom, especially for the upper extremities [128].
For the legs, however, even the most advanced prostheses still have only one de-
gree of freedom, the knee. Foot designs have evolved to incorporate damping and
compliance, but most of these developments were experience-based. The same is
true for the modern prostheses with computer controlled damping in the knee.
Almost none of the design features of today’s prostheses are based on knowledge
of the dynamics of walking. This lack of knowledge results in unnatural dynamic
behavior of the prosthetic leg, which the amputee will try to hide by means of

2 The ‘Thalidomide tragedy’ (‘Softenon drama’ in Dutch) was one of the incentives
to start research into prosthetics at Delft University of Technology, the technology
of which has been the basis for our research on biped robots.
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extra effort [142]. Similarly, gait orthoses are usually fitted and tuned based on
experience rather than on sound knowledge about dynamic walking. We hope
that a better understanding of the principles of dynamic walking will aid the
development of more comfortable (more ‘natural’) prostheses and orthoses.

Robotics and Entertainment

The field of entertainment has less urgency but much more economic thrust
than the field of rehabilitation. The billion dollar markets of computer games
and motion pictures make more and more use of computer generated actors [76].
The generated motions must be of high quality because the human eye is very
perceptive for deviations from natural walking motions. Although virtual grav-
ity is a little more forgiving than the real thing, knowledge of the underlying
dynamics is imperative for the development of realistic animations.

Recently, the entertainment industry has been opening up the market for en-
tertainment robots. After SONY’s four-legged AIBO-dog, several companies
[136, 100, 86, 99] are now developing two-legged humanoid robots. The attrac-
tiveness of the human appearance of these first generation humanoid robots has
already resulted in huge media coverage and public interest, providing the devel-
oping companies with an effective means to show their technological disposition.
It is expected that the human-like means of locomotion will eventually also prove
useful for tasks other than entertainment; a two-legged design provides function-
ality in environments that are especially designed for humans such as dangerous
factory environments, construction workplaces, and the homes of private robot
owners. Various reports [148, 134] predict a steady development from the current
research and entertainment products towards highly versatile machines, parallel
to the stages of development seen in the short history of the PC. For the devel-
opment of two-legged walking robots, the need for knowledge of the principles of
dynamic human-like walking is self-evident.

1.2 State of the Art

The research in this book does not stand alone. On the contrary, two-legged
robots are becoming ever more popular as a research topic. Here we will present
an overview of the various projects at the time of writing (2006). The order
of the presentation is loosely based on the ‘degree of passivity’ of the walking
robots; on one end we find the static bipeds which have a slow, ‘robotic-looking’
gait, and on the other end we find the passive dynamic bipeds which have an
efficient gait in a natural cadence. Our robots are based on the passive dynamic
bipeds which we will treat in detail in the next chapter. The story in this section
starts from the other end; the static bipeds.

The standard approach to robot control as applied in industrial manufacturing
robots is to ensure direct control over all degrees of freedom. By application of
strong actuators and stiff structural components, the robot manipulators can be
controlled to accurately track prescribed trajectories. This approach has been
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used as a starting point for the construction and control of biped robots. To
deal with the fundamental characteristics of limited foot contact and discretely
changing dynamics, the bipeds are programmed to walk slowly and to keep the
center of mass above the foot contact area (this is called ‘static walking’). Thanks
to these constraints, the stance foot remains in full, flat contact with the floor
and thus it ‘simulates’ direct control over all degrees of freedom.

An extension towards a more dynamic approach is the so-called ‘Zero Moment
Point’ [169] (center of pressure [60]) control; by keeping the center of pressure
inside the foot contact, full and flat foot contact can also be ensured. Note that
this is not sufficient to prevent the biped from falling, it would just fall while
keeping full foot contact. Usually, the ‘Zero Moment Point’ calculation serves as
a constraint to trajectory generators so that faster (than static) walking motions
can be generated while ensuring that the foot maintains full, flat contact with
the floor. The actual stability of the gait results from the ability to robustly
track the generated trajectory. One of the first research robots based on this
approach was built at Waseda University in 1970 [5]. Many followed, especially
in Japan, and work towards a more dynamic gait is in progress.

The benefit of the standard industrial approach is that a complete system can
be built from the start; it has all the degrees of freedom needed to make it look
human and thus it is immediately ready for commercialization, e.g. for enter-
tainment purposes. Making it more dynamic, natural, efficient and cheaper are
topics for gradual improvement, as illustrated with the succession of prototypes
by Honda [74, 136] and Sony [100]. This benefit makes this approach a good
starting point for industrial developers. The drawback, as we see it, is that these
robots are over-controlled and thus may consume more energy than necessary.
For the task of walking without falling, it is certainly not necessary to exactly
track each pre-determined joint trajectory all the time.

Successful walking has also been achieved with more biologically inspired ap-
proaches. Various robots have shown successful gait being controlled by Central
Pattern Generators [48, 57, 135], or being controlled more intuitively using Vir-
tual Model Control [130] and various other techniques [75, 64, 85].

Even more related to passive dynamic walking are those projects that used
passive ankles or arc feet or point feet. In this category we find the early work
by Katoh [88], the Hybrid Zero Dynamics approach [65, 66, 171] and the related
Passive Dynamic Autonomous Control [131]. Various learning algorithms [116,
114, 117, 120, 149] have led to quick learning on arc feet robots. Finally, the Self
Excited Biped Locomotion [123, 124] is with only one hip motor perhaps the
closest relative of Passive Dynamic Walking.

The robots that we present in this book are powered by pneumatics. Although
this is somewhat uncommon (all bipeds mentioned above have electric actua-
tors), we are not the only group that applies pneumatics. Interestingly, most of
the pneumatically powered bipeds (including our own) use pneumatic ‘muscles’
rather than piston-type actuators. One of the first to incorporate pneumatics
is the Japanese pioneer for legged locomotion Kato. During the 1960s and the
1970s he has built several statically balanced walking bipeds such as WAP I,
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WAP II and WAP III [87]. In Paris the pneumatic biped Bipman [68] has been
developed at INSERM, and it now resides at the University of Toulon. At the
Laboratoire de Robotique de Versailles, the pneumatic biped STEP [119] was
built with pneumatic cylinders. Caldwell, at the University of Salford, developed
the biped Salford Lady [9]. From 1987 to 2005 the Shadow Company [6] won
several awards with their inspiring McKibben muscle powered biped. Since the
mid 1990’s, Vrije Universiteit Brussel has been working on an alternative for
McKibben muscles, Pleated Pneumatic Artificial Muscles [41, 166]. These mus-
cles are used to power the biped Lucy [165, 167, 163, 164] which is controlled
according to the trajectory tracking approach. Finally, as a follow-up to the re-
search presented in this book, Osaka University is now building a series of bipeds
powered with McKibben muscles [146, 145, 147, 144, 77].

1.3 Research Goal and Book Structure

Our final research goal is to understand the principles of dynamic, two-legged
walking, and to use that knowledge to build human-like walking robots. During
the period described in this book (1998-2004), we have made significant steps
toward that goal. We have mastered ‘Passive Dynamic Walking’ (Chapter 2),
developed a pneumatic actuation system (Chapter 3), investigated how to keep
from falling forward (Chapter 4), added an upper body (Chapter 5), and inves-
tigated 3D stability (Chapter 6). In Chapter 7, we will discuss future research
directions. All prototypes presented in this book have demonstrated successful
walking motions. Movies can be found at our website [1].
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8 2. Passive Dynamic Walking

2.1 Introduction

The concept of passive dynamic walking is the starting point for our research.
In this chapter, we would like to review the work that has been done on passive
dynamic walking. Although we have made some contributions of our own to this
field, most of the research reported in this chapter was done by others.

Long before McGeer introduced the term ‘Passive Dynamic Walking’ in 1987,
there have been several hints towards the possible role of passive dynamic mo-
tions in human walking. A remarkably relevant hypothesis posed by Weber and
Weber [170] as early as 1836 reads: ‘Die Beine können am Rumpfe wie Pendel
hin und her schwingen. (...) Unsere aufmerksamkeit wird für diese schwingende
Bewegung nicht erfordert.’ (‘The leg can swing back and forth like a pendulum
suspended from the body. ... Our attention is not required to produce this swing-
ing motion.’) Mochon and McMahon [113] arrived at the same conclusion after
comparing the swing leg motion with a passive double pendulum. Another hint
in that direction is given by Ralston [133] who discovered that there exists an
optimal walking velocity for humans; at approximately 5 km/h the cost of trans-
port (i.e. energy cost per weight per distance traveled) is minimal, a phenomenon
that indicates the use of the natural frequencies of the mechanical system.

Fig. 2.1. Toydesigns fromold patents [thanks toRuina for collecting such patents].Left:
Wireframe toy design by Fallis, 1888. Right: Passive walking toy by Wilson (‘Wilson
Walkie’), 1938. Both toys require a mild downward slope for a sustained walking motion.

Early toy makers [172, 50] (Fig. 2.1) proved the applicability of the ideas by
showing that the human walking motion can at least partially be generated with
passive mechanisms that move and oscillate at their natural frequencies.

2.2 McGeer

In 1987, McGeer started working on the concept of passive dynamic walking.
He wrote a number of ground-breaking papers about this research [106, 108,
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109, 107, 110, 111, 112]. Here we try to provide an overview of his work, but
the reader is strongly recommended to review McGeer’s original papers. At the
time of writing, a complete collection of these papers is being maintained at the
website of prof. Ruina at Cornell University [2].

McGeer’s first contribution was the conception of two elementary 2D models;
the ‘Rimless Wheel’ (following [104]) and the ‘Synthetic Wheel’. Each model
captures one basic aspect of passive dynamic walking.

• The rimless wheel captures heel strike impacts and demonstrates the basic
stabilizing mechanism. It is an imaginary cart-wheel without rim (Fig. 2.2),
which bumps down a shallow slope. At each step, some energy is gained
from gravity, but this is lost again in the impact when the next spoke makes
contact. If there is a balance between energy input and energy loss, the system
is in a steady limit cycle. If there is an unbalance, this will be automatically
restored. For example, if we push the rimless wheel to a higher velocity, it will
make more violent impacts and thus lose more energy than usual, while the
energy gain per step remains the same. The speed v will asymptotically go
back to the equilibrium speed v0. The convergence rate is easy to calculate,
especially if we assume that all the mass is concentrated as a point mass at
the hip (i.e. the wheel hub). In that case, for an inter-spoke angle of φ (see
Fig. 2.2), the convergence is:

∆vn+1 = ∆vn cos2 φ (2.1)

An extensive treatment of the rimless wheel can be found in [30] (2D analysis)
and [31] (3D analysis).

φ

γ

g

φ

v+ = v- cos φ

v-

γ = 0

g

l

Fig. 2.2. Left: Rimless wheel. Middle: Impact equation for rimless wheel. Right:
Synthetic wheel.

• The synthetic wheel (Fig. 2.2) captures the passive motion of the swing
leg. In this model, the rim is not removed, but cut halfway between each
spoke. All but two spokes are removed, and a pin joint is put at the hub.
Now we have two legs with big semicircular feet, which roll forward on a level
floor like a ‘continuous’ wheel composed of alternating legs. We assume again
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that there is a big point mass at the hip joint, whereas the legs are infinites-
imally lightweight. This makes the forward rolling motion of the stance leg
independent of the passive swinging motion of the other leg. The infinitesi-
mally small leg mass is concentrated as a point mass at the rim, determining
the natural frequency at

√
g/l with gravity g and leg length l, see Fig. 2.2.

The swing leg swings forward like a passive pendulum at the same time that
the stance leg rolls forward with constant speed. For each speed, one can find
appropriate initial conditions so that the step ends exactly how it begun (but
with the swing and stance legs reversed). The most important result is that
the step time turns out to be approximately 2/3 of the pendulum period,
i.e. 2

3 · 2π
√

l/g, independent of the forward velocity. In other words, there is
an (energetically) optimal gait frequency which is determined by the hard-
ware parameters. By keeping the hip joint unactuated, the walker cannot
show any other gait than the most efficient one. As efficiency was perhaps
his main target, McGeer used a passive hip joint in all of his models and
prototypes.

Next, McGeer simulated and built a straight-legged passive walker, see Fig. 2.3.
It has 2D dynamics thanks to the double leg pairs (the outer legs form a unit
and the inner legs form a second unit). In this book, we always use this solution
for 2D prototypes, as opposed to the less autonomous solution of walking in
circles by means of attachment to a boom (as used in e.g. [130, 132, 171]). The
arc feet of McGeer’s prototype (Fig. 2.3) are another design idea that we use
throughout this book. He uses a radius of approximately 1/3 of the leg length,
as it is a human-like value [70] and also it provides the best stability results.
The prototype is thus somewhere between the rimless wheel and the synthetic
wheel. The straight legs bring a small problem of ‘foot-scuffing’ at midstance;
the prototype has no knees or lateral motion to make clearance for the swing
foot. Initial trials were therefore done with tiles (stepping stones) on the floor,
creating effective swing space but forcing a preemptive decision on the positions

Fig. 2.3. Left: McGeer’s straight legged passive dynamic prototype. Middle: Cornell
University’s copy [52] of McGeer’s passive dynamic walker with knees. Right: Cornell
University’s 3D passive dynamic walker by Collins, Wisse, and Ruina [36].
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of the footprints. As an alternative solution, the prototype in Fig. 2.3 has a lead
screw mechanism on each leg that folds the swing foot sideways for clearance
at midstance. With this prototype and the associated model, McGeer validated
the concept of passive dynamic walking. He then researched the effects of foot
radius and mass distribution, noting that especially the fore-aft mass balance
is a delicate parameter. Another interesting result concerns the vertical mass
distribution. The center of mass (CoM) should be rather close to the hip, as
opposed to a statically stable system which would required the CoM to be located
as low as possible. Finally, he found that friction in the hip joint is unfavorable
for passive walking, but its negative effect can be compensated by moving the
CoM of the legs a few millimeters backward.

McGeer continued by creating a simulation model and prototype with knees,
see Fig. 2.3. The knees bend and then extend passively during the swing phase
until a hyper-extension stop is reached. An intentionally leaky suction cup pre-
vents bouncing during this knee strike. Due to the leak, the suction cup does
not resist the knee motion for the next swing phase. After knee strike, the knee
remains fully extended during the remainder of the swing phase. Then, during
the heel strike impact, and during the subsequent stance phase, the knee re-
mains extended because the ground reaction force pushes the knee in its end
stop. This requires the feet to be mounted in a forward position, as opposed to
the straight-legged prototype which has symmetrically mounted feet (Fig. 2.3).
With this prototype, McGeer clearly demonstrated the applicability of passive
dynamic walking as a model for human walking. The gait looks superbly natural,
requires no controls and uses hardly any energy (less than 0.05 Joule per unit of
robot weight per meter traveled). A parameter study revealed that the mass of
the shank should be high up, near the knee, and the mass of the thigh should
be close to the hip joint.

Although famous for passive walking, McGeer actually has always been a
strong advocate of powered walking. Throughout his work, one can find sugges-
tions as to how the downhill slope can be replaced by periodically ‘pumping the
gait’, for example through push-off. Powered walking really formed the core mo-
tivation for his research, judging by his reference to the Wright Brother’s success
in powered flight. They first mastered the aerodynamics and control of passive
gliding, after which the addition of the engine was a minor modification. Thus,
passive walkers are the ‘gliders’ amongst the walking robots. McGeer envisioned
that by using passive dynamics as the basis of the walking robot design, it must
be possible to create highly efficient powered walking robots. In this book, we
adhere to this vision, by adding minimal amounts of power to otherwise passive
robots.

After the kneed prototype, McGeer performed a range of simulation studies
on running, 3D walking, models with an upper body, uphill walking, etcetera.
Many ideas are still highly relevant and are waiting for someone to execute
them. McGeer, in the mean time, has moved away from walking research back
to his aviation roots, and is now building unmanned aircraft [3]. Nevertheless, his
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interest in the bipeds remains, witness his occasional appearance at conferences
on dynamic walking and especially the recent announcement of his ‘W-prize’ for
the first efficient robot that can complete a 10 kilometer long obstacle course [7].

2.3 Other Passive Dynamic Walking Research

There are only a few researchers after McGeer that have built fully passive pro-
totypes. Most of it happened at the Ruina’s group at Cornell University, who
started by building, simulating, and testing a copy of McGeer’s kneed proto-
type [52]. In the same group, Coleman discovered a 3D passive walker design
that cannot stand stably, yet it is stable when it walks [33, 32]. Also at Ruina’s
group, Collins and Wisse built a 3D walker with knees and counter-swinging
arms [36]. The design was based on McGeer’s 2D kneed prototype combined
with the foot design of an old toy patent [50]. This prototype was the first 3D
passive walker with reasonable human-like motions, and as such the robot has
been very helpful in selling the concept of passive dynamic walking. Recently,
the Fujimoto lab at Nagoya [82] succeeded in obtaining a 15 minute continu-
ous passive walk on a downward tilted treadmill. Other researchers that have
recently published on passive prototypes include Mayer [105], and Tedrake [150]
who built a 3D straight legged walker much like the original ‘Wilson walkie’ [172]
later to be used for machine learning of walking [149].

In our group, we have built two fully passive walkers (Fig. 2.4). The first one
is a reincarnation of McGeer’s straight-legged walkers using a floor with tiles
for foot clearance. We used it to get acquainted with passive dynamic walking,

Fig. 2.4. Left: Our version of McGeer’s straight legged passive dynamic prototype,
walking on a floor with tiles. Right: Our ‘Museon’ walker, more robust and appealing
but topologically identical to the left prototype, except for the addition of a mechanism
that lifts the middle foot during the swing phase, so that no floor tiles are required.
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and to find that a larger foot radius leads to better disturbance handling (later
theoretically analyzed in [179]). Our second passive walker (Fig. 2.4) is topolog-
ically the same. It has only one internal degree of freedom which is the hip joint.
We played with the shapes of the legs, and attached a lightweight body to the
inner leg, in order to give it a more appealing appearance. This robot was built
for demonstration purposes, with a sturdy construction ensuring the survival of
many falls after launches by untrained members of the audience. This robot has
one extra feature when compared to the first prototype, namely a small mech-
anism that lifts the ankle of the middle leg. Thanks to this mechanism, which
was inspired by an earlier prototype from Cornell University, the prototype does
not need the tiles on the walking surface.

Much more literature is available on simulation studies of passive dynamic
walking models. A key development from Ruina’s group was Garcia et al.’s in-
troduction of the ‘Simplest Walking Model’ [54], which we will present in detail in
Section 2.3. At the same time, Goswami presented a similar model [61, 62]. More
extended models (with knees and 3D dynamics) were studied by Dankowicz [8],
and by Wisse and Schwab [181]. Early on, Kuo [96, 97, 98] recognized passive
dynamic walking as a highly useful abstraction of human walking for biome-
chanical studies. In the world of control science, Spong [143] and Asano [10]
independently used the simplest walking model as a basis for a control law that
could simulate passive downhill walking while actually walking on level ground
or even uphill. Also some efforts have been reported on learning controllers that
use a passive model and a Poincaré Map stability analysis as the basis [115, 116].
In addition to these studies on passive walking models, there are many simula-
tion studies with neural networks or Central Pattern Generator controllers and
the like, but these are too numerous to present here, as we try to focus on those
studies that explicitly use a Poincaré Map analysis for stability assessment. Since
the well-attended ‘Dynamic Walking’ workshop in May 2006 [4], we expect to
see many more research projects on passive(-based) dynamic walking.

2.4 Simplest Walking Model

In all of the passive dynamic walking studies, the gait stability is assessed with
the Poincaré Mapping analysis. In 1998, Garcia et al. wrote an excellent pa-
per [54] that was meant as a tutorial for such simulation studies. The paper
features a 2D straight-legged walking model. In this book, we use this model
often as a point of departure for our analyses. Therefore, we would like to repeat
Garcia et al.’s tutorial here, with a modified derivation of the equations of mo-
tion and impact [141]. Note that the text is based on one of our papers [141] but
all of the results at the end of this section are repeated from Garcia et al. [54].

2.4.1 Model

The model, shown in Fig. 2.5, consists of two rigid links with unit length, con-
nected by a frictionless hinge at the hip. The mass is distributed over three point
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masses; one with unit mass at the hip, and two with mass mf at the feet. The
limit case where the foot mass is negligible in comparison with the hip mass,
mf → 0, is investigated. This unactuated two-link system walks down a slope in
a gravity force field with unit magnitude. The scaled model of the walker now
only has one free parameter, the slope angle γ.

A walking step is started with both feet on the slope. The front foot has just
made ground contact, the hind foot has a velocity away from the floor. During a
step, the stance foot is modeled as a hinge, connected to the floor. The swing foot
is moving freely as the other end of a double pendulum. At about midstance, the
swing foot will briefly be below floor level (‘foot-scuffing’), which is inevitable for
a walker with straight legs. Knees ([109], [175], [8], [36]) or other leg shortening
measures ([157]), as well as 3D motion ([96], [157] [159]) would solve the problem
but increase complexity of the model. After this short through-pass, the second
time that the swing foot reaches floor level is regarded as heel-strike, the end
of the step. The former swing foot makes a fully inelastic collision and becomes
the new stance leg. Instantaneously, the former stance leg loses ground contact,
and a new step begins.

For the analysis of the passive dynamic walking motion, we will have to apply
the following methods. First, we must derive the equations of motion for the

φ

g=1 mh=1

mf
mf

θ
γ

l=1 stance
leg

swing
leg

Fig. 2.5. A typical passive walking step. The new stance leg (lighter line) has just
made contact with the ramp in the upper left picture. The swing leg (heavier line)
swings until the next heelstrike (bottom right picture). The top-center picture gives a
description of the variables and parameters that we use. θ is the angle of the stance leg
with respect to the slope normal. φ is the angle between the stance leg and the swing
leg, mh is the hip mass, mf is the infinitesimally small foot mass, l is the leg length, γ
is the ramp slope, and g is the acceleration due to gravity. Reprinted with permission
from Garcia et al. [54].
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walker during the support phase. They will then be solved by numeric integra-
tion. Second, we formulate and apply the impact equations governing the heel
strike. Third and last, we will formulate the support exchange and combine the
results from the previous stages in what McGeer calls a ‘stride function’. The
stride function [110] is a Poincaré map relating the state during one part of a
step with the state during the same part of the next step. Finally, we will find
cyclic walking motions as solutions to the stride function.

2.4.2 Equations of Motion

The method that we present here for the derivation of the equations of motion is
based on the concept of ‘virtual work’ as we will explain. The resulting equations
are equal to those derived with Lagrange’s method, but our method is simpler
in execution and thus less error-prone.

The configuration of the walker is defined by the coordinates of the three point
masses; the stance foot, the hip and the swing foot, which can be arranged in
a global vector x = (xstl, ystl, xhip, yhip, xswl, yswl)T . These coordinates are not
independent owing to the two distance constraints imposed by the stance and the
swing leg. In order to eliminate the constraint forces from the start, we express
the equations of motion in terms of independent generalized coordinates. Let Oxy
be a fixed orthogonal system of coordinates with Ox along the walking slope and
Oy directed upward normal to the slope. Then u and v are the coordinates of
the contact point of the stance foot. During walking motion they will be fixed,
but at heel-strike they will be free so that they don’t participate in the impact
equation. Furthermore, θ is the absolute angle of the the stance leg with respect
to Oy, and φ is the relative angle between the swing leg and the stance leg.
The configuration of the walker can be described by the vector of generalized
coordinates q = (u, v, θ, φ)T . The coordinates x can locally be expressed as
functions of the generalized coordinates q, the kinematic degrees of freedom
(configuration coordinates), by means of a transfer function F as

x = F(q) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xstl

ystl

xhip

yhip

xswl

yswl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

v

u − sin(θ)

v + cos(θ)

u − sin(θ) + sin(θ − φ)

v + cos(θ) − cos(θ − φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.2)

The unreduced equations of motion for the system are obtained by assembling
the contribution to the virtual power equation of all point masses in a global
mass matrix M and a global force vector f , which results in a virtual power
balance

δẋT [f − Mẍ] = 0. (2.3)
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Here, δẋ are kinematically admissible virtual velocities, which satisfy all instan-
taneous kinematic constraints. By differentiating the transfer function (2.2) we
obtain

ẋ = F,qq̇, δẋ = F,qδq̇ and ẍ = F,qq̈ + F,qqq̇q̇. (2.4)

Here a subscript comma followed by one or more variables denotes partial deriva-
tives with respect to these variables. The way in which higher-order derivatives
have to be multiplied by the juxtaposed vectors goes without saying. Substitu-
tion of these expressions in the virtual power equation (2.3) and adding on the
left-hand side the contribution, δq̇T Q, from the generalized forces Q dual to the
coordinates q, yields the reduced equations of motion

[FT
,qMF,q]q̈ = FT

,q[f − MF,qqq̇q̇] + Q. (2.5)

For the walker the global mass matrix is

M = Diag(mf , mf , 1, 1, mf , mf ), (2.6)

and the applied forces, only gravity, are

f = M[sin(γ), − cos(γ), sin(γ), − cos(γ), sin(γ), − cos(γ)]T, (2.7)

and zero for the generalized forces Qθ and Qφ. The fact that the stance foot is
in contact with the floor results in the boundary conditions u = 0 and v = 0.
This contact is only valid for compressive vertical contact force, Qv > 0, and
will be checked during the simulation. After solving the unknown accelerations
of the generalized coordinates q̈ from the reduced equations of motion (2.5) and
then taking the limit of infinitesimally small foot mass yields

lim
mf→0

q̈ =

⎡
⎣ θ̈

φ̈

⎤
⎦ =

⎡
⎣ sin(θ − γ)

sin(φ)(θ̇2 − cos(θ − γ)) + sin(θ − γ)

⎤
⎦ , (2.8)

Note that we have omitted the solutions for u and v, because they are identical
to zero. For the unknown contact forces the solution is

lim
mf→0

⎡
⎣Qu

Qv

⎤
⎦ =

⎡
⎣ sin(θ)(θ̇2 − cos(θ − γ))

− cos(θ)(θ̇2 − cos(θ − γ))

⎤
⎦ . (2.9)

In the case of a more complicated walker, as for example in the 3D passive
dynamic biped with yaw and roll compensation [175], it will be impractical to
solve symbolically for the accelerations of generalized coordinates. In that case,
it is more practical to do a numerical evaluation of every individual contribution
to the reduced equations of motion (2.5) and its solution.

2.4.3 Heel Strike

We assume that the heel strike behaves as a fully inelastic impact (no slip, no
bounce), which is in accordance with observations on existing passive dynamic
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walking prototypes. Also, double stance is assumed to occur instantaneously.
As soon as the swing foot hits the floor the stance foot lifts up, not interacting
with the ground during impact. The resulting vertical velocity of the lifting foot
should then be pointed upward. If this is confirmed after the impact equations
are solved, the assumption is self-consistent [23]. Otherwise, the walker would
come to a complete stop.

Treating heel strike as an impact, we assume that velocities change instanta-
neously. These velocity jumps are enforced by very high values of the contact
forces acting only during a small time interval of contact. In the limit case the
forces go to infinity and the time interval goes to zero. The integral of the force
with respect to time over the duration of the impact, the impulse, has a finite
value which is the cause of the velocity jump. While the impact takes place all
positions as well as all non-impulsive forces of the system remain constant. The
impact is usually divided into a compression and an expansion phase. Newton’s
impact law links these two phases by stating that the relative speed after impact
equals e times the relative speed before impact but in opposite direction. The
factor e is the coefficient of restitution. A value of e = 1 corresponds with a
fully elastic impact whereas the value of e = 0 represents a completely inelas-
tic impact in which the two parts “stick” together after impact. The reduced
equations of motion (2.5) written in terms of the generalized coordinates q are

M̄q̈ = f̄ , (2.10)

with the reduced mass matrix and force vector

M̄ = [FT
,qMF,q], f̄ = FT

,q[f − MF,qqq̇q̇] + Q. (2.11)

Note that the ‘lifting stance foot’-assumption implies that the system has no
boundary conditions on the former stance foot and consequently there are more
degrees of freedom during impact than during smooth motion. The uni-lateral
constraints at heel strike are expressed by the contact functions g, the coor-
dinates of the swing foot expressed in terms of the generalized coordinates as

g(q) =

⎡
⎣ gx

gy

⎤
⎦ =

⎡
⎣xswl

yswl

⎤
⎦ =

⎡
⎣u − sin(θ) + sin(θ − φ)

v + cos(θ) − cos(θ − φ)

⎤
⎦ . (2.12)

When contact occurs, detected by a change of sign in the swing foot vertical
clearance function gy, the former swing foot becomes constrained in both the x
and y direction and the equations of motion become

M̄q̈ + gT
,qλ = f̄ , (2.13)

with the Lagrangian multipliers λ dual to the relative contact velocities ġ. These
multipliers can be interpreted as the contact forces. Integration of these equations
of motion over the time of impact and taking the limit case yields

lim
t−↑t+

∫ t+

t−
(M̄q̈ + gT

,qλ)dt = 0. (2.14)



18 2. Passive Dynamic Walking

The reduced force vector f̄ only contains non-impulsive forces and therefore the
right-hand side vanishes. Under the introduction of the contact impulses,

ρ = lim
t−↑t+

∫ t+

t−
λdt, (2.15)

and noting that the mass matrix (in general a function of the generalized coordi-
nates) remains constant during impact, the momentum equations for the system
become

M̄q̇+ + gT
,qρ = M̄q̇− (2.16)

with q̇− the velocities before and q̇+ the velocities of the system after impact.
Together with Newton’s impact law,

ġ+ = −eġ−, or g,qq̇+ = −eg,qq̇−, (2.17)

we have a complete set of linear equations reading
⎡
⎣ M̄ gT

,q

g,q 0

⎤
⎦

⎡
⎣ q̇+

ρ

⎤
⎦ =

⎡
⎣ M̄q̇−

−eg,qq̇−

⎤
⎦ (2.18)

From these equations the velocities after impact q̇+ together with the contact
impulses ρ can be found. Because Newton’s impact law (2.17) is often contra-
dicted experimentally in case of multiple impacts, a restriction to simple im-
pacts is made. The contact configuration for the walker is denoted by u = 0,
v = constant, and φ = 2θ. The velocities of the stance foot before impact are
zero. Solving the impact equations at the contact configuration and subsequently
taking the limit case yields for the velocities after impact

lim
mf→0

q̇+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

u̇+

v̇+

θ̇+

φ̇+

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− sin(θ) cos(2θ) sin(2θ)

cos(θ) cos(2θ) sin(2θ)

cos(2θ)

cos(2θ)(cos(2θ) − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

θ̇−, (2.19)

and for the contact impulses

lim
mf→0

ρ =

⎡
⎣ ρx

ρy

⎤
⎦ =

⎡
⎣− sin(θ) sin(2θ)

cos(θ) sin(2θ)

⎤
⎦ θ̇−. (2.20)

The model is so simple that the resulting equations can be verified easily. First, the
stance foot velocity after impact (Eq. 2.19) is cos(2θ) sin(2θ)θ̇− in the direction of
the stance leg, this is the hip velocity after impact projected on this leg. Second,
the contact impulse at the heel strike (Eq. 2.20) is directed along the swing leg with
magnitude sin(2θ)θ̇−, which is the projection of the hip velocity just before impact
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on the swing leg. Last, the velocities after impact (Eq. 2.19) are only a function of
the stance leg angle θ and its angular velocity θ̇−. This velocity is in fact the hip
velocity. As a result, if we start the walker with the initial conditions on the state
as (θ, φ, θ̇, φ̇)0, then after the first heelstrike (2.19) two initial conditions drop out
and the next state is only dependent on θ and θ̇−.

2.4.4 Stride Function

The mapping from the initial conditions v = (q, q̇), from one step to the next
is what McGeer calls the ‘stride function’ [110], reading

vn+1 = S(vn). (2.21)

We look for a motion of the walker were the legs return to the same state after
one heelstrike, the so called period-one gait cycle. For the analysis of the gait we
have to swap the stance and swing leg variables from step n to step n + 1 as

θn+1 = θn − φn

φn+1 = −φn.
(2.22)

At heelstrike, the swing leg angle φ− is equal to 2θ−, and combining the time
derivatives of (2.22) with the velocities after impact (2.19), gives us the initial
conditions after heelstrike as

θn+1 = −θ−n

φn+1 = −2θ−n

θ̇n+1 = cos(2θ−)θ̇−n

φ̇n+1 = cos(2θ−)(1 − cos(2θ−))θ̇−n .

(2.23)

The stride function for the simplest walker is now complete. It starts with (θn, θ̇n)
as the initial conditions at the beginning of the nth step, which are numerically
integrated with the equations of motion (Eq. 2.5) until heelstrike occurs. Then
the velocities after heelstrike are calculated and the legs are swapped (Eq. 2.23),
resulting in the initial conditions (θn+1, θ̇n+1) of the next step.

2.4.5 Cyclic Motion

Usually, the stride function has two cyclic solutions: initial conditions that map
onto themselves. If started with those initial conditions, the walker shows a per-
fect repetitive motion. That motion is called a limit cycle, and the corresponding
initial conditions are called the fixed point. The method for finding cyclic gait,
as commonly used in passive dynamic walking research, is as follows. A walk-
ing cycle is specified by the requirement that the vector of initial conditions vn

results in identical initial conditions for the kth subsequent step:

vn+k = vn (2.24)
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A vector with initial conditions satisfying this requirement is a cyclic solution
vc, which maps onto itself:

Sk(vc) = vc (2.25)

The main interest is symmetric walking (k = 1), i.e. a period-one gait cycle.
Such cyclic solution can be found by a linearization of the stride function

S(v + ∆v) ≈ S(v) + J∆v

with J = ∂S
∂v

(2.26)

and applying a Newton-Raphson iteration procedure, starting with a set of initial
conditions v close to the cyclic solution vc

repeat

∆v = [I − J]−1(S(v) − v)

v = v + ∆v

until |∆v| < ε

(2.27)

where I is the identity matrix. The Jacobian J is calculated by a perturbation
method, which involves simulation of a full walking step for every initial con-
dition. The eigenvalues of J quantify the stability of the cyclic motion. If both
eigenvalues are inside the unit circle in the complex plane, the limit cycle is
stable and the robot can recover from small disturbances.

2.4.6 Results

Here we present the results exactly as they were presented by Garcia et al. [54].
In our experience, it is extremely useful to check your own simulations by finding
an exact match with these results.

A typical plot of the leg angles over one step is shown in Fig. 2.6. For this plot,
we used a slope angle of γ = 0.009 rad. Stable walking cycles can be found for
slopes of 0 < γ < 0.0151 rad. For larger slopes, we can still find limit cycles, but
they are not stable. This is shown in Fig. 2.7 with the upper line. This figure also
shows the existence of a second limit cycle, the lower line. To distinguish the two:
the upper line is called the ‘long period gait’, while the lower line is the ‘short
period gait’. In our experience, almost all passive-based walking models yield
these two solutions, and in almost all cases the ‘short period gait’ is unstable.
Therefore, we usually focus on only the ‘long period gait’. For this gait, the
eigenvalues of the stride function are plotted in Fig. 2.8. At γ = 0.151, one of
the eigenvalues goes through -1, meaning that the gait becomes unstable.

We have to devote a few words on the difference between finding a periodic
cycle and finding a stable solution. A cycle is found by looking for initial condi-
tions that result in themselves after one step, using Eq. 2.27. Such a solution can
be stable or unstable. The stability can only be determined after the cycle has
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been identified. Of course, one could look for periodic solutions by just running a
forward simulation and waiting many steps. If a cycle exists and it is stable, and
the search has been started sufficiently close to the cycle, then one can find it.
This is analogous to just starting a prototype over and over again, hoping that it
will walk. However, this trial-and-error method will not indicate how to change
an unstable design in order to make it stable. Therefore, we strongly advocate
the two-tiered approach; first find a cycle with Eq. 2.27, and then determine
its stability with the eigenvalues of J from Eq. 2.26. If a cycle is found but it
happens to be unstable, then one can investigate the effect of parameter changes
on the stability and thus improve the model until a stable solution is found. And
in some cases, we might not even care about stability; perhaps we intend to just
find the most efficient motion, which will then be stabilized with a controller to
be designed around that efficient passive motion.
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Fig. 2.6. Typical step. Following fig. 2.5, θ is the absolute stance leg angle and φ is
the relative swing leg angle. The step starts with the fixed point values, such as θ∗.
Reprinted with permission from Garcia et al. [54].

2.5 Practical Hints and Tips

Over the years, we have received many requests for practical advice and tips
for building physical prototypes of passive dynamic walkers. The first advice
is to go through the exercise of simulating the Simplest Walking Model above.
Even if you don’t intend to make a realistic simulation model of your new pro-
totype, the simple model will help you to get a feeling for the dynamics and for
the various ways that the walker can fall. The second advice is perhaps somewhat
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unexpected. Instead of building a fully passive machine, it is probably much
easier to build a machine with actuation in the hip joint. In Chapter 4, we
explain how this will greatly improve the disturbance handling of the robot. Our
experience is that robots with some actuation at the hip joint are far easier to
tune and to launch than the fully passive ones.

Other than that, we have the following points of advice:

• Arc feet. Do not use point feet because the basin of attraction is very
small [141]. Arc feet are better, with a radius of approximately 1/3 of the leg
length [108, 186]. The arc feet are rigidly attached to the shank, so there is
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no ankle joint. If you don’t like this non-human feature, the arc feet could
equally well be replaced with flat feet that are mounted on ankles with a
spring in it [179].

• Fore-aft mass balance. For each new slope angle, you will probably need
to re-adjust the fore-aft mass balance. There are two effects to be considered
simultaneously. First, the fore-aft mass balance affects the amount of accel-
eration and deceleration within each step. When the robot has a tendency
to slow down and fall backward, place the mass more forward. If you overdo
this, the robot will accelerate and fall forward. The mass balance here is in
strong relation with the position of the foot. If the foot is displaced forward
(as in most kneed passive walkers [109]), then the mass also needs a forward
offset. Second, the mass balance within a leg affects the passive swing mo-
tion. The swing leg will move symmetrically around its vertical equilibrium.
So if the mass is placed a bit backward, then the leg swings out further
than it started. This is good, because it decreases the chances of a forward
fall [184]. As McGeer already noted; friction in the hip joint can be countered
by placing the leg mass a bit more backward.

• Faking 2D. Most researchers start with the 2D passive walkers, using the
four-legged symmetric construction (e.g. Fig. 2.3). The robot is not really
2D (nothing is, in our physical world), and so it is important to make the
approximation as good as possible. Good solid engineering work is required,
as is a nice floor surface. An additional trick is to couple the outer shanks of
a kneed walker [82].

• Good decent engineering is so important that we mention it again. Bounc-
ing, flexibility, friction, and joint play (all of which cannot accurately be
modeled) should be reduced to a minimum.

• Mass high up. In general, the mass should be high up in the legs; heavy
hips are good, heavy feet are bad. This is also true for a model with knees;
the shank should be lightweight, and its center of mass should be close to
the knee joint.

• No knee collapse. The knee is prone to collapsing during the stance phase.
It is difficult to construct a passive solution to this problem, because there are
two causes. First, the ground reaction force during stance may be such that it
will cause the knee to buckle. The solution for this problem is forward-placed
feet as pointed out by McGeer. Second, the knee may not be fully extended at
heel strike. This problem is caused by bouncing during the knee strike. This
is quite a persistent problem, due to flexibility in the hyperextension stop
and also due to flexibility of the leg segments themselves. Note that using
”dead rubber” in the hyperextension stop will not work; the flexibility of the
leg will still store energy which will still release in the form of a bouncing
knee. After experimentation with mechanical catches, McGeer finally settled
on using leaky suction cups. These suction cups hold the knee in extension
just after knee strike, but thanks to the leak they will release by the time
that the next swing phase starts. The amount of leakage has to be tuned
carefully. For our robots, we have settled on using mechanical latches that
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are actively released at the start of the swing phase. And for our new robots
which will have some actuation anyway, we will use a torque that drives the
knee into its hyperextension stop, preventing knee collapse during stance.

• Symmetric gait. The legs should be equal so that the robot is symmetric.
If the result is still an asymmetric gait (a long step followed by a short step),
then this means that the walking cycle is just barely stable. In the simplest
walking model [54], this occurs at steep slopes. Try to adjust the parameters
such that the asymmetry goes away.

• Hip end stops.The stability will benefit from limit stops at the hip joint [184].
The result is a more constant step length. At each step, the swing leg should
bump into the hip limit stop, and then (slightly) fall back [177].
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This chapter reports the development of the pneumatic components that we
used for all robots in this book. The choice for pneumatic actuation has advan-
tages as well as drawbacks compared to actuation with electric DC motors. The
advantage is the inherent compliance of the McKibben muscles (Section 3.1).
The good match between the compliant McKibben muscles and the concept of
passive dynamic walking was the main argument in favor of the choice for pneu-
matics. The main drawback is the lack of sufficiently lightweight commercially
available components, which means that many of the components must be spe-
cially developed for the research project (Section 3.2). A second drawback is
the difficulty of implementing high-bandwidth control, which may be a reason
for us to switch to electric DC motors for our future prototypes. However, for
the phasic (i.e. once-per-step) actuation that we have implemented in all robots
in this book, the pneumatic system is a satisfactory choice (Section 3.3). The
complete, autonomous pneumatic system can successfully power a biped robot
as demonstrated with the prototype ‘Baps’ (Section 3.4). The content of this
chapter is based on four of our papers [157, 159, 158, 186].

3.1 McKibben Muscles

A McKibben muscle is a flexible rubber tube, covered by a weave of flexible yet
non-extensible threads, see Fig. 3.1. One end of the tube is closed, the other is
the pneumatic inlet. With this simple design, McKibben muscles are cheap, easy
to attach, compliant, and lightweight (a 10 gram muscle can pull 40 N). These
characteristics are the reason for choosing McKibben muscles instead of hy-
draulic or electric actuators. And, subsequently, this choice underlies the choice
for pneumatics and thus forms the fundament for the entire book.

P

P
F F

Fig. 3.1. McKibben muscle. Top: Commercially available McKibben muscle from
Shadow [6]. Bottom: Muscle operating principle.

The compliance of the McKibben muscles is key. The resulting resemblance
with human muscles was the reason for their initial development by Joseph L.
McKibben in the 1950s. The initial field of application was rehabilitation [56,
138, 121, 49, 55, 69, 174, 154, 59, 51], later to be extended to robotics [84, 67, 89,
20, 19, 21, 125, 156, 152, 151, 27, 94, 161, 71, 126, 101, 28, 29, 9, 44, 72, 153, 93,
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90, 91, 92, 43, 42, 63, 11, 13, 155, 37, 14, 137, 22, 146, 145, 147, 144, 77]. Because
of their compliance, the muscles are particularly successful in applications that
do not require a high bandwidth nor a high position accuracy. This fits well with
the original concept of passive walking; the passive hip joint can be regarded as
an extreme form of compliant actuation.

The force-length relation can be theoretically derived from the geometry of
the muscle structure. Here we follow the derivation as originally published by
Chou and Hannaford [26]. When the muscle length changes due to an external
force F, its volume also changes (Fig. 3.1). For this change of volume dV at the
relative pressure difference with atmosphere P ′, the following amount of virtual
internal work dWint is required:

dWint = P ′dV (3.1)

This virtual internal work is in balance with the virtual external work dWext

done by the muscle on the robot system

dWext = −FdL (3.2)

where F is the external force and dL the virtual elongation. Combining Eq. (3.1)
and (3.2) results in

F = −P ′ dV

dL
(3.3)

We now make the following two assumptions:

• The muscle shape is modeled as a perfect cylinder (no deformations at the
end caps).

• The threads of the braiding are infinitely stiff in longitudinal direction.

The relation between the elongation dL and the volume change dV can then
be found using the thread length b, the number of thread windings n, the angle
θ between the threads and the cylinder axis, and the diameter D of the cylinder:

L = b cos θ (3.4)

D =
b

nπ
sin θ (3.5)

V =
1
4
πD2L =

b3

4πn2 sin2 θ cos θ (3.6)

Substituting this relation in Eq. (3.3), we obtain

F (θ) =
b2P ′

4πn2 (3 cos2 θ − 1) (3.7)

or

F (L) =
b2P ′

4πn2 (3
L2

b2 − 1) (3.8)
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Fig. 3.2. Force-length relation for the linear range of the McKibben muscles. The
dark lines are created with the muscle model in eq. (3.8), with parameters according
Table 3.2. The grey lines are quasistatic measurements. The graph shows that the
model provides an accurate prediction, and that the muscles behave nicely linear.

Up to 20% extension, the force-length relation is approximately linear. Fig. 3.2
shows the relation for pressures between 0.1 MPa and 0.35 MPa. The figure
clearly shows good correspondence between the theoretical model and the ex-
perimental measurements. A small amount of unmodeled hysteresis is present,
due to friction between the rubber tube and the braiding. Within the linear
range, the muscles can be regarded as springs with actively variable passive stiff-
ness. The word ‘actively’ stands for the fact that the stiffness can be changed
by adjusting the pressure, whereas ‘passive’ stands for the fact that no further
power (no pneumatic flow) is required for the spring-like behavior. In the pro-
totype Baps, the McKibben muscles are used in the linear range with pressures
between 0.17 MPa and 0.25 MPa.

Beyond 20% extension, two non-linear effects come into play. First, the non-
linear terms in the force-length relation Eq. 3.8 become significant, leading to a
gradual stiffness increase. Second, the muscles reach their maximal extension at
approximately 30%. At this point, the braiding threads are adjacent, i.e. they
touch each other and have no room for further motion. Most researchers will
avoid the nonlinearity and especially the region of maximal extension, but we
have made good use of it for our robots Mike (Chapter 4), Max (Chapter 5), and
Denise (Chapter 6). In the hip joints of these robots, the muscles are not only
used as actuators, but also as joint angle limits. Chapter 4 explains why such
a hip joint limit is beneficial for stability. The nonlinear force-length relation
is plotted in Fig. 3.3. When modeling this behavior for computer simulations,
we use a second linear model with different parameters for the region between
20% and 30% elongation. To determine the parameter values for this part of the
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Fig. 3.3. Measured muscle force-length relation at three different pressures. Above
20% elongation the behavior becomes strongly non-linear. The maximal extension is
approximately 30%.

muscle model (including a particularly high damping near maximal extension),
our practice is to match the walking motions of the full model to the measured
walking motions, rather than fitting the linear approximation directly to the
measurements in Fig. 3.3.

McKibben muscles are fairly easy to build. We built our own muscles for the
prototype Baps, in order to optimize the material choice for minimal friction
losses. Table 3.1 shows various combinations of tubing and braiding material.
We measured the spring efficiency for these material combinations by performing
quasi-static tests. For a given pressure, the muscle was slowly extended and then
slowly returned back to the unloaded length, resulting in force-length graphs such
as Fig. 3.2. The values in Table 3.1 are obtained by dividing the amount of work
lost to friction (the area in the hysteresis loops in Fig. 3.2) by the total amount
of energy that was stored at 20% extension. The table shows that a combination
of polyester braiding and latex tubing resulted in the highest efficiency, and
therefore this combination was selected for the muscles of Baps. In hindsight,
we have to report that the latex tubing deteriorates in a few months, and that
it was difficult to produce sufficiently strong end caps for (ab)using the muscles
as extension stops.

Table 3.1. Maximum energetic efficiencies from isobar, quasi-static measurements
of different material combinations for the McKibben muscle. Latex tubing has a wall
thickness of 0.2 mm, and silicone tubing has a wall thickness of 1 mm.

Braiding material Latex tubing 0.2 mm Silicone tubing 1 mm
Polyester 0.94 0.87

Nylon 0.87 0.79
Carbon fiber 0.73 0.69

Kevlar� - 0.69
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For the later prototypes (Chapters 4 to 6), we decided not to build our
own muscles, but to use commercially available muscles. Those produced by
Shadow company [6] best suited our size and weight requirements (10g muscles
for 40N). For some time in the past, Bridgestone was selling McKibben mus-
cles in Japan under the tradename ‘Rubbertuator’ [84, 39, 40]. Currently, the
German company Festo sells air muscles (used by [102, 15, 14, 90, 91, 92]) and
the Japanese Hitachi Medical Corporation sells rubbertuators in Japan (used
by [146, 145, 147, 144, 77]).

3.2 Pressure Control Unit

3.2.1 Background and Requirements

The pressure control unit must be able to regulate the desired muscle pressures
accurately and fast (i.e., well within the step time of 0.6 seconds). In addition,
the application in an autonomous biped requires a compact, lightweight and gas
efficient solution.

There are two commercially available regulator principles, each of which can
only fulfill part of the above requirements. The first type is the flapper-nozzle
type. These indirectly controlled pressure regulators provide fast and accurate
pressure control at the cost of a high internal gas consumption and relatively
large physical dimensions. The second type is the piston type. These directly
controlled pressure regulators are generally small and lightweight and need no
extra gas supply for internal consumption, but they are not sufficiently sensitive
and accurate for our application. Nevertheless, we decided to use the piston
type, as small size and gas efficiency are the most important requirements. We
minimized the disadvantages of this type by developing our own design.

3.2.2 Operating Principle

The piston type pressure regulator is drawn in Figure 3.4. A valve separates
the input pressure from the output pressure. The output pressure acts on a
spring loaded piston, where the manually adjustable spring load represents the
output pressure level. If the output pressure falls below this desired value, the
spring loaded piston opens the valve and the output pressure level is restored.
To ascertain that the pressure regulator is sensitive, it needs to be constructed
with a high ratio of A:C (see Figure 3.4) and with low internal friction.

The low preset pressure level is realized by connecting a separate back-pressure
regulator (see Figure 3.4) via a controlled valve to the muscle outlet. The spring
loaded piston in the back-pressure regulator is open as long as the muscle pres-
sure is higher than the desired level (drawn situation).

3.2.3 Technical Realization and Results

The principles discussed above have been translated into functioning prototypes.
Experiments have convincedus that the requiredhigh accuracy (10 kPa) cannot be
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Fig. 3.4. Working principle of (a) pressure regulator and (b) back-pressure regulator

met by a single-stage pressure regulator, due to pressure overshoot and hysteresis.
Therefore we have divided the pressure reduction in two stages, see Figure 3.5.

First, one main pressure regulator directly on the gas canister brings the
pressure from 5.8 MPa to about 1.0 MPa. Second, a second-stage reduction from
1.0 MPa to 0.2 – 0.4 MPa, with 4 different preset manually adjustable pressure
levels, is realized in the input pressure control block (‘IN’, Figure 3.5). In these
valves, the pistons are equipped with diaphragms to minimize friction effects and
to provide the required sensitivity and accuracy. The output pressure control
block (‘OUT’) includes four adjustable back-pressure regulators. Basically the
same piston construction as in the input pressure reduction valves has been
used. The two pressure-control blocks together weigh about 180 gram and have
a volume of less than 8 x 5.5 x 1.5 cubic centimeter.
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Fig. 3.5. Left: technical drawings of pressure reduction system. Right: dynamic
response of the complete pneumatic system.
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After assembling the complete pneumatic system, it is possible to evaluate
the behavior by measuring the muscle pressure in time, during a switching-
action of the described solenoid valve. Figure 3.5 shows the dynamic response of
the complete pneumatic system when pressurized from 0.15 MPa to 0.35 MPa
and back. We obtain an accuracy/repeatability of about 10 kPa, and a rela-
tively slow response as was to be expected with the choice of pressure regulator
type.

3.3 Phasic Activation of a Single Pendulum Test Setup

The next step in the research was to test the functioning of the complete pneu-
matic actuation system in an oscillating periodic motion. We chose a single
pendulum as a test setup. This system has a well-defined natural frequency and
can easily be modeled. It can be regarded as a model for swing leg behavior
during walking. Two artificial pneumatic McKibben muscles were used as an
agonistantagonist couple (Fig. 3.6).

Fig. 3.6. Pendulum test setup. Left: Model and pressure schema. Middle: Overview
of complete setup. Right: Friction-less attachment of muscles at fixed moment arm r.
This figure originally appeared in [158], c© 1999 IEEE.

The system can be brought into a limit cycle by applying periodic activation.
This activation should not be a function of time (such as a pulse each second,
which would result in a forced oscillation) but it should be triggered by the
motion itself so that an autonomous periodic motion emerges. One can choose
any point in the cycle. We have chosen to use the maximal excursion of the joint
angle as trigger, which is equal to a downwards triggered zero-crossing of the
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angular rate. Therefore a gyroscope was mounted at the end of the pendulum.
The activation is obtained by raising the pressure by ∆P in muscle 1. In the
set-up a three-way valve was used to switch the pressure in muscle 1 between
the nominal pressure and the activation pressure (Fig. 3.6). When an activation
time ∆t has elapsed the supply pressure PS is set back to the nominal pressure
PN again. The switching time of the valve is very small compared with the time
scale of an activation pulse, and will therefore be neglected. Muscle 2 is kept at
a constant pressure PN .

3.3.1 System Model

The pneumatic muscle dynamics can be simplified by a lumped parameter model.
The muscle volume (VM ) can be modeled as a constant accumulator, or capac-
itor (CM ). The hose can be modeled as a resistor (R). Modeling the activation
muscle pressure (PAM ) dynamics then results in a first order filter, given by the
differential equation

ṖAM (t) +
PAM (t)
CMR

=
PS(t)
CMR

(3.9)

where CM can be expressed by

CM =
ΦAM

ṖAM

=
dm/dt

dPAM/dt
=

dm

dPAM
(3.10)

where ΦAM is the mass flow through the hose and m is the gas mass. Using the
ideal gas equation, Eq. (3.10) can be rewritten as

CM = dm · d(
VM

mRGAST
) ≈ VM

RGAST
(3.11)

where RGAS is the specific gas constant and T is the gas temperature.
We model the dissipating friction forces as a viscous damping. This results in

the following equation of motion for the complete pendulum setup of Fig. 3.6:

IP θ̈(t) = −Mgl sin θ(t) − FM1(θ(t), P1(t))r + FM2(θ(t), P2)r − 2kr2θ̇(t) (3.12)

with

IP pendulum inertia around the joint;
M pendulum mass;
g gravitational acceleration;
l distance from joint to center of mass of pendulum;

FMn force of muscle n as a function of the pendulum angle θ and muscle
pressure Pn;

r radius of the cylinder;
k constant of damping of one muscle.
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The muscle forces in this equation, FM1 and FM2, can be obtained by substi-
tuting Eq. (3.8). Combining the result with Eq. (3.12) yields the final expression
of the complete pendulum dynamics:

θ̈ = −Mgl
Ip

sin θ − 2kr2

Ip
θ̇

− rb2PAM (t)
4πn2Ip

( (U0+rθ)2

L2
0

+ 2(U0+rθ)
L0

)

+ rb2PN (t)
4πn2Ip

( (U0−rθ)2

L2
0

+ 2(U0−rθ)
L0

)

(3.13)

Table 3.2. System parameters of the pendulum test setup of Fig 3.6

β 0.026 U0 0.01 m
CM 1.55 · 10−10 kg · m2/N g 9.81 m/s2

R 2.80 · 108 N · s/m l 0.273 m
RAIR 287.00 J/kg · K b 0.1126 m
r 0.018 m m 0.309 kg
VM 13.1 · 106 m3 L0 0.065 m
T 293 K Ip 0.0317 kg · m2

n 1.83

For the parameter values of the model, we used the values obtained from
measurement of the pendulum setup, see Table 3.2. The damping coefficient β
was determined by curve fitting of unactuated responses of the pendulum. This
dimensionless damping ratio could be well approximated as a constant value for
the frequencies in the range of interest. Its relation with the damping constant
k used in Eq. (3.13) is given by:

k =
βωBIp

r2 (3.14)

where ωB is the natural frequency of the pendulum. The time constant of the
activation muscle can be calculated as τAM = RCM = 0.043s.

3.3.2 Model Validation and Parameter Sensitivity

We performed experiments with various settings for the nominal pressure, pres-
sure difference, and activation time. Five measured fixed points were compared
with the predicted fixed points. Table 3.3 gives the errors between the measured
and predicted fixed points for the five settings. According to Table 3.3, the cycle
amplitude of a fixed point cannot be predicted accurately. This can be clarified
with a parameter sensitivity test. With the pendulum model the shift of the
fixed point was verified with a 10% parameter change. The calculated parameter
sensitivity matrix yields:⎡

⎣ ∂θF

∂∆t
∂θF

∂β
∂θF

∂τAM

∂θF

∂L0

∂TF

∂∆t
∂TF

∂β
∂TF

∂τAM

∂TF

∂L0

⎤
⎦ =

⎡
⎣ 0.7838 −5.1925 −0.0394 −1.6879

0.0784 −0.3926 0.1453 3.6173

⎤
⎦ (3.15)
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Table 3.3. Errors between model predictions and experimental measurements of the
pendulum amplitude and period, for five different activation settings

measurement ∆t s ∆P Pa PN Pa amplitude period
error (%) error (%)

1 0.183 0.15 · 105 1.25 · 105 12 2.6
2 0.183 0.15 · 105 1.50 · 105 7.6 3.8
3 0.183 0.20 · 105 1.50 · 105 25 1.8
4 0.112 0.40 · 105 1.85 · 105 27 1.2
5 0.424 0.10 · 105 1.50 · 105 30 1.1

Eq. (3.15) shows that the cycle amplitude is highly sensitive to variations of
the relative muscle damping β. Such variations of β are likely to occur due to
temperature changes or ageing effects of the muscle. Also the pendulum model
has a simple linear viscous damper, whereas real McKibben muscles will have
a speed dependent constant of damping, causing the model to deviate from
the measurements. The relative muscle damping is a critical design parameter,
and is therefore assumed to cause the large deviations between predicted cycle
amplitude and measured cycle amplitude in Table 3.3. Variation of the muscle
zero-length L0 has a large effect on the cycle amplitude and the cycle period. It
is assumed to be constant in the muscle model of Eq. (3.8), but it varies for real
McKibben muscles (Fig. 3.7). Variations in the muscle activation time ∆t and
activation muscle time constant τAM have relatively little effect on the location
of the fixed point and can also be determined rather accurately.

From this result, we learn that the cycle amplitude is rather sensitive to the
actual damping value. This is a logical result for any highly efficient system. A
small amount of energy loss will have a great influence on the motion. We can
predict that if amplitude is important (as it will determine the step length), then
we will need to install an amplitude-regulating feature. In the Museon walker

Fig. 3.7. Measured rest length of the applied McKibben muscle as a function of muscle
pressure. The dashed line is the theoretical rest length, according to the muscle model
of Eq. (3.8).
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(Fig. 2.4), this was implemented by a limitation to the hip joint. In Chapter 4
such a feature will be analyzed in depth.

3.4 Prototype Design and Experiments

The previous sections have provided all the tools for pneumatic actuation. There
is convincing evidence that actuation with McKibben muscles can successfully
be combined with passive dynamic models to create active dynamic walking. The
final test will be performed in this section, where we construct the autonomous
biped ‘Baps’ and study its walking capabilities.

Fig. 3.8. Placement of electric and pneumatic components in the trunk
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3.4.1 Specifications

The leg length is 65 cm, and due to the relatively small trunk the total length is
about 80 cm. Baps weighs only 3.35 kg, subdivided as shown in Table 3.4. The
pneumatic and electric components are mounted on the trunk of the biped, see
Fig. 3.8. The location of the components is chosen such that the trunk center of
gravity is located approximately in the middle between the hips. An outer cage
construction of thin walled stainless steel tube is applied as a protection for the
onboard equipment, and serves as a hand grip during experiments.

The location of the centers of gravity were determined with balancing tests.
The inertia of the legs was derived from the measured frequency of free leg swing
motions. The data is summarized in Fig. 3.9 and Table 3.5.

3.4.2 Muscle Configuration

Baps is equipped with six McKibben muscles, three per leg. Each leg has one
muscle for leg elongation of a linear joint in the leg (push-off), and a pair of
antagonistic muscles around the rotational hip joint, see Figs. 3.10-3.11. All
muscles operate at a nominal pressure level providing a nominal stiffness, in
addition to which there are short pressure increases at each step providing power
to the motion.

3.4.3 Feet

Baps has had two types of feet; spherical feet and cylindrical feet, see Figs. 3.12
and 3.13. The first type was rigidly attached to the legs, whereas the second
type was mounted on a spring-loaded ankle joint. We tested both.

We performed these tests because the feet have to fulfill four functions at
once, and we could not predict which foot type would succeed best. First, the
feet must allow lateral rocking. Therefore, we give the feet a radius in a frontal
view, similar to the design of some ancient walking toys [172] and recent robot
research [150].

Second, the feet must allow forward rotation of the stance leg. In McGeer’s
research, this was always done with a rigidly attached foot with a radius in the
sagittal plane. For Baps, this means that there is a radius in two planes, and so
the foot is effectively a part of a sphere. This is the first type of foot. Instead of
an arc shape in the sagittal plane, one can also use a flat foot and a spring-loaded
ankle joint. The resultant sagittal stance leg dynamics are similar [179] because
of a similar forward travel of the center of pressure. Thus, the second type of
feet for Baps has a spring-loaded ankle and a cylindrical shape with the curve
in the frontal plane.

The third function that the feet must fulfill is to provide sufficient yaw re-
sistance. Yaw, i.e. rotation around the vertical axis, is a source for instabilities
which is induced by the counter-swinging motion of the two legs [36, 181]. Ob-
viously, the spherical shaped feet will perform worse than the cylindrical feet,
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Table 3.4. Weight, dimensions, and numbers of components in the autonomous biped
Baps

function component mass [gram] number sizes [mm]
frame leg 355 2 -

trunk 1210 1 -
foot (set A) 153 2 -

pneumatics hip muscles 17 4 -
leg muscles 17 2 -
CO2 holder 36 2 125x25x25
CO2 canister 59 2 88x∅22
reduction unit 78 1 52x35x14
valve unit 104 1 7x7x33

electronics batteries 91 2 70x38x20
PC 330 1 40x96x90
gyroscope 56 3 58x25x25

total 3350

p

R

g

l 0

mL, IL

τH

τL

κL

κH

κR

Fig. 3.9. Definition of the mechanical parameters of Baps

Table 3.5. Mechanical parameters of the autonomous biped Baps, according to
Fig. 3.9

mH 2.130 kg IH 0.0071 kgm2

mL 0.609 kg IL 0.0371 kgm2

l0 0.641 m p 0.261 m
R 0.5 m κR 0.751 Nms
τH 0.16 s κH 0.0717 Nms
τL 0.10 s κL 136 Ns/m
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Fig. 3.10. Schematic of muscle attachments in Baps. (a) The pre-loaded length of the
muscles in the legs and hips can be adjusted. (b) In the hips, the offset of the zero
position can also be adjusted by rotating the cylindrical base.

Fig. 3.11. A sagittal view (a) and a frontal view (b) of the assembled biped frame
with the pneumatic muscles attached to it. Important components are indicated.

although the application of anti-slip rubber and the rather large radius (0.5 m)
together perform reasonably well.

The fourth function is to provide sufficient foot clearance during the swing
phase. For this function, the spherical feet are better. If we would have had actu-
ation in the ankles or more clearance thanks to knee flexion, then the cylindrical
feet would have sufficed too, so we expect that this foot design will be useful in
the future. But in the prototype Baps, the toes and heels made inappropriate
early contact with the floor. Thus, for this prototype we were not able to obtain
successful walking motions with the cylindrical feet.
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Fig. 3.12. Spatial view of the experimental biped with spherical shaped feet. The
sphere radius is R=0.5 m.

3.4.4 On-Board Control

The valves are switched by reflex-like trigger signals. These reflexes are merely
simple state triggers and could therefore be realized by simple analog electron-
ics. However, the biped serves as an experimental platform so different control
strategies should be easily tested. A flexible and user friendly control system
is therefore desirable. Since a small control system was not commercially avail-
able, a small PC based control system was developed. SC-solutions, a specialized
company in embedded control systems, took care of the complete trajectory of
this development. The outcome of this development can be briefly described as
follows.

A PC104 computer standard was chosen to serve as the hardware basis. PC104
has a standardized format of 90x96 [mm], and allows modular extension. The
control system was composed as follows: a 486-based motherboard, a 12-bits
signal processing board, a 48Mb chipdisk, and a memory extension of 32Mb.
Real Time Linux (a stripped version of Slackware 4.0) served as an operating
system. Software was developed that compiled Simulink�-generated files into
Linux executables. With a network connection the generated Linux executables
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Fig. 3.13. Cylindrical shaped feet. To keep balance in the frontal plane it rocks from
side to side. The cylinder radius is R=0.5 [m]. For sagittal motions, the ankle joint
is free to rotate. The result of the ankle springs is a forward travel of the center of
pressure during a step, similar to the forward travel of the contact point in the case of
spherical feet.

are transferred from an arbitrary network PC onto the Linux control system.
Real-time execution and data logging of final versions of control structures were
realized with a sample frequency up to 100Hz. A stable power supply with two
Li-Ion batteries was built in order to guarantee autonomous operation. Power
MOSFETs amplify the valve signals generated by the computer.

3.4.5 Power Consumption

The electric power supply consists of two Li-Ion batteries of 7.2 V, 1600 mAh.
Based on the electric power consumption of 14.7 W nominal the batteries can
operate for 1.5 hours. After that period of time they need to be recharged. The
pneumatic power supply consists of two CO2 canisters of 16 gram each. An
estimate of the amount of gas mass used per cycle ∆m can be obtained with the
ideal gas law:

∆m =
∆PVm

RCO2T
(3.16)
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where ∆P is the muscle pressure rise, Vm is the muscle volume, RCO2 is the
gas constant of CO2 and T is the temperature. Assuming a pressure rise during
muscle activation of 0.5·105 Pa and an average muscle volume of 13 ml at room
temperature yields a CO2 gas consumption of 12 mg CO2 per muscle per cy-
cle. By assuming 3 muscle activations per step (one stance leg muscle and two
hip muscles) the experimental biped can walk for about 900 steps on two CO2
canisters. With a step time of 0.6 s the canisters are empty in 9 minutes.

The power balance of the experimental biped is composed of a pneumatic and
an electric part. The pneumatic power can be expressed as the energy needed to
increase the pressure in the muscle per unit of time, given by

Wpneumatic =
1

Tcycle

∮
cycle

PmdVm (3.17)

where Tcycle is the time duration of one step cycle, Pm is the muscle pressure and
Vm is the muscle volume. The power consumption of the electric components is
specified by the manufacturers. The pneumatic and electric power consumption
of the separate components is given in Table 3.6.

The power consumption of the experimental biped per kilogram body mass
yields 4.7 W/kg. For a comparison, the metabolic power per body mass for
normal human walking [83] also yields 4.7 W/kg. According to Table 4.3, 94%
of the power is used by the electric circuitry!

Table 3.6. Power consumption of the components of the autonomous biped Baps

medium component peak power [W] average power [W]
electric PC 17.50 12.00

signal board 1.60 1.60
1 gyroscope 0.02 0.02 (3x)
1 valve 0.75 0.28 (4x)
total 14.78

pneumatic hip muscles 0.5
leg muscles 0.4
total 0.9

3.4.6 Walking Results

Baps has shown successful autonomous operation. This confirms the proper op-
eration of all the mechanical, pneumatic, electric, and software components as
parts of a fully self-supported system. To test the operation, Baps has walked
series of up to 10 steps as shown in Fig. 3.14. These experiments were done with
a simple controller that triggered the hip muscles once per step based on the
signal of the frontal gyroscope. These results conclusively demonstrated that it
is possible to create autonomous walking machines based on the concept of pas-
sive dynamic walking and powered with pneumatic McKibben muscles. Thus,
we decided to continue this line of research.
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Fig. 3.14. The measured states of Baps during autonomous walking experiments with
a simple controller. The direction of rotation is defined to be positive when the foot
is in a forward position. The vertical lines approximately indicate the double stance
phase. The integrator of the frontal gyroscope is reset every step, so that the frontal
angle (third graph) is reasonably reliable. The sagittal angles are not reset each step,
resulting in large drift (top graph). We show these integrated angle estimates for easy
interpretation. The sample rate during the experiment was 50 [Hz].

However, we did not manage to obtain stable, sustained locomotion. The
side-to-side rocking motion and the forward stepping motion were not suffi-
ciently synchronized, and after approximately 10 steps the phase shift became
too large. We have attempted to implement a more advanced controller that used
a two-dimensional model of the legs to predict the instant of heel strike. The
predictions and measurements are shown in Fig. 3.15. The figure shows that the
predictions differ much from the actual behavior. The problem is that the model
is two-dimensional, while the actual behavior is three-dimensional. Motions in
the other planes (frontal plane and top view plane) significantly influence those
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Fig. 3.15. Leg angles of eight steps. Prototype measurements are black lines. The
model simulations are performed with two sets of initial conditions, one at toe-off
(grey lines), and one at mid-stance (light grey lines and circles). A solid line depicts
the stance leg angle, and a dash-dotted line depicts the swing leg angle. Clearly, the
model prediction at mid-stance is more accurate than the model prediction at toe-off,
but both show significant differences with the actual motion.

in the sagittal plane. We realized that at that time we did not have a sufficient
understanding of the 2D sagittal motions, let alone the full 3D walking motions.
Therefore, the next robot in this book is deliberately made simpler by giving it
two-dimensional dynamic behavior.
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4.1 Introduction

Purely passive walkers (Chapter 2) and our first prototype Baps (Chapter 3) can
walk efficiently, but they fall too easily. Now it is time to do something about it.
The tools are here: we now have knowledge of passive dynamic walking and we
have a way of actuating these walkers with pneumatic McKibben muscles. How
can the actuation be used to enhance the stability of the walking motion? This
chapter will provide an answer, first by analyzing the stability of an unactuated
model, followed by an implementation of hip actuation both in an elementary
simulation model and in the prototype ‘Mike’ (Fig. 4.1) that was built for this
purpose. The content of this chapter is based on two of our papers [141, 184],
c IEEE, reprinted with permission.

It is too complex to solve the full 3D stability problem at once, so in this
chapter we will focus on 2D models and prototypes that cannot fall sideways.
In simulations, this means that we simply don’t model the third dimension.
However, in prototype studies it is more difficult to ignore the existence of a
third dimension. Following McGeer’s example [108], the prototype is built with
a double pair of legs (Fig. 4.1) which should minimize sideways dynamics.

Fig. 4.1. Prototype Mike; a 2D passive dynamic walking robot with pneumatic Mc-
Kibben muscles at the hip

4.2 Modeling and Analysis

4.2.1 The Simplest Walking Model

This researchstartswith the simplestwalkingmodel [54] as described in Chapter 2.
We described how a cyclic walking motion can be found and how it can be analyzed

© 2005
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using the eigenvalues of the linearized ‘Stride Function’, Eq. (2.26). This analysis
tells us whether a cyclic motion is stable or not, but it is only valid for very small
disturbances because of the linearization.

4.2.2 Basin of Attraction

For practical use, one wants to know when the walker keeps walking, and when
it falls down. Clearly, the wider the range of initial conditions of [θ, θ̇] that result
in continuous walking, the more tolerant is the walker for incorrect launches
and in-motion disturbances. The entire collection of initial conditions leading
to walking is what is called the basin of attraction. We know that there must
be some basin of attraction when the walker is linearly stable around the fixed
point, but how large is it? Here we describe how to find the complete basin of
attraction with the cell mapping method [78].

The region of feasible initial conditions is subdivided into a large number (N)
of small cells. All unfeasible initial conditions (such as a backward motion, i.e.
θ̇ > 0) are regarded as a small number (z) of very large cells, so called sink cells.
The cells are numbered 1 to N+z. By application of the stride function S to the
center of each cell, all of the N+z cells point to initial conditions inside one of the
other cells, except the sink cells which point to themselves by definition. Starting
with cell 1, a sequence of cells appears by following the pointers. This sequence
either ends in a sink cell or in a repetitive cycle. This cycle can consist of one
self-repeating cell (a fixed point), or a number of cells (multiple-period walking,
Garcia et al. [53]). The fixed point is identified and all cells in the sequence
are labeled as the basin of attraction of that fixed point. Then the procedure
is repeated with cell 2, then cell 3, etcetera. As soon as a known cell (from a
previous sequence) is encountered, the current sequence merges with that of the
known cell. The procedure is repeated until all cells are labeled.

Note that the calculation of the basin of attraction is a costly business as
the number of calculations increases with the power of the number of degrees of
freedom. This is one of the reasons that we perform the simulation analysis on
the simplest walking model instead of on the more complete model of Mike.

4.2.3 Failure Modes

Application of the cell mapping method results in a list with all attractors
(fixed points) and classification of all discretization points into this list. Not
only period-one walking gaits can be found, also period-k walking gaits. Results
of the cell mapping method are as accurate as the discretization, within these
tolerances fixed points may come and go. For example, what appears to be a
fixed cell might in fact be slowly changing initial conditions (smaller changes
than the discretization) of subsequent steps.

With the cell mapping method, the basin of attraction of the simplest walker
(at a slope of γ = 0.004 rad) is calculated in [141], see Fig. 4.2. The basin
of Attraction is represented by the very thin area A, otherwise the walker falls
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Fig. 4.2. Poincaré section for the simplest walker with initial stance leg angle θ and ve-
locity θ̇ together with failure modes; falling Forwards, falling Backwards and Running,
and the basin of Attraction of the cyclic walking motion (θ, θ̇) = (0.1534, −0.1561)
(indicated with ‘+’) at a slope of γ = 0.004 rad.

Forwards or Backwards, or, if started with high speeds, the stance foot loses
compressive ground contact (Running).

4.2.4 Behavior Inside the Basin of Attraction

From Figure 4.2 it is obvious that the basin of attraction is only a very small
region. For better insight in the shape, Figure 4.2 is enlarged and sheared, leading
to Figure 4.3. The vertical axis now represents the sum of the stance leg angle
and scaled angular velocity. The horizontal line at θ+ θ̇ = 0 corresponds with the
‘-45 degree’-line in Figure 4.2. Figure 4.3 is obtained with application of the cell
mapping method with a discretization of about 200×250 points (∆θ = 0.002 rad,
∆(θ + θ̇) = 0.0002 rad), the solid lines are a manual continuous interpretation
of the discrete simulation results for the boundary of the basin of attraction.

Figure 4.3 shows that the small basin of attraction is mostly bounded by
falling backward on one side and falling forward on the other side. The basin of
attraction seems to be a continuous and tailing area. The different areas show
fractal-like entanglement. We will discuss the behavior of the walker in these
areas by going over a vertical line, θ = 0.2 rad, in Figure 4.3 from area F
to area B, crossing the basin of attraction at least four times. Point (θ = 0.2
rad, θ̇ = −0.23 rad) lies in area F. If started with such initial conditions, the
walking model will fall forward; the swing leg is allowed to pass through the
floor to ignore the otherwise inevitable foot-scuffing, but does not rise above
floor level anymore. Going up, the area changes from falling Forward to the
basin of Attraction. Just before crossing this boundary, the behavior changes.
Not the first step after these initial conditions is failing, but the model first walks
some steps before eventually falling forward. The closer to the basin of attraction,
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Fig. 4.3. Poincaré section for the simplest walker, enlarged and sheared section from
Figure 4.2, together with failure modes; falling Forward, falling Backward, and the
basin of Attraction of the cyclic walking motion.

Table 4.1. Initial conditions of a number of subsequent steps, started just inside the
basin of attraction and going to the fixed point

step θ rad θ̇ rad θ + θ̇ rad
1 0.2000 -0.2165 -0.01645
2 0.1788 -0.1917 -0.01290
3 0.1756 -0.1841 -0.00850
4 0.1878 -0.1888 -0.00100
5 0.1586 -0.1599 -0.00134
6 0.1459 -0.1488 -0.00295
7 0.1492 -0.1526 -0.00337
8 0.1539 -0.1569 -0.00302
9 0.1558 -0.1583 -0.00256
...

...
...

...
f.p. 0.1534 -0.1561 -0.00269

the more steps it takes before failure. If started in the first tail of the basin
of attraction, encountered when going up, the walker will eventually settle into
steady cyclic walking with initial conditions of the fixed point. The path toward
the fixed point is presented in Figure 4.4 and in Table 4.1. The motion of the legs
is shown in Figure 4.5. After nine steps, the walker is close to the fixed point,
and continuing the simulation will show an asymptotic approach.

Even more up on the line (θ = 0.2), area F is encountered again. Starting
there leads to falling forward after a number of steps. In this manner, A, B,
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Fig. 4.4. A number of steps, started just inside the basin of attraction and going to
the fixed point. Together with failure modes; falling Forward, falling Backward, and
the basin of Attraction of the cyclic walking motion.
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Fig. 4.5. Orientation of the stance leg, solid line, and swing leg, dotted line, with
respect to the normal on the slope for a walker started just inside the basin of attraction
and going to the fixed point

and F are crossed several times, until we reach θ + θ̇ = γ. Above this boundary,
the stance leg will not reach midstance and fall backward. In general, if started
inside the basin of attraction, the initial conditions spiral toward the fixed point.
If started just outside the basin of attraction, the walker will take a few steps
but eventually fail. The further away, the smaller the amount of successful steps
before failure.

4.2.5 Basin of Attraction Versus Slope Angle

The size of the basin of attraction determines the amount of disturbance that
the walker can handle without falling. The stability of the fixed point determines
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if, and how fast the walker recovers from a small disturbance. The latter analysis
is less time-consuming and therefore very useful to determine the existence of
a basin of attraction. The applicability of the walker however depends on the
allowable size of disturbances. Therefore, we investigate the dependency of the
basin of attraction on the only model parameter, the ramp slope γ. Figure 4.6
shows the development of the basin of attraction for an increasing ramp slope γ.
As the slope increases, the basin of attraction decreases in size and gets more and
more tails at the boundaries, which appear to be fractal-like. At and beyond a
slope angle of 0.019 rad the basin of attraction has vanished, leaving fractal-like
boundaries between the regions of falling forward and falling backward.

A
B

0

0.4
θ

0.2

-0.02

-0.04

γ = 0.004

0

0.02

0.6

0

0.4
θ

θ + θ

0.2

-0.02

-0.04

0

0.02

0.6

θ + θ

0

θ + θ

-0.02

-0.04

0.02

0

-0.02

-0.04

0.02

θ + θ [rad]

0.4
θ [rad]

0.20 0.6 0.4
θ

0.20 0.6

γ = 0.022γ = 0.014

γ = 0.00005

F

B

F

B

F

B

F

A

A
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4.2.6 Basin of Attraction Versus Eigenvalues

We compare the size of the basin of attraction with the linearized stability of
the cyclic motion, see Figure 4.7. The stability is measured as the largest of the
two eigenvalues (modulus) of the linearized stride function (2.26). As stated by
Garcia et al. [53], for 0 < γ < 0.0151 rad the period-one gait is stable. For higher
slopes, only higher-period gaits are stable, having a small basin of attraction.
The eigenvalues would lead to believe that a slope γ = 0.012 rad would be
preferable. However, the basin of attraction, measured as the number of cells
inside the basin of attraction times the area of one cell, is not at its maximum.
Clearly, there is no direct relation between the stability of the cyclic motion and
its basin of attraction.
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4.3 Swing Leg Action for a Larger Basin of Attraction

4.3.1 Largest Possible Basin of Attraction

Now that the basin of attraction of the simplest walker is known, some questions
arise. Is it a sufficiently large basin of attraction, or is control necessary? Can
control of only the swing leg have any substantial positive effect on the basin of
attraction? Before answering these questions, we should recognize that any con-
ceivable hip action does not influence the current stance leg motion whatsoever,
because of the fact that the swing leg has an infinitesimally small mass. The
only thing that matters is the hip angle at heel strike. In other words, swing leg
control of the simplest walker can only influence the subsequent step.
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Therefore, swing leg control cannot do anything for the walker if the current
hip velocity is not enough to pass the apex of the hip trajectory. The mathe-
matical equivalent of this requirement is the following energy inequality:

1
2
M(θ̇l)2 > Mgl(1 − cos θ) (4.1)

or, rewriting and scaling M , g, and l to unity:

|θ̇| > 2 sin
θ

2
(4.2)

This inequality is represented in Fig. 4.8 with Line (1). Note that this is the
familiar separatrix in the normal simple pendulum phase portrait. Also note
that Line (1) does not coincide with the dashed boundary between area B and
area F in Fig. 4.2. The area between the two lines represents a set of initial
conditions that, for the fully passive walker, does not lead to immediate falling
backward, but to a short series of successful steps that eventually leads to falling
backward [141].
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Fig. 4.8. Maximally obtainable basin of attraction (gray area, bounded by Lines 1,
2 and 3, see text) and uncontrolled basin of attraction (thin area A) of the simplest
walking model. The entire problem of falling forward can be solved with swing leg
control, while the problem of falling backward (area B) remains existent and would
need something else than swing leg control.

The second boundary to the initial conditions for making a successful step is
the requirement for compressive foot contact: at high velocities the centrifugal
effect overcomes gravity and the stance foot would loose contact. This boundary
is represented in Fig. 4.8 as Line (2). The scaled vertical contact force fv is given
in Eq. (2.9) as:

fv = − cos(θ)(θ̇2 − cos(θ − γ)) (4.3)
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Requiring that fv > 0, we get the inequality for Line (2):

|θ̇| <
√

cos θ (4.4)

Note that the fact that Line (2) passes through {θ, θ̇} = {0, −1} corresponds to
saying that for this nondimensionalized walker the Froude number

√
v2/(gl) is

equal to 1 (with body speed v equal to stance leg velocity θ̇ due to the unit leg
length).

The third and last boundary of the maximally achievable basin of attraction is
somewhat arbitrary; we only investigate initial conditions with a positive stance
leg angle, i.e. starting with the stance foot in front of the swing foot, resulting
in Line (3).

Lines (1), (2), and (3) are the outer boundaries for any basin of attraction
that swing leg control could possibly achieve for the simplest walker. Therefore
we choose to use the area inside these boundaries as a reference for the size of the
basin of attraction. Comparing the area of the thin region A in Fig. 4.2 with the
large gray area in Fig. 4.8, we find that without control, the basin of attraction
is only 0.3% of the maximally achievable area. This result justifies the search for
a controller to enlarge the basin of attraction.

Summarized so far, we have said that the uncontrolled simplest walker very
rarely walks. It mostly falls, either forward or backward. When adding swing leg
control, we cannot address the problem of falling backward whatsoever. There-
fore, for the swing leg controller we only have to consider the forward falling
problem. This makes things easy; as long as we make sure that the swing leg
swings forward fast enough, and then just keep it there, the problem should be
solved. There is only one extra requirement; the swing leg should not be too far
forward, otherwise the walker will fall backward at the subsequent step.

4.3.2 The Rimless Wheel

If for now we stick to the idealized situation of a massless swing leg, we could
imagine the swing leg controller putting the swing leg at a preset, constant,
forward angle immediately after the step has started. The behavior of the walker
would then be exactly equal to the ‘rimless wheel’ (Fig. 2.2), a system that has
a number of ‘legs’ (the spokes) at equal, fixed angles (see the inset in Fig. 4.9).
This system has been studied in depth by Coleman [31], who concluded that it
would always reach a stable cyclic walking motion, provided that the leg angle
is small enough for the floor slope angle. For the slope angle of 0.004 rad that
we use throughout this chapter, the inter-spoke angle should be smaller than
0.4 rad [30], otherwise it would slow down and eventually come to a stop. We
choose a safe value of 0.3 rad, i.e. a stance leg angle θ = 0.15 rad at the start
of a step, which corresponds to the natural gait of the simplest walking model
at this slope (see Fig. 2.7). Fig. 4.9 shows the basin of attraction of the rimless
wheel with this inter-spoke angle of 2 · 0.15 rad.

The fixed inter-spoke angle makes it impossible to start the rimless wheel with
a larger initial leg angle than 0.15 rad, unless it were started at the edge of a
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table top. But even then, it would converge to its fixed point. Other than that,
the only important gap in the basin of attraction is the small corner in the top,
bounded by a line of constant energy through the point where Line (1) crosses
θ = −0.15 rad. In that corner, the initial energy of the rimless wheel is enough
to make it through the first step, but the fixed inter-spoke angle is too large to
make it through the second.

0 0.4 1

 - 1

 - 0.6

0

 - 0.2

 - 0.4

 - 0.8

 - 1.2
0.2 0.80.6

θ [rad]

θ [rad/s] γ = 0.004

+

Fig. 4.9. Basin of attraction of the rimless wheel (model: see inset) with an inter-
spoke angle of 0.3 rad. The ‘+’ indicates the fixed point of this model at a slope of
γ = 0.004 rad.

In conclusion, only considering swing leg control, the maximally obtainable
basin of attraction can be achieved with a controller mimicking the rimless wheel.

4.3.3 A Realistic Actuation Model

The previous section indicates that the stability behavior of the rimless wheel is
very close to the maximum achievable with swing leg control. So, now it is time
to devise a simple but realistic form of actuation that mimics the rimless wheel
behavior, acknowledging that instantaneous leg positioning is impossible. We
propose to use a spring and a damper at the hip joint with a variable setpoint
which can provide for an extra internal torque T to the swing leg. The equations
of motion for this model are the same as those of the simplest walking model
(Eq. 2.8), extended with torque T resulting in:⎡

⎣ θ̈

φ̈

⎤
⎦ =

⎡
⎣ sin(θ − γ)

sin(φ)(θ̇2 − cos(θ − γ)) + sin(θ − γ) + T

⎤
⎦ (4.5)

with
T = −k(φ − φsp) − cφ̇ (4.6)
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The setpoint φsp is set to 0.3 rad corresponding to the fixed point of the passive
walker at a slope of γ = 0.004 rad. The stiffness k is the parameter that we
vary, where k = 0 corresponds to the fully passive simplest walker and k = ∞
corresponds to the rimless wheel. Note that k is scaled with the foot mass m.
The damping factor c is set as a function of k to provide critical damping:

c = 2
√

k (4.7)

Note that a physical realization of this type of actuation requires an active shift
of the setpoint after each heel strike from φsp to −φsp or vice versa.

Fig. 4.10 presents the stability results for different stiffness values. A higher
stiffness results in a faster swing leg motion and thus provides a better resistance
against falling forward. The drawback is in energy consumption, but unfortu-
nately the model with its massless feet is too much a simplification of real walking
machines to allow for quantitative statements on energy expenditure. With this
active hip spring stiffness we can arbitrarily make the basin of attraction as
large as necessary up to complete coverage of the maximally obtainable area, so
the problem of falling forward can be considered to be solved. Moreover, this is
achieved without any feedback control other than a setpoint shift at heel strike.

Remember that this is just one possible way of speeding up the swing leg. It is
not this particular implementation that counts, but the main idea behind it that
the swing leg should be swung forward quickly, and then kept there at a not-too-
large leg angle. We should emphasize here that, although simulated with a floor
slope γ = 0.004 rad, this control rule works equally well for any slope larger than
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Fig. 4.10. Basin of attraction of the simplest walker with active hip spring. The
setpoint of the hip spring is φsp = 0.3 and critical damping is applied. The higher the
hip spring stiffness, the larger the basin of attraction; k = 25 leads to area (1), k = 50
leads to areas (1) plus (2), and k = 100 leads to areas (1) plus (2) plus (3). The fixed
point is for all three stiffness settings approximately the same, located at the ‘+’. A
disturbance from a step down in the floor would result in initial conditions away from
the fixed point in the approximate direction of the white arrow.



4.4 Prototype Design and Experiments 57

that (for smaller slopes, the preset leg angle should be decreased accordingly).
Moreover, it appears that the amount of success of other dynamically walking
bipeds can be attributed to how well their swing leg is brought forward, although
the control rules are usually formulated implicitly (e.g. Westervelt et al. [171]).

4.4 Prototype Design and Experiments

4.4.1 Prototype Construction

We applied the proposed swing leg control to our prototype ‘Mike’ (Fig. 4.1).
Mike weighs 7 kg and measures h x b = 0.7 x 0.4 m, and it uses 0.4 grams
of compressed CO2 per second. Movie clips of Mike in action are available at
our web site [1]. Mike has four legs symmetrically paired, giving it approximate
2D behavior. It differs from the simplest walking model by having knees, a
distributed leg mass, round feet and by walking on a level floor (no slope!).

A B

DC

Inner legsOuter legs

Fig. 4.11. Schematic structure and muscle attachments of Mike

Mike is actuated with a total of eight McKibben muscles. The McKibben
muscles are arranged according to Fig. 4.11. The hip joint is actuated with
two muscles (A) and two muscles (B) which are arranged as two antagonistic
pairs, providing a combined joint stiffness. The knees are actively extended with
McKibben muscles (C) and (D) which are counteracted by weak passive springs.
There is no ankle actuation; the arc feet are rigidly attached to the shanks.

4.4.2 Actuation System

The McKibben muscles are fuelled from a 5.8 MPa CO2 container via a two-stage
pressure regulator and via electromagnetic valves that are activated by switches
underneath the feet. The second-stage pressure regulator output is manually ad-
justable between 0.1 and 0.6 MPa resulting in a hip joint stiffness up to 5 Nm/rad
and a damping somewhat less than critical damping (estimated by observation).
It is not feasible to perform a proper mapping between this stiffness in Mike and
the scaled stiffness in the simplest walking model due to the extensive differences
between the two, such as leg mass, foot arc radius, muscle non-linearities and
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significant air flow dynamics. Therefore the comparison between the two will be
of a qualitative nature only.

If a valve is switched ‘on’, the muscle is filled from the pressure regulator output;
if switched ‘off’ it empties into atmosphere. For example, at the instant of contact
of the inner leg foot switch, the outer knee muscles (muscle C in Fig. 4.11) are
switched ‘off’ to allow this knee to bend. A manually tuned 400 ms later they are
switched back ‘on’, ensuring a properly extended knee for the next step.

The proposed swing leg control in Eq. 4.6 is implemented by alternating the
states of the antagonistic hip muscles. When the foot switch of the inner legs is
activated, muscle B in Fig. 4.11 is switched ‘on’ and muscle A is switched ‘off’.
At the next step this is inverted. As a result, the hip joint has a constant stiffness
but a setpoint that alternates between φsp and −φsp. The joint stiffness can be
adjusted without altering the setpoint. We want to emphasize that there is no
feedback control other than this once-per-step switching between preset muscle
pressures.

4.4.3 Stability Results

Mike walks well. Fig. 4.12 shows a sample of the sustained gait for a hip muscle
pressure of 0.55 MPa, see [1] for video evidence. We would have liked to create a
figure of its basin of attraction like Fig. 4.10. However, the combined limitations
on the number of experiments to be performed and on the physical possibilities
to create controlled disturbances have led us to concentrate on one representa-
tive disturbance, namely a step-down. In the experiments the prototype walks
steadily and then takes a step down of increasing height, see Fig. 4.13. Such
a step down results in a larger stance leg velocity at the subsequent step as
sketched with the white arrow in Fig. 4.10. The larger the step down height,
the larger the arrow. If a larger hip muscle stiffness indeed allows a bigger step
down, then our swing leg control rule is validated.
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Fig. 4.12. Typical walking result with active hip muscles (0.55 MPa) on a level floor.
The prototype completes 10 steps in this trial, showing convergence towards its fixed
point after a manual launch.
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Fig. 4.13. Experiment with Mike walking on level floor and taking a step down as a
representative disturbance

The stability results are shown in Fig. 4.14. A hip muscle pressure lower than
0.35 MPa did not provide stable walking at all, not even without disturbances.
When the pressure was increased, a larger step down could be handled. The
muscles cannot sustain pressures higher than 0.55 MPa. Fig. 4.14 clearly shows
a better robustness against falling forward with a higher hip pressure which
corresponds to a higher joint stiffness.
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Fig. 4.14. A higher hip muscle pressure setting (corresponding to a higher hip joint
stiffness) results in a larger step-down size and thus in a better resistance against
disturbances. The arrows are depicted to indicate correspondence with the white arrow
in Fig. 4.10.

4.5 Discussion

4.5.1 Level Floor

One of the differences between Mike and the simplest walking model is that
Mike’s legs are not massless. When quickly moving the swing leg forward, it is
not only rotated but its center of mass is lifted a little bit. For walkers with non-
massless legs, this provides a way of putting energy into the system. For Mike this
is sufficient to replace the gravitational energy that the simplest walking model
obtained from walking downhill. As a result, Mike can walk on level terrain.
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4.5.2 Distributed Leg Mass

Another difference between Mike and the simplest walking model is that the
swing leg has a non-zero moment of inertia. For the simplest walker, any con-
ceivable hip actuation would not influence the stance leg motion. For Mike, it
does. The actual influence depends on the exact mass distribution of the swing
leg. If its center of mass were located at the hip joint, the swing leg accelera-
tion would have the adverse effect of a forward stance leg acceleration. With a
center of mass more in the middle of the leg, the swing leg acceleration induces
a backward acceleration (i.e. a deceleration) of the stance leg, which buys the
prototype some extra time to place its swing leg. A linearized dynamic analy-
sis of a straight-legged mechanism at mid-stance shows that such advantageous
deceleration occurs if

I < mc(l − c) (4.8)

with the leg moment of inertia I, leg mass m, leg length l and the distance
between the hip joint and the leg’s center of mass c. From Eq. (4.8) we deduce
that most normal constructions (I ≈ 1

12ml2) result in a slight (advantageous)
deceleration of the hip.

Even though the stance leg and hip are decelerated, the center of mass of
the entire system is accelerated forward due to the swing leg acceleration. This
provides a neat opportunity to make the prototype start from a standstill, which
was implemented successfully in the prototype.

4.5.3 Feet

The simplest walking model has point feet, whereas Mike’s feet have a circu-
lar shape. Such arc feet provide extra robustness against the complementary
problem of falling backward. As depicted in Figs 4.2 and 4.8, the walker will fall
backward if it has not enough velocity to overcome the vertical position. Circular
feet smoothen the hip trajectory and thus relax the initial velocity requirement.
As a result, the basin of attraction is enlarged in the upper right direction. We
believe that arc feet are a stability improvement measure complementary to the
swing leg control rule proposed in this chapter. However, a decisive study on the
effect of arc feet on the basin of attraction has yet to be performed.

4.5.4 Knees and Muscles

Other differences between Mike and the simplest walking model are the knees and
the nonlinear muscle properties. The knees do not essentially change the global
behavior [109] as the swing leg starts and ends fully extended. The muscles do not
behave in an exactly linear fashion. Especially the damping and friction losses
are strongly dependent on the muscle length, providing much more resistance
when the muscle is close to its maximal extension. For Mike, this behavior is
useful. The swing leg is brought forward without much resistance and is then
effectively slowed down by the elongating hip muscle.
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4.5.5 Human Walking

From measurements on human walking (e.g. Inman et al. [83], Winter [173]), it
has been found that there is hip muscle activity that accelerates the swing leg
at the beginning of the swing phase and decelerates it towards the end of the
swing phase. Selles et al. [142] confirms that the human swing leg moves faster
than it would if it were purely passive. At first sight, this seems like a waste
of energy, but Kuo [97] hypothesizes that humans might speed up their swing
leg to actually improve walking energetics, as it indirectly reduces the energy
loss at heel strike. In addition to Kuo’s hypothesis, the research in this chapter
provides a second hypothesis to why humans might speed up their swing leg; it
increases the robustness against disturbances. It is not relevant what the exact
muscle patterns are: as long as they result in an acceleration of the swing leg to
a forward position, the positive robustness effect is similar to that of the control
algorithm presented in this chapter.

When comparing our proposed swing leg control rule to human muscle activa-
tion in more detail, it should be noted that our controller is always active, even
if no disturbance is present. A more efficient controller would monitor (or even
predict) the size of the disturbances and adjust the applied torques correspond-
ingly. It seems reasonable to compare this to a walking human who will violently
throw forward his swing leg as a reflexive reaction to tripping. We hypothesize
that this reflex is a ‘full power’ version of the stabilizing control rule presented
in this chapter, while in normal walking a ‘low power’ version is applied. This
hypothesis is in line with Pratt [129] and Forner Cordero [38] who suggest that
the maximum walking speed in humans is dictated by how fast one can swing
his or her leg.

4.6 Conclusion

This chapter started with the question how hip actuation can be used to enhance
the stability of the walking motion. The answer is two-staged.

First, we showed that swing leg control can only address the problem of falling
forward. If the simplest walker falls backward, there is no way that any swing
leg control can change this; there is simply not enough energy in the system to
move past the vertical position.

Second, we showed that a simple controller can completely solve the problem
of falling forward; all it needs to do is to get the swing leg timely in a forward
position. A damped hip spring with a forward setpoint already suffices. The
specific control and actuation details are not important as the same result can
be achieved with any controller if it is based on the following rule: “You will never
fall forward if you put your swing leg fast enough in front of your stance leg. In
order to prevent falling backward the next step, the swing leg shouldn’t be too
far in front.” A controller designed according to this rule is easy to implement,
because no a-priori knowledge of the passive dynamic walking motion is needed.
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We validated this rule with experiments with an autonomous, two-dimensional
(four-legged) prototype with knees. The hip joint was actuated with McKibben
muscles which provide a joint stiffness proportional to their internal CO2 pres-
sure. By using only one muscle of a pair of antagonistic muscles, the hip joint
was given a stiffness and a forward setpoint each step. In this manner, the swing
leg was accelerated forward according to our proposed control rule. The pro-
totype was made to take a step-down during a steady walk, and the maximal
step-down height was recorded as a function of the hip muscle pressure (hip joint
stiffness). It was shown that a higher pressure indeed allows a higher step-down.
The resultant robust gait can be viewed at [1].
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5.1 Introduction

More than two thirds of the mass of a human being is located in the upper body
(head-arms-trunk), while the legs are relatively lightweight. The addition of an
upper body to passive dynamic walkers remains an active research topic; so far
only the legs have been considered. The problem is that the upper body should
be stabilized in the upright position, while at the same time the alternating swing
leg should be able to swing passively to a forward position. Some passive solutions
have been found [17, 58], in which the upper body is another passive pendulum-
like component. Also a number of active control solutions have been proposed,
such as McGeer’s ‘levered isotonic tendons’ [110], variable springs [160] or a
controllable ‘backlash clutch’ in the hip joints [122], all fairly complex solutions.
In contrast, we have searched for an alternative, mechanical solution.

In this chapter, we propose to design the hip joint as a passive bisecting
mechanism, similar to that in a pair of compasses. We will first analyze a simple
point mass model in Sections 5.2, 5.3 and 5.4. Next, Section 5.5 will present the
two-dimensional simulation model and prototype (Fig. 5.1) developed for this
study. The results of this model and prototype study will be presented in Section
5.6. Finally, Section 5.7 will conclude that a bisecting hip mechanism indeed
provides an elegantly simple solution for stable and efficient walking with an
upper body. The content of this chapter is based on two of our papers [183, 180],
c© 2007 IEEE, reprinted with permission.

5.2 Point Mass Model with Upper Body

The goal of this chapter is to add an upper body to an (almost) passive walking
robot. We start with a simplified model, as earlier described in [183]. This model
should be as simple as possible for the sake of a minimal set of parameters, so a
natural starting point was the ‘simplest walking model’ of Garcia et al. [54], see
Chapter 2. The simplest walking model consists of two rigid massless legs, with
small pointmasses mf as feet and a finite pointmass at the frictionless hip joint.
For slopes up to 0.015 rad, this model performs a stable walk downhill.

This simple model is extended with an accordingly simple upper body. A point
mass is connected to a rigid, massless stick that rotates around the hip joint
(Fig. 5.2). The upper body is parameterized with body length lb and body mass
mb. The parameters have been given default values that have some relevance to hu-
man walking or to future prototypes, see Table 5.1. We made the parameter values
dimensionless for comparison with other models: all sizes are scaled with the leg
length, so that the leg length is 1, and allmasses are scaledwith the sumof the pelvis
mass and the upper body mass, so that the pelvis mass is 1− mb. The foot mass is
not included in this sum for reasons of compatibility with older models [141]. Time
is scaled so that the resulting gravity is 1. There are also two non-human parame-
ters: 1) slope angle γ, by which we can tune the walking speed, and 2) hip spring
stiffness k, which allows tuning of the step frequency. The spring will turn out to
be necessary for stable walking. With the default parameter values according to
Table 5.1, the model walks with human-like speed and step length.
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Fig. 5.1. Prototype ‘Max’; a 2D passive dynamic walking robot with an upper body
connected to a bisecting mechanism at the hip. Movies of this prototype in action can
be found at our website [1].
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Fig. 5.2. Model of the simplest walker with upper body; Left: parameters. Right:
degrees of freedom.

As described so far, the model would have three degrees of freedom (Fig. 5.2):
absolute stance leg angle θ (counter-clockwise), relative swing leg angle φ (clock-
wise), and absolute body angle ψ (clockwise). However, the upper body would
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Table 5.1. Default parameter values for the simplest walker with upper body, from
a rough estimation of human proportions. The parameters are nondimensionalized by
scaling: mass is divided by (pelvis mass + upper body mass), length is divided by
leg length, time is divided by

√
leg length/gravity.

parameter symbol approximated scaled
human value

Foot mass mf 7 kg 0.1
Upper body mass mb 49 kg 0.7
(Pelvis mass) (1 − mb) 21 kg 0.3
Leg length - 1 m 1
Body length lb 0.4 m 0.4
Hip spring stiffness k 0.4
Slope angle γ 0.0725 rad

then just be an inverted pendulum jointed around the hip. Without any active
control acting on it, one can expect that it will not be kept upright passively.
To keep a fully passive upper body upright, A. Ruina (personal communication)
suggested four possibilities:

1. Use a light upper body that has its actual center of mass below the hip. This
option is not very useful in realistic prototypes.

2. Use springs that keep the upper body upright [160]: This also has the utility
that it should give more efficient walking by making the steps smaller at a
given speed [97].

3. Use a bisecting mechanism: a kinematic coupling that keeps the body midway
between the two legs (Fig. 5.3).

4. Keep the model as is, and hope that for some special mass distribution
suddenly a stable gait emerges.

Intuitively, option three is most promising because the number of degrees
of freedom is reduced, which improves the chances of finding stable walking
cycles. Human beings do not have such a kinematic coupling, but the assembly
of pelvic muscles and reflexes could possibly perform a similar function. Also,

Fig. 5.3. Kinematic coupling of the upper body to the midway leg angle according to
Eq. (5.1)
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such a construction can be found in certain reciprocating gait orthoses [81]. In
robot prototypes such a kinematic coupling can be easily realized. In the model
it is introduced according to:

ψ = φ/2 − θ. (5.1)

The other options could provide valuable results, although the first is not
interesting as a model for human walking. We intend to investigate options two
and four in the future, but in this book we will focus on the behavior of the
model with the compass-like kinematic constraint.

5.3 Results of Point Mass Model

5.3.1 Walking Motion

The walking motion is analyzed with the help of the methods as described in
Chapter 2. With the default parameter values, the model takes something like a
human walking step if started with the initial conditions from Table 5.2. How-
ever, due to its quintessential nature our model shares some typical non-human
characteristics with the simplest walking model of Garcia et al. [54]. First, the
feet are no more than points, hence the application point of the ground contact
force is at a fixed location during one step. Second, there are no actuators, so
that the model will only walk if placed on a slope. Third, the legs cannot change
length, hence there are not enough degrees of freedom to allow a double support
phase.

Table 5.2. Initial conditions that result in a cyclic walking pattern for the simplest
walker with upper body, using the default parameter values (Table 5.1)

θ0 0.3821 rad
(φ0 = 2θ0) (0.7642 rad)

θ̇0 -0.3535 rad/s
φ̇0 0.0736 rad/s

The step starts and ends immediately after ‘heel strike’ (Fig. 5.4). The hip
moves forward like an inverted pendulum with an almost constant speed, while
at the same time the swing leg swings to a forward position. Naturally, the kine-
matic constraint keeps the upper body at the bisecting angle midway between
the two legs. The motion of the swing leg appears to be that of a free pendulum,
while actually it is mainly the result of the dynamics of the upper body and the
hip spring.

The trajectories of the various point masses are no surprise; the hip moves for-
ward on a circular path (often referred to as ‘compass gait’ [83]), while the swing
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foot remains close to the floor. The upper body follows a path almost identical
to the hip trajectory at a distance lb above the hip, only slightly smoother at the
heel strike discontinuities. There are two peculiarities. First, the hip trajectory
equals that of an inverted pendulum, but its speed does not. Due to the influence
of the upper body and the hip spring, the speed of the hip is nearly constant, as
can be deducted from the nearly constant stance leg velocity in Fig. 5.4. Second,
the swing foot travels briefly below floor level. Inevitable for a 2D walker with
straight legs, we allow this to happen in our simulation. Human beings and our
more sophisticated models and prototypes have knees to solve this problem.

With a scaled step length of 0.746 and a scaled step time of 1.77 the model
attains a scaled walking velocity of 0.42. Back on a human scale (on earth) this
corresponds to 1.3m/s. The scaled velocity is the same as the familiar Froude
number,

√
v2/gl, where {Froude number = 1} represents the maximum walking

speed for any biped. At higher speeds the foot contact force would become
negative, so the biped should switch to running or maybe to Groucho walking.
With a Froude number of 0.42 our model is well below that boundary, firmly
stepping its way but not even close to running.

The energy consumption of the model at this speed is low. This is usually [35]
represented in the non-dimensional ‘Cost of Transport’ c:

c =
E

mgs
(5.2)

i.e. the energy consumption E per distance traveled s per unit of weight (=
mass m times gravity g). For passive dynamic walkers the specific resistance is
equal to the sine of the slope angle sin γ as gravity is the only means of energy
input. So, our model has a specific resistance of 0.0725 at a (scaled) speed of
0.42. This is much more efficient than human beings walking at the same speed
with a specific resistance of approximately 0.38 [133], although the comparison
is somewhat unfair as muscle efficiency is unaccounted for. Also, this is much
more efficient than most other walking robots [35].

5.3.2 Inherent Stability

To classify the stability of the walking motion there are two useful but essen-
tially different definitions. First, we can regard stability in its most strict way.
The basis is a walking motion in cyclic equilibrium, called a ‘limit cycle’; a cer-
tain combination of initial conditions (Table 5.2) keeps repeating itself for all
subsequent steps. If started slightly away from the limit cycle, the walking mo-
tion is stable if the subsequent step is closer to the limit cycle. Note that this
‘local stability’ requires the existence of a limit cycle, and that only small dis-
turbances are investigated. We found that the model with the parameter values
from Table 5.1 and started with the initial conditions from Table 5.2 is indeed
stable for small disturbances. The cycle has a Monodromy matrix with eigenval-
ues (”Floquet Multipliers”, i.e. error multiplication factors) that all lie within
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Fig. 5.4. Cyclic walking motion of the model with upper body. Top: stick figure
representation, bottom: absolute angles of stance leg, swing leg, and upper body. The
simulation is performed using the default parameter values (Table 5.1).

the unit circle, which means that small errors decay step after step and thus the
cycle is stable.

Second, we can regard the stability of walking in the broadest and most intu-
itive form: ‘The robot is stable if it does not fall’. We can even allow ourselves to
use the formally incorrect term ‘more stable’ for a robot that can handle larger
disturbances. Note that this ‘global stability’ does not require the existence of a
limit cycle (every step may be different, as long as the robot doesn’t fall), but
that it can only be investigated with the costly method of trying out all possible
disturbances.

By application of the cell mapping method [78], we found that the model
performs surprisingly well. The model converges to its limit cycle if started with
errors as large as 8% on all initial conditions of Table 5.2, compared to 2% for the
simplest walking model [141]. For certain combinations of errors, the errors can
even be much larger. This is inspected by evaluation of the basin of attraction
(Fig. 5.5), the complete set of initial conditions that eventually lead to cyclic
walking. For example, the figure shows that cyclic walking with cyclic initial
conditions as in Table 5.2 emerges even if the initial step is twice as large, e.g.
{θ0 = 0.75, θ̇0 = −0.75, φ̇0 = −1}.
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Fig. 5.5. Basin of attraction of the simplest walking model with upper body. The
gray layers of points represent horizontal slices of a 3D region of initial conditions
that eventually lead to the cyclic walking motion. The cyclic motion ({θ0 = 0.3821,
θ̇0 = −0.3535, φ̇0 = 0.0736}, Table 5.2) is indicated with a flat asterisk on a small disk,
just above one of the sample slices.

5.4 Parameter Study on Point Mass Model

5.4.1 Slope and Spring Stiffness; Speed and Step Length

As mentioned in Section 5.2, the model has two parameters that are essential
to the model’s gait: the slope angle and the hip spring stiffness. Together, they
determine the step frequency and the step length, thereby also determining the
walking velocity.

First, for a fixed set of mass and length parameters, the step frequency is
mainly determined by the hip spring stiffness. It appears that the swing leg am-
plitude, step length, slope angle or walking speed all have a negligible influence
on the step frequency [108, 54].

Then, the step length is directly determined by the slope angle; the steeper
the slope, the larger the steps. This is a result of the balance between the gravi-
tational energy input and the impulsive energy losses at heel strike. Although a
larger step means more energy input, it leads to even more energy loss at heel
strike. As a result, the system will automatically converge to a periodic walking
motion with a step length that corresponds to the slope angle.

With the hip spring stiffness and the slope angle together, we were able to
set both the speed and the step length to human values. It should be noted that
these effects are not unique to our model. In fact, Kuo [97] studied these same
effects extensively for the simplest walking model to investigate energy matters
of human walking.
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5.4.2 Upper Body Height and Weight

The upper body is parameterized with body length lb and body mass mb. The
body mass and the pointmass at the pelvis together always sum to 1 for the
purpose of scaling, while the body length is scaled to the length of the leg. The
default parameters of Table 5.1 are chosen so that the model has some relevance
to future prototypes. This section investigates the model behavior when the
upper body is reduced to nothing or significantly enlarged.

Reduction of the upper body size or mass to zero leads to a model like the
simplest walker, except that the simplest walker has no hip spring and an in-
finitesimally small foot mass. For a very small foot mass, no hip spring is nec-
essary, but for a realistic foot mass as in Table 5.1, stable walking cycles only
exist if a spring is applied. As stated earlier, the hip spring and slope angle
together determine the walking speed and the step length. If we set them so
that speed and step length match the original model (Table 5.1), we find that
the ‘zero-body-model’ needs a slope angle of γ = 0.147 rad. In other words, the
model with upper body is twice as efficient as the same model without upper
body! Apart from that, there is not much difference between the gaits of the two
models.

Similarly, an increase in the mass or the size of the upper body will provide
an even higher walking efficiency. We found that an increase in mb has a similar
effect as an increase in lb. As an example, we crudely modeled a person carrying
a heavy load on the top of the head by setting mb = 0.9 and lb = 1. The hip
spring stiffness and slope angle were again adjusted to obtain human walking
speed and step length. The required slope angle is now only γ = 0.0249 rad; this
model walks about three times more efficient than with the default parameter
values! In general it is clear that the presence of an upper body has a positive
influence on the walking efficiency.

The changes of the mass or size of the upper body have little effect on the
stability. We investigated the three previously mentioned situations: a) zero up-
per body mass, b) default parameters (Table 5.1), and c) someone carrying a
heavy load on the head (lb = 1, mb = 0.9). In terms of linearized stability, all
three situations are stable for small disturbances. In terms of global stability, the
allowable errors on all initial conditions are about 8% for all three situations.
However, the resultant basins of attraction (as in Fig. 5.5) have different shapes,
so that convergence from larger errors occurs for different combinations of errors.
It seems odd that the size or mass of the upper body has no apparent influence
on the allowable errors (all 8%), whereas there is such a large difference with
the simplest walking model (only 2%). We believe that this is a result of the in-
creased speed and step frequency; the simplest walking model walks slower than
our model, which we tuned to walk with human speed. We intend to investigate
this effect in the near future.

5.4.3 Limits to Stability

Our upper-body walker has a remarkably stable gait if provided with the pa-
rameter values from Table 5.1. For certain other parameter values, however, the
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model has unstable gaits or even no cyclic walking motions at all. Usually this
can be solved by sufficiently increasing the hip spring stiffness k, with a few
exceptions. At slopes steeper than γ ≈ 0.35 rad, the equilibrium speed is so
high that the stance foot would loose ground contact and the model should start
running. The foot mass mf and the body size and mass lb and mb can be chosen
arbitrarily small or large; with a sufficiently high value for k the model still walks
fine, although this could result in correspondingly small or large step lengths,
which in turn could lead to the loss of floor contact.

Inside these boundaries, for each combination of parameter values there exists
a minimal value for k that ensures stability. For the model with the default
parameter values of Table 5.1, we studied the effect of variations in k on the
cyclic walking motion. For k > 0.218 we found steady, stable cyclic walking.
However, for the same value of k there also exists a second, unstable gait. The
steps are shorter and faster, and the motion looks like the model is stumbling
forward. McGeer [108] and Garcia et al. [54] discovered this second solution for
their models and refer to it as the ‘short-period gait’, as opposed to the normal,
stable solution which is termed ‘long-period gait’. We are only interested in the
last type of gait, the behavior of which we have studied as a function of the
parameter value for k.

Above the boundary value, an increase in k results in faster and smaller steps. If
we decrease k below 0.218, we cross a bifurcation to asymmetric gaits, first encoun-
tering period-two solutions and for lower k even higher-period solutions. These so-
lutions are still stable. Below k = 0.162, we found only unstable gaits or even no
cyclic solutions at all. Garcia et al. [54] found a similar bifurcation to chaos for the
simplest walking model when increasing the slope above γ = 0.015 rad.

We tracked the first bifurcation point over a range of parameter values because
that point represents the minimally required value for k to obtain normal, stable
walking. The relation between the minimal value for k and the other parameters
is not linear, and there is not an obvious and simple non-linear relationship.
Qualitatively, the required hip spring stiffness k needs to be increased if lb, mb,
mf or γ are increased.

5.5 Prototype Design

5.5.1 Simulation Model

We now move from the point mass model to a realistic model of a two-dimensional
5-link biped (Fig. 5.6). The model has a common topology; the upper body is a sin-
gle rigid link, while each leg consists of a thigh and a shank interconnected through
a knee joint. The knees are equipped with a hyperextension stop (assuming fully
inelastic impacts) and a locking mechanism (latch) which is released just after the
start of the swing phase. With the bisecting hip mechanism, the total number of
degrees of freedom is at most 3; absolute upper body angle ψ, inter-leg angle φ,
and relative swing knee angle ξ. At the end of a step when the swing knee is fully
extended, only two independent degrees of freedom remain (four states; two angles
and their velocities). Note that this is the same number of degrees of freedom as
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for kneed walkers without an upper body (Chapter 4) due to the constraint of the
bisecting hip joint.

Ankle joints are not present, as rigidly attached arc feet have proven to be
a simple and sufficient solution for stable passive walking. We assume that the
links suffer no flexible deformation and that the joints are free of damping or
friction. Also, we assume a perfect bisecting mechanical coupling between the
legs and the upper body. The contact between the foot and the floor is idealized,
assuming perfectly circular feet that do not deform or slip, while the heel strike
impact is modeled as an instantaneous, fully inelastic impact where no slip and
no bounce occurs. The walker walks on level ground and thus requires a small
amount of energy input per step. This is provided by means of the hip muscles
which accelerate the swing leg to a forward position. Their main function is to
provide fore-aft stability, but their secondary effect is the input of just enough
energy into the system to maintain the cyclic walking motion. Finally, the floor
is assumed to be a rigid, flat, and level surface.
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Fig. 5.6. Two-dimensional 5-link model. Left: parameter definitions. Right: degrees
of freedom (ψ is not measurable in the prototype).

5.5.2 Simulation Procedure

The simulation procedure is similar to that applied in the point mass model
study of the previous sections. The procedure is a succession of nonlinear nu-
merical dynamic simulations of walking steps which begin and end at the in-
stant immediately after heel strike. Within one step, the equations of motion are
numerically integrated until an event is detected such as knee strike or heel strike,
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followed by an impact calculation. After the heel strike impact the simulation of
the walking step is ended. The end state of the walker (an instantaneous double
stance phase) can then be used as the starting state for the next step, or it can
be compared to the initial state of the walker. If the end state equals the initial
state, we have found a fixed point representing a cyclic walking motion. We then
apply the Poincaré Mapping method for stability analysis. Additionally, to in-
vestigate ‘how stable’ the walking motion is, we perform an approximate search
for the boundaries of the basin of attraction of the fixed point. For this realistic
model, it is unfeasible to do a full investigation of the basin of attraction, so we
cannot apply the cell mapping method as was done with the point mass model.
Instead, a walking step is simulated with initial conditions that deviate from the
fixed point in eight different combinations of states (e.g. a positive deviation on
the stance leg angle combined with a negative deviation on the angular veloc-
ity of the body). We search for the largest allowable deviations that still lead
to successful walking. The resulting estimate for the boundaries of the basin of
attraction are a measure for the size of disturbances (at the start of a step) that
the walker can still recover from.

5.5.3 Default Parameter Values

A set of physically realistic parameter values that lead to stable walking was
readily found. Re-using partial designs from the previous prototype (Chapter 4)
we arrived at a 10 kg machine with a 0.6 m leg length and 1.1 m total height. The
physical properties, such as the mass distribution were initially determined by
convenient placement of the electronic and pneumatic components. The resultant
configuration resulted in stable walking in the simulation, so we have adopted
these parameter values as the default values listed in Table 5.3.

Table 5.3. Default parameter values for the prototype with two full CO2 canisters.
The underlined u, l, and b serve as subscribts as in Fig. 5.6.

upper lower
body leg leg

mass m [kg] 8 0.7 0.7
mom. of Inertia I [kgm2] 0.11 0.005 0.005
length l [m] 0.45 0.3 0.33
vert. dist. CoM c [m] 0.2 0.15 0.16
hor. offset CoM w [m] 0 0 0
foot radius rf [m] - - 0.25
foot hor. offset wf [m] - - 0.01

5.5.4 Construction of the Prototype

The central part of the prototype (Fig. 5.1) is its bisecting hip mechanism. Of
the many possible forms of implementation we chose to apply an auxiliary axle
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connected to the legs with one straight and one cross-over chain (Fig. 5.7). In
hindsight, it is valuable to report that this solution requires extra attention to
the problem of slack in the chains. Also, one must be aware that rather large
torques are transmitted through the chainwheels and axles, especially when the
prototype occasionally falls. Nonetheless, for our relatively lightweight proto-
type this solution is satisfactory. Other possible mechanisms include a four-bar
linkage [34], a differential gearbox, or cables and pulleys (as applied in some
gait orthoses [81]). Alternatively, the bisecting hip action can also be obtained
in fully actuated robots where a local controller keeps the upper body in the
bisection angle [130, 25].

Auxiliary
axle

Main
axle

Fig. 5.7. The bisecting hip mechanism in the prototype. The outer legs are rigidly
attached to the hip axle, the inner legs can rotate freely. The hip axle is connected
through bicycle chains via an auxiliary axle to the inner legs.

The prototype is autonomously powered with an on-board pneumatic system.
The pneumatic components are displayed in Fig. 5.8, clockwise arranged accord-
ing to the CO2 flow through the system. The returnable Alco2jetTM canister
(widely available for home soda machines) contains 450 g CO2 at the saturation
pressure of 5.8 MPa and weighs 1.2 kg when completely full. The pressure is re-
duced in two stages, first to approximately 1.2 ± 0.2 MPa and then to 0.6 ± 0.01
MPa. Both levels are manually adjustable. We developed the regulators specially
for this project because they are not commercially available in the required small
and lightweight design (the small 40x20x10 mm block in Fig. 5.8 actually con-
tains four second stage regulators). The second stage pressure output is fed via
low-power SMCTM valves to four tiny SMCTM cylinders that control the knee
latches and to four ShadowTM McKibben muscles that act as two antagonistic
pairs between the robot’s body and the outer legs (attached with a moment arm
of 60 mm).
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Fig. 5.8. The pneumatic components and a 30 cm ruler to indicate their sizes. The
components are clockwise arranged according to the CO2 flow through the system; 5.8
Mpa CO2 canister, the first stage pressure regulator to 1.2 Mpa, a block of four second
stage regulators to 0.6 Mpa, one of four low-power SMCTM valves, one of four small
SMCTM cylinders and one of four ShadowTM McKibben muscles.

The McKibben muscles in this prototype perform three simultaneous tasks:

1. They power the walking motion, see Chapter 3. A difference of internal
pressure between two antagonists results in an asymmetry that pulls forward
the swing leg. By alternation of pressures at each step, the muscles inject a
small amount of energy into the system and thus replenishes the energy lost
in damping and impacts.

2. They provide robustness against falling forward, see Chapter 4. Especially
the non-linear behavior near maximal extension is beneficial for this, as the
muscles effectively slow down the forward-rushing swing leg and then keep
it in that forward position.

3. They provide the required hip spring stiffness for the upper body (this
Chapter).

The control system is exactly the same as in the previous prototype (Chapter 4).
There is one foot switch underneath the most right foot, and one underneath one
of the middle feet. These two switches are read by a micro-controller, which then
triggers only two valve actions per step based on the state of the foot switches.
If the inner leg’s switch is contacted, the front hip muscles are switched to high
pressure and the antagonists to low pressure, effectively pulling the outer legs for-
ward. Simultaneously, the knee latches of the outer legs are released briefly. Then,
the system just waits for the outer leg’s foot switch to make contact, assuming
that knee extension takes place before heel contact. The entire control algorithm
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is easily implemented in any microcontroller (we have experimented both with a
MicrochipTM PIC16f877 and with a LEGO MindstormsTM RCX controller).

For post-experiment data analysis, however, a more elaborate electronic sys-
tem is required. The prototype is equipped with four optical encoders (hip, inner
knee, left and right outer knee) and with one gyroscope mounted in the robot’s
body. The low-level processing (counters and A/D conversion) is still done in
a PIC microcontroller, while the data is collected at 50 Hz in a J-stickTM Java
board that can be read out after the experiments. Even with the measurement
system active, the entire robot remains fully autonomous.

5.6 Prototype Experiments

5.6.1 Resultant Motion and Gait Characteristics

The gait of the prototype looks natural, see video at [1]. The resultant walking
motion is depicted in Figure 5.9, in which we have plotted both the simulation
results and the actual prototype recordings. The figure presents the absolute
body angle (simulation only, not measured in the prototype), the relative hip
angle and the knee angles as a function of time, together with the foot clearance
(also simulation only). The clearance amounts to 5 mm or more throughout the
step. The body remains approximately upright with maximal excursions of ±
0.15 rad. The knee reaches full extension 0.5 s after the start of the swing phase.
The maximal inter-leg angle is ± 0.65 rad, but at the time of heel strike this is
± 0.55 rad, leading to a step length of 0.35 m. The model is walking in its limit
cycle, taking 1.2 steps per second thus walking at 0.42 m/s (Table 5.4).

Table 5.4. Gait characteristics when walking with the default parameter values

Step length 0.35 m
Step frequency 1.2 Hz
Velocity 0.42 m/s
Nominal clearance 5 mm
Cost of Transport 0.2 J/(kgm2s−2)

The differences between the motions of the model and the prototype are small,
especially when considering that the model is walking in its limit cycle while the
prototype is only close to its limit cycle due to constant disturbances; the floor
is far from perfectly flat and level. A noticeable difference is in the amount of
knee flexion. Especially the knees of the outer legs bend less than predicted by
the simulation, probably caused by friction and damping in the knee joint or by
a slight delay in the knee latches. The overall effect on the walking motion is
small, except for the foot clearance which then decreases significantly and indeed
causes most of the failures.
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Fig. 5.9. Comparison of the walking motion of the simulation (dashed lines) and the
prototype (solid lines). The absolute body angle ψ and the clearance were not measured
in the prototype. The inter-leg angle shows a slight asymmetry in the prototype’s gait.
The knees of the prototype show approximately 0.05 rad play of the latch.
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5.6.2 Stability

The stability of the cyclic walking motion is usually analyzed by investigating
the initial states of each step in a sustained walking motion. In this chapter,
we choose to depart from the usual approach and to investigate the end states
instead of the initial states. The difference is that the analysis here is based
on the velocities just before heel strike in contrast to the tradition of using the
velocities just after heel strike. The reason is that the velocity measurements in
the prototype are unreliable just after an impact due to transient oscillations in
the mechanical system.

At the end of a step, with both feet simultaneously on the floor and with both
knees extended, there are only three independent states; inter-leg angle φ, its
angular velocity φ̇ and the absolute angular velocity of the body ψ̇. Their fixed
point values given in Table 5.5 are determined with the computer simulation
for the parameter values in Table 5.3. A Floquet Multiplier analysis of the fixed
point on the computer model predicts that the walking motion is stable, i.e. that
small errors on the end states in Table 5.5 decay step after step.

Table 5.5. Fixed point values for the three independent end states just before heel
strike, valid for the parameter values from Table 5.3. The difference between simulation
and prototype arises from the simplified model for the non-linear muscle behavior.

simulation prototype
(average ± standard deviation)

Inter-leg angle φ rad 0.55 0.55 ±0.06
Inter-leg ang. vel. φ̇ rad/s -0.58 -1.15 ±0.61
Upper body ang. vel. ψ̇ rad/s 1.04 1.03 ±0.17

Fig. 5.10 shows the walking results of over 200 steps (measured in series of
40 steps on average) depicted in the phase plane. The graph only shows two out
of the three independent states because the inter-leg angular velocity φ̇ is not
relevant; Table 5.5 shows a high variability for this state and the simulations
have shown us that even much larger variations on this state can be allowed
without resulting in a failure. The reason for this insensitivity is the fact that
the inter-leg angle is controlled by the hip muscles toward a fixed end position,
independent of the initial velocity. The difference between the measured average
and the simulated value for φ̇ is a direct result of the simplified model for the
muscle non-linearities at maximal extension.

The experimental results are indicated with black dots in Fig. 5.10. The last
step in a series is indicated with an encircled cross, because it is the last step
before a fall. These experimental results correspond well with the simulation
results, which are indicated in the figure with the gray area. According to the
simulation model, the gray area is the basin of attraction; a start outside the
area will either lead to a fall Forward or a fall Backward. The average state
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Fig. 5.10. A section of the basin of attraction in the Poincaré map. The figure shows
the two most sensitive states at the end of a step, namely the inter-leg angle φ and the
angular velocity of the upper body ψ̇. The walker is not sensitive to variations in φ̇, the
third independent end state, which is therefore not shown. The black dots represent
200 measured states during continuous walking, whereas the last step of each series of
steps (the last before a fall) is indicated with an encircled ‘x’. The boundaries of the
basin of attraction as derived from the simulation are given by the solid black lines.
Below the lower boundary, the robot falls Backward, above the upper boundary it falls
Forward as a result of foot-scuffing. The dashed line represents maximal extension of
the hip muscles. Due to the hip actuation the robot is not likely to arrive in the lower
left part of the basin of attraction, but if it would, it would return stably to its limit
cycle. The fixed point of the simulation is a white circle, the average measured state is
a white circle with a dot.

(indicated in Fig. 5.10 with a white encircled dot) also corresponds neatly to the
fixed point from the simulation model (white circle), see also Table 5.5.

The stability results indicate that the prototype can be easily started with
a manual launch (illustrated in Fig. 5.11). Moreover, we could also realize an
automatic launch from a static position, although this only works if the legs are
placed with a very small inter-leg-angle, i.e. with the four legs almost all parallel.
After a launch, the prototype can walk indefinitely on a level floor until it runs
out of power or into a wall. In contrast to the robustness against disturbances
in a manual launch, the walker appears to be not too robust against variations
in height in the floor surface. The variability of the measurements is quite large.
This is a result from the irregularities in the hallway floor. The floor has vari-
ations in height of maximally 3.5 mm in one step, amounting to a local slope
of ± 0.5o. These irregularities are close to the maximal allowable disturbances
as predicted by the simulation model, explaining why some of the measurement
points are close to the boundaries of the basin of attraction. The simulation
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Fig. 5.11. Video stills illustrating the walking motion after a manual launch. Video is
available at our website [1].

predicts that the walker can handle a step down in the floor of maximally 3 mm.
We verified this with an experimental setup where it walked on a rigid, flat and
level surface (not the hallway floor) and then took a step down. Indeed it could
handle not much more than 3 mm.

5.6.3 Parameter Sensitivity

The prototype is tolerant to variations in most of the parameters (e.g. 1 kg of
extra mass on the upper body has no noticeable effect), except for those parame-
ters that affect the forward velocity. The forward velocity is the net result of the
velocity increase during the stance phase and the instantaneous velocity decrease
at heel strike. The velocity increase is determined by the amount of time that
the robot’s center of mass spends behind the foot contact point (deceleration)
and the amount of time spent in front of the contact point (acceleration). Any
parameter that influences these has a strong effect on the walking motion; with
too much deceleration the walker will have a tendency to fall backward whereas
with too much acceleration the resultant walking velocity will be high and thus
the chances of falling forward increase.

Parameters with a direct influence are wb, wu, and wl (Fig. 5.6 and Table 5.3)
which determine the horizontal position of the center of mass, and wf and rf

which determine the foot contact point. The effect of the position of the center of
mass is strong. For our 10 kg walker, a 500 g additional mass that can be attached
up to 100 mm in front or behind the hip joint already provides sufficient tuning
possibilities. In our opinion, the automatic control of the fore-aft balance will be
one of the major improvements for future dynamic walking robots.

The foot radius rf determines how much the foot contact point travels forward
during the stance phase and thus a larger radius has a weakening effect on
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both the robot’s deceleration and acceleration. Previous experiments and simu-
lations [186] have shown that this effect is beneficial to the robot’s robustness
against disturbances. A forward foot offset wf > 0 creates a forward tilt of the
entire robot (best visualized in a drawing of the heel strike state) and thus re-
sults in faster walking. Therefore, an increase in wf should be accompanied by
a backward displacement of the center of mass. Note that this observation is
only valid for a walker with an upper body with the bisecting hip mechanism
and with a substantial mass at a substantial distance above the hip joint. For
walkers without an upper body, the effect is reversed.

The hip actuation has an indirect but significant influence on the deceleration
and acceleration during the stance phase. For any walker with physically feasible
parameter values (also without upper body), the center of mass moves forward
when the swing leg is swung forward. This is best verified in a simplified analysis
without gravity. If the swing leg is moved quickly by a strong hip actuation, then
that forward displacement takes place early in the stance phase, and thus the
center of mass will spend relatively more time in front of the foot contact point.
In other words, the faster the swing leg is moved forward, the faster the robot will
walk. The strength of this effect depends on the amount of inertia (of both the
legs and the upper body) that is involved when the hip actuators are engaged.

There seems to be a counterproductive effect here, as the hip actuation was
installed in the first place to reduce the chances of falling forward and now it
appears to increase that chance by increasing the walking velocity. This can
be resolved easily, however, with a backward adjustment of the robot’s center
of mass so that the total effect (of hip actuation and mass displacement) is an
enlargement of the basin of attraction.

In conclusion, the parameters of the upper body barely influence the walking
behavior and the stability. There is almost no effect of an increase of the mass
or a vertical displacement of the center of mass. Only the fore-aft position of the
center of mass is important, as it regulates the average forward walking velocity,
and thus the chances of falling forward or backward.

5.6.4 Energy Efficiency

The specific cost of transport (Eq. 5.2) of our prototype is calculated with the
CO2 expansion through the muscles from the 0.6 MPa input pressure to 0.24
MPa relief pressure. The prototype uses 208 mg CO2 per step (allowing it to
walk for 30 minutes on a single canister). The exergy (or ‘availability’), i.e. the
amount of work that could theoretically be done with gas expanding from 0.6
MPa to 0.24 MPa, is 10.6 Joule per step, so the specific cost of transport equals
0.32. Although the specific cost of transport for the prototype resembles that of
a walking human being, some deliberations must be taken into account.

On the one hand, one could argue that the prototype is much more efficient
than the human. The pneumatic muscles are not optimal for their task, because
they have a fairly large ‘dead volume’ which must pressurized at each action
cycle. They use much more pneumatic energy than the amount of work they
produce. We determined with the simulation model that the amount of work
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produced by the muscles (i.e. their force integrated over their elongation) is only
0.5 Joule per step, leading to a very low specific cost of transport of 0.01. Note
that this value is in the same range of the fully passive walkers of Chapter 2.

On the other hand, one could argue that the prototype is much less effi-
cient than the human. The specific cost of transport for the human includes the
metabolic cost of the entire system, and specifies how well the available energy
is used. In that respect, it would be fairer for the prototype calculations to also
include the idle pressure reduction from 5.8 MPa to 0.6 MPa. Although exact
figures are not available, it is certain that the total amount of available pneu-
matic energy from the CO2 canister is factors higher than the energy that is
used in the muscles. However, the main cause of this apparent waste of available
energy lies not in the applied concept of passive dynamic walking but rather in
the unavailability of pneumatic components that can use the energy of the high-
pressure canister. It is expected that ongoing research in the field of pneumatics
will eventually solve this problem.

5.7 Conclusion

This chapter reports on the successful addition of an upper body to a walking
robot based on the concept of passive dynamic walking. The upper body is
connected to the legs by means of a bisecting hip mechanism which forms a
passive solution to stabilize the upper body while simultaneously allowing a
passive swing leg motion. The prototype walks stably and efficiently. The fore-
aft position of the center of mass of the upper body is a powerful parameter
for the stability of the walking motion. Conversely, the height of the center of
mass, the total mass and the mass distribution have no noticeable influence on
the performance. Thus, we conclude that the bisecting hip mechanism forms a
practical and simple solution to construct efficient bipedal walking robots, in
agreement with the concept of passive dynamic walking.

The simulation results suggest that the capability to reject larger disturbances
increases when the model walks faster. So far, this effect seems to be unrelated
to the added upper body. It is an interesting effect that we intend to research in
the near future.
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6.1 Introduction

One of the grand challenges in biped walking is to find the key to stability in
three dimensions. In addition to the fore-aft motions (pitch), in 3D also side-
ways motions (lean) and rotations around the vertical axis (yaw) are possible.
It is the interaction between all three of these that makes the problem of 3D
stability so difficult. Consequently, most of the known solutions to this problem
are successful because they reduce the interaction in one way or another:

• Ignore yaw by assuming sufficient yaw resistance in the foot contact [96, 127].
• Apply large moments of inertia against yaw [33, 32].
• Walk with short steps [160, 33, 150].
• Counteract yaw with a counter-rotating body [181] or with counter-swinging

arms [36].

In this chapter, however, we aim not at a reduced interaction between the de-
grees of freedom, but conversely we show how a purposefully induced interaction
between lean and yaw can actually improve the stability of the walking motion.

First, Section 6.2 introduces the main idea through the related problems of
skateboard and bike stability. Then in Section 6.3 an elementary walking model
is introduced, followed by the simulation results in Section 6.4. Sections 6.5 to 6.7
discuss the application of the idea in a prototype that was developed for this pur-
pose. The content of this chapter is based on three of our papers [182, 176, 178],
c© 2004, 2007 IEEE, reprinted with permission.

6.2 Advantageous Lean-to-Yaw Coupling

6.2.1 Concept

In 3D walking, side-to-side tipping (i.e. excessive leaning) is a major stability
hazard. One of the most effective control opportunities is lateral foot placement
- placing the next swing leg sideways to avert a fall in that direction [96, 46]. The
key insight in this chapter is that such lateral foot placement can be obtained
by steering, i.e. yaw. Rotation around the vertical axis by itself has no effect,
but in combination with forward progression, it suddenly affects the lateral foot
placement. In other words, if during a forward walking motion one steers to the
left, then automatically the next footfall will be placed more to the left side.
Thus, yaw can be used for side-to-side stability, as long as there is a forward
progression.

In this section, we will investigate two known examples of such advantageous
lean-to-yaw coupling; a skateboard and a bicycle. These examples represent two
different forms of lean-to-yaw coupling. The skateboard has a kinematic coupling;
yaw and lean are combined in a single degree of freedom as explained in Section
6.2.2. The bicycle has a dynamic coupling; besides the sideways lean degree of
freedom of the bicycle, there is a separate degree of freedom for the steering front
fork. The bicycle study is presented in Section 6.2.3. Note that the remainder
of the chapter addresses a kinematic lean-to-yaw coupling for walking machines,
for which the skateboard is the most relevant analogy.
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6.2.2 Skateboard

In the skateboard, the two sets of wheels are attached to the board via tilted
steering axes (Fig. 6.1). Although the main purpose of this construction is to
give the rider the ability to steer, here we’ll show how this also provides stability.
The following analysis is a simplified version of the skateboard stability analysis
by Hubbard [79] in 1979.

h

α

α

m

k

k

g

x

y

z
w

Fig. 6.1. Parameters of the skateboard model

The board and wheels are assumed to be massless and the height between the
board and the floor is neglected. Also, we assume that there is always contact
between all four wheels and the floor. The rider is modeled as a single point mass
at height h above the floor, rigidly attached to the skateboard. The distance
between the front and rear wheels is w. The steering axes are mounted at an
angle α with respect to vertical such that sideways leaning of the rider results in
steering in that direction. The steering axes are equipped with rotational springs
with stiffness k. The model has fore-aft and sideways symmetry.

The skateboard is a non-holonomic system, i.e. it cannot slip sideways but it
can move to a sideways position by a sequence of steering actions. Therefore it
has a smaller velocity space (lean and ride) than coordinate space (lean, x- and y-
position and orientation in plane). Here we will consider the linearized equations
of motion in which the forward velocity can be considered as a parameter. The
linearized model only has one degree of freedom, namely the sideways lean angle
of the rider θ (Fig. 6.2). With zero forward velocity, the behavior equals that
of an inverted pendulum with a de-stabilizing gravity torque and a stabilizing
spring torque. Although the two springs act on the tilted joints, in their projected
torques the tilt angle α cancels out.
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θ
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Fig. 6.2. Variables for the linearized skateboard model. Left: rear view. Right: top
view.

When riding with a velocity v, the skateboard makes a turn if there is a
non-zero lean θ. The velocity together with the radius of curvature rc (Fig. 6.2)
determine the sideways acceleration of the board according to

a =
v2

rc
=

2v2

w tan α
θ (6.1)

Therefore, the total system equation describing the linearized model becomes

mh2θ̈ + (2k − mgh +
2mh

w tan α
v2)θ = 0 (6.2)

This result can be interpreted as follows. If the spring stiffness k is high
enough to counteract the inverted pendulum instability, then the system is never
unstable. If not, then it can always be made stable by its velocity. The larger
angle α, the higher the required velocity. The critical velocity is:

vmin =

√
(mgh − 2k)w tan α

2mh
(6.3)

Note that the system can at best only be marginally stable. The introduction
of damping in the steering axis could make it asymptotically stable. Also note
that Eq. (6.3) suggests that it is best to make angle α equal to zero. In real life
there is a lower limit to α dependent on the width of the skateboard because of
the unilateral contact between the wheels and the floor.

6.2.3 Bicycle

Everybody knows that a bicycle is highly unstable at rest but can easily be
stabilized at a moderate speed. Moreover, some uncontrolled bicycles can be
asymptotically stable in a certain speed range. To demonstrate this phenomenon
we will consider one of the simplest bicycle models: an uncontrolled bicycle with
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Fig. 6.3. Bicycle model together with the coordinate system, the degrees of freedom,
and the parameters, from [140]

a rigid rider attached. This is an example of a dynamically coupled lean-to-yaw
motion due to the hands-free operation of the bicycle. The following analysis
is based on a recent bicycle benchmark publication by Schwab, Meijaard, and
Papadopoulos [140].

The mechanical model of the bicycle consists of four rigid bodies, viz. the
rear frame with the rider rigidly attached to it, the front frame being the front
fork and handle bar assembly and the two knife-edge wheels. These bodies are
interconnected by revolute hinges at the steering head between the rear frame
and the front frame and at the two wheel hubs. The contact between the stiff non-
slipping wheels and the flat level surface is modeled by holonomic constraints in
the normal direction and by non-holonomic constraints in the longitudinal and
lateral direction. There is no friction, apart from the idealized friction between
the non-slipping wheels and the surface, nor propulsion and no rider control, the
so-called hands free coasting operation.

The mechanical model of the bicycle has three degrees of freedom: the lean
angle φ of the rear frame, the steering angle δ, and the rotation θr of the rear
wheel with respect to the rear frame. The forward speed is v = −θ̇rRrw, where
Rrw is the radius of the rear wheel. Due to the non-holonomic constraints there
are four extra kinematic coordinates which describe, together with the degrees of
freedom, the configuration of the system [139]. The four kinematic coordinates
are taken here as the Cartesian coordinates x and y of the rear-wheel contact
point, the yaw angle ψ of the rear frame, and the rotation θf of the front wheel
with respect to the front frame. The dimensions and mechanical properties of
the benchmark model are those of a regular 18 kg bicycle with an average 76 kg
rider. For the complete set of parameters we refer to [140].
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In this study, we consider the linearized model of the bike at constant forward
speed. In the linearized model only two degrees of freedom remain, q = (φ, δ)T .
The equations of motion are

Mq̈ + [C1 · v]q̇ + [K0 + K2 · v 2]q = f , (6.4)

with a constant mass matrix, M, a “damping” matrix, C1, which is propor-
tional to the forward speed v, and a stiffness matrix which has a constant part,
K0, and a part, K2, which is proportional to the square of the forward speed.
Unfortunately the entries in the matrices are too complex and lengthy to ex-
press in a concise symbolic form. The benchmark paper [140] does present these
entries in an algorithmic manner. Simplification of these expressions by neglect-
ing so-called minor terms, as has been done by others in the past, would lead
to incorrect results. Therefore we choose here to present typical values for the
entries in the matrices, namely

M =

⎡
⎣ 80.812 2.3234

2.3234 0.30127

⎤
⎦ ,C1 =

⎡
⎣ 0 33.774

−0.84823 1.7070

⎤
⎦ ,

K0 =

⎡
⎣−794.12, −25.739

−25.739 −8.1394

⎤
⎦ ,K2 =

⎡
⎣ 0 76.406

0 2.6756

⎤
⎦ ,

(6.5)

where we use the standard units kg, m, and s. The forces f on the right-hand
side are the action-reaction lean moment between the fixed space and the rear
frame, and the action-reaction steering moment between the rear frame and the
front frame. The latter is the torque that would be applied by a rider’s hands
or a controller. In the present study of an ordinary uncontrolled bicycle, both of
these moments are taken to be zero.

To investigate the stability of the upright steady motion we start from the ho-
mogeneous linearized equations of motion (6.4). Next we assume for the small vari-
ations in the degrees of freedom an exponential motion with respect to time which
then takes the form q = q0 exp(λt). This leads to an eigenvalue problem for which
in this case the characteristic equation is a polynomial in the eigenvalues λ of order
four. The coefficients in this polynomial are themselves polynomials in the forward
speed v, since some coefficients of the linearized equations of motion have a linear
or quadratic dependency on v. The solutions of the characteristic polynomial for
a range of forward speeds are the root loci of the eigenvalues λ, which are shown
in Figure 6.4. Eigenvalues with a positive real part correspond to unstable mo-
tions whereas eigenvalues with a negative real part result in asymptotically stable
motions. Complex conjugated eigenvalues give rise to oscillatory motions.

For the bicycle model there are two significant eigenmodes, called capsize
mode and weave mode. The capsize motion is a non-oscillatory motion in which,
when unstable, the bicycle just falls over like a capsizing ship. The weave motion
is an oscillatory motion in which the bicycle sways about the headed direction.
Both eigenmodes show the dynamically coupled lean-to-yaw motion. At very
low speed, 0 < v < 0.7 m/s, there are two positive and two negative eigenvalues
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Fig. 6.4. Eigenvalues λ from the linearized stability analysis for the benchmark bicycle
from Figure 6.3 and [140] where the solid lines correspond to the real part of the
eigenvalues and the dashed line corresponds to the imaginary part of the eigenvalues,
in the forward speed range of 0 ≤ v ≤ 10 m/s. The zero crossings of the real part of
the eigenvalues are for the weave motion at vw = 4.3 m/s and for the capsize motion at
vc = 6.1 m/s, giving the bicycle an asymptotically stable speed range of vw < v < vc.

which correspond to an inverted pendulum-like motion of the bicycle. At v =
0.7 m/s two real eigenvalues become identical and start forming a conjugated
pair; this is where the oscillatory weave motion emerges. At first this motion
is unstable but above vw = 4.3 m/s the weave motion becomes stable. After
this bifurcation the frequency of the weave motion is almost proportional to the
forward speed. Meanwhile the capsize motion, which was stable for low speed,
becomes mildly unstable at vc = 6.1 m/s. With further increase in speed, the
capsize eigenvalue approaches zero.

We conclude that the bicycle model shows a dynamic lean-to-yaw coupling
resulting in an asymptotically stable motion. Similar to the skateboard, with its
kinematic coupling, a forward velocity above some critical value is required for
this stabilizing effect.

6.3 Simplest Passive Walking Model with Lean-to-Yaw
Coupling

6.3.1 Model

The purpose of the simulation model is to show the essential dynamic effects
of kinematic lean-to-yaw coupling in walking systems. The simplest model for
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this purpose is a 3D cousin of Garcia et al.’s two-dimensional ‘Simplest walking
model’ [54] which consisted of one finite point mass at the hip joint, two in-
finitesimally small point masses at the feet, and massless rigid links in between,
interconnected with a frictionless hinge at the hip. Our model (Fig. 6.5) is a 3D
extension of this; the hip has gained a finite width and the hip mass is divided
into two point masses at the extremes of the massless hip axle. For numerical
reasons the point masses at the feet of our model are not infinitesimally small
but just very small. The degrees of freedom are the coordinates and the yaw
and lean angles of the center of the hip axle {xh, yh, zh, u1, u2}, the two leg pitch
angles {u3, u4}, and the two ankle angles {u5, u6}. The ankle axes are mounted
in the x-y plane at an angle α with respect to the vertical. Note that the ankle
axes have no component in the z-direction, unlike conventional robot designs or
the human ankle. The ‘normal’ ankle functionality, rotation around the z-axis,
is realized by means of the roll-off motion of the feet.
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Fig. 6.5. Our simple walking model with ankle joints that couple lean to yaw. Left:
degrees of freedom. Right: parameters.

The feet are (partial) cylinder shells with the cylinder axis perpendicular to
the ankle axis. They are mounted such that the cylinder axis is in the leg (not
displaced forward or backward) and that the total leg length (when standing
upright) is independent of the cylinder radius. The foot contact is modeled as
a perfectly rigid cylinder-plane contact with only one degree of freedom; pitch
in a direction perpendicular to the cylinder axis. The width of the feet is not
specified and is assumed to be sufficient to prevent sideways tipping over the
edge. The feet in the model have a finite size but no inertia, so the foot of
the swing leg contributes to the system dynamics only as a point mass. For the
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detection of heel contact, the swing foot is assumed to preserve its parallel orien-
tation with respect to the floor surface. Heel contact itself is modeled as a rigid
plastic impact with immediate and full contact to the floor, while at the same
instant the previous stance foot loses contact.

The model walks down a shallow slope γ. All parameters are scaled so that
gravity g, the leg length l and the total robot mass (2mhip) are all equal to
one1. The simulation results can be scaled back to obtain results for example
for an earthly gravity regime. This scaling exposes the minimal set of adjustable
parameters; hip width d, foot radius r, ankle mounting angle α, and slope angle
γ as listed in Table 6.1. Additionally, a (small) torque can be exerted at the hip
joint to move the swing leg quickly to a forward position, a feature that will
prove necessary for stable walking (see Chapter 4 and Section 6.4).

Table 6.1. Parameters and their default values

hip width d 0.3
foot radius r 0.5
ankle mounting angle α 0.55
slope angle γ 0.01

6.3.2 Equations of Motion

The equations of motion for the system without foot contact constraints were
generated with the method of virtual power as described in Chapter 2, where
the twelve dependent degrees of freedom ({x, y, z} for each point mass) were
expressed in terms of the nine generalized coordinates {xh, yh, zh, u1..u6}. In
addition, there are three coordinates that change value only once per step; the
foot roll-off direction φ and the foot contact location {xc, zc}. The five foot
contact constraints are expressed as follows:

1. No yaw; the foot cylinder axis must remain perpendicular to its initial heading,
2. No lean; the foot cylinder axis must remain perpendicular to the normal of

the floor,
3. Contact with plane; the center of the foot cylinder axis must remain a dis-

tance r (foot radius) above the floor,
4. No lateral slip
5. No forward slip; the forward disposition should match with the pitch angle.

These constraint conditions (either for the right foot or for the left foot depending
on which one is in stance phase) were added to the equations of motion to obtain
a system of Differential Algebraic Equations which solves for the 9 generalized
coordinates and 5 Lagrange multipliers (one unknown contact force or torque
per constraint condition). The impact equations for the heel strike event are
1 Due to the applied scaling, most quantities in this text are dimensionless, which

explains the frequent use of seemingly incomplete statements such as ‘a velocity of
0.36’.
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derived in the same systematic manner (see Chapter 2), in which the five foot
contact constraints serve as contact conditions where impulsive forces can occur.

6.3.3 Simulation Procedure

The simulation procedure is a succession of simulations of walking steps which
begin and end at the instant immediately after heel strike. Within one step, the
system of DAE’s is numerically integrated until heel strike is detected, followed
by an impact calculation. The end state of the walker is then used as the starting
state for a second step. After the second heel strike, the end state ({q, q̇}n+1) is
compared to the initial state of the walker ({q, q̇}n) and the entire two steps can
be summarized as the non-linear stride function S which maps the end states on
the initial states: ⎡

⎣qn+1

q̇n+1

⎤
⎦ = S

⎛
⎝

⎡
⎣qn

q̇n

⎤
⎦

⎞
⎠ (6.6)

Note that we do not apply the common procedure of state-mirroring at the
end of the step, which is used in most of the 2D analyses to confine the simulation
to only one walking step instead of two consecutive steps.

According to the Poincaré Mapping method, if the end state equals the initial
state, we have found a fixed point representing a cyclic walking motion. The
stability is determined by the effect of deviations εn in the initial state on devi-
ations εn+1 in the end state. For small deviations, we assume linearity around
the fixed point, such that:

εn+1 = Jεn with J =
∂S

∂(qn, q̇n)
(6.7)

J is the Jacobian of the stride function S and is determined by performing the
simulation procedure once for all deviations εn, one for each independent initial
condition. The stability characteristics are described by the eigenvalues λ of the
Jacobian J; if all are smaller than 1 in magnitude, errors decay over subsequent
strides. The smaller the eigenvalues, the faster the walker converges toward the
fixed point. Note that the definition of eigenvalues here differs from Section 2;
the analysis of the walking model is discrete (−1 < λ < 1 is stable) whereas the
skateboard and bicycle analysis is continuous (λ < 0 is stable).

For the stability analysis, there are 6 relevant independent initial conditions
{q, q̇}n for the start of a stride. The 9 independent coordinates for the free model
are reduced by 5 foot contact constraints to 4 independent degrees of freedom
when one foot is in contact with the floor. The angle of the swing foot is not con-
nected to any inertia, so this leaves only 3 independent degrees of freedom and
thus 6 states, namely {u3, u4, u6, u̇3, u̇4, u̇6} for left stance. The Poincaré Section
removes one state (one of the hip angles) so that there would be 5 independent
initial conditions. In addition, there are three coordinates that change only once
per step, namely xc, zc and φ. The linear coordinates xc and zc are not relevant
to the walking motion, but the foot roll-off direction φ is, so it must be added to
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Table 6.2. Fixed point initial conditions for left stance, valid for the parameter values
in Table 6.1

foot heading φ2 0.0016
stance leg angle u4 0.155
stance ankle angle u6 −0.0041
stance leg angular velocity u̇4 −0.42
stance ankle angular velocity u̇6 −0.070
swing leg angular velocity u̇3 −0.42

the set of independent initial conditions. Therefore, in total there are 6 relevant
independent initial conditions as listed in Table 6.2.

6.4 Simulation Results

This section presents the behavior and stability of five simulation models of in-
creasing complexity. The first model (Fig. 6.6A) is the two-dimensional ‘simplest
walking model’ of Garcia et al. [54]. This fully passive model has straight legs
with point feet (with infinitesimally small point masses) and a large point mass
at the hip. The second model (Fig. 6.6B) is similar except that it has arc feet
instead of point feet. The third model (Fig. 6.6C) is equal to the second model
except that it is three-dimensional. It has no hip width but it can move out-of-
plane. Also, this model is equipped with the proposed ankle joints. The fourth
model (Fig. 6.6D) differs in that it has a non-zero hip width, and the fifth model
(Fig. 6.6D) has an additional actuator at the hip joint (Chapter 4).

(A) (E)(D)(C)(B)

Fig. 6.6. Models with increasing complexity. A) 2D point foot walker [54], B) 2D arc
foot walker, C) flat 3D walker (passive or active), D) passive 3D walker with finite hip
width, E) active 3D walker.

6.4.1 Fully Passive Model

Garcia et al. [54] researched the simplest walking model in 2D that could still
demonstrate a passive walking motion, Fig. 6.6A. The model consists of three
point masses, one of mass 1 at the hip and two infinitesimally small point masses
at the feet, with rigid, massless links as legs interconnected with a frictionless
hinge. Therefore it has two degrees of freedom when in stance phase and thus
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2 × 2 − 1 = 3 independent initial conditions for a step starting with the rear leg
just leaving the floor. With its point feet (no radius of curvature), the simplest
walking model is a special 2D case of the model presented in this chapter.

The model shows a stable walking pattern when walking on a shallow slope
with a downward angle smaller than 0.015 (rad) [54]. For example, Table 6.3
presents the eigenvalues λ for the cyclic motion that exists for a typical slope
of 0.004 (rad). It has been shown, however, that the simplest walking model is
highly susceptible to disturbances (see Chapter 4), and that this sensitivity can
be greatly reduced by the application of arc feet with a substantial radius [185].
Therefore we continue this chapter with a model with arc feet with a radius of (a
somewhat arbitrarily chosen) 0.5 times the leg length. For comparison within this
chapter and with previous publications [141, 184], the arc foot model is given the
same step length and approximately the same velocity as the point foot model by
adjustment of the slope angle. The step length is determined by the initial stance
leg angle θ0. On a slope of γ = 0.004 (rad) the point foot model has a limit cycle
with θ0 = 0.15 (rad). The arc foot walker only needs a slope of γ = 0.00058 (rad)
for the same step length, i.e. it is about 7 times more efficient while walking at
the approximate same velocity, see Fig. 6.7. The eigenvalues have moved closer
to 1 and thus do not suggest a stability improvement (Table 6.3). However, we
performed a crude analysis of the basin of attraction which showed that the arc
foot walker can handle deviations from the initial conditions of 8% versus 2% for
the point foot walker, indicating a better practical applicability of the model.
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point foot model (Fig. 6A), at γ = 0.004 (rad)
arc foot model (Fig. 6B), at γ = 0.00058 (rad)

Stance leg

Swing leg

Fig. 6.7. Leg angles versus time for a point foot model (Fig. 6.6A) and an arc foot
model (Fig. 6.6B) with a foot radius r = 0.5. The displayed cyclic walking motion (only
one step is shown) is valid both for 2D models and for 3D models with zero hip width
(Fig. 6.6C).
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Table 6.3. Eigenvalues of the cyclic walking motion for the simplest walking model
with point feet, a 2D walker with arc feet, and a flat (d = 0) 3D walker with ankle axes
oriented at α = 0.15 (rad). Note that all eigenvalues result from two successive steps,
i.e. one stride.

eigenvalues 2D point 2D arc 3D with
foot walker foot walker arc feet
(Fig. 6.6A) (Fig. 6.6B) (Fig. 6.6C)
at γ = 0.004 at γ = 0.00058 at γ = 0.00058

λ1 −0.3 + 0.27i 0.69 0.69
λ2 −0.3 − 0.27i 0.12 0.12
λ3 0 0 0
λ4 - - 0.72
λ5 - - 0.51
λ6 - - 0

An interpretation of the eigenvectors corresponding to the last set of eigen-
values in Table 6.3 has shown that the first three eigenvalues are indeed only
related to the fore-aft motions whereas the last three eigenvalues are related to
3D motions in which both the sideways and fore-aft direction are present. The
most important conclusion to be drawn from Table 6.3 is that there exists a sta-
ble 3D walking motion for our model with no hip width and an almost upright
ankle axis (α = 0.15 rad).

Further research shows that the eigenvalues are highly sensitive to the orien-
tation of the ankle axis and that only a small region leads to stable motions,
see Fig. 6.8. The first three eigenvalues are not a function of the ankle axis
orientation as it only influences 3D motions. The small region of stable values
for α is located around the maximal stance leg angle (0.15 rad, see Fig. 6.7).
This means that, during the walking motion, the orientation of the ankle axis
will move from 0.3 to 0 (rad) with respect to an absolute reference frame, i.e. it
will have a completely vertical orientation at the end of each step. Obviously, in
this orientation the ankle joint is no longer a ”lean-to-yaw” coupling, but it has
become a pure yaw degree of freedom. This eliminates the stabilizing effect for
two reasons. First, there is no coupling so the yaw motion is not related to the
rest of the walking motion, resulting in uncorrelated (and thus de-stabilizing)
rotations around the vertical axis. Second, more severely, the loss of the lean
degree of freedom in the ankle joint will most likely result in sideways tipping
over on the inside edge of the foot, unless very wide feet are applied. Recall that
a similar lower boundary exists for a realistic skateboard model.

We hypothesized that a finite hip width d > 0 might add to stability. A graph
of the eigenvalues as a function of both the ankle orientation α and the hip width
d is sketched in Fig. 6.9. The sketch is based on a number of cross-sections in
the parameter space of α and d. The stable region for α narrows down with an
increasing d up to d ≈ 0.05, beyond which no stable solutions were found for any
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Fig. 6.8. Typical plot of the absolute values of the eigenvalues |λ| as a function of the
ankle joint orientation α for a fully passive 3D model (Fig. 6.6C). This plot is generated
with hip width d = 0 and foot radius r = 0.5, walking on a slope of γ = 0.00058 (rad).

α. A search up to d = 0.2 provided ever increasing eigenvalues, so we extrapolate
the result to conclude that no stable 3D walking motions exist for a hip width
of more than 0.05 times the leg length.

Another hypothesis was that a steeper slope might improve the stability; on a
steeper slope the passive walker will take larger steps and thus walk faster, and
the skateboard and bike models predict a beneficial stability effect for higher
velocities. However, the simulation has shown only marginal effects. Up to the
maximal slope of 0.046 (rad) beyond which no stable motions exist, the 3D graph
in Fig. 6.9 remains similar in shape. The stable region shifts to higher values of
α along with the increase in step length. For example, a slope increase from
0.00058 to 0.004 (rad) causes the initial stance leg angle to increase from 0.15
to 0.29 (rad) and also shifts the stable values for α from around 0.15 to around
0.29 (rad).

These marginal stability result, together with the required vertical orientation
of the ankle axis, indicate that the fully passive model is not sufficiently appli-
cable for real-world prototypes and warrant a search for a model with stable
behavior for larger values of α and d.

6.4.2 Model with Hip Actuation

In this subsection we propose to improve the overall (3D) walking behavior
through the addition of a stabilizing feature that was originally intended for
2D machines. In two dimensions, the most persistent failure is a fall forward
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Fig. 6.9. A sketch of the dependency of the eigenvalues as a function of ankle joint
orientation α and hip width d for a model (Fig. 6.6D) with foot radius r = 0.5 and
slope angle γ = 0.00058 (rad). The left face of the figure is equal to Fig. 6.8.

which can be averted by simply accelerating the swing leg to bring it quickly to
a forward position and subsequently keeping it there (Chapter 4). This simple
form of swing leg control can be implemented on our 3D model without energy
implications; the swing leg is nearly massless, so any control action can be applied
(almost) without reaction torques to the rest of the model. Therefore, the model
still requires a downhill slope for a sustained walking motion. This also means
that the swing leg can be moved arbitrarily fast; in the remainder of this chapter
the swing leg is assumed (and simulated) always to be in the forward position
before heel strike occurs.

We can arbitrarily set the forward angle that the swing leg is quickly moved
to. Let’s maintain the value of 0.15 (rad) as initial stance leg angle in accordance
with the passive models described earlier. The controller therefore has to move
the swing leg quickly to an inter-leg angle of 2 · 0.15 = 0.3 (rad). The immediate
effect of the controller is that disturbances on the initial swing leg velocity do
not affect the end state, thus one of the eigenvalues of the model becomes zero.

Looking at the behavior for γ = 0.00058, there seems to be little difference
between the active model (Fig. 6.10A) and the passive model (Fig. 6.8). The
reason is that the main improvements are to be found for larger slopes. For
the active model, a change of slope does not lead to a change of step length,
while the swing leg control ensures that the model cannot fall forward, so any
arbitrarily steep slope can be used. These two effects of the swing leg control
together result in a much more favorable behavior. In contrast to the passive
model, for the active model an increase of γ does not lead to a translation of the
stable region for α but rather to an increase of this region, shown in Fig. 6.10B.
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Fig. 6.10. Typical plot of the absolute values of the eigenvalues |λ| as a function of
the ankle joint orientation α for a 3D model with simple swing leg control (Fig. 6.6C).
This plot is generated with hip width d = 0 and foot radius r = 0.5. A: walking on a
slope of γ = 0.00058 (rad), B: walking on a slope of γ = 0.01 (rad). The two graphs
exemplify that the upper boundary for α increases with an increasing γ; the steeper the
slope, the larger the region of stability. Note the difference in scale of the two graphs.

The stable region in Fig. 6.10B has two independent boundaries. The lower
boundary for α is directly related to the step length; if α is lower than 0.15, the
ankle axis would reach a vertical orientation at the end of the step which leads to
directional instability. With a fixed step length due to the swing leg controller,
this lower boundary for α is more or less static. The upper boundary is directly
related to the slope angle; the steeper the slope, the higher α can be. Or, in other
words, for a given value of α the slope angle must be above a certain critical
value for stable walking. In Fig. 6.11 this is depicted for α = 0.55, the upper
boundary from Fig. 6.10B. Note the correlation between the two graphs; the
upper boundary α = 0.55 in Fig. 6.10B corresponds to the stability boundary
γ = 0.01 in Fig. 6.11.

With respect to the passive model, the active model has a much larger stable
region; when walking on a slope of γ = 0.01 (rad), the ankle orientation angle
can be anything between 0.15 < α < 0.55 (rad) for stable walking. This gives
good hopes for models with a finite hip width. Fig. 6.12 presents the eigenvalues
as a function of both α and the hip width d, where the left front plane equals
Fig. 6.10B. Apparently, for the active model an increase of the hip width is even
beneficial to the stability, in sharp contrast with the passive model.

6.4.3 Stability Versus Velocity

For the active model, it is easy to find a parameter combination that results
in stable walking. Fig. 6.11 basically suggests that for any parameter combina-
tion, one can find stability by increasing the slope angle past a critical value. This
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Fig. 6.11. Typical plot of the absolute values of the eigenvalues |λ| as a function of
slope angle γ for a 3D model with simple swing leg control (Fig. 6.6C). This plot is
generated with hip width d = 0, a foot radius r = 0.5, and an ankle joint orientation
α = 0.55 (rad). For γ > 0.01 the model is stable. This boundary corresponds to the
the upper stability boundary in the right graph of Fig. 6.10.
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Fig. 6.12. Sketch of the eigenvalues of the active model as a function of ankle joint
orientation α and hip width d for a model (Fig. 6.6E) with foot radius r = 0.5 and
slope angle γ = 0.01 (rad). The left face is equal to the right graph of Fig. 6.10. The
asterisk indicates the parameter set of Table 6.1.
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effect has the same feel to it as the velocity relation in skateboards and bicycles, in
which for most parameter values there exists a critical velocity above which stable
motions occur. Therefore it is interesting to investigate the relation between the
slope angle, the walker’s velocity, and its stability, to answer the question: ‘Is
there a direct relationship between velocity and stability?’

To answer that question, we need to bring r into the equation because the
velocity is determined by γ and r for a given step length. For manageability of
the model and calculations, we will answer this question only for the flat version
of the 3D model, i.e. d = 0 (Fig. 6.6C). The result is stunning; according to
Fig. 6.13 there is almost a one-to-one relationship between the velocity and the
stability, irrespective of the specific values of r and γ that cause that velocity!
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v = 0.6

STABLE REGION

FOR α < π/4
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FOR α < π/8
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v = 0.2

v = 0.4
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Fig. 6.13. Stability regions and walking velocity as a function of the slope angle γ and
the foot radius r for an active, flat 3D model (Fig. 6.6C). The velocity is determined
by the parameters r and γ and is independent of α. The stability is dependent on
all three parameters. The graph shows that a more vertical ankle axis (smaller α)
provides stability for lower velocities. Interestingly, the stability boundaries are almost
completely coincident with lines of constant velocity; the (dashed) boundary of the
(light grey) stability region for α < π/8 is almost exactly equal to the line of constant
velocity for v = 0.36 (not shown). Similarly, the (dashed) boundary of the (dark grey)
stability region for α < π/4 is almost exactly equal to v = 0.72 (not shown). Therefore
we conclude that stability can be seen as a function of the velocity independent of the
particular slope and foot radius that cause the velocity. Note that the velocity lines
are obtained with the numerical simulation, not with the algebraic approximation in
Eq. (6.8).

The result in Fig. 6.13 was obtained as follows. First, the plot contains contour
lines of constant velocity. The walking velocity is a result of the gravitational
energy input and the energy loss at the heel strike impact which are in balance
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when the walker is in a limit cycle. An analysis of the energy balance (not shown
here for brevity) leads to the following approximate relationship:

v ≈ 1
(1 − r)

√
γ

θ
(6.8)

where v is the walking velocity and θ is the stance leg angle at the start of the
step (equal to half of the preset inter-leg angle). This approximation ignores the
velocity decrease at midstance and therefore slightly overestimates the walking
velocity. Eq. (6.8) clearly shows that if r equals the leg length 1, then the walker
could have any velocity at a slope of 0 while no equilibrium exists for any other
slope angle, because no energy is lost during heel strike. In Fig. 6.13 we used the
exact velocities (from the non-linear simulations) rather than the approximation
in Eq. 6.8.

The second ingredient of Fig. 6.13 is the shape of the region of stability.
The figure shows for two different values of the ankle joint orientation α what
combinations of values for the slope angle γ and the foot radius r lead to stable
walking. The figure shows what was already known from Fig. 6.10; a steeper
slope (larger γ) allows for a more horizontal ankle joint (larger α). The additional
information in Fig. 6.13 is how the stability boundary depends on both γ and r,
which apparently coincides with contour lines of constant velocity. A heuristic
formula for the boundary value of α as a function of the velocity v can easily be
extracted from the data scattered in this chapter. From Figures 6.10 and 6.13 we
can extract four data points that show an almost one-to-one linear relationship,
vmin ≈ α.

6.4.4 Walking and Steering

The previous subsections have shown that it is easy to find stable parameter
combinations for the active model. This subsection will investigate the resultant
walking motion for one characteristic set of parameter values (Table 6.1).

For a steady walk, the projection of the center of mass and the footprints
are shown in Fig. 6.14. The step length of 0.3 times the leg length is a direct
result of the swing leg controller. The center of mass makes sideways excursions
of ±0.008 times the leg length.

The model’s inherent stability means that it will react to any (not too large)
disturbance by asymptotically moving back to its steady limit cycle. This fact
can be used for intentional steering; if the model were placed on the slope in
a direction other than steepest descent, it will automatically steer toward that
direction. Or, even more useful, a sideways mass offset will also induce steering
in that direction. In Fig. 6.15, which contains a sequence of 500 walking steps,
the center of mass was displaced slightly (0.006 times the leg length) to the right.
The result is that the model asymptotically moves toward a heading direction
of 0.64 (rad) with respect to the direction of steepest descent. With its new
heading, the model has found balance between the mass offset to the right and
the offset effect of the slope to the left.
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Fig. 6.14. Projection of the center of mass on the floor together with footprints for
the full model (Fig. 6.6E). The grid on the floor is in units of leg length. The model
walks from left to right in a steady motion. The footprint direction φ is exaggerated;
the true value φ = 0.00155 (see Table 6.2) would be invisible in the figure.

The model is robust enough to handle a much larger mass offset. Even if the cen-
ter of mass is displaced sideways with 0.05 times the leg length, a steady (though
somewhat limping) walking motion exists. With this offset, the model will turn
with a radius of about 8 times the leg length, as shown with the dashed line in
Fig. 6.15. It stops and falls not because of the direct effect of the mass offset, but
because it has turned more than 90 degrees and thus receives no energy input. If
the slope would turn with the walker, it would walk indefinitely in circles.
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Fig. 6.15. Projection of the center of mass on the floor together with footprints for
500 steps. The model has a mass offset to the right and thus steers asymptotically
toward a direction in which the sideways slope effect is in balance with the effect of
the mass offset. A much larger mass offset results in a tighter turn as shown with the
dashed line. After a turn of more than 90 degrees, the walker receives no energy input
and eventually stops and falls.



6.6 Prototype Design 105

As a final stability test we investigated the disturbance rejection of the model.
The model was started with the initial conditions for the steady walking motion
plus an error on one of them. The model is able to recover from an increase of
at least 200% or a decrease of 100% on any of the initial conditions, except for
the velocity of the stance leg angle. The stance leg’s angular velocity can only
be decreased with 50%, otherwise the model falls backward. All in all, the model
predicts great potential for practically applicable prototypes.

6.5 Applicability in Real Walking Robots

The simulations predict successful walking for prototypes with the special ankle
joint that couples falling sideways (lean) to turning in that direction (yaw). The
solution to any instability is to increase the walking velocity. There is, however, a
practical limit to the walking velocity. The simulation assumes that the (almost
massless) swing leg is always in time to catch the walker for its next step, but
a physical swing leg with substantial mass cannot move instantaneously. Its
velocity is not only limited by practical considerations (actuator capacity), but
also by the fact that its reaction torque might exceed the friction torques that
the stance foot can supply.

Our model is not equipped with springs in the ankle joints for the sake of
simplicity. The skateboard analysis, however, predicts a beneficial influence of
such springs. For the development of a practical prototype, it is recommended
to investigate the possible stability benefit that such springs can provide for
walking robots.

The implication of this simulation study for the creation of stable prototypes
goes beyond the concept of the tilted ankle joint. Even if proposed ankle joint
is not implemented in a prototype, it is still possible to benefit from the idea
behind it; any control algorithm anywhere in the body can have similar bene-
ficial stability effects, as long as its effect is a lean-to-yaw coupling. We expect
that such an effect is also present in the human body, albeit well masked by
the simultaneous presence of two other control strategies for sideways stability,
namely sideways foot placement [45, 46, 12] and inertial reaction torques from
the upper body.

In the future, we hope to gain more insight in the similarity between a kine-
matic lean-to-yaw coupling as studied in this chapter, and a dynamic coupling
as presented in the bicycle example. A promising lead is the stable walking be-
havior that was found in a 3D rimless wheel [31]. Another lead is provided by
Kuo [96] who found that lateral stability can be obtained through fore-aft leg
motions, which should also be considered as a dynamic lean-to-yaw coupling.

6.6 Prototype Design

The ankle joint is tested in the prototype ‘Denise’ (Fig. 6.16) [178], which weighs
8 kg (Table 6.4), measures h x b = 1.5 x 0.3 m (Fig. 6.17) and walks at 0.4
m/s (0.8 s per step). Denise is a direct successor of Max (Chapter 5) and has
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A latch at the knee joint
is locked through stance 
and unlocked in the swing phase

The arm moves in
synchrony with the 
opposing thigh
via this drive belt

The chains form a bisecting
mechanism that keeps the
upper body uprightp

CO2 canister good for
30 minutes of continuous walking

A minimal amount
of electronics provides 
on/off signals for
the muscles

There is just 
one foot switch 
underneath each foot

Walking is possible 
with just four small
muscles in the hip

The head is empty;
walking requires little
brain power (i.e., little  control) 

Tilted ankle joints 
provide lateral stability

Fig. 6.16. Denise, minimalistic 3D dynamic walking robot with 5 degrees of freedom;
two ankles, two knees, one at the hip, and the arms are rigidly coupled to the hip angle

the same controllable knee latches, hip actuation, and bisecting hip mechanism
(Fig. 6.18). The muscle properties are given in Table 6.5. The hip joint has a
maximal extension stop made of steel cables which limit the inter-leg angle to
+/- 40o. This is an important feature for stable walking, see Chapter 4. The
prototype has five internal degrees of freedom (Fig. 6.16); two at the ankles, two
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Fig. 6.17. Dimensions of the prototype in millimeters
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at the knees, and one at the hip (the arms are mechanically connected to the
opposing leg). The ankle joints are mounted in the non-human orientation as
proposed above, namely pointing forward and downward without a component
in the lateral direction (Fig. 6.19), making an angle α = 25◦ with the leg. There
is a rotational stiffness by means of two springs, which helps keep the robot
upright. The springs are as stiff as possible so that the foot just remains in full
contact with the floor during the motion. The mounting positions for the springs
are shown in Fig. 6.17. Their stiffness is 912 N/m for the outside spring and 5501
N/m for the inside spring.

Auxiliary
    axle

Main 
axle

Fig. 6.18. Photograph of the hip joint of Denise. The bicycle chains and chainwheels
together with the auxiliary axle form the bisecting mechanism. The picture also shows
the McKibben muscles.

The control hardware and software is exactly equal to those used in the pre-
vious prototype (Chapter 5). We used a Universal Processor Board from Multi
Motions� (based on the Microchip� PIC16F877 micro-controller) which opens
or closes the pneumatic valves based on foot-contact switch signals. The control
program is a state machine with two groups of two states: either the left or the
right leg is in swing phase. At the beginning of the swing phase (State 2 and State
4 in Fig. 6.20), the swing knee is bent. Two hundred milliseconds after the start
of the swing phase, the knee latch is closed, waiting for the lower leg to reach
full extension through its passive swing motion (State 3 and 1). Programmed in
assembly, this amounts to about 30 instructions. The only sensing is the time
of foot contact, which occurs once per step. Aside from this input, there is no
feedback to counter disturbances; the stability is inherent in the mechanism’s
motion.
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Fig. 6.19. Details of the (right) foot. The ankle joint is placed at an angle of 25o with
respect to the lower leg.

Table 6.4. Mass distribution of Denise. The part numbers and x-y-z coordinates refer
to Fig. 6.17. The center of mass coordinates are measured from a global reference frame
with the origin at the floor between the feet. The inertia is measure with respect to
each component’s center of mass.

Part mass {x, y, z}com {Ixx, Iyy, Izz}
(kg) (mm) (kg·mm2)

1 (Foot) 0.404 {5, 5, ±88} {459, 454, 409}
2 (Shin) 0.215 {0, 221, ±88} {2297, 2276, 35}
3 (Thigh) 0.295 {0, 509, ±88} {2580, 2551, 48}
4 (Body) 5.4 - 7.0 {0, 957, 0} {2.0, 1.9, 0.14} · 105

5 (Arm) 0.229 {0, 1037, ±115} {4269, 4247, 37}

Table 6.5. Properties of the McKibben muscles used in the hip joint of the prototype
Denise. The values are obtained from fits of a full multibody simulation model to
experimental measurement data.

Muscle length at zero force 131.5 mm
Stiffness at 6 atm 5 N/mm
Damping (fitted from motion data) 0.2 Ns/mm
Time constant for pressure increase 0.09 s
Time constant for pressure decrease 0.05 s

6.7 Prototype Experiments

6.7.1 Gait Characteristics

The main result to report is that Denise walks stably. An illustration of the
walking motion is given in Fig. 6.21. For video evidence, please refer to our
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left knee strike left knee strikeright heel strikeright knee strikeleft heel strike

State 1 State 2 State 4State 3

Fig. 6.20. The controller is a simple state machine which cycles through four states

Fig. 6.21. Video stills of Denise walking, two steps (one stride). The video shows a
slight turn to the right as a result of a disturbance in the floor.

website [1]. Unfortunately, we cannot provide a full experimental validation of the
simulation results. The simulation results show that the stability can be improved
by increasing the walking velocity and by placing ankle joint more vertical. As
we were limited by the available pneumatic power due to flow limits, we needed
both of these solutions for finding a successful walking motion. Thus, we can only
present the inverse claim: the prototype does not walk stably 1) when using less
than maximal pneumatic power, 2) when using a less vertical ankle joint (we
tried ankle joints of 45◦ and 25◦ with respect to vertical, it failed with the
first and succeeded with the latter). A redesign of the pneumatic system would
be required before we can provide more quantitative support of the simulation
results.
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In the remainder of this chapter, we will report how the robot moves for
comparison with future robots. We present not only the experimental results,
but also the results of a complete multibody simulations performed in ADAMS.
By matching the behavior of the simulation to the experimental results, we have
more confidence that we understand how the prototype behaves. For example,
the muscle properties of Table 6.5 were obtained by tuning the walking behavior
of the ADAMS model to match the experiments. The experimental data was
obtained with 3D motion capture using a VICON system with help from Brian
Moyer at the University of Pittsburgh.

A high-level way of averaging the experimental results and comparing them
with the simulation is by investigating the gait characteristics (step length and
step frequency). The results are shown in Table 6.6. The experimental results
are obtained from over 150 steps from several trials. Point-wise, the simulation
results fall well within the standard deviation of the experimental results.

Table 6.6. Gait characteristics simulation model and experiment

Characteristic Simulation Experimental mean ± 1 standard deviation
Step length 0.365m 0.37m ± 0.04m
Step time 0.78s 0.78s ± 0.09s

Note that the average forward velocity is 0.47 m/s, which is half as fast as
human locomotion but faster than many existing humanoid robots.

6.7.2 Motions

The motion of Denise is not a predefined trajectory in time, but rather an
autonomous quasi-periodic motion resulting from the natural dynamics of the
system. This makes it impossible to compare and average series of steps. Due to
small disturbances, each step has a slightly different duration, and so two series
will not be synchronized. It would make no sense to present the average motion of
multiple experiments, and likewise it is useless to use comparison measures such
as mean square error or variance-accounted-for. For two motions that are slightly
out of synchronization, these measures would provide low scores even though the
walking motions are almost identical. However, we do not necessarily care about
trajectories. The reason is that the tracking of trajectories is not on the list of
primary requirements for successful walking. A walking motion is successful if it
is stable and efficient, if the robots walks a required distance in a required time,
and if the robot’s gait looks sufficiently appealing. The actual trajectories are
not in this list of requirements, and thus they are only of secondary importance.
Obviously, for our trust in the ADAMS simulation model we do need to have a
good correlation between the simulation and the experiment.

In order to make a useful comparison, we will only look at the trajectory of
a single step. In Figs. 6.22–6.25, we have plotted the data of the more than 150
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measured steps on top of each other. The start of a step is defined as the instant
of heel contact of the leading leg. In this way, we solve the issue of synchroniza-
tion. The experimental results are not averaged because the result would not
represent the actual motions (kinks in the trajectories would be smoothed). We
can see that the results from the simulation fall mostly within the variation of the
experiments. More importantly, we note that the general shape corresponds well.
This means that the discontinuous effects (impacts, controller mode changes) are
modeled correctly.

Fig. 6.22. Hip angle between legs. Experiments are grey and the simulation result is
plotted using a bold dashed line. Left: left leg is stance leg. Right: right leg is stance
leg.

Fig. 6.23. Knee angle. Experiments are grey and the simulation result is plotted using
a bold dashed line. Left: graph of right knee (left leg is stance leg). Right: graph of
left knee (right leg is stance leg).

Figures 6.22–6.25 show that the prototype was not fully symmetric; the right
knee bends significantly more than the left knee. This can be due to a variety
of causes, such as friction in the knee, weaker hip muscles on the left side, or
a slight difference in release-behavior of the two knee latches. We believe that
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Fig. 6.24. Sagittal motion of the body, measured with respect to the direction of
gravity. Left: left leg is stance leg. Right: right leg is stance leg. The simulation
results (bold dashed lines) are equal (symmetric gait), but the experiments (grey lines)
indicate a small amount of asymmetry.
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Fig. 6.25. Lateral (sideways) motion of the body, measured with respect to the direc-
tion of gravity. Left: left leg is stance leg. Right: right leg is stance leg. The simulation
results (bold dashed lines) are symmetric, but the experiments (grey lines) indicate a
small amount of asymmetry. The high-frequency components of the experimental data
stem from measurement inaccuracies.

it is currently not necessary to include the asymmetry in the model, given the
large random variations introduced by other causes such as those associated with
starting the robot walking, which is done by hand.

6.7.3 Energy Consumption

To compare efficiency between humans and robots of different sizes, it is convenient
to use the dimensionless specific cost of transport, ct = (energy used)/(weight x
distance traveled). In order to isolate the effectiveness of the mechanical design
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and controller from the actuator efficiency, we distinguish between the specific en-
ergetic cost of transport, cet, and the specific mechanical cost of transport, cmt.
Whereas cet uses the total energy consumed by the system, cmt only considers
the positive mechanical work of the actuators. Using the muscle forces and length
changes in Denise, we calculate cmt = 0.08. This does not take into account the
huge (but inessential) losses from stepping down the gas pressure. To find a value
for cet, we calculated the decrease of available energy (or exergy) for a pressure
drop from the 58 atm saturated liquid state to atmospheric pressure. Available
energy represents the amount of work that could be done with the pressurized gas
if the both the gas expansion process and the simultaneous heat transfer process
are reversible (i.e. lossless). In that hypothetical setting, one can use the enthalpy
and entropy values for the gas at the beginning and the end of the expansion pro-
cess. At a constant temperature of 290 K, this amounts to a loss of available en-
ergy of 664 kJ per kg CO2. A 0.45 kg canister can power the 8 kg robot for 30 min
of walking at 0.4 m/s yielding cet = 5.3. This value has little meaning, however.
First, even the best realworld gas-expansion systems can only use about 30% of
the theoretically available energy, due to irreversibility issues. More importantly,
most of the expansion loss would be eliminated if the CO2 had been stored at 6
atm. Unfortunately this would require an impractically large storage tank. Thus
the discrepancy between cet = 5.3 and cmt = 0.08 is due to practical problems
associated with using compressed-gas energy storage.

6.8 Conclusion

The simulations in this chapter show that a special ankle joint that couples
falling sideways (lean) to turning in that direction (yaw) can lead to stable 3D
walking models. A practical robustness against disturbances requires a basic form
of swing leg control which moves the swing leg quickly to a forward position.
With this control rule in place, the model shows behavior that corresponds to
bicycles and skateboards; stable motions exist above a certain critical forward
velocity, depending on the tilt angle α of the ankle axis. The more vertical the
axis (smaller α), the lower the critical velocity. There is a minimum, however;
the tilt angle α must always remain larger than the maximal stance leg angle,
otherwise it would have a completely vertical orientation at the end of a step.
This does not only lead to instabilities but also requires impractically wide feet
to prevent tipping over on the inside of the foot.

The ankle joint provides an effective means for direction control; a slight
asymmetry in any of the parameters (such as a sideways mass offset) results in a
walk on a curved path. The simulations with the elementary model presented in
this chapter predict a sufficient robustness against disturbances to warrant the
construction of a physical 3D prototype.

Both the elementary simulation model and the prototype demonstrate 3D sta-
bility. The skateboard-like ankle joint forms a simple mechanical ingredient for
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the design of stable dynamic walking bipeds. The stabilizing effect is only present
when walking with a substantial forward velocity and requires the presence of
hip actuation as proposed in Chapter 4.

Although the idea is strongly linked to a mechanical implementation in the
form of a tilted ankle axis, there are many alternative ways of implementation,
either mechanically or via control, in the foot, ankle, leg, or hip. The central
idea is that, if there exists a forward velocity, a sideways fall can be averted by
steering in that direction.



7. Discussion and Future Research Directions

The purpose of this book is to present our work on pneumatic biped robots, so
that you may build upon it and avoid our mistakes. Thus, a quintessential part
of the information that this book should transmit are our afterthoughts; things
that we haven’t done (yet) but that we have developed a vision on. These things
are presented in this chapter. We hope that these insights will prove useful for
future research.

7.1 On General Design Guidelines for Stability

This book has presented a number of design solutions for efficient, natural, and
simple two-legged robots. The solutions range from the concept of passive dy-
namic walking in Chapter 2 to the skateboard-like ankle joint in Chapter 6. One
of the most intriguing questions now is how all these solutions fit together, what
general ideas lie behind them, and how do they provide stability to the walking
motion?

Stability is one of the main issues in bipedal walking because of the fundamen-
tal problem of underactuation at the stance foot. The cause of this is the limited
size of human-like feet combined with the fact that only compressive forces can
be exerted between the foot and the floor. As a result, only limited torques can
be transmitted between the foot and the floor, so that there exist two degrees
of freedom (fore-aft rotation and sideways lean) that can barely be actuated.
This is a cause for instability because the biped system as a whole is operating
around the unstable equilibrium of these fundamentally underactuated degrees
of freedom; it can be regarded as an inverted pendulum pivoting at the foot.

To understand how stability of the walking motion is achieved, the term ‘stabil-
ity’ must be specified more precisely. Walking is a periodic motion in all degrees
of freedom (except for forward travel). Therefore, in the phase space (excluding
forward travel) the walking motion forms a closed orbit, see Fig. 7.1. The walk-
ing motion is stable if there is orbital stability, i.e. if a deviation from the orbit
decreases over time. It is important to note that there is a discrete event in the
orbit, namely the change-over of foot support (heel strike). Stabilizing effects can

M. Wisse and R.Q. van der Linde: Delft Pneumatic Bipeds, STAR 34, pp. 117–126, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 7.1. Stylized phase graph of walking motion. The dimensionality of the graph is
usually much higher than the three dimensions drawn here, so this figure should be
considered only as a sketch to convey the ideas behind the stability analysis of cyclic
(walking) motions.

occur during the continuous motion and during the discrete event of heel strike.
For example, the ‘classical’ biped control approach (e.g. Vukobratovic [168]) fo-
cuses mainly on stabilizing the orbit during the continuous motion. The robots
follow a prescribed trajectory (the continuous part of the orbit) and use control
to return to this trajectory after a disturbance. Compare this type of control to a
tightrope walker who uses his upper body (plus balancing beam) to stabilize his
unstable inverted-pendulum configuration pivoting around the feet. A contrasting
example is given with the passive dynamic walkers.Here, orbital stability is mainly
obtained from the discrete event at heel strike. The stabilizing effect is the fact that
the energy loss at impact is dependent on the forward velocity; if the velocity is
too high, more energy is dissipated in the impact and so it provides a stabilizing
effect. The stabilizing effect of this impact is stronger than the instability of the
inverted-pendulum configuration during the continuous motion. In effect, a small
error at the beginning of a step increases during the continuous motion, but the im-
pact strongly brings the motion back to the nominal orbit and thus there is orbital
stability. These two extremes (the classical approach versus the concept of passive
dynamic walking) illustrate that orbital stability can be realized both by measures
during the continuous motion and during the discrete event at heel strike.

The specific solutions presented in this book can all be seen as contributions
to stability in the two categories:

• Stabilizing effects during continuous motion. In the search for simple
and efficient mechanical solutions for stability, we do not apply the classical
solution. The classical solution is to stabilize the unactuated and unstable



7.1 On General Design Guidelines for Stability 119

degrees of freedom at the feet through intensive control of the actuated de-
grees of freedom (hip and upper body). This solution is control intensive and
requires much energy and high-grade components. In contrast, our approach
is to allow a mild instability in the degrees of freedom at the foot, and to
focus on implementing features that reduce the rate of divergence from the
nominal trajectory after a disturbance to an acceptable level:
– Arc feet reduce the rate of divergence; the walker is still an unstable

inverted pendulum but deviations from the nominal orbit grow slower
than in a walker with point feet.

– The addition of the upper body increases the mass moment of inertia
around the foot and thus also reduces the rate of divergence.

– The ankle joint couples yaw to lean and thus the inertia around the
vertical axis is added to the lean degree of freedom, which reduces the
rate of divergence of this unstable lean degree of freedom. Note that this
requires zero slip in the foot-floor contact. It only works as long as a
sufficiently large foot-floor contact can be maintained; if the foot would
tip over and make ground contact only at a single point, there would be
no yaw friction torque between the foot and the floor.

– Most robots in this book are actuated such that they walk at a slightly
faster pace than they would if fully passive. As a result, the rate of diver-
gence is slightly decreased relative to the walking pace.

In addition to these effects which are all related to the unactuated degrees
of freedom at the foot, our design solutions also affect the remaining degrees
of freedom. These remaining degrees of freedom, e.g. the hip joint, pose no
fundamental instability problem as they can be actuated and controlled di-
rectly. The work in this book presents simple and efficient ways to keep these
degrees of freedom under control, all in the form of constraints in one form
or another:
– The ankle joint couples yaw to lean and so it constrains the yaw degree

of freedom; it is no independent degree of freedom and thus it requires
no control. Basically, this reduces the dimension of the phase space.

– The bisecting hip mechanism also forms a rigid constraint in such a way
that the addition of the upper body does not lead to the addition of any
degrees of freedom.

– The knee latches as used in most prototypes lock the knee at the end of
the swing phase and all through the stance phase. This is also a reduction
of the phase space dimension during an interval at every step.

– The swing leg control as implemented in the prototypes has the effect
that the swing leg is quickly brought to a fixed forward position and then
kept there. By keeping it in that prescribed position at the end of the
step, again the phase space dimension is reduced during the final part of
the step.

All together, in our robots at the end of the step all degrees of freedom are
locked or fixed by control so that only the unactuated degrees of freedom at
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the foot remain. Hence, all other degrees of freedom do not pose a stability
risk.

• Stabilizing effects during the discrete event at heel strike. To enable
a stabilizing effect during the discrete event at heel strike, it is required that
this event actually takes place. In our walker designs, several features have
been built in to increase the chances that this occurs:
– The swing leg control has the effect that the swing leg is quickly brought

to a forward position. This increases the chances of catching the walker
for its next step and prevents a fall forward.

– The arc feet decrease the chances of falling backward and so they help
with ensuring the completion of the step.

The stabilizing effects during the discrete event at heel strike are the following:
– The impact at heel strike dissipates more energy when the walking veloc-

ity is higher and vice versa, and so it provides a regulating effect.
– The ankle axis results in a steering motion toward the side that the robot

leans to. Effectively, this ensures that the next foothold is in a favorable
position so that the discrete event at heel strike puts the walker back on
the nominal walking orbit.

One of the directions for future research is to investigate how exactly do fea-
tures such as the arc feet contribute to the orbital stability. As described above,
they reduce the rate of divergence due to the inverted-pendulum instability. How-
ever, they might also influence the stabilizing effect of the heel strike impact.
These effects were not studied in this book and warrant further research.

To find and investigate new features that can enhance the stability of the
walkers, we advise to regard the stability problem as sketched above; stable
walking requires orbital stability which can be obtained both during the con-
tinuous motion and through the discrete event at heel strike. The walking orbit
can be subdivided in various sub-regions, where a disturbance in each of the
sub-regions requires a different approach to obtain stability. An example of this
can be found in a recent research result on the human reaction to a tripping dis-
turbance [38]. If the disturbance takes place early in the swing phase it is best
to use the swing leg muscles to quickly bring it back into its normal forward
motion. However, if this disturbance takes place late in the swing phase, it is
better to finish the step without undertaking any special corrective action, and
just use the stabilizing effects during the discrete event at heel strike. In this
manner, it should be possible to obtain highly robust walking machines using
only a handful of simple stabilizing features.

7.2 On Stability Measures and Disturbances

Throughout this book, the stability of the walkers is analyzed by means of a
Poincaré mapping analysis; how well does the motion respond to changes in
the initial conditions of a step? Although this analysis has proven to be both
practical and successful, it should be noted that it is only a limited representation
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of the complete stability problem in dynamic walking robots. The goal of this
section is to indicate the limits of the stability analysis as used in this book and
to point to future directions of research.

Before discussing the limitations of the stability analysis in this book, it is
useful to briefly recapitulate the essence of the cyclic walking motion. Fig. 7.1
shows a stylized phase space graph of a cyclic walking motion. The axes of the
graph contain the states of the walker, for example the leg angles and their
angular velocities (note that even for the simplest walker, this is already 4-
dimensional, which is why Fig. 7.1 is ‘stylized’ into a 3D figure). A perfect cyclic
walking motion (a limit cycle) is represented in this graph with a closed orbit
which is followed once per stride (two steps). The Poincaré mapping method
uses only one point of that orbit; the point where it crosses a predefined surface,
the Poincaré Section. For walking systems, this surface is usually defined as the
instant of heel strike, a condition that occurs only once per step. If the walker is
in a limit cycle, the crossing with the Poincaré Section constitutes a point that
maps onto itself stride after stride; a fixed point. If the walker is not in a limit
cycle, it will cross the Poincaré Section at another point. Following the walking
motion stride after stride, one will observe a sequence of points in the Poincaré
Section which either converges toward a fixed point or diverges until a fall occurs
and the sequence stops.

In this book, all stability analyses were performed in the Poincaré Section.
We used two forms of analysis, namely a linearized stability analysis of the fixed
point, and an analysis of the basin of attraction, i.e. the set of all points in the
Poincaré Section that converge to the fixed point. The first form, the linearized
analysis, has become common for the stability analysis of walking motions since
Hurmuzlu [80] first applied it. For small deviations from the fixed point, this
analysis provides insight into wether the fixed point (and the corresponding
limit cycle) is stable or not, and how fast these small disturbances decrease
from stride to stride. In addition to the linearized analysis, this book applies
the analysis of the basin of attraction. This analysis provides valuable insight
into what happens after larger deviations from the fixed point. We learned to
which deviations the walkers were relatively sensitive, and what type of fall
would follow. Most importantly, the analysis of the basin of attraction pointed
us toward the idea for stabilization by means of hip actuation in Chapter 4.

However, one of the important questions is: is the basin of attraction, or any
abstraction thereof, useful as an objective measure for robustness? In this book,
we have pretended that it is, first by measuring the total area of the basin
of attraction in Chapter 4, and subsequently by measuring (over the principal
axes) the smallest distance from the fixed point to the boundaries of the basin
of attraction in Chapters 5 and 6. The main objection to the first method,
measuring the total area of the basin of attraction, is the fact that it wrongfully
attaches value to parts of the basin of attraction far away from the fixed point.
For example, assume that the original basin of attraction of a walking motion
has the shape of a triangle, and that the fixed point is located somewhere close
to the top corner. Then, imagine a design change that results in a downward
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enlargement of basin of attraction, and simultaneously in an upward shift of the
fixed point, bringing it even closer to the top corner. Obviously, the outcome
of the area measurement of the basin of attraction wrongfully predicts a better
robustness against disturbances.

To avoid the wrongful predictions of the measurement of the area of the
basin of attraction, our second approach was to measure the distance from the
fixed point to the boundaries of the basin of attraction. Starting in the fixed
point, the state variables were varied one by one to find the largest allowable
deviations both in positive and in negative direction. In this way, we found the
distance between the fixed point and the boundary of the basin of attraction
in the direction of the principle axes. After having done this for all the states,
the smallest value was taken as a measure for the robustness of the walking
motion. Although this measure represented an improvement compared to the
area measurement, it is still not an objective measure for robustness. The main
objection is that the result of the measure depends on how the state variables
have been chosen. One could try to make the comparison between two walking
models somewhat fair by applying a standardized scaling (as we have done in
all point mass models such as the Simplest Walking Model [54] in Chapter 2)
where the models are scaled to unit gravity, leg length and body mass. However,
even with such scaling, the outcome of the comparison would still be different
if the state variables were chosen differently. In other words, the ‘fixed point to
boundary’-measurement is not an objective measure for robustness.

So, if the measures for robustness as applied in this book were not objective
measures, does there exist any objective measure for robustness of the walking
motion? To our knowledge, the answer appears to be negative. Following sug-
gestions by Ruina [personal communication], the best approach appears to be
to first devise a classification of all possible disturbances that can occur dur-
ing the walking motion, and then to produce a robustness score for each of the
different kinds of disturbances. So, a discussion on the robustness of a certain
walking motion should always have a reference to what type of disturbance is
considered. Such a classification has not been made in this book, except for the
establishment of the ‘step-down’ experiments in Chapters 4 and 6. A step-down
can be regarded as one kind of disturbances for which an objective measure can
be created (such as step-down height scaled by leg length). A further classifica-
tion is recommended for future research, which should incorporate all possible
deviations from the limit cycle, and not only those in the Poincaré Section, see
Fig. 7.1.

7.3 On Foot Contact in Simulations

The theoretical core of the research is formed by numerical simulations of both
irreducibly simple models and more realistic models correlating to the proto-
types. Although the basics of multibody modeling and simulation are considered
common knowledge, there are some details that have required special attention
for the walking models. The most complex issue is the foot contact, especially
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during heel strike where an impact occurs. Most commercial software packages
for multibody simulations cannot be trusted; in one of our attempts the model
would take off and fly away at high speed after its first heel strike impact due to
a numerical instability. A mild adjustment of the mysterious contact parameters
would suddenly result in a more normal motion, but who is to say that that
solution is anywhere near reality?

For the development of our simulation equations, it was decided to model
the foot contact as completely rigid, which implies the requirement for impact
calculations at heel strike. The alternative, ’soft’ contact with the use of stiff
unilateral springs and dampers underneath the foot, is less attractive due to
the additional stiff degrees of freedom to the model. Not only does this cost
calculation time during the smooth stance phase, but it is especially disruptive
for the stability calculations where all the model states at the beginning of two
successive steps have to be compared with each other. Our choice for hard contact
with impacts however brings its own peculiarities.

Throughout this book, the models are assumed to have an instantaneous dou-
ble stance phase; as soon as the swing foot hits the floor at heel contact, the
former stance foot loses contact with the floor and does not participate in the
actual impact (an assumption which is verified if the rear foot ends up with a
positive vertical velocity). Thanks to this instantaneous double stance phase and
to the persistent use of arc feet, there is always only one single contact point
between the robot and the floor. This makes the impact calculations determinis-
tic and generally solvable. This would not be the case if we would have allowed
impacts with multiple simultaneous contacts in our models. The problem is that
the impact cannot be regarded as a simple instantaneous event, because the
outcome is highly affected by the interaction between the contact forces in the
multiple contact points (which are affected by the exact contact stiffness and
damping and by how shockwaves travel through the system). We briefly made
an excursion toward this more complicated situation in an attempt to capture
behaviors such as falling and stopping more realistically. To solve the impact in-
determinacies we used an algorithm by Chatterjee [24] which generally provides
a likely result in a reasonable amount of time. However, the amount of discussion
and uncertainty that result from such calculations are too much of a distraction
from the main focus of the research. Therefore, a strong recommendation for fu-
ture research is to continue to work with the simple impact calculations to avoid
the above deliberations, even if it requires mild adjustments to the prototype
under investigation.

7.4 On Human Walking

The research in this book was performed on the basis of biomechanical knowledge
(e.g. [95, 173, 83]). So, how much do the resulting prototypes resemble a walking
human being? The mechanical construction is quite different but the dynamic
principles behind it appear to be the same, as revealed by the natural appearance
of the motions.
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First, the original development of the concept of passive walking by McGeer
[108] has been inspired by work of Mochon and McMahon [113] who compared
the human swing leg motion with a passive double pendulum. Also the develop-
ment of the McKibben muscles was inspired by the similarity in compliance with
human muscle. Thus, the basic ingredients for the research in this book have a
clear relation to human locomotion.

Second, Chapter 4 proposes to obtain fore-aft stability by accelerating the
swing leg to move faster than a fully passive leg. The required actuator activ-
ity for this corresponds neatly with measurements on muscle activity [83] and
with calculations with inverse-dynamic models [95, 142]. Moreover, the required
feedback control loop in the prototypes is a simple state machine where a switch
underneath the foot signals the transfer to the subsequent state. This can be
regarded as a very basic replica of how human walking is governed by a Central
Pattern Generator (a neural oscillator in the spinal cord which oscillates in the
walking frequency under strong influence of feedback signals). It also correlates
with the influential role of foot skin reflexes [162] in human walking.

Third, Chapter 5 proposes the use of a bisecting hip mechanism to obtain
a stable upper body. Although the same mechanism can be found in some or-
thotic devices [81], this is obviously not a good model of the human locomotive
system. In our prototypes, the bisecting mechanism is implemented with bicycle
chains which could be regarded as tendons or muscles under permanent ten-
sion. However, this is a very unattractive solution for biology because of the
metabolic energy consumption by the muscle fibers under tension even if no
mechanical work is done. As a result, the models and prototypes in this book
show relatively large excursions of the upper body whereas the human upper
body remains almost vertical. Nevertheless, the prototype results indicate that
(at least for 2D motions) a simple and local mechanism (or control loop) around
the hip joints already suffices for a stable walking motion; there is no need for
more ’system-wide’ information such as gyroscopic sensory readings or processed
visual information, or even information on which leg is the current stance leg.
Therefore, even though the human body does not contain a mechanical bisecting
hip joint, it is hypothesized here that the muscles around the hips and pelvic
body might very well operate largely on local feedback (reflex) loops alone, as
far as the fore-aft motion is concerned.

Finally, Chapter 6 proposes the use of a tilted ankle axis for 3D stability. This
axis is mounted in a completely different orientation than in the human ankle,
see Fig. 7.2. Nevertheless, the effect is similar; a lean angle to the left results in
steering to the left. Again, it is not the physical shape of the design but rather the
conceptual idea behind it that could be of interest to the biomechanics research
community. The idea is that sideways stability can be obtained by coupling
lean to yaw; a potential fall to the right is averted by steering to the right.
The success of bicycles and skateboards underlines the power of the concept.
It is possible that the human ankle or the entire foot construction contribute
to such an effect, but it is equally likely that an active control loop in the hip
region induces such an effect. It will be a difficult task to find such effects in
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Fig. 7.2. Robot ankle axis (A) [182] versus human ankle joints (B and C, from In-
man [83]). The robot ankle axis points forward and downward whereas the human
ankle axis points forward and upward. However, it appears that the overall effect is
the same; leaning to the left (or shifting the foot pressure to the left side) results in
steering to the left. More research is required for insight into the precise nature of the
differences and similarities between the two.

human locomotion, as the human body is always applying multiple solutions
simultaneously. In the case of sideways stability, it has been found already that
humans apply sideways foot placement as one strong factor of influence and
inertial reaction torques (cf. tightrope walking) as the other. This book adds a
new possibility; changing the walking direction as a means for sideways stability.
It remains as a recommendation for future research in biomechanics to affirm or
to negate its use in human locomotion.

7.5 Future Directions

With respect to the current prototypes, it appears that the robustness of the
walking motion cannot be increased significantly by means of purely mechanical
components. The next logical step will be the inclusion of simple, local reflex-
like control loops. We expect that such control loops can help especially with
sideways stability; robot research has shown that this is a problem where me-
chanical solutions alone are not sufficient while there is also biological evidence
for the necessity of control to solve this problem. It is known that human beings
use sideways foot placement as a control parameter for sideways stability. The
sensors with the strongest relation to the sideways stability appear to be the
vestibular organ and the pressure distribution sensors underneath the feet. A
first research topic could be to find a simple and straightforward control rule
that uses these sensors to control the sideways foot placement.

Another issue that might be resolved with local reflex loops is a proper reac-
tion to tripping. Human beings use, depending on the progression of the step, one
out of two possible strategies [38], namely 1) quickly setting down the tripping
swing foot (shortening the step), or 2) quickly lifting up the tripping swing
foot to overcome the obstacle (elongating the step). Possibly, both of these
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reflexive actions plus the choice between them can be implemented with a simple
and straightforward solution (by proper choice of actuator, sensor, and control
algorithm).

However, such feed-back stability solutions will probably provide only so much
of extra robustness. Human beings obtain much of their robustness from feed-
forward control; mostly through visual input an estimate of the upcoming ob-
stacles is made, which is incorporated in advance in the muscle control. The
applicability of visual input for walking robot control should be investigated in
a two-way approach; 1) How accurate can the upcoming obstacles be predicted
with a vision system and what are the key visual cues? 2) What accuracy is
required for the predictive information?

As soon as some of the proposed control algorithms are implemented, the
issue of tuning the control parameters must be addressed. Manual tuning will
be necessary initially but automation is inevitable. In our opinion, the best
approach is to provide the system with a set of initial parameter values that are
sure to result in stable walking on a smooth floor, probably at the cost of energy
expenditure and velocity. Then the system should adapt its control parameters
to optimize for stability, efficiency, and velocity. The research challenge is to
find the proper adaptation or learning algorithms, and to find which parameters
should be tuned in which sequence and on the basis of which measurements.

It will take many man-years of research effort to arrive at a system with
sufficient robustness for confidential use in real-world applications. However,
we believe that this may happen sooner than one would think; the research
community pursuing the approach in this book is quickly gaining momentum
with each successful prototype because of the stunningly human impression that
these machines leave when strolling along in their natural cadence, while at the
same time industrial interest is growing because of the elegant simplicity of the
robot designs.
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