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Preface

The ICRESH-ARMS 2015 Conference at Luleå was an important milestone in the
history of activities of the Division of Operation and Maintenance, Luleå Technical
University. It was hosted by the Operation and Maintenance Division at LTU and
had considerable participation both from the division and the university. This
conference was also successful in attracting a fairly large number of researchers
worldwide to deliver invited talks, present papers, and attend the exciting sessions.
There was a good interest in participation from the industries around that saw an
opportunity to interact with engineers, researchers, academicians, and managers
who are at the forefront of related technologies in reliability, operation and main-
tenance, condition monitoring, risk and safety in various domains, eg.
Manufacturing, Transportation, Defense, Power, Mining, and the IT sector. In
particular, there was significant interest in Railway infrastructure and asset man-
agement. Condition-based maintenance with emphasis on diagnostics, prognostics
and health management, and maintenance of large engineering systems and their
implications to risk and safety were another area where the industry and academia
found common interest. A growing interest in the use of nonrenewable energy
sources saw several presentations from India highlighting various risk and safety
issues besides quantitative risk assessment. Some papers reflect active interest in
industry in big data analytics and context-based thinking for decision making and
signified a growing awareness amongst industries to adapt to new technologies.
Mining and Railways were two domains with significant local interest in Sweden
and saw various presentations in innovative approaches to long-term solutions
related to aging, health management, and prognostics. Modeling and Simulation
saw increasing applications in various industrial domains and a growing trend
among researchers to develop a holistic and integrated approach to address various
conflicting issues of reliability, risk, production, and cost. An important highlight
was the discussions that the interactive sessions triggered during the breaks between
the participants from the industry and the academicians. There were in all 82 papers
selected after reviews for presentation in various sessions, namely:

v



• Degradation/Aging and Preventive Maintenance
• Diagnostics, Prognostics, and Health Management
• Maintenance Management
• Maintenance Modeling and Analysis
• Performance Management and Energy
• Software Reliability
• Probabilistic Risk and Safety Analysis
• Reliability Analysis and Modeling
• Reliability and Maintenance of Mining Machinery

A total of 53 papers have been selected in this book from across all the sessions
in the conference. They cover a large spectrum of the theme of the conference and
present exciting findings which enrich the current applied knowledge base in the
subject with indicators to the future in the industry. The endeavor in the selected
compilation has been to avoid losing focus of the ultimate beneficiary of the applied
nature of this work in the industry in various domains.

On behalf of the ICRESH-ARMS organization, we wish to express our sincere
appreciation to the conference delegates, the distinguished keynote speakers,
authors, workshop leaders, and members of the scientific review committee of the
ICRESH-ARMS 2015, for their outstanding contribution towards the success of the
conference. We are thankful also to Dr. Adithya Thaduri, for his support to prepare
the proceedings.

Editorial Board Dr. Uday Kumar
Dr. Alireza Ahmadi

Dr. Ajit Kumar Verma
Dr. Prabhakar Varde
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A Survey on Track Geometry Degradation
Modelling

Iman Soleimanmeigouni and Alireza Ahmadi

Abstract Railway transportation is exposed to a higher demand that necessitates
the use of trains with higher speed and heavier axle loads. These increase the track
geometry degradation rate, which needs a more effective control on geometry
degradation. Keeping the track geometry in acceptable levels requires proper
inspection and maintenance planning that inevitably entails in-depth knowledge of
track geometry degradation. In addition, it is needed to identify the most effective
approach for degradation modelling. To do so, it is vital to synthesis published
results into a summary of what is known and validated and what is not as a major
step. To this end, this paper reviews track degradation models, discusses various
degradation measures, and proposes directions for future researches. It is found that
combining the mechanistic and statistical approaches can leads to a more accurate
prediction of track geometry degradation behaviour.

Keywords Railway track � Maintenance modelling � Degradation model �
Degradation measures

1 Introduction

The railway track and infrastructure degrade with age and usage and can become
unreliable due to failure. When a failure occurs, the consequences can be signifi-
cant, including a high cost of railway operation, economic loss, damage to the
railway asset and environment and possible loss of human lives. Unreliability may
also lead to annoyance, inconvenience and a lasting customer dissatisfaction that
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can create serious problems for the company’s position in the marketplace. An
applicable and effective maintenance strategy can guarantee the achievement of
reliability goals and compensate for unreliability.

Maintenance actions are used to control the degradation of the track, reduce or
eliminate the likelihood of failures, and restore a failed part to an operational state.
We need to model track degradation behaviour if we are to select an applicable and
effective maintenance policy, but modelling and predicting the track geometry
degradation is a complex task, requiring the following information: (1) the inter-
action of different track components, (2) the effect of maintenance actions on track
quality, (3) the heterogeneity factors e.g. environmental factors, soil type and
condition.

In addition, higher demand for railway transportation creates an essential
requirement for higher speed and axle load which accelerates the track aging
process and negatively affects its reliability.

The increased demand and complexity dictates the need for comprehensive track
degradation models. More studies are needed to provide a scientific footing for
track degradation modelling. Synthesising the published results into a summary of
what is known and validated and what is not is a major step. Therefore, the aim of
this paper is to review the literature on track degradation modelling. The paper offer
insights into the different construction of track geometry degradation problems and
modelling to formulate questions that need further research.

The reminder of the paper is organised as follow. Section 2 describes the track
structure. Section 3 discusses recent works on track geometry degradation mod-
elling. The discussion and conclusion are provided in Sect. 4.

2 Track Structure

The majority of railway tracks around the world are ballasted tracks, which is the
interest of this study. The conventional ballasted tracks have lower construction
cost, and properly respond to different static and dynamic force [1]. The
ballasted-track components are demonstrated in Fig. 1. The static and dynamic
forces transform through wheels to rail and consequently to sleepers, ballast,
sub-ballast, and finally sub-grade. Rails are longitudinal steel members that guide
train wheels and distribute the forces from train wheels to sleepers. Fasteners are
used to fix rails to sleepers and prevent longitudinal, vertical, and lateral movements
of rails [1]. Sleepers provide a solid and flat support for rails and keep it within
acceptable positions along the track using fasteners. In addition, sleepers distribute
the vertical, longitudinal, and lateral forces due to rail-wheel contact to the ballast
[1, 2]. Three sleeper types can be found around the world, i.e. steel, wooden, and
concrete sleepers. A comprehensive study about sleeper types and their failure
modes is conducted by Ferdous et al. [3]. Ballast is consisted of crushed stones and
its overall goal is to transmit the forces from the sleepers to sub-ballast layer. Ballast
prevents the track to exit from acceptable lateral, vertical, and longitudinal
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thresholds [1, 4]. Sub ballast is a layer to transmit the forces from super structure to
sub grade. Sub ballast decreases the stresses at the end of ballast to avoid probable
damage to sub grade surface. In addition, sub ballast prevent from entrance of sub
grade materials into ballast layer that reduce drainage efficiency of ballast [1, 5].

Subgrade is a surface of ground that uses as foundation to construct track
structure. In some cases the ground can be modified with special materials to
remove profile problems. Sub grade plays a key role in supporting track system and
a failure in sub grade will generate massive consequences, even with high quality
ballast and sub ballast [1, 5].

3 Survey of Track Geometry Degradation Models

In the two last decades, a great deal of research has been done in the field of track
geometry degradation modelling. Determining an indicator to represent track
quality is an essential prerequisite for modelling track degradation. Different indi-
cators are used based on the aim of the research. The indices for representing track
quality condition are demonstrated in Fig. 2.

Fig. 1 Track components

Fig. 2 Track condition
measures
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Sadeghi et al. [6] proposed a track geometry index uses the following track
geometry parameters: alignment, profile, twist, gauge, and rail cant. Using justified
coefficient, they combined the parameters to design the track geometry index.
Sadeghi [7] developed the previous work by proposing an overall track geometry
index by considering different track classes.

In order to consider structural defects, Sadeghi et al. [8] proposed a quantitative
track structural quality index. This index is defined for each track component group,
i.e. rail, sleeper, fastener, ballast.

Later, Sadeghi et al. [9] used the neural network technique to correlate track
geometry irregularities to track structural defects.

Berawi et al. [10] compared three track quality condition measures: J Synthetic,
Indian TGI, and a measure based on European Standard EN 13848-5. They
observed that different track evaluation methods resulted in different degradation
rates, with the TGI having the highest degradation rate of the three. Faiz et al. [11]
studied the geometry parameters used in the UK track maintenance process and
applied linear regression analysis to explain their correlations. A Generalized
Energy Index (GEI) instead of a Track Quality Index (TQI) for track quality
evaluation is proposed by Li et al. [12]. The GEI can consider different track
irregularity wave-length and speed. Haifeng et al. [13] proposed an integral
maintenance index (IMI) that considers the distribution of track geometry param-
eters to evaluate track condition. El-Sibaie et al. [14] developed a number of track
quality indices to evaluate track quality condition in relation to different track
classes.

By looking to the literature it can be observe that most of the researchers con-
sidered short wavelength longitudinal level as the crucial factor in degradation
modelling. This issue can be seen in Fig. 3.

After finding the proper track quality measure, a degradation model must be
constructed and the effect of different maintenance strategies on track degradation
evaluated. There are two major approaches for track geometry degradation

Fig. 3 Distribution of
applied track geometry
measures
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modelling, i.e. mechanistic and statistical approaches. In this paper, statistical
approach is the main focus.

Concerning mechanistic approach, a number of researchers tried to find the
interactions among track components and their influences on track geometry
degradation.

The most important models are those proposed by Shenton [15], Sato [16, 17],
Chrismer et al. [18], Öberg et al. [19], and Zhang et al. [20]. Dahlberg [21] also
provide an extensive review on mechanistic models applied for track geometry
degradation.

Concerning statistical approaches, the most commonly applied methods are
summarised in Fig. 4.

A stochastic Markov model is used by Bai et al. [22] to evaluate track degra-
dation. They considered various heterogeneous factors and argued that the existence
of these factors caused two maintenance units with the same mileage to show
different degradation behaviour. A Markov model is deployed by Yousefikia et al.
[23] to model tram track degradation and obtain the optimal maintenance strategy.
A model by integrating the grey model and Markov chain is developed by Liu et al.
[24] to predict track quality condition. Xu et al. [25] proposed a track measures data
mining model to predict railway track degradation for a short time period.
A framework called the tree-augmented naïve Bayes-track quality index is proposed
by Bai et al. [26] to predict railway track irregularities for short-term horizon.

Guler [27] used artificial neural networks to model the degradation of different
track geometry parameters. The model considered traffic load, velocity, curvature,
gradient, cross-level, sleeper type, rail type, rail length, falling rock, land slide,
snow, and flood as influencing factors. A multi-stage linear model is applied by
Gou et al. [28] to cope with different phases of degradation between two consec-
utive maintenance interventions and the exponential growth of track irregularity.

Famurewa et al. [29] compared the accuracy of linear, exponential, and grey
models in the estimation and prediction of track geometry degradation. The com-
parison demonstrated the grey model has lower mean average percentage error than
the linear model and an approximately equal error value with the exponential
model. The Gaussian random process is used by Zhu et al. [30] to model track
irregularities in vertical profile and alignment. They discussed power spectral
density analysis and cross-level statistics about track irregularities to improve track
degradation modelling.
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Fig. 4 Track degradation approaches
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Using waveform data, Liu et al. [31] proposed a short range prediction model to
estimate any track irregularity index over a short track section length (25 m) and on
a day-by-day basis. They concluded the total process of track surface change over
track sections is nonlinear and different track sections have different nonlinear
process.

Data mining and time series theories are applied by Chaolong et al. [32] to
predict track irregularity standard deviation time series data. In order to predict the
changing trends of track irregularity, they used the linear recursive model and the
linear autoregressive moving average model.

A modified grey model is developed by Chaolong et al. [33] to analyse track
irregularity time series data and obtain a medium-long term prediction of track cross
levelling. They compared the stochastic linear autoregressive model, Kalman fil-
tering model, and artificial neural network with respect to the short term track cross
levelling prediction. They observed the accuracy of the ANN model was higher
than the two other models. A stochastic approach based on Dagum distribution is
developed by Vale et al. [34] to model track longitudinal level degradation over
time. The researchers classified the track longitudinal level changes into three speed
classes and different inspection intervals.

Andrade et al. [35] used a Bayesian approach to evaluate a track geometry
degradation model and deal with the uncertainty of its parameters. They considered
the track longitudinal level deviation to have a linear relationship with passing
tonnage and assumed the initial longitudinal level and degradation rate would take a
bivariate log-normal prior distribution. They argued that the parameter uncertainties
are significant in the design stage.

In order to model track geometry degradation and maintenance, Westgeest et al.
[36] addressed the application of regression method. They used a combination of
track geometry parameters to create the Key Performance Indicator (KPI) as the
track quality indicator. They studied the effect on the KPI of different types of
subsoil, sleeper, tonnage, and engineering structures, considering two tamping
types, manual and mechanical. The results showed the proposed degradation model
can properly address changes in the KPI over time, but it is not efficient in terms of
track behaviour prediction. They concluded the track segments have different
degradation rates depending on a number of factors, e.g. closeness to switches,
sleeper types, and subsoil types.

Xu et al. [37] proposed an approach based on historical changes in track
irregularity to predict the short-term track degradation. They estimated the
non-linear behaviour of track irregularity during a cycle using a number of short
range linear regression models. Andrade et al. [38] assessed track geometry
degradation and the uncertainty of degradation model parameters. They considered
a linear model for track longitudinal level degradation. They performed statistical
correlation analysis for each group section and fitted the log-normal distribution to
the track’s longitudinal level degradation.

A machine learning model based on the characteristics and inspection data of the
track using a multi-stage framework is developed by Xu et al. [39] to predict
changes in track irregularity over time. They defined different stages of track
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irregularity changes based on maintenance thresholds and linear regression is used
to predict track degradation in each stage.

Berggren [40] applied the pattern recognition method to extract new information
from track quality condition data to classify the root cause of track problems. He
defined three classes of defects: rail defects, ballast defects, and soil defects. The
proposed framework also used data related to track geometry quality, dynamic
stiffness, and ground penetrating radar. The main output of the framework is
classifying the feature measurements based on their effect on track problems.

The application of multivariate statistical analysis for geometry degradation
modelling is pointed out by Guler et al. [41]. First, they divided the track into
homogenous sections based on gradient, curvature, cant, speed, age, rail type, and
rail length. They examined the effect of traffic load, speed, curvature, gradient, cant,
sleeper type, rail type, rail length, falling rock, land-slide, snow, and flood. They
concluded landslide and snow do not affect track geometry degradation, but rail
type and rail length do. The model found a high correlation between cant and
curvature.

Chang et al. [42] proposed a multi-stage linear model to predict changes in track
irregularity. Based on multi-stage and exponential changes in track irregularities,
they modelled different stages of TQI changes using a number of linear models. The
different stages of track irregularity changes were based on the TQI distribution.

The comparison of the efficiency of the double exponential smoothing method, a
generic degradation model, and an autoregressive model for track degradation
prediction is addressed in the work by Quiroga et al. [43]. The three models lose
their efficiency in track degradation prediction after performing a number of
tamping procedures. After considering these issues, they developed a hybrid
discrete-continuous framework based on a grey box model. After comparing these
four models, they concluded the proposed hybrid model is more efficient in terms of
track degradation behaviour prediction.

A degradation model by combining mechanistic and statistical approaches based
on regression that considered track geometry and track structural condition data is
proposed in the work by Sadeghi et al. [44]. Using a degradation coefficient, they
estimated the effect of initial track geometry and track structural condition, train
speed, and total million gross tones passing on the track. They observed an
exponential relationship between the degradation coefficient and the parameters.
The initial track quality condition was found to be the most effective parameter
acting on the degradation coefficient, with the total million gross tonnes passing on
the track coming second. They concluded the degradation coefficient is more
affected by parameters in turnouts, bridges, and curve-bridges than by parameters in
other track segment types.

Lyngby [45] suggested a methodology for evaluating track degradation in terms
of track geometry irregularities and proposed a multivariate regression model to
demonstrate the relationship between the track degradation measure variable and
influencing variables on track degradation. Since different sections of track are not
identical, the track was split into homogenous sections with similar variables. He
concluded: (1) axle load has a nonlinear relation with degradation; (2) degradation
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after tamping is dependent on the number of previous tampings; (3) soil consisting
of clay material will settle sooner than other types of soil; (4) light rail tracks
degrade faster than heavy rail tracks; (5) harsh rainfall increases degradation rate.

Two degradation models to predict track alignment irregularities are proposed in
the work by Kawaguchi et al. [46]. First, they developed a degradation model based
on analysis of lateral track deformation to estimate mean time to maintenance of
track alignment irregularities. Second, they designed another degradation model
based on the exponential smoothing method to accurately predict the track align-
ment irregularities a maximum of 1 year in advance.

A generic degradation model is developed by Jovanovic [47], which is suitable
for modelling degradation of different parameters. To develop a generic degradation
model, he argued the condition parameters that represent the condition of track
components and essential and temporary activities affecting them should be
determined. He observed different degradation patterns based on various intervals
between essential or temporary activities. Various curve types, such as linear,
exponential, and quadratic, can be used to explain the degradation patterns. Miwa
et al. [48] fitted the logistic distribution on track irregularity data to express the
track condition, with the parameters of the distribution related to type of alignment,
rail, and sleeper; depth of ballast; and maintenance history using the exponential
smoothing method.

4 Conclusion

The paper aims to improve the knowledge of railway track geometry degradation
modelling by conducting a survey of recent research works. The most important
issues to consider in track modelling are identified.

Since sections are not homogenous along the track and different heterogeneous
factors affect track degradation, the track must be divided into a number of shorter
track sections and maintenance must be planned for each section. It is observed that
constant equal length sections are usually considered for planning track mainte-
nance activities. However, a more efficient method would be clustering sections
based on their structural, environmental, and operational characteristics.

In addition, achieving a more accurate prediction of track geometry degradation
requires combining the mechanistic and statistical approaches. Finally, integrating
the degradation models of different track components, i.e. ballast, rail, and sleeper,
to plan track maintenance activities can increase the efficiency of maintenance
strategies in terms of economy of scale.

After modelling the track geometry degradation, the track geometry maintenance
models could be constructed. In fact, by combining the degradation and restoration
models the long term behaviour of the track could be predicted. In this regard,
infrastructure managers can evaluate different maintenance strategies.
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Maintenance Optimization Using
Multi-attribute Utility Theory

A.H.S. Garmabaki, Alireza Ahmadi and Mahdieh Ahmadi

Abstract Several factors such as reliability, availability, and cost may consider in
the maintenance modeling. In order to develop an optimal inspection program, it is
necessary to consider the simultaneous effect of above factor in the model structure.
In addition, for finding the optimal maintenance interval it is necessary to make
trade-offs between several factors, which may conflicting each other as well. The
study comprises of mathematical formulating an optimal interval problem based on
Multi-Attribute Utility Theory (MAUT). The aim of the proposed research is to
develop a methodology with supporting tools for determination of optimal
inspection in a maintenance planning to assure and preserve a desired level of
performance measure such as reliability, availability, risk, etc. For verification and
validation purposes, the proposed methodology (analysis approach) and tools
(models) will be applied in a real case which given by the literature.
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1 Introduction

Multi-criteria decision making (MCDM) is one of the most well-known branches of
decision making. According to many authors (see, for instance, [1]) MCDM is
divided into multi-objective decision making (MODM) and multi-attribute decision
making (MADM). MCDM is concerned with the methods and procedure by which
multiple criteria can be formally incorporated into the analytical process [2]. There
are several methods proposed by literature. The weighted sum model (WSM) is the
earliest and probably the most widely used methods. The weighted product model
(WPM) can be considered as a modification of the WSM, and has been proposed in
order to overcome some of its weaknesses. The analytic hierarchy process (AHP),
as proposed by Saaty [3], is a later development and it has recently become
increasingly popular in different area. Belton and Gear [4] modified AHP method
and the new approach is more consistent than the original AHP. Some other popular
methods proposed by literature are the VIKOR and the TOPSIS methods. These
methods are based on an aggregating function representing “closeness to the ideal,
which originated in the compromise programming method”. Both TOPSIS and
VIKOR are based on the calculation of distances from the Positive Ideal Solution
(PIS) and the Negative Ideal Solution (NIS). Chu et al. [5] are in favors of using
VIKOR when there are a larger number of decision makers (DM), and otherwise
they recommend the use of TOPSIS. Recently, Ahmadi et al. [6] show that
application of the combined AHP, TOPSIS, and VIKOR methodologies are
applicable and verified the proposed methodology through a case study for an
aircraft system.

Maintenance decision making is a complex task and may take place in several
contexts with different types of systems in terms of technology, repairability, relia-
bility and availability requirements, etc. For optimal time determination of the
maintenance plan, maintenance management may present scenarios, including sev-
eral objectives which often competing or conflicting with each other. The objectives
can be represented by a set of appropriate measures or attributes, which are used to
represent system characteristics. Here, the decisionmaker not only required to choose
the best solution among alternatives, but also have to trade-off between the objectives.

Kralj and Petrovic [7] used multiple objective function to tackle costs and
reliability in preventive maintenance. In another study, an optimal interval for
preventive maintenance was obtained based on the PROMETHEE method [8].
Gopalaswamy et al. [9] argued for strict selection and lexicographical approaches
applied to preventive maintenance, taking into account criteria such as costs,
availability and reliability. Most research on preventive maintenance problems in
the literature is based on a multi-criteria approach to analyze particular problems
using multi-criteria approaches that do not incorporate the most useful advantage of
multi attribute utility theory (MAUT). However, some decision models for main-
tenance are based in MAUT. See [10–12].

Here, we propose an optimal maintenance inspection model based on MAUT. In
order to determine optimal time, different criteria such as cost, reliability, and
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availability are considered in themodel framework. In order to provide insight into the
problem, a utility function is assessed for each of the relevant objectives. This allows
for an appropriatemultiple objective utility functions that are used to identify tradeoffs
and compare the various objectives in a consistent manner. The basis of utility theory
and its underlying quantitative axiomswere initially established byKeeney andRaiffa
[13]. The decisionmodel has been applied on a real case in an electric power company.
The decision level and weight parameter are selected, subjectively and sensitivity
analysis is conducted to identify the most sensitive parameter.

The rest of the paper is organized as follows. The proposed model based on
MAUT is discussed in Sect. 2. Section 3 shows the numerical example and verified
the proposed methodology through a real case study. In addition, a sensitivity
analysis is discussed in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Multi Attribute Utility Theory

Multi-attribute utility theory (MAUT) [13] is concerned with expressing the utilities
of multiple-attribute outcomes or consequences as a function of the utilities of each
attribute taken singly. This approach has been used for choosing the most “desirable
alternative” (or project) among many different alternatives. It has been used in a
broad range of fields including energy, manufacturing and services, public policy,
health care, etc. MAUT can help in these situations by creating a decision model
through the elicitation process of expert practitioners.

The theory specifies several possible functions (additive, multiplicative and
multi-linear) and the conditions (independence conditions to be met) under which
each would be appropriate. As a practical matter, Keeney and Raiffa [13] suggest
that for four or more attributes the reasonable models are the additive and the
multiplicative. Since our problem contains less than four attributes, we restrict our
attention to the additive form. The MAUT process provides a framework through
which multiple objectives and uncertainty can be combined to aid managers in
making decisions. In order to create a MAUF Problem, single utility functions must
be assessed for every identified objective. In our case, we have identified three
separate attribute. The objective list utilized for this preliminary analysis is mini-
mization of cost and maximization of reliability and availability. Generally, a
MAUF is defined as:

Uðx1; x2; . . .; xnÞ ¼ f u1ðx1Þ; u2ðx2Þ; . . .; unðxnÞ½ �

¼
Xn
i¼1

wi: uiðxiÞ ð1Þ

where,
Pn
i¼1

wi ¼ 1
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where, U is a multi-attribute utility function over all utility functions; ui(xi) is a
single utility function measuring the utility of attribute i; xi is level of ith attribute.
wi represent the relative importance weights for the utilities. By maximizing the
multi-attribute utility function, the best alternative is obtained, under which the
attractiveness of the conjoint outcome of attributes is optimized. The main reason
for the selection of MAUT in our problem is that scenarios of management can be
appropriately represented by the structure of this technique. Furthermore, MAUT
has strong theoretical foundations based on the expected utility theory.

In order to obtain structure for utility functions, first we need to make
assumptions regarding utility independence and the additive independence. The
procedure of the use of it in our problem is discussed in detail by [13]. The utility
functions are assessed in the following four steps [13, 14] (Fig. 1).

2.1 Quantification of Attributes

In our case study, cost, availability and reliability are selected as attribute to find
out the optimal maintenance policy. The attributes and their mathematical struc-
ture are discussed in following subsection.

2.1.1 Cost Modeling

In the preventive replacement age policy subject to breakdown, instead of making a
preventive replacement at fix time interval T, the preventive replacement depends
on the age of the item. In addition, failure replacement is performed if the system
fails before T and the time clock is reset to zero, see [15] for more details. The
average cost per unit time based on optimal preventive replacement is given by:

Fig. 1 The structure of
MAUT for the determination
of optimal inspection time
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CðTÞ ¼ cpRðTÞþ cf ð1� RðTÞÞ
T :RðTÞþMðTÞ:ð1� RðTÞÞ

¼ cpRðTÞþ cf FðTÞ
T :RðTÞþMðTÞ:FðTÞ ð2Þ

where MðTÞ ¼ R T
�1

t f ðtÞ
ð1�RðTÞÞ dt

and T is a replacement age at which a preventive replacement takes place, cp and cf
(cf > cp) are the cost of a preventive and failure replacement. In both cases,
replacement cost includes all costs resulting from the failure and its replacement.

In this model, the numerator equals to the total expected cost per cycle and the
denominator equals to the expected cycle length; F(t) and R(t) are the cumulative
distribution and reliability functions, respectively. The optimal value of
T corresponds to the minimum cost, C(T), can be derived by the first derivation of C
(T) with respect to T. This model is discussed in details by Jardine and Tsang [16].

Cost Attribute

The average cost per unit time given by Eq. (2) has a unique minimum CMin which
occurs at TC. Since small value of C(T) is preferred, we define the cost attribute
function as:

UCost ¼ CMin

CðTÞ ð3Þ

2.1.2 Availability Modeling

Availability is defined as the long run probability of the system being available for
use at any point in time [17]. This is expressed as a point estimate and calculated
from the mean delay and reliability point estimates. There are several different
forms of steady state availability depending on the definition of uptime and
downtime. The Inherent availability is most common definition in the literature:

AI ¼ MTTF
MTTFþMRT

ð4Þ

where MRT is the mean repair time and MTTF is the mean time-to-failure.
In our decision problem, optimal preventive replacement age policy subject to

breakdown are considered. For above standard definition, the following structure
can be derived for single unit.
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AðTÞ ¼
R T
0 RðtÞdtR T

0 RðtÞdtþ tpRðTÞþ tf ð1� RðTÞÞ
ð5Þ

where tp and tf are the require time of performing a preventive and a failure
replacement, respectively. A large value of A(T) is preferred.

Availability Attribute

The average availability per unit time given by Eq. (5) has a unique maximum AMax

which occurs at TA. Since a large value of A(T) is preferred, the availability attribute
may be define as:

UAva ¼ AðTÞ
AMax

ð6Þ

2.1.3 Reliability Modeling

Reliability is closely associated with the quality of the product. This criteria is one
of the main concerns during different stage of product development such as design,
testing and operation. Reliability is defined as probability that a system will
function over the time period. Reliability can be expressed as

RðtÞ ¼ PrðT � tÞ
RðtÞ ¼ 1� FðtÞ ð7Þ

where RðtÞ� 0;Rð0Þ ¼ 1 and lim
t!1 RðtÞ ¼ 0.

Reliability Attribute

The reliability level of the product at time T, is depend to failure distribution and the
interval which is our aim to study. Reliability per unit time given by Eq. (7), has a
unique maximum RMax which occurs at TR. Since a large value of R(T) is preferred,
the reliability attribute is given by:

URel ¼ RðTÞ
RMax

ð8Þ
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2.2 Elicitation of Single Utility Function for Each Attribute

The single utility function for each attribute represents management’s satisfaction
level towards the performance of each attribute. It is usually assessed by a few
particular points on the utility curve [18, 19].

More specifically, suppose that the best and worst values of availability are
selected first as AB and AW. At these boundary points, we have UðAW Þ ¼ 0 and
UðABÞ ¼ 1. For cost utility function, highest and lowest budget consumption
requirement values are selected as CW and CB, respectively. Also, at these boundary
points, we have UðCWÞ ¼ 0 and UðCBÞ ¼ 1.

To elicit the single utility function the exponential or linear function, may
suggested for each attribute given by Eq (9).

UðxÞ ¼ k1xþ k2 Linear function
UðxÞ ¼ k3: exp � k4

x

� �
Exponential function

�
ð9Þ

where ki are constants which secure U xið Þ 2 0; 1½ �. Unknown parameter for utility
functions,UðAÞ, UðRÞ and UðCÞ can be obtained using linear (exponential) form of
single utility function with the help of boundary conditions.

The linear utility function is applied for availability and cost attribute. The linear
function is applicable when the DM is risk neutral [13]. That is, the DM is neither
risk prone nor risk averse. For reliability, the logistic utility function is found to be
suitable. This function presents a risk aversion for higher values of R and prone risk
for lower values of R, which is the DM’s risk behavior for increasing utility
function.

2.3 Estimation of Scaling Constants

The following step is the estimation of the scaling constants wA,wR and wC. They
indicate the importance weights that management team allocates for each attribute
[18, 20]. There are two common methods to assess the scaling constants:

1. Certainty scaling and
2. Probabilistic scaling

Given that the number of attributes considered in our problem is three and we
will use probabilistic scaling technique.

Consider three attributes A, R and C as availability, reliability and cost. Let
ðAB;RB; CBÞ and ðAW ; RW ; BW Þ denote the best and worst possible consequence,
respectively (Fig. 2). There is a certain joint outcome ðAB;RB; CWÞ comprised
three attribute A, R and C at the best and worst level with probability p and (1−p),
respectively. In these situations, the weight for attribute C equals p, where p is the
indifference probability between them, see [18].

Maintenance Optimization Using Multi-attribute Utility Theory 19



2.4 Maximization of Multi-attribute Utility Function

Based on the previously estimated single utility functions and scaling constants, the
additive form of the multi-attribute utility function in our problem can be obtained.
That is

Max : UðA;R; CÞ ¼ wA � UðAÞþwR � UðRÞþ wC � UðCÞ
wA þwR þwC ¼ 1

ð10Þ

where wA, wR and wC are the weight parameters for attribute A, R and C,
respectively. UðAÞ;UðRÞ and U(C) are the single utility function for availability,
reliability and cost attribute. It may note that the U(A, R, C) function is Maximum
type and it has been written in terms of A, R and C.. By maximizing this
multi-attribute utility function, the optimal inspection, T� will be obtained. It is
worth noting here that the additive form of multi-attribute utility function is based
on the utility independence and the additive independence assumptions.

3 Numerical Example

This numerical application is conducted to verify MAUT in maintenance applica-
tion. Assume that 2-parameter Weibull model is selected as failure distribution
which are given by Eq (11) and the parameter of the model and attributes are given
in Table 1.

( , , )B B BA R C

( , , ) ~B B WA R C

( , , )W W WA R C

Fig. 2 Assessing scaling constants

Table 1 Estimated parameter
from real application [21]

b 3 Shape parameter

g 1200 Scale parameter

tp 0.2 Time of performing preventive maintenance

tf 0.4 Time of performing corrective maintenance

cp 600 Cost of preventive maintenance

cf 1200 Cost of corrective maintenance
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FðTÞ ¼ 1� expð�ðT=gÞbÞ

f ðTÞ ¼ b
g
:

T
g

� �b�1

: expð�ðT=gÞbÞ
ð11Þ

In addition, the best and worse level for each attribute are given in Table 2. The
linear utility function is applied for availability and cost attribute. In addition, the
logistic utility function is considered for reliability attribute. For each attribute, the
constant coefficients are calculated and given in Table 2. The availability, reliability
and cost attribute are plotted in Figs. 3, 4 and 5.

Table 2 Attributes function and coefficients

Attributes Best Worse Function Coefficient value

Availability attribute AB ¼ 0:95 AW ¼ 0:25 UðxÞ ¼ k1Aþ k2 k1 ¼ 1:428;

k2 ¼ �0:357

Reliability attribute RB ¼ 0:9 RW ¼ 0:3 UðxÞ ¼ k3: exp � k4
R

� �
k3 ¼ 9:985;

k4 ¼ 2:0718

Cost attribute CB ¼ 0:35 CW ¼ 1 UðxÞ ¼ k5Aþ k6 k5 ¼ 1:5384;

k6 ¼ �0:538

Fig. 3 The availability
attribute

Fig. 4 The reliability
attribute
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The behavior of MAUF function is given in Fig. 6. The optimal inspection time
by considering three attribute with above weight occur at t 2 490; 550½ �. More
specifically, when we consider only cost for determination of optimal inspection
time, we get t ¼ 950 which seems is more delay for inspection time.

4 Sensitivity Analysis of the Model Parameters

From the discussion given in the preceding section, it is good to know that the
optimal decision-making depends on various parameters that may not be precise.

The use of sensitivity analysis will help the analyst to understand how changing
the parameters of the model will affect the decision outcome. The decision model is
then rerun by holding all other parameters constant. We have conducted sensitivity
analysis by calculating the relative change of optimal time based different param-
eters given in Table 3. The sensitivity of the optimal inspection time with respect to

Fig. 5 The cost attribute

Fig. 6 Multi attribute utility
function
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a model parameter, can be quantified by Du�
q;h, which are the relative changes of

optimal utility level, u�ðhÞ when θ is changed by 100p%, i.e.,

Du�
q;h ¼

u�ðhþ phÞ � u�ðhÞ
u�ðhÞ

����
���� ð12Þ

In addition, different weight are assign to the attribute and the results are plotted
in Fig. 7. The values of different weight are given in Table 4.

It can be seen that the sensitivity of optimal interval with respect to model
parameters AW and positive effect of CW is at acceptably low levels, e.g., when
AW (CW ) increases by 30 % (decreases by −30 %) the relative changes in D are 2
and 4 %, respectively. Results in Table 3 reveal that AB and negative part of CB and
CW are slightly more sensitive parameter than other parameters.

In addition, negative change of wR did not reveal the high level of sensitivity and
positive effect of wR will reduce inspection time.

Table 3 Sensitivity analysis
results based on model
parameter

p%

Du�
q;h

−30 % −20 % −10 % 10 % 20 % 30 %

Du�
q;AB 30 % 10 % 1 % NA NA NA

Du�
q;AW 4 % 2 % 1 % 1 % 1 % 2 %

Du�
q;CB 6.5 % 6 % 5 % NA NA NA

Du�
q;CW 8 % 7 % 4 % 2 % 2 % 2 %

Du�
q;RB NF NF NF 10 % NA NA

Note: Na, impossible change; Nf, infeasible solution

Fig. 7 Sensitivity analysis on weight parameters
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5 Conclusion

In this paper, we have developed a multi attribute utility model for the preventive
replacement age policy subject to breakdown. Reliability, availability and cost are
considered as three main attribute in our decision problem. By using MAUT, it is
possible to make trade-offs between several factors, which may conflicting each
other as well. In addition, the optimal solution depends not only on the failure
distribution and the cost ratio, but also on the maintenance time ratio as well as the
relative importance of the attributes. The MAUT is important for the maintenance
and reliability community when a context of service production systems is to be
taken into account due to disturbances caused by failures in the system. A numerical
application has illustrated the use of the decision model and the procedure.
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Optimum Proactive Maintenance
for Critical Infrastructures Subject
to Multiple Degradation
and Environmental Shocks

Mahmood Shafiee

Abstract Critical infrastructures (e.g. power networks, transport systems, financial
services and telecommunication) constitute the backbone of the society. A failure in
these systems may result in substantial costs in terms of lost service delivery and
emergency maintenance operations. Failures of critical infrastructures mainly occur
as a result of various degradation (deterioration) processes in their consisting units
as well as due to external shocks arising from surrounding environment. In order to
avoid such failures, various proactive maintenance policies, including routine
inspection, age (usage)-based replacement, and condition-based maintenance are
commonly applied. In this paper, we formulate an optimization framework for
proactive maintenance planning of critical infrastructures subjected to stochastic
degradation and environmental damages. The infrastructure in our study is com-
posed of multiple identical sub-systems, each exposed to a gradual degradation
phenomenon. The environmental shocks are divided into two types of minor (with
probability p) and major (with probability 1−p, where 0 ≤ p ≤ 1). A minor shock
causes a disruption in system operation without resulting in any failure, while a
major shock stops the system and requires a costly replacement. The performance
of the proposed maintenance policies, regarding the objective of minimum average
long-run maintenance cost per unit time are compared to existing practices of
maintenance. Several case studies within the subsea pipeline, marine renewable
energy, and the rail transport industries are presented to illustrate the results.
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1 Introduction

Critical infrastructures, such as power networks, transport systems, financial ser-
vices and telecommunication constitute the backbone of the society. These systems
provide services that are important in maintaining the essential functions of society.
A failure in these systems may result in substantial costs in terms of lost service
delivery and emergency maintenance operations. For this reason, the requirement
for improving the reliability of critical infrastructures has recently experienced a
great increase. In December 2006, the European Commission approved a pro-
gramme for critical infrastructure protection (CIP) aiming to identify and protect the
EU’s critical infrastructures in case of faults, incidents or attacks (for more see [1]).

Failures of critical infrastructures mainly occur as a result of various degradation
(deterioration) processes in their constituent sub-systems as well as due to external
shocks arising from surrounding environment. Degradation is a complex
multi-dimensional process which depends on numerous physical and mechanical
factors (e.g. material, stress loads) and is manifested in different forms of wear,
fatigue, and crack generation [2]. Any of these forms or their combination can result
in a failure if their length reaches a critical level. In this case, the system undergoes
an unplanned maintenance action which includes performing a replacement on the
failed item. On the other side, environmental shocks are divided into two types of
minor (with probability p) and major (with probability 1−p, where 0 ≤ p ≤ 1) [3].
A minor shock causes a disruption in system operation without resulting in any
failure, while a major shock stops the system and requires a costly replacement. So,
it is crucial to continuously monitor and evaluate the degradation state and oper-
ating condition of critical assets so that unexpected failures can be eliminated
(minimized).

Currently, a large number of sensors and control devices are installed at various
locations of system networks to collect condition data (e.g. temperature data,
deterioration modes and causes, fatigue cracks size, damage propagation). The
collected information is frequently transferred to supervisory control and data
acquisition (SCADA) system and is stored in databases. The system analysts use
the SCADA database to schedule the inspection and maintenance tasks when
required. In this regard, various proactive maintenance policies, including routine
inspection, age/usage-based replacement, and condition-based maintenance are
commonly applied to critical infrastructures protection [4]. A brief review of the
literature shows that a lot of research has been done on optimization of proactive
maintenance policies for isolated infrastructures (or being possibly assimilated to
single-infrastructure systems). However, there often exist strong correlations
among the failure modes as well as between the sub-systems of various infras-
tructures [5]. Neglecting these correlations while optimizing maintenance policies
leads to sub-optimal or even wrong solutions to the problem and thereby, increased
cost of maintenance and system downtime.

In this paper, we formulate an optimization framework for proactive mainte-
nance planning of critical infrastructures subjected to stochastic degradation and
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environmental damages. The infrastructure in our study is composed of multiple
identical sub-systems (e.g. a subsea pipeline with multiple identical pipe segments),
each exposed to a gradual degradation phenomenon. The system undergoes a
proactive maintenance action according to either one of the following schemes:

(i) POLICY I: An age-dependent maintenance action is carried out at fixed time
intervals kT (k = 1, 2, …) after the installation (see Fig. 1a).

(ii) POLICY II: A degradation-dependent maintenance action is carried out when
the condition signal in a sub-system reaches an alert threshold d (smaller than
fault threshold D) (see Fig. 1b). In order to take the advantage of system
dependence, a preventive repair action is also performed on other safe
sub-systems.

Fig. 1 The proposed proactive maintenance policy
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(iii) POLICY III: A proactive maintenance action is conducted at fixed time
intervals kT or when the condition signal in a sub-system exceeds an alert
threshold d, whichever comes first.

The problem is to find out the optimum block replacement time T* (>0) and/or
condition threshold d* (<D) such that the system’s average long-run maintenance
cost per unit time is minimized. Our objective function includes all costs due to
corrective replacement, preventive maintenance and repairs, and loss of service
delivery. The explicit expression of the objective function is derived and under
certain conditions, the existence and uniqueness of the optimal solution are shown.
The performance of the proposed maintenance policies are evaluated using a
Monte-Carlo simulation technique and are compared to existing practices of
maintenance.

The rest of this paper is organized as follows. In Sect. 2, we present the problem
definition. In Sect. 3, we construct our optimization framework and discuss the
properties of the optimal solution. Several case studies in the subsea pipeline,
marine renewable energy and the rail transport industries are presented in Sect. 4.

2 Problem Definition

Notation
n number of sub-systems in the infrastructure
i index for sub-systems; i 2 {1, 2, …, n}
m(t) [M(t)] intensity [mean value] function of degradation process in a

sub-system
j index for number of degradation processes
Tij initiation time of the jth degradation process in the sub-system i
FTijð:Þ survival function of Tij
Xij(t) level of the jth degradation process in the sub-system i at time point

t after initiation
Uij
x length of the interval between the initiation time of the jth

degradation process in the sub-system i to the time that it attains a
size x

gU� ð�Þ½GUx
ijð�Þ�� probability density [cumulative distribution] function of Uij

x

α[β] shape [scale] parameter of the gamma distribution
Γ(∙)[γ(.,.)] gamma [incomplete gamma] function
Sij
x time (since t = 0) to attain size x for the jth degradation process in

the sub-system i
h(.)[H(.)] intensity [mean value] function of environmental shocks
p [1–p] probability that an environmental shock is catastrophic [minor];

0 ≤ p ≤ 1
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Tf time to arrive a catastrophic shock
FTf ð:Þ survival function of Tf
D fault threshold of degradation for sub-systems
d (<D) control threshold for PM
Sd time point that, for the first time, the degradation level of a

sub-system reaches d
FSd ð:Þ½hdð:Þ� survival [hazard rate] function of Sd
T PM interval
CT fixed cost of a planned PM
C(d) cost of performing a major repair for a sub-system with degradation

level d
CR fixed cost of replacing a failed sub-system
cm expected cost of service loss due to a minor shock
C0 set-up cost for a planned PM action at time T
C1 set-up cost for an unplanned major repair action at threshold d
C2 set-up cost for a corrective replacement action
Cn(d, T) average long-run maintenance cost for a sub-system per unit time

Initiation of degradation—Consider a critical infrastructure which is composed
of n identical sub-systems connected in series (in terms of reliability) and all
working independently of each other. A failure of the sub-system j (= 1, 2, …,
n) causes the failure of entire system, which is immediately detected. Each
sub-system is subject to a random number of degradation processes independently
from the others. Suppose that the degradation processes in the sub-system i are
initiated by point events that follow a non-homogeneous Poisson process (NHPP),
{N1i (t) ≡ N1 (t); t ≥ 0} with intensity function (rate) m(t) and mean value function
M(t), i.e., [6]

MðtÞ ¼
Z t

0
mðyÞdy; t� 0: ð1Þ

Let Tij, i = 1, 2,…, n, j = 1, 2,…, denote the initiation time of the jth degradation
process in the sub-system i. Then, the survival function that corresponds to the
random variable Tij is given by

FTijðtÞ � FTjðtÞ ¼ PfN1ðtÞ\jg ¼ e�MðtÞ �
Xj�1

k¼0

½MðtÞ�k
k !

: ð2Þ

Propagation of degradation—Assume that all degradation processes in the
sub-systems propagate independently from each other. Let Xij(t), i = 1, 2, …, n,
j = 1,2,…, be the level of the jth degradation process in the sub-system i at time
point t after initiation. Thus, Xij(t), are the increasing stochastic processes of
degradation. Denote by Uij

x the length of the time interval between the initiation
time of the jth degradation process in the sub-system i to the time that it attains a
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size x (the first passage time). Let Xij(t) ≡ X(t) and Uij
x ≡ Ux, which means that the

initiated degradation processes are statistically identical for different initiating
events affecting the sub-systems. We also assume that the corresponding stochastic
processes are independent. Thus,

Ux ¼ inf t� 0 : XðtÞ� xf g; x[ 0: ð3Þ

In this paper, we model the level of a degradation process using the stochastic
gamma process. Assume that X(t) is a homogeneous gamma process with shape and
scale parameters αt and β, respectively. Thus, the density and the cumulative dis-
tribution function of Ux are given respectively by [7]

gUxðtÞ ¼ bat

Cðat) x
a t�1e�bx; t� 0; a; b[ 0; ð4Þ

GUxðtÞ ¼ cða t; b xÞ
Cða t) ; t� 0; a; b[ 0; ð5Þ

where Cð � )[c(.,.)] denotes the gamma [incomplete gamma] function, i.e.,

Cðt) =
Z 1

0
zt�1e�zdz; cðt; uÞ ¼

Z 1

u
zt�1e�zdz; t; u[ 0: ð6Þ

Denote by Sij
x the time point (since t = 0) when the level of the jth degradation

process in the sub-system i exceeds x. Then,

Sxij ¼ Tij þUx; x[ 0; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .: ð7Þ

Let {NSi
x (t); t ≥ 0}, i = 1, 2, …, n, be the counting process associated with the

random variable Sij
x , where NSi

x (t) denotes the total number of degradation processes
in the sub-system i that exceeds a size x in the interval [0, t). Then, we can show
that {NSi

x (t); t ≥ 0} is an NHPP with intensity function,

hxðtÞ ¼
Z t

0
m ðtÞgU� ðt � yÞdy � m ðtÞ � gU� ðtÞ; x[ 0; ð8Þ

where the symbol * represents convolution function and gU
x (.) is given by Eq. (4).

Environmental shocks—Suppose that the environmental shocks arrive at the
whole infrastructure according to a non-homogeneous Poisson process (NHPP)
{N2(t); t ≥ 0} with intensity function h(t) and mean value function H(t), i.e.,

HðtÞ ¼
Z t

0
h ðtÞdy; t� 0: ð9Þ
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External shocks are minor with probability 1−p and catastrophic with probability
p (0 ≤ p ≤ 1). We denote by Tf the time of arrival of a catastrophic shock. Then, the
survival function of the random variable Tf is given by

FTf ðtÞ ¼ expf�pHðtÞg; 0	 p	 1: ð10Þ

3 Maintenance Optimization

Let Sd denote the time that, for the first time, a degradation process in one of the
sub-systems exceeds the threshold d, i.e.,

Sd ¼ min Sdij; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .
n o

; 0\d	D; ð11Þ

where Sij
d is the time to attain size d for the jth degradation process in the sub-system

i. Then, taking into account Eq. (8) for x = d, the survival function of Sd can be
written as

FSd ðtÞ ¼ PfSd [ tg ¼
Yn
i¼1

PfNSdi
ðtÞ ¼ 0g ¼ exp �n mðtÞ � GUd ðtÞð Þf g; ð12Þ

where n is the number of sub-systems in an infrastructure, and GU
d (.) is given by

replacing x with d in Eq. (5). Now, let Xr denote the duration of the renewal cycle
defined by the time interval between successive maintenance actions. Under the
assumptions of the model,

Xr ¼ min T; Sd; Tf
� �

; T [ 0; 0\d	D; ð13Þ

Hence, the expected duration of a renewal cycle, E(Xr) is given by

EðXrÞ ¼
Z T

0
FSd ðtÞFTf ðtÞdt; ð14Þ

where FTf ðtÞ is given by Eq. (10), and FSd ð�Þ is given by Eq. (12).
Denote by E[NE,m (d, T)] the expected number of minor shocks that arrive at the

infrastructure during the renewal cycle. Then,

E ½NE;mðd; TÞ� ¼ ð1� pÞ
Z T

0
hðtÞFSd ðtÞFTf ðtÞdt: ð15Þ
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The cost of performing a planned PM action and the replacement cost for each
sub-system are CT and CR, respectively. The cost of performing a major repair at
condition threshold d is represented by function C(d), which is a non-negative,
non-decreasing differentiable function of d. In addition to the repair or replacement
costs, conducting a maintenance task incurs a fixed set-up cost, which usually
includes the costs for ordering the spare parts, equipping the maintenance teams, and
hiring the maintenance personnel and transport vehicles. We assume that the main-
tenance set-up costs for a planned PM at time T, a major repair at control threshold
d and a replacement task are respectively C0, C1, and C2, where C2 ≥ C1 ≥ C0 > 0.
Also, the expected cost of service disruption due to a minor shock is cm.

Let S(t) represent the expected cost of operating the system for the time interval
[0, t). From the renewal reward theorem (see [8, p. 52]), the average long-run
maintenance cost per unit time is the operational cost incurred in a renewal cycle
divided by the length of the expected cycle. Then, the average long-run mainte-
nance cost for a sub-system per unit time, denoted by Cn(d, T) is given by:

Cnðd; TÞ ¼ 1
n
lim
t!1

SðtÞ
t

: ð16Þ

The average long-run maintenance cost of a sub-system per unit time under the
proposed maintenance policies are as follows:

POLICY I:

CnðD; TÞ ¼
ðC0 þ nCTÞ þ

R T
0 nnðD; tÞFSDðtÞFTf ðtÞ dt

n
R T
0 FSDðtÞFTf ðtÞ dt

; T [ 0; ð17Þ

where nnðD; tÞ is defined as below:

nnðD; tÞ ¼ n ½ðC2 � C0Þþ ðCR � CTÞ� hDðtÞ
þ ½p ðC2 � C0 þ n ðCR � CTÞÞþ ð1� pÞcm� hðtÞ:

ð18Þ

POLICY II:

Cnðd;1Þ ¼ ðC0 þ nCTÞ þ
R1
0 fnðd; tÞFSd ðtÞFTf ðtÞ dt

n
R1
0 FSd ðtÞFTf ðtÞ dt

; 0\d	D: ð19Þ

where nnðd; tÞ is defined as below:

nnðd; tÞ ¼ n ½ðC1 � C0Þþ ðCðdÞ � CTÞ� hdðtÞ;
þ ½p ðC2 � C0 þ n ðCR � CTÞÞþ ð1� pÞcm� hðtÞ:

ð20Þ
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POLICY III:

Cnðd; TÞ ¼
ðC0 þ nCTÞ þ

R T
0 nnðd; tÞFSd ðtÞFTf ðtÞ dt

n
R T
0 FSd ðtÞFTf ðtÞ dt

; 0\d	D: ð21Þ

Proposition 1 Let T


n is an optimal solution that minimizes the objective function

Cn (D, T) in Eq. (17). Then,

i. If nnðD; 1Þ[CnðD; 1Þ, there exists a finite T


n minimizing Cn (D, T).

ii. If nnðD; TÞ is strictly increasing and nnðD; 1Þ[CnðD; 1Þ, there exists a
unique, finite minimum.

iii. If nnðD; TÞ is non-decreasing and nnðD; 1Þ	CnðD; 1Þ\1, then T


n ! 1

(reactive response maintenance policy).

Proposition 2 Let m(t) and h(t) be two differentiable non-decreasing functions of t,
and assume limd–0 C(d) ≥ CT. There exists an optimal solution d



n that minimizes

the function Cn (d, ∞) in Eq. (19) if the function CðdÞhdðtÞ is strictly increasing in
d for each t and the derivative of the function ðC1 � C0Þþ ðCðdÞ � CTÞ½ �hdðtÞ is
sufficiently large.

4 Case Studies

In order to illustrate the proposed policies, the model is applied to maintenance of
the three below infrastructures:

4.1 A Subsea Pipeline

A 20-inch oil export pipeline which is used to transport oil from offshore platform
to an onshore treatment plant was studied [9]. This pipeline operates under a
pressure of 800 psig and temperature of 40 °C and is subject to corrosion and
current shocks (see Fig. 2a).

4.2 A Wind Turbine Rotor-Blades

A three-bladed offshore wind turbine system subjected to fatigue cracks and wind
loads was studied [10]. The wind turbine has a condition monitoring system that
measures a wide range of temperature, noise and vibration parameters (see Fig. 2b).
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4.3 A Rail Track

A 60E1 rail track on a small track section subjected to degradation and icing shocks
was studied [11] (see Fig. 2c).
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Risk Informed In-Service Inspection
of PWR Nuclear Power Plant Piping
Components Subjected
to Erosion-Corrosion Using Markov Chain
Model

K. Balaji Rao, M.B. Anoop, Gopika Vinod and H.S. Kushwaha

Abstract AMarkov Chain (MC) model for failure probability assessment of power
plant piping components against erosion-corrosion is proposed. In the MC model,
the state space is the degradation state of the system represented by the ratio of the
loss in wall thickness due to erosion-corrosion to the original wall thickness of
the pipe, and the index space is the time. The use of the proposed MC model is
illustrated through an example problem. The model proposed by Abdulsalam and
Stanley is used for determining the rate of erosion-corrosion in the example, and, the
pipe diameter, pipewall thickness, temperature, pH value, flow velocity, and model
error are considered as random variables. From the results obtained, it is noted that
there is a need to consider the correlation between degradation at two successive
times for obtaining conservative estimates of failure probability against rupture.

1 Introduction

Erosion-Corrosion (EC) is one of the major causes of material degradation of
carbon steel piping systems carrying water (single phase) or wet steam (two phase)
in Pressurized Heavy Water (PWR) Nuclear Power Plants. The piping systems
susceptible to erosion-corrosion damage include feedwater, condensate, extraction
steam, turbine exhaust, and, feedwater heater and moisture separator, reheater vents
and drains [1]. Significant degradation of pipe wall thickness has been reported in a
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number of operating nuclear power plants resulting in fatal accidents, and costly
repairs. Hence, an assessment of the resistance degradation based on a suitable wear
rate model is essential to predict the life of the piping components against
erosion-corrosion damage. The selection of the model for estimation of erosion-
corrosion rate should, amongst other factors, be based on its range of applicability
and ease of application. Use of such models would help in evolving better strategies
of inspection which can be carried out using high precision inspection methods
such as radiography, thermography and ultrasonic testing to check the safety of the
piping components and replace the susceptible piping components or to carry out
the necessary maintenance in time.

For a given piping component (viz. Elbow, Tee) and operating conditions, the
EC rate is known to vary [1]. The phenomenon of EC being complex, modeling
error also need to be considered. The EC wear rate predicted and modeling error
associated with the prediction should be considered as random. The modeling error
also accounts for the inherent variations in the phenomenon of EC. In this paper, a
Markov Chain (MC) model for failure probability assessment of power plant piping
components against erosion-corrosion is proposed. Using the proposed model, the
variations in failure probabilities against rupture with time for a power plant piping
component are determined. From the results obtained, it is noted that there is a need
to consider the correlation between degradation at two successive times for
obtaining conservative estimates of failure probability.

2 Modeling Erosion-Corrosion Rate

Erosion-Corrosion is an accelerated form of corrosion caused by the relative motion
between corrosive medium (with or without suspended particles) and metal surface
leading to loss of material [2]. Modeling erosion-corrosion phenomenon is complex
as it is affected by a number of variables such as pH, dissolved oxygen content,
temperature, quality of flowing fluid, quality of oxide layer on inner surface of the
pipe, chemical composition of the steel pipe and particle impact angle [2]. Many
researchers have made attempts to develop models for estimation of erosion-
corrosion rate and to formulate service life models for piping components subjected
to erosion-corrosion degradation mechanism. Stack and co-workers developed a
mathematical model for estimating erosion-corrosion in mild steel pipes carrying
aqueous solution containing alumina particles based on detailed laboratory studies
[2]. They assumed the erosion-corrosion process to be purely additive, i.e., sum of
erosion and corrosion effects. The model is admittedly applicable for low particle
impact angles (impact angles <4o), low flow velocities (flow velocities <2 m/s),
constant temperature and constant pH (pH = 9.0) of flowing fluid. Abdulsalam and
Stanley [3] developed a steady state model to account for the steady hydrogen flux
through metal and has established that erosion-corrosion is dependent on the kinetic
rate of metal oxide film dissolution at lower temperatures and on mass transfer
limited rate at higher temperatures. Ting and Ma [1] developed an erosion-corrosion
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model based on phenomenological considerations and statistical data of pipe wall
thickness obtained from Taiwan PWR nuclear power plants for different piping
components subject to various operating conditions. In the present investigation, the
model proposed by Abdulsalam and Stanley [3] is used for estimating the EC rate.
All the three models discussed above are deterministic.

2.1 Need for Stochastic Modeling of Erosion-Corrosion

Due to the uncertainties in material properties of steel and the variations in exposure
conditions, the degraded state of the piping component subjected to erosion-
corrosion will be a random variable at any given time. Also, the degraded state of
the piping component changes with time. Thus, the evolution of the degradation in
the piping component has to be modeled as a stochastic process. Markov Chains
(MC) are found to be a useful tool for stochastic modeling of condition state
evolution of degrading systems [4, 5]. A homogeneous MC model for assessment
of piping components against erosion-corrosion is presented in the next section.

3 Markov Chain Modelling

The degraded state of the piping component (hereafter referred to as system)
subjected to erosion-corrosion will be a random variable. Also, the degraded state
of the system changes with time. Thus, the evolution of the degradation in the
system has to be modelled as a stochastic process. Markov chain (MC) models are
the simplest stochastic models that are extensively applied in engineering [4–7]. In
a Markov Chain model, both the state space and the index space can be discrete.

In the case of erosion-corrosion, the state space is the degradation state (z) of the
system represented by the ratio of the loss in wall thickness due to erosion-
corrosion (l) to the original wall thickness of the pipe (t), and the index space is the
time (T ¼ T1; T2; . . .; Tnf g). The loss in wall thickness is given by

l ¼ A � WR � Age (in years) ð1Þ

where WR is the rate of erosion-corrosion per year and A is the modelling error. The
value of WR can be determined using a suitable erosion-corrosion model.

The probabilistic evolution of the process, in general, can be described by the
transition probabilities,

TP ¼ P z Tið Þ ¼ i z Ti�1ð Þ ¼ i� 1; z Ti�1ð Þ ¼ i� 2; . . .; z T1ð Þ ¼ 1jf g ð2Þ
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In this study, the probabilistic evolution of degradation is obtained by making
the following assumptions.

i. The stochastic process can be described as a one-step memory process. This
implies that the process is Markov and present state of the system can be
completely determined by its immediate past state. This assumption is justified
since degradation at ith time (i.e. at time step ti) more or less depends on
degradation at (i-1)th time (i.e. at time step ti-1).

ii. The stochastic process has a discrete, finite state space {1, 2, …, m}, and, a
discrete index space {1, 2, …, n}, where index 1 is interpreted as time
step = T1, index 2 is interpreted as time step = T2, and so on. Since loss in wall
thickness increases with age, the system can make transitions from a given state
to the higher states only.

Using these assumptions, transition probability for the system is given by,

pij Tk; Tkþ 1ð Þ ¼ P e Tkþ 1ð Þ ¼ j e Tkð Þ ¼ ijf g; 1� i�m; i� j�m;
1� k� n� 1

ð3Þ

The probabilistic evolution of the system is given by the transition probability
matrix (TPM),

P Tk; Tkþ 1ð Þ ¼ pij Tk; Tkþ 1ð Þ� �
1� i�m;i� j�m; for 1� k� n� 1 ð4Þ

Since the system can make transitions from a given state to the higher states
only, the TPM will be an upper triangular matrix. Since the state space considered is
such that the states are mutually exclusive and collectively exhaustive,

Xm
j¼1

pij Tk; Tkþ 1ð Þ ¼ 1; for 1� i�m ð5Þ

3.1 Determination of k-Step TPM

The probabilistic description of the state of degradation after k-time steps is given
by (Chapman Kolmogorov equation),

P T1; Tkð Þ ¼ P T1; T2ð Þ � P T2; T3ð Þ � P T3;T4ð Þ � . . .� P Tk�1; Tkð Þ ð6Þ

Since a homogeneous Markov Chain is considered in this study, P(Ti, Ti+1) =
P(Ti-1, Ti). Hence, the k-step TPM is given by P(T1, Tk) = Pk(T1, T2). The
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unconditional probability vector of the state of degradation, after k-time steps can
be determined from,

PU T1; Tkð Þ� �
1�m¼ Pð0Þð Þ1�m� Pk T1; T2ð Þ� �

m�m ð7Þ

where Pð0Þð Þ1�m is the vector representing the probabilities of initial states of
the system. For a system whose evolution is defined by a homogeneous MC, the
state of the system at any future time can be determined using the one-step TPM,
once the initial state is known.

3.2 Determination of Elements of TPM

A typical element of 1-step TPM (Eq. 3), can be written as,

pij Tk; Tkþ 1ð Þ ¼ P z Tkþ 1ð Þ ¼ j\z Tkð Þ ¼ if g
P z Tkð Þ ¼ if g ð8Þ

which gives the probability of degradation state of the system being ‘j’ at time Tk+1
given that the degradation state was ‘i’ at time Tk. Computation of these proba-
bilities requires information regarding joint probability density function (jpdf) of
degradation state at any two successive time steps, (Tk, Tk+1) and pdf of degradation
state at time step, Tk. Since it is difficult to generate this information from test data,
in the present investigation, it is assumed that degradation states at successive time
steps follow bivariate normal distributions and at any time step, degradation state
follows a normal distribution. This is because when the mean and variance are the
only information available with respect to the degradation state of the system at any
time step, the maximum entropy distribution is the normal distribution [8]. Hence, it
is assumed that the state of degradation at any load step follows normal distribution.
Knowing the jpdf and pdf, and using Eq. (7), the elements of TPM can be com-
puted. A typical element of the conditional 1-step TPM is given by

pij Tk; Tkþ 1ð Þ ¼
R zi
zi�1

R zj
zj�1

fk;kþ 1 zk; zkþ 1ð Þdzkdzkþ 1R zi
zi�1

fk zkð Þdzk
ð9Þ

where fk;kþ 1 zk; zkþ 1ð Þ is the bivariate normal distribution with correlation coeffi-
cient qk;kþ 1 and fk zkð Þ is the univariate normal distribution.

The step-by-step procedure for MC modelling of the degradation in piping
component is given below.

1. Divide the state space into mutually exclusive and collectively exhaustive event
sets.

2. Divide the index space into discrete intervals.
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3. Compute the mean and standard deviation of the degradation state of the system
under the considered degradation mechanism at two successive points in the
index space.

4. Using the values of mean and standard deviation computed in step 3 and using a
suitable correlation coefficient (qk;kþ 1), formulate the one-step TPM, P, using
Eq. (9).

5. Determine unconditional probability vector of the state of degradation of system
after k-time steps using Eq. (7).

A software, called RISCMarkov, is developed at CSIR-SERC for reliability
analysis of power plant piping components (Fig. 1) [9]. The software can be used
for MC modeling of piping components against erosion-corrosion, thermal fatigue,
vibration fatigue and stress corrosion cracking.

The state space, given by z ¼ l=t, is between 0 and 1, and is divided into a finite
number of discrete states as defined by the user (default number of divisions is
taken as 20 in the software). The index space is discretised into one year intervals.
Depending upon the operating conditions and the inputs available, the software has
four options (Fig. 2) for determining the rate of erosion-corrosion (WR). The values
of mean and standard deviation of z at two successive years is obtained using first
order approximation, and the n-step TPM is computed using the step-by-step
procedure given above. The state probabilities corresponding to four states defined
as success (no detectable damage; l/t < 0.125), flaw (detectable flaw; 0.125 ≤ l/
t < 0.45), leak (0.45 ≤ l/t < 0.80) and rupture (l/t ≥ 0.80) are determined, using the
aggregation procedure given in Balaji Rao and Appa Rao [8].

Fig. 1 RISCMarkov
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4 Example

An outlet feeder pipe of a PHWR is considered. The feeder pipe is made of carbon
steel A106GrB. In the present study, the model proposed by Abdulsalam and
Stanley [3] is used for determining the rate of erosion-corrosion and hence the loss
in wall thickness at different times. The diameter of the pipe is 70 mm and thickness
is 6.5 mm. The flow velocity is 1500 cm/s, the pH is 10.2, and the temperature is
553 K. The kinematic viscosity is taken as 0.0179 cm2/s. The plant life is taken as
40 years. The random variables considered, along with their mean and standard
deviation values are given in Table 1. The vector representing the unconditional
probabilities of the initial states of the system ( Pð0Þð Þ1�m) is taken as
1; 0; 0; . . .; 0f g1�20, since the loss in wall thickness due to erosion-corrosion is zero

at the beginning. To study the effect of correlation coefficient qk;kþ 1 on the state
probabilities, three values of qk;kþ 1, namely, 0.0, 0.5 and 0.99, are considered.

Fig. 2 Options for the erosion-corrosion model in RISCMarkov

Table 1 Random variables
considered

Variable Mean COV

Pipe diameter (cm) 7.0 0.0174

Pipewall thickness, t (mm) 6.5 0.059

Temperature (Kelvin) 553 0.009

pH 10.2 0.07

Flow velocity (cm/s) 1500 0.005

Model error 1.0 0.01
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5 Results and Discussion

Using the proposed MCmodel, the variation in unconditional state probabilities with
time during the life of the plant (40 years) are determined, and are shown in Figs. 3, 4
and 5 for the different values of qk;kþ 1 considered. From these figures, it is noted that
as qk;kþ 1 increases, the relative time spent in the intermediate degradation states
(namely, flaw and leak) reduces. This suggests that, for lower values of qk;kþ 1, the
decision making regarding in-service inspection is governed by probabilities of
the piping component being in flaw and leak states. The variation in probability
of failure against rupture with time for the three values of qk;kþ 1 considered are
shown in Fig. 6. Since the values of failure probability against rupture are small for
qk;kþ 1 = 0 and 0.5, the failure probabilities are shown in logarithmic scale in Fig. 6.
From Fig. 6, it is noted that as qk;kþ 1 decreases, the probability offinding the system
in rupture state also decreases. This suggests that if the dependence is not considered
in modeling the evolution of degradation of the system, the probability of failure
values obtained can be unconservative. Integrating the values of state probabilities at

Fig. 3 Variation in
unconditional probabilities of
states with time for qk;kþ 1 = 0

Fig. 4 Variation in
unconditional probabilities of
states with time for
qk;kþ 1 = 0.5
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different times obtained using the MC model with the consequences associated with
the piping component being in different degradation states, will be useful for risk
informed in-service inspection of these components.

6 Summary

A homogeneous MC model for probabilistic failure assessment of piping compo-
nents against erosion-corrosion is presented. The MC model is incorporated in the
software RISCMarkov, developed at CSIR-SERC for reliability analysis of power
plant piping components. Using the MC model, the variations in failure probabil-
ities against rupture with time for a power plant piping component are determined.
The unconditional state probabilities at different times obtained using the MC
model can be integrated with the consequences associated with the piping com-
ponent being in different degradation states for risk informed in-service inspection
of these components.

Fig. 5 Variation in
unconditional probabilities of
states with time for
qk;kþ 1 = 0.99

Fig. 6 Probabilities of failure
against rupture
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Turnout Degradation Modelling Using
New Inspection Technologies: A Literature
Review

Niloofar Minbashi, Morteza Bagheri, Amir Golroo,
Iman Arasteh Khouy and Alireza Ahmadi

Abstract Turnouts are of the most critical components of railway track which are
prone to high static and dynamic forces leading to more intense degradation. They
require more inspection than other parts of a railway track as they are potential
safety hazards. As a result, turnout degradation processes are crucial to be under-
stood by infrastructure manager to plan for their maintenance and renewal in
advance. Two approaches have been introduced in the literature to achieve a
thorough understanding of degradation processes in turnouts. The first one acts to
develop degradation models based on influential parameters and historical data and
then to predict degradation processes in the future; while the second one tries to
improve inspection through using new concepts and technologies leading turnout
condition data to be better captured over time. The purpose of this paper is to
review all available resources regarding these two approaches and provide a guide
for further research into turnout studies.

Keywords Railway turnouts � Degradation processes � Inspection technologies �
Degradation models � Railway transportation

N. Minbashi � M. Bagheri (&)
School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
e-mail: morteza.bagheri@iust.ac.ir

N. Minbashi
e-mail: minbashi@rail.iust.ac.ir

A. Golroo
Department of Civil and Environmental Engineering, Amirkabir University
of Technology, Tehran, Iran
e-mail: agolroo@aut.ac.ir

I. Arasteh Khouy
Luleå Railway Research Centre (JVTC), Luleå University of Technology, Luleå, Sweden
e-mail: iman.arastehkhouy@ltu.se

A. Ahmadi
Department of Civil Environmental and Natural Resources Engineering,
Luleå University of Technology, Luleå, Sweden
e-mail: alireza.ahmadi@ltu.se

© Springer International Publishing Switzerland 2016
U. Kumar et al. (eds.), Current Trends in Reliability, Availability,
Maintainability and Safety, Lecture Notes in Mechanical Engineering,
DOI 10.1007/978-3-319-23597-4_5

49



1 Introduction

All around the world, railway industry is planning for higher transit speeds and
extended capacity for freight transportation. This means that railway assets are more
prone to degradation than before, so that their reliability should be enhanced as they
are to meet increasing demands of the future.

Turnouts are among the most crucial assets in a railway system, as they provide
flexibility and punctuality to the railway network, particularly when a disruption
occurs; they allow trains to use routes other than usual to ensure reliable services for
trains and passengers. Therefore, a substantial portion of railway network budget is
spent on their annual maintenance and required renewals. For example, mainte-
nance cost of turnouts comprises a minimum of 13 % of the total maintenance cost
of the railway network in Sweden [1]. That is even more in Switzerland, where
25 % of the railway maintenance and renewal budget is spent on turnouts [2].
However, In the United States, turnouts are identified as a major cost area with an
annual budget being estimated to be 10 times more than the amount spent on
conventional track [3]. Turnouts have a distinct structure within railway assets,
hence they need to be taken care of more cautiously. The distinctive structure of
turnouts comes from the following: turnouts have special components, such as
switch tongs, frogs and slide plates, which are prone to high vertical and lateral
dynamic forces because of their particular geometry leading to a considerable
amount of deterioration [4]. Another aspect regarding turnout structure is that
turnouts can be considered as a mechanical system as they have moving parts,
meaning that more inspections and maintenance actions are needed to assure their
reliability; last, but not the least, is that turnouts are considered to be potential safety
hazards. In the United States, approximately 10 % of the derailments on yard and
siding tracks have been caused by turnout defects coming from the heavy use of
turnouts on these types of tracks leading more wear and deterioration to be imposed
on them [5].

Degradation processes in turnouts must be monitored in order to plan for
maintenance activities ahead. This is possible if the conditions of turnout and its
components are available over time implying the importance of high quality data
availability for analysing turnout condition. For turnouts, unavailability of reliable
data has been a crucial problem, as no preventive maintenance can be planned
without a reliable dataset. Prediction of maintenance and renewal requirements of
turnouts, like any other railway asset, is possible once degradation processes are
known and predictable. So far few studies have been carried out to model degra-
dation processes of turnouts to improve their maintenance planning [6]. However,
there are two approaches for understanding the way turnouts degrade: the first
approach advances via developing degradation models for prediction of mainte-
nance and renewal requirements of turnouts based on historical data [2]. The second
approach works through inspection and documentation of inspection tasks which
has become possible recently by developing new technologies for data collection
and defect analysis [7]. The aim of using new inspection technologies is to
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document turnout inspections over time which enables the infrastructure manager to
analyse degradation trends when making decision for each turnout individually,
based on its condition.

The purpose of this paper is to review two approaches toward understanding
turnout degradation: degradation processes modelling using historical data and new
inspection technologies. This paper provides a thorough scheme of all the attempts
carried out to reflect the degradation processes of turnouts. The first section
addresses the approach of using historical data to model degradation. In the second
section, new inspection technologies are reviewed comprising new devices for
semi-automated data collection as well as new technologies for automated data
collection, while the conclusions are presented in the final section.

2 Degradation Modelling

If the degradation of a turnout was identified to have reached its critical level, then
safe operation of trains may not be guaranteed anymore. Therefore, a maintenance or
renewal action is needed to avoid any hazardous situation to be faced. Degradation
can be predicted enabling the infrastructure manager to take decision for mainte-
nance or renewal of a component or a series of components. This prediction may be
based on a maintenance index defined by measurement of components during
inspection phase, as will be described in the next section, or by implementing models
based on historical data. In the case of turnouts, it is hard to implement degradation
models based on historical data because of unavailability of data, so as only two
cases have focused on modelling of degradation processes of turnouts, as it can be
seen in the following paragraphs.

Zwanenburg [2] implemented a model for degradation processes of turnouts.
This model is the first model available so far in the literature on degradation of
turnouts. The purpose of the model is to determine maintenance and renewal
requirements of turnouts for mid-term planning over a period of 10 years.
Degradation processes stand for degradation and wear of the turnouts; the former is
a reduction in the quality of track geometry, while the latter is a reduction in that of
components.

Parameter selection has been based on three categories: (1) train (axle load, total
tonnage), (2) track (soil quality, maintenance and component renewal policy), and
(3) operation (whether trains are mainly in facing or trailing direction, train speed).

The model has been based on maintenance and renewal data from the Swiss
Federal Railways. Maintenance tasks included in the model based on the available
data were: (1) tamping (geometry correction), (2) welding on the frog, and
(3) grinding of metal parts. The following options were available for replacement of
the components: (1) complete switch or crossings replacement, (2) switch rail with
accompanying stock rail, (3) frog, and (4) check rail.
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In this model, degradation and wear have been described by developing a reli-
ability model where reliability is defined as the probability of a turnout or its
components to function properly longer than a specified period of time.

The model resulted in approving parameters assumed to be influential on the
degradation of standard turnouts, such as: (1) the actual train load, (2) lower soil
quality which reduces life expectancy of a switch, (3) smaller switch angle which is
generally associated with a longer life, (4) higher axle loads (more freight trains)
leading to more wear, and (5) train speed. At the end, taking a sample from another
period of time, geographical area or railway network has been recommended
because the proposed model failed to be successful for the Swiss data.

Zwanenburg [2] tried to model geometrical degradation and wear of turnouts.
However, his model is just a mean to reveal the importance of the parameters.
Arasteh Khouy et al. [8] focused on geometrical degradation of turnouts and
attempted to analyze vertical geometry degradation using longitudinal level mea-
surements over a four-year period. The reason for this comes from the fact that
geometrical condition of the track can trigger degradation of other track compo-
nents and hence is used to assign entire range of track maintenance operations [9].

Geometrical degradation at the crossing point of turnouts has been analyzed by two
approaches. The first approach considers two parameters for analyzing geometrical
degradation, namely, the absolute residual area (ARa) defined as “the absolute value
of the area obtained from the differences in the longitudinal level values between two
adjusted measurements at the crossing point” and maximum settlement (Smax).
defined as “the difference between the value of longitudinal level at the crossing point
and the value obtained from the vertical line passing through the crossing point line
connecting the positive peaks before and after the crossing point”. The absolute
residual area (ARa) can indicate the trend of track settlement due to accumulated
loading over a certain period of time. In the analyzing phase, the first measurement is
taken as the reference point to which subsequent measurements are compared,
meaning that the longitudinal level of the reference point is assumed to be constant.
This results in the estimation of the relative geometrical degradation rather than the
current one. Therefore, analysis of geometrical parameters of the crossing points, such
as the slope of measurement line at 1 m before and after the crossing point, has been
used in the second approach. The trends of these parameters as a function of time have
been analyzed. The results of the second approach reveal that crossing position
settlement has a limit after which the crossing cannot settle anymore and the faults
would be transferred to the next wave in the crossing neighborhood.

These two approaches using different parameters reveal that turnouts should be
regarded individually since they are associated with different degradation rates. The
difference in degradation rates comes from other factors which were not considered
in the study, such as traffic, subgrade quality, age of the asset, maintenance strategy
and the environment. Even though, Arasteh Khouy et al. [8] did not introduce a
geometrical degradation model for turnouts, but their work provides a reliable
knowledge for better understanding of the turnout settlement. This knowledge can
be incorporated into a LCC model in terms of specifying maintenance intervention
limits considering the cost effectiveness.
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3 Data Collection

Safe rail operations are guaranteed by periodic inspection of railway infrastructure.
However, this is a hard task to accomplish as tight train scheduling doesn’t allow
much flexibility within inspection operations. Therefore, new technologies are
introduced to improve inspection task especially for turnouts which are inspected
manually with their inspection being a labour-intensive duty for infrastructure
manager. In this section new technologies for better manual inspection of turnouts
are introduced.

3.1 Semi-automated Data Collection

Turnout inspection in its traditional form where a paper was used for checking and
recording the turnout condition, was upgraded by introduction of palmtop computer
systems called SwitchInspect by ZETA-TECH. Zarembski [10] introduced this
Personal Digital Assistant (PDA) to be used in turnout inspection. The data gath-
ered by this handheld computer can be uploaded to a database enabling the
infrastructure manager to prioritize maintenance activities and schedule them. The
proper inspection data help us make an overall rating of turnout condition by
defining turnout indices that cintribute to prioritization of turnout maintenance tasks
or turnout renewal and also to a safety assessment of the turnout condition. More
importantly, the definition of indices lead to a thorough understanding of degra-
dation process of turnout enabling the infrastructure manager to plan for mainte-
nance and renewal of turnouts before a breakdown.

There are seven component areas with their related components in SwitchInspect
system: 1. geometry, 2. switch stand, 3. switch point area, 4. closure area, 5. frog
area, 6. ballast and 7. ties.

This system has two phases. The first phase is data collection phase where
condition indices are determined and then employed to plan maintenance activities
ahead.

In data collection phase, the inspection measurements are recorded and com-
ponents are ranked based on their relative importance from view point of operation
and maintenance. All the possible failure modes with their severity are also
included in the device for each component. Importance of each turnout and traffic
density are included as well.

The second phase comprises the calculation of the condition and maintenance
indices. Two kinds of indices are calculated based on collected data: an overall
Turnout Condition Index and Maintenance Sub-Indices (MSI) for each turnout and
key maintenance areas which consist of: 1. tamping, 2. gaging, 3. grinding, 4.
welding, 5. tie replacement, and 6. switch stand replacement. Maintenance
Sub-Indices Calculation is based on a series of numerical ratings related to each
inspection item, its mode of degradation/failure with its severity taking the
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importance of the turnout itself into account [10]. The result of the second phase is a
set of Maintenance Sub-Indices (MSI) which can be used together with or sepa-
rately from Turnout Condition Index (TCI) to prioritize scheduled turnout main-
tenance and also to determine the necessity of renewal of a complete turnout or its
components. Maintenance Sub-Indices are particularly useful as they can prioritize
specific maintenance activities. Prioritization of turnout maintenance and renewal
operations is an important issue because of the large number of turnouts in the
network and their degradation rate which is crucial to high-density traffic lines.

SwitchInspect allows a systematic documentation of turnout inspection to be
performed manually. Its main feature is that the whole condition of turnout can be
documented, so as degradation of the turnout can be traced over time. However, the
inspection process is still dependent on the inspector and prone to human error.
There are other devices identifying the wear condition of turnout, such as MiniProf
Switch which is an add-on to MiniProf Rail. The MiniProf Rail provides instant
information on metal removal and grinding stone tilt. The MiniProf Switch is the
extended MiniProf Rail which is able to measure special profiles of switches. It is
magnetically attached to the rail and is able to use a telescopic rod for reference to
the opposite rail [11].

Each rail in a switch or crossing is measured individually, then the positional
data (reference profiles) from the Switch add-on are combined to these measure-
ments automatically. The measurement containing all profiles placed relative to
each other allowing measures to be conducted between them is the result of this
device [11]. It can also be used as a PDA because of its embedded battery. USB
connection to the instrument is the feature that makes it possible to use the mea-
surement data for other modelling purposes. The MiniProf Switch instrument is a
useful device for switch inspection, however, it can be used for only one mainte-
nance area within turnout inspection which is grinding [11].

A laser based trolley for switch and crossing inspection has been introduced in
[12]. The aim of this system is the efficient profile inspection of switches and
crossings and advising on their maintenance by means of welding and grinding.
The proposed solution is a lightweight trolley of an estimated weight of 15 kg
which can be manually pushed over the switch. The relative position of the trolley
can be monitored by a tachometer. Profile data acquisition from the parts to be
inspected is done through separate 2D transversal slices or as a complete 3D model.
For profile acquisition, two line lasers will be used to scan the rail’s profile. These
lasers are selected based on such features as their width of the scan, number of
samples per line of scan, precision, sampling frequency, size, power consumption,
robustness, price and overall quality. The utilized laser for this application is a
scanCONTROL 2700–100 [13] produced by Micro Epsilon which enables to scan
half set of one switch at a time (one stock rail and one switch rail). The crossing is
inspected by pushing the trolley two times, once on a straight path and one other
time on a diverging path. A 3D profile scan of the crossing is required by inspection
standards and needs to be identified for this system; this is introduced as a further
research. The required power for the trolley will be provided by rechargeable
batteries; it comes with a tablet computer and a software written in LabView
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programming language. Ethernet port will provide the communication between the
lasers and the tablet as it is easier to work on an interface provided by a tablet
computer. The inspection of different parts of the switch is possible for the user and
also he/she is advised on how the profile should be rectified. Furthermore, he/she
will be notified about the accordance of the profile with the Network Rail standards.
The fact that this system is used manually is defined as its main advantage because it
provides a good flexibility and implements the criteria defined by the inventors [12].

Jönsson et al. [14] focused on turnout geometry inspection of switch blade and
frog section as track geometry quality can cause other components degradation
[13]. They introduced a new method to measure the vertical position of unstressed
track geometry relative to the main track over time. The relevant measurements can
be used to develop degradation models which will then be used in life cycle cost
(LCC) models. The aim of inspecting geometrical shape of turnout is to ensure its
proper function and safe passage of the trains, since in case of improper geometrical
shape, necessary maintenance actions would be costly. For the measurement of
longitudinal level (vertical direction) under unstressed conditions, four measuring
equipment have been evaluated based on their accuracy in terms of technical
specifications, repeatability and practical accuracy, setup time, range of measure-
ments and number of users required to carry out the measurements. The levelling
instrument has been selected for measuring geometric irregularities of the track.
During three measurements in different periods, 13 turnouts with different ambient
and operating conditions are selected. The overall results showed that the
dependability of a railway infrastructure is affected by the seasons, meaning that
climate conditions, such as frost or ground water levels, can change geometrical
shape of turnouts [14]. The Million Gross Tons (MGT) can also increase vertical
track geometry elevation/decline of turnouts towards their mid-section. The largest
vertical track geometry decline was related to turnouts with a radius on the through
route. The turnouts had a relatively higher vertical positions in comparison with the
main track which may come from this fact that differences in history of tamping
frequency as well as stiffness and load carrying area.

3.2 Automated Data Collection

Periodic track inspection is a requirement of applicable standards for individual
railroad track maintenance to guarantee a safe and efficient operation. Even though
introducing new devices, such as SwitchInspect and MiniProf Switch, has simplified
the inspection process for inspectors but it is still a labour-intensive, time-consuming
and slow task. Therefore, new technologies are required to automatically inspect
railway turnout resulting in the elimination of human error. In recent years, new
technologies have been developed for automatic inspection of turnouts.

The Netherlander company, Eurorailscout, developed a switch inspection system
in 2005 which was later equipped with a profile measurement system for wear
detection in 2009. The whole system is called “Switch Inspection and Measurement”
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(SIM). This system is made up of a wagon which is pulled and pushed on track for
turnout inspection. The inspection system is made up of two panorama cameras
which are placed toward the front and the rear of the wagon to capture the per-
spective of the running inspection [15]. Four line-scan cameras provide recordings
of the outer and inner sides of the rails, including the inner parts of the switches. Two
line-scan colour cameras capture top view of the rail, while two black and white
cameras pride detailed view from the rail head to find cracks and other anomalies.
The system also uses an intelligent software for analysis and examination of
potential defects which leads to automatic identification of defects such as missing
fastening devices, crumbling of concrete rail sleepers, cracks in the concrete rail
sleepers, ballast deficit and ballast surplus [15]. The measurement system uses a
well-known triangulation method which means that the travelling route is deter-
mined by a spot laser whose reflection is monitored by the camera. Then, the
distance between the camera and object can be calculated from such reflection data.
Track profile is once scanned per 20 mm, at a measurement speed of 40 km/h. The
profile measurements can then be presented to the client in any desired reporting
format: txt, csv, xls, pdf, xml, etc. The horizontal and vertical wear can be calculated
from measured profiles as well. The inspection may involve different cross-section
measurements at the tongue, the track or the frog. All the data and reports will be
kept in a data bank. The measurement history preservation in this data bank can
contribute to trend analyses. SIM is able to measure 3D geometry of tracks and
switches by an inertial measurement system optimised for very short and
median-length waves. The delivered parameters are track width, shift, height,
transverse gradient in accordance with EN 13848. The inertial system is able to attain
high accuracy, both at low speeds and also with very short waves at high speeds [15].

Molina et al. [16] brought the concept of machine vision for turnout inspection.
This concept had been previously developed for other rail infrastructures such as:
(1) rail surface defects [17, 18], (2) rail wear [19], (3) tie condition [20–22],
(4) ballast [23], (5) fastening systems [24, 25], and (6) general track structure
inspection [26, 27]. Using machine vision techniques in the course of railway
inspection systems has been beneficial as some experimental tests showed, for
example, that accuracies have been greater than 80 % with measurement speeds of
up 320 km/h in many cases [16]. Molina et al. [16] have reviewed previous
researches into machine vision applications in railway infrastructure inspection and
mentioned that no previous work has been dedicated to turnout inspection using
machine vision. As a result, they decided to develop an algorithm for detecting most
critical components of a turnout. They analysed turnout-related derailment data
from 1998 to 2009 using FRA Accident Database identifying a rank-ordered
turnout components/defects selection to be inspected using machine vision:
(1) worn or broken switch point, (2) other frog, switch, and track appliance defects,
(3) worn or broken turnout frog, (4) broken or defective switch connecting or
operating rod, (5) gap between switch point and stock rail, (6) missing bolts and
cotter pins. As the inspection of missing bolts and cotter pins was the first task done
by means of visual inspection, they decided to select it as their first inspection
priority using machine vision. Developing machine vision system is based on
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collecting video and images from track components. This is critical as the com-
ponent must not be shown just in its functional position, but it must also be
distinguished from the background objects and provide necessary measurements by
correct orientation. They selected two camera views for inspection, the lateral view
and over-the-rail-view. These views were suitable for detecting tie plates, anchors
and spikes. A Video Track Cart (VTC) was designed for collecting continuous
video shots of sections from a low-density track for experimental data acquisition
[16]. They captured videos from tangent and different turnouts under different
conditions in terms of natural lighting, levels of vegetation, ballast types and levels
of ballast fouling. They developed an algorithm for detection of spike, anchor and
tie and recognition of defects which goes through a coarse-to-fine approach for
object detection. It detects the track components with predictable location, such as
rail, before locating the objects with high appearance variability, such as spike
heads and anchors. Local features, such as edges and texture information are also
incorporated into the model in order to increase the robustness to changing envi-
ronmental conditions. The introduced system has shown good reliability for com-
ponent inspection using machine vision, nevertheless, the algorithms need to be
refined to improve the reliability of spike and anchor detection.

Afshari et al. [28] identified bolted joint in turnouts as one of the most hazardous
components causing accidents. Therefore, they introduced an effective method for
health monitoring of bolted joints in railroad switches. They claimed that early
detection of loosed bolted joints using a full-automatic mechanism to inspect the
switches’ mechanical condition would eliminate the need for frequent visual
inspections. They have applied piezoelectric transducers and impedance-based
structural health monitoring techniques for monitoring the loosening of bolted joints
in a full-scale railroad switch. The results have shown that a quarter turn of a bolt
could be clearly detected by measuring the electrical impedance of a PZT patch at the
bolted connection. The accuracy of this system is as high as 25 ft-lbs when the bolt
assembly is loosened, which corresponds to merely one tenth of a bolt turn. The
experimental results showed that each PZT sensor/actuator attached to a bolts’ nuts
is more sensitive to its corresponding bolt rather than neighboring ones, meaning
that the proposed damage detection is able to isolate the loosened bolt from the
others. After detection of the loosed bolted joints, the loosened bolts are retightened
using a shape memory alloy (SMA) washer as the actuator. The retightening comes
from a self-healing concept which is integrated into the impedance-base structural
health monitoring technique (SHM) making the inspection bolted joints fully
automated leading to eliminate the need for frequent visual inspections.

Schoone [29] invented a contactless system for capturing the profile of a rail of a
turnout in order to determine its conditions in terms of wear and deformation. Wear
and deformation of turnout is corrected via replacement or grinding and is then
evaluated by periodic inspections. Periodic inspection of turnout rail can be realized
using contact or non-contact sensors, e.g. laser measurements known as triangu-
lation. The proposed system uses a laser device to project a light beam onto an area
of the rail facing the opposite rail before the reflected light from that area of the rail
is recorded by an imaging device. In this system, the location of the point blade of
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the turnout is detected as the reference point and the apparatus has the capability to
be mounted on a passing train. The aim of this system is (1) to evaluate the wear
and deformation of the turnout through parameters measurement of components
such as rail, without any contact, (2) to acquire the actual profile by combining
information from the components, (3) to accurately locate measurement point rel-
ative to the reference point, (4) to obtain results from measurements in real time,
and (5) to conduct measurement at 10 or 20 km/h of the measuring train velocities.

Zarembski et al. [30] introduced the very new concept of using an automated
inspection vehicle for switch inspection. The idea has come from the fact that
manual process of inspection did not change even with using PDAs and it was still
dependent on the corresponding inspector. Automated Switch Inspection Vehicle
(ASIV) is a new technology dedicated to turnout inspection. This vehicle is able to
test turnouts at a high degree of measurement accuracy and frequency generating an
appropriate level of information on turnout condition in order to monitor them from
safety and maintenance management point of view.

ASIV contains a profile measurement system which measures the switch and
frog profiles along with a newly developed state of the art switch analysis software
(SwitchWear) for analysing the measured profiles.

ASIV is able to measure switch point, frog and stock rail profiles, wear and
important geometry parameters. It can identify derailment problems, damage related
to switch points, stock rails and frogs as well as, wide gaps on closed switches. By
generating data from rail condition, turnout degradation can be monitored over time
and, more importantly, one can identify safety hazards and conditions violating
FRA safety rules and also railroad maintenance conditions.

In a technical sense, ASIV can be defined in this way: ASIV uses a high-
sampling-rate profile acquisition for image acquisition at one inch intervals at
8 mph (*12.9 km/h) speed on each rail. For instance, for a specific turnout of
170 ft (*52 m) in length, more than 8000 rail profiles will be acquired with the
straight and diverging legs of the turnout, and the whole turnout will be measured in
less than five minutes.

After acquiring rail profile data, 3-D composite images of turnout and its key
components are developed. These composite images can be used for the analysis of
key maintenance and safety parameters (Table 1) in comparison with a specific
standard which can be FRA Track Safety Standards or the railroad-specific main-
tenance standard. When the relative deviation from these standards is labelled as
Red defect, it means that a safety standard violation has been occurred, while if it is
labelled as Yellow, a maintenance standard has been exceeded without violating
safety standards. Red and Yellow defects data will be used for calculation of
Turnout Maintenance Priority Index for each turnout determining its overall con-
dition and priority in terms of maintenance or renewal. Using this index when
evaluating overall conditions of all turnouts, will lead to identify high priority
turnouts with very bad conditions within mainline or rail yards.

Identification of defects leading to component failure and derailment by ASIV
contributes to derailment risk mitigation which is realized by analysing the inter-
actions between wheel and rail. SwitchWear is able to analyse various turnout

58 N. Minbashi et al.



surface geometry and multiple wheel profiles. ASIV develops a Turnout Derailment
Risk Index which addresses potential risk of derailment [29].

In conclusion, ASIV allows for monitoring deterioration of turnout by ongoing
measurements. Therefore, maintenance approach will become proactive rather than
reactive. ZETA-TECH is trying to upgrade ASIV by enabling the inspection of other
components of turnout including (1) rods, plates and connectors, (2) ties and ballast,
(3) switching mechanisms and (4) Signal system components. Because the current
version is specifically dedicated to measure running surface of turnout including
switch points, stock rails, closure rails and frog portions of the turnout [31].

Asplund et al. [32] proposed the idea of using cameras for turnout inspection.
Their proposed system is composed of a web-based camera with a minimum res-
olution of 1600 × 1200 pixels which is protected by a plastic housing. It possess an
approximate weight of 3 kg including the internet access module and batteries. The
system is mounted above the overhead line to get a fully symmetric bird’s eye over
the turnout which makes the inspection of both rails and blades as well as geometric
calculation possible leading to a reduction in manual inspection frequency. Their
proposed system has been tested by the Swedish engineering company, Damill AB.
However, the authors have just postulated on how beneficial would be to use

Table 1 Summary of potential measurements in the switch area by the ASIV [29]

Rail type Measurement

Stock rail opposite a switch rail Vertical wear

Gage side wear

Gage face angle

Gage corner radius

Switch rail Gage face angle

Breaking or chipping

Gage corner radius

Stock + switch rails Vertical height difference

Lateral gap width

Wheel contact point through switch point

Closure rails Vertical wear

Gage side wear

Gage face angle

Guard rail Guard flangeway gap width

Relative height of guard rail

Frog nose and wing rail Relative height of nose and wing rail

Wear/Batter on Wing Rail

Batter/damage to frog

Flangeway depth

Flangeway width

Surface damage: Batter, chipping

Wheel contact through frog

Wing rail profile (within field of view)
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cameras for turnout inspection without proving the effectiveness of the proposed
system by real in-site measurements.

3.3 Data Collection Tools

The purpose of improving inspection technologies and using new concepts for
inspection in turnouts is not solely to simplify the inspection process. Better
inspection documentation will provide better understanding of the condition of
turnouts over time. This will enable the infrastructure manager to understand
degradation processes of turnouts and consequently to predict their maintenance
and renewal requirements. This means that a better management of components will
be achieved which helps minimizing the maintenance costs and analysing life cycle
costs for different maintenance and operation scenarios. Using new technologies for
turnout inspection has been rare due to complexity of turnouts themselves. The
deterioration of turnouts occurs in two forms of geometrical degradation and tear,
wear or plastic deformation. The technologies presented in this paper are developed
for geometrical measurements used for predicting geometrical degradation, and also
for profile measurements used to plan grinding actions and prevent turnout com-
ponents from being wore. However, there are technologies which can provide both
of them (Table 2).

Table 2 Summary of inspection tools

Name Function Maintenance area

SwitchInspect Inspection documentation- Assigning
maintenance indices

Inspection

MiniProf Switch Providing instant information on
metal removal and grinding stone tilt

Grinding

Laser Based Trolley profile inspection Grinding-welding

The levelling instrument Longitudinal level (vertical direction)
under unstressed conditions.

Geometrical
measurement

Switch Inspection and
Measurement (SIM)

Automatic inspection, profile and
geometrical measurement

All

Turnout Condition
monitoring using machine
vision

Detection of tie plates, anchors and
spikes

Missing bolts and
cotter pins inspection

Health Monitoring of
Bolted Joints

Bolted joints detection by
piezoelectric transducers and
impedance-based

structural health
monitoring of bolted
joints

Contactless turnout profile
measurement

Determining turnout condition in
terms of wear and deformation

Grinding

ASIV Profile and geometry measurement
for switch and frog

All

Web-based camera Profile and geometrical measurement Automatic inspection
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4 Conclusion

Turnouts are among the most critical components of railway track. Their impor-
tance lies on their complicated structure and their potential to lead in hazardous
accidents. Therefore, considerable budget is being spent on their maintenance and
inspection, annually. As a result, it is important to understand the degradation
processes of turnouts in order to plan for their maintenance and renewal in advance
and to better allocate the budget. In the literature, unavailability of reliable data
regarding turnout condition has been an obstacle for understanding their degrada-
tion trends. On the one hand, some researchers try to model degradation of turnouts
by developing a degradation model based on historical data which, by considering
all the influential parameters, is able to predict components degradation in the
future. On the other hand, the second approach introduces new inspection tech-
nologies providing consistent, objective inspection of turnouts leading to better
understanding of their condition and to monitor their degradation. The first
approach has had less success as a result of unreliability of required data regarding
turnout condition. However, the second approach facilitates inspection and provides
a better understanding on turnout degradation trends over time. Although some of
such technologies as ASIV or SIM are able to inspect a turnout thoroughly, but
some are still under development and need to be improved considering complexities
of turnouts.
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Context-Based Maintenance and Repair
Shop Suggestion for a Moving Vehicle

Adithya Thaduri, Diego Galar, Uday Kumar and Ajit Kumar Verma

Abstract Maintenance of moving vehicles is quite challenging because they may
disrupt the normal flow of transportation due to unexpected breakdowns, slow-
downs and stoppages. In order to avoid stoppages and to minimize the downtime,
maintenance and condition monitoring systems must be optimized. On one hand the
condition monitoring on board should provide automatic failure detection, identi-
fication and localization together with a prognostic of the future failures. On the
other hand maintenance logistics and product supportability must be also optimized
since the onboard system should provide a suggestion of a repair shop that depends
on location, cost and availability of spare parts, technicians’ skills and queuing time
for repairs. However the vehicles are independent assets interacting among them
within the traffic system and also interacting with the infrastructure (roads, rails etc.)
seriously affected by weather, maintenance of infra, regulations etc. Therefore the
proposed solution is to equip the vehicles with a context-aware system that mon-
itors the condition and maintenance schedules of parts and alarm the driver of the
parts that are in near to repair cycle. This system will perform risk analysis and will
communicate with the cloud propose a decision of selection of repair shop on the
location and path of vehicle depending on weather, road and traffic, cost and
availability of spare parts at respective repair shops based on risk assessment and
prediction. The information contained in the cloud will also communicate the
workshop that will book time slot and block the necessary spare parts for the
coming vehicle minimizing waiting time. This mechanism will help in reducing
unexpected stoppages, vehicle degradation and efficient spare parts management
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combining in a successful way the workload of the workshops from both natural
sources, the time based inspections and repairs together with the reactive mainte-
nance coming from unexpected breakdown.

Keywords Context-aware � Repair shop management � Condition monitoring �
Decision support system � Moving vehicle

1 Introduction

Maintenance is one of the driving requirements in operations along with logistics,
financing and safety. Especially in railways, it must keep with periodic inspection
and maintenance at regular or prior intervals for minimizing the effect of infras-
tructure failures that may disrupt passenger and cargo services.

If there was a failure in one of the critical components in a moving vehicle which
does not surfaced in the corrective maintenance, then it lead to obstruction to
ongoing traffic, loss to the asset and human dissatisfaction. The present technologies
can able to do several maintenance technologies to detect the ongoing failures but
they are not designed with respect to the context and changing environment. For
condition monitoring (CM) the components, sensors are installed at several places
for data acquisition and then analysed the data for diagnosis and prognosis in a
remote location using computerized maintenance management system (CMMS). The
combination of CM and CMMS was presently applying in several industries for the
effective and efficient prediction of failures in time to reduce the cost, human effort
and risk. Computer-based systems are now being used to spontaneously diagnose
problems to overcome some of the disadvantages accompanying with relation to
experienced personnel [1]. Typically, a computer-based system utilises a linking
between the observed symptoms of the failures and the equipment problems using
practices such as table look ups [2], symptom-problem matrices, and rules of thumb
[3]. These techniques work well for systems with simple mappings between
symptoms and problems, but diagnostics seldom have simple correspondences for
complex equipment and processes. In addition, not all symptoms are necessarily
present if a problem has occurred; making other approaches more cumbersome [4, 5].

Traditionally, the combination of CM and CMMS has been implementing in
several systems whether the system is in static or in dynamic motion. There are
several challenges in the dynamic motion, for example in railways, the location and
the environment is changing rapidly and the systems need to adjust to the envi-
ronment. There is also need to predict the failure due to continuously dynamic
environment and report the possible occurrences of failure to the central comput-
erized system.

For the maintenance activity to be performed for those vehicles in urgent situ-
ations there is need for capability to perform replacement or repairs at a mainte-
nance site that is more related to the context of the vehicle. Even though, in general
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sense, the repair site that is closest to failure site is the best location for the
maintenance activity, it may not be always possible because of the other parameters
that urge to be considered such as cost, availability, queue, and logistics. In order to
overcome it, there is a need of effective diagnostics and prognostics to detect the
possible failure of the components in a moving vehicle. Here, moving vehicle may
refer to any vehicle that is in transport like automobiles, bus, train, ships or aero-
planes [5].

The services for the condition monitoring and computerized maintenance
management system can be utilized for effective performance for repair shop
management activities. This can be possible by installing on-board diagnostics and
prognostics in the moving vehicle for the data acquisition. This onboard system will
send data to the centralized cloud system of assisting information [6]. The data in
centralized system will do the optimization decision making on the context-driven
to provide the best repair shop management and also allocate slot for maintenance
activity. The paper is structured as: Sect. 2 gives explanation of maintenance of
moving vehicles and how it will perform, Sect. 3 gives information on onboard
diagnosis and prognosis that can be installed on moving vehicle, Sect. 4 discusses
on the repair shop management and Sect. 5 provides the proposed approach for the
onboard maintenance management for repair shop activities.

2 Maintenance of Moving Vehicles

In order to perform maintenance activities, the first step is to collect data from all
the components of the vehicle and sent to computerized data management.

2.1 Data Collection

There is a tremendous need to assimilate asset information to get a precise health
assessment of the whole system, from various sources such as infrastructure,
facilities, factories, vehicles etc., and thereby determine the probability of a shut-
down or slowdown, [7]. Moreover, the data acquired are often distributed across
independent systems that are challenging to access and not correlated. If the
data from these independent systems are combined into a common correlated data
source, this rich new set of information could add value to the individual data
sources [4]. For example, it is common for most of the facilities to collect work
records of where work has been done. Many assets also typically measure their
health using condition monitoring (CM) or non-destructive testing
(NDT) techniques [8] as “nowcasting” technologies in order to see where work
needs to be done. However, these two datasets can remain in separate and indi-
vidual systems. By combining the data into a location correlated dataset, i.e.
metadata (Fig. 1), the quality and/or the effectiveness of the work being performed
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can be analysed by comparing the “asset health” before and after the work is
completed [4, 5, 9].

Figure 2 shows the systems currently used by maintainers in factories or facil-
ities. Computerized maintenance management system (CMMS) and CM are the
most popular repositories of information in maintenance, where most of the
deployed technology is installed and unfortunately isolated information islands are
usually created [10]. While using a good version of either technology can assist in
reaching the defined maintenance goals, combining the two (CMMS and CM) into
one seamless system can have exponentially more positive effects on maintenance
and asset performance than either system alone might achieve. The combination of
the strengths of a top-notch CMMS (preventive maintenance (PM) scheduling,
automatic work order generation, maintenance inventory control, and data integrity)
with the capabilities of a leading-edge CM system (multiple-method condition
monitoring, trend tracking, and expert system diagnoses) in such a way that work
orders are generated automatically based on information by CM diagnostic and
prognostic capabilities improving dramatically the asset performance, [5, 11–13].

Just a few years ago, linking CMMS and CM technology was mostly a vision
easily dismissed as infeasible or at best too expensive and difficult to warrant much
investigation. Now, due to the advancement of computing technologies, there is a
possibility that the combination of CMMS and CM have been to implement to

Fig. 1 Metadata for maintenance knowledge extraction
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achieve such a link relatively easily and inexpensively. A top-shelf CMMS can
perform a wide variety of functions to improve maintenance performance, [10]. It is
the central organizational tool for World-Class Maintenance (WCM). Among many
other critical features, a CMMS is primarily designed to facilitate a shift in
emphasis from reactive to preventive maintenance. It achieves this shift by allowing
maintenance professional to set up automatic PM work order generation. A CMMS
can also provide historical information which is then used to adjust PM system
setup over time to minimize unnecessary or redundant maintenance actions or
repairs, while still avoiding run-to-failure repairs. PMs for a given piece of
equipment can be set up on a calendar schedule or a usage schedule that utilizes
meter readings. A fully-featured CMMS also includes inventory tracking, logistics,
workforce management, purchasing, in a package that stresses database integrity to
safeguard vital information [14]. The final result is optimized equipment up-time,
lower maintenance costs, and better overall plant efficiency [5].

On the other hand, a CM system should accurately monitor real-time equipment
performance, and alert the maintenance professional to any changes in performance
trends. There are a variety of measurements that a CM package might be able to
track including vibration, oil condition, temperature, operating and static motor

Fig. 2 ICT architecture for the integration of CMMS and CM systems in maintenance and asset
management
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characteristics, pump flow, and pressure output [15]. These measurements are
squeezed out of equipment by monitoring tools like Ferro graphic wear particle
analysis, proximity probes, triaxle vibration sensors, accelerometers, lasers, and
multichannel spectrum analysers [14]. The very best CM systems are expert
systems that can analyse measurements like vibration and diagnose machine faults
[5, 11, 13].

2.2 Context Driven Maintenance Decisions

A context-aware system actively and autonomously adapts and provides the most
appropriate services or information to users, taking advantage of people’s contex-
tual information while requiring little interaction. The concept of context-aware
computing was quoted by [16, 17] as “the ability of a mobile user’s applications to
discover and react to changes in the environment they are situation” [18].

Context-aware systems are usually complicated and are responsible for many
jobs, such as representation, modelling, management, reasoning, and analysis of
context information. They require the collaboration of many different components
in the systems. There are various types of different context-aware systems, making
it hard to generalise a context-aware system process; however, a context-aware
system usually follows four steps as shown in Fig. 3 [9].

The first step is acquiring context information from sensors. Sensors convert real
world context information into computable context data. By using physical and
virtual sensors, the system can capture various types of context-aware information.
The system then stores the data into its repository. When storing context data, the
kind of data model used to represent the context information is very important;
context models are diverse, and each has its own unique characteristics. To easily
use the stored context data, the system controls the abstraction level of the data by
interpreting or aggregating them. Finally, the system uses the abstracted context
data for context-aware applications. One such representation of context aware
system was developed by [19] for intelligent broker systems. They developed
context broker architecture (CoBrA) for context acquisition using different sensors
with devices among users, machines and agents to provide adequate support for
context modeling by analyzing from data repositories. The features are then
extracted for the application of brokerage activities.

Fig. 3 General process in context-aware systems
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2.3 Context Driven Condition Monitoring

In the past, the different functional areas, e.g., the process monitoring, the equip-
ment monitoring and the performance monitoring, were performed independently
and each tried to “optimize” their associated functional area without regard to the
effect that given actions might have on the other functional areas [20]. As a result, a
low priority equipment problem may have been causing a large problem in
achieving a desired or critical process control performance, but was not being
corrected because it was not considered very important in the context of equipment
maintenance. With the asset cloud providing data to the end users, however, per-
sons can have access to a view of the plant based on two or more of equipment
monitoring data, process performance data, and process control monitoring data.
Similarly, diagnostics performed for the plant may take into account data associated
with process operation and the equipment operation and provide a better overall
diagnostic analysis.

Due to advent of advancement in computing and data acquisition capabilities, the
competences of condition monitoring is driven across several fields [21]. As in
respect to the context-aware systems, the condition monitoring techniques is
applying at several cross-board areas with abundant enhancements to the machines
and users with effectiveness and efficiency. Due to dynamic and adaptive environ-
ments, the context-aware condition monitoring helps in reducing the risks, safety by
effective remaining useful life prediction for condition based maintenance [22].

2.4 Diagnosis with Anomaly Detection

The anomaly detection task is to recognize the presence of an unusual (and poten-
tially hazardous) state within the behaviours or activities of a system, with respect to
some model of ‘normal’ behaviour which may be either hard-coded or learned from
observation [23]. We focus, here, on learning models of normalcy at the user
behavioural level, as observed. An anomaly detection agent faces many learning
problems including learning from streams of temporal data, learning from instances
of a single class, and adaptation to a dynamically changing concept [24]. In addition,
the domain is complicated by considerations of the trusted insider problem (rec-
ognizing the difference between innocuous and malicious behaviour changes on the
part of a trusted user) and the hostile training problem (avoiding learning the
behavioural patterns of a hostile user who is attempting to deceive the agent).

Anomaly detection discusses to the problem of discovery of patterns in data that
do not follow to predictable behaviour. These non-conforming patterns are often
denoted as anomalies, aberrations, contaminants, discordant, exceptions, observa-
tions, outliers, peculiarities or surprises in different application domains. Noise
removal is determined by the necessity to eliminate the undesirable objects formerly
any data analysis is accomplished on the data [23, 25].
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Contextual anomalies have been most frequently reconnoitred in time-series data
and spatial data. The selection of relating to a contextual anomaly detection tech-
nique is definite by the significance of the contextual anomalies in the application
domain. Another main issue is the accessibility of contextual attributes. In some
cases defining a context is direct, and hereafter relating a contextual anomaly
detection technique makes sense [26]. In other cases, defining a context is difficult,
making it hard to apply such techniques [23].

2.5 Context-Driven E-Maintenance

Once connectivity is sorted out then sense making becomes the real challenge for
data sets. It is therefore time for migrating concepts from e(lectronic) Maintenance
to i(ntelligent) Maintenance, [27]. Maintainers must deal many different sources of
information. In this paper, we use a system framework supporting the integration of
various data sources which could have different formats and natures. To handle
those differences, the system framework should provide facilities for data wrapping
and mediation between different data formats, along with interfaces for external
data wrappers and mediators. The system should also be able to add new sources
and mediation procedures and handle the necessary data validation and consistency
checking. From the operation point of view, different data spaces must be managed
at different levels of the system. At the data management data space, the following
agents and databases must be managed and merged for Database, containing the
database baseline [11];

• Synthetic database, containing derived calculations from the database or from
external sources not included in the database;

• Information on managing the databases;
• Information on managing wrappers and mediators;
• Archived data.

2.6 Prognosis for Health Assessment

Beside safety hazards, there are two basic risks associated with assets: shutdowns
and slowdowns. These risks materialise in economic loss, [28]. The only way to
save money is to perform a proper prognosis, not just a diagnosis [4, 11]. The
monitoring equipment depends on many sets of instruments or sensors which are
suitably distributed to obtain information about system state. For this reason the
monitoring activity represent a key point of the whole system under examination.
An erroneous feedback due to instrument failure may cause damages whose extent
depends on the control system sensitivity to the incorrect measurements. In fact, if
you are not measuring something accurately and consistently, you do not know if
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your inferences are valid. These aspects are of fundamental importance in all those
fields where the reliability of data measured by sensors or, more in general, by
instruments has to be assured before using them for implementing subsequent
actions. Moreover if an instrument failure occurs this may leads also to false or
missing actions so giving safety problems. There are three basic ways to model how
faults develop: symbolic models, data-driven models, and physics of failure models
based on physical principles, laboratory tests and measurements and mathematical
formulations [11].

3 Onboard and Centralized Diagnosis and Prognosis

The communication system consists of both onboard devices that are installed in the
moving vehicle and a centralized data system to perform critical data analysis.

3.1 Autonomous Onboard System

Onboard devices and applications can be used for model based knowledge repre-
sentation for the existing systems for autonomy. In the event of failure operation, it
is difficult to find the component failed due to unknown reasons that were not
surfaced in the inspection and condition monitoring. In such cases, there is a
necessity of an autonomous onboard system that is not only monitors the several
sub systems in the vehicle and also is capable of sending the information to the
cloud for diagnosis and prognosis [29]. This system will acquire data from the all
the components using sensors. Integrated onboard and centralized reasoning sys-
tems capable of blending results from multiple sensors and driver to be informed
the health of the vehicle needs to be applied. This engine and the test procedures
have to be solid enough so that they can be embedded in the electronic control unit
(ECU) and/or a diagnostic maintenance computer. Due to on site, the response time
can also be faster than the data analysis. Usually, the human (driver) are responsible
for the request or report the problem to the maintenance system. In the case of this
autonomous onboard maintenance system, there is no need of human to involve.
The transceiver present in the board will send signals to centralized system auto-
matically if any one of the components will reach near to its maintenance activity.
Several algorithms that interface with onboard usage monitoring systems and parts
management databases are used to predict the useful life remaining of system
components for maintenance activities [30].

The transceiver also capable of receiving request from the centralized system to
inform the driver about possible decision making that is performed in the cloud.
The extension markup language (XML) transformation of onboard data and the
protection of context based on location with meta-data techniques, automated test
meta-language (ATML) based tests and results and diagnostic result encapsulation
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data can be pooled as inputs for the presentation of data mining techniques. The
applicability of the data collected early in the diagnostics and maintenance process
is performed effectively through in this concept [31]. The functions of the onboard
system are:

• To perform diagnosis and prognosis of several components in the moving
vehicle.

• To store data from several maintenance records to keep track of its
repair/replacement cycles.

• To send the possible reaching of component’s maintenance activity or failure
propagation that is observed by condition monitoring.

• To receive the requests from the centralized system and inform the user.
• To inform the user about possible condition of the moving vehicle onboard

without centralized system.

3.2 Centralized System

The data from the onboard devices from several moving vehicles is fed to a cen-
tralized system that handles huge amount of data. The data is collected by two
ways. The large amount of condition monitoring data and updated maintenance
activities can be uploaded to centralized system either by moving vehicle reaching
the centralized data system or user can download data from the device separately
and upload through internet connection. The small amount of data like requests,
alerts, notifications or any other data can be send through General packet radio
service (GPRS) mobile data using 2G or 3G services that is installed on the device.
The data analysis, model based methods, techniques for fault diagnosis, prognosis
techniques, interpretation of the possible scenarios, update of sources can be per-
formed at centralized system instead of onboard [32] since these techniques need
huge amount of processing information and data. There are several advancements in
this area of diagnosis and prognosis with combination of condition monitoring and
condition based maintenance with e-maintenance by usage of cloud and other
services. This system then further provide decision making of the respective repair
shop suggestions based on context of the moving vehicle and logistics of repair
shops.

4 Repair Shop Management

For many industries, especially for expensive and risk based assets, repairing a
failed asset is significantly more economical than replacing it and in some condi-
tions, companies often cannot even afford inventory. Hence, in such conditions, a
high-quality scheduling, logistics along with maintenance activities is incorporated
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to improve the performance of the overall system. The placement of the repair shop
was planned by considering factors like location, availability of the components,
cost effective, policies [33], logistics, number of consumers and affordability. Due
to the variable need of demand and supply, the items are in general maintained the
inventory or transport the items that are rarely went to failure. There are basically
three major factors considered for the performance of the environment as [34]:

1. The initial spares inventory levels for final assemblies, subassemblies, and
components.

2. The capacity to repair parts and to perform inspection, assembly, and testing of
subassemblies and final assemblies.

3. The priority scheduling system used in the repair shop.

There were several researches going on these factors with advancement in
computing. Accordingly, the progress of proper overtime policies for a repair
environment need of attention of several issues related to any job shop environ-
ment. Five areas will be discussed here [33],:

1. The fundamental trade-off involved
2. When overtime should be used
3. How much overtime to use
4. What level in the product structure to work overtime
5. Job and labour scheduling policies

Even in the repair shop, there are several disruptions that can happen as listed in
Table 2 [35]. These disruptions are complex and require specialised repair. When
the centralized system “talked” to the repair shop, it must provide the present
condition of the repair shop, the status of the inventory, the scheduling queue and
logistics.

5 Proposed Cloud-Based Repair Management

This paper proposes a conceptual network of onboard diagnosis and prognosis with
condition monitoring, centralized CMMS cloud infrastructure and repair shop
management that provide decision based on context-driven as shown in Fig. 4.
Even though similar studies are implemented in aircrafts, this approach has been
transferred to suit the moving vehicles. The novel part is the condition monitoring
of the onboard diagnosis and how different it works based scheduling, communi-
cation, data transfer and risk assessment. The process of this methodology is
explained in following steps.

(1) The onboard device will detect the possible maintenance activity based on
diagnosis and prognosis or maintenance cycle of the components.

(2) The request for the maintenance activity is sent to the nearest centralized
system..
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(3) The centralized system will perform several analysis and artificial intelli-
gence tools to approve and accept the request generated by the onboard
system. The system also looks for nearest repair shop based on location.

(4) The requests consists of part, time remained, cost and other logistics details is
sent to several repair shops and will wait for the response.

(5) The requests sent by the centralized system will be received and analyse the
request.

(6) The request is then look for several factors like cost, availability, queue,
maintenance personnel, time taken, location along with disruption shown in
Table 1.

(7) The above information is again send back to centralized station for approval
process.

(8) The centralized system then analyses the requests from several repair shops
and provides decision support system based on logistics and select the
optimized solution of repair shop.

(9) The information of selected repair shop is sent to the requested moving
vehicle.

(10) The information of selected repair shop is also sent to the respective repair
shop for confirmation.

Fig. 4 Proposed on-board-centralized system for repair shop suggestion
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(11) The repair shop then communicates with moving vehicle in critical condition
and will do the job.

(12) Once the job is completed, the maintenance activity is stored in the cen-
tralized database for future revisions.

There is prerequisite of future work that involves the following functions

• the communication protocols and software implementation among onboard
device, centralized system and repair shop

• the factors and parameters required for data storage in all the three systems
• the selection and implementation of several algorithms required to provide

decisions for diagnosis, prognosis, condition monitoring and suggestion of
repair shop.

6 Conclusion

Even though due to the advancement of several technologies, there is need of
applying these concepts in maintenance activities to reduce risk, cost, manage
logistics and burden in practical field. One of the fields that need more concen-
tration is the effective utilization of these technologies in repair shop management.
This conceptual paper proposes a novel approach for implementation of such case.
This paper studies the several maintenance activities available in the literature, the

Table 1 Disruptions on the
repair shop

Sl. no Disruption

1 Machine breakdown

2 Maintenance of machine

3 Absenteeism

4 Tool breakdown

5 Process time variation

6 Delay in transport using material handling system

7 Variation in performance of machine

8 Tool wear

9 Variation of set-up times

10 Arrival of a new job order

11 Rework

12 Rejection

13 Unavailability of raw material

14 Urgent job

15 Change of priority

16 Cancellation of order

17 Outsourcing
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on-board devices that can be incorporated, the functions of centralized system and
application of all these technologies to provide suggestion for the best repair shop
with consideration of logistics and context-driven mechanisms. There is need of
several advancements in this context to provide our knowledge to improve the
performance of machine and human in maintenance area.

References

1. Price C, Price CJ (1999) Computer-based diagnostic systems. Springer, Heidelberg, pp 65–69
2. Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc

Natl Acad Sci 93(9):3843–3846
3. Fischhoff B, Slovic P, Lichtenstein S (1978) Fault trees: Sensitivity of estimated failure

probabilities to problem representation. J Exp Psychol Hum Percept Perform 4(2):330
4. Galar D, Kumar U, Villarejo R, Johansson CA (2013) Hybrid prognosis for railway health

assessment: an information fusion approach for PHM deployment. Chem Eng 33
5. Galar D, Thaduri A, Catelani M, Ciani L (2015) Context awareness for maintenance decision

making: a diagnosis and prognosis approach. Measurement
6. Rizzoni G, Onori S, Rubagotti M (2009, June) Diagnosis and prognosis of automotive

systems: motivations, history and some results. In: Proceedings of the 7th IFAC Symposium
on fault detection, supervision and safety of technical processes (SAFEPROCESS’09)

7. Galar D, GuSTAFSON A, Tormos B, Berges L (2012) Maintenance decision making based on
different types of data fusion Podejmowanie Decyzji Eksploatacyjnych W Oparciu O Fuzję
Różnego Typu Danych. Eksploatacja i Niezawodnosc, Maint Reliab 14(2):135–144

8. Paipetis AS, Matikas TE, Aggelis DG, Van Hemelrijck D (eds) (2012) Emerging technologies
in non-destructive testing V. CRC Press, Boca Raton

9. Galar D (2014) Context-driven maintenance: an eMaintenance approach. Manag Syst Prod
Eng. http://wydawnictwo.panova.pl/pliki/15_2014/2014_03_05_GALAR.pdf

10. Labib AW (2004) A decision analysis model for maintenance policy selection using a CMMS.
J Qual Maint Eng 10(3):191–202

11. Galar D, Palo M, Van Horenbeek A, Pintelon L (2012) Integration of disparate data sources to
perform maintenance prognosis and optimal decision making. Insight-non-destructive testing
and condition monitoring 54(8):440–445

12. Muller A, Marquez AC, Iung B (2008) On the concept of e-maintenance: review and current
research. Reliab Eng Syst Saf 93(8):1165–1187

13. Van Horenbeek A, Pintelon L, Galar D Integration of disparate data sources to perform
maintenance prognosis and optimal decision making. http://pure.ltu.se/portal/files/40110675/
317_Horenbeek.pdf

14. Bjorling SE, Baglee D, Galar D, Singh S (2013) Maintenance knowledge management with
fusion of CMMS and CM

15. Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical
motors-a review. IEEE Trans Energy Convers 20(4):719–729

16. Schilit BN, Theimer MM (1994) Disseminating active map information to mobile hosts. IEEE
Netw 8(5):22–32

17. Schilit B, Adams N, Want R (1994, December) Context-aware computing applications.
In: WMCSA 1994. First workshop on mobile computing systems and applications, 1994.
IEEE, pp 85–90

18. Thaduri A, Kumar U, Verma AK Computational intelligence framework for context-aware
decision making. Int J Syst Assur Eng Manag 1–12

19. Chen H, Finin T, Joshi A (2003) An intelligent broker architecture for context-aware
systems. PhD proposal in computer science, University of Maryland, Baltimore, USA

80 A. Thaduri et al.

http://wydawnictwo.panova.pl/pliki/15_2014/2014_03_05_GALAR.pdf
http://pure.ltu.se/portal/files/40110675/317_Horenbeek.pdf
http://pure.ltu.se/portal/files/40110675/317_Horenbeek.pdf


20. Nixon M, Keyes M, Schleiss T, Gudaz J, Belvins T (2001) U.S. Patent Application
09/953,811

21. Remboski D, Brooks K, Canavan P, Douros K, Gardner J, Gardner R, Hurwitz J, Leivian R,
Nagel J, Wheatley D, Wood C (2001) U.S. Patent Application 09/976,974

22. Bottazzi D, Corradi A, Montanari R (2006) Context-aware middleware solutions for anytime
and anywhere emergency assistance to elderly people. IEEE Commun Mag 44(4):82–90

23. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv
(CSUR) 41(3):15

24. Lane TD (2000) Machine learning techniques for the computer security domain of anomaly
detection

25. Ye N, Chen Q (2001) An anomaly detection technique based on a chi-square statistic for
detecting intrusions into information systems. Qual Reliab Eng Int 17(2):105–112

26. George J, Crassidis J, Singh T, Fosbury AM (2011) Anomaly detection using context-aided
target tracking. J Adv Inf Fusion 6(1):39–56

27. Galar D, Wandt K, Karim R, Berges L (2012) The evolution from e (lectronic) maintenance to
i (ntelligent) maintenance. Insight-Non-Destr Test Cond Monit 54(8):446–455

28. Wilmering TJ, Ramesh AV (2005, March) Assessing the impact of health management
approaches on system total cost of ownership. In: 2005 IEEE Aerospace conference. IEEE,
pp 3910–3920

29. de Novaes Kucinskis F, Ferreira MGV (2008) An Internal State Inference Service for onboard
diagnosis, prognosis and contingency planning applications

30. Luo J, Pattipati KR, Qiao L, Chigusa S (2007) An integrated diagnostic development process
for automotive engine control systems. IEEE Trans Syst, Man Cybern Part C: Appl Rev 37
(6):1163–1173

31. Byington CS, Kalgren PW, Dunkin BK, Donovan BP (2004, March) Advanced
diagnostic/prognostic reasoning and evidence transformation techniques for improved
avionics maintenance. In: 2004 IEEE Aerospace conference, 2004. Proceedings, vol 5. IEEE

32. Sankavaram C, Pattipati B, Kodali A, Pattipati K, Azam M, Kumar S, Pecht M (2009, August)
Model-based and data-driven prognosis of automotive and electronic systems. In: IEEE
International conference on automation science and engineering, 2009. CASE 2009. IEEE,
pp 96–101

33. Scudder GD (1985) An evaluation of overtime policies for a repair shop. J Oper Manag 6
(1):87–98

34. Scudder GD, Hausman WH (1982) Spares stocking policies for repairable items with
dependent repair times. Naval Res Logist Q 29(2):303–322

35. Subramaniam V, Raheja AS (2003) mAOR: A heuristic-based reactive repair mechanism for
job shop schedules. Int J Adv Manuf Technol 22(9–10):669–680

Context-Based Maintenance … 81



Optimal Sensor Placement for Efficient
Fault Diagnosis in Condition Monitoring
Process; A Case Study on Steam Turbine
Monitoring

Farzin Salehpour Oskouei and Mohammad Pourgol-Mohammad

Abstract Failure root cause analysis requires an optimum sensor network in the
process of a complex system monitoring. Selection of the location, type and number
of sensors are important metrics of sensor network optimization. Main aspects of
this optimization can be categorized to failure detection, failures diagnosis from
each other, the collected data from sensors and sensor reliability. In the process of
sensor networks optimization, logical relationships are determined between com-
ponents and sub-systems through different methods such as FMEA, FTA and RBD.
In this paper, an augmented FMEA and FTA method is developed to extract for
predicting failure causes in a condition monitoring process. The potential location
of sensors is first determined through Sensor Placement Index (SPI). SPI depends
on the Importance of failure modes and the cost of their monitoring processes. Due
to the potential places of sensors, different scenarios are derived for sensor place-
ment. Considering prior information about component state (operational or failed),
system is simulated through Bays Monte Carlo method. By estimation of sensor
detection probability, posterior probability of failure modes is calculated. Then the
variance of proposed probabilities is added together and the result represents the
uncertainty index. For determining the sensor reliability index, sensors are con-
sidered as system components. In this case, functional model of each scenario is
developed and the scenario with less Top Event probability is selected as the
optimal one. The main purpose of this paper is to show the difference between
prioritization of scenarios based on two proposed criterion. It represents that both
the uncertainty and reliability of sensors must be considered in the optimization
process. But in some specific cases such high-reliable systems, the effect of sensor
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reliability index can be negligible. As a case study, optimization of sensor place-
ment has been demonstrated on steam turbine and results are discussed.

Keywords Optimal sensor placement � Condition monitoring � Steam turbine �
Sensor reliability � Uncertainty

1 Introduction

Increasing operation and maintenance cost has caused more technical interest in
mechanical systems on as-needed maintenance methods such as condition-based
approaches instead of inefficient scheduled alternatives [1]. In proposed methods,
future failures of the system are predicted based on current state of its components.
It is clear that failure root cause analysis requires an optimum sensor network
design in the process of a complex system monitoring. The location, type and
number of sensors are important metrics of sensor network optimization [2–4].
Main aspects of this optimization can be categorized to failure detection, failures
diagnosis from each other and the collected data from sensors.

There are different researches about fault diagnosis and condition-based main-
tenance of mechanical systems [1–7]. Few of proposed studies consider the impact
of sensor network on the fault diagnosis process. Obviously, data collection on the
state of components will have a significant influence on the reliability of predic-
tions. The performance of a sensor network can be identified by four indicators
consisting of fault detection, fault diagnosis, reliability of sensors and data obtained
from sensors. In the decision-making process, more reliable information is obtained
by reducing the uncertainty of primary hypothesis.

The techniques which are used for sensor placement optimization are mostly
focused on finding the optimal physical location of sensors, given some geometrical
constraints [8–16]. Proposed methods are based on the Fisher information matrix.
The Fisher information in statistical mathematics is a method for measuring visible
random variable information about an unknown parameter. In fact, this matrix
represents the variance of outcomes or expected values of observed data. In this
method, the whole structure is meshed and information matrix is developed for
different nodes. Then using an optimization method, the node with a maximum
determinant of Fisher information matrix is selected for sensor placement. Another
category of optimal method is based on optimizing a cost function considering the
constraints of fault detection, fault diagnosis and reliability of sensors [17–22].
Some methods are focused about the probabilistic aspect of sensor placement
process [23–25]. Bayesian theory is applied in such methods to extract the posterior
information based on historical data. Then deviation of posterior data is calculated
through utility function. Considering supposed deviation, prioritization is deter-
mined for potential sensor placement scenarios [25].
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According to the literature, the main technical interest is about information
uncertainty based on prior data, collected by sensor network [24, 25]. However an
attention was not paid on reliability of sensors and its impact on optimization
process. Also selection of potential places for sensors was not discussed. In this
paper, the main motivation is to define an index for prioritization of potential places
of sensors. Also considering sensors as components of the system, effect of sensor
reliability is studied on optimal sensor placement.

The organization of the paper is managed as follow; in Sect. 2, a functional
model is developed for the system. Also the state of each component is extracted as
the State Vector (SV). Using SVs, collected information has been arranged from
sensors in the form of Information Vector (IV). Based on the uncertainty of pro-
posed information, the optimal placement has been selected for sensors. In Sect. 3,
the effect of sensor reliability is studied. Sensors are considered as system com-
ponents and the optimal scenario is selected based on proposed criterion. Finally in
Sect. 4, difference of scenario prioritization has been discussed in both categories.
Methodology structure is illustrated in Fig. 1.

Fig. 1 Methodology
Structure
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2 Developing a Model for System State Diagnosis

For developing an optimization algorithm for the sensor network arrangement, it is
necessary to study the complete system and its components from the intended scope
and objectives. Also it needs to consider the failure data of each component. Based
on these requirements, seven steps are developed for optimal sensor placement
algorithm which will be discussed in following sections.

Step 1: First step in sensor placement optimization contains extracting compo-
nents of the system and their failure modes. This step is performed by
applying Failure Modes and Effect Analysis (FMEA) method. Using
proposed method, in addition to diagnose failure modes and their effects,
importance of each mode is calculated through Risk Priority Number
(RPN).

Step 2: In this step, functional model of the system is developed. Different
methods such as Fault Tree Analysis (FTA) or Reliability Block
Diagram (RBD) can be used to model the logical relation between dif-
ferent components and failure modes. Since the sensor placement problem
is directly related to the system operation, the effect of developing an
appropriate functional model on optimization process become clearer.

Step 3: Potential locations of sensors are defined in this step. A criterion is
specified in this research to reflect both effect of each components failure
on the system failure and monitoring costs. Sensor Placement Index
(SPI) is defined for each system component by Eq. (1) as:

SPI ¼ Reliability Importance
Monitoring Cost

ð1Þ

Using Birnbaum Method [26], the Reliability Importance (RI) of each
component is determined by Eq. (2) as:

IBi ¼ @RS R tð Þ½ �
@Ri tð Þ ð2Þ

RS R tð Þ½ �; as the reliability equation of whole system, is dependent of each
component reliability (Ri tð Þ). Ranking system components (based on SPI),
important components are extracted. These components are considered as
candidates of potential places for sensors. According to the sensor quantity
which is specified based on cost and placement constraints, Number of
potential places will be considered. The optimization problem will be
meaningful if the number of potential places be more than sensor
quantities.

Step 4: Failure modes in the lowest level of system are considered as inputs of the
model. So all possible combinations of inputs’ states are determined as
system state vectors (SV). The state vector represents the occurrence or
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non-occurrence of system failure modes. One and zero are used to indicate
occurrence and non-occurrence of each failure mode respectively. For a
system with n failure modes, there are 2n state vectors. As an example,
state vectors of a system with 3 failure modes are shown in Table 1:
In Table 1, SV1 represents occurrence of all failure modes whereas SV8
represents a state in which none of failure modes were occurred. Given the
primary occurrence probability of failure modes, occurrence probability of
each state vector is calculated through Monte Carlo simulation [24]. It is
clear that the summation of all state vectors’ occurrence probability must
be equal to 1.

Step 5: Considering both available sensor quantities and potential places for them,
placement scenarios are developed. If there are p quantity of sensors and
m potential places (p < m), then the number of scenarios is calculated
through Eq. (3):

C p;mð Þ ¼ m!
p! m� pð Þ! ð3Þ

Each scenario contains different information about system state. To
specifying these differences, Information Vectors (IVs) are determined
[24, 25] indicating the state of sensors. Sensor state is determined in the
binary form where 1 means existence of an alarm and zero means no
alarm. Considering p sensors for each scenario, there are 2p IVs. As an
example, IVs for a scenario with 3 sensors are shown in Table 2:
For estimating the occurrence probability of each information vector, state
vectors are extracted based on the occurrence of related IV. Then proba-
bilities of supposed state vectors are added together and the result indi-
cates the probability of proposed IV.

Step 6: In this step, considering the occurrence probability of information vectors
as prior information, posterior state vectors are reproduced through Monte
Carlo simulation. According to the posterior SVs, occurrence probability

Table 1 System state vectors

State vector SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8

Failure mode 1 1 1 1 0 1 0 0 0

Failure mode 2 1 1 0 1 0 1 0 0

Failure mode 3 1 0 1 1 0 0 1 0

Table 2 System information vectors

Information vector IV1 IV2 IV3 IV4 IV5 IV6 IV7 IV8

Sensor 1 1 1 1 0 1 0 0 0

Sensor 2 1 1 0 1 0 1 0 0

Sensor 3 1 0 1 1 0 0 1 0
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of each failure mode will be calculated. More description about this step
will be given in the section of case study.

Step 7: Information uncertainty is discussed for previous step results in this
step. Standard deviation of each failure mode’s occurrence probability is
calculated for the number of iterations in Monte Carlo process. The
inverse of variance is calculated for all failure modes and the summation
of them is considered as an index for comprising different scenarios from
the uncertainty point of view [24]. Applying proposed index, the ability of
each scenario can be measured in detecting system failures.

By completing these steps, sensor placement scenarios will be prioritized based
on information uncertainty. However, the reliability of sensors is not considered in
this process. False alarm or missed-alarm can cause misunderstanding of system
state. So it is necessary to study the effect of sensor failure on optimization process.

3 Effect of Sensor Reliability on Optimal Sensor
Placement

As it is discussed, sensor is a crucial component in condition monitoring process.
The validity of sensor information and ensuring of its accuracy is a concern in such
processes. So the effect of sensor failure is considered on optimization process in
this research.

According to the proposed algorithm for sensor placement, one alternative
approach is to consider each sensor as a component of the system in order to study the
effect of sensor reliability. In condition monitoring process, while the failure of
component is detected by a sensor, it doesn’t count as a failure. In this case, sensor and
the component, monitored by that sensor, will be added to the system model in the
parallel form. Thuswhen both sensor and related component fail, the failure occurred.
In this approach, the reliability of sensor affects the whole system reliability.

By applying of this method, model of system is updated for each sensor
placement scenarios and the occurrence probability will be calculated for top event
(TE). According to the proposed probability, all scenarios can be prioritized.

Both the uncertainty and sensor reliability criterions are considered in this study.
However, the prioritization of some scenarios is different in these two categories.
One way to interpret of these results is to consider a weight factor for each criterion
based on their importance in the optimization process. Considering sensors as high
reliable components, a sensor is rarely failed. So the effect of sensor reliability must
be less than prediction uncertainty in the optimization process. Determining a
specific factor for each criterion is a complex process which depends on system
functionality, environmental condition and quality of the sensor.

The other approach is applying field data, expert judgment and generic data for
interpreting both proposed criterions together in an optimal process. This method is
used when requirements of previous method are not available.
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4 Case Study: Steam Turbine Monitoring and Optimal
Sensor Placement

Steam turbines belong to a category of machines called turbo-machines. Main
characteristic of turbo- machines is the energy conversion which takes place in a
rotating wheel. The basic function of a steam turbine is to transform the thermal
energy of steam into mechanical energy. The main components of a steam turbine
are bearings, rotor, rotor blades, seals, diaphragms and casing.

According to the Sect. 2, in first step, components of steam turbine and their
failure modes must be extracted. So the FMEA of a typical steam turbine is
developed [27]. The simplified FMEA table is presented in Table 3.

Fault tree of the steam turbine is extracted as a functional model of system. Due
to system complexity, the simplified form of its fault tree model is considered in
Fig. 2.

Occurrence probabilities and monitoring costs for all failure modes are presented
in Table 4. It should be noted that the values of proposed probabilities and costs are
extracted through expert judgments and information in the literature [27].

In third step, the potential places of sensors are determined through SPI of each
component. Considering simplified model, cutsets of the system are presented as
below:

Turbine=Diaphragms+RotorBlades=S.Overheat+S.Humidity+Debris+Vibration+
Crack

Based on Birnbaum Importance criterion, the importance of each component is
calculated by proposed model. Finally, all failure modes are prioritized through
proposed index as shown in Table 4. According to the proposed prioritization, 3
sensors are mounted on the system to monitor steam temperature, steam humidity
and rotor vibration. In addition, performance of diaphragm and turbine are moni-
tored by other independent sensors. Types of all applicable sensors are presented in
Table 5.

The final model of system with potential places of sensors is presented in Fig. 3.
In the next step, state vector of the system is obtained. For calculating the

occurrence probability of all system state vectors, it is necessary to know the prior
occurrence probability of all failure modes. According to the literature and expert
judgment, prior occurrence probability is provided for each failure mode. Based on
existing standards, a criterion is specified for each failure mode. By utilization of
Monte Carlo method, the occurrence probability is obtained for each state vector.
Partial of proposed probabilities is presented in Table 6.

In the next step, information vector is extracted. To complete this task, it is
necessary to determine the sensor placement scenarios in advance. According to the
proposed model of steam turbine in Table 7, placement scenarios are considered as
below:

To calculate the probability of each IV, probabilities of SVs which causing the
occurrence of proposed IV, are added together. The result represents the occurrence
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probability of considered IV. As an example, IVs and their occurrence probabilities
are presented for first scenario as shown in Table 8.

Extracting IVs and related probabilities, step 6 and step 7 are applied on the
system. Then inverse of occurrence probabilities’ variance for all failure modes has
been calculated and added together for each scenario as it is shown in Table 9.

Fig. 2 Simplified fault tree of the steam turbine

Table 4 Importance index for all failure modes

Failure mode Failure rate (per 106 h) Monitoring cost Importance index

Penetration of debris 57 Not Possible –

Steam overheat 28 10 unit 0.1

Vibration and ageing 28 20 unit 0.05

Steam humidity 28 30 unit 0.03

Crack formation 14 100 unit 0.01

Table 5 Type of sensors Sensor number Sensor type

1 Tachometer

2 Wireless accelerometer

3 Accelerometer

4 Thermometer
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Fig. 3 Final Model of system with potential places for sensors

Table 6 State vectors of the steam turbine

Failure mode SV1 SV2 SV3 SV4 SV5 SV6 …

Overheat 1 1 0 0 0 0 …

Humidity 1 0 1 0 0 0 …

Crack 1 0 0 1 0 0 …

Vibration 1 0 0 0 1 0 …

Debris 1 0 0 0 0 1 …

Occurrence
probability

0.00001 0.0011 0.1509 0.0187 0.0011 0.0186 …

Table 7 Sensor placement
scenarios

Scenario number Sensor number

Scenario 1 Sensor1, Sensor2, Sensor3, Sensor4

Scenario 2 Sensor1, Sensor2, Sensor3

Scenario 3 Sensor1, Sensor2, Sensor4

Scenario 4 Sensor1, Sensor3, Sensor4

Scenario 5 Sensor2, Sensor3, Sensor4
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This index reflects the uncertainty of system state prediction. According to results in
Table 10, uncertainty is smaller in state prediction of system in scenario 1. This
result is obvious for the first scenario because all sensors are used in it. Among
other 4 scenarios, fourth scenario is optimal since the system state prediction reports
smaller uncertainty.

In the last step, sensors have been added to the system functional model as
components. The modified model of system for first scenario is shown in Fig. 4.

Failure rate for different type of sensors are presented in Table 10 [28].
To calculate the occurrence probability of top event in each scenario, their

minimal cutsets are extracted. For a specific time period, probabilities of top event
have been calculated as Table 11.

According to Table 11, occurrence probability of top event in the first scenario is
less than the others since all sensors have been used. For rest of 4 scenarios,
scenario 2 and 3 has less top event probability so they are optimal scenarios based
on the sensor reliability criterion.

As it can be seen, the prioritization of scenarios is different for any of uncertainty
and sensor reliability criterion. This indicates that not only the uncertainty affects
the optimization process of sensor placement, but also the sensor reliability is

Table 8 Occurrence probabilities of IVs

Sensor number IV1 IV2 IV3 IV4 IV5 IV6 IV7

1 1 1 1 1 1 1 0

2 1 0 1 1 1 0 0

3 1 1 0 1 0 0 0

4 1 0 0 0 1 0 0

Probability 2.5e-6 0.001 0.1771 2.32e-4 0.0014 0.0186 0.8016

Table 9 Amount of
uncertainty index for all
scenarios

Scenario Number Uncertainty Index
(Σ 1/(variance of each component)

Scenario 1 1.12e+09

Scenario 2 6.9e+08

Scenario 3 4.26e+08

Scenario 4 7.83e+08

Scenario 5 3.9e+08

Table 10 Failure rate for
different type of sensors [28]

Sensor Type Typical failure rate (per 106 h)

Tachometer 80

Wireless accelerometer 1

Accelerometer 13

Thermometer 3.5

94 F.S. Oskouei and M. Pourgol-Mohammad



Fig. 4 Modified model of the first scenario

Table 11 Occurrence probability of TE for all scenarios

Scenario Cutsets Occurrence probability
of T.E

1 S1.S3.V + S1.C + S1.S4.O + S1.S2.O + S1.S2.H +
S1.S2.PD

2.02e-6

2 S1.S3.V + S1.C + S1.O + S1.S2.H + S1.S2.PD 6.013e-6

3 S1.V + S1.C + S1.S4.O + S1.S2.O + S1.S2.H + S1.S2.PD 6.017e-6

4 S1.S3.V + S1.C + S1.O + S1.H + S1.PD 1.5e-3

5 S3.V + C + S4.O + S2.O + S2.H + S2.PD 0.0221
*V = vibration, C = crack, O = overheat, H = humidity, PD = penetration of debris
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considered as well. The importance of each criterion is determined based on system
functionality, complexity and expert judgment. Final prioritization of scenarios is
developed by considering both criterions together.

5 Discussion and Conclusion

The accuracy of system state prediction methods (e.g., condition monitoring) is
strongly depends on sensor network arrangement. Therefore optimization of pro-
posed arrangement increases the focus on the important components of the system
in order to reduce the maintenance costs. Based on the results of this study, the
main effective factors include uncertainty of sensors’ information and the reliability
of the sensor itself on optimal sensor placement.

Studying both uncertainty and sensor reliability indexes separately, it is observed
that the optimal sensor placement offer different prioritizations of sensor placement
scenarios based on proposed two criterions. Therefore it is necessary to select the
more important one or applying both of them criterions in optimization process.

In concluding, sensors are high-reliable components and the time to failure
(TTF) of them is much more than TTF of common mechanical components. So in a
system with high-reliable components, TTF of components are close to TTF of
sensors. So the reliability of sensors is determinant in such a system in the case of
condition monitoring. On the other hand, in a system with common components,
because of wide gap between TTF of components versus sensors, the effect of
sensor reliability is negligible on optimal sensor placement. As a result, it is nec-
essary to study the system functionality and reliability of its components before
making any decision about the optimal sensor placement.
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Estimation of the Reliability of Rolling
Element Bearings Using a Synthetic
Failure Rate

Urko Leturiondo, Oscar Salgado and Diego Galar

Abstract As rolling element bearings are key parts of rotating machinery, the
estimation of their reliability is very important. In this context, different standards
and research articles propose how to estimate fatigue life for different levels of
reliability. However, when trying to do calculations based on data from a real
system, there are many difficulties because of economic and safety reasons.
Consequently, the use of physical models to simulate the cases that are difficult to
reproduce in a real system allows us to generate synthetic data related to them.
Thus, in this paper a synthetic failure rate of rolling element bearings is calculated
using a physical modelling approach. A multi-body model of a bearing is used in
order to obtain its dynamic response in non-stationary conditions and in different
degradation levels. Thus, synthetic data are generated to cover a range of degra-
dation related to geometric changes in the surface of the parts of the bearing. Some
of the output variables of these synthetic data, such as vibration, are used as
covariates of a proportional hazard model, which is then trained to estimate the
reliability of the bearing. In this way, a synthetic failure rate is obtained in such a
way that it can improve the failure rate given by the manufacturers
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1 Introduction

Rolling element bearings are widely used parts in rotating machinery. Thus, they
are very important components in different sectors such as railways or wind energy,
among others. That is the reason why the reliability of rolling element bearings is a
key issue for the correct operation of the systems in which they are placed.

There are many failure modes that can affect to that operation [6], e.g. fatigue,
corrosion, electrical erosion, etc. According to Ferreira et al. [2], fatigue is the main
reason for the appearance of defects in the different parts of rolling element bear-
ings. This failure mode has been broadly studied by the manufacturers and the
selection of the bearings is commonly done based on the knowledge behind the
fatigue development. Thus, the international standard ISO 281 [5] is the main
reference in this field. It gives the relation between the reliability of a rolling
element bearing and its life for a given stationary operating condition.

If the relation between reliability and life is wanted to be obtained by using data
acquired from a real system instead of using the formulae proposed by ISO 281 [5],
there are some limitations. Those are related to the fact that some operating con-
ditions, specially related to damaged states or extreme conditions, cannot be
reproduced due to safety reasons and because of the economic cost related to both
the development of the testing and the likelihood of happening serious conse-
quences in the system.

Thus, the use of data obtained by simulations carried out by using physical
models is an alternative to real data. These data are called synthetic data [12] and
they can be generated in such a way that they give information about the perfor-
mance of a system in the aforementioned operations which are difficult to
reproduce.

In this paper a methodology for obtaining a synthetic failure rate using synthetic
data is presented. A physical model is used to generate synthetic data of the
dynamics of rolling element bearings in different degradation levels. Once the
degradation level is associated with its corresponding value of reliability by the use
of a degradation curve and a reliability-life curve, the synthetic data are taken as
input data to fit a proportional hazard model.

Proportional hazard models are statistical models that can be used for the esti-
mation of the hazard of systems by means of the use of influential factors.
Specifically, indicators from a time-domain analysis of the velocity of the inner ring
are used to train the model. The analysis of the fitness of the model gives the key to
know which of the indicators provides more meaningful information about the
reliability of the simulated bearing.

This strategy will help to have estimations of the reliability of rolling element
bearings that are able to adapt to the context in which they are operating [8]. In this
way the reliability of a machine that suffers highly varying operating conditions can
be accurately obtained and, therefore, appropriate maintenance actions can be taken
by using this information.
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This paper is structured as follows: the methodology followed in order to obtain
the synthetic failure rate is explained in Sect. 2; Sect. 3 shows the results obtained
by the application of the methodology to a specific bearing; finally, the conclusions
are presented in Sect. 4.

2 Through the Synthetic Failure Rate

In this section the methodology that has been developed in order to estimate the
reliability of rolling element bearings using a synthetic failure rate is presented.
First, how the synthetic data is generated is explained; then, the degradation and
reliability curves that have been used in this study are presented; finally, the cal-
culation of the hazard model is shown.

2.1 Synthetic Data Generation

As stated in Sect. 1, synthetic data can be generated in different operating condi-
tions and considering different degradation levels using physical models. In the field
of rolling element bearings, there are many models that reproduce their response,
taking into account different features of the physics behind these components.

In this work the multi-body model developed by Leturiondo et al. [10] is used to
carry out the simulations needed to generate synthetic data. This model is able to
simulate the dynamics of any kind of rolling element bearing in any configuration,
considering each element of the bearing as a rigid body with 6 degrees of freedom.
The metal-metal contacts between those elements are modelled using the Hertz
contact and elastohydrodynamic lubrication theories. Besides that, local defects are
modelled as geometric changes in the surface of the elements.

The bearing selected to be simulated is a single-row deep-groove ball bearing
with 8 balls; its dimensions are shown in Table 1.

All components are considered to be made of steel with the following properties:
modulus of elasticity of 207 GPa, Poisson number of 0.3 and density of
7830 kg/m3. A constant value of 30 °C is chosen as the operating temperature. The

Table 1 Dimensions of the
simulated bearing

Dimension Value (mm)

Ball diameter, Dw 22.46

Outer raceway diameter, do 87.73

Inner raceway diameter, di 42.79

Pitch diameter, Dpw 65.26

Outer groove radius, ro 11.6792

Inner groove radius, ri 11.6792
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values of the dynamic viscosity η0 and the viscosity-pressure coefficient α at this
temperature are 0.04 Pa s and 1.2·10−8 Pa−1, respectively.

The inner ring is selected as the rotating one; the outer ring is assumed to be
located in a rigid housing. Regarding the operating conditions, a constant value of
20 rad/s for the inner ring speed and a constant value of 300 N for the radial load
applied in the same ring are selected. It should be noted that the load is applied to
the bearing in vertical direction.

Different simulations have been carried out in order to obtain synthetic data in
different degradation levels. This degradation is modelled as a size variant local
geometrical change in the most loaded zone of the outer raceway of the rolling
element bearing. Thus, 16 simulations have been done by taking a value of the spall
areas A1 to A16 shown in Table 2 for each simulation. It should be noted that the
defect size A16 is equal to that at which the industry considers a rolling element
bearing to have reached its faulty state [1].

These 16 simulations have been carried out using the software Dymola®,
studying the response of the rolling element bearing during 5 s. The values used for
the time sampling period and for the integration tolerance are 1 ms and 10−4,
respectively.

The model gives information regarding different physics of the bearing. Thus,
the linear and angular position of each element of the bearing (rings, rolling ele-
ments and cage) can be obtained, as well as other variables related to the contact
between the elements, such as the contact loads (both normal and tangential) and
the lubricant film thickness. In this work the vibratory response of the rolling
element bearing is used as the input for training the hazard model, in particular, the
vertical velocity of the inner ring due to its observability.

Table 2 Defect area in the
defined 16 degradation levels

Code Area (mm2)

A1 0.390625

A2 0.78125

A3 1.171875

A4 1.5625

A5 1.953125

A6 2.34375

A7 2.734375

A8 3.125

A9 3.515625

A10 3.90625

A11 4.296875

A12 4.6875

A13 5.078125

A14 5.46875

A15 5.859375

A16 6.25
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2.2 Degradation and Reliability Curves

The relation between the degradation of a bearing and the time inwhich a specific level
of degradation occurs is necessary in order to calculate the bearing life. There are
many theories regarding this issue in the literature, from simple degradationmodels to
others with a higher complexity. In this paper the Paris’ law has been selected for the
degradation variation and, thus, the prediction proposed by Li et al. [11] is used as an
approximation to obtain the bearing running time at which the spall areas A1 to A16

occur. The results for this degradation-time relation are shown in Fig. 1.
As stated in Sect. 2.1, the faulty limit is reached when the defect size is equal to

6.25 mm2. This defect size is obtained when a bearing operates during a time tf
equal to 12.3·106 revolutions. Therefore, it can be assumed that the life of a bearing
in the degradation levels defined by the spall areas A1 to A16 is equal to the
difference between tf and the time in which the aforementioned spall areas occur.

Regarding the reliability, the curve proposed by the ISO 281 [5] has been
selected. First of all, the basic rating life L10 is calculated using the properties of the
configuration of the bearing, the geometrical properties shown in Table 1 and the
data regarding the loading conditions. Then, the modified rating life Lnm is calcu-
lated by multiplying L10 by the different life modification factors a1 presented in the
standard for values of the reliability from 95 to 99.95 %. This curve is modified
randomly in order to represent the variations that the reliability of a bearing can
suffer due to the fact that the data of the response of the bearing are generated
synthetically. The relation between the reliability and the life of the bearing is
shown in Fig. 2.

Following this approach, the values of life and reliability for each degradation
level shown in Table 3 are obtained. It can be seen that the value of the reliability for
the last level of degradation is very high whereas its value for life is very low, which
means that the defect produces a situation in which the bearing is near to fail.
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2.3 Hazard Models for Reliability Estimation

Nowadays the importance of the determination of the condition of a system has
raised for its use in diagnosis and prognosis processes. Thus, the decisions of the
actions that have to be carried out for maintenance are easier to take. If it is properly
done, this entails a reduction of machinery downtime and the inventory of spares,
which has a direct relation with the decrease of the risk of having a failure and,
finally, with the reduction of the costs related to maintenance [4].
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Fig. 2 Relation between the
life of the bearing and its
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Table 3 Input data for the
proportional hazard model

Code Life (rev.·106) Reliability (%)

A1 9.83 92.38

A2 8.58 93.78

A3 7.43 95.03

A4 6.53 95.92

A5 5.73 97.03

A6 4.98 97.64

A7 4.43 98.04

A8 3.83 98.44

A9 3.23 98.84

A10 2.73 99.2

A11 2.33 99.43

A12 1.73 99.65

A13 1.18 99.87

A14 0.83 99.96

A15 0.43 99.98

A16 0.03 99.99
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For this purpose, the estimation of the reliability of the assets related to its
remaining useful life is a key. It should be taken into account that there are many
factors of the operation of the systems that have a great influence in this estimation.
There are many statistical models to obtain the relation between these factors, called
covariates, and the hazard of an asset. These models have been especially used in
the fields of reliability and biomedicine, being proportional hazard models the
origin of most of them [3].

A proportional hazard model consists in a function formed by the product of a
baseline hazard rate and a positive function described by covariates that have a
multiplicative effect on the baseline hazard rate and a regression parameter for each
of these covariates. Thus, it is expressed as:

hðt; zÞ ¼ h0ðtÞ � wðbTzÞ ð1Þ

where h(t,z) is the hazard rate, h0(t) is the baseline hazard rate, t is the time, z is the
vector of covariates, β is the vector of regression parameters and ψ is the positive
function, being the exponential the most used one.

Proportional hazard models are very useful when only the final remaining useful
life of the system and its confidence limit are required, and when there are data
available for the failure modes being modelled [14]. Besides that, the aforemen-
tioned multiplicative effect is a realistic and reasonable assumption for the relation
between covariates and the hazard rate.

The review of Gorjian et al. [3] shows different methods existing in literature
based on proportional hazard models, classified by the fact of them being
non-parametric or semi-parametric. The methods shown in the following list are
some of the ones found in this first group:

• Stratified proportional hazard model: it considers a population divided in a
number N of levels (for example, different operating conditions). Thus, there are
N baseline hazard functions, each defining the distinctive features of each level,
whereas the regression coefficients are the same for all the levels. The expres-
sion of this kind of model for the jth level is the following:

hjðt; zÞ ¼ h0jðtÞ � expðbTzÞ ð2Þ

• Two-step regression model: it assumes that there is a difference in the effect of
covariates during time, in such a way that a breakpoint is defined at
time B. Thus, the model before B has time-dependent regression parameters
αi = βi(t) = βi·exp(−γi·t), whereas after B regression parameters are constant.
Equation 3 shows the formula for this kind of model. The main limitations for
this approach are the difficulty to estimate the breakpoint and the assumption of
all the covariates having the same breakpoint
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hðt; zÞ ¼ h0ðtÞ � expðaTzÞ t�B
h1ðtÞ � expðcTzÞ t[B

�
ð3Þ

• Additive hazard model: this strategy changes one of the basic features of the
original proportional hazard model: the multiplicative effect of the covariates.
This is changed to take an additive effect, as expressed in Eq. 4. It gives good
results regarding the effect of repairs but it can only be used to model those
failure modes that imply a jump ψ in the hazard.

hðt; zÞ ¼ h0ðtÞþwðbTzÞ ð4Þ

• Mixed model: it takes both the additive and the multiplicative approaches to
take advantage of the benefits of each method. It is formulated as:

hðtjzÞ ¼ g b0wðtÞf gþ h0ðtÞ � f cT0 yðtÞ
� � ð5Þ

It can be seen that the covariates are separated in two groups (w and y), having
each of the covariate vector its corresponding regression parameter vector (β and
γ, respectively) and link function (g and f, respectively). The mixed model fits
better to the data rather than the classical model but has an extremely limited
testing.

• Accelerated failure time model: accelerated tests are commonly done in industry
in order to obtain the results of reliability, failure rate and life of different
component and systems in a shorter period of time. Thus, this kind of model
links the classical proportional hazard model with the accelerated reliability by
means of multiplying the operation time by the effect of the covariates and using
this value to determine the timely value of the baseline hazard rate, as it is
expressed in the following equation:

hðt; zÞ ¼ h0ðt � wðcTzÞÞ � wðcTzÞ ð6Þ

The semi-parametric models take advantage of other models such as the Weibull
distribution or logistic regression models in order to obtain more complex forms.
The main drawback of this kind of models is the need to calculate more parameters
than in the other models.

As stated before, these techniques have been widely use in different areas
regarding reliability and biomedicine. An example of the application of propor-
tional hazard models can be found in the work of Krivtsov et al. [9]. A survival
analysis is carried out regarding the tread and belt separation of automobile tires.
For that purpose, different tire design characteristics such as the tire age, the wedge
gauge, the peel force or the percent of carbon black, among others, are used to fit a
proportional hazard model. The analysis of the p-values for each regression
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coefficient gives an indication of what covariates are the most significant factors for
the studied failure mode.

In this work, the original proportional hazard model is used as a first approxi-
mation to fit the synthetic data obtained from the physical model and the values of
the reliability calculated by means of the degradation and reliability curves.

3 Results and Discussion

As stated in Sect. 2.1, the vibratory response of the rolling element bearing is used
to estimate its reliability. Figure 3 shows the vertical velocity of the inner ring.

In order to obtain the inputs for the proportional hazard model, some indicators
are extracted from the velocity signal. For this purpose, time-domain analysis
techniques are applied. Specifically, features that have been widely used in the field
of diagnosis of rolling element bearings and transmissions are extracted from the
synthetic data [7, 13]. Thus, the following indicators have been calculated:

• Mean:

l ¼ Dt
t1 � t0

�
Xt1
t¼t0

xðtÞ ð7Þ

• Standard deviation:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

t1 � t0
�
Xt1
t¼t0

xðtÞ � lj j2
vuut ð8Þ
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Fig. 3 Vertical velocity of
the inner ring obtained by the
physical model
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• Skewness:

c ¼
Dt

t1�t0
� Pt1
t¼t0

xðtÞ � lj j3

r3
ð9Þ

• Kurtosis:

j ¼
Dt

t1�t0
� Pt1
t¼t0

xðtÞ � lj j4

r4
ð10Þ

• Peak:

xk ¼ max xðtÞj j ð11Þ

• Root mean square:

xRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

t1 � t0
�
Xt1
t¼t0

xðtÞj j2
vuut ð12Þ

• Crest factor:

CF ¼ xk
xRMS

ð13Þ

• Shape factor:

SF ¼ xRMS

Dt
t1�t0

� Pt1
t¼t0

xðtÞj j
ð14Þ

• Impact factor:

IF ¼ xk

Dt
t1�t0

� Pt1
t¼t0

xðtÞj j
ð15Þ

• Energy operator (EO): calculated as the kurtosis of the following signal:

xðtpÞ
� �2� xðtp � DtÞ � xðtp þDtÞ� �

; t0 � tp � t1 ð16Þ

where x(t) is the velocity signal, t0 is the initial time (0 s), t1 is the final time (5 s)
and Δt is the time sampling period (1 ms).
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Thus, one feature is calculated for each vibration signal in the different degra-
dation levels. This leads to 10 values for each of the 16 damaged scenarios. At the
end of the day, one or a combination of indicators can be used as the covariate of
the proportional hazard model. With the objective of better understanding the
reliability changes that occur in rolling element bearings, the selection of appro-
priate indicators is crucial.

Figure 4 shows the relation between the ten indicators used in this analysis and
the data of bearing life presented in Table 3. It can be seen that in general there is a
relation between these values. It should be noted that some indicators provide a
clear relationship only for the last stages of the degradation, as it occurs in the case
of the crest factor.
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The values of the features presented in Fig. 4 are used as the covariates of the
proportional hazard model (i.e. predictor values), and the values of the reliability,
which correspond to the hazard rate, are used as the objective values for the
function that aims to be fitted. In this case, the baseline hazard model is equal to the
nominal reliability-life curve given by the international standard ISO 281 [5].

In order to calculate the regression parameters β the coxphfit function of Matlab®

has been used. First of all, an analysis is done taking each covariate to train a
proportional hazard model. Thus, 10 models are obtained, each of them having an
only regression parameter β. The results of this analysis are shown in Table 4.

Having a p-value lower than 0.05 has been taken as the criterion to select those
covariates that are statistically significant. Thus, the mean, the peak value, the root
mean square and the shape factor can be excluded from the study.

Once the significant covariates are identified, their combination by pairs is done.
It should be highlighted that some of the couples have not been analysed due to the
correlation between the indicators in their statistical definition. Thus, and taking a
look to Fig. 4, the combination between the skewness and the kurtosis as well as the
combination between the crest factor and the impact factor are rejected.

The results for the proportional hazard models fit by couples of covariates are
shown in Table 5. There is not any couple that fits the significance criterion of
having a p-value less than 0.05. Consequently, any of the pairs defined is able to
give an accurate estimation of the reliability.

Thus, the use of some of the covariates individually is the only way to construct
a proportional hazard model using the indicators presented in this section.
Specifically, the values of the standard deviation, the skewness, the kurtosis, the
crest factor, the impact factor and the energy operator are the ones that can be used
to reproduce the reliability of a rolling element bearing in the defined conditions.

Table 4 Results of the
proportional hazard models
taking each indicator as an
only covariate for each model

Covariate β Stand. error p-value

μ 4.84·106 1.21·107 0.6902

σ −1.85·108 6.75·107 0.0062

γ 1.81 0.72 0.0126

κ 3.7·10−2 1.45·10−2 0.0107

xk −4.84·106 1.16·107 0.6774

xRMS −4.46·106 2.3·106 0.0524

CF −108.99 52.09 0.0364

SF −108.99 4.89·103 0.9822

IF −108.99 51.91 0.0358

EO 4.84·10−2 1.71·102 0.0048
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4 Conclusions

The estimation of the reliability of an asset in general and the reliability of a rolling
element bearing in particular is essential in order to carry out an optimum asset
health management and minimize maintenance costs. As the collection of data from
real systems for this estimation is difficult or even impossible to do in certain
conditions, the use of synthetic data generated by physical models gains impor-
tance. Thus, the outputs of simulations can be used as inputs for a statistical model,
obtaining a synthetic failure rate.

In this research work, a multi-body model of rolling element bearings is used to
generate data related to different degradation levels. Time-domain analysis is car-
ried out in order to obtain statistical indicators of the vertical velocity signal of the
inner ring of the bearing. In order to obtain the relationship between the degradation
levels of the synthetic data and their corresponding reliability two degradation
models have been used. Then, the indicators are used to fit a proportional hazard
model, which is a kind of statistical tool commonly used for reliability purposes.

Results show that some of the indicators that have been used represent properly
the reliability of a bearing. In particular, the standard deviation, the skewness, the
kurtosis, the crest factor, the impact factor and the energy operator give good
results. However, their combination by pairs has failed to obtain good predictions.

Future work asks for determining other features that can fit better the reliability
curve. Besides that, the extension of this methodology to cover all the operating
conditions of a system can be useful to monitor the system and take advantage of
proportional hazard models with maintenance purposes.

At the end of the day, there is a real need for customizing the presented
methodology to specific applications, doing the fitting of the models with synthetic

Table 5 Results of the
proportional hazard models
taking the indicators by pairs
for each model

Covariates p-value (1st
covariate)

p-value (2nd
covariate)

σ and γ 1 1

σ and κ 0.9658 0.0915

σ and CF 0.9498 0.0926

σ and IF 0.9976 0.9974

σ and EO 0.958 0.1575

γ and CF 0.1178 0.8450

γ and IF 1 1

γ and EO 0.3397 0.0865

κ and CF 0.832 1

κ and IF 0.0954 0.9648

κ and EO 0.0615 0.6636

CF and EO 0.0417 0.5150

IF and EO 0.9549 0.1607
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data generated by physical models as well as data provided by the manufacturers of
the components. Thus, the tuning of the model can be done by the combination of
both data, personalising the model to the requirements of the industry.
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Nonlinear Process Monitoring
Using Genetic Algorithms

Tawfik Najeh, Achraf Jaber Telmoudi and Lotfi Nabli

Abstract This paper suggests a new approach for fault detection using Genetic
Algorithms (GAs). GAs are used to find the principal curve that summarize the
data. The principal curve is a generation of linear Principal Component Analysis
(PCA). Introduced by Hastie as a parametric curve, the original definition is based
on the self-consistency property. The Hastie’s theory encloses weaknesses in case
of complex data structures or data with intersections. The existing principal curves
methods employ the first component of the data as an initial estimation of principal
curve that passes satisfactorily through the middle of data. However the needing of
an initial line is the major inconvenient of this approach. In this work, we extend
this problem in two ways. First, we introduce a new method based on GAs to find
the principal curve. Second, potential application of principal curves in fault
detection is proposed. An example is presented to prove the efficiency of the
proposed algorithm to fault detection of nonlinear process.

Keywords Principal curves � Genetic algorithms � Fault detection

1 Introduction

The current trend in the industrial automation and industrial equipment leads to
mechatronic systems ever more complex, working in an uncertain, changeable
environment, corresponding to a permanent search for improvement, optimization
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and productivity. Therefore it is necessary to detect and isolate any failure to avoid
damage that may be harmful in an environment where performance is paramount.
As a result has appeared the field of fault monitoring. At the start monitoring
focuses on areas that have a high level of risk as well as the nuclear arms industry
sectors. But nowadays it is essential to adopt a performance monitoring module. To
ensure the correct operating mode, the process of control and supervision required
to accommodate continuous information of their instantaneous state. The accuracy
of measurements is an important factor in the reliability of the control and moni-
toring system performance.

Monitoring methods will be compartmentalized into two main families: methods
without mathematical models and those with. To the first family the quality of
information can be achieved by improving the accuracy of measuring equipment
and increasing the number of sensors. Because of cost and technical reasons, the
choice of this solution, where several sensors are used to measure the same variable
is limited to installations that have high technological risks. The second family is
based on the redundancy of information and can be exploited to verify the accuracy
of measurements. The advantage of these methods is the efficiency of detection and
fault isolation; contrary to the analytical methods the cost of hardware installation
should decrease.

The use of analytical redundancy techniques is based on finding the relationships
shown in the measurements of variables to reach a mathematical model. It seems
more and more difficult comes to large systems, with performance is less satis-
factory. In contrast, a method based on redundancy as PCA allows exploiting the
linear or non-linear relationships between those variables. Therefore all correlations
are taken into account without an explicit form of the model inputs/outputs. PCA
[1–4] is used in two steps, the first part provides the model obtained from the
history of the system during normal operation, the second phase is the detection and
isolation of faults by comparing the established behavior model and the observed.
However, the detection phase has a delicate problem which has a significant impact
on the precision of the model and its ability in failure classification. Consequently
in the case of non-linear systems modeling PCA requires other tools help to set the
optimal structure of the model. Artificial Intelligence approach (AI) is very effective
to solve this problem. The use of AI on traditional linear PCA cannot solve non-
linear problems.

In this paper, a new approach using GAs to estimate curve passing through the
middle of probability distribution. Likewise, the use of this method is easily
extended to the problem of detection and diagnosing data faults of nonlinear
systems.

This work is organized as follows. The second section gives a description of
principal curves. The third section introduces the concept of GAs and how we will
apply this heuristic method to the problem of determining the principal curves. The
new approach based on genetic and all steps are described in this section. In the last
section the results obtained on numerical example is given.
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2 Principal Curves

The first definition of principal curve is based on the self-consistency property of
Hastie [2]. But this approach does not support closed curves and curves with
intersections. A different method based on a model of the principal semi-parametric
curve was proposed by Tibshirani [5]. But lack of flexibility it has the same
weaknesses of the theory of Hastie.

Kègal [6] introduced anther definition based on the polygonal lines to find a
principal curves. All the following approaches started research for a straight line,
which by default is the first principal component [7, 8]. Another kind of approaches
defined the principal curve with another way. Rather than starting with a line that
represents the entire cloud of points, these approaches consider just a set of points.
This principle was introduced by Delicado [3] for the construction of principal
curves.

In this section we will analyze the self-consistency property of principal com-
ponents. Let the data X 2 ℜ generated, if f kð Þ ¼ f1 kð Þ; . . .; fd kð Þð Þ, λ 2 ℜ is the
curve parameterized with λ 2 ℜ, then for any X 2 ℜd we have kf ðXÞ the projection
index and f (λ) is a principal curve. Mathematically the projection index is defined
by:

kf Xð Þ ¼ sup k : X� f ðkÞk k ¼ inf
s

X� f sð Þk k
n o

ð1Þ

For X 2 ℜd, the projection index kf ðXÞ is the largest value giving the minimum
of X� f ðkÞk k.

3 Principal Curves Using Genetic Algorithms

The problem of determining the principal curves is a non-convex problem that has
several possible solutions [9, 10]. To solve such problems, the classical approaches
have multiple limitations. Due to the inadequate initialization of the algorithm or the
predefined strategy of constructing local models, the obtained curves don’t provide
an optimal solution that is able to present, sufficiently, the complexity of the data
cloud. On the other hand and despite the large computational cost, these methods do
not allow a significant improvement for the construction of principal curves.

Using the genetic algorithms technique for the optimization of solutions of
non-convex problem has attracted growing interest in many research works [11,
12]. The novelty of this technique is the assumptions commonly used with con-
ventional methods to ensure convergence of the solution [13]. In the presence of
multiple local optima, the convergence of GAs provides the desired solution to the
global optimum of the problem [14]. The application of these tools in the case of
the principal curve calculation is very interesting due to the non-convex nature of
the problem.
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3.1 Genitc Algorirthms

GAs are applied to a wide variety of problems. Simplicity and efficiency are the two
advantages of this approach [12]. After having fixed the expression of the objective
function to be optimized, probabilistic steps are involved to create an initial pop-
ulation of individuals [13]. Optimization steps with GAs are as follows (Fig. 1):

a. Initialization
It is usually random and it is often advantageous to include the maximum
knowledge about the problem [12].

Create an initial 
population for the 

execution

Evaluate each individual in the 
population

Selection of individuals for 
reproduction

Crossing

Mutation

Reinsertion

New population

Stopping 
criterion

Yes

No

Optimal solution

Fig. 1 Chart of the simple
genetic algorithm
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b. Evaluation
This step is to compute the quality of individuals by the allocation a positive
value called “ability or fitness” to each one. The highest is assigned to the
individual that minimizes (or maximizes) the objective function [14].
The fitness of an individual is calculated as follows:

Fitness(PosÞ ¼ 2� Ps þ 2ðPs � 1ÞðPos� 1Þ
Nind � 1

ð2Þ

The evaluation is characterized by a parameter called selection pressure (Ps).
This method allows Ps values in the range of [1, 2].

c. The selection
This step selects a definite number of individuals of the current population [13].
The selection is probabilistic; it is based on the ability of individuals a way that the
best ones have a chance of being selected more than once. In this step is assigned
to each individual probabilityPiwhich is proportional to its fitness and defined by:

Pi ¼ FiPM
j¼1 Fj

ð3Þ

With Fi the fitness and M the size of population.

d. The crossover
The genetic crossover operator creates new individuals. From two randomly
selected parents, crossover produces two descendants [14]. This step affects only
a limited number of individuals established by the crossover rate (Pc) number.
Let X ¼ ðxiÞ1� i�m and Y ¼ ðyiÞ1� i�m be two individuals. These two parents
will produce two offspring X 0 ¼ ðx0iÞ1� i�m and Y 0 ¼ ðy0iÞ1� i�m according to the
equation:

x0i ¼ xi þ si ri a
yi�xi
Y�Xk k

y0i ¼ yi þ si ri a
xi�yi
Y�Xk k

(
ð4Þ

with: a ¼ 2�ku

k: mutation precision (k 2 4; 5; . . .; 20f g, u 2 0; 1½ �)

ri ¼ r � domian

si ¼ �1; 1f g

e. The mutation
The mutation consists in providing a small disruption to a number (Pm) of
individuals. The effect of this operator is to counteract the attraction exerted by
the best individuals this allows us to explore other areas of the search space.
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Let ui and li be the respective lower and upper bounds for all individuals. Let
X ¼ ðxiÞ1� i�m the individual to mutate that will give the new individual X 0 ¼
ðx0iÞ1� i�m according to:

x0i ¼
xi þðli � xiÞf ðGÞ if r1\0:5
xi � ðxi � uiÞf ðGÞ if r1 � 0:5
xi if x0i 62 ui; li½ �

8<
: ð5Þ

with:

f ðGÞ ¼ r2 1� G
Gmax

� �� �bs
ð6Þ

r1, r2: uniform random number between 0 and 1
G: the current generation
Gmax: the maximum number of generations
bs: shape parameter
To ensure the diversity of the population by the mutation the parameter r1 is

halved in Eq. 5 (r1 > 0.5 and r1 < 0.5).
This has been a brief overview of GAs. For further details on the processing

power and the convergence properties of GAs, reference should be made to [15].

A. finding principal curves

The resolution of principal curve problem by GAs avoids all local optima and
converges to the global optimum of the problem. The proposed approach considers
the principal curves as an ensemble of connected lines segments. In each step new
segment is inserted to form polygonal lines.

The use of GAs in order to find the principal curves requires the development of
an objective function. This function must take into account the quadratic sum of the
distances dk.

Uk ¼
Xk
i

dðxi; sÞ2 ð7Þ

where: Xn Two-dimensional random vector xi 2 ℜ2 , i = 1,… k is a local
neighborhood for a fix point “a”

s = [a, b]: a segment pass through the data set xi.
dj: the distance between the considered point and it’s orthogonal projection

given by Eq. (7).
The objective is used to find the segment that minimizes the total squared

distance of all neighbor’s points. We can project orthogonally every data point in
the neighborhood cloud onto the segment sk.
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The new genetic curve algorithm is constructed following the strategy outlined
as follows:

Algorithm:

4 Experimental Results

This section describes how to use GAs that implements the proposed nonlinear
PCA method for fault detection. An example is used to prove the performance of
the proposed approach to find the principal curve for process monitoring.

The proposed algorithm has been tested with synthetic datasets. We conducted
experiments on several artificial data set and with 2-d data space. Data points are
disturbed along with Gaussian noise independently imposed on different dimen-
sions of the given curve.

We start first with several typical synthetic datasets to test the aptitude of our
algorithm for computation of principal curves, and then the monitoring problem of
the Continuously Stirred Tank Reactor (CSTR) is investigated.
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4.1 Synthetic Datasets

We generate different shaped curves, such arc-shaped and circle. Contaminated
with small noise (0.03). The curve obtained by applying the algorithm is shown in
Figs. 2 and 3. One can see that the curve is reconstructed quite well.

4.2 Nonlinear Monitoring of CSTR Benchmark

One of the most commonly used chemical reactors in the industry is the
Continuously Stirred Tank Reactor (CSTR). [14].

Fig. 2 Principal curve
obtained for synthetic dataset
of an arc

Fig. 3 Principal curve
obtained for synthetic dataset
of circle
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Two chemical ingredients b1 and b2 come in the reactor with different con-
centrations and feed rates, respectively Cb1, Cb2 and w1, w2. This process pro-
duces the final product with the concentration Cb, feed rate w0 and the height h in
the reactor. A diagram of the reactor is given in Fig. 4.

In this section we start by finding the principal curve of two process variables,
w0 = x0 and h = x1. second we propose it is use for the fault detection. The same
Eq. 5 is taken as the objective function to be optimized. The initial population
comprises 80 individuals randomly performed by the GP.

For linear process involving the linear approach of the PCA they use indices
such as detection statistics of Hotling and SPE [16, 17]. Only in the case of
non-linear PCA, application of these indices is not very suitable [18–20]. To
overcome this difficulty, a new index detection If is proposed. The idea consists on
constructing the principal curve of safe operating mode, then check index from the
Euclidean distance between the estimated curve and data from the system at the
present time.

For the previous example we considered two variables represented by a set of
data points xn ¼ ðx0; x1Þ. For each data point Xi let pðxiÞ being its projection point
on the principal curve f. The Euclidean squared distance between xi and pðxiÞ is
calculated for the all data set. Then the deviation between estimating principal curve
and the data set can be defined as:

If ¼ dðxi; f Þ2 ð9Þ

Usually, the process is considered abnormal operating if:

If [ d2 ð10Þ

With δ is the threshold of detection.

1
w

1b
C

0
w

bC

2
w

2b
C

h

Fig. 4 Diagram of chemical
reactor CSTR
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In this study the principal curve was trained with a data set of 200 samples. The
detection was performed with data containing one fault at a time. The test was
designed for safe and failed operating mode.

To identify a change of the system’s operating mode by the proposed method,
we try to get the principal curve noted C0 corresponding to normal operating mode
on the absence of defects. This curve (Fig. 5) is obtained by the calculating algo-
rithm of the principal curve of two variables ðx0; x1Þ.

From the constructed curve and the cloud of points, we can construct an indi-
cator of change If through the Eq. (9). The process is simulated for 400 samples in
the following manner; the first 250 samples correspond to the mode M0 (Fig. 6).
The second 150 ones correspond to mode M1.

The evolution of If is shown in Fig. 3. In the interval [0, 250], the index If is
below the threshold corresponding to the M0 mode and above its threshold in the
interval [251,400] corresponding to failed operating mode M1.

Fig. 5 Principal curve

Fig. 6 Variation of indicator value If
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5 Conclusion

In this paper a new approach was used to perform the principal curves based on
genetic programming. The algorithm had been applied on some synthetic datasets
and to the problem of monitoring on the Continuously Stirred Tank Reactor. The
simulation improves the application of the proposed approach with real process.
This guides us to try to apply this method with principal surfaces (higher
dimension).
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Vibration and Acoustics Emissions
Analysis of Helicopter Gearbox,
A Comprative Study

Faris Elasha and David Mba

Abstract This paper investigates the application of signal separation techniques in
detection of bearing faults within the epicyclic module of a large helicopter (CS-29)
main gearbox using vibration and Acoustic Emissions (AE). It compares their
effectiveness for various operating conditions. Three signal processing techniques
including an adaptive filter, spectral kurtosis and envelope analysis, were investi-
gated. In addition, this research discusses the feasibility of using AE in helicopter
gearbox monitoring.

Keywords Vibration � Acoustics emission � Helicopter gearbox

1 Introduction

Helicopter transmission integrity is critical for safe operation. Approximately 16 %
of mechanical failures, resulting in the loss of helicopter operation, can be attributed
to the main gearbox (MGB) [1]. In addition, 30 % of the total maintenance cost of
helicopters can be attributed to the transmission system [1]. The need to employ
advanced fault warning systems for such transmission systems cannot be understated
[2, 3]. Health and Usage Monitoring Systems (HUMS) are commonly used for fault
detection of helicopter transmissions in which detection is based on extraction of
predefined features of the measured vibration such as FM4, NA4, etc. [2, 4, 5].
HUMS was developed in North Sea operations, motivated in part by the crash to a
Boeing Vertol 234 in 1986 which was caused by disintegration of the forward main
gearbox. After development in the 1990s, the UK’s Civil Aviation Authority CAA

F. Elasha (&)
Faculty of Engineering, Environment and Computing,
Coventry University, Coventry CV1 5FB, UK
e-mail: faris.elasha@coventry.ac.uk

D. Mba
School of Engineering, London South Bank University, London SE1 0AA, UK
e-mail: mbad@lsbu.ac.uk

© Springer International Publishing Switzerland 2016
U. Kumar et al. (eds.), Current Trends in Reliability, Availability,
Maintainability and Safety, Lecture Notes in Mechanical Engineering,
DOI 10.1007/978-3-319-23597-4_10

125



mandated fitment of HUMS to certain helicopters. One article suggests that HUMS
“successes” are found at a frequency of 22 per 100,000 flight hours [6]. A HUM
system consists of two complimentary subsystems: health monitoring and usage
monitoring. Health monitoring is a process of diagnosing incipient damage or
degradation that could ultimately lead to a system failure. Usage monitoring is a
process by which the remaining life of different gearbox components and auxiliary
systems is determined by assessing operation hours, current components condition
and load history [7, 8]. Several vibration signature analysis methods are developed
and applied in the commercial HUMS to detect faults in bearings, gears and shafts.
Condition Indicators (CI) refer to the vibration characteristics extracted from these
signatures and are used to reflect the health of the component [9]. Numerous con-
dition indicators are calculated from vibration data to characterize component health
and these indicators are often determined based on statistical measurement of the
energy of the vibration signal, such as rms, kurtosis and crest factors.

The majority of helicopters utilises epicyclic reduction modules gears as trans-
mission systems due to their high transmission ratio, higher torque to weight ratio
and high efficiency [10]. As such this type of gearbox is widely used in many
industries such as aerospace, wind turbines, mining and heavy trucks [11–15].
Different planetary gearbox configurations and designs allow for a range of gear
ratios, torque transmission and shaft rotational characteristics. The planetary gear-
box generally operates under severe conditions, thus the gearbox components are
subject to different kinds of fault conditions such as gear pitting, cracks, etc.
[16–19]. Recent investigations on applications of planetary gearboxes have shown
that failures initiate at a number of specific bearing locations, which then progress
into the gear teeth. In addition bearing debris and the resultant excess clearances
cause gear surface wear and misalignment [19]. More recently the accident to the
helicopter registred G-REDL [20], resulting in the loss of 16 lives, was caused by
the degradation of a planet gear bearing interestingly the HUM system condition
indicators showed no failure evidence before this accident.

2 Gear and Bearing Diagnostics

The vibration signals associated with bearing defects have been extensively studied
and robust detection algorithms are now available as off-the-shelf solutions.
Conversely the dynamics associated with bearing diagnostics within gearboxes
reduce the effectiveness of traditional techniques. Therefore, it is important to
understand the nature of the faulty bearing signal.

For rolling element bearings, a fault will cause shocks which in turn excite
higher resonance frequencies which will be amplitude modulated depending on two
factors, the transmission path and loading condition [21]. Therefore the vibration
signal is typically demodulated to extract the frequency of these impulses.
Equations for calculation of bearing faults frequencies have been reported widely in
the literature [22–24]. These equations assume no slip, however, in operation there
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is some degree of slip and this why the bearing faults frequencies vary by 1–2 % of
the calculated value. It is this slip that facilitates the separation of the gear and
bearing vibration components [17], the latter known as the non- deterministic
component of the measured vibration. The deterministic part of the signal is usually
related to gear and shaft speeds [25]. Such periodic events are related to kinematic
forces induced by the rotating parts such as meshing forces, misalignment and
eccentricity [26]. In some cases the deterministic part of the vibration signal cannot
be identified due to speed variation, and therefore it essential to re-sample the signal
to the angular domain in order to track speed variation [26, 27]. The deterministic
part of the signal can be used for diagnostics of gear and shaft faults.

In relation to AE only relatively short time series signatures were processed [28].
In application to diagnosis of machine faults, simple AE parameters are typically
employed, such as rms, kurtosis, AE counts [29] and demodulation [30]. More
recently the use of Spectral Kurtosis and adaptive filters has been employed to
facilitate the diagnosis of machine faults with AE [31–33].

3 Signal Processing Techniques

Bearing and gear fault identification involves the use of various signal processing
algorithms to extract useful diagnostic information from measured vibration or AE
signals. Traditionally, analysis has been grouped into three classes; time domain,
frequency domain and time-frequency domain. The statistical analysis techniques
are commonly applied for time domain signal analysis, in which descriptive
statistics such as rms, skewness, and kurtosis are used to detect the faults [34, 35].
A fast Fourier transform (FFT) is commonly used to obtain the frequency spectra of
the signals. The detection of faults in the frequency domain is based on identifi-
cation of certain frequencies which are known to be typical symptoms associated
with bearing or gear faults. The time-frequency domain methods are composed of
the short-time Fourier transform (STFT) [36], Wigner-Ville [34], and wavelet
analysis [37, 38]. The use of these detection techniques are feasible for applications
where a single component is being monitored however for applications that include
several components, such as gearboxes, it is essential to employ separation algo-
rithms. The adaptive signal processing techniques used in this study is fully
described by the authors [39, 40].

4 Experimental Setup

Experimental data was obtained from tests performed on CS-29 Category ‘A’
helicopter gearbox which was seeded with defects in one of the planetary gears
bearing of the second epicyclic stage. The test rig was of back-to-back rig con-
figured and powered by two motors simulating dual power input.
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4.1 CS-29 ‘Category A’ Helicopter Main Gearbox

The transmission system of a CS-29 ‘Category A’ helicopter gearbox is connected
to two shafts, one from each of the two free turbines engines, which drive the main
and tail rotors through the MGB. The input speed to the MGB is typically in the
order of 23,000 rpm which is reduced to the nominal main rotor speed of 265 rpm,
see Fig. 1.

The main rotor gearbox consists of two sections, the main module, which
reduces the input shaft speed from 23,000 rpm to around 2,400 rpm. This section
includes two parallel gear stages. This combined drive provides power to the tail
rotor drive shaft and the bevel gear. The bevel gear reduces the rotational speed of
the input drive to 2,405 rpm and changes the direction of the transmission to drive
the epicyclic reduction gearbox module. The second section is the epicyclic
reduction gearbox module which is located on top of the main module. This reduces
the rotational speed to 265 rpm which drives the main rotor. This module consists
of two epicyclic gears stage, the first stage contains 8 planets gears and second stage
with 9 planets gears, see Fig. 2. The details of the gears are summarised in Table 1.

The epicyclic module planet gears are designed as a complete gear and bearing
assembly. The outer race of the bearing and the gear wheel are a single component,
with the bearing rollers running directly on the inner circumference of the gear.
Each planet gear is ‘self-aligning’ by the use of spherical inner and outer races and
barrel shaped bearing rollers (see Fig. 2).

Fig. 1 Gearbox internal parts [20]
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4.2 Experimental Conditions and Setup

This investigation involved performing the tests for fault-free condition, minor
bearing damage and major bearing damage. The bearing faults were seeded on one
of the planet gears of the second epicyclic stage. Minor damage was simulated by
machining a rectangular section of fixed depth and width across the bearing outer
race (10 mm wide and 0.3 mm deep), see Fig. 3, and the major damage simulated as
a combination of both a damaged inner race (natural spalling around half of the
circumference) and an outer race (about 30 mm wide, 0.3 mm deep), see Fig. 4.
Three load conditions were considered for the each fault condition, 110 % of
maximum take-off power, 100 and 80 % of maximum continuous power; the
power, speed and torque characteristics of these load conditions are summarised in
Table 2.

Fig. 2 Second stage
epicyclic gears

Table 1 Number of teeth for the gearbox gears

First parallel stage Pinion teeth Wheel teeth

23 66

Second parallel stage Pinion teeth Wheel teeth

35 57

Bevel stage Pinion teeth Bevel teeth

22 45

1st epicyclic stage Sun gear Planets gear—8 gears Ring gear

62 34 130

2nd epicyclic stage Sun gear Planets gear—9 gears Ring gear

68 31 130
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4.3 Vibration Fault Frequencies

To aid diagnosis all characteristic vibration frequencies were determined, see
Table 3. These included gears mesh frequencies of the different stages and the
bearing defect frequencies for planet bearing.

Fig. 3 Slot across the bearing
outer race

Fig. 4 Inner race natural
spalling

Table 2 Test load conditions characteristics

Load condition Power
(Kw)

Rotor speed
(RPM)

Right input
torque (Nm)

Left input
torque (Nm)

100 % max
continuous power

1300 265 272 272
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4.4 Data Acquisition and Instrumentation

Vibration data was acquired with a triaxial accelerometer (type PCB Piezotronics
356A03) at a sampling frequency of the 51.2 kHz. The accelerometer had an
operating frequency range of 2–8 kHz and was bonded to the case of the gearbox,
see Fig. 5. The acquisition system employed was a National Instruments (NI) NI
cDAQ-9188XT CompactDAQ Chassis. A 60 s sample was recorded for each fault
case. The Y-axis of the tri-axial accelerometer arrangement was oriented parallel to
the radial direction of gearbox, the X-axis to the tangential axis, and the Z-axis is
the vertical axis parallel to the rotor axis, see Fig. 5.

In addition, Acoustic Emission data was collected using a PWAS sensor [41],
7 mm diameter and approximately 0.2 mm thick, bonded to the upper face of the
planet carrier, see Fig. 6. The sensor was connected to a conditioning board
attached to the planetary carrier and transmitted wirelessly using two coaxial copper
coils and a new wireless transfer technique. The new wireless transfer technique
utilise two single turn brass coils of approximately 400 mm diameter which were
cut to size using water jets for accuracy. The stationary (upper) coil was suspended
from two clamping rings which were attached to the top case of the gearbox with a
spacer through the holes to retain location. The moving (lower) coil was attached to
a circular mounting ring which was in turn mounted on top of the oil caps on the
planet carrier, see Figs. 6 and 7. Electrical isolation of the coils from the mounts and
surrounding metallic structure was achieved through the use of nylon washers and
bushes. AE data was acquired at a sampling rate of 5 MHz using an NI PCI-6115
card connected to a BNC-2110 connector block.

Table 3 Gearbox
characteristic frequencies

Frequency components Frequency HZ

Gears meshes

First parallel GMF Hz 8751.5

Second parallel GMF 4640.94697

Bevel stage GMF (Hz) 1791.24269

1st epicyclic stage GMF 1671

2nd epicyclic stage GMF 573

Faulty planet bearing

Ball spin 45.31426

Outer race 96.69819

Inner race 143.9603

Cage 7.438322
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Fig. 5 MGB installed on the
test bench

Fig. 6 Moving coil mounted
on the planetary carrier (coil
arrowed, sensor circled)

132 F. Elasha and D. Mba



5 Observations of Vibration Analysis

Spectral Kurtosis analysis was undertaken on the non-deterministic part of data sets
collected from the gearbox for the different fault cases and this yielded the fre-
quency bands and center frequencies which were then used to undertake envelope
analysis. As discussed earlier the signal separation was undertaken with adaptive
filter LMS algorithm. Observation from a typical Kurtogram used to estimate the
associated filter characteristics for different defect conditions is shown in Table 4.

Observation from the spectra of the enveloped signal showed no presence of
fault frequencies associated with the defective planetary bearing in the spectrum.
However the minor fault condition was not identified. It is apparent that the signal
separation had not completely removed the gear mesh and shaft frequencies, par-
ticularly the sun gears frequencies and its harmonics for first and second epicyclic
stages (38.8 and 13.2 Hz respectively), which were detected by envelope analysis,
see Fig. 8. Existence of these frequencies is due to fact that the vibration signal used
in this analysis wasn’t synchronised to any particular shaft.

Fig. 7 Coils in position prior
to assembly (static coil black
arrow, moving coil white
arrow)

Table 4 Filter characteristics estimated based on SK

Case Center frequency Fc (Hz) Band width Bw (Hz) Kurtosis

Fault-free condition 5200 266 0.1

Minor damage condition 6000 266 0.11

Major damage condition 20266 2133 0.5
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6 Acoustic Emission Observations

The envelope analysis was undertaken using the central frequency Fc and
bandwidth (Bw) estimated by SK analysis, see Table 5. Observations of Fig. 9
showed the presence of the bearing outer race defect frequency (96 Hz) and its
harmonic (192 Hz) for both minor and major damages under different loading
conditions.

Fig. 8 Enveloped spectra of non-deterministic signal for (a) Fault-free (b) Major (c) Minor
damage

Table 5 Filter characteristics estimated based on SK for AE signals

Case Center frequency Fc (Hz) Band width (Bw) (Hz) Kurtosis

Fault-free 1093750 312500 12

Minor damage 234375 52083 9

Major damage condition 312500 208333 7.9
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7 Discussion

The techniques used in this paper are typically used for applications where strong
background noise masks the defect signature of interest within the measured
vibration signature. The AE signal is more susceptible to background noise and in
this case, the arduous transmission path from the outer race through the rollers to
the inner race and then the planet carrier makes the ability to identify outer race
defects even more challenging. However the use of the wireless system incorpo-
rated into the main gearbox has contributed significantly to improving signal-
to-noise ratio.

A comparison of the vibration and AE analysis showed AE analysis was able to
identify the presence of the bearing outer race defect frequency (96 Hz) and its
harmonic (192 Hz) for both minor and major damaged for all loading cases based

Fig. 9 Enveloped spectra of AE signal (a) Fault-free (b) Major (c) Minor bearing defects at 100 %
maximum continuous power
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on observations on the enveloped spectra. However, for vibration analysis the outer
race defect for minor damage case wasn’t detected.

Interestingly the AE analysis was unable to identify the presence of a defective
inner race under the ‘major fault’ condition however vibration analysis identified
the presence of the cage frequency (7.5 Hz) for major fault condition. Under
defective inner race conditions, as severe as that seen in this condition, see Fig. 10,
it has been shown that such a fault condition manifests itself with increases in the
bearing cage frequencies. The existence of large widespread spalls on the inner race
leads to bearing excessive clearance which in turns causes an increase in the
vibration amplitude of the fundamental train (cage) frequency.

8 Conclusion

In summary an investigation employing external vibration and internal AE mea-
surement to identify the presence of a bearing defect in a CS-29 ‘Category A’
helicopter main gearbox has been undertaken. A series of signal processing tech-
niques were applied to extract the bearing fault signature, which included adaptive
filter, Spectral Kurtosis, and envelope analysis. The combination of these tech-
niques demonstrated the ability to identify the presence of the various defect sizes
of bearing in comparison to a typical frequency spectrum. From the results
presented it was clearly evident that the AE offered a much earlier indication of
damage than vibration analysis.

Fig. 10 Natural spall on
bearing inner race
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Test Rig Assessment of an On-Line Wear
Sensor for Application in Wind Turbine
Gearboxes

Vicente Macián, Bernardo Tormos, Santiago Ruiz, Guillermo Miró
and Isaac Rodes

Abstract Wind energy is one of the most promising renewable energies, but it also
presents some technical challenges, especially regarding to reliability, due to the
cost of repair and maintenance actions. So, different solutions have been proposed
from the point of view of on-line monitoring of gearbox condition by means of oil
analysis. In this work, a complete process for the evaluation of a wind turbine
gearbox on-line oil sensor was performed, based on a particle counting method-
ology. This work includes the design, selection and preparation of the samples
studied and the test rig and all the experiments done for the assessment.

Keywords Oil analysis � Wind turbine gearbox � Particle counting

1 Introduction

In the last 20 years, the shortage of natural resources and the emerging social
consciousness about pollution have made that renewable energy alternatives get an
important and increasing role in energy production and specially wind energy
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among all of them. For instance, in the 2013 annual report of the Spanish electricity
system [1], data regarding electricity coverage attending primary source are
depicted (Fig. 1); showing clearly that wind energy is fighting to become the main
energy source in Spain.

Therefore, leading companies in energy business have made economic invest-
ments in several different renewable energies (wind, solar, tidal, geothermal, hydro,
etc.) that are increasingly present in our daily lives.

Among all of them, wind energy presents some advantageous characteristics.
The power efficiency of a typical wind turbine is about 40 % (of the total kinetic
energy of the wind), much more than solar energy (commercial panels available
nowadays have approximately 20 % efficiency), furthermore wind turbines take up
less space than the average power plant (a few square meters for the base), and this
ground can be placed in remote locations, such as offshore, mountains and deserts.
Additionally, combined with other alternative energy sources, wind can provide a
reliable supply of electricity.

However, the implementation of renewable energies not only offers its profits to
environmental and economic level, but also causes the appearance of new engi-
neering challenges, including design, manufacturing and maintenance actions, that
need sometimes a completely different approach.

A major issue with wind power systems is the relatively high cost of operation
and maintenance (O&M). Usually, wind turbines are structures located in remote
areas, presenting as a consequence a difficult access. Therefore, these factors
increase the O&M cost for wind power systems. Also, poor reliability directly
reduces availability of wind power due to the turbine downtime [2]. Regarding to
maintenance actions, the main subassemblies in a wind turbine are the mechanical
system, electronic control system, and electrical system, responsible to convert the
kinetic energy in electricity. More common failures are originated in subsystems
belonging to the mechanical system. This includes components such as: main shaft
and bearings, gearbox, rotor brake, blades and generator.

Specially, one of the most important maintenance aspects in a wind turbine is the
gearbox’s condition, the element that converts low-speed, high-torque spinning from
the blades into high-speed spinning for electrical energy conversion. Within the life
cycle of the wind turbine, wind gusts lead to misalignment of the drive train and
provoke gradual failure of the gear components. This failure is critical, as it creates a

Fig. 1 Annual demand
coverage for Spanish
electrical system in 2013
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significant increase in the operating costs and downtime of a turbine, while greatly
reducing its profitability and reliability. A gearbox replacement can cost up to 10 %
of the original construction cost, enough to cut deep into the projected profits [3].

Existing gearboxes are a spinoff from marine technology used in shipbuilding,
and an example is shown in Fig. 2.

Parallel to the design of these new engineering solutions, new challenges need to
be observed. Field data [4] shows that the drive train and gearboxes of modern wind
turbines (in the MW power production range) are the weakest part in the system,
with great costs and mean time to repair (MTTR) associated. Thus, an important
part of maintenance actions and efforts should focus in gearbox condition.

One challenge is the proper maintenance of these new systems and, in particular,
the application of preventive and predictive maintenance principles for wear control
in wind turbine gearbox by oil analysis. These systems present specific character-
istics that make them really suitable for the application of on-line monitoring
techniques. Particularly, these systems are usually installed in remote locations and
need to be stopped for any maintenance inspection. These operations need to be
realized by specially trained operator to climb to the nacelle with high security
standards, and usually the mean time to repair comprises several hours. This situ-
ation implies a high economic cost for any off-line analysis, so different on-line
monitoring techniques are being developed to help managers take better mainte-
nance decisions.

As it was said, there are considerable challenges on the reliable operation of the
system bearing and gear components [5]. Extremely miscellaneous conditions cause
high contact stresses, generator faults and grid engagement cause impact loads and
bearing skidding. On the other hand, ambient moisture causes corrosive environ-
ments and lubricant degradation. These conditions have resulted in issues of
scuffing, micropitting, wear, pitting and surface cracking, as shown in Fig. 3.

Fig. 2 Schematic wind
turbine gearbox diagram.
Source ZF Friedrichshafen
AG
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All phenomena mentioned above result in the appearance of wear debris in the
oil. Depending on material and size, they can be classified within each type of wear,
and also they can offer valuable information on the condition of the gearbox. In an
experiment carried out with gears [6], the relationship between amount and size of
particles in oil and gearbox condition was studied, with the results obtained in
Fig. 4.

Fig. 3 Typical wear phenomena in wind turbine gearboxes. Micropitting (upper left), pitting
(upper right), scuffing (down)

Fig. 4 Wear condition versus size and shape of particles in oil for gears [7]
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The main target of this work has been the selection and subsequent test in
laboratory of an on-line oil condition sensor to check if using this sensor an early
stage detection of potential failures related with wear in a wind turbine gearbox can
be achieved.

2 Design of Experiments

In order to develop this experiment, it was necessary to pay attention to three
different aspects: selection and conditioning of the sensor, selection and manu-
facturing of the particles and design and development of the test rig.

2.1 Sensor

Particle counting devices represent one of the most important tests for used oil
analysis, whether you use onsite particle counting or relying on a commercial lab
performing off-line measurements. Thus some problems can be quickly and easily
determined by monitoring the number and size-distribution of particles in an oil
sample. Particle counting was introduced during the 1970s as a result of the
pioneering work on hydraulics and fluid power conducted at Oklahoma State
University, and then applied to a lot of different industries [8].

Many different particle counting principles are used nowadays, including optical
and laser counting techniques. The principle used in this system needed to be robust
and reliable, due to the difficulty of repairs once installed in the wind turbine. Thus,
a magnetic detection system was selected. The sensor studied in this experiment
was the MetalSCAN 3115L, designed by GasTOPS Ltd. (Canada), and shown in
Fig. 5.

This sensor is an online particle counting sensor designed to detect and monitor
metal particles in wind turbine gearbox oil, ferrous and nonferrous, generated by
wear of the gearbox. The sensor generates an electric pulse for each particle larger
than a minimum size, in order to detect the most interesting particle range. The
detecting principle is based on the measurement of the magnetic field disturbance
caused by the passage of a particle through the sensor. The particle is magnetized
before entering the counter, then it is counted, and subsequently demagnetized
before exiting the sensor. The waveforms that occur depend on the direction of
motion of the particle and the type of particle [7], as shown in Fig. 6.

As said before, this sensor is connected directly to the lubrication system of the
wind turbine. Table 1 summarizes the most important characteristics of the sensor.

The connection between the sensor and the PC was realized with a microcon-
troller with Ethernet Modbus TCP/IP protocol, which was needed to be configured
in order to monitor and log the experiments.
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Fig. 5 MetalSCAN 3115L

Fig. 6 Sensor signal for a particle, ferrous (red) and nonferrous (blue). Adapted from [7]

Table 1 Main characteristics
of MetalSCAN 3115L

MetalSCAN 3115L

Sensor bore 38 mm

Minimum size particle (spherical) 350 µm
Fe/1000 µm Non-Fe

Minimum size particle (equivalent
spherical diameter)

230 µm Fe/600 µm
Non-Fe

Flow rate 38–1000 l/min
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2.2 Particles in Oil

Once the sensor was selected, next step comprised the selection and preparation of
particles and oil necessary for the experiment.

First of all, the oil selected was a typical commercial PAO-based (poly-alpha-
olefins) ISO VG 320, whose main characteristics are described in Table 2.

Then, the selection of particles was carried out. According to American Gear
Manufacturers Association (AGMA) [9], the main metallic elements present in oil
are iron (Fe) and copper (Cu), as gears are mainly manufactured in iron and copper.
According to this and taking into account the sensor limits, it was decided that two
different types of particles will be studied. Initially, it was decided to get a particle
size range higher than the sensor minimum, in order to assure the validity of
measurements, thus two different materials were acquired (from Alfa Aesar):

• “Iron powder, −20 mesh”: Iron particles with size less than 840 µm. A sample
of these particles was studied in a laser granulometer in order to confirm size and
verify the percentage of particles that could be used in the study, as shown in
Fig. 7. After that, particles were sieved to a range greater than 300 µm.

• “Copper shot, 0.6–0.8 mm”: These particles present spherical to hemispherical
form with different sizes, in this case, ranging between 600 and 800 µm, so no
sieving was necessary. In Fig. 8 the particle size distribution of this sample is
presented.

Table 2 Main properties of
ISO VG 320 oil used in the
experiment

Properties Value

Kinematic viscosity @ 40°C [cSt] 320

Kinematic viscosity @ 100°C [cSt] 34.1

Density @ 15°C [kg/m3] 853

Flashpoint, Cleveland open cup [°C] 260

Pour point [°C] −54

Neutralization number [mgKOH/g] 0.6

Fig. 7 Particle size distribution of “Iron powder, −20 mesh”
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Additionally, it was decided to transform a portion of these particles in a “flake”
shape, since this is the usual shape for wear particles in a wind turbine gearbox.

In order to simulate this difference, a sample of these particles was milled. In
Fig. 9 the difference between spherical particles and milled particles is shown.

Fig. 8 Particle size distribution of “Copper shot, 0.6–0.8 mm”

Fig. 9 Particle milling: original and milled iron particles (up) and original and milled copper
particles (down)
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2.3 Test Rig

For the purpose of this experiment, a test rig was designed especially for the sensor
assessment. In Fig. 10 a diagram of the test rig is presented.

The test rig configuration was designed according to the following procedure:
the oil is in a deposit, where it is stored. Before starting the cycle, the oil is filtered
by a submerged filter to prevent undesirable particles flowing through the sensor.
The oil flows up to the pump, and after that the particles are introduced, in order to
protect the pump from wear induced by the particles. Once the flow of oil and
particles pass through the sensor, there is a magnet, whose function is to collect the
particles used in the experiment, so the oil gets back clean to the deposit. One of the
main points addressed was the selection of the pump, since there was a minimum
flux rate, and it was needed also some flexibility, since the viscosity of oil is around
200 cSt at the temperature of normal operation. In Fig. 11 can be observed the final
test rig completely assembled.

One of the most important parts that were designed included the particle
injection system. After the evaluation of different alternative systems, a system
based on a tee coupler was implemented, where the particles would be dragged by
the oil impulse by the pump, shown in Fig. 12.

Fig. 10 Diagram of the test rig specifically designed for this experiment

Fig. 11 Mechanical
assembly of the test rig
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2.4 Experiments

Once the system was assembled and prepared, the sequence of experiments were
decided. First, it was decided that the first experiment should be conducted with
iron particles, after that with copper particles and finally using a mixture of them.
The last option was included to increase the similarity of the test with real world
conditions, since it would be the most common situation.

Thus, a blank test would be conducted, and later on, the sensor would be tested
having a single particle. After that, a sensibility test would be carried out to find out
the limitations of the sensor. Finally, it would be mandatory to realize some tests in
real conditions to confirm the sensor capability. In Table 3 the different test per-
formed are presented.

For the selection of incipient and severe wear, information was obtained from
ANSI [9], and from similar tests [7], as shown in Fig. 13.

Fig. 12 Particle injection
system

Table 3 Test sequence of the experiment

Experiment Material Particle rate

Blank – –

2 Fe 1

3 Cu 1

Sensibility test Cu 1/min; 2/min; 3/min; 6/min; 12/min; 60/min

5 Fe+Cu Incipient wear

6 Fe+Cu Severe wear
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With the information obtained, different masses of each element were considered
for incipient and severe wear, according to the number of particles, oil flow rate,
mean spherical diameter and density of each element.

3 Results and Discussion

First test performed was a blank test, in order to validate the normal operation of the
sensor in the test rig and the connections realized. Results of this experiment are
presented in Fig. 14.

Fig. 13 Particle size distribution and rate of a typical gear failure. Adapted from [7]

Fig. 14 Blank test results
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The result showed no counts, as expected. After that, a test using just one single
particle for each metal considered was performed. The test was performed
according to the following procedure: once the test rig was turned on, one particle
was added through the particle injection system until the particle was detected. In
Fig. 15 the results for the metals considered are presented.

Also in this case, the results showed expected trends. After the basic tests, the
sensibility test was performed. As the test was being conducted, it was observed
that there was some difficulty to introduce particles at a high speed rate, above 30
part/min. For that reason, the latter sensibility test was performed at the very end of
the experiment, with the sensor extracted from the test rig, and the particles were
passed through the sensor by free falling. The results obtained are shown in Fig. 16.

In Table 4 the rate comparison is found.
Main results from the sensibility test were that the sensor responded to a very

wide range of functioning, and as the rate was increased, the sensor started to miss
some counts. This response appeared as a consequence of signal counting algorithm
design, since it was configured to detect faults in real environment of a wind
turbine. If the experiment was performed with a great accumulation of wear par-
ticles in a short period of time, the sensor software configuration detects this
phenomenon as inadequate environmental conditions and therefore rejects these
measurements in order to avoid false-positive wear warnings.

With all the useful information obtained from the other test, a “real conditions”
test was performed. According to the specifications given above, a quantified
amount of both type of particles were introduced in the flow, one corresponding to
incipient wear, and the second one simulating severe wear. Results are shown in
Fig. 17.

Fig. 15 One particle test results, for iron (left) and copper (right)
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Fig. 16 Sensibility test
results

Table 4 Sensibility test rate
comparison

Rate (per min) Theoretical [counts/s] Test [counts/s]

1 0.020 0.017

2 0.035 0.033

3 0.048 0.050

6 0.09 0.10

12 0.14 0.20

60 0.43 1.00

Fig. 17 Real conditions test
results
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These results confirmed the trends expected. In the particle injection system the
particles were introduced manually into the flow, so at any time it was easy to
introduce a large amount of particles in the system, and afterwards activating the
false-positive algorithm of the sensor.

4 Conclusions and Future Works

The main conclusions of the experiment realized are detailed below:

• In this experiment a test rig was developed, to simulate the environment and
characteristics of a lubricant circuit of a wind turbine gearbox, including oil
selection and flow properties.

• A complete set of particles, both ferrous and non-ferrous, were selected and
transformed in order to simulate typical wear particles.

• The sensor studied in this experiment showed good performance, detecting both
types of particles and showing good sensibility test, for the usual range of
particle rates.

• In simulated real conditions, introducing a particle amount corresponding to
severe wear result a greater amount of particles than the amount corresponding
to incipient wear, but the limitations of the particle injection system led to
saturated measurements.

Considering these results, some future works have been proposed:

The first task to do would be the use of this test rig with real oil samples with signs
of wear at different stages (from lowest to highest severity of wear) from real wind
turbines on field. Thus, the sensor could be evaluated with real particles, in terms of
number, shape and sizes.

Another future work, practically mandatory before a general installation in a fleet
of wind turbines, would be to validate the behavior of the sensor studied under real
working conditions, i.e. installed into the lubrication system of a little group of
wind turbine gearboxes, preferably in those ones that have shown interesting wear
trends in off-line analysis.
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Residual Signal Techniques Used for Gear
Fault Detection

Omar D. Mohammed and Matti Rantatalo

Abstract The role of vibration monitoring is to detect any impact on the vibration
signal due to gear degradation and to give an early warning. Early detection allows
a proper scheduled shutdown to prevent failure. Residual signal method can be
applied to improve the extraction of the hidden fault impact. The current paper
presents a comparative study of three different residual techniques. The paper
concludes with a brief discussion on the used methods.

Keywords Gear fault detection � Gear dynamics � Residual signal method

1 Introduction

Gears are widely used in different applications for mechanical power transmission.
Gear failure can occur due to an excessive applied load, insufficient lubrication,
manufacturing errors or installation problems. In gear systems the vibration signal
is dominated by the gear meshing vibration, which is accompanied by some amount
of noise and probable geometric and assembly errors. Additional impacts will be
present in the signal when a localized gear fault occurs. The additional impacts due
to the existence of a fault are masked by the regular signal components. To improve
the extraction of the hidden fault impact, residual signal method can be applied.

Thus, the idea of generating a residual signal is to remove the regular signal
components in order to detect the fault more effectively. Different techniques have
been developed in the past for generating the residual signal. The first technique
was basically proposed by Stewart [1], who developed a number of fault detection
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indicators. Stewart’s enhancement technique of obtaining a residual signal involves
the removal of the gear mesh harmonics from the spectrum. Later on, Wang and
Wong [2] developed a new filtering technique based on the autoregressive model (AR
model). In this technique, the filtered signal which describes the healthy case was
subtracted from the unfiltered signal to produce the AR model residual signal. The
authors presented results showing that the AR model was more efficient and could
detect a fault earlier than the traditional technique of Stewart. More recently, another
method for removing the regular components was applied in Refs. [3–5], which
involves the subtraction of the whole vibration time signal of the healthy case from
that obtained with the existence of a fault. The rest of the signal was then the residual
signal which contained information supposed to be only related to the gear fault.
Finally, a residual signal technique based on the ensemble empirical mode decom-
position (EEMD) method was proposed in Ref. [6]. Using this technique, the residual
signal was obtained by removing some intrinsic mode functions (IMFs) which rep-
resent the meshing frequency harmonics and the other regular signal components.

In the current paper, three different residual techniques were applied to a
vibration signal to compare their behaviour. The analysed vibration response was
obtained by simulation using a gear dynamic model.

2 Gear Modelling

A program was developed using Matlab™ to investigate the time-varying gear mesh
stiffness analytically. A crack case of a 1 mm crack depth has been modelled.
Modelling of gear tooth crack is shown in Fig. 1. The main gear modelling
parameters that were used for stiffness calculations were adopted from Refs. [5, 7, 8],
and can be seen in Table 1.

A dynamic simulation of a 6 DOF model was performed based on the
time-varying gear mesh stiffness value. Figure 2 shows the dynamic model which
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Fig. 1 Modelling of gear tooth crack. a modelling of cracked tooth, b tooth notation
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Table 1 Parameters of gear-pinion set

Parameter Gear Pinion Parameter Gear Pinion

Number of
teeth

30 25 Mass (kg) 0.4439 0.3083

Module
(mm)

2 2 Mass moment of
inertia (kg.m2)

2 × 10−4 0.96 × 10−4

Teeth width
(mm)

20 20 Radial stiffness of the
bearing in x,y
direction (N/m)

6.56 × 108 6.56 × 108

Contact
ratio

1.63 1.63 Radial damping of the
bearing in x,y
direction (N/m)

1.8 × 103 1.8 × 103

Rotational
speed (rpm)

2000 2400 Coefficient of friction 0.06 0.06

Pressure
angle (deg.)

20 20 Total damping
between meshing teeth
(N.s/m)

67 67

Young’s
modulus, E
(N/mm2)

2 × 105 2 × 105 Poisson’s ratio 0.3 0.3
friction

Pinion, θp,Tp, wp

Ip,mp

Ig,mg

Gear, θg,-Tg, wg

xp

yp

xg

yg

Kxg

Kyg

CygCxg

Km

Cm

Cxp

Kyp

Kxp

Cyp

Fig. 2 Dynamic model of a one-stage gear system with 6 DOF
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was used in the current research study and which was adopted in Refs. [5, 7, 9, 10].
A Matlab™ computer simulation using the ODE45 function was used for modelling
the equations of motion. The dynamic simulation was performed for the healthy
case, after which the simulation was repeated to obtain the dynamic behaviour for
the crack case.

3 Residual Signal Method

Early fault diagnosis is not always possible by only checking the trend of classical
statistical features. For some systems, these statistical features are only able to react
after a relatively large deviation of the trend.

Therefore, model-based methods have been developed to improve the fault
diagnosis and to give a deeper insight into the system behaviour. These methods
involve the generation of the residuals of the output variables indicating the dif-
ference between the healthy and the faulty cases [11, 12].

The model-based process can be divided into three steps; residual generation,
residual evaluation and fault diagnosis [13]. In the current paper, three different
techniques were applied for residual signal generation. The three techniques are
namely; subtraction in the time domain, applying the comb filter in the frequency
domain, and the auto-regressive AR model. A description of the three techniques
can be found in Refs. [1–5]. These three techniques were applied using healthy and
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faulty signals. The faulty signal was obtained from dynamic simulation for the case
of a 1 mm crack depth, as well as the healthy signal, see Fig. 3. The results of the
three applied techniques can be seen in Fig. 4.

4 Results and Discussion

The three residual signals shown in Fig. 4 are obtained for the same fault case.
There are some differences which can be recognized. In the first technique which
involves signal subtraction in the time domain, the peak indicating the impact of the
crack is higher than those obtained with the two other techniques. This is because of
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the subtraction of two coincident signals representing the healthy and faulty signals.
Moreover, because of the subtraction of the two random contents embedded in the
healthy and faulty signals, the amount of the noise left in the residual signal is more
than those obtained with the two other techniques, see Fig. 4a. To perform signal
subtraction in the time domain, both the healthy and the faulty signals must start at
exactly the same point of the same tooth to ensure the synchronisation of the time
signals. This technique can be implemented in the time domain with simulated
signals.

The second technique, involves removing the gear mesh frequencies using comb
filter, has been applied, see Fig. 4b. The amount of the noise left in residual signal is
less. The peak indicating the impact of the crack is obvious, but lower than that
obtained from the first technique.

In Fig. 4c the result of the AR model is plotted. Based on the AR model used, the
residual signal shows a relatively wider peak indicating the impact of the crack. AR
technique is flexible in terms of different orders can be chosen for the prediction
filter. Filter order should be carefully chosen in order to obtain a good prediction.
High order filters can result in instability in prediction. In the current work the Burg
method with the order 200 has been adopted.

5 Conclusions

The three residual techniques can be applied for residual signal generation. The first
technique can be implemented in the time domain, but it requires a synchronisation
of the two subtracted time signals. The amount of the noise with this technique is
more than those obtained with the two other techniques. The two other techniques
namely; using the comb filter in the frequency domain and the AR model, can be
applied without the need of synchronised time signals.
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Prognostics and Structural Health
Assessment Using Uncertain Measured
Response Information

Achintya Haldar and Abdullah Al-Hussein

Abstract The authors and their team members have been working on developing
implementable techniques for the objective rapid assessment of structural health
(RASH) just after major natural and man-made events or in the context of main-
tenance over a period of time. They used the system-identification techniques by
eliminating some of its weaknesses. For easier implementation, the excitation
information was completely ignored. To locate defects and their severity at the local
element level, the structures were represented by finite elements. By tracking the
changes in the stiffness parameters of each element, the location(s) and severity of
defects are assessed. The team conducted extensive analytical and laboratory
investigations to verify all the methods. They had to overcome several challenges
related to the conceptual and analytical development, data processing, and the
presence of uncertainty in the every phase. To consider nonlinearity in the system
identification process, a method known as Generalized Iterative Least
Squares-Extended Kalman Filter-Unknown Input (GLIS-EKF-UI), was developed
earlier. Since it failed to identify structures in some cases, the authors recently
proposed a new method denoted as Unscented Kalman Filter—Unknown Input-
Weighted Global Iterations (UKF-UI-WGI). With the help of informative exam-
ples, the superiority of UKF-UI-WGI over GLIS-EKF-UI is documented in this
paper. Since at the beginning of an inspection, the defects and their severity are
expected to be unknown, the authors recommend UKF-UI-WGI for the rapid
assessment of health of infrastructures.
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1 Introduction

ICRESH-ARMS 2015 provides a unique opportunity to discuss all the issues
related to Prognostic and Structural Health Assessment. In fact, the first two issues
of Life Cycle Reliability and Safety Engineering published by the Society for
Reliability and Safety (SRESA) in 2015 are dedicated to the related topics. The
related areas have become one of the most active research topics and have attracted
multi-disciplinary interest. Extending life of infrastructures instead of replacing
them has become a major challenge to engineers [9]. Structural health assessment
just after a natural event or a man-made event has also become a part of inspection
protocol. Non-destructive evaluation or inspection techniques of various degrees of
sophistication are developed to help the assessment process. Smart sensing tech-
nologies, high quality data acquisition systems, mitigation techniques for noise
contamination, digital communications, sophisticated computational techniques,
etc., have been developed. This general area is commonly known as structural
health assessment (SHA) or structural health monitoring (SHM).

Any automated monitoring practice that seeks to assess the health of a structure
can be considered as SHM [7]. It implies that the health of a structure can be
monitored in an automated manner by tracking the initiation or growth of a defect
already present in the system. Since visual inspections may not be adequate for this
purpose, sensors and the interpretation of their readings are essential for SHM. In
spite of its recent impressive developments, it is not generally used in real world
applications. Continuous accurate measurements of any output is a major challenge
considering power sources necessary for operation, data transfer and storage, failure
or sensors getting out of calibration, etc. The users generally assume that the
technology is not fully developed for practical applications.

Objective rapid assessment of structural health (RASH) is essential just after a
visual inspection or after a major natural event like strong earthquake or high wind
or man-made event like blast or explosion, or in the context of maintenance. There
is a potential for significant loss of economic activities in a region without such
assessment. There are significant developments in the related areas. These areas are
the subject of this paper.

2 Rapid Assessment of Structural Health

All defects are not equally important in maintaining the overall structural health.
Thus, some of the major objectives of RASH are to locate defects at the local
element level, assess their severity, and take remedial actions when necessary. If
defects are repaired, it is important to know if they are repaired properly and all
major defects are identified. To achieve these objectives, the process of listening to
audible variations of responses due to tapping of structural surface has been used
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over centuries. Visual inspections at regular intervals are also suggested in many
design codes. They can be broadly categorised as non-model based non-destructive
inspection (NDI) techniques. If location of a defect is known, the profession now
have technological sophistication to inspect it using instrument-based Penetrate
Testing, Magnetic Particle Testing, Radiographic Testing, Ultrasonic Testing, Eddy
Current Testing, Acoustic Emission Testing, Thermal Infrared Testing, etc.

For most large civil infrastructures, the location, number, and severity of defects
may not be known in advanced. Sometimes, defects may be hidden behind obstruc-
tions like fire-proofingmaterials. Thus, instrument-based non-model approaches may
not satisfied our needs. In the recent past, a consensus started developing about the use
of measured time domain dynamic responses at the global level to assess the current
structural health at the local element level. By appropriately tracking the signature
embedded in the measurements, the structural health can be assessed.

The research team at the University of Arizona has been working on developing
testing protocols for RASH for over two decades. After conducting extensive lit-
erature review, the team concluded that to locate defects, number, and their severity,
it will be helpful if structures are represented by finite elements and their dynamic
responses are measured in time domain representing their current state. By com-
paring the identified dynamic properties, essentially the stiffness properties of the
elements, with the expected values, or reference values obtained from the design
drawings, or changes from the previous values if inspections are carried out peri-
odically, or variations from one member to another with similar sectional proper-
ties, the location(s), number, and severity of defects can be established at the
element level. The concept is based on the axiom that the presence of defects will
alter the dynamic responses and by tracking the signature embedded in the
responses, the structural health can be assessed rapidly.

3 System Identification-Based Rash

By measuring dynamic excitation and response information, the stiffness parameter
of all the elements in the finite element representation can be evaluated using an
inverse mathematical concept commonly known as the system identification
(SI) technique. However, Maybeck [21] correctly pointed out that deterministic
mathematical models and control theories do not appropriately represent the
behavior of a physical system and thus the SI-based method may not be appropriate.
The research team successfully demonstrated that SI-based concept can be used for
RASH if the different sources of uncertainty are accounted for appropriately and the
system parameters are evaluated in an optimal sense using proper data processing
algorithm.
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3.1 System Identification with Unknown Input

One of the basic requirements for RASH is the simplicity in the inspection process.
It is known to the profession that measuring dynamic excitation forces in the field
condition can be very error prone due to inherent noises in the sensors and con-
tamination due to multiple sources of excitation which is beyond the control of the
inspector. It will be very desirable if a system can be identified using only measured
response information completely ignoring the excitation information. The team
developed several such techniques, commonly known as Iterative Least Squares
with Unknown Input (ILS-UI) [24], Modified ILS-UI or MILS-UI [19], and
Generalized ILS-UI or GILS-UI [18]. Mathematical concepts used to develop them
cannot be discussed here due to lack of space but widely available in the literature.
One major advantage of these procedures is that they are not very sensitive to the
noises present in the response time histories.

3.2 System Identification with Unknown Input and Limited
Response Information—Kalman Filter

One major deficiency of the methods discussed in the previous section is that they
require response time histories at all DDOFs. To assess health of real infrastruc-
tures, it may be practically impossible and very expensive to install sensors at all
DDOFs. In most cases, only a small part of the structure can be instrumented. When
available responses are limited, generally Kalman filter (KF)-based concept is used.
Kalman filter [15, 16] is a set of mathematical equations that provides efficient
computational means in a recursive manner to estimate the state of a process, in a
way that minimizes the mean of squared error, and calculates the best estimate of
states from the noisy sensor responses [12, 26]. It is a time domain filter and is very
powerful in several aspects. One of its limitations is that it is applicable for linear
systems. If KF is used for RASH, the identification process becomes nonlinear.
This is due to the fact that the identification of the unknown parameters jointly with
dynamic responses is a nonlinear identification problem even if the structural
system is linear. For nonlinear SI, extended Kalman filter (EKF) will be an
attractive choice. It extends the linear Kalman filter to handle nonlinear systems
based on a first-order linearization of the nonlinear statistical distributions of the
variables. For RASH, EKF is an important requirement.

To implement EKF for RASH, the excitation force and the initial state vector
must be known. The first requirement will defeat the purpose of SHA without input
or ILS-UI. The second requirement is the final product of any inspection strategy
and will not be available at the initiation of the inspection process. These two
implementation requirements essentially limit the use of the basic KF concept for
RASH.
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Since EKF is very powerful, the team [25] decided to generate the required
information to implement it. Suppose only a small part of the structure is instru-
mented. For the ease of discussion, it will be denoted as substructure. It is assumed
that the responses at all DDOFs of the substructure will be measured. Then, the
ILS-UI concept can be used to identify the stiffness parameter of all the elements in
the substructure. All the beams and columns in the whole structure are expected to
have similar cross sectional properties. Assuming the substructure contains a beam
and a column element, all the elements in the whole structure can be assigned
respective properties and the initial state vector of the structure will now be
available. One very attractive attribute of ILS-UI is that it identifies the unknown
excitation time history. Thus, with the introduction of the substructure concept, the
two implementation requirements of EKF can be satisfied and the health of large
real structural systems can be assessed using limited noise-contaminated responses
without using any information on excitation.

The concept just discussed is known as Generalized Iterative Least Squares—
Extended Kalman Filter—Unknown Input or GILS-EKF-UI. It can be implemented
in two stages. In Stage 1, based on the available response information, a sub-
structure can be identified. Using ILS-UI on the substructure, the unknown exci-
tation time history and the stiffness parameter of all the elements in the substructure
can be identified. The information will help to develop the initial state vector for the
whole structure. Then in Stage 2, the EKF concept will be used to identify the
stiffness parameter of all the elements in the structure. In this way, the number,
location, and severity of defects can be assessed very accurately. The mathematical
theories behind the two stages are discussed very briefly below.

4 Mathematics of Gils-Ekf-Ui

4.1 Stage 1—ILS-UI

The governing differential equation of motion using Rayleigh damping for the
substructure can be expressed as:

Msub €XsubðtÞþ ðaMsub þ bKsubÞ _XsubðtÞþKsubXsubðtÞ¼fsubðtÞ ð1Þ

whereMsub is the global mass matrix, generally considered to be known; Ksub is the
global stiffness matrix; €XsubðtÞ; _XsubðtÞ, and XsubðtÞ are the vectors containing the
acceleration, velocity, and displacement, respectively, at time t; fsub(t) is the input
excitation vector at time t; and α and β are the mass and stiffness proportional
Rayleigh damping coefficients, respectively. The subscript ‘sub’ is used to denote
substructure.
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The global mass and stiffness matrix can be formulated using standard proce-
dure. The stiffness parameter for the ith element, ki is defined as EiIi/Li, where Li, Ii
and Ei are the length, moment of inertia, and modulus of elasticity, respectively.
The P vector contains all the unknown parameters and can be defined as:

P ¼ k1 k2 � � � knesub bk1 bk2 � � � bknesub a½ �T ð2Þ

Using the least squares concept, it can be estimated as [24]:

P ¼ ATA
� ��1

ATF ð3Þ

where A matrix contains the measured displacement and velocity responses at time
point t; F vector contains the unknown input excitations and the inertia forces at
time point t; and the responses are measured at equal interval of Δt for q time points.
Since the input excitation fsub is unknown, the force vector F in Eq. (3) is partially
known and the iteration process cannot be initiated. To start the iteration process,
the excitation information can be initially assumed to be zero for all the time points
as discussed in [18]. The iteration process is continued until the excitation time
history converges at all time points, considering two successive iterations, with a
predetermined tolerance level. A tolerance level is set to be 10−8 in this study.

It is important to note that only acceleration time histories will be measured
during an inspection. However, velocity and displacement time histories are nec-
essary to implement the concept. The acceleration time histories can be succes-
sively integrated to generate the velocity and displacement time histories as
discussed in more details in [8, 10, 22].

4.2 Stage 2—Implementation of EKF Concept

To implement the EKF concept, the differential equation in state-space form and the
discrete time measurements can be expressed as:

_ZðtÞ ¼ f ½ZðtÞ; t� ð4Þ

YðkÞ ¼ h ½ZðkÞ; t� þVðkÞ ð5Þ

where ZðtÞ is the state vector at time t; _ZðtÞ is the time derivative of the state vector;
f is a nonlinear function of the state; YðkÞ is the measurement vector; h is the
function that relates the state to the measurement; VðkÞ is a zero-mean, uncorre-
lated, white noise process with variance R(k), and represented by
E½VðkÞ VTðjÞ� ¼ RðkÞdðk � jÞ, where dðk � jÞ is the Kronecker delta function; that
is dðk � jÞ = 1 if k = j, and dðk � jÞ = 0 if k ≠ j.
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For a structure represented by N number of degrees of freedom and L number of
elements, the vectors ZðtÞ and _ZðtÞ are of size (2 N + L) × 1, L is the total number of
unknown stiffness parameters. They are formed in the following way:

ZðtÞ ¼
Z1ðtÞ
Z2ðtÞ
Z3ðtÞ

2
4

3
5 ¼

XðtÞ
_XðtÞ
~K

2
4

3
5 ð6Þ

_ZðtÞ ¼
_XðtÞ
€XðtÞ
0

2
4

3
5 ¼

_XðtÞ
�M�1½KXðtÞþ ðaMþ bKÞ _XðtÞ � fðtÞ�

0

2
4

3
5 ð7Þ

where ~K ¼ k1 k2 � � � kne½ �T is column vector of size (L × 1).
For the identification of the whole structure, acceleration responses will be

measured at a fewer (B) number of DDOFs. The accelerations will be integrated
twice to obtain the velocities and displacements, as described in [22]. The vector
YðkÞ will have size (2B × 1) and will contain information on observed displace-
ments and velocities.

Therefore, the discrete time measurement model is linear and it can be expressed
at any discrete time k as:

YðkÞ ¼ H � ZðkÞþVðkÞ ð8Þ

where matrix H is the measurement matrix of size 2B × (2 N + L).
The filtering process in EKF can be started after initialization of state vector

Zð0j0Þ, which can be assumed to be Gaussian random variable with state mean
Ẑð0j0Þ and error covariance of Pð0j0Þ i.e., Zð0j0Þ�N½Ẑð0Þ;Pð0Þ�.

The initial error covariance matrix Pð0j0Þ contains information on the errors in
the observed displacement and velocity responses, and in the initial values assigned
to the unknown stiffness parameters of the whole structure. It is generally assumed
to be diagonal and can be expressed as:

Pð0j0Þ ¼ Pxð0j0Þ 0
0 Psð0j0Þ

� �
ð9Þ

where Pxð0j0Þ is a (2 N × 2 N) diagonal matrix, contains initial error covariance for
observed responses; Psð0j0Þ is a (L × L) diagonal matrix, contains initial error
covariance for matrix ~K. In the present study, a value of 1.0 is considered for the
diagonal entries of Pxð0j0Þ. Jazwinski [12] and Al-Hussein and Haldar [2, 4]
pointed out that the diagonal entries for Psð0j0Þ should be large positive numbers to
accelerate the convergence of the local iteration process. A value of 1000 is used in
this study.

The basic filtering process in EKF is the same Kalman filter (KF), i.e. propa-
gation of the state mean and covariance from time k to one step forward in time
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k + 1, and then updating them when the measurement at time k + 1 becomes
available. Mathematically the steps can be expressed as:

(i) Prediction of state mean Ẑðkþ 1jkÞ and its error covariance matrix P̂ðkþ 1jkÞ
for the next time increment k + 1 as:

Ẑðkþ 1jkÞ ¼ ẐðkjkÞþ
Zðkþ 1ÞDt

kDt

_̂ZðtjkÞdt ð10Þ

Pðkþ 1jkÞ ¼ Uðkþ 1jkÞPðkjkÞUTðkþ 1jkÞ ð11Þ

(ii) Using measurement Yðkþ 1Þ and Kalman gain Kðkþ 1Þ available at time
k + 1, updated state mean Ẑðkþ 1jkþ 1Þ and error covariance matrix
P̂ðkþ 1jkþ 1Þ can be obtained as:

Ẑðkþ 1jkþ 1Þ ¼ Ẑðkþ 1jkÞþKðkþ 1Þ½Yðkþ 1Þ �H � Ẑðkþ 1jkÞ� ð12Þ

Pðkþ 1jkþ 1Þ ¼ ½I�Kðkþ 1Þ H� Pðkþ 1jkÞ ½I�Kðkþ 1Þ H�T
þKðkþ 1Þ Rðkþ 1Þ KTðkþ 1Þ ð13Þ

where

Kðkþ 1Þ ¼ Pðkþ 1jkÞHT ½HPðkþ 1jkÞHT þRðkþ 1Þ��1 ð14Þ

where,Uðkþ 1jkÞ is the state transfer matrix from time k to k + 1; Kðkþ 1Þ and
R(k + 1) is the Kalman gain matrix and diagonal noise covariance matrix,
respectively, at time k + 1. Detail procedure for calculation of U, K, and M can
be found in [17]. The symbol � stands for matrix multiplication. In the present
study, diagonal entries in the noise covariance matrix RðkÞ are considered to be
10−4.

5 UKF Based SI Concept

As will be discussed later, GILS-EKF-UI was successfully verified by conducting
extensive analytical and laboratory investigations. In the laboratory investigations,
the transverse acceleration time-histories were measured by capacitance
accelerometers and angular rotation by autocollimators [20, 23]. To avoid con-
tamination by other sources of excitations beyond the control of the inspector,
responses were collected at a high sampling rate, 4000 cycles per second, for a
fraction of a second. More recently it was observed that GILS-EKF-UI failed to
converge or identify a structure when the sampling rate is much lower than what
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was used for the laboratory investigation. Upon further investigations, the authors
concluded that the major reason for the non-convergence is the presence of higher
level of nonlinearity. GILS-EKF-UI is supposed to identify a system in the presence
of some degree of nonlinearity but the threshold is not known at this time. The
first-order linearity used in EKF may not be sufficient to address more severe level
of nonlinearities in the responses.

The authors [1] concluded that the unscented Kalman filter (UKF) concept can be
used for highly nonlinear system identification problems. The UKF concept was
developed by Julier et al. [14] to address the shortcoming of EKF. The UKF concept
was developed based on unscented transformation (UT) with the underlying
assumption that approximating a Gaussian distribution is easier than approximating
a nonlinear transformation. UKF uses deterministic sampling to approximate the
state distribution as a Gaussian Random Variable. The sigma points are chosen to
capture the true mean and covariance of state distribution. They are propagated
through the nonlinear system. UKF determines the mean and covariance accurately
to the second order, while the EKF is only able to obtain first order accuracy [13].

The main difference between the EKF and UKF procedures is in the prediction
step, i.e. prediction of the state vector and its error covariance using mathematical
model of the system. They are the same in the updating step. In the prediction step
of EKF, Jacobian matrices are used to linearize the nonlinear equations so that the
linear KF can be used. However, in the prediction step of UKF, a number of state
vectors or so-called sigma points is generated and then propagated through the
nonlinear equations to get more accurate estimate. Thus, to implement the UKF
procedure, instead of using Eqs. (10) and (11) of the EKF procedure, the following
equations are necessary.

5.1 Sigma Points Calculation Step

At the current state vector ẐðkjkÞ, sets of 2n + 1 symmetric sigma points are
generated so that they have the same mean and covariance of ẐðkjkÞ as following:

v0ðkjkÞ ¼ ẐðkjkÞ

viðkjkÞ ¼ ẐðkjkÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ nÞ

p
Ccol;i i ¼ 1; . . .; n ð15Þ

viþ nðkjkÞ ¼ ẐðkjkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ nÞ

p
Ccol;i i ¼ 1; . . .; n

where

k ¼ u2ðnþ cÞ � n ð16Þ
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in which C is a square root of the covariance matrix such that PðkÞ ¼ C � CT ; Ccol;i

is the ith column of C’s matrix; n is the dimension of the state vector (n = 2 N + L);
The parameter φ determines the spread of the sigma points around the mean.
Typical range value for φ is (0 ≤ φ ≤ 1). The parameter γ is a tertiary scaling factor
and is usually set equal to 0. In fact, parameter γ can be used to reduce the higher
order errors of the mean and the covariance approximations. Note that sigma points
are a set of vectors whose components are real numbers.

5.2 Prediction Step

The sigma points are propagated through the nonlinear dynamic equation as:

viðkþ 1jkÞ ¼ viðkjkÞþ
Zðkþ 1ÞDt

kDt

f ½ZðtÞ; t�dt i ¼ 1; . . .; 2n ð17Þ

The predicted state vector Ẑðkþ 1jkÞ can be shown to be:

Ẑðkþ 1jkÞ ¼
X2n
i¼0

Wi viðkþ 1jkÞ ð18Þ

and its predicted error covariance matrix Pðkþ 1jkÞ can be expressed as:

Pðkþ 1jkÞ ¼
X2n
i¼0

Wi viðkþ 1jkÞ � Ẑðkþ 1jkÞ� �
viðkþ 1jkÞ � Ẑðkþ 1jkÞ� �T

ð1� u2 þwÞ v0ðkþ 1jkÞ � Ẑðkþ 1jkÞ� �
v0ðkþ 1jkÞ � Ẑðkþ 1jkÞ� �T

ð19Þ

where ψ is the secondary scaling factor used to emphasize the weighting on the
zero’s sigma point for the covariance calculation. The value of ψ is greater than 0
and the best value is 2 for Gaussian distribution. The weight factorWi can be shown
to be:

W0 ¼ k
kþ n

i ¼ 0 ð20Þ

Wi ¼ 1
2ðkþ nÞ i ¼ 1; . . .; 2n ð21Þ
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It is important to point out here that in this study the measurement model is
linear and linear KF is used to predict the measurement vector and its error
covariance matrix.

5.3 Improvements in UKF Algorithm

When the EKF concept was used in the context of ILS-UI, i.e. the two-stage
concept used in GILS-EKF-UI, it failed to converge in some cases. The authors
observed that the use of UKF to identify large structural systems were very limited
in the literature. Most of the reported works were developed to identify shear-type
structures with very few DDOFs using long duration responses in one global
iteration. Suppose that the responses are available for q time points. The iteration
processes between successive time points in the UKF procedure are termed as local
iterations and the iteration processes for all q time points are termed as a global
iteration. The three steps of the UKF (sigma point, prediction and updating oper-
ations) are carried out for all q time points.

To obtain optimal, stable, and convergent solutions of the SI process, the authors
proposed to use several global iterations using responses collected for a fraction of
second. They noted that the error covariance matrix of the stiffness parameters
reduced significantly during the successive global iterations and the identified
stiffness values sometimes converge to the wrong values particularly when the
initial values are far from the expected values representing defective states. This
prompted the authors [3, 4] to introduce a weighted global iteration factor, w, to the
error covariance matrix after the first global iteration so that the algorithm can detect
the stiffness parameters with incorrect initial value but converges to the correct
solution. In the second global iteration, the initial values of the stiffness parameters
are the same as that of obtained at the completion of first global iteration. A weight
factor w is introduced in the stiffness covariance matrix obtained at the completion
of the first global iteration to amplify it and then used it as the initial stiffness
covariance in the second global iteration. The weighted global iteration concept can
be mathematically presented as:

Ẑ
ð2Þð0j0Þ ¼

X̂
ð2Þð0j0Þ
_̂X
ð2Þ
ð0j0Þ

~K
ð2Þð0j0Þ

2
664

3
775 ¼

X̂
ð1Þð0j0Þ
_̂X
ð1Þ
ð0j0Þ

~K
ð1ÞðqjqÞ

2
664

3
775 ð22Þ

Pð2Þð0j0Þ ¼ Pð1Þ
x ð0j0Þ 0
0 wPð1Þ

s ðqjqÞ
� �

ð23Þ

The same processes of local iterations are carried out for all the time points and a
new set of state vector and error covariance matrix are obtained at the completion of
second global iteration. The weighted global iteration processes are continued until
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the estimated error in the identified stiffness parameters at the end of two consec-
utive global iterations becomes smaller than a predetermined convergence criterion
(εs).

~K
ðiÞðqjqÞ � ~K

ði�1ÞðqjqÞ
			 			� es � ~K

ði�1ÞðqjqÞ
			 			 ð24Þ

where i represents the ith global iteration. εs is considered to be 1 % in this study.
Although the weighted global iterations play an important role in the later stage

to assure convergence; the global iteration procedure does not guarantee the con-
vergence of the iteration scheme. If they diverge, the best estimated values based on
minimum objective function �h are considered, as discussed in [4, 11].

The procedure developed this way will be denoted as Unscented Kalman Filter
—Unknown Input- Weighted Global Iterations or UKF-UI-WGI. It will be
implemented in two stages in the same way as that of GILS-EKF-UI. It will not
require any additional resources but it will improve the defect detection capability
in a significant way, as will be elaborated further with the help of several infor-
mative examples.

6 Examples

It is hoped that the sequential development processes used by the research team to
develop several RASHs for infrastructures are informative. However, during each
phase of the development, the reviewers of technical papers commented that the
procedures were reasonable from the theoretical point of view but could not be used
for the health assessment of real infrastructures. This prompted the research team to
initiate several laboratory investigations. One of them is discussed briefly below.

6.1 Example 1

6.1.1 Description of the Frame and Dynamic Testing

A two-dimensional one-bay three-story steel frame, shown pictorially in Fig. 1, was
initially tested to verify the EKF procedure [20]. To fit the testing facilities, the
frame was scaled to one-third of its actual dimensions. The scaled frame has a bay
width of 3.05 m and story height of 1.22 m. The frame consists of nine members;
six columns and three beams. Steel section of size S4 × 7.7 was used for all the
beams and columns in order to minimize the effects of fabrication defects and
differences in material properties. The frame was reconfigurable, i.e. bolted joints
were used so that the defect-free and defective members could be interchanged to
study defect detection capability. Several types of defects, very severe to minor in
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nature, were introduced. Some of the defect scenarios considered were removing a
member completely, loss of area of a member over a finite length, multiple cracks in
a member, one crack in a member, loosening bolts at joints, and multiple combi-
nations of these defects. The same response information was used to verify both
GILS-EKF-UI and UKF-UI-WGI in the following sections.

The frame consists of 9 members; 3 beams and 6 columns. The frame is rep-
resented by the finite element (FE) with 9 elements and 8 nodes. Each node has
three DDOFs; two translational and one rotational. The support condition at the
bases is considered to be fixed. Therefore, the total number of DDOFs for the frame
is 18. The actual stiffness parameters ki, defined in terms of (EiIi/Li), for the beam
and column are estimated to be 96500 and 241250 N-m, respectively. The first two
natural frequencies of the defect-free frame were estimated experimentally to be
f1 = 9.76 Hz and f2 = 34.12 Hz. Then, assuming the same damping for the first two
significant frequencies, a procedure suggested in [6], is used to calculate the
Rayleigh damping coefficients α and β. They are found to be 1.1453681 and
0.0000871, respectively. The frame is excited by a sinusoidal load f(t) = 1.4 sin
(58.23t) N applied at node 1, as shown in Fig. 2. Before conducting any test,
numerous analytical verifications were carried under various testing conditions. For
the analytical verifications, the responses of the frame in terms of displacement,
velocity and acceleration time histories were numerically generated using a com-
mercial software ANSYS (ver. 15.0) [5] at all 9 DDOFs (responses at nodes 1, 2
and 3) of the substructure for all cases. The frame is identified using responses from
0.02 to 0.32 s with time increment of 0.00025 s providing a total of 1201 time
points. For the laboratory investigation, the translational and rotational acceleration

Fig. 1 The pictorial view of
the frame

Prognostics and Structural Health Assessment … 177



time histories were measured. They were successively integrated to generate
velocity and displacement time histories as suggested in [8, 22].

6.1.2 Identification of the Defect-Free State of the Frame

To implement both the GILS-EKF-UI and UKF-UI-WGI methods, the substructure
used is shown in double lines in Fig. 2. The stiffness parameters of the two elements
in the substructure using ILS-UI in Stage 1 are identified and the results are
summarized in Table 1. The results indicate that the substructure is identified very
accurately. As mentioned earlier, ILS-UI also identifies the unknown excitation
force. Both the actual and identified excitation time histories are shown in Fig. 3.
The figure clearly indicates the unknown excitation time history is also identified
very accurately.

The errors in measurement noises (R) in Eq. 5 are one of the important factors
that influence the identification of the stiffness parameter. Two different values of
R (10−3 and 10−4) are considered in this study. Using the information from Stage 1,
the stiffness parameter of all the nine members of the whole frame is identified
using the GILS-EKF-UI and UKF-UI-WGI methods. The results are summarized in
Table 2. As commonly used in the literature, the errors are defined as the percentage
deviation of identified values, representing the current state, with respect to the
initial theoretical values. The maximum acceptable error in the identification is

f(t)

5

3

1

6

4

2

7 8

1

2

3

4

6

8

5

7

9

1.
22

 m
1.

22
 m

1.
22

 m

3.05 m

SubstructureFig. 2 Finite element
representation of the test
frame

Table 1 Stiffness parameter
(EI/L) identification for the
substructure—defect-free
frame

Member Nominal (N-m) Identified Change (%)

(1) (2) (3) (4)

k1 96500 96502 0.002

k4 241250 241255 0.002
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about 10 % reported in the literature [2]. The results in Table 2 clearly indicate that
both methods identified the stiffness parameters of all the members reasonably well
for both measurement errors. In an overall sense, UKF-UI-WGI identified the frame
more accurately than GILS-EKF-UI. Since the differences in identified stiffness
parameters are relatively small, the health of the frame can be considered as
defect-free.

6.1.3 Health Assessment of Defective Frame

After successfully identifying the defect-free frame, several defective states of the
frame were considered, as discussed earlier. Only two defect scenarios are pre-
sented in the following sections.
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Fig. 3 Actual and identified
force time histories using
ILS-UI for defect-free case

Table 2 Stiffness parameter (EI/L) identification for defect-free frame

Member Nominal (N-m) Error in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 0.002 −0.069 0.000 −0.030

k2 96500 0.062 0.091 0.064 0.054

k3 96500 0.047 0.096 −0.102 −0.065

k4 241250 −0.063 −0.063 −0.004 −0.007

k5 241250 −0.237 −0.073 −0.063 −0.001

k6 241250 −0.096 0.013 −0.003 0.009

k7 241250 −0.338 −0.104 −0.011 −0.015

k8 241250 −0.032 −0.222 −0.011 −0.040

k9 241250 −0.105 −0.206 −0.016 −0.039

Prognostics and Structural Health Assessment … 179



Defect 1
In defect 1, member 3, the beam at the first story level, is considered to have one
defect. The cross-sectional area of member 3 is considered to be corroded over a
length of 30.5 cm, located at a distance of 30.5 cm from node 5. It is pictorially
shown in Fig. 4. The defect is shown in Fig. 5a in the finite element representation.

The web and flange thicknesses are considered to be reduced by 20 % of their
original values. The loss of thicknesses will result in the reduction of the
cross-sectional area by 19.13 % and the moment of inertia by 17.02 % from the
defect-free case. The identified stiffness parameters for all nine members using the
GILS-EKF-UI and UKF-UI-WGI methods are summarized in Table 3. In all cases,
the maximum changes occur in member 3, indicating it contains the defect. The
results also indicate that both methods can be used for RASH of the frame.
Defect 2
In defect case 2, member 3 is considered to have two defects. The first defect is the
same as that in defect case 1. For the second defect, the cross-sectional area is also

Fig. 4 Defect in member 3

30.5cm3.05m

5 6

30.5cm

30.5cm

30.5cm
3

3.05m

5 6

30.5cm

30.5cm
3

(a)

(b)

Fig. 5 Defects in the frame
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considered to be corroded over a length of 30.5 cm but it is located at a distance of
30.5 cm from node 6, as shown in Fig. 5b. The identified stiffness parameters for all
members using the GILS-EKF-UI and UKF-UI-WGI methods are summarized in
Table 4. In all cases, the maximum changes occur in member 3, indicating it
contains the defect. The reduction in the stiffness parameter of member 3 for defect
2 is more than that of defect case 1. It is clearly indicated that the defect in case 2 is
more severe than that in case 1. The results also indicate that both methods can be
used for RASH of the frame.

Table 3 Stiffness parameter (EI/L) identification for defect 1

Member Nominal (N-m) Change in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 −0.008 −0.107 0.048 0.037

k2 96500 −0.023 0.115 −0.481 −0.314

k3 96500 −2.551 −2.609 −2.371 −2.472
k4 241250 −0.057 −0.009 −0.015 0.000

k5 241250 −0.366 −0.148 −0.040 −0.024

k6 241250 −0.211 −0.158 −0.091 −0.104

k7 241250 −0.398 −0.099 −0.062 −0.058

k8 241250 −0.239 −0.402 −0.192 −0.229

k9 241250 −0.321 −0.411 −0.200 −0.237

Table 4 Stiffness parameter (EI/L) identification for defect 2

Member Nominal (N-m) Change in Identification (%)

R = 10−4 R = 10−3

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 96500 0.131 0.028 0.061 0.022

k2 96500 −0.347 −0.159 −0.199 −0.141

k3 96500 −4.997 −5.088 −5.189 −5.055
k4 241250 −0.071 −0.025 −0.091 0.004

k5 241250 −0.222 −0.020 −0.329 0.016

k6 241250 −0.223 −0.193 −0.069 −0.055

k7 241250 −0.467 −0.176 −0.223 −0.192

k8 241250 −0.440 −0.594 −0.421 −0.653

k9 241250 −0.508 −0.599 −0.449 −0.661
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6.2 Example 2

In Example 1, both the GILS-EKF-UI and UKF-UI-WGI methods appear to
identify the defect spot and the severity accurately. To demonstrate the superiority
of UKF-UI-WGI over GILS-EKF-UI, this second example is considered.

6.2.1 Description of the Frame

A two-dimensional frame with a bay width of 9.14 m and story height of 3.66 m, as
shown in Fig. 6, is considered. The frame has a total of 25 members; 10 beams and
15 columns. The beams and columns are made of W21 × 68 and W14 × 61 sec-
tions, respectively, of Grade 50 steel. The frame is modeled by 18 nodes in the finite
element (FE) representation. Each node has three dynamic degrees of freedom
(DDOFs); two translational and one rotational. The support condition at the base
(nodes 16, 17, and 18) of the frame is considered to be fixed. The total number of
DDOFs for the frame is 45. The actual theoretical stiffness parameter values ki
evaluated in terms of (EiIi/Li) are calculated to be 13476 kN-m and 14553 kN-m for
a typical beam and column, respectively. First two natural frequencies of the frame
are estimated to be f1 = 3.598 Hz and f2 = 11.231 Hz, respectively. Following the
procedure described in [6], Rayleigh damping coefficient α and β are calculated to
be 1.7122088 and 0.00107326, respectively, for an equivalent modal damping of
5 % (commonly used in model codes in the US) of the critical for the first two
modes.

The frame is excited simultaneously by two sinusoidal loadings. The first
loading, f1(t) = 3 sin(18t) kN is applied horizontally at node 1, and the second
loading, f2(t) = 2 sin(22t) kN is applied horizontally at node 13, as shown in Fig. 6.
For this example, the information on responses are numerically generated using a
commercially available software ANSYS (ver. 15.0) [5]. The responses are
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obtained at 0.0001 s time interval. After the responses are simulated, the infor-
mation on input excitations is completely ignored. Responses between 0.02 and
0.32 s providing 3001 time points are used in the subsequent health assessment
process.

6.2.2 Identification of the State of the Frame

Two substructures are considered to assess the health of this large frame. They are
shown in Fig. 6 with double lines. Using responses at 18 DDOFs in the sub-
structures, the stiffness and damping parameters and the time history of unknown
input force are identified using the ILS-UI procedure in Stage 1, initially for the
defect-free state of the frame. The errors in identification of the stiffness parameters
are shown in Table 5. From the results, it can be observed that the errors in the
identified stiffness parameter of the five members in the substructures are very
small. The damping coefficients and excitation time history are also identified very
accurately.

The information of Stage 1 is used to initiate both the GILS-EKF-UI and
UKF-UI-WGI procedures. Then, the stiffness parameters of all 25 elements of the
frame are estimated. The stiffness parameters of all members in the frame are
identified for the defect-free state and the results are summarized in Table 6,
Columns 3 and 4, respectively, for both methods. Since the identified stiffness
parameter did not vary significantly from the expected values, the methods correctly
identified the defect-free state of the frame. The results of GILS-EKF-UI are still
within the acceptable level but not as good as the UKF-UI-WGI method. However,
it can be concluded that both filters identified the defect-free state of the frame.

After assessing structural health of the defect-free frame, one defective case is
considered for this example. In Defect 1, the cross-sectional area of member 17 is
considered to be corroded over a length of 30 cm, located at a distance of 30 cm
from node 12. The results for the substructure identification in Stage 1 using ILS-UI
are summarized in Table 5, Columns 5 and 6. As for the defect-free case, for this
defective state, the substructures are identified accurately. Using the information
from Stage 1, the whole frame is then identified using both methods in Stage 2. The

Table 5 Stiffness parameter (EI/L) identification of the substructure for Example 2

Member Theoretical (kN-m) Defect Free Defect 1

Identified Change (%) Identified Change (%)

(1) (2) (3) (4) (5) (6)

k1 13476 13476 0.001 13476 0.001

k3 14553 14553 0.001 14553 0.001

k18 14553 14553 0.004 14553 0.003

k21 13476 13477 0.003 13477 0.003

k23 14553 14553 0.004 14553 0.003
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results in Columns 5 and 6 in Table 6 clearly indicate that the UKF-UI-WGI
procedure is capable of identifying the location and severity of defect. The iden-
tification of defect location using the GILS-EKF-UI procedure for the defective
case is not straightforward. Both the UKF and EKF-based procedures identified the
reductions of the stiffness parameter of defective member 17 as 8.39 and 7.54 %,
respectively. However, the results of EKF-based procedure show that the stiffness
parameter of defect-free member 5 is increased by 11.23 %, which is more than
acceptable error. Therefore, it can be concluded that GILS-EKF-UI failed to assess
the health of the frame for the defective state. This example clearly demonstrates the
superiority of the proposed UKF-UI-WGI procedure over the GILS-EKF-UI pro-
cedure developed earlier by the research team.

Table 6 Change (%) in stiffness parameter (EI/L) identification of whole structure

Member Theoretical (kN-m) Defect Free Defect 1

EKF UKF EKF UKF

(1) (2) (3) (4) (5) (6)

k1 13476 −0.05 −0.07 −0.07 −0.06

k2 13476 −0.37 0.37 −6.84 0.87

k3 14553 −0.03 −0.05 −0.07 −0.05

k4 14553 0.03 0.17 −1.96 0.20

k5 14553 0.76 −0.13 11.23 −1.00

k6 13476 −0.06 −0.02 0.73 −0.02

k7 13476 −0.04 −0.21 1.90 0.06

k8 14553 0.41 0.67 −0.12 0.62

k9 14553 0.38 0.57 −2.88 0.37

k10 14553 0.69 0.22 7.31 1.37

k11 13476 0.51 0.09 2.43 0.25

k12 13476 −0.25 0.01 −2.06 −0.71

k13 14553 −0.68 −0.55 −1.07 −0.57

k14 14553 −1.57 −0.81 −4.68 −1.69

k15 14553 0.07 −1.17 4.42 −0.13

k16 13476 0.40 0.26 0.56 −0.09

k17 13476 1.24 1.01 −7.54 −8.39
k18 14553 0.01 0.02 0.17 0.05

k19 14553 −0.69 −0.45 −1.07 −0.42

k20 14553 0.26 0.02 −1.25 −1.16

k21 13476 0.07 0.04 0.18 0.05

k22 13476 −0.52 −0.45 −1.34 −0.97

k23 14553 0.14 0.06 0.18 0.05

k24 14553 0.09 0.00 0.02 0.05

k25 14553 0.15 0.34 0.67 0.62
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7 Conclusions

The rapid assessment of structural health has become a major challenge in the
context of routine maintenance or just after major natural and man-made events.
The authors and their team members used the system-identification techniques by
mitigating its weaknesses to identify defects and their severity at the local element
level by representing real structures using finite elements. For easier implementa-
tion, the excitation information was completely ignored. By tracking the changes in
the stiffness parameters of each element the location(s) and severity of defects are
assessed. The team conducted extensive analytical and laboratory investigations to
verify all the methods. They had to overcome several challenges related to the
conceptual and analytical development, data processing, and the presence of
uncertainty in the every phase. To consider nonlinearity in the system identification
process, a method known as Generalized Iterative Least Squares-Extended Kalman
Filter-Unknown Input (GILS-EKF-UI), was developed by the team earlier. Since it
failed to identify structures in some cases, the authors recently proposed a new
method denoted as Unscented Kalman Filter—Unknown Input- Weighted Global
Iterations (UKF-UI-WGI). With the help of informative examples, the superiority of
UKF-UI-WGI over GILS-EKF-UI is documented in this paper. Since at the
beginning of an inspection, the defects and their severity are expected to be
unknown, the authors recommend UKF-UI-WGI instead of GILS-EKF-UI for the
rapid assessment of health of infrastructures.
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Ontology Based Diagnosis
for Maintenance Decisions of Paper
Mill Roller Using Dynamic Response

Madhav Mishra and Adithya Thaduri

Abstract Context-aware systems have been applied in several fields like
Information Technology, mobile, web services, travel guidance etc. These systems
deliver decisions based on a ‘context’ by using contextual models. In paper
industries, the failures of rollers were prominent and rolling element bearing is one
of the critical components. The failure occurs due to the varying levels of the loads
and external parameters that defines context. This paper demonstrates the ontology
contextual modeling for the diagnosis of rollers as a context by using dynamic
response. The roller is modeled using physical models and applying runs of dif-
ferent parameters and its levels. Then contextual models are generated for rollers to
show relation among input contextual parameters with different features. This paper
shows that this conceptual idea of decision based on different contexts using
ontology models is for effective diagnosis facilitate maintenance strategies and
further prospects in prognosis.

Keywords Paper mill roller � Context-aware systems � Dynamic response �
Relational models � Machine learning � Diagnosis

1 Introduction

With the rapid expansion of scientific technology, the machines used in modern
industries are becoming larger, precise increasingly automated. Their structures
become more multifaceted and their probable faults become more challenging
to find. So, in the field of mechanical fault diagnosis, it is an urgent problem to
exactly evaluate and correctly predict the running condition of the mechanical
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equipment [1]. Roller bearing is one of the utmost extensively used elements in
rotary machines. In most machinery, bearing is one of the essential components that
directly influence the operation of the whole machinery. Faulty bearings cause
majority of problems in the rotary machinery [2]. Localized defect is the main
failure mode of rolling element bearings. Vibration and acoustic emission
(AE) signals are widely used in condition monitoring of rotating machines.

During operating process, the machine set can generate all kinds of signals, and
involve in many correlated features. When any of these features deviates beyond
their specified limits, a fault may emerge. How to effectively extract the fault
feature, which can correctly reflect the occurrence of the fault, is still an ongoing
research issue [3]. In rotating machinery, the failure of rolling element bearing can
result in the deterioration of machine running condition. Effectively detecting and
diagnosing the incipient fault of rolling element bearing can provide an assurance
for the reliability of machine set running. Generally, extracting the fault feature
from the vibration signal to detecting the occurrence of the fault can effectively
reduce the possibility of catastrophic damage and the downtime [4]. Therefore,
quite naturally, fault identification of rolling element bearings has been the subject
of extensive research [5]. Fault detection is possible by comparing the signals of a
machine running in normal and faulty conditions. The faults considered in the
present study are inner race fault (IRF), outer race fault (ORF) and inner and outer
race fault (IORF) [6]. Machine condition monitoring system is a decision support
tool, which is capable of identifying the failure of a machine and capable of pre-
dicting failure from its symptoms [7].

In the case of paper industries, the rolling element bearing in the rollers are very
important because the failure of these bearings results in stoppage of production [8].
To ensure operation of the paper mill rolling element bearing, vibration condition
monitoring techniques are implemented in this field to identify, isolate and mitigate
the failures [9]. Because the paper mill runs continuously, a certain amount of paper
dust on the felt wire will act as an extra load on the rollers. To reduce the load, a
particular maintenance action is followed to remove the dust by regular intervals.
Normally, this action is done at regular intervals without the use of condition
monitoring. Apart from this dust, there are other maintenance actions that can also
be applied on the roller without any intelligence. The main problem of this main-
tenance actions are the irregular work stoppages, corrosion by lubricant quality,
inactive human skill, cleaning, operating costs and unawareness of the surrounding
environment [10]. The main objective of this work is to establish a decision support
mechanism that provides necessary actions on maintenance depends on the con-
dition monitoring and operating environment.

There were studies that used dynamic response for the rolling element bearings
for non-linearity [11], for stiffness [12] and for transient rotor dynamics [13]. The
modelling for diagnosis by physical modelling of rolling element bearings were
carried out by using support vector machine (SVM) [14], wavelet packets [15] and
neural network approach [16]. There have been efforts to provide these decisions on
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rolling element bearing for diagnosis. The classification performance of various
fractal dimensions and their combinations on different fault data sets were studied
on rolling element bearing using support vector machines [17], envelope spectrum
and SVM [18], time-domain features and neural networks [19], fuzzy logic [20],
Statistical index development from time domain [21], fatigue life in non-stationary
conditions [22] and wavelet analysis and envelope detections [23]. To provide
decisions based on fault diagnosis, there are works that has implemented computing
with condition monitoring techniques [24, 25].

Due to the advancements in the computing fields, there exist innumerable pro-
cedures to provide decisions based on the input and environment parameters. One
of the emerging areas is the context aware systems that come under pervasive and
ubiquitous computing [26]. This technology is prominent in the areas of informa-
tion technology [27], mobile services [28], web services [29], internet of things [30]
etc. The context-aware systems can be adapted to the existing and future possible
environments without the interactions of users with effective decision making
capabilities. Earlier, these context-aware systems for diagnosis have been used in
Quality of Service (QoS) management [31], early diagnosis of bipolar disorders
[32] and heart diseases [33]. This paper utilizes the conceptual methodology of
context-aware systems for bearings in roller to provide decisions for maintenance
actions by perceiving the context. There are several existed contextual models;
popular is ontology based models to define the relations among the input, envi-
ronment and output maintenance actions. The several input variables are pro-
grammed by using Physical model of the bearing to achieve different combinations
of output variables and patterns. By perceiving these patterns, appropriate main-
tenance decisions can be taken on the rollers to improve performance.

2 Rolling Element Bearing and Roller in Paper Industry

The present work is carried out in BillerudKorsnäs production unit in Karlsborg,
Sweden, and focus on one roller located in the wire section. There are several
rollers operating in this industry out of which this work focuses on three rollers that
requires main maintenance actions to be followed to increase performance. The
three rollers are modeled using Physical Model in Fig. 1 using NX 8.5 tool.

Fig. 1 Physical model of a roller in a paper mill
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3 Diagnosis

IN general, diagnostics investigates or analyzes the cause or nature of condition,
situation, or problem, whereas prognostics concerned with calculating or predicting
the future as a result of rational study and the analysis of available pertinent data. In
terms of the relationship between prognostics and diagnostics, diagnostics is the
process of detecting and identifying a failure mode within a system or sub-system.

Machine fault diagnostics is a procedure of mapping the information obtained in
the measurement space and/or features in the feature space to machine faults in the
fault space. This mapping process is also called pattern recognition. Traditionally,
pattern recognition has been done manually with auxiliary graphical tools such as
power spectrum graph, phase spectrum graph, cepstrum graph, AR spectrum graph,
spectrogram, wavelet scalogram, and wavelet phase graph to name a few. However,
manual pattern recognition requires expertise in the specific area of diagnostic
application, highly trained and skilled personnel are needed. Therefore, automatic
pattern recognition is highly desirable. This can be achieved by classification of
signals on the information and/or features extracted from the signals [34, 35].

Modal analysis is typically performed to determine a structure’s vibration
characteristics such as natural frequencies, mode shapes and mode participation
factors. From the modal analysis the mode shapes and the eigen-frequencies were
calculated. In this study, we performed the modal analysis on one of the rollers
using FEM (Finite Element Method) for dynamic response. The result from this
FEM analysis was performed in ANSYS found the 2nd bending mode that depicted
in Fig. 2. Similarly, we modeled and analyzed three rollers with felt wire by
ANSYS as shown in Fig. 3. The three rollers are running by the felt wire that acts as
transfer mechanism of paper. This physical model was being updated dynamically
by making use of continuous online condition monitoring data from vibration of the
rollers in the paper mill industry. The several input parameters and output
parameters were gathered simultaneously to obtain the context for the basis of
contextual modeling.

Fig. 2 Dynamic response with deformations
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4 Ontology Based Contextual Modeling

The concept of context-aware computing is described by [27, 36] as “the ability of a
mobile user’s applications to discover and react to changes in the environment they
are situation”. The popular definition for the context was defined by [37] as “any
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”. Another
way to classify the context is to consider the dimensional aspects dividing context
into three categories; computing context (like network connectivity, communication
instances and peers), user context (like profile of user, location, people nearby and
social situations) and physical context (like environment, physical devices) [27].
There is a need of model that abstracts and stores the data in meta-database for
decision making for context-aware systems. One of the popular contextual models
is the Ontology based model. This models use ontologies to represent the context
means relationships, concepts among entities in a structure or shared domain
knowledge [38]. They are becoming powerful by the applicability of formal
expressiveness and reasoning techniques. In general, ontology and logic based
models are not used in Wireless Sensor Networks (WSN) because of resource
constraints. Ontology based models are most useful for determining relationships,
dependencies and reasoning among the variables and permits little bit of hetero-
geneity and efficient contextual provisioning [39].

Semantic inference is the method for implementing the process of ontology for
the knowledge base [40] and this inference acts as grammar of the standard form of
ontology languages such as Ontology Inference Layer (OIL), Resource Description
Framework Schema (RDFS) and Web Ontology Language (OWL) [41]. An
ontology-based inference engine accomplishes information retrieval and question
and answer (Q&A) functions by getting information about a specific instance [42].

Fig. 3 Dynamic response of three rollers with felt wire
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In some cases in maintenance, where i statements or procedure are included in data,
there is need to process the text by using natural language process [43].

Context information is the technology of information analyzing and character-
izing the real context in virtual space by involving relation between real and virtual
parameters to deliver a personalized service [44]. The context sensors perceive the
context using real sensors such as temperature, vibration, humidity etc. The virtual
sensors interpret the factors from the context of the physical sensors. In this paper,
rollers in there paper mill, there exist several SKF primary sensors acquire real
information such as vibration, load, mass of dust on the felt wire, lubrication
quantity on rolling element bearing, temperature, humidity and dust density as
shown in Fig. 4.

The secondary sensors in this case are the rotational speeds that produce the peak
amplitudes in the resonant frequency found in vibration frequency analysis. The
patterns of frequency response are captured for the purpose of specific maintenance
action. For example, a change in the residual mass that forms on the felt wire is
replicated on the frequency response of vibration signal. If the pattern of the output
response is similar to the pattern of response to high mass forming on the feltwire,
the wire requires cleaning. The output alarms produce signals if there is a concern
about safety, illumination, acoustic detection and leakage or breakage of the sub-
components in system. Other maintenance actions include visual inspection,
repair/replacement of the items in setup, ventilation and noise cancellation depends
on the output variables. An additional step is required when there is a detection of
peaks from the vibration signals to acquire necessary event. These events need
further investigation whether there are any failures or not. These contextual
parameters are converted to the OWL for inference of rules generation.

The inference rules for service are applied to inference information about ser-
vices using external context information deinferred from the External Context
Ontology of maintenance [45] actions and internal context information from the
Internal Context Ontology of the condition monitoring [42]. These inference rules
are generated either by the previous history of maintenance actions or by input
actions based on experience using contextual parameters. Some sample diagnostic
rules are shown in Fig. 5.

Fig. 4 Primary sensor interpretation of input, environmental and outout parameters
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5 Architecture of Ontology Driven Diagnosis

The configuration of ontology based diagnosis for maintenance decisions
(ObDMD) architecture that is modified from [42] is shown in Fig. 6. The data
acquisition layer acquires data from condition monitoring data and sensors for
primary data. This vibration data from physical model is then converted to OWL. If
there is an event occurs, the data from the sensors are acquired. External context
information can also be accessed from data storage layer. The context query is then
transferred to context layer based on the event generation and thus create context
instance. These instances are converted to ontology models in data storage layer.

In the inference layer, the created context instances are provided to the context
manager that creates relations among the maintenance actions mapped by context
mapping from the knowledge layer as shown in Fig. 5. In Service Mapping, for
determining the format of the inferred results of service, data is converted into a
format required in each application through the predetermined service content
database. This rules are created in RDF format. The reasoner decides the reasoning
of each of the rules based on weights of maximum impact of each action. In the
event of a conflict of rules, the reasoner provides the best maintenance output action
that increases the performance using inputs from the data storage and knowledge
layer. Various computing techniques such as neural networks, decision trees, fuzzy
rules and statistical techniques can be used to provide optimum action. The service
layer thus provides access to the application layer for an interactive informatiton on
diagnosis of the roller using context-awareness. Each of the knowledge and data
storage layers is updated regularly and triggered in the triggering of an event. Out of

Fig. 5 Inference rules for
diagnosis based on dynamic
response of rolling element
bearing

Ontology Based Diagnosis for Maintenance … 193



all the layers, the inference layer guides maintenance recommendation using the
information from all the other layers and it suggests the necessary actions to the
user.

6 Conclusions

This paper proposes the conceptual application of a context-aware decision model
to a paper mill roller using the dynamic response obtained from a physical model to
build the ontology model. The proposed process represents in using computing
techniques for the purpose of maintenance diagnosis in the paper industry. To fully
implement this mechanism, we require rules from the users in the paper industry,
research experts, we also need to know the history of failures and maintenance
actions and have condition monitoring data to auto detect the anomalies in the
frequency response. If necessary maintenance actions are taken at the appropriate
time, operating costs will decrease and performance and production will increase. If
we make use of existing data inferences and combine these with modelling the
remaining useful life, we may able to perform prognosis by combing with mod-
elling of remaining useful life.

Fig. 6 Ontology based diagnosis for maintenance decision (ObDMD) architecture
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Context Awareness in Predictive
Maintenance

Bernard Schmidt, Diego Galar and Lihui Wang

Abstract Maintenance of assembly and manufacturing equipment is crucial to
ensure productivity, product quality, on-time delivery, and a safe working envi-
ronment. Predictive Maintenance approach utilizes the condition monitoring
(CM) data to predict the future machine conditions and makes decisions upon this
prediction. Recent development in CM leads to context aware approach where in
parallel with CM measurements also data and information related to the context are
gathered. Context could be operational condition, history of machine usage and
performed maintenance actions. In general more obtained information gives better
accuracy of prediction. It is important to track operational context in dynamically
changing environment. Today in manufacturing we can observe shift from mass
production to mass customisation. This leads to changes from long series of
identical products to short series of different variants. Therefore implies changing
operational conditions for manufacturing equipment. Moreover, where asset consist
of multiple identical or similar equipment the context aware method can be used to
combine in reliable way information. This should allow to increase accuracy of
prediction for population as a whole as well as for each equipment instances. Same
of those data have been already recorded and stored in industrial IT systems.
However, it is distributed over different IT systems that are used by different
functional units (e.g. maintenance department, production department, quality
department, tooling department etc.). This paper is a conceptual paper based on
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initial research work and investigation in two manufacturing companies from
automotive industry.

Keywords Context modeling � Context awareness � Condition monitoring �
Condition based maintenance � Predictive maintenance

1 Introduction

Maintenance is crucial to ensure reliability of assembly and manufacturing equip-
ment thereafter productivity, product quality, on-time delivery, and a safe working
environment. Implementation of effective prognosis for maintenance can bring
variety of benefits including increased system safety, improved operational relia-
bility, increased maintenance effectiveness, reduced maintenance inspection and
repair-induced failure, and reduced lifecycle cost [1].

Maintenance approaches in industrial history evolve [2] and it is an ongoing
process. At earlier stages the Corrective Maintenance also known as reactive
maintenance or run-to-failure was used. Later approach called Preventive
Maintenance (PM) was focused on taking actions before the failure occurs. This
approach evolved to Condition Based Maintenance (CBM), where the decisions are
made based on the machine condition indicators obtained in most cases through
measurement systems. Predictive Maintenance (PdM) and Prognostics and Health
Management (PHM) are approaches that utilize the condition monitoring data to
predict the future machine health state and make decisions upon this prediction.

Nowadays in quickly developing word we are facing new challenges and
opportunities.

The paradigm of mass customization aims to deliver customized products with
near mass production efficiency. Mass customization is imperative for many
companies to survive in the fragmented, diversified, and competitive marketplace
[3]. Frequent changes in produced variants imply changes in operational conditions
of manufacturing equipment.

Internet of Things (IoT) is a paradigm where everyday objects are connected to
the Internet. It allows devices communication with each other with minimum
human intervention [4]. The term has been initially used by Kevin Ashton in 1999.
In [5] he describes the IoT as an enabler to know when things need replacing,
repairing or recalling.

However, large number of smart devices and sensors is producing huge amount
of data that need to be processed in a useful way, as data is not useful unless it is
processed in a way that provides context and meaning that can be understood by the
right personnel [6]. Those aggregated streams of data, are called “Big Data”.

Cloud Manufacturing (CMfg) paradigm is a result of combination of cloud
computing, the Internet of things, service-oriented technologies and high perfor-
mance computing [7]. It transforms manufacturing resources and capabilities into
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manufacturing services. It is not simple deployment of manufacturing software
tools in the computing cloud. The physical resources integrated in the manufac-
turing cloud are able to offer adaptive, secure and on-demand manufacturing ser-
vices over the Internet of Thinks [8]. Effect of this paradigm on the maintenance
approach is not well elaborated in the literature. Nevertheless we can imply that
delivering manufacturing resources as a service may cause more dynamic changes
in operational conditions of manufacturing assets.

Recently context awareness approach is gaining focus of researchers from the
field of CBM and PdM. This well-known concept in some other fields, could be
beneficial when employed in CBM/PdM.

The rest of the paper is organized as follows. Section 2 provides the details about
context and its different modeling techniques and overview on the concepts of
context-aware systems; Sect. 4 depicts the context-awareness in the context of
Predictive Maintenance; and finally, Sect. 4 discusses and concludes the paper.

2 Context

The popular definition of the context according to [9] was defined by [10] as ‘‘any
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and applications themselves’’.

Noticeable amount of research on context in relation to context-aware systems
comes from pervasive and mobile computing research area. This could be because
of the popularity that mobile devices and mobile applications have gained in recent
years.

As Artificial Intelligence (AI) methods are also option for Predictive mainte-
nance [11] it could be fruitful to check what are the contribution from that field.
In AI study of a formal notation of context has a long history. In depth comparison
of two main formalizations from a technical and a conceptual point of view have
been presented by Serafini and Bouguet in [12]. Overview of those formal defi-
nitions of context from Artificial Intelligent field are presented in Sect. 2.1.5.

Context related aspects based on [4, 13] has been presented in Fig. 1. Some of
them has been elaborate more in following sections and subsections.

2.1 Context Modeling

Several context modeling technique are used in context-aware computing [13–15].
Each of those techniques has strengths and weaknesses, so incorporating multiple
modeling techniques brings efficient and effective results [4].
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2.1.1 Key-Value Models

Key Value Models (KVM) uses 2-tuple data structure <key,value>, that represents
identifier (name) of the attribute and its value. Among all other implementations it
is the simplest form of context representation. With small amount of data they are
easy to manage. However, key-value modeling is not suitable to represent hierar-
chical structures or relationships.

2.1.2 Markup Scheme Models

Markup Scheme Models (MSM) is an extension over KVM. It use markup tags and
hierarchical data structure. One of the advantages of this modeling is efficient data
retrieval. It also support validation through schema definitions. Popular technique
for markup schemas is XML [4]. It is widely used to store temporary data and
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transfer data among applications or application components in. Markup schema
modeling can be performed in any language or mechanism that supports tag based
storage e.g. JSON [16].

2.1.3 Graphical Models

Graphical Models (GM) represents context with relationships. Modeling techniques
that can be employed are Unified Modeling Language (UML) or Object Role
Modeling (ORM). The advantage of GM over KVM and MSM is that it allows to
capture relationships in the context model. Examples of low-level representations of
graphical modeling could be a SQL database, noSQL database, XML.

2.1.4 Object Oriented Models

Object Oriented Models (OOM) uses class hierarchies and relationships. It can be
easily integrated into context-aware systems, as most of the high-level programing
languages support object oriented concepts. However, due to the lack of standards,
the validation of object oriented design is difficult. Moreover it does not provide
inbuilt reasoning capabilities.

2.1.5 Logic Based Models

In Logic Based Models (LBM) context is represented with use of facts, expressions
and rules. It allows creation of new high-level context using low-level context.

Propositional Logic of Context (PLC)

• Contexts are first class objects. The formal language of a theory of context
should contain terms denoting contexts, and should allow one to predicate
properties about these objects and to express relations between contexts (e.g.,
that one context is more general than another), or between contexts and other
objects (e.g., that the time of a context c is t).

• A formula is always stated in a context. However, the same context can be
described from different perspectives, i.e., the content of a particular context is
itself context dependent. This property is called non-flatness, and each formula
have to be prefixed by a sequence of context labels e.g. κ1… κn: φ.

• A context is modeled as a set of truth assignments, each of which represents a
possible state of the world as described in the context.

• A context is always partial. Only a subset of what can be said is given an
interpretation in each context.
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• Statements about a context are stated in other contexts via so-called ist-formulas,
i.e., formulas of the form ist(κ,φ). The formula ist(κ,φ) is read as “φ is true in the
context κ”. This formula, if asserted in a context κ’, means that, viewed from κ’,
φ is true in κ.

• There is an intuitive relation between the assertions κ’κ:φ and κ’:ist(κ,φ).
Indeed, the latter is true if the former is true, and vice versa. This property is
axiomatized via an inference rule called CS (a contextual version of the modal
rule of necessitation) that allows deriving κ’:ist(κ,φ) from κ’κ:φ. This is the main
contextual reasoning pattern allowed in PLC.

• Other relations between contexts can be stated through lifting axioms which
relate the truth in one context to the truth in another context.

• Like any other formula, lifting axioms are always stated in a context, called an
outer context.

• There is no outermost context. For any context κ, there is an outer context
κ’from which κ can be described.

Local Model Semantic/MultiContext Systems (LMS/MCS)

• A context is primarily a subset of a partial and approximate theory of the world
from some individual’s perspective. The collection of facts used to reason about
a given problem by individuals is the most typical example.

• Reasoning mainly happens locally to a single context. Only those facts relevant
to the problem individuals want to solve are taken into consideration.

• There are possible relations between local reasoning processes, as different
contexts are not simply unrelated representations, but different representations of
the same world. For example, two contexts may describe the same piece of
world at different level of detail from the same perspective; or may describe it,
only from different perspectives. Relations between different perspectives in
LMS are represented via a compatibility relation between local interpretations
associated with each context. The proof theoretic counterpart of compatibility
relations are bridge rules, i.e., inference rules with premises and consequences in
different contexts.

• The relationship between different contexts, in general, can be described only to
a partial extent, as each of them may encode assumptions which are not fully
explicit.
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Comparison

The main feature of a formal theory of the context, is the ability to formalize the
relations existing between different contexts. To achieve this goal, PLC and
LMS/MCS adopt two different strategies:

• PLC is based on a combination of lifting axioms as well as axioms and rules for
exiting and entering contexts.

• LMS/MCS is based on the mechanism of bridge rules.

Example, how PLC and MCS/LMS represent the fact that ψ in κ is a logical
consequence of φ in κ’ has been showed in Fig. 2. In PLC, one needs a third (“top”)
context κ’’ where logical consequence is represented by the formula ist(κ,φ) � ist
(κ’,ψ) Fig. 2a. Instead, in MCS this is directly represented by the fact that κ’ :ψ is
derivable via bridge rules from the assumption κ:φ, i.e., that κ:φ╞MCS κ’:ψ Fig. 2b.

2.1.6 Ontology Based Models

Term ontology comes from philosophy where it refers to a theory of the nature of
existence. In computer and information science, ontology determines formal
specifications of knowledge in a domain explicit specification of the objects, con-
cepts, and other entities (vocabulary) that exist in some area of interest ant the
relationships that hold among them [17].

According to [18] ontology based context modeling allows: ➊ knowledge
sharing between computational entities by having common set of concepts about
concept; ➋ logic inference by exploiting various existing logic reasoning mecha-
nisms to deduce high-level, conceptual context from low-level, raw context;
➌ knowledge reuse by reusing well-defined Web ontologies of different domains,
e.g. large-scale context ontology can be composed without starting from scratch.

Web Ontology Language (OWL) is modeled through an object-oriented
approach, where structure of a domain is described in terms of classes and
properties.

(a) (b)

Fig. 2 Inference in PLC and LMS/MCS
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2.1.7 Machine Learning Models

Machine Learning Models (MLM) use machine learning techniques. It is not a
strictly context modeling approach, however does target similar objectives. It has
been presented in [19] to enable effective personalized service provision.

MLM has been indicated in [9] as the best approach for intelligent context-aware
system.

2.2 Context Reasoning

Context reasoning, also called inference, can be defined as method of deducing new
knowledge, that can be also understand as high-level context, based on the available
context [4]. Context reasoning techniques could be classified into six categories as
in Fig. 1: supervised learning (e.g. Artificial Neural Network, Bayesian Networks,
Case-based Reasoning, Decision Tree Learning, Support Vector Machines),
unsupervised learning (e.g. Clustering, k-nearest Neighbour), rules, fuzzy logic,
ontology based, and probabilistic logic (e.g. Dempster-Shafer, hidden Markov
Models, naïve Bayes). There is relationship between context reasoning and context
modeling as some reasoning techniques prefer some modeling techniques [4].
Imperfection and uncertainty of a raw context are the factors that also emerged the
requirement of reasoning step. Fuzzy Logic and Probabilistic logic has been indi-
cated as reasoning techniques that can handle uncertainty.

It has been revealed in [14] that different models and techniques needs to be
integrated with each other within hybrid context modeling approach in order to
obtain more general and flexible systems.

Perera et al. in [4] provided example of the hybrid context modeling and rea-
soning approach. Statistical techniques can be used on lowest level to fuse sensor
data. Further, fuzzy logic could be used to convert fixed data into more natural
terms. Dempster-Shafer can be used to combine sensor data from different sources.
Machine learning techniques such as artificial neural networks and support vector
machines can be used for further reasoning. Thereafter, the high level data can be
modeled using semantic technologies as ontologies.

2.3 Context-Aware Systems

The context-aware systems can be defined as systems that are adaptable to the
existing and future possible environments without the interactions of users [9]. In
the pervasive computing community there is a growing body of research on the use
of context-awareness as a technique for developing pervasive computing applica-
tions that are flexible, adaptable, and capable of acting autonomously on behalf of
users [14].
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Context-aware systems most often are represented with use of layered archi-
tecture. Context models can be seen as an abstraction layer between applications
and the technical infrastructure that provides the context data [21]. In [22] four
layers are depicted: ➊ sensor layer for data acquisition, ➋ data storage layer for
maintaining data, ➌ processing layer for all analysis and modeling, and ➍ appli-
cation layer for final representation.

A little bit different structure has been proposed in [20] that is presented in
Fig. 3. In this approach layers has been grouped into application specific layers and
layers that can be shared among different applications.

Architecture structure presented in [9] consists of interacting building blocks as:
➊ data acquisition layer, ➋ pre-processing layer, ➌ network layer, ➍ data storage
layer, ➎ decision and control layer, and ➏ user interface layer.

3 Context in PdM

Concepts of “context” and “context aware system” have been not well utilized by
researchers from field of CBM and PdM. Analysis of ten review and survey papers
in the area from time period 2005–2014 mentioned in literature review [23] reveals
that term “context” in the context of predictive maintenance is never directly
mentioned. However, some of indicated challenges and future trends can be
addressed by utilization of “context” and “context-awareness” approach. Some of
those are: more basic and applied research in decision making systems [24]; data
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fusion of multi-dimensional CM, model the influence of external environmental
variables, deal with multiple failure modes [25]; needed of general methodology for
prognostics [11]; the development of methods or tools for extraction, processing
and interpretation of knowledge type information [26]; the consideration of the
effects from maintenance actions, the consideration of failure interactions [27].

Integration of disparate data sources that are commonly available in industry has
been proposed for better maintenance decision making [28]. The cloud approach is
pointed as a feasible solution for this integration, and XML language is presented as
a tool that can be used for data integration.

Lee et al. [6] indicated that algorithms can perform more accurately when more
information throughout the machine’s lifecycle, such as system configuration,
physical knowledge and working principles, are included, so there is a need to
systematically integrate, manage and analyse machinery or process data during
different stages of machine life cycle.

Recently, there are reported works that apply context approach in the field of
maintenance.

In [29] the context-aware approach has been used in energy domain for pre-
dicting the future load. The prediction model parameters are stored in repository
with context in which they were valid this allow to retrieve them when similar
context occurs. Repository has been organized as binary search tree.

Semantic and modeling for a contextualized mobile client of a distributed model
that constitutes a maintenance mobile cloud has been presented Pistofidis and
Emmanouilidis [30]. Presented WelCOM platform utilizes smart sensor infrastruc-
ture for machine condition monitoring and to deliver a context aware asset man-
agement tool has been interfaced with Computerized Maintenance Management
System. Authors pointed that context modeling, identification and context-based
adaptation are key elements in WelCOM approach. Five context categories has been
identified for mobile maintenance advisor: ➊ user context—information about role,
expertise, activity, location, preferences; ➋ system context—device specification,
network status, security profile, energy consumption; ➌ environment context—
sensor readings (temperature, noise, light), user proximity, asset proximity, times-
tamp; ➍ service context—criticality, priority, task sequence, dependencies,
constrains, support; ➎ social context—group/team participation, relationship role,
interaction profile, rank.

In fleet-based approach presented in [31], an ontology model has been proposed
with a following context types: ➊ technical context—technical features and char-
acteristics of the system/sub-system/equipment; ➋ dysfunctional context—the
generic degradation modes on the units; ➌ operational context—operational con-
ditions that are given by the mission to be performed for units as well as the
environment that surround them; ➍ service context—usage of the unit; and ➎
application context—for maintenance optimization, enables data/model retrieval of
the monitored units with its corresponding context. Than comparison of hetero-
geneous units could be performed based on similarity of the context. This enables
data capitalization that could improve prognostics model and precision. This
approach has been applied in naval domain to fleet of ships.
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In [32] the context driven remaining useful life estimation has been presented.
Health condition of machine is represented by so called fingerprint, while context is
represented by monitored operational data that describes the way the machine has
been used.

Galar et al. [22] proposed a hybrid model-based maintenance decision system
with consideration of context-driven aspects. The system aims to integrate expert
knowledge, physics of failure models and data driven models.

Context awareness seems to be also important from perspective of another recent
trend that is application of the Cloud concept.

3.1 Cloud-Based Approach

Recently the concept of Cloud gains on popularity in research community and there
has been a trend of applying cloud computing model in manufacturing industry
[33].

Bahga and Madisetti presented in [34] usage of this concept in maintenance.
They claimed that this is the first reported usage of the cloud architecture for
maintenance data storage, processing and analysis. Their proposed hybrid approach
uses local nodes for real-time fault prediction and a cloud for massive data
organization and analysis.

Lee et al. [35] presented methodology and framework for a cloud-based prog-
nostics and health management system for manufacturing industry. The system
utilizes modularized algorithms as basic components to form different workflows.
Workflows for typical components and mechanical problems are saved in a
knowledge base that can be later used as templates for similar problems. Based on
specific need (e.g. type of component for monitoring, type of data available, etc.)
certain workflow can be selected and provisioned into a virtual machine as an
individual Prognostics and Health Management server dedicated to an industrial
user. Summarizing, in this concept the application is adapted to the specific need of
the user.

4 Discussion and Conclusions

One of the issue in application of Predictive Maintenance in manufacturing industry
are so called Islands of knowledge [36] that could be treated as a different contexts
according to formal definitions described in chapter 2.1.5. In big manufacturing
companies often there are dedicated departments focused on different aspects as
production, quality, tooling, lubrication, maintenance. Those are different contexts
with own specific vocabularies, reasoning and assumptions. However, as are con-
cerned about the same piece of Word, the production line, they are not completely
independent. It could be possible to identify some compatibility relations between

Context Awareness in Predictive Maintenance 207



those contexts. This could provide better, more comprehensive view that can be
used for improvements in applied models and techniques in each of those areas so
in Predictive Maintenance as well. The work that need to be done is to find those
correlations as well as find the way to obtain those information from disparate data
sources [22].

Dealing with large amount of information from disparate data sources is in
concern of Big Data management. In [37] issues like how to store, integrate and
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process those data, and how to do this in an effective and efficient way have been
pointed out. Advances in this area will support context-aware approach as well.

At the end we want to summarize potential benefits that can be seen in the
context driven approach and in adaptation of outcomes from other research fields
that has longer research history in the area of context-awareness:

• improvement in knowledge management for later reuse,
• capitalization of data in fleet wide approach to increase accuracy and performance

of algorithms,
• enabled adaptation to user needs, required in cloud-based approach,
• improved automatic selection of proper approach (e.g. signal selection,

processing algorithms etc.).

In Fig. 4 we present hypothetical case how applying context-awareness can
improve estimation of Remaining Useful Life (RUL) in Predictive Maintenance.

To conclude, in this paper we provide overview of the concept of context from
different research field. Need for context aware application for Predictive
Maintenance has been indicated, as well as recent research that utilize the context
concept in it.
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Prognostics and Health Management:
Methodologies & Soft Computing
Techniques

S.V. Shrikhande, P.V. Varde and D. Datta

Abstract For safety systems of Indian nuclear plants, mean life estimates are found
using MIL-STD-217FN2 or RAIC-HDBK-217Plus. These statistical life estimates
varies from item to item due to statistical variations in base material defects, fab-
rication, operational stresses and use environment. For achieving the system reli-
ability, replacements done based on these life estimates results in under utilization
of its complete life. On the contrary when failure happens earlier than this estimate,
it is expected that failures are identified by online self diagnostic. To reveal hidden
failures which are not detected by online self diagnostics, periodic surveillance tests
are done. These discovered faults need immediate repair attention which is
unscheduled maintenance. Also recent computer based systems uses programmable
devices like FPGA/CPLD which are identical in redundant trains and therefore
susceptible to Common Cause Failures. To overcome these difficulties prognostics
giving indication of the impending failure and estimate of remaining useful life is
important so that planned scheduled maintenance can be carried out. Prognostics
require in situ monitoring sensors, data collection, pre-processing for feature
extraction, damage assessment and remaining life estimation by soft computing
techniques. This paper suggests techniques of monitoring degradation for CMOS
electronic components and feature extraction. This paper discusses soft computing
techniques of Support Vector Machines for classification (Healthy class or Faulty
class), One-class SVM for identifying an outlier (to omit this measurement from
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prognostic computation), Support Vector Regression, Fuzzy SVM (to give more
weightage to recent data) and Kalman Filter for state prediction (for estimating
remaining useful life) with uncertainty bounds.

Keywords SVM � SVR � FSVM � 1-Class SVM � LS-SVM � RUL

1 Introduction

Prognostics is anticipating impending faults and giving early warning of the failure
before it happens. It is the process of predicting a product’s Remaining Useful Life
(RUL) by assessing the health degradation. Prognostics can be based on parameters
correlated to degradation. By measuring such parameter(s) the remaining useful life
can be predicted with uncertainty bounds. For CMOS ICs the quiescent
power-supply current (IDDQ) is the parameter which increases some orders of
magnitude [2] and can be one of the factors used for prognosis. This has been stated
in literature and also substantiated by carrying out Accelerated Life Testing
(ALT) experiment [3]. These prognostics computations are done using soft com-
puting techniques. This paper discusses soft computing techniques that can be used
based on Support Vector Machines (SVM). This paper also discusses variants
which are useful for different purposes viz. outlier identification, Support Vector
Regression for forecasting and using recent data by employing Fuzzy Support
Vector Machines and Least Squares SVM. This paper deals with their mathematical
formulations and usage. For SVM variants, the optimization conditions are different
and are covered in this paper. For estimating RUL, Support Vector Regression—a
data driven technique and Kalman Filter—a model based technique for state pre-
diction with uncertainty bounds is discussed.

The hybrid combining more than one technique—data-driven and model-based
can be employed for prognostics.

2 Mathematical Methodologies for Prognostics

There are two principal methodologies to fault diagnosis and prognosis; one based
on system identification and modelling and the other based purely on data-driven
approaches using statistical computational intelligence techniques.

The system identification methodology will be tried to fit the model. Based on
the Auto Correlation Factor (ACF) and Partial Auto Correlation Factor (PACF), the
model will be identified. The main advantage of this approach is the ability to
incorporate the physical understanding of the underlying process. On the other
hand, data-driven approaches derive their information entirely from process data.
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The drawback of such a method is its dependence on the quality of available
process data.

Since degradation is a thermally governed process, after taking the natural
logarithm the equation/model of the system becomes linear. This linearity is proved
by the method of bi-coherency metric. Thus techniques of linear model becomes
applicable.

Data driven Fault Detection techniques vary from simple threshold based fault
detection to the sophisticated methods of Artificial Neural Networks (ANN), Fuzzy
Logic approaches, Wavelet Analysis, Principal Component Analysis (PCA),
Independent Component Analysis (ICA), etc.

As per literature survey, the ANN based approaches are used as fault classifiers
both for binary fault classification as well as for multi-class fault classification. The
major advantage of ANN is that theoretically they can approximate any continuous
function without having any hypotheses of the underlying model. The disadvantage
are that ANNs are like black-box where it is not possible to interpret the solution in
traditional analytical way. Moreover the solution of ANN is not globally optimal
and hence depends on the initial conditions of the network.

While ANNs are based on black-box technology, following a heuristic devel-
opment with experimentation, the SVM are based on sound theory. SVMs are a
learning tool based on statistical learning theory. SVMs have good generalization
ability to unseen data. In the past few years SVM has shown excellent performance
in may real world application including time series prediction. SVM are also
suitable to data which is not regularly distributed or has unknown distribution.
SVM involves finding solution to convex quadratic programming (QP) problem
and gives unique global solution for positive definite kernel. This is advantageous
as compared to ANN, which has multiple solutions associated with local minima
and therefore not robust over different samples. By adaptively using the changes in
the parameters, it is possible to prognosticate faults.

In model based approach like Kalman filter, the observation data is combined
with pre-determined fault-growth model in order to update state predictions in an
online manner.

3 Support Vector Machines

In machine learning, support vector machines are supervised learning algorithms
that carry out pattern recognition from datasets i.e. it is a data driven technique.
SVM are used for regression and classification.

SVMs have become one of the most popular approaches to learning from
examples and have many potential applications in science and engineering. SVMs
are relatively new computing methods. They are based on statistical learning the-
ory, have high accuracy and show good generalization capability [5]. Also SVMs
can handle data for any dimensionality.
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Using a labelled training dataset i.e., each data vector having its class label, an
SVM training algorithm builds a model for hyper-plane. Though the simplest form
of SVM is a linear binary classifier, it can also efficiently perform non-linear
classification using kernel trick [4].

SVM solution is finding the hyperplane of (n-1) dimensionality for a general
n-dimension problem; which is a line for 2-dimensional problem as shown in Fig. 1
and then draw two parallel hyperplanes to the hyperplane by pushing them as far
apart as possible, until they hit data points. The classification plane with bounding
planes furthest apart is the best one. Those points that touch the bounding plane, are
called support vectors. The salient features are that all points in class 1 should be to
the right of bounding plane 1 i.e.

wTxi [ ¼ � bþ 1 ð1Þ

All points in class −1 should be to the left of bounding plane −1. i.e.

wTxi \¼ � b� 1 ð2Þ

Pick yi to be +1 or −1 depending on the classification. Then the above two
inequalities can be merged into one as given in Eq. (3).

yi w
Txi þ b

� �� 1 ð3Þ

The distance between bounding planes should be maximized. The distance
between bounding planes is given by:

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þw2

2 þ . . .þw2
n

p ¼ 2ffiffiffiffiffiffiffiffiffi
wTw

p ð4Þ

Fig. 1 Hyperplanes of SVM
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Thus the problem reduces to the convex optimization problem of

min
w;b

1
2
wTw

Such that

yi w
Txi þ b

� �� 1 ð5Þ

This SVM or hyperplane will be fitted based on the experimental data. SVM can
accept as input, multiple features/condition indicators at the same time and produce
as output the binary decision function.

Solving for finding the hyperplane is a mathematical optimization problem
subject to constraints given in Eq. (5) [1]. More specifically, this is a quadratic
solution problem and hence is a convex optimization problem.

3.1 Canonical SVM Problem

Since many solutions are possible by scaling w and b as stated above, we restrict
our attention to a canonical solution (w, b) for which,

min
i

wT/ xið Þþ bð Þyi
wk k ¼ 1 ð6Þ

So we get,

max
w

1
wk k ; s:t: 8i;

wT/ xið Þþ b
� �

yi � 1
ð7Þ

Equivalent to the above equation is also the following equation

min
w

wk k2; s:t:8i;
wT/ xið Þþ b
� �

yi � 1
ð8Þ

The optimization problem of maximizing the margin can be brought down to the
minimization problem of the term

/ðwÞ ¼ 1
2

wj jj j2 ð9Þ
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The weight vector and bias vectors for the optimal separating hyperplane are
found out as a quadratic optimization problem.

3.1.1 Non-separable Data

If a separating plane does not exist as shown in Fig. 1, then find the plane that
maximizes the margin and minimizes the errors on the training points by taking
original inequality with a slack variable to measure error.

For overlapping data the objective function is given below

min
w;w0

wk k2 þ c
X
i

ni s:t: 8i;

wT/ xið Þþ b
� �

yi � 1� ni
where 8i ni [ ¼ 0

ð10Þ

In soft margin, we account for the errors. The above formulation is one of the
many formulations of soft SVMs. In the above formulation, large value of C means
overfitting.

Three types of points can be seen in Fig. 2. They are:

1. Correctly classified but ξi > 0 or violates margin
2. Correctly classified but ξi = 0 or on the margin
3. Incorrectly classified but ξi > 1

Where C is a positive number that is chosen to balance the two goals. To prevent
from over-fitting with noisy data the slack variable ξi is introduced to allow some
data points to lie within the margin, the constant C > 0 determines the trade-off
between maximizing the margin and the number of training datapoints within that
margin (and thus training errors). Those points that touch the bounding plane, or lie
on the wrong side, are called support vectors.

Fig. 2 SVM for
non-separable data

218 S.V. Shrikhande et al.



3.1.2 Dual Formulation

Using the Lagrangian multipliers, the dual function is

d� ¼ max
ke<

min
xeD

f ðxÞþ
Xm

i¼1
kigiðxÞ

� �

s:t:ki [ ¼ 0
ð11Þ

The duality gap = 0 since the objective function as seen in Eq. (9) is a convex
function. After solving the Kuhn Karush Tucker (KKT) conditions, we get w by the
following equation.

w ¼
Xm

i¼1
a�i yi/

T xið Þ ð12Þ

To obtain wo
∗ (or b), we can use the fact that, if αi 2 (0, C), yi (ϕ

T (xj)w + w0) = 1.
Thus, for any point xi such that, αi 2 (0, C), that is, αi is a point on the margin,

w0 ¼
1� yi /

T xið Þw� �
yi

ð13Þ

)¼ yi � /T xið Þw ð14Þ

The decision function,

f ðxÞ ¼ /T xið Þw� þw�
0 ð15Þ

The classification function can then be written as:

fðxÞ ¼ sgnðfðxÞ ð16Þ

The bi-class classification of the online state between healthy state and faulty
state will be using a bi-class SVM.

4 One-Class SVM

The primal one-class SVM problem for Novelty/anomaly detection is defined as

min
w;q;ei

= ¼ 1
2
wTwþ 1

mn

XN
i¼1

ni � q

Subject to wT/ xið Þ� q� ni
ni � 0 for all i ¼ 1; . . .;N

ð17Þ
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The parameter ν characterizes the solution:
It sets upper bound on the fraction of outliers (training examples regarded

out-of-class).
It separates all the datapoints from origin and maximizes the distance from this

hyperplane to the origin. Thus the function returns +1 in a small region and −1
elsewhere.

Like all other SVM formulations an equivalent dual problem is constructed and
solved using Lagrange’s multipliers as given in Eq. (18).

L w; q; ei; aið Þ ¼ = �
XN
i¼1

ai wT/ xið Þ� �� qþ ni
� � ð18Þ

where αi are the Lagrangian multiplers, which can be +ve or –ve. Applying KKT
conditions the conditions of optimality are-

dL
dw

¼0 ) w�
XN
i¼1

ai/ xið Þ ¼ 0

dL
dq

¼0 )
XN
i¼1

ai � 1 ¼ 0

dL
dei

¼0 ) ai � cei ¼ 0

dL
dai

¼0 )
XN
i¼1

wT/ xið Þ � qþ ei ¼ 0 ¼ 0

ð19Þ

for k=1,…,N.
Putting these equations in matrix form-

I 0 0 �/
0 0 0 I
0 0 cI �I
/ �I I 0

2
664

3
775

w
q
e
a

2
664

3
775 ¼

0
1
0
0

2
664

3
775 ð20Þ

The matrix formalization can be written in a simplified form by eliminating w
and e -

0 1
�1 Wþ c�1I

	 

q
a

	 

¼ 1

0

	 

ð21Þ
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where

Wkl ¼ / xkð ÞT/ xlð Þ ð22Þ

which is a kernel function.
This will be used for anomaly detection i.e. deciding whether the current input is

an outlier. Outliers will not be considered for prognostic calculation and will be
omitted.

The data obtained from experiment will be used as baseline data to construct a
one-class SVM. This one-class SVM will be used with online data to distinguish
between normal data which can be used for prognostics and abnormal/outlier data
will be omitted from prognostics computation.

5 Fuzzy Support Vector Machine

Fuzzy Support Vector Machine (FSVM) is based on the idea that different input
points can make different contributions to the learning of decision surface. Each
input point is assigned a fuzzy membership, so that the different input points can
make different contributions to the learning of decision surface. By setting different
types of fuzzy membership, FSVMs can solve different kinds of problems. FSVMs
can be used for Time series data, or for bi-class with different weightage or for
reducing the effects of outliers. These are discussed below.

Time series data
For choosing the fuzzy membership function, choose the lower bound of fuzzy

memberships (σ > 0). Time being the important factor, the fuzzy membership si can
be made function of time ti

si ¼ f tið Þ ð23Þ

where t1 � . . .� tl is the time the data arrived in the system.
We choose the latest data tl as the most important and therefore

sl ¼ f tlð Þ ¼ 1 ð24Þ

Making the first point x1 as the least important therefore

s1 ¼ f t1ð Þ ¼ r ð25Þ

If we fit a linear function of time for fuzzy membership then

si ¼ f tið Þ ¼ ati þ b ð26Þ
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Applying boundary conditions, we get

si ¼ f tið Þ ¼ 1� r
tl � t1

ti þ tlr� t1
tl � t1

ð27Þ

If we fit a quadratic function of time for fuzzy membership then

si ¼ f tið Þ ¼ a ti � bð Þ2 þ c ð28Þ

By applying boundary conditions, we get

si ¼ f tið Þ ¼ 1� rð Þ ti � t1
tl � t1

� �2

þ r ð29Þ

1-class with different weightage
Accuracy of one class is very high and of the other class is lower. For this the

fuzzy membership is chosen as a function of the respective class. A sequence of
training points are y1; x1; s1ð Þ; . . .; yl; xl; slð Þ

Fuzzy membership as function of class yi is given by

si ¼ sþ if yi ¼ 1 ð30Þ

si ¼ s� if yi ¼ �1 ð31Þ

Typically s+ = 1, s− = 0.1
This fits the optimal hyperplane with errors appearing only in one class.
Reducing the effects of outliers by using class center
This can be done by setting the fuzzy membership as a function of the distance

between the point and its class centre.
For the given sequence of training points, y1; x1ð Þ; . . .; yl; xlð Þ.
Radius of class +1 is given by

rþ ¼ max
xi:y¼1f g

lþ � xi
  ð32Þ

where μ+ is the mean of class +1. and Radius of class −1 is given by

r� ¼ max
xi:y¼�1f g

l� � xij j ð33Þ

where μ− is the mean of class −1.
Fuzzy membership si, a function of centroid and radius of class +1 and class −1

respectively are:

si ¼ 1� xþ � xij j= rþ þ dð Þf g
si ¼ 1� x� � xij j= r� þ dð Þf g ð34Þ
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where δ > 0 so that si ≠ 0. The distance of the two outliers to its corresponding
mean is equal to the radii of the two classes. Due to the above fuzzy membership
function, these two outliers are given least importance in FSVM training. This will
cause a different hyperplane with reduced effect of outliers.

This will be used to reduce the intensive computations. The processing of large
amount of historical data is drastically reduced using FSVM. The online time-series
data which is acquired will be subjected to FSVM. The algorithm will be adaptive
by giving higher weightage to recent data and progressively less weightage to older
data. This technique will be used in alongwith SVR given below.

6 Least Squares SVM (LS-SVM)

This has low computational overhead. It does reduce accuracy but there is sub-
stantial gain in computation time and resources. In LS-SVM, the mathematical
optimization equations are modified by adding a least squares term in the cost
function. This eliminates solving QP problem and requires solution of a set of linear
equations, thereby reducing the complexity of finding solution. In this technique the
inequality constraints are changed to equality constraints. Implicitly the least square
method is like regression.

Given training data D ¼ x1; y1ð Þ; . . .: xN ; yNð Þ� �
with input data xi 2 Rn and

binary class labels y 2 �1; 1f g, the LS-SVM is mathematically defined as the
following optimization problem:

minJ2 w; eð Þ ¼ l
2
wTwþ n

2

XN
i¼1

e2i ð35Þ

The above equation can be written as

minJ2 w; eð Þ ¼ l
2
wTwþ c

2

XN
i¼1

e2i ð36Þ

subject to

yi w/ xið Þþ bð Þi¼ 1� ei i ¼ 1. . .N

where c ¼ n
l is the tuning parameter (ratio of individual parameters μ and ξ for

regularization and error resp.) Error variables allow some tolerance to
misclassification.

Because of the equality constraint the Lagrangian dual formulation gives sim-
plified linear programming solution given below.
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0 �YT

Y Xþ c�1I

	 

b
a

	 

¼ 0

1
ð37Þ

where

X ¼ ZTZ ¼ ykylk xk; xlð Þ;
Z ¼ / x1ð ÞTy1; . . .;/ xNð ÞTyN

� �
and

a ¼ a1; . . .; aN½ �

Thus the classifier is found by solving the linear set of above equations.

7 Support Vector Regression

Support Vector Regression (SVR) will be used for prediction of future data. The past
time series data of a fixed duration will be used for finding the regression function.

The Support Vector method can also be applied to the case of regression (apart
from classification problem), maintaining all the main features that characterise the
maximal margin algorithm. This technique is useful more for regression problems,
when sample data is sparse. A non-linear function is learned by a linear learning
machine in a kernel-induced feature space while the capacity of the system is
controlled by a parameter that does not depend on the dimensionality of the space.
The Fig. 3 shows a situation for a non-linear regression function.

As long as points lie inside the ε margin, they do not contribute to the error. We
can define the ε—insensitive loss function Lε(x, y, f) as given in Eqs. (38) and
(39) and shown in Figs. 4 and 5 respectively.

Fig. 3 The insensitive band
(slackness) for a non-linear
regression function
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For linear:

Le x; y; fð Þ ¼ y� f ðxÞj je¼ max 0; y� f ðxÞj j � eð Þ ð38Þ

For Quadratic:

Le2 x; y; fð Þ ¼ y� f ðxÞj j2e ð39Þ

In regression when slackness is introduced we have:-

min
1
2

wk k2 þ c
X
i

n2i

s:t: 8i;
wT/ xið Þþ b
� �� yi ¼ ni:

ð40Þ

The curve fitted by the regression technique of SVR is shown in the Fig. 6. The
regression scheme associated with the latest data will be used for long-term pre-
dictions i.e. fault growth estimation with confidence bounds and remaining useful
life (RUL) estimation after a fault is detected by subjecting to bi-class SVM.

Fig. 4 The linear ε—
insensitive loss for zero and
non-zero ε

Fig. 5 The quadratic ε—
insensitive loss for zero and
non-zero ε
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8 Conclusion

SVMs are used as soft computing tools for various applications. They can be used
effectively for prognostic computation. Its variants will be appropriately used like
Bi-class SVM will be used to check whether the state is healthy or Failed. For the
current input to check whether it is an outlier One-class SVM will be used. An
outliers will not be considered for prognostic calculation and will be omitted.

Support Vector Regression (SVR) will be used for prediction of future data. The
past time series data of a fixed duration will be used for finding the regression
function. Fuzzy Support Vector Machine (FSVM) will be used alongwith SVR-it
will be adaptive by giving higher weightage to recent data and progressively less
weightage to older data. Least Squares SVM is a variant which has low compu-
tational overhead. Its effectiveness in terms of computational time reduction and the
effect on reduction of accuracy will be tried out.

SVM alongwith its variants are powerful soft computing techniques for appli-
cations like prognosis.
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Intelligent Real-Time Risk Analysis
for Machines and Process Devices

Esko K. Juuso and Diego Galar

Abstract Automatic fault detection with condition and stress indices enables reli-
able condition monitoring to be combined with process control. Useful information
on different faults can be obtained by selecting suitable features. Generalised norms
can be defined by the order of derivation, the order of the moment and sample time.
These norms have the same dimensions as the corresponding signals. The nonlinear
scaling used in the linguistic equation approach extends the idea of dimensionless
indices to nonlinear systems. The Wöhler curve is represented by a linguistic
equation (LE) model. The contribution of the stress is calculated in each sample time,
which is taken as a fraction of the cycle time. The cumulative sum of the contributions
indicates the degrading of condition and the simulated sums can be used to predict
failure time. To avoid high stress situations, the statistical process control (SPC) is
extended to nonlinear and non-Gaussian data: the new generalised SPC is suitable for
a large set of statistical distributions. It operates without interruptions in short run
cases and adapts to the changing process requirements. The scaling functions are
updated recursively, which is triggered by a fast increase of the deviation indices. The
higher levels, which are rough estimates in the beginning, are gradually refined.

1 Introduction

Process control systems in industry include centralized or decentralized process
controllers coupled with hosts, workstations and several process control and
instrumentation devices, such as field devices. Applications are related to business
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functions in Enterprise resource planning (ERP) or maintenance functions in
computerised maintenance management systems (CMMS). Smart field devices can
include equipment monitoring applications which are used to help monitor and
maintain the devices. A general architecture of IT systems related to operation and
maintenance in process industry is shown in Fig. 1 [1].

The early detection of fluctuations in operating conditions and fault detection can
be done with similar methods. Process and condition monitoring data is combined
in detecting operating conditions (Fig. 2): normal process measurements are directly
used in feature extraction, signal processing is needed for the condition monitoring
data, and some infrequent measurements need to be interpolated [2]. Periodic
condition monitoring measurements require interpolation to be used with other
measurements in real-time systems.

Maintenance and operation performance are measured, monitored and analysed
in many ways which provide information for the risk analysis [3]. Harmonised
indicators can be used for monitoring maintenance actions on a management level,
where the indicators are based on cost, time, man-hours, inventory value, work
orders and cover of the criticality analysis, see [4]. Key performance indicators
(KPIs), which focus on critical success factors and goals of the organization, differ
depending on the organization [5]. Fully automated quantifiable KPIs would be

Fig. 1 Typical architecture of maintenance information system
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very useful. Overall equipment effectiveness (OEE) is a set of broadly accepted
non-financial metrics which reflects manufacturing success [6]. Performance is
evaluated by process capability indices (PCIs), which assume that process output is
approximately normally distributed. Harmonised indicators, KPIs and PCIs can be
handled as infrequent process measurements [3].

Real-time risk analysis requires more online measurements, where different
wave form signals are important new sources of information. Vibration measure-
ments provide a good basis for condition monitoring: elevated signal levels are
detected in fault cases [7]. Mobile machines in underground mines introduce
challenging environments for the measurements [8]. In rolling processes, torque is
one of the most important measurements: the monitoring of rolling mill main drives
requires torque to be measured directly at spindles or motor shafts since the main
drives are highly dynamically loaded, which affect the product and the residual life
time of drive components [9].

Efficient signal processing and feature extraction are essential in getting the
waveform signals to real-time use: generalised norms [10] in wide variety of
applications [11]. Linguistic equation (LE) models [12] based on nonlinear scaling
[13] and data-driven tuning of the scaling functions [14] bring all the measurements
to the same informative scale. Statistical process control (SPC), which was origi-
nally developed for quality control, is now widely used in fault detection and
diagnostics [15]. Aggregation by features and indices is necessary for waveform
signals. Nonlinear scaling is used in the same way for all the levels. Natural
language can be used for all types of data [16].

Fig. 2 Detecting operating conditions and faults
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This paper focuses on possibilities of the real-time risk analysis and feasible
approaches to be used in the development. Signal analysis and feature extraction
discussed in Sect. 2 are essential in intelligent analysers (Sect. 3) and in fatigue
prediction (Sect. 4). Physical models are discussed in Sect. 5.

2 Signals and Features

Feature extraction uses derivation and statistical analysis. Real-time analysis can be
based on the generalised norms [10], which has numerous applications [11].
Generalised spectral norms include the frequency domain in the time domain
analysis [17].

2.1 Derivation

The calculation of the time domain signal xðaÞðtÞ, which is based on a rigorous
mathematic theory [18], is performed with three steps. The fast Fourier transform
(FFT) is used for the displacement signal xðtÞ to obtain the complex components
Xkf g; k ¼ 0; 1; 2; . . .; ðN � 1Þ: The corresponding components of the derivative

xðaÞðtÞ are calculated as follows:

Xa k ¼ ðixkÞaXk; ð1Þ

where x ¼ 2p f , a 2 < is the order of derivation and f has integer values. Finally,
the resulting sequence is transformed with the inverse Fourier transform FFT−1,
which produces the derivative signal. Since the vibration analysis is now based on
the acceleration signals, the components of the derivative are obtained with an
appropriate order of derivation a� 2 [10].

2.2 Generalised Norms

The generalised norm defined by

sMp
a

�� ��
p¼ ðsMp

aÞ1=p ¼ ð1
N

XN
i¼1

xðaÞ
i

�� ��pÞ1=p; ð2Þ
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where a 2 < is the order of derivation, the order of the norm p 2 < is non-zero, s is
the sample time and N is the number of measurement values in the sample. The
norm (2) includes the norms from the minimum to the maximum, which correspond
the orders p ¼ �1 and p ¼ 1, respectively. The norm values increase with
increasing order. The computation of the norms can be divided into the computation
of equal sized sub-blocks, i.e. the norm for several samples can be obtained as the
norm for the norms of individual samples [10]. This which means that norms can be
recursively updated.

2.3 Generalised Spectral Norms

Generalised spectral norms are calculated from the frequency spectrum by

Xak kp¼ ð1
N

XN
k¼1

Xkf gðaÞ
��� ���pÞ1=p; ð3Þ

where Xkf g is the sequence of complex numbers, representing different frequency
components of the signal [18]. This kind of norm can be used, to provide for
information about the change in signal in a certain frequency range or frequency
ranges.

3 Intelligent Analysers

Intelligent condition and stress indices are calculated from these features by non-
linear scaling. The nonlinear scaling approach, which also uses the norms and
moments, improves sensitivity to small fluctuations.

3.1 Nonlinear Scaling

The basic idea of the linguistic equation (LE) methodology is the nonlinear scaling
developed to extract themeanings of variables frommeasurement signals. The scaling
function scales the real values of variables to the range of [−2, +2] which combines
normal operation [−1, +1] with the handling of warnings and alarms. The scaling
function contains twomonotonously increasing functions: one for the values between
−2 and 0, and one for the values between 0 and 2 [12]. Constraints of the monotonous
increase defined in [13] and the data-driven tuning of parameters introduced in [14]
form the current design methodology. Knowledge-based information obtained from
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natural language is translated to the same value range [−2, 2] with the indices and
indicators calculated from numerical values [16].

3.2 Stress Indices

Cavitation is detected well with the feature maxð 3M2:75
4

�� ��Þ, whose scaled value is

the cavitation index Ið4ÞC . The index levels shown in Table 1 are consistent with the
vibration severity criteria defined in VDI 2056 [19]. Similar results obtained in a
rolling mill are used for fatigue prediction, see Sect. 4.1 [20]. Effects of the stress
are studied for a mobile machine in an underground mine [21].

3.3 Condition Indices

The norms maxð 15M1
4

�� ��Þ and maxð 15M4:25
4

�� ��Þ are highly sensitive to faulty situa-
tions in the supporting rolls of a lime kiln. The corresponding condition indices are
consistent with the vibration severity criteria, which originate from VDI 2056 [19].
Research is continuing for a mobile machine in an underground mine, where con-
dition indices are obtained repeatedly in similar steady operating conditions [21].

3.4 Generalised SPC

Statistical process control (SPC) is used in monitoring a process through the use of
control charts [15]. SPC is extended to nonlinear with a large set of non-Gaussian
statistical distributions. It operates without interruptions in short run cases and
adapts to the changing process requirements. The approach has been tested in two
application cases: a rolling mill and an underground load haul dump (LHD)
machine [22].

Table 1 Cavitation index and vibration severity criteria [14]

Cavitation index Cavitation level Severity

Ið4ÞC \� 1 Cavitation-free Good

�1� Ið4ÞC \0 Short periods of weak cavitation Usable

0� Ið4ÞC \1 Short periods of cavitation Still acceptable

Ið4ÞC � 1 Cavitation Not acceptable
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3.5 LE Models

Linguistic equations (LE) models are linear equations

Xm
j¼1

Ai jXj þBi ¼ 0; ð4Þ

where Xj is the linguistic level for the variable j; j ¼ 1. . .m. Each equation i has its
own set of interaction coefficients Aij; j ¼ 1. . .m: The bias term Bi was introduced
for fault diagnosis systems. Various fuzzy models can be represented by means of
LE models, and neural networks and evolutionary computing can be used in tuning.
The methodology provides a flexible environment for fault diagnosis applications,
software sensors, risk analysis and detection of sensor failures [2].

Nonlinear effects are handled with the scaling functions, i.e. intelligent indices
can be used directly in the models to build more specific indices: two scaled
features are combined in the lime kiln case [14]; cavitation indices were also earlier
combinations of two scaled features [23].

4 Fatigue and Wear Prediction

Fatigue is caused by repeated loading and unloading. The mechanism proceeds
through cracks formed when the load exceeded certain thresholds. Structures
fracture suddenly when a crack reaches a critical size. Intelligent stress indices
based on the nonlinear scaling provide good indicators of the severity of the load.
The Wöhler curve is represented by a LE model,

IS ¼ log10ðNCÞ; ð5Þ

where the stress index IS can be a scaled value of stress or a scaled value of a
generalised norm obtained from signals. The contribution of the stress is calculated
in each sample time, which is taken as a fraction of the cycle time. The cumulative
sum of the contributions indicates the deterioration of condition and the simulated
sums can be used to predict the failure time [20].

4.1 Roller Mill

Torque measurements collected from a rolling mill have been used in the testing of
the approach. The feature is a combination of two norms and the stress index is
calculated from two scaled features obtained by using the nonlinear scaling
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approach. The resulting linguistic S-N curve is linear (Fig. 3) and a normal S-N
curve is formed from it by scaling to the feature values: a large number of passes
have low stress indices. The high stress cases are seen as a very steep rise in the
semilogarithmic curve [20].

4.2 Load Haul Dumper (LHD)

Cumulative stress analysis uses vibration measurements from the front axle of a
load haul dumper (LHD). These machines operate in harsh conditions where fail-
ures may be difficult to repair. The machine is working in an underground mine.
The cumulative stress increases fast during the high stress periods and increase is
practically stopped when the stress is low since only stress indices are taken into
account in the cumulative stress [21].

5 Maintenance

The described approach allows the prediction of system behaviour using either an
analytical formulation of system processes (including degradation mechanisms)
based on known principles or an empirically derived relationship. Many investi-
gations into degradation mechanisms have been conducted, producing empirical
damage models that are valid in a narrow range of conditions, such as wear, fatigue
cracking and corrosion. Specific degradation mechanisms are generally studied and
characterised under standard test conditions. Physics-based models are highly
useful for describing the dynamics of time-varying systems, including different
operating modes, transients, and variability in environmental stressors, but at the
expense of the effort required to develop and validate the model [24].

The key challenge for a degradation model is to develop appropriate constitutive
relationships for the condition decrease during degradation accumulation and to
observe the complementary variables that characterise the relationship.

Fig. 3 Linguistic S-N curve
presenting the analysed passes
[20]
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In the railway field, there are many physical models already validated that
characterise the degradation of both track and rolling stock. For instance, the
deterioration of track quality is often assumed to be proportional to the current
quality. In this sense, a track in good condition deteriorates more slowly than a track
in bad condition. This is usually modelled with the equation

QðtÞ ¼ Qo � ebt: ð6Þ

Here, Qo is the track quality at time t = 0 and the parameter b is the deterioration
rate characterising the behaviour in time. That is, the quality measure evolves
according to an exponential model.

In Sweden, geometrical measurements are taken approximately every
1–2 months, excluding the winter. In Fig. 4, we fit the exponential model to the
available data, ranging from April 2007 to September 2012 (21 geometrical mea-
surements total). The exponential model, however, can only be fitted to deterio-
ration branches with more than four measurements. However, the selected condition
indicator is not enough for assets with repair and reliability restoration. In Fig. 4, the
red lines represent maintenance actions on the track which eventually restore par-
tially the reliability and certainly modify the condition indicator. These maintenance
actions must be assumed as different since the maintenance performance always
depends on many factors and the assumption of “as good as new” after intervention
must be ignored.

As a summary, we find that this scenario of degradation combined with main-
tenance is a series of condition indicators modified by both mechanisms (degradation
and restoration) and therefore the best tool for this modelling is time series [25].

Effects on railway data shown in Figs. 5 and 6 provide a more realistic
description of the degradation in combination with maintenance, information
that necessarily must be fused to get the holistic view of the asset management [26].

Fig. 4 Good fit of work orders and adjusted exponential model for sigH value
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The blue lines represent the exponential degradation models of the homogeneous
sections, whereas the vertical (red) lines correspond to the work orders carried out
in the homogeneous section. The thresholds SL and ML represent the Service Level
and Maintenance Level, i.e. thresholds which require maintenance intervention if
reached (proposed by the international standards) or levels of comfort worse than
required in the SLA (Service level agreements).

The Q-value corresponds to the health index SOL, which can be calculated from
the condition index by

SOL ¼ 1� 2� I�C
4

ð1� dÞ; ð7Þ

where d is the value of SOL index when the condition index I�C ¼ �2. In [27], SOL
was calculated from the cavitation index, which is a stress index.

In summary, condition monitoring systems modelled as proposed in the previous
chapter can be successfully combined with work order information from the CMMS
by the means of using thresholds for features in time series data [28]. This
assumption introduces in the model not only the degradation mechanisms but also
the eventual restoration of the system.

Fig. 5 Degradation of Q-value

Fig. 6 Degradation followed by restoration of Q-value after a work order (WO)
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6 Conclusions

Compact solutions have been developed for all the necessary steps of the real-time
risk analysis: (1) features are specific for fault type and components, (2) intelligent
analysers bring all the measurements and features to the same scale, (3) dynamic LE
models based on intelligent indices provide predictions on fatigue and wear. All the
methodologies are developed for calculations to be done in each sample time used
in process control.
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Malfunction in Railway System
and Its Effect on Arrival Delay

Sida Jiang and Christer Persson

Abstract In this research project, we have established a set of advanced statistics
models that quantify the cause-effect relation between infrastructure failures and
train delay. The major model we employed in this project is called the “Wiener
process model”, and we are the first researching team to implement the
Wiener-process model into traffic analysis area with large scale network data in
Swedish railway. The data we based our research on includes a 1) train movement
record database—TFÖR 2) infrastructure error reporting system—0FELIA 3)
railway facility database—BIS. For TFÖR alone, there is a 27-million data record
over 5 different rail classes (from rail class 1, major railway around big city areas to
rail class 5 least loaded rail) and 3 different passenger train types (x2000, regional
train and commuter train). By merging the database listed above, a specified wiener
process model has been estimated for the primary delay caused by system errors
and the secondary delay by interaction of trains. The model also quantifies the
effects of characteristics of railway system over different rail classes and operation
manners. In addition, the Wiener process model also enable further research to
derive the fundamental relation between capacity, speed and density (inverse
function of time gap) in railway context.

Keywords Cause-effect relation � Wiener process � System errors � Arrival delay
and Meso-level simulation
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1 Introduction

The railway system is a complex system and errors that occur in the system can
cause delay for the passengers travelling by train. However knowledge of the
relationship between railway errors and travel delay, in the current situation is
relatively deficient. The aim of the project is to put forward the knowledge by
estimating the relationship between infrastructure-related errors that occur in the
system and resulting delay in railway.

The alternative solution available today is basically micro-level simulation, e.g.
by means of RailSys [1], to simulate how the system failure affects the delays in
train traffic. In the current situation, this is an option only for certain individual
sections of the railway system due to the regard of data complexity and the long
simulation time. Besides requiring detailed features of the studied railway network,
self-defined delay distribution needs also to be constructed in Railsys simulation
[2]. Wiener process, on the other hand, is a statistical model to quantify cause-effect
relationship between errors and delays that can be applied to general analytical
scenarios, such as varied time table frequency, real-time headway and track type.
The arrival delay distribution derived from the proposed Wiener process can also
lay out a basis for delay distribution input to Railsys and other micro-simulation
tools in railway research.

In this study, rather than a general model that covers the whole railway system,
the individual trains are described individually in the model, but far less detailed
than in standard simulation model. The level of details to predict the effects of
individual trains will be less than in the simulation model, but the opportunities to
analyze the majority or large parts of the system increases. The chosen model
estimates the travel time probability distribution for individual trains and route
segments. The transport model at this context is called the meso-level simulation,
while usual practice uses the RailSys system at the micro level.

The model used is a so-called stochastic diffusion. It is a flexible model that
contains great customization options which can be applied in the sector. In this
project, the main purpose was to find out in what extent has break down of the railway
system affected arrival delay, and how to capture primary and secondary delay in the
Wiener process model, without regard to details of the whole railway system.

2 Definition and Denotation

2.1 The Wiener Process

The Wiener Process (W) is frequently referred as Brownian motion. One way to
modify the Wiener Process in the context of train movement is to introduce a
systematic drift (µ) in which the train moves towards the destination while the
infrastructure failures yield the diffusion (diffusion coefficient σ) against the
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direction of the drift. If the train starts at station say W(0) = d with distance d to the
next station and it takes time T—often termed as first passage time or hitting time,
thus T = inft≧0{t:W(t) = 0}. The distribution of T is an inverse Gaussian distribution
and the process X(t) = d − µt + σ W(t) is called a Wiener process [3]. The Wiener
process has been frequently applied in pure & applied mathematics, physics, eco-
nomics and quantitative finance (in particular the Black-Scholes option pricing
model). The application of the results of “hitting time” to multiple channel queues
in heavy traffic is firstly discussed by Lglehart and Whitt [4].

2.2 Arrival Delay

In stochastic process theory, the Wiener Process is featured with its stationary and
independent increments which give great convenience in practicing frailty theory in
railway context; nonetheless the train movement is decomposed into a set of
independent movements over railway links between two consecutive stations/stops.
In order to avoid the violation of the independency of the decomposing train
movement over different links, we thereby introduce arrival delay as shown in
following formula [5] (Fig. 1):

Arrival delay ¼ arrival time�planned arrival time�departure delay ð2:1Þ

So that the defined arrival delay is independent of accumulated delay from
previous links, in the same manner that the probable arrival delays of links after-
wards is also independent of the studied link. The study focuses on the passenger
traffic and the station pairs that have the correct record of arrival time.

2.3 Primary and Secondary Delay

In railway operation, train delay is usually categorized into primary and secondary
delay due to its causes. Primary delay is majorly caused by malfunctions in

Departure delay

Arrival delay

Station 1

Station 2

Time (t)Planned Planned 

New planned arrival

arrivaldeparture

total Fig. 1 Diagram of relation
between arrival delay, arrival
time, planned arrival time and
departure delay
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infrastructure (signal, track, communication etc.) or train. The secondary delay is
known as “knock-on” delay in the sense that delays may be propagated to other
trains due to interaction between trains [6]. In order to improve the robustness of the
real-time railway operations, buffer time is supplemented in the time table to absorb
the delay caused by both primary and secondary delay. The optimization of time
table with regards to time supplement has frequently discussed in railway simula-
tion and practice [7], yet the system malfunction and interaction between consec-
utive trains is more stochastic than the planned time table, therefore in this study we
have also investigate the real-time time gap between consecutive trains instead of
supplement time in time table.

All the errors of the Swedish railway system is registered in a database called
0FELIA. To derive the cause-effect relation between railway system and train
arrival delay, we have firstly matched 0FELIA with a train movement database
called TFÖR using the shortest path method. Hence, each row of the combined
dataset is an individual train movement with system error(s) that occurred at the
same link and can probably affect the train. In addition, the closest train movement
ahead of the studied train movement (upon the same link) is also attached in the
same row of combined dataset. To model how the interaction between consecutive
trains yields secondary delay, we also computed the headway or time gap between
closest train pairs. Our combined dataset thereby integrates train movement infor-
mation with affecting system errors and the headway to the train ahead.

3 Data and Method

3.1 Overview of the Model

Each and every individual train movement between two train stations/stops can be
specified in the following Wiener process model [3]:

XðtÞ ¼ d � ltþ rWðtÞ ð3:1Þ

where
t is time;
X(t) is the position of the train from the starting station along the link measured in

kilometer. Eg. X (0) = d
W(t) is a standard Wiener process, VarW(t) = t
d is the length of the link (kilometer), d > 0
µ is the average speed that train moves over the link
σ is the variation of the location of train (VarX(t) = σ2t)
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With d and µ > 0 yields a negative sign for µ in (3.1) such that the train started
from X = d to the station along the link at the position X = 0.

The arrival time Ta in the terminology of wiener process is called “first hitting
time at 0”, and can be formed as follows:

Ta ¼ inf t : XðtÞ ¼ 0f g ð3:2Þ

The arrival time Ta follows the inversed Gaussian distribution and can be esti-
mated through maximum likelihood. Two important features can be derived from
the Wiener process model for average travel time E(Ta) and the variation of travel
time Var(Ta) over the studied link:

EðTa ¼ d
l
Þ ð3:3Þ

Var Tað Þ ¼ dr2

l3
¼ EðTaÞ r

2

l2
ð3:4Þ

The travel time and its variation are thus easily estimated through the average
speed and variation of train location from the standard Wiener process model.
Important characteristics of the railway system have been modelled as the variant of
the average speed μ and location variation σ. Assuming Z is the independent
variable matrix including majorly:

• Rail class
• Train type
• System errors
• Time gap

Then

l ¼ Zb ð3:5Þ

r ¼ expfZdg ð3:6Þ

Exponential transformation is used to assure the positive sign of σ. β represent
the coefficients for independent variables and is estimated through
maximum-likelihood, through coefficients we can further calculate e.g. the effects
of changing corresponding railway characteristics upon the average speed and
arrival delay.
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3.2 Model Specification

Specification of average speed and variation component is formulated with a series
of variants that represent the characteristics of the corresponding railway system:

l ¼ b1 þb2Rail Class2þ b3Rail Class3

þ b4RailClass4þ b5RailClass5þ b6RailClassNAþ b7x2000þb8CommuterTrain

þ b9
timegapþ 1

þ b10TotalErrorsþ b11TotalErrors � RailClass4

þ b12TotalErrors � RailClassNAþ b13RailClas2
timegapþ 1

þ b14RailClas4
timegapþ 1

ð3:7Þ

Constant b1 is user specified and in the formula above it represents the reference
rail class and train type, that is rail class 1 and regional passenger train. Rail class
NA is one small part of data that has missing values for rail class information. Total
errors are the system errors registered in 0FELIA that occurred yet not fixed at the
arrival station when the train starts. Alternatively, system malfunction can be cat-
egorized into errors of different types: rail, signal, communication, electricity etc.,
but we only use the number of errors since certain error category may not satisfy the
required minimum size due to rare occurrence.

The proposed hypothesis for the effect of the time gap upon the secondary delay
is up to certain limit, the marginal effect of one unit time-gap increment is
diminished over its magnitude. Therefore, the inverse function is introduced to
describe its non-linear effect. The non-linear transformation has also been tested
significantly to improve the goodness of fit for the model.

The specification of variation of location σ basically follows the same design as
the average speed; nonetheless we applied an exponential function to assure the
positive sign of σ:

r ¼ expfb15 þ b16RailClass2þ b17RailClass3

þ b18RailClass4þ b19RailClass5þ b20RailClassNAþ b21x2000

þ b22CommuterTrainþ
b23

timegapþ 1
þ b24TotalErrors

þ b25TotalErrors � RailClass2þ b26TotalErrors � RailClass3
þ b27TotalErrors � RailClass4þ b28TotalErrors � RailClass5
þ b29TotalErrors � RailClassNAþ b30RailClas2

timegapþ 1
þ b31RailClas4

timegapþ 1
g

ð3:8Þ

More combined total errors with rail class in the formulation of location varia-
tion are proved significantly.
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3.3 Data and Sampling

There are 27.6 million train movements for 2009 in the TFÖR database, of which
contains 18.2 million records for passenger traffic. Each train movement record is a
combination of train number, train type, rail class (bantyp in Swedish) and travel
time related. The large data size motivates a statistical sampling through TFÖR then
combined with 0FELIA and time gap to corresponding closest train.

In the following tables, two ways to look at the “representativeness” of pas-
senger train movement over Sweden in 2009 from TFÖR database are presented
(Tables 1 and 2):

The sample containing 90 000 passenger train movement is selected in the
project to represent the identical structure of different rail classes in Sweden, 2009,
while with 100 unique train numbers for each train type, the weights of different
train type is computed for further modal adjustment and the interpretation of results.
After data processing we have obtained 35 596 observations as our input data.

4 Results and Summary

4.1 Estimation Results

The log-likelihood of the model is −77 023.76 with total 35 596 observations. By
average, x2000 on rail class 2 has the highest speed while rail class 5 or commuter
train in rail class 1 has significantly lower speed in the Swedish railway network.
For primary delay: total errors across all rail classes have negative effects upon
average speed, yet for rail class NA even more negative than any other rail class
which may be quite meaningful to identify its rail class in further studies. For

Table 1 Division of
passenger train movement
over different train types in
TFÖR, 2009

Train type Share (%)

X2000 12

Commuter train 42

Other trains 46

Table 2 Division of
passenger train movement
over different rail classes in
TFÖR, 2009

Rail class Share (%)

1 37.7

2 34.9

3 21.4

4 5.7

5 0.4

In total 100.0

Note Rail class 1—metropolitan areas e.g. Stockholm to 5—the
least traffic loaded rail class
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secondary delay: significant effects of time gap has been identified for rail class 2 &
4 with opposite signs compared with rail class 1, but in general the time gap has, at
different extent, a positive effect to increase the mean speed. An extra time is often
added in the design of the time table to diminish the potential secondary delay,
more reliability can be gained through a time gap plug-in in rail class 4 since it is
usually single track and less maintained. Certainly, the fundamental relation
between A) traffic flow (indicated by rail class) & mean speed B) traffic flow &
density (can be formed by time gap) is also non-linear in railway context. It needs to

Table 3 Estimation results
for passenger train sample

Coeff. Parameter Value P-value

Average speed μ

β1 Intercept 1.73 <0.0001

β2 RailClass2 0.32 <0.0001

β3 RailClass3 0.04 <0.0001

β4 RailClass4 0.02 0.6068

β5 RailClass5 −0.61 <0.0001

β6 RailClassNA 0.38 <0.0001

β7 x2000 0.46 <0.0001

β8 Commuter Train −0.09 <0.0001

β9 1/(timegap + 1) −0.68 <0.0001

β10 Total errors −0.16 <0.0001

β11 RailClass4*total errors 0.10 0.0266

β12 RailClassNA*Total errors −0.02 <0.0001

β13 RailClass2* (1/(time gap+1)) 0.38 <0.0001

β14 RailClass4* (1/(time gap+1)) −0.37 0.0007

Variation of location σ

β15 Intercept 0.18 <0.0001

β16 RailClass2 0.24 <0.0001

β17 RailClass3 −0.07 <0.0001

β18 RailClass4 0.59 <0.0001

β19 RailClass5 −0.16 0.6886

β20 RailClassNA 0.13 <0.0001

β21 x2000 0.11 <0.0001

β22 Commuter train −0.19 <0.0001

β23 1/(timegap+1) 0.33 <0.0001

β24 Total errors −0.06 <0.0001

β25 RailClass2* total errors 0.11 <0.0001

β26 RailClass3* total errors 0.13 <0.0001

β27 RailClass4* total errors −0.22 0.0004

β28 RailClass5* total errors 1.05 0.0321

β29 RailClassNA*total errors −0.06 <0.0001

β30 RailClass2*(1/(time gap+1)) −0.83 <0.0001

β31 RailClass4*(1/(time gap+1)) −2.56 <0.0001
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be explored further through different modelling approaches, here is just a priori
variant (Rail Class X* (1/(time gap+1))) to test the significance of a combined
variable as well as the cause-effect relation between time gap and secondary delay.
The coefficient estimation can be seen in Table 3:

In Fig. 2, a comparative result has been analyzed and illustrated where we can
find that the time gap has in general an “approximately monotone” positive effects
upon corresponding mean speed, yet all the effects is converged to certain speed
level for different rail classes. Furthermore, the diminishing marginal curve means
that it is more effective to plug in short unit of time in heavily loaded traffic
situation than otherwise. Rail class 1 & 3 been affected most since rail class 1 has
quite intensive train operations, also with a mixture of different train type at large
extent; rail class 3 is almost all single track and to great extent subjected to the
minimum time gap from both directions.

The parameter σ describes the variation of train location; a higher value yields
higher variation of travel time. The effect upon variation is an exponential function
of estimated coefficients. We have noticed that the sign for time gap inversion in rail
class 1 is positive which means with time gap increasing the variation will
diminishes in the amount of exp(0.33) ≈ 1.39, in a way to reduce the unreliability of
travel time. Again the combination of rail class and time gap needs to be further
adjusted so that it will be comparable with fundamental relation in roadway.

4.2 Summary

The research has specified the Wiener process model and implemented it into a
large scale simulation in the Swedish railway system. The merging of train
movement database TFÖR and system error registry 0FELIA together with data
processing for important variable such as time gap, has enabled the railway
administrator to investigate at the meso-level both primary and secondary delay
with respect to a series of important characteristics over railway system. To enrich
the understanding of the fundamental relation between capacity, speed and density
(inverse function of time gap) in railway context, future research needs to firstly
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build upon more updated and detailed database e.g. Lupp such that track infor-
mation for train movement and travel time in seconds can be employed.
Furthermore, the application of the research results is not limited to time table
design or railway operation to minimize travel delay; we also foresee strong
motivation to calculate the elasticity as a basis for socio-economic effects of dif-
ferent maintenance strategies.
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On-Condition Parts Versus Life Limited
Parts: A Trade off in Aircraft Engines

Veronica Fornlöf, Diego Galar, Anna Syberfeldt and Torgny Almgren

Abstract Maintaining an aircraft engine is both complex and time consuming since
an aircraft is an advanced system with high demands on safety and reliability. Each
maintenance occasion must be as effective as possible and the maintenance need to
be executed without performing excessive maintenance. The aim of this paper is to
describe the essence of aircraft engine maintenance and to point out the potential for
improvement within the maintenance planning by improving the remaining life
predictions of the On-Condition parts, i.e. parts that are not given a fixed life limit.

Keywords Aircraft engine maintenance � Remaining useful life � Reliability �
On-Condition parts

1 Introduction

Aircraft engines are one of the most critical parts of an aircraft and are therefore
where most of the maintenance efforts are allocated.

Efficient maintenance of an aircraft focus on how to ensure the realization of the
inherent safety and reliability levels of the aircraft, and also to restore safety and
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reliability to their inherent levels when deterioration has occurred [1]. Aircraft
maintenance does also occupy a key position in airline operation because mainte-
nance is essential to the safety of the passengers and the reliability of airline
schedules [2]. An unexpected failure that could lead to an aircraft crash must be
avoided by all available means. Maintenance, and to perform correct maintenance,
is therefore a prerequisite for a successful aviation industry.

Maintenance is the combination of all technical and associated administrative
actions intended to retain an item in, or restore it to, a state in which it can perform
its required function. The goal is to prevent fatal damage for machine, human or
environment and to prevent unexpected machine failure by using condition based
maintenance planning to increase safety of production and quality control. Figure 1
below shows a breakdown of different maintenance strategies.

Basically there are three different maintenance strategies [3]:

• Run-to-break is the most simple maintenance strategy that is often used for
systems that are cheap and where damage does not cause other failures. The
machine or system is used until it breaks. It is commonly used for consumer
products.

• Preventive Maintenance is the most common maintenance method for industrial
machines and systems. With this strategy maintenance is performed in fixed
intervals. The intervals are often chosen so that only 1–2 % of the machine will
have a failure in that time.

• Condition-Based Maintenance is also called predictive maintenance.
Maintenance is dynamical planned based on machine or system condition.
Condition-Based Maintenance does have advantages compared to the other two
strategies, since modern measurements and signal-processing methods are used
to accurately diagnose item/equipment during operation. It though requires a
reliable condition monitoring method. One area within this part of maintenance
is condition monitoring which aims to continuously observe wear-related vari-
ables throughout a system’s lifetime to determine its degree of deterioration [4].

Fig. 1 Breakdown into
different maintenance
strategies
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Maintaining an aircraft engine is not only complex and time consuming. It is,
above all, expensive. Direct engine costs actually accounts for approximately 30 %
of the total maintenance cost for an aircraft [5]. Maintaining a fleet of aircrafts also
means challenges from a business perspective since the goals of maintenance and
operations costs may conflict with desired service levels and safety levels [6, 7]. It
is therefore of importance that each maintenance event is as efficient as possible to
lower the costs and to be time efficient without adventuring the safety issues. On the
other hand, it is also of major importance not to perform excessive work and/or
component replacements and thereby throw away components with remaining life
or to reduce engine availability.

2 Current Maintenance of Engines

Aircraft engine maintenance can be carried out at three separate maintenance levels
[8]; the Operation level (O-level) is the lowest level activity and is carried out in the
flight-line environment. For example are onboard engine performance monitoring
equipment used to record engine and aircraft performance data at this level in order
to detect defects or the need for routine engine maintenance [9]. At the O-level, the
main focus for the maintenance is to perform scheduled and unscheduled inspec-
tions of the engine while it still is placed in the aircraft. This level also includes
repairs, replacements and services which can be performed while the engine is still
installed in the aircraft. The next level is the intermediate level (I-level) and the
highest level is called Depot level (D-level) [10]. Main focus for the I-level is
scheduled and unscheduled maintenance and to repair or perform service on
line-replaceable units (LRUs) that can be performed without sending the engine or
LRUs to D-level. D-level is the level were larger overhauls and maintenance of
LRUs can be carried out. Also are inspections, services and replacements and
repairs of shop-replaceable units (SRUs) are also performed at this level and nor-
mally D-level is additionally responsible for spare part distribution.

Aircraft engine maintenance has historically been carried out at fixed time
intervals between major overhauls, but has then moved on to be carried out when
needed, with no fixed time intervals [11]. Instead, services and controls of the
engine system have been implemented according to a service plan to reduce the
number of maintenance occasions to not perform excessive maintenance and only
maintain the engine when needed.

In the aviation industry two main directions can be identified, the civil aircraft
industry and the military aircraft industry. The aircraft engines used in both these
specializations are based on the same techniques and constructions. The military
engines are however exposed to higher loads, and thereby higher life consumptions,
then the engines in the civil aviation industry. A military aircraft during a flight
mission can for example vary its flight altitude many times, while a civil aircraft
normally starts and climbs to a specific altitude until it descends to land.
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Federal regulations govern all aircraft engine related matters. To maintain an
aircraft mainly three sets of standards need to be fulfilled. First the standards in the
manufacturer’s Federal Aviations Administrations (FAA)-approved maintenance
manuals [12]. Next are the standards for the maintainers’ FAA-approved progres-
sive inspection and maintenance program that must be met. Finally, the maintainer
must meet the additional airworthiness standards from the Code of Federal
Regulations (CFR) as well as the regulations concerning records, personnel and
working conditions [13].

3 Selection of Maintenance Tasks

An aircraft engine consists of three different categories of components; Life Limited
Parts (LLP), On-conditions Parts (OC-parts) and consumables (see Fig. 2). LLPs
are components with a fixed life limit and are exchanged when they have reached
their life limits [12] since they are safety critical (i.e. a breakdown may cause an
engine breakdown that are so serious that it would cause an aircraft crash). OC-parts
are “stochastic” parts that are approved for further use as long as their condition is
within approved limits. There can also be scenarios where a LLP has not reached its
life limit, but cannot be approved for continued service due to other aspects as
cracks, fretting or similar. It should be noted that an LLP also can be evaluated as
an OC-part. The third group of components, “consumables”, is a small group of
components that are exchanged each time they are removed from the engine.

In order to move from fixed maintenance intervals to maintain the engine when
required, an on-condition maintenance concept must be designed to guarantee
reliability. This is one of the reasons that Reliability Centered Maintenance
(RCM) was developed within the aircraft industry. The RCM process is designed to
focus engineering attention on component level in a formal and disciplined manner,
leading logically to the formulation of a maintenance strategy plan. Benefits with
RCM also include the development of high quality maintenance plans with
decreased lead time and at lower cost [14].

RCM methodology is used to generate and optimize a maintenance program,
including inspection requirements, that focuses on preventive maintenance on the

Fig. 2 Component categories in an aircraft engine
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specific failure modes that are likely to occur. The methodology is based on the
assumption that the inherent reliability of equipment is a function of the design and
the built-in quality [15–19]. Theories related to RCM mean that performing
maintenance not only should be performed to avoid failures, but also to prevent or
at least decrease consequences caused by failures. That is why RCM focuses on
retaining functions instead of focusing on the hardware itself [15, 16]. This means
that RCM treats components differently depending on how important they are
considered to be for the equipment and the system functions. This is also the reason
why the components are divided into LLPs, OC-parts and consumables. If the
probability that an event could cause large consequences for the systems, like a
breakdown, components related to this event are found to have higher importance.
Preventive maintenance is then used to act as a barrier to remove the consequences
of failure, or at least to lower them to an acceptable level.

An implementation of RCM, The Air Transportation Association’s (ATAs)
Maintenance Steering Group 3rd Task Force (MSG-3) is the only process that is
approved by the FAA for the development of a Maintenance Review Board Report
(MRBR) for transport aircrafts. MSG-3 was originally developed for the Major
Airlines, and was later also adopted by Regional Aviation Users. MSG-3 is how-
ever found to be an expensive and time-consuming process were a MSG-3 process
for a propulsion system takes approximately 2000–2500 man hours. Even though
this is a significant amount of time, MSG-3 has been proven to provide significant
payback to operators in minimizing preventative maintenance costs [20]. MSG-3
outlines the general organization and decision process for determining the sched-
uled maintenance requirements initially projected for preserving the life of the
aircraft, with the intent of maintain the inherent safety and reliability levels of the
aircraft [21].

In order to evaluate and classify the failure modes into one of the three categories
below, the decision process illustrated in Fig. 3 is used [22].

1. Safety related
2. Outage related, were the system not will fulfill all its requirements
3. Economic related

If a failure mode is found to be safety related, design modifications are
mandatory. For failure modes within bullet 2 and 3 above, the maintenance options
can for example be time directed tasks as on-condition based maintenance,
run-to-failure, and design modifications [22].

While operation experience is accumulated, additional adjustments may be made
by the operator to maintain an efficient maintenance schedule [24]. The ATA
MSG-3 (2207) states that the objectives of scheduled maintenance of aircraft are
[1]:

To ensure realization of the inherent safety and reliability levels of the aircraft.

• To restore safety and reliability to their inherent levels when deterioration has
occurred.
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• To obtain the information necessary for design improvement of those items
whose inherent reliability proves to be inadequate.

• To accomplish these goals at a minimum total cost, including maintenance costs
and the costs of resulting failures.

Finally each aircraft, and thereby also its engines, has its own maintenance
requirements which are designed to keep the aircraft in an airworthy condition.
These aircraft maintenance requirements typically originate from the aircrafts’
manufacturer and can be revised throughout the life of the aircraft by the manu-
facturer, the FAA and/or the Maintenance Review Board (MRB) [2].

4 The Need for Accuracy in the Reamaining
Useful Life (RUL) Prediction

The main drivers for the development of a failure prediction concept are the costs of
a delay, or cancellations, of an aircraft departure or arrival. Delays can be caused by
unscheduled maintenance between aircraft arrival and departure.

The purpose of failure prediction is to give the aircraft operator the opportunity
to repair or replace a system during scheduled maintenance, if the system is not yet
broken but are predicted to be before the next scheduled maintenance. The main-
tenance case is as follows:

Fig. 3 Decision process for a RCM program. Source [23]
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1. A fault happens in flight.
2. Sensors detect the fault and report the fault to the cockpit.
3. The pilot/aircraft sends a maintenance request to the airport.
4. A maintenance mechanic checks the aircraft, when it is on ground.
5. The mechanic performs a fault search and a fault diagnosis.
6. Spare parts are ordered and a repair plan is made after the fault has been

identified.
7. When the spare parts arrive, it is possible to carry through the repair.
8. The aircraft is ready again after the repair.

It is possible that the fault identification, diagnostics and spare parts management
take too much time, so that the aircraft departure is delayed or even canceled.
A cancellation or delay causes significant costs for an aircraft operator.

However the RUL prediction must match the opportunistic maintenance per-
formed as a consequence of planned overhauls or similar actions. Indeed, when an
aircraft engine is sent to D-level for overhaul, either a LLP has reached its fixed life
limit or something indicates that something is wrong with the engine—in which
case the engine must be taken apart, further inspected and maintained. Oil supply to
critical parts, such as bearings, is vital for a safe operation. For monitoring fuel and
oil status, indicators for quantity, pressure, and temperature are used. In addition to
these crucial parameters, vibration is constantly monitored during engine operation
to detect possible unbalance from failure of rotating parts, or loss of a blade. Any of
these parameters can serve as an early indicator to prevent component damage
and/or catastrophic failure, and thus help reduce the number of incidents and the
cost of maintaining aircraft engines [25].

A maintenance occasion were a specific component needs to be removed makes
it however, often, necessary to remove other components to be able to removed the
component that needs to be maintained. This creates an opportunity to perform
additional maintenance which may be beneficial in a larger perspective. Each
maintenance occasion is for example related to fixed costs as leasing a spare engine,
transportations, and administration. It can therefore be of interest to perform more
maintenance at this specific maintenance occasion, so that this cost does not appear
more often than necessary, i.e. to avoid sub-optimization by performing the right
amount of maintenance at each maintenance occasion. To be able to calculate a
correct maintenance schedule for what to repair, at a specific maintenance occasion,
the estimated life limit for all relevant components must be available. At present is
though not life estimated available for all components since only the LLPs have a
fixed life limit defined, while the OC-parts instead are approved for continued
operation as long as they fulfill their requirements. It would thus be beneficial, from
a maintenance planning point of view, if estimates of the remaining life for the
OC-parts would also be available when planning a maintenance event.

Research within this area has for example been addressed by Enright et al. [26]
presented an approach for improving probabilistic life prediction estimated
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through the application of prediction methods. Actual F-16/100 usage data from
flight data records were integrated with a probabilistic life prediction code to
quantify the influence of usage on the probability of fracture for some engine
component. Bolander et al. [27] on the other hand developed a method to predict
the health of aircraft engine bearings, and their remaining useful lives, using spall
detection.

Aircraft engines are maintained at D-level by companies specialized in aircraft
engine maintenance. These companies’ benefit on how much maintenance and
spare parts they are able to sell. It can therefore initially be difficult to see how
performing too much maintenance could be unfavorable for them. But engine
maintenance relationships are built on long term basis, where both the engine
operators and maintainers benefits from doing the right amount of maintenance at
the right time. It is therefore of interest to both parties to perform the right amount
of maintenance since the engine operators’ goal is to maintain the engine with as
low Life Cycle Cost (LCC) as possible without endanger the safety aspect. The
maintainer, on the other hand, has an interest in performing the right amount of
maintenance to ensure customer safety, but also to be able to attract new customers,
make profit and to be competitive with other aircraft engine maintainers.

5 Proposed Framework

A need for better life estimates for the OC-parts has been identified and a frame-
work on how to estimate these life predictions will therefore be developed.

Large amount of historical data of failures and replacements of components and
subsystems are available since aircraft engine maintenance if strictly registered.
This data could be used to provide reliability analyses and reliability predictions for
the components and subsystems. This would give more accurate predictions on how
much longer the OC-parts could be kept in operation before being maintained
and/or replaced.

In addition, the use of physical parameters that are monitored during the oper-
ation of the aircraft engine is of interest as well as parameters that are inspected
during the maintenance. Both these kind of parameters could possibly by analyzed
by using Proportional Hazard Models (PHM) from the aircraft engine operation and
maintenance process as covariates.

This are two separate approaches on how to better estimate the life predictions
for the OC-parts in aircraft engines, and this research aims to determine which
approach that is the most suitable, or if they can be combined to reach better life
predictions for the OC-parts. Independently of which approach that is used, the
idea is to work with a hierarchy’s model, starting with an individual component
up to a system level covering the maintenance process for a complete aircraft
engine.
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6 Conclusions

Aircraft engine maintenance can be both complex and time consuming since each
aircraft is an advances system with excessive demands on safety and reliability. It is
therefore important to be as effective as possible at each maintenance occasion and
perform the right amount of maintenance every time.

This paper has described aircraft engine maintenance an identified a potential for
improvement within the maintenance planning. A need for research within this
topic has been identified to estimate the remaining life of the OC-parts so that their
use can be optimized in correlation to maintenance cost. This should be done to
keep the components in operation to an optimal level.

The current impression is that RAMS (Reliability, Availability, Maintainability,
Safety) modeling seems to be an appropriate technique, and that this type of data
eventually could increase the accuracy of the estimates of the remaining life for
OC-parts.
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In Need for Better Maintenance Cost
Modelling to Support the Partnership
with Manufacturing

Gary Linnéusson, Diego Galar and Mikael Wickelgren

Abstract The problem of maintenance consequential costs has to be dealt with in
manufacturing and is core of this paper. The need of sustainable partnership
between manufacturing and maintenance is addressed. Stuck in a best practice
thinking, applying negotiation as a method based on power statements in the service
level agreement, the common best possible achievable goal is put on risk. Instead, it
may enforce narrow minded sub optimized thinking even though not intended so.
Unfortunately, the state of origin is not straightforward business. Present mainte-
nance cost modelling is approached, however limits to its ability to address the
dynamic complexity of production flows are acknowledged. The practical problem
to deal with is units put together in production flows; in which downtime in any unit
may or may not result in decreased throughput depending on its set up. In this
environment accounting consequential costs is a conundrum and a way forward is
suggested. One major aspect in the matter is the inevitable need of shift in mind,
from perspective thinking in maintenance and manufacturing respectively towards
shared perspectives, nourishing an advantageous sustainable partnership.
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1 Introduction

In the eye of financial accounting all activity in business is cost generating, maybe
despite invoicing. All aspects and functions of a firm consume resources and add
costs, in that sense maintenance and manufacturing are alike. However resources
can be wisely or unwisely utilized, and thus add more or less cost. One problem in
manufacturing though is that depending on how production flows are defined costs
related to maintenance and downtime appear differently [1–4] and can be difficult to
unveil due to its interconnected nature with delayed feedback. In these intercon-
nected systems a narrow analysis utilizing “localized cost reductions” may intrude
severe consequences into the entire system of production; thus a thorough analysis
judged upon ability to generate throughput must be performed before any cost
reduction is put into effect [5]. It underlines the need of dealing with the wider
perspective of maintenance costs than “localized cost reductions” including the
systems perspective.

Manufacturing and maintenance are tightly interlinked, meaning that actions at
one partner brings consequences to the other. However, often manufacturing and
maintenance are managed with separated budgets, making it hard to identify nec-
essary jointly optimal procedures for a win-win situation. Manufacturing is the
partner in the relationship that adds value to the product and maintenance is its
supporting function ensuring the required capability of the machines. Despite how
well or poor maintenance is carried out it costs money, and on the individual
activity level it is difficult to justify and thus often seen as a cost function only [6]. It
brings the consequences that minimizing maintenance cost focus direct costs and
neglects the more tangible part of costs; consequential costs from minimized
maintenance interventions due to minimized budgets.

Literature points out the importance to convert maintenance costs, but
nonetheless values, into cash terms in order to support the communication on the
language of higher management, which is money [7–10]. In order to value main-
tenance correctly its long term effects on the interaction in the organization must be
included in the evaluation. However, managing a company focus utterly on how to
maximize ROI (return on investment) and cash flow. And, the reductionist approach
of the traditional financial control has brought a too short sighted focus on cost
reduction instead of the organizations long term survival [11, 12]. It comes down on
maintenance with bad consequences; supported by cost over profit maintenance
performance measurement systems that do not capture the reverberations of today’s
actions [9]. That saving money today is so easy, on the behalf of delayed impact
effects suffering much more expense later, is unfortunately not acknowledged by
most writers, according to [9]. Furthermore, it is considered very hard to identify
the contribution to company profits from the maintenance budget on the macro level
[6] and in combination with the short sighted cost reduction focus it may be what
hinders identification of well-functioning strategies. Thus in need to be illuminated
further.
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An example on the development of well-functioning maintenance system is
described in [13] also published in [14], showing the need of a shift in mind at
problem stakeholders, i.e. the organization facing the problem phenomena of a poor
maintenance system, in order to bring about desired development [14]. led a
modelling endeavour at a large company and the process brought several important
conceptual shifts in the way they viewed maintenance and thus their focus in the
study went from cost minimization to centre on the physics of breakdowns through
equipment degradation [13]. On that theme [15] states that; in order to strategically
manage cost optimization of the effects of maintenance on equipment, machine or
even company level we must adhere to the fundamental multi-disciplinary ingre-
dients of: understanding the mechanisms of degradation, quantitative models that
concern impact from actions such as operations and maintenance have on degra-
dation, and strategic management of maintenance. This paper acknowledges the
importance of these mechanisms and the value of dress them in economic terms in
order to improve visibility of consequential costs for higher management. However,
it is a challenge to define those mechanisms in small enough rates of precision in
order to build trust into such model’s results, previously tackled by including
stakeholders in the modelling process [16]. That is why first steps identified have to
be towards better maintenance cost modelling and not an absolute panacea equation
solving the problem, most likely such method will never be developed.

The foundation of this paper is thus based on the beliefs that maintenance efforts
must be valued through the lens of both direct cost and consequential cost with a
life cycle perspective in the context of the organization it interacts. Preparation of
maintenance efforts start perhaps in the acquisition process and are ongoing in the
daily operational business, in which decisions upon improvement on how to meet
key performance indicators such as mean waiting time, mean time to repair, and
mean time between failure etc. are taken. Constantly the status of equipment assets
are changing and constantly the maintenance organization has to deal with it; and
there are better or worse strategies depending on how the production is configured.
However on a general level it can be stated that the better the status of machines and
procedures the less emergency work and breakdowns, and reverse the worse status
of machines and procedures the more time spent on emergency work and break-
downs [13, 14].

This paper acknowledges that it is the decision making made by humans that is
key leverage in the development of manufacturing systems [17] and thus the per-
formance of maintenance, so deeply involved in it. Another important aspect when
it comes to practical implementation and change, considered important to
acknowledge, is to adhere to the need of building organizational capability that in
turn will lead to sustainable high performance [18], also in line with Lean practices
empowering the front line teams [19]. However, the slow process of building
capability bottom-up must be combined with top-down, results-driven change, as
according to [20]. It motivates the need of visualizing maintenance total costs on
short and long term (organizational capability building) for decision makers, and
underlines its potential to bring mature strategic thinking on how to confront current
situation for modern manufacturers.
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Maintenance is a support to production in order to facilitate maximum usage in
manufacturing, however at all stances it is not always necessary to require most
possible reliability because service level agreements tell so; it is a matter of cost and
total performance of systems that finally count in the financial statements and it
should be the criteria also when defining these systems in practice. The relationship
between manufacturing and maintenance has to be re-evaluated in the view of both
sides of the partnership in order to identify more cost effective procedures.

This paper begins on showing the prominent significance maintenance plays in
order to stay competitive on the global market as an underlying background to the
conceptual ideas presented later on the potential of visualizing maintenance total
costs for higher management for better decisions on maintenance strategies.

1.1 What Modern Manufacturers Confront

The situation for actors within manufacturing industry is strained, with the com-
bination of escalating competition on a global market and growing demands on
return on investment. In short the constant pressure of making more with less is
constantly present. New advanced technology and automation has during the latter
years been the means manufacturing companies have applied in order to manage
and stay on market. With its development production throughput has been
increased, both by combining multiple tasks previously carried out in a functional
layout and through improved production flows. It has contributed to the reduction
of inventory and stock levels, reduction of man hours in production and increased
quality and precision; thus delivering more with less. However, in order to sustain
on the global market further efforts will continuously be needed in order to stand
competition. Furthermore, the development until today has dramatically changed
the arena for how to play the game in maintenance. In which the flow of new
advanced technology and increased automation brings increased demand on com-
petence for the maintenance personnel, and the failure rate patterns are more
complex to understand and increased requirements on equipment- and
component-reliability are prominent. The maintenance function is also challenged
from the perspective of decreased time buffers in production systems, in order to
maximize throughput and cash flow, adding increased vulnerability when a
breakdown take place. In combination these aspects bring forward requirements on
new levels of perfection on maintenance, both technically and organizationally. It
definitely points out the importance of maintenance management as an enabler for
future contribution to the improvement of the input/output ratio. There are
numerous strategies for how to run production and how to include maintenance in
order to encounter the optimum ratio, and how these strategies are valued strongly
decide upon choices for future action. Viewing manufacturing and maintenance as
separate negotiating parties may hinder systems’ full potential, also called
sub-optimization, and makes it harder to value benefits on the level of totality.
However, maintenance management is a complex undertaking with the inherent
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difficulty of long delays between cause and effect in which a decision apparently
beneficial on short term may end up in costly and repeating actions during the
life-time of an equipment. The efforts spent should thus constantly be valued by its
economic life cycle effects. It puts focus on the ability to evaluate maintenance
strategy and its consequences over time in order to convert it to financial statements
in a convincing manner for decision makers.

1.2 A Management Decision Making Perspective

Maintenance holds many criteria for being hard to manage on the operational level:
stochastic behaviour in the deterioration and failure process of equipment, large
portion of unplanned events, a sudden failure in critical equipment can make any
important long-planned activity delayed, decisions of importance may have to be
taken quickly with no time of thought, management is under constant time pressure,
thus little time for abstract and strategic thinking [6].

Another aspect is the phenomena of worse-before-better dynamics [21], com-
mon in complex systems also present in maintenance systems. If management don’t
understand why it occurs and for how long the short-run “worse” deterioration of
system performance might last, it may instead be held as evidence on that the new
strategies don’t work and are abandoned [13]. Our human ability to acknowledge
system dynamics is strongly limited and we construct mental models of phenomena
in order to cooperate and understand the environment we are part of [22]. However,
the mental model of two persons observing the same aspect may differ in their
description of it because they looked at different things [23]. Fortunately, if it is put
into light that decisions are being based on these incomplete, partially shared mental
models with lack of coherence and comprehensiveness they can also be subject to
learning and improve decision making around maintenance [14].

Decision making in maintenance includes many stakeholders, from operators
and machines producing value to investors interested in maximized profit via the
board of directors, top management, and operational management and support, see
illustration in Fig. 1. At each level decisions are taken, however their effect may
vastly vary. The lower triangular in the figure is most often regarded in everyday
work, however the upper triangular represented by stakeholders interested in the
company development are also actively part of daily agenda however more hidden.
All with different roles and with different incentives for being part of the structure.
It is the operators and machines that utterly create the value orchestrated by the
requirements from a level above, ending in the interest of for instance pension
savers on ROI.

The Fig. 1 serves as a basis for visualizing structures having an effect on the
decision making in different levels, and the incentive structure’s influence on
thinking in respect to possible short term effects and the organization’s long term
thinking capabilities. It may be further exemplified by the following simplified story
in order to bring sense into seemingly wrong decisions, depending on what you
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choose to see (mental models). The scenario plays in a maintenance organization of
300 persons. A strong Investor in the company points: Why do they need to be so
many persons in maintenance? They cost a lot. The Board of Directors do nothing
more than repeats the question to organization. Top Management ask their people:
Why do we need so many? In order to show vigorous command: Cut 1/3. On short
term nice performance measures are presented, and most importantly, better cash
flow. No explicit consequences in production are noticed. The measures in financial
control-terms confirms that it was a correct decision, our suspicions were right.
Eventually problems add up and number of breakdowns increases. Workload shifts
sneaking from preventive towards unplanned maintenance, and cost per piece
increases due to less throughput, poorer quality, etc. Case is highlighted at top
management, decision maker using financial control as performance measure
observes this negative trend and applies present mental model that worked last time,
commanding: Cut more personnel in maintenance. The vicious circle of decreasing
maintenance capabilities to perform accelerates. A simplified story near all main-
tenance people have experienced in small or in large. A natural development in a
context of complex systems in combination with applying your own mental models
of reality without thorough analysis so important, perhaps due to lack of time and
tools for better analysis.

2 Maintenance Cost Modelling

2.1 Maintenance Consequential Cost

Since financial accounting started over hundred years ago [12] direct maintenance
cost have been explicit to account and is part of standard accounting procedures [3].
However maintenance that is not optimally performed also cause indirect costs in

Fig. 1 Illustration of
incentive structure
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the organization, termed consequential costs [4], and these appear in other parts of
the organization such as for instance more time spent by production man hour, less
produced products or poor quality. A graph of the trade-off between direct and
indirect costs of maintenance can in theory be illustrated as in Fig. 2 below.

In an optimal procedure the direct costs, represented by cost of planned main-
tenance, should be balanced against the consequential costs represented by cost of
unplanned maintenance [19]. However in practice identifying this trade-off is not
straightforward. Consequential costs generated from poor or absent maintenance is
implicit and intangible to its character, difficult or near impossible to track in an
accounting manner. The need of better estimated quantification of consequential
costs in order to support manufacturing with optimally performed maintenance was
defined long time ago, however a problem of inherent subjectivity [4]. Maintenance
consequential costs are suggested into four categories [4]:

1. Associated resource impact costs, productivity loss (loss in production time) at
machines/equipment that are connected with the resource in which the failure
has occurred.

2. Lack of readiness costs, machines/equipment that for the moment are not used,
thus in idle, but not in a ready condition for production—seen as an incitement
for keeping capital investments in shape.

3. Service level impact costs, occur when replaceable resources/equipment in a
pool of resources fail and those left in operation must be utilized in a more
costly manner due to that they are fewer and the work still must be done to
maintain the required level of service.

4. Alternative method impact costs, in times of great pressure for delivery failure in
one machine/equipment may force usage of alternative methods in order to
deliver on time, however it may be performed in a non-optimal procedure.

How these consequential costs can be calculated is also suggested and categories
1, 2, and 4 are represented by time dependent impact profiles in which estimations
of “time from failure to start of impact” and approximated cost accumulations

Fig. 2 Cost minimization
graph, based on [19]

In Need for Better Maintenance Cost Modelling … 269



during the impact period have to be applied to the certain case [4]. Category 3 is
represented by an equation and an optimization problem in order to balance the
temporary increased loads on the equipment due to failure in any resource and at the
same time maintain the service level required. Traditional cost models has a linear
approach and assume the cost of lost production to dominate the downtime costs,
neglecting consequences such as safety buffers, wasted raw material due to scrap,
etc. [3]. The non-linear description of consequential costs by [4] is a step towards a
more practical approach attempting to bring a better estimation.

Plainly looking at definition of maintenance cost is scares and has resulted in
more qualitative designations in literature dividing maintenance costs into two
general categories [3, 8, 24]: direct costs also known as intervention costs (main-
tenance operations including labour, administration, material, subcontracting, to
name a few); and downtime costs representing more or less all consequential costs
(production losses, reduced quality, etc.). There are example of listing costs into
much more detail as well [25]. Instead it seem, literature in maintenance cost and
modelling refer to these two general categories and states what kind of consider-
ations regarding cost or delimitations on what to include constitutes each model [7,
8, 10, 24, 26].

2.2 On Maintenance Optimization Models

This section will provide an overview of difficulties worth considering regarding
maintenance optimization models. A maintenance optimization model is considered
a mathematical representation including quantified maintenance costs and benefits
in which the optimal balance is found [6]. However, there is also an emergence of
applying simulation for maintenance cost modelling [1]. And it is also argued for
the increasing need of bringing optimization into the system of maintenance
management [9].

In his review of maintenance optimization models [6] identifies several gaps
between theory and practice worth to bring up:

• It is difficult, even for technicians and managers, to understand and interpret the
stochastic nature of maintenance optimization models.

• Little attention is paid to make models understandable to practitioners, instead
focusing on mathematical analysis and techniques rather than solutions to real
problems.

• Too few industrial problems are addressed by academics due to low incentives
addressing real problems and that companies are not interested in publication.

• There is a lack of knowledge on which models are suitable for which practical
problems, attention should be on collecting present knowledge into one model
and review its applicability rather than publish new ones.
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• The cost for doing an optimization analysis is not always worthwhile compared
to its savings, and often results from optimization show on lowering indirect
costs not beneficial to maintenance.

• Optimization models often involve wrong kind of maintenance (planned revi-
sions and overhauls) which have not always proved effective. Better designs and
condition-based maintenance has resolved parts of the problem, however
dependent on better prediction capacity.

As it seem, history of maintenance optimization models have struggled with
practical applicability. In recent time the perspective of quantitative modelling has
also been claimed being extremely specific [10]. Further, other recent conclusions
on maintenance optimization models include that they are often over simplified in
the aspect of: using fixed value for cost of corrective and preventive maintenance,
and excluding time spent on repairs [24]. Also, the lack in literature of including
degradation patterns and the effects of system improvement to include a more
practical and real behaviour concerning aspects of asset management [24].

In their paper [1] present a large review over applications of simulation in
maintenance research and conclude on the potential of discrete-event simulation
(DES) to address cost reduction. The dynamic capabilities of DES make it possible
to compare different strategies including several aspects with the ability to evaluate
systems in an integrated way, such as impact of condition monitoring on staffing.
Their conclusion is that DES should be able to bring insight into maintenance
systems on the level that it has brought into manufacturing systems.

In short the research front in the area of cost modelling using DES for manu-
facturing companies today combines: production engineering data, financial data
and optimisation technology with innovation in order to bring about useful infor-
mation and knowledge facilitating better informed decision making within the
development of production systems [21].

2.3 Value of Maintenance

Maintenance is often claimed as a value contributor to a company and research on
showing its value instead of the focus on cost is common. This is performed in
different ways, cost models to value financial impact in planning improvements in
maintenance [7], maintenance performance improvement [8], estimate added value
from maintenance services [27], and etc.

Another aspect in order to value maintenance, or the reliability of an investment,
through the lens of direct and consequential cost in a life cycle perspective is the
using LCC (Life Cycle Cost). However, in their review of published case studies of
life cycle costing [28] it shows how difficult it is to make sound LCC studies.
Purpose with LCC is to support the more correct long term cost of ownership [29]
calculating the investment cost but also net present value of running cost, illustrated
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in Fig. 3. It is preferably applied in the early acquisition phase in order to take better
informed decisions on specifications on reliability of investments.

This can be further illustrated by Fig. 4 that shows an example scenario: the
upper graph shows investment costs and estimated maintenance costs on budget,
the lower graph shows the same investment after have applied LCC illuminating on
the benefits of increased reliability on the behalf of a larger initial investment.

Besides tools like LCC maintenance concepts have emerged that explains the
function and value of maintenance, such as: TPM (Total Productive Maintenance)
[30], Lean Maintenance [19], Value driven maintenance [31], and Asset manage-
ment [32]. These concepts include aspects of practice, and management in order to
get theory into practice, thus important descriptions of thought for any company
interested in developing their maintenance function. Yet, it is not always
straightforward to commit resources in order to implement these concepts and
systems in the organization, it is a matter of persuasion and commitment along the
way putting focus on the requirement on understanding and ability to interpret
social systems [22].

Fig. 3 Illustration of costs
from an investment

Budget Investment

Visualized 
maintenance cost

Better!

Challenge?

Fig. 4 Illustration of LCC
scenario
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3 Feedback Thinking

Due to the lack of feedback thinking in the cost over profit maintenance perfor-
mance measurement systems the importance of it is included in this section.
A qualitative CLD (Causal Loop Diagramming) model by [33] is used as base for
exemplifying feedback thinking and its relevance to dynamic analysis in mainte-
nance. Their model is based on numerous case studies on the core issue of orga-
nizations’ ability to implement improvement programs such as for example TQM
(Total Quality Management) into their everyday activities. Their research shows
that key for successful implementation is independent from choice of improvement
tool, identifying the root cause being a systemic problem requiring much effort in
managing the interaction of tools, equipment, workers, and managers. Thus the
model shows considerations possible on a generic level to draw conclusions from
into the aspects of implementing a better maintenance function, meaning it is
applicable to exchange TQM into any other of maintenance concepts mentioned
earlier as well. The model will be described in brief and if deeper understanding is
wanted it is recommended to read the paper of [33].

The underlying structure in the model is the physics of improvement, seen in
Fig. 5 in which an asset’s capability is the fundamental base for performance. It is
the Capability of an asset, such as process, machine, working procedure, etc.,
together with the Time Spent Working that result in the Actual Performance from
that asset. Capability is represented as a stock (rectangle mean stock or level
carrying the current state of the system [34]) that accumulates improvements over
time in relation to the Time Spent on Improvement. Either Actual Performance is
increased temporarily through more working hours, or efforts are invested in
improvement work which brings a more lasting value to the asset through increased
Capability, thus with gains to production capacity with longer duration. However,
Time Spent on Improvement are not immediately equivalent to increased Capability,
it takes time to eliminate root causes or to structure a preparation of preventive
maintenance and it takes time until effects from that improved work is gained;

Capability
Investment in
Capability

Capability
Erosion

Time Spent
Working

Actual
Performance

+

Desired
Performance

Performance
Gap

-

+

Time Spent on
Improvement

+

+

Delay

Fig. 5 The physics of
improvement, based on [33]
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illustrated by the Delay in the model. Furthermore, Capability of an asset is under
the law of deterioration, machines wear, working procedures become obsolete, etc.
showed by the flow of Capability Erosion. Depending on technical and organiza-
tional complexity the delays vary, less complex process improvements having
shorter delays of few months, while high complex processes such as product
development may carry delays of several years. Anyhow, the connection with
maintenance are close, for instance: time spent on improvement identifying root
causes to breakdowns and its countermeasures, or systematically updating current
base conditions and initiating measures of preventive character are put in place with
the aim to balance the resources towards planned work in order to interact with the
customer’s assets more smoothly avoiding disturbance in production. And, it takes
time until the harvest from such work can be gained. However, these actions serve
the common goal of delivering Desired Performance set by senior managers, and
the difference between desired and actual is the Performance Gap. In maintenance
these gaps can consist of backlogs of preventive maintenance, corrective mainte-
nance, breakdown analysis, requirement specifications for new acquisitions, etc.

The Fig. 6 represents the model in its totality, including three balancing loops
(B1–B3) and a reinforcing loop (R1), and some three more variables. A balancing
loop in its character includes goal-oriented dynamics that strives for closing a
gap. A reinforcing loop in its character accelerates growth or decline depending on
its direction.

B1, any work senior management want performed create a Performance Gap
followed by increased Pressure to Do Work in order to close the Gap. Thus
increased pressure intensify reporting performance measures on for instance output
of individual machines sending explicit signals of what is important. Enforcing
action and Time Spent Working, increasing Actual Performance in order to close the
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-
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Fig. 6 The capability trap model, based on [33]
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Performance Gap. The balancing loop of Work Harder strives towards the goal of
closing the gap through increased pressure on short term results.

B2, the Performance Gap also initiate actions to improve assets capability
through increased Pressure to Improve Capability, which can be initiated by acti-
vating improvement programs, training or more simple actions to cut time required
for performing Actual Performance. The balancing loop of Work Smarter also
strives towards the goal of B1, however, as brought up earlier this action is delayed
and it takes time until effect on Capability is generating the improved performance.
The actions invested in capability improvement though are of much more enduring
character and bring value in long time, similar to a well-functioning preventive
maintenance system.

B1 and B2 together quit on their own explain well the dynamics of working
harder versus smarter, the shorter deadlines on delivery of performance the stronger
incentive for solving pressing problems by quick fixes. Surprisingly [33] discovered
that, at those companies studied, working harder was no occasional lifeline used
when in pressure in between peeks but rather the standard operating procedure.

R1, the reinforcing positive feedback loop of Reinvestment connects the Work
Harder and Work Smarter loops with the arrow between Pressure to Do Work and
Time Spent on Improvement. This connection is due to that organizations rarely
have excess resources. It means that under continued pressure it eventually forces
workers to reduce their time spent on improvement in order to manage the situation.
The Reinvestment loop represents that if one option is chosen on the behalf of the
other it is likely reinforced and develop into a permanent state; if Capability is
successfully improved through continues improvements, the capacity to deliver
Actual Performance will increase and freeing more time for even better improve-
ments. As in line with continuous improvements in lean philosophy [35]. Although
the other way around is also true; that using working harder efforts with less time
spent on improvements the erosion of capabilities will drain the current asset’s
Capability to deliver Actual Performance increasing further Pressure to Do Work.
This is the vicious cycle many get caught in but at least mentally never want to be
in. It is a state in which fixing the worries of the day overload continuous action, on
short term neglecting time for improvements, predictive maintenance, quality
improvements, instead it results in a manner of firefighting and increasing safety
stocks and buffers, piles of reports on quality errands, etc. not surprisingly failing
any improvement program started. Unfortunately it is tempting to abandon the
reinvestment of time in a work smarter behaviour leading to further enduring
savings. Instead, resulting in new amplified requirements on Desired Performance
as indications on that the working smarter pays off, jeopardizing the virtuous cycle
of building capability into our systems.

B3, represents the final explanation to the behaviour of why most organizations go
into the capability trap [33, 36], and it is the balancing loop of Shortcuts. Due to that
Capability does not drop immediately and in combination with increasing pressures
small shortcuts are taken to win time from improvements towards working; skipping
an improvement team meeting here, produce on a maintenance scheduled window in
production there, eventually cutting all corners there is to cooperate with the
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development of pressures and lost capabilities. This interconnection is represented in
Fig. 6 with a negative link enabling closing the Performance Gap in yet a third
procedure. The shortcut loop is effective and tempting to use in order to close the
throughput gap, on short time there are numerous aspects that if skipped gain time
without any harsh consequences due to the momentum in developed capabilities
during the path of history.

The capability trap represented by the shortcut balancing loop, in Fig. 6, is a
behavior carried out in many stances at the same time in an organization. It could be
questioned if development of this behavior isn’t seen by managers, unfortunately
they do not realize how deeply it has trapped them and use countermeasures
reinforcing it even further [33]. Several things interact in these dynamics and some
are due to human behavior, that people:

• generally falsely assume cause and effect to be closely related in time and space
[13, 33]

• often look for explanations for a puzzling event in nearby recent events assumed
to have triggered it rather than underlying patterns of behaviour [14]

• simplify and tend to assume a single cause from each event [33]
• underestimate the effect of time delays [14, 33]
• and omits feedback processes in actions [14, 33, 36]

In total, it leads to self-conforming attribution errors blaming the people instead
of acknowledging the failing dynamics of systems resulting in degradation of
process performance [36], which is required in order to define accurate measures for
capability development. It makes it difficult to analyse the system of study in the
manner of identifying root causes behind the behaviour. Therefore, the authors [33]
argue the need of a shift in mind in how to manage the capability trap is required; in
order to acknowledge the underlying structure of behaviour, and implement
improvement efforts on the conditions of these structures.

Considering these aspects system dynamics feedback thinking can visualize the
system of study, and as previously stated by [37], we can answer questions of the
character: -what causes our recurring pattern of behaviour? There are some
examples of approaches of this character to maintenance issues [13, 14, 27, 33, 37,
38] with learning perspectives. Which is considered important in order to bring
about correct countermeasures in real systems.

4 Industrial Problems to Address in Future Research

The industrial problems to address in this research can be represented by:

1. Visibility of consequential costs
2. Deal with the inherent problem of delay between action and its consequence

effects in the system of study
3. Partnership between manufacturing and maintenance (and financials)
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Visibility of consequential costs, there is a need to make important capabilities in
maintenance visual for decision makers in forming their policies and strategies for
the company. The financial statements (balance and income) lack in order to
address accurate maintenance strategies from the information they provide.
Unfortunately important assets are not possible to account in the financial state-
ments [12], such as:

• Working procedures are not visual and not valued
• Knowledge is not visual and not valued
• Machine status are not visual and not valued
• Value of databases is not visual and not valued
• Ratio of planned/reactive maintenance is not visual and not valued
• Policies and decisions that concern maintenance ability to perform its mission

are not visual and not valued

Thus, many capabilities in the organization belonging to assets in maintenance
are not valued and hidden for decision makers in higher management. However, it
is relevant information when deciding upon budget conditions for maintenance. As
learned from the Capability Trap Model, in Fig. 6, the balancing of resources in
short term or long term actions have severe effects on the development of a sys-
tem’s capability. System dynamics models generally serve the purpose of learning
about the dynamic complexity of system in study, however examples of research
also aiming on visualizing added value of maintenance services [27] or valuing
machine strategies [16]. Both perspectives are regarded useful in order to bring
about strategies based on underlying system behaviour and at the same time
communicate on the condition of decision makers, which is money. Applying
simulation allow also a life cycle cost perspective with the capability of assets in
focus, how these are maintained and their current condition result in behaviour [13].

Deal with the inherent problem of delay between action and its consequence
effects in the system of study, the maintenance function is comprehensive and
include many interacting aspects with manufacturing. The instrument of financial
statements act short on connecting short term cash flow improvements with its
consequences, thus complementing methods will support. In order to construct
alignment between maintenance strategies and their financial impact following
remarks illuminates on the need:

• The practical fact of delayed consequences in the maintenance function requires
a method able to include those delays

• Feedback from consequences must be acknowledged in order to correctly value
decisions regarding the development of maintenance

• We must approach peoples mental models of the situation in order to improve
the connection between financial statements and maintenance

We use our mental models in interaction with each other and the systems we act
in, and decide upon. Each individual act based on her own simplified model of the
system of study (reality) and ability to understand from her perspective and
available information at that time [22, 23]. In combination with our human
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disabilities to mentally simulate complex systems the importance of visualizing
them are even more highlited.

Partnership between manufacturing and maintenance (and financials), a more
systemic view upon the two partners hold potential of avoiding localized cost
reductions [5]. There is an ongoing tug of war between manufacturing, mainte-
nance, (and financials) in respect of time of equipment intervention, strategy of
resources and budget. And, at the same time a need of a mutual relationship in order
to value action on a systemic perspective. It can be argued that TPM contribute to
improved partnership, and its attempt to integrate and align maintenance and pro-
duction goals act in such direction. However the partners of manufacturing and
maintenance are managed from their own budgets in specifics, which tend to limit
their actions to focus on their own perspectives. Therefore, some general thoughts
on aspects to regard in order to reveal further potential from improved partnership
between these two partners:

• Deeper understanding of one another’s need is required in order to attain
maximum output (ROI)

• How the partnership between manufacturing and maintenance is set up directly,
and indirectly, define its results

• There is a need to facilitate the analysis of manufacturing and maintenance as
one system

• Manufacturing should be able to define their request on availability depending
on current production flow in study, eliminating unbalanced maintenance need

These potentials from an improved partnership expose efforts maybe on two
levels, on operational and a strategic. An identified tool in use at the industrial
partners of this research that regards the value of maintenance through the lens of
both direct cost and consequential cost in a life cycle perspective is the usage of
LCC, however limited to the acquisition phase. LCC brings into the picture the joint
costs of manufacturing and maintenance and may support a partnership in regard to
trade-offs in initial definition of equipment from a cost perspective. In the acqui-
sition phase it challenges habits such as strong efforts from financials department on
minimizing initial costs and bring into the analysis, open for all partners to view, the
total estimated costs from running the equipment as well. However the support on
further learning and analysis according to the bullet list above can be further
developed. Firstly, there is a need and potential of including manufacturing cost and
maintenance cost in an evaluation tool of ongoing operations. Secondly, there is a
need of an evaluation tool in order to value the implications from different main-
tenance strategies in respect to the totality of production cost. These two needs can
be approached in several procedures, a way forward can be to further define the
needs with respect to the problem and thus find a path.

Manufacturing development has good history records in the operations man-
agement area in applying DES as dynamic technique for optimizing throughput,
and the development has reached multi-objective trade-off analysis with regard to
cost savings [21]. Maintenance development still have a path left on that direction,
considered a potential to identify [1]. Studies on the perspective of analyzing
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optimal maintenance in relation to cost are few [1] but emergence is on the
operational level of incremental steps towards better productivity from present
condition as in [39]. The dynamic complexity generated in only one production
line, with numerous different possible downtime states, is vast. Thus it is difficult to
use the consequential cost calculations by [4], in order to sort out the consequential
costs from insufficient maintenance when downtime in any unit may or may not
result in decreased throughput depending on its set up. With the number of pro-
duction lines complexity grow exponentially and the need for more accurate cost
modelling is prominent. Practically, the service level agreement with manufacturing
decides upon the level of required maintenance in order to keep production running
on an adequate level. However, without a tool able to address the dynamic com-
plexity of possible states such negotiations risk to result in requirements based on
the position of negotiating partners [2]. It places requirements on the client’s
competence to understand both the complexity of possible production line
dynamics and the process of maintenance that deliver the support. And, in lack of
such comprehensive knowledge it is taken care of through overcapacity in the
system already in the design, resulting in the need of over-maintenance from start.
Instead, applying DES may support on defining the appropriate individual service
levels in the production flow, and bringing in the dimension of cost would make it
possible to analyse different optimum suggestions on the use of redundancy, highly
reliable equipment, preventive maintenance, or condition based maintenance, to
name a few. However, even though DES acknowledges the dynamic environment
of production systems, it is still lacking on the integration of how the dynamics of
the maintenance function interact, that is including maintenance’s purpose to keep
assets in their appropriate state in order to perform the required function at mini-
mum cost.

However, the tool of system dynamics and feedback thinking has shown capable
on including the integration of how the dynamics of the maintenance function
interact with production and manufacturing, although not on the same level of detail
as DES thus the tools are likely serving different purposes. Feedback thinking can
include maintenance’s purpose to keep assets in their appropriate state in order to
perform the required function at minimum cost. Another aspect is the dissemination
of thought and learning in the organization from analyzing a sustainable mainte-
nance strategy; that is a strength of feedback thinking.

5 Discussion and Conclusion

In order to motivate efforts and budget for cost optimized maintenance, the con-
sequential costs of maintenance must be considered. However, it is also worth to
consider how this is best approached. Is maximum benefit gained from identifying
the cost of underperformed maintenance, or the cost of under dimensioned equip-
ment? Would it not be even better to understand why the situation of underper-
forming maintenance is and how to improve in future and change our everyday
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habits and procedures towards investing in our asset’s capabilities instead?
However, it requires a shift in mind on how to view upon cost in maintenance and
an important factor to consider is the practical implication of changed strategies in
order to attain it. How is the problem solved most effective in practice? One aspect,
for sure, is the aspect of how time is divided between working harder, gaining
immediate positive effects, and working smarter, sanctioning investment of time on
improvements that improve performance endurance. In that sense we have to dig
deeper into the minds of decision makers and understand their uncertainties about
maintenance strategy and its consequences. Thus:

• We need to dig deeper into the matter of visualizing maintenance consequential
costs for higher management and investors in order to facilitate better sustain-
able strategies for action

• Short term (my budget) thinking must be replaced with a sustainable partnership
applying long term development of the dynamics of the maintenance function in
order to bring lasting value from maintenance and manufacturing as a joint
system

In conclusion, DES offers a tool on the operational level that can be applied for
optimizing production flows also from a maintenance perspective including aspects
of choice in respect to cost and throughput, such as: redundancy, highly reliable
equipment, maintainability, service level agreement, run to failure, condition based
maintenance, and more. It would be a delightful tool for engineering management
and maintenance. However it will not appropriately address the need of
well-functioning maintenance strategy in the organization. System dynamics
feedback thinking on the other hand offers a tool on the strategic level that can be
applied for evaluating the interaction between market demand, production rate, use
of resources on different actions preventive or reactive in character and their impact
on system and asset capabilities. Thus such a strategic perspective could bring
learning to higher management though visualizing the connection between the
dynamics of maintenance, how it may be operated and developed for better per-
formance, and its combined consequence to the financial statements. With increased
learning insight on the devastating effects from short term improvements in cash
flow can be attained, and future paths for investment of time spent on improvement
can be substantiated. Such a tool will in the long run build confidence into specific
developing actions of the maintenance function generating specific needs such as
DES for optimizing the service level agreements.
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Investigation of Causes of Mining
Machines Maintenance Problems

Ljubisa Papic, Srdja Kovacevic, Diego Galar and Adithya Thaduri

Abstract Human errors in the area of mining engineering are of critical issue that
has serious concerns in safety, operation and production performance. There is a
need for finding cause and effect relations with respect to the maintenance issues in
order to detect, scrutinize and take necessary actions to reduce it. This paper deals
with the human errors in the mining machines for the maintenance problems using
fishbone cause and effect analysis. The investigation of these causes and effects are
carried out during different operating conditions in typical mining industry and
potential problems are assessed. There are several recommendations are provided to
reduce the effect of human error so as to increase production by careful consider-
ation of maintenance activities.

Keywords Root causes � Maintenance � Quality management

1 Introduction

American scientific influence on quality management improvement was brought by
a formation of Japan scientific school in management after the II World War [1].
Typical representatives of this school that have to be mentioned are, before all,
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Kaoru Ishikawa and Genichi Taguchy who had great impact to the development of
statistic methods in quality management [2]. Kaoro Ishikawa is the first, in the
world practice, who proposed an original graphic method of cause-effect relations
analysis, and it is entitled “Ishikawa diagram” or “cause-effect diagram” or “fish-
bone diagram” [3]. It is difficult to find a working area today that doesn`t use the
diagram of Kaoru Ishikawa [4] for resolving a quality problem that requires to be
resolved, including the maintenance problem. Method of cause-effect diagram
represents the method of analysis with the result that establishes which effects are
caused by certain causes. General schematic of this method, which will be used in
the subject investigation of a problem of mining machines maintenance, is shown
on Fig. 1.

The method of cause-effect diagram will be used in the subject investigation to
detect and systematize factors (causes) that affect the results performing for the
mining machines maintenance operation, i.e. sources that cause a maintenance
problem [5]. The task of this qualitative analysis is to undertake corrective or
preventive measures to eliminate the problems of mining machines maintenance,
after their detection. In that way, the use of cause-effects diagram method would be
shown as an effective tool to perform the corrective and preventive measures as
mandatory procedure of the integrated management system in the organization for
example in Taiwan construction industry [6].

2 Design of Cause-Effects Diagram in the Integrated
Management System Analysis of Overhaul Organization

A cause-effects diagram can be formed by either internal or external auditors who
perform the verification of an organization in order to establish critical places of the
integrated management system in future audits [7]. The order of outlining the

Maintenance problem 
that requires to be 

solved (undesirable 
result, consequence)

Cause of first level

Cause of first level Cause of first level

Cause of first level

Cause of 
second level

Cause of 
second level

Cause of 
second level

Fig. 1 General schematic for maintenance problem analysis that requires resolving, adopted for
the cause investigation of mining machines maintenance problems
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cause-effects diagram in the analysis of an integrated management system of the
overhaul organization is given in steps 1–5.

Step 1: Quality of the product and work processes, as the main characteristics of
the outlet values of an overhaul organization is conditioned by the series
of influences of various characters, size, direction and course [8]. These
influences are considered by:

• possibilities of managing the quality of products and work processes—
represents the conditions of the subject process, and

• deviation of quality of products and work processes from the values
anticipated by a design—represents the causes of a potential problem.

For further procedures it is possible to formulate problem in the fol-
lowing form: Considered quality indicator is: “Maintenance Problem”,
i.e. “Holdup in maintenance”.

Step 2: The main factors—causes related with the selected indicator are defined in
this step:

1. Maintenance object.
2. Store house.
3. Power facility.
4. Workers.
5. Maintenance technology.

Step 3: Further on, the factors of the second level are defined:

1.1 Life duration
1.2 Failure modes
……………………….
……………………….
2.1 Spare parts
2.2 Process scope of documents
……………………….
……………………….
3.1 Operative conditions of equipment
3.2 Type of equipment
……………………….
……………………….
4.1 Qualification
4.2 Health
……………………….
……………………….
5.1 Diagnostics of failures
5.2 Documentation
……………………….
……………………….
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Step 4: Factors of third level are separated for each factor of second level:

1.1.1 Operational condition
……………………….
……………………….
2.1.1 Delivery of spare parts
……………………….
……………………….
3.1.1 Life duration
……………………….
……………………….
4.1.1 Level of training
……………………….
……………………….
5.1.1 Program of damage detection

Step 5: Cause-effects diagram is formed in this step, on the basis of previously
established factors, where:

• structure made of five branches which correspond to the main factors
(causes) is selected for the main diagram structure,

• detail breaking of diagram is performed by drawing the factor (cause)
lines towards each corresponding branch, and

• procedure of spreading (branching) of the diagram is performed in
cases when it is estimated that certain factors (causes) are in
cause-effect connection, in a series or parallel way.

The obtained result is shown on Fig. 2.
For the need of an internal audit, certification or supervision audit, this

cause-effects diagram can be used in the following way:

1. Formulation of five directions of the verification:

• maintenance object,
• storehouse,
• power equipment,
• workers,
• overhaul technology.

2. Organization of an audit for each subsequent direction, in accordance with the
classification of the third level factors.

It is important to stress, due to specificity of classification (structuring), that
auditors must not interrupt each other, since their audits are based on different
starting data, normative documentation, etc. [9].
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In case that internal audits, certification and supervision audits include the
verification of reliability indicators, it would be useful to shape the cause-effects
diagram that examines “Reliability problem (mean UP TIME)” indicator [10].

3 Investigation of Causes of Personnel Errors During
Performing of Mining Machines Maintenance
Operations

Investigation of causes of human errors during performing the mining machines
maintenance operations is performed by a team work in the regime of
Brainstorming method. The team would have to act in accordance with all the
recommendations for the organization of Brainstorming [11]. The main recom-
mendations are for: team composition, working way in the team, role of the team
leader. The team generated ideas about causes of the maintenance problem that
requires being resolved.

The rule, appropriate for making a starting (general) cause-effects diagram,
which is applicable in most of real situations, is applied in the subject investigation.
This rule anticipates that there always exists certain number of categories of pos-
sible causes to some consequences (undesirable results) of work process.

In resolving a particular maintenance problem, the investigation revealed the
factors (causes) on which the undesirable result or consequence depends [12–15]:

“Human error with the highest degree of risk during performing of mining machine
maintenance operations”.

The investigation firstly determined and separated five causes, in the sense as
shown on Fig. 3:

• lack of training,
• inappropriate information,
• lack of experience,

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
with highest risk 

degree during 
performing of 

mining machines 
maintenance
operations

Fig. 3 Potential causes of human errors with the highest risk degree during performing of mining
machines maintenance operations in the form of cause-effects diagram
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Table 1 Recapitulation of types and causes of human errors that have the highest risk degree
during performing of corresponding maintenance operations of various types of mining machines

Type of mining
machines

Type of maintenance
operation

Types and causes of human errors with the
highest risk degree at performing of mining
machines maintenance operations

Bucket wheel
excavator

Lifting operation of
the upper rotational
construction and
control of ball
bearing—kuglbahn

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing of 
lifting operation of 

upper rotational 
construction and 
control of ball 

bearing - kuglibahn

Relaxation operation
of upper rotational
construction with a
support

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

relaxation operation 
of upper rotational 
construction with 

a support

Replacement
operation of steel
cordage for the
working bridge
lifting/lowering

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of replacement 
operation of steel 
cordage for the 
working bridge
lifting/lowering

Dismantling
operation of
spherical bearings on
working bridge
incarceration

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing of 
dismantling operation 
of spherical bearings 
on working bridge in 

carceration

Landfill machine Dismantling
(assembly) operation
of radial-axial ball
bearing—kuglbahn

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of dismantling 
(assembly) operation

of radial-axial ball 
bearing – kuglibahn

Damping machine Replacement
operation of
conveyer anchor
cordage

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of replacement 
operation of conveyer 

anchor cordage

Self-transporter
bandwagon

Lifting operation of
self-transporter
bandwagon

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 
of lifting operation 
of self-transporter

bandwagen

Dragline dredge Operation of base
lifting and dragging

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of operation of base 
lifting and dragging
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• carelessness,
• danger neglect.

Investigations performed in the course of the subject work, with recapitulation
shown in Table 1, have shown which types and causes of human errors have the
highest risk degree at execution of corresponding maintenance operations of vari-
ous mining machines, as:

• bucket wheel excavator,
• landfill machine,
• dumping machine,
• self-transporter bandwagon,
• dragline dredge

The obtained results, in the sense of potential causes of first level human errors,
at execution of the following maintenance operations:

• lifting operation of upper rotational construction and control of ball bearing-
kuglbahn,

• relaxation operation of upper rotational construction with a support,
• replacement operation of steel cordage for the working bridge lifting/lowering,
• dismantling operation of spherical bearings on working bridge incarceration,
• dismantling (assembly) operation of radial-axial ball bearing—kuglbahn,
• replacement operation of conveyer anchor cordage,
• lifting operation of self-transporter bandwagon,
• operation of base lifting and dragging, are shown on Figs. 4, 5, 6, 7, 8, 9, 10 and 11.

Since several (five) main factors (causes of first level human errors) are revealed
in the subject investigation, cause-effects diagrams shown on Figs. 4, 5, 6, 7, 8, 9,
10 and 11 are furthermore treated in detail for certain first level causes, performing
the investigation of causes of human errors of second and higher levels.

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing of 
lifting operation of 

upper rotational 
construction and 
control of ball 

bearing - kuglibahn

Fig. 4 Potential causes of human error during performing of lifting operation of upper rotational
construction and control of ball bearing—kuglbahn
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Further solution of the subject problem in a qualitative way established the
causes of the second and higher levels that generate the first level causes of human
errors with the highest risk degree, during performing of mining machines main-
tenance operations. The causes are connected to the following:

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

relaxation operation 
of upper rotational 
construction with 

a support

Fig. 5 Potential causes of human error during performing of relaxation operation of upper
rotational construction with a support

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of replacement 
operation of steel 
cordage for the 
working bridge
lifting/lowering

Fig. 6 Potential causes of human error during performing of replacement operation of steel
cordage for the working bridge lifting/lowering

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing of 
dismantling operation 
of spherical bearings 
on working bridge in 

carceration

Fig. 7 Potential causes of human error during performing of dismantling operation of spherical
bearings on working bridge in carceration

Investigation of Causes of Mining Machines Maintenance Problems 291



• lack of training (first level cause), Fig. 12,
• inappropriate information (first level cause), Fig. 13,
• lack of experience (first level cause), Fig. 14,
• carelessness (first level cause), Fig. 15,

neglect of danger (first level cause), Fig. 16.

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of dismantling 
(assembly) operation 

of radial-axial ball 
bearing – kuglibahn

Fig. 8 Potential causes of human error during performing of dismantling (assembly) operation of
radial-axial ball bearing—kuglbahn

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of replacement 
operation of conveyer 

anchor cordage

Fig. 9 Potential causes of human error during performing of replacement operation of conveyer
anchor cordage

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 
of lifting operation 
of self-transporter 

bandwagen

Fig. 10 Potential causes of human error during performing of lifting operation of self-transporter
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4 Comment in Research Results

Cause-effect analysis of human errors with the highest risk degree, during per-
forming of mining machine maintenance operations, enabled the division of the
main causes (cause of the first level) on less significant causes. Also, this analysis
enabled the visual (graphic) presentation of revealed causes and overview of their
inter-connection. The results obtained in the performed investigation enable
forming of the following partial conclusions:

• Each problem of human factor in mining machines maintenance was investi-
gated from the widest point of view, taking into consideration inner as well as
external factors.

• Each proposal about the influential factors or causes of the investigated human
factor problems in mining machines maintenance was introduced in a particular
location on the paper on which the cause-effect diagram was presented. That
location was proposed by the author of the idea. The decision was made by
majority of the team members during the Brainstorm process.

• The team members have discussed each cause-effects diagram after its com-
pletion. The consultations were also made with the specialists who were not
members of the team, but were employees of the open mine pits “Kosovo”—
Obilic Company. They provided questions and propositions which were dis-
cussed afterwards.

• The copies of cause-effects diagram were shared to the employees of open mine
pits “Kosovo”—Obilic Company in order to discuss the diagrams and to obtain
their propositions, since they are dedicated to resolve significant problems
during the mining machines maintenance in the company.

• The team that performed the investigation involved the direct executors at the
workplaces: operators, maintainers, controllers, etc. They are familiar with the
maintenance problems from the “inside” and they proposed effective measures
for their solution.

Lack of training
Inappropriate
information

Lack of experience Carelessness Neglect of danger

HUMAN ERROR 
during performing 

of operation of base 
lifting and dragging

Fig. 11 Potential causes of human error during performing of operation of base lifting and
dragging
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Part IV
Maintenance Modeling and Analysis



Safety and Availability Evaluation
of Railway Signalling Systems

Amparo Morant, Anna Gustafson and Peter Söderholm

Abstract The purpose of this paper is to evaluate the safety and availability of
railway signalling systems using Markov models. Since a failure of the signalling
systems still allows operation of the railway, it is not sufficient to study their safety
and availability by considering only the failures and delays. The safety and avail-
ability are evaluated, handling both repairs and replacements by using a Markov
model. The model is validated with a case study of Swedish railway signalling
systems with different scenarios. The results obtained show that the probability of
being in a state where operation is possible in a degraded mode is greater than the
probability of not being operative at all, which reduces delays but requires other risk
mitigation measures to ensure safe operation.
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1 Introduction

The railway can be divided into different systems, such as the rolling stock, the
track, the power supply, the signalling system, etc. based on their functionality [1].
Signalling systems play an important role in the control, supervision and protection
of rail traffic. Their functionality is based on the principle of “fail safe”, which
means that the railway section where a failure is located will not be fully operative,
until the failure is repaired, to ensure safety.

The operation of a signalling system is based on the interoperability of its
different systems. Hence, the availability of these systems directly affects the
capacity of the whole railway network. The need to assure interoperability between
different parts to obtain the desired output defines a system of systems (SoS) [2, 3].
Railway signalling systems are considered to be a SoS. The safety and availability
are evaluated during the maintenance and operation phases of the life cycle, han-
dling both repairs and replacements of the different systems of the various assets
comprising the SoS. When managing SoS, it is not possible to consider the different
parts independently; functionality depends on the relationship between them [4]
Furthermore, the complex architecture of electronics and the interdependency
between the components and systems make it difficult to identify and analyse
anomalous behaviours [5]. In the case of signalling systems, this difficulty may be
illustrated by the number of no fault found failures or not defined failures that are
recorded; these represent up to 70 % of the total number of work orders [6]. Since a
failure of the signalling systems still allows operation of the railway, albeit limited,
it is not sufficient to study their effect on the railway operation in terms of reliability
and safety by considering only the failures and delays.

A failure in a signalling system has economic consequences (penalties, high
amount of maintenance resources, etc.), can affect the operation (delays, cancella-
tions, speed restrictions, etc.) and have safety consequences. With a failed sig-
nalling system, the train will operate in a degraded mode, with safety assured by
other mitigation measures, such as low speed restrictions. The possibility of
operating in a degraded mode reduces the economic and operational effects of a
failure of the signalling systems, but makes it more difficult to evaluate the railway
operation, since a failure will not necessarily be visible when considering the delays
or cancelations, even though safety has been compromised.

Some research has been done on the area of the reliability, availability, main-
tainability and safety (RAMS) of railway signalling systems during its operation
and maintenance life cycle phase. Tao [7] presented a two-stage safety analysis
model for railway level crossing surveillance systems by using Fuzzy Petri Nets,
Fault Tree Analysis and a Markov model to handle the incomplete safety-related
data; Tao also provided an empirical study assessing the safety status of a level
crossing surveillance system. Anik et al. [8] compared the different system archi-
tectures at the algorithm level in terms of the safety integrity level of a railway
station by using failure trees and Markov processes. Tan et al. [9] developed a
Markov model to evaluate the RAMS of the system depending on the architecture
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redundancy of the trains’ vital computer. Brkic and Adamovic [10] presented a
Markov model that can express the reliability of a signalling system and evaluate
the significance of the system’s individual elements both qualitatively and quan-
titatively; the model was validated using a combination of real data from mainte-
nance records and estimations where the data were not sufficiently precise. Kohlik
and Kubatova [11] stated that dependability models allow calculating the rate of an
event leading to a hazard state, which can result in material loss, serious injuries or
casualties; they used a hierarchical dependability model based on Markov chains to
speed up the hazard rate calculation. Bondavalli et al. [12] developed a model based
on discrete time Markov chains combined with stochastic activity networks
methodologies and applied hierarchical modelling to perform a dependability
analysis of the safety nucleus subsystem of a railway interlocking. The previous
contributions all focused on the evaluation of a particular system. In contrast, this
paper evaluates the whole SoS of signalling systems. This is a good approach to use
when it is not possible to determine the failed system or failure mode. This paper is
also based on records from corrective maintenance showing the variance found in
real data; these records allow us to confirm the validity of the model for future
implementation in industry.

Various authors have evaluated the availability and/or safety of railway sig-
nalling systems: Markov Chains [13], Monte Carlo Simulation [14] and Stochastic
Petri Nets [15, 16] are suitable approaches for stochastic modelling to evaluate the
RAMS of a railway signalling system. The Markov model allows handling both
repairable and non-repairable systems, hence is appropriate to evaluate the per-
formance of railway signalling systems.

The purpose of this paper is to evaluate the safety and availability of railway
signalling systems using Markov models. The knowledge gained will facilitate the
decision-making process when improving or updating the railway infrastructure.

2 Research Methodology

The model proposed in this paper is based on the fusion of different types of
information obtained from corrective maintenance data records, operational data,
and railway architecture. The model can be used when studying the effect of a
failure in the SoS of signalling systems on the overall railway operation in terms of
safety and availability. The research is based on data obtained from the Swedish
Infrastructure Manager (Trafikverket) for a fully operative railway corridor where
the ATC (Automatic Train Control) signalling system supervises and controls the
network. Corrective maintenance Work Orders (WO) from a determined railway
corridor (divided into several track sections) were gathered and processed from the
corrective maintenance database (0felia), while the architecture of the railway
corridor was obtained from the asset management database (BIS).

No changes of configuration were made during the years included in the main-
tenance data used for this research on the railway corridor considered. Hence, it can
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be assumed that the WOs represent maintenance and not design changes or updates.
Previous research related to the railway signalling systems provided current theories
and suggested ways to improve the dependability of signalling systems, while
Trafikverket documentation and unstructured interviews with experts facilitated our
understanding of the information and results.

The collected data and information are processed and combined for the analyses,
with Excel 2010, Matlab 2014a and the R software (version 3.0.0) used for data
processing, model development and validation. The model is based on a Markov
process with discrete states and continuous time and is used to measure the prob-
ability of the different operational states (safe operation, not operative or operative
in degraded modes) of a track section, identifying the systems that most affect a safe
operation of the railway. Depending on which system is affected by the failure and
the operational status of the railway, the model considers different operational
states. Various scenarios are considered to validate the model, including mean
values, worst and best case scenario.

2.1 Analysis

The Markov approach is applicable when handling both repairable and
non-repairable systems, under the following assumptions [17]:

• The behaviour of the system must be characterised by a lack of memory; that is,
the future states of a system are independent of all past states except the
immediately preceding one:

P qnjqn� 1; qn� 2; . . .; q1ð Þ ¼ P qnjqn� 1ð Þ: ð1Þ

• The process must be stationary (i.e. the probability of making a transition from
one given state to another is the same at all times in the past and future).

• Finally, it must be possible to define the different states of the system.

The transition rates from one state into another can be defined as in Eq. 2, and
the transition between the different states of the Markov model is given by the
failure, restoration and waiting rates (λ, µo and µw respectively) of each considered
system. The transition rates describe not only the reliability of the process and the
design of the components, but also the effectiveness of operation and maintenance
practices [18], shown as:

Tr: rate ¼ num: of times a transition occurs from a given state
time spent in the given state

ð2Þ

With respect to the transition rate, three time parameters can be defined. The
mean operating time between failures (MTBF) is the expectation of the operating
time between failures and can be calculated following Eq. 3; the mean time to
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maintain (MTTM) is the expectation of the time to restore (see Eq. 4), and the mean
waiting time (MWT) is the time from the start of the downtime until the driver is
allowed by the dispatcher to continue operation in a degraded operating mode:

MTBF ¼ Total operative time*Nr: of systems
num: of failures

ð3Þ

MTTM ¼ Total Downtime
num of failures

ð4Þ

From Eq. 2, the transition between the different states of the Markov model is
given by λ, µo and µw of each system considered (see Eqs. 5, 6 and 7). In particular,
µw measures the rate of systems staying in the non-operative state.

k ¼ 1
MTBF

ð5Þ

lo ¼
1

MTTM
ð6Þ

lw ¼ 1
MWT

ð7Þ

2.2 Analysed Scenarios

In order to show the probabilities of being in the different operational states
obtained by the mean failure and restoration rates, five scenarios are considered and
described in Table 1. Scenarios F-1 to F-5 are based on real data gathered from the
maintenance databases, from which the MTBF and MTTM have been obtained for
the different track sections that compose the railway corridor of the case study.

Scenario F-1 represents the mean values obtained from the corrective mainte-
nance data for the track sections on the studied railway corridor. Scenarios F-2 and
F-3 makes it possible to study the effect of the different RAMS variables (such as
the MTBF and the MTTM) on the railway operation to see which one has the most
influence on a safe operation. Scenarios F-4 and F-5makes it possible to look at the

Table 1 Scenarios to model

Description

F-1 Mean values of the MTBF and MTTM

F-2 Mean values of the MTBF and 75 % quartile of the MTTM

F-3 25 % quartile of the MTBF and mean values of the MTTM

F-4 Worst case scenario: 25 % quartile of the MTBF and 75 % quartile of the MTTM

F-5 Best case scenario: 75 % quartile of the MTBF and 25 % quartile of the MTTM
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variance between the probability states obtained for the worst case scenario and the
best case scenario observed from the recordings for all track sections on the railway
corridor, looking at the range of values for the MTBF and MTTM (i.e. the lowest
reliability and highest maintainability).

3 Case Study

To maximise the capacity of the railway corridor while ensuring safety, the railway
signalling system divides the railway corridor into track sections (or blocks) where
only one train is allowed at a given time [8]. Figure 1 shows the Reliability Block
Diagram (RBD) for the minimum operative section from the point of view of the
SoS of signalling systems on a railway network.

The SoS of the signalling system is composed of the following systems [19]:

• Traffic management system (TMS): creates an interface between the traffic
operator and the railway network.

• Interlockings (IXL)/Radio Block Centre (RBC): receive the input from the
different systems (e.g. track circuits, level crossings, signals, TMS), and cal-
culate and return as an output the train operation restrictions to ensure safe traffic
operation.

• Track circuits (TC): enable localisation of the train.
• Balise group (BG): give input from the track to the onboard signalling system

(e.g. speed limits, driving mode, etc.).
• Level crossings (LC): coordinate the road traffic crossing the railroad.
• Signals: give or restrict permission to a train on coming into a track section.
• Signalling boards: give the driver fixed information (e.g. on tunnels, bridges,

speed restriction areas, etc.).

To ensure safe operation, a track section is supervised by an interlocking located
at the end of that section, usually at a station. Signals are placed at the entrance of
every section and sometimes in the middle to allow or restrict the passing of a train
into that section. Signals restrict the passing of a train when a failure occurs on a
track circuit or an interlocking, and warns it to circulate with caution when there is a
failure in a level crossing. When a signal fails, the balise group associated with it
will force the train to stop. If a balise does not work properly, it will produce an
emergency brake (EB). A single TMS controls the railway traffic of various cor-
ridors simultaneously. If the TMS fails, the operation has an automatic mode that
allows normal operation for a maximum of 2 h. After that time, operation is not

Fig. 1 RBD of a signalling system
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possible. If there is a stoppage of operation caused by a failure on the signalling
system of a track section, railway operation can still be possible on that section if
the dispatcher allows the driver to circulate with caution in a degraded operational
mode. In this case, the maximum speed is 40 km/h and the driver’s visual super-
vision is required to ensure safe circulation (e.g. there is no damage in the track; the
switch is in the correct position etc.).

The operating time between failures is represented by the total duration of
operating time between two consecutive restorations. Signalling systems supervise
the railway at all times, not only when a train passes, making them continuously
operating items. Therefore, all maintenance time will affect the operation of the
signalling system.

3.1 Corrective Maintenance Data

The corrective maintenance data cover WOs from January 2003 until November
2012 on a 203 km long corridor, divided into 50 track sections and located in the
northern part of Sweden. Each track section has a different architecture composition
for signalling systems. Figure 2 shows the number of systems per track section for
the case study. Specifically, 9030 WOs were registered during that period, of which
2455 were associated with signalling systems. The data were processed to eliminate
inconsistent or poor-quality records. WOs with a time to restoration equal or less
than zero seconds or more than 24 h were discarded (procedures for corrective
maintenance establish a WO should be closed after a maximum of 24 h
(Trafikverket 2010)). In addition, WOs were discarded if they did not correspond to
any track section specified on the architecture database or were related to systems
not specified for that track section on the architecture database. This left 1933 WOs.
The corrective maintenance data and architecture data were merged for the pro-
cessing required before modelling. Note: only the failures affecting the operation
are accounted for in this model. Hence, the TMS and the signalling boards are
beyond the present scope: the TMS is shared by all track sections (even when the
WOs are related to a particular section), while the signalling boards do not affect the
operation of the railway.

Fig. 2 Number of systems per track section of the studied case (50 track sections)
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From the case study’s corrective maintenance data, it is possible to obtain the
information shown in Table 2. Note: mean waiting time is considered to be 5 min
(obtained from interviews with experts).

4 Model Development

Depending on the system affected by the failure, the three operational states of the
railway infrastructure considered are subdivided, giving a total of 11 states that
determine the different operational states and the system affecting operation. The
states are described in Table 3. The last two columns of the table show graphically
the status of availability and safety, and how these change depending on the state of
the railway: green (and happy) face when OK, yellow (and neutral) face when
operating in a degraded mode and red (and sad) face when the signalling system is
not ensuring safety or the railway is not available.

P ¼

1� k1;2 � k1;4 � k1;6 � k1;8 � k1;10 k1;2 0 k1;4 0 k1;6 0 k1;8 0 k1;10 0
0 1� l2;3 l2;3 0 0 0 0 0 0 0 0
l3;1 0 1� l3;1 0 0 0 0 0 0 0 0
0 0 0 1� l4;5 l4;5 0 0 0 0 0 0
l5;1 0 0 0 1� l5 0 0 0 0 0 0
0 0 0 0 0 1� l6;7 l6;7 0 0 0 0
l7;1 0 0 0 0 0 1� l7;1 0 0 0 0
0 0 0 0 0 0 0 1� l8;9 l8;9 0 0
l9;1 0 0 0 0 0 0 0 1� l9;1 0 0
0 0 0 0 0 0 0 0 0 1� l10;11 l10;11
l11;1 0 0 0 0 0 0 0 0 0 1� l11;1

2
66666666666666664

3
77777777777777775

ð8Þ

4.1 Model Architecture

The state-space diagram for the Markov process visualised in Fig. 4 shows the
different states of the system (see Table 1 for description) and the possible transi-
tions between them. From Fig. 3 it is possible to deduce the simplified stochastic

Table 2 MTBF and MTTM
for the case study

MTBF (Years) MTTM (h)

25 % Mean 75 % 25 % Mean 75 %

BG 1.9730 4.7670 9.8631 5.3271 9.2377 12.5167

IXL 0.7182 2.8581 3.0828 4.1839 5.5357 7.2221

LC 0.3846 2.2860 2.4664 2.1171 4.3308 4.7864

Signal 0.8968 2.1464 2.4663 3.1070 5.1494 6.3838

TC 0.8221 2.0040 1.9731 2.0892 3.3577 4.1961
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Table 3 States

States Description Avail. Safety

St.1 Operative state The railway operation is possible and the signalling
system is fully operative

St.2 Faulty—BG failed The railway operation is not possible and the signalling
system is not operative due to a failure on the BG

St.3 Degraded—BG
failed

The railway operation is possible in degraded mode
(40 km/h and the driver is responsible for supervision
and protection), the signalling system is not operative
due to a failure on the BG

St.4 Faulty—IXL failed The railway operation is not possible and the signalling
system is not operative due to a failure on the IXL

St.5 Degraded—IXL
failed

The railway operation is possible in degraded mode
(40 km/h and the driver is responsible for supervision
and protection), the signalling system is not operative
due to a failure on the IXL

St.6 Faulty—LC failed The railway operation is not possible and the signalling
system is not operative due to a failure on the LC

St.7 Degraded—LC
failed

The railway operation is possible in degraded mode
(40 km/h and the driver is responsible for supervision
and protection), the signalling system is not operative
due to a failure on the LC

St.8 Faulty—signal failed The railway operation is not possible and the signalling
system is not operative due to a failure on the signal

St.9 Degraded—signal
failed

The railway operation is possible in degraded mode
(40 km/h and the driver is responsible for supervision
and protection), the signalling system is not operative
due to a failure on the signal

St.10 Faulty—TC failed The railway operation is not possible and the signalling
system is not operative due to a failure on the TC

St.11 Degraded—TC
failed

The railway operation is possible in degraded mode
(40 km/h and the driver is responsible for supervision
and protection), the signalling system is not operative
due to a failure on the TC

Fig. 3 Markov diagram
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transitional probability matrix shown in Eq. 8. The system is considered to be fully
operative for the initial state expressed as:

P t ¼ 0ð Þ ¼ 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0ð Þ

5 Results and Discussion

A Markov model is developed to measure the probability of the three operational
states (operative, faulty or degraded) of the railway signalling system, identifying
the systems that most affect the safe operation of the railway. The developed model
was used to measure the operational effects of dependability improvements of
different signalling assets and then validated with a case study of a Swedish railway
signalling system using a number of scenarios. Certain assumptions were made, for
example, that the failure and repair rate follow an exponential distribution. The
Markov model is a tool for maintainers to use when evaluating the safety and
availability of the railway operation by analysing the times when operation is
possible but the signalling system is not ensuring safety; it also allows simulating
the effects of different RAMS improvements. Its simplicity allows the maintainers
to use the actual maintenance records to obtain an estimation of the level of safety
and availability, despite the lack of detailed data (which would be needed if
implementing a more complex model. Further work can be oriented to investigate
better models that can give a better estimation of the probabilities, not depending on
the assumptions taken in this paper.

Since this research is based on the corrective maintenance affecting the operation
(supervision, protection, control, information) recorded in the database 0felia, it
does not take into account corrective maintenance that could have been done but
has not been recorded, e.g. during inspections. The use of real maintenance data
makes the research process more complex, but renders the results more relevant
since they reflect the complexity of reality. To increase the quality of the mainte-
nance records (for example, recording the component affected, reducing the “not
defined” failure modes or recording if the failure affects the railway operation)
would increase the reliability of the obtained results.

Table 4 shows the probabilities of being in the different states for scenarios F-1
to F-5 and uses colours to illustrate the relative probabilities between states, with
green being desirable and red undesirable. For the operative state, it is desired to
achieve a probability state that is as high as possible, but for faulty and degraded
states, the lowest one will give the best results for safety and availability.

Figure 4 shows graphically the state probabilities. This allows to visually com-
paring the results, looking at the performance variance in a real track section. In the
figure, the difference between the values obtained for the state probabilities for the
various scenarios are shown. For example, for the LC, the state probability of being
in a degraded state obtained for scenario F-4 is 14 times the one obtained for the F-5
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scenario. This difference is also remarkable for the BG (11 times). The differences
are minor for faulty states, even though they remain identifiable: six times for the
faulty state linked to the LC and five times for the one linked to the BG.

Operating the railway in a degraded state can reduce the delays caused by a
failure of the signalling system, but this does not change the fact that the signalling
system is failed and, hence, safety cannot be ensured. In order to evaluate the safety
and availability of the railway, we must not only look into reliability and main-
tainability (i.e. considering failures and delays) but also consider the probability of
operation in a degraded mode. From a safety perspective, the better option is a
signalling system with lower reliability but a safer design than one with higher
reliability but with a higher probability of operating in a degraded mode.

Table 4 Probabilities of being at different states for the real data scenarios (F-1 to F-5) (*10^−2)

Table 4: Probabilities of being at different states for the real 
data scenarios (F-1 to F-5) (*10 -2)

States 
Scenario

F-1 F-2 F-3 F-4 F-5 

St.1 99.8634 99.8353 99.5349 99.4492 99.9204 

St.2 0.0026 0.0026 0.0063 0.0063 0.0013 

St.3 0.0221 0.0299 0.0532 0.072 0.0062 

St.4 0.0044 0.0044 0.0173 0.0172 0.004 

St.5 0.0221 0.0288 0.0876 0.1142 0.0155 

St.6 0.0054 0.0054 0.0322 0.0322 0.005 

St.7 0.0216 0.0239 0.128 0.1413 0.0098 

St.8 0.0058 0.0058 0.0138 0.0138 0.005 

St.9 0.0273 0.0339 0.0652 0.0808 0.0144 

St.10 0.0062 0.0062 0.0151 0.0151 0.0063 

St.11 0.0191 0.0239 0.0464 0.0579 0.0121 

∧

Fig. 4 Probabilities of the railway of being on the different states for the real data scenarios (F-1 to
F-5)
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There is also a difference between the probabilities of the different scenarios of
the system most affecting the railway operation. For example, for scenarios F-1 and
F-2, the maximum probability of being in a faulty state is linked to a failure of the
TC, and the maximum probability of being in a degraded state is linked to a failure
of a signal. For scenarios F-3 and F-4, the maximum probabilities for both the faulty
state and the degraded state are related to the LC. For scenario F-5, the maximum
probability of being in a faulty state is related to the TC and to the IXL for a
degraded state.

The smallest difference between the state probabilities occurs for the LC and the
TC in scenario F-5, where the probability of being in a degraded state is two times
higher than the probability of being in a faulty state. The maximum difference is
obtained for the BG in scenario F-4, with a probability of being in a degraded state
that is 11 times higher than the probability of not being operative.

The differences in the results obtained for scenarios F-1 to F-5 can be linked to
the fact that these results are obtained from operational instead of inherent reliability
and maintainability data. Hence, other factors related to the environment, operation,
etc. can influence the behaviour of the systems. The logistics related to the waiting
time for performing corrective maintenance in a certain location also play an
important role in the real repair rates. Maintenance improvements can be oriented,
for example, to reduce the waiting time related to logistics if it is necessary to
reduce the degraded operational mode.

This paper has used the 50, 25 and 75 % quartiles to show the range of variation
that can be obtained when implementing the model, depending on the input data.
The choice of these values is more for the purpose of easy visibility than anything
else. The results of other simulations using the median, absolute maximums and
minimums, and 5 and 10 % quartiles showed no relevant differences.

Even though this research has used the case study of the Swedish signalling
system to validate the model, it can be generalised to other types of signalling
systems or railway networks, as it can be adapted to fit any existing differences.

6 Conclusions

The purpose of this paper is to evaluate the safety and availability of railway
signalling systems using Markov models. The following conclusions can be drawn:

• The Markov model is a tool for maintainers to use when evaluating the safety
and availability of the railway operation by analysing the times when the
operation is possible but the signalling system is not ensuring the safety.

• The results obtained from the model show that the probability of being in a state
where operation is possible in a degraded mode is greater than the probability of
not being operative at all, which reduces delays but requires other risk mitiga-
tion measures to ensure safe operation.
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• The model allows the comparison of corrective maintenance data from different
locations, architectures or design solutions, thereby assisting in the
decision-making process when improving or updating the railway infrastructure.
This last point can be the subject of future research.
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Applying Multi-factorial Pareto Analysis
in Prioritizing Maintenance Improvement
Initiatives

Marcus Bengtsson

Abstract One practical solution in prioritizing which maintenance improvement
initiative to undertake is by using Pareto analysis. This has also been advocated for,
as one tool (of many), to use within maintenance by many maintenance research
practitioners. However, there are some drawbacks and potential sources of errors if
not being cautious. The main objective of this research is to develop and test a tool
to be utilized for prioritization purposes of maintenance improvement initiatives.
The purpose of the paper is to exemplify, from an industrial case, some of the
strengths and weaknesses of this approach.

Keywords Prioritization � Pareto analysis � Maintenance improvements

1 Introduction

Since the choice of possible maintenance improvements in a production process is
basically infinite whilst maintenance resources are not it is essential that, for
instance, improvement initiatives are prioritized. Basically, improvements in main-
tenance can be performed from two perspectives: increasing effectiveness in the
manufacturing equipment (i.e., effect of maintenance activities) and increasing
efficiency in the maintenance work being performed. Maintenance effectiveness is
connected to indirect maintenance cost (cost for lost production etc.) and mainte-
nance efficiency is connected to direct maintenance cost (cost for maintenance labor
etc.) [9]. These two must be linked and analyzed in any improvement initiative.
Exemplified: increasing maintenance effectiveness without taking into account
maintenance efficiency can render in that the direct maintenance cost increases more
than what is saved in decreasing indirect cost. Has an improvement really been
implemented or has the improvement initiative been wasteful? (see further: [2]).
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Using Pareto analysis (commonly known as the 80/20-rule or the rule of the
“vital few and trivial many” [4]) in prioritizing which improvement initiative to
undertake is one practical option and has been advocated for, as one tool (of many),
to use within maintenance by maintenance research practitioners [3, 6–8, 10–12,
15]. For instance, [6, 7] uses Pareto analysis in order to assess the worst performing
machines with the criteria downtime and frequency of calls. Duffuaa and Ben-Daya
[3] state that Pareto analyses and diagrams can be utilized to identify: factors
impairing productivity, crafts causing major backlogs, spare parts causing most
delays, the most costly spare parts, and equipment causing the longest downtime.
These types of visualization can be utilized when, for instance, prioritizing which
equipment should be chosen for improvement work. However, there are some
drawbacks with Pareto analysis if one is not cautious.

Sanders [13], for instance, makes a point in that a Pareto diagram, showing the
distribution of any data, is like a photograph and that it tells nothing about the past or
the future. Further [13] states: “Concentrate on the 20 % that are important today, of
course. However, one can’t disregard the 80 %, some of which may be found among
the important 20 % tomorrow” (p. 40). When it comes to identifying failure codes
that represents the majority of maintenance cost or downtime, [5] points out three
possible deficiencies with Pareto analysis. (1) It can be difficult to find out which
factor, or factors, that are dominant in contributing to cost or downtime if the Pareto
histogram is based on downtime or cost alone. (2) With Pareto analysis one might
miss identifying sporadic events with high maintenance cost or long downtime, or
frequent events that individually does not cause high maintenance cost or long
downtime but in total consumes much resource. (3) Pareto analysis is not generally
applicable for trending purposes. As such, it is necessary to treat Pareto analysis with
some precautions when prioritizing maintenance improvement initiatives.

The main objective of this research is to develop and test a tool to be utilized for
prioritization purposes of maintenance improvement initiatives. The purpose of the
paper is to exemplify, from an industrial case, some of the strengths and weaknesses
of this approach.

2 Case Study Context

In this study, data from three factors from a computerized maintenance management
system (CMMS) from one large production site in Sweden have been studied and
analyzed in three individual Pareto analyses and further been developed into a tool to
be used in prioritizing between different maintenance improvement initiatives. The
production site manufactures, assembles, and paints components for the automotive
industry. Roughly 700 employees tend roughly 300manufacturingmachines, various
assembly equipment, test benches, a hardening shop, and a paint shop. CMMS-data
from 2013 was downloaded. In total, any type of maintenance activities
(i.e., immediate and/or deferred corrective maintenance and/or predetermined or
condition based maintenance (for definitions please consult: SS-EN 13306 [14]))
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were performed on 1180 machine objects in the production site. In total, 516 machine
objects suffered from breakdowns (immediate corrective maintenance). The main-
tenance department consists of three sub-departments: production maintenance,
maintenance support, and maintenance engineering. At the sub-department produc-
tion maintenance, four team leaders, with four to five electro-mechanics/repairmen
per team, are responsible for their own geographical area of the production site.
Production maintenance works daytime.Work tasks, such as: planning and execution
of preventive maintenance, planning and execution of other planned work,
improvement work, are included. At the sub-department of maintenance support, one
team leader, with 20 electro-mechanics/repairmen, are responsible to support pro-
duction maintenance in work peaks and are called out to repair breakdowns on
machine objects. Maintenance support works in three shifts. At the sub-department of
maintenance engineering, two team leaders (with ten maintenance engineers per
team) works with support to the other maintenance sub-departments as well as to
other departments within the production site with tasks, such as: specialists function,
education, condition monitoring, remanufacturing, supplier contact, maintenance
management development etc. Maintenance engineering works daytime.

3 Initial Pareto Analyses

In analyzing the factor number of breakdowns, the 20 % of the 1180 machine
objects with most breakdowns accounted for 87 % of the total number of break-
downs, see Fig. 1. In only analyzing the machine objects that had suffered from
breakdowns during 2013, which amounted to 516 machine objects, the 20 % with
most breakdowns accounted for 60 % of the total number of breakdowns. Secondly,
in analyzing the breakdown-related work orders through the factor down time, the
20 % of the work orders with the longest down time accounted for 78 % of the total
down time, see Fig. 2. Thirdly, in analyzing the factor breakdown-related clocked
working hours on the work orders, the 20 % of the work orders with the most
clocked working hours accounted for 66 % of the total amount of clocked working
hours due to breakdowns, see Fig. 3.

Fig. 1 Pareto analysis of number of breakdowns in machine objects. As visualized, the 20 %
worst performing machine objects account for 87 % of the total number of breakdowns
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The analyses were found to be interesting individually but questions were raised
as to how they should be used in prioritization purposes. In using all of them,
individually, many machine objects and work orders would be prioritized. Using
only one of the analyses could imply a risk in that the machine object with most
influence on the total sum might be lost.

4 Multi-factorial Pareto Analysis

4.1 Development of the Tool

The solution was instead to give ranking order of the machine objects in all
respective Pareto analyses (factors) to be added up to one total ranking number per
machine object. The ranking orders, per Pareto (factor), were between 1 and 100;
where 1 should be considered the “worst” machine object in respective Pareto
analysis (factor) (all objects which were not on the worst 100 list were given the
rank 101). In order to get an even wider view of influences on machine objects,
additional data from in total eight factors, from the CMMS, were added:

1. number of breakdowns,
2. total down time due to breakdowns,

Fig. 2 Pareto analysis of the down time of work orders related to breakdowns. As visualized, the
20 % work orders with the longest down time account for 78 % of the total down time related to
breakdowns

Fig. 3 Pareto analysis of clocked working hours of work orders related to breakdowns. As
visualized, 20 % of the work orders with the most clocked working hours account for 66 % of the
total clocked working hours related to breakdowns
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3. total clocked hours due to breakdowns,
4. total cost of purchased external services due to breakdowns,
5. total cost of purchased spare parts due to breakdowns (not stored in spare part

storage),
6. total cost of spare parts due to breakdowns (stored in spare part storage),
7. number of other maintenance activities (disturbances and other maintenance

work), and
8. total clocked hours due to other maintenance activities.

Therefore, the lowest possible total ranking would be 8 (worst possible in all
Pareto) and the highest 808 (as several machine objects can score 101 in respective
Pareto analysis several machine objects can have a total ranking of 808). The data
are extracted monthly from the CMMS and entered into an Excel-sheet where the
total ranking per machine object is calculated, see Figs. 4 and 5. The Excel-sheet
with the total ranking are created in two versions, one contains data from 6 month
history and the other 3 month history.

Further, various filtering options were entered into the Excel-sheet in order to
give potential users the possibility to set their own filters for what they might find to
be interesting, see Fig. 6. For instance, production managers have the possibility to
choose only to view his/her own departments to see which machine object are
suffering most from maintenance problems. Similarly, maintenance managers and

Fig. 4 Screen dump of one view in the Excel-sheet visualizing the top 10 worst machine objects
(between February and July of 2014) when filtering on all possible machine objects in the site as
well as all possible Pareto (factors). Machine object numbers, machine types, and cost center
number are fabricated. See Fig. 5 for close-up
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maintenance team leaders can filter different maintenance areas. Also, it is possible
to filter according to machine criticality (AAA, AA, A, B, and C), for further
information on machine criticality see [1]. It is possible to filter different type of
objects (e.g., turning machines, grinding machines, robots etc.) which can be
interesting for, e.g., production managers for comparison of similar machine object
types located in different departments. Lastly, there is also a filtering option to either
view all of the total ranking numbers or the ranking numbers with most influence on
either the maintenance effectiveness or the maintenance efficiency. For the

Fig. 5 Close-up of the screen dump of the Excel-sheet. Some facts in the screen dump is
highlighted and explained. Machine object numbers, machine types, and cost center number are
fabricated

Fig. 6 A macro in the Excel-sheet makes filtering options easy
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maintenance effectiveness the factors of: number of breakdowns, total time due to
breakdowns, total clocked hours due to breakdowns, total cost of purchased spare
parts due to breakdowns (not stored in spare part storage), total number of other
maintenance activities, and total clocked hours due to other maintenance activities,
were taken into consideration. These factors were judged by the maintenance
management team to be causing most disturbances and variation for the customers
(the production department). These factors include, for example, frequency and
down time of maintenance work which directly impacts production. Also, the factor
on total cost of purchased spare parts due to breakdowns (not stored in spare part
storage) is included as it incurs longer waiting times as well as (often) a higher cost
for shipping. This ranking can be utilized in order to see where maintenance
improvement initiatives can have a good impact on customer satisfaction. When it
comes to maintenance efficiency, the factors of: total clocked hours due to break-
downs, total cost of purchased external services due to breakdowns, total cost of
purchased spare parts due to breakdowns (not stored in spare part storage), total cost
of spare parts due to breakdowns (stored in spare parts), and total clocked hours due
to other maintenance activities, were taken into consideration. These factors were
judged by the maintenance management team to be causing most disturbances and
variation within the maintenance organization. Clocked hours on work, both on
breakdowns as well as other planned maintenance activities can be derived to
several causes, such as for example, competence, training, and maintainability
which all have impact on maintenance efficiency. Also, the factor on total cost of
purchased external services due to breakdowns can be derived to competence issues
but also lack of manpower or other planning issues. The two factors on spare parts
concern cost-effectiveness of maintenance operations.

4.2 Utilization of the Tool—Maintenance Teams

The Excel-sheet, containing 6 months of history, with its Pareto analyses and total
ranking number have been utilized by maintenance improvement teams in order to
prioritize machine objects for maintenance improvement work. The total ranking
number has been used as a start of the prioritization but additional input, such as
communication with the customer (the production department) has also been taken
into consideration in order to validate that improvements are truly needed, at least
when it comes to improving maintenance effectiveness. As the Excel-sheet with
6 month of historic data is rather slow to use for follow-up of improvement work
the 3 month version are used more often to validate that improvements have been
successful.

As an example, one of the maintenance team leaders, with team members, in the
sub-department production maintenance chose to work with improvements on the
machine object number 1 (02-12345, fabricated number), visualized in Figs. 4 and
5, i.e., the worst machine object of all between February and July (of 2014). The
goal of the improvement work was to eliminate three reoccurring failures and to
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improve availability generally. The improvement work ran between June and
October (of 2014) while many activities were performed (it is out of the scope of
this paper to present the improvement work methods). The results of the
improvement activities were followed-up continuously and specifically the three
reoccurring failures that were set out to be eliminated.

However, to visualize results of the improvement work, primarily for the cus-
tomer (production manager and operators), on a general level, revisiting the
Excel-sheet a few months after the improvement work has ended can tell how
successful the improvement work have been. See Fig. 7 for data between July and
December (of 2014). First, make a note that the machine object, which was the
worst of all in February to July (of 2014), is now the 64th worst on the list. Also,
make a note that seven factors have been improved (the eighth factor was, in both
analysis, outside of the top 100 list). In this example, only the filter with all factors
is being visualized, e.g., the maintenance effectiveness and maintenance efficiency
filters are not visualized. However, it is rather clear that both maintenance effec-
tiveness (fewer breakdowns, less total downtime etc.) and maintenance efficiency
(less purchase of external services, fewer clocked working hours etc.) has been
improved. The effectiveness and efficiency could of course be improved even more,
particularly in the factor number of other maintenance activities which is still
ranked as one of the worst in the production site.

4.3 Utilization of the Tool—Maintenance Management
Team

Another possibility in the Excel-sheet is to view individual Pareto, on the different
factors. This view can be utilized to zoom into potential structural problems in the
respective factors, see further Figs. 8, 9, 10, 11, 12, 13, 14 and 15. The individual

Fig. 7 A screen dump visualizing the same machine as in Fig. 5 (between July and December of
2014). The improvement work on the machine ran between June and October. As visualized, the
machine object, which were the worst possible (see Fig. 5) is now at 64th place. Machine object
number, machine type, and cost center number are fabricated
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Pareto has been visualized only by the ten worst machine objects in respective
factor in order to increase awareness on how much impact very few machine
objects have. Also, these views are an important tool for the maintenance man-
agement team in order for them to work with diagnostics and improvement work in,
for example, reducing the amount of external services and in optimizing the spare
part storage.

Fig. 8 Screen dump of one
view in the Excel-sheet
visualizing that the 10 worst
machine objects (between
June and November) in
respect to number of
breakdowns accounts for
12 % of all breakdowns

Fig. 9 Screen dump of one
view in the Excel-sheet
visualizing that the 10 worst
machine objects (between
June and November) in
respect to total down time due
to breakdowns accounts for
21 % of the total down time
due to breakdowns
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Fig. 10 Screen dump of one view in the Excel-sheet visualizing that the 10 worst machine objects
(between June and November) in respect to total clocked hours due to breakdowns accounts for
21 % of all clocked hours due to breakdowns

Fig. 11 Screen dump of one view in the Excel-sheet visualizing that the 10 worst machine objects
(between June and November) in respect to total cost of purchased external services due to
breakdowns accounts for 79 % of the total cost of purchased external services due to breakdowns
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Fig. 12 Screen dump of one view in the Excel-sheet visualizing that the 10 worst machine objects
(between June and November) in respect to total cost of purchased spare parts due to breakdowns
(not stored in spare part storage) accounts for 77 % of the total cost of purchase of spare parts (not
stored in spare part storage)

Fig. 13 Screen dump of one view in the Excel-sheet visualizing that the 10 worst machine objects
(between June and November) in respect to total cost of spare parts due to breakdowns (stored in
spare part storage) accounts for 66 % of the total cost of spare parts due to breakdowns (stored in
spare part storage)
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5 Discussion and Conclusions

A CMMS being used in a large production site with a reasonable amount of
machine objects quickly fills up with data. This data can and should in many cases
be considered as experience. Making use of this data and experience is important in
order to become more effective and efficient. It can, though, be a difficult task in
finding useful and targeted information when, for example, trying to prioritize
between different improvement initiatives. This research started with Pareto anal-
yses of three individual factors from a historic base of 1 year from a CMMS and

Fig. 14 Screen dump of one
view in the Excel-sheet
visualizing that the 10 worst
machine objects (between
June and November) in
respect to number of other
maintenance activities
accounts for 12 % of all other
maintenance activities

Fig. 15 Screen dump of one
view in the Excel-sheet
visualizing that the 10 worst
machine objects (between
June and November) in
respect to total clocked hours
due to other maintenance
activities accounts for 20 % of
all clocked hours due to other
maintenance activities
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was developed into a tool taking into consideration and combining eight factors into
one overall ranking number on machine object level. Future development of the
tool includes weighting of the different factors. Some can be considered more
influential than other, particular when splitting the total effectiveness into mainte-
nance effectiveness and efficiency. For example, the number of breakdowns and
maintenance activities in conjunction with total downtime is most likely more
influential than perhaps cost of spare parts when it comes to maintenance effec-
tiveness etc.

It is important that the tool is to be used as a tool to verify the customers’
experiences rather than as a tool to strictly prioritize from. The need of the customer
must always be in focus. The true need of an improvement is not always visible in a
CMMS, other ways, for example, through human communication or
OEE-measurements must be used in order to truly validate the internal need and
future internal value of an improvement [2].
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Predictive Modelling for Estimation
of Railway Track Degradation

Bjarne Bergquist and Peter Söderholm

Abstract The degradation processes affecting railway track condition depends
both on the resistance of the track and on the stresses subjected to it. Regarding the
stresses, both their magnitudes and cycles are of importance when considering
the degradation. Furthermore, the stresses have some regularity and variability in
the time domain, while the degradation resistance of a track has some spatial
regularity as well as variability. In addition, the condition measurements of track
may be both irregular and contain measurement errors. Hence, it is challenging to
model the condition of track to enable predictions and condition-based mainte-
nance. However, wear prediction models could help to change large parts of the
maintenance practice from predominantly corrective to preventive if both the
deterministic and the stochastic components of the wear process can be estimated
with sufficient accuracy. In this study, one-step-ahead predictions have been used
for establishing prognostic models based on repeated measurements of railway
track geometry to estimate track wear properties, degradation rates and stochastic
behaviour including measurement errors. The prognostic models have then been
used for condition assessment and state predictions. Repeated sampling allows for
estimations of measurement errors, but the irregular sampling need to be accounted
for by interpolation in the time series modelling approach.
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1 Introduction

Condition monitoring of railway tracks is often performed by special measurement
trains, including wagons that measure properties of the track, the overhead wire and
the track substructure. The measurements are obtained at intervals that are influ-
enced by the magnitude of the load subjected to the railway track such as frequency
of trains and their axle load. Repeated measurements of railway track properties
suggest that the data could be used to generate models for prediction of the railway
track degradation. With reliable prediction methods, both the infrastructure man-
ager and the entrepreneur would be given a means for longer planning horizons,
enabling more preventive and less corrective maintenance. Changes from corrective
maintenance to preventive maintenance would not only be more cost effective, but
also reduce train delays and accident risks. The cost effectiveness is improved since
longer planning horizons would increase the possibilities for effective use of
expensive equipment and personnel and thus reduce overall maintenance costs. The
delays and safety are improved since the maintenance proactively manages failure
events before they develop into faulty states, by a surveillance of the changing
condition of the track.

1.1 Statistical Process Control

Statistical Process Control (SPC) is a classical statistical approach used for many
surveillance purposes within various sectors [1]. SPC is based on control charts,
where measurements are compared to control limits. These limits are based on the
statistical distribution of the sampled data.

Within SPC, an observation is classified as being within its expected range if it
remains within the control limits, and if not, the assumption is that the process is
affected by systematic variation and needs attention. Commonly it is assumed that
the sampled data is normally distributed and independent. Special control charting
techniques have been designed to be used when these assumptions do not hold.
Regularly, control limits equal to three standard deviations of the studied property
variation is used, which for normally distributed and independent data that are
unaffected by assignable causes for variation would generate false alarms in 1 out of
370 observations. The detection capability can be described similarly. If an
assignable cause was to shift the mean value of the process by 1 standard deviation
(σ), a regular so called individuals x-chart with control limits of 3σ would have a
2.3 % chance of detection already at the first observation of the process after the
shift, and a 50 % chance of detection of the assignable cause generating a deviation
as large as 3σ from the nominal value. See also [2].

Control charts are often based on sampling procedures such as that five items are
sampled, and then the level of the output is studied by plotting the average (�x) in
one chart, and the variation is studied by plotting the sample standard deviation (s)
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in another, the so called �x -s charts. Changes in any of these properties will thus
render alarms. When studying individual observations (x), these are also plotted in a
control chart with the purpose of monitoring the level of the output, and then the
variation between consecutive measurements (moving range, MR) are used to
monitor the variation in another chart, the so called x-MR charts.

In some situations, both the location as well as the time could be important for
monitoring a certain characteristic, that is, the monitoring scheme requires spa-
tiotemporal information. Spatiotemporal data using two-dimensional information
have been suggested for railway condition monitoring, see Bergquist and
Söderholm [3, 4].

The spatiotemporal approach introduced by Bergquist and Söderholm [4] is
illustrated in the control cart of Fig. 1. In the control chart, twist variation has been
plotted for each passage of the measurement wagon for each of the thirteen 150 m
sections based on the Z-chart. The top chart displays the double logarithm of the
twist range ((ln(ln(range(twist)))), and the two-observation moving range (MR) of
these observations is represented in the lower chart. The median moving range has
been used to calculate the control limits for both charts, since the median is not
affected by drastic changes. The variation increases over time for each of the 13
sections, and now and then the variation abruptly drops. These variation drops
usually coincide with known maintenance actions, i.e. tamping. Now, although this
control charting technique renders much faster alarms than the regular procedure of
using geometric alarm limits [3], it does not take full advantage of the time

Fig. 1 Logarithm of range of twist of track divided into 150 m sections. Each observation
represents one measurement occasion; the oldest to the leftmost of each section

Predictive Modelling for Estimation of Railway Track Degradation 333



dependence of the data. From Fig. 1, it is obvious that the condition is degrading
with time, which means that the control limits will depend on long-term deviations.

In this study, we are interested in studying the dynamic evolvement of the track
properties. This means that we are interested in alarms not just when the latest
observations reach a certain limit, but also if the rate of deterioration (or
improvement) would occur. One way to monitor the rate of change rather than the
change would be to study the difference between repeated measurements directly as
the primary response. The sequential observation differences are regularly moni-
tored using the moving range chart that often accompanies the individuals control
chart. In fact, the lower graph in Fig. 1 shows such a chart. The alarms of the
moving-range chart seen in Fig. 1 are results of known and suspected maintenance
actions. It is clear that the large, dramatic changes of the measured property will
render alarms, but the alarm limits are too wide to detect smaller deviations. The
proposed procedure in [3] does not render prognoses for the studied property either.
By visually inspecting the graph, an idea of where the next observation could be
expected is possible, but the irregular sampling procedure is not taken into account.

Here we suggest a more formal approach based on predicting the state of the
studied property at a certain time by modelling the behaviour prediction process.
We study interpolation methods as well as least squares estimation of polynomial
equations, and compare the results by studying standard deviation of the prediction
error.

Another difficulty generating a prediction model is acknowledging that the
process is regularly maintained, and the deterioration of a property as well as the
deterioration rate may not only be brought to a halt, but the state may be improved
and the deterioration rate may be reduced as the result of such maintenance. A good
prediction model should be able to handle such step changes. Since the condition of
the first measurement following the maintenance action is likely to differ between
different maintenance actions, making the prediction model accurate already for the
first measurement after maintenance is likely difficult. A good model would,
however, succeed to generate fair predictions for observations from the second
measurement following the maintenance action. This paper intends to report on
complementary approaches, where the deterioration rate itself is acknowledged, and
observations that do not follow the expected deterioration process for a track sec-
tion is scrutinized.

Time series analysis is a well-known method for the generation of future pre-
dictions and could therefore be a candidate for predictive maintenance actions,
which in turn, includes promises for a number of positive outcomes. However, the
sampling interval is also affected by climatic circumstances that may affect the track
or the accuracy of the measurements such as spring thaw period, or logistic reasons
such as operator vacancies and availability of measurement trains. Hence, where
repeated measurement data are delivered at irregular intervals, the regular sampling
assumption of times series analysis is violated. To overcome this challenge, this
study aims to devise a prognosis method based on approaches that could be applied
to the irregularly sampled data.
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To fulfil the aim of the study, different prognostic models are compared with
each other by usage of condition data measured at a track section of the Swedish
Iron ore line, which is a heavy haul line in the northern part of Sweden.

1.2 Interpolation Techniques

Interpolation is used to calculate intermediate values and convert disjoint data
points to a continuous function. The methods differ, for instance in the way the
derivative is required to be continuous as well. Nearest neighbour interpolation
simply uses the value of the nearest data point in between samples, while linear
interpolation connects points through linear functions. Many spline methods, or
Kriging methods [5], generate continuous derivatives, and thus create smoother
interpolation functions with curves lacking sharp corners. The Kriging formula in
this case generates an estimate, Ẑ, of the unmeasured property at a time t0 between
observations, according to Eq. 1.

Ẑðt0Þ ¼
XN
i¼1

kiZðtiÞ ð1Þ

Where: Z(ti) is the measured property values at the ith time, ki is the Kriging
weight constant, and N is the number of measured values to use for the
interpolation.

Spline functions are regularly used for interpolation, but when data may contain
noise, the regular spline functions, such as the cubic splines, tend to oscillate and be
susceptible to outliers. A regular spline function has global propagation, and the
whole spline function will be affected if there is an outlier anywhere among the
measurements, regardless if the outlier was detected a long time ago. Splines with
local propagation, meaning that the closest control points (measurements) have the
largest importance for the curve near these, will improve fitting and are more
promising when seeking an extrapolation model. Splines with local propagation
include the Akima spline [6] and the B-spline (also known as the basis spline). The
Akima interpolation spline is a continuously differentiable sub-spline that is
piecewise, meaning that the nearest neighbours influence the interpolation values.
The curve is therefore split into segments and each segment is influenced only by a
defined set of nearest neighbours. The interpolation function is defined as in Eq. 2:

ẐðtÞ ¼ k0 þ k1ðt � tiÞþ k1ðt � tiÞ2 þ k1ðt � tiÞ3; . . .; ti � t� tiþ 1 ð2Þ

where the constants are determined by the first derivatives t0i and t0iþ 1 at the at the
endpoints of the interval, see [6]. The Akima spline is compared to other spline
types, such as cubic splines, more robust versus outliers.

For an overview of the result of five different interpolation methods, see Fig. 2.
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Forcing the interpolation methods to pass through the observation may not
always be the best choice. The reason for this is that observations usually carry with
them some amount of error, e.g. from the measurements.

2 Method

The overall study approach selected to fulfil the aim of this study was a single-case
study of the Swedish iron ore line. Quantitative data representing the track con-
dition was collected by measurement trains running along one selected track section
of the line, e.g. due to the large number of runs, which supported the modelling
efforts. The analysis of empirical data was mainly based on a combination of
theories from the fields of SPC, time series analysis, and interpolation methods.
This research method is described in some more detail in the following subsections.

2.1 Studied Case

Track condition data for the Swedish railway system are collected by measurement
wagons that regularly are pulled along the track system in speeds up to 200 km/h.
Each section of the Swedish track system is measured up to six times per year

Fig. 2 Irregularly sampled observations and different interpolation methods. Kriging method
constants in legend. As seen, these interpolation methods fit the curve to the observations while
interpolation values differ
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depending on the section’s criticality. Observations of about 30 track geometry
variables are obtained and stored for every 25th cm. Track variables include the
position coordinates (height, and locations in the plane), and the track width [7, 8].

The collected data is then stored in a database (Optram [9, 10]) together with
positioning and measurement time information. The database also contains infor-
mation about the infrastructure and its attributes (e.g. type of object, geographical
position, and description) and if the measurement is taken on a point asset (e.g.
railway switch and level crossing) or a linear asset (e.g. track and catenary system).
Other Optram information includes data about maintenance events and their history,
e.g. track alignment and related information.

The empirical data used for this study was collected from Optram ranging from
April 27, 2007 to November 21, 2014. The track was chosen as the major study
object and a track section at the Swedish iron ore line was chosen based on that it
did not contain any switches and crossings, platforms et cetera, nor any sharp
curves or had had the track replaced during the chosen timeframe. In addition,
derailment critical geometry faults had been found on the section, which also was a
selection criteria, since one of the study goals was to see if such faults could be
predicted.

The chosen 2 km track is found on track Section 113, 1327 km and 500 m to
1319 km and 450 m. This is the track connecting the mining towns of Gällivare and
Kiruna, and the section is found 5 km from Gällivare train station, approximately
100 km north of the Arctic circle. The Iron ore line is a single track railway with the
western endpoint in Narvik harbour, Norway, and with southbound connections to
the rest of Sweden placed at Boden. This means that track 113 is on a reversing
section and therefore many of the studied 48 measurements are only separated by
1 day or a weekend, such that one measurement is taken when the measurement
train passes on the way to the Norwegian boarder, and then passes again one or a
few days after at the return from Norway. Compared to the times between other
measurements, these passages could be classified as repeated measurements.

2.2 Studied Response

The cant is one of the critical track geometry variables, typically expressed as the
difference in elevation of the two rails, a quantity referred to as the superelevation.
On a straight part of the track, the two rails should be level, i.e. the cant should be
zero. On a curved part of the track, the cant denotes the raising of the outer rail with
respect to the inner rail to allow for banking. This banking is in turn needed to
compensate for the generated centrifugal forces. However, the train may derail if the
cant changes too rapidly. The cant change rate is called twist, i.e. the rate of change
of the track superelevation and is defined as the algebraic difference between two
cants taken at a defined distance apart. The cant is usually expressed as a gradient
between the two points of measurement, i.e. as a ratio (% or mm/m). Twist mea-
surements is either taken simultaneously at a fixed distance, e.g. at a distance
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equivalent to the wheel-base, or is computed from consecutive measurements of
cant. Normally, the twist is measured on a 6 m base, i.e. the cant measured at two
points with 6 m distance.

The studied time interval contains 48 twist measurement occasions. The
measurements were performed by measurement trains by the entrepreneur company
Infranord’s measurement wagons STRIX, IMV 100 N and IMV200. Besides
measurement wagons and instruments, the measurement speeds, and thus the
dynamic forces subjected to the track during measurements differed between
measurements. In total, 14 out of the 48 measurement occasions were classified as
repeated measurements for measurement system analysis purposes. The times to the
following measurement occasions classified as replicate measurement occasions
were selected with a maximum of 3 days separation from a previous measurement.

The sampled twist data include major positioning errors, and therefore the
studied 2 km section was split into 150 m long subsections. The range between the
maximum and minimum twist of each 150 m section was used as a suitable
response to overcome the positioning difficulties, and the logarithm of the logarithm
of the twist was chosen as an appropriate measure, see Bergquist and Söderholm
[3, 4].

2.3 Measurement Error Calculation

The 13 different 150 m sections were assumed to be independent, and the differ-
ences between the results of repeated measurement occasions for each section of
150 m length were used to calculate the measurement error variation for that
replicate. The total measurement error was then calculated through pooling the
standard deviation of all the 14 replicate measurements.

2.4 Interpolation Method Comparison

The irregularity of the sampling seen in Fig. 3 necessitates interpolation to obtain
the presumed range data at regular intervals. The measurements’ spread over the
studied interval is found in Fig. 3a, b. The interpolation interval was chosen to
3 months, and the chosen dates were March 31, June 30, September 30 and
December 31.

The methods used for the interpolation included the Akima spline, nearest
neighbour, linear interpolation, Kriging interpolation with constants 1.05 and 1.2,
and also least squares regression using both linear and quadratic estimations, see
Fig. 4. Note that the regression allowed for the fitted curve not to pass through the
observations, something that the other methods did not.

A time interval was chosen to contain training data recorded between October
9th, 2007 and October 1, 2009 and this interval included 11 observations each on
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Fig. 3 a Number of measurements per year. b Number of measurements per months over the
8 years

Fig. 4 Linear regression
fitting (solid grey curve) and
2nd degree polynomial curve
fitting (black dashed curve) to
measurement data
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the 13 studied 150 m intervals. The interpolation methods were then tested by using
a one-step-ahead prediction of the observation obtained during the validation per-
iod, ranging between October 2, 2009 and June 7, 2012. The intervals were chosen
since neither 150 m section showed any dramatic changes of the observed property,
indicating that no unreported maintenance actions had been performed. Data for
four of the 13 sections obtained from the training period and the validation period
are seen in Fig. 5.

After the one-step-ahead prediction and the prediction error was calculated by
comparing the prediction with the measured value, the training set was expanded
with the new observation, new models were calculated and new one-step-ahead
predictions were calculated over the validation interval. The sum of the squared
one-step-ahead prediction error was then used to evaluate which of the interpolation
methods that gave best results. Note that the one-step-ahead prediction error is an
extrapolation rather than an interpolation, and it is likely that methods that are
sensitive towards the last observation (e.g. the Akima spline in Fig. 2), are ranked
low using this procedure.

2.5 Predictive Control Charting Procedure

The suggested procedure uses an empirical model based on previous measurement
for predictions for the state of the monitored variable, and whenever the database is
updated, the prediction is compared to the observation, the residual is calculated
and the model is updated using the new information.

Fig. 5 Observations used for training the different interpolation methods and one-step-ahead
extrapolation period used for validation
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Two methods to update the prediction model when the modelled data displays
drastic changes as results of maintenance actions. Here, the twist variation along a
given track section (measured as the twist range) is studied. The maintenance
actions that will affect the twist variation for instance include tamping, track
alignments, ballast change, sleeper changes, changing the track or combinations of
the mentioned actions. All these can be expected to improve the twist and the twist
variation conditions as these actions include alignments of the track. It is not
unlikely that the actions also affect the degradation rate. As the maintenance action
is expected to improve conditions for years to come whereas the properties are
measured several times a year, step changes would be a simple way of modelling
the maintenance effects on the response that may prove sufficiently accurate, and
this approach is the one followed here.

Step changes may be implemented differently; we will study two approaches: In
the first approach, we introduce the step to the old observations, so that the pre-
diction model would fit with the new, improved state. The second approach entails
using the same model but adjusting new predictions after the maintenance actions
with the step change. Both approaches require estimation of the size of the step, and
this step will likely differ for different applications. The size of step is here taken as
equal to the magnitude of the first residual after the maintenance actions, that is the
difference between the model prediction at this time and the actual observed value.

3 Results

In this section the results of the performed analysis are presented, i.e. the estimated
measurement errors, the difference between compared interpolation methods, and
finally the proposed control chart procedure.

3.1 Measurement Errors

Counting that each of the 14 replicate measurement contained information from 13
sub-sections, the pooled measurement error estimate was based on 182 replications.
The pooled measurement standard deviation was found to be 31 E-3, and a 95 %
confidence interval for an observation assuming normality and independence was
calculated to be 0.12.

3.2 Interpolation Method Comparison

The sum of the squared prediction error, SQE, of the interpolation methods are
given in Table 1. The Akima spline’s sensitivity toward endpoint measurements
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also makes it sensitive versus measurement errors, and therefore the measurement
errors are large. The Kriging methods as well as using the nearest neighbour or
using linear interpolations all give fair predictions. These methods are, however,
beaten by the regression methods where the model does not pass through the
observations. The more relaxed requirements of the whereabouts of the model near
observations are reasonable given that the observations contain considerable mea-
surement errors. The linear regression model and the regression model using cubic
terms have similar prediction errors, but the linear regression is the more parsi-
monious, and is therefore chosen.

3.3 Control Charting Procedure for Spatiotemporal Data

As with regular control charting procedures, the intent of this study is also to signal
when observations are found that deviate from the expected. However, we want to
monitor a dynamic process that may have wandering means as well as variations
following the deterioration of the track. The expectation thus is constantly changing
as the track deteriorates from use or hopefully improves as a result of maintenance
actions. Hence, unexpected improvements as well as unexpected reductions of the
quality of the studied property are of interest. In the previous attempts [3, 4],
reduced performance was detected only when passing conditions should be visible
also for the first observation following the first one with large deviations, but
models that do not consider corrective actions will continue to alert until the
regression equation is based on sufficiently many late observations. Means to forget
old observations include weighing the latest observations the most such as using the
exponentially weighted moving average (EWMA) charts, but these would also
compensate for worsening conditions and are based on a static mean.

Here, it is proposed that the control chart is based on the residual between the
prognosis and the observation, and where the prognosis is based on estimation of an
intercept and a time-based constant. The control chart primarily is a chart that
controls the temporal model for the degradation or improvement of the track data.
When the railway condition is maintained, the intercept of the temporal model of
the studied property is updated by adjusting the old observations so that the curve

Table 1 One-step-ahead
prediction error of studied
methods

Method SQE

Akima spline 294

Nearest neighbour 87.8E-3

Linear interpolation 87.8E-3

Kriging with constant 1.05 93.1E-3

Kriging with constant 1.2 122E-3

Linear regression 54.6E-3

2nd degree polynomial regression 58.7E-3
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will pass through the new observations following the maintenance actions. In
Fig. 6, the solid curve, such a control chart is depicted for the track sec-
tion 1318 km, 850 to 1319 m 0. The residuals from the linear extrapolation pre-
diction are plotted versus the measurement time. The chart signals for the August 6,
2012 observation, where the model had predicted a higher twist variation. Note that
the signalling observation was not adjusted, since lack of information of mainte-
nance actions are common in the Optram database, and in this case the deviation
that would trigger an alarm.

The second approach, where instead the predictions are updated is also depicted
in Fig. 6, i.e. the dashed curve. Note that the two methods generate two different
paths, the former leading to increasingly negative residuals as new observations are
added, the latter to increasingly larger positive residuals.

Now with the control chart, the old predictions before the alarms remain as is,
but new predictions use the updated model for new predictions. It is not useful for
the display of the prognostic model to show where the model was erroneous the
same way it is for the control chart, so earlier erroneous predictions are adjusted
when the control charts have signalled that the model is no longer generating
correct predictions.

Fig. 6 Residuals control chart for track section 1318 Km, 850 to 1319 m 0, first approach where
the prediction model for observations following the maintenance action is based on fictive prior
observations
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4 Discussion

The study showed that the spline method was much worse than the other methods,
which only differed slightly in-between. The properties obtained by the measure-
ment wagons all have errors stemming from the measurement. The measurement
itself carries errors due to dynamic effects stemming from that successive mea-
surements rely on measurement trains that in turn may travel at different speeds, or
indeed be replaced so that the instrument differ between measurement. Another
major source of error is that the positioning of the observation may differ more than
50 m. Spline methods forcing the model to pass through the observations when
these contain considerable error resulted in oscillation of the model curve and also
that the extrapolation direction was severely off target. The other methods passing
through observations also performed worse than the regression that allowed the
model to be influenced by the observation, but that did not slavishly follow the new
observation.

For some sections, the 2nd order polynomial outperformed the linear model, and
the more flexible polynomial model probably had been more advantageous for a
response showing a more non-linear behaviour. Applying the logarithm twice on
the twist range transforms a long-tailed distribution to one more closely resembling
the normal distribution. Logarithm transformation is a standard transformation for
variation that has a skew distribution. Logarithm transformations are also often
applied to properties where the variation and level are tied to each other in a
multiplicative manner, that is, when variation tend to increase as the average
increases. Without the second logarithm applied to the twist range, the variation of
the twist range would indeed have increased, so that the highest variation of the
twist variation would be obtained for large twist ranges. As seen in Fig. 1, the
variation pattern, although increasing, does seem constant when the slope is
accounted for. The slope of the increase is close to constant for all sections; without
the second logarithm transformation the slope instead would have increased
between the maintenance events. For such responses, the 2nd degree polynomial is
likely to outperform a regression model only containing a term for intercept and
slope.

The calibration of the control charts for track alignment actions that were
unaccounted for, such as the one that should have preceded the large negative
residual of August 6, 2012 may need some consideration. That the track for some
reason seems to be mended and straightened itself goes against the third law of
thermodynamics and that is unlikely. A more probable cause would be related to the
measurement systems. The repeated measurements did not reveal improvements
after this point and other track sections showed a continued variation increase, but
in a general case, a reduction of the range of the twist due to reduction in instru-
mental error is possible and the method readily allows for adoption and continu-
ation of monitoring after such changes. Although such a track maintenance action
was not reported in the database, we conclude that maintenance was the only
reasonable explanation for this step reduction of the measured variation.

344 B. Bergquist and P. Söderholm



In this study, we investigated two procedures of adjusting the time series after
maintenance actions. The first procedure was to make new prediction models based
on a changed intercept due to tamping that deducted the values of all previous
observations including that of the negative outlier that was generated from the
maintenance action. Then the old model was recalculated, based on these imaginary
observations, and this new model was then used for the next predictions. The other
procedure was to use the same model, but to adjust the new residuals by the amount
of the first residual after the maintenance action. The former procedure makes the
linear model to continue more or less along the same path, and the slope constant
coupled to time changes only slowly. The second procedure leads to a step change
in the model data that reduces the slope coefficient. This latter procedure would,
taken to its extremes, lead to a zero slope as track deterioration is followed by
maintenance actions as long as the process is in operation.

For this reason, the former procedure is arguably better to use and the one
recommended here. However, the degradation of the track may not be constant; it
may de-accelerate as the degradation progresses, or it may accelerate. The slope and
thus the predicted deterioration rate of the former method where old observations
were compensated by a step change is too high, leading to increasingly large
residuals. If this is generally true, or a particular artefact for the studied section
needs further research, but if the slope change of the residuals is a general beha-
viour, both the reasons for the change of deterioration rate and the methods for
more rapid calibration of the slope of the condition after maintenance needs further
research.

5 Conclusions

One conclusion of this study is that out of the studied methods, the transformed
twist variation was best modelled by a simple linear regression. The linear
regression allowed for extrapolations of the behaviour and for monitoring the
process.

The repeated measurements also allow for estimation of the measurement
variation. A 95 % confidence interval of the measurement variation amounts to
almost half of the totally measured variation. In such a case, the model predictions
based on the location and evolvement of the property should be a much more
reliable and useful source for maintenance action decisions.

6 Future Research

The different deterioration speeds before and after the maintenance actions should
be of interest to study further, e.g. to support predictions of the track condition at an
increased number of tamping versus a track renewal. A further development of the
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method could be that the prediction model should only be based on a selected
number of the latest measurements, or that the slope of a linear model be based on a
selected number of the latest measurements is a natural expansion of the proposed
procedure.

If a particular deterioration process of a particular object changes, it may be
important that the control chart method takes this change into account and continues
to monitor deviations from the degradation path that the process is currently
exhibiting. This means that the model must constantly be updated with new
information about the current process dynamics. There is, of course a balance of
how flexible the method should be allowed to be; too flexible and most deviations
that should trigger an alarm would only be compensated for by that the model
changes to follow in the direction towards the new observation.

The change of the degradation path may, on the other hand, be that what is
interesting to monitor, rather than checking whether the last observation conveys to
the current expectation or not. When the track condition is improved by mainte-
nance actions, the degradation behaviour may be more or less rapid as when the
improved object’s properties were at the same level the last time. If, for instance,
the track has been aligned and the ballast has been tamped, the deterioration rate of
the track geometry may be much larger than the deterioration rate of a newly laid
track with similar track alignment data, due to e.g. less benign ballast properties and
so on. In fact, this deterioration effect of the ballast may limit the number of
tamping actions before track renewal is necessary to achieve the desired track
quality in a cost effective way. There may also be effects of initial settlement of the
track bed so that the deterioration process for a new installation or a track renewal is
higher than that of the tamped bed.
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Facilitating the Maintenance of Safety
Cases

Omar Jaradat, Iain Bate and Sasikumar Punnekkat

Abstract Developers of some safety critical systems construct a safety case
comprising both safety evidence, and a safety argument explaining that evidence.
Safety cases are costly to produce, maintain and manage. Modularity has been
introduced as a key to enable the reusability within safety cases and thus reduces
their costs. The Industrial Avionics Working Group (IAWG) has proposed Modular
Safety Cases as a means of containing the cost of change by dividing the safety case
into a set of argument modules. IAWG’s Modular Software Safety Case (MSSC)
process facilitates handling system changes as a series of relatively small incre-
ments rather than occasional major updates. However, the process doesn’t provide
detailed guidelines or a clear example of how to handle the impact of these changes
in the safety case. In this paper, we apply the main steps of MSSC process to a real
safety critical system from industry. We show how the process can be aligned to
ISO 26262 obligations for decomposing safety requirements. As part of this, we
propose extensions to MSSC process for identifying the potential consequences of a
system change (i.e., impact analysis), thus facilitating the maintenance of a safety
case.
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1 Introduction

Constructing safety cases receives significant industrial attention as it is required for
the certification process of many safety critical system domains. A safety case
comprises both safety evidence (e.g. safety analyses, software inspections, or
functional tests) and a safety argument explaining that evidence. Safety arguments
show how system developers use each item of evidence to support claims, and how
those claims, in turn, support broader claims about system behaviour, hazards
addressed, and, ultimately, acceptable safety [1]. The production, management and
evaluation of safety cases are considered difficult to achieve and time consuming.
As an anecdotal example, the size of the preliminary safety case for surveillance on
airport surfaces with ADS-B [2] is about 200 pages, and it is expected to grow as
the operational safety case is created [3].

It is worth noting that a safety case is a living document that grows as the system
grows. A safety case should be maintained as needed whenever some aspect of the
system, its operation, its operating context, or its operational history changes.

Operational or environmental changes may invalidate a well-founded safety
argument for different reasons as follows:

1. Changing the argument structure
2. Evidence is valid only in the operational and environmental context in which it

is obtained, or to which it applies. During or after a system change, evidence
might no longer support the developers’ claims because it could reflect old
development artefacts or old assumptions about operation or the operating
environment

3. In the updated system, existing safety claims might be nonsense, no longer
reflect operational intent, or they might be contradicted by new data

The certification process must be repeated after applying changes to an already
certified system (i.e., re-certification). In other words, the safety case of the certified
system should show that the system is acceptably safe to operate in its intended
context after applying the changes. In order to achieve the re-certification, a safety
argument should be maintained by determining whether the item of evidence still
supports the claims made about it, check whether new or updated safety require-
ments are reflected in the argument, and review the overall logic of the argument.
The main problem though is that the elements of the safety argument (i.e., safety
goals, evidence, argument and the operating context) are highly interdependent so
that what can be seen as a minor change in the argument may have a major impact
to the contents and the structure of that argument [4]. Hence, maintaining a safety
argument requires high awareness of the dependencies among its contents and how
a change to one part may invalidate other parts. Without this vital awareness, a
developer performing impact analysis might not notice that a change has com-
promised system safety. The Ariane 5 rocket which crashed 40 seconds after
take-off in 1996 is a costly example of omitting affected parts of a system due to a
change. Ariane 5 inertial reference system (SRI) tried to stuff a 64-bit number into a
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16-bit space which led to a conversion error. This part of the system was reused
from an older version of the SRI that was implemented for Ariane 4 rocket.
Seemingly, an assumption was made as since the code was successfully used in an
older version of the system then it is suitable to be reused for the newer version [5].
Hence, system developers focused on more complex parts of the system and no
attention was paid to the out-of-date code or to any related assumption.

A fundamental step prior to update a safety case due to a change is to assess the
impact of this change in the safety argument. This is referred to as safety case
impact analysis. It is probably clearer now how the continuous maintenance efforts
to keep the safety case always up-to-date add more burden on top of the discussed
difficulties above. Moreover, the cost of change has become a major part of the cost
of ownership of a system [6].

As a response to these challenges, an ambition emerged to modularize safety
cases by applying the principles of software architecture and design to the safety
case domain. The main idea of the modularity is to align boundaries of safety case
modules with design boundaries to contain changes. Having done that, a change to
a design element should then affect the corresponding safety case module, and not
impact the entire safety argument [6].

To this end, the Industrial Avionics Working Group (IAWG) represented by a
team of highly experienced engineers, experts in software development and safety
assurance, defined the Modular Software Safety Case (MSSC) process [7] as a
means for containing the cost of change by dividing the safety case into a set of
argument modules. The process has been refined through experience gained from
large-scale trial applications of the prototype process, and further trials of the
refined process. MSSC process establishes component traceability mechanism
between system design elements and safety argument modules by using the con-
cepts of Dependency-Guarantee Relationship (DGR) and Dependency-Guarantee
Contract (DGC). The former is to highlight, and describe, safety-related properties
and behaviour of a single design element. In other words, DGRs capture the
relationships between input and output ports for each design element. A DGC,
however, is used to match one design element’s dependencies with another design
element’s guarantees [8].

The contributions of this paper are as follows: demonstrating how to apply the
IAWG MSSC process. More specifically, apply the process to the Fuel Level
Estimation System (FLES), which is a real safety critical system that was imple-
mented by Scania AB—a major Swedish automotive industry manufacturer—to
show (1) how the DGR and DGC concepts can be used to capture the safety
requirements of the FLES, (2) how these two concepts can be used to build a safety
case in conformance to the requisites of ISO 26262 for certification, and (3) ex-
tending IAWG’s DGC to improve the impact analysis process thus facilitating the
maintenance of safety cases.

This paper is composed of four further sections. In Sect. 2 we present back-
ground information. In Sect. 3 we present the IAWG MSSC process. In Sect. 4 we
use the FLES to demonstrate the application of the IAWG MSSC process. Finally,
in Sect. 5 we draw conclusions and identify future work.
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2 Background

This section presents background information about the safety standard ISO 26262,
the Goal Structuring Notation (GSN), safety case maintenance and current chal-
lenges, and an approach to maintaining safety case evidence after a system change.

2.1 The Safety Standard ISO 26262

The rationale behind the selection of this standard for this work is that it is func-
tional safety standard was adapted for automotive electric/electronic systems that
Scania is working to qualify for its certification stamp. Since FLES is one of other
systems in Scania’s trucks, it is very appropriate to consider ISO 26262 for the
given example in this paper.

ISO 26262 regulates the automotive domain, more specifically, the standard is
intended to be applied to safety-related systems that include one or more electrical
and/or electronic systems and that are installed in series production passenger cars
with a maximum gross vehicle mass up to 3500 kg [9]. In this subsection, however,
we focus only on the part of the standard that regulates the decomposition of safety
requirements. The following parts are summarized descriptions of the safety
requirements decomposition directly from ISO 26262 guidelines:

1. Successively after identifying hazards, the standard recommends to formulate
the Safety Goals (SGs) related to the prevention or mitigation of the hazardous
events, in order to avoid unreasonable risk. Basically, hazard analysis, risk
assessment and Automotive Safety Integrity Level (ASIL) are used to determine
the safety goals such that an unreasonable risk is avoided. The standard defines a
safety goal as a top-level safety requirement resultant of the hazard analysis and
risk assessment. Safety goals are not expressed in terms of technological solu-
tions, but in terms of functional objectives [9].

2. Identification of safety goals leads to the functional safety concept. The objective
of the functional safety concept is to derive the Functional Safety Requirements,
from the safety goals, and to allocate them to the preliminary architectural ele-
ments. To comply with the safety goals, the functional safety concept contains
safety measures, including the safety mechanisms, to be implemented in the
item’s architectural elements and specified in the functional safety requirements.
The standard defines a functional safety requirement as a specification of
implementation-independent safety behaviour, or implementation-independent
safety measure, including its safety-related attributes [9].

3. Finally, both the functional concept and the preliminary architectural assumptions
lead to the technical safety concept. The first objective of this concept is to specify
the Technical Safety Requirements and their allocation to system elements for
implementation by the system design. The second objective is to verify through
analysis that the technical safety requirements comply with the functional safety
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requirements. The standard defines a technical safety requirement as a requirement
derived for implementation of associated functional safety requirements [9].

2.2 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a system is
acceptably safe to operate in a particular context. The GSN [10] provides a
graphical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2) the
relationships between these elements. The principal symbols of the notation are
shown in Fig. 1 (with example instances of each concept).

A goal structure shows how goals are successively broken down into (“solved
by”) sub-goals until a point is reached where claims can be supported by direct
reference to evidence. Using the GSN, it is also possible to clarify the argument
strategies adopted (i.e., how the premises imply the conclusion), the rationale for
the approach (assumptions, justifications) and the context in which goals are stated.
It is worth noting that GSN has been extended to enable modularity in a safety case
(i.e., module-based development of the safety case). Hence, modular GSN enables
the partitioning of a safety case into an interconnected set of modules.

2.3 Safety Case Maintenance and Current Challenges

A safety case is a living document that should be maintained whenever some aspect
of the system, its operation, its operating context, or its operational history changes.
In this paper, the process of updating the safety case after implementing a system
change is referred to as safety case maintenance.

Goal

Context

Assumption

A Strategy

InContextOf

SolvedBy

Away Goal

<Module Name>

Requires further
developmentJustification

J

Solution

ContractAway Goal

Module

Fig. 1 Overview of Goal Structuring Notation (GSN)
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Developers of safety critical systems experience difficulties in safety case
maintenance after implementing a system change. One of the main difficulties is
identifying the impacted parts in the safety argument. The traceability between a
system design and the corresponding safety argument contents, and the dependency
among the contents of safety argument are considered two main burdens that
encounter the identification of the impacted parts in an argument. Moreover,
individual systems tend to become more complex as they are designed and con-
structed, this increasing complexity, as well as, the number of evidence items in a
safety argument can exacerbate the maintenance difficulties. Any approach intends
to manage safety argument due to system changes should consider:

1. A means for clearly capturing the underlying rationale of the safety argument in
order to assess the impact of change on all parts of the argument

2. A traceability mechanism between a system domain and the safety argument to
support the ability to track the changed part from the system design down to the
corresponding affected part in the safety argument

3. Mechanisms to structure the argument so as to contain the impact of changes

The use of the GSN approach helps to produce well-structured arguments that
clearly demonstrate the argument elements and their interdependencies (the rela-
tionships between the argument claims and evidence) [4, 11, 12]. Using GSN makes
capturing the underlying rationale of the argument easier, which will in turn, help to
scope areas affected by a particular change and thus helps the developers to
mechanically propagate the change through the goal structure. However, GSN does
not tell if the suspect elements of the argument in question are still valid. For example,
having made a change to a model we must ask whether goals articulated over that
model are still valid. Expert judgment, therefore, is still required in order to answer
such questions. Hence, using GSN does not directly help to maintain the argument
after a change, but it canmore easily determine the questions to be asked to do so [12].

Current standards and analysis techniques assume a top-down development
approach to system design. For component-based systems, monolithic evidence
produced via these approaches is difficult to maintain those systems because it is
hard to match a safety argument that has a different structure than the system design
structure. However, safety is a system level property and assuring this property
requires every piece of evidence generated for each component to be linked and
compared to demonstrate consistency [7]. One may think that the matching (i.e.,
optimal level of traceability) can be achieved by designing a safety argument
structure to be similar to the system design structure, where a clear one-to-one
mapping of a system design component to a safety argument module can be
established (see Fig. 2).

Theoretically, a one-to-one mapping may facilitate tracking down the compo-
nents of a system design to the safety argument, but it is impractical due to four key
factors: (1) modularity of evidence, (2) modularity of the system, (3) process
demarcation (e.g., ISO 26262 items [9]), and (4) organisational structure (e.g., who
is working on what). These factors have a significant influence when deciding upon
the safety argument structure.
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Enabling component and evidence traceability is very useful to analyse the
impact of change on a safety argument, and eventually, facilitates the overall
maintenance of the safety case. This paper deals with two forms of traceability:
component (i.e. safety argument fragment to system design component) and evi-
dence (i.e. safety argument fragment to supporting evidence). However, to the best
of our knowledge there are no supporting process or method that provides detailed
steps of how to analyse the impact of a change on a safety case using component or
evidence traceability. That said there are well-regarded industry-lead initiatives that
assume such methods exist. MSSC Process is one such example.

In this paper, we use the word “traceability” to indicate two different things.
Firstly, we refer to the ability to relate safety argument fragments to system design
components as component traceability mechanism (through a safety argument).
Secondly, we refer to the ability to relate safety argument evidence across system’s
artefacts as evidence traceability.

2.4 Maintaining Safety Case Evidence After a System
Change

In our previous work [1], we proposed a new approach to facilitating safety case
change impact analysis. In the approach, automated analysis of information given
as annotations to a safety argument (recorded in the GSN) highlight suspect safety

Fig. 2 An illustration of the relationship between a system design and its safety argument
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evidence to bring it to engineer’s attention. We proposed annotating each reference
to a development artefact (e.g. an architecture specification) in a goal or context
element with an artefact version number.

We also proposed annotating each solution element with:

1. An evidence version number
2. An input manifest identifying the inputs (including version) from which the

evidence was produced
3. The lifecycle phase during which the evidence obtained (e.g. Software

Architecture Design)
4. A safety standard reference to the clause in the applicable standard (if any)

requiring the evidence (and setting out safety integrity level requirements)

With this data, we can perform a number of automated checks to identify items
of evidence impacted by a change. For example:

1. We can determine when two different versions of the same item of evidence are
cited in the same argument

2. We can identify out-of-date evidence by searching for input manifests m = {(a1,
v1),…, (an, vn)} and artefact versions (a, v) such that 9i • a = ai ∧ v > vi

3. Where we know a particular artefact has changed, we can search for input
manifests containing old versions

If we had further information which inputs were used to produce each input
listed in each input manifest, each input that was used to produce those, and so on,
we could extend checks (2) and (3) above to indirect inputs. For example, suppose
that life testing is used to establish the reliability of a component, that this com-
ponent and its reliability appear in a Failure Modes and Effects Analysis (FMEA),
and that the FMEA results are used in a Fault Tree Analysis (FTA). With the
additional information, we could compute a closure of the FTA’s input manifest that
would include the life testing results. Other analyses may be possible. For example,
we suggest storing the safety standard reference to facilitate analysis of impacts that
change the safety integrity level of a requirement.

3 Modular Software Safety Case (MSSC) Process

IAWG has proposed Modular Safety Cases as a means of containing the cost of
change by dividing the safety case into a set of argument modules. IAWG’s MSSC
process facilitates handling system changes as a series of relatively small incre-
ments rather than occasional major updates (i.e., incremental certification). MSSC
process manages system changes by breaking down a system into blocks. The
process defines the block as an identifiable part (or group of parts) of the Software
implementation that is chosen by the safety case architect to be the subject of a
safety case module. Blocks cover all parts of a system design where each block may
correspond to a single or multiple software component or unit of design, but it is
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subject to only one dedicated safety case module. In other words, each system block
has one-to-one relationship with a safety argument module [7].

The process establishes component traceability mechanism between system
blocks and safety argument modules by using the concepts of DGR and DGC as
shown in Figs. 3 and 4, respectively. The former is to highlight and describe
safety-related properties and behaviour of a system block. In other words, a DGR
captures the relationships between input and output ports for each design block.
A DGC, however, is used to match one block’s dependencies with another block’s
guarantees [7, 13]. Creating DGCs leads to the creation of a ‘daisy chain’ as a
dependency in one block and a guarantee offered by another, whose associated
dependencies are supported by further guarantees, and so on [13].

MSSC process is very dependent on the anticipated changes that should be
identified in the first step of the process. The anticipated change scenarios will bring
the highly likely changeable parts in the system to developer’s attention.

These scenarios are considered by system developers so that they can manage
the containment of the impact of these changes in the system blocks boundaries
more efficiently. Having done this, the impact of a change in one safety argument
module will hopefully not propagate into another module, but it might impose one
(or more) safety case contract update, and even if it is then the cost of changes can
be minimised.

Fig. 3 A DGR tabular representation

Fig. 4 A DGC tabular representation
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It is very important to distinguish between a DGC and a safety case contract. The
former captures the required link between a dependency declared in one DGR and a
satisfying guarantee provided by another. Hence, DGCs are created on the system
design level. A safety case contract, however, is used to describe the linkage
between a consumer goal in one Safety Case Module and a provider goal in another
[7]. This is formed through the new GSN extension for modularity.

Figure 5 shows an example to describe the relationships between system blocks,
DGR, DGC, safety case contract and the safety case architecture. It is worth noting
that DGCs may be linked to safety case contracts.

The following is a list summarises MSSC process’s steps [7]:

Step 1 Analyse the product lifecycle: it is important to predict the potential
change scenarios over the projected system lifetime. One reason for that is
because change scenarios will help assess the potential benefits that may be
achieved through modular certification. If as a result of the analysis there
are no changes expected, then the full benefits of modular certification may
not be realised, and it may therefore be decided not to adopt a modular
approach [13].

Step 2 Optimise software design and safety case architecture: since each
system block is subject to safety case module. First, we need to divide the
system into blocks and form public interfaces for the block safety case
modules. All elements of the system are split into blocks and each cor-
responding block safety case module should present an argument about the
safety-related behaviour of that block. Second, other necessary modules
will be added, for example, software safety requirements, software system

Fig. 5 Linking blocks using DGRs and DGCs
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wide issues module, configuration data module, safety case contract
modules, etc. Finally, we should define safety case integration modules—
these provide the argument about the combined behaviour of interdepen-
dent safety case modules [7].

Step 3 Construct safety case modules: A hazard mitigation argument should be
formed and derived safety requirements are directed to SW blocks safety
case modules. The guaranteed behaviour offered by each block in support
of these is captured, along with dependencies on other blocks. A Block
Safety Case Module is constructed providing argument and evidence for
each Block based on the Guarantees and Dependencies [7].

Step 4 Integrate safety case modules: the safety case modules are integrated so
that claims requiring support in one Safety Case Module are linked to
claims providing that support in others. This step of the process results in a
fully integrated Safety Case [7].

Step 5 Assess/Improve change impact: when a system change is implemented,
the impact on the design modules and associated Safety Case Modules is
assessed [7].

Step 6 Reconstruct safety case modules
Step 7 Reintegrate safety case modules
Step 8 Appraise the safety case

The guidance of MSSC process [7] does not show detailed information about
how to follow some steps including the impact analysis part. The provided example
by the process abstracts the impact analysis step and shows its results only. The
main work in this paper is not to consider all parts of MSSC process to give a full
example on how to apply them but we rather focus on the impact analysis part and
necessary prerequisite steps only.

4 Illustrative Example: Fuel Level Estimation System
(FLES)

In our previous work [14, 15], we used FLES as a specimen system to illustrate the
contribution of the architectural model checking to conduct preliminary safety
assessment in line with the safety standard ISO 26262.

We used the Architecture Analysis & Design Language (AADL) to model the
system as shown in Fig. 6. In our current work we reuse the description as well as
the AADL of FLES to partially apply MSSC process. We also propose a system
change scenario and examine how the method helps to highlight the affected safety
argument elements.

Facilitating the Maintenance of Safety Cases 359



4.1 FLES Description

4.1.1 FLES Technical Details

FLES estimates the volume of fuel in a heavy road vehicle’s tank and presents this
information to the driver through a dashboard mounted fuel gauge. Additionally,
the system must warn the driver when this volume falls below a predefined
threshold. This system is considered safety critical because its failure could lead to
loss of control of the vehicle. For example, if there is less fuel remaining than the
driver thinks, the vehicle might run out, bringing it to an unexpected halt, which can
be hazardous in certain contexts. As well as bringing the vehicle to a halt, the power
steering and braking mechanisms could also fail. These failures would compromise
vehicle controllability and could also lead to a crash.
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Data access

Event data port

RTDB

SoftwareIN SoftwareOUT

(Before change)
FuelLevelWarning

(After change)
DistanceCalc
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N
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Fig. 6 An AADL representation of Estimator’s software architecture
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Fuel volume is estimated using a float sensor in the fuel tank. As the position of
the float is affected by vehicle motion (negotiating steep hills, sharp bends, or rough
terrain), the system has some challenging issues to be tackled within its design. The
system must process this signal so that at all times the gauge displays an accurate
measurement of the total volume of fuel remaining. The sensed value is sent to the
Estimator ECU. An Analogue to Digital Converter (ADC) is used to convert and
then the SoftwareIN thread reads the sensed fuel float position from the ADC and
stores it in the real-time database RTDB. FuelEstimation reads this sensor value and
computes an estimate of the current fuel volume in litres. When the vehicle might
be moving (i.e., its parking brake is not set), the FuelEstimation thread uses a
Kalman filter algorithm to reduce the noise introduced by vehicle motion. This
algorithm requires the recent history of fuel volume estimates to be stored.
FuelEstimation outputs a smoothed fuel volume estimate to the RTDB.
FuelLevelWarning then reads this estimate, compares it to the low-fuel warning
threshold (i.e., < 7 % of the fuel tank capacity), and writes the low-fuel warning
status to the RTDB. SoftwareOUT reads the fuel volume and low-fuel warning
status from the RTDB and sends these over the Controller Area Network (CAN) bus
to the Presenter ECU. The Presenter ECU adjusts the actuators (i.e., fuel gauge and
low-fuel lamp) on the dashboard according to the received values.

4.1.2 FLES Safety Analysis

Hazard analysis and risk assessment made for FLES led to one hazard identifica-
tion: “Unannunciated lack of fuel”. Unannunciated is interpreted as (1) fuel esti-
mates and low-fuel warning are not displayed at all, and (2) it is displayed
incorrectly since the estimates are not identical to the real amount of fuel in the
vehicle’s tank. The determined ASIL for the fuel level estimation system is “C”.

The derived safety requirements to mitigate the hazard are decomposed as
recommended by ISO 26262 as follows:

1. Safety goals: two safety goals were derived

a. SG1.0ImplAssur: Vehicle’s driver shall be constantly aware of the actual
remaining fuel in the tank whenever the engine is in operation

b. SG2.0ImplAssur: Vehicle’s driver shall be warned when the fuel level is low
and the engine is in operation

2. Functional Safety Requirements (FSR):
Two functional safety requirements were identified to satisfy SG1.0ImplAssur:

a. ConFSR1.0.1.0: A fuel gauge should promptly annunciate the actual fuel
amount in the tank whenever the engine is in operation

b. ConFSR1.0.2.0: The fuel gauge shall not display a fuel estimate that deviates
more that 5 % from the actual fuel volume in the tank
One functional safety requirement was identified to satisfy SG2.0ImplAssur:
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c. ConFSR2.0.1.0: A fuel-low warning lamp should be promptly turned ON
when the fuel level in the tank falls below a certain level whenever the
engine is in operation

3. Technical Safety Requirements (TSR): There is a large set of technical safety
requirements that was identified to specify the functional safety requirements.
The work of the paper, however, considers the minimum set of technical safety
requirements that specify ConFSR1.0.1.0 and ConFSR2.0.1.0 as shown in
Table 1.

4.2 Applying the IAWG MSSC Process

A list of anticipated change scenarios during FLES’s lifetime is required. This list
may help assessing the potential benefits that may be achieved through modular
certification. In this section, we present the details of the various MSSC process
steps with respect to FLES:

4.2.1 Analyse the Product Lifecycle and Identify Change Scenarios

We assume one potential change for FLES. The Distance To Empty feature might
be added to FLES. The role of this anticipated change is to determine the distance
(Km) that a vehicle can drive before it runs out of fuel. This new feature is
dependent on (1) the estimation of the current fuel amount in the tank (L), and
(2) the fuel consumption rate (L/Km) in the engine. Technically, this intended
feature will be added as a new thread in the Estimator ECU. This thread should read
the output of the FuelEstimation thread, as well as, the output of the
ConsumptionRate thread that is implemented in the EngineManager ECU. To avoid
dealing with timing and memory budgets, FLES engineers expect to remove the
FuelLevelWarning thread and move the task it contains to the FuelEstimation
thread (i.e., merge the two threads into one). Since the safety margin of the

Table 1 A Subset of the identified TSRs for FLES

FSR ID TSR ID Description

FSR1.0.1.0 F1010TSR1 The FuelEstimation thread shall provide the totalFuelLevel
value

FSR1.0.1.0 F1010TSR2 The SoftwareOUT shall send the totalFuelLevel value to the
Presenter

FSR2.0.1.0 F2010TSR1 The FuelLevelWarning thread shall provide lowFuelWarning
value

FSR2.0.1.0 F2010TSR2 The SoftwareOUT shall send the lowFuelWarning value to the
Presenter
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FuelEstimation thread allows adding a new task, the timing and memory budget for
the thread will remain the same even after the merge. On the other hand, the new
DistanceCalc thread will take the timing and memory budget, and the priority of the
removed FuelLevelWarning thread. The same arrangements will be applied to the
threads in the Presenter ECU.

4.2.2 Optimise Software Design and Safety Case Architecture
(Define the Safety Case Architecture)

For the sake of simplicity, we do not define a full set of the safety case modules, but
we rather define the basic modules that are sufficient to make the example. We
focus on the Estimator in our example by dividing it into two software blocks,
namely, FuelEstimationBK and FuelLevelWarningBk. Each of them represents a
safety case module. Additionally, we construct Hazard Mitigation, SW Safety
Requirements and SW Integration test modules (as shown in Fig. 7).

4.2.3 Construct Safety Case Modules, and Integrate Safety
Case Modules

We merge these two steps for the sake of simplicity. We identify the required
DGRs of the FuelEstimationBK and FuelLevelWarningBk blocks. We also con-
struct the Hazard Mitigation, SW Safety requirements, FuelEstimationBK,
FuelLevelWarningBk, and Software Integration test safety case modules.

Table 2 shows one DGR for the software block FuelEstimationBK in which the
block (i.e., represented as thread) guarantees that it can provide the estimated fuel
level volume in the tank totalFuelLevel if the three dependencies are met. Table 3
shows one DGR for the software block FuelLevelWarningBK in which the block
(i.e., represented as thread) guarantees that it can tell if the fuel is low or not
(lowFuelLevelWarning is True if the fuel is below 7 % of the tank capacity and
False if the fuel is not) once the four related dependencies are met.

In Fig. 8, we construct the hazard mitigation argument. Basically,
MitigationHazard1 goal is supported by implementing and assuring the two safety

Hazard 
Mitigation

SW Safety
Requirements

FuelEstimationBK

FuelLevelWarningBK

SW Integration test

Fig. 7 FLES safety case architecture
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Table 2 DGR FuelEstimationBK

Dependencies—guarantee relationship | FuelEstimationBK.G5
Guarantee

Concise
definition

Definitive context Incidental note Traceability

Provides the
totalFuelLevel
value

The totalFuelLevel value
is sent on port
SetSensorValue

F1010TSR1

The totalFuelLevel format
is defined by FLES
{Interface Specification}

Related dependencies
N Concise definition Definitive context Incidental

note
Traceability

1 FuelLevelSensor is
received via port
GetSetSensorValue

FuelLevelSensor format
is defined by FLES
{Interface Specification}

F3010TSR8

2 SetSensorValue port is
available

The port behaviour is as
defined in the FLES
{Interface Description}

F3010TSR9

3 FuelEstimation is
correctly configured

Is executing and has
completed configuration

F4010TSR5

Table 3 DGR FuelLevelWarningBK

Dependencies—guarantee relationship | FuelLevelWarningBK.G1

Guarantee

Concise definition Definitive context Incidental note Traceability

Provides the
lowFuelLevelWarning
value

The lowFuelLevelWarning
value is sent on port
setlowFuelLevelWarning

F2010TSR1

lowFuelLevelWarning format is
defined by FLES {Interface
Specification}

Related dependencies

N Concise definition Definitive context Incidental
note

Traceability

1 totalFuelLevel is received via
port
GetEstimatedFuelLevelValue_2

FuelLevelSensor
format is defined
by FLES
{Interface
Specification}

F1010TSR1

2 setlowFuelLevelWarning port is
available

The port
behaviour is as
defined in the
FLES {Interface
Description}

F3010TSR9

3 GetEstimatedFuelLevelValue_2
port is available

F4010TSR5

4 FuelEstimation is correctly
configured

Is executing and
has completed
configuration

F4010TSR7
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goals that were derived to mitigate it. The safety goals are represented by the two
separated away goals SG1.0ImplAssur, and SG2.0ImplAssur. These goals also
represent the integration between Hazard Mitigation safety case module and SW
Safety Requirements (see Fig. 9).

In FuelLevelWarning.BK Safety case module (see Fig. 10), we show how
arguing over the dependencies supports the guarantee that is represented by
FuelLevelWarningBK.G1. The argument module uses FuelEstimationBK.G5 as a
dependency to support the guarantee. FuelEstimationBK.G5 also relies on a set of
dependencies to be guaranteed. Figure 11 shows an argument fragment of the SW
Integration test safety case module. The objective of the module is to argue over the
integration of the software elements within the Estimator ECU.

The FuelLevelWarningBK.G1 DGR shows that in order for
FuelLevelWarningBK being able to fulfil the TSR F2010TSR1 it requires the TSR
F1010TSR1, which is guaranteed by a different DGR (i.e., FuelEstimationBK.G5).
Here lies the importance of the DGC as it matches such dependencies. Table 4
shows a DGC that matches F2010TSR1 to F1010TSR1. MSSC process requires
performing the integration of safety case modules by using a safety case contract
module. The latter uses a DGC to set out the matching between the DGRs of the
goals involved. However, since our work is more focused on facilitating the impact
analysis within the blocks, we do not use safety case contracts in this example thus

Fig. 8 Hazard mitigation safety case module of FLES
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Fig. 9 SW Safety Requirements safety case module

Fig. 10 An argument fragment of FuelLevelWarning.BK safety case module
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no goals are supported by contracts. The integration, in our example, is done
through public and away goals.

4.2.4 Assess/Improve Change Impact

In this step, we use our approach for maintaining safety cases (in Sect. 2.4) to
extend IAWG’s DGC. We use the extended DGC in the FLES example to show
how the extension can help: (1) highlighting the affected argument elements, and

Fig. 11 An argument fragment of SW Integration test safety case module
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(2) identifying inadequacies in the generated artefacts from the development life-
cycle of FLES.

Table 4 shows an extended DGC of FuelLevelWarning.BK The extension is
represented by the cells in grey. Moreover, Fig. 11 shows items of evidence (i.e.,
GSN solution) that support claims about the consistency among the ports of FLES
blocks. The green elements in the figure represent the annotations described in
Sect. 2.4.

Now, let us consider the potential change scenario in Sect. 4.2.1 to illustrate how
the information contained within the annotations aids the change impact analysis in
safety arguments. Merging FuelEstimation and FuelLevelWarning into one thread
will impact the consistency of the interfaces and connections of FLES. Suppose that
an engineer making this change had updated the artefact version annotation(s) in
part of the argument that refers to the interfaces of those threads. An automated
implementation of the described checks in Sect. 2.4 could highlight the need to
re-run the interface consistency check, as well as, the Estimator internal interfaces
testing. If the new version of the implementation is version 3.3, analysis of the
manifest associated with InConChk and TstInnInt would reveal evidence based on
an older version of the implementation and tools could flag InConChk and TstInnInt
as out-of-date and suspect. Automated analysis might also highlight goal
EstimatorImpCorr because its artefact version annotation refers to an out-of-date
version of the Estimator implementation. The goal and its supporting argument are
suspect because they might refer to parts of the implementation that no longer exist
or make claims about the implementation that are no longer true.

Table 5 shows the impacted elements of the safety case with a brief explanation
for each element.

The principal difference between our work and the existing approach proposed
by the IAWG MSSC is that the MSSC approach contains changes at the level of a
safety argument module and the corresponding system blocks. In contrast, our
approach provides the engineer to contain the changes at a lower-level where they
feel that a tighter control over change is needed. More specifically, our approach
means that changes can be contained within a safety argument module and within

Table 5 Results of change impact analysis

No. Module name Element affected Explanation

1 SW Safety
Requirements

DecF1010TSR1 The decomposition of this requirement
has been changed

2 SW Safety
Requirements

DecF2010TSR1 The decomposition of this requirement
has been changed

3 FuelLevelWarning.
BK

The entire module Merged with another Module

4 SW Integration test EstimaInnInter and all
claims below

Argument about the estimation internal
interfaces is suspect

5 SW Integration test InConChk Out of date implementation

6 SW Integration test TstInnInt Out of date implementation
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specific system blocks. It could be argued that this could have been handled in the
existing approach by decomposing the system and its safety argument differently,
however in practice it is better not to constrain system architects unnecessarily.

5 Conclusion and Future Work

Applying changes to systems during their lifetime is inevitable task. In safety
critical systems, system changes can be accompanied with changes to safety
arguments. Maintaining those arguments is painstaking process because of the
dependencies between their elements. The IAWG MSSC process was introduced as
a response to safety cases maintenance difficulties. The process recommends
applying changes as a series of relatively small increments rather than occasional
major ones. However, The guidance of MSSC process does not show detailed
information about how to follow some steps including the impact analysis part. In
this paper, we applied the process to a real safety critical system to show how
system engineers can identify the elements in a safety argument that might be
impacted by a change. We showed that by extending the proposed DGC by IAWG
to include additional information as annotations that is useful to highlight the
impacted argument elements. Moreover, we provided starting points to maintain the
affected parts of the argument as we described the reasons why they have become
inadequate due to the change. The impact check based on the additional information
is still manual as we have not yet studied the feasibility or value of developing a
tool to automate the checks but we leave this effort to future work.
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Track Maintenance Between Trains
Simulation

Christer Stenström, Ulla Juntti, Aditya Parida and Uday Kumar

Abstract Infrastructure managers (IMs) need to plan their maintenance work about
1½–2 years before a new train time table (TTT) comes into force to minimise the
effect on traffic. Maintenance work that is planned in less than 1 year ahead of the
TTT has to compete with, or need to be fitted into, operators’ applications for
capacity. However, maintenance work is at times planned only a few weeks before
execution, and depending on the railway line in question, a few hours during night
can be available for maintenance. In addition, sudden failures in track normally
require repair immediately or within a day. If rail transportation increases, it also
becomes harder to find time in track for maintenance. Therefore, it is of interest to
simulate maintenance tasks between trains to minimise track maintenance posses-
sion time. Such simulation can be used to: study maintenance work in TTTs with
random and regular train departures; study the effect of exceeding allocated
maintenance windows; and to study the effect of increase in train frequency. In this
paper, Monte Carlo method is applied to simulate track maintenance between trains
as a function of train frequency.
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1 Introduction

The aim of rail infrastructure maintenance planning is to minimise the effect on
traffic. Therefore, infrastructure managers (IMs) start planning their maintenance
work far ahead of time to fit with the planning of train time tables. In the European
Union (EU), each IM is obligated to publish a Network Statement (NS) with all the
information needed for train operators interested in capacity [1]. The NS must be
published about a year before a new train time table comes into force.
Consequently, the planning of major maintenance work starts about 1½–2 years
before a new train time table. Maintenance work that is planned after submission of
the NS has to compete with, or be fitted into, operators’ applications for capacity.
However, some work is planned only a few weeks before execution, and depending
on the railway line in question, a few hours during night can be available for
maintenance. Besides late planned maintenance work, failures in track normally
require repair immediately or within 1 day. In addition, with increasing rail
transportation it becomes harder to find time in track for maintenance [2].
Therefore, it is of interest to simulate maintenance tasks between trains. Such
simulation can be used to:

• Study maintenance work in train time tables with random train passages to find
suitable time windows, e.g. freight trains.

• Study maintenance work in train time tables with regular train
passages/departures, i.e. urban areas. As an example, a certain maintenance
work can take a very long time to complete at a train frequency of 10 min, while
cancelling a group of trains or running one train out of three may be impacting
the train service unnecessary negatively; i.e. cancelling each second train may
then be the most optimal choice.

• Study the effect of exceeding allocated maintenance windows. As an example,
the available maintenance window may be 4 h, but it is known from experience
and historical data that the work in question takes 5–6 h. Possible solutions are:
carry out the work in one shift, exceeding the 4 h, and do the last work between
the trains; do the work in two shifts, i.e. 8 h over 2 days; or increase the number
of personnel in the maintenance team if possible.

• Study the effect on maintenance of future increases in the frequency of trains.
This is especially important in maintenance contracting, as contracts are often
performance based and stretch over several years [3]. If a possible increase in
the numbers of trains running is not properly taken care of within the mainte-
nance contracts, the infrastructure manager and contractor may end up in a
disagreement.

The study of maintenance between trains was initiated in the AUTOMAIN
project [4, 5]. In AUTOMAIN, the effect of exceeding an allocated maintenance
window was studied by comparing an alternative maintenance approach.
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Specifically, the simulation concerned the decision to use one or two welding teams
for frog (common crossing) replacement of switches and crossings (S&Cs).
Maintenance work between regular train departures, i.e. urban areas, was also
studied in an attempt to balance maintenance cost and train services. As a con-
tinuation of the study in AUTOMAIN, Monte Carlo method is applied to simulate
track maintenance between trains as a function of train frequency.

2 Methodology

Maintenance time in terms of travel, preparation, repair and clearance can be
estimated through experience and use of historical work order data. However, the
actual time to complete a particular maintenance task depends on the train time
table and safety regulations governing entrance to and closure of the railway section
in question. With these inputs, the actual time to maintenance can be estimated.
Matlab software is used for model construction and Monte Carlo simulation. Monte
Carlo method is used to predict increases in maintenance time by sampling random
train time tables (TTTs). The model has a number of input and output parameters.
The input parameters are as follows:

• Train time table (TTT)
• Non-value adding (NVA) time (tNVA): Consist of preparation, confirmation,

communication, waiting and lost time, for entrance to and closure of track
• Active repair time (tActive)
• Minimum time for maintenance (tMin)
• Arrival point in the time table

Minimum time for maintenance (tMin) can be set as a fixed value or based on
tActive. As an example, if the required time for a maintenance activity is 150 min and
tMin is set to 10 % of that time, i.e. 15 min, then no maintenance will be carried out
if the time left for maintenance between two trains is less than 15 min.

The output parameter is the (actual) maintenance time: the time from the arrival
of the maintenance team until the work is finished and the track is cleared.

Figure 1 demonstrates the model. Given that tNVA equals 10 min, tActive equals
50 min and tMin = 0.1tActive = 5 min, the maintenance time becomes 109 min, i.e.
118 % more than the 50 active minutes required.

Random TTTs are generated using a uniform distribution, with the exception
that adjacent trains must have a minimum distance in time of x minutes. An
example of a 120 min maintenance task in randomly drawn TTTs is shown in
Fig. 2.
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3 Results

The number of trains occupying the Iron Ore Line between Kiruna, Sweden, and
Narvik, Norway, is predicted to increase from 42 trains per day in 2014 to 50 trains
per day in 2020 [6]; see Fig. 3.

For the simulation: operating time is set to 18 h per day; the number of trains per
day is set to range from 10 to 60; a random uniform distribution is used to set out
trains passages; an exception is added whereby adjacent trains must have a mini-
mum distance in time of 5 min; tNVA is set to 5 and 10 min, giving two different
cases; tActive equals 120 min; tmin equals 10 min; and the number of random TTTs is
set to 1000 for each train frequency and tNVA. The result is shown in Fig. 4: the data
points are the mean values; their whiskers are the standard deviations; and the
density function and box plot, with whiskers of 1.5 IQR (interquartile range), are
for the highest data point. As indicated in the figure, the maintenance time has an
exponential or polynomial growth as the train frequency increases.
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Fig. 1 Demonstration of the model
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Fig. 2 Example of random drawn TTTs with a 120 min maintenance work
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By comparing the results with the predicted increase in trains, it is found that the
average maintenance time increases with 29 % (tNVA = 10 min) when the number of
trains per day increases from 42 to 50; see Fig. 5. With tNVA of 5 min, the main-
tenance time increases with 18 %.
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In the results above, tActive equals 120 min. If tActive is set to vary, while keeping
the other constants as given above, with tNVA = 10 min, it is seen in Fig. 6 that the
maintenance time increases linearly with tActive. Each data point in Fig. 6 is the
mean value of 1000 simulations.

4 Discussion

The method for predicting increase in maintenance time, as a function of increase in
train frequency, is based on random drawn TTTs with uniform distributions.
However, depending on the railway line in question, the configuration of a future
TTT, with more trains, can be known. It is still not known, however, when a failure
will take place, i.e. randomness. Thus, the presented method can alternatively be
used with a fixed TTT and some distribution for failures. Sampling TTTs or
sampling failures will, to a certain extent, yield similar results. As an example,
randomly setting out a failure in a TTT is analogous to randomly setting a TTT to a
failure.

Fig. 6 Maintenance time as a function of trains and active repair time (tActive)
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The simulation considered a maintenance work that can be temporarily stopped
to let trains pass. Other maintenance work can include work steps that have to be
finished before trains can pass. As an example, frog replacement requires two out of
four welds to be completed before trains can pass. This type of maintenance must
be put into allocated maintenance windows, e.g. at night, or in sufficiently large
windows within the TTT. This kind of works can be simulated by sampling random
TTTs with a fixed maintenance window. Thus, by including the various types of
maintenance work, a final predicted increase in maintenance time can be achieved.
Historical maintenance data can be used for this purpose, together with expert
judgement. It should also be noted that adding the logistic time (travel time) will
reduce the increase in maintenance time as the logistic time is unaffected by the
train frequency.

5 Conclusions

Monte Carlo method can be used to predict maintenance time as a function of train
frequency. It has been shown that the maintenance time increases exponentially
with train frequency (Fig. 4). This effect is due to safety regulations governing
entrance to and closure of railways.

Specific to the case study, with the model input values used, the average
maintenance time on the Iron Ore Line in Sweden, will increase by *30 %
(tNVA = 10 min) from year 2015 to 2020. Nevertheless, expert opinion and
parameter study can improve the prediction, and is required if the method is applied
in practice.
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Process Analysis of Human Failures
in Railway Maintenance

Mattias Holmgren and Peter Söderholm

Abstract The aim of maintenance is to retain and restore the required functions of
technical systems to ensure the productivity and efficiency of technical systems.
However, improper maintenance, in the sense of incorrectly performed maintenance
or lack of suitable maintenance activities, contributes to deterioration and, even
more seriously, cause incidents and accidents. Therefore, it is important to identify
hazards from occurred incidents and accidents to learn and avoid these hazards in
the future. For that matter, in turn, documentation from occurred events should be
done in a systematic way and then be an important part of the management system
—and last, but not least, used for continuous improvement and risk reduction. This
study aims to describe a process-oriented approach to analyse causes of human
failures contributory to maintenance-related incidents and accidents, in order to
support continuous risk reduction. The proposed methodology with supporting
tools can be used for analysis purposes and guide decision making. The approach is
illustrated by a case study at the Swedish railways.

Keywords Maintenance � Risk � Process � Railway � Human failure � Sweden

1 Introduction

In order to achieve continuous improvement and risk reduction, a process view is
central. When considering the maintenance process, it should be vertically aligned
with the organisation’s overarching goals in order to be effective, i.e. to do the right
things. In addition, the maintenance process should also be horizontally aligned
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with the operational and modification processes to be efficient, i.e. to do things the
right way [1–4].

Furthermore, the maintenance process and its included phases should be related
to appropriate methodologies and tools in order to support core values of the
organisation. Examples of core values that the maintenance process should support
are base decisions on fact, improve continuously, and focus on processes [2, 4–6].

Maintenance is intended to retain and restore the required function of technical
systems to deliver desired services. However, there are multiple examples when
maintenance has failed to achieve this and also contributed to extensive losses. One
safety-critical application area that experience the unwanted contribution of main-
tenance is railway. Two examples of this are the derailments at Ladbroke Grove and
Hatfield in the United Kingdom [7].

In October 1999, a major derailment and collision occurred at Ladbroke Grove.
As a result of the collision 31 people died and 227 were taken to hospital. Two
major conclusions were drawn. Firstly, the process for the judgement of contracts
was not operated with due regard for training and preparation of the contract
workforce. Secondly, the managerial control of the work performed by maintenance
contractors and sub-contractors was inadequate. In October 2000, four people were
killed in a derailment near Hatfield. The accident investigation showed that the
immediate cause of the derailment was a fragmentation of the rail caused by
neglected maintenance actions [7].

Two later examples from the United Kingdom are from 2007 and 2008. In April
2007, a track welder was struck by a train and fatally injured at Ruscombe Junction.
The local practice was that the track work was carried out within the safety zone of
the track, called “The Red Zone”. The track welder continued to work on the site
although he had been warned for the approaching train [8].

In December 2008, a track worker was struck by a train and injured at
Stevenage, Hertfordshire, in the United Kingdom. The track worker moved out of
the position of safety to a point where he could come into contact with the train.
The planning process was insufficiently detailed to identify all the hazards and
adequate safe systems of work [9].

In Sweden there are also multiple examples of maintenance related accidents,
e.g. Kimstad in 2010 where a maintenance vehicle collided with a train, which
resulted in one killed and 20 injured persons [10, 11].

One Swedish study showed that maintenance-related causes represent 30 % of all
rail and track related incidents and accidents during the time period of 1988–2000.
At the same time, maintenance-related risks are often manifested in maintenance
execution (i.e. the sharp end), while its causes may be located somewhere else (i.e.
the blunt end). The case study showed that about 80 % of the maintenance-related
accidents in Swedish railway happen during the execution phase. In addition,
maintenance-related activities are often scattered and can be found within other
processes and areas of the organisation [12].

Holmgren also discovered that the most common cause of maintenance-related
accidents is imperfect communication and information between the maintenance
personnel and the operators. This cause was followed by rule violations, especially
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lack of permission to perform maintenance work on the track, as the second most
frequent cause [12].

In another Swedish study of unwanted events (accidents, incidents, or deviations
contributing to risk) related to work in track during the time period of 2007–2012,
72 % were classified as caused by human failure [13].

In the investigations related to the maintenance-related accidents cited above,
one common cause is human failure. However, human error as an explanation for
accidents is unsatisfactory, since there are always organisational and operational
aspects that lay the foundation for these errors [14]. Hence, errors are consequences,
rather than causes [15]. In other words, human errors are the result of a network of
actions and conditions which involve people, teams, tasks, workplace and organi-
sational factors [16]. Hence, discovering a human error is the beginning of the
search for causes, not the end [15, 17]. The intention should be to identify and
control hazardous conditions, instead of focusing on single causes of accidents and
trying to eliminate them [18].

Based on the problem description above, the purpose of this study is to describe
a process-oriented approach for identification of causes of human failures related to
maintenance, in order to support continuous improvement and risk reduction.

2 Method and Material

The overall research strategy applied in this study is a single case study at
Trafikverket (Swedish Transport Administration), with focus on railway mainte-
nance and related risks.

Two complementary sources of secondary data have been used to illustrate the
proposed process approach. The first source of data, is based on Trafikverket’s data
base with accidents, incidents and deviations contributing to risk within work
environment, traffic safety, power safety, protection against crime and fire (and to
some extent also quality, environment, and audits). The selection criteria was
unwanted events related to engineering works during 2007–2012, which resulted in
a total of 703 unwanted events (262 accidents, 358 incidents, 83 risks). This data is
originally structured according to the logic of MTOY-analysis (man, technology,
organisation, external events). Some of this material is reported by [13].

The second source of data is 26 maintenance-related accident investigations (for
events occurred between the years 1988–2000), where human failure has been
identified as a contributory cause. The average number of pages for these analysed
investigations is 30, varying between 11 and 154 pages. Over the years, these
investigations tend to follow the MTOY-approach to an increasing degree. The
background and rationale for this data is described in more detail by [19].

The two sources of secondary data have then been used in a qualitative analysis
based on a generic maintenance process. Hence, especially in the analysis of the
first source of data, the process-approach has been used in combination with the
MTOY-methodology. For the second source of data, the process-analysis approach
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has been performed in combination with HAZOP (Hazard and operability studies)
guidewords as a supporting tool.

2.1 Case Study Description from a Risk Management
Perspective

On an aggregated level, Trafikverket applies an integrated enterprise risk man-
agement approach that combines the areas of risk management (ISO 31000) [20],
incident, continuity, and crisis management (e.g. according to the series of ISO
22300 [21], societal security, and 27000, information security [22]), where the
organisation’s capability within these areas is judged systematically through
assessment activities influenced by quality management (ISO 9000) [23].

In addition, there are specific areas related to risk management that are integrated
through the overall framework, e.g. information security (ISO 27000) [22], quality
management (ISO 9000) [23], and asset management (ISO 55000) [24]. When the
risks are related to traffic safety within railway, the approach described in the
EU-directive Common safety methodology (SCM)—Risk assessment and analysis
(RA) should be applied.

One cornerstone of the integrated enterprise risk management approach applied
at Trafikverket is to identify risks in the processes that can affect the capability to
deliver the desired level of quality. It is also desired that both the risks and related
control activities to manage the risks should be highlighted within the process
descriptions. For this purpose, the proposed process approach is believed to be a
useful methodology.

2.2 Process and Risk Approach to Maintenance

Maintenance activities can be seen as following the IEC suite of dependability
management standards [25, 27], which means that the maintenance process can be
described as in Fig. 1.

Fig. 1 Generic process model of maintenance. In accordance with IEC 60300-3-14
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The activities that are related to maintenance depends on their purpose. Hence, if
the purpose is to maintain or retain the required function in order to deliver a
desired service, it is classified as a maintenance-related activity. The activities can
in turn be related to any of the phases of the maintenance process, i.e. maintenance
management, maintenance support planning, maintenance preparation, maintenance
execution, maintenance assessment, and maintenance improvement.

These phases can also be related to specific methodologies and tools. Hence, the
phase of maintenance management is closely related to the ISO 55000 standard
[24], and the risk-related part of this phase is mainly related to ISO 31000 [20] and
COSO ERM (Committee of sponsoring organizations of the Treadway commission
—Enterprise risk management) [26]. The phase of maintenance support planning is
closely related to different technical systems within the railway (e.g. signalling,
catenary, telecommunication, and track systems), where risk-related methodologies
such as Reliability-centred maintenance (RCM) [27] and Failure, mode, effects, and
criticality analysis (FMECA) [28] are applied. The two phases of maintenance
planning and execution are on the other hand closely related to the technical sys-
tems installation on specific lines, e.g. through considering continuity management
(ISO 22300) [21] to achieve the desired quality of service level (where, besides
safety, punctuality and regularity normally are the most important measures). The
assessment and improvement phases of the maintenance process are in turn closely
related to methodologies within the quality management area, e.g. as described in
the ISO 9000-series [23]. In fact, one important part of viewing maintenance as a
process with the included phases is to support the work with continuous
improvement and risk reduction through similarities with the improvement cycle as
described by [29, 30].

2.3 Analysis of Human Failures in Maintenance

Human failures are seen as consisting of both human errors and rule violations.
Human error is in turn occasions in which a planned sequence of mental or physical
activities fails to achieve its intended outcome, and when these failures cannot be
attributed to the intervention of some chance agency [31].

Rule violation is seen as deviations from safe and established procedures,
standards or rules to control a system. Hence, rule violation may be either deliberate
or erroneous [32].

In this paper, rule violations are seen as deliberate actions, even though the
outcome is unintended. If the outcome is intended, the human action is classified as
sabotage.

A system approach to analyse human failure in combination with other causes is
the MTO-analysis, where human, organizational, and technical factors should be
focused equally in an accident investigation. The methodology is based on HPSES
(Human performance enhancement system) from the nuclear industry. The version
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applied at Trafikverket also considers external factors, e.g. climate, weather, and
third party interventions. For further description of MTO-analysis, see [33, 34]. One
way to classify human failures is listed in Table 1 [35].

3 Results

In this section the result of the two process-analyses are presented.

Table 1 A classification of
human failures akin to hazard
and operability studies
(HAZOP) guidewords

Action errors

• A1 Operation too long/short
• A2 Operation mistimed
• A3 Operation in wrong direction
• A4 Operation too little/much
• A Operation too fast/slow
• A6 Misalign
• A7 Right operation on wrong object
• A8 Wrong operation on right object
• A9 Operation omitted
• A10 Operation incomplete
• A11 Operation too early/late

Checking errors

• C1 Check omitted
• C2 Check incomplete
• C3 Right check on wrong object
• C4 Wrong check on right object
• C5 Check too early/late

Information retrieval errors

• R1 Information not obtained
• R2 Wrong information obtained
• R3 Information retrieval incomplete
• R4 Information incorrectly interpreted

Information communication errors

• I1 Information not communicated
• I2 Wrong information communicated
• I3 Information communication incomplete
• I4 Information communication unclear

Selection errors

• S1 Selection omitted
• S2 Wrong selection made

Planning errors

• P1 Plan omitted
• P2 Plan incorrect

Violations

• V1 Deliberate actions
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3.1 Process-Analysis Combined with MTO-Analysis

The MTO-analysis is based on a system perspective. In Fig. 2, it is seen that the
majority of causes are classified as human failure according to the MTO-analysis.
However, when considering human failures from a process perspective, all causes
of the MTO-analysis can be structured according to the process approach and also
be viewed from an actor perspective within the different phases of the process.

Since the unwanted events that have been studied focuses on engineering works,
i.e. work in track, the human failure classification (Fig. 3) can mainly be related to
the maintenance execution phase. However, since railway is highly regulated the
part of human failure classified as violation can also indicate possible improvements

Fig. 2 Causes of unwanted events related to track work 2007–2012 in Sweden

Fig. 3 Causes of human failure—unwanted events related to track work 2007–2012 in Sweden
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in the regulations, e.g. at the maintenance support planning phase. The violations
can also indicate improvement possibilities at the maintenance preparation phase,
e.g. an improved planning of maintenance execution that actually allows the per-
sonnel to follow the regulations. A complementary approach to classify these
human failures would be to apply the HAZOP guidewords.

The organizational causes (Fig. 4) can mainly be more directly related to other
phases than execution of the maintenance process, e.g. maintenance support
planning (e.g. regulation) and maintenance preparation (e.g. planning activities).

Technical causes of unwanted events that are related to working vehicles,
equipment and tools indicate possibilities to improve the capability of the main-
tenance process, e.g. mainly during the preparation and execution phases. In
addition, the technical causes related to the infrastructure may indicate possibilities
to improve maintenance practice, e.g. through changes of type and frequency of
inspection in the phase of maintenance support planning. The technical causes
related to infrastructure may also be addressed by modifications of the technical
system, however, this is not (by definition) any maintenance activity. See Fig. 5.

The external causes of unwanted events related to track work mainly seem to
address changes of the technical system to improve its robustness, which are not
related to maintenance but rather to modification (see Fig. 6). However, the external
causes can also indicate capabilities within the process phases that should be
strengthened in order to achieve an increased robustness, e.g. proactivity through
risk and security measures, but also improved response times through incident,
continuity and crisis management. These activities related to different aspects of
integrated risk management can mainly be addressed within the phases of main-
tenance support planning, maintenance preparation, and maintenance execution (cf.
Sect. 2.2—Process and risk approach to maintenance).

Fig. 4 Causes of organisational failure—unwanted events related to track work 2007–2012 in
Sweden
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3.2 Process-Analysis Supported by HAZOP Guidewords

In this section, the human failures classified according to the HAZOP guidewords
are ranked by the frequency of investigations where they occur and related to the

Fig. 5 Causes of technical failure—unwanted events related to track work 2007–2012 in Sweden

Fig. 6 Causes of external circumstances—unwanted events related to track work 2007–2012 in
Sweden
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phases of the maintenance process (see Table 2). The majority of human failures in
maintenance were related to information deficiencies, i.e. information communi-
cation errors (I4, 34 %) or information retrieval errors (R4, 34 %). In 15 % of the
investigations, both I4 and R4 could be identified, i.e. a combination of incorrect
information and unclear communication contributed to the accidents. These infor-
mation deficiencies were all located in the maintenance execution phase or in the
interface between execution and other phases of the maintenance process, see
Fig. 1.

The next largest group of human failures consisted of action errors (A9, 31 %).
These action errors, omitted operations, are all located in the execution phase of the
maintenance process.

Thereafter, the groups are in descending order: planning errors (P2, 19 %),
which are located in the process phase of maintenance support planning, checking
errors (C2, 11 %) located in the maintenance execution phase, or violations (V1,
7 %) located in the maintenance execution phase. The checking errors are, in
addition to maintenance execution, also connected to the process phases of main-
tenance support planning through feedback. The violations are all located in the
maintenance execution phase, but are also related to feedback to the maintenance
support planning phase.

4 Discussion and Conclusions

In this paper we have applied a process model of maintenance in combination with
MTO-analysis and HAZOP guidewords, in order to analyse human failures that are
maintenance-related. The approach is based on a generic process view of mainte-
nance that is intended to support continuous improvement of and continuous risk
reduction in maintenance activities.

By applying a process view of maintenance and the guidewords, it is possible to
facilitate the identification of human failures. This identification supports the
management of both requirements and risks, which should contribute to business
prosperity through continuous improvement and risk reduction.

Table 2 Ranking of the occurrence of human failures in investigations related to the generic
maintenance process

Type of human failure Process phase Frequency (%) of investigations

I4 Maintenance execution, feedback 34

R4 Maintenance execution, feedback 34

A9 Maintenance execution 31

P2 Maintenance support planning 19

I4 and R4 Maintenance execution, feedback 15

C2 Maintenance execution 11

V1 Maintenance execution 7
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The proposed process approach for continuous risk reduction stresses that, even
though the incidents and accidents may be manifested in maintenance execution,
the underlying hazards may actually be located in other process phases.

Further on, independent of what kind of philosophies, theories, and technologies
that are applied within an organisation, maintenance sooner or later comes down to
maintenance execution, which still requires human intervention. Hence, the effec-
tiveness of all activities in the other maintenance phases should be evaluated by
their impact on maintenance execution, especially considering human failures.

In addition to the HAZOP guidewords-inspired classification, the performed
analysis is based on a generic process model. The process model provides an
understanding of ‘where’ different causes contributing to human failures are loca-
ted. Hence, the combination of the guidewords and the process approach provides
information about both ‘what’ and ‘where’ aspects of causes contributing to human
failures. This combination gives a preliminary understanding about the network of
contributory factors in human failures during maintenance execution, i.e. ‘how’ the
causes are interlinked with each other and together contribute to human failures.
Hence, the applied analysis supports the proposition that human failures are con-
sequences of a network of actions and conditions which involve people, teams,
tasks, workplace, and organisational factors, rather than single causes of accidents.
This is also achieved to some degree by system approaches, such as the
MTO-analysis, but the process approach ads some further dimensions, e.g. stake-
holders, deliverables, continuous improvement and their interrelationships.

The study also indicate that there are many unreported incidents and risks related
to maintenance execution compared to reported accidents (703 unwanted events of
which 262 accidents, 358 incidents, and 83 risks), cf. the safety pyramid as
described by [36].

It may also be interesting to notice that it was not possible to identify any cause
for human failure directly related to the phase of maintenance management.
However, it is this phase that lay the very foundation of the other maintenance
phases through financial, regulatory, and cultural governance and control. One
reason for this absence might be that human failure normally is viewed in an
operative perspective during maintenance execution, which seemingly makes
contributory causes in maintenance management very distant. However, as dis-
cussed above, successful maintenance management must be very influential on all
other maintenance process phases. The importance of committed leadership is also
stressed in all major management literature. In addition, human failure should also
be considered in every single phase of the maintenance process. This also points out
a potential to use the proposed process approach in the investigation of unwanted
events to identify further causes.

Through an application of the process approach, the performed analysis can also
be seen as part of the maintenance process itself, i.e. the phase of maintenance
assessment. Hence, in analogy with the process approach, the result of the analysis
(or maintenance assessment) also indicates scope for maintenance improvement.
These improvements address aspects of different phases of the maintenance process,
as described above.
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In summary, the process perspective ads some valuable dimensions to the
understanding of human failures within maintenance. This is due to the general
strengths of process mapping and improvements, e.g. where the focus is on
activities that contribute to the achievement of deliverables to stakeholders. Hence,
the process methodology can act as a facilitator to combine other supporting
methodologies and tools to pinpoint improvement possibilities, such as
MTO-analysis and HAZOP guidewords. Both the process and MTO-analysis
approaches, facilitate a further exploration of unwanted events that occur during
execution, trying to find the blunt end of the causal chain and avoid to stop at the
sharp end.

Acknowledgments The financial and intellectual support received from Trafikverket (Swedish
transport administration) is gratefully acknowledged.

References

1. Chambell JD, Jardine AKS (2001) Maintenance excellence: optimizing equipment life-cycle
decisions. Marcel Dekker, New York

2. Liyange JP, Kumar U (2003) Towards a value-based view on operations and maintenance
performance management. J Qual Maintenance Eng 9(4):333–350

3. Söderholm P, Holmgren M, Klefsjö B (2007) A process view of maintenance and its
stakeholders. J Qual Maintenance Eng 13(1):19–32

4. Holmgren M, Söderholm P (2008) A process approach to maintenance-related hazard
identification. Int J COMADEM 11(1):36–46

5. Akersten PA (2002) Maintenance management should be based on core values, methodologies
and tools. In: Proceedings of international conference of maintenance societies, ICOMS

6. Akersten PA, Klefsjö B (2003) Total dependability management. In: Pham H (ed) Handbook
of reliability engineering. Springer, London

7. HSE (2002) Train accident at Ladbroke Grove, Paddington junction—second HSE interim
report. http://orr.gov.uk/__data/assets/pdf_file/0020/5663/incident-ladbrokegrove-lgri2.pdf.
Accessed 2 Mar 2015

8. RAIB (2008) Track worker fatality at Ruscombe Junction 29 April 2007. Rail accident report.
Rail Accident Investigation Branch, Department for Transport

9. RAIB (2009) Trackworker stuck by train, Stevenage, 7 December 2008. Rail accident report.
Rail Accident Investigation Branch, Department for Transport

10. TRV (2010) 2010-09-12, Kimstad, tåg 505 kör på traktorgrävare med spårföljarhjul.
Utredningsrapport TRV. Trafikverket, Borlänge

11. SHK (2912) Olycka mellan tåg 505 och en spårgående grävlastare på Kimstad driftplats,
Östergötlands län den 12 september 2010. Rapport RJ 2012:03. Swedish Accident
Investigation Authority, Stockholm

12. Holmgren M (2005) Maintenance–related losses at the Swedish rail. J Qual Maintenance Eng
11(1):5–18

13. Söderholm P (2013) Taking possession of the track and securing the work site faster without
compromising on safety. In: Proceedings of: rail infrastructure: access planning & work
window productivity

14. Dekker S (2004) Ten questions about human error. Erlbaum, Mahwah
15. Reason J (1997) Managing the risks of organizational accidents. Ashgate, Brookfield
16. Reason J, Hobbs A (2003) Managing maintenance error: a practical guide. Ashgate, Aldershot

392 M. Holmgren and P. Söderholm

http://orr.gov.uk/__data/assets/pdf_file/0020/5663/incident-ladbrokegrove-lgri2.pdf


17. Dekker S (2002) The field guide to human error investigations. Ashgate, Cornwall
18. Hollnagel E (2004) Barriers and accident prevention. Ashgate, Aldershot
19. Holmgren M (2006) Maintenance related incidents and accidents—aspects of hazard

identification. Luleå University of Technology, Luleå
20. ISO 31000 (2009) Risk management—principles and guidelines. International Organization

for Standardization, Geneva, Switzerland
21. ISO 22320 (2011) Societal security—emergency management—requirements for incident

response. International Organization for Standardization, Geneva, Switzerland
22. ISO/IEC 27035 (2011) Information technology—security techniques—information security

incident management. International Organization for Standardization, International
Electrotechnical Commission, Geneva, Switzerland

23. ISO 9000 (2005) Quality management systems—fundamentals and vocabulary. International
Organization for Standardization, Geneva, Switzerland

24. ISO 55000 (2014) Asset management—overview, principles and terminology. International
Organization for Standardization, Geneva, Switzerland

25. IEC 60300-3-14 (2004) Dependability management—Part 3-14: application guide—
maintenance and maintenance support. International Electrotechnical Commission, Geneva,
Switzerland

26. COSO ERM (2015) Enterprise risk management—integrated framework. http://www.coso.
org/documents/coso_erm_executivesummary.pdf. Accessed 5 Feb 2015

27. IEC 60300-3-11 (2009) Dependability management—Part 3-11: application guide—reliability
centred maintenance. International Electrotechnical Commission, Geneva, Switzerland

28. IEC 60812 (2006) Analysis techniques for system reliability—procedure for failure mode and
effect analysis (FMEA). International Electrotechnical Commission, Geneva, Switzerland

29. Shewhart WA (1980) Economic control of quality of manufactured product. ASQC Quality
Press, Milwaukee

30. Deming WE (1993) The new economics for industry, government, education. Massachusetts
Institute of Technology, Center for Advanced Engineering Study, Cambridge

31. Reason J (1990) Human error. Cambridge University Press, Cambridge
32. Reason J (1997) Managing the risks of organizational accidents. Ashgate, Aldershot
33. Rollhangen C (1995) MTO—En introduktion, sambandet människa, teknik och organisation.

Studentlitteratur, Lund
34. Vinnem J-E (2001) Offshore risk assessment: principles, modelling and applications of QRA

studies. Springer, London
35. HSE (2015) Core topic 3: identifying human failures. http://www.hse.gov.uk/humanfactors/

topics/core3.pdf. Accessed 16 Jan 2015
36. Heinrich HW, Petersen D, Roos N (1980) Industrial accident prevention: a safety management

approach. McGraw-Hill, New York

Process Analysis of Human Failures … 393

http://www.coso.org/documents/coso_erm_executivesummary.pdf
http://www.coso.org/documents/coso_erm_executivesummary.pdf
http://www.hse.gov.uk/humanfactors/topics/core3.pdf
http://www.hse.gov.uk/humanfactors/topics/core3.pdf


Application of Game Theory to Railway
Decision Making

N. Jack, D.N.P. Murthy and U. Kumar

Abstract Over the last few decades various forms of railway privatization have
taken place in many different countries. As a result, it is now common for several
parties to be involved in the ownership, operation and maintenance of railway
system assets. The decisions made by each impact on all others. Game theory
(GT) provides the framework to obtain the optimal decisions taking into account the
various interactions. This paper gives a brief introduction to GT and its application
to railway decision-making.

Keywords Railway systems � Privatization � Decision problems � Maintenance �
Game theory

1 Introduction

In most countries, railway assets were state-owned and operated and maintained by
government agencies. Nowadays, various forms of railway privatization have taken
place with organisational structures varying among different countries. As a result,
it is now common for several parties to be involved in the ownership, operation and
maintenance of railway system assets. Each is an independent unit with its own
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goals and objectives and decisions made impact on the other parties in the system.
Game theory (GT) provides the framework for each party to make their optimal
decisions taking into account the various interactions.

This paper provides the conceptual basis for looking at the important central
issues involved in railway systems, the appropriate framework needed to study the
decision problems from the perspectives of the different parties and details on how
GT can be used for optimal decision making. Section 2 gives a brief description of
the railway privatization process that has taken place in Sweden and the UK.
Section 3 deals with the decision problems faced by asset owners, operators and
maintenance contractors in privatized railway systems. A brief introduction to GT is
given in Sect. 4. The maintenance of railway infrastructure and rolling stock is
described in Sect. 5. In Sect. 6, the game-theoretic approach to railway decision
making is outlined together with a simple GT model formulation. Conclusions and
topics for further research are given in Sect. 7.

2 Railway Privatization

Railways are complex systems comprised of infrastructure (track, sleepers and track
bed, bridges, tunnels, stations, level crossings and signalling systems) and rolling
stock (locomotives, wagons and carriages used to transport passengers and freight).
Traditionally, they have been state-owned and operated and maintained by gov-
ernment agencies but nowadays, in many countries railways have been subject to
various forms of privatization. This process has led to several parties (see Fig. 1)
being involved in the ownership, operation and maintenance of the infrastructure
and rolling stock [3]. Examples are track owners, track operators, rolling stock
owners, rolling stock operators and maintenance contractors. The operators of the
track and rolling stock may either be the owners of these assets or they may lease
them from the owners. The operators are responsible for conducting essential
maintenance and often the maintenance tasks are outsourced to external mainte-
nance contractors.

The government of the country in which a railway system is based makes policy
decisions with respect to levels of service (train routes, frequencies, etc.) and
regulators are appointed mainly to ensure customer safety where the customers are
the general public for passenger services and industries (e.g. mining) for freight.
Finally, in the figure, the party referred to as ‘others’ includes manufacturers of
rolling stock and infrastructure builders (of tracks, stations, bridges, tunnels, etc.).

Swedish Railway System

In Sweden, prior to 1988, the government-owned Swedish State Railways
(SJ) controlled all aspects of railway services. The railway privatization process
then began and has been slow-moving and incremental [1]. Today, most of the
infrastructure is still government-owned and managed by the Swedish Transport
Administration (Trafikverket).
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SJ has now been broken up into several specialized companies, many of which
have been privatized whilst others are still government-owned. Presently, there are
a total of 40 rolling stock companies. One of these, SJ AB is the major passenger
train operator running its own services and also operating under contract to both
regional and national transport authorities. SJ AB owns all its passenger trains.
Inter-regional passenger services were opened up to competition in December 2011.
The Swedish freight services market is now completely deregulated apart from the
government-owned Green Cargo AB (previously SJ’s freight division) which
currently has a market share of approximately 40 %.

The Swedish Transport Agency (Transportstyrelsen) is the regulatory body
responsible for the Swedish railway system. It formulates regulations, examines and
grants permits, deals with safety issues and oversees the behaviour of the partici-
pating organizations.

UK Railway System

In the UK, the railway privatization process took place during the relatively short
period 1994–1997 [1]. Prior to 1994, the UK railway system was operated by
British Rail (BR). In 1994, the government owned company Railtrack took over the
ownership and responsibility for maintaining the infrastructure. The infrastructure
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Fig. 1 The key parties involved a railway system
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unit and its support departments (maintenance, services design and track renewal)
were then sold off to the private sector in 1996. Railtrack went into bankruptcy in
2002 and has now been effectively replaced by the state-controlled non-profit
company Network Rail.

Three rolling stock companies (ROSCO’s) purchased BR’s passenger rolling
stock and then subsequently leased the vehicles to operators. BR’s freight train
operations were divided into 6 companies who were then sold to the private sector.
In contrast, passenger train operations were franchised to 25 private sector train
operating companies (TOC’s) using the newly created Office of Passenger Rail
Franchising (OPRAF). This franchising body was replaced by the Strategic Rail
Authority (SRA) in 2001 and then the Department of Transport (DOT) in 2005.

The UK government also set up the Office of Rail Regulation (ORR) as the
safety and economic regulator for the new railway system. All the parties involved
in the operation and maintenance of this system are shown in Fig. 2.

3 Railway System Decision Problems

In any privatized railway system, the owners, operators and maintenance contrac-
tors each face several decision problems. The decisions may be strategic, tactical or
operational with each decision being based on data and made at different levels
within an organization. The actual decision problems faced depend on the particular
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Fig. 2 Privatization of UK railways
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scenario being studied and there are several possible scenarios. The operators of the
infrastructure and the rolling stock may either be the owners or they may lease
the assets from the owners. We only consider the former situation since this avoids
having to deal with leasing issues.

An infrastructure owner/operator has to make decisions involving the mainte-
nance and upgrade of the different components of the infrastructure, the number of
rolling stock operators to allow to use the track, the frequencies for passenger and
freight transport, and whether or not to outsource the infrastructure maintenance. If
the maintenance is outsourced then one or more external maintenance contractors
have to be selected and contracts drafted between the different parties. Each rolling
stock owner/operator has to decide about rolling stock acquisition, upgrade and
replacement of the stock and also its maintenance. If maintenance outsourcing is
chosen then the rolling stock owner/operator faces the same types of decision as the
infrastructure owner/operator.

Contracts must also be agreed between the infrastructure owner/operator and
each rolling stock owner/operator for use of the infrastructure. These contracts need
to specify limits on track usage (frequency of train journeys and loads carried),
acceptable conditions of the infrastructure and rolling stock, contract prices,
penalties for breaching contract terms, etc. If maintenance of the infrastructure and
rolling stock is outsourced, the external maintenance contractors (service agents)
need to decide on the contract terms with both types of operator and on the logistics
necessary to provide the maintenance services. The contracts should include details
of all the maintenance activities that are to be outsourced, contract prices and
penalties for not following the terms and conditions of the agreements. The con-
tractors may also offer different contract options to the operators who then need to
decide which option to choose.

Thus, each of the parties involved in privatized railway systems (the infrastruc-
ture owner/operator, the rolling stock owners/operators and the external maintenance
contractors) have to evaluate a number of different options and then determine their
optimal decisions, taking into account the interactions between themselves and the
other parties. The solutions to these decision problems can be obtained by using
appropriate models.

4 A Brief Introduction to Game Theory

GT is used to characterize optimal decision-making in problems where there are two
or more decision makers. Details about GT and its various areas of application can be
found in Chatterjee and Samuelson [2] and Watson [7]. The elements of a game are
the players (the decision makers who participate in the game), their decision choices,
and their objective functions (which depend on the outcome of the interactions that
occur). The general structure of a two-player GT problem is shown in Fig. 3.

An important assumption of GT is that the players will always act rationally
(choose their best decisions). In any game, an action is the decision that a player

Application of Game Theory to Railway Decision Making 399



makes at a particular point in the game whereas a strategy specifies what actions the
player will take at each point in the game. A solution concept is a technique that is
used to predict the outcome (equilibrium) of the game. It identifies the strategies
that the players are actually likely to play in the game.

4.1 Classification of Games

GT problems may be classified in a number of different ways. The timing of actions
by the players and also the number of periods during which games are played lead to
different solution approaches. In some games, the players may choose their actions
simultaneously, so that no player knows exactly what the others have done when
they make a decision. Alternatively, in games with sequential timing, the players
choose their actions in pre-determined order. These two situations are termed Nash
games and Stackelberg games, respectively, and they are discussed in Sect. 4.2.

Some games take place during a single time period whereas others occur over
multiple time periods and the actions taken by the players in each period affect the
actions and rewards of the players in subsequent periods. These two situations are
termed static games and dynamic games, respectively.

Finally, games may be either cooperative or non-cooperative. In a cooperative
game the players communicate with each other to coordinate their strategies and,
most importantly, make binding agreements. This type of game can be formulated
as a multi-objective optimization problem. In a non-cooperative game the players
may communicate, but binding agreements are not made.

4.2 Two-Player Non-cooperative Static Games

We denote the two players as P1 and P2. The actions available to P1 are denoted
x 2 X and for P2 they are y 2 Y . The objective functions for P1 and P2 are J1(x;y) and

Fig. 3 Decision problem structure with two decision makers
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J2(y;x), respectively. The different power structures for a two-player non-cooperative
static game are shown in Fig. 4.

Nash Games
Here, each player selects a single action without knowing the particular action
chosen by their rival. This effectively means that the two players P1 and P2 choose
their actions simultaneously and so have equal decision-making power. This power
configuration corresponds to case (iii) in Fig. 4. In such a game, the players’
strategies are just the single actions they choose, so the terms actions and strategies
will be used interchangeably. The most well-known and widely-used solution
concept for this static game is called Nash equilibrium (NE). A NE is a set of
strategies (strategy profile) for the two players such that no player has an incentive
to change their strategy unilaterally, given the strategy chosen by the other player.

More formally, the strategy profile ðx�; y�Þ is a NE if

J1ðx�; y�Þ� J1ðx; y�Þ; for all x 2 X; and
J2ðy�; x�Þ� J2ðy; x�Þ; for all y 2 Y :

ð1Þ

A NE may be found using best response functions. P0
1s best response BR1(y) to a

given action y 2 Y chosen by P2 is the value of x which maximizes J1(x;y) so

BR1ðyÞ ¼ argmax
x2X

J1ðx; yÞ: ð2Þ

Similarly, P0
2s best response BR2(x) to a given action x 2 X chosen by P1 is the

value of y which maximizes J2(y;x) so

BR2ðxÞ ¼ argmax
y2Y

J2ðy; xÞ: ð3Þ

For a NE, both players’ actions must be best responses to each other so the NE
strategy profile (x*,y*) is the solution of

x� ¼ BR1ðy�Þ and y� ¼ BR2ðx�Þ: ð4Þ

Stackelberg Games
We assume that P1 is the leader who chooses an action x 2 X and then P2 (the
follower) observes x and chooses an action y 2 Y : This corresponds to case (i) of

1P 2P

1P

2P 1P

2P

(i) (ii)

(iii)

Fig. 4 Power structures for a two-person game
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Fig. 4. [Note, in case (ii) of Fig. 4, the roles are reversed, so P2 is the leader and P1

is the follower.]
The backward induction method of solution for the two-stage Stackelberg game

depicted in case (i) is as follows.

Stage 2: Given the action x previously chosen by P1,P2’s problem is to find the
value of y that maximizes J2(y;x). The solution to this problem is the best response
function

BR2ðxÞ ¼ argmax
y2Y

J2ðy; xÞ: ð5Þ

Thus, P2 responds optimally to P1’s action.

Stage 1: P1 anticipates what P2 will do in stage 2, so P1’s problem in this part of the
game is to

max
x2X

J1ðx;BR2ðxÞÞ: ð6Þ

If x* is the optimal solution to the optimization problem in (6) then the outcome
of the game is that P1 chooses x* and P2 chooses BR2(x*).

A Stackelberg game model can be used to solve the principal-agent problem.
This problem arises when one party (the principal) delegates tasks to another party
(the agent) who then performs these tasks under a contract. The two parties have
conflicting objectives and it is difficult and/or expensive for the principal to monitor
the actions of the agent during the contract period. To devise the contract, the
principal must include incentives/penalties to encourage the agent to behave at least
partly according to the principal’s interests. See Watson [7] for details of the GT
model analysis of the principal-agent problem.

4.3 Other Important Issues in GT Modelling

There are various factors that make real-world decision making problems involving
two (or more) players difficult to model. One such issue is the information available
to each player. Asymmetric information implies that one player has more or superior
information compared to the others. This knowledge may be about costs, revenues,
etc., or actions taken during the game. Moral hazard is a specific type of infor-
mation asymmetry that refers to effect of ‘hidden actions’ taken by players. This
situation occurs in principal-agent problems and may be prevented by monitoring or
by providing contract incentives or penalties.

A second issue is the uncertainty in the real-world that may affect the payoffs to
the players plus other outcomes of a game. Each players’ objective function needs
to take this uncertainty into account and one way of doing this is through E[V], the
expected value of the monetary payoff. The disadvantages of using expected value
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as an objective function are that it does not take into account the variability in the
possible payoff values or a player’s attitude to risk. In order to capture these
concepts, a utility function U(V) may be utilized. This utility function is a measure
of a player’s preferences for different payoffs and its shape determines the player’s
risk attitude. In this case, each player chooses their actions in order to maximize
E[U(V)], the expected utility of the random payoff earned. This is known as the
principle of expected utility maximization.

These factors often need to be taken into account in the formulation and analysis
of GT models. The effect of different scenarios regarding information availability,
levels of uncertainty and risk attitudes on the model solutions may then be
investigated.

5 Maintenance of Railway Assets

Railway assets degrade due to age, usage (loads carried and their frequency),
operational environment and other factors involved in their design and how they are
operated. The interaction that takes place between the rolling stock and the track has
a great influence on the degradation of both assets. Poor quality track has an adverse
effect on trains, carriages and freight wagons while poor wheel quality and frequent
heavy loads cause increased track deterioration.

Preventive maintenance (CM) is needed to control railway asset degradation and
corrective maintenance (CM) is needed to rectify faults whenever normal opera-
tions are disrupted. In both cases, poor maintenance can also lead to accelerated
asset degradation.

PM actions include ballast tamping and injection, sleeper replacement, lubri-
cation and grinding to reduce rolling contact fatigue (RCF) initiated defects caused
by wear and fatigue. Train operations are affected only for a short period for this
type of maintenance. PM actions also include inspections to monitor and assess
infrastructure condition. Based on the inspection results, e.g. the severity of any
fault found to rail traffic and the availability of resources, a decision is made either
to fix the fault immediately or plan the rectification for a later date. In contrast, CM
actions may involve major maintenance work such as track reconditioning and
replacement which take a much longer time (possibly running into months) to
complete. Train operations are then affected significantly and the resulting CM
costs are high.

The degradation of rolling stock wheels is due to profile wear and RCF. Various
wayside condition monitoring technologies are used to identify these types of
defect. Wayside detectors monitor bearing temperature and the forces generated by
vehicles to provide alarm activation and prevent derailment. Force measurement
detectors are able to detect vehicles with excessive loads and those with defective
wheels that might damage the track. Wheel profile is critical to a railway vehicle’s
dynamic behavior, stability and the ride comfort. The rate of wear and rolling
resistance are monitored automatically using laser units and cameras. When an

Application of Game Theory to Railway Decision Making 403



alarm is generated by such measurements, the vehicle is identified, the damage and
fault level is estimated, and maintenance is initiated [6].

If the maintenance of an asset is outsourced, some or all of the maintenance
actions (PM and/or CM) are carried out by an external service agent (maintenance
contractor) under a maintenance service contract. The contract specifies the details
of the maintenance and the cost issues. It can be a simple or complex and may
involve penalty and incentive terms. In Sweden, competitive tendering for railway
maintenance contracts began in 2002 [5]. Trafikverket has divided the infrastructure
in Sweden into 6 zones and outsources all the maintenance through an open ten-
dering process where any qualified maintenance contractor can bid for the main-
tenance contracts. These contracts normally last for a period of 5 years with the
provision for a 2 year extension given in two steps each lasting 1 year. The contract
value for each zone is around 40–50 million euros. Currently, there are five private
companies competing in the infrastructure maintenance market whilst eight com-
panies compete for rolling stock maintenance contracts.

Nilsson and Nyström [4] compare railway maintenance markets and describe the
design of maintenance contracts in the Netherlands, Finland and the UK.

6 Game-Theoretic Approach to Railway System Decision
Making

The characterization of a railway system with one infrastructure owner/operator,
one rolling stock owner/operator, one infrastructure maintenance contractor and one
rolling stock maintenance contractor is shown in Fig. 5. The directed arcs indicate
the interactions between the elements and the related variables.

There is an interaction between the rolling stock and the infrastructure (track)
and the degradation of each asset is influenced by the interaction between them.
This degradation is affected by the condition of the rolling stock and of the
infrastructure and by several other factors such as load, speed of travel, etc. The
infrastructure owner/operator and the rolling stock owner/operator each outsource
their maintenance to a single maintenance contractor/service agent. Figure 5 also
indicates the different contracts between the owner/operators and the service agents.
As can be seen, several different players are involved and their decision making
needs to take into account the interactions indicated in the figure.

6.1 Illustrative GT Example—A Principal-Agent Problem

Simple formulation

We consider a GT problem involving one track owner/operator (P1), one rolling stock
owner/operator for freight transport (P2) and one track maintenance contractor (P3).
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P1 offers one contract to P2 which specifies the total tonnage T to be transported
(contract A) and another contract to P3 which specifies the maintenance effort M to
be used (contract B). The duration of both contracts is L and their prices /A Tð Þ and
/B Mð Þ are strictly increasing functions of T and M, respectively. P2 and P3 may
decide to either accept or reject the contracts. If contract A is accepted then P1

receives /A Tð Þ from P2. If contract B is accepted then P3 receives /B Mð Þ from P1.
Both contract offers and the resulting decisions are made during a single time
period, so we have a static GT model formulation.

The three players are assumed to be risk neutral and each player has full
information about all parameters (revenues, costs, etc.) of the game. No cheating
takes place by either P2 (transporting a tonnage > T) or by P3 (using a maintenance
effort < M), so there is no moral hazard.

The set of decision variables for P1 is {T,M}. P2 has the single decision variable

dA ¼ 0 if contract A is rejected,
1 if contract A is accepted

�

and P3 has the single decision variable

dB ¼ 0 if contract B is rejected,
1 if contract B is accepted:

�
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Fig. 5 Key elements of railway system characterization
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The objective functions for the three players are JTO(T,M;dA,dB),JRSO(dA;T) and
JTMC(dB;M), respectively. These functions represent the profits (or expected profits)
earned during the contract period and are obtained by considering revenues and
costs, some of which are fixed for given T and M whilst others are subject to
uncertainty.

Track degradation also needs to be modelled. There is a loss in track value
during the contract period due to the tonnage transported and the maintenance effort
used. This is a cost incurred by P1 and is a function of the change in track state. The
state of the track S(t) at time t (t = 0 corresponds to the start of the contract and
S(0) = 1) depends on the values P1 chooses for the tonnage T and the maintenance
effort M. The effect of each of these variables on S(t) is indicated in Fig. 6. The
model formulation for S(t) may be either deterministic or stochastic.

The condition of the rolling stock also affects track degradation and this can
easily be included in the modelling of track state.

Model analysis

We model the sequence of contract offers and decisions as a two-stage Stackelberg
game. In Stage 1, the two contract offers are made simultaneously. P1 chooses T the
total tonnage to be transported under contract A and M the maintenance effort
required under contract B (these variables determine the contract prices) and offers
these contracts to P2 and P3, respectively. In Stage 2, P2 and P3 decide indepen-
dently whether to accept or reject the two contracts (there is no strategic interac-
tion). Rejection by either or both players ends the game and all players then make
zero profits. Contract terms then need to be revised and the game repeated.
Acceptance by both players implies that the two agreements come into force so the
tonnage T is transported by P2 and the maintenance effort M is carried out by P3 for
a period of duration L and profits are realised by the three players. This GT scenario
is shown in Fig. 7.

S
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T

E
  S

(t
)

TIME (AGE) t

SAFE LIMIT

1

TONNAGE (T ) INCREASING

MAINTENANCE EFFORT (M ) INCREASING

Fig. 6 Effect of tonnage and maintenance effort on track state
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The solution of the Stackelberg game is obtained using backward induction:
Stage 2: Given the values of T and M previously chosen by P1, the best response

functions for P2 and P3 are

BR2ðTÞ ¼ 1 if JRSO 1; Tð Þ� 0
0 if JRSO 1; Tð Þ\0

�

and

BR3ðMÞ ¼ 1 if JTMC 1;Mð Þ� 0

0 if JTMC 1;Mð Þ\0

(
;

respectively.
Stage 1: P1 anticipates what P2 and P3 will do in Stage 2, so P0

1s problem in this
part of the game is to find the values T* and M* which maximise JTO(T,M;1,1)
subject to the two constraints JRSO 1; Tð Þ� 0 and JTMC 1;Mð Þ� 0:

The outcome of the game is that P1 chooses T* andM*, so the contract prices are
/A T�ð Þ and /B M�ð Þ, and the contracts are accepted by both P2 and P3.

The model analysis is completed by specifying the exact expressions for the
objective functions and then using the above method to obtain the optimal decisions
for the three players.

Some extensions

This simple model can be extended (and so made more realistic) in many ways.
Moral hazard: This may be included so P2 and P3 might cheat in terms of

tonnage transported and maintenance effort used during the contract period.
Penalties for violation then need to be introduced by P1 into the contract terms as
extra decision variables and P1 also needs to use monitoring to detect possible
contract violation. The levels of monitoring need to be decided with increased effort
resulting in higher costs to P1 but having a greater chance of finding evidence of
cheating.

Uncertainties: The revenues for P1 and P3 are /A Tð Þ and /B Mð Þ; respectively,
whilst the revenue for P2 is uncertain since it depends on the demand D for freight
transport (a random variable). The cost for P1 consists of /B Mð Þ plus a term that
represents the loss in track value incurred during the contract period (a function of
the change in track state which again may be uncertain if a stochastic formulation is

1P

2P 3P

Fig. 7 Stackelberg game structure
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used). The cost for P2 is /A Tð Þ whilst the cost for P3 is uncertain since it depends
on C the cost of the maintenance actions performed under contract B (again a
random variable).

7 Conclusions and Topics for Research

The game-theoretic approach is the best method to characterize the optimal decisions
of the different parties involved in privatized rail systems. In order to construct
realistic GT models, proper data need to be collected from the ‘real-world’. This data
is essential for good model formulation and also to conduct model validation.

In this paper we have focused on the most basic GT concepts and illustrated their
application through a very simple example involving three players and four deci-
sion variables. The formulation and analysis of more complex models (involving
dynamic formulations, uncertainty, information asymmetry, moral hazard, etc.) is
needed. The authors are currently doing further research to build such models.

Murthy and Jack [3] give an overview of the issues involved in maintenance
outsourcing and leasing problems and then review the different game-theoretic
models that have been proposed to help individuals/businesses choose among
different options. This book provides a useful reference for both researchers and
practitioners who want a better understanding of how optimal decisions are made
when two or more parties are involved in the decision making process.
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Modelling of Maintenance Data

M.R. Karim, A. Ahmadi and D.N.P. Murthy

Abstract The modelling of maintenance data starts with the black-box approach
(where the model selection is based solely on the maintenance data) and then
through the grey-box approach for proper analysis (where one can gain insights to
build better models). These models allow for more effective maintenance of the
object. This paper deals with the grey-box approach to modelling. It discusses the
process of modelling and illustrates this through a real case study.

Keywords Maintenance outsourcing � Maintenance data � Modelling � Case
study � Hydraulic pumps

1 Introduction

Every engineered object is unreliable in the sense that it degrades with age and
usage and ultimately fails. Preventive maintenance (PM) is used to control the
degradation and reduce the likelihood of failure whilst corrective maintenance
(CM) is used to restore a failed unit to the operational state. Maintenance data is the
data that is collected during the maintenance of an object. It comprises reliability
data (such as failure and service times), information on technical actions (such as
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the cause of failures), maintenance actions (such as repair or replace), economic
data (such as direct and indirect costs), etc.

Maintenance data can be used to benchmark and improve the maintenance of an
object. This involves proper data analysis. The two approaches that are used are the
following:

(i) Qualitative: Such as Pareto charts and FMEA to identify the more frequent
causes of failures.

(ii) Quantitative: Building mathematical models based on the data. Usually, one
takes a black-box approach to build appropriate reliability models (such as the
distribution function for failure times of the object or its components).

The reliability model built using the black-box approach often provides new
insights into the degradation and maintenance of the object and this, in turn, allows
one to build one or more refined models and we use the term “grey-box approach”
to denote this. These models provide more information and as a result maintenance
decisions based on such models lead to significant improvements (such as cost
reduction) to the maintenance of the object. The paper deals with this topic and
presents a real life case study to illustrate the improvements.

The outline of the paper is as follows. Section 2 deals with a brief discussion of
the modelling process. Section 3 describes the case study where the engineered
object is a hydraulic pump—a component of excavators used in the mining
industry. It gives the data (failure and service times) that is used for building
reliability models. Section 4 gives the details of the model based on the black-box
approach. Section 5 looks at the grey-box approach and discusses two scenarios and
the modelling of each. We conclude with some comments in Sect. 6.

2 Modelling Process

The modelling process involves a mathematical formulation which mimics the
behaviour of the object being modelled. In the reliability modelling of an object the
formulation used is a probability distribution function (also termed failure distri-
bution function and which is the complement of the reliability function). Such
models are useful in deciding the optimal parameters of the maintenance policy for
the object.

2.1 Black-Box Approach

In the black-box approach, the selection of the model is based solely on the reli-
ability data (failure times and service times) collected during the maintenance of an
object. This approach is also referred to as data-based or empirical modelling. The
modelling process involves the following steps.
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Step 1: Selection of the failure distribution function Fðt; hÞ where h is the set of
parameters.

Step 2: Estimating the model parameters h.
Step 3: Validating the model.

All these steps are carried out using the historical data and a variety of tech-
niques. In Step 1 one uses various kinds of data plots—nonparametric plots such as
the empirical distribution function (EDF) or parametric plots based on different
distributions plots such as the Weibull probability plot (WPP). The parameter
estimation in Step 2 can be done either using the method of least squares (min-
imising the sum of square of the errors between the model plot and data plot) or
statistical methods such as the method of maximum likelihood. The validation in
Step 3 can be either non-statistical (usually by comparing graphical plots) or it can
be done using rigorous statistical tests such as the Anderson-Darling test. Details of
these can be found in many books, such as Meeker and Escobar [7], Blischke and
Murthy [2] or Blischke et al. [3] to name a few.

2.2 Grey-Box Approach

In the grey-box approach, the model based on the black-box approach is viewed
from different perspectives leading to two or more scenarios. In each scenario, links
are made to the real (and relevant) world of the object to gain more insight. This
involves making assumptions and leads to a set of new models. The model vali-
dation often requires new additional data. If the model validity is established the
new model then suggests how improvements can be made to the maintenance of the
object.

3 Case Description

In open cut mines, coal and overburden are transported using excavators and dump
trucks. An excavator is a complex machine consisting of several systems. The
hydraulic system is one of the important systems and this is comprised of several
hydraulic pumps (for linear and rotational motions), hydraulic oil filters and several
hydraulic lines. Hydraulic pumps convert mechanical power into hydraulic power
by delivering different flows at different load pressures at the pump output.1

1More details of the operation can be found in books on hydraulic pumps, see for example,
Lambeck [6] or [5].
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3.1 Pump Failures

A pump is considered to have failed if it cannot provide the required flow rate at the
required pressure. Pump failure is detected by sensors and relayed to the operator.
The failure is due to failure of one or more components of the pump. There can be
one or more failure modes for each component and several causes leading to the
failure.2

3.2 Pump Maintenance

The mining company used an age based policy for pump maintenance. Under this
policy a pump is subjected to a replacement (PM action) after being in operation for
specified period (T hours) or on failure (CM action) should it occur earlier. The
pump used in the replacement may be either new or reconditioned.

Based on the condition of the pump removed (under either PM or CM) it is
either scrapped or subjected to an overhaul which results in a reconditioned
pump. The general accepted notion is that a reconditioned pump is as-good-as a
new pump. The maintenance was outsourced to a maintenance service agent.

3.3 Data for Modelling

The mine operates 3 identical excavators on site with 2 engines per excavator and 4
hydraulic pumps (variable displacement axial piston pumps) per engine. The mine
has a small maintenance department which carries out the PM and manages the
outsourcing of pumps for CM actions (when a pump failure occurs) and PM actions
involving the overhaul of pumps.

The data available consisted of the failure times (units that failed and removed
under CM action—also called “failure data”) and service times (units that were
either still in operation or removed under PM action—also called “censored data”)
for 102 units sent to the service agent and this data are presented in Table 1. The
column labelled “Type” indicates whether the data is failure data (denoted by 1) or
censored data (denoted by 0). As can be seen, the data consists 45 failure data and
57 censored data. The information regarding whether an item was new or recon-
ditioned was incomplete—15 failure data and 4 censored data are listed as new
(indicated by “Yes” in the table) and 8 as reconditioned (not listed in the table).
There was no information regarding the number of times a pump was
reconditioned.

2For further discussion on faults, failure modes, the different physical mechanisms of degradation,
etc., see [2].
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Engine number was recorded but not the location of the pump in relation to the
engine. The maintenance department did not have any information regarding the
failure mode. This might be due to the maintenance service contract not dealing
with this issue. The service agent refused to provide this data and it is not sure
whether this kind of data was collected or not.

Table 1 Data from customer’s maintenance department

Time (h) Type New Time (h) Type New Time (h) Type New

81 0 5923 1 Yes 11923 0

149 1 6333 1 12005 0

245 1 6717 1 Yes 12082 0

340 1 Yes 7207 1 Yes 12090 0

407 1 7265 1 12136 0 Yes

461 1 7624 1 Yes 12141 0

629 1 7625 0 12143 0

856 0 7973 1 Yes 12163 0

947 0 8183 1 12198 0

1460 1 8217 1 12198 0

1513 1 8390 1 Yes 12198 0

1670 1 Yes 8462 1 Yes 12198 0

1688 0 8728 1 12198 0

2093 0 8817 1 12198 0

2242 0 8870 1 12236 0

2242 0 8884 0 12236 0

2242 0 9055 1 12236 0

2242 0 9182 1 12236 0

2242 0 9334 1 12236 0

2607 1 9368 1 Yes 12236 0

2668 1 9729 1 Yes 12394 0 Yes

2806 1 9751 0 12459 0

3132 0 10299 1 13097 0

3132 0 10389 0 13497 0

3132 0 10413 0 13497 0

3132 0 10557 1 13497 0

3333 1 Yes 10944 1 13497 0

3569 1 10970 1 13497 0

3837 0 11647 0 Yes 13497 0

3837 0 11678 1 13497 0

4150 0 11686 1 Yes 14407 1 Yes

5123 1 11798 0 15536 1

5258 1 11869 0 Yes 16289 1 Yes

5662 0 11869 0 17517 1
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4 Black-Box Models

The empirical WPP obtained using the data is shown in Fig. 1 and as can be seen
the plot is not a straight line. This implies that the two-parameter Weibull distri-
bution is not appropriate to model the failure distribution.3

However, the shape of the plot in Fig. 1 indicates that a Weibull mixture dis-
tribution might be an appropriate model.4 The cumulative distribution functions
(CDFs) for two- and three-fold Weibull mixtures, respectively, are given by

G2ðtÞ ¼ p1F1ðtÞþ p2F2ðtÞ ð1Þ

with 0� p1; p2 � 1 and p1 þ p2 ¼ 1, and

G3ðtÞ ¼ p1F1ðtÞþ p2F2ðtÞþ p3F3ðtÞ ð2Þ

with 0� p1; p2; p3 � 1 and p1 þ p2 þ p3 ¼ 1; and FiðtÞ; i ¼ 1; 2; 3, are the CDFs of
Weibull distributions with

Fiðt; ai; biÞ ¼ 1� e�ðt=aiÞbi ; t� 0 ð3Þ

where βi is shape parameter and αi is scale parameter, i = 1, 2, 3.
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Fig. 1 WPP plot of EDF

3Similar plots (produced using Minitab) for ten other distributions also indicate that the shapes are
not straight lines.
4[9] deal with various models derived from the two-parameter Weibull distribution to model failure
times and give the WPP plots for several distributions.
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We also consider a single Weibull distribution given by

G1ðtÞ ¼ F1ðt; a1; b1Þ ¼ 1� e�ðt=a1Þb1 ; t� 0: ð4Þ

4.1 Parameter Estimation

The parameters of the models were estimated using the method of maximum
likelihood. The Expectation-Maximization (EM) algorithm was applied to find the
maximum likelihood estimates (MLEs) of the parameters. Table 2 shows the MLEs
of the model parameters.

Comment: The mean for a Weibull distribution with shape parameter β and scale
parameter α is given by aCð1þ 1=bÞ where Cð�Þ is the gamma function [1]. For the
3-fold Weibull mixture distribution, the mean for F3ðtÞ > mean for F2ðtÞ > mean for
F1ðtÞ: Also note that the shape parameter for F1ðtÞ is close to one.

4.2 Model Validation

The statistical approach provides a more rigorous method for model selection and
validation. Various statistics (such as Anderson–Darling (AD),
Kolmogorov-Smirnov (K-S)) as well as criteria (such as the Akaike information
criterion (AIC), root-mean-square error (RMSE) and log-likelihood) form the basis
for model selection and validation. The adjusted AD, K-S, AIC and RMSE for the
three distributions are given in Table 3.

The estimates of the adjusted AD, AIC and RMSE in Table 3 suggest that the
3-fold Weibull mixture distribution is the best distribution for the data among the
three competing distributions.

Table 2 MLEs of model parameters

Model MLEs of parameters

Single
Weibull

fb̂1; â1g ¼ f1:2222; 16639:7g

2-fold
Weibull

b̂1; â1; b̂2; â2; p̂1; p̂2
n o

¼f1:0707; 1489:5746; 2:7362;
15008:6136; 0:1198; 0:8802g

3-fold
Weibull

b̂1; â1; b̂2; â2; b̂3; â3; p̂1; p̂2; p̂3
n o

¼f1:019; 2364:207; 5:576; 9481:855;
16:643; 16535:503; 0:166; 0:322; 0:512g
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We use the Cox-Snell residual plots to validate the model.5 The plot is given in
Fig. 2, for the model involving the 3-fold Weibull mixture distribution. As can be
seen, the residuals follow a straight line with unit slope, indicating a good fit of the
three-fold Weibull mixture distribution for the data set.

We apply the Kolmogorov-Smirnov test as a goodness-of-fit test for the three-fold
Weibull model. With n = 102, the critical value of the Kolmogorov-Smirnov
one-sample test at the 5 % level of significance is 1:36=

ffiffiffiffiffiffiffiffi
102

p ¼ 0:135 [10]. Since for
the 3-fold Weibull mixture distribution, the observed value of the K-S test statistic,
0.107 (given in Table 3), is less than the critical value, we cannot reject the null
hypothesis, H0, that the observed data are from a population specified by the 3-fold
Weibull mixture distribution. For the other two (one- and two-fold) models the test
indicates that they should both be rejected.

Table 3 Estimated adjusted AD, K-S, AIC and RMSE for the three models

Model AD (adj) K-S AIC RMSE Log-likelihood

Single Weibull 3.985 0.332 976.384 0.078 −486.192

2-fold Weibull 1.371 0.178 970.574 0.035 −480.287

3-fold Weibull 0.627 0.107 965.594 0.025 −474.797
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Fig. 2 Cox-Snell residuals
plot for 3-fold Weibull
mixture model

5For more on Cox Snell residuals, see, Cox and Snell [4] and [7].
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5 Grey-Box Models

As discussed in the previous section the black-box approach to modelling the
failure distribution indicated that a three-fold Weibull mixture (given by G3ðtÞ) is
the most appropriate. This suggests that the data has come from three
sub-populations. Each of these sub-populations can be interpreted in terms of the
characterisation of the real world relevant to the problem. We indicate the char-
acterisation in terms of the assumptions made and this leads to model building
based on the grey-box approach—combining data with the new insights obtained
from the black-box approach to modelling. We look at the following two scenarios.

5.1 Scenario 1

This is based on the following assumptions:

1. All new pumps are statistically identical
2. Some of the items replaced during PM and CM action (or service exchange) are

scrapped (as they are deemed to be repairable) and others reconditioned.
3. All reconditioned pumps are also statistically identical
4. The reliability characteristics of a new pump are different from that of a

reconditioned pump
5. A pump used during service exchange can be either correctly or incorrectly

installed.

5.1.1 Model Formulation

We use the following notation:
q: Probability that the item is scrapped and replaced by a new one under

service exchange
p: Probability that the item used in service exchange is installed correctly
FNðtÞ: Failure distribution of new item installed correctly
FRðtÞ: Failure distribution of reconditioned item installed correctly
FIðtÞ: Failure distribution of incorrectly installed item (new or reconditioned)

Comment: (1-q) is the probability that the item is not scrapped and reconditioned
under service exchange) and (1-p) is the probability that the item under service
exchange is not installed correctly.

As a result, the probabilities of the different outcomes after a service exchange
are as indicated in Table 4.
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It is easily seen (using the conditional approach) that the time to failure of an
item used in service exchange is given by a distribution function

~G1ðtÞ ¼ ð1� pÞFIðtÞþ ð1� qÞpFRðtÞþ qpFNðtÞ ð5Þ

We assume that all the three distributions in the right side of (2) are
two-parameter Weibull distributions. Then (5) is identical to (2) with the following
equivalence among the parameters and the various distribution functions:

p1 ¼ ð1� pÞ; p2 ¼ ð1� qÞp and p3 ¼ qp ð6Þ

F1ðtÞ ¼ FIðtÞ; F2ðtÞ ¼ FRðtÞ andF3ðtÞ ¼ FNðtÞ ð7Þ

We can obtain estimates of p and q from (6) and the estimates of the parameters
for the three-fold Weibull given in Table 2. This yields p̂ ¼ 1� p̂1 ¼ 1� 0:166 ¼
0:834 and q̂ ¼ 0:614.

Also note that the MTTF (mean time to failure) for a new item installed
correctly > MTTF for a reconditioned item installed correctly > MTTF for an item
(new or reconditioned) installed incorrectly.

5.1.2 Model Validation

The validation of a model can be achieved by checking if the assumptions made and
the implications of model are valid or not. This requires additional data and tests.
The tests can be based on either an intuitive approach or a rigorous statistical test.

• The model implies that the probability of an item (under service exchange)
being scrapped is q̂ ¼ 0:614. In other words, around 60 % of the items removed
under service exchange are scrapped. If the service provider had collected
information regarding number of items scrapped as a fraction of the items
removed under service exchange and if it differed significantly from the estimate
then the model is not a valid model and needs to be rejected.

• The model implies that probability of an item being installed incorrectly (during
service exchange) is ð1� p̂Þ ¼ 0:166. Some of the causes (such as

Table 4 Probabilities of different outcomes

Installation

Correct Incorrect

p ð1� pÞ
Scrap/repair Scrap (new) q qp qð1� pÞ

Not scrap (recondition) 1� q ð1� qÞp ð1� qÞð1� pÞ
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misalignment) can be viewed as an incorrect installation. By properly defining
the other causes that result in incorrect installation this would allow one to see if
the estimates obtained from the new data are close to the estimates from the
model.

Comment: If the data collected included the number of failed items scrapped and
failure modes then one can obtain estimates of p and q from this data. These could
then be compared with the estimates p̂ ¼ 0:834 and q̂ ¼ 0:614. If they are in
reasonable agreement then it would provide a validation whether the assumptions of
Scenario 1 are correct or not.

5.2 Scenario 2

This scenario is based on the following assumptions:

1. The pumps are not all identical and can be divided into two groups—GR1 (more
reliable) and GR2 (less reliable). This could happen, for a variety of reasons two
of which are as follows:

• New pumps used in the maintenance are bought from two manufacturers.
The pumps from the first manufacturer belong to GR1 and those from the
second belong to GR2.

• The field reliability of a pump depends on its location in the excavator. We
assume that pumps in some specific locations belong to GR2 and the others
to GR1.

2. New and used pumps are statistically similar (reconditioning is perfect—this is
commonly accepted in the mining industry but never proven rigorously).

3. Pumps used in GR1 have failure times from a distribution function different from
that used in GR2

4. A pump used during service exchange (under PM or CM action) is either
correctly or incorrectly installed.

We use the following notation:
q: Probability that the pump was used in an engine is from group GR1

p: Probability that the item used in service exchange is installed correctly
FGR1ðtÞ: Failure distribution of pump used in an engine from GR1 and installed

correctly
FGR2ðtÞ: Failure distribution of pump used in an engine from GR2 and installed

correctly
FIðtÞ: Failure distribution of incorrectly installed item (from GR1 or GR2)
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5.2.1 Model Formulation

Then, following the approach used in Scenario 1, we have

~G2ðtÞ ¼ ð1� pÞFIðtÞþ qpFGR1ðtÞþ ð1� qÞpFGR2ðtÞ ð8Þ

We can obtain estimates of p and q in a manner similar to Scenario 1.

5.2.2 Model Validation

As with Scenario 1, the model validation requires checking the validity of the
assumptions made and this requires additional data and tests. The ability to clearly
identify which of the two plausible reasons is valid or not needs additional data. In
the first case, if all the pumps are bought from the same supplier then one needs to
look if changes to manufacturing led to two groups—for example, pump reliability
increasing (with design improvements) or decreasing due to ineffective quality
control. If not, then pumps need to be identified by the manufacturer. In the second
case, one needs information regarding the location of each pump within an exca-
vator and the excavator.

5.3 Improvements to Pump Maintenance

The advantage of using models based on the grey-box approach over the black-box
approach can be seen in terms of the asymptotic expected cost per unit time for the
age based maintenance policy given by

JðT ;Fð�ÞÞ ¼ FðTÞCf þRðTÞCpRT
0
RðtÞdt

ð9Þ

where Cp is the average cost of a PM action, Cf is the average cost of a CM action,
and RðtÞ ¼ 1� FðtÞ. T�, the optimal T, is the value that yields a minimum for
JðT;Fð�ÞÞ.

The optimal T’s depend on the average cost of each CM and PM. We use the
following additional notations.
Cn: Sale price for new pump ($80,000)
Cr: Cost (charged by the service agent) for reconditioning a pump under CM or

PM action ($60,000)
f: Additional cost (due to downtime, loss in revenue, etc.) resulting from CM

action. We look at values of f = $70,000, 90,000 and 110,000
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We consider the following five cases:

Case (i): A maintenance action involves replacement by a new item or a recon-
ditioned item with probabilities q̂ (= 0.614) and 1� q̂ (= 0.316)
respectively. As a result, the average cost of a PM action is Cp ¼
q̂Cn þð1� q̂ÞCr and of a CM action is Cf ¼ Cp þ f. The optimal T� is
obtained using (9) with FðtÞ ¼ G3ðtÞ and the optimal expected cost per
unit time is given by JðT�;G3ð�ÞÞ.

Case (ii): PM action is based on Scenario 1 with uncertainty in the installation
process. In this case, the optimal PM intervals for new and reconditioned
items are different. For new items it is T�

1 obtained from (9) with

FðtÞ ¼ ~FNðtÞ ¼ mFNðtÞþ ð1� mÞFIðtÞ ð10Þ

with FNðtÞ ¼ F3ðtÞ, FIðtÞ ¼ F1ðtÞ and m ¼ 1� p1 ¼ 0:834. For recon-
ditioned items, it is T�

2 obtained from (9) with

FðtÞ ¼ ~FRðtÞ ¼ mFRðtÞþ ð1� mÞFIðtÞ ð11Þ

with FRðtÞ ¼ F2ðtÞ, FIðtÞ and v is as before.
Here we treat new items different from reconditioned items and so the
failure distributions are different (in both cases—it is a two-fold mixture
due to imperfect installation).
For new items: Cp ¼ Cn and T�

1 is obtained using this and Cf ¼ Cp þ f.
For reconditioned items: Cp ¼ Cr and T�

2 is obtained using this and
Cf ¼ Cp þ f.
Since both new and reconditioned items are used, the optimal expected
cost per unit time is given by

JðT�
1 ; T

�
2 ;uÞ ¼ uJðT�

1 ; ~FNð�ÞÞ þ ð1� uÞJðT�
2 ; ~FRð�ÞÞ ð12Þ

with u ¼ q̂.
Case (iii): PM action is based on Scenario 1 and every item (under CM or PM

action) is installed correctly. This would require proper training of the
technicians to avoid causes leading to incorrect installation. In this case,
the optimal T� for new and reconditioned items, denoted by T�

1 and T�
2 ,

are obtained using (10) and (11) respectively with m ¼ 1 (perfect
installation).
The optimal expected cost per unit time is given by

JðT�
1 ; T

�
2 ;uÞ ¼ uJðT�

1 ;FNð�ÞÞ þ ð1� uÞJðT�
2 ;FRð�ÞÞ ð13Þ

with u ¼ q̂.
Case (iv): PM action is based on Scenario 2 with uncertainty in the installation

process and the group membership of each item is known. In this case,
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the optimal PM intervals for items from the two groups are different. For
items from GR1 it is T�

1 which is obtained from (9) with

FðtÞ ¼ ~FGR1ðtÞ ¼ ~mFGR1ðtÞþ ð1� ~mÞFIðtÞ ð14Þ

with FGR1ðtÞ ¼ F3ðtÞ, FIðtÞ ¼ F1ðtÞ and ~m ¼ 1� p1 ¼ 0:834. For items
from GR2 it is T�

2 which is obtained from (9) with

FðtÞ ¼ ~FGR2ðtÞ ¼ ~mFGR2ðtÞþ ð1� ~mÞFIðtÞ ð15Þ

where FGR2ðtÞ ¼ F2ðtÞ and ~m is as before.
Since there are two manufacturers (one more reliable and the other less
reliable), items from GR1 and GR2 have different failure distributions (in
both cases—it is a two-fold mixture due to imperfect installation).
Here we assume reconditioned items are as-good-as-new. Since some
items get scrapped, the average cost of a PM action is given by
Cp ¼ q̂Cn þð1� q̂ÞCr

The optimal expected cost per unit time is given by

JðT�
1 ; T

�
2 ;uÞ ¼ uJðT�

1 ; ~FGR1ð�ÞÞþ ð1� uÞJðT�
2 ; ~FGR2ð�ÞÞ ð16Þ

with u ¼ q̂.
One would expect the sale purchase price for the new items to be slightly
higher. Thus, Cn for GR1 is $85,000 and for GR2 its is $80,000. As
before, Cf ¼ Cp þ f.

Case (v): PM action is based on Scenario 2 and every item (under CM or PM
action) is installed correctly as discussed in Case (iii). In this case, the
optimal T� for GR1 items and GR2 items, denoted by T�

1 and T�
2 , are

obtained from (9) using (14) and (15) respectively with m ¼ 1 (perfect
installation).

The optimal expected cost per unit time is given by

JðT�
1 ; T

�
2 ;uÞ ¼ uJðT�

1 ;FGR1ð�ÞÞþ ð1� uÞJðT�
2 ;FGR2ð�ÞÞ ð17Þ

with u ¼ q̂.
In each case, the optimal T 0s depend on ζ. The optimal T 0s for Cases (i)–(v) are

given in Table 5. As can be seen, the optimal T 0s decrease with ζ increasing as to be
expected.

Table 6 gives the optimal expected cost per year for the five cases. The per-
centage reduction in the cost for Case (j), j = ii, iii, iv, v, is given by the following
expression:

100� Cost for Case ið Þ�Cost for Case jð Þf g=Cost for Case ið Þ:
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Note that the costs for Case (iii) < for Case (ii) < for Case (i) and similarly the
cost for Case (v) < for Case (iv) < for Case (i) for all values of f as to be expected.
Cases (iii) and (v) correspond to the service agent making improvements to elim-
inate failures due to incorrect installation and as a result a significant reduction in
the annual maintenance cost.

6 Conclusions

As can be seen from the case study the models based on grey-box approach result in
lower maintenance costs to the owner of the object. The use of such models requires
additional data to establish the validity of the model. This implies that data col-
lection needs to be done properly. When maintenance is outsourced then this issue
needs to be addressed properly in the maintenance service contract as discussed in
[8]. This requires joint partnership with proper incentives so that it leads to a
win-win situation for the all parties involved. There is need for further research into
this topic.

Table 5 Optimal T’s for Cases (i)–(v)

Case Optimal parameters

ζ = 90000 ζ = 110000 ζ = 130000

(i) T* = 14485 T* = 14378 T* = 14296

(ii) T1
* = 14188 T1

* = 14045 T1
* = 13932

T2
* = 7097 T2

* = 6882 T2
* = 6713

(iii) T1
* = 13920 T1

* = 13753 T1
* = 13615

T2
* = 7086 T2

* = 6833 T2
* = 6293

(iv) T1
* = 14145 T1

* = 14004 T1
* = 13892

T2
* = 7308 T2

* = 7081 T2
* = 6902

(v) T1
* = 13870 T1

* = 13703 T1
* = 13566

T2
* = 6957 T2

* = 6708 T2
* = 6508

Table 6 Optimal normalised expected cost per year for Cases (i)–(v)

ζ = 90000 ζ = 110000 ζ = 130000

Case Optimal
cost/year
(×104)

%
Reduction
(%)

Optimal
cost/year
(×104)

%
Reduction
(%)

Optimal
cost/year
(×104)

%
Reduction
(%)

(i) 9.1462 9.9620 10.773

(ii) 8.4864 7.21 8.9707 9.95 9.4371 12.40

(iii) 6.2965 31.16 6.4458 35.30 4.5483 57.78

(iv) 8.9105 2.58 8.9105 10.55 8.9105 17.29

(v) 6.8047 25.60 6.9419 30.32 7.0609 34.46
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Scheduling of Railway Infrastructure
Maintenance Tasks Using Train Free
Windows

Stephen M. Famurewa, Arne Nissen and Uday Kumar

Abstract Condition based maintenance scheduling is a promising approach
towards effective track possession management in railway transport. If the main-
tenance tasks arising from condition monitoring and inspection of railways are
efficiently scheduled, high service quality and capacity would be assured. In this
paper, the authors presents a short-term maintenance scheduling problem to effi-
ciently use available train-free periods for restoration of potential failures such that
availability and capacity are maximised. The formulated problem focuses on
reducing the possession cost and penalty cost. It is modelled as a quadratically
constrained mixed integer programming problem and solved using a branch and cut
algorithm. A case study on the Swedish iron ore line is used to demonstrate the use
of the scheduling approach for effective track possession management.

Keywords Inspection remarks � Maintenance � Schedule � Railway infrastructure

1 Introduction

The expansion of economic activities and the increasing mobility of people have led
to higher axle loads, increased speeds and tighter train movements that leave little
room for daytime maintenance. Therefore infrastructure managers (IM) are con-
cerned with increasing the competitiveness of railway transport through capacity
and service quality enhancement. For example effective track possession manage-
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ment for maintenance plays a key role for supporting the design capacity of existing
networks without compromising safety and quality requirements.

Track possession for maintenance and renewal of railway infrastructure varies,
depending on the type of work, required resources and machinery. Generally, the
possession requirement for track works can be summarised by adapting the con-
ventional maintenance overview in the railway transport context, as shown in
Fig. 1. In other words, possessions for track works include possession for inspection
and restoration of potential failure, possession for immobilising or functional fail-
ure, possession for large–scale or planned tasks and possession for renewal works.

Maintenance planning and scheduling are essential elements of the maintenance
management process which defines the tasks to be performed, analyses them to
determine the required information and resources, and identifies and assigns the
needed support efficiently [1]. An overview of the general structuring of the railway
infrastructure maintenance planning process, state-of-the-art view on degradation
modelling and task scheduling for track possession were presented by Dekker and
Budai [2].

It is a common practice among the railway IMs in Europe to request and plan
long possession periods for maintenance 18–24 months in advance to ensure
minimal disruption to traffic [4]. However, short possessions periods are requested
within short timescales to restore potential failures reported during inspection and
condition monitoring. These inspections include visual inspection or
non-destructive testing such as ultrasonic inspections, eddy current check, track
geometry measurement and laser inspections [5–7]. Largely, inspection and con-
dition monitoring of railways are based on factors such as the traffic volume, line
speed, geotechnical conditions, technical structure, design considerations, age and

Preventive
Maintenance

Corrective
Maintenance

Maintenance

Condition Based
Maintenance

Predetermined
Maintenance

Scheduled,
continous or on

request
Scheduled Deferred Immediate

Renewal

Track works

Possession for
inspection and

CBM

Possession for
planned

maintenance

Possession for
minor failure

Possession for
immobilising

failure

Possession for
renewal works

Long term
schedule

Fig. 1 Possession requirement for maintenance and renewal of railway infrastructure (adapted
from [3])
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other conditions related to operation. The reported potential failures or remarks are
classified into different priority levels (acute, weekly, monthly, next inspection and
yearly based) based on the actual condition and risk of not fulfilling the expected
functional performance. This priority system is the basis for scheduling mainte-
nance tasks with available resources such that the most urgent and important tasks
are performed first.

Different studies in the past have contributed towards effective railway main-
tenance planning, scheduling and track possession management. Higgins [8]
addressed an aspect of the possession problem for determining the best allocation of
railway maintenance activities and crew to minimize train disruption.
A methodology for dividing a railway network into working zones that will be
taken out of service to carry out maintenance activities was presented by van den
Hertog et al. [9]. Cheung et al. [10] developed a track possession assignment
programme for assigning railway tracks to a given set of scheduled maintenance
tasks considering defined constraints. A time-space network model was presented
by Peng et al. [11] to solve the track maintenance scheduling problem by mini-
mizing the total travel costs of the maintenance teams and the impact of mainte-
nance projects on railroad operation.

Budai et al. [12] presented a preventive maintenance scheduling programme to
combine routine tasks and projects for a link over a definite period such that the
sum of possession costs and maintenance costs is minimised. Zhang et al. [13]
developed a maintenance cost model and suggested an enhanced genetic algorithm
approach to produce an optimal monthly schedule for maintenance works of one or
more teams assuming that the deterioration of the segments are probabilistic.
Forsgren et al. [14] developed a mixed integer programming model that optimises a
production plan and suggests the best possible traffic flow given a fixed set of
planned maintenance activities.

There is need to extend the existing scheduling models to cover maintenance
tasks for potential failures and deferrable failures, which are reported in short time
and not included in long term maintenance plan. To this end, this article presents an
analysis of potential failure reports and an approach for the use of available
train-free possession windows for maintenance.

2 Method

The method employed in this paper involves formulation of a short term mainte-
nance scheduling model that can be used for possession management of potential
failures. The track section is divided into 10 maintenance segments for logistic and
operational purposes. Only the segment used for maintenance is considered occu-
pied during a given window; thus only tasks on the same segment can be merged
during a window to prevent shutting down of the entire section and to avoid too
long travelling times.
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2.1 Model Formulation

The objective function minimizes the total maintenance cost, which is the sum of
the direct and indirect maintenance costs. The direct maintenance cost consists of
two cost elements namely fixed cost per task and labour cost that depends on the
estimated possession time required for each task. The indirect cost consists of three
cost elements namely variable possession cost, fixed window start-up cost and
penalty cost. The objective function is given by Eq. (1).

min
X
m2M

X
w2W

cmwxmw

M ¼ 1; 2; . . .:mT ;W ¼ 1; 2; . . .:wT

ð1Þ

where cmw is the aggregated cost of using window w on day dw for task m with
deadline on day Dm. xmw is the decision variable for carrying out task m during
window w. xmw is a binary variable where 1 means that task m is implemented in
window w and 0 means otherwise. The aggregated cost of using window w for task
m is the sum of the direct maintenance cost, possession cost, window start-up cost
and penalty cost. These cost elements are estimated using the formulation in Eqs. 2–
5.

direct maintenance cost ¼ cmtm þ cfm ð2Þ

possession cost ¼ cwtm ð3Þ

window startup cost ¼cfwF xmwð Þ ð4Þ

where F xmwð Þ ¼ min
P
m
xmw; 1

� �
w 2 W

penalty cost = cp max dw � Dm; 0ð Þ ð5Þ

In explicit terms, cmw depends on the time tm required for implementing task m,
labour cost per hour cm, fixed cost for each task cfm, hourly cost for window
possession cw, fixed window start-up cost cfw and the daily penalty cost cp for
exceeding the task deadline. The simplified expression given in Eq. 6 is used to
estimate the aggregated cost cmw for carrying out maintenance task m using window
w.

cmw ¼ cm þ cwð Þtm þ cfm þ cfwF xmwð Þþ cpmax dw � Dm; 0ð Þ
m 2 M and w 2 W

ð6Þ

An important aspect of this model is penalty cost modelling. Penalty cost is
introduced to efficiently use available windows so that critical tasks are not unduly
delayed. The conventional practice during inspection is to assess the infrastructure
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condition and provide priority remarks on the urgency of required intervention.
This can be taken as limit which when exceeded requires extra measures that
decrease the capacity/performance of the concerned segment. The daily penalty cost
adopted is calculated from the estimated delay consequences based on reduction of
line speed from 120 to 70 km/h. In the case study, a penalty cost of 1000 € per day
is imposed.

The objective function is subject to the constraints explained below:
Constraint 1: Implementation of maintenance tasks within a window should not

exceed the window duration. This is presented by Eq. 7, where tm is the time
required to fix remark m, tw is the duration of window w and Trtmm’ is the time
required to travel between the locations of two task m and m′ on the same segment.
An average travelling time of 10 min is used in the case study.

X
m;m0 2 M
m 6¼ ‘m0

tm � xmw � tw � Trtmm0 ; w 2 W ð7Þ

Constraint 2: All tasks must be completed, i.e. a task expected to take tm hours
should have a total sum of tm hours. This constraint is defined by Eq. 8.

X
w2W

xmw ¼ 1; m 2 M ð8Þ

Constraint 3: This constraint is introduced to reduce travelling within a pos-
session window. It ensures that only repair tasks that are close to each other and on
the same segments are merged in a window. This is practical for operation view-
point, because a segment can then be occupied for maintenance without completely
stopping traffic on the entire line. The possibility of rerouting and redirecting will be
slim if two or more segments are occupied for maintenance in the same window.
Equation 9 describes this constraint, where m and m′ are two different tasks on
segments sm and sm′ respectively. Ns is the total number of segments. This con-
straint is handled as a quadratic constraint.

xmw � xm0w ¼ 0; sm 6¼ sm0

xmw � xm0w

�
ð9Þ

m;m0 2 M;m 6¼ m0 w 2 W sm; sm0 2 S S ¼ 1; 2; 3::Nsf g

The boundary condition of the variables is defined in Eq. 10 below.

xmw 2 0; 1f g m 2 M andw 2 W ð10Þ

However, for the alternative approach, the objective function is modified such
that the start-up cost is charged per task. The new aggregated cost with the modified
start-up cost is presented in Eq. 11. In addition, the quadratic constraint in Eq. 9 is
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replaced with a new linear constraint presented in Eq. 12. The new constraint
ensures that only one task can be carried out in a window. This modification makes
model to be of a linear form and can be solved as simple mixed integer linear
program.

cmw ¼ cm þ cwð Þtm þ cfm þ cfw þ cpmax dw � Dm; 0ð Þ
m 2 M and w 2 W

ð11Þ
X
m2M

xmw � 1 m 2 M andw 2 W ð12Þ

2.2 Solution

The proposed model has a linear objective function and a combination of linear and
quadratic constraints. Given that the variables are binary, the model is treated as a
mixed-integer quadratic constraint program (MIQCP), a special case of
mixed-integer program (MIP). Gurobi optimizer was used in this study because of
its accessibility and performance record on the public benchmark test set, e.g. fast
solve time to feasibility and optimality.

The MIQCP is named model 1 and solved using a branch and cut algorithm that
combines the advantages of a pure branch and bound scheme and the cutting planes
scheme. The branch-and-bound algorithm involves systematic enumeration and
exploration of a set of candidate solutions or branches that are subsets of the
solution or tree and application of the lower bounding method to each candidate
solution. The cutting planes tighten the formulation by removing undesirable
fractional solutions during the solution process without creating additional
sub-problems. A detailed description of branch and cut algorithm can be found in
[15, 16]. Additional guidelines for implementation of the algorithm within the
Gurobi optimizer are available in the reference literature of the optimiser [17].

The optimizer uses either the linearized outer approximation approach with the
simplex algorithm or the continuous QCP relaxation approach with the barrier
algorithm for both the root and other nodes in the branch and cut tree. The lin-
earized outer approximation approach has been adopted to pre-linearizing all
quadratic terms in the model. This is achieved by introducing new variables to
replace the quadratic terms and introducing new constraints such that the original
problem remains unchanged. The sub-problems at the tree nodes are then solved
using continuous LP relaxation with simplex algorithm. Furthermore, an alternative
approach named model 2 is used to model the problem using the simple mixed
integer linear progam (MILP). This is done by removing the quadratic constraint
and introducing a new linear constraint as explained earlier to obtain a baseline
solution for comparison.
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3 Case Study and Data Description

A track section in the network of the Swedish Transport Administration
(Trafikverket) is considered in the case study. The line section is 130 km long single
track from Kiruna to Riksgränsen. The traffic on the line is mixed, with speed of 60
km/h for loaded iron ore freight and up to 120 km/h for passenger trains. Heavy,
long and slow running trains make track possession and capacity enhancement a
challenging issue for the IM. In addition, the anticipated increase in traffic volume
on this track section requires an efficient maintenance practice such as availability
on demand. This requires that maintenance works be fitted within short track
possession periods and around the demands of freight and passenger traffic.

The data used in this study include historical potential failure data, expert
assessments of failure records, train movement data and cost data. The train position
data recorded at some operational zones were processed to determine train-free
windows that can be used for maintenance. For generating a short-term condition
based maintenance schedule, 51 windows over a period of 1 month were considered
usable from traffic, safety and resource-availability perspectives. The selected
windows vary in duration from 1 to 3 h with an average size of approximately 1½ h
and about 75 % of the windows were smaller than this average value. Furthermore,
50 maintenance tasks were selected from the historical records of potential failure;
these represent the expected monthly workload. The tasks included in the monthly
workload are S&C, overhead wire, rail, fastener and signal repairs, as well as ballast
and sub-ballast spot tamping. Using expert experience and available data, the
possession requirement of each task is estimated and the requirement varied
between ¼ and 3 h, depending on the type of work and estimated extent of damage.
The maintenance labour cost per hour cm is estimated to be 217 € based on expert
information and existing contracts of the infrastructure manager (IM). The pos-
session cost per hour cw is 178 € while the penalty cost per day cp is estimated to be
1084 €. The fixed cost per window cfw and fixed cost per task cfm are 108 € each.

4 Results and Discussions

The results of using the proposed model and alternative model for efficient pos-
session management of potential failure and deferrable failure maintenances are
presented below. The short term maintenance schedules of these models are eval-
uated in terms of their computational times, solutions obtained, constraint viola-
tions, optimum values, number of delayed tasks, number of days with capacity
reduction, average window utilisation and number of windows used.

The overall performance of the models are summarised in Table 1 and further
elaborated thereafter. The two models generated optimal solutions in less than
1 min while. The optimality of the solutions of two models were proven because the
gap between the best feasible solution and the incumbent optimal solution in the
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optimisation algorithm is lower than the set limit. None of the models violated their
respective constraints, i.e. all tasks were completed, window durations were not
exceeded and tasks in different segments were not scheduled together.

The performances of the models were analysed further by studying the solutions
they yielded. Model 2 is an expensive approach, in the sense that it does not permit
combinations of tasks on the same segment into one window. Therefore, the
associated total maintenance cost associated with model 2 is higher than model 1.
Looking further into the schedule generated by each model and comparing it with
their respective deadlines, model 1 has the best performance with all works
scheduled and no task delayed. In model 2, 4 tasks would be implemented after the
deadline.

In terms of the number of days for which capacity would be affected owing to
infrastructure conditions, model 2 has worse performance in comparison with
model 1 with no reduction in capacity. The average window utilisation is the
highest for model 1 owing to the possibility of merging maintenance tasks in a
single window. Even though none of the models led to 100 % window utilisation,
the proposed model (model 1) showed better performance and can even be
improved if some tasks can be broken down. In terms of the number of windows
utilised, model 1 utilises less windows to complete all the tasks, leaving behind four
unused windows that can be used for other purposes.

In addition to the overall performance evaluation of the models given in Table 1,
a breakdown of the total maintenance cost for the optimal task schedules generated
by the two models is given in Fig. 2. The total direct maintenance cost Cmaint and
possession cost Cposs are similar for the two models because these cost elements are
functions of estimated repair time and all tasks are expected to be completed in a
window. However, the distinct differences between the optimality of the two
models are the total penalty costs and window start-up costs. The schedule gen-
erated by model 1 has no penalty cost because no task is delayed and its window
start-up cost is small because the schedule minimises the number of windows used.

The schedule generated by model 1 is shown in Fig. 3, the task are scheduled
into the different windows such that the total maintenance cost is minimised. The
three annotations in the figure present a short description of the task and the
window for information purpose. For instance, task 1 is a maintenance work on a
switch and crossing located on the first maintenance segment. It is scheduled for

Table 1 Performance
evaluation of models

Model 1 Model 2

Method MIQCP MILP

Computational time <1 min <1 min

Optimum value (€) 33267 40168

Number of delayed works 0 4

Number of affected days 0 6

Average window utilisation 87 % 82 %

Number of windows used 47 50

432 S.M. Famurewa et al.



window 49 and is expected to take about 1 h besides additional 30 min that is meant
for preparation, safety measures and other supporting sub-tasks.

The initial window duration and left-over time in each window for model 1 is
shown in Fig. 4 for visual assessment of the possession allocation efficiency. The
obviously high left-over times represent the unused windows. Approximately 80 %
of the remaining windows can be considered practically unusable for repair works
because they are too small to accommodate travel times and start a new task.
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Fig. 2 Breakdown of the total maintenance cost for the proposed model and alternative model

Fig. 3 Maintenance schedule for the given tasks and train-free windows
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Furthermore, the left over window duration can be analysed and classified, as
shown in Fig. 5 for additional utilisation by other type of track works such as small
inspection works and routine checks. The class A windows are efficiently used and
perhaps not usable for other works if encroachment into the maintenance with-
drawal time before the next train is to be avoided. The class B windows can still be
used for opportunity based maintenance involving small-scale track works, routine
checks or inspection on the same segment where the window time it was originally
used. The class C windows are unused and can thus be used for any type of work on
any segment provided other utilisation constraints are not violated.

An important aspect of the proposed approach for possession management is the
analysis of the optimal schedule or reason for infeasibility. In instances where not
all tasks can be scheduled in available windows owing to the number or the size of
the windows, a review of the task can be conducted. For instance, the review could
entail the possible break-up of some tasks into smaller chunks or removal of the less
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significant works that will be later spread over the left-over usable windows. The
model can be adapted with little improvement to support other scheduling cases,
including night possession with long duration, where merging of tasks in different
segments is allowed within the same window. In future, the model will be extended
to consider task implementation order and other technical or logistic conditions
related to different tasks. It will also be extended to multiple track scenarios with
additional information about the track layout from the asset information system.

5 Conclusion

This article describes the formulation of a short-term maintenance-scheduling
problem to support the effective and efficient scheduling of maintenance works that
are not accommodated in the long-term plan. The formulated problem focuses on
reducing the sum of direct maintenance cost, possession cost, window start-up cost
and penalty cost. The conclusions from the case study are as follows:

i. Possession scheduling for maintenance works can be supported with the pro-
posed MIQCP model presented in this work.

ii. The MIQCP model with continuous LP relaxation approach gives the best
performance with the lowest cost, zero task delay and zero capacity loss due to
infrastructure condition for the case study.

iii. The use of maintenance windows for routine works or condition-based main-
tenance is a promising approach for possession management especially in
corridors where complete night dedication for maintenance is impractical.
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A Survey on Predictive
Maintenance Through Big Data

Amit Patwardhan, Ajit Kumar Verma and Uday Kumar

Abstract Modern manufacturing systems use thousands of sensors retrieving
information at hundreds to thousands of samples per second. The real time data
being generated is mostly used for monitoring the processes and the equipment
condition. Data processing techniques applied to this data to detect anomalies and
thus applying preventive maintenance have been used in the industry. Currently
available technologies which were developed during the last two decade for
scanning the Internet and providing computational services, working at very large
scale can be re-targeted to fulfil the requirements of maintenance of complex
systems. These systems can support storage and processing of current as well as
historical data. Ability to access and process these large data sets will lead from
preventive to predictive maintenance and eventually to smart manufacturing.

Keywords Big data � Hadoop � Spark � Maintenance

1 Introduction

Industry has come a long way to reduce the waste in the production process and
variability in quality and yield through various management systems. Still, pro-
duction process that depend on large number of complex systems suffer from high
variability and effects on the yield even after best management practices have been
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used. In order to detect and correct flaws and to have proper control over the entire
production process detailed analysis of every step is required. Trend had been to
collect large number of streams providing real-time data from equipment and
processes, this data was used to track the system and detect the issues to apply
preventive maintenance. Data was not stored for long term due to either lack of
infrastructure or large costs involved in data storage. Advances in technology have
made it possible not only to store huge amounts of data at a fraction of cost but also
allows for processing on this data at the location of storage in a distributed manner.
This changes the amount of data that can be economically stored, and the way it is
processed. Facility to store and process large amount of data allows for analysis of
current conditions and access to historic data helps to plot the probable progression
of the system in the future. Analysis of this “Big Data” is becoming an important
step towards achieving higher throughput from the production system. Data ana-
lytics as the science of analysing patterns and trends in data, used to gain insight
about a system as an application of statistical and mathematical models has emerged
as a powerful and effective tool to assess and improve the production process.

2 Predictive Maintenance

Predictive Maintenance primarily helps in detection of when, where and why asset
failure are likely to occur. At a secondary level predictive maintenance helps to
optimise inventory and helps minimise issues related to quality and reliability. It
supports operations planning and in turn reduces operations cost. Successful
implementation of predictive maintenance depends on accessing data from the
equipment, ability to detect patterns and to be able to relate the patterns to func-
tioning of the system.

Predictive Maintenance will not completely replace reactive maintenance as
there will always be unforeseen conditions and equipment failure will occur, pre-
dictive maintenance tries to reduce the possibilities of such conditions and improve
the overall reliability of the infrastructure.

3 Data Collection

Data collection is the first step towards implementing a big data system. Data
collection methods depend on the access provided to the system. Methods for
collecting data [1] can be through log files which are automatically generated at the
data source system. Sensing of physical quantities like sound wave, voice, vibra-
tion, automobile, chemical, current, weather, pressure, temperature etc. In order to
acquire network data web crawlers, word segmentation systems, packet capture
systems can be used, in addition to aforementioned data acquisition methods data
from scientific experiments or mobile phones may also be collected [1].
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3.1 Machine to Machine (M2M) Interface

The framework of e-maintenance machine network consists of sensors, data
acquisition system, communication network, analytic agents, decision-making
support knowledge base, information synchronisation interface and e-business
system for decision making [2]. Data being generated by an equipment and con-
sumed by another equipment in order to use the information generated with out any
human intervention forms M2M interface.

M2M covers the technologies used to implement wired or wireless communi-
cation between systems to transfer raw data from the source through a hub to a data
processor to implement a monitoring or control station. Current M2M systems do
not work on one to one basis instead work through specially designed protocols and
require very small amount of energy to work continuously. M2M systems have
been working at different levels like caller identification, automatic reading of
utility meters, point of sales terminals and automobiles for many decades. M2M
systems lay the foundation for using latest technologies in industrial processes.

Implementation of data collection systems, data analytics and real-time decision
making has paved the way for e-maintenance and helped reduce downtime and
uncertainty about the current status of the equipment and possible breakdown in the
future. Proper use of available technologies will lead towards smart systems which
will reduce uncertainty in the decision making process.

3.2 Internet of Things

The term Internet of Things (IoT) was first introduced by Kevin Ashton in the year
1998. It is implemented by embedding short-range mobile transceivers into a wide
array of additional gadgets and everyday items, enabling new forms of communi-
cation between people and things, and between things themselves [3].

IoT forms the next layer beyond M2M interface and since it connects and caters
to a larger audience the volume of data generated as compared to preceding tech-
nologies is much higher. This data being generated has more expectation to be
processed where previously most of the focus was on storage of data and much less
on processing it.

3.3 Data Preprocessing

As data collected from various sources will contain noise, redundancy, and
inconsistency and hence it is a waste of time and resources to to store such data [1].
Analytical methods have requirements of data quality therefore, for proper data
analysis per-processing data is important. The data has to be cleaned depending
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upon the kind of noise or artifacts present in it also depending on the kind of
analysis that will be performed on the data [4].

3.3.1 Integration

Data integration refers to combination of data from different sources to create a
uniform view of data. ETL (Extract, Transform and Load) is a standard process
used in data processing field. Extract refers to selecting and collecting data from the
source. Transformation refers to execution of a series of rules to convert the data
into standard format. Loading means importing the transformed data into the target
storage infrastructure.

3.3.2 Cleaning

Data cleaning improves data quality by identifying inaccurate, incomplete, or
unreasonable data and then to modify or delete such data. Data cleaning applies
5 different procedures [4]: defining and determining error types, searching and
identifying errors, correcting errors, documenting error examples and error types,
and modifying data entry procedures to reduce future errors.

3.3.3 Redundancy Elimination

Data repetitions or surplus in a dataset is referred to as data redundancy. It can
increase data transmission and storage costs, lead to data inconsistency and
reduction in data reliability. Image and video data contains large amount of
redundancy and it is better to use compression algorithms on such data.

3.3.4 Hindrances

Data is generally not available due to non presence of sensors in critical sections of
the equipment, even when sensors are present data is only available to internal
control system. In certain equipment sensor data may be transmitted by the
equipment but is encoded in a proprietary format or transmitted using a proprietary
protocol hence making it unreliable for use. Data is not shared due to security
concerns in some cases where the data may reveal information about the job being
processed or the internal workings of the equipment. Control codes may not be
revealed due to chances of malicious use of equipment. If preventive maintenance
methodology has been followed components may have been replace too early and
hence failure data is not available in many cases. Availability of data is essential for
analysis and its integrity effects the reliability of the developed models.
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4 Big Data

Big data is the dataset that could not be perceived, acquired, managed, and pro-
cessed by traditional IT and software/hardware tools within a tolerable time [1].

Data has to be stored and accessed in order to be processed. The storage of data
may be unstructured through file systems which allows for storage of mixed type of
data (text, images, audio) or structured in a database management system (DBMS).
Data base management systems have been the standard for storage and retrieval of
data through the use of structured query language (SQL). As the size of data has
increasing to a few terabytes or even petabytes, DBMS have not been able to keep
up with the requirements of data storage, retrieval and processing.

Big data is described with four critical features and have been called as the four
V’s of big data [5]. These are namely volume, velocity, variety and veracity.

4.1 Volume

Volume is certainly about the size of the data but does not define a specific
threshold beyond which the data may be categorised as big data rather it is the data
would be a candidate to be termed as big data.

4.2 Velocity

Velocity refers not only to how fast data is being received but more importantly
how fast it needs to be processed to be useful. Generally a system having real-time
data or or requirement of real time data analysis will be referred as to be having a
high velocity. The limiting factor would be not only the volume but also the
processing power and memory requirement for temporary or intermediate data
during the required computation. In order to handle these factors change in hard-
ware, software or process may be required.

4.3 Variety

Variety refers to the multiple formats of data available or being used in the process.
If the entire data was purely numerical and structured, relational databased would
be sufficient for the storage and processing of the data provided the data has
manageable size. When the data is unstructured and may have text, documents,
audio recordings, video or even social media the methodology developed for
storage and processing of data through relational databased does not scale to
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support the requirements of the modern processes. Big data provides support for
this variety in data.

4.4 Veracity

Veracity indicates the lack of integrity in data. The incoming data may be
inconsistent or ambiguous due to latency, incompleteness, sensor failure, commu-
nication failure, signal sampling error and so on. If the data being used to identify
trends in the system or regions of importance can not be dependent upon for
correctness. This corruption of data will add up and eventually diverge the result.
The data needs to be cleaned up and processes should have trigger points to reduce
the accumulation of data which may divert the processing performed on the data.

5 Hadoop

Apache Hadoop [6] is an open source implementation of MapReduce [7] pro-
gramming model. MapReduce model performs operations on the data in three steps
[8]. The Map part is about applying a common procedure to entire data like a filter
based on a certain criteria. In second step called as shuffle the data is redistributed
according to the output of the map procedure and moved to different nodes which
are basically processing units. Reduce is the calculation performed on different
nodes. The popularity of the MapReduce procedure is due to the possibility of
implementing the procedure as a multi-threaded or on large number of computers
called as clusters. The parallel nature of Hadoop as a cluster also introduces fault
tolerance by supporting recovery from partial failures of nodes by rescheduling the
mapper or reducer job to a different node.

MapReduce operations depending on the data size may take a very large amount
of time, still it is economical and faster as compared to DBMS based solutions due
to non-dependency on specialised servers but the ability of the system to be setup
on commodity hardware.

5.1 HDFS

Hadoop distributed file system is a distributed file system and has been designed to
be highly fault-tolerant and can be set-up to work on low-cost commodity hardware
[9]. HDFS has been designed to handle large datasets and can span over thousands
of machines, each of which can store a part of the data. Fault-tolerance becomes an
important aspect to design a system which would involve such a large number of
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hardware parts and hardware failure will be common. Large size of the dataset
means that moving the data in order to process it will be uneconomical instead the
computation to be performed should be brought over on to the same machine where
the data is stored.

The HDFS cluster is divided between NameNode and the DataNode. The
NameNode refers to the master server and it manages the entire file-system. The
DataNode is present per node basis and handles multiple blocks of data stored on
the particular system. If certain DataNode is not able to update its presence to the
NameNode it will be marked as dead and no more requests are forwarded to it also
the NameNode will try to maintain replicate data on multiple DataNode’s as per a
replication policy.

5.2 YARN

Yet Another Resource Negotiator (YARN) is basically MapReduce version two
[10]. It changes the way resource management, job scheduling and monitoring is
performed. A global ResourceManager and a per application ApplicantionMaster
are the daemons which handle the resource management job. The ResourceManager
has two parts, the scheduler which allocates resources based on resource require-
ments of the application and ApplicationManger executes the application specific
ApplicationMaster and accepts job-submission.

5.3 Spark

Spark [11] is a fast and general processing engine compatible with Hadoop data. It
can run in Hadoop clusters and it can process data in any Hadoop input format. It
was designed to perform both batch processing (similar to MapReduce) and new
workloads like streaming, interactive queries, and machine learning. Spark supports
in-memory processing of datasets and thus improves upon the processing time.

Spark is developed in Scala language [12] and is well integration with it such
that Scala can directly access and manipulate the datasets as locally available
objects. Scala executes on top of Java Virtual Machine (JVM) and becomes por-
table to any platform which can execute the JVM with only the addition of Scala
run time library. Scala can use the vast number of Java libraries available and Java
code and makes it easy to utilise the investment made by the organisation in the
Java stack. Spark is different than Hadoop such that is provides support for
re-usability of a dataset for parallel operations, the datasets are cached in memory to
reduce access latency. This feature optimise’s Spark for machine learning
algorithms.
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Spark applications are termed as drivers, these drivers may work on a single or in
parallel on multiple nodes. A driver may perform an action on the data set which is
basically performing a computation on the dataset and iterating over the dataset or it
may perform a transformation which will create a new dataset from the old.

Spark was designed to work with Hadoop stack and has the capability to read or
write to HDFS. It is used in three modes as in Fig. 1. Spark can run side by side to
Hadoop MapReduce with statically allocated resources as shown in Fig. 1a. In case
the transition to YARN has been made Spark can be deployed and can directly
work Fig. 1b. Spark can be launched inside MapReduce with the help of “Spark in
MapReduce” (SIMR) Fig. 1c. SIMR does not require administrative rights for
installation and provides shell access to the user through which the user can directly
access the drivers.

6 Data Analytics

Current requirement is to run systems on data-driven decisions. Scenarios and
simulations should provide immediate guidance on the best action to take when
disruptions occur. Ability to take optimal solutions based on complex parameters or
new information is useful to take quick decisions [13].

Data analysis is the last but important step in the process of data-driven decision
process. Big data differs from standard data analysis such that the size and platform
in case of big data is very different as compared to a standard data analysis problems.
Traditionally data analysis would be use of statistical tools, currently a large com-
bination of analytical tools mainly clustering algorithms and correlation algorithms
in addition to statistical tools are used.

(a) (b)

(c)

Fig. 1 Spark deployed
on Hadoop cluster
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Libraries for applying data analytics algorithms have been available for small
data sets, currently projects [14] providing optimised implementations of required
algorithms are available for use.

7 Conclusion

Big data and data analytics are powerful tools available and they are being applied
to provide customised on-line advertising or even suggesting viewing options on
television. Use of these tools have shown good improvements in review and user
satisfaction. Application of these tools to such cases is relatively straightforward
due to availability of data directly from the user.

To use the same tool set in manufacturing will require extracting the data from
the equipment and processes to bring it to the data processing systems. The ability
to handle this large amount of data will help to gain insight about the systems and
change not only the use of predictive maintenance process but optimise overall
industrial processes as well.
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Part V
Probabilistic Risk and Safety Analysis



Approach for Probabilistic Safety
Assessment of Accelerator

Gopika Vinod, M. Hari Prasad, G. Haridas and R.K. Singh

Abstract Probabilistic Safety Assessment revolves around identifying all the
potential initiating events, developing the accident scenarios and analyzing the
consequence of accident sequence. In case of accelerator, reference initiating event
list is not available, which needs to be prepared based on precursor review, engi-
neering evaluation and operating experience. Defining the consequence or risk from
accelerator posed yet another major challenge. Risk in terms of absorbed dose has
been proposed as one of the measure, which puts forth the hurdle of deciding the
Frequency Vs Dose curve for a typical accelerator facility. There are some docu-
ments such as NUREG 1860, which proposes an F-C curve in terms of radiation
dose under a techno neutral framework for consequence assessment for nuclear
facilities. The paper discusses these challenges and framework developed for
conducting probabilistic safety assessment of accelerators.

Keywords Probabilistic safety assessment � Accelerator � Risk ranking � F-C
curve

1 Back Ground

Main goal of nuclear safety is to keep the radiation exposure from nuclear facilities
to members of the public and workers as low as reasonably achievable (ALARA)
during normal operational states (certainly below the limits set by the regulatory
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bodies) and in the event of accident. In order to adhere to the safety goal, carrying
out safety analysis has become almost mandatory for all nuclear facilities. Safety
analysis of facility is aimed at the calculation of risk to the operation of facility and
its comparison with other natural and industrial risks. It is based on both on
deterministic and probabilistic safety analyses (PSA). In the deterministic safety
analysis, design basis accidents are considered and it is shown that the engineered
safety features provided to counter act such accidents result in radiation doses/risks
that are acceptable. In contrast, probabilistic safety analysis (PSA) includes all
possible accident scenarios and their quantification in terms of plant damage fre-
quency and consequences. The risk (a measure of safety) in general for Nuclear
facility is defined as:

Risk = Likelihood of occurrence of an accident × Consequences in terms of
exposure to radioactive material release

The risk can be minimized by minimizing the accident frequency or its conse-
quences or both. Nuclear facilities, such as accelerator also houses potential haz-
ards. Some of the potential hazards are

• Radiation
• Heat load
• Electrical
• Ozone and
• Fire.

This paper explains how PSA is applied to hazards, in particular radiation,
emanating from accelerators.

2 What Is Probabilistic Safety Assessment or PSA?

PSA provides a structured framework for evaluation of safety of any facility in a
quantitative manner. PSA tries to answer the questions [1]:

(i) What can happen?
(ii) How likely is it to happen?
(iii) Given that it occurs, what are the consequences?

These questions are a starting point for defining the process of performing a
quantitative risk analysis (QRA). There are essentially seven stages in QRA’s
implementation. These are:

1. System description, which is the compilation of all technical and human
information needed for the analysis (including reliability data).
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2. Hazard identification, which is a critical step in quantified risk analysis, a hazard
omitted at this stage is a hazard which is not analysed.

3. Incident enumeration, which is the identification and tabulation of all incidents
without any relevance to their importance or to the initiating event. Stages 2 and
3 may be linked together. For example, chlorine gas is a ‘hazard’ while its
unplanned emission through a faulty valve is an ‘incident’.

4. Incident frequency estimation, which uses likelihood of estimation models for
selected incidents and evaluates frequencies. Fault tree analysis and event tree
analysis are typical techniques used at this stage.

5. Consequence estimation, which is the methodology used to determine the
potential damage or harm from specific incidents.

6. Evaluation of consequences, this stage is concerned with the estimation of
frequency data for specified consequences. Estimates are based primarily on
generic data, i.e. data abstracted from banks and various sources of historical
data.

7. Risk estimation combines the consequences and likelihood of all incident out-
comes from all selected incidents to provide a measure of risk.

Many measures of risk have been proposed and are in use, each providing a
different view of a particular situation or aspect. Among these measures, perhaps
most commonly used ones are those of individual risk and societal risk. Figure 1
presents the steps in risk analysis.

Fig. 1 Steps in risk analysis
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3 Applying Probabilistic Safety Assessment
for Accelerators

The initial task of this analysis is to gather information from the facility on design
aspects and operation practices which formed the basis for development models.
Information was assembled using sources such as safety analysis reports, design
manuals, operating practices etc. There are different sources of hazards such as
Radiation, Heat load, Electrical, Ozone and Fire exists in accelerator facility.
Considering radiological hazards from electron beam accelerators, there are two
types of radiation expected: synchrotron radiation and bremsstrahlung radiation.
Dose from these two types of radiations are considered. In order to quantify the risk
it is required to postulate all the probable initiating events which may lead to
accident kind of situation if they are not properly mitigated. In preparation of list of
postulated events, Precursor review, Engineering evaluation and Use of operational
experience were used. Since there are no standards/documents listing postulated
events from an electron accelerator is available these approaches may not be
conclusive and they can even vary with design [2].

For each Postulated Initiating events, event progression and mitigation are
modelled using event trees. Event tree modeling considers the procedure available
to prevent the undesirable consequence in case if an event happens. The safety
function can result either in tripping beam or closing the safety shutters. This
activity comprises of identifying the systems involved in safety functions and
probable human actions involved in event mitigation. Typically, dose received
during beam dump and personnel exposures are undesired consequence considered.
From the event trees it is possible to identify the various sequences that will result
into accident kind of situation. In the consequence analysis one needs to find out the
consequence in terms of dose absorbed for each accident sequence.

4 Decision Making from PSA

The outcome of PSA studies for these facilities is to generate a risk profile.
Categorization of risk involves assessment of risk taking into consideration the
Likelihood of occurrence of initiating events and severity of the desired conse-
quence. There are two types of methods available for risk categorization such as

• qualitative risk ranking schemes
• quantitative risk ranking schemes.
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4.1 Qualitative Risk Ranking Schemes

In scandpower work for risk assessment of accelerator [3], they have discussed
qualitative approach using risk matrix. Three levels of risk are defined;
“Unacceptable”, “Risk Reduction Recommended” and “Tolerable” as shown in
Fig. 2.

Unacceptable risks require risk reducing measures in order for the suggested
design to be accepted. Risks Reduction Recommended require a demonstration that
the suggested barriers are as effective as reasonably can be achieved considering
alternatives and additions. Tolerable risks require no additional barriers, but need to
be monitored, for example when design changes, to be kept at a low level.

4.2 Quantitative Risk Ranking Schemes

The risk matrix is depiction of the frequency and consequences. Quantitative
treatment can also be extended to risk matrix shown in Fig. 2. The probability
values can be high (<10−1 per year), medium (10−2 to 10−1), low (10−4 to 10−2) or
extremely low (10−6 to 10−4). The consequences are categorized as high to extre-
mely low based on whether the incident has serious impact on off-site and on-site.

Even the consequences can be expressed in several different units of measure
which include released activity in terms of curies (or Becquerel’s) of various
radionuclides, health effects like early fatalities and latent cancers, and radiation

Fig. 2 Qualitative risk matrix
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doses (rems or sieverts). NUREG 1860 [4] has proposed an F-C curve in terms of
radiation doses. One advantage of this measure is that it is based on national and
international regulatory practice, e.g., NRC regulations in 10 CFR 20 and 10 CFR
50, EPA (Environmental Protection Agency) protective action guidelines, IAEA
guidelines and International Commission on Radiation Protection (ICRP) recom-
mendations. In the present study, the F-C curve given in Fig. 3 has been utilized for
further analysis.

5 Case Study

Accelerator facilities have emerged as powerful tools for research, they are asso-
ciated with hazards from radiation sources (bremsstrahlung radiation and neutrons),
energy sources, hazardous materials etc. The likely types of failure and their con-
sequences for the system as a whole should be taken into account. Examples
include:

• Loss of access control;
• Malfunctions and failures of structures, systems and components;
• Electrical distribution faults, from localized faults to complete loss of external

energy sources;

Fig. 3 F-C curve from NUREG 1860
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• Failure resulting from external causes;
• Failure of personnel to observe proper, safe procedures;
• Breakdown of procedures for preventing access to the facility by unauthorized

persons;
• Breakdown of administrative procedures, leading to unsafe practices.

In this analysis, initiating events from beam lines are selected, which are leading
to following undesirable consequences:

(i) High radiation in experimental hall due to inadvertent beam dump
(ii) Personal exposure in experimental hutch due to failure in safety barriers

Based on the discussions with designers, operators and precursor review, fol-
lowing initiating events were identified and are graphically represented in Table 1.

For all Postulated Initiating Events, event progression is modelled using event
trees and consequence is analysed in terms of dose received from beam dump or
personnel exposure. A typical event tree for “Loss of cooling” is given in Fig. 4.

Personnel Safety and Interlock System (PSIS), Safety Shutters and radiation
detectors are some of the main safety systems in place to mitigate initiating events.
For conducting the reliability analysis of these safety functions, detailed Failue
Mode anf Effect Analysis (FMEA), preparing reliability data base, development of
faul trees and conducting human reliability analysis—for preinitiator and post
initiator human actions were essential.

Failure database for the identified components—(generic as well as facility
specific data from events [5, 6]) is given in Table 2.

The dose received from beam dump and personnel exposure is used as the
measure from consequence estimation from each postulated initiating events. F-C
curve, as per NUREG 1860, is applied for communicating the risk from the events
identified from the accelerator. Figure 5 shows the typical F-C curve obtained for
electron beam accelerator.

Table 1 List of postulated initiating events

Undesirable consequences

High radiation in experimental area due to
inadvertent beam dump

Personal exposure in experimental hall due to
failure in safety barriers

1. Loss of cooling 1. Inadvertent entry during experiment (Door
not locked)2. Vacuum degradation due to sputter ion

pump failure 2. Spurious opening of safety shutter

3. Power supply failure in PSIS

4. Trapping of person inside

5. experimental hutch

6. Safety shutter fails to close during sample
changing
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Beam dump 3.610e-8

Beam dump 3.026e-10

Beam dump 2.924e-10

Beam dump 2.948e-10

Safe 4.643e-6

Beam dump 2.971e-10

Loss of
Cooling

w=4.680e-6

Target (Be)
Window

Q=7.968e-3

Controller

Q=7.968e-3

Vacuum
gauge for

FCS
Q=7.968e-3

Fast Closing
Shutter

Q=7.968e-3

FE
isolation 
Q=8.313e-3

Consequence Frequency

4.680e-6

Fig. 4 Event tree for ‘loss of cooling’

Table 2 Reliability data for components in accelerator

Component name Value References

Flow switch 9.8E-7/h IAEA, pg 208

Chiller failure 2.7E-6/h IAEA, pg 135

Sputter ion pump 2 3.6E-05/h LANSCE

Cable shorted 1.5E-07/h ACIS (pg 56)

Switch contact fails 2E-07/h ACIS (pg 56)

Relay fails in open position 3E-04/demand ACIS (pg 56)

Relay contact shorted 5E-08/h ACIS (pg 56)

Spurious signal generation 5E-08/h Taken same as contact shorted

Radiation detector 7.4E-06/h ACIS (pg 56)

Bellow failure 0.0046E-6/h NPRD -91 (pg 43)

Compressor failure 3E-04/h IAEA(pg 116)

Controller 1E-3 From manufacturer

Fast gauge 1E-3 From manufacturer

Fast cooling shutter 1E-3 From manufacturer

456 G. Vinod et al.



6 Conclusion

Based on the precursor review, engineering evaluation and operating experience a
list of postulated initiating events have been prepared. These events mainly lead to
either beam dump or direct personal exposure in the absence of safety barriers.
Event trees have been developed for all the postulated events which will depict the
event progression with failure of different safety barriers. From these event trees
dominating accident sequences have been identified. In order to evaluate these
accident sequences, frequency of occurrence of initiating events and failure prob-
abilities of safety barriers have been estimated by using fault tree approach. Both
common cause failures and human interactions have been considered in the analysis
and suitable models have been chosen to estimate the corresponding probability
values. The data for the analysis have been collected from generic sources.
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A Comparative Risk Assessment for Sites
with Single and Double Units

Varun Hassija, C. Senthil Kumar, K. Velusamy
and V. Balasubramaniyan

Abstract A majority of nuclear power generating sites in the world houses more
than one nuclear power plant. Traditionally, a PSA is carried out to evaluate the risk
associated with single unit NPP taking into account the defence in depth features
and postulating combination of potential accident initiators for different hazards.
The objective of PSA is to quantify risk metrics such as core damage frequency and
LERF and identify weak links in the system to strengthen and ensure that safety
targets are met. Post Fukushima accident, it is evident that for a site consisting of
multiple units, a single reactor specific metric is not adequate and there is a need to
estimate the risk arising from events affecting multiple units in the site. Our earlier
work presents an approach to estimate the risk from a multi-unit nuclear power
plant site. In the present paper, an attempt is made to compare the risk for a single
and double unit site using the same approach. The integrated risk at a multi-unit site
is estimated against various external hazards and internal events and the risk metric
used is ‘Site Core Damage Frequency’ which is defined as the sum of all possible
single and multiple combinations of core damage per site per year, with consid-
eration of various inter-unit dependencies. The study when extended, through
sensitivity analysis can form the basis to optimize the shared resources effectively at
the multi-unit sites. The spin-off from such a study carried out during the design
stage will provide input to decide the optimum number of units at a site, the optimal
distance between two units, etc.
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1 Introduction

The Fukushima disaster in 2011 has highlighted the need of risk assessment for a
multi unit nuclear power plant (NPP) site. Moreover, most of the nuclear power
generating sites in the world are housing more than one NPP. Hence it is imperetive
to estimate the risk from such sites against various potential hazards like earth-
quake, tsunami, flood, etc.

Probabilistic Safety Assessment (PSA) is a systematic and comprehensive
methodology to evaluate risk. It quantifies the risk metrics such as Core Damage
Frequency (CDF) and Large Early Release Frequency (LERF) and identifies the
weak links in the plant. This helps in further enhancement of safety to meet the
stipulated regulatory requirements.

However, the accident at Fukushima has shown the limitation of the risk metric
CDF to capture the risk for a multi unit NPP site. To overcome this, our earlier
work [3] discussed yet another risk metric, viz., Site Core Damage Frequency
(SCDF) for sites having more than one NPP. SCDF is defined as the sum of all
possible single and multiple combinations of core damage per site per year. An
approach to quantify SCDF for a multi-unit NPP site taking into account both
internal events and external hazards was presented. Modelling of inter-unit
dependencies, shared resources, etc. was also demonstrated in the study.

In the present paper, the same approach is used to compare the risk for a single
and twin unit site. The fact that most of the NPPs in the world are situated at a twin
unit sites is apparent from the data provided in Table 1 [5]. It is also observed that
about 50 % of the NPPs in the world are located either at single or twin unit sites.

Table 1 Proportion of
nuclear power plants at
various sites in the world

No of units at a site NPP %

1 13.59

2 35.02

3 10.37

4 27.65

5 0.00

6 8.29

7 3.23

8 1.84
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2 Description of the Two Sites

The two sites under study is assumed to house identical design of Pressurised
Heavy Water Reactor (PHWR). The main engineered safety systems of the NPP
are:

Reactor Protection System: Each unit is equipped with two diverse and
independent shutdown systems:

• Primary Shutdown System: The system consists of mechanical shutoff rods
which get quickly inserted in the reactor core following a reactor trip signal
under the action of gravity and initially assisted by a spring thrust [1].

• Secondary Shutdown System: It consists of vertical empty tubes located in the
reactor core into which liquid poison is injected whenever the system is called
upon due to a trip signal [1].

Shutdown Cooling System: The shutdown cooling system of the NPP is com-
prised of two cooling trains. The trains take the decay heat away from the reactore
core. Each train is having one shutdown cooling pump (SDCP) and one shutdown
heat exchanger (SDHX) which dissipates its heat to the process water. Emergency
process sea water pumps are used to circulate process sea water through the process
sea water heat exchangers in once through mode to vent out the heat to the sea.
A typical PHWR is equipped with two dedicated process sea water heat exchangers
and three emergency process sea water pumps. Successful operation of any one heat
exchanger and pump is sufficient to meet the post shutdown heat loads.
Emergency Core Cooling System: This system is deployed to remove the decay
heat from the core of the reactor in order to mitigate the consequences of Loss of
Coolant Accident (LOCA) in the rare event of break in primary circuit pressure
boundary. The emergency core cooling system (ECCS) operates in two phases. In
the first phase of operation, high pressure heavy water from accumulators is injected
into the reactor core via headers whereas in the second phase (recirculation phase),
water is taken up from the suppression pool and is injected into the reactor after
passing it through the ECCS Heat Exchangers. The ECCS Heat Exchangers
transfers its heat to the process sea water heat exchanger with the help of process
water and is vent out to the sea with the help of emergency process sea water
pumps.

Apart from these engineered safety systems the plant is also equipped with other
safety support equipments, systems and infrastructure. The configuration of these
support systems is site specific as sharing for them takes place between the units at a
multi unit site. The description of such systems and their structure/configuration in a
typical Indian multi-unit site is given below:
Diesel Engines: These are meant for fire water injection. Successful operation of
one diesel engine will ensure sufficient supply of water for the decay heat removal
of maximum two units.
Diesel Generators: These are deployed to take the emergency loads of the NPP like
Decay Heat Removal (DHR), emergency lighting, egress lighting system lamps and
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for charging AC UPS System and DC control power supply systems. Operation of
one diesel generator is sufficient for meeting all the emergency loads of a single
unit.
Sea Water Pump house: The sea water pump house deployed at the site houses
condenser cooling water, process sea water and emergency process sea water
pumps for both the units. The five condenser cooling water pumps and the three
process sea water pumps which are installed for each NPP are driven by class 4
power supply. But the three dedicated emergency process sea water pumps are
driven by class 3 power supply and availability of any one of them will ensure
sufficient supply of water for DHR of a single unit.
Switchyard: The NPP is connected to the electrical grid system for class 4 power
through a switchyard which also facilitates export of plant generated electric power
to the grid.
Sea Water Intake tunnel: This tunnel is made to provide the sea water to the NPPs
and serves as the ultimate heat sink.
Compressed Air System: The site has a compressed air station for supplying
compressed air to the NPPs. Operation of one compressor ensures sufficient supply
of all air (Instrument, Service and Mask air) for a single unit.

The configuration of the critical infrastructure for the two sites is described in
Table 2 and the schematic of the twin unit site is shown in Fig. 1.

3 Multi Unit Risk Assessment

3.1 The Methodology

In this approach, external hazards and internal events are categorized as definite and
conditional [2, 4, 6, 8, 10] The hazards that will always affect multiple units are
known as definite hazards and those which only under certain circumstances affect
multiple units are to be called as conditional hazards. After the initiating events for
external hazards and internal events are identified and categorized, event tree/fault
tree models are developed for each hazard category for the subsequent analysis. The
key issues which need to be addressed while modelling event trees and fault trees

Table 2 Various systems,
structures and components
(SSC)/safety support systems
for the two sites

Systems, structures and components
(SSC)/safety support systems

Success criteria

Single
unit site

Twin
unit site

Diesel generators 1/3:S 2/5:S

Diesel engines 1/2:S 1/4:S

Switchyard buses 1/2:S 2/3:S

Compressors 1/2:S 2/4:S

Sea water intake tunnel 1 1
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for the multi-unit site safety assessment are identified [3, 8]. These key issues are
classified as shared systems or connections, identical components, human depen-
dencies, proximity dependencies, mission time and cliff edge effects. These issues
account for the various dependencies [8] which exists between the units owing to
shared physical links, similarity in the design, installation and operational approach
for a component/system, same or related environment of positioning the systems
and various human interactions.

3.2 Hazards, Initiating Events and Key Issues Modeled

Hazards, initiating events and key issues modeled are listed in Table 3. The list is
not comprehensive as only selected representative events considered in the study
for demonstration of the methodology is shown. The details of the key issues are
discussed below:
Mission Time: The mission time for accident sequences of various hazards is
decided based on the nature and severity of the hazard. A mission time of 72 h is
taken for external hazards such as tsunami, earthquake, clogging, etc. whereas
mission time of 24 h is selected for all internal events.
Cliff Edge Effect: The cliff edge effect has been modeled for both the sites while
estimation of risk from the tsunami hazard. In this, the fragility of vulnerable and
unprotected component is taken as unity during occurrence of tsunami above the
design limit. In this analysis, a design height of 10 m is used.

Fig. 1 Schematic of twin unit PHWR site
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Table 3 Hazards, initiating events and key issues modelled

Category of hazard Hazard Initiating event Key issues modeled

Single
unit

Twin unit Single unit Twin unit

External
hazards

Definite
external
hazards (DEH)

Earthquakes Loss of offsite
power

• Mission
time

• Mission time

• Proximity
dependency

• Shared SSC

• Identical
components

• Proximity
dependencies

Tsunami Loss of offsite
power

• Cliff edge
effect

• Cliff edge
effect

• Mission time

• Proximity
dependency

• Shared SSC

• Identical
components

• Mission
time

• Proximity
dependencies

Conditional
external
hazards (CEH)

Clogging in
intake
tunnel

Loss of
ultimate heat
sink

• Mission
time

• Mission time

• Proximity
dependency

• Shared SSC• Proximity
dependencies

Internal
events

Definite
internal
initiating
events (DIIE)

– Loss of offsite
power

• Mission
time

• Mission time

• Proximity
dependencies

• Proximity
dependency

• Shared SSC

Conditional
internal
initiating
events (CIIE)

– Loss of
instrument air

• Mission time

• Proximity
dependency

• Shared SSC

Internal
independent
events (IIE)

– Primary-LOCA • Mission time

• Proximity
dependency

• Shared SSC

– TOPA/LORA • Mission time

• Proximity
dependency

• Shared SSC
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Shared Components: Sharing of the components at the twin unit site exists in
two ways.

(a) Same SSC shared between both the units: This sharing exists for diesel
engines and compressors. Here the components are assigned the same name
and they are appearing as common components in the fault trees/event trees of
both the units.

(b) Standby System Sharing: One diesel generator is shared by both the units at
the twin unit site. Sharing of resource in a multi-unit site is modeled by
assigning preference probability of the component/system for a particular unit
[8]. It is assumed that preference of the common component/system (in this
study DG5) will be given to unit 1 with preference probability of 0.75. The
unavailability of the common component/system is then suitably estimated for
the individual units with appropriate preference probability. For e.g. DG5
unavailability for unit 1 (DGu1) is estimated as

DGU1 ¼ 1� Pfu1ð Þþ Pfu1 � PDG5ð Þ

and DG5 unavailability for unit 2 (DGu2) is

DGU2 ¼ Pfu1 þ 1� Pfu1ð Þ � PDG5

where Pfu1 is preference probability for unit 1 and PDG5 is the probability of
DG5failure.
Identical Components: The identical components in both the units like shutdown
cooling pumps, emergency core cooling pumps, diesel generator and emergency
process sea water pumps are grouped under common cause failures (CCF) for
which beta factor model is used. The grouping of the identical components and the
value of the beta factor is based on the nature and severity of the hazard. In our
study, simultaneous failure of identical components for both the units is considered
only for DEH.
Proximity Dependencies: The components which share the same operating envi-
ronment or failure of components that can induce failure of the other nearby
components are grouped together under CCF and beta factor is used. This modeling
has been done for emergency process sea water pumps.

3.3 Estimation of Component Unavailability

The unavailability of each of the component for both the sites is estimated as per the
type and severity of the hazard.
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3.3.1 Seismic Fragility

For earthquakes, mean fragility of the components is used for estimating the seismic
risk. The mean fragility of the components is estimated using [7]:

PðA� aÞ ¼ u
1
bc

ln
a
Am

� �� �

where Am is the median ground acceleration capacity, ‘a’ is the PGA value for
which probability of failure, P is determined and

bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r þ b2u
� �q

3.3.2 Tsunami Fragility

During Tsunami, components failures are classified in two categories:

(a) Failure of the component due to submergence: In this case, if the tsunami
height is less than the component height then zero is assigned as the fragility
of the component. If the tsunami height is equal to component height then the
component fragility is taken as 0.1 [9] and for the case when the tsunami
exceeds the component height, its fragility is taken to as unity.

(b) Failure of the component due to loss of support structure: In this case for a
given tsunami height, the equipment failure probability is taken as the fragility
of the support structure.

3.3.3 Clogging of the Intake Tunnel

Although the phenomeon of clogging of intake tunnel is external, the components
of the NPP may become unavailable only due to internal random failures during
that time. Hence, internal event data is used for this hazard.

3.3.4 Internal Events

In the case of internal events, the only cause of unavailability of the component is
random failure. Typical models for internal random failures are used to estimate the
unavailability of the components.

It is to be noted that in case of external hazards like earthquake and tsunami, the
components may also become unavailable on account of internal random failures.
Hence, unavailability due to internal random failures is also added to the
seismic/tsunami fragility to obtain the total unavailability which is finally used for
estimation of the risk due to these hazards.
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3.4 Estimation of Site Core Damage Frequency

The risk for a single unit site is the total CDF obtained from internal events and
external hazards whereas the risk for twin unit site is obtained as SCDF by sum-
ming the risk from all the categories of external hazards and internal events. SCDF
is expressed as:

Site CDF for Single Unit ¼
X2
i¼1

Xm
j¼1

CDFði; jÞ

Site CDF for Multi unit ¼
X5
i¼1

Xm
j¼1

Xn
k¼1

CDFði; j; kÞ

where
i denote the category of hazard or event
j denote the type of hazard in the ith category
m denote the total number of types of hazard in the ith category
k denote the number of simultaneous core damages
n denotes the number of units at the site

Therefore, CDF (i, j, k) denotes the frequency of k number of simultaneous core
damages due to j type of hazard in the ith category;

For a single unit site, i denote external and internal event whereas for multi-unit
site,
i = 1 refers to definite external hazards for the site
i = 2 refers to conditional external hazards for the site
i = 3 refers to definite internal events for the site
i = 4 refers to conditional internal events for the site
i = 5 refers to internal independent events considering for all units

4 Results And Discussions

Site CDF for single unit and twin unit site is estimated using the integrated
approach developed earlier [3]. The approach is also used to estimate the single and
double core damage frequency for the twin unit site.

Generic component failure data available in the literature is used for the analysis.
It is seen that in both the single unit and twin unit site, risk from internal events
contribute more to the site CDF as compared to risk from external hazards. Risk
from external hazard for the single unit site is 1.21E-05/yr and it is 3.87E-05/yr for
the twin unit site. Risk from internal events for the single unit site is 1.65E-05/yr
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and for the twin unit site is 1.39E-04/yr. The increase in risk from internal and
external hazard in a twin unit site is attributable to the sharing of a common DG
between two units at the site. However, the contribution of external hazard to the
overall risk is 42 and 22 % for single unit and twin unit site respectively (Figs. 2
and 3).

In twin unit site, the risk due to internal events is contributed significantly by
definite internal events. The contribution from internal independent events and
conditional internal events is negligible.

For the twin unit site the risk of double core damage (1.18E-05/yr) is found to be
significantly lower than single core damage (1.66E-04/yr) and is depicted in Fig. 4.

The site CDF for the single unit site is 2.86E-05/yr whereas it is 1.78E-04/yr for
the twin unit site (Fig. 5). For the system description considered in this study,
sharing of the safety critical equipment viz., DG5 by both the units is major reason
for the significant increase in SCDF in twin unit site.

Fig. 2 Risk from single unit site

Fig. 3 Risk from twin unit site
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5 Conclusions

A pragmatic approach to estimate the risk from a multi-unit nuclear power plant site
is demonstrated on single and twin unit site. The method is capable of estimating
the frequency of single and multiple core damage for a multi unit site against both
external and internal hazards. Various key issues applicable for a multiple unit NPP
site like initiating events, shared connections, identical components, proximity
dependencies, cliff edge effects and mission time are accounted.

The multi-unit risk assessment methodology demonstrated with a case study
reveals that the increase in SCDF in twin unit site is mainly due to a shared
resource. It clearly highlights that such study will help in identification of critical
structures, systems and components (SSCs) that are crucial for safety in such sites
which is otherwise overlooked by carrying out only an individual unit risk
assessment. Further, sensitivity analysis can form the basis to optimize the shared
resources effectively. The spin-off from such a study carried out during the design
stage will provide valuable inputs such as optimum number of units at a site, the
optimal distance between two units and configuration of shared systems to mini-
mize the risk in a multi-unit site.

Fig. 4 Breakup of SCDF for
twin unit site

Fig. 5 Comparison of site
CDF
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Numerical Analysis of a Railway
Compartment Fire

Anwar Enbaya, Taimoor Asim, Rakesh Mishra and Raj B.K.N. Rao

Abstract Trains are considered to be the safest on-land transportation means for
both passengers and cargo. Train accidents have been mainly disastrous, especially
in case of fire, where the consequences are extensive loss of life and goods. The fire
would generate smoke and heat which would spread quickly inside the railway
compartments. Both heat and smoke are the primary reasons of casualties in a train.
This study has been carried out to perform numerical analysis of fire characteristics
in a railway compartment using commercial Computational Fluid Dynamics code
ANSYS. Non-premixed combustion model has been used to simulate a fire scenario
within a railway compartment, while Shear Stress Transport k-ω turbulence model
has been used to accurately predict the hot air turbulence parameters within the
compartment. The walls of the compartment have been modelled as no-slip sta-
tionary adiabatic walls, as is observed in real life conditions. Carbon dioxide
concentration (CO2), temperature distribution and air flow velocity within the
railway compartment has been monitored. It has been observed that the smoke
above the fire source flows to both sides of the compartment. The highest tem-
perature zone is located downstream the fire source, and gradually decreased with
the increase in the distance from the fire source. Hence, CFD can be used as an
effective tool in order to analyse the evolution of fire in railway compartments with
reasonable accuracy. The paper also briefly discusses the topical reliability issues.
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1 Introduction

In the event of a train fire, the fire itself does not present the first danger to
passengers. Instead, smoke from the fire is the primary danger. The inhalation of
smoke causes the majority of fire-related injuries due to its emission of toxic gases.
Smoke in the air can make it difficult for passengers to see exit doors clearly.
Consequently, train passengers would be at serious risk of severe injury or even
death, if the fire and smoke are allowed to become worse. It can be difficult to deal
with train fires effectively, especially if there are many passengers on board [1]. The
present study explores the flow and generation mechanism of temperature distri-
bution and smoke in train fires.

A successful fire safety design can save lives. It is stated that large train fires can
have severe consequences [2]. Cost is a primary consideration when designing a fire
safety strategy. Fire size and occurrence can be lowered with higher levels of
knowledge about the fire. It has been argued that designers are unable to fully
estimate fires and they do not have enough knowledge of the ways in which fires
behaves in the context of trains [3]. Air velocity is largely influenced by Heat
Release Rate (HRR), which is generated from the train that has caught fire.
Furthermore, the emergency tunnel ventilation system’s performance is also con-
trolled by this parameter. The type and amount of flammable materials within the
train carriage, the characteristics of the train carriage (i.e. size, doors, windows,
etc.), and the carriage construction type, determine HRR values [4]. HRR has the
largest influence on how serious the fire becomes [5].

The aims of fire safety processes are to continuously improve and develop new
systems that are responsive in case of fire emergencies. Currently, a new emergency
response system is being explored to unite forecast and live sensor monitoring of
fire development. The estimation of fire dynamics in the compartment is envisioned
which will infer a paradigm change in the reaction to traumas by offering the fire
service with vital evidence about the fire well ahead of time [6].

The precise forecast of the spread of smoke (poisonous gases) and distributions
of temperature and velocity is vital for the scheme of detection of fire, and safety
methods. It is also significant in offering testimony for the efficiency of precau-
tionary actions, and controls the ventilation for smoke. The protocols for fire
protection have to be employed while designing structures. In specific cases, for
instance large public structures, museums, train stations, concert halls and tunnels,
the fire protection protocols are very much significant in the case of emergency.
Using these protocols, removal of the smoke generated is carried out using the
instated devices throughout the time needed for the process of evacuation [7].
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Modern fluid power systems are becoming complex and globally distributed.
A number of issues are emerging which affect its reliability in one form or another.
Some of these issues are common cause failures, reliability of computer codes and
software, cyber security and risks, environmental safety issues, obsolescence issues,
human factors such as behaviour, decision making, modelling and simulation issues,
maintenance related issues etc. Reliability and robustness are critical and despite the
advanced modelling and simulation techniques employed, many companies are
finding that the operating environmental conditions are much harsher than predicted.

Uncertainties, Unreliability and Unavailability are closely related to each other
and should be seriously treated as totally unacceptable by everyone right from the
start. Historical evidences and plenty of literature exist to reveal the cost of unre-
liability and bad decision making in all walks of life. Its long-term consequences on
health, wealth, quality of life and sustained prosperity of individuals and nations are
recorded in histories of nations. Any number of multi-dimensional warranties,
guarantees, laws and byelaws, etc. will never solve the problem of unreliability.
Continuous awareness of the cost of unreliability and its dire short-term and
long-term consequences should be effectively disseminated at all levels as a number
one priority by all responsible people irrespective cast, creed, colour and religion.
A number of case studies and bench marking studies exist that should be brought to
light. It is time to initiate action research and action learning programs.
Interdisciplinary research provides useful answers to many unanswered issues.
Smart Integration, collaboration and proactive activities between industries, aca-
demia and professional organizations should be accelerated.

It is essential that effective systems for dealing with fire are created and
employed in order to negate the risk of fire in passenger carriages, night carriages,
restaurant carriages, power electronic parts and engine parts. Therefore, rail sectors
require effective methods for investigating the spread of fire and the effectiveness of
fire fighting strategies. However, the understanding of the evolution of fire in
railway compartment needs to be understood in detail first, and hence
Computational Fluid Dynamics (CFD) based analysis has been used in the present
study to provide assistance to rail engineers when selecting the optimal fire fighting
system setup [8, 9]. Smoke’s dispersion process in space and time, temperature and
velocity variations and their effects on the train’s emergency evacuation systems
have been investigated in the present study.

2 Numerical Modelling

The numerical analysis of a fire in a railway compartment has been carried out with
the aid of a commercial CFD code ANSYS. ANSYS code comprises of the physical
models involving heat transfer, turbulent flows, chemical mixing, reacting flows,
multiphase flows and combustion. Finite-volume method is used by ANSYS code
to numerically solve the equations that govern a fluid [10]. The carbon dioxide
concentration and temperature distribution in the railway compartment are being
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analysed in detail. Three dimensional partial differential equations for the conser-
vation of energy; momentum and mass are iteratively solved over a time of 360 s,
with a time step size of 1 s.

ANSYS’s non-premixed combustion model has been implemented to simulate
non-spreading fire in a railway compartment. Non-premixed combustion model
consist of the solution of transport equations for one or two conserved scalars (the
mixture fractions). Equations for individual species are not solved. Instead, species
concentrations are derived from the predicted mixture fraction fields. The thermo-
chemistry calculations are pre-processed and then tabulated for look-up in ANSYS.
Interaction of turbulence and chemistry is accounted for with an assumed-shape
Probability Density Function (PDF) [11, 12].

Combustion includes chemical reactions with the oxygen around it dragging air
into the fire and generating hot gases that travel upwards. For a methane fire the
reaction for complete combustion is:

CH4 þ 2O2 ! CO2 þ 2H2O

Incomplete combustion refers to a lack of air. However, in well ventilated
conditions, the reaction follows the stoichiometry for complete combustion, so the
quantity of carbon monoxide (CO) produced is negligible, hence is the case in
present study.

2.1 Geometry of the Flow Domain

The dimensions of the computational domain of a railway compartment are
20 m × 2.7 m × 2.4 m, which correspond to a conventional train compartment size
in the UK, as shown in Fig. 1. The fire has been numerically initiated in the centre
of the compartment using a rectangular methane burner, having a surface area of

Fig. 1 The geometry of the
railway compartment
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1 m2 and height of 0.4 m. The fuel flow rate specified corresponds to a heat flux of
350 kW. Ventilation is provided by two doors of 1.9 m height × 1.4 m width, one at
each end, and assuming that the doors would open once the fire has been initiated.

To model the airflow through the open doors properly, and to minimize the
effects of the boundaries on the fire development within the compartment, the outlet
boundary of the computational domain has been extended outside both doors by
10 m × 10 m × 10 m to include a region outside the railway compartment.

2.2 Mesh Sensitivity Analysis

In the CFD process, the quality of meshing plays a vital role. Hence, a mesh
independent analysis has been performed to confirm the precision of the results, and
to identify the most effective mesh sizing in order to achieve an appropriate mesh
discretisation. The mesh has been created for the compartment using the Cutcell
method. Figure 2 shows the meshing of the flow domain.

The numerical simulation is run using different mesh sizes. The first mesh
comprises of 346,646 elements, the second mesh of 672,308 elements, and the third
mesh of 709,906 elements. The average temperature distribution within the com-
partment from these three simulations is compared in Fig. 3.

Fig. 2 The mesh

Fig. 3 Mesh independence
analysis
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It has been observed that the average temperature distribution within the com-
partment is well predicted by both the second and the third meshes, and the
obtained results do not show significant changes. Furthermore, it is obvious that
the simulation using the third mesh is less unstable. Therefore, this study employs
the third mesh (comprising of 709,906 mesh elements) to investigate the air flow
and temperature distribution within the railway compartment.

2.3 Solver Setup

Software Reliability is defined as: the probability of failure-free software operation
for a specified period of time in a specified environment. Although Software
Reliability is defined as a probabilistic function, and comes with the notion of time,
we must note that unlike traditional Hardware Reliability, Software Reliability is
not a direct function of time. Physical assets may will age with time and usage, but
software will not age or wear-out during its ‘life cycle’. Software do fail due to
many reasons such as: errors, ambiguities, oversights or misinterpretation of the
specification that the software is supposed to satisfy, carelessness or incompetence
in writing code, inadequate testing, incorrect or unexpected usage of the software or
other unforeseen problems. Hardware faults are mostly physical faults, while
software faults are (intentionally or unintentionally) human—induced design faults,
which are much harder to visualize, classify, detect, and correct. Furthermore,
design faults are closely related to fuzzy human factors, which we yet to fully
understand. The quality and reliability of software will not change once it is
uploaded and start running. Trying to achieve higher reliability by not knowing the
root causes will hinder progress and is very costly.

Since the fire scenario is associated with chemical reactions, non-premixed
combustion model has been implemented. The energy equation has been iteratively
solved in order to predict the variations in the temperature. The solver settings and
essential boundary conditions are summarised in Table 1.

Table 1 Solver setup and
boundary conditions

Parameter Description

Mode Transient

Solver Pressure based

Turbulence model Shear stress transport k-ω

Inlet Mass flow inlet

Outlet Pressure outlet

Walls Adiabatic—no slip
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3 Results and Discussion

The temporal distribution of temperature within the railway compartment is depicted
in Fig. 4, where Fig. 4a represents the scenario after 8 s offire eruption, while Fig. 4b
represents the scenario after 360 s of fire eruption within the compartment.

It can be seen that as the fire erupts within the railway compartment, because of
its higher temperature (and lesser density), the hot air from the fire travels against
the gravitational force, until it comes in contact with the ceiling of the compartment.
Then it starts to spread outwards in both directions until it escapes out from the
evacuation doors, and into the environment. It can be further seen in Fig. 4b that the
region of highest temperature (742 K) is on the ceiling, directly above the fire, while
the temperature reduces as the distance from the source/fire increases. As there is a
gap between the ceiling of the compartment and the evacuation doors, the hot air is
trapped on the upper portions of the compartment, while the lower sections of the
compartment are at comparatively lower temperature.

Fig. 4 Static temperature variations after a 8 s and b 360 s of fire eruption
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The evolution of fire can be clearly seen in the figures. Only a small region of the
compartment is affected 8 s after the fire has erupted. However, as the time
increases, most of the compartment is filled with smoke, and hence most of the
volume of the railway compartment is occupied by higher temperature zones.

Data is omnipresent. Data on its own is useless unless it is intelligently analysed
and understood. It has been reported that the reliability of many research investiga-
tions carried out bymany reputable organizations is coming under increasing scrutiny.
It is also true that the entrenched culture of cut-throat competition and fraudulent
behaviour is hindering the progress. All reliability investigations are heavily depen-
dent upon the quality of data and the intelligent extracting capability of individuals.
Extracting the intelligence from Big and Open Data is a challenging task indeed.

For further analysing the flow behaviour within the railway compartment, pro-
files of static temperature have been drawn on (a) a vertical line directly above the
methane burner (Fig. 5a), and (b) a horizontal line in the middle of the compartment

Fig. 5 Static temperature
profiles a above the methane
burner and b along the length
of the compartment
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from one evaluation door to the other (Fig. 5b). Figure 5a depicts that just above the
methane burner, where the fire has erupted, the static temperature rises consider-
ably; however, just after the fire, it drops back and then increases gradually while
going towards the ceiling of the compartment. Furthermore, it can be seen that the
fire is still pre-mature after 8 s of eruption.

Figure 5b depicts that after 8 s of fire eruption, only the region directly above the
fire is at higher temperature, whereas the rest of the compartment is at ambient
temperature. However, after 360 s, although the same trend follows but the ambient
temperature within the compartment has increased significantly.

Further analysing the flow behaviour within the compartment, Figs. 6a, b depict
the variations in the flow velocity magnitude after 8 and 360 s respectively. It can
be seen that as the fire erupts, due to the higher temperature directly above the fire,
the flow velocity increases, and then spreads outwards. This trend is similar to the
one observed in case of temperature variations within the compartment at the same
occasions. However, it should be noted that once enough time has elapsed, the flow

Fig. 6 Velocity magnitude variations after a 8 s and b 360 s of fire eruption
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velocity within the compartment reduces significantly, while the smoke is rushing
out of the evacuation doors at significantly higher velocities.

Figure 7 depicts the velocity vectors in the vicinity of the methane burner. It can
be seen that the smoke from the fire travels upwards and then sideways to the
evacuation doors, while, at the same time, fresh air is entering the compartment
from the lower sections. It can be further noticed that the region in the centre of the
compartment is almost stationary.

Figure 8 depicts the variations in the flow velocity magnitude at different time
instants both vertically above the methane burner, and horizontally along the centre
of the compartment. Figure 8a depicts that, after 8 s of fire eruption, just above
the methane burner, the flow velocity increases significantly, whereas the flow is
stationary at the ceiling due to no-slip boundary condition. Furthermore, after 360 s
of fire eruption, the flow velocity just above the methane burner is considerably
higher. The flow than slows down until it reaches a certain height from where
onwards, it starts spreading, and hence the flow velocity increases.

Figure 8b depicts that only the region directly above the fire is at higher velocity.
However, there is an indication that the flow again starts to accelerate near the
evacuation doors. This has already been observed in Fig. 6b.

The temporal distribution of the molar concentration of CO2 within the railway
compartment is depicted in Fig. 9, where Fig. 9a represents the scenario after 8 s of
fire eruption, while Fig. 9b represents the scenario after 360 s of fire eruption within
the compartment. It can be seen that as the fire erupts within the railway com-
partment, the smoke is generated, which, due to being lighter than air, travels
against the gravitational force, until it comes in contact with the ceiling of the
compartment. Then it starts to spread outwards in both directions until it escapes out
from the evacuation doors, and into the environment. It can be further seen in
Fig. 9b that the smoke is trapped on the upper portions of the compartment, where
its concentration is almost uniform, while the lower sections of the compartment are
free of smoke. The evolution of smoke can be clearly seen in the figures. Only a

Fig. 7 Velocity vectors in the vicinity of the methane burner after 360 s of fire eruption
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small region of the compartment is filled with smoke 8 s after the fire has erupted.
However, as the time increases, most of the compartment is filled with smoke.

Figure 10 depicts the molar concentration of CO2 directly above the methane
burner, both after 8 and 360 s of fire eruption. It can be seen that in the early stages
of fire, as it is still pre-mature, a lot of CO2 is being ejected into the compartment,
although the overall region of the compartment occupied by the smoke is relatively
small. However, after 360 s, the CO2 molar concentration is highest near the
methane burner, which then increases gradually towards the ceiling of the com-
partment. CO2 molar concentration in the centre of the compartment, from one door
to the other, has not been shown in the present study as this region is almost free of
CO2 for the range of parameters considered in the present study. Hence, further
studies need to be conducted in order to widen the range of CO2 concentration
analysis.

Fig. 8 Velocity magnitude
profiles a above the methane
burner and b along the length
of the compartment
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Fig. 9 CO2 molar concentration variations after a 8 s and b 360 s of fire eruption

Fig. 10 CO2 molar
concentration profiles above
the methane burner
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4 Conclusion

Unavailability, poor quality, unreliable assets drive nations’ invaluable resources to
unsustainable and unrecoverable bottomless pit of misery and poverty of unimag-
inable dimension. Our ‘Quality of life’ and ‘happiness’ is heavily dependent upon
reliable and sustainable performance of all assets under all operational conditions.
Best practices, best guidelines and national/international standards are the only way
to reduce uncertainties and enhance reliability of our assets through smart man-
agement practices.

A detailed CFD based investigations on a railway compartment fire has been
carried out in the present study. Three primary parameters i.e. the static tempera-
ture, the flow velocity and the molar concentration of CO2, have been numerically
analysed within a railway compartment. The spatio-temporal variations of these
parameters indicate that as a fire erupts in a railway compartment, the smoke at
higher temperature rises up and comes in contact with the ceiling of the compart-
ment. Then it spreads outwards towards the evacuation doors on either ends of the
compartment. The upper region of the compartment is filled with smoke, containing
a large amount of CO2, while the lower section of the compartment is relatively free
of smoke and CO2. It has further been noticed that the upper section of the railway
compartment is at a higher temperature as compared to the lower section, and
similarly the flow velocity is significantly higher in the top section of the com-
partment. Moreover, it has been observed that the smoke exits the compartment
through the upper part of the evacuation doors, while fresh air enters the com-
partment from the lower part of these doors. Hence, CFD can be used as an effective
tool in order to analyse railway compartment fires.
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Safety Analysis of Mining Machines
Specific Maintenance Operations

Ljubisa Papic, Srdja Kovacevic, Diego Galar and Adithya Thaduri

Abstract By the rule, the object of the safety analysis is the technical system, for
example, production or transportation, as the mining machines or their techno-
logical equipment are. The maintenance operations, up to present days, haven’t
been investigated as the subject of safety analysis. However, as the practice of the
technical systems maintenance shows so far many maintenance operations contain
causes of danger. It means that it is useful to analyze such operations from the
safety standpoint. From the standpoint of the mining machines safety, it should be
stressed that in some researches, the expression “specific” is used for the critical
maintenance operations. Therefore, the safety analysis of maintenance operations
should precede the stage of maintenance operations. The possible approaches to the
safety analysis in the area of maintenance on the basis of the method Failure Modes,
Effects and Criticality Analysis are presented in the paper.

Keywords Safety analysis � Critical maintenance � Operations
1 Introduction

The most important characteristic of quality of the technical systems maintenance is
the safety that, according to the Dictionary of technical regulations [1], means the
absence of proscribed (unacceptable, intolerable) risk. Therefore, the safety analysis
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of maintenance operations should precede the stage of maintenance operations.
Several methods for the investigation of technical systems safety were proposed in
the design phase [2, 3]. One of the most complete methods for the safety analysis is
given in the paper [4].

2 Maintenance Operations of Mining Machines Safety
Analysis

By the rule, the object of the safety analysis in the technical system, for example,
production or transportation, as the mining machines or their technological
equipment is important. The maintenance operations, up to present days, haven’t
been investigated as the subject of safety analysis. However, as the practice of the
technical systems maintenance shows so far many maintenance operations contains
causes of danger. It means that it is useful to analyze such operations from the
safety standpoint. From the standpoint of the mining machines safety, it should be
stressed that in some researches, with the results presented in the references [5, 6],
the expression “specific” is used for the critical maintenance operations. The pos-
sible approaches to the safety analysis in the area of maintenance on the basis of the
method Failure Modes, Effects and Criticality Analysis (FMECA) [7], are presented
further on in the text. The objective of FMECA method is contained in the analysis
of the effects of maintenance operations on the safety of the technological opera-
tional process of the mining machines [8].

The same operation of the mining machine maintenance, depending on the
situation, can be analyzed from the standpoint of estimation of its effect on the
safety of the manufactured product (for example, repaired or revitalized mining
machine) or on the safety of a process of its production (for example, technological
process of the mining machine maintenance) [9, 10]. For example, the welding
operation, executed in the procedure of mining machine assemblage (bucket wheel
excavator, landfill machine, dumping machine, self/transporter bandwagon, drag-
line dredger) after a heavy accident, can be evaluated from the standpoint of its
effect on the safety of the machine or on the assemblage process [11, 12]. Therefore,
each maintenance operation, from the standpoint of safety, is useful to analyze in
two aspects:

• as the result of performing the maintenance operation that can be presented in
the form of the overhauled mining machine [13],

• as the process when the maintenance operation is performed, which can be
shown in the form of technological process of the mining machine maintenance
[14].
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In that way, depending on the danger source, safety of the maintenance operation
can be conditioned by [15]:

• the result of the maintenance operation performing,
• the procedure of maintenance operation realization,
• the result of the maintenance operation performing and procedure of mainte-

nance operation realization.

3 Investigation of Dependence Between Precision
and Capability of Mining Machines Maintenance
Operations

Since the result of performing the maintenance operation represents an overhauled
mining machine, it is useful to establish the degree of criticality of the maintenance
operation/operations. The idea to have the analysis of the maintenance
operation/operations criticality consists of the following factors [16]:

• frequency of the failure modes (frequency of defect mode), caused by the loss of
maintenance operation precision,

• probability of failure mode detection,
• consequences caused by the failure mode (defect mode).

Here the precision of maintenance operation/maintenance technological process
means its characteristic to ensure the closeness of real and nominal parameters of
the mining machines that have been maintained (product that has been manufac-
tured) [16]. The disturbance in the maintenance operation precision leads to the
failure mode of mining machine (to the defect of the product that has been man-
ufactured) [17]. The parameter natural zone of dispersion (quality characteristic) is
compared with the zone of specification limits, in order to analyze the maintenance
operation precision. Natural zone of dispersion is the area of parameter values of a
mining machine that has been maintained (product that has been manufactured),
with the precision probability close to 1. At the normal distribution of the parameter
of the mining machine that has been maintained (product that has been manufac-
tured), the natural zone of dispersion is assumed to be ±3σ, i.e. 6σ, where σ—is
standard deviation of the mining machine (product that has been manufactured)
parameter. In that case, the natural zone of dispersion is determined as the zone of
parameter values that corresponds to the probability of its precision of 0.9973. The
natural zone of dispersion or real dispersion, as the density function of normal
parameter distribution f(x), is presented on Fig. 1.

The following main indicator—process capability factor Cp that signifies the
ratio of zone of specification limits T and natural zone of dispersion of the
parameter that is analyzed [18], can be used to analyze the precision of operation for
maintaining the mining machines (technological process):
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Cp ¼ T=x ¼ T=6r: ð1Þ

It should be noted that in the relevant literature, dedicated to the research of the
technological processes [19], the introduced ratio is named precision coefficient.

The lager value of Cp, less the defect level (smaller number of failure modes) δ,
which is provided by certain (specific) maintenance operation. There is a singular
dependence between Cp value and the level of defects (number of failure modes) δ (in
the case of normal parameter distribution of a mining machine that is maintained—
product that is manufactured). This dependency is shown in Table 1.

For the parameter of a mining machine that is maintained, and which distribution
differs from normal, the precision of the maintenance operation is characterized by
the precision coefficient Pc which is determined by the expression:

Pc ¼ T=2:745l; Pc ¼ 1=Cpð Þ; ð2Þ

where it is assumed that he distribution of the parameter is close to Rayleigh
distribution [19], where µ—is medial parameter value.

This expression should be used for the parameters of mining machine that s
maintained, and that is characterized by:

• non-coaxiallity of two nominally axial cylindrical surfaces (eccentricity),
• non-parallel pair of surfaces,
• non-normality pair of surfaces or axe and surface,
• difference of walls.

ω = 6σ

f(x)

0 x

0,9973

Fig. 1 Graphical presentation of natural zone of dispersion in the case of density function of
normal parameter distribution

Table 1 Relation of process capability factor and level of defects (number of failure modes)

Cp 2 1.67 1.33 1.00 0.83 0.71 0.63 0.56

δ % 2 PPB 6 PPM 63 PPM 0.27 1.30 3.30 4.90 9.30

Note
1 PPB—1 defect (failure mode) on a billion overhauled mining machines (units)
1 PPM—1 defect (failure mode) on a million overhauled mining machines (units)
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Interdependence of precision coefficient Po and expected level of defects
(number of failure modes) δ is presented in Table 2.

4 Selection of the Most Important Maintenance
Operations of Mining Machines

Once we clarified this relation, we can go to the calculation of the criticality of
maintenance operation that is performed in order to analyze the effect of (techno-
logical) maintenance operation on the safety of a mining machine that is main-
tained. The schematic that considers factors in the calculation of criticality degree of
a mining machine maintenance operation, is shown on Fig. 2.

Criticality degree of a mining machine maintenance operation is calculated by:

Ci ¼ B1i � B2i � B3i ð3Þ

where:
B1i estimation of frequency (probability) of potential defect occurrence (failure

mode) of i-th element (or item) of mining machine,
B2i estimation of probability of defect (failure mode) detection of i-th element (or

item) of a mining machine, before it is delivered to the user,
B3i estimation of seriousness of defect (failure mode) consequences of i-th

element (or item) of a mining machine

Table 2 Relation between precision coefficient and level of defects (number of failure modes)

Pc 1.10 1.00 0.90 0.80 0.70 0.60

δ [%] 0.01 0.20 0.90 2.00 5.10 12.00

Criticality degree of maintenance 
operation

Defects frequency (failure modes),
caused by the loss of precision 

at maintenance operation

Probability of not detecting the loss 
of maintenance operation precision

Consequences of defects 
(failure modes)

Fig. 2 Calculation of criticality degree of maintenance operation
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Criticality degree of defects (failure modes) of a mining machine is calculated
by:

C ¼
X
i

Ci ð4Þ

In that way, if the source of danger caused by an overhauled mining machine,
the safety analysis regarding FMECA—object is analogous to the safety analysis of
the principally new mining machine of the same usage. Regarding the previous, the
detailed safety analysis of the overhauled mining machine applying FMECA
method would not be considered.

Another source of danger is a technological maintenance process. In that case,
FMECA—process can be applied for the safety evaluation, that analysis the
influence of process operation on the safety of:

• mining machine submitted to the maintenance,
• technological maintenance process.

Technological maintenance process has to be divided to maintenance operations.
One operation, depending on the situation, can be analyzed from the standpoint of
its influence on the safety of mining machine submitted to the maintenance tasks or
from the standpoint of evaluation of its influence on the safety of working process
(maintenance process) [20].

In that way, the criticality degree of an operation is calculated by the formula
analogous to formula (3). Therefore, value of the coefficient B1 can be found using
Table 3, considering process capability factor Cp (or precision coefficient Pc). It
should be noted that value Cp (or Pc) can be evaluated with an expertise by a
working group (working team) or calculated by a selection of random samples with
a later analysis of precision of technological maintenance process [21].

Table 3 Values of coefficient B1 (FMECA of technological maintenance process)

Description of defect frequency (failure mode) Adjoined value
of Cp

Value of B1 (points)

Defect (failure mode) practically not possible <1.67 1

Very rare occurrence of defect (failure mode) 1.33 2

Rare occurrence of defect (failure mode) 1.00 3

Defect (failure type) is possible 0.83 4

Defect (failure mode) is highly possible 0.71 5

Defect (failure mode) occurs frequently 0.63 7–8

Very frequent occurrence of defect (failure mode) >0.56 9–10
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Value of coefficient B2, which characterizes a probability of detecting the facts
of precision disruption, can be found using Table 4, depending on usual (accepted)
way of control of a technological maintenance process.

Value of coefficient B3, which characterizes the consequences of a defect
(failure modes), and which occurs as the result of precision loss, can be determined
using Table 5.

Beside the evaluation of effect of a technological maintenance process on mining
machine precision that is maintained, method of FMECA—process enables the
influence of maintenance operation on the technological maintenance process to
be evaluated [22]. The influence of a maintenance operation on the safety of the
technological maintenance process shows that failure in operation, i.e. disturbance
of one or several characteristics of the maintenance operations, can cause the critical
consequences for the maintenances process (influence on maintenance object—
mining machine—is not taken in account).

Analysis of maintenance operation criticality starts from the division of a
technological process to the individual operations. Further on, the analysis of
possible dangers as the result of potential disruptions of the maintenance operation

Table 5 Values of coefficient B3 (FMECA of technological maintenance process)

Consequences of defect (failure modes) Value of B3

(points)

Not significant. Purchaser (user) can notice them 1–2

Significant. Maintenance of object (technical system, mining machine) can
be performed at the purchaser (user) site with insignificant cost

3–4

Very significant. Maintenance cost are significant and caused by object
(technical system, mining machine) stoppage

5–6

Critical. Defect (failure mode) generates loss (accident) of object (technical
system, mining machine). There is no danger for the people and
environment safety

7–8

Vary critical. Defect (failure mode) is connected with people and
environment safety

9–10

Table 4 Values of coefficient B2 (FMECA of technological maintenance process)

Description of probability to detect precision disruption Value of B2

(points)

Very high probability of precision loss detection, since the event is easily
identified (recognized)

1–2

High probability of precision loss detection 3–4

Moderate (medium) probability of precision loss since the event is hard to
identify (recognize)

5–6

Low probability of precision loss detection 7–8

Very low probability of precision loss detection. The event can not be
identified (recognized)

9–10
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is performed. The results of this analysis are useful to organize in the table form, as
shown in Table 6.

Further calculation of criticality degree is performed for the maintenance oper-
ations that are recognized (evaluated, considered to be) as the most significant for
the safety of a technological maintenance process. The calculation of criticality
degree of a maintenance operation, regarding safety of the technological mainte-
nance process can be executed by a formula analogous to formula (3). Coefficient
B1 is selected from Table 7.

Coefficient B2, which characterizes the possibility of disruption detection of
maintenance operation, is selected using Table 8. The consequences of disruption of
maintenance operation are described using coefficient B3, with the values deter-
mined using Table 9. Separation of the most significant maintenance operations is
performed by comparing the criticality degree of i-th maintenance operation Ci with
the limit value of Ccrit = 125. If Ci > Ccrit, the i-th maintenance operation is
considered to be critical, so that the use of correction measures is compulsory in the

Table 6 Format of a table for analyzing dangerous situations

Operation Description of
dangerous situation

Cause of operation
disruption

Dangerous
event

Parameters of
condition

– – – – –

Table 7 Values of coefficient B1 (FMECA of maintenance operation)

Description of disruption frequency of maintenance operation Values of B1

(points)

Disruption of maintenance operation practiclly is not possible 1

Disruption frequency of maintenance operation is small 2–5

Medium disruption frequency of maintenance operation 6

High disruption frequency of maintennce operation 7–8

Very high frequency, disruption of maintenance operation is certain to
occur

9–10

Table 8 Values of coefficient B2 (FMECA of maintenance operation)

Description of detection probability of maintenance operation disruption Values of B2

(points)

Very high detection probability of maintenance operation disruption, since
the event is easy to identify (recognize)

1–2

High detection probability of maintenance operation disruption,
identifiction (recognition) of the event is simple

3–4

Moderate (medium) detection probability of maintenance operation
disruption, the event is difficult (complicated) to identify (recognize)

5–6

Low detection probability of maintenance operation disruption 7–8

Very low detection probability of maintenance operation disruption. This
event can not be idenfied (recognized)

9–10
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framework of quality management system, according to the requirements of
international standard ISO 9001, in order to reduce the criticality degree of i-th
maintenance operation.

5 Qualitative Analysis of Limiting Parameters
of Technological Process of Mining Machines
Maintenance

The selection of the main (limiting) parameters of technological maintenance
processes that limit the safety of the mining machines is performed in order to reach
the following [23]:

• correction of the way of quality control at performing the maintenance
operations,

• conducting the measures for improving (rationalization) technological mainte-
nance process,

• specification (precise determination) of the demands for purchasing the
assemblies and material.

The selection of the limiting parameters of technological maintenance process is
performed on the basis of the analysis of failure causes of mining machines
according to the order shown on Fig. 3. As the result of the analysis of failure

Table 9 Values of coefficient B3 (FMECA of maintenance operation)

Consequences of disruption of maintenance opeation Values of B3

(points)

Insignificant. Disruption of maintenance operation is easily removed 1–2

Significant. Disruption of maintenance operation leads to equipmet
stoppage and disrupts technolgical maintenance process

3–4

Very significant. Disruption of maintenance operation causes the
performing of maintenance tasks to stop

5–6

Critical. Disruption of maintenance operation causes the execution of
maintenance tasks to stop and can cause accident. There is no danger for
the safety of people and environment

7–8

Very critical. Disruption of maintenance operation is connected to the
safety of people and environment

9–10
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causes of mining machines, certain output parameters of the technological main-
tenance process should be determined previously, which disruption may potentially
lead to the loss of operational capability of the mining machines.

Analysis of standards and 
technical conditions for mining 

machines

Analysis of standards and 
technical conditions for integral 

items of mining machines

Analysis of technical 
documentation

Establishment of the list 
of quality indicators of integral 

items that affect the qualitu 
of mining machine

Determination of indicator list 
of mining machine quality

Design of structural schematics 
of technological maintenance 

process of the mining machine

Resolving the technological processes and maintenance operations 
that affect the safety

Analysis of the testing results, 
reclamation data, objections, user 

complaints, information on 
failure causes of (similar) mining 

machines, etc.

Revealing the technological 
processes and maintenance 

operations that represents the 
causes of defects (failure modes) 

that occurs most frequently

Analysis of existing integrated 
management system (ISO 9001, 
ISO 14001, BS OHSAS 18001)

Analysis of precision of critical 
maintenance operations

Preparation and realization of measures for safety improvement

Fig. 3 Scheme of parameter analysis of technological maintenance processes of mining machines
that influences the safety
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6 Conclusion

The proposed approach enables the safety of technological process and (specific)
operations of mining machines maintenance to be analysed in the same framework
by using the FMECA method. It is useful to supplement the analyses of types,
consequences and criticality of failure modes of technological process of mining
machines maintenance by qualitative analysis in order to establish the main
parameters of the maintenance process that restrictively acts on the safety of the
mining machines. The main parameters of the technological process of mining
machines maintenance are parameters of process involving spare parts and
assemblies manufacture on which the exploitation characteristics substantially
depend on, including safety of the mining machines.
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Experiences and Insights in Development
of Probabilistic Safety Assessment
of Research Reactors in BARC

Sachin Kumar, N.S. Joshi, Vivek Mishra and P.V. Varde

Abstract Probabilistic Safety Assessment (PSA) techniques have become a
standard tool in safety evaluation of nuclear power plant. For research reactors,
experiment facilities aspects add a further dimension to application of PSA. Such
experiments may increase the risk of damaging the reactor core. Sufficient experi-
ence is now available to suggest that current PSA methodology is a valuable tool for
application to research reactor. Level 1 PSA of three research reactors i.e. 40 MWt
Cirus, 100 MWt Dhruva, 2 MWt Upgraded Apsara Reactor Project in BARC,
Trombay has been performed. The modelling for PSA of these research reactors has
been carried out considering only with the internal initiating events for full power
operational state and reactor core as the source of radioactive inventory. The special
issues like common cause failure, uncertainty analysis and human reliability analysis
have been addressed in the analysis. The specific purpose of these studies apart from
normal application, i.e. to obtain safety insights, has been (a) design evaluation,
(b) evaluation of scenario involving multiple failures, (c) regulatory support in
decision making, (d) ageing assessment and (e) development of future applications
like risk-monitor, risk-based ISI programme, and surveillance test interval opti-
mization for safety systems. Further work is in progress on external event PSA e.g.
Seismic PSA, and Aircraft Impact analysis and Fire PSA methodology. This paper
discusses the experiences and insights in the development of PSA of Research
Reactors at Bhabha Atomic Research Centre, Trombay.
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1 Introduction

Probabilistic Safety assessment (PSA), also known as Probabilistic Risk
Assessment (PRA), of nuclear reactors, essentially aims at identifying the events
and their combinations that can lead to severe accidents, assessing the probability of
occurrence of each combination and evaluating the consequence. Since the com-
pletion of the landmark Reactor Safety Study (commonly referred to as
WASH-1400) [1] in 1975, PSA results and insights have been used to support
regulatory decision making regarding nuclear power plants (NPPs). The assurance
of the safe operation of NPPs around the world and the prevention of incidents in
these installations remains a key concern of the nuclear community. PSA has been
used in nuclear installations for assessing the safety of the components and the
plant. The PSA technique complements the conventional deterministic methodol-
ogy in safety assessments of design basis scenarios. At the same time, the insight
obtained using PSA methods on ‘beyond design basis’ scenarios supplement the
deterministic findings. It is desirable to perform all three levels of PSA for a nuclear
reactor. As a minimum requirement, plant should carry out Level 1 PSA with
internal and external events as applicable to the plant [2]. It is important to rec-
ognize that the experimental facilities in the research reactors add a further
dimension to the application of PSA. Such experiments might not only contribute
directly to radioactive release to the atmosphere but also in some cases have
potential to increase the risk of damaging the reactor core. The numbers of
IAEA-TECDOCs available for research reactor PSA shows the interest of inter-
national community in embracing this technique for integrated safety assessment of
the research reactors.

In Bhabha Atomic Research Centre (BARC) at Trombay, power level of nuclear
research reactors varies from few watt levels to hundreds of MW level. In BARC,
Level 1 + PSA of the operating research reactor Dhruva had been carried out in the
year 2002 [3]. Level 1 PSA of research reactor Cirus, which was permanently
shutdown in the year 2010, was completed in the year 2009 [4]. Level-1 PSA of
Upgraded Apsara Research Reactor Project was completed in the year 2012 [5].
The work carried out in these studies involve selection of initiating events, event
tree modeling, data collection and analysis, system modeling, accident sequence
modeling and finally estimation of core damage frequency (CDF). In these studies,
modeling has been carried out considering only the internal initiating events for full
power operational states, and the reactor core as the source of radioactivity. The
special issues like common cause failure, uncertainty analysis and human reliability
analysis have been addressed in the analysis.
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2 Level 1 + PSA of Dhruva Reactor

Dhruva reactor, 100 MWt, high neutron flux (maximum *1.8 × 1014 n/cm2/sec)
research reactor located at BARC, has the distinction of being one of the high flux
research reactors in the world. Dhruva was commissioned in 1985 and achieved full
power operation in 1988. In this reactor, natural uranium is used as fuel and heavy
water as coolant, moderator and reflector.

In the year 1997, a program for a detailed Level 1 PSA of Dhruva research reactor
was initiated [3]. The PSA code PSAPACK version 4.2, supplied by IAEA was used
as the environment for PSA modeling The work involved under this project include
the reliability analysis of safety systems and safety support systems, estimation of
failure frequency of the initiating events and modeling of accident sequences
towards giving the statement of core damage frequency (CDF) for the plant. Event
trees analysis had been used to study the response of the plant to various initiating
events whereas fault tree had been used in the modeling of safety system failures.
The scope of this work extends beyond Level 1 PSA study to include the limited
scope Level 2 PSA study to give the likelihood of releases, during the postulated
LOCA scenario, to the member of public. The uncertainty analysis was carried out at
system level as well as at CDF level to account for possible data and modeling error.
The sensitivity analysis was performed to check the affect of major assumptions and
critical system parameters on the result of this analysis. The results of this analysis
include the statement of CDF and important accident sequences for the plant. The
major steps involved in the PSA of Dhruva reactor are as follows:

2.1 Selection of Initiating Events

The main objective of this task was to generate a list of Initiating events (IEs), as
complete as possible. The approaches used for selection of IEs are as follows:

• Engineering evaluation,
• Reference to previous list of initiating events considered in the PSA studies,
• Deductive analysis, and Operational experience

Most of the initiating events for this study were identified based on the refer-
ences to already existing lists of initiating events. This include plant specific doc-
uments like safety analysis report for Dhruva reactor and generic source like,
Canadian NRU reactor, ORNL High Flux Research Reactor, CANDU Power
reactor IEs list. List of initiating events selected for PSA study of Dhruva recator
was given below:

• Loss of Off-site Power (LOOP)
• LOCA major—Severance failure of large pipes in Isolatable region
• LOCA major—Severance failure of large pipes in non—Isolatable region
• LOCA major—Severance failure of small pipes in Isolatable region
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• LOCA minor—non—Severance failure of large pipes in Isolatable region
• LOCA minor—non—Severance failure of large pipes in non-Isolatable region
• LOCA minor—non—Severance failure of small pipes in Isolatable region
• Loss of Regulation Accident (LORA)
• Severance failure of ECW line in reactor building (non-isolatable portion)
• Non-Severance failure of ECW line in reactor building (non-isolatable portion)
• Reactor trip
• Failure of PW/ECW line in Service Building
• Compressed Air Failure
• Loss of Cooling during Fuel Handling
• Failure of moderator inlet line (Non isolatable portion)

Grouping of initiating event was carried out in such a way that all the events in the
same group impose essentially same success criteria on safety systems and safety
support systems as well as special condition (challenges to the operator, automatic
plant responses etc.) and thus can be modeled using the same event analysis.

2.2 Identification of Safety Functions and Safety System

Safety system and safety function for Dhruva reactor was identified which are
important against the core damage. The most usual element of an event sequence
model is failure/success of safety system. The system failures are modeled using
techniques like Failure Mode Effect Analysis (FMEA), fault tree, Markov modeling
and reliability block diagram. System modeling generates the logic model for safety
system unavailability. All the five safety system which includes safety support
systems for Dhruva reactor is as follow:

• Emergency Cooling System or Shutdown Cooling System (ECS)
• Reactor Protection System (SOR & BSS)
• Emergency Core Cooling System (ECCS)
• Emergency Power Supply System (Class III, Class II and Class I Power supply)
• Containment Isolation and Emergency Exhaust System (CIEE)

Unavailability of safety systems were calculated and are given in Table 1:

2.3 Accident Sequence Modeling

This task comprised of modeling of potential accident scenario with respect to the
response of the plant. ‘Event Tree’ analysis methodology was used for accident
sequence modeling. In PSA of Dhruva, accident sequence modeling involved
construction of event trees with 17 initiating event, safety systems, and human
response. The total number of accident sequences identified through Event Tree
Analysis was *80. However, using probabilistic criteria and analytical assessment,
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only few accident sequences were identified which are likely to result in varying
degree of core damage.

2.4 Accident Sequence Quantification

Quantification of the accident sequences was done by attaching frequency to the
initiating event and failure probabilities/unavailability to the safety system along
with human error probabilities.

Uncertainty analysis was carried out to measure uncertainty in PSA results. Two
approaches were adopted in estimating the uncertainty bounds for various failure
rate data. The first approach comprised of estimating the upper and lower bound
using the Chi-Square distribution and F-distribution as the case may be or Bayesian
approach when the data from two sources are to be combined. The second approach
uses Monte-Carlo simulation technique for propagating the uncertainty from
component level to top event level in fault tree.

2.5 CDF Statement of Dhruva Reactor

The overall Core Damage Frequency (CDF) value for Dhruva reactor is 4.8 × 10−5/yr.
The median value, lower bound and upper bound of CDF are 3.4 × 10−5/yr,
2.17 × 10−5/yr and 7.07 × 10−5/yr.

Table 1 Safety system/function unavailability

S.N. Safety system/function Identification
code

Unavailability

1 Primary shutdown system SOR 9.5 × 10−5

2 Backup shutdown system BSS 7.35 × 10−4

3 Class III power Class3 3.3 × 10−3

4 Class II power 150 kVA ClassII-150kVA 1.5 × 10−4

5 Class II power 20 kVA ClassII-20 kVA 6.0 × 10−6

6 Class I power Class I 3.0 × 10−5

7 Non-recovery of Class IV power in 3 h CLASS4-NR 2.1 × 10−2

8 Emergency core cooling system (Phase II) ECCS 4.8 × 10−4

9 Human error in injection of OHST water HE-ECCS 3.6 × 10−2

10 Emergency (or shut-down) cooling system ECS 2.0 × 10−5

11 Containment isolation & emergency exhaust CI&EE 1.1 × 10−2

12 Human error in isolating ECW line in sub-basement
(non-severance failure of ECW line)

HE-NS-ECW 1.0 × 10−3

13 Human error in isolating ECW line in sub-basement
(severance failure of ECW line)

HE-S-ECW 0.37

14 Diesel generator system for OHST OHST-DG 7.0 × 10−3
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Around 41 % of the contribution to the net CDF comes from ‘Loss of offsite
power’. Figure 1 shows the contribution from various postulated accident initiators:

The Initiating Event ‘Class IV power failure’ has been found to be the greatest
contributors to the CDF. The sensitivity analysis performed on this parameter, as
shown in Fig. 2, shows that even by considering its frequency as high as 10/yr, the
CDF value increases to only 2.25 × 10−4/yr.

3 Level 1 PSA of Cirus Reactor

Cirus was a 40 MWt tank type reactor, having natural uranium as fuel, heavy water
as moderator, de-mineralized light water as coolant and graphite as the reflector. Six
Boron Carbide shut-off rods was the primary fast shutdown system backed up by
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the moderator dumping to keep the reactor sub-critical. Seawater was used as the
secondary coolant and was the ultimate heat sink. The shutdown cooling system
comprised of a once through pass gravity cooling provided by a spherical reservoir
called as ball tank. The reactor was housed in a metallic containment building called
reactor building. Cirus was commissioned in the year 1960. During the early
nineties, the reactor started showing signs and symptoms of ageing which mani-
fested in reduction in availability factor in spite of extensive maintenance efforts. As
part of life extension programme for the facility, the ageing studies were performed
and the reactor was shut down during the period from 1997 to 2002 to carry out
various refurbishment jobs. After the completion of the repair/refurbishing work the
reactor systems were commissioned and the reactor achieved criticality on October
2002. Cirus was permanently shut down on 31st December, 2010.

The integrated Level 1 PSA study was initiated in 2005 [4]. Since, this plant had
logged in over 45 years of service at the time of commencement of this PSA study,
it was decided to use plant specific data to the extent possible for estimating the
reliability of various components in general and safety systems components in
particular. List of initiating event selected for PSA study is given below:

• Class IV power supply failure
• LOCA major—at outlet side of the reactor core
• LOCA major—at inlet side of the reactor core
• LOCA minor—at outlet side of the reactor core in isolatable region
• LOCA minor—at outlet side of the reactor core in non-isolatable region
• LOCA minor—at inlet side of the reactor core in isolatable region
• LOCA minor—at inlet side of the reactor core in non-isolatable region
• Loss of Regulation Accident (LORA)
• Loss of Flow Accident
• Failure of forward cooling line
• Reactor transients
• Loss of Cooling during Fuel Handling
• Ejection of fuel rod
• Flow blockage
• Failure of Pressure Tube in PWL
• Ball Tank failure

Accident sequence modeling was carried out using Event Tree Technique. The
number accident sequences in this analysis were relatively small, i.e. 27 as com-
pared to a typical NPP or even for Dhruva. There are reasons for this as follows:
(a) Cirus design was based on single failure criteria hence successful start and
operation of the safety system forms part of the design philosophy, (b) the safety
system design extensively incorporated passive features which makes the system
simple and operation elegant, (c) the coping capacity of the plant in terms of decay
heat removal during shutdown mode or accidental mode was very high compared to
not only other research reactors but also NPPs, and (d) not many human actions
were involved as part of recovery actions due to again relatively large coping time
of the plant.
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CDF statement of Cirus comprised of the Median Value, Lower bound and
Upper bound of 1.17 × 10−6/yr, 4.12 × 10−6/yr, and 7.71 × 10−6/yr, respectively.
Table 2 shows the statement of CDF for Cirus reactor:

4 Level 1 PSA of Upgraded Apsra Recator Project

The Upgraded Apsara Reactor Project is a 2 MWt research reactor. It is a swimming
pool type reactor, using LEU as fuel, demineralised water as coolant and moderator
and BeO as the reflector material.

Level 1 PSA of Upgraded Apsara Reactor Project has been performed [5]. The
analysis has been carried out for full power operation of the reactor considering
only the internal initiating events with reactor core as the main source of
radioactivity. The available inputs from system Design Basis Reports and plant
specific data wherever available from the old Apsara reactor have been used. The
initiating events were judiciously screened based on likelihood and consequences
and only the selected events are considered for accident sequence modeling.
Following initiating events are modeled for detailed quantification:

(a) Loss of Offsite Power Supply
(b) Loss of Coolant Accident
(c) Loss of Regulation Accident
(d) Loss of Shutdown Cooling
(e) Loss of Flow Accident

The system modeling has been carried out using the fault tree approach. The
event tree methodology has been employed for accident sequence modeling.
The PSA software Fault Tree + version 10.1 supplied by M/s. Isograph has been
used for creating model of the plant. The sensitivity analysis has been carried out to
check the effect of critical parameters on the results of the analysis. Table 3 shows
the statement of CDF for Upgraded Apsara Reactor Project:

The broad insights that were available from the accident sequence analysis are as
follows:

• Loss of Offsite Power (CL-IV power) failure is one of the major contributors to
the total CDF

Table 2 CDF statement for
cirus reactor

S.N. Initiating event Accident frequency (/yr)

1. Class IV power failure 4.95 × 10−6

2. Major LOCA 1.01 × 10−7

3. Minor LOCA 2.52 × 10−7

4. Reactor transients 1.52 × 10−8

5. Loss of regulation accident 7.65 × 10−9

Total CDF 5.32 × 10−6
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• LOCA contribution to CDF was found very small however, LOCA due to beam
tube rupture showed significant contribution.

• Contribution from loss of regulation events is also small.

The results of the analysis demonstrated that the inherent design features of the
reactor like passive system employed for shutdown cooling, independent Reactor
Protection and Regulation systems make the reactor one of the safe nuclear plant.

5 Major Applications of PSA

PSA of research reactors provides the safety assessment of the plant. Besides this,
PSA have been used for (1) Optimization of Surveillance Test Interval (STI) &
Allowable Outage Time (AOT) estimation, (2) Precursor event analysis (incident
analysis), and (3) evaluation of Emergency Operating Procedure (EOP).

In BARC, Risk monitor has been developed for the Dhruva reactor. This enables
plant operators and schedulers to evaluate the plant risks and problems associated
with scheduling and approving outage maintenance activities. Risk Monitor is
designed to indicate the risk level for the current plant configuration based on actual
configuration, considering risk contributed by each component and system. Risk
Monitor helps plant personnel to understand the risks associated with any plant
configuration.

Risk Monitor can be used for identification of system & component importance
to safety, evaluates the technical specification which includes surveillance test
interval, and simulation of accident scenario.

Risk Monitor is a management tool having user friendly Graphical User
Interface (GUI) for plant managers and operators with almost all important elements
for risk based management such as Core Damage Frequency (CDF) calculation, risk
profile graph, system unavailability and IE contribution to CDF, importance anal-
ysis, uncertainty analysis, comparison of risk informed surveillance test interval
with traditional surveillance test interval, and scope for technical specifications, this
system can also facilitates the shutdown maintenance planning and scheduling.
Figure 3 shows a screen shot of Risk Monitor:

Table 3 CDF statement for upgraded Apsara

S. N. Initiating event Accident frequency/year % Contribution

1. Loss of offsite power 1.08 × 10−6 68.45

2. LOCA 7.0 × 10−9 0.44

3. LOCA beam tube rupture 4.9 × 10−7 31.05

4. Loss of regulation 7.81 × 10−10 0.049

5. Loss of S/D cooling 5.79 × 10−14 Almost nil

Total CDF 1.58 × 10−6
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6 Conclusion

PSA techniques are applied for Research Reactors in order to reduce their overall
risk. The minimal cut sets provided by the PSA can identify the shortest path by
which a component failure can propagate, degrade the system and deteriorate the
safety. Level 1 + PSA of Dhruva has helped in freezing the final scheme of
upgradation of Emergency Core Cooling System. PSA of Upgraded Apsara Reactor
project has been carried out in parallel with the basic engineering phase of the
project. Therefore, preliminary results have been used to retrofit the design process,
thus permitting improvements to the design of system. These improvements have
resulted in an effective reduction of the residual risk. PSA has been proved to be a
valuable tool to increase the safety level of plant. The main conclusion is that it is
possible to effectively reduce the risk of Research Reactors if the basic design
process and the PSA proceed in parallel, eventually converging to a reactor where
no external emergency plans are necessary.

Fig. 3 Screen shot of risk monitor
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Part VI
Reliability Analysis and Modeling



Reliability Model of a Safety System
with an Imperfect Tester

Pramod Kumar Sharma and A. John Arul

Abstract High reliability digital systems designed for safety applications employ
external or built in test and surveillance systems. The overall reliability is deter-
mined by the combined reliability of the safety system and that of the testing
system. In this study we derive an expression for the overall system unavailability
using Markov model and from that derive an approximate formula that could be
used in fault tree analysis of larger systems. The approximate expression is vali-
dated by numerical case studies as applied to solid state voting logic with online
fine impulse testing system (SLFIT) used in the shutdown system of a nuclear
reactor.

Keywords Digital system reliability � Automated testing � Markov modeling

1 Introduction

Frequent testing of the safety systems either manually or by automatic means is one
of the many ways available to achieve required reliability. The reliability models
often used for calculating the reliability of such systems assume (i) perfect testing,
i.e., the system reliability is restored to one immediately after the completion of the
test, (ii) The faults that occur in the system is covered 100 % by the test and
(iii) The tester or the testing system does not fail. We examine in this report the
reliability of the system, when the 3rd condition is not applicable. Modelling the
cases corresponding to condition (i) and (ii) are relatively easy and not discussed.
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2 System Description and Function

The system considered for study is the voting logic with an automated testing
system known as Fine Impulse Tester (FIT). This is typical of a system used in the
shutdown system of a nuclear power plant for example Prototype Fast breeder
Reactor (PFBR). Each shutdown system consists of a Reactor Protection System
(RPS), Actuation System (AS) and safety support systems. RPS consists of
instrumentation, i.e., sensors to monitor plant parameters, analogue signal pro-
cessing circuits, SCRAM logic, SCRAM switches (power gates) and power supply
[1]. Actuation System (AS) consists of absorber rods (AR), electromagnets and
drive mechanisms to drop or drive the absorber rods into the core.

2.1 Role of Scram Logic

The role of Scram logic is explained here. One type of the SCRAM Logic employs
conventional solid state logic with online fine impulse testing (SLFIT). It is built
using programmable logic devices (PLD). SLFIT consists of signal conditioners,
safety logic core, output stage and annunciation. FIT logic is designed to check
unsafe and safe faults of SLFIT apart from the self-diagnostic tests. Scram logic
circuit used in SDS1 is essentially of digital signal processing involving voting
logic, where normal working condition is coded as high voltage state and trip
condition is represented by zero voltage state. System stuck at 1 fault can be
revealed only by Fine Impulse Test (FIT). In SLFIT, 2/3 voting for a single
parameter is adopted. When two or more inputs are 0, output would be 0. Therefore
system will fail only if there are failures in two or more inputs or the voting logic
itself fails. The total voting logic system has two parameters. Since any stuck at 1 or
0 failures will not be revealed, they are tested by a FIT circuit as shown in Fig. 1.
There is no scram on FIT fault. For the purpose of analysis FIT is treated as one
component and Control Safety Logic (CSL) is treated as another component with
constant failure rate.

Testing system
(FIT)

Logic
(CSL)Input Output 

Fig. 1 Model block diagram
of SLFIT
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3 Reliability Modeling

The system described in Sect. 2 is to be modeled as Markov state space model. The
possible system status of the scram/voting logic is shown in Table 1. The first
column denotes system states labelled 1, 2, 3 and 4. The component states are 0 or
1. 0 is component failure state and 1 is component success state. The resulting
system condition is given in last column. For system state 4, both testing system
and scram logic are in failed state. This results in system failure. For system state 3,
scram logic is in failed state and testing system is in working state. This also results
in system failure. For system state 2, testing system is in failed state and scram logic
is in working state, which is considered successful operation of the system. For
system state 1 both testing system and scram logic is in working state, which is
successful operation of the system. If the scram logic is working then system is safe
to operate even though diagnostics is not available. Let, kS be the Scram logic
failure rate, kD the diagnostic system failure rate, and l1 and l2 are their respective
repair rates. Further it is assumed that repair time for scram logic is less compared to
diagnostic system’s repair time.

The probabilities P1–P4 represent the probabilities of finding the system in their
respective states 1–4.

3.1 Markov Process

A random process whose future probabilities are determined by its most recent
values is called Markov process. A stochastic process x(t) is called a Markov if for
every n and t1 < t2 < ….tn, we have P{x(tn) ≤ xn|x(tn-1),…,x(t1)} = P{x(tn) ≤ xn|x
(tn-1)} [2]. Under the Markovian assumption the system consisting of the SCRAM
logic and the testing system are modelled as a collection of states with the transition
rates between them as explained in the next section.

Table 1 Logic state

State Testing system Scram logic Result System safety

4 0 0 0 Unsafe (longer time)

3 1 0 0 Unsafe (shorter time)

2 0 1 1 Safe

1 1 1 1 Safe
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3.2 State Transition Diagram

A two-component system has only four possible states, those enumerated in
Table 1. The numbers within circle represent system states. The transitions between
these states are indicated by directed arcs, labelled with the corresponding transition
rates as shown in Fig. 2.

4 Modeling Equations and Steady State Solution

The failure rates kD and kS are for diagnostics and scram logic respectively. Since
kS Dt is the probability that SCRAM logic will fail between time t and tþDt, given
that it is operating at t ðand similarly for kDÞ, we may write the net change in the
probability that the system will be in the state 1 as

P1ðtþDtÞ � P1 tð Þ ¼ �kDDt:P1 tð Þ � kS:Dt:P1 tð Þ;

if the repair rates are neglected.
Or in differential form,

dp1
dt

¼ �kD:P1 tð Þ � kS:P1 tð Þ ð1Þ

Following Eq. (1) the probabilities of finding the system in the respective states
considering all transitions (failure and repair) are obtained as the following four
equations. The total probability, i.e., sum of P1–P4 is 1, can be verified by adding
the right hand side of the equations from (2) to (5)

dp1
dt

¼ � kS þ kDð Þp1 þ l1p3 þ l2p2 þ l2p4 ð2Þ

1 3

2 4

λD

λS

1μ

2μ
2μ

λS

λD

Fig. 2 State transition
diagram
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dp2
dt

¼ �ðkS þ l2Þp2 þ kDp1 ð3Þ

dp3
dt

¼ �ðkD þ l1Þp3 þ kSp1 ð4Þ

dp4
dt

¼ �l2p4 þ kDp3 þ kSp2 ð5Þ

Under steady state conditions the above equations could be written as,
ðsetting dp

dt ¼ 0Þ
From Eqs. (3) and (4)

p1 ¼ p2ðkS þ l2Þ=kD; p1 ¼ p3ðkD þ l1Þ=kS;

p2 ¼ p3ðkD þ l1Þ=kS: kD=ðkS þ l2Þ;

From Eq. (5)

�l2p4 þ kD p3 þ kS p2 ¼ 0

And from Eq. (2)

kDp3 þ kSp2 � l2 þ l2 p1 þ p2 þ p3ð Þ ¼ 0

Solving these equations give exact solution as

p1 ¼ l2= ðl2 þ kSð1þ ð kD þ l2Þ= ð kD þ l1ÞÞÞ; ð6Þ

p2 ¼ l2= ðl2 þ kSð1þ ð kD þ l2Þ=ð kD þ l1ÞÞÞ: kD=ð kS þ l2Þ; ð7Þ

p3 ¼ l2= ðl2 þ kSð1þ ð kD þ l2Þ=ð kD þ l1ÞÞÞ: kS=ð kD þ l1Þ; ð8Þ

p4 ¼ 1= ðl2 þ kSð1þ ð kD þ l2Þ=ð kD þ l1ÞÞÞ: kDkS=ð kS þ l2Þ; ð9Þ

5 Success Criteria

For the system to be in working condition scram logic should be working even
though diagnostics is in failed condition, corresponding to state 1 & state 2, as
identified in Table 1. The remaining states, state 3 & state 4 are failure states.
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The probability of failure on demand (PFD) would be the sum of the probability of
finding the system in states 3 and 4.

i.e., PFD = P3 + P4, and success probability would be P1 + P2.

6 Approximate Solution

The PFD or equivalently the unavailability of the system is given by P3 + P4 as
shown in Eqs. (8) and (9), which are not convenient for frequent use. Therefore we
try to make it simple by making the following assumptions. It has been assumed
that repair time for diagnostic is much larger than repair time for scram logic. i.e.
T1 ≪ T2 (i.e. µ1 ≫ µ2) where T1 cT2 is for diagnostic and λ ≪ µ. This means that
failure rate of Scram logic and Diagnostic are much less than their repair rate.

Under these considerations approximate solution would be

p1 ¼ 1= 1þ kST1ð Þffi1; ð10Þ

p2 ¼ kD=ðkS þ l2Þ ¼ kDT2= 1þ kST2ð Þ; ð11Þ

p3 ¼ kS=ðkS þ l1Þ ¼ kST1; ð12Þ

p4 ¼ kS kD T2
2 ; ð13Þ

Unavailability ¼ P3 þ P4 ¼ kS T1 þ kS kD T2
2 ð14Þ

7 Numerical Validation

The Eqs. (2–5) have been solved numerically as a function of time using
ISOGRAPH Reliability Software [3] and compared with steady state approximate
and exact solution. Exact solution is given by Eqs. (6–9) and steady state
approximate solution by Eqs. (10–13). Equation (14) represents unavailability of
the system in steady state condition. To enable this comparison typical values of the
parameter used are given as kS ¼ 3x10�6=h; kD ¼ 2:45x10�7=h. Results are
comparable as shown in Table 2. It is evident that for T1 ≪ T2 and λ ≪ µ (above
said approximation) the calculated value matches exact value.

Deviation = (Markov-approximated solution)/Markov*100
All solution with different procedures have been calculated and shown in Fig. 3.

Solution with respect to steady state approximation is 8.57E-5 and with exact
calculation it is 8.45 E-5 with T1 = 24 h and T2 = 4320 h. Also variation of failure
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probability with respect to individual state probability has also been shown in the
Fig. 3. The approximate solution is comparable with transient solution within 5 %
error.

Figure 4 shows unavailability of the system with same value of failure rate but
different values of repair time as T1 = 24 h and T2 = 12,000 h. The graph shows the
approximate value of unavailability of each system. Fig. 4 indicates that, when the
testing interval for the supervising system is �ðrT1kS

Þ1
2, where r ¼ kS

kD
the failure

probability contribution from the second term in Eq. (14) is significant.

Table 2 Numerical validation

T1 (h) T2 (h) Markov process Approximated
solution

Deviation (%)

P3 P4 P3 P4 (P3 + P4)

2 720 6.0E-6 3.8E-7 6.0E-6 3.8E-7 1.57E-02

2 2160 6.0E-6 3.2E-6 6.0E-6 3.4E-6 −2.28E+00

2 4320 5.9E-6 9.2E-6 6.0E-6 1.4E-5 −2.99E+01

8 720 2.4E-5 3.8E-7 2.4E-5 3.8E-7 1.64E-02

8 2160 2.4E-5 3.2E-6 2.4E-5 3.4E-6 −7.34E-01

8 4320 2.4E-5 9.2E-6 2.4E-5 1.4E-5 −1.36E+01

24 720 7.2E-5 3.9E-7 7.2E-5 3.8E-7 1.66E-02

24 2160 7.2E-5 3.3E-6 7.2E-5 3.4E-6 −2.26E-01

24 4320 7.2E-5 9.2E-6 7.2E-5 1.4E-5 −5.62E+00

720 720 2.2E-3 7.6E-7 2.2E-3 3.8E-7 −4.47E-01

720 2160 2.2E-3 4.3E-6 2.2E-3 3.4E-6 −4.22E-01

720 4320 2.2E-3 1.1E-5 2.2E-3 1.4E-5 −5.78E-01
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Fig. 3 Unavailability of
tested system as function of
time (T1 = 24 h, T2 = 4320 h)
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8 Conclusion

An approximate formula for the calculation of unavailability of an imperfectly
tested system has been worked out, by taking as an example the SCRAM logic
circuit together with testing system typically used in a nuclear reactor. The
approximation has been validated by numerical solution for the transient case. The
formula derived will be useful in the Fault Tree/Event tree analysis of safety
systems.
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Rail Breaks—An Explorative Case Study

Peter Söderholm and Bjarne Bergquist

Abstract Rail breaks are safety critical failures within railway that may result in
derailment, but also delays and cancelled trains. Maintenance is important to both
manage the causes of rail breaks and to reduce their unwanted consequences. The
purpose of this study is to explore the relationship between maintenance practice,
rail breaks and their consequences, to achieve an increased understanding of the rail
break phenomenon and promote continuous improvement. To fulfil the purpose, an
explorative case study at Trafikverket (Swedish transport administration) was
performed. The empirical data was collected from databases that contains infor-
mation about preventive and corrective maintenance, as well as traffic and traffic
disturbances related to rail breaks. The analysis was founded on theories from the
three fields of time series analysis, reliability analysis of repairable systems, and
multivariate data analysis. The findings of the study support an increased under-
standing of the process of rail break development and occurrence, but also related
maintenance efforts.

Keywords Rail break � Railway � Time series � Reliability � Multivariate �
Repairable system � Sweden

1 Introduction

There are extensive work on rail breaks and their maintenance (see, e.g. [1–5]).
However, when making operational decisions about the management of rail breaks
there are less contributions (see [6], as one exception). For example, at the event of
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a postponed track renewal, there are no pragmatic cause-effect relationship between
the rail degradation process and associated maintenance actions that can be used to
estimate the risk for rail breaks and balance it with increased maintenance efforts
and traffic restrictions.

This study is not intended to result in a decision support tool regarding rail
breaks and their maintenance, but to give an increased understanding of the rail
break phenomenon and suggest an analysis toolbox that can be used to achieve
some decision support in a specific situation. However, it is expected that further
work can aim at establishing some cause-effect relationships to be used as a sup-
porting tool when making decisions regarding maintenance related to rail breaks.

2 Method and Material

To fulfil the purpose, an explorative case study of the occurrence of potential and
actual rail breaks in Sweden is performed. This selection was based on the
explorative nature of the study, but also by systematic selection criteria described
by [7], i.e. type of research question, no required control over behavioural events,
and focus on contemporary events.

Empirical data was collected through interviews and data bases. Quantitative
data related to rail breaks was obtained by using Trafikverket data warehouse LUPP
(based on SAP Business Objects Web Intelligence). The sources of this data are the
inspection and fault reporting systems of Trafikverket (i.e. Bessy and Ofelia
respectively). The data warehouse supports business intelligence, and it is possible
to connect information about delays to the occurrences of rail breaks. By usage of
LUPP it is also possible to extract information about tonnage and train passages for
different parts of the rail network during different time periods. For the data used in
this study there are three different LUPP-reports created; i.e. one for the result of
non-destructive test (NDT) inspections (i.e. the indication of potential rail breaks),
one for actual rail breaks (containing the detection of rail breaks by inspections or
any other source and related delays), and one for the amount of traffic (i.e. tonnage
and train passages).

The reports for potential rail breaks (results from the NDT inspections), actual
rail breaks (from inspections and other detections), and tonnage were exported from
LUPP to Excel. In Excel, the potential and actual rail breaks were related to each
other as well as to the tonnage data through common denominators related to
temporal (e.g. year and week) and spatial (e.g. track section) data.

Some analyses were made in Excel (e.g. with the aid of Pivot tables), while some
additional analyses were made in the statistical software Minitab. The performed
analysis can be seen as consisting of three parts, i.e. time series analysis, repairable
system analysis and multivariate data analysis. The theories that acted as a foun-
dation for these three different analysis parts are described in [8–10] respectively.
The analysis may also be seen as performed in three steps starting with univariate
analysis, via bivariate analysis and ending with multivariate analysis. This is a

520 P. Söderholm and B. Bergquist



common approach when performing explorative analyses, see e.g. [10]. However,
the focus of this paper is on the bivariate and multivariate steps.

From a reliability point of view, each pair of rails at a track section is considered
as a repairable system. A repairable system is a system where component parts are
repaired or replaced. When a component failure occurs the entire system is not
scrapped. Rather, isolated repairs are made to restore the system to working order.
An actual rail break is corrected by replacement of a part of the rail or by welding.
A potential rail break is supposed to be corrected before it is developed into an
actual rail break, e.g. by grinding or replacement of part of the rail
(5 m ≤ length ≤ 10 m). Both these maintenance actions will improve the reliability
of that specific part of the rail to some degree. However, these maintenance actions
will individually, due to their limited spatial propagations, not significantly affect
the overall reliability of the whole track section.

The logic of the analysis of this study is based on the bow-tie model, see e.g.
[11]. The unwanted event of a rail break has both causes and consequences. The
major cause of a rail break is seen as the amount of traffic, which drives the
degradation process. In order to avoid rail breaks, different preventive maintenance
efforts are performed, e.g. NDT inspections and rectification of inspection remarks
before a rail break occurs. However, when a rail break occurs, the preventive
maintenance efforts have failed to act as a barrier. The event of a rail break will in
turn result in some unwanted consequences, e.g. train delays. In this case, corrective
maintenance may act as a barrier to reduce the consequences of a rail break, i.e.
through a good maintenance support performance manifested by short adminis-
trative and logistic delay times.

Extracted data from the inspection system Bessy and the fault reporting system
Ofelia covers the whole of Sweden from the year 2000 to the 10th of November
2014, and corresponds to 5822 unique inspection remarks (Bessy, 641 remarks) or
failure events (Ofelia, 5181 events) that represent rail breaks.

A total of 37,871 potential rail breaks were extracted from Bessy based on
performed NDT-inspections during the time period from week 37 in 2001 to week
47 in 2014. The criticality of the actions procreated by these inspections remarks
are; Acute, 135; Week, 458; Month, 26171; Year, 4221; Inspection, 6884; and U, 2.

Tonnage and train passage data retrieved from LUPP covers the whole of
Sweden from week one of 2009 to week 50 of 2014 and includes passenger, freight
and duty trains. In total, this corresponds to 13,036,136,334 tonnages and
35,726,272 train passages.

3 Results

The results of the analysis is presented and discussed in the spatial domain (national
and track section), technical domain (track and Switches and Crossings, S&C) and
in the temporal domain (season, month and year, but also tonnage).
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3.1 Preventive Maintenance Practice

The preventive maintenance practice of rail breaks mainly follows the logic of a
degradation process, where a failure event will result in a faulty state if no main-
tenance actions is taken to prevent further degradation. In addition to the degra-
dation process, sudden rail breaks can occur due to abnormal events, such as the
impact of a flat wheel. These two causes of rail breaks can also interact, where a
degraded rail is more vulnerable to the forces applied from the rolling stock.
Furthermore, other factors such as climate and installation, as well as production
and installation will affect the probability of rail breaks.

Non-Destructive-Testing (NDT) and other maintenance inspections are per-
formed with specified intervals to detect rail degradation and on-going failure
events, i.e. defects that can be seen as potential rail breaks. The intervals are mainly
based on the traffics’ speed and axle loads at that specific part of the infrastructure.
Other affecting factors, such as those mentioned above should also be considered.
Rail break failures are to be rectified within a stipulated time in order to prevent the
occurrence of actual rail breaks [5, 12].

If an actual rail breaks do occur, it can be detected during the preventive
maintenance efforts, but also through failure indications in the signalling system,
through observations (e.g. by maintenance personnel or train drivers), or in worst
case through a derailment.

It is normally assumed that NDT-remarks are rectified within the stipulated time
to prevent actual rail breaks. However, an analysis of the NDT-remarks shows that:

• There are NDT-remarks that not are rectified within the stipulated time, but that
does not result in any rail break.

• There are NDT-remarks that are not rectified within the time frame of this study.

Regarding the first category of NDT-remarks, a deeper analysis has to be per-
formed to see if these remarks represent an increased rail break risk, or if they
indicate an opportunity to improve the maintenance practice, e.g. by reducing their
criticality levels or extending the inspection intervals.

The other category of NDT-remarks represents a time truncation of the analyzed
data due to time restrictions of the performed study, and should be managed by an
appropriate analytic approach. It should be noted that the analyzed data is truncated
both in time and failure. Regarding the time truncation, the total age of a particular
rail section can be determined to some degree regarding calendar time, and to less
degree in metric tonnages. However, the history of the occurrence of potential and
actual rail breaks of a specific track section before the data was covered in the
inspection system (Bessy) is more difficult to reproduce. At the same time, the rail
remains in operation after the time period covered by the analyzed data. In addition,
the occurrence of a potential rail break that is corrected before an actual rail break
occurs can be seen as time truncated from a rail break perspective. The data is also
failure truncated regarding the actual rail break events.
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3.2 Some Traffic and Maintenance Variables Related
to Rail Breaks

An initial analysis of related variables was performed to identify variables that may
affect rail breaks and their maintenance. The Swedish railway system has been
divided into five different asset classes based on their criticality. Asset class 1 is the
most critical and represents major city areas, while asset class 5 is the least critical
and represents lines with little traffic. In addition, marshalling yards are represented
by a sixth asset class (98), due to their complexity and uniqueness. Some differ-
ences besides the amount of traffic, e.g. due to the type of train are found con-
cerning the traffic for each asset class considering both the tonnage and the number
of trains. For example, asset class 1 has more passenger trains with lower weight
than asset class 2. Since tonnage is believed to affect the rail degradation more than
the number of trains, the tonnage is used as a time measure for degradation in this
study. However, when studying the consequences of rail breaks regarding delays
and their costs, it might be more appropriate to consider type and number of trains
than tonnage. This is due to that a passenger train may generate more societal costs
than a freight train. However, these considerations are excluded here.

Besides the traffic density (i.e. a measure of the age of the rail), it is possible that
other variables affect the occurrence of rail breaks, e.g. type of rail, sub ground,
climate, and temperature. Based on the extracted data it is possible to study the effect
of some of these variables. However, it should also be noted that some of these
variables also affect the preventive maintenance practice, and thereby affect the data
indirectly.

Multivariate data analysis is suitable for studying if some variables are more
related to each other by providing similar information about potential and actual rail
breaks. Two potentially useful explorative multivariate data analysis techniques are
Cluster Analysis (CA) and Principal Component Analysis (PCA). In these tech-
niques all variables are analysed simultaneously without dividing them into
response (dependent or Y) or explanatory (independent or X) variables (e.g. as in
multiple regression analysis). One result of the performed CA is illustrated in the
dendrogram illustrated in Fig. 1. In the dendrogram, four distinct clusters of vari-
ables are visible (below the red line).

One cluster of variables (leftmost in Fig. 1) seems to be related to corrective
maintenance of rail breaks in track, and contains the three variables; rail break in
track, disturbed trains due to rail break in track, and the resulting delays due to rail
breaks in track. The second cluster (from the left in Fig. 1) seems to be related to
corrective maintenance of S&C and contains the same variables as for track, but
also the number of train missions. In both these clusters it is seen that the number of
delayed trains and amount of delays are closely related to each other, i.e. for both
track and S&C. Hence, either of these variables can probably be used since they
seem to contain similar information.

The third cluster (from left hand side in Fig. 1) is related to inspection remarks
and rail breaks detected through preventive maintenance inspections, and contains
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both track and S&C. The forth cluster (rightmost in Fig. 1) contains variables that
are related to preventive maintenance performed as NDT-inspection, and also
contains the variables train kilometres and tonnage kilometres. The two latter
variables are also closely related and seem to contain similar information.

If one wants to reduce the number of clusters from four to three, the two first
clusters related to corrective maintenance are closest to each other and can be
merged. Hence, if three clusters are used, one cluster can be considered to describe
corrective maintenance, another cluster to describe maintenance inspections, and
the third cluster to describe preventive maintenance through NDT-inspections. If
one wants to reduce the clusters to only two, the corrective maintenance cluster and
the preventive maintenance inspections cluster are closest to each other and could
be merged, while the NDT-inspections remains as a second cluster. The reason for
this is probably that the data that are selected from the inspections and faults
represent actual rail breaks, while the NDT-remarks represent potential rail breaks.

As for the dendrogram of variables from the CA, the loading plot of the rail
break phenomenon from the initial PCA reveals that the number of variables can be
reduced (see Fig. 2). For example, the amount of traffic can either be expressed as
tonnage kilometres or train kilometres, as also indicted by the fourth cluster in the
CA. The rationale for including kilometres in the measure of traffic is that the length
of the track section also is included. The length of the track will affect the proba-
bility of a rail break on track section level since the track is a linear asset. However,
since S&C are point assets, we consider tonnage in combination with the number of
S&C as a proper measure to use to estimate the probability of rail breaks in S&C on
track section level. Since the tonnage are believed to affect the degradation of rail
more that the number of trains, tonnage kilometres are selected.

As another example, the loading plot reveals that the amount of delays are
closely related to the number of delayed trains, where both variables in turn are
related to the total number of train missions. This relationship is also illustrated in

Fig. 1 Dendrogram of the
included variables related to
potential and actual rail
breaks

524 P. Söderholm and B. Bergquist



the clusters related to corrective maintenance achieved through the performed CA
(see Fig. 1). Since punctuality and delays are two of the most important quality
parameter besides safety for the end customers, the amount of delay minutes is
selected as a measure of the consequences of rail breaks. Hence, when deciding
upon maintenance regarding rail breaks the traffic should be described by both the
tonnage kilometres (related to the causes of rail break) and the number of train
missions (related to the consequences of rail breaks). The traffic variable of tonnage
kilometres will be related to the cause of rail breaks through rail degradation. The
traffic variable of train missions will in turn be related to the consequences of rail
breaks expressed in delay minutes.

3.3 Seasonal Influence on Rail Breaks

If rail breaks demonstrate a seasonality component, knowledge of the seasonality
magnitude may influence maintenance planning. The number of rail breaks per
month were therefore studied, and there is a seasonal dependence, i.e. rail breaks
are more frequent during the winter period than during the summer period (see
Fig. 3).

Fig. 3 The number of rail
breaks in S&C and track per
month for the time period
2000–2014

Fig. 2 Loading plot of the
included variables related to
potential and actual rail
breaks
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The seasonal pattern of rail breaks from the corrective maintenance data base is
also visible as a slowly decaying oscillation of the autocorrelation function, with a
seasonality corresponding to 12 months (Fig. 4).

The autocorrelation function (ACF) of the rail break data time series supports the
hypothesis that there is a significant seasonal pattern with a yearly cycle. The
autocorrelation function reveals that the same month every year (a lag of 12 month)
has a positive autocorrelation, i.e. a month with a high (low) number of rail breaks
tend to have this every year. In contrast, the autocorrelation at a lag of 6 month is
negative, indicating that a month with a high number of rail breaks will be followed
by a month with a low number of rail breaks half a year later, and vice versa.

To fit an appropriate time series model to the rail break data and to further test
the assumption of a seasonal effect, it may be good to initially compare an additive
model with a multiplicative model.

In the additive model, the effects of individual factors are differentiated and
added together to model the data. An additive model should be used when the
magnitude of the data does not affect its seasonal pattern. In contrast, the multi-
plicative model should be used when the size of the seasonal pattern depends on the
level of the data. This model assumes that as the data increase, so does the seasonal
pattern. Most time series plots exhibit such a pattern. In a multiplicative model, the
trend and seasonal components are multiplied and then added to the error com-
ponent. See Figs. 5 and 6.

Considering rail breaks on a national level, it is indicated that a multiplicative
model (Fig. 6) is slightly better than an additive model (Fig. 5). The reason for this
statement is that the mean absolute percentage error (MAPE), mean absolute
deviation (MAD) and the mean squared deviation (MSD) statistics are larger in the
latter case, which also is supported by a residual analysis. The residuals of the
multiplicative model are more independent and normally distributed with a constant
variance than for the additive model. Hence, there is both a linear trend and a
seasonal pattern present in the rail break data. The linear trend indicates that the

Fig. 4 The ACF for actual
rail breaks registered in the
fault reporting system
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number of rail breaks tend to increases during the time period included in the study.
It may be realistic to assume that this increasing trend of rail breaks corresponds to
a degrading condition of the rail, i.e. its reliability is decreasing. The seasonal part
of the model indicates that there are more rail breaks during the winter period than
during the summer period.

The NDT-remarks also display a significant autocorrelation, and a seasonal
pattern (see Fig. 7), similar to rail breaks.

Fig. 5 Additive time series model of rail breaks registered in the fault reporting system

Fig. 6 Multiplicative time series model of rail breaks registered in the fault reporting system
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3.4 Relationship Between Potential and Actual Rail Breaks

The relationship between potential and actual rail breaks is interesting from a rail
break prevention perspective. The months when NDT inspections are performed
and results in inspection remarks are illustrated in Fig. 8. A comparison of the
number of NDT-remarks and rail breaks on a monthly basis and a scatterplot may
reveal cross correlation. The hypothesis being that NDT-remarks (potential rail
breaks) are corrected and thereby prevents the occurrence of actual rail breaks. This
comparison is illustrated in Figs. 8 and 9.

The comparison between rail breaks and NDT-remarks indicate that there is a
negative correlation at the same month, i.e. a high level of one variable corresponds
to a low level of the other. The seasonal influence on the number of rail breaks is
also visible, i.e. there tend to be more rail breaks during the winter period than
during the summer period. See Figs. 8 and 9.

The cross correlation between the two time series of NDT remarks and rail
breaks detected by other means than other types of inspection, is applied to
determine if the NDT-series of data leads the rail break series and by how many
time periods, or lags. The correlation between the NDT series and the rail break
series plus or minus the number of lags (K) is illustrated in Fig. 10.

Fig. 8 Number of actual and
potential (NDT-remarks) rail
breaks per month on national
level

Fig. 7 The ACF for potential
rail breaks (NDT-remarks)
registered in the inspection
system on national level
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The two time series are cross correlated (see Fig. 10). Hence, the outcome of
NDT-inspections correlate with the number of rail breaks. The negative cross
correlation is present within a lag of 6 months, which indicate that a high number of
NDT-remarks will correspond to a low number of rail breaks during the following
6 month. This pattern is also visible in the scatter plot of rail breaks versus
NDT-remarks and the monthly stratification of rail breaks and NDT-remarks, where
a low level of NDT-remarks corresponds to a high level of rail breaks on a monthly
basis (see Figs. 8 and 9).

The cross correlation in Fig. 10 also reflects the seasonal pattern in rail breaks,
where rail breaks are more common during the winter period than during the
summer period. In addition, this seasonal pattern is probably emphasised by the
practice of NDT-measurements, which mainly is performed during the summer
period. The NDT-inspections use water as a medium and thereby only can be
applied for temperatures down to about −5 °C by adding anti-freeze. Furthermore,
winter conditions also contributes as a driver for the development of rail breaks.
The latter is due to that the steel of the rail turns brittle at low temperatures, and
thereby more sensitive to impacts. The brittleness also leads to notch brittleness,
that is, fatigue cracks may propagate much faster when the crack tip is not blunted

Fig. 10 The CCF for
potential (NDT-remarks) and
actual rail breaks on national
level

Fig. 9 Scatterplot of actual
versus potential
(NDT-remarks) rail breaks per
month on national level
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by plastic deformation rapidly leading to rail breaks. Simultaneously, the steel heat
expansion leads to compressive rail stresses during summer, which may close the
cracks that are open and more easily spotted during winter when subjected to tensile
stresses.

There is a positive cross correlation between the number of NDT-remarks and
the number of rail breaks at a lag between 7 and 12 months (see Fig. 10). This
means that a high level of NDT-remarks will corresponds to a high level of rail
breaks in the time period 7–12 months later. This positive cross correlation may
reflect the deterioration process of the rail, which also is indicated by the linear
trend of the time series of the rail breaks (see Fig. 6).

However, to get a deeper understanding of the cross correlation, it is necessary to
use more advanced time series analyses, and also consider the criticality of the
inspection remark, but possible also to stratify on a track section level.

3.5 Rail Breaks in Different Asset Types

Another stratification is to consider the two different types of assets where rail
breaks occur, i.e. track and S&C. One reason for this stratification is that there are
different regulations and administrative responsibilities connected to the two dif-
ferent asset types. This stratification is illustrated by the performed CA and PCA,
where clusters of variables were identified (see Figs. 1 and 2). The rationale for this
stratification is also that track is a linear asset, while S&C are point assets. From a
maintenance perspective, the differentiation between point assets and linear assets is
depending on the criticality that the length of the asset has. The length of point
assets, such as S&C, is not critical for their maintenance. When dealing with a point
asset, maintenance actions are not assigned to a particular length of the asset, but
rather to the entire asset or to some of its indenture levels (included items).
However, a linear asset is an asset whose length plays a central role in its main-
tenance, e.g. railway track. When performing maintenance actions related to linear
assets (e.g. NDT-measurement, grinding and welding), it is necessary to be able to
define the location of a point or a section along the asset.

In addition to the NDT-measurements, there are other safety inspections, where
both potential and actual rail breaks can be detected. Due to the difference between
point and linear assets, these safety inspection are probable more effective in
detecting rail breaks for S&C than for track.

3.5.1 Track

For rail breaks found in the failure reporting system the ACF also show a seasonal
pattern with a 12 month cycle (see Fig. 11).

Hence, with about 6 months lag there is significant negative autocorrelation,
while there is a significant positive autocorrelation every 12th month. This means
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that every specific month each year tend to have the same level of rail breaks every
year, while the level of rail breaks is opposite for months with a distance of about
6 months in-between. Hence, the summer months tend to have a lower level of rail
breaks while the winter months tend to have a higher level of rail breaks. The same
pattern as for rail breaks can be seen in the autocorrelation for NDT-remarks in
track, but with a 6 month shift (see Fig. 12).

The CCF between NDT-remarks and rail breaks for track indicates a seasonal
pattern with a 12 month cycle, where the correlation is positive during 6 months and
negative during 6 months. See Fig. 13.

3.5.2 S&C

The ACF for rail breaks detected in S&C and registered in the fault reporting
system (Ofelia) has another pattern compared to the other ACF for the other
analysed data. As for the other data, there is a seasonal pattern present, indicating a
periodicity of 12 month, which also is reducing with time lag. However, there is no
significant negative autocorrelation present. See Fig. 14.

Fig. 11 The ACF for actual
rail breaks in track registered
in the fault reporting system

Fig. 12 The ACF for
potential rail breaks
(NDT-remarks) for track
registered in the inspection
system
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The reason for the pattern in the ACF for rail breaks in S&C indicates that the
time series is not stationary, i.e. neither the mean nor the variance are constant with
time. The time series plot of rail breaks for S&C supports this assumption by
indicating that both the mean and the variance are increasing with time. In fact, the
increasing trend for all rail breaks (Fig. 6) can mainly be attributed to S&C since the
time series plot of rail breaks in track indicates a stationary behaviour. Hence, this
would indicate that the population of S&C is deteriorating over time with regard to
rail breaks.

The ACF for NDT-remarks in S&C indicates a seasonal pattern with significant
autocorrelation present. See Fig. 15.

The CCF between NDT-remarks and rail breaks for S&C shows low cross
correlation (<0.2), but indicate a seasonal pattern. See Fig. 16.

The CCF between NDT-inspections and rail breaks is about twice as large for
track (0.4) as for S&C (0.2), cf. Figs. 13 and 16 respectively. This indicates that the
NDT-inspections have more influence on the rail breaks for track than for S&C.
This is probably due to the difference in maintenance practice between linear assets
and point assets.

Fig. 14 The ACF for actual
rail breaks in S&C registered
in the fault reporting system

Fig. 13 The CCF for
potential (NDT-remarks) and
actual rail breaks in track
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3.6 Rail Breaks at Track Section Level

It may also be interesting to investigate the rail break data on track section level,
rather than at the national system level. The reason for this is that a track section
often is a part of the rail network that is rather homogenous regarding the amount of
traffic that passes through it, at the same time as major maintenance decisions and
actions, e.g. track renewal, often is performed at track section level.

A PCA was performed to identify differences between track sections regarding
potential and actual rail breaks. This PCA includes a reduced number of variables,
as discussed in relation to the performed CA. The PCA includes data about rail
breaks from the inspection and fault reporting systems, as well as consequences of
rail breaks and amount of traffic related to the track sections. The loading and score
plots are visualised in Figs. 17 and 18 respectively.

The first principal component (PC1) seems to mainly be related to traffic char-
acteristics, either as a cause to potential and actual rail breaks, but even more to the
consequences of actual rail breaks. Hence, corrective maintenance related to actual
rail breaks resulting in delays is also reflected in PC1. See Fig. 17.

Fig. 15 The ACF for
potential rail breaks
(NDT-remarks) for S&C
registered in the inspection
system

Fig. 16 The CCF for
potential (NDT-remarks) and
actual rail breaks in S&C
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The second principal component (PC2) seems to mainly reflect type of pre-
ventive maintenance action, where there are two distinct groups with opposite
impact (see Fig. 17):

• potential rail breaks detected through NDT-inspections, affected by the amount
of traffic that has a positive loading.

• actual rail breaks detected through other types of maintenance inspection neither
resulting in any major traffic disturbances nor affected by the amount of traffic,
that has a negative loading.

Regarding PC2, it should be noted that the interval of both these preventive
maintenance actions are related to traffic characteristics, i.e. at least the tonnage and
the speed of trains. Furthermore, machine inspections are probably more cost
efficient for linear asset inspection than for point asset inspection compared to
manual inspections, due to the differences in detectability of failures.

Track sections that are related to, or affected by, different variables can be
identified through a comparison of the loading plot (Fig. 17) and the score plot
(Fig. 18).

Fig. 18 Score plot of reduced
number of variables related to
potential and actual rail
breaks

Fig. 17 Loading plot of
reduced number of variables
related to potential and actual
rail breaks
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Two track sections contribute largely to PC1 (i.e. track sections 401 and 601).
Furthermore, three track sections contribute negatively to PC2 (i.e. track sec-
tions 417, 603 and 902). These track sections also correlate with maintenance
inspections of both track and S&C.

In addition, two track sections that have large positive loadings on PC2 and
relation to NDT-inspections (i.e. track sections 124 and 912).

The three identified groups of track sections are:

• A group related to NDT-inspections represented by track sections 111, 124, 512
and 912. All these sections have mixed traffic, but the first two sections are
single track while the two other are double track.

• A group related to inspections, which consists of track sections 417 (Hallsberg
marshalling yard), 603 (from Gothenburg Kville to Gothenburg Skandia har-
bour) and 902 (Malmö freight station). Hence, these track sections are related to
marshalling yards and freight stations, where little NDT-inspections are per-
formed and the geographical area is limited.

• A group related to corrective maintenance actions represented by track sec-
tions 401 and 601. These two track sections are in the vicinity of Sweden’s two
largest cities (Stockholm and Gothenburg respectively) and experience a lot of
traffic.

A deeper qualitative analysis of information about the track sections above
identified three specific sections for further analysis.

The first track section is number 124 between Boden and Bastuträsk, which for
many years has experienced postponed track renewals. At this section, derailments
causing extensive traffic disturbances occurred in 2008 and 2013. The track section
also has a specific type of rail (Domnarvet 1976–1982) with manufacturing defi-
ciencies, which experiences unwanted vertical crack propagation. The
NDT-inspections have been intensified after the derailments and all remarks are
rectified.

The second track section is number 417, which is the Hallsberg marshalling
yard. The yard has experienced disproportionately many rail breaks and large part
of the yard is not inspected through NDT.

Track section 401 is located within the central parts of Stockholm (from Älvsjö
via Stockholm C to Ulriksdal), and is thus exposed to a large traffic load.
Simultaneously, it has a high number of rail breaks and NDT-remarks.

3.7 Consequences of Rail Breaks

Examples of potential consequences of rail breaks are derailments, delays and
cancelled trains, as well as corrective maintenance actions.
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3.7.1 Traffic Consequences

Measures of the consequences of a rail breaks include the number of disturbed
trains and delay minutes. From January of 2010 until the 10th of November 2014
there are 2318 reported rail breaks (inspection remarks and fault reports), which
resulted in 10,722 delayed trains on a right time level of three minutes (RT +3) and
250,819 min of delay (almost 6 months).

The number of disturbed trains correlate positively with the amount of delays
(Figs. 19 and 20). A reasonable explanation is that a high number of disturbed trains
also would result in a high volume of delay minutes (see also Figs. 1 and 2).

Rail breaks in plain track result in more disturbed trains and delay minutes than
rail breaks in S&C (see Fig. 19). This might also be reasonable due to the different
characteristics of the two asset types, i.e. plain track is a linear asset, while S&C is a
point asset. This will in turn affect the maintenance of respective asset, which also
will affect the maintenance support performance of the maintenance organization,
e.g. logistic delay times, and thereby traffic disturbances. Hence, depending on how
the rail break is detected, it should mainly be possible to initially localize the rail
break to a specific S&C. However, for plain track the initial localization of a rail
break is probably possible to achieve down to a section block (e.g. through the
signalling system). Hence, to perform corrective maintenance of a rail break, the
S&C provides a limited area (point) to cover for fault localization, while the track
would provide a larger area (distance) to cover in order to localize the rail break.

The positive correlation between the number of disturbed trains and delay
minutes differs depending on asset classes (see Fig. 20). For example, the positive
correlation decreases with asset class. This indicates that the more traffic (i.e. the
higher the asset class), the more vulnerable the traffic becomes to rail breaks (see
also Figs. 2 and 3). In addition, the two asset classes 1 and 2 tend to have more
disturbed trains than the other asset classes, but also to have a higher volume of
delays. This seems reasonable since the amount of traffic is highest at these two
asset classes.

Fig. 19 Scatterplot of
number of disturbed trains
versus delay minutes for rail
breaks in S&C and track

536 P. Söderholm and B. Bergquist



The most extreme values for traffic disturbances can be appointed to rail breaks
in tracks of asset classes 1 and 2. Hence, this indicates that a combination of high
traffic and a linear asset type has a negative effect on the infrastructure’s robustness
when considering rail breaks.

3.7.2 Corrective Maintenance

The practices of corrective maintenance tasks at a rail break in track and in S&C are
somewhat different (see Figs. 21 and 22). The most common track maintenance task
is repair, followed by replacement of unit (Fig. 21). For S&C the order of these
tasks are the opposite (Fig. 22). One reason for this difference might simply be that
it is easier to change a rail part of the S&C than a part of the rail in plain track.
However, when looking at the amount of delay per corrective maintenance action, it

Fig. 20 Scatterplot of
number of disturbed trains
versus delay minutes for rail
breaks in different asset
classes

Fig. 21 Corrective
maintenance actions of rail
breaks in track and related
delay
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is seen that replacement of unit results in more delays than repair, which might
indicate that the former action takes more time (see Figs. 21 and 22). This is
especially true for S&C, where the replacement of unit corresponds to more delay
time per rail break than repair (see Fig. 22).

The third most common tasks for both asset types are temporary repair (see
Figs. 21 and 22). This also seems logical, since the purpose would be to minimize
the time for corrective action and thereby the traffic disturbances. Once the tem-
porary repair is finished, it is possible to plan for a permanent maintenance action at
more convenient time. This practice seems more effective for track than for S&C
regarding the amount of delay per maintenance occasion (cf. Figs. 21 and 22).

With one exception for track, the other types of maintenance tasks are few
compared to this top three. The exception for track is the fourth most common task,
i.e. to check the condition at a rail break (see Fig. 21). This task might be related to
the practice to check the rail where a train that is suspected to be damaging the rail
has passed a wheel impact detector. The impact detector is for instance triggered by
a flat wheel. This practice takes time since the maintainer has to walk along the
track and look for damages, which also is indicated by the amount of delay per
maintenance action.

4 Discussion and Conculsions

This paper explores the phenomenon of rail breaks on an aggregated level. Some
hypotheses have been strengthened and some new ones have emerged. Interesting
further research would be to conduct supplementary descriptive and explanatory
studies on a more detailed level, to establish more tangible relationships between

Fig. 22 Corrective
maintenance actions of rail
breaks in S&C and related
delay
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cause and effect. Based on the performed explorative analysis and its results, the
following tentative conclusions can be drawn:

• There is a cross correlation between the number of NDT remarks and the
number of rail breaks, which indicates that it is possible to affect the number of
rail breaks through altering the practice of NDT inspections. The detection of
potential rail breaks (NDT-remarks) and their correction seems to have a pos-
itive effect during a time period of about 6 months, where the cross correlation is
negative, i.e. a high number of NDT-remarks corresponds to a low level of rail
breaks during 6 months.

• There is a seasonal component in the time series data for rail breaks, indicating
that there are more rail breaks during the winter period than during the summer
period. This seasonal effect is probably strengthened by the practice of per-
forming the NDT inspections, which mainly is performed during the summer
period. Nevertheless, to reduce the number of rail breaks, one hypothesis gen-
erated by the results is that an increased number of NDT inspections during the
winter period, using technology to overcome temperature difficulties may be
effective.

• There is a linear trend in the time series data for rail breaks, indicating that the
seasonal component increases with time. This linear trend probably reflects that
the rail deteriorates within the studied time period. Hence, to reduce the number
of rail breaks, an increased number of NDT inspections in response to an
increased age of the rail may be effective. Other preventive maintenance ini-
tiatives may be to replace the rail earlier and thereby avoid that it becomes more
sensitive to rail breaks due to aging effects of the rail material. The aging effect
is also indicated in the cross correlation between NDT-remarks and rail breaks,
where there is a positive correlation at a lag between 7 and 12 months.

• There is a difference in the autocorrelation function (ACF) of the time series for
rail breaks regarding the two asset types track and S&C. Both ACF indicate a
seasonal pattern. However, while the ACF for track has both negative and
positive autocorrelation, the ACF for S&C only has positive autocorrelation.
The reason for the pattern in the ACF for rail breaks in S&C indicates that the
time series is not stationary, while it is stationary for track. The time series plots
of rail breaks in S&C and track respectively support this assumption. Hence, the
increasing trend for all rail breaks can mainly be attributed to S&C, which
indicates that the population of S&C is deteriorating over time.

• The CCF between NDT-inspections and rail breaks is about twice as large for
track (0.4) as for S&C (0.2). This indicates that the NDT-inspections have more
influence on the rail breaks for track than for S&C. This is probably due to the
difference in maintenance practice between linear assets and point assets. Hence,
machine inspections are less valuable for point assets than for linear assets due
to the geographical extension of the latter. In addition, the additional safety
inspections that are included in the preventive maintenance may be more
effective for S&C compared to track and thereby influence the cross correlation.
Hence, potential rail breaks are detected and corrected before they develop into
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actual rail breaks in the S&C safety inspections. This means that both the
NDT-inspections and safety inspections affect the occurrence of actual rail
breaks in S&C and thereby reduce the cross correlation between the two indi-
vidual preventive maintenance efforts and rail breaks.

• Three track sections with different characteristics suitable for further
cause-and-effect studies have been identified. These are track section 124 (major
preventive maintenance through NDT-inspections), 417 (few NDT-inspections,
but other kinds of preventive maintenance), and 401 (large impact from cor-
rective maintenance).

• There are NDT-remarks that are not rectified within the stipulated time. Further
analysis is necessary to conclude whether these remarks represents an increased
risk for actual rail breaks or an opportunity to improve the preventive mainte-
nance practice. Here it would be interesting to benchmark with the practice of
other infrastructure managers (e.g. Network Rail in England) and their experi-
ences, as well as those that are responsible for running the NDT-train (i.e.
Sperry).

In this study the amount of traffic and the occurrence of potential and actual rail
breaks were linked on a track section level for the studied time period. To get a
more appropriate cause-effect relationship it is necessary to identify at which
specific track the rail break has occurred and the amount of traffic that it has
experiences since installation. This approach would also support a more stringent
reliability analysis. However, to succeed with this approach it is necessary to collect
some additional data about characteristics of the infrastructure from the asset reg-
ister (BIS).

One further suggestion for further research is to include the costs of delay to
quantify the consequences of rail breaks, also considering derailments. Further
work could also include a more thorough study of the corrective maintenance
efforts, to highlight improvement possibilities regarding the maintenance support
performance, e.g. regarding administrative and logistic delay times.
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An Integrated Approach to Remaining
Life Prediction of Rotating Machines

Tarun Chugh, V. Sankaranarayanan and P.V. Varde

Abstract State-of-the-art decisions related to repair and replacement of rotating
machines in any process or industrial environment is still based on qualitative
engineering judgment which often tends to be arbitrary and conservative in nature
and has potential for loss of revenue and more importantly net production. The
subject acquires significant dimension as number of rotating machines, for example,
induction motors are very high, say of the order of 10–1000 or more for a plant like
nuclear or process plant. Thus, there is a need to have a science or rational based
approach for the plant managers to take decisions related to maintenance or ageing
assessment based on well defined quantitative metrics or criteria. Industry experi-
ence suggests that prediction of health of insulation in an induction motor is one of
the important parameters that require attention towards characterizing the life of the
machine. This paper presents R&D work being performed on predicting the
remaining useful life of insulation of the induction motors. The focus of this R&D
is on development of an integrated framework where data driven approach is
integrated to physics-of—failure approach towards developing robust model for
predicting the remaining life of insulation.
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1 Introduction

Rotating machines like induction motors are complex electro-mechanical devices
utilized in most industrial applications for the conversion of power from electrical to
mechanical form. Although induction motors are constructed, tested, and qualified to
rigorous standards, failures of electric motors in nuclear power plants continue to
occur. Operating anomalies, failures of other equipment, and other unforeseen cir-
cumstances can all contribute to aging degradation in motors. Recent studies
regarding the operating experience of electric motors and the effects of aging on
electrical equipment in nuclear power plants have indicated that many electric motor
failures can be attributed to the aging and degradation of insulating materials and
bearings caused by high temperature, vibration, moisture and other stressors.

Healthiness of the machines contributes to the production, down time reduction,
reliability and revenues. Monitoring of the healthiness of the machines, therefore,
is very important and essential. The ability to accurately predict changes in
properties/parameters of electrical machines is of critical importance in optimizing
the maintenance schedule of the plant. Thus, there is a continuous need to device test
methods or to find more searching and sensitive parameters to predict the machine
health. In view of this, it becomes quite important for a maintenance engineer to be
able to predict the health of induction motor leading to appropriate usage of the
machine(s), reduction in downtime, enhanced operational reliability and safety and
revenues. Thus, the maintenance action can be optimized by diagnostics and
prognostics methods which form a part of Condition Based Maintenance (CBM).

The stressors that affect large electric motors are: Heat, Chemicals, Pressure,
Steam, Radiation, Mechanical Cycling/Rubbing, Humidity/Water Spray, Electro-
magnetic Cycling, Vibration/Seismic, and Foreign Object Ingestion.

The stressors act independently and/or synergistically to cause failures in the
major subcomponents of large electric motors, such as the stator windings, electrical
terminations, bearings, and rotor cage. All of the stressors listed above contribute to
the gradual or catastrophic degradation of the insulation system. Mechanical and
electromagnetic cycling, ingestion of foreign objects, and vibration-related stressors
act upon the mechanical integrity of the machine. They can cause bearing and
lubrication system problems, rotor breakage, mounting/enclosure failures, and
failures of the shaft/couplings.

The stator winding system plays an important role in induction motors. A well
designed stator winding insulation system can prevent the electrical short. There are
several components and features in a stator winding insulation system, such as
strand (sub-conductor) insulation, turn insulation and ground-wall (or ground or
earth) insulation. Turn insulation is used for preventing shorts among the turns in
the coil. The electrical insulation system decides the lifetime of insulation. For
different purposes of insulation in electrical equipment, there are several [1].

In this paper, various approaches to study the insulation degradation phe-
nomenon in induction motors like Failure Mode Effect Analysis (FMEA), Fault
Tree Analysis (FTA) and Fuzzy Logic are reviewed and analyzed.

544 T. Chugh et al.



2 FMEA and FTA for Insulation Degradation

In order to understand the relationships of the various stressors to large motor
operational performance, a failure modes and effects analysis (FMEA) was per-
formed as shown in Table 1. The FMEA provides a systematic procedure for
determining how each component of a device or system can fail, the mechanisms
that cause it to fail, and how it can affect the overall performance of the device or
system. The means for detection of the identified failure mechanisms are estab-
lished along with methods for mitigating the effects of the failure mechanisms [2].

Fault Tree Analysis of Insulation Breakdown
One of the most critical component of an induction motor and also one of the

main sources of their failure is the stator winding insulation system. Various

Table 1 FMEA for induction motor

Component
name

Failure mode Failure mechanisms Failure effects

Stator
winding

Winding to ground
fault

Thermal degradation of
insulation due to high ambient
temperature, restricted
ventilation, under- or
over-voltages, low frequency,
mechanical overload, voltage
imbalance, single-phasing, too
frequent starting, high process
fluid temp, dust or dirt
accumulation

Electrical trip

Mechanical degradation of
insulation due to vibration and
rubbing

Damage to motor
winding requiring

Breakdown of insulation due to
electrical transients and surges

Rewind

Degradation of insulation due to
moisture, lubricant, chemical
reactions, or dirt

Manufacturing defect in
insulation

Mechanical damage from loose
part or ingested part

Winding-to winding
fault

Same as above Same as above

Turn-to-turn fault Same as above Same as above

Open winding Breakdown of insulation and
melting of conductors due to
electrical transients and surges

Same as above for
failure

Broken winding conductor due to
vibration, electromagnetic
transients, and/or cyclic fatigue

(continued)
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Table 1 (continued)

Component
name

Failure mode Failure mechanisms Failure effects

Stator leads
and coil
cross-ties

Phase-to-ground
fault

Same as above Same as above

Phase-to-phase
Fault

Same as above Same as above

Open circuit Breakdown of insulation and
melting of conductors due to
electrical transients and surges

Same as above

Broken conductor due to
vibration, electromagnetic
transients, and/or cyclic fatigue

Mechanical damage from loose
part or ingested part

Mechanical damage from contact
with rotating part

Loose leads or coil
cross-ties

Loosening of leads, coil crossties,
and fasteners due to vibration,
electromagnetic transients, and/or
cyclic fatigue

Degradation and
damage to insulation
and conductors

Mechanical damage from loose
part or ingested part

Stator core Loose laminations
and locking bars in
stator core assembly

Loosening of stator core
assembly due to vibration

Increased losses
(heat) due to larger
leakage flux

Loosening of stator core
assembly due to electromagnetic
transients

Increased motor
current

Misalignment of core assembly
during manufacture

Lamination
overloading

Thermal degradation and wear of
lamination insulation

Increased losses
(heat) due to
excessive current in
iron core

Increased motor
current

(continued)
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surveys on motor reliability have been carried out over the years where the per-
centage of motor failures due to problem with the insulation is about 26 %.
The unscheduled process downtime caused by a failure of the insulation system can
cause enormous costs. FTA for stator winding insulation failure of induction motor
is shown in Fig. 1.

Table 1 (continued)

Component
name

Failure mode Failure mechanisms Failure effects

Rotor
squirrel
cage
assembly

Rotor bars cracked
at end ring

Fatigue due to vibration and
mechanical cycling

Increased rotor cage
resistance and
heating

Fatigue due to electro-magnetic
cycling and transients

Increased vibration
and wear of core
laminations
insulation

Defective welds or brazed joints Crack adjacent bars
due to increased
flexure

Rotor bars loose in
core slots

Loosening due to vibration and
mechanical cycling

Increased vibration
and wear of core
laminations
insulation

Loosening due to
electromagnetic cycling and
transients

Loosening due to thermal cycling
and excessive starting

Same as above

Defective swaging during
manufacture

Broken rotor bar Same as above Same as above

Rotor core Loose laminations
and locking bars in
stator core assembly

Loosening of stator core
assembly due to vibration

Increased losses
(heat) due to larger
leakage flux

Loosening of stator core
assembly due to electromagnetic
transients

Increased motor
current

Misalignment of core assembly
during manufacture

Lamination
overheating

Thermal degradation and wear of
lamination insulation

Increased losses
(heat) due to
excessive current in
iron core.

Increased motor
current
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3 Fuzzy Logic for RUL Estimation

In this approach, the d-q model for an induction motor is simulated using
MATLAB/SIMULINK. The d-q model requires that all the three-phase variables
have to be transformed to the two-phase synchronously rotating frame.
Consequently, the induction machine model has blocks transforming the
three-phase voltages to the d-q frame and the d-q currents back to three-phase [3].

The induction machine model implemented in this paper is shown in Fig. 2.
Simulation of Insulation Degradation [4]
To study the effect of stator insulation degradation in an induction motor, it is

assumed that a shunt resistance is added in series with the phase impedance of the
stator and the value of this resistance can be changed to vary the effect of degra-
dation of stator insulation. The insulation sheets between the slots and coils and on

Fig. 1 FTA of insulation failure in a motor
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the enameled wires and between the turns in the coil are consists of different classes
of insulation material. The choice depends on the maximum temperature rise per-
missible for each class. For each class of insulation material there exist limiting
temperatures beyond which deterioration sets in and progresses rapidly. The
degradation of insulation of the respective phase results in the reduction of resis-
tance to the thermal conductivity. This results into higher heat transfer from the
surface of the stator windings to the remaining part of structure. The interpretation
of higher heat transfer is that the motor is subjected to extra load. Hence, motor
draws more current as compared to what it would have drawn had the insulation not
degraded. The increase in current is interpreted as reduction in the steady-state
equivalent resistance of motor referred to stator. This is based on the interpretation
of the presence of shunt resistance (Rsh) distributed across the entire phase as
represented in the Fig. 3. The degree of degradation of, stator insulation is estimated
on the basis of unbalance in stator phase currents.

For the induction motor of particular make, type and the frame size of suitable
rating employed for particular application in an industry, it is probable that the
status of degradation of stator insulation varies over considerable finite range. The
finite range extends from certain minimum to permissible maximum value.
The variation in the range of degradation particularly depends on several factors
such as the time period over which motors are in use and the operating conditions.

The induction motor of particular make, type and the frame-size of suitable
rating employed for particular application in an industry usually operate under
variable load condition. In general, the motor is operating with the presence of
many recipient faults, which are observable at corresponding frequencies in stator
current spectrum. These include the stator winding faults due to several causes like
inter-turn short circuit etc.; but other than the fault of stator insulation degradation.
The fault with the stator insulation degradation would appear at supply frequency.
In the spectrum the amplitude of current corresponding to supply frequency has two
components; one due to actual load and other due to the stator insulation degra-
dation. In order to fetch the current component due to stator insulation degradation
it is therefore essential to eliminate the current component due to load. Hence, it is

Fig. 2 Simulink d-q model of an induction motor
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obvious that the motor is to be operated at minimum mechanical load to ascertain
the degree of degradation of stator insulation.

As a function of mains phase variables (ia, ib, ic) the Current Parks vector
components (id, iq) are:

id ¼
ffiffiffiffiffiffiffiffi
2=3

p
ia� ibffiffiffi

6
p � icffiffiffi

6
p ð1Þ

iq ¼ ibffiffiffi
2

p � icffiffiffi
2

p ð2Þ

Under ideal conditions, three phase currents lead to a Current Park vector with
the following components.

id ¼
ffiffiffiffiffiffiffiffi
6=2

p
� I sinwt ð3Þ

id ¼
ffiffiffiffiffiffiffiffi
6=2

p
� I sin wt � p

2

� �
ð4Þ

Where;
I Maximum value of the supply phase current;
w Supply frequency;
t Time variable

Fig. 3 Insulation degradation
in an induction motor
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The percentage of degradation of stator insulation per phase is determined on the
basis of unbalance in stator phase currents.

Ideal condition refers to zero-percent (0 %) state of percentage of degradation of
stator insulation of the respective phases. First, the respective three-phase stator
currents viz. Ia, Ib and Ic in amps; are computed and then on the basis of three to
two-phase transformation model its Current Park vector pattern is determined. The
Current Park vector representation is a circular pattern centered at the origin of the
coordinate-axis as illustrated by Fig. 4.

When the stator insulation is degraded, then the plot between id and iq is an
ellipse. The area under the ellipse increases with increase in degradation of the
stator winding. The simulation results implies that each one of the current park
vector data pattern is unique in representing the degree of unbalance in three-phase
stator current on account of specific state of degradation of stator insulation of
respective phases. This is shown in the Fig. 5 [5].

Fuzzy Logic [6–8]
A stator current signal contains potential fault information. The most suitable

measurements for diagnosing the faults under consideration, in term of easy acces-
sibility, reliability, and sensitivity, are the stator current amplitudes Ia, Ib, and Ic.

Fig. 4 Id-Iq—induction
motor (balanced condition)
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Fuzzy systems rely on a set of rules. These rules, while superficially similar,
allow the input to be fuzzy, i.e. more like the natural way that humans express
knowledge. Thus, a power engineer might refer to an electrical machine as
“somewhat secure” or a “little overloaded”. This linguistic input can be expressed
directly by a fuzzy system. Therefore, the natural format greatly eases the interface
between the engineer knowledge and the domain expert. Furthermore, infinite
graduations of truth are allowed, a characteristic that accurately mirrors the real
world, where decisions are seldom “crisp”.

As stated, the induction motor condition can be deduced by observing the stator
current amplitudes. Interpretation of results is difficult as relationships between the
motor condition and the current amplitudes are vague. Therefore, using fuzzy logic,
numerical data are represented as linguistic information.

In our case, root mean square (rms) the stator current amplitudes Ia, Ib, and Ic
are considered as the input variables to the fuzzy system. The stator condition in
terms of the Residual Useful Life (RUL) is chosen as the output variable. All the
system inputs and outputs are defined using fuzzy set theory.

Ia ¼ liaðIajÞ
Iaj

2 Ia

� �
ð5Þ

Ib ¼ libðIbjÞ
Ibj

2 Ib

� �
ð6Þ

Fig. 5 Id-Iq induction motor
(un-balanced condition)
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Ic ¼ licðIcjÞ
Icj

2 Ic

� �
ð7Þ

RUL ¼ lrulðRULjÞ
RULj

2 RUL

� �
ð8Þ

where Iaj Ibj, Icj and RULj are, respectively, the elements of the discrete universe
of discourse Ia, Ib, Ic, and RUL. µia(Iaj) µib(Ibj) µic(Icj) and µrul(RULj) are,
respectively, the corresponding membership functions.

Basic tools of fuzzy logic are linguistic variables. Their values are words or
sentences in a natural or artificial language, providing a means of systematic
manipulation of vague and imprecise concepts. More specifically, a linguistic
variable is characterized by a quintuple (x, T(x), U, G, M), where x is the variable
name; T(x) is the set of names of the linguistic values of x, each a fuzzy variable,
denoted generically by x and ranging over a universe of discourse U. G is a
syntactic rule for generating the names of x values; M is the semantic rule asso-
ciating a meaning with each value.

For instance, the term set T (RUL), interpreting stator condition, RUL, as a
linguistic variable, could be

T RULð Þ ¼ 100%; 80%; 60%; 40%; 20%f g ð9Þ

where each term in T (RUL) is characterized by a fuzzy subset, in a universe of
discourse RUL. Good might be interpreted as a stator with no faults, damaged as a
stator with voltage unbalance, and seriously damaged as a stator with an open
phase.

Similarly, the input variables Ia, Ib, and Ic are interpreted as linguistic variables,
with

T Qð Þ ¼ Zero; Small; Medium; Bigf g ð10Þ

where Q = Ia, Ib, Ic, respectively.
Fuzzy rules and membership functions are constructed by observing the data set.

For the measurements related to the stator currents, more insight into the data is
needed, so membership functions will be generated for zero, small, medium, and
big. For the measurement related to the stator condition, it is only necessary to
know if the stator condition is good, damaged, or seriously damaged. Once the form
of the initial membership functions has been determined, the fuzzy if-then rules can
be derived. Figure 6 depicts the linguistic variables used in this study. Membership
functions for the input and output functions are shown in Figs. 7 and 8 respectively.
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Fig. 6 Fuzzy logic—linguistic variables

Fig. 7 Membership function of Ia, Ib and Ic

Fig. 8 Membership function for RUL
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These rules have been optimized so as to cover all the healthy and the faulty
cases. For ourstudy, we have obtained the following 14 if-then rules.

Rule (1): If Ia is Z Then RUL is 20 %
Rule (2): If Ib is Z Then RUL is 20 %
Rule (3): If Ic is Z Then RUL is 20 %
Rule (4): If Ia is B Then RUL is 20 %
Rule (5): If Ib is B Then RUL is 20 %
Rule (6): If Ic is B Then RUL is 20 %
Rule (7): If Ia is S and Ib is S and Ic is M Then RUL is 60 %
Rule (8): If Ia is S and Ib is M and Ic is M Then RUL is 60 %
Rule (9): If Ia is M and Ib is S and Ic is M Then RUL is 60 %
Rule (10): If Ia is M and Ib is M and Ic is M Then RUL is 100 %
Rule (11): If Ia is S and Ib is S and Ic is S Then RUL is 100 %
Rule (12): If Ia is S and Ib is M and Ic is S Then RUL is 60 %
Rule (13): If Ia is M and Ib is S and Ic is S Then RUL is 60 %
Rule (14): If Ia is M and Ib is M and Ic is S Then RUL is 60 %

Figure 9 shows the relationship of Ia with RUL as established by the Fuzzy Rule.
The simulation is run for two cases. In the first case, the stator insulation is

healthy and the stator current and the derived id and iq are shown in Figs. 10 and 11
respectively. The Fuzzy Controller output is low signifying healthy condition as
shown in Fig. 12.

Fig. 9 Relationship of Ia
with RUL
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Fig. 10 Ia, Ib and Ic in healthy condition of insulation
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Fig. 11 Id and Iq in healthy
condition of insulation

Fig. 12 Fuzzy controller
output in healthy condition of
insulation
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In Case 2, the insulation failure is assumed, thus the effective stator resistance is
varied for phase C. This is shown in Fig. 13. The plot between id and iq is not a
circle but an ellipse which is shown in Fig. 14. Finally, the Fuzzy Controller Output
is high signifying deteriorated condition as shown in Fig. 15.

Fig. 13 Ia, Ib and Ic in deteriorated condition of insulation
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4 Conclusions

In order to understand the relationships of the various stressors to large motor
operational performance, a failure modes and effects analysis (FMEA) and Fault
Tree Analysis (FTA) was performed. To simulate the effect of insulation degra-
dation in an induction motor by variation of motor parameters, fuzzy logic has been
used which estimate the RUL of the stator winding based in the stator currents. The
Fuzzy Rule has thus been established. This helps estimation of the health of

Fig. 14 Id and Iq in
deteriorated condition of
insulation

Fig. 15 Fuzzy controller
output in deteriorated
condition of insulation
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insulation based on a predefined set of rules. Additionally, the plot between id and
iq is obtained which is also a signature analysis to predict the insulation health.
Negative Sequence Current is also monitored.

In the present simulation, the induction motor has been modeled using its d-q
model and RUL is estimated based on the stator current and graph between id and iq.
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Reliability Compliance Testing
of Electronic Systems Using Parametric
and Non Parametric Sequential Test Plans

Diana Denice, Manoj Kumar and P.P. Marathe

Abstract During design & development, reliability of electronic systems is pre-
dicted using well-known prediction methods like empirical models and life testing.
Empirical models help to quantify reliability during design phase of systems while
life testing or accelerated life testing methods are applied once the system is
developed. Assessment of system reliability using these methods follows bottom-up
approach and as a result, any latent uncertainty at the component/subsystem level
gets amplified at the system level. To deal with the limitations of existing methods
and to verify that system reliability goals are met, reliability compliance testing is
gaining importance. In compliance testing, system reliability is not predicted but it
is demonstrated by testing, whether system conforms to the system requirement or
not. This method does not require any additional setup or chamber and it is based
on the failure data of system components obtained during testing of systems after
installation. Hence, it is very cost effective. In this paper, two sequential compliance
test plans for control & instrumentation (C&I) system of a Nuclear Power Plant
(NPP) are discussed, using parametric and nonparametric analysis. Parametric
analysis assumes exponential time-to-failure distribution while nonparametric
analysis is based on distribution free sequential rank-sum probability ratio test.
A case study of these plans for a NPP C&I is also presented. Finally, a comparison
of both the methods is made.
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1 Introduction

For industrial as well as critical applications, reliability has grown to be one of the
most significant attributes of electronic system design. During design & develop-
ment, reliability is embedded into a system by choosing good quality components
and raw materials, employing proven manufacturing technologies, redundancy etc.
and improved by means of failure analysis and testing. However, once the system is
ready, it becomes imperative to confirm the target reliability. In this case, reliability
prediction helps to assess if system reliability goals are met.

There are two well-known methods in prediction i.e. empirical failure models
and life testing. Empirical models are used during design phase of systems to
predict initial reliability figures. While life testing method applied after system
development gives estimates close to field reliability [1]. Also, accelerated life
testing which is a modified life testing method works on the principle of acceler-
ating failure mechanisms of components to estimate mean time to failure (MTTF).

However, assessment of system reliability using these methods has an inherent
limitation, i.e. it follows bottom-up approach and as a result, any latent uncertainty
at the component/subsystem level gets amplified at the system level. To deal with
these shortcomings and to verify system reliability goals, reliability compliance
testing seems promising.

In compliance testing, system reliability is not predicted but it is demonstrated
by testing, whether system conforms to the system requirement or not. This method
does not require any additional setup or chamber and uses failure data available
during testing of systems after installation. Hence, it is very cost effective.

There are two basic types of compliance tests; sequential tests and time/failure
terminated tests [2]. If all the samples are tested at a time, it is called a time/failure
terminated test or fixed sample test. If samples are tested sequentially, one-by-one
or batch-by-batch it is called a sequential test. Sequential tests offer several benefits
over their fixed counterpart. Few of them are (i) they require smaller test duration
for very reliable or very unreliable items [2]. (ii) sample size required is smaller in
many cases [3] which reduce the total cost of testing.

Therefore, in this paper, two types of sequential test plans: parametric and non
parametric are discussed. Parametric sequential tests assume a parametric distri-
bution to derive the plan while non parametric tests, as the name suggests are
distribution free. In this paper, a probability ratio test is used in the parametric case
and a rank-sum probability ratio test for non parametric case. A detailed plan is
developed using both methods for C&I system of NPP. Finally, a case study of NPP
C&I available in parametric analysis is applied to non parametric case and results
are compared.
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2 Sequential Analysis

Sequential analysis is a hypothesis testing situation in which the course of action is
reassessed as observations become available [4]. As opposed to conventional
hypothesis testing where the number of observations (i.e. sample size) is treated as a
constant, sample size in sequential hypothesis testing depends on the outcome of
observations. As a result, it is not fixed.

The sequential method of testing a hypothesis H is described as follows [5].
A rule is formulated for making one of the following three decisions at every
observation of the experiment:

(i) Accept H
(ii) Reject H
(iii) Continue the experiment by taking additional observations.

If the first observation leads to acceptance or rejection of the test, the test is
terminated. If no decision is reached, the test is continued with the second obser-
vation and so on.

2.1 Methods and Applications

Methods: There are two widely accepted methods in sequential testing: parametric
methods and non-parametric methods [3].

In parametric methods, failure distributions like Gaussian, exponential, binomial
etc. are assumed to derive the sequential test plan. Well established and most widely
used procedure in this category is known as the Sequential Probability Ratio Test
(SPRT).

To deal with those samples whose failure distribution is not known a priori, non
parametric tests such as Sequential Signed Rank Test (SSRT), Wilcoxon Sequential
Signed Rank Test (WSSRT) and Sequential Rank-Sum Probability Ratio Test
(SRSPRT) are available.

Applications:

1. Sequential experimentation is tremendously used in the field of medical and
pharmaceutical research. With the help of this method, only a few patients are
tested (sequentially) for the efficacy of a new drug [6], instead of testing all the
patients.

2. Another field of its application is in lot acceptance tests, especially when the
items to be tested are very expensive or get destroyed during testing. It is
recently standardised for use in reliability compliance testing [2].
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In this paper, SPRT based on the likelihood ratio of sample and SRSPRT based
on likelihood ratio of Wilcoxon signed rank statistic [7] are used. Out of the three
non parametric tests available, SRSPRT is used because of its similarity to SPRT,
which will get clearer from the following section.

2.2 Sequential Probability Ratio Test (SPRT)

Let us consider the simple null hypothesis,

H0 : h ¼ h0

against the alternate hypothesis

H1 : h ¼ h1

where h is the parameter of interest.
Let f ðx; hÞ denote the distribution of a random variable x with h as its parameter.

Then, the distribution of x is given by f ðx; h0Þ when H0 is true and f ðx; h1Þ when H1

is true.
Successive observations on x are denoted by x1, x2, x3…… xn.
For any positive integer m, the joint probability distribution of obtaining sample

x1, x2……. xm is given by [5]

p0;m ¼ f ðx1; h0Þ � . . . � f ðxm; h0Þ when H0 is true ð1aÞ

p1;m ¼ f ðx1; h1Þ � . . . � f ðxm; h1Þ whenH1 is true ð1bÞ

where x1, x2……. xm are independent and identically distributed (i.i.d) observations.
Two types of errors arise in any hypothesis testing [4]. Type I error also known

as producer’s risk a is the probability of rejecting H0 when it is true i.e.

a ¼ P H1jH0ð Þ ð2Þ

where P HijHj
� �

is the probability of accepting Hi when Hj is true.
Type II error also known as consumer’s risk b is the probability of accepting H0

when it is not true.

b ¼ P H0jH1ð Þ ð3Þ

Thus, SPRT for testing H0 against H1 is derived as follows:
For each observation xm, compute the likelihood or probability ratio (p1,m/p0,m).
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If

B\
p1;m
p0;m

\A ð4Þ

test is continued by taking next observation.
If

p1;m
p0;m

�A ð5Þ

test is terminated with the rejection of H0 (acceptance of H1).
If

p1;m
p0;m

�B ð6Þ

the test is terminated with acceptance of H0.
The two constants A and B given [5] by

A ¼ ð1� bÞ
a

; B ¼ b
ð1� aÞ ð7Þ

which define the boundary conditions for the probability ratio.

2.3 Sequential Rank-Sum Probability Ratio Test (SRSPRT)

Consider the same hypotheses described in Sect. 2.1.

H0 : h ¼ h0
H1 : h ¼ h1

Let x1, x2, x3…… xn be i.i.d observations and h be their true mean.
SRSPRT makes the only assumption that the underlying distribution for samples

is symmetric about its median, which is much easier to satisfy and more likely to be
true than to assume a specific distribution function [7].

This test is based upon the probability ratio of Wilcoxon signed rank statistic
W þ

i under each hypothesis Hi; where i = 0, 1.
Then, the Wilcoxon signed rank statistic is given by

W þ
i ¼

Xn
k¼1

R xki
� �

w xki
� � ð8Þ
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whereW þ
i is a discrete random variable, xki is the kth ordered data in the sample and

R xki
� �

is rank of xki , i = 0, 1 is the hypothesis index and j = 1, 2,…..n is sample index.
To obtain the Wilcoxon statistic under hypothesis Hi, compute

xj;i ¼ xj � hi ð9Þ

Now arrange jxj;ij in increasing order of magnitude. Assign a rank R according to
their position and an indicator w according to their sign.

R xki
� � ¼ K is the rank of the data jxj;ij

w xki
� � ¼ 1 if xki [ 0

0 if xki\0

( )
ð10Þ

Then, the rank-sum probability ratio [7] is given by

rn ¼
P W þ

1 ; n
� �

P W þ
0 ; n

� � ð11Þ

If

B\rn\A ð12aÞ

test is continued by taking additional observation.
If

rn �A ð12bÞ

test is terminated with the rejection of H0 (acceptance of H1).
If

rn �B ð12cÞ

the test is terminated with acceptance of H0.

2.4 Operating Characteristic Curve (OCC)

Once the hypothesis is formulated and a test plan is developed, it is best to know the
performance of the same plan or probability of acceptance for all the other
hypotheses which can arise from the formulated hypothesis i.e. OC curve depicts
the probability of acceptance of hypothesis under test not only when h ¼ h0 and
h ¼ h1 but also when h 6¼ h0 and h 6¼ h1.

It is a curve which plots the probability of acceptance of H0,L hð Þ against the
parameter h under test. OC curve for a sequential plan is derived from equation [5]
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L hð Þ� Ah � 1
Ah � Bh

ð13aÞ

where h is the root of the equation

Zþ1

�1

f x; h1ð Þ
f x; h0ð Þ
� �h

f x; hð Þdx ¼ 1 ð13bÞ

Solving the above integral w.r. to h by substituting f (x,θ) gives an expression for
h. It is then substituted into (11) along with A and B to get L(θ).

3 Development of Test Plans

Sequential test planning involves stating the requirement in the form of hypothesis
and fixing the sampling risks. Sample size is not fixed in advance. Then, using one
of the sequential procedures discussed above, a sequential plot and test truncation
criteria are worked out.

An Integrated Test Facility (ITF) has been set up at BARC. The purpose of ITF
is to validate the C&I systems of an NPP to their requirements. C&I consist of 22
racks and 80 types of modules like power supply, processors, signal conditioning,
I/O hardware etc. The total quantity of modules is around 1000 nos.

The time to failure of modules during the test will be used to check the com-
pliance to reliability requirement. The reliability requirement for the entire C&I
system is Mean Time To Failure (MTTF) of 1000 h.

Two test plans (SPRT and SRSPRT) are developed for the same requirement.
The aim is to compare the two and bring out their merits and demerits.

Hypothesis for testing MTTF h of C&I system is proposed as

H0: h� 1000 h

H1: h� 500 h

3.1 Using SPRT

Time to failure of the entire C&I system is assumed to be exponentially distributed
with mean h. Hence, the probability of failing r times in an accumulated test time
t is given by the Poisson distribution [2],
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pðrÞ ¼ t
h

� �r
exp � t

h

� � 1
r!

� 	
ð14Þ

The sequential probability ratio becomes

p1ðrÞ
p0ðrÞ ¼

h0
h1

� 	r

exp � 1
h1

� 1
h0

� 	
t

� 	

Substituting it into Eq. (10),

B\
h0
h1

� 	r

exp � 1
h1

� 1
h0

� 	
t

� 	
\A

Substituting A, B from (7) and taking natural logarithm,

ln Bð Þ
ln h0

h1

� � þ
1
h1
� 1

h0

� �
ln h0

h1

� � t\r\
ln Að Þ
ln h0

h1

� � þ
1
h1
� 1

h0

� �
ln h0

h1

� � ð15Þ

Now, assuming α = 10 %, β = 10 %, the following equation is obtained

�3:17þ 1:443
t
h0

\r\3:17þ 1:443
t
h0

Accept line: r ¼ �3:17þ 1:443 t
h0

Reject line: r ¼ 3:17þ 1:443 t
h0

The next step is to determine the truncation criteria for the test. For an expo-
nential distribution, the test truncation time tt is calculated using the formula [2],

tt ¼
h0v2a;2rt

2
ð16aÞ

where the test truncation failure number rt is determined from the ratio [7]

v2a;2rt
v21�b;2rt

� h1
h0

ð16bÞ

Using the above formulae, test truncation ratio tt
h0

� �
is found to be 9.883 and

truncation failure number rt to be 15.
Since, the sample size n is not predetermined in advance, as per the truncation

criteria, test will be truncated when n = 15 samples have failed or data points fall
into acceptance or rejection region for n < 15.

Sequential testing plot with truncation is shown in Fig. 1.
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From the plot, it is seen that a failure free operation of 2200 h will lead to
acceptance of H0 while more than 3 failures within 2200 h will lead to rejection.

The OC function for this test at ITF is calculated from the pair of equations given
below and plotted as shown in Fig. 2. To compute h, values of h (positive and
negative) are chosen such that it takes a range of values lesser than h1 and higher
than θ0. At the same time, L hð Þ is computed for the same values of h; now the curve
is plotted with h on x-axis and L(θ) on y-axis [7]

L hð Þ ¼ Ah � 1
Bh � Ah

ð17aÞ

h ¼ h0

h0
h1

� �h
�1

h h0
h1
� 1

� � ð17bÞ

In the OC plot, when θ is 1000 h the probability of acceptance of H0 is 89.99 %
(1−α) and when θ is 500 h, the probability of acceptance of H0 is only 9 % (β).

As can be seen, this sequential plan discriminates well between H0 and H1.

Fig. 1 Sequential SPRT plot

Fig. 2 OC plot
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3.2 Using SRSPRT

For sample size, n ≥ 10, W þ
i can be approximated by a Gaussian distribution with

mean �W ¼ nðnþ 1Þ
4 and variance VT ¼ nðnþ 1Þ 2nþ 1ð Þ

24 [8].
i.e. the pdf of W þ

i becomes

P W þ
i ; n

� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pVT

p exp � W þ
i � �Wð Þ2
2VT

 !
ð18Þ

Substituting (14) in (7) and taking natural logarithm on both sides gives the ratio
rn as

ln rn ¼ 12
n nþ 1ð Þ 2nþ 1ð Þ W þ

0 �W þ
1

� �
W þ

0 þW þ
1 � n nþ 1ð Þ

2

� 	
ð19Þ

Substituting it in lnB\ ln rn\ lnA
We get

n nþ 1ð Þ 2nþ 1ð Þ
12

lnB\ W þ
0 �W þ

1

� �
W þ

0 þW þ
1 � n nþ 1ð Þ

2

� 	
\

n nþ 1ð Þ 2nþ 1ð Þ
12

lnA

Let

y ¼ W þ
0 �W þ

1

� �
W þ

0 þW þ
1 � n nþ 1ð Þ

2

� 	
ð20Þ

then

n nþ 1ð Þ 2nþ 1ð Þ
12

lnB\y\
n nþ 1ð Þ 2nþ 1ð Þ

12
lnA ð21Þ

Accept line: y ¼ n nþ 1ð Þ 2nþ 1ð Þ
12 lnB

Reject line: y ¼ n nþ 1ð Þ 2nþ 1ð Þ
12 lnA

Since a minimum sample size of 10 is assumed in the derivation, test will be
truncated for n = 10.

Now, assuming α = 10 %, β = 10 %, n = 1 to 10, the following plot is obtained as
shown in Fig. 3.

From this graph, it can be seen that at least one failure must occur to reach a
decision unlike SPRT which takes care of a no failure case.
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4 Case Study

A truncated parametric sequential test plan available for entire C&I of NPP is taken
up as a case study to understand the planning and execution of sequential analysis.
The sequential test plan is as follows.

Given data: h0 � 252 hrs; h1 � 100 hrs; α = 25 %; β = 25 %, where all these
notations retain the same meaning as above.

Using this data, accept and reject line equations are obtained using (13a, 13b).
Truncation criteria are obtained from (16a) and (16b). i.e.

Accept line: r ¼ �1:188þ 1:645 t
h0
;

Reject line: r ¼ 1:188þ 1:645 t
h0

Truncation criteria:rt ¼ 2:5; tt
�
h0 ¼ 1:34

If the system meets this criterion, it is said to be compliant, otherwise
non-compliant.

Data was collected when the entire C&I system was functional in its operating
conditions as shown in Table 1.

Plotting the failure data in sequential plot in Fig. 4,
From the plot, it is seen that

r ¼ 1; t=h0 ¼ 1:5

Fig. 3 Sequential SRSPRT
plot

Table 1 Data collected
during the test on C&I

r t (hrs) t=h0
1 237 0.94

2 461 0.94–2.52
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Since,

r\rt; t=h0 [ tt=h0

Hence, it is demonstrated that C&I of NPP is compliant with the reliability
requirement.

5 Comparison of Sprt and Srsprt

In order to compare the results of SPRT with SRSPRT, data obtained in the case
study is applied to SRPRT plan using the same α, β and MTTF values.

Data is transformed using (8), (9), (10) and (20) and shown in Table 2:
Accept and Reject line equations are given by (21) as

y ¼ �1:0986n nþ 1ð Þ 2nþ 1ð Þ
12

; y ¼ 1:0986n nþ 1ð Þ 2nþ 1ð Þ
12

which are symmetric about n.
Truncation criteria: n = 10
The sequential plot with the data is shown in Fig. 5.

Fig. 4 Sequential SPRT plot
showing experimental data

Table 2 Data collected in
case study applied to
SRSPRT

n t (hrs) t � h0 t � h1 W þ
0 W þ

1 y

1 237 −15 137 0 1 0

2 461 209 361 2 3 −2
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From the plot, it is seen that 2 observations are not sufficient to make any
decision about the hypotheses under test. This plan needs to be supported by more
data points to reach a conclusion.

Based on the theory and case study, an attribute comparison matrix is made for
these methods as discussed in Table 3.

6 Conclusion

Reliability compliance testing of C&I systems using sequential analysis is presented
here. In this test, reliability is not predicted but demonstrated, only to verify the
system requirement. The test can be conducted during testing of systems after
installation and hence does not require any additional setup or chamber. Sequential
plans are preferred over conventional fixed sampling plans because in most of the
cases, they require smaller test duration and sample size. It is preferable to go for an
SPRT plan when the sampling distribution is known a priori because it requires

Fig. 5 Sequential SRSPRT
plot showing experimental
data

Table 3 SPRT versus SRSPRT

Attribute SPRT SRSPRT

Distribution Requires prior knowledge of the distribution Does not require prior
knowledge of distribution

Robustness
of the plan

Because of dependency on a model, it is not
robust if actual model is different from assumed
one.

Robust as it doesn’t make
any model assumptions

Sample size Requires smaller sample size for the same test
strength (α, β)

Higher sample size for the
same test strength (α, β)
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smaller sample size compared to SRSPRT. A detailed step-by-step planning and
procedure is given for both SPRT and SRSPRT, which can be applied to any type
of C&I systems, for any underlying distribution, once the requirements are known.
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Bayesian Reliability with MCMC:
Opportunities and Challenges

Jing Lin

Abstract The recent proliferation of Markov Chain Monte Carlo (MCMC)
approaches has led to the use of the Bayesian inference in a wide variety of fields,
including reliability engineering. With the current (and future) proliferation of new
products, old problems continue to hamper us, while new challenges keep
appearing. In Bayesian reliability, these include but are not limited to: (1) achieving
and making use of prior information; (2) applying small data sets or system
operating/environmental (SOE) data with big and complex data; and (3) making
posterior inferences from high-dimensional numerical integration. To deal with old
problems while meeting new challenges, this paper proposes an improved proce-
dure for Bayesian reliability inference with MCMC, discussing modern reliability
data and noting some applications where the Bayesian reliability approach with
MCMC can be used. It also explores opportunities to use Bayesian reliability
models to create stronger statistical methods from prior to posterior. Finally, it
outlines some practical concerns and remaining challenges for future research.

Keywords Reliability � Bayesian statistics �Markov chain monte carlo (MCMC) �
System operating/environmental (SOE) data � Big reliability data

1 Introduction

The Bayesian framework is more attractive now that it is comparatively easy for
users to incorporate what they know about the world into their conclusions and to
calculate how probabilities change as new evidence arises [1]. Bayesian reliability
offers modern methods and techniques for analysing reliability data from a
Bayesian perspective [2, 3]. It has been popular with reliability engineers for over

J. Lin (&)
Division of Operation, and Maintenance Engineering, Luleå University
of Technology, 97187 Luleå, Sweden
e-mail: janet.lin@ltu.se

© Springer International Publishing Switzerland 2016
U. Kumar et al. (eds.), Current Trends in Reliability, Availability,
Maintainability and Safety, Lecture Notes in Mechanical Engineering,
DOI 10.1007/978-3-319-23597-4_41

575



50 years because of its ability to consider information from past experiments,
impressions, prejudices, etc. [4], especially as it is generally time-consuming (or
cost consuming) to obtain enough failure data for a reliability assessment. However,
its application has been restricted because of the difficulties calculating
high-dimensional numerical integration from posterior information.

Markov Chain Monte Carlo (MCMC) is essentially Monte Carlo integration
using Markov chains. It draws samples from the required distribution and forms
sample averages to approximate expectations. With these samples, it runs a cleverly
constructed Markov chain for a long time. The proliferation of MCMC approaches
has led to the use of the Bayesian inference in a wide variety of fields for the past
two decades [2, 5].

In Bayesian reliability, the advances in MCMC approach have opened up new
possibilities, with research appearing in book chapters and research papers. Work
has been done on the following topics and their cross-applications (discussed in a
later section): (1) hierarchical reliability models; (2) fault tree analysis; (3) complex
system reliability analysis; (4) change points analysis; (5) accelerated failure models;
(6) masked system reliability; (7) degradation analysis; (8) accelerated degradation
testing; (9) deterioration analysis; (10) life cycle reliability assessment; (11) updating
of structural models and reliability; (12) reliability of repairable system; (13) soft-
ware reliability models, etc. To implement modern computational-based Bayesian
approaches for reliability inference, Lin (2014) proposes a general approach for
Bayesian reliability using MCMC methods, developing a procedure consisting of
four stages and 11 steps [6].

Bayesian reliability will undoubtedly be popular in the future, but it is still
criticized. First, most forms of prior distributions are motivated by mathematical
tractability. This limits the practical usefulness of the models, as it does not facil-
itate the elicitation of valid engineering judgements in the form of a prior distri-
bution. Second, although implementing MCMC to get posterior distributions can
compensate the bias associated with difficulties of choosing a suitable prior,
ongoing problems include posterior sampling, MCMC convergence diagnostic,
Monte Carlo error diagnostic, etc. Furthermore, considering the ongoing prolifer-
ation of new products, the next generation of reliability data comprises System
Operating/Environmental (SOE) data (with big, complex characters) [7, 8]. The
question of how to deal with SOE data (or big reliability data) must be resolved to
fully implement Bayesian approaches in reliability.

To deal with old problems while meeting new challenges and to inspire future
research, this paper introduces some examples using Bayesian reliability with
MCMC. It proposes an improved procedure for its implementation, and explores
some of the opportunities to use Bayesian reliability approaches with MCMC. The
rest of this paper is organised as follows. Section 2 presents some examples of
Bayesian reliability applications with MCMC. Section 3 discusses modern relia-
bility data, noting old problems and new challenges from prior to posterior; Sect. 4
proposes an improved procedure for Bayesian reliability inference with MCMC.
Section 5 explores some of the opportunities and practical concerns in the use of
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Bayesian reliability with MCMC, including stronger statistical methods from prior
to posterior. Section 6 offers concluding remarks and outlines areas for further
research.

2 Examples of Bayesian Reliability Applications
with MCMC

Examples of Bayesian reliability with MCMC include but are not limited to the
following topics and their cross-applications.

• A building block approach to model validation may proceed through various
levels, such as material to component to subsystem to system, comparing model
predictions with experimental observations at each level. In hierarchical relia-
bility modelling, reliability data usually become scarce as one proceeds from
lower to higher levels. In the Bayesian structural equation modelling method for
hierarchical model validation, a Bayesian network with MCMC is applied to
represent the two relationships and to estimate the influencing factors between
them [9]. Graves et al. [10] discuss how to use simultaneous higher-level and
partial lower-level data in reliability assessments.

• Using a genetic algorithm and MCMC methods, Hamada et al. [11] propose a
fully Bayesian approach that simultaneously combines non-overlapping (in
time) basic and higher-level event failure data in fault tree quantification.

• Lin [12] proposes a Bayesian reliability approach for detecting certain
change-points, which may disturb the evaluation of reliability models with
covariates, via a two-stage failure model and stochastic time-lagged regression
functions.

• In masked system lifetime data, the exact component causing the system’s
failure is often unknown. Bayesian reliability modelling with Gibbs sampling
and MCMC approaches have been proposed to model the masking probabilities
[13].

• To solve the combined problem of small data samples and incomplete datasets
whilst simultaneously considering the influence of several covariates, Lin et al.
[14–17] apply both parameter and non-parameter Bayesian reliability models
(incl. Bayesian survival analysis) with MCMC to the analysis of degradation of
locomotive wheel-sets considering their different installed positions. Lin et al.
[18] also propose a Bayesian reliability analysis with MCMC for complex
systems, where a certain fraction of the subsystems is defined as a “cure frac-
tion” under the consideration that such subsystems’ lifetimes are long enough
and, in fact, never fail during the life cycle of the entire system.

• Accelerated degradation testing (ADT) is a common approach in reliability,
especially as it is time-consuming and cost-consuming to obtain enough field
failure data. Wang et al. [19] propose a Bayesian reliability evaluation method
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with MCMC to integrate the ADT data from the laboratory with the failure data
from the field.

• Given the limited number of variables that can be controlled and observed,
unobserved heterogeneity is almost inevitable in a reliability study. Most
existing models do not fully account for the heterogeneity issue. Hong and
Prozzi [20] adopt Bayesian reliability with MCMC approaches to make pave-
ment deterioration forecasts at different confidence levels with varying inspec-
tion frequencies.

• Pan [21] proposes Bayesian reliability to improve product reliability prediction
by integrating failure information from both the field performance data and the
accelerated life testing data. Furthermore, as modern technology continues to
advance, available data for reliability assessment of a new product are extremely
sparse and sometimes contain subjective information. A Bayesian model
updating approach has been developed to evaluate new products’ life cycle
reliability [22]. To better understand how to update sectional time-to-failure
(TTF) distribution as new operational TTF data become available, Briand and
Huzurbazar [23] propose a Bayesian change point methodology to combine
lifecycle failure distribution.

• Bayesian reliability with MCMC has been applied for model updating, as some
claim [24] there are always modelling errors associated with constructing a
theoretical model of the behaviour of a structure, and this leads to uncertain
accuracy in the predicted response.

• Relying on the use of MCMC methods, a Bayesian model which takes into
account missing data is proposed to describe failures in a complex, expanding
over time, repairable system, split into components installed over different years
[25].

• Software reliability is one of the most significant attributes of software quality.
To handle group data and time point data, Hirata et al. [26] propose a unified
MCMC algorithm based on the Metropolis-Hasting method, regardless of data
structures. Aktekin and Caglar [27] develop a Bayesian model with imperfect
debugging in software reliability considering multiplicative failure rate. They
use actual inter-failure data to carry out inference testing on model parameters
via MCMC and present additional insights from Bayesian analysis.

• Bayesian reliability with MCMC has been applied in some comparison studies.
For instance, Soliman et al. [28] investigate the problem of point and interval
estimations for the modified Weibull distribution (MWD) using progressively
type-II censored sample. The maximum likelihood (ML), Bayes, and parametric
bootstrap methods are used for comparing estimations from the unknown
parameters as well as some lifetime parameters (reliability and hazard func-
tions). Based on a general, data-driven framework, Lin et al. [15] undertake a
general reliability study using both classical and Bayesian semi-parametric
degradation approaches to illustrate how to flexibly determine reliability to
support preventive maintenance strategy making.
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3 Big and Complex Reliability Data Meet Bayesian

3.1 Modern Reliability Data

Meeker and Hong (2014) call the next generation of reliability data System
Operating/Environmental (SOE) data [7]. These data are characteristically “big”
and “complex” [8]. To the typical three “Vs” (Volume, Velocity and Variety), the
concept of big reliability data adds more “Vs”, for instance, Veracity, Value,
Visualization, Volatility, Validity, Venue, Vocabulary, and Vagueness. Complexity
stems from high dimensionality, poor data quality, complex relationships, incom-
plete data and many other properties of big data, caused by the increasing use of
numerous types of sensors, mobile device, tether-free, web-based applications and
other information and communication technologies (ICT).

Along with the new technologies, new challenges keep appearing. In Bayesian
reliability, these include but are not limited to: (1) achieving and making use of prior
information; (2) applying both small data sets and system operating/environmental
(SOE) data with big, complex characters; (3) making posterior inferences from
high-dimensional numerical integration.

3.2 Prior

In Bayesian reliability, traditional prior knowledge comes from a wide range of
historical information, including: engineering design, component test data, system
test data, operational data from similar systems, field-tracking studies in various
environments, computer simulations, related standard and operation manuals,
experience data from similar systems, expert judgment and personal experience,
warranty data, etc. It also takes a variety of forms, including reliability data, the
distribution of reliability parameters, moments, confidence intervals, quantiles, and
upper and lower limits.

In modern reliability data, the information which can be used as prior will
embrace the attributes enumerated by the “Vs” mentioned above, together with
“complexity”. Not surprisingly, given the nature of “big prior information”, there
are challenges in the acquisition, inspection, fusion and selection of such knowl-
edge for MCMC.

3.3 Model

The challenge in the next generation of reliability data includes creating high
quality reliability models. The model must be robust, as customers think there is
enough big prior knowledge to be used.
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In addition to the various forms of traditional reliability parametric models,
semi-parametric models, frailty models and other untraditional reliability models,
advanced MCMC stochastic models, Bayesian time series models, Bayesian belief
networks, Bayesian quantile regression models, Bayesian causal inference, etc. will
receive increasing attention.

Bayesian reliability models with MCMC will become more popular in mainte-
nance modelling, RAMS (reliability, availability, maintainability, safety), and CBM
(condition based maintenance), etc. Already researchers are interested in how to use
additional data or historical information to support decision making.

3.4 Posterior

Given the burgeoning interest, we need to develop more advanced posterior sam-
pling approaches with today’s big data. Posterior/model diagnostics and updated
approaches are required.

In addition, the loss function must be studied further, as most reliability decision
support models are actually based on the square loss function from the posterior
results, and this is inadequate.

4 An Updated Procedure for Bayesian Reliability
Reliability with MCMC

Lin (2014) proposes a general approach to Bayesian reliability using MCMC
methods by developing a procedure consisting of four stages and 11 steps [6]. An
improved procedure (see Fig. 1) is composed of a continuous improvement process
and includes 16 sequential steps. By implementing the step-by-step procedure, we
can accumulate and gradually update prior knowledge. Equally, posterior results
will be improved upon and become increasingly robust, thereby improving the
accuracy of the inference results. Details of the procedure include:

• Step 1: Data collection. The original data sets for prior information and current
data related to target reliability studies must be identified and acquired. Various
data sources are discussed in Sect. 3.2.

• Step 2: Data preparation. Collected prior information needs to be evaluated,
cleaned, and merged. In this way, prior information can be transferred to prior
knowledge, and current data can become data for reliability analysis in later
steps.

• Step 3 and Step 4: Prior inspection and integration. In these steps, prior
knowledge receives a second and more extensive treatment, including but not
limited to: a reliability consistency check, a credence test, and a multi-source
integration. These steps improve prior knowledge.
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• Step 5: Prior selection. This step determines the model’s form and parameters.
• Step 6: Model selection. This step determines a reliability model (see Sect. 3.3),

selecting ith (i ¼ 1; � � � iþ 1; � � � n) model from n candidates for the studied
system/units.

• Step 7: Posterior sampling. In this step, we determine a sampling method (for
instance, Gibbs sampling, Metropolis-Hastings sampling, etc.) to implement
MCMC simulation for the model’s posterior calculations.

• Step 8: Convergence diagnostic. In this step, we check whether the Markov
chains have reached convergence. If so, we move to the next step; if not, we
return to Step 7 and re-determine the iteration times of posterior sampling or
re-choose the sampling methods; if the results still cannot be satisfied, we return
to Steps 5 and 6 and re-determine the prior selection and model selection.

• Step 9: Monte Carlo error diagnostic. We need to decide if the Monte Carlo
error is small enough to be accepted in this step. As discussed in Step 8, if it is
accepted, we go on to the next step; if it is not, we return to Step 7 and re-decide
the iteration times of the posterior sampling or re-choose the sampling methods;
if the results still cannot be accepted, we go back to Steps 5 and 6 and recal-
culate the prior selection and model selection.

Fig. 1 A procedure for bayesian reliability inference via MCMC
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• Step 10: Model improvement. Here, we choose the iþ 1th candidate model and
restart from Step 6.

• Step 11: Sensitivity analysis. After implementing n candidate models, sensitivity
analysis is implemented with different values of the prior to study the robustness
of the Bayesian method.

• Step 12: Model comparison. After implementing n candidate models, we need to
compare the posterior results to determine the most suitable model.

• Step 13: Model average. For the accepted candidate models, we need to adopt
the average posterior estimations (using the Bayesian model average or the
MCMC model average) as the final results.

• Step 14: Inference making. After achieving the posterior results in Step 13, we
can perform Bayesian reliability inference.

• Step 15: Decision making. According to the selected loss function, we can
determine system (or unit) reliability, find the failure distribution, and optimise
maintenance strategies, etc.

• Step 16: Data updating and inference improvement. Along with the passage of
time, new “current data” can be obtained, relegating previous inference results
to prior information. By updating reliability data and prior knowledge, and
restarting at Step 1, we can improve the reliability inference.

5 Potential Applications and Practical Concerns
of Modern Reliability Data with Bayesian Inference

To improve the decision-making process in modern reliability, data from various
sources (e.g. product, production, maintenance, and business) must be collected,
integrated, fused, and analysed to transform them from information into knowledge.
Given the quickly developing areas of Information and Communication
Technologies (ICT), new knowledge-driven (or data-driven) approaches in com-
putational sciences and applied mathematics must be developed to support relia-
bility strategies to predict, diagnose or make a prognosis of a complex system’s
behaviour. Another important focus is how to use the previous and current results to
make prescriptions to support engineers on site.

Increasing attention is being paid to big data analytics to extract information,
knowledge and wisdom from big data [29]. In the reliability field, big data have
huge potential to enable sophisticated knowledge-driven decision-making and
facilitate new ways to organise, learn and innovate. However, as model-driven
decision-making is still important when failure mechanisms cannot be achieved,
Bayesian reliability is a good way to combine model-driven approaches and
knowledge-driven approaches.

Although big data are starting to handle both visible and invisible issues in
reliability, the research gaps in its application remain large. Professor Judea Pearl,
winner of the 2011 A.M. Turing Award, notes that “big data must go to causal” [30].
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He also says many data scientists remain unconcerned about the critical distinction
between statistical and causal inference. In the future, however, causal inference
combined with Bayesian belief networks will a play key role in reliability, from
prediction to prognosis and prescription.

Bayesian quantile regression models [31] will start attracting more researchers
considering reliability applications. This method can work well with prior and
posterior knowledge, even with the complexity of modern reliability data.

Although some researchers suggest big data represent the “next big thing in
innovation”, “the fourth paradigm of science”, or “the next frontier for innovation,
competition, and productivity”, small data (or incomplete, censored/truncated, or no
data) still exist and continue to challenge asset management. Meanwhile, no matter
whether data are big or small, some “old problems (incl. uncertainties on the
parameter estimation, complexity and large-scale system, dependences between
events)” must be studied further [32].

Considering the harsher limitations imposed on decision makers today (incl.
resources, cost, humanity, environmental influences), integrated reliability decisions
must be studied together in Multi-objective Optimization Problems (MOP) models.
Besides handling traditional technologies, Bayesian Optimization Algorithm
(BOA) and Bayesian Belief Networks (BNN) can deal with MOP in a more flexible
way, as their capabilities include considering prior information.

6 Conclusion

Bayesian approaches with MCMC will become increasingly popular in reliability
engineering. With this in mind, this paper presents some examples of Bayesian
reliability applications with MCMC. Considering modern reliability data, it pro-
poses an improved procedure consisting of 16 steps. It argues Bayesian reliability is
able to meet the new challenges of big prior and big posterior data, with huge
potential to enable more sophisticated knowledge-driven decision making and
combine knowledge with model-driven models. In the near future, both causal
inference and Bayesian quantile regression will play a pivotal role in reliability
analysis, from prediction to prognosis and prescription. That said, a number of old
problems (incl. uncertainties on the parameter estimation, complexity and
large-scale system, dependences between events) must be studied further.

References

1. Nuzzo R (2014) P values, the ‘gold standard’ of statistical validity, are not as reliable as many
scientists assume. Nature 506:150–152

2. Hamada MS, Wilson A, Reese CS, Martz H (2008) Bayesian reliability. Springer, New York
3. Singpurwalla ND (2006) Reliability and risk: a bayesian perspective. Wiley, Chichester

Bayesian Reliability with MCMC: Opportunities and Challenges 583



4. Tillman FA, Kuo W, Hwang C, Grosh DL (1982) Bayesian reliability & availability—a
review. IEEE Trans Reliab R-31(4):362–372

5. Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain monte carlo in practice.
Chapman and Hall/CRC, London

6. Lin J (2014) An integrated procedure for bayesian reliability inference using MCMC. J Qual
Reliab Eng 2014

7. Meeker WQ, Hong Y (2014) Reliability meets big data: opportunities and challenges. Qual
Eng 26:102–116

8. Göb R (2014) Discussion of “Reliability Meets Big Data: Opportunities and Challenges”. Qual
Eng 26:121–126

9. Jiang X, Mahadevan S (2009) Bayesian structural equation modeling method for hierarchical
model validation. Reliab Eng Syst Saf 94(4):796–809

10. Graves T, Hamada M, Klamann R, Koehler A, Martz H (2008) Using simultaneous
higher-level and partial lower-level data in reliability assessments. Reliab Eng Syst Saf 93
(8):1273–1279

11. Hamada M, Martz H, Reese C, Graves T, Johnson V, Wilson A (2004) A fully Bayesian
approach for combining multilevel failure information in fault tree quantification and optimal
follow-on resource allocation. Reliab Eng Syst Saf 86(3):297–305

12. Lin J (2008) A two-stage failure model for bayesian change point analysis. IEEE Trans Reliab
57(2):388–393

13. Kuo L, Yang TY (2000) Bayesian reliability modeling for masked system lifetime data. Stat
Probab Lett 47(3):229–241

14. Lin J, Asplund M, Parida A (2014) Reliability analysis for degradation of locomotive wheels
using parametric bayesian approach. J Qual Reliab Eng Int 30(5):657–667

15. Lin J, Julio P, Asplund M (2014) Reliability analysis for preventive maintenance based on
classical and bayesian semi-parametric degradation approaches using locomotive wheel-sets as
a case study. J Reliab Eng Syst Saf 134:143–156

16. Lin J, Asplund M (2014) A comparison study for locomotive wheels’ reliability assessment
using the Weibull frailty model. J Eksploatacja i Niezawodnosc-Maint Reliab 16(2):276–287

17. Lin J, Asplund M (2015) Bayesian semi-parametric analysis for locomotive wheel degradation
using gamma frailties. Inst Mech Eng Proc Part F J Rail Rapid Transit 229(3):237–247

18. Lin J, Nordenvaad ML, Zhu H (2011) Bayesian survival analysis in reliability for complex
system with a cure fraction. Int J Perform Eng 7(2):109–120

19. Wang L, Pan R, Li X, Jiang T (2013) A Bayesian reliability evaluation method with integrated
accelerated degradation testing and field information. Reliab Eng Syst Saf 112:38–47

20. Hong F, Prozzi JA (2006) Estimation of pavement performance deterioration using bayesian
approach. J Infrastruct Syst 12(2):77–86

21. Pan R (2009) A Bayes approach to reliability prediction utilizing data from accelerated life
tests and field failure observations. Qual Reliab Eng Int 25(2):229–240

22. Peng W, Huang H, Li Y, Zuo MJ, Xie M (2013) Life cycle reliability assessment of new
products-A Bayesian model updating approach. Reliab Eng Syst Saf 112:109–119

23. Briand D, Huzurbazar A (2008) Bayesian reliability applications of a combined lifecycle
failure distribution. Proc Inst Mech Eng Part O J Risk Reliab 222:713–720

24. Beck JL, Au S-K (2002) Bayesian updating of structural models and reliability using Markov
Chain Monte Carlo simulation. J Eng Mech 128:380–391

25. Pievatolo A, Ruggeri F (2004) Bayesian reliability analysis of complex repairable system.
Appl Stoch Model Bus Ind 20(3):253–264

26. Hirata T, Okamura H, Dohi T (2009) A bayesian inference tool for NHPP-based software
reliability assessment. Future Gener Inf Technol 5899(2009):225–236

27. Aktekin T, Caglar T (2013) Imperfect debugging in software reliability: a bayesian approach.
Eur J Oper Res 227(1):112–121

28. Soliman AA, Abd-Ellah AH, Abou-Elheggag NA, Ahmed EA (2012) Modified Weibull
model: a bayes study using MCMC approach based on progressive censoring data. Reliab Eng
Syst Saf 100:48–57

584 J. Lin



29. Russom P (2011) Big data analytics. The Data Warehousing Institute (TDWI), Renton
30. http://www.bayesia.us/blog/why-big-data-must-go-causal
31. Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54(4):437–447
32. Zio E (2009) Reliability engineering: old problems and new challenges. Reliab Eng Syst Saf

94:125–141

Bayesian Reliability with MCMC: Opportunities and Challenges 585

http://www.bayesia.us/blog/why-big-data-must-go-causal


Root Cause Analysis in Support of Event
Investigation

N.S. Joshi, Sachin Kumar and P.V. Varde

Abstract Reliability based methods are widely used for the safety assessment of
plant system, structures and components. These methods provide a quantitative
estimation of system reliability but do not provide insight into the failure mecha-
nisms. Understanding the failure mechanisms is a must to avoid the recurrence of
the events and enhancement of the system reliability. Root Cause Analysis
(RCA) provides a tool for gaining detailed insights into the causes of failure of a
component with particular attention to the identification of fault in component
design, operation, surveillance, maintenance, training, procedures and policies
which must be improved to prevent repetition of events. Dhruva is a 100 MWth
research reactor located at Bhabha Atomic Research Centre, Mumbai. In this
research reactor, each failure/malfunction in SSCs or human error, termed as an
‘Event’ is reported by plant Operations and discussed in plant safety committee.
Depending upon the importance of the events to the safety of the plant, RCA team
of experts in various disciplines analyzes the events. This paper discusses the
methodologies adopted for performing RCA of different events in Dhruva reactor.

Keywords Root cause analysis � Low level events � Significant events

1 Introduction

The most commonly and widely used event investigation technique in most of the
nuclear power plants, research reactors facilities and regulatory bodies is Root Cause
Analysis (RCA) orRootCause Investigation.Most of theNPPs follow event reporting
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system which requires investigations, reporting of occurrences, implementation and
follow up of corrective actions. The level of efforts expended should be based on the
significance attached to the occurrence. Most of the events occurring in NPPs need
only a scaled down efforts while a few occurrences related to safety of the plant need to
be investigated using one or more formal analytical methods.

At Reactor Group in Bhabha Atomic Research Cenre (BARC), a Task Force is in
place to analyze the events occurring at the Research Reactors. The RCA method-
ology uses several techniques and their prime objective is to find the underlying cause
i.e. the root cause that if properly addressed and corrected would prevent recurrence
of similar events in the future. At Dhruva, an event reporting system already exists.
The events are reported either as ‘Event Reports’ or ‘Significant Event Reports’
depending upon the severity of the event to the safety of the plant. All the faults and
events are classified as ‘Near Miss Events’ and ‘Low Level Events’ [1]. Most of these
events have no safety significance and significant impact on safety performance. It
has been proposed to perform RCA of some of the consequential events and sig-
nificant events. Low Level Event or Near Miss Event may not be significant to plant
safety. An accumulation of low level events in the same system or with similar
patterns may indicate a lack or failure in a surveillance programme. Multiple low
level events may be considered as precursor for significant events. Experience has
shown that a relationship exists between those events affecting nuclear safety, per-
formance, reliability, and individual events that have no significant impact on per-
formance. Considering the safety significance of the events, RCA methodology has
been classified as Level-1 and Level-2. A Level-1 RCA methodology is adopted to
analyze Low Level Events and the analysis will be informal. However, while
investigating a significant event or a complex problem, Level-2 methodology com-
prising of several analytical methods/models is employed. Typically the decision is
based on real or probable potential consequences of the event.

2 RCA Background

It was observed that the all the current root cause analysis methods could be traced
to three TRADITIONS. The first and oldest of these traditions is the Management
Oversight and Risk Tree Process (MORT) developed in the early 1970s for the U.S.
government. This process is used extensively by the U.S. Nuclear Regulatory
Commission (NRC) for special inspections and incident investigations and many
nuclear plants worldwide. The second tradition was the Human Performance
Enhancement System (HPES). This process was developed by the Institute of
Nuclear Power Operations (INPO) in the early 1980s initially for use in the U.S.
nuclear plants and later extended to international application through the World
Association of Nuclear Operators (WANO). The third tradition was the Assessment
of Safety Significant Events Team process (ASSET). ASSET was developed by the
International Atomic Energy Agency (IAEA) for use in evaluating incidents by
Member States.
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While each of the three traditions contains unique elements, but their philoso-
phies are similar. Each one identifies what could be considered ‘direct causes’ and
through further analysis determines ‘root causes’. Each recognizes the importance
of understanding the sequence of events, specific working level causes and deter-
mines the related management system causes. As on today, there are several RCA
methods available. Most commonly methods [2, 3] are followings:

2.1 Events and Causal Factor Analysis

Events and Causal Factor Analysis is a tool for organizing and analyzing the
evidence gathered during an investigation. It is a systematic event analysis tool to
aid in collecting, organizing, and depicting event information; validating informa-
tion from other analytical techniques; writing and illustrating the event investigation
report; and briefing on the results of the investigation. The Event and Causal Factor
Analysis should be initiated first and updated throughout all root cause investiga-
tions. It provides a graphic display of the event on a time line highlighting problems
and their causes.

2.2 Change Analysis

Change Analysis is used when the problem is obscure. It is a systematic process that
is generally used for a single occurrence and focuses on elements that have
changed. As suggested by the name of the tool, change analysis is based on the
concept that a change (or difference) can lead to deviations in performance. This
presupposes that a suitable basis for comparison exists. What is then required, is to
fully specify both the deviated and correct conditions, and then compare the two so
that changes or differences can be identified. Any change identified in this process
becomes a potential cause of the overall deviation.

Causes identified using change analysis are usually direct causes of a single
deviation; change analysis may not yield root causes. However, change analysis
may be the only method that can find important, direct causes that are obscure or
hidden. This tool of analysis is used in most cases when either the tasks or elements
of the task have been completed successfully.

2.3 Barrier Analysis

Barrier Analysis is a systematic process that can be used to identify physical,
administrative, and procedural barriers or controls that should have prevented the
occurrence. Barrier analysis is based on the concept that hazards represent
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potentially harmful conditions from which a target (personnel, equipment and
environment) must be protected. The purpose of barrier analysis is to identify
missing or circumvented barriers. Barrier analysis also shows the barriers that
succeeded and prevented the problem from having more serious consequences. The
attributes of the barrier analysis tool are: useful to evaluate defense-in-depth and
need technically experienced people in the area being analyzed.

2.4 Human Performance Enhancement System

Human Performance Enhancement System (HPES) identifies those factors that
influence task performance. The focus of this analysis method is on operability,
work environment, and management factors. Man-machine interface studies to
improve performance take precedence over disciplinary measures. It is designed
directly for investigation of events in nuclear facilities involving human factor
related problems and is widely distributed within the nuclear industry.

The HPES method utilizes task analysis, change analysis, barrier analysis, cause
and effect analysis and interviewing. Event related information is graphically rep-
resented in an event and causal factors chart. The integrated event and causal
factors’ graphic shows the direct causes, the root causes, the contributing causes,
the failed barriers with their interconnections and dependencies.

3 RCA Phases

The objective of investigating and reporting the cause of occurrences is to enable
the identification of corrective actions adequate to prevent the recurrence and
thereby protect the health and safety of the public, plant personnel and the
environment.

The investigation process is used to develop an understanding of the occurrence,
its causes and the corrective actions necessary to prevent its recurrence. The line of
reasoning in the investigation process outlines what happened step by
step. Beginning with the event and identifies the problem (condition, situation, or
action that was not called for). Determines what program element was supposed to
have prevented this occurrence? Investigate the reasons why this event occurred?

This line of reasoning will explain why the occurrence was not prevented in time
and what corrective actions will be most effective. This reasoning should be kept in
mind during the entire root cause process. Every RCA process generally comprises
of five phases. There may be an overlap between them; efforts should be made to
keep them separate and distinct.
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3.1 Phase I: Data Collection

The RCA of any event begins with collection of information immediately following
the occurrence to ensure there is no loss of vital information and tale-tell signs.
Careful preservation of the evidence is very important in the determination of the
actual cause of the event. The information collected consists of conditions before,
during and after the event; personnel involvement; environmental factors and other
relevant information. If the site visit is not possible immediately the area should be
quarantined at the earliest and inadvertent entry should be prevented. The inves-
tigation team should collect all the relevant information at the earliest, this includes:

• All the documents, procedures, work permits, logs, reports, drawings, etc.
• Interviewing individuals involved in the event at the earliest. The interview

should be targeted towards fact finding and not fault finding.
• Data on previous investigations, if any.
• Electronic data on recorders, charts, indicators, etc.
• Photographs of affected area/equipment, etc.
• Samples of gas, effluents for analysis

After data collection all the events are to be mapped on a time line in chronological
order to look for any extraneous event or any missing link.

3.2 Phase II: Assessment

Any RCA method may be used that includes following major sThese events are
analyzedteps:

• Identify the problem
• Determine the significance of the problem
• Identify the causes or actions immediately preceding and surrounding the

problem
• Identify the reasons why the causes in the preceding step existed, working back

to root cause.

There are several RCA techniques that can be considered to find the root cause.
However, most techniques are effective only in certain situations. Usually a com-
bination of different techniques is required to reach to the root cause. Details of
some of the techniques are provided in the preceding section. When performing an
RCA that has an element of human error as a part of the cause, it is very important
to assume that all individuals do the best job. During the course of the investigation
it can be determined if malicious intent was one of the factor. When human errors
occur the team members put the errors in proper perspective.

Root Cause Analysis in Support of Event Investigation 591



Differentiating between the different causes revealed during an event investi-
gation in order to determine which one is the root cause is a knowledge based skill
that requires experience. Once the possible root cause is identified then the next
question that comes is whether the event can recur if this cause is permanently
corrected. If it can still occur, then the root cause has not been identified.

• Root cause is the most fundamental reason for an event or adverse condition,
which if corrected will effectively prevents or minimizes recurrence of the event
or condition. A Direct cause is the immediate cause of an event or adverse
condition. An Apparent Cause is a cause that can easily be determined by
available information without further and deeper investigation.

• Contributing Cause is a causal factor that exacerbated the problem but is not the
root cause of the problem.

• Causal Factors are any action or condition either causing an event to occur or
increase its severity. A casual factor can be Proximate Root Cause (most
probable). There will be cases when the root cause cannot be determined during
the investigation due to lack of sufficient data, inability to identify the exact
failure, or a delay in revealing the failure due to outages or extended failure
analyses. In these cases, the Proximate Root Cause should be determined. The
proximate root cause is the best root cause that can be determined based on all of
the information available.

3.3 Phase-III: Corrective Actions

Implementing effective corrective actions for each cause reduces the probability that
a problem will recur and improves reliability and safety. Corrective Actions are
taken to address the root causes of issues (Equipment, Organizational, human
performance, etc.). If the corrective actions addressed by the analysis could not be
taken immediately, then Interim Actions are called for. Interim Actions are
important for mitigating or preventing the effects of the causes until Corrective
Actions to Prevent Recurrence can be fully implemented. Interim Actions are
sometimes implemented immediately upon discovery of the event, or they can be
initiated at any time throughout performance of the root cause investigations.

3.4 Phase-IV: Reporting

Typically the complete analysis report should be submitted within a month
depending upon the severity of the event and further detailed analysis. The report
should include:

• The initiating event report
• Investigation terms of reference
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• Equipment failure worksheet
• Failure analysis report
• Root cause investigation report
• The corrective actions

The report should be presented in the safety committees by the RCA team.

3.5 Phase-V: Follow-up

Follow-up includes determining if corrective actions have been effective in
resolving problems. An effectiveness review is essential to ensure that corrective
actions have been implemented and are preventing recurrence.

3.6 RCA Methodology—BARC

At Research Reactors in BARC, each occurrence termed as an ‘Event’ is reported by
plant Operations and discussed in plant safety committee. Depending upon the
importance of the event to the safety of the plant, it is categorized as either a ‘Low
Level Event’ or ‘Significant Event’. The Low Level Events fall under Level-1 RCA
category and more severe Significant Events are categorized under Level-2 RCA
category. The general approach adopted for analysis of both types of events is
described below:

3.7 Level 1 RCA (Low Level Events)

As described earlier these types of events pose no safety hazard and keep occurring
in large numbers. Different types of events occurring in a plant and their frequency
is represented in Fig. 1 [1]. These events are analyzed in an intense brainstorming
session among the team members of the RCA committee and a domain expert if

Fig. 1 Frequency of
occurrence of different types
of events
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required; the solution or conclusion is arrived after one discussion session. If
required, a second brainstorming session is held after gathering enough data about
the failure or event and the corrective actions are chalked out. The analysis is
performed by following a single RCA method or at the most two different methods.
The RCA report in such cases is prepared within a fortnight and submitted to Plant
Safety Committee. If repetition of some of the events or large number of similar
events is observed then a detailed analysis is performed and the analysis may take a
Level-2 route. This methodology is also employed to analyse ‘precursor’ events.
The precursor events are the latent weaknesses identified from plant SSCs before
they lead to a serious event. The PSA methods make it possible to quantify the
likelihood that a precursor event will turn into a serious event or an accident.

3.8 Level-2 RCA (Significant Events)

The significant events are safety related events and the plant submit a prompt
notification to the regulator. These events are categorized as ‘Anomaly or
Deviation’ in the IAEA International Nuclear Event Scale (IAEA-INES) and rank
below ‘Zero’. In such cases every attempt is made to collect all the relevant
information about these events at the earliest. The analysis of these types of events
requires several discussions among the members and if need arises an expert from
the relevant field is invited. Investigations of some of the event requires further

Fig. 2 FEM model of a fuel assembly grappler jaw
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detailed analysis in the area of Reactor Physics, Metallurgy and
Metallographic investigations, Material Characterization, Component Stress
Analysis using FEM modeling, Chemical Analysis, etc. For performing these types
of detailed investigations as well as accelerated life tests of components a ‘Life
Cycle Reliability Engineering Laboratory’ at Dhruva, BARC has been established
with the necessary expertise. The lab houses a Thermal-Humidity chamber for life
assessment studies, Thermal Imaging Camera, a Scanning Electron Microscope for
metallographic studies and material characterization, etc. An attempt is made to
issue the detailed investigation report within a month’s time or a preliminary report
is issued if results of some of the analysis are pending. An FEM model of a fuel
assembly grappler jaw developed during performing RCA of failure of the grappler
jaw is shown in Fig. 2 [4].

Table 1 Barrier analysis worksheet

Undesirable
event

Existing barriers Barrier
failure
(Yes/No)

How barrier failed? Why barrier failed

Fire in plant
during
plasma
cutting

Administrative
Barrier:
Welding/gas
cutting permit
procedure

Yes The precautions given
in the gas cutting permit
were not followed

Unaware about the
presence of
flammable material in
the area. (Deviation
from permit
procedure)

Physical barrier:
Asbestos cloth
used as
protection from
three sides

Yes The asbestos cloth used
as a physical barrier had
small holes & minute
openings

Physical barrier
inadequate

The physical barrier
only covered the three
sides and not covered
the top. Reflected
spatters can escape from
top

Reasons for delay in detection of fire

Delay in
detection of
fire

Environmental
barrier:

Yes Smoke generated by
plasma cutting
accumulated in the area

The poor ventilation
in the area led to
accumulation of
smoke and the poor
illumination led to
poor visibility. So the
fire could not be
promptly located

Visibility in the
area The area operator after

getting information
about fire alarm visited
the area, noticed smoke
in the room & noted
people working in the
room

Fire & beetle
alarm
annunciation

Delay in
informing
control
room

Administrative
barrier: Fire
emergency
procedure

Yes The fire emergency
procedure was not
followed

It appears that the
staff available at site
got panic-stricken &
started fire fighting
operation
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4 Case Study

A brief case study of a fire event that had taken place in the plant is presented here.
During routine shutdown of the reactor a modification job was taken in the plant.
The job involved plasma cutting of SS sheets. During this process the spatters
generated initiated a fire as some combustible material was present in the area. The
event was analysed by the committee and a Barrier Analysis work sheet as shown in
Table 1 along with a Fish-bone diagram shown in Fig. 3 are presented here.

5 Conclusion

In a Nuclear Plant the occurrence of different types of events is unavoidable
however, they can be controlled. If efforts are put to record and analyze each event,
the lessons learnt from past instances will lead to control and reduce further
occurrences. This will promote the safety culture at plant level.

The RCA approach employed for the components failure study reveals that the
cause of the failure can lay in its faulty design or inadequate maintenance practices.
Reliability based safety assessment tools such as Probabilistic Safety Assessment
(PSA) has been very helpful in assessing the safety level of plant. The minimum cut
sets provided by the PSA can identify the shortest path by which a component failure
can propagate, degrade the system and deteriorate the safety. Rectification of the root

Fire in Plant Area

Fig. 3 Fish bone diagram for fire event (*Environment factor resulted into delayed detection of
the fire event)

596 N.S. Joshi et al.



causes obtained by the insight of the detailed RCA is helpful in increasing the
reliability of the components in general and in particular the components belonging
to minimum cut sets list and hence enhancing system reliability. RCA will help in
screening raw failure data before deriving useful reliability data for PSA.
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Maintenance of Large Engineering
Systems

Anil Rana, Ajit Kumar Verma and Ajit Srividya

Abstract Maintenance has been defined as the combination of all technical and
administrative actions, including supervision actions, intended to retain an item in,
or restore it to, a state in which it can perform its required function. It is a set of
organised activities that are carried out in order to keep an item in its best opera-
tional condition with optimal utilisation of resources. In a survey conducted by the
author regarding use of resources in two different naval commands, it was estimated
that over 50–60 % of total operation cost went into maintenance of the ships and its
machinery. Though the operation cost could be directly linked with the achieved
operational objectives it was extremely difficult to justify the maintenance cost with
its accrued benefits.

Keywords Maintenance � Large engineering systems � Operational cost �
Maintenance optimization

1 Background

Over the years, maintenance has been given the due place it deserves in many large
industrial setups and that includes the shipping industry. While in the past, main-
tenance was only seen as an additional cost factor, [1] both in terms of loss of
opportunity and utilization of resources, it is only post the 1980s that it is being
considered as the one of the most invaluable part of the organization which can
have a direct impact not only on cost savings but also on improvement in safety,
quality and reliability. This realization of its importance initiated a lot of work into
development of maintenance optimization models, all of which aimed at a common
goal of improving the system reliability or availability in a cost effective manner.
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This movement got a fillip with the improvement in technologies pertaining to
information processing and analysis, machine health and condition monitoring, data
and inventory management and as a result, more and more sophisticated mainte-
nance policies and strategies have been developed which have maximized the
probability of realizing the objectives of maintenance. Though a general opti-
mization model which fits all the needs of all the maintenance aspects of organi-
zation is difficult to come by, a general understanding of its inputs and requirements
based on the envisaged objectives, its effectiveness and its configuration has already
emerged. An overview of the different aspects of a maintenance optimization model
is shown in Fig. 1 Horenbeek [2].

It is surprising therefore that in spite of the realization of the importance of
maintenance as a function of any organization and emergence of an understanding
of the general maintenance models, there still exists a large gap between the
maintenance that is being practiced onboard ships and the one that is being
preached in theory.

Fig. 1 An overview of a maintenance optimization model
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2 Gap in Theory and Practice

Authors such as Dekker [3, 4], Scarf [5] and Garg et al. [6] have collectively
surveyed more than 300 papers on maintenance models. It has been brought out by
them that most of the research work on the subject has been carried out at an
individual component or equipment level. Horenbeek et al. [2] bring out that case
studies are often used only to demonstrate the applicability of a developed model,
rather than finding an optimal solution to a specific problem of interest to a prac-
titioner. Nicolai and Dekker [7] conclude that case studies actually faced by the
maintainers of the equipment are not well represented in literature. Dekker [3]
attributes this to lack of motivation on the part of the practitioners and also to the
complexity of the underlying optimization models. A case in point is the phe-
nomenon of wear or deterioration. Though this phenomenon is commonly observed
in mechanical systems onboard, there is still a reluctance to mathematical model it
in terms of a gamma wear simply for the reason that it is analytically difficult to
handle it.

Another limitation perceived in literature is that most of the models focus on
only one optimization criterion, making multi-objective optimization models an
unexplored area of maintenance optimization. Although single objective opti-
mization is attractive from the modeling point of view, this approach does not
capture all important aspects of a real life situation. Surveys carried out by eminent
researchers have brought out the fact that the other reason for this wide gap between
theory and practice is that most of the maintainers find it difficult to understand the
complex mathematical models most of which are written for mathematical purposes
only with little regard to its applicability.

The need of the hour therefore is to take actions on two fronts: firstly, to
generalize the maintenance decision problems into broader groups based on their
common characteristics and create mathematical models that are realistic and can be
systematically applied to ‘on field’ situations with little changes. Secondly and
more importantly, to develop a simpler tool for modeling the intricate failure
processes of equipment so that it can be used by the maintenance personnel on field.
The tool can then help the maintenance personnel prepare their own maintenance
decision models (based on failure processes) for analysis and in addition it would
make them capable of even altering the generalized models available in literature to
suit their own specific requirements.

3 Problem Formulation and Solution Strategy

The problem formulation and solution strategy are graphically demonstrated in
Figs. 2 and 3 along with a step by step solution process. The strategy and the
solution process are self-explanatory. The main concerns handled by the author, so
far, in terms of systematic treatment of optimization of maintenance actions are
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Application of Maintenance Optimization Techniques for maintenance of large engineering systems

Maintenance managers 
consider the present 
maintenance optimization 
models un-realistic and 
follow OEM’s 
recommendation 

Maintenance decision 
models based on failure or 
wear processes are 
complex and difficult to 
comprehend. 

Device a method to 
simplify the modeling 
failure or wear processes. 
Enable maintenance 
managers to create their 
own models or modif y the 
generic models to suit their 
case 

Breakdown the ship’s 
machinery into plant 
systems based on their 
functionalities 

Breakdown each plant 
machinery into equipment 
classified as per their type 
and functions

There are multiple number 
of components. Deciding 
maintenance schedule for 
each would be an 
enormous task Carry out FMECA for 

every plant and identify the 
critical equipment that 
require PM. For balance 
follow CM

Maintenance of equipment

Should repair/replacement 
be done on component 
level or equipment level ?

Should CBPM or TBPM 
be followed  ?

Ship machinery pose a 
high complexity in terms 
of types, functions and 
numbers of equipment

Most of the equipment 
follow a TBPM based on 
OEM recommendations.
There is no priority based 
maintenance of plant 
equipment 

Minimise maintenance 
intervention due to 
deterioration of multiple 
equipment of a plant

Collect data on equipment Lack of data on failure Use data on deterioration 
with respect to time to 
model the failure process

Plan maintenance on 
equipment.  

Multiple components for 
maintenance but limited 
time and resources

Use appropriate decision 
making models. 

Use data of similar 
equipment, expert advice

Present Practice Problem Solution Strategy

Plan maintenance on plant 
level machinery of ship. 

Meet objectives : 
availability, reliability, cost

Use Multi-objective 
optimization method. To 
solve the problem. Provide 
multiple solutions.

Fig. 2 Problem formulation and solution strategy
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Large engineering system

Plant no 2Plant no.1 Plant no.3 Plant no.4

System 2System 1 System 3 System 4

FMECA / FTA/Expert 
opinion

Identification of critical 
equipment /components

Corrective maintenance for 
non-critical components or 
replacement during an 
opportunity

Preventive Maintenance

Collection of failure 
data 

Available data/data on similar 
equipment/expert opinion

Data on deterioration of 
performance/parameter 

Statistical analysis, Gibbs 
sampling/Bayes analysis

Equipment or component 
level repair/replacement ?

Choose between CBPM or 
TBPM ?

Probability of detection

Wear threshold for alarm

Logistics delay time for 
repair/replacement

Monitoring interval

Time for TBPM 
repair/replacement

CBPM – continuous 
monitoring

CBPM – Periodic 
monitoring

TBPM – Periodic 
Repair/replacement 

Plant level 
Optimization 

Minimise 
maintenance 

interventions, cost

Minimise cost, 
maximize 

availability,  

Minimise cost, 
maximize 

availability,  

Ship level Multi 
objective -

Optimization 

Find optimum common periodic 
intervals for maintenance of ship 

machinery 

Find optimum set of maintenance actions for 
a finite time horizon giving maximum 

availability at minimum cost

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Fig. 3 Step by step solution process

Maintenance of Large Engineering Systems 603



listed below. It may be noted that the constraints of availability of onboard space,
spares and expertise adds special dimension to the problem that need to be resolved
by timing the maintenance actions along with the scheduled visits of the ships to
harbours.

• A framework for taking maintenance decision at different hierarchical level of
plant machinery was identified and published [8]. FMECA (failure mode effect
and criticality analysis) was used to prioritize the equipment that could be
treated optimally.

• At equipment level, a framework to decide between a CBPM (condition based
predictive maintenance) or a TBPM (time based preventive maintenance) policy
was published [9].

• A framework was presented to choose the level of repair/replacement (whether
equipment level or component level) based on cost of components, cost of
equipment, cost of repair and failure distributions of the components [10].

• Maintenance action plan for a wide variety of equipment for a particular class of
ship was published based on an evolutionary algorithm. It has been demon-
strated that grouping of some select equipment for maintenance during a short
maintenance period, scheduled in between the refit period of a ship is beneficial
[11]

• A framework to model the maintenance decision requirement for a large plant
with multiple equipment and different times in use, as a MOOP (multi-objective
optimization problem), based on cost and availability and with constraint of time
and resources was presented [11].

• Wear was successfully modeled as a gamma process. The advantage of this
process is that it considers the wear or deterioration of equipment/component in
its various stages as against a Weibull process that simply labels equipment in
an ‘on or off’ state. The gamma process is therefore more realistic and also
amenable to simplification using a stochastic petrinet methods explained later in
a paper. The greatest benefit of the process lies in use of data observed by a ship
machinery operator for ascertaining the gamma process parameters. For
example, consider the data on a steam turbine of a ship given in Table 1.

The observed data were analysed using various techniques including Gibbs sam-
pling (using WINSBUG program) to arrive at the gamma process parameters. If the
shape parameter is a function of time kðt) ¼ a:tf and the scale parameter is β then pdf

(probability density function) is fXðtÞðxÞ ¼ ba:t
f

Cða:tfÞ x
a:tf�1:e�bx ¼ Ga(xjkðt); bÞ;

The parameters obtained can then be used to arrive at mean time to failure
dependent on states of wear or deterioration [12, 13]. The Gibbs sampling analysis
of the recorded data by ship operator and its simulated gamma process are shown in
Figs. 4 and 5 below

604 A. Rana et al.



Fig. 4 Estimates of Gamma distribution parameters through Gibbs Sampling

Table 1 Wear data of turbine components

Bearings Labyrinths Diaphragm Cam/Nozzle
assy

Time Wear Time Wear Time Wear Time Wear

0.45 1.77 0.1 0.00001* 0.45 1.11 0.5 2.75

1 2.44 0.5 6.889 1 2.22 0.9 7.75

1.52 3.422 0.7 7.33 1.52 4.44 1.1 8.75

1.8 3.98 0.75 7.44** 1.8 4.45 1.4 9

2.85 5.16 1.2 8.6 2.85 5.56 1.6 9.125

3.4 6 1.4 8.8667 3.4 6.67

3.65 5.97*** – –

3.9 6.9 3.9 7.8

4.2 7.3 4.2 8.89

4.5 8.07 4.5 10

All data have been normalised to a scale between 1 and 10 non-dimensional parameter
* The wear could not be measured, but an arbitrary small value has been mentioned to facilitate
calculation of the distribution parameters using MLE (max likelihood estimate) method
** Wear data are each for different sets of labyrinths (except the first two serials). The 3rd serial
was actually 7.111
*** Data rejected as wear could not have reduced
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4 Simplification of Maintenance Modeling

As brought out earlier, a need for simplification of maintenance modeling has been
felt by various industries including the shipping industry that would allow the
maintenance managers in the field to effectively apply these models in their specific
areas of applications. An already existing tool called the Petrinets was researched
by the author. Petrinets are known to be a very useful graphical, mathematical
modeling and analysis tool applicable to a variety of applications such as queue
performance evaluations, communication protocols, in-process monitoring systems,
real time fault tolerant and safety critical systems etc. [14–24]. However, the lim-
itation of use of memory-less exponential random variables render this tool difficult
to be used for modeling age based wear and failure processes.

The above problem was overcome by adopting the method of stages Cox et al.
[25] to convert the non-exponential processes into a mixed Erlang process. Such a
conversion facilitated the age memory of the processes and made it amenable to be
solved through computer based simulation programs without the need of intro-
duction of an ‘age variable’ to keep track of the elapsed time. The method has been
successfully used to demonstrate the failure processes of systems, such as stern tube
bearing assembly of a ship, safety device failures, two pump based auxiliary system
etc. [26, 27] through comparison between the simulation studies and mathematical
model based results. The highlights of this technique are:

• The method simplifies the modeling of failure processes of the mechanical
systems (with age memory) and thereby makes it amenable for use by the
maintenance engineers on field.

Fig. 5 Plot of an Equivalent gamma process (1-CDF) fitted on to a probability curve
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• The method is especially beneficial to handle wear or deterioration based
processes.

• The method also helps in carrying out simulation studies on multi-component
system where the petrinet models generated using the above method act as
building blocks.

A stochastic petrinet model in “Timenet” that can simulate the gamma wear
process is shown in Fig. 6.

5 Conclusion and Future Work

The broad based maintenance models characterized by similar decision problems
and similar hierarchical levels of machinery set ups, as outlined in the solution
strategy, were applied to 2 classes of ships in a particular naval command. Though
the benefits were not immediately quantifiable for documentation, but the trend was
positive. There were some direct savings in maintenance costs and logistics support.
The impact on reliability and availability of the ships was only possible to be
studied over a period of 3 years (at the minimum).

As regards the simplification of maintenance models, stochastic Petrinets have
shown to be a potent tool after suitable modification as brought out by the author in
various publications. However, as the size of the components increase in number it
no longer remains feasible to handle it analytically. There is therefore a need to
prepare a software exclusively to handle maintenance related problems which, as
brought out earlier, are large in variety and specific to the configuration and
composition of the equipment.

Fig. 6 Petrinet model for Gamma wear process in Timenet
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Maintenance Risk Based Inspection
Optimization Model in Multi-Component
Repaiable System with Economic
Failure Interaction

Esmaeil Rezaei and Din Mohammad Imani

Abstract Inspection is one of the important activities to detect and fix failures in
repairable system. Optimization of inspection intervals decreases expected costs of
maintenance system, reduces inspection costs and increases the performance of
operating system. This paper proposes a new model to reliability and cost evalu-
ation and figure out the optimal periodic inspection interval on a finite time horizon.
In addition, the grouping maintenance preferred to individual maintenance as
economic failure dependency. The costs are include inspection, repair, and down-
time. The downtime cost is proportional to the elapsed time from failure time to its
detection at next inspection time. On a finite time horizon, the objective of current
study is to figure out the optimal inspection interval for the soft failure component
to minimize the expected total cost. In addition, the expert judgment is used to
considering risk in inspection. Therefore, a sample problem is solved and numerical
results are presented. Result indicates, the risk reduces inspection interval time.

Keywords Periodic inspection interval � Risk based inspection (RBI) � Repairable
system � Soft and hard failures � Failure interaction

1 Introduction

The cost of maintenance is one of the major performance indexes in manufacturing
and operation. The aim of maintenance is to maximizing reliability and minimizing
cost [1, 2]. The optimization cost can be considered as returning potential lost profit
or budget injection in maintenance [3, 4]. Also repairing and inspections increases
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maintenance costs. In contrast, increasing inspection and maintainability reduces
the downtime penalty cost. The inspection is one of the important activities to detect
and fix failures in repairable system. Optimization of inspection intervals has
critical role in decreasing total costs of maintenance system, reduces inspection
costs and increases the performance of operating system.

Risk Based Inspection (RBI) is one of the most important aspect of maintenance
[3–6]. Risk has critical role in maintenance and inspection interval. For example,
failure of transformer is few. But its inspection intervals time is short due to risk.
So, the risk plays important role in inspection interval optimization problem.

In inspections activity, failures of system are investigated. The failure of com-
ponents can be soft or hard. The hard failure causes the system stop, while the soft
failure does not, but it increases the system operating costs too.

A great deal of periodic inspection research for hidden failure addresses the cost
issue. In these works, the optimum inspection interval and maintenance policy are
obtained by minimizing the expected cost in a given time period [7].

Barlow et al. [8] have created a basic model, for determining the optimal
inspection interval to minimize the expected cost. Accordingly, in their model, only
two costs are included: a fixed inspection cost for each inspection; and a loss
(downtime) cost per unit time resulting from the elapsed time between failure occur
and the failure detection (next inspection). While the Barlow et al. model only
considered inspection cost and loss cost, other research takes the repair/replacement
cost into account [3, 9, 10]. Taghipour and Banjevic [10] investigate the optimal
inspection interval for a multi-unit repairable system to minimize total expected
cost over a finite and infinite time horizon. Ahmadi and Kumar [11] develop a cost
rate function model to determine the optimum inspection interval time and fre-
quency of inspection and restoration of an aircraft’s repairable components.

In a multi-component system, the failure of one components may interact with
another. These interactions create dependency among the components and cate-
gorized as follows [3, 12]:

Economic dependence, occurs when the cost of maintenance and replacement
creates dependency among the components. In other words, the grouping mainte-
nance may cost less than the maintenance them individually [13]. This type of
dependency is the focus of the present study.
Structural dependence, occurs when the maintenance and replacement of some
components require replacement or disassembly of some other parts or components
[12].
Stochastic/Probabilistic dependence, which happens when the state of a com-
ponent, such as its workload, affects the life-time distribution of the other com-
ponents. For instance, the failure of one component increases the failure/hazard rate
of other components [12].

In 1986, Thomas [12] put together a survey reviewing the models which were
previously proposed for complex systems along with their maintenance and
replacement policies. In 1991, Cho and Parlar [14] reviewed the maintenance of
various multi-component models. In 2011, Sarkar et al. [15] reviewed the literature
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and collected different maintenance policies for complex systems. This research
provides a good overview for both single and multi-component systems during the
past 50 years. According to these reviews [12, 14, 15], while there are several
publications on multi-component systems with economic dependence, the studies
on complex systems with stochastic dependence are sparse. Most of these studies
only consider two-component systems, because in practice it is difficult and
sometimes impossible to evaluate the actual effect of the failure of multiple com-
ponents on each other [16]. Murthy and Nguyen [17, 18] studied the maintenance of
systems considering stochastic dependence. They formulated the failure interactions
between components in a two and multi- component systems and developed
expressions for the expected operation costs for both finite and infinite life-times.
Scarf and Deara [19] developed a model considering both economic and stochastic
dependences between components in a two-component system. The policies in their
model were age-dependent. They further extended their model to block replacement
policies for a two component system [20]. Zequeira and B’erenguer [21] analyzed
the maintenance costs for a two-component standby parallel system taking into
account the stochastic dependence. In their study, they considered periodic
inspections and preventive maintenance. Taghipour et al. [22] proposed a model to
find the optimal periodic inspection interval on a finite time horizon for a complex
repairable system. They considered costs include inspection, repair, and downtime
penalty cost. Inspection interval with failure interaction for two and multi com-
ponents have been studied by [23, 24]. They considered a two-component system.
In their studies, the capacitor bank (first component) and the transformer (second
component) for a distribution substation in an electric power distribution system
were considered. Recently, Rezaei and Imani [3] proposed new risk base inspection
optimization model to by considering fuzzy failure interaction. Their considered
probabilistic dependency. They applied Simpson rules and Bayesian theory to
modeling and solving. Their model required less calculation in compare to [22].

Recently, Rezaei and Imani [1] proposed new risk basedinspection optimization
model by considering fuzzy failure interaction. They assumed, the system can be
worse along failure occur to failuredetection (next inspection) and followed the
minimal repair policy.They also, studied optimization inspection interval under
perfect repair policy [2].

ProposedInspectionOptimizationModel
The problem definitions and assumptions are maintained in introduction. In this
section, the proposed model presents. At the first, the parameters and variables
definition presents as Table 1.

The components failures generally fallow as weibull distribution. See Eq. (1) for
the hazard rate of weibull distribution:

kðxÞ ¼ b
h

x
h

� �b�1
ð1Þ

The Cumulative distribution function is given by Eq. (2) and simplification by
equations, Eq. (3).
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FiðxÞ ¼ 1� e
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t

kiðxÞdx
0� x� s ð2Þ

FiðxÞ ¼ 1� e
�
Rtþ x

t

bi
hi

x
hi

� �bi�1

dx
¼t¼0 1� e

� x
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� �bi

ð3Þ

The pks;iðtÞ is probability that the component i doesn’t fail in kth inspection
interval of the cycle T with s inspection interval that defined as reliability function.
To obtain reliability, pks;iðtÞ, the Bayesian theory is used. Due to different times of

inspection intervals, the probability of pks;iðtÞ is depends on pk�1
s;i ðtÞ. The Bayesian

approach to obtain pks;iðtÞ is given by

pks;iðtÞ ¼ pks;iðtjsafety in pk�1
s;i ðtÞÞpk�1

s;i ðtÞþ
pks;iðtjunsafety in pk�1

s;i ðtÞÞð1� pk�1
s;i ðtÞÞ ; k ¼ 1; . . .; T=s

ð4Þ

Table 1 Parameters and variables definition

kiðxÞ The failure rate of the soft
component i at time x

Cs
i The cost of each inspection of the

component i

Cd
i The cost of each perfect repair of

the component i

ððk � 1Þs; ks� kth inspection interval in the cycle
T, k = 1, 2, …, n

Cp
i The downtime penalty cost

associated with the component
i from failure occur to its detection
at the inspection time

~w fuzzy risk parameter

E Cs
� �

The expected total cost of the all
components in the inspection
interval s

n The number of inspections to be
performed on the soft component
during the cycle T

E Cðk�1Þs;ks
i

h i
The expected total cost of the
component i in kth inspection
interval of the cycle T, i.e. From a
scheduled inspection at ks over
time period ððk � 1Þs; ks�.

T The planning horizon length (e.g.
1 year) which is known and fixed

s The time between two consecutive
inspections, s ¼ T=n

t The initial age of the soft
component at the beginning of the
cycle T

pks;iðtÞ The probability that the component
i doesn’t fail in kth inspection
interval of the cycle T with s
inspection interval (reliability
function), provided that we know
that its age at the beginning of the
cycle T is equal to t .

m Number of components
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From Eqs. (4) and (2)

pks;iðtÞ ¼ pk�1
s;i ðtÞ 1� FiðxÞjksðk�1Þs

h i
þð1� pk�1

s;i ðtÞÞ 1� FiðxÞjs0
� �� � ð5Þ

For the different inspection intervals, the FiðxÞjksðk�1Þs indicates the probability of
the soft component i failure at ððk � 1Þs; ks� interval, when the soft component is
on safety condition in the last interval. As well, FiðxÞjs0 indicates the probability of
the soft component i failure at ð0; s� interval, when the soft component i is on
unsafety condition in the last interval (note, the perfect repair just done in
inspection). According to Eqs. (5) and (3), pks;iðtÞ can be simplified as follows:

pks;iðtÞ ¼ pk�1
s;i ðtÞ e

� ks
hi

� �bi

� k�1ð Þs
hi

� �bi
� 	2

64
3
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� s
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� �bi
� 	2

64
3
75; k

¼ 1; . . .; T=s ð6Þ

For example, from two inspection frequency

p1T=2;iðtÞ ¼ 1� e
� T=2

hi

� �bi

� ð1�1Þ T=2
hi

� �� �bi
� 	2

64
3
75þð1� 1Þ � ½. . .� ¼ e

� T=2
hi

� �bi

ð7Þ

p2T=2;iðtÞ ¼ p1T=2;iðtÞ e
� 2T=2

hi

� �bi

� ð2�1Þ T=2
hi

� �� �bi
� 	2

64
3
75þð1� p1T=2;iðtÞe

� T=2
hi

� �bi

ð8Þ

The cycle T is the planning horizon (e.g. 1 year) which is fixed. In the cycle T,
the soft component is inspected at times, ks (k = 1, 2,…, n), where T ¼ ns. Failures
of the soft component are perfectly repaired if failure accurse. We assume that
inspection and possible repairs are also done at the end of the cycle T (last
inspection is on the end of cycle T), that is, for k = n. The objective is to find the
optimal risk based inspection interval that can minimize the expected total cost of
the soft component incurred over the cycle T. When the soft component fails, it
remains in a failed state until the next inspection time. Therefore, if the soft
component failed in each inspection interval, a downtime penalty cost is incurred.
The cost is proportional to the elapsed time from failure time to its detection at
inspection time. Thus, the costs for resulting from the soft component in each of the
inspections k, k = 1,2, …, n includes the cost of inspection for component i, Cs

i , the
cost of repair if found fails for component i, Cd

i , and the penalty cost for the elapsed
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time for the failure of component i, Cp
i , thus, the expected cost incurred in the

inspection k in the cycle T is proposed by Rezaei and Imani [3] and extended for
multi component as follow:

E Cs½ �
8s¼T ;T=2;...;1

¼
Xm
i¼1

XT=s
k¼1

E Cðk�1Þs;ks
i

h i
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Xm
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þ

Xm
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i s 1� pks;iðtÞ
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CCCCCCA

¼
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� �
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i þ Cd

i þ sCp
i
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2
4

3
5

0
@

1
A

ð9Þ

In common inspection, the
Pm
i¼1

PT=s
k¼1

Cs
i replaces with

PT=s
k¼1

Cs
common.

For risk consideration, there are no accurate mathematical formula for consid-
ering risk in inspection. In reality, considering risk is based on expert’s judgment.

For short planning horizon length (T), the 1þ ~ws
� �

~E CT½ � risk statement is useful,

where, ~w is fuzzy risk present [3]. In addition, applying the expðs~wÞ~E CT½ � in long
planning horizon length is useful. But, these equations are not general or perma-
nent. So, applying the expert judgment can be more suitable to considering risk and
reduce inspection interval time. The fuzzy risk scale proposed by Rezaei and
Imanni [3] is presented as Table (2).

To gain optimal risk based inspection interval time for ~w ¼ ða; b; cÞ the Eq. (10)
is proposed as follow.

~s� ¼ s� ~ws ¼ s� ða; b; cÞs ¼ ðs� as; s� bs; s� csÞ
¼ s� asð Þþ 4� s� bsð Þþ s� csð Þ

6
ð10Þ

3 Numerical Example

Let us consider a general infusion pump adopted from a case study reported in [22].
The infusion pump is used to accurately deliver liquids through intravenous or
epidural routes for therapeutic and/or diagnostic purposes. Here, we have assumed
same values for the components’ failure rate parameters as estimated in [22] (Table 3).

The proposed model is codes by software. The expected total cost is calculated
by the proposed model in which MATLAB software (version 2015) is employed to
increase the correctness of calculation. To indicating reliability analysis, the
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summary of pks;1ðtÞ results for component 1 is presented. The pks;1ðtÞ values for
component 1 is presented in Table (4). The results from Table (4) indicate the
improvement of pks;1ðtÞ with decreasing inspection interval time (s) and fixed
inspection number (k) (the value of each column is on increasing). As well, for each
fixed inspection interval time (s) and increasing inspection number (k), the pks;1ðtÞ
it’s on decreasing.

Increasing the number of inspections increases the inspection costs and reduces
the downtime penalty cost. The contrast between these two costs caused the
Non-strict total cost plot. In riskless model, the optimal inspection interval obtain
for 6 inspection frequencies and it’s related to s = 2.

From Eq. (9), total expected cost for each fixed inspection interval time (s) with
inspection cost, repair cost, and downtime penalty cost are shown in Fig. (1). The
plots of inspection and repair cost have ascending trend. Contrary of them, the
downtime penalty cost has decreasing trend.

As mentioned, risk reduces inspection interval time. In Table 5, the total
expected cost for different present of risk is presented. As indicated, with increasing
risk (~w) the optimal inspection interval is reduces. From Eq. (10):

Table 2 Risk scale

Average (0.45,0.50,0.55) Negligible (0,0.05,0.10)

Between average and
relatively strong

(0.50,0.55,0.60) Very very low (0.05,0.10,0.15)

Relatively strong (0.55,0.60,0.65) Between very very low
and very low

(0.10,0.15,0.20)

Between relatively strong
and strong

(0.60,0.65,0.70) Very low (0.15,0.20,0.25)

Strong (0.65,0.70,0.75) Between very low and
low

(0.20,0.25,0.30)

Between strong and very
strong

(0.70,0.75,0.80) Low (0.25,0.30,0.35)

Very strong (0.75,0.80,0.85) Between low and
relatively low

(0.30,0.35,0.40)

Between very strong and
very very strong

(0.80,0.85,0.90) Relatively low (0.35,0.40,0.45)

Very very strong (0.85,0.90,0.95) Between relatively low
and average

(0.50,0.45,0.50)

Table 3 Failure rate
functions’ parameters,
different costs, planning
horizons corresponding to
components 1–5

Component i b h Cs
i Cd

i Cp
i T

1 1.3 3.5 40 70 100 12

2 1.1 4.6 40 45 25 12

3 2.1 6 40 100 200 12

4 1.8 10 40 75 50 12

5 1.7 3.6 40 150 150 12
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4 Conclusion

The inspections prevent failures and decrease maintenance cost. The systems have
been more reliable by inspection activity. In the proposed model, the expected total
cost associated to the soft components has been formulated to finding optimal
inspection interval. Then, the expected total cost is evaluated for different number
of inspections in a cycle to determine the optimal value of inspection interval. Risk
have critical role in maintenance and inspection interval. Results show that risky
equipment has shorter inspection interval than riskless equipment. For example, a
transformer with few failure will have short inspection intervals time because of
risk existence. So, the risk based optimization inspection interval is so applicable in
industries. In this study, the fuzzy number is used to model uncertainty in expert
judgment to consider risks. As indicated in Table 4, with increasing risk (~w) the
optimal inspection interval reduced. The other characteristic of this paper, is to

Fig. 1 The riskless costs resulting for different inspection frequencies s = 12, 6,…, 1

Table 4 The pks;1ðtÞ results for s ¼ 12; 6; 4; . . .; 1 and different k

Inspection intervals Sub-inspection intervals

K = 1 K = 2 K = 3 K = 4 K = 5

s = 12 0.007

s = 6 0.1333 0.1225

s = 4 0.304353 0.2652 0.2584

s = 3 0.441134 0.3798 0.3674 0.3572

s = 2.4 0.542086 0.4696 0.4524 0.4389 0.43
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prefer grouping maintenance to individual maintenance as economic failure
dependency. The model is so applicable for soft system with multi repairable
component such as turbine rotor, transformer….
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Reliability Analysis and Maintenance
Scheduling of the Electrical System
of Rotary Drilling Machines

Mohammad Javad Rahimdel, Mohammad Ataei
and Reza Khalokakaei

Abstract This paper studied reliability of electrical system for electrical-hydraulic
rotary drilling machines. Reliability is the most important characterization of
repairable systems. Electrical systems have a vital role in any electrical-diesel or
electrical-hydraulic machines. As any failure in electrical system finally leads to
stopping the machine, research on the reliability of this system is essential. In this
research reliability of electrical system of drilling machines in Sarcheshmeh copper
mine in Iran had been modelled and analysed. There were four hydraulic-electric
machines in this mine (named A, B, C and D), that all of them had been selected for
data collection and analysis of failure. The results of statistical analysis showed that
time between failures (TBF) data of this system follows the gamma distribution for
machines A and C and weibull (3P) and exponential distributions for machines
B and D, respectively. Also, the results showed that with considering 90 % for
preventive maintenance (PM) interval, after the first maintenance the reliability
of this system will be improved by 5.23, 7.22, 3.62 and 5.26 % respectively for
machines A, B, C and D.
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1 Introduction

Drilling is the first step of exploitation process in large surface mining. Nowadays,
rotary blasthole drilling in almost 98 % of big open pit mines and quarry is the most
repute method to rock penetrating and drilling. Reliability is one of the most
important performance measures for repairable system designers and operators [1].
As yet, many researches on reliability of more engineering systems have been done;
however, the researches on drilling blasthole machines have been based on
empirical methods and engineering judgments. Regarding to all of the main com-
ponents of drilling machines such as hydraulic pumps and motors, compressor,
filters, electrical sensors, heaters, coolers etc. work electrically, so as result any
failure of electrical system will stop the machine, eventually. Thus, this paper has
focused on reliability modelling and analysing of electrical system of drilling
machines. For this reason, drilling machines of Iran’s Sarcheshmeh Copper Mine
have been selected to data collection and analysis. There are four rotary drilling
machines in this mine, named machines A, B, C and D, that all of them are
hydraulic-electric type and the source and distribution of power are electrical and
hydraulic, respectively. Therefore, the electrical system has an important and vital
role in this type of drilling machines. The main components of these machines are
explanted as follow [2–4]:

(1) Main Electrical motor
This motor is the main source of power. All the driven components in the
machine are driven by use of this power source so that they generate desired
movements of the components. Electrical current is supplied from main
electrical network of mine.

(2) Starter motor
Starter motor is a small electrical motor that used for running the main elec-
trical motor.

(3) Cable Reel Electrical Motor
A cable reel, mounted on the front end of a drilling blasthole machine. A cable
reel through an electric motor automatically ensures tidily and tightly wound
position of the power cable that supplies power from the mine power supply to
the machine even as the machine moves from one blasthole to another.

(4) Auxiliary winch
Almost all the accessories used in rotary drilling blasthole machine are so
heavy that they cannot be manually lifted, shifted and handled. Therefore,
almost every rotary drilling blasthole machine is provided with a wire rope and
an auxiliary winch. In Sarcheshmeh copper mine drilling machines, the winch
is powered by electric motors through a planetary reduction gear box for
compactness. The winch placed near the lower end of the mast.

(5) Heaters
Heaters become essential when the machine has to operate in cold weather.
Apart from the operator’s cab and machinery house, heaters have to be fitted
on the rotary head gear case and the cases of gears that reduce the speed of the
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propel motors. In this case, heaters are heating coil type. Water tank and
hydraulic oil tank have this heater type. In most cases such as operator cap
and machinery house, a fan is provided near the heater so it spreads the hot air
within all the space of the enclosures.

(6) Sensors and Gauges
The console in front of the operator cab contains many indicators and controls,
such as oil level, fuel level, water injection tank level and drill level indicators
voltmeter or ammeter and engine hour meter, engine water temperature,
compressor temperature, engine hour meter and so on gages. Also, these
machines equipped with electronically operated depth indicators that indicate
blasthole depth inside cab after sensing the drill pipe addition. Drill level or
depth indicator one of the most important of this sensors which numerically
shows the blasthole depth.

2 Background

2.1 Reliability Analysis

Reliability is the probability that an item will perform its assigned mission satis-
factorily for the stated time period when used according to the specified conditions.
The basic reliability function is defined by Eq. (1) [1].

RðtÞ ¼ 1� FðtÞ ¼ 1�
Z t

0
f ðxÞdx ð1Þ

Where R(t) is the reliability at time t; F(t) is cumulative failure distribution
function and f(x) is failure probability density function. The reliability characteristic
of a piece of equipment can be determined, by analysing of the time between failures
(TBF) data. For the reliability modelling of repairable systems, the basic method-
ology step-by-step is presented in Fig. 1 [5]. It shows a detailed flowchart for model
identification and is used here as a basis for the analysis of the failure data.

Three methods are generally used for reliability analysis of repairable systems
including Renewal Process (RP), Homogeneous Poisson Process (HPP), and
Non-Homogeneous Poisson Process (NHPP). In RP method, analysis of data reli-
ability is usually based on the assumption that the times between failures are
independent and identically distributed (iid) at the time domain. Trend test and
serial correlation test are used for validation of this assumption.

The trend test involves plotting the cumulative failure numbers against the
cumulative time. If one obtains a curve that is approximately a straight line, then the
data is identically distributed and free from trends. The data sets can also be
analysed for the presence of trends by using the test suggested in military hand
book-189 by calculating the test statistic as follows [6]:
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U ¼ 2
Xn�1

i¼1

lnðTn=TiÞ ð2Þ

where, the data are failure-truncated at the nth failure at time Tn.
Under the null hypothesis of a homogeneous Poisson process, the test statistic

U is chi-squared distributed with a 2(n-1) degree of freedom. The presence of serial
correlation can be tested by plotting the ith TBF against (i-1)th TBF. If the plotted
points are randomly scattered without any pattern, it can be interpreted that the
TBFs are free from serial correlation.

2.2 Preventive Maintenance and Reliability Improvement

To keep a system in normal condition, taking proper maintenance becomes even
more important during its serviced life. Maintenance was classified into two cate-
gories, corrective maintenance (CM) and preventive maintenance (PM). Normally,
PM is more effective than CM because it is always to keep a system in an available
condition so that the large loss caused by unpredictable fails can be avoided.

Preventive maintenance is predetermined work performed to a schedule with the
aim of preventing the wear and tear or sudden failure of equipment components.
PM helps to:

• Protect assets and prolong the useful life of production equipment.
• Improve system reliability.
• Decrease cost of replacement.
• Decreases system downtime.
• Reduce injury.

Data collection

Trend test and Serial correlation

Do the data have a trend?

Nonhomogeneous 
Poisson Process 

(PLP)

Do the data have a correlation?

Data are iid

Best-fit distribution

Reliability and Maintainability analysis

Yes

Yes

No

No

Homogeneous 
Poisson Process

Fig. 1 Reliability analysis
process of a repairable
system [5]
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Reliability Cantered Maintenance (RCM) methodology offers the best available
strategy for PM optimization. RCM is definition as a method for developing and
selection maintenance design alternative based on safety, operational and economic
criteria, RCM employs a system perspective in its analysed of system functions,
failures of functions, and preventive of these functions [7].

In this paper, after a reliability modelling, a critical allowed level of reliability
has been defined for electrical system of each machine, which means that the
system continued to operation in this reliability level without falling below this
level of reliability. Based on this critical level, PM intervals can be defined. Figure 2
shows the results of reliability improvement exactly after the first PM operation.
The reliability function after PM (RPM(t)) can be calculated by followed Eq. (3) [8]:

RPMðtÞ ¼
RðtÞ; 0\t� TPM
RnðTPMÞRðt � nTPMÞ;
nTPM � t\ðnþ 1ÞTPM ; n� 1

8<
: ð3Þ

where R(t) is the reliability of failure-free time t; RPM(t) is the reliability function
after preventive maintenance; TPM is the preventive maintenance intervals and n is
the number of preventive maintenance which have been done.

3 Reliability Analysis: A Case Study

3.1 Failure Data Collection and Analysis

In this research, all of four drilling machines in Sarcheshmeh copper mine are
selected to data collection and analysis. Then, the TBF data of their electrical
system had been calculated over a period of 18 months [9–10]. The results of the

Fig. 2 Typical effect of PM
on reliability functions of a
system with maintenance
interval TPM [8]
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trend and serial correlation tests on available data of four machines were shown
approximately a straight line. Thus, the data were free of trend. The plotted points
in serial correlation tests were randomly scattered without any pattern, therefore, the
data were free from serial correlations, too.

The data set was also analysed for the presence of trend by using the
MIL-HDBK-189 Test. The computed values of the test statistic (Eq. 2) for available
TBF data are given in Table 1.

3.2 Data Analysis and Reliability Modelling

Both graphical and analytical methods show that the data are free of trend and serial
correlation. As a result, renewal process techniques can be used for reliability
modelling. The reliability of electrical system was calculated by the use of
best-fitted distribution.

Data analysis and finding the best-fit distributions were done with using Easyfit
5.5 software. The Kolmogorov-Smirnov (K-S) test has been used for selecting the
best distributions for reliability analysis. The results of data analysis and the
best-fitted distributions are illustrated in Table 2.

Regarding to Table 2, the achieved reliability plots have been shown in Fig. 3.
Regarding to Fig. 3, the reliability of the electrical system reduces to zero after

500 h operation of machines A and B and 1400 h operation of machines C and D.
On the other hand, after 500 h operation of machines, only two machines will be
active, namely machines C and D, and 900 h later all of four machines will be
failed, due to full failing of their electrical systems. Electrical systems of machines
A and B have a similar reductive behaviour in reliability and in comparison of
machines A and B have a faster reductive rate. Such that only after 8 h operation (or
at the end of first shift operation) reliability of this system in machine A and B
reduced by 20 %. At this time, electrical system reliability of machines C and D is
reduced by only 5 and 1 %. These two machines have a similar electrical system

Table 1 Computed values of the test statistic U for TBF

Machine Number
of failure

Degree of
freedom

Calculated
statistic U

Rejection of null hypothesis at
5 % level of significance

Modelling
method

A 81 160 202.78 Not rejected (>61.28) Renewal
process

B 82 162 152.45 Not rejected (>62.16) Renewal
process

C 34 66 55.19 Not rejected (>21.82) Renewal
process

D 40 78 85.48 Not rejected (>26.50) Renewal
process
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reliability, but in spite of their lesser with lesser reductive rate. Machines A and B
have passed about 16 years of operation, on the other hand the machines C and D
are in about 10th year of operation. So, the lowest reliability of these machines is
related to oldness of machines and the needs of all parts to fundamental repair or
replace. As it can be seen from reliability plots, machines A and B have a higher
reliable electrical system rather than the others at the all of operation time. After
250 h operation, reliability of electrical system of machines A and B will be
reduced to lower 10 % and stopped at 700 h operation. From this time onward, there
are only two active machines (C and D) and with very low reliability level (lower
than 10 %). Also after 1400 h from starting to drilling operation, both of machines
will be stopped. Without considering any preventive maintenance for electrical
system before 1400 h operation, drilling fleet of mine will be stopped.

Table 2 Results of the best fitted distributions

Machine A B C D

Distribution K-S test K-S test K-S test K-S test

Exponential 0.162 0.1818 0.1359 0.0827

Weibull (3P) 0.0965 0.0628 0.0954 0.1147

Gen. gamma 0.0676 0.1226 0.078 0.0993

Gamma 0.0559 0.1417 0.0717 0.0926

Weibull (2P) 0.0683 0.0694 0.105 0.0891

Best distribution Gamma Weibull (3P) Gamma Exponential

Parameters α = 0.6 α = 0.698 α = 0.775 λ = 0.0045

β = 66.66

β = 120.957 γ = 0.125 β = 396.47 γ = 11.125
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Fig. 3 Reliability plots of
electrical system of drilling
machines
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3.3 Maintenance Scheduling and Reliability Improvement

In many engineering operations, 80 % is selected as the best practical value for
performance evaluation. Because of the importance and vital role of electrical
system in drilling machines, in this paper the 90 % is selected as reliability level for
scheduling the preventive maintenance. Consequently, it has been suggested that
the preventive maintenance should be done every 2.5, 5, 15 and 30 h, respectively
for machines A, B, C and machine D. On the other words, TPM for these machines
will be equal to 2.5, 5, 15 and 30 h, respectively. Regarding to Eq. (3) and TPM of
machines’ electrical system, RPM has been calculated for different reliability levels
which have been shown in Fig. 5.

Regarding to Fig. 4, with carrying out the preventive maintenances on electrical
system of machines, their reliability will be improved. There is an increase of
0.1–6.54 %, 0.1–7.25 %, 0.1–3.73 % notably in electrical system reliability of
machines A, B and C. Nevertheless, it should be noted that remarkably after 10, 30
and 125 h the plot of reliability “with PM” and “without PM” of these machines
meets to each other. This means that after this period of times the short and fast
preventive services cannot compensate the failures of system. Therefore, the elec-
trical system of these machines should be fundamentally serviced and maintained.
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But by considering the preventive maintenance, the reliability plot of machine D
shows that the reliability of electrical system will be increased by 5.31 % only 30 h
after the first PM, that is after second PM (with TPM = 30 h). This reliability level at
the third PM or after 90 h operation will be increased by 10.25 %. These calculations
show that the reliability of electrical system of machine D with PM has a higher and
longer increasing rate compared to other machines.

4 Conclusions

In this research, the reliability of electrical system of all drilling machines in
Sarcheshmeh copper mine in Iran were modelled and analysed. The main results of
this research can be summarized as following:

• The assumption that the failure data of transmission subsystem is trend free is
valid for all machines. The serial correlation test showed that the data are
correlation free and, as a result, the data of the machines are independent and
identically distributed (iid).

• Analysis showed that the time between failures (TBF) of machines A and C
obey the gamma distribution. Also, TBF of machines B and D obey the weibull
(3P) and exponential distributions, respectively.

• The reliability plot of machines A and B is similar to each other and reliability of
electrical system of these two machines are in highest than all other machines
and reached to zero after 500 h. Also, after 1400 h from starting to operation of
machines, drilling fleet of mine will be completely stopped.

• After 10, 30 and 125 h operation of machines A, B and C, respectively, the plot
of reliability “with PM” and “without PM” of these machines meets to each
other. Nevertheless, due to effects of the preventive maintenance on reliability, if
the electrical system of machines A and B to be checked and serviced every 10
(or at the second PM interval), the reliability of this system of machines will be
improved by 5.21, 7.25 %, respectively. Also, with considering the 30 and 60 h
as PM intervals for machines C and D, the reliability of electrical system of
these machines will be noticeably increased by 3.73 and 5.31 %.
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Monte Carlo Reliability Simulation
of Underground Mining Drilling Rig

Hussan Al-Chalabi, Hadi Hoseinie and Jan Lundberg

Abstract Drilling rigs are widely used in mine development or construction and
tunnel engineering projects. The rig consists of 12 subsystems in a series config-
uration and can be driven by diesel or electrical engines. This paper uses the
Kamat-Riley (K-R) event-based Monte Carlo simulation method to perform relia-
bility analysis of an underground mine drilling rig. For data analysis and to increase
statistical accuracy, the paper discusses three case studies in an underground mine
in Sweden. Researchers built a process to programme the simulation process and
used MATLABTM software to run simulations. The results showed the simulation
approach is applicable to the reliability analysis of this rig. Moreover, the reliability
of all rigs reaches almost zero value after 50 h of operation. Finally, the differences
between the reliability of the studied fleet of drilling rigs are a maximum 10 %.
Therefore, all maintenance or spare part planning issues can be managed in a
similar way.
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1 Introduction

Underground mines are a main source of minerals. The growing demand for metals
as a result of modern lifestyles and ongoing industrial development has focused
attention on factors affecting the extraction of minerals. One of the most important
factors is the unscheduled stoppage of machines used in the extraction of ore [1].
Economic globalisation is increasing competition among mining companies,
pushing them to achieve higher production rates by increasing automation and
mechanisation and using new and more effective equipment. This forces companies
to buy more reliable capital equipment with higher performance capabilities; nat-
urally, these are more expensive. At the same time, the equipment used in under-
ground mining industries is subject to degradation throughout its operating life; this
increases the operating and maintenance costs and reduces production rates, causing
a negative economic effect as equipment ages [2].

The drilling rig is very important to the extraction process. At its most basic
level, drilling is the process of making holes in the mining room face, but reliable
and accurate drilling operation facilitates the rest of the production chain and
improves the economic and safety issues of the mine. All drilling machines for
mining applications are composed of similar operational design units, including
cabin, boom, rock drill, feeder, service platform, front jacks, hydraulic pump, rear
jack, electric cabinet, hose reeling unit, cable reeling unit, diesel engine, hydraulic
oil reservoir, operator panel and water tank. Drilling rigs manufactured by different
companies have different technical characteristics, e.g. capacity and power. Based
on the operating manuals, field observations and maintenance reports from the
collaborating mine, in this study, the drilling rig is considered a system divided into
several subsystems and connected in series configuration; if any subsystem fails, the
operator will stop the rig to maintain it. Given this configuration, having good
knowledge about these rigs and properly maintaining them is essential for a reliable
drilling operation and assured production.

Collecting data, analysing data and making decisions are time consuming pro-
cess, but they should be done during any reliability study. The reliability analysis of
mining machines is especially difficult in practice because of the special operation
and maintenance environment and the work pressure in mines [3].

This paper uses stochastic simulation to evaluate the reliability of three drilling
machines used in an underground mine in Sweden. Stochastic simulation is a
suitable technique to assess the reliability of a system and can be applied in two
ways [4, 5]:

• Sequential approach by examining each basic interval of the simulated period in
chronological order, and

• Random approach by examining randomly chosen basic intervals of the sys-
tem’s lifetime.

The second approach, usually known as “Monte Carlo” method, is selected for this
paper. This is a numerical method which allows the solution of mathematical and
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technical problems by means of system probabilistic models and simulation of
random variables.

Many researchers have studied the reliability and maintainability of mining
equipment and its failure behaviour. For example, [6] analysed the operational
reliability of a fleet of diesel operated load-haul dump (LHD) machines in Kiruna
mine in Sweden [6]. Later, [7] performed reliability analysis on the power trans-
mission cables of electric mine loaders in Sweden [7]. Reliability assessment of
mining equipment was performed by [8]; using genetic algorithms, they developed
and tested mobile mining equipment reliability assessment models [8]. Vayenas and
Xiangxi [9] studied the availability of 13 LHD machines in an underground mine.
They were interested in the influence of machine downtime on productivity and
operation costs and used a reliability-based approach and a basic maintenance
approach to determine the machine’s availability [9]. More recently, [10] used fault
tree analysis (FTA) to analyse the idle times of automated load-haul-dump LHD
machines at a Swedish underground mine [10]. Finally, [4] performed reliability
modelling on the drum Shearer machine used at Taba’s coal mine in the central
desert of Iran and analysed the failure rate of the machine’s subsystems [11].

Although there are many reliability and maintainability studies of underground
mining equipment, no one has looked specifically at drilling machines. Given the
importance of underground mining mobile equipment for production, not to men-
tion the complexity of the equipment and the harsh mining environment, reliability
analysis of the drilling rig must meet rigorous requirements. Thus, the aim of this
paper is to analyse and compare the reliability of several drilling rigs to show the
Kamat-Riley (K-R) event-based Monte Carlo simulation method can be used to
simulate the reliability of repairable complex systems based on available data from
the case study mining company. The paper also aims to shed light on the reliability
behaviour of the mining drilling rig to enhance decision-making, improve reliability
and reduce downtime.

2 Mining Drilling Rig

A mining drilling rig is used to dig holes in the ground. For example, mobile
drilling rigs can be used to make tunnels and underground facilities, and small or
medium-sized mobile drilling rigs are appropriate for mineral exploration.
Mining drilling rigs are used for two main purposes, namely production drilling (for
processes in the mining production cycle such as bolting) and exploration drilling
(to identify the location of minerals). Figure 1 illustrates the process cycle for drift
mining; as the figure shows, drilling is a key step. From an economic viewpoint,
drilling rigs make an important contribution to the mine’s production rate but they
have a high acquisition, maintenance and operating cost and represent a possible
critical bottleneck for production [12].

Economic competition has pressured mining companies into achieving higher
production rates by enhancing the techniques of drilling and blasting and increasing
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mechanisation and automation. Historical data over the period of 1 year from an
underground mine in Sweden show that more than 15 percent of unplanned
downtime of mobile equipment is related to the drilling rigs, with the greater part of
the downtime attributed to the poor reliability of their components or subsystems.
Other factors contributing to downtime include the harsh work environment and the
operating context. Given this combination of factors, the drilling rig often represents
a bottleneck in the mining production cycle and, thus, is becoming an important
research topic.

3 Data Collection and Analysis

The failure data used in this paper were collected over a period of 2 years (2009–
2011). The source of the data is the database of an underground mine in Sweden
participating in the study. This database belongs to the MAXIMO system, a
computerised maintenance management system (CMMS). In this research study,
the time to failure data (TTF data) and the time to repair data (TTR data) of three
drilling rigs and their subsystems were arranged in chronological order so that
statistical analysis could find trends in the failure and repair data.

The first step in analysing the data was calculation of the times between failures
(TBFs) for the system. In the CMMS, the failure data are recorded based on
calendar time. Since drilling is not a continuous process, the TBFs were estimated
by considering the utilisation of each rig. Reliability and maintainability data
analysis is usually based on the assumption that the TBF and TTR data are inde-
pendent and identically distributed (iid) in the time domain. It was critical to
conduct a formal verification analysis of the assumption that the TBF and TTR data
were iid; otherwise completely wrong conclusions could be drawn [13, 14].
Accordingly, the next step, after sorting and classifying the TBF and TTR data
based on the subsystem level, was validation of the iid assumption. The failure data
were tested for trends with the Laplace trend test. This test is used to determine
whether a data set is identically distributed [14]. If such a trend is observed,

Drilling

Charging

Blasting

Scaling

Loading

Bolting

Fig. 1 A typical drift mining
process cycle
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classical statistical techniques for reliability analysis may not be appropriate, and a
non-stationary model such as the non-homogenous Poisson process (NHPP) must
be fitted [13–18]. Otherwise, the serial correlation test can be used to test the
dependence of the failure data. A dependence test determines whether successive
failures are dependent in data without a long-term trend [14]. If a dependence
between successive failure data is observed, a branching Poisson process
(BPP) model can be used [13]. If dependence is not observed, the iid assumption is
valid. In this study, after testing the validity of the iid assumption, we examined
different types of statistical distributions and estimated their parameters using the
Easy Fit and Minitab software. The goodness of fit of the distribution was tested by
using the Kolmogorov-Smirnov (K-S) test with the Easy Fit software. In the present
paper, all statistical tests used a significance level (α) equal to 0.05.

4 Reliability Analysis Using Monte Carlo Simulation
Method

Following the process described above, after classifying and sorting the data, we
calculated the TBF of each subsystem and performed statistical validation to look
for the presence of structures or trends in the failure data using Laplace trend and
serial correlation tests. The Laplace trend test was used to test the hypothesis that a
trend did not exist within the TBF data. We calculated the test statistic U for the
TBFs of the drilling rig subsystems to be at a significant level of 0.05. From the
standard normal tables, with a significant level of 0.05, the critical value is equal to
1.96. If −1.96 < U < 1.96, we accepted the hypothesis of no trend within the TBF
data. After applying the trend test for the critical components of the studied rigs, we
found no trend within the TBF data; for example, U was equal to 0.55 in the feeder
of rig A used in the collaborating mine.

We performed a serial correlation test of the TBF data of the drilling rigs and
their subsystems to check the dependence of the TBF data. To this end, we plotted
the ith TBF against the (i-1)th TBF. We then tested the significance of the corre-
lation by calculating the (r) value and comparing it with the critical (r) value
obtained from the correlation tables. The results of the serial correlation test of the
above component (i.e. the feeder) are given in Fig. 2. Since the points in the figure

Fig. 2 Serial correlation test
for the feeder of the drilling
rig A
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are randomly scattered, the failure data can be assumed to be independently dis-
tributed. The (r) value is equal to 0.05, while the critical value of (r) from the
correlation tables at the significance level alpha = 0.05 and a degree of freedom of
30 for a two-tailed test is equal to 0.364. We can conclude that the correlation
between the TBFs of this subsystem is statistically not significant (i.e. no correla-
tion exists), since r < the critical r.

The results of the tests showed all subsystems in three studied rigs are free from
trends and serial correlations and are identically and independently distributed (iid);
therefore, the renewal process is the best way to perform reliability analysis on
these subsystems. We examined various types of statistical distributions and esti-
mated their parameters using the Easy Fit and Minitab software. The best fitted
failure density functions are shown in Tables 1, 2 and 3.

The Monte Carlo simulation method plays an important role in system reliability
assessment and optimal maintenance of large-scale complex networks but, in
general, there are four major difficulties in evaluation [5]:

• System reliability structure may be very complicated;
• Subsystems may follow different failure distributions;
• Subsystems may have arbitrary failure and repair distributions for maintained

systems; and
• Failure data of subsystems are sometimes not sufficient and sample size of life

test or field population tends to be small.

Table 1 Data analysis of
subsystems of rig A

Rig A

Subsystems Best fitted function Parameters

Hoses Weibull 2P α = 0.92

β = 20.75

Rock drill Weibull 2P α = 0.98

β = 69.1

Feeder Lognormal 3P σ = 1.26

µ = 3.4

γ = −0.14

Boom Weibull 2P α = 1.04

β = 146.28

Accumulators Normal σ = 197.41

µ = 256.16

Hydraulic system Gamma α = 0,336

β = 1047

Valves Lognormal σ = 1.17

µ = 4.36

Control panel Exponential λ = 0.008

Water system Lognormal σ = 1.27

µ = 5.17
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Table 2 Data analysis of
subsystems of rig B

Rig B

Subsystems Best fitted function Parameters

Hoses Weibull 3P α = 0.95

β = 55.53

γ = 0.6

Rock drill Lognormal σ = 1.26

µ = 3,27

Feeder Weibull 2P α = 0.82

β = 42.47

Boom Exponential λ = 0.006

Accumulators Normal σ = 214.1

µ = 300.5

Cable system Weibull 2P α = 1.09

β = 339.7

Hydraulic system Weibull 3P α = 0.6

β = 148.3

γ = 16.92

Steering system Weibull 3P α = 1.15

β = 112.9

γ = 4.27

Table 3 Data analysis of
subsystems of rig C

Rig C

Subsystems Best fitted function Parameters

Hoses Lognormal 3P σ = 1.072

µ = 3.12

γ = −1.19

Rock drill Gamma 3P α = 1.13

β = 52.61

Feeder Exponential λ = 0.018

Boom Weibull 3P α = 0.58

β = 122.7

γ = 19.04

Accumulators Weibull 2P α = 1.48

β = 502.1

Cable system Exponential λ = 0.002

Hydraulic system Lognormal 3P σ = 0.77

µ = 5.45

γ = −66.72

Steering system Lognormal 3P σ = 0.62

µ = 5.22

γ = −37.7

Generator Weibull 2P α = 0.999

β = 299.82
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Among the various Monte Carlo reliability simulation algorithms, the K-R
algorithm developed by Kamat and Riley [19] can be considered the most general
and basic; other suggested methods for reliability simulation are merely modified
forms of this method [20]. Therefore, the K-R method has been used for the
reliability simulation of drilling rigs in this paper.

In this method, the failure times for individual components are generated based
on the defined failure distribution function and then used to determine the success
or failure of the system. The stages of the K-R method are [19]:

1. Find all minimal tie-sets from system reliability block diagram (RBD). Assume
we must obtain system reliability interval estimates at some time point t.

2. From the life distribution of each subsystem, generate a random failure time ti
where i represents the ith subsystem, 0 < i < n.

3. Compare ti with t for all subsystems. If ti > t, this indicates that at the time,
t subsystem i functions properly; if ti < t, the subsystem i has failed.

4. Determine whether the whole system is functioning or down according to the
statues of its subsystems at t from step (3). Check all subsystems in a minimal
tie-set. If all are operational, the system is operating properly at time t. If one or
more fails, the tie-set is broken (failure) at t. Check the next minimal tie-set until
an unbroken one appears, which means the system is operational at t. If all
minimal tie-sets are broken, the system fails at t.

5. Repeat steps (2), (3), (4) for, say, N times. Count failure and success numbers of
the system respectively: NS (t) and NF (t). Note that N ¼ NSðtÞþNFðtÞ.

6. The system reliability point estimate corresponding to t is given by Eq. (1):

R̂ðtÞ ¼ NSðtÞ
NSðtÞþNFðtÞ ð1Þ

5 Results and Discussion

To ensure fast and reliable calculations during the simulation process, we prepared
a computer program using MATLABTM software. For each rig, we ran the program
for different operation times with the iteration number of 10000 and achieved a
reliability plot for each. Figure 3 shows the reliability plots of all three rigs achieved
using the simulation method in one area. As can be seen in this figure, rig A has the
lowest reliability of the three drilling rigs. However, the difference is small; the
maximum value is 10 %, at about 15 h. All studied rigs are almost equal in
reliability in the period of high reliability operation (from time 0 to 5 h) and in the
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period of very low reliability operation (after 35 h). The reliability of all rigs
decreases by almost zero after 50 h. The main reason for this result is that the
collaborating mining company bought the three rigs in the period 2003–2005 but
kept failure and repair data in CMMS only from 2009. Therefore, the rigs were
already in the wear-out failure period when the data were collected for this study;
see Fig. 4. It is also obvious from Fig. 3 that the reliability plot of rigs B and C are
so extremely close that they are almost the same.

Fig. 3 Reliability plots of all
rigs

Fig. 4 Bathtub curve (adapted from [21])
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6 Conclusions

In this paper, we analysed the reliability of three drilling rigs in a Swedish
underground mine using the Kamat-Riley (K-R) simulation method. We ran the
simulation process based on the series configuration of the repairable subsystems
for the drilling rigs. To set up the simulation process, we created a computer
program in MATLABTM software. The results of simulation suggested the relia-
bility of all rigs reduces to zero at about 50 h, possibly because the three rigs were
already in their wear-out failure period when the data were collected for this study.
As this short time shows, this important mining machine needs serious maintenance
and servicing planning to reduce its downtime. Our overall aim was to test the
applicability of the Monte Carlo simulation method to the analysis of the rig’s
reliability; we found this method is appropriate for reliability studies. It is time
consuming, however, and hence best suited for large, complicated systems. Future
studies should consider a comprehensive examination of maintenance scheduling
and cost analysis of the underground drilling rigs.
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Comparison of Mine Production Index
Factors for Rock Bolter and Shovel

Amol Lanke and Behzad Ghodrati

Abstract MPi uses availability, utilisation and performance to compare and
evaluate equipment. These measures apply to all equipment in mining. However
equipment use in mining operations could lead to different evaluation of its
availability, utilisation and production performance. MPi evaluation and compar-
ison of equipment on MPi basis thus becomes difficult. Shovel and rock bolters are
equipment used in open pit and underground mining respectively. Rock bolters are
used to place bolts in mining room. Bolts reinforce rock masses through restraining
the deformation within the rock masses. In open pit mining shovels are used for
loading broken rock in truck for hauling. MPi can be used as scale for comparison
of these equipment. However the operational difference between two equipment
leads to different evaluation of MPi. Using hypothetical case study difference
between availability, utilisation and performance of the rock bolters and shovel is
studied. It was found that these parameters must be measured differently for rock
bolters than shovel. Rock bolters availability and utilisation should be given less
weights consideration as compared to other equipment in continuous mining
operation. Its performance measurement it dependent upon bolts installed and
capacity of bolts installation rather than tonnage of ore produced. This study can be
helpful for evaluating MPi for equipment which are non-continuously used and
lacks output in terms of ore tonnage.
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1 Introduction

Probing, outlining and collecting information about ore body leads to further
analysis for which mining method is suitable starts. Extraction of minerals carried
out beneath the earth surface is termed as underground mining, whereas extraction
of minerals by digging the earth is termed as open pit mining. Underground
methods are employed when the depth of the deposit, the stripping ratio of over-
burden to ore (or coal or stone), or both become excessive for surface exploitation.
Block of earth are extracted from surface to retrieve the ore contained within.
During the extraction process surface of earth is being continuously excavated, thus
forming deep pit. This method of mining is open pit mining. Considering such
different approach to achieve the minerals, both of these methods requires usage of
different types of equipment. In any mining operation the total output, which can be
termed as productivity is based on the productivity of equipment used. Overall
productivity measurement in mining in difficult. Various methods have been used
for productivity measurement in mining industry; these include use of data
envelopment analysis (DEA) process, use of automation, and improvement of
existing equipment. [1–4]

The comparison of productivity by various equipment leads to know the bot-
tleneck equipment in operation. However this comparison is complicated since the
capacities and the fleet size of each of the equipment are different. It seems that
there is lack of single methodology to compare productivity by all equipment
together in mining industry. Since mining is continuous operation, the overall
productivity of mining operation is based on each and every equipment used in
system. In order to compare these different equipment and compare them on a
single scale, Mine producton index (MPi) was introduced by Lanke et al. [5].

MPi is scale defined with modification of the Overall Equipment Effectiveness.
Quality parameter in its definition does not apply to mining industry and the uti-
lization is measure differently for mining equipment [6]. Considering the implica-
tion of the managerial decision (such as fleet size, working hours etc.) the weights
are added to each parameter in OEE equation.

The MPi equation thus formed is given as follows.

MPi ¼ Ava � Utb � Ppc ð1Þ

where
Av availability of equipment
Ut Utilisation of equipment
And Pp Production performance of the equipment

a,b,c are the weights assigned such that a + b + c = 1 and 0 < a,b,c <1
While measuring the availability in mining operations for MPi, the basic

assumption is that MPi is calculated over the calendar period. That is during the
total working time the machine is in possession however failures avoid the use of
equipment for production.

646 A. Lanke and B. Ghodrati



The MPi is applicable for most of the equipment in underground as well as open
pit mining, since these elements are common for the most of the equipment.
However for some equipment in mining all elements of MPi equation may not be
measureable or even available for measurement. Hence the applicability of MPi must
be checked for such equipment. This study thus tries to compare two equipment, one
from the underground mining (rock bolters) and one from the open pit mining
(shovels). These comparisons will also represent what elements could be considered
for modification of MPi for application in underground mining, specifically for
equipment whose characteristics are limited. Problem statement for this study can be
summarized as follows. Evaluation of MPi for different equipment is possible.
However due to nature of operations performed by rock bolters factors involved in
MPi equation may calculated differently. This study will show comparison of MPi
factors for shovel and rock bolters. This will also help in knowing, for what type of
instruments MPi evaluation should be done differently. This comparison will also
form a guideline for MPi evaluation of these type of equipment.

To know the difference between why and how MPi factors (Availability,
Utilisation and Performance) differ for rock bolters and shovels, it is essential to
know the operation sequence where these both equipment are used. Shovels are
used in open pit mines, in open pit mining after the blasting operation the ore
generated needs to pick up and loaded for further processing. Shovel with high
capacities are important equipment for loading blasted ore to trucks for further
processing. During the continuous mining, fleet of shovels are used for achieving
high output. After the initial operation of drilling and blasting, shovel continuously
load the material in trucks, which is then further processed. It is thus beneficial to
run the shovels continuously to produce high amount of ore.

Rock bolters are used in underground mining operations. Following operation
sequence in sub level caving- an underground mining method shows where the rock
bolts are used.

1. Preparation of areas for ore extraction is called development.
2. Building of tunnels or process of drifting, this process is essential for creating

transport roads.
3. Production drilling, during which the drifts are drilled with various types of fans.
4. Blasting, once drifts are drilled, they are filled with explosives and are blasted.

Wherever necessary after drifting and blasting process the ceiling and walls are
reinforced with rock bolters.

5. The blasted ore is then loaded with help of bucket loaders and carried out.
6. The ore from loaders is then transported to crusher for further processing.

Another type of underground mining is long wall mining. Mechanized shearers
are used to cut and remove the coal at the face of the mine. The coal is then carried
to surface for further processing. Similarity bolting operation is performed inside
the drifts to continue the operation safely without falling of ceiling.

The room and pillar mining is most common method of coal mining. The
network of room is established by cutting coal seams. As the rooms are cut con-
tinuous loading of coal on shuttle car or ram is for further processing. “Pillars”
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composed of coal are left behind to support the roof of the mine. As mining
continues, roof bolts are placed in the ceiling to avoid ceiling collapse.

Therefor rock bolters are used for stabilizing excavated rock mass and tun-
nelling. They usually symmetrically arranged for transferring the load from unstable
surface or exterior of the rock to stronger part of the rock. The rock mass can be
reinforced by different typed of rock bolts.

2 MPi Factors Consideration for Shovel and Rock Bolters

To compare the production for two different types of equipment, a base scale must
be defined. For this purpose MPi is defined with three elements of availability,
utilisation and performance. To calculate the MPi, for each equipment, the study
tries to summarizes comparison between these elements for shovel and rock bolters.
Mining operation sequence described shows the difference between the availability,
utilisation and performance of these equipment. How it can be compared and
considered for evaluation of MPi for each equipment is discussed as follows.

2.1 Availability Considerations

Operational availability is ratio of time of the equipment available for the operation
to the total operational time [7]. It is calculated by following equation [8],

Availability ¼ TH � DT
TH

� �
ð2Þ

where
TH Total Hours
DT Downtime Hours

Availability can be measured on scale of calendar time meaning availability
based on the total working hours and the downtime hours. The total working hours
are calendar hours for all equipment. Any downtime loss is due to failure of
equipment or due to planned stoppage for maintenance of equipment.

In an open pit mining operations failure of shovel leads to stoppage of loading
and hauling operation in mining. Unless the shovel failures are corrected production
stoppage occurs due to shovels. Failure correction of shovel has to be done either
online or thorough the process of overhauling schedule. Online failure means
failure of equipment during the operation of equipment, whereas offline failure is
attributed when equipment is not in use and subjected to failure. A single shovel can
be subjected to overhaul process considering the number of shovels (fleet of
shovels) available for production.
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Rock bolters are used in mining operation on intermittent basis. Once the rock
bolters are used for specific period of time it will be stored until required for further
operation. However if rock bolters is not available i.e. subjected to failure before
starting of loading, may cause delay of further operations. This will lead to loss of
overall productivity.

Availability is affected by downtime of equipment, which in turns affects the
overall operation. Effect of downtime on the availability and the operation of these
equipment as is shown in Table 1

However if the planned downtime for rock bolters combined with the standby
time when rock bolters are not in operation, the sudden failure for rock bolters can
be reduced significantly. This will increase the availability. Shovel is subjected to
continuous operation this might causes downtime of shovel will be higher than that
of the rock bolters.

2.2 Utilisation Considerations

Utilisation of mining equipment can be defined as “percentage of total time that an
asset is scheduled to operate during a given time period expressed as a percentage.
The time period is generally taken to be the Total Available Time (i.e., one year).”
[9]. Utilisation can be calculated by Eq. (3), [8]

Utilisation ¼ TH � DT � SH
TH � DT

� �
ð3Þ

where
SH Standby Hours

Utilisation is thus based on the downtime hours and standby hours. The standby
hours could be due to mine planning, location of equipment for required operation,
legislative reasons (for example change of operator is enforced due to legislative
reasons) and operational requirement.

Table 1 Effect of downtime on shovels and rock bolters, availability during operation

Downtime cause Shovels Rock bolters

Sudden failure
(online)

Loss of production/stoppage of
operations

Loss of production/stoppage of
operations

Sudden failure
(offline)

No loss of production, availability is
un affected

No loss of production, availability is
not affected

Planned
downtime

Reduction in fleet capacity May not cause reduction in capacity
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In case of shovel standby time could be due to the following reasons:

1. Standby time due to operational constraints (non-availability of ore/truck/operator
etc.)

2. Standby time due to legislative reasons (mandatory change of operators etc.)
3. Standby time due to non-usage of equipment

The standby time of shovel is mostly affected by the waiting on trucks [10]. To
eliminate such standby time of shovel for continuous operations match factors is
proposed. The term match factor is usually defined as the ratio of truck arrival rate
to loader service time [11]. The variables to reduce the standby time for shovels are
complicated due to nature of its operation.

In case of rock bolters standby hours can be broken in two parts:

1. Standby time due to operational constraints (rock hardness, failing of bolts,
incorrect planning)

2. Standby time after the completion of operation. (non-usage time)

Rock bolters in practice do not need frequent operator change. However their
utilisation might be hampered due to limited availability of working faces [12]. If
the standby time during the non-usage of rock bolters is considered for calculation
of utilisation, its utilisation could be affected in negative manner.

For any equipment in mining the utilisation can be increased by reducing the
downtime by performing optimal maintenance during planned maintenance time.
However for rock bolters the planned maintenance can be scheduled during the
standby time when it is not in operation. This could help achieve higher utilisation
of rock bolters during the operation. Variation of standby time for rock bolters is
less complicated as it is based on less number of factors.

2.3 Performance Considerations

The performance of an equipment can be defined as “The ability of an item to meet
a service demand of given quantitative characteristics, this performance is based on
the capability and availability of an equipment “ [13],

The production performance is given by Eq. (4), [8]

Production Performance ¼
AP

TH�DT�SH

� �
RC

ð4Þ

where
AP Total actual output by equipment
RC Rated capacity of the equipment

For shovel the actual output and rated capacity can be given in terms of tonnage
of ore. Production performance for shovel can be measured in actual output in
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tonnage when shovel utilisation is carried out to the overall capacity of the
equipment.

However for rock bolters, there is no direct output in terms of ore tonnage.
Although output by rock bolters help increase the tonnage of ore, it does not help is
ore production directly.

Thus production performance of the rock bolter will depend upon the two factors
[12]

1. Time for bolt installation (cycle time per bolt installation)
2. Installation capacity (Number of bolt installation possible in a given time

period)

The actual output by rock bolters is number of bolts installed in a given period,
and rated capacity can be total capacity over given period of time. Production
performance equation for rock bolters (RB) thus can be given as the Eq. (5),

Production performance ¼
Actual bolt installations

TH � DT � SH
Bolt instllations capcity spread over given time

2
64

3
75 ð5Þ

During the calculation of performance for shovel and the rock bolters although
the equation parameters have been changed the formula remains the same. Analysis
of MPi evaluation for rock bolters and shovels

3 MPi Factors Evaluation for Shovel and Rock Bolter

In this section we will analyse the hypothetical case study. The following
assumptions are made

1. There is only one shovel and one rock bolters, working in open pit and
underground mines respectively.

2. The time considered is period of 1 day that is 24 total working hours.
3. The availability, utilisation and performance data for shovel is taken from an

actual open pit mine database, however all data for rock bolters is assumed.
4. The weights for shovel are obtained through different case study for evaluation

of its MPi.

On scale of calendar time rock bolters availability, utilisation, downtime and
standby hours can be shown as in Table 2.
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The total hours of work are 24 h (divided in three shifts each of 8 h).Actual
availability is attained when the downtime during and after the operation is con-
sidered. The availability calculation according to Eq. (2) is

AVSH ¼ 24� ð7:03Þ
24

� �
� 100 ¼ 69:04%

AVRB ¼ 24� ð0:30þ 2:30Þ
24

� �
� 100 ¼ 83:33%

According to utilisation definition, time it is schedule to complete the task is 5 h
for rock bolters, whereas for shovels this is continuous operation during given 24 h,
it is utilised unless there is standby or due to failure. For the rock bolters during its
5 h utilisation there is no downtime or idle time. For shovels there has been
downtime hours of 7.03 and idle hours are 4.27 (4 h 27 min).

Utilisation for both these equipment calculated using Eq. (3) as,

UTSH ¼ 24� 7:03� 4:27
24� 7:03

� �
� 100 ¼ 78:89%

UTRB ¼ 24� ð0:30þ 2:30Þ � 16
24� ð0:30þ 2:30Þ

� �
� 100 ¼ 23:80%

For measuring the performance of shovel the amount of ore loaded by shovel into
trucks and its capacity to load actual tonnage of ore are required. The performance
evaluation according to Eq. (4) for both equipment can be done as follows,

For shovel
AP Total ore loaded by shovel in its utilisation period
RC total capacity of shovel to load the ore in trucks in total available time

PPSH ¼ 6677:5
193806

� 100 ¼ 34:50%

Now in case of the rock bolters, actual output and capacity both should be in
terms of bolt installation i.e.

Table 2 Distribution of
hours for shovels and rock
bolters for hypothetical case
study

Time Shovel Rock bolter

Availability 24 24

Downtime (during operation) 7.03 0.30

Downtime (after operation) – 2.30

Utilisation hours 12.30 5

Idle time (during operation) 4.27 0

Idle time (non-operational) – 16.00
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AP bolts installed during utilisation time of 5 h, and
RC capacity of rock bolters to install bolts during the total available time

PPRB ¼ 720
1130

� 100 ¼ 63:71%

4 Discussion on Case Study

Out of total 24 h, shovel is available for 15 h and 57 min compared to 21 h for the
rock bolters. The availability of both equipment can be increased by reducing the
downtime. Shovel failures while in operation (online failure) and offline failures can
be avoided by performing the perfect maintenance. However this would require
assigning of planned maintenance time for shovel. This will reduce its availability
since shovel operation is continuous.

In case of rock bolters it is possible to eliminate/reduce the downtime by
performing planned maintenance before or after operation during its standby
(non-operational) time. It means that although the planned maintenance can increase
availability for both equipment, shovel availability is affected highly than rock bol-
ters. In maintenance planning shovel has less time for maintenance due to it contin-
uous operational requirement, whereas rock bolters can be maintained during its
longer non-operational standby time. This is important factor while assigningweights
to rock bolter availability, as compared to other equipment in underground mining.

As it can be seen that utilisation percentage of rock bolters is 23.80 % and
utilisation of shovel is 79 %. From this it could be concluded that rock bolter is less
utilised. However rock bolter was utilised for total operational time with no standby
during its operation. The utilisation of rock bolter is 5 h spread over the period of
total available time of 21 h. In shown case if non-operational standby time of rock
bolter is not considered, its utilisation percentage reaches 100 % which is theo-
retical limit.

The shovel utilisation is 12 h and 30 min over the working period of 15 h and
57 min. There was standby time of 4 h and 27 min during operation of shovel.
However its overall standby time is equal to its only operational standby time.

It is seen that rock bolters utilisation percentage thus is not comparable and
usable for MPi evaluation. Utilisation hours over operational hours seem to be
comparable scale.

Although performance measurement element of shovel and rock bolter are dif-
ferent, their performance measurement is comparable.

Comparing these two equipment it can be this said that,

• Rock bolters availability appear higher than shovel.

– But Shovel is subjected to continuous operation.
– Rock bolters is subjected to intermittent operation.
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• Utilization of rock bolters in lower than shovel.

– However Rock bolters are subjected to high standby hours due to its
operation.

5 Conclusion

To compare all the mining equipment together MPi can be used as common factor.
However for some equipment used in mining availability, utilisation and perfor-
mance, which are core factors for MPi evaluation, may not be the same. To
illustrate these differences and to evaluate MPi, even with these differences, the
study compared two such equipment in open pit and underground mining.

Rock bolters are used in underground mining for purpose of placing bolts over
the ceiling of rock mass to achieve stability of structure for further mining opera-
tion. Shovels are used in open pit mines for excavating the ore and waste for
loading and further processing. Rock bolters are used intermittent throughout the
operation, whereas shovels are and can be used continuously in mining operations.
The shovel output can be directly measured in tonnage of rock moved, whereas
rock bolters output is in terms of bolts installed.

While comparing, the following differences were noted between these two
equipment. Availability hours are total hours for which the equipment can be used
for operation. It is dependent upon downtime of equipment. The availability of
mining equipment can be kept high by reducing the downtime. Due to nature of
operation, compared to shovel, rock bolters standby hours are higher. The down-
time of rock bolters can be reduced by performing the maintenance during the
standby hours. Thus effective maintenance of rock bolters is possible during its
non-operational time. Due to nature of operation shovel is subjected it has less
standby time, but could be subjected to more operational downtime.

Utilisation of mining equipment is based on standby hours and downtime hours.
The standby hours for rock bolters are parts of its availability. After the completion
of operation rock bolters are stored, whereas for shovels the standby time is due to
ineffective operations. Thus considering the standby hours for utilisation evaluation
of rock bolters may decrease its overall MPi value and not considering the standby
hours might lead to higher overall MPi value. The comparison of utilisation per-
centage thus becomes complicated.

Rock bolters performance although not directly related to tonnage of ore
produced, is certainly calculable. For rock bolters it is advisable measure actual
production and rated capacity in relation to the bolt installation.

It seems that MPi calculation must be done differently for rock bolters than
shovels. Authors recommend the following considerations while calculating and
evaluating the MPi for rock bolters.

654 A. Lanke and B. Ghodrati



• It is possible to avoid rock bolter downtime effectively, by performing its
maintenance during its standby time.
Weight evaluation for availability (a) should considers the occurrence of
downtime occurs for rock bolters. (i.e. if downtime occurred during or after
operation). Rock bolter availability should be normalized considering opera-
tional requirement and downtime as a function of operation

• The weights considered for utilisation (b) of rock bolters should be based upon
the knowledge that its actual utilisation is spread over total available hours.
When evaluating MPi for rock bolter, weights assignment for utilisation should
be based on the utilisation hours over the total available hours for all equipment
than only utilisation percentage of the rock bolter i.e. Utilization of rock bolters
evaluation should be normalized considering its non-operational requirement
hours

• While calculating the performance of rock bolters, actual production in terms of
bolts installed and capacity in terms of ability to install bolts over period of time
stretched for the time used must be considered.
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Reliability Analysis of Face-to-Surface
Continuous Coal Hauling System
in Longwall Mines

Amid Morshedlou and Hesam Dehghani

Abstract In this paper the reliability of the haulage system in Tabas coal mine has
been discussed using the failure and failure interval data in past 2 years for Armored
Face Conveyor (AFC), Beam Stage Loader (BSL) and conveyer belt. In respect to
the data study and classification, conveyor belt with failure abundance of 50.5 % is
the most critical, while AFC with the failure abundance of 22.3 % shows the best
performance. The results of data analysis indicate that all three machines’ reliability
distribution function obeys the power law process. The reliability of AFC, BSL and
conveyer belt reaches zero after 220, 30 and 8 h of continuous operation, respec-
tively. The conveyor belt is the first system, which its reliability reaches to zero and
cause the entire hauling operation to stop. Regarding to the high potential of failure
in conveyer belt, it has always been considered as the most significant part of the
system’s failure hence should be monitored more precisely. So, the conveyer belt is
the most critical subsystem of the haulage system. Approximately, the reliability of
the haulage system after 4 h reaches nearly zero. In the first hour system’s per-
formance, it almost looses 90 % of its reliability, which is a considerable amount.

Keywords Reliability � Armoured face conveyor � Beam stage loader �
Conveyor belt

1 Introduction

The importance of fossil fuels is increasing day by day due to their limited
resources, therefore a great attention has been drawn to the industrial equipment
related to them. Coal is one of the most important fossil fuels, which has many
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applications in the steel industry and power generation. Nowadays most of the
world’s coal is mined by mechanized long-wall mining method. The most impor-
tant equipment used in these mines are drum shearer, Armoured Face Conveyor
(AFC), Beam Stage Loader (BSL), Powered Supports and Conveyor Belt. Figure 1
shows a mechanized long-wall mine. After the coal is cut by drum shearer, mate-
rials load on AFC to be delivered to BSL. Eventually BSL delivers the coal to
conveyor belt to transport it out from the stope. AFC, BSL and conveyor belt play
the most significant roles in hauling operation and production process in long-wall
mines. Therefore, their reliability is significant to keep mine production at the
desired level and for maintaining smooth operation as well as achieving better
production conditions.

Many researches have been conducted on reliability and maintenance of mining
equipment. The application of reliability engineering in mining industries has been
conducted since 1960. The initial studies have mostly used the qualitative approach
and they only consist of descriptions about the machine failures and production
delays. Nevertheless, mathematical and quantitative analysis methods have been
used since the end of the 1980s. With the developments in new mining equipment,
reliability analysis also became more complicated. Because of the two
above-mentioned reasons, more reliability studies are required on the mining
equipment. The reliability studies on longwall mining equipment during last two
decades are being briefly reviewed below.

Mandal and Banik(1996) did a study on long-wall equipment in few Indian
coalmines. They considered the AFC, shearer, stage loader and belt system as the
components of production process. They calculated the delay hours, reliability,
product loss, and presented the production failure risk for each subsystem [1].
Gupta et al. developed a method using maintenance information, such as, Time To

Fig. 1 Locating and components of long-wall mines
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Failure (TTF) for pinpointing the weak links in the shearer machine. In this study a
Fault Tree (FT) technique was used to understand the failure logic of a long-wall
shearer and its components were ranked by the Birnbaum factor. The subsequent
analysis showed that the results can be useful in applying a replacement policy as
well as maintenance [2]. Gupta and Bhattacharya used the fault tree technique to
study the reliability of AFC and presented the reliability curve. Main purpose of the
paper was to explore the major weakness point of AFC and provide a good solution
to reduce downtime problems [3]. Bing-Yuan et al. studied the reliability of the
production system of long-wall face. They came up with theories to improve
productivity, discussing the application of the transformation plan and optimization
of a reasonable coal stock capacity as well as a selection of system equipment and
matching optimization [4]. Hoseini et al. studied the reliability of water system of
drum shearer with considering three subsystems in series network; filters, spray jets
and hoses and valves. The result showed that the filters subsystem has the highest
reliability importance among all, therefore is defined as the most critical subsystem
[5]. Reliability and maintainability of electrical system of drum shearer was ana-
lyzed by Hoseini et al. The reliability-based maintenance intervals for 90, 80, 70
and 50 % reliability level were calculated. The calculations shows that the time to
repair (TTR) of this system varies in range between 0.17 and 4 h [6]. Hoseini et al.
developed a reliability model of hydraulic system of drum shearer. The model
showed that the reliability of the hydraulic system reduces to zero value after
approximately 1650 h of operation. The failure rate of this system decreases by the
increase in time. Therefore, corrective maintenance (run-to-failure) was selected as
the best maintenance strategy for it [7]. Reliability-based maintenance scheduling of
haulage system of drum shearer has been modeled by Hoseini et al. The result
showed that Time Between Failures (TBF) data of this system obeys the
three-parameter Weibull distribution. Based on the achieved reliability model, the
Preventive Maintenance (PM) scheduling has been suggested for different relia-
bility levels [8]. Hoseini et al. used power law process to analyzed the reliability of
cable system of drum shearer. Based on analysis and results, a period of 125 h was
defined as the reliability-based maintenance interval for the cable system [9]. The
reliability of drum shearer of Tabas coal mine was studied by Hoseini et al. with
considering six subsystems in series network; Water system, haulage, electrical
system, hydraulic system, cutting arms, and cable system. Pareto analysis showed
that the water system is the most critical subsystem of the drum shearer. The failure
rate analysis shows that the failure rates of the hydraulic, haulage and electrical
systems decrease while the failure rates of the water system, cutting arms and cable
system increase [10]. In further research Hoseini et al. used Monte-Carlo simulation
for reliability analysis of water system of drum shearer and drum shearer itself with
considering three and six subsystems, respectively [11, 12]. Morshedlou et al.
studied the reliability of the AFC of the Tabas coal mine. They considered four
subsystems in series network; electrical system, mechanical system, chain tension
unite, speed control unite. Pareto analysis showed that the electrical system is the
most critical subsystem of the AFC. Among the subsystems of the AFC, the speed
control unite seems to be the most reliable subsystem [13]. The reliability of the
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electrical and mechanical units of the Tabas coal mine equipment was analyzed by
Morshedlou et al. The results showed that the electrical units have a higher failure
frequency and the reliability of the electrical units in all three equipment reduces to
zero more quickly in comparison with mechanical units [14].

Regarding to the literature review, most of reliability studies have been done on
underground mining machinery and systems. The complexity of machines, their
large operational loads, and the harsh underground working conditions impose
stringent requirements on reliability analysis for these machines. Very few of these
studies talk about the subsystems of the long-wall equipment.

Hauling operation plays a significant role in the production process of long-wall
mines. Other types of mining equipment and processes have been studied more
correctly and their reliability has been discussed properly but there are neither
sufficient nor applicable reliability studies on hauling operation for maintenance and
operation management. Therefore, a fundamental study based on reliability char-
acteristics is essential for improving the production and operation characteristics of
hauling operation and whole long-wall system. Note that if a failure occurs in any
of the machines, the entire hauling operation will stop, therefore their function is
considered as series configuration. The block diagram of a hauling operation is
shown in Fig. 2.

2 Reliability Analysis Process

The quantitative reliability analysis techniques use real failure data (obtained, for
instance, from a test program or from field operations) in conjunction with suit-
able mathematical models to produce estimation of product or system reliability.
Three stochastic processes are generally used for reliability analysis of repairable
systems [9]:

(1) homogeneous Poisson process (HPP);
(2) renewal process (RP); and
(3) non homogeneous Poisson process (NHPP).

To determine which process is the best analysis method for available data, two
analytical test were performed on the data. The first step is to perform a trend
analysis to determine whether the data are identically distributed or not. Regarding
to results of the trend analysis, if the assumption that the data is identically dis-
tributed is not valid, then classical statistical techniques for reliability analysis may

BSL AFC Conveyor Belt

Fig. 2 Block diagram of hauling operation
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not be appropriate; therefore, a non-stationary model such as non-homogeneous
Poisson process (NHPP) must be fitted. The second step is to perform the corre-
lation test on the data. If there is no trend and no serial correlation in failure data
then the data is independent and identically distributed (iid). Classical statistical
techniques are the best way for reliability modeling for iid data. The trend test can
be made both analytically and graphically [1, 15]. There are five analytical methods
for testing the presence of trend; Reverse Arrangement Test, Military Handbook
Test, Laplace Test, likelihood-ratio test and Area Test. Military Handbook Test as
one of the applicable analytic tests is better method at finding significance when the
choice is between no trend and a NHPP Power Law model. This test checks the
trend presence by calculating the test statistic U (Eq. 1) [16]:

U = 2
Xn
i¼1

Ln Tn=Tið Þ ð1Þ

Where, n is total number of failures, Tn is time of the nth failure and Ti time of
the ith failure. Under the null hypothesis of a HPP, the test statistic U is chi-squared
distributed with 2(n − 1) degrees of freedom. If the null hypothesis be rejected at
5 % level of significance it means that the Time Between Failures (TBFs) data has
trend and therefore, is not identically distributed [1].

In graphical methods, the trend test involves plotting the cumulative failure
numbers against the cumulative time to failure. If the plotted points lie (or
approximately) on a straight line, then the data is trend free and identically dis-
tributed (id). A test for serial correlation was also done by plotting the ith TBF
against the (i−1)th TBF, i = 1, 2, …, n. If the plotted points are randomly scattered
without any pattern, it can be interpreted that there is no correlation in general
among the TBFs data and the data is independent.

The Kolmogorov-Smirnov (K-S) test is classically used for the validation and
selection of the best-fit distribution [17]. The failure data analysis process, which is
used in this study for selecting the best reliability based maintenance modeling, is
shown in Fig. 3. Further explanations will be presented in the case study part.

3 Case Study

Tabas coal mine is located in the central desert of Iran and it is the largest long-wall
coal mine of Iran. Parvadeh region covers an area of about 1200 km2 located 70 km
south of the city of Tabas. The region’s has largest coal reserves in country and its
coal reserves estimated about 1.1 billion tones. The most suitable seam for mining
(called C1) has 1.8 m thicknesses and is extracted by retreat long-wall method using
a double-drum shearer. According to the production planning, mining production
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rate should be 1.5 million tons per year at this time. As a result of the equipment
failure Tabas coal mine had serious production problems, so the production process
was experiencing consecutive downtimes. Due to this problem, the production rate
reduced to approximately 500,000 tons per year. For example, in some shifts (8 h)
the equipment would fail more than 10 times which would cause the production
system stop for about 6 h. This means that the useful time of the production process
was extremely low. The length of studied long-wall face is 215 m and panel length
is 1200 m. Technical characteristics of AFC, BSL and conveyor belt of Tabas coal
mine is presented in Tables 1, 2 and 3, respectively.

Failure data 
collection

Identification
of subsystems

Identification
of subsystems’ 

function

Separating data 
according to 
subsystems

TBF extraction

Trend test?

Correlation
test?

Yes

Yes

Non-
homogeneous

poisson process 

homogeneous
poisson
process

Data is identical 
and

independent

Renewal
process(best fit 

distribution)

Reliability
analysis

Preventive
maintenance
scheduling

No

No

Fig. 3 Reliability analysis
process
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4 Data Analysis

For identification of critical subsystem, Pareto analysis (failure frequency analysis)
was done on the available data [18]. Figure 4 shows the results of Pareto analysis.

As seen in Fig. 4, conveyor belt have a higher failure frequency than the other
equipment and consists of 50.2 % of all failures. This indicates that the most of the
failures and production process stops in mine occurred due to the failure of the
conveyor belt. In fact, the conveyor belt is the critical subsystem in terms of
management issues related to maintenance and should be watched more carefully.

After data collection, the validation of the iid nature of the TBF data was
performed. First, military handbook analytic trend test were applied on the data.

Table 1 Technical
characteristics of AFC of
Tabas coal mine

Parameters Quantity

Conveyor length 219 m

Maximum capacity of conveyor 1300 t/h

Average capacity of conveyor 1000 t/h

Power of discharge drive 1 × 105/315 kW

Power of low return-end drive 1 × 105/315 kW

Speed of scraper chain 1.3 m/s

Pan height 295 mm

Pan width 842 mm

Pan length 1500 mm

Table 2 Technical
characteristics of BSL of
Tabas coal mine

Parameters Quantity

Conveyor length 30.5 m

Maximum capacity of conveyor 1500 t/h

Average capacity of conveyor 1300 t/h

Power of discharge drive 1 × 55/160 kW

Speed of scraper chain 1.51 m/s

Pan height 260 mm

Pan width 846 mm

Pan length 1500 mm

Table 3 Technical
characteristics of main
conveyor belt of Tabas coal
mine

Parameters Quantity

Total power 2 × 224 kW

Belt width 150 cm

Belt speed 3 m/s

Capacity 800 t/h

length Belt 1250 m

Belt type FR6000
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The computed values of the statistical test for the equipment are given in Table 4.
Regarding to the results of analytical test on subsystems of hauling operation, the
assumption that the failure data of subsystems does not follow any trend, is rejected
for all machines. Consequently, the reliability of these subsystems should be ana-
lyzed by non-homogeneous Poisson process. In this study, power law process
(PLP) is used for reliability modeling of all three machines.

5 Reliability Analysis

In order to calculate the best-fit distribution curve, Easyfit software was used. The
Kolmogorov-Smirnov (K-S) test was used for selecting the best distribution among
the top choices. The result of data analysis and best-fit distributions are illustrated in
Table 5.

The reliability curves of AFC, BSL and conveyor belt were plotted using the,
above-mentioned, distributions and their parameters, as illustrated in Figs. 5, 6 and
7, respectively. For further comparison and determination of the critical subsystems
of the hauling operation in Tabas coal mine, the reliability curves of these machines
are shown in Fig. 8.

As it can be seen in these figures, the reliability of AFC, BSL and conveyor belt
reaches zero after about 220, 30 and 8 h of operation, respectively. Among the

Fig. 4 Pareto analysis of
hauling operation subsystems
in Tabas coal mine

Table 4 The results of analytic test on subsystems of hauling operation

Equipment Degree of
freedom

Calculated
statistic U

Lower chi2 value (2.5 %
level of significance)

Upper chi2 value (97.5 %
level of significance)

AFC 250 195.4 208.09 295.68

BSL 308 457.1 261.28 358.52

Conveyor
belt

564 838.4 500.09 631.70
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Table 5 The results of data
analysis and best-fit
distributions

Equipment Best fit distribution Parameters

AFC Power law process α = 1.289 β = 59.99

BSL Power law process α = 0.679 β = 2.645

Conveyor belt Power law process α = 0.675 β = 0.597

Fig. 5 The reliability plot of
AFC
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subsystems of the hauling operation, the AFC seems to be the most reliable sub-
system and it takes about 45 h to reach the 50 % level of its reliability while the
conveyor belt is the most critical subsystem of hauling operation and its reliability
reaches zero before any other subsystems and it has the lowest reliability level in
the machine operation.

Regarding the series configuration, the reliability of the hauling operation was
calculated using a multiplier of the reliability of subsystems (Eq. 2):

Rsystem tð Þ¼
Yn
i¼1

R tð Þi ð2Þ

where the n is the number of subsystems and R(t)i shows the reliability of ith
subsystem. Figure 9 shows the final reliability plot of hauling operation. As it can
be seen in this figure, the reliability of the hauling operation reduces to zero in a
period of about 4 h. There is a 50 % chance that the hauling operation will not fail
for the first 0.5 h of operation. It shows that this operation needs serious attention
and has high potential for causing the production stoppages, which is, the worst and
the most critical threat for production continuity in long-wall mines.
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6 Conclusion

Due to significant roles of hauling operation in continuity of production and
extraction process in long-wall mines, assessing the reliability of AFC, BSL and
conveyor belt is essential. In this paper Reliability of hauling operation of Tabas
coal mine were investigated and the following results were obtained.

• The results of the Pareto analysis showed that the conveyor belt has the highest
failure frequency among all the equipment and because of that it is the critical
subsystem of hauling operation.

• The data analysis showed that the failure data in all three AFC, BSL and
conveyor belt follow the assumption of non homogeneous Poisson process
(power law process).

• The reliability of AFC, BSL and conveyor belt reaches zero after about 220, 30
and 8 h of operation, respectively.

• Among the subsystems of the hauling operation, the AFC seems to be the most
reliable subsystem and the reliability of the conveyor belt reduces to zero more
quickly than the other machines. Therefore it is the major factor to reduce the
reliability of the hauling operation.

• The reliability of the hauling operation reduces to zero in a period of about 4 h.
It shows that this operation needs serious attention and has high potential for
causing the production stoppages, which is, the worst and the most critical threat
for production continuity in long-wall mines.
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Simulation of an Active Maintenance
Policy: A Preliminary Study in Dragline
Maintenance Optimization

Onur Gölbaşı and Nuray Demirel

Abstract Current maintenance policies for draglines do not cover enough pre-
ventive measures. Preventive maintenance for these systems is generally imple-
mented via inspections and corrective activities unfortunately keep their priorities in
dragline maintenance. Moreover, optimalities of both inspection intervals and their
implementation durations are generally underestimated and they are determined via
rough estimations. However, sustainability of a dragline operation and health of
system components can be improved through maintenance optimization studies
including preventive activities. This type of studies requires development of rep-
resentative and comparable models to measure the effectiveness of optimization. In
this sense, this paper presents the simulation of current maintenance policy of the
draglines in Tunçbilek coal mine in Turkey, as a preliminary stage of the mainte-
nance optimization study. The established policy aims to reveal 1-year halt profiles
of the draglines via combining deterministic halts in operations and random lifetime
characteristics of the system components.

Keywords Dragline � Lifetime characterization �Maintenance policy � Simulation

1 Introduction

Inherent risks in mining areas lead to unexpected and frequent failures of the
mining equipments. Maintenance of these heavy-duty machines is performed
typically via corrective repairing or replacement of the system components in
malfunctioning state. Concern of recovering systems preventively and adaptation of
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preventive measures to maintenance policies are still out of the desired levels.
Moreover, inspections of machineries are generally carried out in non-optimal
intervals without validating cost-effectiveness of these intervals. In mine sites,
failures during lifetime of machinery systems are recorded roughly and these
statistics are not benefitted sufficiently. However, these values offer a good interface
in estimation of failure profiles of machines and improvement of effective main-
tenance policies. Analyzing failure data allows investigation of maintenance opti-
mality via (i) estimation of root-causes of failures, (ii) assessment of system
reliabilities, (iii) determination of preventive replacement decisions, (iv) optimiza-
tion of overhauling or inspection intervals, and (v) specification of components that
can be maintained simultaneously in opportunistic maintenance concept.

Maintenance policies cover various decisions on corrective and preventive
activities to be applied along the lifetimes of systems. Optimization of these policies
allows decision-maker to diminish overall operational expenses and to protect
functional health of machinery components. A maintenance model can be built
mathematically to maximize or minimize a prescribed objective function. In this
respect, scope of the policy may aim to maximize performance factors such as
reliability, availability, or profit or minimize other factors such as downtime, cost,
or machinery deterioration. Moreover, these models may also consider both eco-
nomic and downtime factors together to minimize unit lifetime cost of machinery
while keeping availability above the limit values.

Draglines are one of the most complex systems employed in surface mines. They
perform a single-handed overburden removal in open-cast mines and they are
utilized alternative to truck and shovel system. Draglines are controlled using
independent mechanisms of swing, hoist, and drag to excavate soft rock or loosen
material after blasting via its bucket and to dump it onto an adjacent spoil pile [1].
These earthmovers are extensively utilized around the world. In the USA alone, 101
numbers of draglines with bucket capacity between 30 and 108 m3 are employed in
56 surface coal mines and 40 % of overall overburden removal in open-cast mines
is achieved by these machines [2]. Operational view of a dragline and its major
subsystems can be viewed in Fig. 1.

Due to massive structure of dragline and rough ground conditions in excavation
area, working components of the mechanism are frequently exposed to failures due
to wear and tear, fractures, and fatigue. Any functionality loss in the components
causes halt of dragline and delays in overburden stripping operations. Therefore, it
is a requirement to constitute more conservative maintenance policies for these
earthmovers to ensure continuity of operations and longevity of working compo-
nents. This paper presents the preliminary stage of a dragline maintenance opti-
mization study. In this sense, current maintenance policies applied for two draglines
operating in Tunçbilek coal mine, Turkey, were simulated to achieve their annual
failure profiles.
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2 Lifetime Characteristics of Dragline Components

Prior to maintenance simulation, it is required to estimate lifetime characteristics of
dragline components to understand random failure behaviour in the system. In this
sense, dragline was decomposed into seven main subsystems as given in Fig. 1.
Then, major components inducing breakdowns were distributed to the subsystems,
considering their failure modes and occurrence areas in the mechanism (Table 1).
Following component distribution, relevant failure records were assigned to each
individual component.

Datasets of components were initially analyzed for outlier detection using box
plots. These plots essentially utilize six descriptive values as 1st quartile (Q1), 2nd
quartile (Q2), 3th quartile (Q3), maximum and minimum of the dataset, and number
of observations. These quartiles indicate 25, 50, and 75th percentile points in data
frequency curve, respectively. Outliers generally stay out of the range between
Q1−1.5xIQR and Q3 + 1.5xIQR where IQR is the difference between 1st and 3th

Fig. 1 Operational view (a) and main subsystems (b) of a dragline
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quartiles. Although boxplots offers a nonparametric test, independent of distribution
type, this test cannot be used for highly-tailed, i.e. right skewed, failure frequency
curves. Therefore, outliers in the study were generally detected subjectively
according to general behavior of time-between-failures data, as well as boxplots.

After outlier elimination, each dataset of the working component was tested to
check whether data is distributed identically and independently. In this sense, run
charts offer an effective way to investigate data randomness via analyzing data
anomalies such as clustering, mixture, trend, and oscillation (Fig. 2). Existence of
any anomalies may point to undesired correlations between data values. It was
observed from the run charts that there is not any potential threat against data
randomness for dragline components except for data trend. In the study, trend
behaviours of the datasets were also analyzed using hypothesis testing methods.

Lifetime trend behavior extensively effects the reliability assessment technique.
Ascending or descending behavior of time-between-failures data refers an
improvement or deterioration in the working mechanism of system, respectively.

Table 1 Major failure-inducing components in a dragline

Subsystems Components

Dragging Chain assembly, ringbolts, dragging rope, control, socket

Hoisting Brake, hoisting rope, sockets, control

Bucket Bucket body, chain assembly, digging teeth, pins, ringbolts

Rigging Sockets, ringbolts, rigging rope, pulley

Machinery house Generators, motors, lubrication system, air conditioning

Movement Rotation mechanism, walking mechanism, warning mechanism

Boom Boom chords

Fig. 2 Detection of special-cause data variations using run chart
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These systems are called as non-stationary systems. Their reliability variations are
required to be examined via stochastic processes. On the other hand, best-fit dis-
tributions are good enough for reliability assessment of non-trend systems. Data
trend for individual components of dragline can be examined with hypothesis
testing methods. In this respect, Crow-AMSAA and Laplace are effective hypoth-
esis methods which tests the validity of homogenous Poisson process (HPP) in null
hypothesis, in order to verify non-trend behavior. On the other hand, alternative
hypothesis in the methods defense the validity of non-homogenous Poisson process
(NHPP).

Crow-AMSAA test rejects the null-hypothesis in case 2N=b̂\v22N;1�a=2 or

2N=b̂[ v22N;a=2, where χ and α are chi-squared distribution and confidence interval,

respectively. In test statistic, N is total number of failure and b̂ is called as shape
parameter. b̂ parameter can be estimated as in Eq. 1 [3]. In the equation, Ti and TN
are cumulative time-between-failures at ith failure and at Nth failure, respectively.

b̂ ¼ NPN�1
i¼1 ln TN

Ti

� � ð1Þ

On the other hand, Laplace test rejects validity of HPP when UL [ za=2 and
UL\� za=2. Test statistic, UL, can be estimated using Eq. 2 [3]. N and Ti are same
as in Crow-AMSAA test.

UL ¼
PN�1

i¼1 Ti � N � 1ð Þ TN2
TN

ffiffiffiffiffiffiffi
N�1
12

q ð2Þ

According to the tests, dragging chain assembly, hoisting brake, rigging socket,
and rotation mechanism for Dragline-1 and hoisting rope-mode01, hoisting socket,
bucket chain assembly, bucket pins, bucket ringbolt, rigging pulley-mode02, gen-
erator set, lubrication mechanism, rotation, and warning mechanisms for Dragline-2
were detected to exhibit trend behavior in their lifetime datasets. Reliabilities of
these components were discussed using general renewal process which can evaluate
the lifetime trend using a restoration factor. This process can be used with one of two
approaches on virtual age of system. One approach assumes that maintenance
recovers the deterioration only between the last and previous maintenance where the
other approach assumes that cumulative deterioration can be recovered propor-
tionally in maintenance activities. These models are called as Kijima-I and Kijima-II,
respectively. This study utilizes Kijima-II assumption in the analyses, given in
Eqs. 3–5 [4].
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f tijti�1; ti; . . .; t1ð Þ ¼ f tijti�1ð Þ ð3Þ

ti ¼ q ti�1 þ xið Þ ð4Þ

f tijti�1ð Þ ¼ kb xi þ ti�1ð Þb�1e�k½ðxi þ ti�1Þb�tbi�1 ð5Þ

In Eqs. 3–5, b is shape parameter, k is failure rate, t is virtual age, q is degree of
repair, and x is time between failures. The model assumes that a system gets
old differently from the calendar age, depending on the effectiveness of
maintenance. System age can be called as virtual age. In case maintenance is carried
out perfectly, virtual age remains same and stops to wear. In the process, effec-
tiveness of maintenance is measured with degree of repair and it takes a value
between 0 and 1 which are the limit values indicating perfect and minimal main-
tenance, respectively. This value can be utilized alternatively with restoration factor
(q = 1−RF). Failure rate of a system with general renewal process can be estimated
as in Eq. 6 [4]. Best estimate of the shape parameter, b̂, can be calculated with Eq. 1
if the data set is failure truncated which means the observation is stopped at pre-
determined number of failure instead of predetermined time.

k̂ ¼ n

T b̂
ð6Þ

Differently from trend-components, reliabilities of the other components with
non-trend data behavior were assessed using best-fit distributions such as, Weibull,
exponential, log-normal, and log-logistic. Considering the trend assumptions dis-
cussed above, time-dependent reliabilities of all components for both draglines
were estimated using Reliasoft Weibull ++7 software. Since the components in
each subsystem are connected to each other serially, failure rates of subsystems
were obtained as in Figs. 3 and 4. The figures show that bucket and dragging units
exhibit the most failure-intensive behavior where boom is the least-failure inducing
unit for both draglines. These lifetime values will be utilized to describe random
behavior of component failures in maintenance simulation in Sect. 3.

3 Simulation of the Maintenance Policy

Optimization of a maintenance policy requires a comparable model to measure the
effectiveness of optimization over the current policy. Therefore, expected break-
down consequences of the current maintenance was modelled using random
behavior of dragline components and deterministic behavior of inspections and
compulsory halts in dragline operations. In the study, the analyses used objective
data covering descriptive information of failures recorded during maintenance
activities and subjective data achieved from dragline catalogues, maintenance crew,
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and literature information. General maintenance and operation profiles of the
draglines in Tunçbilek coal mine are given as follows:

i. Draglines perform overburden operations continuously all the year round.
Daily work hours are divided into 3 shifts with 8 h intervals.

ii. Operation of the draglines is stopped compulsory for 30 min in each shift
regarding employee rights. Therefore, utilization times of draglines are 22.5 h
a day.

iii. Dragline operations are also stopped due to: (a) component failures, (b) regular
inspections, (c) interruptions on energy transmission line, (d) unfavorable
weather conditions, and (e) lack of sufficient maintenance staff.

iv. There are two common maintenance approaches for the draglines in the mine:
(i) Corrective recovery of the components after failure and (ii) Performing 8-h
regular inspections every 160 h.

During the simulations, the components were allowed to fail randomly according
to their lifetime parameters. After each failure, components were assumed to be
restored according to restoration factor estimated using general renewal process.
For the components without any lifetime trend, maintenance activities were
assumed to recover the component to as good as new condition. On the other hand,
the components with lifetime trend were assumed to be restored to a condition
between as good as new and as bad as old. In addition, regular inspections with 8 h

Fig. 3 Failure rates of Dragline-1 subsystems
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and compulsory breaks in shifts with 30 min were also introduced in the simulation.
These compulsory breaks cause halts of the draglines and pause virtual ages of the
components during the events. Moreover, energy source statistics were also con-
sidered in the simulation to create more realistic policy model. The model was
simulated with 1000 iterations using Reliasoft Blocksim 7 software. A representative
illustration of one iteration covering major breakdowns can be viewed in Fig. 5.

The outputs of the simulations are stated in Table 2. The results reveal that the
estimated availability of Dragline-1 and Dragline-2 is 64 and 69 % where 158 and
162 numbers of failures are expected to occur in a year, respectively. Moreover,
occurrence of the failures and compulsory breaks are expected to cause 3164 and
2720 h of system halts for Dragline-1 and Dragline-2, respectively.

4 Future Study

Section 1–3 provides a basis in construction of maintenance optimization model for
the draglines. In the future study, direct and indirect economic consequences of
failures and breakdowns will be introduced to both the current and optimized model

Fig. 4 Failure rates of Dragline-2 subsystems
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Fig. 5 Simulation window for one representative iteration

Table 2 Simulation results
of the draglines

Dragline-1 Dragline-2

General profile
Mean availability 0.64 0.69

Std. deviation (mean availability) 0.04 0.03

Expected number of failures 158.05 161.54

Std. deviation (number of failures) 12.48 11.53

System uptime/downtime (hours)
Uptime 5601.69 6045.92

Total downtime 3164.31 2720.08

Total duration 8766.00 8766.00

System downing events (number)
Number of corrective maintenance 158.05 161.54

Number of inspections 52.00 52.80

Total events 210.05 214.34

Simulation of an Active Maintenance Policy … 677



to create more realistic and comparable model. Cost equations that will be utilized
for estimation of these measures can be viewed in Eqs. 7–8.

Unit Failure Cost ¼ CRepairDirect þCRepairIndirect ð7Þ

CRepair Indirect ¼ MTTRcomponent � Vbucket � F
S

� 1
Tcycle

goperator

� Cper bank m3 ð8Þ

In Eq. 7, direct cost is physical consequence of a failure that can change com-
ponent to component. It can cover the costs required for spare parts, hourly rate of
crew, machine hiring, and energy consumption. On the other hand, indirect cost is
non-physical cost of breakdown that can include production losses, penalty of
unmet commitments, and damage in corporate image. Since production loss is the
most measurable indirect cost, only this cost will be taken in calculations. Factors of
production loss estimation can be viewed in Eq. 8. In the formula, MTTR is mean
time to repair for components, Vbucket is volume of dragline buckets, F is fill factor,
S is swell factor, Tcycle is cycle time, ηoperator is efficiency of operator in cycles, and
Cper bank m3 is the revenue for excavation of unit volume of bank material.

Including cost factors, the current policy will be improved via optimization tools
such as age replacement decisions of wear-out components, opportunistic mainte-
nance which aims simultaneous maintenance of same-duty components, and opti-
mization of inspection intervals. Consequently, validity of the optimized policy will
be discussed with a cost effectiveness analysis.

5 Conclusions

This study aims to simulate the maintenance policy of two draglines currently
operating in Tunçbilek coal mine, in order to create a basis for the future mainte-
nance optimization study. In this sense, lifetime characteristics of the components
were achieved following the pre-processing of each lifetime dataset. These lifetime
parameters were utilized to describe random failure profile of draglines. In addition,
the compulsory halts in regular inspections and shifts were also included deter-
ministically in the simulation. The results state that 158 and 162 numbers of failure
are expected to take place annually for Dragline-1 and Dragline-2, respectively. The
events in a year due to compulsory breaks and failure cause 3164 and 2720 h
halting of Dragline-1 and Dragline-2 and yield availability of 64 and 69 %,
respectively.
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Reliability Analysis of Motor System
of Dump Truck for Maintenance
Management

Zeynab Allahkarami, Ahmad Reza Sayadi and Amol Lanke

Abstract Dump truck is one of the main machinery in open pit mines. From an
economic point of view, more than 50–60 % of production costs in open pit mines
are allocated to hauling and loading costs, so it is important to keep equipment in
good condition. Reliability is a useful tool for evaluating the performance of this
machine. In this research, the reliability of motor subsystem of a dump truck in
Miduk Copper Mine in Iran has been analyzed. The failure data were collected
during 20 months of dump truck operation. Trend and serial correlation tests were
used to validate the assumption of independent and identically distribution (IID).
According to tests, the data are independent and identically distributed therefore the
renewal process technique is used for modelling. For finding the best-fit distribu-
tion, different types of statistical distributions were tested using the Easyfit soft-
ware. The analysis results indicated the time between failures (TBF) data obey the
Weibull (3p) distribution. The developed model based on these data showed that the
reliability of the motor subsystem decreases to a zero value after approximately
430 h of operation. Regarding to the obtained reliability plot, preventive
reliability-based maintenance time interval for 90 % reliability levels for machine in
the motor subsystem is 21 h.
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1 Introduction

Reliability analysis is an important implement to assess the efficiency of a system
and choose a maintenance strategy [1]. Reliability has been an accepted perfor-
mance factor of systems. In the commercial area, high levels of reliability are also
crucial [2]. In the open pit mining project, equipment such as dump trucks play key
role in the production plan, so their performance is very imperative for engineers
and managers. In modern mining the forecasting production amount is essential for
managers and stakeholders. A common reason why the production amount is not
according to plan, is the unavailability of equipment, and one of the main type of
machines in most open pit mines is the trucks [3]. Kumar [4] modelled the relia-
bility of load-haul-dump (LHD) fleet. Hall and Daneshmend [5] analyzed reliability
and maintainability of mobile underground haulage equipment for improving
decision making for maintenance planning. Barabady and Kumar [6] studied the
reliability of a crushing plant and identified the critical subsystems, then showed
that reliability study is very valuable for maintenance scheduling. Hoseinie et al. [7]
analyzed reliability of the shearer machine to detect critical subsystems. Then in
order to achieve a proper and practicable maintenance schedule, a task package was
suggested for the drum shearer machine in the Tabas coal mine. Morad et al. [8]
assessed the reliability of 10 trucks and computed importance of each component
was by weighted importance measure method. This study showed the impact of
critical items on the availability of machines. Dump truck is one of the main
machinery in open pit mines and its downtime reduction has direct effects on
production plan. In this paper, a dump truck of Miduk copper mine in Iran with the
age of approximately 15,600 operation hours was considered. Technical specifi-
cations of the dump truck are listed in Table 1. The maximum and minimum

Table 1 Specifications of
HD875-5

Specifications of HD875-5

Engine

Gross horsepower 783 kW/1050 HP

Flywheel horsepower (SAE J1349) 753 kW/1010 HP

Capacities

Heaped (2:1 SAE) 40 m3

Payload maximum 60 m3

Maximum gross vehicle weight 166,000 kg

Body

Floor 19 mm

Front 12 mm

Sides 9 mm

Other

Max. travel speed 65 km/h

Min. turning radius 9.9 m
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temperature in this region is +35 and −15 °C respectively. After analysis of number
of failure, it was determined motor sub-system of the dump truck has the top failure
frequency, so this sub-system was selected for reliability analysis.

2 Reliability

Reliability is viewed as both an engineering and a probabilistic concept [9] and it is
defined as “the duration or probability of failure-free performance under stated
conditions” [2]. The reliability function, R(t), or the probability of a system not
failing prior to time t, is determined by [2, 3]:

RðtÞ ¼ 1� FðtÞ ¼ 1�
Z t

0
f ðtÞdt ð1Þ

where R(t) is the reliability at time t; F(t) the cumulative failure distribution
function; and f(t) the failure probability density function.

3 Data Gathering and Analysis

Data is the primary foundation for statistical reliability analysis. Accordingly,
failure data of a dump truck in a 20-month period in Miduk copper mine was
gathered and dump truck was represented into 6 subsystems (Fig. 1).

Data showed the most frequent failure event was in the motor system. Motor has
a major effect on this truck downtime. Therefore, a concentration on reliability of
motor is important to improve the performance of the machine. The result is shown
in Fig. 2.

The motor subsystem of dump truck consists of following parts [8];

• Engine body
• Cooling
• Lubrication
• Intake and exhaust
• Fuel

Fig. 1 Dump truck
subsystems
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The failures of these components were considered as motor subsystem failures.
Main reasons of motor downtime are intake and exhaust failures. Other subsystems
like the hydraulic is a composite of hydraulic tank, brake control, hoses, pipes,
joints, hoist cylinders and related items. The electrical components are battery,
alternator, cable, starter and lights. Gearbox, differential, universal joint, clutch and
wheels were considered as Transmission subsystem.

For choosing an appropriate methodology of modelling, two statistical tests must
be done to validate the assumption of independent and identically distributed
(IID) for the time between failure (TBF) data. The analysis procedure is shown in
Fig. 3.

There are graphical and analytical approach for testing presence of trends and
serial correlation. In this paper, graphical methods have been used, because of
simplicity, quick performance and their valuable information. A scatter plot of
cumulative TBFs versus cumulative number of failures is used to test the presence
of trend, if the plot is approximately a straight line, then the TBF data is identically
distributed and free from trends [10]. Figure 4 shows the trend test on the motor
subsystem of dump truck. Military Handbook Test is one of the analytic trend tests,
that is applied in this paper, too. This test using calculating the test statistic U
(Eq. 2) checks the trend of data [11]:

U ¼ 2
Xn�1

i¼1
lnðTn=TiÞ ð2Þ

where:
n: is total number of failure,
Tn: is time of the nth failure,
Ti: is time of the ith failure.

The test statistic U is chi-squared distributed with 2(n−1) degrees of freedom
under the null hypothesis of an HPP [9, 10]. Result of analytic trend test is pre-
sented in Table 2.

Fig. 2 Failure frequency of
dump truck subsystems
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Serial correlation can be tested by plotting the (i)th TBF against (i-1)th TBF. If
the plot is without any patterns, TBF data are serial correlation-free [7, 12, 13]
(Fig. 5).

The results of tests on TBF data show the data are independent and identically
distributed (iid), so renewal process (RP) is the best method for modelling.

Fig. 3 The reliability
analysis procedure [6, 7]

Fig. 4 Trend test on motor
system of dump truck
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4 Reliability Modelling

Easyfit software was used to find the proper distribution. Common distributions
such as Weibull, Exponential, Lognormal and etc. distributions in reliability anal-
ysis were tested. Then Kolmogorov–Smirnov (K–S) test was applied in selecting
the best distributions for reliability model. According to analysis, Weipull (3P) was
the best of all. The result is illustrated in the Table 3.

The achieved reliability plot is presented in Fig. 6. The developed model based
on these data shows that the reliability of the motor subsystem decreases to a zero
value after approximately 430 h of operation and reliability decreases to 50 % after
90 h.

5 Maintenance

Reliability Cantered Maintenance (RCM) is an engineering method for determining
the level of an organization’s maintenance program and reliability is a key concept
of it. In this paper, different level of reliability of the motor subsystem in the dump
truck was considered for programing preventive maintenance (PM) intervals

Table 2 The result of analytic trend test for TBF

Subsystem: motor

Calculated
statistic U

Critical value of chi-square distribution at
5 % level of significance

Degree of
freedom

IID Modelling
method

114.23 90.35 114 Yes RP

Fig. 5 Result of correlation
test

Table 3 Parameters
estimation for modelling

Subsystem Mean time between failure (h) Parameters

Motor 139.66 α: 883
β: 120.05
γ: 12
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(Table 4). One of the most important objectives of PM is improving the reliability
of equipment. Using the predicted intervals in desirable level for maintenance
managers can cause reduction of unpredicted downtime and costs. These time
intervals are scheduled to inspect, correct, clean, lubricate, replace spare parts, and
repair the system.

6 Conclusion

The reliability of main equipment in open pit such as dump trucks is essential and it
has significant impact on production goals and maintenance costs. In this paper,
data of a truck in Miduk mine in Iran were gathered and classified. Analysis of data
showed the most frequent failure event was in the motor system of this dump truck,
so it was focused on the motor subsystem for improving reliability of the dump
truck. The most critical subsystems are those that have the most failure frequency.
RCM recognizes the most critical components and optimizes their maintenance
strategies using appropriate and cost-effective methods. Results of analysis showed
that the TBFs data are IID, Hence, the renewal process was used for reliability
analysis. The data obeyed Weibull (3p) distribution. Using reliability plot, main-
tenance intervals were predicted. These time intervals should be scheduled to

Table 4 Preventive
maintenance intervals for
motor sub-system of the truck
at different reliability levels

Reliability levels (%) PM intervals (h)

90 21

80 34

70 49

60 68

50 91

5 428

Reliability Function
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Fig. 6 Reliability plot of
motor subsystem
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inspect, correct, clean, lubricate, replace spare parts, and repair the system. It is
obvious that managers and engineers can focus on PM intervals to improve relia-
bility of the system.. For PM, the tasks can be grouped for executing in the most
economical way. The improved reliability by RCM leads to fewer failures, more
availability and lower maintenance costs.
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Multi Up-Gradation Reliability Model
for Open Source Software

Mahdieh Ahmadi, Iraj Mahdavi and A.H.S. Garmabaki

Abstract Nowadays, software companies have to continuously do up-gradation or
add-ons in their software to survive in the market. This paper presents an effective
reliability model for multi release open source software (OSS), which derived based
on software lifecycle development process (SDLC) proposed by Jørgensen [1].
Most of OSS reliability models proposed in the literature are based on closed-form
methodology and do not consider the properties of OSS in the model structure. The
proposed model, incorporate bugs removed from two different phases, namely a
pre-commit test and parallel debugging test. Furthermore, the proposed model is
based on the assumptions that the overall fault removal of the new release depends
on the reported faults from the previous release of the software and on the faults
generated due to adding some new functionalities to the existing software system.
The parameters of model have been estimated on real software failure dataset with
three releases and goodness of fit of values have been calculated. Results show that
the proposed model fits the data reasonably well and present better accuracy in
comparison with other methods.
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Notations

The following notation used in the paper
m(t) The expected number of faults removed by time t.
λ(t) Failure intensity.
F(t), Probability distribution functions for FRP.
FPCT
i ðtÞ; FPDT

i ðtÞ Probability distribution functions for pre-commit test (PCT) and
parallel debugging test (PDT), respectively.

FPR
i ðtÞ Probability distribution functions for bugs reported from

Production Release (PR) previous version.
τi Time for ith release, i = 1..n.
ai Initial fault content for ith release, i = 1..n.
a Total fault content in the software.
β1, β2, β3 The shape parameter of the Weibull model for ith release during

PCT, PDT and PR; i = 1..n.
θ1, θ2, θ3 The scale parameter of the Weibull model for ith release during

PCT, PDT and PR; i = 1..n.
λ Proportion of fault removed by testing team during PCT.
1−λ Proportion of fault removed based during PDT.

1 Introduction

Open source software is defined as the software whose source code is available
along with the software and user has the freedom to distribute, run, copy, change,
and improve the software under the licensing policies of OSS [2]. OSS method-
ology provides greater value to users and leads to increased revenue for the OSS
companies. Many different developers, user, or co-developers can participate in the
development of the OSS. The development of OSS is always initiated by a single
developer or a single group, who starts the development of software for its own
“personal itch” [3].

Software reliability is one of main performance measures for the quality of the
software. Software reliability is defined as the probability of failure-free software
operation for a specified period of time in a specified environment. A software
reliability model (SRM) provides a mathematical relationship between time span of
testing and the cumulative number of faults detected. Software testing involves
running the software and checking for unexpected behavior in the software output.
The process of locating the faults and designing the procedures to detect them is
called the debugging process [4–7].

Software Reliability Growth based Models (SRGMs) are one of the successful
model to describe software failure-occurrence or fault-detection phenomenon in the
testing and operational phases. Several studies had been done for reliability ana-
lyzing of OSS [8–10]. For example, Eclipse, Apache HTTP Server 2, Firefox,
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MPlayer OS X, and ClamWin Free Antivirus applications have been evaluated by
means of several models, and the Weibull distribution has been found to adapt well
in modelling simpler projects, although more complex models are claimed to be
needed for Firefox and Eclipse [8, 11]. In [12], several OSS projects have been
analyzed and found that, the Weibull distribution has been found to be a simple and
effective way to represent software reliability growth. In addition, they conclude
that open source projects exhibit similar reliability growth pattern with that of
closed source project. Rossi et al. [13] show that the Weibull model can be used for
the reliability analysis of OSS successfully. For predictive ability, the Weibull
model is definitely good to estimate the total number of failures but it cannot be
used as any other SRGM for early prediction.

Due to time and resource limitation during testing phase, software companies do
not attempt to deliver a complete and perfect software product in one development
cycle. They plan successive releases of software by adding new features or new
functionalities or try to improve the performance of the system as compared to
previous releases. Mozilla Fire Fox, GNOME, Microsoft Windows and Office,
Adobe, represent good examples of such practice. This strategy provides several
benefits for software companies which discussed by Garmabaki et al. [4].

Upgrading a software application is a complex task. The upgraded and existing
system may differ in the performance, interface and functionality etc. Although safe
up-gradation can improve the behavior of the system and can preserve market for
company, risky up-gradation can cause critical error in system.

In the useful-life cycle phase, software companies introduce new add-ons or
features based on the user need. Hence, software will experience an increase in
failure rate, each time an upgrade is made. The failure rate decreases gradually,
because of the faults/failures found and fixed after the upgrades. Figure 1 depicts
the increase in failure rate due to the addition of new features in the software.

Recently Singh et al. [10], Kapur et al. [6], Garmabaki et al. [4] developed multi
up-gradation reliability model. The proposed model is based on the assumption that
the overall fault removal of the new release depends on the reported faults from the
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Fig. 1 Failure rate in
classical SRGM and multiple
releases [11]
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just previous release of the software and on the faults generated due to adding some
new functionalities (add-ons/up-gradations) to the existing software system.

In this paper, we incorporate bugs removed from pre-commit test and bugs
reported by parallel debugging test based on SDLC proposed by Jørgensen [1] for
OSS, which has been depicted in Fig. 2. Furthermore, the relation between fault
removal processes (FRP) of successive release of the software are considered and
shown in the Fig. 3. The rest of this paper is organized as follows. Section 2
discuses about Weibull model. In Sect. 3 briefly reviews Jørgensen [1] SDLC
model. The proposed model is introduced in Sect. 4 and the relation between
different testing phase and releases was discussed. Section 5 shows the experi-
mental results through real data sets and estimation of parameters. Finally, summery
and conclusions are given in Sect. 6.

Fig. 2 Life cycle model for
OSS [1]

Fig. 3 Testing process for
multi release OSS

694 M. Ahmadi et al.



2 Weibull Model

For the past three decades, various mathematical models have been proposed to
assess the software reliability. The non-homogeneous Poisson process (NHPP)
based SRGMs have proved quite successful in practical software reliability engi-
neering [7]. The main issue with the NHPP model is to determine an appropriate
mean value function to denote the expected number of failures experienced up to a
certain time point.

Let fNðtÞ; t� 0g be a counting process representing the cumulative number of
software faults removed by time t. The counting process fNðtÞ; t� 0g is shown to
be an NHPP with a mean value function m(t), which represents the expected
number of faults removed up to a certain time.

Based on the NHPP assumption, it can be shown that fNðtÞ; t� 0g has a
Poisson distribution with mean m(t), i.e.,

Pr NðtÞ ¼ nf g ¼ mðtÞn
n!

:e �mðtÞð Þ; n ¼ 0; 1; 2; . . . ð1Þ

By definition, the mean value function of cumulative number of faults, m(t), can
be expressed in terms of the failure intensity function of the software, i.e,

mðtÞ ¼
Z t

0
kðsÞds ¼ a:FðtÞ ð2Þ

where F(t) is cumulative distribution function for fault removal times [5, 14].
Unlike traditional closed source software, OSS involves much more testers in the

testing process and most of these testers are contributors. The number of contrib-
utors involved in the OSS is largely influenced by the attractiveness of the software
[3]. More specifically, the adaptation behavior of users/contributors is increasing
over a certain point of time and after that decrease since the software is losing its
attractiveness. This characteristic for OSS reflects an initial increase and eventual
decrease in fault/failure occurrences [15] and the Weibull model is flexible enough
to capture this behavior. In addition, the Weibull model empirically can fit many
types of failure data, especially for OSS.

The mean number of faults removed by Weibull model is given as:

mðtÞ ¼ a � 1� e�
t
hð Þb

� �
¼ a � FðtÞ; b[ 0; h[ 0 ð3Þ

where

FðtÞ ¼ 1� e�
t
hð Þb

� �
ð4Þ

Is cumulative Weibull distribution.
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3 Testing Phase in Jørgensen [1] SDLC

The software development life cycle (SDLC) for OSS is different from the tradi-
tional commercial software called as “closed software”. It is found by various
researchers that the traditional SDLC cannot be used for the development of OSS
[16]. Various researchers and practitioners are working on developing the standard
development life cycle of OSS.

Software testing is very important phases in the SDLCs and it has direct influ-
ence on operational phase and reliability of software. Software testing is defined as
the process of executing a program to locate an error [17].

Jørgensen [1] provides a life cycle model, shown in Fig. 2. This model is widely
accepted as a framework for the OSS development. In this model, Software testing
is carried out in the following two phases, which is defined as:

Pre-Commit test: The reviewed code, then passed through an unstructured testing
phase. A pre-commit check is invoked right before a change is committed into the
repository. The developed code is tested to find errors and un-necessary code is
rejected during this phase. The commit operation is performed on the code that is
found necessary and accurate. This phase is considered most important in the
development process because if not performed properly, and it may lead to failure
for the OSS.

Parallel Debugging: Once the development has been released the code is exposed
to a large number of contributors or user. They perform rigorous debugging to find
all bugs and report them to the core developers.

4 Multiple Release Model

The proposed model in this paper is based on the assumption that the overall fault
removal consists of

• Bugs removed from pre-commit test and bugs reported by parallel debugging
test due to adding some new functionality (add-ons/up-gradations) to the
existing software system.

• Bug reported from previous release to the testing team of the new release of the
software.

The relation between different phases in teasing phase for OSS with successive
releases is depicted in Fig. 3.

The basic assumptions of the model being proposed in the paper are as follows:

Assumptions:

(1) The FRP for each release is modeled by non-homogeneous poison process
(NHPP).
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(2) The number of faults detected at any time is proportional to the remaining
number of faults in the software.

(3) The FRP incorporates bugs removed from pre-commit test and bugs reported
by parallel debugging test.

(4) The undetected faults of previous release are removed by fault reported bug in
the current release of the software.

(5) The number of faults in the beginning of the testing phase is finite.
(6) All faults are mutually independent from failure detection point of view.
(7) Each time a failure occurs, the error that caused it is immediately fixed, and no

other errors are introduced.

In practice, it is important to know that how many faults exist in the software at
any time, so that different testing strategy and testing effort can be applied to
remove those faults.

Let consider that testing begins at time t ¼ 0 and the first release of software be
done at t ¼ s1. Note that we can’t remove all faults during the testing phase and
some of the fault remain in the code even after its release. The mathematical
equation of these finite fault count model is given as:

m1ðtÞ ¼ a1: k1F
DCT
1 ðtÞþ ð1� k1ÞFPDT

1 ðtÞ� �
¼ a:G1ðtÞ; 0\t� s1

ð5Þ

where G1ðtÞ ¼ k1FDCT
1 ðtÞþ ð1� k1ÞFPDT

1 ðtÞ.
Note that during the testing phase of first release no bug report is available. Thus

the faults are removed on the basis of testing only.
After each release, one of the major issues faced by the software companies is to

determine what new functionality/feature should be added in the next release of
their product for surviving in the market because of competition. At this time
company has information about bugs reported from the users of first release, which
are in the operational phase. On the basis of these bug reports and market feedback,
the company adds some new functionality to the existing software system or
increase performance by removing bugs from the current system. Adding some new
functionality to the software lead to increase in the fault content. At this stage, the
model distinguishes between removal process related to the faults of the new code
and undetected fault of previous release. During testing, it is quite possible that
some faults of old code are removed directly by the testing team of the new release
(without using any bug reports of the previous release of the software) and some
others are removed on the basis of reported bugs. In addition, due to parallel testing,
several people may report the same fault/failure which we call duplicates.
Duplicates are not included in count of unique fault. Based on the above frame-
work, we can write following mathematical equation for a second release.
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m2ðtÞ ¼ a2:G2ðt � s1Þþ ða1 � m1ðs1ÞÞ:FPR
2 ðt � s1Þ ð6Þ

where G2ðt � s1Þ ¼ k2FDCT
2 ðt � s1Þþ ð1� k2ÞFPDT

2 ðt � s1Þ s1\t� s2.
At this step, faults generated due to the enhancement of the features are removed

with a2:G2ðt � s1Þ and ða1 � m1ðs1ÞÞ: represent undetected faults of the first
release, which interacts with the new portion of code and are removed/detected by
testing team of the second release. i.e. FPR2 ðt � s1Þ.

The same situation will happen on the ith version at time t ¼ si as given by:

miðtÞ ¼ ai:Giðt � si�1Þþ ðai�1 � mi�1ðsi�1 � si�2ÞÞ:FPR
i ðt � si�1Þ ð7Þ

si�1\t� si

where Giðt � si�1Þ ¼ kiFDCT
i ðt � si�1Þþ ð1� kiÞFPDT

i ðt � si�1Þ; FDGT
i ðt � si�1Þ;

FPDT
i ðt � si�1Þ and FPR

i ðt � si�1Þ are Weibull distribution for DCT, PDT, and PR,
respectively.

5 Numerical Examples and Model Evaluation

Real software data sets from a famous open source project, namely as Apache
2.0.35 (first release), Apache 2.0.36 (second release), and Apache 2.0.39 (third
release), are selected to validate the proposed model [18]. The Apache Software
Foundation is a well-organized community, which developers cooperating under
OSS methodology. The community’s large size makes it a state-of-the-art com-
munity in terms of management of OSS projects.

To compare the proposed model with traditional reliability assessment models,
we select the widely used Goel and Okumoto [12], Yamada et al. [19] and Li et al.
[18] models.

We use Least Squares Method, one of the most significant methods to estimate
model parameters in the software reliability field. For parameter estimation, we
apply a statistical package for social science, “SPSS” software. We estimate the
parameters a, θ1, β1, θ2, β2 and λi from the data sets. The estimated values of the
parameters for the model in each data set are given in Table 1.

Table 2 shows the comparison criterion values related to the proposed model,
along with recent and traditional software reliability models. The two important
criteria used in the paper are defined as:

• Coefficient of Multiple Determination (R2):
We define this coefficient as the ratio of the sum of squares resulting from the
trend model to that from the constant model subtracted from 1, i.e.
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R2 ¼ 1� residual SS
corrected SS

ð8Þ

• Mean Square Error (MSE):
MSE is the difference between the expected values, m̂ðtiÞ and the observed data,
yi, measured as follows:

MSE ¼
Xk
i¼1

ðm̂ðtiÞ � yiÞ2
k

ð9Þ

where k is the number of observations. A lower MSE indicates the less fitting
error, thus better goodness of fit.

Figures 4, 5 and 6 show the estimated and actual values of the number of faults
removed for each release, separately.

Table 1 Parameter estimates
of proposed model

Releases i

Parameter 1 2 3

a 74 50 61

θ1 6.05 12.6 29.4

β1 0.89 0.99 1.4

θ2 18.09 34.3 12.4

β2 2.07 9.1 0.5

β3 – 1.23 0.94

θ3 – 7.1 9.2

λi 0.37 0.62 0.83

Table 2 Comparison criteria
of proposed model

MSE Ad-R2

First release Proposed model 2.16 0.996

Go-model 5.76 0.987

Yamada model 7.7 0.983

Xiang Li model 2.8 0.992

Second release Proposed model 0.51 0.997

Go-model 8.84 0.953

Yamada model 8.39 0.955

Xiang Li model 5.98 0.985

Third release Proposed model 0.75 0.995

Go-model 2.57 0.989

Yamada model 2.4 0.988

Xiang Li model 0.68 0.995
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6 Summery and Conclusion

In this paper, reliability modeling of successive release of OSS is investigated.
During the testing process of OSS development, unlike closed-form software, large
numbers of testers are involved and most are volunteers/contributors (free duty).

Fig. 4 Goodness of fit of first
release

Fig. 5 Goodness of fit of
second release

Fig. 6 Goodness of fit of the
third release
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Utility and attractiveness of the software are two main issues that influence the
number of contributors in OSS projects. More specifically, OSS can attract an
increasing number of contributors in early stages, but after the number of con-
tributors reaches a peak, it will decrease as the software loses its attractiveness over
time. Hence, the mixture-type Weibull model is used to capture the cumulative fault
removed of OSS. The proposed model is based on the assumptions that the overall
fault removal of the new release depends on the reported faults from the previous
release of the software and on the faults generated due to adding some new
functionalities to the existing software system. The model validation is done and the
parameters of model have been estimated on real software failure dataset with three
releases and goodness of fit of values has been calculated. Furthermore, Goel and
Okumoto [12], Yamada et al. [19] and Li et al. [18] models are selected to compare
with the proposed model. Result show that the proposed model fits the data rea-
sonably well and present better accuracy in comparing with other methods.
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Quality of Streaming Data in Condition
Monitoring Using ISO 8000

Mustafa Aljumaili, Ramin Karim and Phillip Tretten

Abstract The purpose of this paper is to propose a Data Quality Measurement
Model based on ISO 8000 standard. This paper deals about the concepts implied in
the measurement process, not about the measures themselves. Poor quality infor-
mation causes customer dissatisfaction, lost revenue and higher costs associated
with additional time to reconcile information. An understanding of the character-
istics of the data that determine its quality, and an ability to measure, manage and
report on data quality is required. Measurement is a major activity in data quality
management. In literature, there are many proposals contributing somehow to the
measurement of data quality. However, these measurement methods lack the uni-
fication. ISO 8000 provides a framework for improving data quality that can be
used independently or in conjunction with quality management systems. ISO 8000
defines characteristics that can be tested by any organization in the data supply
chain to objectively determine conformance of the data to ISO 8000.
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1 Introduction

The consequences of data quality are significant to businesses, governments and
society in general [1]. Data is considered as one of the most important asset for
organizations. Its strategic value leads to reconsider the importance of maintaining
adequate levels of quality in data that is managed and used by applications,
especially in Web Applications as the main organizational showcase. Data quality is
a key component of the quality of information and most business processes depend
on the quality of data. The existence of poor quality data contributes to unsatis-
factory information, unusable results and dissatisfied users [2]. Data of poor quality
causes customer dissatisfaction, lost revenue and higher costs associated with
additional time to reconcile data. Data of poor quality can lead to a loss of credi-
bility in a system and higher risks of noncompliance with regulations. Data of poor
quality increases consumer costs, increases taxes, decreases shareholder value and
can cause mission failure [1].

It is essential for consumers and decision makers to know that they are using
credible and high quality data. Data Quality (DQ) problems are obvious to obser-
vers in the information age nowadays. This subject has been studied and cleared in
literature in different area i.e. (production, healthcare, maintenance, aviation,
business, etc.).

Any DQ improvement plan must begin with the assessment of the affected
scenarios to identify the common roots of the detected problems. The assessment
involves having values for DQ measures. The main intention of these measures is to
provide a quantitative meaning about how much data quality dimensions are
achieved in order to enable an adequate management [3].

The knowledge is in the human mind while information is outside it: in people,
written texts and cultural elements. For this reason it is important to check if this
information complies as much as possible with expected data quality characteristics,
helping to reduce or avoid confusion, stress or problems in the human mind and its
patterns of logic [2].

The importance of controlling data quality is crucial to improving the processes
that cause poor data quality. The best results in monitoring data are obtained when
measurements are automatically updated, varying the content of databases under
control, and the radar chart is available on line [2]. Although DQ literature counts
with a great amount of measurement proposals, it has still a lot of open standard-
ization and unification problems [3]. The quantity of data handled by information
systems is increasing worldwide. Particularly in the World Wide Web, the rise of
web services, where data change frequently, it is necessary to pay the attention to
standards which can help them deal with such complexities [3].

In order to solve this problem, international standard organization has released
ISO 8000 standard. This standard is the first from ISO that is dedicated to DQ
management and measurement. It is useful to provide verification of data quality
such as, in particular, accuracy, completeness, and consistency, in a standardized
way. These are aspects of the content value of the information.
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Each aspect of DQ can be measured defining an algorithm, a specific method and
a level of the target value that it is necessary to achieve, depending on the context of
use. One of the important goals of the data quality analysis is to guarantee not only
the high level of expected quality for each feature, but also to understand how the
organization can support this quality. In this paper, a DQ assessment model is
developed based on ISO 8000 standard.

2 Definitions

Data is defined in the standard as “a reinterpretable representation of information in
a formalized manner suitable for communication, interpretation, or processing”. It is
a representation of the perception of the real world. Data can be considered the base
of information and digital knowledge and takes into account all data types, such as
texts, numbers, images, and sounds [3]. Data can be defined also as a symbolic
representation of something that depends, in part, on its metadata for its meaning
while data set is a logically meaningful grouping of data. Master data is the data
held by an organization that describes the entities that are both independent and
fundamental for that organization, and that it needs to reference in order to perform
its transactions, see Fig. 1 [4].

Information knowledge concerning objects, such as facts, events, things, pro-
cesses, or ideas, including concepts that within a certain context have a particular
meaning. Information system is one or more computer systems and communication
systems, together with associated organizational resources such as human, techni-
cal, and financial resources that provide and distribute information [6].

Fig. 1 Taxonomy of data (for master data) [5]

Quality of Streaming Data in Condition Monitoring … 705



Quality is the degree to which a set of inherent characteristics fulfils require-
ments. Data quality involves data being fit for use by consumers. According to ISO
8000, data quality involves the following principles [4]:

a. Data being fit for purpose; i.e., the decision it is used in.
b. Having the right data, in the right place, at the right time.
c. Meeting agreed customer data requirements.
d. Preventing the recurrence of data defects by improving processes to prevent

repetition and eliminate waste.

The requirements are the needs or expectations that are stated, generally implied
or obligatory. Data quality management is the coordinated activities to direct and
control an organization with regard to data quality. ISO 8000 focus is to provide
management, control and measurement of the following data quality aspects:
provenance, accuracy and completeness [4].

Data provenance record is a record of the ultimate derivation and passage of a
piece of data through its various owners or custodians. Data accuracy is closeness
of agreement between a property value and the true value. While data completeness
is the quality of having all data that existed in the possession of the sender at time
the data message was created [4].

3 Data Quality Dimensions Based on ISO 25012

The data quality dimensions according to International Standard categorizes quality
attributes into fifteen characteristics considered by two points of view: inherent and
system dependent.

Inherent data quality Inherent data quality refers to the degree to which quality
characteristics of data have the intrinsic potential to satisfy stated and implied needs
when data is used under specified conditions. From the inherent point of view, data
quality refers to data itself, in particular to:

• Data domain values and possible restrictions
• Relationships of data values (e.g. consistency);
• Metadata.

System dependent data quality refers to the degree to which data quality is
reached and preserved within a computer system when data is used under specified
conditions. From this point of view data quality depends on the technological
domain in which data are used; it is achieved by the capabilities of computer
systems’ components such as: hardware devices (e.g. to make data available or to
obtain the required precision), computer system software. In Table 1 below, a
summary of DQ dimensions categorizing them into their origins is presented.
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4 Data Quality Measurement

Measurement is ascertaining or determining the magnitude or quantity of something
[4]. Data quality measure is a variable to which a value is assigned as the result of
measurement of a data quality characteristic [6]. Data quality is dependent both on
the quality of the data capture process and the processes used to store, maintain,
transfer and present data (ISO/TS, 2009a). De Vaux and Hand indicate that
60–95 % of the total effort in data analysis work is spent on data cleaning [7].

Product quality is managed through quality measurements, reliability engi-
neering, and statistical quality control [8]. Since data is considered as a product,
measurement is necessary for its quality control. In addition, setting up a time
interval to measure data quality is necessary because certain data lose their
importance as time goes by. Although it is desirable to measure data quality without
delay after the process of data processing, the measurement time can be adjusted in
accordance with characteristics of business tasks [9].

Data quality measurement shall consist of the following activities [9]:

• Data quality measurement: the activity that measures target data in accordance
with criteria by tools or manually. For repeated data, measurement can be done
by tools. Yet for complicated data, measurement can be done by an expert’s
judgment.

• Statistical treatment of measured data: the statistical analysis of data quality
measurements to support the analysis of the causes of defects and
non-conformances.

Table 1 Data quality model
characteristics [6]

Characteristics Data quality

Inherent System dependent

Accuracy X

Completeness X

Consistency X

Credibility X

Currentness X

Accessibility X X

Compliance X X

Confidentiality X X

Efficiency X X

Precision X X

Traceability X X

Understandability X X

Availability X

Portability X

Recoverability X
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Data errors are typically discovered by chance in the process of data processing,
and the data errors tend to be corrected within user’s capability or business scope.
Therefore, if data error correction is carried out depending on users only, the
number of unidentified data errors will gradually increase. For this reason, it is
necessary to measure and inspect data errors continuously and systematically. This
process can be performed with SQL programs or data quality profiling tools by data
operators [9]. A radar chart can be useful to manage data entities, attributes and
characteristics to be analysed, measuring the distance between the actual value and
the target value estimated, for instance see Fig. (2). The importance of controlling
data quality is crucial to improving the processes that cause poor data quality. The
best results in monitoring data are obtained when measurements are automatically
updated, varying the content of databases under control, and the radar chart is
available on line [2].

This chart (Fig. 2) shows the definition of every DQ dimension described in
standard ISO/IEC 25012. In this example, by observing the distance between the
maximum and minimum level of coverage, the completeness of data appears very
limited.

Fig. 2 Data quality chart based on ISO 25012 [2]
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5 ISO 8000 Standard

Today, in an increasingly interconnected world, interoperability is more important
than ever, and interoperability problems are very costly. Studies of the US auto-
mobile sector, for example, estimate that insufficient interoperability in the supply
chain adds at least $1 billion in additional operating costs, of which 86 % is
attributable to data exchange problems. The adoption of standards to improve
interoperability in the automotive, aerospace, shipbuilding and other sectors could
save billions [10]. Standardization is the way to achieve interoperability.

There exist a number of quality-related standards developed by ISO/TC. ISO
quality models including ISO 9126 and ISO 25010 can be used to support speci-
fication and evaluation of software from different perspectives by those associated
with acquisition, requirements, development, use, evaluation, support, maintenance,
quality assurance and audit of software. The ISO 9126-1 standard distinguishes
three different viewpoints for software product quality, internal quality, external
quality, and quality in use. ISO 25010 combines internal and external quality
models as product quality [11].

General requirements for the quality management to creating process of each
product are given in the ISO 9000 and ISO 9001 standards. These standards are
mostly process oriented and are intended previously for developers. The ISO 9000
quality management standards are focused on product quality general. ISO 8000
addresses data quality. ISO 8000 specifies fundamental principles of DQ man-
agement, and requirements for implementation, data exchange and provenance. ISO
8000 is concerned with [4]:

• the principles of data quality;
• the characteristics of data that determine its quality;
• the processes to ensure data quality.

An organization that implements this part of ISO 8000 shall perform the fol-
lowing actions:

• Perform processes for data quality management that include at least data pro-
cessing, data quality measurement and correction, data schema design, mea-
surement criteria setup, error cause analysis, data quality planning and data
architecture/stewardship/flow management;

• Assign roles for data quality management within their organization;
• Embed processes for data quality management within the organizations business

processes.

ISO 8000 is organized as a series of parts, each published separately. The parts
of ISO 8000 are organized into the following series [12]:

• parts 1–99: General data quality;
• parts 100–199: Master data quality;
• parts 200–299: Transaction data quality;
• parts 300–399: Product data quality.
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Each of the above series addresses communication within an organization and
between two or more organizations.

The data architecture according to the scope of the parts of ISO 8000 is shown in
Fig. 3. It is explained in the standard as the following:

• Data includes information about data provenance, data accuracy, and data
completeness.

• Data is coded using concepts in a data dictionary.
• Data conforms to a data specification.
• Data conforms to a formal syntax.
• A data specification specifies data requirements for coding data using concepts

from a data dictionary.
• A data specification specifies preferred terminology for concepts in a data

dictionary.
• A data specification specifies the use of a formal syntax.
• Data, data specifications, and data dictionaries use identifiers from an identifi-

cation scheme.

6 Data Quality Measurement Model

ISO 8000 includes terms relating to DQ. DQ dimensions included in the standard
are completeness, accuracy and provenance. These terms can be listed as follows:

• Data quality management: coordinated activities to direct and control an orga-
nization with regard to DQ.

Fig. 3 Graphical depiction of the data architecture [12]
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• Data provenance record: record of the ultimate derivation and passage of a piece
of data through its various owners or custodians

• Data accuracy: closeness of agreement between a property value and the true
value

• True value: value that characterizes a characteristic perfectly defined in the
conditions that exist when the characteristic is considered

• Accepted reference value: value that serves as an agreed-upon reference for
comparison

• Authoritative data source: owner of a process that creates data
• Data completeness: quality of having all data that existed in the possession of

the sender at time the data message was created

The UML class diagram for the high-level data model is given in Fig. 4.
A data_dictionary is a collection of data_dictionary_entry objects that allows

lookup by entity identifier. A data_dictionary_entry is a description of an entity
containing, at a minimum, an unambiguous identifier, a term, and a definition.
A data_record is a data_object that is a set of property_value_assignment objects.
A data_set is a data_object that is a set of data_record objects, which may be ordered

Fig. 4 UML class diagram for high-level data model [5]
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or partially ordered. A data_object is anything that is used to signify something else.
A data_object_accuracy_event is an event for which data accuracy information is
recorded. A data_object_completeness_event is an event for which data complete-
ness information is recorded. A data_object_provenance_event is an event for
which data provenance information is recorded. A property_value_assignment is
a data_object that is a pair of a value and an identifier to a property defined in a data
dictionary (Fig. 5).

The data operations process identifies factors that affect data quality and ensures
data is available at the right place in a timely manner. This top-level process shall
consist of the following processes:

• Data architecture management; the process that manages organization-wide data
architecture from the integrated perspective to use data in distributed informa-
tion systems with consistency and therefore ensure data quality.

• Data design; the process that designs data schema, and implements a database to
make data users apply data without mistake and ensure data quality.

• Data processing; the process that creates, searches, updates, deletes data in
accordance with guidelines of data operations.

The data quality improvement process corrects data errors detected and elimi-
nates root causes of the data errors by tracing and identifying them. In order to
support the top-level process effectively, adjustment of data stewardship in accor-
dance with data flows tracing is required. This process has the function of process
improvement not only data quality improvement. Processes for data management
are improved at the data administrator level while business processes at the data
manager level. This top-level process shall consist of the following processes:

• Data stewardship and flow management; the process that analyses data opera-
tions and data flows among businesses or organizations, identifies responsible
parties and their data operation systems which influence data quality, and
manages the stewardship of data operations.

= role, = process

Fig. 5 Data quality
management framework
(ISO/TS 2011a)
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• Data error cause analysis; the process that analyses root causes of data errors and
prevents a recurrence of the same errors fundamentally.

• Data error correction; the process that corrects the data that turns out erroneous.

The three roles in the framework are responsible for performing the processes in
the framework. These roles shall be: data manager; data administrator; data tech-
nician. The data manager shall perform the following processes within the
framework:

• Data architecture management.
• Data quality planning.
• Data stewardship and flow management.

The data manager performs the role that directs a guideline for master data
quality management in compliance with objectives of an organization, manages
factors that impact data quality at an organization level, and establishes the plans for
performing data quality activities in the organization. Along with each major
top-level process, the data manager maintains data consistency in individual
information systems through the organization-wide data architecture management,
and analyzes factors that affect data quality in data quality planning. In addition, the
data manager takes a role of granting data administrators the authority to trace and
correct data over the information systems or organization.

The data administrator shall perform the following processes within the
framework:

• Data design.
• Data quality criteria setup.
• Data error cause analysis.

The data administrator controls and coordinates over data technicians by
defining criteria required to maintain the quality of master data, and prevents a
recurrence of the same data errors by analyzing the causes of errors or designing
data schema. In general, supporting resources and guidelines to data technicians, the
data administrator carries the data quality plan into practice to achieve the objec-
tives set by the data manager.

The data technician shall perform the following sub-processes within the
framework:

• Data processing.
• Data quality measurement.
• Data error correction.

The data technician creates, reads, modifies, and deletes data as per guidelines of
data quality management set by the data administrator, and measures data quality
and corrects erroneous data as a result of the measurement. While the data manager
or administrator can handle data even across its own business scope in accordance
with data flows, the data technician handles data within its business scope.
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7 Conclusions and Discussions

The phenomenal global growth of the Internet coupled with the ever-increasing
sophistication of online technologies and emergent spread of information require
even higher quality data and information. The lack of standardized approaches
regarding requirement specification and evaluation lead us to discover this issue in
depth. The lack of a common terminology may affect the data quality measurement
of the DQ research community. This paper presents a proposal for DQ
Measurement to fulfill the ISO 8000 standard, provides a set of the main terms
related to data quality measurement. This set has been elaborated by analyzing the
data quality measurement provided by the standard.

Data quality is a major concern also in Data analytics projects. One of the first
conclusions we raised is that quality-in-use becomes more representative when it
comes to measure the level of quality in big datasets composed by several datasets
coming from different sources, with probably different formats, and at different
velocities. Completeness, accuracy and provenance attributes are provided by ISO
8000 standard. However, extending this standard to include other attributes, such as
consistency, is necessary. These dimensions are to be measured according to data
quality dimensions defined on each one of the datasets.

We have proposed a framework to specify quality requirements for data for
employing a minimalist and standard approach by reusing and extending the ISO
8000 quality models’ characteristics. In doing so, we have added information
consistency, and value added as new characteristics and have carried out grouping
of characteristics based on their conceptual similarities in existing ISO 25012
standard while also combining and integrating characteristics from previous
research.
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Data Quality Assessment of Automatic
Wheel Profile Measurement Systems

Matthias Asplund, Stephen M. Famurewa and Matti Rantatalo

Abstract The aim of this paper is to present a method for the quality assessment of
data from a condition monitoring system for rolling stock wheels to ascertain if the
data have the right quality to be used for further analyses. This quality assessment
will also show if there are variations between different measurement units for the
same system, and if there are relations between different wheel parameter mea-
surements, speed and time. The assessment of data is accomplished using the
quality dimension freedom of error. There are two different data sources, namely an
automatic wheel profile measurement system and a manual wheel profile mea-
surement device. The manual measurements of wheel profiles are used for verifying
the accuracy of the automatic wheel profile measurements, which constitute the
larger data set. The proposed method for evaluating the data quality is demonstrated
using the data from a specific condition monitoring system. The results show some
inconsistencies indicating that this system lacks quality in the dimension of freedom
of error and that there is need for internal calibration or self-adjustment of the
studied system for quality reasons.
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1 Introduction

Condition-based maintenance (CBM) employs a preventive maintenance approach
that includes one or more of the following actions: condition monitoring, testing,
inspection, analysing and the ensuing maintenance actions [1]. It is really important
to have a high data quality for the CBM process to detect the state of the item,
which is necessary to know if one is to take correct decisions. CBM is used in the
maintenance of the track alignment, which is based on data supplied by a condition
monitoring system (CMS) installed in recording cars.

Condition monitoring (CM) is an activity that can be performed manually or
automatically to measure the characteristics and parameters of the actual state of an
item. CM is conducted continuously or at intervals, and usually in the operational
state [1]. Data from CMS are an essential tool for improving and optimising
maintenance decision making, and make a significant contribution to the boosting
of key business drivers [2]. Therefore, such data need to give reliable information as
input to the maintenance process; a description of the maintenance process is given
in the dependability management standard IEC 60300-3-14 [3]. An applicable and
effective condition monitoring task demands the fulfilment of a number of
requirements, examples of which are: measurable parameters that can be used to
detect the status of the equipment, a reasonably consistent interval between the
onset of failure and the detection of failure, and cost-effectiveness [4].

The data quality exerts an influence on the maintenance actions taken. The
railway is a one-dimensional system and poor data quality will probably lead to
improper maintenance decisions, such as decisions to take wrong actions or no
action at all. This will in turn lead to a failure that consumes availability and
capacity [5] in an already highly occupied system, and secondary failures can arise.
This will entail excessive downtime for the infrastructure and the rolling stock [6].

Considering the inherent characteristics of the capacity of a railway system, the
failure-driven capacity-consuming events within a railway network should be kept
to a minimum. This can be achieved by the use of an appropriate CBM which can
use CMS to detect, diagnose and predict failure events at an early stage to support
the maintenance decisions. A review of CMS for railway systems, relating to the
condition of the rolling stock and with relevance to both the operator and the
infrastructure manager, is presented in [7].

CMS can be either reactive or proactive in their approach, but the focus of CBM
requires a proactive monitoring system which gives room for adequate prognostics
and a preventive maintenance approach. One characteristic of the reactive approach
is that it provides a better possibility of finding and understanding trends in the
deterioration of the affected item, and then analysing the condition of the item in
question for maintenance decision support [8, 9].

The fact that this article deals with data assessment motivates a brief presentation
of this topic. Data can be assessed according to 16 types of data quality dimensions:
accessibility, appropriate amount of data, believability, completeness, concise
representation, consistent representation, ease of manipulation, freedom of error,
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interpretability, objectivity, relevancy, reputation, security, timeliness, under-
standability and added value [10]. There are also other ways of classifying data
quality dimensions, one of which uses the following five dimensions: usefulness of
content, adequacy of information, usable accessibility, privacy/security and inter-
action [11]. Lee et al. [12] present a summary of academics’ views of information
quality, focusing only on subjective data assessment. Pipino et al. [13] provide a
method for both subjective and objective data assessment and for presenting the
outcome in a matrix of four quadrants.

One often finds general descriptions of the CMS for railway applications, and
information is also available concerning railway applications that combine track
measurement data [14]. The optimal use of data from condition monitoring systems
requires the data to have a high credibility, availability, and accuracy, as well as
good repeatability. This paper deals with data from an automatic wheel profile
measurement system (WPMS) in service and assesses the data according to the
quality dimension of freedom of error.

The paper presents a method for the data quality assessment of automatic
WPMS, as well as a case study of automatically generated wheel data and manually
measured wheel data. The data are examined from the repeatability point of view by
using a method that includes the following elements: data collection, cleaning and
visualization, comparison of two measurement units with each other, and com-
parison of the WPMS data with manually measured data. The aim of this procedure
is to ascertain whether this method can be used for this kind of assessment and
whether the data can be used for further maintenance optimisation based on the
prediction of degradation and for further modelling and simulation purposes. The
paper concludes with a discussion and an assessment of the outcome of the data
quality assessment and how the data can be used for enhancing the maintenance
decision.

Section 2 of the paper starts by presenting condition monitoring and regular
wheel wear such as tread and flange wear, and wear related to fatigue, and then
describes the automatic and manual wheel measurement that generated the data for
this case study. Section 3 deals with the method of data assessment, after which the
case study is described in Sect. 4. Then the paper ends with a presentation of
conclusions drawn.

2 Condition Monitoring and Wheel Failures

CM is a task designed to detect failures. CMS can decrease the operational risk,
enhance the performance and in the long run contribute to cost reduction. CM
methods can be categorized into analysis, process monitoring, performance moni-
toring, functional testing and inspection [15]. The terms monitoring and inspection
are well defined in the maintenance standard [1].
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2.1 Condition Monitoring Systems

There are different types of CMS for railway rolling stock, and they employ dif-
ferent approaches, are used for different applications, and exploit a large variety of
technologies. The different CMS can be divided into way-side and on-board
(mobile) monitoring systems, with the former usually being used for the rolling
stock and the latter being used for the infrastructure. However, there are also
way-side monitoring systems for the infrastructure, such as camera-based moni-
toring systems for switches and crossings [16]. This section briefly describes the
CMS that are used in the railway system.

2.1.1 Reactive and Proactive CMS

Some examples of reactive systems which are installed to limit damage are drag-
ging equipment detectors, hot box detectors, hot/cold wheel detectors and sliding
wheel detectors. Although this category of equipment is useful, it has the limitation
of not being able to capture potential failures early enough before failure to allow
proactive decision making. Some examples of proactive systems are vehicle
inspections, hunting vehicle and bogie performance monitoring, wheel condition
monitoring and acoustic bearing detectors. Proactive systems provide a better
possibility of understanding trends in the deterioration of vehicle components and
analysing the condition of the affected item for maintenance decision support [8, 9].

2.1.2 Way-Side Condition Monitoring

In the Swedish railway network there are almost 200 way-side CMS. The purpose
of these systems is usually to monitor the interface between the infrastructure and
the rolling-stock, for example to detect high wheel forces and hot boxes, and to
perform measurements on the pantograph. Most of these systems adopt a reactive
approach. Many descriptions of way-side monitoring systems and many assess-
ments of their potential are to be found in the literature [9]. The only proactive
way-side monitoring system installed in the Swedish railway network is the auto-
matic wheel profile measurement system.

2.1.3 On-Board Condition Monitoring

The on-board CMS employ a more proactive approach than the way-side CMS, and
one example of the former is the track quality monitoring system. The frequency of
the monitoring depends on the track classification. Usually a track section is sub-
jected to monitoring one to six times each year, and when a defined threshold is
reached, maintenance action is ordered [17]. Condition monitoring of the infras-
tructure is described in [6].

720 M. Asplund et al.



2.2 Wheel Wear

There are two main types of wheel wear, regular wear and irregular wear [18]. One
example of irregular wear is out-of-round wheels, with failure modes such as flats
and eccentric wheels. Regular wheel wear can be monitored through profile mea-
surements. This section treats only tread and flange wear and rolling contact fatigue,
which are examples of regular wheel wear. Different traffic types result in different
dominant types of wheel wear; in regular traffic the major reason for re-profiling is
flange and tread wear, while in heavy haul traffic the dominant reason for
re-profiling is rolling contact fatigue (RCF) [19].

2.2.1 Tread and Flange Wear

The wheel profile tends to go from a conical shape to a more concave shape when it
wears [20]. Figure 1 shows an example of a worn wheel profile together with an
original wheel profile shape, with the wheel measurements that explain the con-
dition of the wheel: the flange height (Sh), flange width (Sd), flange slope (qR) and
tread hollowing (TH). The major reasons for re-profiling wheels (excluding wear
caused by heavy haul traffic) are wear of the flange and hollow wear.

A wheel profile is not constant around the whole wheel; there is an average
roundness variation of the Sh of 0.131 mm, while the average variation of the Sd is
0.145 mm and that of the TH is 0.087 mm [21].

2.2.2 RCF

The reason for RCF is in many cases bad wheel-rail contact, and the wheel-rail
contact is dependent on the wheel and the rail profiles. The high axle load (30

Fig. 1 Original and worn wheel profiles, with the wheel profile parameters illustrated in the
figure. Sh flange height, Sd flange thickness, qR flange slope, and TH tread hollowing
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metric tons) of the iron ore trains on the Iron Ore Line causes a large amount of
RCF failures of the wheels and rail. There are many on-going activities being
performed to reduce RCF, for instance investigations of locomotive wheel failures
[22] and wheel data analyses [19, 23].

For the wagon wheels, RCF is a less serious problem. The locomotive wheels
need to be re-profiled between 10,000 and 20,000 km, while the wagon wheels can
survive for up to 200,000 km before re-profiling is needed. Wheels have different
RCF patterns, and the pattern zones can be divided into three different types of RCF
zones, RCF 1, RCF 2 and RCF 3. RCF 1–3 are caused by different phenomena and
their crack structures differ [24].

3 Automatic Wheel Profile Measurement

The WPMS can measure the wheel profile for speeds up to 140 km/h. The
advantages of the automatic WPMS are improved safety, reliability and efficiency,
as well as more effective maintenance actions leading to a higher train availability
and less failure-driven capacity consumption [9].

The only WPMS installed in Sweden is located in the track section which lies in
the southernmost part of the Iron Ore Line. This system has been in use since
autumn 2011. The data are delivered to the operator for improvement of the wheel
maintenance, and in the future will also be delivered to the infrastructure manager
for development of the track maintenance [25].

The wheel profile measurement equipment consists of four sub-units, two on the
gauge sides and two on the field sides of the rails. These units contain a laser, a
high-speed camera, and an electronic control system. When a train passes the boxes
housing these units, the first wheel triggers a sensor and the protective cover opens,
the laser beam starts to shine, and then the camera takes pictures of the laser beam
projected onto the surface of the passing wheels. These pictures are converted to
wheel profiles and the system describes the flange height, flange width, flange
slope, tread hollow and rim thickness. The measurement accuracy for this camera-
and laser-based technology is around 0.1 mm [7]. The WPMS consists of two
different main units, the far and the near unit, see Fig. 2.

Fig. 2 The automatic WPMS
with its near and far unit
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3.1 Manual Wheel Profile Measurement

An established way to measure the wheel profiles manually is to use hand-held
portable measurement equipment. In the market, different types of manual mea-
surement equipment are available. Compared with the automatic WPMS, this
measurement method is really time-consuming; for example, measuring a wagon
with eight wheels takes around 5–10 min. In this study the manual measurements
were performed with MiniProf measurement equipment [26]. This manual mea-
surement equipment is attached to a wheel with a magnetic foot, and the measuring
arm is moved manually, see Fig. 3. The data are stored in a hand-held unit. The
measurement accuracy for the MiniProf is ±0.9 μm [27].

4 Method of Data Assessment

The method of data assessment is presented in this section. The goal is to verify the
data quality dimension freedom of error, which can be defined as meaning the
extent to which data are correct and reliable [10]. The data assessment process is
presented in Fig. 4.

The first step is to collect data for analyses, and the data can come from one or
many sources. The literature from this field confirms that the parameters that are to
be studied must have the right characteristics for condition monitoring purposes. It
is necessary to have a data set which represents the process in question and which
possesses the right data size.

The second step is data cleaning, which is performed manually by removing
unrealistic data from the data set and checking it for missing data. Depending on the
size of the data, advanced cleaning techniques can be adopted, for instance the
definition of outliers.

Fig. 3 Manual measurements
performed with the hand-held
MiniProf measurement
equipment on an iron ore
wagon wheel
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The third step is the data visualisation and analyses. This starts with a
goodness-of-fit test to determine the statistical distribution that adequately models
the randomness of the data. Then the visualisation and analyses of the data follow.
This is accomplished in two steps, first with all the data and then with a small part
of the data, in order to ascertain the influence of the data size. A freedom of error
test is conducted by comparing the data with data from the same but parallel
processes and with reference data. The analysis includes a goodness-of-fit test, a
graphical test, a paired T-test for comparison between different measurement
techniques, and regression tests of key parameters.

The fourth step is to show the results from the data cleaning and data analyses.

5 Case Study of Measurement Data from a WPMS

This section presents the following data analyses performed within a case study: a
paired T-test of data from the far and near units, a comparison between automatic
and manual measurements, and a regression analysis, according to the proposed
data assessment method.

5.1 Data Collection

The data collected concern the wheel parameters Sd, Sh, qR and TH, which are
defined in Fig. 1. The data come from all eight wheels of iron ore wagon 4907. The
data compilation was performed using the Excel software. The number of auto-
matically generated data was 80, for eight wheels on the same wagon, and the

Fig. 4 The method of data
assessment
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number of manual measurements was 16, i.e. two samples for each wheel. The
automatically generated measurements were taken at random locations on the wheel
circumference. The manual measurements were taken at two places on the cir-
cumference of the wheel, 90° from each other. The automatically generated data
come from trains operating between 13 and 22 November 2014. The manual mea-
surements for each wheel were conducted on 11 November 2014. Figure 3 shows the
manual measurement of a wagon wheel. The distance covered by the wagon pro-
viding the data samples, wagon 4907, between 11 and 22 November was 3068 km,
as estimated from the planned operational profile of the wagon. This distance is only
1.5 % of the distance between two consecutive wheel re-profiling actions, and
consequently the wheel wear occurring over this short distance can be ignored.

Figure 5 shows the iron ore wagon relative to the position of the WPMS.
Furthermore, the figure shows the position of wheels 1–8.

5.2 Data Cleaning

After the manual data cleaning, 73 out of a total of 80 measurements from the
WPMS and from wagon 4907 could be used; seven of the measurements failed, and
the missing data concern measurements performed on 13, 14, 19, 21 and 22
November. All the missing data concern measurements made by the far unit. All of
the 16 manual measurements could be used.

5.3 Data Visualisation and Analyses

The velocity of the measured trains on the different measurement occasions was
between 50 and 72 km/h, and the mean velocity of all the passages is 63.1 km/h.

Fig. 5 A view from above over an iron ore wagon at the position of the WPMS; the wheels are
numbered from 1 to 8 and the WPMS has a near laser unit and a far laser unit
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The Anderson-Darling test shows that the Sh and qR values from the far and
near unit, and the Sd values from the near unit can be suitably modelled with a
normal distribution. Furthermore, the Sd values for the far unit have a Weibull
distribution.

5.3.1 Data Visualisation

The data visualisation starts with the descriptive statistics of all the data. The
standard deviation for the data for the wheel parameters flange thickness (Sd),
flange height (Sh) and flange angle (qR), defined in Fig. 1, is presented in Fig. 6, for
all eight wheels and for the far and near units. The number of samples for the far
unit is 33 and that for the near unit is 40. The largest standard deviation is
2.355 mm and this concerns the Sd for wheel 1 as measured by the far unit. The
standard deviation for the Sd for all the wheels is 1.4937 mm. The Sh has a smaller
standard variation, with a maximum of 0.370 mm, and the standard deviation of Sh
is 1.9067 mm for all the wheels. The largest standard deviation for qR concerns
wheel 2 and is 0.559, and the standard deviation of all the wheels for qR is
1.0322 mm. Furthermore, Fig. 6 shows that the far unit has a larger standard
deviation than the near unit.

The mean values for all the wheels for Sd, Sh and qR are 28.2, 32.00, and
10.53 mm, respectively. The histograms and density plots for the near and far units,
respectively, and for the Sd, Sh and qR measurements, respectively, are shown in
Figs. 7, 8, and 9; for the far unit 33 measurements were used and for the near unit

Fig. 6 The standard deviation for the wheel parameters Sd, Sh and qR for the far and near unit
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40 measurements. The density differs between the near and the far unit in that the
near unit has a weight to the left and the far unit has more weight to the right, and
the bars differ too between the far and the near unit in Fig. 7. The mean value for the
near unit is 28.00 mm and the standard deviation is 1.390 mm. The mean value and
the standard deviation for the far side are 28.32 and 1.655, respectively.

The Sh also differs between the far and the near unit in that the far unit has more
weight to the left-hand side and the near unit has more weight to the right-hand side,
see Fig. 8. One can also observe in the figure that the bars differ between the far and
the near unit. The mean value for the near unit is 32.38 mm and the standard
deviation is 1.846 mm. The mean value and the standard deviation for the far side
are 31.36 and 1.929, respectively.
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Fig. 7 Histogram and density plot of the flange thickness (Sd) for the near and far unit, with the
mean measurement differing by 0.32 mm
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Fig. 8 Histogram and density plot of the flange height (Sh) for the near and far unit, with the
mean measurement differing by 1.02 mm
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The qR also differs between the far and the near unit in that the far unit has more
weight to the left-hand side and the near unit has more weight to the right-hand side,
see Fig. 9. One can also observe in the figure that the bars differ between the far and
the near unit. The mean value for the near unit is 10.82 mm and the standard
deviation is 0.9865 mm. The mean value and the standard deviation for the far side
are 10.13 and 1.006, respectively.

If the far and the near unit had had the same measurement performance, the
histograms for each unit in Figs. 7, 8 and 9 would have been equal, but they differ
according to the figures and the values. A comparison between the far and the near
unit shows a larger standard deviation for all the measurements of the far unit.

The next step is a visualisation using data from only one unit and one wheel.
Figure 10 shows histograms of six different auto-generated measurements from the
near unit for wheel 5.

For the Sd, the measurements range between 25.6 and 26.6 mm (a range of
1.0 mm), and the distribution is asymmetrical, with more weight on the higher side.
Furthermore, the Sh varies between 33.2 and 33.5 mm (a range of 0.3 mm) and the
shape of the distribution is even. The qR shows a range between 10.1 and 10.4 mm
(a range of 0.3 mm), and the TH distribution is asymmetrical, with more weight
on the lower values. The standard deviations of these six auto-generated mea-
surements from the WPMS are as follows: StDSd = 0.3889, StDSh = 0.1322 and
StDqR = 0.1265.

5.3.2 Paired T-Test of Wheel Parameters

A paired T-test of the values of the wheel parameters Sd, Sh and qR obtained from
the WPMS will show if there is a difference between the means of the respective
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Fig. 9 Histogram and density plot of the flange angle (qR) for the near and far unit, with the mean
measurement differing by 0.69 mm
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parameters measured by the far and near units of the system. The null hypothesis H0

is according to Eq. 1.

lF�unit � lN�unit ¼ 0: ð1Þ

The question is whether H0 can be rejected. If H0 is rejected, then one can say
that there is a difference between the measurement outputs of the far and near unit.
This test was conducted with 28 wheel measurements made by each measurement
unit on the same wagon with the level of confidence set to 95 %.

The paired formulas used for these four calculations are as follows: paired T for
Sd F–Sd N, paired T for Sh F–Sh N, paired T for qR F–qR N and paired T for TH
F–TH N.

Tables 1, 2, 3, and 4 show the mean value, standard deviation and SE-mean
(standard error of the mean value) of the far and near measurement unit for the
parameters Sd, Sh, qR and TH.

A 95 % confidence interval (CI) was used for the mean difference of Sd:
(−0.470; 0.587). The T-test of the mean difference of Sd = 0 (vs ≠ 0) gave the
following values: T-value = 0.23 and P-value = 0.823.
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Fig. 10 Histograms of the Sd, Sh, qR and TH measurements from the near unit for wheel 5

Table 1 Parameter results
from the T-test for Sd and for
the far and near unit of the
WPMS

Parameter Mean StD SE mean

Sd F 28.214 1.738 0.328

Sd N 28.156 1.408 0.266

Difference 0.058 1.363 0.258
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The H0 cannot be rejected when the P-value is >0.05 and the interval of the mean
difference with a 95 % CI covers zero. In other words, the measurements of Sd for
the far and near unit do not differ for a CI of 95 %. Figure 11 shows the histogram
of SdFar, -SdNear with a 95 % CI, and the hypothesis H0 and �x.

A 95 % CI was used for the mean difference of Sh: (−0.8475; −0.5775). The
T-test of the mean difference of Sh = 0 (vs ≠ 0) gave the following values:
T-value = −10.83 and P-value = 0.000.

The H0 can be rejected when the P-value is <0.05 and the interval for the mean
differences covers zero. In other words, for a CI of 95 % the measurements of Sd for

Table 2 Parameter results
from the T-test for Sh and for
the far and near unit of the
WPMS

Parameter Mean StD SE mean

Sh F 31.460 1.912 0.361

Sh N 32.173 1.900 0.359

Difference −0.7125 0.3482 0.0658

Table 3 Parameter results
from the T-test for qR and for
the far and near unit of the
WPMS

Parameter Mean StD SE mean

qR F 10.193 1.011 0.191

qR N 10.875 1.054 0.199

Difference −0.6821 0.3654 0.0690

Table 4 Parameter results
from the T-test for TH and for
the far and near unit of the
WPMS

Parameter Mean StD SE mean

TH F 0.446 0.605 0.114

TH N 0.343 0.527 0.100

Difference 0.1036 0.1290 0.0244
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Fig. 11 Histogram of differences with a 95 % CI for the wheel parameter Sd, comparing the far
and near unit
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the far and near unit will differ. Figure 12 shows the histogram of ShNear -ShFar,
with a 95 % CI, and the hypothesis H0 and �x.

A 95 % CI was used for the mean difference of qR: (−0.8238; −0.5405). The
T-test of the mean difference of qR = 0 (vs ≠ 0) gave the following values:
T-value = -9.88 and P-value = 0.000.

The H0 can be rejected when the P-value is <0.05 and the interval for the mean
differences covers zero. In other words, for a CI of 95 % the measurements of Sd for
the far and near unit will differ. Figure 13 shows the histogram and the boxplot of
ShNear -ShFar, with a CI of 95 %, and the hypothesis H0 and �x. (Figure 14)
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Fig. 12 Histogram of differences with a 95 % CI for the wheel parameter Sh, comparing the far
and near unit
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Fig. 13 Histogram of differences with a 95 % CI for the wheel parameter qR, comparing the far
and near unit
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A 95 % CI was used for the mean difference of TH: (0.0535; 0.1536). The T-test
of the mean difference of TH = 0 (vs ≠ 0) gave the following values: T-value = 4.25
and P-value = 0.000.

The H0 can be rejected when the P-value is <0.05 and the interval for the mean
differences covers zero. In other words, for a CI of 95 % the measurements of TH
for the far and near unit will differ. Figure 13 shows the histogram of THNear -THFar,
with a CI of 95 %, and the hypothesis H0 and �x.

5.3.3 WPMS Profiles Versus Manually Measured Profiles

This comparison between the WPMS profiles and the manually measured profiles
can be accomplished since the accuracy of the MiniProf hand-held measurement
equipment is higher than that of the WPMS; we assume that εMiniProf « εWPMS.

The error is based on Eq. 2:

eij ¼ xijðWPMSÞ � xijðMiniprof Þ
i ¼ 1; . . .; n

j ¼ 1; . . .;m

ð2Þ

Here x = Sh, Sd, qR and TH, i = the number of wheels, n = 1, and the number of
measured parameters m = 4.

The comparison between the manual measurements and the WPMS measure-
ments for wheel 5 (15 L) is shown in Fig. 15. The figure shows two manual
measurements together with one measurement from the WPMS. The conformity
between the manual measurements is good and there are no crucial differences, but
the conformity between the manual and the WPMS measurements is not so good
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Fig. 14 Histogram of differences with a 95 % CI for the wheel parameter TH, comparing the far
and near unit
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for the top of the flange and the flange slope, see Fig. 15. The WPMS profile shown
in Fig. 15 comes from the far measurement unit.

According to the measurements from the WPMS, the flange top is higher than it
is according to the manual measurements.

The wheel measurements for Sd, Sh, qR and TH for wheel 5 are shown in
Table 5, and the largest difference between the WPMS and manual measurements
concern the Sd, which conforms with Fig. 15 above, with the largest deviation on
the flange side.

5.3.4 Regression Analysis

To determine whether there is any relation between selected parameters, regression
analyses were performed, using linear regression and analysing only two parame-
ters, b0 and b0; at a time, according to Eq. 3.

yi ¼ b0 þ b1 � xi þ ei i ¼ 1; . . .; n: ð3Þ

Equation 3 expresses the real relationship between the parameters and here the
error factor is included; the value of n is 73. By removing the error factor, the mean
value of y is obtained, i.e. the ŷ; see Eq. 4.

ŷ ¼ b̂0 þ b̂1 � x ð4Þ

Fig. 15 Comparison between two manual measurements and one WPMS measurement

Table 5 A wheel measurement from the WPMS compared with a manual measurement for wheel
5 in wagon 4907

Date Measurement id. Sd Sh qR TH

141122 WPMS 164135 27.31 32.70 9.60 1.60

141117 MiniProf 20100217-00601.whl 25.70 32.55 9.66 1.68

Diff. 1.61 0.15 −0.06 −0.08

In % 6.5 0.5 −0.06 −4.8

Data Quality Assessment of Automatic Wheel Profile … 733



S = standard deviation of the y value.
R2 = coefficient of determination. 0�R2 � 1:
The R2 shows how well the model represents the data and gives an indication of

the goodness of fit.
The influence of the far and near unit is presented in Table 6, and qR and TH

show the largest difference in percent between the units’ measurements, i.e. β1/β0.
The results need to be considered in light of the fact that the value of R2 is low,
which means that the proposed model (Eq. 4) does not fit the values well.

The influence of the train speed between 50 and 72 km/h on the measurement is
shown in Table 7. The R2 value is low and this means that the proposed model
(Eq. 4) does not fit these values well. Quite apart from the low correlation with the
model, there is no influence of the train speed related to the wheel parameters for
the units. The Sd F has a slightly larger agreement of the R2 value, but this
agreement is still too low for the proposed equation to fit the values well. In other
words, the influence of the train speed can be neglected in this speed range and this
data set.

Table 8 shows the influence of the days in operation between 11 and 22
November. The R2 value is low and this means that the proposed model (Eq. 4)
does not fit these values with good agreement, but the results indicate that the
behaviour of the parameters and the different units differs. For the near unit the
parameter Sd decreases, Sh increases, qR decreases and TH increases with time,
which is in accordance with previous experience of the behaviour of the parameters
[18]. The results for the far unit indicate the opposite for the parameters Sd and Sh,
which is not in accordance with previous knowledge. Furthermore, the results for
the far unit for TH indicate a large residual and the information can contain an
outlier or an error.

Table 6 Wheel measurements from the far and near unit of the WPMS

ŷ X β0 β1 S R2 (%) β1/β0 (%)

Sh Near = 1 31.537 1.020 1.88504 6.9 3.2

Sd Near = 1 28.325 −0.327 1.51548 1.17 1.2

qR Near = 1 10.127 0.690 0.995364 9.7 6.8

TH Near = 1 0.445 0.027 0.591508 0.1 6.1

Table 7 The influence of the
train speed on the
measurements of the far and
near unit of the WPMS

ŷ x β0 β1 S R2 (%)

Sd N Speed 31.51 −0.0556 1.34270 9.10

Sd F Speed 33.74 −0.0862 13.39 13.39

Sh N Speed 32.09 0.0045 1.87245 0.03

Sh F Speed 31.62 0.0043 1.95914 0.02

qR N Speed 10.99 −0.0028 0.999218 0.05

qR F Speed 11.00 −0.1400 1.01722 0.95

TH N Speed −0.048 0.0082 0.601067 1.09

TH F Speed 0.240 0.0033 0.594191 0.15
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5.4 Discussion

The results from the case study are discussed below.

5.4.1 Level of Accuracy

With regard to the comparative accuracy of the two measurement units, the near
unit has higher accuracy due to the smaller standard deviation for all the wheel
profile measurements. Six different auto-generated measurements from the near unit
show that the Sh measurements range from 33.2 to 33.5 mm, the Sd measurements
from 25.6 to 26.6 mm, and the qR measurements from 10.1 to 10.4 mm.
Consequently, the accuracy of the WPMS can be defined for Sd as being ±0.42 mm
and for Sh as being ±0.08 mm according to the variation of wheel roundness [21].
This defined accuracy applies for optimal conditions and in this case for six samples
for one wheel for the near unit.

5.4.2 Differences Between the Far and the Near Unit

The far unit has a lower process rate than the near unit. Regarding the far unit,
seven out of 40 measurements were not usable due to missing data, whereas
regarding the near unit, all the 40 measurements were useable. Furthermore, there is
a significant difference between the results of the far and near units. The far unit has
a larger standard deviation for all the wheel measurements (Sd, Sh and qR, see
Fig. 1). The measurement parameter with the largest standard deviation is Sd, and
the reason for this can be that this measurement is estimated from two different
pictures.

With a CI of 95 %, there are differences between the far and the near mea-
surement units of the WPMS for the wheel parameters Sh, qR, and TH; for the Sd,
this hypothesis fails, meaning that there is a significant difference between the far
and the near unit for this given CI.

Table 8 The influence of the
days in operation on the
measurements of the far and
near unit of the WPMS

ŷ x β0 β1 S R2 (%)

Sd N Days 28.070 −0.0161 1.40736 0.13

Sd F Days 27.518 0.1776 1.58986 10.65

Sh N Days 32.289 0.0194 1.87174 0.11

Sh F Days 31.620 −0.058 1.95118 0.83

qR N Days 10.909 −0.203 0.997340 0.42

qR F Days 10.339 −0.0466 1.01192 1.98

TH N Days 0.384 0.0196 0.601141 1.06

TH F Days 0.435 0.0023 0.594606 0.01
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5.4.3 Comparing the WPMS with the Manual Equipment

The comparison between the wheel parameter measurements from the WPMS and
the manual measurements shows a difference concerning Sd of around 7 % and a
difference concerning TH of around 5 %. The wheel profile shape obtained with the
WPMS and that obtained with the manual measurements differ from each other.

5.4.4 Regression Analyses

The R2 values from the regression analyses are rather weak and the data set seems
to be too small to run linear regression analyses and obtain a strong R2 value.
Therefore, the influence of the passing train speeds between 50 and 72 km/h on the
measured values is negligible; the same applies to the influence of wear due to these
10 days in operation. However, Table 8 shows that the results for the influence of
the days in operation differ between the far and near unit with regard to Sd and Sh
and indicate different behaviour.

5.4.5 Further Analyses Based on the Data

The data differ between the far and the near unit. Before calibration or some other
error correlation, the data are not useful as a basis for further calculations and
predictions.

6 Conclusions

The proposed method for data assessment can be used to explore and describe the
basic quality features of condition monitoring data. The method can be adapted for
condition monitoring systems in other fields of application than railway applica-
tions such as WPMS.

According to the results for the data assessed in the presented case study, these
data are not useful or reliable for further engineering simulation, analysis or direct
decision support without calibration or error correction of the far unit. There are so
many benefits to be derived from the WPMS by both the infrastructure manager
and the train operators, if the quality issue of the system is addressed. For
instance, reliable alarms could trigger decisions and actions when some threshold
has been passed. Further work needs to contain an investigation of a quality
test algorithm which can increase the reliability of the data. Finally the regression
analysis needs either a more developed model or a larger data set to fit the
proposed model well.
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