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Preface

The ICRESH-ARMS 2015 Conference at Luled was an important milestone in the
history of activities of the Division of Operation and Maintenance, Luled Technical
University. It was hosted by the Operation and Maintenance Division at LTU and
had considerable participation both from the division and the university. This
conference was also successful in attracting a fairly large number of researchers
worldwide to deliver invited talks, present papers, and attend the exciting sessions.
There was a good interest in participation from the industries around that saw an
opportunity to interact with engineers, researchers, academicians, and managers
who are at the forefront of related technologies in reliability, operation and main-
tenance, condition monitoring, risk and safety in various domains, eg.
Manufacturing, Transportation, Defense, Power, Mining, and the IT sector. In
particular, there was significant interest in Railway infrastructure and asset man-
agement. Condition-based maintenance with emphasis on diagnostics, prognostics
and health management, and maintenance of large engineering systems and their
implications to risk and safety were another area where the industry and academia
found common interest. A growing interest in the use of nonrenewable energy
sources saw several presentations from India highlighting various risk and safety
issues besides quantitative risk assessment. Some papers reflect active interest in
industry in big data analytics and context-based thinking for decision making and
signified a growing awareness amongst industries to adapt to new technologies.
Mining and Railways were two domains with significant local interest in Sweden
and saw various presentations in innovative approaches to long-term solutions
related to aging, health management, and prognostics. Modeling and Simulation
saw increasing applications in various industrial domains and a growing trend
among researchers to develop a holistic and integrated approach to address various
conflicting issues of reliability, risk, production, and cost. An important highlight
was the discussions that the interactive sessions triggered during the breaks between
the participants from the industry and the academicians. There were in all 82 papers
selected after reviews for presentation in various sessions, namely:



vi Preface

Degradation/Aging and Preventive Maintenance
Diagnostics, Prognostics, and Health Management
Maintenance Management

Maintenance Modeling and Analysis

Performance Management and Energy

Software Reliability

Probabilistic Risk and Safety Analysis

Reliability Analysis and Modeling

Reliability and Maintenance of Mining Machinery

A total of 53 papers have been selected in this book from across all the sessions
in the conference. They cover a large spectrum of the theme of the conference and
present exciting findings which enrich the current applied knowledge base in the
subject with indicators to the future in the industry. The endeavor in the selected
compilation has been to avoid losing focus of the ultimate beneficiary of the applied
nature of this work in the industry in various domains.

On behalf of the ICRESH-ARMS organization, we wish to express our sincere
appreciation to the conference delegates, the distinguished keynote speakers,
authors, workshop leaders, and members of the scientific review committee of the
ICRESH-ARMS 2015, for their outstanding contribution towards the success of the
conference. We are thankful also to Dr. Adithya Thaduri, for his support to prepare
the proceedings.

Editorial Board Dr. Uday Kumar
Dr. Alireza Ahmadi

Dr. Ajit Kumar Verma

Dr. Prabhakar Varde
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A Survey on Track Geometry Degradation
Modelling

Iman Soleimanmeigouni and Alireza Ahmadi

Abstract Railway transportation is exposed to a higher demand that necessitates
the use of trains with higher speed and heavier axle loads. These increase the track
geometry degradation rate, which needs a more effective control on geometry
degradation. Keeping the track geometry in acceptable levels requires proper
inspection and maintenance planning that inevitably entails in-depth knowledge of
track geometry degradation. In addition, it is needed to identify the most effective
approach for degradation modelling. To do so, it is vital to synthesis published
results into a summary of what is known and validated and what is not as a major
step. To this end, this paper reviews track degradation models, discusses various
degradation measures, and proposes directions for future researches. It is found that
combining the mechanistic and statistical approaches can leads to a more accurate
prediction of track geometry degradation behaviour.

Keywords Railway track - Maintenance modelling - Degradation model
Degradation measures

1 Introduction

The railway track and infrastructure degrade with age and usage and can become
unreliable due to failure. When a failure occurs, the consequences can be signifi-
cant, including a high cost of railway operation, economic loss, damage to the
railway asset and environment and possible loss of human lives. Unreliability may
also lead to annoyance, inconvenience and a lasting customer dissatisfaction that
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can create serious problems for the company’s position in the marketplace. An
applicable and effective maintenance strategy can guarantee the achievement of
reliability goals and compensate for unreliability.

Maintenance actions are used to control the degradation of the track, reduce or
eliminate the likelihood of failures, and restore a failed part to an operational state.
We need to model track degradation behaviour if we are to select an applicable and
effective maintenance policy, but modelling and predicting the track geometry
degradation is a complex task, requiring the following information: (1) the inter-
action of different track components, (2) the effect of maintenance actions on track
quality, (3) the heterogeneity factors e.g. environmental factors, soil type and
condition.

In addition, higher demand for railway transportation creates an essential
requirement for higher speed and axle load which accelerates the track aging
process and negatively affects its reliability.

The increased demand and complexity dictates the need for comprehensive track
degradation models. More studies are needed to provide a scientific footing for
track degradation modelling. Synthesising the published results into a summary of
what is known and validated and what is not is a major step. Therefore, the aim of
this paper is to review the literature on track degradation modelling. The paper offer
insights into the different construction of track geometry degradation problems and
modelling to formulate questions that need further research.

The reminder of the paper is organised as follow. Section 2 describes the track
structure. Section 3 discusses recent works on track geometry degradation mod-
elling. The discussion and conclusion are provided in Sect. 4.

2 Track Structure

The majority of railway tracks around the world are ballasted tracks, which is the
interest of this study. The conventional ballasted tracks have lower construction
cost, and properly respond to different static and dynamic force [1]. The
ballasted-track components are demonstrated in Fig. 1. The static and dynamic
forces transform through wheels to rail and consequently to sleepers, ballast,
sub-ballast, and finally sub-grade. Rails are longitudinal steel members that guide
train wheels and distribute the forces from train wheels to sleepers. Fasteners are
used to fix rails to sleepers and prevent longitudinal, vertical, and lateral movements
of rails [1]. Sleepers provide a solid and flat support for rails and keep it within
acceptable positions along the track using fasteners. In addition, sleepers distribute
the vertical, longitudinal, and lateral forces due to rail-wheel contact to the ballast
[1, 2]. Three sleeper types can be found around the world, i.e. steel, wooden, and
concrete sleepers. A comprehensive study about sleeper types and their failure
modes is conducted by Ferdous et al. [3]. Ballast is consisted of crushed stones and
its overall goal is to transmit the forces from the sleepers to sub-ballast layer. Ballast
prevents the track to exit from acceptable lateral, vertical, and longitudinal
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Fig. 1 Track components
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thresholds [1, 4]. Sub ballast is a layer to transmit the forces from super structure to
sub grade. Sub ballast decreases the stresses at the end of ballast to avoid probable
damage to sub grade surface. In addition, sub ballast prevent from entrance of sub
grade materials into ballast layer that reduce drainage efficiency of ballast [1, 5].
Subgrade is a surface of ground that uses as foundation to construct track
structure. In some cases the ground can be modified with special materials to
remove profile problems. Sub grade plays a key role in supporting track system and

a failure in sub grade will generate massive consequences, even with high quality
ballast and sub ballast [1, 5].

3 Survey of Track Geometry Degradation Models

In the two last decades, a great deal of research has been done in the field of track
geometry degradation modelling. Determining an indicator to represent track
quality is an essential prerequisite for modelling track degradation. Different indi-
cators are used based on the aim of the research. The indices for representing track
quality condition are demonstrated in Fig. 2.

Fig. 2 Track condition
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Sadeghi et al. [6] proposed a track geometry index uses the following track
geometry parameters: alignment, profile, twist, gauge, and rail cant. Using justified
coefficient, they combined the parameters to design the track geometry index.
Sadeghi [7] developed the previous work by proposing an overall track geometry
index by considering different track classes.

In order to consider structural defects, Sadeghi et al. [8] proposed a quantitative
track structural quality index. This index is defined for each track component group,
i.e. rail, sleeper, fastener, ballast.

Later, Sadeghi et al. [9] used the neural network technique to correlate track
geometry irregularities to track structural defects.

Berawi et al. [10] compared three track quality condition measures: J Synthetic,
Indian TGI, and a measure based on European Standard EN 13848-5. They
observed that different track evaluation methods resulted in different degradation
rates, with the TGI having the highest degradation rate of the three. Faiz et al. [11]
studied the geometry parameters used in the UK track maintenance process and
applied linear regression analysis to explain their correlations. A Generalized
Energy Index (GEI) instead of a Track Quality Index (TQI) for track quality
evaluation is proposed by Li et al. [12]. The GEI can consider different track
irregularity wave-length and speed. Haifeng et al. [13] proposed an integral
maintenance index (IMI) that considers the distribution of track geometry param-
eters to evaluate track condition. El-Sibaie et al. [14] developed a number of track
quality indices to evaluate track quality condition in relation to different track
classes.

By looking to the literature it can be observe that most of the researchers con-
sidered short wavelength longitudinal level as the crucial factor in degradation
modelling. This issue can be seen in Fig. 3.

After finding the proper track quality measure, a degradation model must be
constructed and the effect of different maintenance strategies on track degradation
evaluated. There are two major approaches for track geometry degradation

Fig. 3 Distribution of = Longitudinal level ® Alignment
applied track geometry = Twist = Gauge
measures m Cant m Integrated index

Simultaneously

10%

2% ’//
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modelling, i.e. mechanistic and statistical approaches. In this paper, statistical
approach is the main focus.

Concerning mechanistic approach, a number of researchers tried to find the
interactions among track components and their influences on track geometry
degradation.

The most important models are those proposed by Shenton [15], Sato [16, 17],
Chrismer et al. [18], Oberg et al. [19], and Zhang et al. [20]. Dahlberg [21] also
provide an extensive review on mechanistic models applied for track geometry
degradation.

Concerning statistical approaches, the most commonly applied methods are
summarised in Fig. 4.

A stochastic Markov model is used by Bai et al. [22] to evaluate track degra-
dation. They considered various heterogeneous factors and argued that the existence
of these factors caused two maintenance units with the same mileage to show
different degradation behaviour. A Markov model is deployed by Yousefikia et al.
[23] to model tram track degradation and obtain the optimal maintenance strategy.
A model by integrating the grey model and Markov chain is developed by Liu et al.
[24] to predict track quality condition. Xu et al. [25] proposed a track measures data
mining model to predict railway track degradation for a short time period.
A framework called the tree-augmented naive Bayes-track quality index is proposed
by Bai et al. [26] to predict railway track irregularities for short-term horizon.

Guler [27] used artificial neural networks to model the degradation of different
track geometry parameters. The model considered traffic load, velocity, curvature,
gradient, cross-level, sleeper type, rail type, rail length, falling rock, land slide,
snow, and flood as influencing factors. A multi-stage linear model is applied by
Gou et al. [28] to cope with different phases of degradation between two consec-
utive maintenance interventions and the exponential growth of track irregularity.

Famurewa et al. [29] compared the accuracy of linear, exponential, and grey
models in the estimation and prediction of track geometry degradation. The com-
parison demonstrated the grey model has lower mean average percentage error than
the linear model and an approximately equal error value with the exponential
model. The Gaussian random process is used by Zhu et al. [30] to model track
irregularities in vertical profile and alignment. They discussed power spectral
density analysis and cross-level statistics about track irregularities to improve track
degradation modelling.

Degradation
modelling
methods
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Fig. 4 Track degradation approaches



8 I. Soleimanmeigouni and A. Ahmadi

Using waveform data, Liu et al. [31] proposed a short range prediction model to
estimate any track irregularity index over a short track section length (25 m) and on
a day-by-day basis. They concluded the total process of track surface change over
track sections is nonlinear and different track sections have different nonlinear
process.

Data mining and time series theories are applied by Chaolong et al. [32] to
predict track irregularity standard deviation time series data. In order to predict the
changing trends of track irregularity, they used the linear recursive model and the
linear autoregressive moving average model.

A modified grey model is developed by Chaolong et al. [33] to analyse track
irregularity time series data and obtain a medium-long term prediction of track cross
levelling. They compared the stochastic linear autoregressive model, Kalman fil-
tering model, and artificial neural network with respect to the short term track cross
levelling prediction. They observed the accuracy of the ANN model was higher
than the two other models. A stochastic approach based on Dagum distribution is
developed by Vale et al. [34] to model track longitudinal level degradation over
time. The researchers classified the track longitudinal level changes into three speed
classes and different inspection intervals.

Andrade et al. [35] used a Bayesian approach to evaluate a track geometry
degradation model and deal with the uncertainty of its parameters. They considered
the track longitudinal level deviation to have a linear relationship with passing
tonnage and assumed the initial longitudinal level and degradation rate would take a
bivariate log-normal prior distribution. They argued that the parameter uncertainties
are significant in the design stage.

In order to model track geometry degradation and maintenance, Westgeest et al.
[36] addressed the application of regression method. They used a combination of
track geometry parameters to create the Key Performance Indicator (KPI) as the
track quality indicator. They studied the effect on the KPI of different types of
subsoil, sleeper, tonnage, and engineering structures, considering two tamping
types, manual and mechanical. The results showed the proposed degradation model
can properly address changes in the KPI over time, but it is not efficient in terms of
track behaviour prediction. They concluded the track segments have different
degradation rates depending on a number of factors, e.g. closeness to switches,
sleeper types, and subsoil types.

Xu et al. [37] proposed an approach based on historical changes in track
irregularity to predict the short-term track degradation. They estimated the
non-linear behaviour of track irregularity during a cycle using a number of short
range linear regression models. Andrade et al. [38] assessed track geometry
degradation and the uncertainty of degradation model parameters. They considered
a linear model for track longitudinal level degradation. They performed statistical
correlation analysis for each group section and fitted the log-normal distribution to
the track’s longitudinal level degradation.

A machine learning model based on the characteristics and inspection data of the
track using a multi-stage framework is developed by Xu et al. [39] to predict
changes in track irregularity over time. They defined different stages of track



A Survey on Track Geometry Degradation Modelling 9

irregularity changes based on maintenance thresholds and linear regression is used
to predict track degradation in each stage.

Berggren [40] applied the pattern recognition method to extract new information
from track quality condition data to classify the root cause of track problems. He
defined three classes of defects: rail defects, ballast defects, and soil defects. The
proposed framework also used data related to track geometry quality, dynamic
stiffness, and ground penetrating radar. The main output of the framework is
classifying the feature measurements based on their effect on track problems.

The application of multivariate statistical analysis for geometry degradation
modelling is pointed out by Guler et al. [41]. First, they divided the track into
homogenous sections based on gradient, curvature, cant, speed, age, rail type, and
rail length. They examined the effect of traffic load, speed, curvature, gradient, cant,
sleeper type, rail type, rail length, falling rock, land-slide, snow, and flood. They
concluded landslide and snow do not affect track geometry degradation, but rail
type and rail length do. The model found a high correlation between cant and
curvature.

Chang et al. [42] proposed a multi-stage linear model to predict changes in track
irregularity. Based on multi-stage and exponential changes in track irregularities,
they modelled different stages of TQI changes using a number of linear models. The
different stages of track irregularity changes were based on the TQI distribution.

The comparison of the efficiency of the double exponential smoothing method, a
generic degradation model, and an autoregressive model for track degradation
prediction is addressed in the work by Quiroga et al. [43]. The three models lose
their efficiency in track degradation prediction after performing a number of
tamping procedures. After considering these issues, they developed a hybrid
discrete-continuous framework based on a grey box model. After comparing these
four models, they concluded the proposed hybrid model is more efficient in terms of
track degradation behaviour prediction.

A degradation model by combining mechanistic and statistical approaches based
on regression that considered track geometry and track structural condition data is
proposed in the work by Sadeghi et al. [44]. Using a degradation coefficient, they
estimated the effect of initial track geometry and track structural condition, train
speed, and total million gross tones passing on the track. They observed an
exponential relationship between the degradation coefficient and the parameters.
The initial track quality condition was found to be the most effective parameter
acting on the degradation coefficient, with the total million gross tonnes passing on
the track coming second. They concluded the degradation coefficient is more
affected by parameters in turnouts, bridges, and curve-bridges than by parameters in
other track segment types.

Lyngby [45] suggested a methodology for evaluating track degradation in terms
of track geometry irregularities and proposed a multivariate regression model to
demonstrate the relationship between the track degradation measure variable and
influencing variables on track degradation. Since different sections of track are not
identical, the track was split into homogenous sections with similar variables. He
concluded: (1) axle load has a nonlinear relation with degradation; (2) degradation
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after tamping is dependent on the number of previous tampings; (3) soil consisting
of clay material will settle sooner than other types of soil; (4) light rail tracks
degrade faster than heavy rail tracks; (5) harsh rainfall increases degradation rate.

Two degradation models to predict track alignment irregularities are proposed in
the work by Kawaguchi et al. [46]. First, they developed a degradation model based
on analysis of lateral track deformation to estimate mean time to maintenance of
track alignment irregularities. Second, they designed another degradation model
based on the exponential smoothing method to accurately predict the track align-
ment irregularities a maximum of 1 year in advance.

A generic degradation model is developed by Jovanovic [47], which is suitable
for modelling degradation of different parameters. To develop a generic degradation
model, he argued the condition parameters that represent the condition of track
components and essential and temporary activities affecting them should be
determined. He observed different degradation patterns based on various intervals
between essential or temporary activities. Various curve types, such as linear,
exponential, and quadratic, can be used to explain the degradation patterns. Miwa
et al. [48] fitted the logistic distribution on track irregularity data to express the
track condition, with the parameters of the distribution related to type of alignment,
rail, and sleeper; depth of ballast; and maintenance history using the exponential
smoothing method.

4 Conclusion

The paper aims to improve the knowledge of railway track geometry degradation
modelling by conducting a survey of recent research works. The most important
issues to consider in track modelling are identified.

Since sections are not homogenous along the track and different heterogeneous
factors affect track degradation, the track must be divided into a number of shorter
track sections and maintenance must be planned for each section. It is observed that
constant equal length sections are usually considered for planning track mainte-
nance activities. However, a more efficient method would be clustering sections
based on their structural, environmental, and operational characteristics.

In addition, achieving a more accurate prediction of track geometry degradation
requires combining the mechanistic and statistical approaches. Finally, integrating
the degradation models of different track components, i.e. ballast, rail, and sleeper,
to plan track maintenance activities can increase the efficiency of maintenance
strategies in terms of economy of scale.

After modelling the track geometry degradation, the track geometry maintenance
models could be constructed. In fact, by combining the degradation and restoration
models the long term behaviour of the track could be predicted. In this regard,
infrastructure managers can evaluate different maintenance strategies.
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Abstract Several factors such as reliability, availability, and cost may consider in
the maintenance modeling. In order to develop an optimal inspection program, it is
necessary to consider the simultaneous effect of above factor in the model structure.
In addition, for finding the optimal maintenance interval it is necessary to make
trade-offs between several factors, which may conflicting each other as well. The
study comprises of mathematical formulating an optimal interval problem based on
Multi-Attribute Utility Theory (MAUT). The aim of the proposed research is to
develop a methodology with supporting tools for determination of optimal
inspection in a maintenance planning to assure and preserve a desired level of
performance measure such as reliability, availability, risk, etc. For verification and
validation purposes, the proposed methodology (analysis approach) and tools
(models) will be applied in a real case which given by the literature.
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1 Introduction

Multi-criteria decision making (MCDM) is one of the most well-known branches of
decision making. According to many authors (see, for instance, [1]) MCDM is
divided into multi-objective decision making (MODM) and multi-attribute decision
making (MADM). MCDM is concerned with the methods and procedure by which
multiple criteria can be formally incorporated into the analytical process [2]. There
are several methods proposed by literature. The weighted sum model (WSM) is the
earliest and probably the most widely used methods. The weighted product model
(WPM) can be considered as a modification of the WSM, and has been proposed in
order to overcome some of its weaknesses. The analytic hierarchy process (AHP),
as proposed by Saaty [3], is a later development and it has recently become
increasingly popular in different area. Belton and Gear [4] modified AHP method
and the new approach is more consistent than the original AHP. Some other popular
methods proposed by literature are the VIKOR and the TOPSIS methods. These
methods are based on an aggregating function representing “closeness to the ideal,
which originated in the compromise programming method”. Both TOPSIS and
VIKOR are based on the calculation of distances from the Positive Ideal Solution
(PIS) and the Negative Ideal Solution (NIS). Chu et al. [5] are in favors of using
VIKOR when there are a larger number of decision makers (DM), and otherwise
they recommend the use of TOPSIS. Recently, Ahmadi et al. [6] show that
application of the combined AHP, TOPSIS, and VIKOR methodologies are
applicable and verified the proposed methodology through a case study for an
aircraft system.

Maintenance decision making is a complex task and may take place in several
contexts with different types of systems in terms of technology, repairability, relia-
bility and availability requirements, etc. For optimal time determination of the
maintenance plan, maintenance management may present scenarios, including sev-
eral objectives which often competing or conflicting with each other. The objectives
can be represented by a set of appropriate measures or attributes, which are used to
represent system characteristics. Here, the decision maker not only required to choose
the best solution among alternatives, but also have to trade-off between the objectives.

Kralj and Petrovic [7] used multiple objective function to tackle costs and
reliability in preventive maintenance. In another study, an optimal interval for
preventive maintenance was obtained based on the PROMETHEE method [8].
Gopalaswamy et al. [9] argued for strict selection and lexicographical approaches
applied to preventive maintenance, taking into account criteria such as costs,
availability and reliability. Most research on preventive maintenance problems in
the literature is based on a multi-criteria approach to analyze particular problems
using multi-criteria approaches that do not incorporate the most useful advantage of
multi attribute utility theory (MAUT). However, some decision models for main-
tenance are based in MAUT. See [10-12].

Here, we propose an optimal maintenance inspection model based on MAUT. In
order to determine optimal time, different criteria such as cost, reliability, and
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availability are considered in the model framework. In order to provide insight into the
problem, a utility function is assessed for each of the relevant objectives. This allows
for an appropriate multiple objective utility functions that are used to identify tradeoffs
and compare the various objectives in a consistent manner. The basis of utility theory
and its underlying quantitative axioms were initially established by Keeney and Raiffa
[13]. The decision model has been applied on areal case in an electric power company.
The decision level and weight parameter are selected, subjectively and sensitivity
analysis is conducted to identify the most sensitive parameter.

The rest of the paper is organized as follows. The proposed model based on
MAUT is discussed in Sect. 2. Section 3 shows the numerical example and verified
the proposed methodology through a real case study. In addition, a sensitivity
analysis is discussed in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Multi Attribute Utility Theory

Multi-attribute utility theory (MAUT) [13] is concerned with expressing the utilities
of multiple-attribute outcomes or consequences as a function of the utilities of each
attribute taken singly. This approach has been used for choosing the most “desirable
alternative” (or project) among many different alternatives. It has been used in a
broad range of fields including energy, manufacturing and services, public policy,
health care, etc. MAUT can help in these situations by creating a decision model
through the elicitation process of expert practitioners.

The theory specifies several possible functions (additive, multiplicative and
multi-linear) and the conditions (independence conditions to be met) under which
each would be appropriate. As a practical matter, Keeney and Raiffa [13] suggest
that for four or more attributes the reasonable models are the additive and the
multiplicative. Since our problem contains less than four attributes, we restrict our
attention to the additive form. The MAUT process provides a framework through
which multiple objectives and uncertainty can be combined to aid managers in
making decisions. In order to create a MAUF Problem, single utility functions must
be assessed for every identified objective. In our case, we have identified three
separate attribute. The objective list utilized for this preliminary analysis is mini-
mization of cost and maximization of reliability and availability. Generally, a
MAUF is defined as:

U(xi,x2, . %) = flur(x1), u2(02), - -, tn (x)]

= Xn:wi.ui(xi) (1)
i=1

n
where, > w; =1
i=1
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Fig. 1 The structure of
MAUT for the determination
of optimal inspection time

eQuantification of attributes

eElicitation of single utility function for each
attribute

eEstimation of scaling constants

eMaximization of multi-attribute utility function

where, U is a multi-attribute utility function over all utility functions; u;(x;) is a
single utility function measuring the utility of attribute i; x; is level of ith attribute.
w; represent the relative importance weights for the utilities. By maximizing the
multi-attribute utility function, the best alternative is obtained, under which the
attractiveness of the conjoint outcome of attributes is optimized. The main reason
for the selection of MAUT in our problem is that scenarios of management can be
appropriately represented by the structure of this technique. Furthermore, MAUT
has strong theoretical foundations based on the expected utility theory.

In order to obtain structure for utility functions, first we need to make
assumptions regarding utility independence and the additive independence. The
procedure of the use of it in our problem is discussed in detail by [13]. The utility
functions are assessed in the following four steps [13, 14] (Fig. 1).

2.1 Quantification of Attributes

In our case study, cost, availability and reliability are selected as attribute to find
out the optimal maintenance policy. The attributes and their mathematical struc-
ture are discussed in following subsection.

2.1.1 Cost Modeling

In the preventive replacement age policy subject to breakdown, instead of making a
preventive replacement at fix time interval 7, the preventive replacement depends
on the age of the item. In addition, failure replacement is performed if the system
fails before T and the time clock is reset to zero, see [15] for more details. The
average cost per unit time based on optimal preventive replacement is given by:
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)
c(1) T.R(T)+M(T).(1 — R(T))
_ GR(T) +¢F(T) @)
- T.R(T)+M(T).F(T)

where M(T) = ffm (lt—j;gz)T))dt

and T is a replacement age at which a preventive replacement takes place, ¢, and ¢f
(¢ > c,) are the cost of a preventive and failure replacement. In both cases,
replacement cost includes all costs resulting from the failure and its replacement.
In this model, the numerator equals to the total expected cost per cycle and the
denominator equals to the expected cycle length; F(#) and R(¢) are the cumulative
distribution and reliability functions, respectively. The optimal value of
T corresponds to the minimum cost, C(7), can be derived by the first derivation of C
(T) with respect to T. This model is discussed in details by Jardine and Tsang [16].

Cost Attribute

The average cost per unit time given by Eq. (2) has a unique minimum C,;;,, which
occurs at T¢. Since small value of C(7) is preferred, we define the cost attribute
function as:

Cuin
C(T)

3)

UCost =

2.1.2 Availability Modeling

Availability is defined as the long run probability of the system being available for
use at any point in time [17]. This is expressed as a point estimate and calculated
from the mean delay and reliability point estimates. There are several different
forms of steady state availability depending on the definition of uptime and
downtime. The Inherent availability is most common definition in the literature:

_ MTIF
" MTTF + MRT

Aj (4)
where MRT is the mean repair time and MTTF is the mean time-to-failure.

In our decision problem, optimal preventive replacement age policy subject to
breakdown are considered. For above standard definition, the following structure
can be derived for single unit.
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[T R(t)de
Jo R(t)dt + 1,R(T) +17(1 — R(T))

A(T) = (s)

where 1, and #; are the require time of performing a preventive and a failure
replacement, respectively. A large value of A(7) is preferred.

Availability Attribute

The average availability per unit time given by Eq. (5) has a unique maximum A,
which occurs at T,. Since a large value of A(T) is preferred, the availability attribute
may be define as:

(6)

2.1.3 Reliability Modeling

Reliability is closely associated with the quality of the product. This criteria is one
of the main concerns during different stage of product development such as design,
testing and operation. Reliability is defined as probability that a system will
function over the time period. Reliability can be expressed as

R(t) =Pr(T >1)
R(t)=1—-F(@) @

where R() >0,R(0) = 1 and lim R(z) = 0.

1—00

Reliability Attribute

The reliability level of the product at time 7, is depend to failure distribution and the
interval which is our aim to study. Reliability per unit time given by Eq. (7), has a
unique maximum Ry, which occurs at Tk. Since a large value of R(T) is preferred,
the reliability attribute is given by:

_R(T)
Urel = R (8)
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2.2 Elicitation of Single Utility Function for Each Attribute

The single utility function for each attribute represents management’s satisfaction
level towards the performance of each attribute. It is usually assessed by a few
particular points on the utility curve [18, 19].

More specifically, suppose that the best and worst values of availability are
selected first as A® and A". At these boundary points, we have U (A") =0 and
U(AB) = 1. For cost utility function, highest and lowest budget consumption
requirement values are selected as CV and C?, respectively. Also, at these boundary
points, we have U(C") = 0and U(C?) = 1.

To elicit the single utility function the exponential or linear function, may
suggested for each attribute given by Eq (9).

Ulx) =kix+k, Linear function 9
U(x) = k3. exp(— %) Exponential function ©)

where k; are constants which secure U(x;) € [0, 1]. Unknown parameter for utility
functions,U(A), U(R) and U(C) can be obtained using linear (exponential) form of
single utility function with the help of boundary conditions.

The linear utility function is applied for availability and cost attribute. The linear
function is applicable when the DM is risk neutral [13]. That is, the DM is neither
risk prone nor risk averse. For reliability, the logistic utility function is found to be
suitable. This function presents a risk aversion for higher values of R and prone risk
for lower values of R, which is the DM’s risk behavior for increasing utility
function.

2.3 Estimation of Scaling Constants

The following step is the estimation of the scaling constants wa,wg and w¢c. They
indicate the importance weights that management team allocates for each attribute
[18, 20]. There are two common methods to assess the scaling constants:

1. Certainty scaling and
2. Probabilistic scaling

Given that the number of attributes considered in our problem is three and we
will use probabilistic scaling technique.

Consider three attributes A, R and C as availability, reliability and cost. Let
(AB RB. CP) and (A", R", BY) denote the best and worst possible consequence,
respectively (Fig. 2). There is a certain joint outcome (A%, R, CV) comprised
three attribute A, R and C at the best and worst level with probability p and (I—p),
respectively. In these situations, the weight for attribute C equals p, where p is the
indifference probability between them, see [18].
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Fig. 2 Assessing scaling constants

2.4 Maximization of Multi-attribute Utility Function

Based on the previously estimated single utility functions and scaling constants, the
additive form of the multi-attribute utility function in our problem can be obtained.
That is

Max: U(A,R, C) = wy x U(A)+wg x URR)+ we x U(C) (10)
Wa+wp+we =1

where wa, wg and wce are the weight parameters for attribute A, R and C,
respectively. U(A), U(R) and U(C) are the single utility function for availability,
reliability and cost attribute. It may note that the U(A, R, C) function is Maximum
type and it has been written in terms of A, R and C. By maximizing this
multi-attribute utility function, the optimal inspection, 7* will be obtained. It is
worth noting here that the additive form of multi-attribute utility function is based
on the utility independence and the additive independence assumptions.

3 Numerical Example

This numerical application is conducted to verify MAUT in maintenance applica-
tion. Assume that 2-parameter Weibull model is selected as failure distribution
which are given by Eq (11) and the parameter of the model and attributes are given
in Table 1.

Table 1 EstiIr.late.d parameter 3 Shape parameter

from real application [21] 1200 Scale parameter
t 0.2 | Time of performing preventive maintenance
Iy 0.4 Time of performing corrective maintenance
Cp 600 Cost of preventive maintenance
cr 1200 Cost of corrective maintenance
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F(T) = 1 —exp(=(T/n)’)

7 =",

D exp(= (/)
)

21

(11)

In addition, the best and worse level for each attribute are given in Table 2. The
linear utility function is applied for availability and cost attribute. In addition, the
logistic utility function is considered for reliability attribute. For each attribute, the
constant coefficients are calculated and given in Table 2. The availability, reliability
and cost attribute are plotted in Figs. 3, 4 and 5.

Table 2 Attributes function and coefficients

Attributes Best Worse Function Coefficient value
Availability attribute | A2 =0.95 |AY =025 |U(x) =kiA+k ky = 1.428;
ky = —0.357
Reliability attribute | R =0.9 |RY =03 | U(x) =k3.exp(—%) | ks =9.985;
ky =2.0718
Cost attribute CcB =035 |[CV =1 U(x) = ksA +ks ks = 1.5384;
ke = —0.538
Fig. 3 The availability P I A
attribute 0.99966 // \\
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Fig. 5 The cost attribute 1.00 / \
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Fig. 6 Multi attribute utility
function

MAUT

The behavior of MAUF function is given in Fig. 6. The optimal inspection time
by considering three attribute with above weight occur at ¢ € [490,550]. More
specifically, when we consider only cost for determination of optimal inspection
time, we get ¢ = 950 which seems is more delay for inspection time.

4 Sensitivity Analysis of the Model Parameters

From the discussion given in the preceding section, it is good to know that the
optimal decision-making depends on various parameters that may not be precise.
The use of sensitivity analysis will help the analyst to understand how changing
the parameters of the model will affect the decision outcome. The decision model is
then rerun by holding all other parameters constant. We have conducted sensitivity
analysis by calculating the relative change of optimal time based different param-
eters given in Table 3. The sensitivity of the optimal inspection time with respect to
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Tablle?) Sznsitivitydarllalysis %
results based on mode A0 =30%  [—20% [-10% [10% [20% [30 %
parameter 0,0
o |30 % 0% |1% |NA |NA |NA
A | A% 2% 1% 1% (1% |2%
v 65% | 6% |5% |NA |NA |NA
p,C!
Cew | 8% 1% 4% 2% 2% |2%
A4 | NF NF | NF 10% |NA |NA

Note: Na, impossible change; Nf, infeasible solution

o0
optimal utility level, #*(0) when @ is changed by 100p%, i.e.,

a model parameter, can be quantified by 4% ,, which are the relative changes of

v _ u*(0+pb) — u(0)
p,0 u*(@)

(12)

In addition, different weight are assign to the attribute and the results are plotted
in Fig. 7. The values of different weight are given in Table 4.

It can be seen that the sensitivity of optimal interval with respect to model
parameters A" and positive effect of CV is at acceptably low levels, e.g., when
AY(C") increases by 30 % (decreases by —30 %) the relative changes in A are 2
and 4 %, respectively. Results in Table 3 reveal that A® and negative part of C? and
CV are slightly more sensitive parameter than other parameters.

In addition, negative change of wg did not reveal the high level of sensitivity and
positive effect of wg will reduce inspection time.
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// A b s ERRR
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‘? el ,fﬁ/}':/ \\\E-\,\'x_
Z 05 LA NN
e V17 TN
2 07 // \\\\ \:\
= - Py ™, 1 T
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< \\\\ T
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E NIRRT
= \\ -
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‘\\
~
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4
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Fig. 7 Sensitivity analysis on weight parameters
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Tab.le 4 leﬁ:rent Welght Of U_ZO Jo U_l() Yo UOplimal UIO Jo U20 Jo U30 Yo

W in optimization problem =" 0.45 05 055 |06
wa 1035 |03 025 025 |02 02
we |03 03 03 025 025 |02

5 Conclusion

In this paper, we have developed a multi attribute utility model for the preventive
replacement age policy subject to breakdown. Reliability, availability and cost are
considered as three main attribute in our decision problem. By using MAUT, it is
possible to make trade-offs between several factors, which may conflicting each
other as well. In addition, the optimal solution depends not only on the failure
distribution and the cost ratio, but also on the maintenance time ratio as well as the
relative importance of the attributes. The MAUT is important for the maintenance
and reliability community when a context of service production systems is to be
taken into account due to disturbances caused by failures in the system. A numerical
application has illustrated the use of the decision model and the procedure.
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Optimum Proactive Maintenance
for Critical Infrastructures Subject
to Multiple Degradation

and Environmental Shocks

Mahmood Shafiee

Abstract Critical infrastructures (e.g. power networks, transport systems, financial
services and telecommunication) constitute the backbone of the society. A failure in
these systems may result in substantial costs in terms of lost service delivery and
emergency maintenance operations. Failures of critical infrastructures mainly occur
as a result of various degradation (deterioration) processes in their consisting units
as well as due to external shocks arising from surrounding environment. In order to
avoid such failures, various proactive maintenance policies, including routine
inspection, age (usage)-based replacement, and condition-based maintenance are
commonly applied. In this paper, we formulate an optimization framework for
proactive maintenance planning of critical infrastructures subjected to stochastic
degradation and environmental damages. The infrastructure in our study is com-
posed of multiple identical sub-systems, each exposed to a gradual degradation
phenomenon. The environmental shocks are divided into two types of minor (with
probability p) and major (with probability 1—p, where 0 < p < 1). A minor shock
causes a disruption in system operation without resulting in any failure, while a
major shock stops the system and requires a costly replacement. The performance
of the proposed maintenance policies, regarding the objective of minimum average
long-run maintenance cost per unit time are compared to existing practices of
maintenance. Several case studies within the subsea pipeline, marine renewable
energy, and the rail transport industries are presented to illustrate the results.
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1 Introduction

Critical infrastructures, such as power networks, transport systems, financial ser-
vices and telecommunication constitute the backbone of the society. These systems
provide services that are important in maintaining the essential functions of society.
A failure in these systems may result in substantial costs in terms of lost service
delivery and emergency maintenance operations. For this reason, the requirement
for improving the reliability of critical infrastructures has recently experienced a
great increase. In December 2006, the European Commission approved a pro-
gramme for critical infrastructure protection (CIP) aiming to identify and protect the
EU’s critical infrastructures in case of faults, incidents or attacks (for more see [1]).

Failures of critical infrastructures mainly occur as a result of various degradation
(deterioration) processes in their constituent sub-systems as well as due to external
shocks arising from surrounding environment. Degradation is a complex
multi-dimensional process which depends on numerous physical and mechanical
factors (e.g. material, stress loads) and is manifested in different forms of wear,
fatigue, and crack generation [2]. Any of these forms or their combination can result
in a failure if their length reaches a critical level. In this case, the system undergoes
an unplanned maintenance action which includes performing a replacement on the
failed item. On the other side, environmental shocks are divided into two types of
minor (with probability p) and major (with probability 1—p, where 0 < p < 1) [3].
A minor shock causes a disruption in system operation without resulting in any
failure, while a major shock stops the system and requires a costly replacement. So,
it is crucial to continuously monitor and evaluate the degradation state and oper-
ating condition of critical assets so that unexpected failures can be eliminated
(minimized).

Currently, a large number of sensors and control devices are installed at various
locations of system networks to collect condition data (e.g. temperature data,
deterioration modes and causes, fatigue cracks size, damage propagation). The
collected information is frequently transferred to supervisory control and data
acquisition (SCADA) system and is stored in databases. The system analysts use
the SCADA database to schedule the inspection and maintenance tasks when
required. In this regard, various proactive maintenance policies, including routine
inspection, age/usage-based replacement, and condition-based maintenance are
commonly applied to critical infrastructures protection [4]. A brief review of the
literature shows that a lot of research has been done on optimization of proactive
maintenance policies for isolated infrastructures (or being possibly assimilated to
single-infrastructure systems). However, there often exist strong correlations
among the failure modes as well as between the sub-systems of various infras-
tructures [5]. Neglecting these correlations while optimizing maintenance policies
leads to sub-optimal or even wrong solutions to the problem and thereby, increased
cost of maintenance and system downtime.

In this paper, we formulate an optimization framework for proactive mainte-
nance planning of critical infrastructures subjected to stochastic degradation and
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environmental damages. The infrastructure
identical sub-systems (e.g. a subsea pipeline

(1) POLICY I: An age-dependent maintenance action is carried out at fixed time

intervals kT (k =1, 2, ...) after the ins

(i) POLICY II: A degradation-dependent maintenance action is carried out when
the condition signal in a sub-system reaches an alert threshold d (smaller than
fault threshold D) (see Fig. 1b). In order to take the advantage of system
dependence, a preventive repair action is also performed on other safe

sub-systems.

ructures ...

in our study is composed of multiple
with multiple identical pipe segments),
each exposed to a gradual degradation phenomenon. The system undergoes a
proactive maintenance action according to either one of the following schemes:

tallation (see Fig. la).

(a)
Condition
rll -'________________J:" ____________
A
G
A
N
No PM
! ™
_________________ IL________,"_____-
i X
: : 4
.' - >
0 T Time
(b)
Condition
e e e e - ————————— Initial level
A
G
A
N
No PM
PO R . SRR Condition threshold
X Failure threshold
0 T Time

Fig. 1 The proposed proactive maintenance policy
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(iii) POLICY MI: A proactive maintenance action is conducted at fixed time
intervals kT or when the condition signal in a sub-system exceeds an alert
threshold d, whichever comes first.

The problem is to find out the optimum block replacement time 7% (>0) and/or
condition threshold d* (<D) such that the system’s average long-run maintenance
cost per unit time is minimized. Our objective function includes all costs due to
corrective replacement, preventive maintenance and repairs, and loss of service
delivery. The explicit expression of the objective function is derived and under
certain conditions, the existence and uniqueness of the optimal solution are shown.
The performance of the proposed maintenance policies are evaluated using a
Monte-Carlo simulation technique and are compared to existing practices of
maintenance.

The rest of this paper is organized as follows. In Sect. 2, we present the problem
definition. In Sect. 3, we construct our optimization framework and discuss the
properties of the optimal solution. Several case studies in the subsea pipeline,
marine renewable energy and the rail transport industries are presented in Sect. 4.

2 Problem Definition

Notation

n number of sub-systems in the infrastructure

i index for sub-systems; i € {1, 2, ..., n}

m(t) [M(1)] intensity [mean value] function of degradation process in a
sub-system

Jj index for number of degradation processes

T; initiation time of the jth degradation process in the sub-system i

FTU(,) survival function of T}

Xii(0) level of the jth degradation process in the sub-system i at time point
t after initiation

U; length of the interval between the initiation time of the jth
degradation process in the sub-system i to the time that it attains a
size x

gu-( -)[GU;(,)]] probability density [cumulative distribution] function of Uy

alf] shape [scale] parameter of the gamma distribution

T()y(.,)] gamma [incomplete gamma] function

\Y time (since ¢ = 0) to attain size x for the jth degradation process in
the sub-system i

h()[H()] intensity [mean value] function of environmental shocks

p [1-p] probability that an environmental shock is catastrophic [minor];

0<p<l1
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T; time to arrive a catastrophic shock

Fr,(.) survival function of T

D fault threshold of degradation for sub-systems

d (<D) control threshold for PM

Syq time point that, for the first time, the degradation level of a

sub-system reaches d
Fs,(.)[04(.)] survival [hazard rate] function of S,

T PM interval

Cr fixed cost of a planned PM

C(d) cost of performing a major repair for a sub-system with degradation
level d

Cr fixed cost of replacing a failed sub-system

Cm expected cost of service loss due to a minor shock

Co set-up cost for a planned PM action at time T

C, set-up cost for an unplanned major repair action at threshold d

C, set-up cost for a corrective replacement action

C,d T average long-run maintenance cost for a sub-system per unit time

Initiation of degradation—Consider a critical infrastructure which is composed
of n identical sub-systems connected in series (in terms of reliability) and all
working independently of each other. A failure of the sub-system j (= 1, 2, ...,
n) causes the failure of entire system, which is immediately detected. Each
sub-system is subject to a random number of degradation processes independently
from the others. Suppose that the degradation processes in the sub-system i are
initiated by point events that follow a non-homogeneous Poisson process (NHPP),
{N1; () = Np (¢); t 2 0} with intensity function (rate) m(f) and mean value function
M), i.e., [6]

M(t) = /Otm(y)dy7 t>0. (1)

LetTyi=1,2,...,n,j=1,2, ..., denote the initiation time of the jth degradation
process in the sub-system i. Then, the survival function that corresponds to the
random variable Tj; is given by

Fr. ()

y

j—1 [M k
-t o )

Fr,(t) = P{N, (1) <j} = e M) x

Propagation of degradation—Assume that all degradation processes in the
sub-systems propagate independently from each other. Let X;(#), i = 1, 2, ..., n,
j=12,..., be the level of the jth degradation process in the sub-system i at time
point ¢ after initiation. Thus, X;(z), are the increasing stochastic processes of
degradation. Denote by Uj; the length of the time interval between the initiation
time of the jth degradation process in the sub-system i to the time that it attains a
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size x (the first passage time). Let X;(¢) = X(¥) and U; = U", which means that the
initiated degradation processes are statistically identical for different initiating
events affecting the sub-systems. We also assume that the corresponding stochastic
processes are independent. Thus,

U'=inf{tr>0: X(t) >x},x> 0. (3)

In this paper, we model the level of a degradation process using the stochastic
gamma process. Assume that X(¢) is a homogeneous gamma process with shape and
scale parameters at and f, respectively. Thus, the density and the cumulative dis-
tribution function of U" are given respectively by [7]

ot

gu(t) = Wx“’_le_ﬁx, t>0,0, >0, (4)
GU.x(t):%,OO? o, >0, (5)

where T'(-)[y(.,.)] denotes the gamma [incomplete gamma] function, i.e.,
o0 (o 0]
I'(v) = / e dz; y(v, u) = / 2 e idz, v, u > 0. (6)
0 u

Denote by S;; the time point (since # = 0) when the level of the jth degradation
process in the sub-system i exceeds x. Then,

SL=T;+U"\x>0,i=1,2,..,n,j=12.... (7)

Let {Ng(0); t 2 0}, i =1, 2, ..., n, be the counting process associated with the
random variable Sj;, where Ni;(7) denotes the total number of degradation processes

in the sub-system i that exceeds a size x in the interval [0, 7). Then, we can show
that {Ns(?); ¢ = 0} is an NHPP with intensity function,

0x(r) = /Otm (t)gu-(t — y)dy = m (1) * gu-(1), x > 0, (8)

where the symbol * represents convolution function and g7,(.) is given by Eq. (4).
Environmental shocks—Suppose that the environmental shocks arrive at the

whole infrastructure according to a non-homogeneous Poisson process (NHPP)

{N>(®); t = 0} with intensity function A(f) and mean value function H(?), i.e.,

H(t) = /Olh(t)dy, t>0. 9)
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External shocks are minor with probability 1—p and catastrophic with probability
p (0 <p < 1). We denote by Tthe time of arrival of a catastrophic shock. Then, the
survival function of the random variable T is given by

Fr,(r) = exp{—pH (1)}, 0<p<1. (10)

3 Maintenance Optimization

Let S, denote the time that, for the first time, a degradation process in one of the
sub-systems exceeds the threshold d, i.e.,

Sy = min{Sd

,j,izl,z,...,n,j:l,z,...},0<d§D, (11)

where Sg- is the time to attain size d for the jth degradation process in the sub-system
i. Then, taking into account Eq. (8) for x = d, the survival function of S, can be
written as

Fo () = P{Ss > 1) = [[ PNsi(1) = 0) = exp{-n (m(0) » G0}, (12)

where n is the number of sub-systems in an infrastructure, and G (.) is given by
replacing x with d in Eq. (5). Now, let X, denote the duration of the renewal cycle
defined by the time interval between successive maintenance actions. Under the
assumptions of the model,

X, = min(T, Sq, Ty), T >0, 0<d <D, (13)

Hence, the expected duration of a renewal cycle, E(X,) is given by

E(X,):/O Fs,(t) Fr,(1)dt, (14)

where Fr, (1) is given by Eq. (10), and Fg,(-) is given by Eq. (12).
Denote by E[Ng,, (d, T)] the expected number of minor shocks that arrive at the
infrastructure during the renewal cycle. Then,

T

E[Ngn(d,T)] = (1 —p)/o h(t) Fs,(t) Fr,(t)dt. (15)
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The cost of performing a planned PM action and the replacement cost for each
sub-system are Cr and Cyg, respectively. The cost of performing a major repair at
condition threshold d is represented by function C(d), which is a non-negative,
non-decreasing differentiable function of d. In addition to the repair or replacement
costs, conducting a maintenance task incurs a fixed set-up cost, which usually
includes the costs for ordering the spare parts, equipping the maintenance teams, and
hiring the maintenance personnel and transport vehicles. We assume that the main-
tenance set-up costs for a planned PM at time 7, a major repair at control threshold
d and a replacement task are respectively Cy, Cy, and C,, where C, =2 C; = Cy > 0.
Also, the expected cost of service disruption due to a minor shock is c,,.

Let S(#) represent the expected cost of operating the system for the time interval
[0, 7). From the renewal reward theorem (see [8, p. 52]), the average long-run
maintenance cost per unit time is the operational cost incurred in a renewal cycle
divided by the length of the expected cycle. Then, the average long-run mainte-
nance cost for a sub-system per unit time, denoted by C,(d, T) is given by:

1 S(t
C,(d, T) =—lim ﬁ (16)
nt—oo f
The average long-run maintenance cost of a sub-system per unit time under the
proposed maintenance policies are as follows:

POLICY I:
T - =
C.(D.T) = (Co +nCr) +Tf_0 5,1(11 1)Fs, (1) Fr, (1) d17 >0, a7
n [y Fs,(t) Fr,(t) dt
where &,(D, 1) is defined as below:
&a(D;1) = n[(C2 = Co) + (Cr — Cr)] (1) (18)

+[p(Cy — Co+n(Cg — Cr))+ (1 —p)ew] h(1).
POLICY II:

Co(d. o) = (Co+ nCTIi f+°°f£ éf(,lgc;t)i;ﬁtt) Fr, (1) dt 0<d<D. (19)
0 d Ty

where ¢&,(d, t) is defined as below:

&uld,t) = n[(Cy — Co) + (C(d) — Cr)] Oa(1),
+p(Ca—Co+n(Cr—Cr))+ (1 —p)ew) h(2).
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POLICY III:

(CO + nCT) + f()T én (d> [)fsd (t) FTf (t) dt

Ca(d, T) = n fOT Fs,(t) Fr, (1) dt

,0<d<D. (21)

Proposition 1 Let 7, is an optimal solution that minimizes the objective function
C, (D, T) in Eq. (17). Then,

i. If &,(D, 00) > C,(D, o0), there exists a finite 7, minimizing C, (D, T).
ii. If &,(D, T) is strictly increasing and &,(D, oo) > C,(D, 00), there exists a
unique, finite minimum.
ii. If &,(D, T) is non-decreasing and &,(D, 00) < C,(D, 00) <oo, then T, — oo
(reactive response maintenance policy).

Proposition 2 Let m(f) and &(¢) be two differentiable non-decreasing functions of ¢,
and assume lim,_o C(d) 2 C7. There exists an optimal solution d; that minimizes
the function C,, (d, ©0) in Eq. (19) if the function C(d)0,(¢) is strictly increasing in
d for each t and the derivative of the function [(C; — Cy) + (C(d) — Cr)]04(2) is
sufficiently large.

4 Case Studies

In order to illustrate the proposed policies, the model is applied to maintenance of
the three below infrastructures:

4.1 A Subsea Pipeline

A 20-inch oil export pipeline which is used to transport oil from offshore platform
to an onshore treatment plant was studied [9]. This pipeline operates under a
pressure of 800 psig and temperature of 40 °C and is subject to corrosion and
current shocks (see Fig. 2a).

4.2 A Wind Turbine Rotor-Blades

A three-bladed offshore wind turbine system subjected to fatigue cracks and wind
loads was studied [10]. The wind turbine has a condition monitoring system that
measures a wide range of temperature, noise and vibration parameters (see Fig. 2b).
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Fig. 2 a A subsea pipeline, b a three-bladed rotor, ¢ a rail track

4.3 A Rail Track

A 60El rail track on a small track section subjected to degradation and icing shocks
was studied [11] (see Fig. 2c¢).
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Risk Informed In-Service Inspection

of PWR Nuclear Power Plant Piping
Components Subjected

to Erosion-Corrosion Using Markov Chain
Model

K. Balaji Rao, M.B. Anoop, Gopika Vinod and H.S. Kushwaha

Abstract A Markov Chain (MC) model for failure probability assessment of power
plant piping components against erosion-corrosion is proposed. In the MC model,
the state space is the degradation state of the system represented by the ratio of the
loss in wall thickness due to erosion-corrosion to the original wall thickness of
the pipe, and the index space is the time. The use of the proposed MC model is
illustrated through an example problem. The model proposed by Abdulsalam and
Stanley is used for determining the rate of erosion-corrosion in the example, and, the
pipe diameter, pipewall thickness, temperature, pH value, flow velocity, and model
error are considered as random variables. From the results obtained, it is noted that
there is a need to consider the correlation between degradation at two successive
times for obtaining conservative estimates of failure probability against rupture.

1 Introduction

Erosion-Corrosion (EC) is one of the major causes of material degradation of
carbon steel piping systems carrying water (single phase) or wet steam (two phase)
in Pressurized Heavy Water (PWR) Nuclear Power Plants. The piping systems
susceptible to erosion-corrosion damage include feedwater, condensate, extraction
steam, turbine exhaust, and, feedwater heater and moisture separator, reheater vents
and drains [1]. Significant degradation of pipe wall thickness has been reported in a

K. Balaji Rao (PX) - M.B. Anoop
CSIR-SERC, CSIR Campus, Taramani, Chennai 600 113, India
e-mail: balaji @serc.res.in

G. Vinod
BARC, Homi Bhabha National Institute, Mumbai, India

H.S. Kushwaha
Department of Atomic Energy, Mumbai, India

© Springer International Publishing Switzerland 2016 39
U. Kumar et al. (eds.), Current Trends in Reliability, Availability,

Maintainability and Safety, Lecture Notes in Mechanical Engineering,

DOI 10.1007/978-3-319-23597-4_4



40 K. Balaji Rao et al.

number of operating nuclear power plants resulting in fatal accidents, and costly
repairs. Hence, an assessment of the resistance degradation based on a suitable wear
rate model is essential to predict the life of the piping components against
erosion-corrosion damage. The selection of the model for estimation of erosion-
corrosion rate should, amongst other factors, be based on its range of applicability
and ease of application. Use of such models would help in evolving better strategies
of inspection which can be carried out using high precision inspection methods
such as radiography, thermography and ultrasonic testing to check the safety of the
piping components and replace the susceptible piping components or to carry out
the necessary maintenance in time.

For a given piping component (viz. Elbow, Tee) and operating conditions, the
EC rate is known to vary [1]. The phenomenon of EC being complex, modeling
error also need to be considered. The EC wear rate predicted and modeling error
associated with the prediction should be considered as random. The modeling error
also accounts for the inherent variations in the phenomenon of EC. In this paper, a
Markov Chain (MC) model for failure probability assessment of power plant piping
components against erosion-corrosion is proposed. Using the proposed model, the
variations in failure probabilities against rupture with time for a power plant piping
component are determined. From the results obtained, it is noted that there is a need
to consider the correlation between degradation at two successive times for
obtaining conservative estimates of failure probability.

2 Modeling Erosion-Corrosion Rate

Erosion-Corrosion is an accelerated form of corrosion caused by the relative motion
between corrosive medium (with or without suspended particles) and metal surface
leading to loss of material [2]. Modeling erosion-corrosion phenomenon is complex
as it is affected by a number of variables such as pH, dissolved oxygen content,
temperature, quality of flowing fluid, quality of oxide layer on inner surface of the
pipe, chemical composition of the steel pipe and particle impact angle [2]. Many
researchers have made attempts to develop models for estimation of erosion-
corrosion rate and to formulate service life models for piping components subjected
to erosion-corrosion degradation mechanism. Stack and co-workers developed a
mathematical model for estimating erosion-corrosion in mild steel pipes carrying
aqueous solution containing alumina particles based on detailed laboratory studies
[2]. They assumed the erosion-corrosion process to be purely additive, i.e., sum of
erosion and corrosion effects. The model is admittedly applicable for low particle
impact angles (impact angles <4°), low flow velocities (flow velocities <2 m/s),
constant temperature and constant pH (pH = 9.0) of flowing fluid. Abdulsalam and
Stanley [3] developed a steady state model to account for the steady hydrogen flux
through metal and has established that erosion-corrosion is dependent on the kinetic
rate of metal oxide film dissolution at lower temperatures and on mass transfer
limited rate at higher temperatures. Ting and Ma [1] developed an erosion-corrosion
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model based on phenomenological considerations and statistical data of pipe wall
thickness obtained from Taiwan PWR nuclear power plants for different piping
components subject to various operating conditions. In the present investigation, the
model proposed by Abdulsalam and Stanley [3] is used for estimating the EC rate.
All the three models discussed above are deterministic.

2.1 Need for Stochastic Modeling of Erosion-Corrosion

Due to the uncertainties in material properties of steel and the variations in exposure
conditions, the degraded state of the piping component subjected to erosion-
corrosion will be a random variable at any given time. Also, the degraded state of
the piping component changes with time. Thus, the evolution of the degradation in
the piping component has to be modeled as a stochastic process. Markov Chains
(MC) are found to be a useful tool for stochastic modeling of condition state
evolution of degrading systems [4, 5]. A homogeneous MC model for assessment
of piping components against erosion-corrosion is presented in the next section.

3 Markov Chain Modelling

The degraded state of the piping component (hereafter referred to as system)
subjected to erosion-corrosion will be a random variable. Also, the degraded state
of the system changes with time. Thus, the evolution of the degradation in the
system has to be modelled as a stochastic process. Markov chain (MC) models are
the simplest stochastic models that are extensively applied in engineering [4-7]. In
a Markov Chain model, both the state space and the index space can be discrete.

In the case of erosion-corrosion, the state space is the degradation state (z) of the
system represented by the ratio of the loss in wall thickness due to erosion-
corrosion (/) to the original wall thickness of the pipe (#), and the index space is the
time (T = {T, Tz, ...,T,}). The loss in wall thickness is given by

I=A x WR x Age (in years) (1)

where WR is the rate of erosion-corrosion per year and A is the modelling error. The
value of WR can be determined using a suitable erosion-corrosion model.

The probabilistic evolution of the process, in general, can be described by the
transition probabilities,

TP = P{(T)) = ile(Tis) =i — Lz(Ti)) =i—2,....2(T) =1} (2)
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In this study, the probabilistic evolution of degradation is obtained by making
the following assumptions.

i. The stochastic process can be described as a one-step memory process. This
implies that the process is Markov and present state of the system can be
completely determined by its immediate past state. This assumption is justified
since degradation at ith time (i.e. at time step #;) more or less depends on
degradation at (i-1)th time (i.e. at time step #;_;).

ii. The stochastic process has a discrete, finite state space {1, 2, ..., m}, and, a
discrete index space {1, 2, ..., n}, where index 1 is interpreted as time
step = T, index 2 is interpreted as time step = 75, and so on. Since loss in wall
thickness increases with age, the system can make transitions from a given state
to the higher states only.

Using these assumptions, transition probability for the system is given by,

Pi(Ti; Tiv1) = Ple(Ti 1) = jle(Ty) = i}; 1<i<m, i<j<m, 3)
1<k<n-1

The probabilistic evolution of the system is given by the transition probability
matrix (TPM),

P(Ti, Te 1) = [pij(Tk’Tk+1)]1<i<m.i<j<m’f0r l<ks<n-—1 4)

Since the system can make transitions from a given state to the higher states
only, the TPM will be an upper triangular matrix. Since the state space considered is
such that the states are mutually exclusive and collectively exhaustive,

m

szji(Tk,Tk+1) =1,for 1<i<m (5)
j=1

3.1 Determination of k-Step TPM

The probabilistic description of the state of degradation after k-time steps is given
by (Chapman Kolmogorov equation),

P(T17Tk) ZP(TI,TQ) X P(Tz,T_?,) X P(T3,T4) X ... X P(Tk_l,Tk) (6)

Since a homogeneous Markov Chain is considered in this study, P(T;, T;y ;) =
P(T:.;, T;. Hence, the k-step TPM is given by P(T;, Ty = Pk(T,, T,). The
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unconditional probability vector of the state of degradation, after k-time steps can
be determined from,

(PYU(T1,TR)) = (P(0)) X [PX(T1, T2)] (7)

where (P(0)),,,, is the vector representing the probabilities of initial states of
the system. For a system whose evolution is defined by a homogeneous MC, the
state of the system at any future time can be determined using the one-step TPM,
once the initial state is known.

3.2 Determination of Elements of TPM

A typical element of 1-step TPM (Eq. 3), can be written as,

P{z(Ty 1) = jNz(Ty) = i} (8)
P{Z(Tk) = i}

Pii(Te; Ti 1) =

which gives the probability of degradation state of the system being ‘j* at time Ty,
given that the degradation state was ‘i’ at time 7. Computation of these proba-
bilities requires information regarding joint probability density function (jpdf) of
degradation state at any two successive time steps, (T, T, ;) and pdf of degradation
state at time step, Tj. Since it is difficult to generate this information from test data,
in the present investigation, it is assumed that degradation states at successive time
steps follow bivariate normal distributions and at any time step, degradation state
follows a normal distribution. This is because when the mean and variance are the
only information available with respect to the degradation state of the system at any
time step, the maximum entropy distribution is the normal distribution [8]. Hence, it
is assumed that the state of degradation at any load step follows normal distribution.
Knowing the jpdf and pdf, and using Eq. (7), the elements of TPM can be com-
puted. A typical element of the conditional 1-step TPM is given by

S J2 fraen (e 2 1) daidai
[ flz)dz

Pi(Te; Te 1) =

©)

where fi 1 1(zk, zx+1) is the bivariate normal distribution with correlation coeffi-
cient p; ;. 1 and fi(z) is the univariate normal distribution.

The step-by-step procedure for MC modelling of the degradation in piping
component is given below.

1. Divide the state space into mutually exclusive and collectively exhaustive event
sets.
2. Divide the index space into discrete intervals.
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3. Compute the mean and standard deviation of the degradation state of the system
under the considered degradation mechanism at two successive points in the
index space.

4. Using the values of mean and standard deviation computed in step 3 and using a
suitable correlation coefficient (py . 1), formulate the one-step TPM, P, using
Eq. (9).

5. Determine unconditional probability vector of the state of degradation of system
after k-time steps using Eq. (7).

A software, called RISCMarkov, is developed at CSIR-SERC for reliability
analysis of power plant piping components (Fig. 1) [9]. The software can be used
for MC modeling of piping components against erosion-corrosion, thermal fatigue,
vibration fatigue and stress corrosion cracking.

The state space, given by z = /1, is between 0 and 1, and is divided into a finite
number of discrete states as defined by the user (default number of divisions is
taken as 20 in the software). The index space is discretised into one year intervals.
Depending upon the operating conditions and the inputs available, the software has
four options (Fig. 2) for determining the rate of erosion-corrosion (WR). The values
of mean and standard deviation of z at two successive years is obtained using first
order approximation, and the n-step TPM is computed using the step-by-step
procedure given above. The state probabilities corresponding to four states defined
as success (no detectable damage; I/t < 0.125), flaw (detectable flaw; 0.125 < I/
t <0.45), leak (0.45 < I/t < 0.80) and rupture (I/t = 0.80) are determined, using the
aggregation procedure given in Balaji Rao and Appa Rao [8].

Fig. 1 RISCMarkov

SOFTWARE FOR RELIABILITY ANALYSIS
OF PIPING COMPONENTS
USING MARKOV CHAIN APPROACH

EEa EE E3
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Fig. 2 Options for the erosion-corrosion model in RISCMarkov

4 Example

An outlet feeder pipe of a PHWR is considered. The feeder pipe is made of carbon
steel A106GrB. In the present study, the model proposed by Abdulsalam and
Stanley [3] is used for determining the rate of erosion-corrosion and hence the loss
in wall thickness at different times. The diameter of the pipe is 70 mm and thickness
is 6.5 mm. The flow velocity is 1500 cm/s, the pH is 10.2, and the temperature is
553 K. The kinematic viscosity is taken as 0.0179 cm?/s. The plant life is taken as
40 years. The random variables considered, along with their mean and standard
deviation values are given in Table 1. The vector representing the unconditional
probabilities of the initial states of the system ((P(0)),,,,) is taken as
{1,0,0,...,0},,5. since the loss in wall thickness due to erosion-corrosion is zero
at the beginning. To study the effect of correlation coefficient p, ;. on the state
probabilities, three values of py 1, namely, 0.0, 0.5 and 0.99, are considered.

Table 1 Random variables Variable Mean cov

considered - -
Pipe diameter (cm) 7.0 0.0174
Pipewall thickness, t (mm) 6.5 0.059
Temperature (Kelvin) 553 0.009
pH 10.2 0.07
Flow velocity (cm/s) 1500 0.005
Model error 1.0 0.01
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5 Results and Discussion

Using the proposed MC model, the variation in unconditional state probabilities with
time during the life of the plant (40 years) are determined, and are shown in Figs. 3, 4
and 5 for the different values of p; ; | considered. From these figures, it is noted that
as pyx41 increases, the relative time spent in the intermediate degradation states
(namely, flaw and leak) reduces. This suggests that, for lower values of p; ., ;, the
decision making regarding in-service inspection is governed by probabilities of
the piping component being in flaw and leak states. The variation in probability
of failure against rupture with time for the three values of p; ;. ; considered are
shown in Fig. 6. Since the values of failure probability against rupture are small for
Pri+1=0and 0.5, the failure probabilities are shown in logarithmic scale in Fig. 6.
From Fig. 6, it is noted that as p; , , | decreases, the probability of finding the system
in rupture state also decreases. This suggests that if the dependence is not considered
in modeling the evolution of degradation of the system, the probability of failure
values obtained can be unconservative. Integrating the values of state probabilities at

Fig. 3 Variation in
unconditional probabilities of
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Fig. 5 Variation in 1
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different times obtained using the MC model with the consequences associated with
the piping component being in different degradation states, will be useful for risk
informed in-service inspection of these components.

6 Summary

A homogeneous MC model for probabilistic failure assessment of piping compo-
nents against erosion-corrosion is presented. The MC model is incorporated in the
software RISCMarkov, developed at CSIR-SERC for reliability analysis of power
plant piping components. Using the MC model, the variations in failure probabil-
ities against rupture with time for a power plant piping component are determined.
The unconditional state probabilities at different times obtained using the MC
model can be integrated with the consequences associated with the piping com-
ponent being in different degradation states for risk informed in-service inspection
of these components.



48 K. Balaji Rao et al.

Acknowledgments The paper is being published with the kind permission of Director,
CSIR-SERC, Chennai. The authors are thankful to Board of Research in Nuclear Sciences for
partially funding the work (Sanction no. 2000/36/13/BRNS) which was carried out during
2001-2004.

References

1. Ting K, Ma YP (1999) The evaluation of erosion/corrosion problems of carbon steel piping in
Taiwan PWR nuclear power plants. Nucl Eng Des 191(2):231-243

2. Stack M, Corlett N, Turgoose S (1999) Some recent advances in the development of theoretical
approaches for the construction of erosion-corrosion maps. Wear 233-235:535-541

3. Abdulsalam M, Stanley J (1992) Steady-state model for erosion-corrosion of feedwater piping.
Corrosion 48(7):587-593

4. Ang AHS, Tang WH (1984) Probability concepts in engineering planning and design vol ii,
Decision risk and reliability. Wiley, New York

5. Fleming KN (2004) Markov models for evaluating risk-informed in-service inspection
strategies for nuclear power plant piping systems. Reliab Eng Syst Saf 83(1):27-45

6. Balaji Rao K, Appa Rao TVSR (2004) Stochastic modelling of crackwidth in reinforced
concrete beams subjected to fatigue loading. Eng Struct 26:659-667

7. Anoop MB, Balaji Rao K, Lakshmanan N, Raghuprasad BK (2012) Markov chain modeling
of evolution of strains in reinforced concrete flexural beams. Mater de Construccion
61(307):443-453

8. Kapur JN (1993) Maximum Entropy Models in Science and Engineering. Wiley Eastern
Limited, New Delhi

9. Balaji Rao K, Anoop MB, Lakshmanan N, Gopika V, Saraf RK, Kushwaha HS (2004) A
methodology for risk informed in-service inspection for safety related systems—Final Report,
Report No. SS-GAP01241-RR-04-3



Turnout Degradation Modelling Using
New Inspection Technologies: A Literature
Review

Niloofar Minbashi, Morteza Bagheri, Amir Golroo,
Iman Arasteh Khouy and Alireza Ahmadi

Abstract Turnouts are of the most critical components of railway track which are
prone to high static and dynamic forces leading to more intense degradation. They
require more inspection than other parts of a railway track as they are potential
safety hazards. As a result, turnout degradation processes are crucial to be under-
stood by infrastructure manager to plan for their maintenance and renewal in
advance. Two approaches have been introduced in the literature to achieve a
thorough understanding of degradation processes in turnouts. The first one acts to
develop degradation models based on influential parameters and historical data and
then to predict degradation processes in the future; while the second one tries to
improve inspection through using new concepts and technologies leading turnout
condition data to be better captured over time. The purpose of this paper is to
review all available resources regarding these two approaches and provide a guide
for further research into turnout studies.

Keywords Railway turnouts - Degradation processes - Inspection technologies -
Degradation models - Railway transportation
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1 Introduction

All around the world, railway industry is planning for higher transit speeds and
extended capacity for freight transportation. This means that railway assets are more
prone to degradation than before, so that their reliability should be enhanced as they
are to meet increasing demands of the future.

Turnouts are among the most crucial assets in a railway system, as they provide
flexibility and punctuality to the railway network, particularly when a disruption
occurs; they allow trains to use routes other than usual to ensure reliable services for
trains and passengers. Therefore, a substantial portion of railway network budget is
spent on their annual maintenance and required renewals. For example, mainte-
nance cost of turnouts comprises a minimum of 13 % of the total maintenance cost
of the railway network in Sweden [1]. That is even more in Switzerland, where
25 % of the railway maintenance and renewal budget is spent on turnouts [2].
However, In the United States, turnouts are identified as a major cost area with an
annual budget being estimated to be 10 times more than the amount spent on
conventional track [3]. Turnouts have a distinct structure within railway assets,
hence they need to be taken care of more cautiously. The distinctive structure of
turnouts comes from the following: turnouts have special components, such as
switch tongs, frogs and slide plates, which are prone to high vertical and lateral
dynamic forces because of their particular geometry leading to a considerable
amount of deterioration [4]. Another aspect regarding turnout structure is that
turnouts can be considered as a mechanical system as they have moving parts,
meaning that more inspections and maintenance actions are needed to assure their
reliability; last, but not the least, is that turnouts are considered to be potential safety
hazards. In the United States, approximately 10 % of the derailments on yard and
siding tracks have been caused by turnout defects coming from the heavy use of
turnouts on these types of tracks leading more wear and deterioration to be imposed
on them [5].

Degradation processes in turnouts must be monitored in order to plan for
maintenance activities ahead. This is possible if the conditions of turnout and its
components are available over time implying the importance of high quality data
availability for analysing turnout condition. For turnouts, unavailability of reliable
data has been a crucial problem, as no preventive maintenance can be planned
without a reliable dataset. Prediction of maintenance and renewal requirements of
turnouts, like any other railway asset, is possible once degradation processes are
known and predictable. So far few studies have been carried out to model degra-
dation processes of turnouts to improve their maintenance planning [6]. However,
there are two approaches for understanding the way turnouts degrade: the first
approach advances via developing degradation models for prediction of mainte-
nance and renewal requirements of turnouts based on historical data [2]. The second
approach works through inspection and documentation of inspection tasks which
has become possible recently by developing new technologies for data collection
and defect analysis [7]. The aim of using new inspection technologies is to
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document turnout inspections over time which enables the infrastructure manager to
analyse degradation trends when making decision for each turnout individually,
based on its condition.

The purpose of this paper is to review two approaches toward understanding
turnout degradation: degradation processes modelling using historical data and new
inspection technologies. This paper provides a thorough scheme of all the attempts
carried out to reflect the degradation processes of turnouts. The first section
addresses the approach of using historical data to model degradation. In the second
section, new inspection technologies are reviewed comprising new devices for
semi-automated data collection as well as new technologies for automated data
collection, while the conclusions are presented in the final section.

2 Degradation Modelling

If the degradation of a turnout was identified to have reached its critical level, then
safe operation of trains may not be guaranteed anymore. Therefore, a maintenance or
renewal action is needed to avoid any hazardous situation to be faced. Degradation
can be predicted enabling the infrastructure manager to take decision for mainte-
nance or renewal of a component or a series of components. This prediction may be
based on a maintenance index defined by measurement of components during
inspection phase, as will be described in the next section, or by implementing models
based on historical data. In the case of turnouts, it is hard to implement degradation
models based on historical data because of unavailability of data, so as only two
cases have focused on modelling of degradation processes of turnouts, as it can be
seen in the following paragraphs.

Zwanenburg [2] implemented a model for degradation processes of turnouts.
This model is the first model available so far in the literature on degradation of
turnouts. The purpose of the model is to determine maintenance and renewal
requirements of turnouts for mid-term planning over a period of 10 years.
Degradation processes stand for degradation and wear of the turnouts; the former is
a reduction in the quality of track geometry, while the latter is a reduction in that of
components.

Parameter selection has been based on three categories: (1) train (axle load, total
tonnage), (2) track (soil quality, maintenance and component renewal policy), and
(3) operation (whether trains are mainly in facing or trailing direction, train speed).

The model has been based on maintenance and renewal data from the Swiss
Federal Railways. Maintenance tasks included in the model based on the available
data were: (1) tamping (geometry correction), (2) welding on the frog, and
(3) grinding of metal parts. The following options were available for replacement of
the components: (1) complete switch or crossings replacement, (2) switch rail with
accompanying stock rail, (3) frog, and (4) check rail.
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In this model, degradation and wear have been described by developing a reli-
ability model where reliability is defined as the probability of a turnout or its
components to function properly longer than a specified period of time.

The model resulted in approving parameters assumed to be influential on the
degradation of standard turnouts, such as: (1) the actual train load, (2) lower soil
quality which reduces life expectancy of a switch, (3) smaller switch angle which is
generally associated with a longer life, (4) higher axle loads (more freight trains)
leading to more wear, and (5) train speed. At the end, taking a sample from another
period of time, geographical area or railway network has been recommended
because the proposed model failed to be successful for the Swiss data.

Zwanenburg [2] tried to model geometrical degradation and wear of turnouts.
However, his model is just a mean to reveal the importance of the parameters.
Arasteh Khouy et al. [8] focused on geometrical degradation of turnouts and
attempted to analyze vertical geometry degradation using longitudinal level mea-
surements over a four-year period. The reason for this comes from the fact that
geometrical condition of the track can trigger degradation of other track compo-
nents and hence is used to assign entire range of track maintenance operations [9].

Geometrical degradation at the crossing point of turnouts has been analyzed by two
approaches. The first approach considers two parameters for analyzing geometrical
degradation, namely, the absolute residual area (AR,) defined as “the absolute value
of the area obtained from the differences in the longitudinal level values between two
adjusted measurements at the crossing point” and maximum settlement (Smax).
defined as “the difference between the value of longitudinal level at the crossing point
and the value obtained from the vertical line passing through the crossing point line
connecting the positive peaks before and after the crossing point”. The absolute
residual area (AR,) can indicate the trend of track settlement due to accumulated
loading over a certain period of time. In the analyzing phase, the first measurement is
taken as the reference point to which subsequent measurements are compared,
meaning that the longitudinal level of the reference point is assumed to be constant.
This results in the estimation of the relative geometrical degradation rather than the
current one. Therefore, analysis of geometrical parameters of the crossing points, such
as the slope of measurement line at 1 m before and after the crossing point, has been
used in the second approach. The trends of these parameters as a function of time have
been analyzed. The results of the second approach reveal that crossing position
settlement has a limit after which the crossing cannot settle anymore and the faults
would be transferred to the next wave in the crossing neighborhood.

These two approaches using different parameters reveal that turnouts should be
regarded individually since they are associated with different degradation rates. The
difference in degradation rates comes from other factors which were not considered
in the study, such as traffic, subgrade quality, age of the asset, maintenance strategy
and the environment. Even though, Arasteh Khouy et al. [8] did not introduce a
geometrical degradation model for turnouts, but their work provides a reliable
knowledge for better understanding of the turnout settlement. This knowledge can
be incorporated into a LCC model in terms of specifying maintenance intervention
limits considering the cost effectiveness.
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3 Data Collection

Safe rail operations are guaranteed by periodic inspection of railway infrastructure.
However, this is a hard task to accomplish as tight train scheduling doesn’t allow
much flexibility within inspection operations. Therefore, new technologies are
introduced to improve inspection task especially for turnouts which are inspected
manually with their inspection being a labour-intensive duty for infrastructure
manager. In this section new technologies for better manual inspection of turnouts
are introduced.

3.1 Semi-automated Data Collection

Turnout inspection in its traditional form where a paper was used for checking and
recording the turnout condition, was upgraded by introduction of palmtop computer
systems called SwitchInspect by ZETA-TECH. Zarembski [10] introduced this
Personal Digital Assistant (PDA) to be used in turnout inspection. The data gath-
ered by this handheld computer can be uploaded to a database enabling the
infrastructure manager to prioritize maintenance activities and schedule them. The
proper inspection data help us make an overall rating of turnout condition by
defining turnout indices that cintribute to prioritization of turnout maintenance tasks
or turnout renewal and also to a safety assessment of the turnout condition. More
importantly, the definition of indices lead to a thorough understanding of degra-
dation process of turnout enabling the infrastructure manager to plan for mainte-
nance and renewal of turnouts before a breakdown.

There are seven component areas with their related components in SwitchInspect
system: 1. geometry, 2. switch stand, 3. switch point area, 4. closure area, 5. frog
area, 6. ballast and 7. ties.

This system has two phases. The first phase is data collection phase where
condition indices are determined and then employed to plan maintenance activities
ahead.

In data collection phase, the inspection measurements are recorded and com-
ponents are ranked based on their relative importance from view point of operation
and maintenance. All the possible failure modes with their severity are also
included in the device for each component. Importance of each turnout and traffic
density are included as well.

The second phase comprises the calculation of the condition and maintenance
indices. Two kinds of indices are calculated based on collected data: an overall
Turnout Condition Index and Maintenance Sub-Indices (MSI) for each turnout and
key maintenance areas which consist of: 1. tamping, 2. gaging, 3. grinding, 4.
welding, 5. tie replacement, and 6. switch stand replacement. Maintenance
Sub-Indices Calculation is based on a series of numerical ratings related to each
inspection item, its mode of degradation/failure with its severity taking the
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importance of the turnout itself into account [10]. The result of the second phase is a
set of Maintenance Sub-Indices (MSI) which can be used together with or sepa-
rately from Turnout Condition Index (TCI) to prioritize scheduled turnout main-
tenance and also to determine the necessity of renewal of a complete turnout or its
components. Maintenance Sub-Indices are particularly useful as they can prioritize
specific maintenance activities. Prioritization of turnout maintenance and renewal
operations is an important issue because of the large number of turnouts in the
network and their degradation rate which is crucial to high-density traffic lines.

SwitchInspect allows a systematic documentation of turnout inspection to be
performed manually. Its main feature is that the whole condition of turnout can be
documented, so as degradation of the turnout can be traced over time. However, the
inspection process is still dependent on the inspector and prone to human error.
There are other devices identifying the wear condition of turnout, such as MiniProf
Switch which is an add-on to MiniProf Rail. The MiniProf Rail provides instant
information on metal removal and grinding stone tilt. The MiniProf Switch is the
extended MiniProf Rail which is able to measure special profiles of switches. It is
magnetically attached to the rail and is able to use a telescopic rod for reference to
the opposite rail [11].

Each rail in a switch or crossing is measured individually, then the positional
data (reference profiles) from the Switch add-on are combined to these measure-
ments automatically. The measurement containing all profiles placed relative to
each other allowing measures to be conducted between them is the result of this
device [11]. It can also be used as a PDA because of its embedded battery. USB
connection to the instrument is the feature that makes it possible to use the mea-
surement data for other modelling purposes. The MiniProf Switch instrument is a
useful device for switch inspection, however, it can be used for only one mainte-
nance area within turnout inspection which is grinding [11].

A laser based trolley for switch and crossing inspection has been introduced in
[12]. The aim of this system is the efficient profile inspection of switches and
crossings and advising on their maintenance by means of welding and grinding.
The proposed solution is a lightweight trolley of an estimated weight of 15 kg
which can be manually pushed over the switch. The relative position of the trolley
can be monitored by a tachometer. Profile data acquisition from the parts to be
inspected is done through separate 2D transversal slices or as a complete 3D model.
For profile acquisition, two line lasers will be used to scan the rail’s profile. These
lasers are selected based on such features as their width of the scan, number of
samples per line of scan, precision, sampling frequency, size, power consumption,
robustness, price and overall quality. The utilized laser for this application is a
scanCONTROL 2700-100 [13] produced by Micro Epsilon which enables to scan
half set of one switch at a time (one stock rail and one switch rail). The crossing is
inspected by pushing the trolley two times, once on a straight path and one other
time on a diverging path. A 3D profile scan of the crossing is required by inspection
standards and needs to be identified for this system; this is introduced as a further
research. The required power for the trolley will be provided by rechargeable
batteries; it comes with a tablet computer and a software written in LabView
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programming language. Ethernet port will provide the communication between the
lasers and the tablet as it is easier to work on an interface provided by a tablet
computer. The inspection of different parts of the switch is possible for the user and
also he/she is advised on how the profile should be rectified. Furthermore, he/she
will be notified about the accordance of the profile with the Network Rail standards.
The fact that this system is used manually is defined as its main advantage because it
provides a good flexibility and implements the criteria defined by the inventors [12].

Jonsson et al. [14] focused on turnout geometry inspection of switch blade and
frog section as track geometry quality can cause other components degradation
[13]. They introduced a new method to measure the vertical position of unstressed
track geometry relative to the main track over time. The relevant measurements can
be used to develop degradation models which will then be used in life cycle cost
(LCC) models. The aim of inspecting geometrical shape of turnout is to ensure its
proper function and safe passage of the trains, since in case of improper geometrical
shape, necessary maintenance actions would be costly. For the measurement of
longitudinal level (vertical direction) under unstressed conditions, four measuring
equipment have been evaluated based on their accuracy in terms of technical
specifications, repeatability and practical accuracy, setup time, range of measure-
ments and number of users required to carry out the measurements. The levelling
instrument has been selected for measuring geometric irregularities of the track.
During three measurements in different periods, 13 turnouts with different ambient
and operating conditions are selected. The overall results showed that the
dependability of a railway infrastructure is affected by the seasons, meaning that
climate conditions, such as frost or ground water levels, can change geometrical
shape of turnouts [14]. The Million Gross Tons (MGT) can also increase vertical
track geometry elevation/decline of turnouts towards their mid-section. The largest
vertical track geometry decline was related to turnouts with a radius on the through
route. The turnouts had a relatively higher vertical positions in comparison with the
main track which may come from this fact that differences in history of tamping
frequency as well as stiffness and load carrying area.

3.2 Automated Data Collection

Periodic track inspection is a requirement of applicable standards for individual
railroad track maintenance to guarantee a safe and efficient operation. Even though
introducing new devices, such as SwitchInspect and MiniProf Switch, has simplified
the inspection process for inspectors but it is still a labour-intensive, time-consuming
and slow task. Therefore, new technologies are required to automatically inspect
railway turnout resulting in the elimination of human error. In recent years, new
technologies have been developed for automatic inspection of turnouts.

The Netherlander company, Eurorailscout, developed a switch inspection system
in 2005 which was later equipped with a profile measurement system for wear
detection in 2009. The whole system is called “Switch Inspection and Measurement”
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(SIM). This system is made up of a wagon which is pulled and pushed on track for
turnout inspection. The inspection system is made up of two panorama cameras
which are placed toward the front and the rear of the wagon to capture the per-
spective of the running inspection [15]. Four line-scan cameras provide recordings
of the outer and inner sides of the rails, including the inner parts of the switches. Two
line-scan colour cameras capture top view of the rail, while two black and white
cameras pride detailed view from the rail head to find cracks and other anomalies.
The system also uses an intelligent software for analysis and examination of
potential defects which leads to automatic identification of defects such as missing
fastening devices, crumbling of concrete rail sleepers, cracks in the concrete rail
sleepers, ballast deficit and ballast surplus [15]. The measurement system uses a
well-known triangulation method which means that the travelling route is deter-
mined by a spot laser whose reflection is monitored by the camera. Then, the
distance between the camera and object can be calculated from such reflection data.
Track profile is once scanned per 20 mm, at a measurement speed of 40 km/h. The
profile measurements can then be presented to the client in any desired reporting
format: txt, csv, xls, pdf, xml, etc. The horizontal and vertical wear can be calculated
from measured profiles as well. The inspection may involve different cross-section
measurements at the tongue, the track or the frog. All the data and reports will be
kept in a data bank. The measurement history preservation in this data bank can
contribute to trend analyses. SIM is able to measure 3D geometry of tracks and
switches by an inertial measurement system optimised for very short and
median-length waves. The delivered parameters are track width, shift, height,
transverse gradient in accordance with EN 13848. The inertial system is able to attain
high accuracy, both at low speeds and also with very short waves at high speeds [15].

Molina et al. [16] brought the concept of machine vision for turnout inspection.
This concept had been previously developed for other rail infrastructures such as:
(1) rail surface defects [17, 18], (2) rail wear [19], (3) tie condition [20-22],
(4) ballast [23], (5) fastening systems [24, 25], and (6) general track structure
inspection [26, 27]. Using machine vision techniques in the course of railway
inspection systems has been beneficial as some experimental tests showed, for
example, that accuracies have been greater than 80 % with measurement speeds of
up 320 km/h in many cases [16]. Molina et al. [16] have reviewed previous
researches into machine vision applications in railway infrastructure inspection and
mentioned that no previous work has been dedicated to turnout inspection using
machine vision. As a result, they decided to develop an algorithm for detecting most
critical components of a turnout. They analysed turnout-related derailment data
from 1998 to 2009 using FRA Accident Database identifying a rank-ordered
turnout components/defects selection to be inspected using machine vision:
(1) worn or broken switch point, (2) other frog, switch, and track appliance defects,
(3) worn or broken turnout frog, (4) broken or defective switch connecting or
operating rod, (5) gap between switch point and stock rail, (6) missing bolts and
cotter pins. As the inspection of missing bolts and cotter pins was the first task done
by means of visual inspection, they decided to select it as their first inspection
priority using machine vision. Developing machine vision system is based on
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collecting video and images from track components. This is critical as the com-
ponent must not be shown just in its functional position, but it must also be
distinguished from the background objects and provide necessary measurements by
correct orientation. They selected two camera views for inspection, the lateral view
and over-the-rail-view. These views were suitable for detecting tie plates, anchors
and spikes. A Video Track Cart (VTC) was designed for collecting continuous
video shots of sections from a low-density track for experimental data acquisition
[16]. They captured videos from tangent and different turnouts under different
conditions in terms of natural lighting, levels of vegetation, ballast types and levels
of ballast fouling. They developed an algorithm for detection of spike, anchor and
tie and recognition of defects which goes through a coarse-to-fine approach for
object detection. It detects the track components with predictable location, such as
rail, before locating the objects with high appearance variability, such as spike
heads and anchors. Local features, such as edges and texture information are also
incorporated into the model in order to increase the robustness to changing envi-
ronmental conditions. The introduced system has shown good reliability for com-
ponent inspection using machine vision, nevertheless, the algorithms need to be
refined to improve the reliability of spike and anchor detection.

Afshari et al. [28] identified bolted joint in turnouts as one of the most hazardous
components causing accidents. Therefore, they introduced an effective method for
health monitoring of bolted joints in railroad switches. They claimed that early
detection of loosed bolted joints using a full-automatic mechanism to inspect the
switches’ mechanical condition would eliminate the need for frequent visual
inspections. They have applied piezoelectric transducers and impedance-based
structural health monitoring techniques for monitoring the loosening of bolted joints
in a full-scale railroad switch. The results have shown that a quarter turn of a bolt
could be clearly detected by measuring the electrical impedance of a PZT patch at the
bolted connection. The accuracy of this system is as high as 25 ft-Ibs when the bolt
assembly is loosened, which corresponds to merely one tenth of a bolt turn. The
experimental results showed that each PZT sensor/actuator attached to a bolts’ nuts
is more sensitive to its corresponding bolt rather than neighboring ones, meaning
that the proposed damage detection is able to isolate the loosened bolt from the
others. After detection of the loosed bolted joints, the loosened bolts are retightened
using a shape memory alloy (SMA) washer as the actuator. The retightening comes
from a self-healing concept which is integrated into the impedance-base structural
health monitoring technique (SHM) making the inspection bolted joints fully
automated leading to eliminate the need for frequent visual inspections.

Schoone [29] invented a contactless system for capturing the profile of a rail of a
turnout in order to determine its conditions in terms of wear and deformation. Wear
and deformation of turnout is corrected via replacement or grinding and is then
evaluated by periodic inspections. Periodic inspection of turnout rail can be realized
using contact or non-contact sensors, e.g. laser measurements known as triangu-
lation. The proposed system uses a laser device to project a light beam onto an area
of the rail facing the opposite rail before the reflected light from that area of the rail
is recorded by an imaging device. In this system, the location of the point blade of
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the turnout is detected as the reference point and the apparatus has the capability to
be mounted on a passing train. The aim of this system is (1) to evaluate the wear
and deformation of the turnout through parameters measurement of components
such as rail, without any contact, (2) to acquire the actual profile by combining
information from the components, (3) to accurately locate measurement point rel-
ative to the reference point, (4) to obtain results from measurements in real time,
and (5) to conduct measurement at 10 or 20 km/h of the measuring train velocities.

Zarembski et al. [30] introduced the very new concept of using an automated
inspection vehicle for switch inspection. The idea has come from the fact that
manual process of inspection did not change even with using PDAs and it was still
dependent on the corresponding inspector. Automated Switch Inspection Vehicle
(ASIV) is a new technology dedicated to turnout inspection. This vehicle is able to
test turnouts at a high degree of measurement accuracy and frequency generating an
appropriate level of information on turnout condition in order to monitor them from
safety and maintenance management point of view.

ASIV contains a profile measurement system which measures the switch and
frog profiles along with a newly developed state of the art switch analysis software
(SwitchWear) for analysing the measured profiles.

ASIV is able to measure switch point, frog and stock rail profiles, wear and
important geometry parameters. It can identify derailment problems, damage related
to switch points, stock rails and frogs as well as, wide gaps on closed switches. By
generating data from rail condition, turnout degradation can be monitored over time
and, more importantly, one can identify safety hazards and conditions violating
FRA safety rules and also railroad maintenance conditions.

In a technical sense, ASIV can be defined in this way: ASIV uses a high-
sampling-rate profile acquisition for image acquisition at one inch intervals at
8 mph (~12.9 km/h) speed on each rail. For instance, for a specific turnout of
170 ft (~52 m) in length, more than 8000 rail profiles will be acquired with the
straight and diverging legs of the turnout, and the whole turnout will be measured in
less than five minutes.

After acquiring rail profile data, 3-D composite images of turnout and its key
components are developed. These composite images can be used for the analysis of
key maintenance and safety parameters (Table 1) in comparison with a specific
standard which can be FRA Track Safety Standards or the railroad-specific main-
tenance standard. When the relative deviation from these standards is labelled as
Red defect, it means that a safety standard violation has been occurred, while if it is
labelled as Yellow, a maintenance standard has been exceeded without violating
safety standards. Red and Yellow defects data will be used for calculation of
Turnout Maintenance Priority Index for each turnout determining its overall con-
dition and priority in terms of maintenance or renewal. Using this index when
evaluating overall conditions of all turnouts, will lead to identify high priority
turnouts with very bad conditions within mainline or rail yards.

Identification of defects leading to component failure and derailment by ASIV
contributes to derailment risk mitigation which is realized by analysing the inter-
actions between wheel and rail. SwitchWear is able to analyse various turnout
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Table 1 Summary of potential measurements in the switch area by the ASIV [29]

Rail type Measurement

Stock rail opposite a switch rail Vertical wear

Gage side wear

Gage face angle

Gage corner radius

Switch rail Gage face angle

Breaking or chipping

Gage corner radius

Stock + switch rails Vertical height difference

Lateral gap width

Wheel contact point through switch point

Closure rails Vertical wear

Gage side wear

Gage face angle

Guard rail Guard flangeway gap width

Relative height of guard rail

Frog nose and wing rail Relative height of nose and wing rail
Wear/Batter on Wing Rail
Batter/damage to frog

Flangeway depth

Flangeway width

Surface damage: Batter, chipping

Wheel contact through frog

Wing rail profile (within field of view)

surface geometry and multiple wheel profiles. ASIV develops a Turnout Derailment
Risk Index which addresses potential risk of derailment [29].

In conclusion, ASIV allows for monitoring deterioration of turnout by ongoing
measurements. Therefore, maintenance approach will become proactive rather than
reactive. ZETA-TECH is trying to upgrade ASIV by enabling the inspection of other
components of turnout including (1) rods, plates and connectors, (2) ties and ballast,
(3) switching mechanisms and (4) Signal system components. Because the current
version is specifically dedicated to measure running surface of turnout including
switch points, stock rails, closure rails and frog portions of the turnout [31].

Asplund et al. [32] proposed the idea of using cameras for turnout inspection.
Their proposed system is composed of a web-based camera with a minimum res-
olution of 1600 % 1200 pixels which is protected by a plastic housing. It possess an
approximate weight of 3 kg including the internet access module and batteries. The
system is mounted above the overhead line to get a fully symmetric bird’s eye over
the turnout which makes the inspection of both rails and blades as well as geometric
calculation possible leading to a reduction in manual inspection frequency. Their
proposed system has been tested by the Swedish engineering company, Damill AB.
However, the authors have just postulated on how beneficial would be to use
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cameras for turnout inspection without proving the effectiveness of the proposed
system by real in-site measurements.

3.3 Data Collection Tools

The purpose of improving inspection technologies and using new concepts for
inspection in turnouts is not solely to simplify the inspection process. Better
inspection documentation will provide better understanding of the condition of
turnouts over time. This will enable the infrastructure manager to understand
degradation processes of turnouts and consequently to predict their maintenance
and renewal requirements. This means that a better management of components will
be achieved which helps minimizing the maintenance costs and analysing life cycle
costs for different maintenance and operation scenarios. Using new technologies for
turnout inspection has been rare due to complexity of turnouts themselves. The
deterioration of turnouts occurs in two forms of geometrical degradation and tear,
wear or plastic deformation. The technologies presented in this paper are developed
for geometrical measurements used for predicting geometrical degradation, and also
for profile measurements used to plan grinding actions and prevent turnout com-
ponents from being wore. However, there are technologies which can provide both
of them (Table 2).

Table 2 Summary of inspection tools

Name Function Maintenance area

SwitchInspect Inspection documentation- Assigning Inspection
maintenance indices

MiniProf Switch Providing instant information on Grinding

metal removal and grinding stone tilt

Laser Based Trolley

profile inspection

Grinding-welding

The levelling instrument Longitudinal level (vertical direction) | Geometrical
under unstressed conditions. measurement
Switch Inspection and Automatic inspection, profile and All

Measurement (SIM)

geometrical measurement

Turnout Condition
monitoring using machine
vision

Detection of tie plates, anchors and
spikes

Missing bolts and
cotter pins inspection

Health Monitoring of
Bolted Joints

Bolted joints detection by
piezoelectric transducers and
impedance-based

structural health
monitoring of bolted
joints

Contactless turnout profile | Determining turnout condition in Grinding
measurement terms of wear and deformation
ASIV Profile and geometry measurement All

for switch and frog

Web-based camera

Profile and geometrical measurement

Automatic inspection
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4 Conclusion

Turnouts are among the most critical components of railway track. Their impor-
tance lies on their complicated structure and their potential to lead in hazardous
accidents. Therefore, considerable budget is being spent on their maintenance and
inspection, annually. As a result, it is important to understand the degradation
processes of turnouts in order to plan for their maintenance and renewal in advance
and to better allocate the budget. In the literature, unavailability of reliable data
regarding turnout condition has been an obstacle for understanding their degrada-
tion trends. On the one hand, some researchers try to model degradation of turnouts
by developing a degradation model based on historical data which, by considering
all the influential parameters, is able to predict components degradation in the
future. On the other hand, the second approach introduces new inspection tech-
nologies providing consistent, objective inspection of turnouts leading to better
understanding of their condition and to monitor their degradation. The first
approach has had less success as a result of unreliability of required data regarding
turnout condition. However, the second approach facilitates inspection and provides
a better understanding on turnout degradation trends over time. Although some of
such technologies as ASIV or SIM are able to inspect a turnout thoroughly, but
some are still under development and need to be improved considering complexities
of turnouts.
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Context-Based Maintenance and Repair
Shop Suggestion for a Moving Vehicle

Adithya Thaduri, Diego Galar, Uday Kumar and Ajit Kumar Verma

Abstract Maintenance of moving vehicles is quite challenging because they may
disrupt the normal flow of transportation due to unexpected breakdowns, slow-
downs and stoppages. In order to avoid stoppages and to minimize the downtime,
maintenance and condition monitoring systems must be optimized. On one hand the
condition monitoring on board should provide automatic failure detection, identi-
fication and localization together with a prognostic of the future failures. On the
other hand maintenance logistics and product supportability must be also optimized
since the onboard system should provide a suggestion of a repair shop that depends
on location, cost and availability of spare parts, technicians’ skills and queuing time
for repairs. However the vehicles are independent assets interacting among them
within the traffic system and also interacting with the infrastructure (roads, rails etc.)
seriously affected by weather, maintenance of infra, regulations etc. Therefore the
proposed solution is to equip the vehicles with a context-aware system that mon-
itors the condition and maintenance schedules of parts and alarm the driver of the
parts that are in near to repair cycle. This system will perform risk analysis and will
communicate with the cloud propose a decision of selection of repair shop on the
location and path of vehicle depending on weather, road and traffic, cost and
availability of spare parts at respective repair shops based on risk assessment and
prediction. The information contained in the cloud will also communicate the
workshop that will book time slot and block the necessary spare parts for the
coming vehicle minimizing waiting time. This mechanism will help in reducing
unexpected stoppages, vehicle degradation and efficient spare parts management
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combining in a successful way the workload of the workshops from both natural
sources, the time based inspections and repairs together with the reactive mainte-
nance coming from unexpected breakdown.

Keywords Context-aware - Repair shop management - Condition monitoring -
Decision support system - Moving vehicle

1 Introduction

Maintenance is one of the driving requirements in operations along with logistics,
financing and safety. Especially in railways, it must keep with periodic inspection
and maintenance at regular or prior intervals for minimizing the effect of infras-
tructure failures that may disrupt passenger and cargo services.

If there was a failure in one of the critical components in a moving vehicle which
does not surfaced in the corrective maintenance, then it lead to obstruction to
ongoing traffic, loss to the asset and human dissatisfaction. The present technologies
can able to do several maintenance technologies to detect the ongoing failures but
they are not designed with respect to the context and changing environment. For
condition monitoring (CM) the components, sensors are installed at several places
for data acquisition and then analysed the data for diagnosis and prognosis in a
remote location using computerized maintenance management system (CMMS). The
combination of CM and CMMS was presently applying in several industries for the
effective and efficient prediction of failures in time to reduce the cost, human effort
and risk. Computer-based systems are now being used to spontaneously diagnose
problems to overcome some of the disadvantages accompanying with relation to
experienced personnel [1]. Typically, a computer-based system utilises a linking
between the observed symptoms of the failures and the equipment problems using
practices such as table look ups [2], symptom-problem matrices, and rules of thumb
[3]. These techniques work well for systems with simple mappings between
symptoms and problems, but diagnostics seldom have simple correspondences for
complex equipment and processes. In addition, not all symptoms are necessarily
present if a problem has occurred; making other approaches more cumbersome [4, 5].

Traditionally, the combination of CM and CMMS has been implementing in
several systems whether the system is in static or in dynamic motion. There are
several challenges in the dynamic motion, for example in railways, the location and
the environment is changing rapidly and the systems need to adjust to the envi-
ronment. There is also need to predict the failure due to continuously dynamic
environment and report the possible occurrences of failure to the central comput-
erized system.

For the maintenance activity to be performed for those vehicles in urgent situ-
ations there is need for capability to perform replacement or repairs at a mainte-
nance site that is more related to the context of the vehicle. Even though, in general
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sense, the repair site that is closest to failure site is the best location for the
maintenance activity, it may not be always possible because of the other parameters
that urge to be considered such as cost, availability, queue, and logistics. In order to
overcome it, there is a need of effective diagnostics and prognostics to detect the
possible failure of the components in a moving vehicle. Here, moving vehicle may
refer to any vehicle that is in transport like automobiles, bus, train, ships or aero-
planes [5].

The services for the condition monitoring and computerized maintenance
management system can be utilized for effective performance for repair shop
management activities. This can be possible by installing on-board diagnostics and
prognostics in the moving vehicle for the data acquisition. This onboard system will
send data to the centralized cloud system of assisting information [6]. The data in
centralized system will do the optimization decision making on the context-driven
to provide the best repair shop management and also allocate slot for maintenance
activity. The paper is structured as: Sect. 2 gives explanation of maintenance of
moving vehicles and how it will perform, Sect. 3 gives information on onboard
diagnosis and prognosis that can be installed on moving vehicle, Sect. 4 discusses
on the repair shop management and Sect. 5 provides the proposed approach for the
onboard maintenance management for repair shop activities.

2 Maintenance of Moving Vehicles

In order to perform maintenance activities, the first step is to collect data from all
the components of the vehicle and sent to computerized data management.

2.1 Data Collection

There is a tremendous need to assimilate asset information to get a precise health
assessment of the whole system, from various sources such as infrastructure,
facilities, factories, vehicles etc., and thereby determine the probability of a shut-
down or slowdown, [7]. Moreover, the data acquired are often distributed across
independent systems that are challenging to access and not correlated. If the
data from these independent systems are combined into a common correlated data
source, this rich new set of information could add value to the individual data
sources [4]. For example, it is common for most of the facilities to collect work
records of where work has been done. Many assets also typically measure their
health using condition monitoring (CM) or non-destructive testing
(NDT) techniques [8] as “nowcasting” technologies in order to see where work
needs to be done. However, these two datasets can remain in separate and indi-
vidual systems. By combining the data into a location correlated dataset, i.e.
metadata (Fig. 1), the quality and/or the effectiveness of the work being performed
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can be analysed by comparing the “asset health” before and after the work is
completed [4, 5, 9].

Figure 2 shows the systems currently used by maintainers in factories or facil-
ities. Computerized maintenance management system (CMMS) and CM are the
most popular repositories of information in maintenance, where most of the
deployed technology is installed and unfortunately isolated information islands are
usually created [10]. While using a good version of either technology can assist in
reaching the defined maintenance goals, combining the two (CMMS and CM) into
one seamless system can have exponentially more positive effects on maintenance
and asset performance than either system alone might achieve. The combination of
the strengths of a top-notch CMMS (preventive maintenance (PM) scheduling,
automatic work order generation, maintenance inventory control, and data integrity)
with the capabilities of a leading-edge CM system (multiple-method condition
monitoring, trend tracking, and expert system diagnoses) in such a way that work
orders are generated automatically based on information by CM diagnostic and
prognostic capabilities improving dramatically the asset performance, [5, 11-13].

Just a few years ago, linking CMMS and CM technology was mostly a vision
easily dismissed as infeasible or at best too expensive and difficult to warrant much
investigation. Now, due to the advancement of computing technologies, there is a
possibility that the combination of CMMS and CM have been to implement to
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achieve such a link relatively easily and inexpensively. A top-shelf CMMS can
perform a wide variety of functions to improve maintenance performance, [10]. It is
the central organizational tool for World-Class Maintenance (WCM). Among many
other critical features, a CMMS is primarily designed to facilitate a shift in
emphasis from reactive to preventive maintenance. It achieves this shift by allowing
maintenance professional to set up automatic PM work order generation. A CMMS
can also provide historical information which is then used to adjust PM system
setup over time to minimize unnecessary or redundant maintenance actions or
repairs, while still avoiding run-to-failure repairs. PMs for a given piece of
equipment can be set up on a calendar schedule or a usage schedule that utilizes
meter readings. A fully-featured CMMS also includes inventory tracking, logistics,
workforce management, purchasing, in a package that stresses database integrity to
safeguard vital information [14]. The final result is optimized equipment up-time,
lower maintenance costs, and better overall plant efficiency [5].

On the other hand, a CM system should accurately monitor real-time equipment
performance, and alert the maintenance professional to any changes in performance
trends. There are a variety of measurements that a CM package might be able to
track including vibration, oil condition, temperature, operating and static motor
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characteristics, pump flow, and pressure output [15]. These measurements are
squeezed out of equipment by monitoring tools like Ferro graphic wear particle
analysis, proximity probes, triaxle vibration sensors, accelerometers, lasers, and
multichannel spectrum analysers [14]. The very best CM systems are expert
systems that can analyse measurements like vibration and diagnose machine faults
[5, 11, 13].

2.2 Context Driven Maintenance Decisions

A context-aware system actively and autonomously adapts and provides the most
appropriate services or information to users, taking advantage of people’s contex-
tual information while requiring little interaction. The concept of context-aware
computing was quoted by [16, 17] as “the ability of a mobile user’s applications to
discover and react to changes in the environment they are situation” [18].

Context-aware systems are usually complicated and are responsible for many
jobs, such as representation, modelling, management, reasoning, and analysis of
context information. They require the collaboration of many different components
in the systems. There are various types of different context-aware systems, making
it hard to generalise a context-aware system process; however, a context-aware
system usually follows four steps as shown in Fig. 3 [9].

The first step is acquiring context information from sensors. Sensors convert real
world context information into computable context data. By using physical and
virtual sensors, the system can capture various types of context-aware information.
The system then stores the data into its repository. When storing context data, the
kind of data model used to represent the context information is very important;
context models are diverse, and each has its own unique characteristics. To easily
use the stored context data, the system controls the abstraction level of the data by
interpreting or aggregating them. Finally, the system uses the abstracted context
data for context-aware applications. One such representation of context aware
system was developed by [19] for intelligent broker systems. They developed
context broker architecture (CoBrA) for context acquisition using different sensors
with devices among users, machines and agents to provide adequate support for
context modeling by analyzing from data repositories. The features are then
extracted for the application of brokerage activities.
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Fig. 3 General process in context-aware systems
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2.3 Context Driven Condition Monitoring

In the past, the different functional areas, e.g., the process monitoring, the equip-
ment monitoring and the performance monitoring, were performed independently
and each tried to “optimize” their associated functional area without regard to the
effect that given actions might have on the other functional areas [20]. As a result, a
low priority equipment problem may have been causing a large problem in
achieving a desired or critical process control performance, but was not being
corrected because it was not considered very important in the context of equipment
maintenance. With the asset cloud providing data to the end users, however, per-
sons can have access to a view of the plant based on two or more of equipment
monitoring data, process performance data, and process control monitoring data.
Similarly, diagnostics performed for the plant may take into account data associated
with process operation and the equipment operation and provide a better overall
diagnostic analysis.

Due to advent of advancement in computing and data acquisition capabilities, the
competences of condition monitoring is driven across several fields [21]. As in
respect to the context-aware systems, the condition monitoring techniques is
applying at several cross-board areas with abundant enhancements to the machines
and users with effectiveness and efficiency. Due to dynamic and adaptive environ-
ments, the context-aware condition monitoring helps in reducing the risks, safety by
effective remaining useful life prediction for condition based maintenance [22].

2.4 Diagnosis with Anomaly Detection

The anomaly detection task is to recognize the presence of an unusual (and poten-
tially hazardous) state within the behaviours or activities of a system, with respect to
some model of ‘normal’ behaviour which may be either hard-coded or learned from
observation [23]. We focus, here, on learning models of normalcy at the user
behavioural level, as observed. An anomaly detection agent faces many learning
problems including learning from streams of temporal data, learning from instances
of a single class, and adaptation to a dynamically changing concept [24]. In addition,
the domain is complicated by considerations of the trusted insider problem (rec-
ognizing the difference between innocuous and malicious behaviour changes on the
part of a trusted user) and the hostile training problem (avoiding learning the
behavioural patterns of a hostile user who is attempting to deceive the agent).

Anomaly detection discusses to the problem of discovery of patterns in data that
do not follow to predictable behaviour. These non-conforming patterns are often
denoted as anomalies, aberrations, contaminants, discordant, exceptions, observa-
tions, outliers, peculiarities or surprises in different application domains. Noise
removal is determined by the necessity to eliminate the undesirable objects formerly
any data analysis is accomplished on the data [23, 25].
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Contextual anomalies have been most frequently reconnoitred in time-series data
and spatial data. The selection of relating to a contextual anomaly detection tech-
nique is definite by the significance of the contextual anomalies in the application
domain. Another main issue is the accessibility of contextual attributes. In some
cases defining a context is direct, and hereafter relating a contextual anomaly
detection technique makes sense [26]. In other cases, defining a context is difficult,
making it hard to apply such techniques [23].

2.5 Context-Driven E-Maintenance

Once connectivity is sorted out then sense making becomes the real challenge for
data sets. It is therefore time for migrating concepts from e(lectronic) Maintenance
to i(ntelligent) Maintenance, [27]. Maintainers must deal many different sources of
information. In this paper, we use a system framework supporting the integration of
various data sources which could have different formats and natures. To handle
those differences, the system framework should provide facilities for data wrapping
and mediation between different data formats, along with interfaces for external
data wrappers and mediators. The system should also be able to add new sources
and mediation procedures and handle the necessary data validation and consistency
checking. From the operation point of view, different data spaces must be managed
at different levels of the system. At the data management data space, the following
agents and databases must be managed and merged for Database, containing the
database baseline [11];

e Synthetic database, containing derived calculations from the database or from
external sources not included in the database;

e Information on managing the databases;
Information on managing wrappers and mediators;
Archived data.

2.6 Prognosis for Health Assessment

Beside safety hazards, there are two basic risks associated with assets: shutdowns
and slowdowns. These risks materialise in economic loss, [28]. The only way to
save money is to perform a proper prognosis, not just a diagnosis [4, 11]. The
monitoring equipment depends on many sets of instruments or sensors which are
suitably distributed to obtain information about system state. For this reason the
monitoring activity represent a key point of the whole system under examination.
An erroneous feedback due to instrument failure may cause damages whose extent
depends on the control system sensitivity to the incorrect measurements. In fact, if
you are not measuring something accurately and consistently, you do not know if
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your inferences are valid. These aspects are of fundamental importance in all those
fields where the reliability of data measured by sensors or, more in general, by
instruments has to be assured before using them for implementing subsequent
actions. Moreover if an instrument failure occurs this may leads also to false or
missing actions so giving safety problems. There are three basic ways to model how
faults develop: symbolic models, data-driven models, and physics of failure models
based on physical principles, laboratory tests and measurements and mathematical
formulations [11].

3 Onboard and Centralized Diagnosis and Prognosis

The communication system consists of both onboard devices that are installed in the
moving vehicle and a centralized data system to perform critical data analysis.

3.1 Autonomous Onboard System

Onboard devices and applications can be used for model based knowledge repre-
sentation for the existing systems for autonomy. In the event of failure operation, it
is difficult to find the component failed due to unknown reasons that were not
surfaced in the inspection and condition monitoring. In such cases, there is a
necessity of an autonomous onboard system that is not only monitors the several
sub systems in the vehicle and also is capable of sending the information to the
cloud for diagnosis and prognosis [29]. This system will acquire data from the all
the components using sensors. Integrated onboard and centralized reasoning sys-
tems capable of blending results from multiple sensors and driver to be informed
the health of the vehicle needs to be applied. This engine and the test procedures
have to be solid enough so that they can be embedded in the electronic control unit
(ECU) and/or a diagnostic maintenance computer. Due to on site, the response time
can also be faster than the data analysis. Usually, the human (driver) are responsible
for the request or report the problem to the maintenance system. In the case of this
autonomous onboard maintenance system, there is no need of human to involve.
The transceiver present in the board will send signals to centralized system auto-
matically if any one of the components will reach near to its maintenance activity.
Several algorithms that interface with onboard usage monitoring systems and parts
management databases are used to predict the useful life remaining of system
components for maintenance activities [30].

The transceiver also capable of receiving request from the centralized system to
inform the driver about possible decision making that is performed in the cloud.
The extension markup language (XML) transformation of onboard data and the
protection of context based on location with meta-data techniques, automated test
meta-language (ATML) based tests and results and diagnostic result encapsulation
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data can be pooled as inputs for the presentation of data mining techniques. The
applicability of the data collected early in the diagnostics and maintenance process
is performed effectively through in this concept [31]. The functions of the onboard
system are:

e To perform diagnosis and prognosis of several components in the moving
vehicle.

e To store data from several maintenance records to keep track of its
repair/replacement cycles.

e To send the possible reaching of component’s maintenance activity or failure
propagation that is observed by condition monitoring.
To receive the requests from the centralized system and inform the user.
To inform the user about possible condition of the moving vehicle onboard
without centralized system.

3.2 Centralized System

The data from the onboard devices from several moving vehicles is fed to a cen-
tralized system that handles huge amount of data. The data is collected by two
ways. The large amount of condition monitoring data and updated maintenance
activities can be uploaded to centralized system either by moving vehicle reaching
the centralized data system or user can download data from the device separately
and upload through internet connection. The small amount of data like requests,
alerts, notifications or any other data can be send through General packet radio
service (GPRS) mobile data using 2G or 3G services that is installed on the device.
The data analysis, model based methods, techniques for fault diagnosis, prognosis
techniques, interpretation of the possible scenarios, update of sources can be per-
formed at centralized system instead of onboard [32] since these techniques need
huge amount of processing information and data. There are several advancements in
this area of diagnosis and prognosis with combination of condition monitoring and
condition based maintenance with e-maintenance by usage of cloud and other
services. This system then further provide decision making of the respective repair
shop suggestions based on context of the moving vehicle and logistics of repair
shops.

4 Repair Shop Management

For many industries, especially for expensive and risk based assets, repairing a
failed asset is significantly more economical than replacing it and in some condi-
tions, companies often cannot even afford inventory. Hence, in such conditions, a
high-quality scheduling, logistics along with maintenance activities is incorporated
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to improve the performance of the overall system. The placement of the repair shop
was planned by considering factors like location, availability of the components,
cost effective, policies [33], logistics, number of consumers and affordability. Due
to the variable need of demand and supply, the items are in general maintained the
inventory or transport the items that are rarely went to failure. There are basically
three major factors considered for the performance of the environment as [34]:

1. The initial spares inventory levels for final assemblies, subassemblies, and
components.

2. The capacity to repair parts and to perform inspection, assembly, and testing of
subassemblies and final assemblies.

3. The priority scheduling system used in the repair shop.

There were several researches going on these factors with advancement in
computing. Accordingly, the progress of proper overtime policies for a repair
environment need of attention of several issues related to any job shop environ-
ment. Five areas will be discussed here [33],:

. The fundamental trade-off involved

. When overtime should be used

. How much overtime to use

. What level in the product structure to work overtime
. Job and labour scheduling policies

| R O S R

Even in the repair shop, there are several disruptions that can happen as listed in
Table 2 [35]. These disruptions are complex and require specialised repair. When
the centralized system “talked” to the repair shop, it must provide the present
condition of the repair shop, the status of the inventory, the scheduling queue and
logistics.

5 Proposed Cloud-Based Repair Management

This paper proposes a conceptual network of onboard diagnosis and prognosis with
condition monitoring, centralized CMMS cloud infrastructure and repair shop
management that provide decision based on context-driven as shown in Fig. 4.
Even though similar studies are implemented in aircrafts, this approach has been
transferred to suit the moving vehicles. The novel part is the condition monitoring
of the onboard diagnosis and how different it works based scheduling, communi-
cation, data transfer and risk assessment. The process of this methodology is
explained in following steps.

(1) The onboard device will detect the possible maintenance activity based on
diagnosis and prognosis or maintenance cycle of the components.

(2) The request for the maintenance activity is sent to the nearest centralized
system..
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The centralized system will perform several analysis and artificial intelli-
gence tools to approve and accept the request generated by the onboard
system. The system also looks for nearest repair shop based on location.
The requests consists of part, time remained, cost and other logistics details is
sent to several repair shops and will wait for the response.

The requests sent by the centralized system will be received and analyse the
request.

The request is then look for several factors like cost, availability, queue,
maintenance personnel, time taken, location along with disruption shown in
Table 1.

The above information is again send back to centralized station for approval
process.

The centralized system then analyses the requests from several repair shops
and provides decision support system based on logistics and select the
optimized solution of repair shop.

The information of selected repair shop is sent to the requested moving
vehicle.

The information of selected repair shop is also sent to the respective repair
shop for confirmation.
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Table 1 Disruptions on the
repair shop
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Sl no Disruption
1 Machine breakdown
2 Maintenance of machine
3 Absenteeism
4 Tool breakdown
5 Process time variation
6 Delay in transport using material handling system
7 Variation in performance of machine
8 Tool wear
9 Variation of set-up times
10 Arrival of a new job order
11 Rework
12 Rejection
13 Unavailability of raw material
14 Urgent job
15 Change of priority
16 Cancellation of order
17 Outsourcing

(11) The repair shop then communicates with moving vehicle in critical condition

and will do the job.

(12) Once the job is completed, the maintenance activity is stored in the cen-
tralized database for future revisions.

There is prerequisite of future work that involves the following functions

e the communication protocols and software implementation among onboard
device, centralized system and repair shop

e the factors and parameters required for data storage in all the three systems

e the selection and implementation of several algorithms required to provide
decisions for diagnosis, prognosis, condition monitoring and suggestion of

repair shop.

6 Conclusion

Even though due to the advancement of several technologies, there is need of
applying these concepts in maintenance activities to reduce risk, cost, manage
logistics and burden in practical field. One of the fields that need more concen-
tration is the effective utilization of these technologies in repair shop management.
This conceptual paper proposes a novel approach for implementation of such case.
This paper studies the several maintenance activities available in the literature, the
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on-board devices that can be incorporated, the functions of centralized system and
application of all these technologies to provide suggestion for the best repair shop
with consideration of logistics and context-driven mechanisms. There is need of
several advancements in this context to provide our knowledge to improve the
performance of machine and human in maintenance area.
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Optimal Sensor Placement for Efficient
Fault Diagnosis in Condition Monitoring
Process; A Case Study on Steam Turbine
Monitoring

Farzin Salehpour Oskouei and Mohammad Pourgol-Mohammad

Abstract Failure root cause analysis requires an optimum sensor network in the
process of a complex system monitoring. Selection of the location, type and number
of sensors are important metrics of sensor network optimization. Main aspects of
this optimization can be categorized to failure detection, failures diagnosis from
each other, the collected data from sensors and sensor reliability. In the process of
sensor networks optimization, logical relationships are determined between com-
ponents and sub-systems through different methods such as FMEA, FTA and RBD.
In this paper, an augmented FMEA and FTA method is developed to extract for
predicting failure causes in a condition monitoring process. The potential location
of sensors is first determined through Sensor Placement Index (SPI). SPI depends
on the Importance of failure modes and the cost of their monitoring processes. Due
to the potential places of sensors, different scenarios are derived for sensor place-
ment. Considering prior information about component state (operational or failed),
system is simulated through Bays Monte Carlo method. By estimation of sensor
detection probability, posterior probability of failure modes is calculated. Then the
variance of proposed probabilities is added together and the result represents the
uncertainty index. For determining the sensor reliability index, sensors are con-
sidered as system components. In this case, functional model of each scenario is
developed and the scenario with less Top Event probability is selected as the
optimal one. The main purpose of this paper is to show the difference between
prioritization of scenarios based on two proposed criterion. It represents that both
the uncertainty and reliability of sensors must be considered in the optimization
process. But in some specific cases such high-reliable systems, the effect of sensor
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reliability index can be negligible. As a case study, optimization of sensor place-
ment has been demonstrated on steam turbine and results are discussed.

Keywords Optimal sensor placement - Condition monitoring - Steam turbine -
Sensor reliability - Uncertainty

1 Introduction

Increasing operation and maintenance cost has caused more technical interest in
mechanical systems on as-needed maintenance methods such as condition-based
approaches instead of inefficient scheduled alternatives [1]. In proposed methods,
future failures of the system are predicted based on current state of its components.
It is clear that failure root cause analysis requires an optimum sensor network
design in the process of a complex system monitoring. The location, type and
number of sensors are important metrics of sensor network optimization [2—4].
Main aspects of this optimization can be categorized to failure detection, failures
diagnosis from each other and the collected data from sensors.

There are different researches about fault diagnosis and condition-based main-
tenance of mechanical systems [1-7]. Few of proposed studies consider the impact
of sensor network on the fault diagnosis process. Obviously, data collection on the
state of components will have a significant influence on the reliability of predic-
tions. The performance of a sensor network can be identified by four indicators
consisting of fault detection, fault diagnosis, reliability of sensors and data obtained
from sensors. In the decision-making process, more reliable information is obtained
by reducing the uncertainty of primary hypothesis.

The techniques which are used for sensor placement optimization are mostly
focused on finding the optimal physical location of sensors, given some geometrical
constraints [8—16]. Proposed methods are based on the Fisher information matrix.
The Fisher information in statistical mathematics is a method for measuring visible
random variable information about an unknown parameter. In fact, this matrix
represents the variance of outcomes or expected values of observed data. In this
method, the whole structure is meshed and information matrix is developed for
different nodes. Then using an optimization method, the node with a maximum
determinant of Fisher information matrix is selected for sensor placement. Another
category of optimal method is based on optimizing a cost function considering the
constraints of fault detection, fault diagnosis and reliability of sensors [17-22].
Some methods are focused about the probabilistic aspect of sensor placement
process [23-25]. Bayesian theory is applied in such methods to extract the posterior
information based on historical data. Then deviation of posterior data is calculated
through utility function. Considering supposed deviation, prioritization is deter-
mined for potential sensor placement scenarios [25].
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According to the literature, the main technical interest is about information
uncertainty based on prior data, collected by sensor network [24, 25]. However an
attention was not paid on reliability of sensors and its impact on optimization
process. Also selection of potential places for sensors was not discussed. In this
paper, the main motivation is to define an index for prioritization of potential places
of sensors. Also considering sensors as components of the system, effect of sensor
reliability is studied on optimal sensor placement.

The organization of the paper is managed as follow; in Sect. 2, a functional
model is developed for the system. Also the state of each component is extracted as
the State Vector (SV). Using SVs, collected information has been arranged from
sensors in the form of Information Vector (IV). Based on the uncertainty of pro-
posed information, the optimal placement has been selected for sensors. In Sect. 3,
the effect of sensor reliability is studied. Sensors are considered as system com-
ponents and the optimal scenario is selected based on proposed criterion. Finally in
Sect. 4, difference of scenario prioritization has been discussed in both categories.
Methodology structure is illustrated in Fig. 1.

Fig. 1 Methodology
Structure System Identification
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2 Developing a Model for System State Diagnosis

For developing an optimization algorithm for the sensor network arrangement, it is
necessary to study the complete system and its components from the intended scope
and objectives. Also it needs to consider the failure data of each component. Based
on these requirements, seven steps are developed for optimal sensor placement
algorithm which will be discussed in following sections.

Step 1:

Step 2:

Step 3:

Step 4:

First step in sensor placement optimization contains extracting compo-
nents of the system and their failure modes. This step is performed by
applying Failure Modes and Effect Analysis (FMEA) method. Using
proposed method, in addition to diagnose failure modes and their effects,
importance of each mode is calculated through Risk Priority Number
(RPN).

In this step, functional model of the system is developed. Different
methods such as Fault Tree Analysis (FTA) or Reliability Block
Diagram (RBD) can be used to model the logical relation between dif-
ferent components and failure modes. Since the sensor placement problem
is directly related to the system operation, the effect of developing an
appropriate functional model on optimization process become clearer.
Potential locations of sensors are defined in this step. A criterion is
specified in this research to reflect both effect of each components failure
on the system failure and monitoring costs. Sensor Placement Index
(SPI) is defined for each system component by Eq. (1) as:

SPI — Reliability Importance

(1)

Monitoring Cost

Using Birnbaum Method [26], the Reliability Importance (RI) of each
component is determined by Eq. (2) as:

s _ ORs[R(1)]
Ii - 8Ri(t) (2)

Rg[R(1)], as the reliability equation of whole system, is dependent of each
component reliability (R;(¢)). Ranking system components (based on SPI),
important components are extracted. These components are considered as
candidates of potential places for sensors. According to the sensor quantity
which is specified based on cost and placement constraints, Number of
potential places will be considered. The optimization problem will be
meaningful if the number of potential places be more than sensor
quantities.

Failure modes in the lowest level of system are considered as inputs of the
model. So all possible combinations of inputs’ states are determined as
system state vectors (SV). The state vector represents the occurrence or
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Table 1 System state vectors

State vector SV1 Sv2 SV3 Sv4 SVs5 Sve6 SV7 SV8
Failure mode 1 1 1 1 0 1 0 0 0
Failure mode 2 1 1 0 1 0 1 0 0
Failure mode 3 1 0 1 1 0 0 1 0

Step 5:

Step 6:

non-occurrence of system failure modes. One and zero are used to indicate
occurrence and non-occurrence of each failure mode respectively. For a
system with n failure modes, there are 2" state vectors. As an example,
state vectors of a system with 3 failure modes are shown in Table 1:

In Table 1, SV1 represents occurrence of all failure modes whereas SV8
represents a state in which none of failure modes were occurred. Given the
primary occurrence probability of failure modes, occurrence probability of
each state vector is calculated through Monte Carlo simulation [24]. It is
clear that the summation of all state vectors’ occurrence probability must
be equal to 1.

Considering both available sensor quantities and potential places for them,
placement scenarios are developed. If there are p quantity of sensors and
m potential places (p < m), then the number of scenarios is calculated
through Eq. (3):

m!
p!(m —p)!

C(p7m) = (3)

Each scenario contains different information about system state. To
specifying these differences, Information Vectors (IVs) are determined
[24, 25] indicating the state of sensors. Sensor state is determined in the
binary form where 1 means existence of an alarm and zero means no
alarm. Considering p sensors for each scenario, there are 2P IVs. As an
example, IVs for a scenario with 3 sensors are shown in Table 2:

For estimating the occurrence probability of each information vector, state
vectors are extracted based on the occurrence of related IV. Then proba-
bilities of supposed state vectors are added together and the result indi-
cates the probability of proposed IV.

In this step, considering the occurrence probability of information vectors
as prior information, posterior state vectors are reproduced through Monte
Carlo simulation. According to the posterior SVs, occurrence probability

Table 2 System information vectors

Information vector V1 v2 1v3 1v4 NG Ive 1v7 Iv8
Sensor 1 1 1 1 0 1 0 0 0
Sensor 2 1 1 0 1 0 1 0 0
Sensor 3 1 0 1 1 0 0 1 0




88 F.S. Oskouei and M. Pourgol-Mohammad

of each failure mode will be calculated. More description about this step
will be given in the section of case study.

Step 7: Information uncertainty is discussed for previous step results in this
step. Standard deviation of each failure mode’s occurrence probability is
calculated for the number of iterations in Monte Carlo process. The
inverse of variance is calculated for all failure modes and the summation
of them is considered as an index for comprising different scenarios from
the uncertainty point of view [24]. Applying proposed index, the ability of
each scenario can be measured in detecting system failures.

By completing these steps, sensor placement scenarios will be prioritized based
on information uncertainty. However, the reliability of sensors is not considered in
this process. False alarm or missed-alarm can cause misunderstanding of system
state. So it is necessary to study the effect of sensor failure on optimization process.

3 Effect of Sensor Reliability on Optimal Sensor
Placement

As it is discussed, sensor is a crucial component in condition monitoring process.
The validity of sensor information and ensuring of its accuracy is a concern in such
processes. So the effect of sensor failure is considered on optimization process in
this research.

According to the proposed algorithm for sensor placement, one alternative
approach is to consider each sensor as a component of the system in order to study the
effect of sensor reliability. In condition monitoring process, while the failure of
component is detected by a sensor, it doesn’t count as a failure. In this case, sensor and
the component, monitored by that sensor, will be added to the system model in the
parallel form. Thus when both sensor and related component fail, the failure occurred.
In this approach, the reliability of sensor affects the whole system reliability.

By applying of this method, model of system is updated for each sensor
placement scenarios and the occurrence probability will be calculated for top event
(TE). According to the proposed probability, all scenarios can be prioritized.

Both the uncertainty and sensor reliability criterions are considered in this study.
However, the prioritization of some scenarios is different in these two categories.
One way to interpret of these results is to consider a weight factor for each criterion
based on their importance in the optimization process. Considering sensors as high
reliable components, a sensor is rarely failed. So the effect of sensor reliability must
be less than prediction uncertainty in the optimization process. Determining a
specific factor for each criterion is a complex process which depends on system
functionality, environmental condition and quality of the sensor.

The other approach is applying field data, expert judgment and generic data for
interpreting both proposed criterions together in an optimal process. This method is
used when requirements of previous method are not available.
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4 Case Study: Steam Turbine Monitoring and Optimal
Sensor Placement

Steam turbines belong to a category of machines called turbo-machines. Main
characteristic of turbo- machines is the energy conversion which takes place in a
rotating wheel. The basic function of a steam turbine is to transform the thermal
energy of steam into mechanical energy. The main components of a steam turbine
are bearings, rotor, rotor blades, seals, diaphragms and casing.

According to the Sect. 2, in first step, components of steam turbine and their
failure modes must be extracted. So the FMEA of a typical steam turbine is
developed [27]. The simplified FMEA table is presented in Table 3.

Fault tree of the steam turbine is extracted as a functional model of system. Due
to system complexity, the simplified form of its fault tree model is considered in
Fig. 2.

Occurrence probabilities and monitoring costs for all failure modes are presented
in Table 4. It should be noted that the values of proposed probabilities and costs are
extracted through expert judgments and information in the literature [27].

In third step, the potential places of sensors are determined through SPI of each
component. Considering simplified model, cutsets of the system are presented as
below:

Turbine=Diaphragms+RotorBlades=S.Overheat+S.Humidity+Debris+Vibration+
Crack

Based on Birnbaum Importance criterion, the importance of each component is
calculated by proposed model. Finally, all failure modes are prioritized through
proposed index as shown in Table 4. According to the proposed prioritization, 3
sensors are mounted on the system to monitor steam temperature, steam humidity
and rotor vibration. In addition, performance of diaphragm and turbine are moni-
tored by other independent sensors. Types of all applicable sensors are presented in
Table 5.

The final model of system with potential places of sensors is presented in Fig. 3.

In the next step, state vector of the system is obtained. For calculating the
occurrence probability of all system state vectors, it is necessary to know the prior
occurrence probability of all failure modes. According to the literature and expert
judgment, prior occurrence probability is provided for each failure mode. Based on
existing standards, a criterion is specified for each failure mode. By utilization of
Monte Carlo method, the occurrence probability is obtained for each state vector.
Partial of proposed probabilities is presented in Table 6.

In the next step, information vector is extracted. To complete this task, it is
necessary to determine the sensor placement scenarios in advance. According to the
proposed model of steam turbine in Table 7, placement scenarios are considered as
below:

To calculate the probability of each IV, probabilities of SVs which causing the
occurrence of proposed IV, are added together. The result represents the occurrence
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Fig. 2 Simplified fault tree of the steam turbine

Table 4 Importance index for all failure modes
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¥

Rotor Blade

| Vibration =

./.

Failure mode Failure rate (per 10° h) Monitoring cost Importance index
Penetration of debris 57 Not Possible -

Steam overheat 28 10 unit 0.1

Vibration and ageing 28 20 unit 0.05

Steam humidity 28 30 unit 0.03

Crack formation 14 100 unit 0.01

Table 5 Type of sensors

Sensor number

Sensor type

1 Tachometer

2 Wireless accelerometer
3 Accelerometer

4 Thermometer

probability of considered IV. As an example, IVs and their occurrence probabilities
are presented for first scenario as shown in Table 8.

Extracting IVs and related probabilities, step 6 and step 7 are applied on the
system. Then inverse of occurrence probabilities’ variance for all failure modes has
been calculated and added together for each scenario as it is shown in Table 9.
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Fig. 3 Final Model of system with potential places for sensors

Table 6 State vectors of the steam turbine

Failure mode SV1

SV2 SV3

Sv4 SV5

Overheat

Humidity

Crack

Debris

1
1
1
Vibration 1
1
0

Occurrence .00001

probability

o|loc|o|lo |~ |O

1
0
0
0
0
0

.0011 .1509

o|loc|o|= OO
o|lo|=|lC|O O

.0187 .0011 .0186

Table 7 Sensor placement

Scenario number

Sensor number

scenarios

Scenario 1 Sensorl, Sensor2, Sensor3, Sensor4
Scenario 2 Sensorl, Sensor2, Sensor3
Scenario 3 Sensorl, Sensor2, Sensor4
Scenario 4 Sensorl, Sensor3, Sensord
Scenario 5 Sensor2, Sensor3, Sensord
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Table 8 Occurrence probabilities of IVs

Sensor number V1 V2 V3 Iv4 1V5 V6 1v7

1 1 1 1 1 1 1 0

2 1 0 1 1 1 0 0

3 1 1 0 1 0 0 0

4 1 0 0 0 1 0 0
Probability 2.5e-6 0.001 0.1771 2.32e-4 0.0014 0.0186 0.8016

Table 9 Amount of Scenario Number Uncertainty Index
uncert‘flinty index for all (2 1/(variance of each component)
Seenarios Scenario 1 1.12e+09

Scenario 2 6.9e+08

Scenario 3 4.26e+08

Scenario 4 7.83e+08

Scenario 5 3.9e+08
i?fl;lreerlltotygzif)llfrie?:zrio[rZ8] Sensor Type Typical failure rate (per 10° h)

Tachometer 80

Wireless accelerometer 1

Accelerometer 13

Thermometer 3.5

This index reflects the uncertainty of system state prediction. According to results in
Table 10, uncertainty is smaller in state prediction of system in scenario 1. This
result is obvious for the first scenario because all sensors are used in it. Among
other 4 scenarios, fourth scenario is optimal since the system state prediction reports
smaller uncertainty.

In the last step, sensors have been added to the system functional model as
components. The modified model of system for first scenario is shown in Fig. 4.

Failure rate for different type of sensors are presented in Table 10 [28].

To calculate the occurrence probability of top event in each scenario, their
minimal cutsets are extracted. For a specific time period, probabilities of top event
have been calculated as Table 11.

According to Table 11, occurrence probability of top event in the first scenario is
less than the others since all sensors have been used. For rest of 4 scenarios,
scenario 2 and 3 has less top event probability so they are optimal scenarios based
on the sensor reliability criterion.

As it can be seen, the prioritization of scenarios is different for any of uncertainty
and sensor reliability criterion. This indicates that not only the uncertainty affects
the optimization process of sensor placement, but also the sensor reliability is
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Fig. 4 Modified model of the first scenario

Table 11 Occurrence probability of TE for all scenarios

Scenario | Cutsets Occurrence probability
of T.E
1 S1.83.V + S1.C + S1.84.0 + S1.S2.0 + S1.S2.H + 2.02e-6
S1.S2.PD

2 S1.83.V + S1.C + S1.0 + S1.S2.H + S1.S2.PD 6.013e-6

3 S1.V+S1.C +S1.54.0 + S1.52.0 + S1.S2.H + S1.S2.PD |6.017¢-6

4 S1.83.V + S1.C + S1.0 + S1.H + S1.PD 1.5e-3

5 S3.V+C + S4.0 + S2.0 + S2.H + S2.PD 0.0221
“V = vibration, C = crack, O = overheat, H = humidity, PD = penetration of debris
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considered as well. The importance of each criterion is determined based on system
functionality, complexity and expert judgment. Final prioritization of scenarios is
developed by considering both criterions together.

5 Discussion and Conclusion

The accuracy of system state prediction methods (e.g., condition monitoring) is
strongly depends on sensor network arrangement. Therefore optimization of pro-
posed arrangement increases the focus on the important components of the system
in order to reduce the maintenance costs. Based on the results of this study, the
main effective factors include uncertainty of sensors’ information and the reliability
of the sensor itself on optimal sensor placement.

Studying both uncertainty and sensor reliability indexes separately, it is observed
that the optimal sensor placement offer different prioritizations of sensor placement
scenarios based on proposed two criterions. Therefore it is necessary to select the
more important one or applying both of them criterions in optimization process.

In concluding, sensors are high-reliable components and the time to failure
(TTF) of them is much more than TTF of common mechanical components. So in a
system with high-reliable components, TTF of components are close to TTF of
sensors. So the reliability of sensors is determinant in such a system in the case of
condition monitoring. On the other hand, in a system with common components,
because of wide gap between TTF of components versus sensors, the effect of
sensor reliability is negligible on optimal sensor placement. As a result, it is nec-
essary to study the system functionality and reliability of its components before
making any decision about the optimal sensor placement.
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Estimation of the Reliability of Rolling
Element Bearings Using a Synthetic
Failure Rate

Urko Leturiondo, Oscar Salgado and Diego Galar

Abstract As rolling element bearings are key parts of rotating machinery, the
estimation of their reliability is very important. In this context, different standards
and research articles propose how to estimate fatigue life for different levels of
reliability. However, when trying to do calculations based on data from a real
system, there are many difficulties because of economic and safety reasons.
Consequently, the use of physical models to simulate the cases that are difficult to
reproduce in a real system allows us to generate synthetic data related to them.
Thus, in this paper a synthetic failure rate of rolling element bearings is calculated
using a physical modelling approach. A multi-body model of a bearing is used in
order to obtain its dynamic response in non-stationary conditions and in different
degradation levels. Thus, synthetic data are generated to cover a range of degra-
dation related to geometric changes in the surface of the parts of the bearing. Some
of the output variables of these synthetic data, such as vibration, are used as
covariates of a proportional hazard model, which is then trained to estimate the
reliability of the bearing. In this way, a synthetic failure rate is obtained in such a
way that it can improve the failure rate given by the manufacturers
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1 Introduction

Rolling element bearings are widely used parts in rotating machinery. Thus, they
are very important components in different sectors such as railways or wind energy,
among others. That is the reason why the reliability of rolling element bearings is a
key issue for the correct operation of the systems in which they are placed.

There are many failure modes that can affect to that operation [6], e.g. fatigue,
corrosion, electrical erosion, etc. According to Ferreira et al. [2], fatigue is the main
reason for the appearance of defects in the different parts of rolling element bear-
ings. This failure mode has been broadly studied by the manufacturers and the
selection of the bearings is commonly done based on the knowledge behind the
fatigue development. Thus, the international standard ISO 281 [5] is the main
reference in this field. It gives the relation between the reliability of a rolling
element bearing and its life for a given stationary operating condition.

If the relation between reliability and life is wanted to be obtained by using data
acquired from a real system instead of using the formulae proposed by ISO 281 [5],
there are some limitations. Those are related to the fact that some operating con-
ditions, specially related to damaged states or extreme conditions, cannot be
reproduced due to safety reasons and because of the economic cost related to both
the development of the testing and the likelihood of happening serious conse-
quences in the system.

Thus, the use of data obtained by simulations carried out by using physical
models is an alternative to real data. These data are called synthetic data [12] and
they can be generated in such a way that they give information about the perfor-
mance of a system in the aforementioned operations which are difficult to
reproduce.

In this paper a methodology for obtaining a synthetic failure rate using synthetic
data is presented. A physical model is used to generate synthetic data of the
dynamics of rolling element bearings in different degradation levels. Once the
degradation level is associated with its corresponding value of reliability by the use
of a degradation curve and a reliability-life curve, the synthetic data are taken as
input data to fit a proportional hazard model.

Proportional hazard models are statistical models that can be used for the esti-
mation of the hazard of systems by means of the use of influential factors.
Specifically, indicators from a time-domain analysis of the velocity of the inner ring
are used to train the model. The analysis of the fitness of the model gives the key to
know which of the indicators provides more meaningful information about the
reliability of the simulated bearing.

This strategy will help to have estimations of the reliability of rolling element
bearings that are able to adapt to the context in which they are operating [8]. In this
way the reliability of a machine that suffers highly varying operating conditions can
be accurately obtained and, therefore, appropriate maintenance actions can be taken
by using this information.
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This paper is structured as follows: the methodology followed in order to obtain
the synthetic failure rate is explained in Sect. 2; Sect. 3 shows the results obtained
by the application of the methodology to a specific bearing; finally, the conclusions
are presented in Sect. 4.

2 Through the Synthetic Failure Rate

In this section the methodology that has been developed in order to estimate the
reliability of rolling element bearings using a synthetic failure rate is presented.
First, how the synthetic data is generated is explained; then, the degradation and
reliability curves that have been used in this study are presented; finally, the cal-
culation of the hazard model is shown.

2.1 Synthetic Data Generation

As stated in Sect. 1, synthetic data can be generated in different operating condi-
tions and considering different degradation levels using physical models. In the field
of rolling element bearings, there are many models that reproduce their response,
taking into account different features of the physics behind these components.

In this work the multi-body model developed by Leturiondo et al. [10] is used to
carry out the simulations needed to generate synthetic data. This model is able to
simulate the dynamics of any kind of rolling element bearing in any configuration,
considering each element of the bearing as a rigid body with 6 degrees of freedom.
The metal-metal contacts between those elements are modelled using the Hertz
contact and elastohydrodynamic lubrication theories. Besides that, local defects are
modelled as geometric changes in the surface of the elements.

The bearing selected to be simulated is a single-row deep-groove ball bearing
with 8 balls; its dimensions are shown in Table 1.

All components are considered to be made of steel with the following properties:
modulus of elasticity of 207 GPa, Poisson number of 0.3 and density of
7830 kg/m>. A constant value of 30 °C is chosen as the operating temperature. The

Table 1 Dimensions of the

. - Dimension Value (mm)
simulated bearing Ball diameter, D,, 22.46
Outer raceway diameter, d,, 87.73
Inner raceway diameter, d; 42.79
Pitch diameter, D,,,, 65.26
Outer groove radius, 7, 11.6792
Inner groove radius, 7; 11.6792
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Taple 2 Defect area in the Code Area (mm?)

defined 16 degradation levels A 0390625
A, 0.78125
Az 1.171875
Ay 1.5625
As 1.953125
Ag 2.34375
Ay 2.734375
Ag 3.125
Ag 3.515625
Ao 3.90625
Aqq 4.296875
Ajp 4.6875
Az 5.078125
Ay 5.46875
Ais 5.859375
Ass 6.25

values of the dynamic viscosity #, and the viscosity-pressure coefficient a at this
temperature are 0.04 Pa s and 1.2:107° Pa™', respectively.

The inner ring is selected as the rotating one; the outer ring is assumed to be
located in a rigid housing. Regarding the operating conditions, a constant value of
20 rad/s for the inner ring speed and a constant value of 300 N for the radial load
applied in the same ring are selected. It should be noted that the load is applied to
the bearing in vertical direction.

Different simulations have been carried out in order to obtain synthetic data in
different degradation levels. This degradation is modelled as a size variant local
geometrical change in the most loaded zone of the outer raceway of the rolling
element bearing. Thus, 16 simulations have been done by taking a value of the spall
areas A; to A shown in Table 2 for each simulation. It should be noted that the
defect size Aig is equal to that at which the industry considers a rolling element
bearing to have reached its faulty state [1].

These 16 simulations have been carried out using the software Dymola®,
studying the response of the rolling element bearing during 5 s. The values used for
the time sampling period and for the integration tolerance are 1 ms and 10™*,
respectively.

The model gives information regarding different physics of the bearing. Thus,
the linear and angular position of each element of the bearing (rings, rolling ele-
ments and cage) can be obtained, as well as other variables related to the contact
between the elements, such as the contact loads (both normal and tangential) and
the lubricant film thickness. In this work the vibratory response of the rolling
element bearing is used as the input for training the hazard model, in particular, the
vertical velocity of the inner ring due to its observability.
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2.2 Degradation and Reliability Curves

The relation between the degradation of a bearing and the time in which a specific level
of degradation occurs is necessary in order to calculate the bearing life. There are
many theories regarding this issue in the literature, from simple degradation models to
others with a higher complexity. In this paper the Paris’ law has been selected for the
degradation variation and, thus, the prediction proposed by Li et al. [11] is used as an
approximation to obtain the bearing running time at which the spall areas A; to A¢
occur. The results for this degradation-time relation are shown in Fig. 1.

As stated in Sect. 2.1, the faulty limit is reached when the defect size is equal to
6.25 mm®. This defect size is obtained when a bearing operates during a time Iy
equal to 12.3-10° revolutions. Therefore, it can be assumed that the life of a bearing
in the degradation levels defined by the spall areas A; to A is equal to the
difference between #; and the time in which the aforementioned spall areas occur.

Regarding the reliability, the curve proposed by the ISO 281 [5] has been
selected. First of all, the basic rating life L;, is calculated using the properties of the
configuration of the bearing, the geometrical properties shown in Table 1 and the
data regarding the loading conditions. Then, the modified rating life L, is calcu-
lated by multiplying L, by the different life modification factors a; presented in the
standard for values of the reliability from 95 to 99.95 %. This curve is modified
randomly in order to represent the variations that the reliability of a bearing can
suffer due to the fact that the data of the response of the bearing are generated
synthetically. The relation between the reliability and the life of the bearing is
shown in Fig. 2.

Following this approach, the values of life and reliability for each degradation
level shown in Table 3 are obtained. It can be seen that the value of the reliability for
the last level of degradation is very high whereas its value for life is very low, which
means that the defect produces a situation in which the bearing is near to fail.

Fig. 1 Relation between 7
degradation and the operation
time 6l

Defect area [mm?]
*

0 2 4 6 8 10 12 14
Bearing running time [millions of revolutions]
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Fig. 2 Relation between the
life of the bearing and its
reliability

Table 3 Input data for the
proportional hazard model

2.3 Hazard Models for Reliability Estimation
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2 4

Modified rating life [millions of revolutions]

6

8 10

12

Code Life (rev.- 106) Reliability (%)
A 9.83 92.38
Ay 8.58 93.78
Aj 7.43 95.03
Ay 6.53 95.92
As 5.73 97.03
Ag 4.98 97.64
A5 443 98.04
Ag 3.83 98.44
Ao 3.23 98.84
Ao 2.73 99.2
Aqq 2.33 99.43
A 1.73 99.65
Az 1.18 99.87
Ay 0.83 99.96
Ais 0.43 99.98
Aje 0.03 99.99

Nowadays the importance of the determination of the condition of a system has
raised for its use in diagnosis and prognosis processes. Thus, the decisions of the
actions that have to be carried out for maintenance are easier to take. If it is properly
done, this entails a reduction of machinery downtime and the inventory of spares,
which has a direct relation with the decrease of the risk of having a failure and,
finally, with the reduction of the costs related to maintenance [4].
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For this purpose, the estimation of the reliability of the assets related to its
remaining useful life is a key. It should be taken into account that there are many
factors of the operation of the systems that have a great influence in this estimation.
There are many statistical models to obtain the relation between these factors, called
covariates, and the hazard of an asset. These models have been especially used in
the fields of reliability and biomedicine, being proportional hazard models the
origin of most of them [3].

A proportional hazard model consists in a function formed by the product of a
baseline hazard rate and a positive function described by covariates that have a
multiplicative effect on the baseline hazard rate and a regression parameter for each
of these covariates. Thus, it is expressed as:

h(t,2) = ho(t) - Y(B'2) (1)

where /(z,7) is the hazard rate, hy(¢) is the baseline hazard rate, ¢ is the time, z is the
vector of covariates, f is the vector of regression parameters and y is the positive
function, being the exponential the most used one.

Proportional hazard models are very useful when only the final remaining useful
life of the system and its confidence limit are required, and when there are data
available for the failure modes being modelled [14]. Besides that, the aforemen-
tioned multiplicative effect is a realistic and reasonable assumption for the relation
between covariates and the hazard rate.

The review of Gorjian et al. [3] shows different methods existing in literature
based on proportional hazard models, classified by the fact of them being
non-parametric or semi-parametric. The methods shown in the following list are
some of the ones found in this first group:

e Stratified proportional hazard model: it considers a population divided in a
number N of levels (for example, different operating conditions). Thus, there are
N baseline hazard functions, each defining the distinctive features of each level,
whereas the regression coefficients are the same for all the levels. The expres-
sion of this kind of model for the jth level is the following:

hj(1,2) = hoj(1) - exp(B'2) (2)

e Two-step regression model: it assumes that there is a difference in the effect of
covariates during time, in such a way that a breakpoint is defined at
time B. Thus, the model before B has time-dependent regression parameters
a; = Pi(t) = Prexp(—y;-t), whereas after B regression parameters are constant.
Equation 3 shows the formula for this kind of model. The main limitations for
this approach are the difficulty to estimate the breakpoint and the assumption of
all the covariates having the same breakpoint
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[ ho(t) -exp(a’z) t<B
hn,z) = {h?(t) 'exg(yTzz) t>B (3)

e Additive hazard model: this strategy changes one of the basic features of the
original proportional hazard model: the multiplicative effect of the covariates.
This is changed to take an additive effect, as expressed in Eq. 4. It gives good
results regarding the effect of repairs but it can only be used to model those
failure modes that imply a jump y in the hazard.

h(1,2) = ho(t) + ¥ (B"2) 4)

e Mixed model: it takes both the additive and the multiplicative approaches to
take advantage of the benefits of each method. It is formulated as:

h(tlz) = g{Bow (1)} + o) - f{voy ()} (5)

It can be seen that the covariates are separated in two groups (w and y), having
each of the covariate vector its corresponding regression parameter vector (# and
y, respectively) and link function (g and f;, respectively). The mixed model fits
better to the data rather than the classical model but has an extremely limited
testing.

e Accelerated failure time model: accelerated tests are commonly done in industry
in order to obtain the results of reliability, failure rate and life of different
component and systems in a shorter period of time. Thus, this kind of model
links the classical proportional hazard model with the accelerated reliability by
means of multiplying the operation time by the effect of the covariates and using
this value to determine the timely value of the baseline hazard rate, as it is
expressed in the following equation:

h(t,2) = ho(t - ¥ (v'2)) - ¥(y"z) (6)

The semi-parametric models take advantage of other models such as the Weibull
distribution or logistic regression models in order to obtain more complex forms.
The main drawback of this kind of models is the need to calculate more parameters
than in the other models.

As stated before, these techniques have been widely use in different areas
regarding reliability and biomedicine. An example of the application of propor-
tional hazard models can be found in the work of Krivtsov et al. [9]. A survival
analysis is carried out regarding the tread and belt separation of automobile tires.
For that purpose, different tire design characteristics such as the tire age, the wedge
gauge, the peel force or the percent of carbon black, among others, are used to fit a
proportional hazard model. The analysis of the p-values for each regression
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coefficient gives an indication of what covariates are the most significant factors for
the studied failure mode.

In this work, the original proportional hazard model is used as a first approxi-
mation to fit the synthetic data obtained from the physical model and the values of
the reliability calculated by means of the degradation and reliability curves.

3 Results and Discussion

As stated in Sect. 2.1, the vibratory response of the rolling element bearing is used
to estimate its reliability. Figure 3 shows the vertical velocity of the inner ring.
In order to obtain the inputs for the proportional hazard model, some indicators
are extracted from the velocity signal. For this purpose, time-domain analysis
techniques are applied. Specifically, features that have been widely used in the field
of diagnosis of rolling element bearings and transmissions are extracted from the
synthetic data [7, 13]. Thus, the following indicators have been calculated:

e Mean:

e Standard deviation:

Fig. 3 Vertical velocity of x10°
the inner ring obtained by the
physical model 17l
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e Skewness:

n

3
2 3 () —

o 1=ty
Y o3
e Kurtosis:
At L 4
a2 () =l
o — t=tg
]
e Peak:
X = max|x(7)|
e Root mean square:
At & 5
XRMS = : x()
P— ; x(2)]
e (Crest factor:
CF = %
XRMS
e Shape factor:
X
SF=—"10
222 (o)
1=ty
e Impact factor:
IF = L

1=ty

e Energy operator (EO): calculated as the kurtosis of the following signal:

[x(2,)]° = [x(, — A1) - x(1, + 40)],

131
P 30 x()
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(10)

(14)

(16)

where x(7) is the velocity signal, 7, is the initial time (O s), ¢; is the final time (5 s)

and 4¢ is the time sampling period (1 ms).
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Fig. 4
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Thus, one feature is calculated for each vibration signal in the different degra-
dation levels. This leads to 10 values for each of the 16 damaged scenarios. At the
end of the day, one or a combination of indicators can be used as the covariate of
the proportional hazard model. With the objective of better understanding the
reliability changes that occur in rolling element bearings, the selection of appro-
priate indicators is crucial.

Figure 4 shows the relation between the ten indicators used in this analysis and
the data of bearing life presented in Table 3. It can be seen that in general there is a
relation between these values. It should be noted that some indicators provide a
clear relationship only for the last stages of the degradation, as it occurs in the case
of the crest factor.
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Table 4 Results of the

U. Leturiondo et al.

roportional hazard model Covariate p Stand. error p-value
taking each indicator as an 48410° [ 121107 J0.6902
only covariate for each model -1.85-10° 6.75:10’ 0.0062
y 1.81 0.72 0.0126

K 3.7-1072 1.45-1072 0.0107

Xk —4.84-10° 1.16-107 0.6774

Xras —4.46-10° 2.3-10° 0.0524

CF —108.99 52.09 0.0364

SF -108.99 4.89-10° 0.9822

IF -108.99 51.91 0.0358

EO 4.84-1072 1.71-10? 0.0048

The values of the features presented in Fig. 4 are used as the covariates of the
proportional hazard model (i.e. predictor values), and the values of the reliability,
which correspond to the hazard rate, are used as the objective values for the
function that aims to be fitted. In this case, the baseline hazard model is equal to the
nominal reliability-life curve given by the international standard ISO 281 [5].

In order to calculate the regression parameters f the coxphfit function of Matlab®
has been used. First of all, an analysis is done taking each covariate to train a
proportional hazard model. Thus, 10 models are obtained, each of them having an
only regression parameter 5. The results of this analysis are shown in Table 4.

Having a p-value lower than 0.05 has been taken as the criterion to select those
covariates that are statistically significant. Thus, the mean, the peak value, the root
mean square and the shape factor can be excluded from the study.

Once the significant covariates are identified, their combination by pairs is done.
It should be highlighted that some of the couples have not been analysed due to the
correlation between the indicators in their statistical definition. Thus, and taking a
look to Fig. 4, the combination between the skewness and the kurtosis as well as the
combination between the crest factor and the impact factor are rejected.

The results for the proportional hazard models fit by couples of covariates are
shown in Table 5. There is not any couple that fits the significance criterion of
having a p-value less than 0.05. Consequently, any of the pairs defined is able to
give an accurate estimation of the reliability.

Thus, the use of some of the covariates individually is the only way to construct
a proportional hazard model using the indicators presented in this section.
Specifically, the values of the standard deviation, the skewness, the kurtosis, the
crest factor, the impact factor and the energy operator are the ones that can be used
to reproduce the reliability of a rolling element bearing in the defined conditions.
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Table 5 Results of the Covariates p-value (1st p-value (2nd
proportional hazard models covariate) covariate)
taking the indicators by pairs
for each model o and y L 1

o and K 0.9658 0.0915

o and CF 0.9498 0.0926

o and IF 0.9976 0.9974

o and EO 0.958 0.1575

y and CF 0.1178 0.8450

y and IF 1 1

y and EO 0.3397 0.0865

x and CF 0.832 1

x and [F 0.0954 0.9648

x and EO 0.0615 0.6636

CFand EO |0.0417 0.5150

IF and EO 0.9549 0.1607

4 Conclusions

The estimation of the reliability of an asset in general and the reliability of a rolling
element bearing in particular is essential in order to carry out an optimum asset
health management and minimize maintenance costs. As the collection of data from
real systems for this estimation is difficult or even impossible to do in certain
conditions, the use of synthetic data generated by physical models gains impor-
tance. Thus, the outputs of simulations can be used as inputs for a statistical model,
obtaining a synthetic failure rate.

In this research work, a multi-body model of rolling element bearings is used to
generate data related to different degradation levels. Time-domain analysis is car-
ried out in order to obtain statistical indicators of the vertical velocity signal of the
inner ring of the bearing. In order to obtain the relationship between the degradation
levels of the synthetic data and their corresponding reliability two degradation
models have been used. Then, the indicators are used to fit a proportional hazard
model, which is a kind of statistical tool commonly used for reliability purposes.

Results show that some of the indicators that have been used represent properly
the reliability of a bearing. In particular, the standard deviation, the skewness, the
kurtosis, the crest factor, the impact factor and the energy operator give good
results. However, their combination by pairs has failed to obtain good predictions.

Future work asks for determining other features that can fit better the reliability
curve. Besides that, the extension of this methodology to cover all the operating
conditions of a system can be useful to monitor the system and take advantage of
proportional hazard models with maintenance purposes.

At the end of the day, there is a real need for customizing the presented
methodology to specific applications, doing the fitting of the models with synthetic
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data generated by physical models as well as data provided by the manufacturers of
the components. Thus, the tuning of the model can be done by the combination of
both data, personalising the model to the requirements of the industry.
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Nonlinear Process Monitoring
Using Genetic Algorithms

Tawfik Najeh, Achraf Jaber Telmoudi and Lotfi Nabli

Abstract This paper suggests a new approach for fault detection using Genetic
Algorithms (GAs). GAs are used to find the principal curve that summarize the
data. The principal curve is a generation of linear Principal Component Analysis
(PCA). Introduced by Hastie as a parametric curve, the original definition is based
on the self-consistency property. The Hastie’s theory encloses weaknesses in case
of complex data structures or data with intersections. The existing principal curves
methods employ the first component of the data as an initial estimation of principal
curve that passes satisfactorily through the middle of data. However the needing of
an initial line is the major inconvenient of this approach. In this work, we extend
this problem in two ways. First, we introduce a new method based on GAs to find
the principal curve. Second, potential application of principal curves in fault
detection is proposed. An example is presented to prove the efficiency of the
proposed algorithm to fault detection of nonlinear process.

Keywords Principal curves - Genetic algorithms - Fault detection

1 Introduction

The current trend in the industrial automation and industrial equipment leads to
mechatronic systems ever more complex, working in an uncertain, changeable
environment, corresponding to a permanent search for improvement, optimization
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and productivity. Therefore it is necessary to detect and isolate any failure to avoid
damage that may be harmful in an environment where performance is paramount.
As a result has appeared the field of fault monitoring. At the start monitoring
focuses on areas that have a high level of risk as well as the nuclear arms industry
sectors. But nowadays it is essential to adopt a performance monitoring module. To
ensure the correct operating mode, the process of control and supervision required
to accommodate continuous information of their instantaneous state. The accuracy
of measurements is an important factor in the reliability of the control and moni-
toring system performance.

Monitoring methods will be compartmentalized into two main families: methods
without mathematical models and those with. To the first family the quality of
information can be achieved by improving the accuracy of measuring equipment
and increasing the number of sensors. Because of cost and technical reasons, the
choice of this solution, where several sensors are used to measure the same variable
is limited to installations that have high technological risks. The second family is
based on the redundancy of information and can be exploited to verify the accuracy
of measurements. The advantage of these methods is the efficiency of detection and
fault isolation; contrary to the analytical methods the cost of hardware installation
should decrease.

The use of analytical redundancy techniques is based on finding the relationships
shown in the measurements of variables to reach a mathematical model. It seems
more and more difficult comes to large systems, with performance is less satis-
factory. In contrast, a method based on redundancy as PCA allows exploiting the
linear or non-linear relationships between those variables. Therefore all correlations
are taken into account without an explicit form of the model inputs/outputs. PCA
[1-4] is used in two steps, the first part provides the model obtained from the
history of the system during normal operation, the second phase is the detection and
isolation of faults by comparing the established behavior model and the observed.
However, the detection phase has a delicate problem which has a significant impact
on the precision of the model and its ability in failure classification. Consequently
in the case of non-linear systems modeling PCA requires other tools help to set the
optimal structure of the model. Artificial Intelligence approach (Al) is very effective
to solve this problem. The use of Al on traditional linear PCA cannot solve non-
linear problems.

In this paper, a new approach using GAs to estimate curve passing through the
middle of probability distribution. Likewise, the use of this method is easily
extended to the problem of detection and diagnosing data faults of nonlinear
systems.

This work is organized as follows. The second section gives a description of
principal curves. The third section introduces the concept of GAs and how we will
apply this heuristic method to the problem of determining the principal curves. The
new approach based on genetic and all steps are described in this section. In the last
section the results obtained on numerical example is given.
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2 Principal Curves

The first definition of principal curve is based on the self-consistency property of
Hastie [2]. But this approach does not support closed curves and curves with
intersections. A different method based on a model of the principal semi-parametric
curve was proposed by Tibshirani [5]. But lack of flexibility it has the same
weaknesses of the theory of Hastie.

Keégal [6] introduced anther definition based on the polygonal lines to find a
principal curves. All the following approaches started research for a straight line,
which by default is the first principal component [7, 8]. Another kind of approaches
defined the principal curve with another way. Rather than starting with a line that
represents the entire cloud of points, these approaches consider just a set of points.
This principle was introduced by Delicado [3] for the construction of principal
curves.

In this section we will analyze the self-consistency property of principal com-
ponents. Let the data X € R generated, if f(1) = (fi(1),....fa(4)), 2 € R is the
curve parameterized with 1 € 9, then for any X € R¢ we have As(X) the projection
index and f (1) is a principal curve. Mathematically the projection index is defined
by:

7(X) = sup{2: X — £(2)| = inf|X — £(2) |} (1)

For X € %, the projection index Ar(X) is the largest value giving the minimum

of [|X = f(A)]].

3 Principal Curves Using Genetic Algorithms

The problem of determining the principal curves is a non-convex problem that has
several possible solutions [9, 10]. To solve such problems, the classical approaches
have multiple limitations. Due to the inadequate initialization of the algorithm or the
predefined strategy of constructing local models, the obtained curves don’t provide
an optimal solution that is able to present, sufficiently, the complexity of the data
cloud. On the other hand and despite the large computational cost, these methods do
not allow a significant improvement for the construction of principal curves.

Using the genetic algorithms technique for the optimization of solutions of
non-convex problem has attracted growing interest in many research works [11,
12]. The novelty of this technique is the assumptions commonly used with con-
ventional methods to ensure convergence of the solution [13]. In the presence of
multiple local optima, the convergence of GAs provides the desired solution to the
global optimum of the problem [14]. The application of these tools in the case of
the principal curve calculation is very interesting due to the non-convex nature of
the problem.
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3.1 Genitc Algorirthms
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GAs are applied to a wide variety of problems. Simplicity and efficiency are the two
advantages of this approach [12]. After having fixed the expression of the objective
function to be optimized, probabilistic steps are involved to create an initial pop-
ulation of individuals [13]. Optimization steps with GAs are as follows (Fig. 1):

a. Initialization

It is usually random and it is often advantageous to include the maximum

knowledge about the problem [12].

Fig. 1 Chart of the simple
genetic algorithm
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b. Evaluation
This step is to compute the quality of individuals by the allocation a positive
value called “ability or fitness” to each one. The highest is assigned to the
individual that minimizes (or maximizes) the objective function [14].
The fitness of an individual is calculated as follows:

2(P; — 1)(Pos — 1)
Nind — 1 @)

Fitness(Pos) =2 — Py +

The evaluation is characterized by a parameter called selection pressure (Py).
This method allows P; values in the range of [1, 2].

c. The selection
This step selects a definite number of individuals of the current population [13].
The selection is probabilistic; it is based on the ability of individuals a way that the
best ones have a chance of being selected more than once. In this step is assigned
to each individual probability P; which is proportional to its fitness and defined by:

— Fi
- M
2 =1 Fj

With F; the fitness and M the size of population.

3)

i

d. The crossover
The genetic crossover operator creates new individuals. From two randomly
selected parents, crossover produces two descendants [14]. This step affects only
a limited number of individuals established by the crossover rate (Pc) number.
Let X = (X)) <;<,, and Y = (i), <;<,, be two individuals. These two parents
will produce two offspring X' = (x), ., .,, and Y' = (y!), -, -, according to the
equation:

X 4
y; =Yi+si ria“);’/,ﬁé“ ( )

/. . Yi—Xi
{xi =X;i+s;jria TY=X]
with: @ = 27
k: mutation precision (k € {4,5,...,20}, u € [0,1])

ri = r X domian

Si = {71, 1}

e. The mutation
The mutation consists in providing a small disruption to a number (Pm) of
individuals. The effect of this operator is to counteract the attraction exerted by
the best individuals this allows us to explore other areas of the search space.
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Let u; and [; be the respective lower and upper bounds for all individuals. Let
X = (%), <;<,, the individual to mutate that will give the new individual X’ =
(%)) < ;< according to:
X; + (l, — .X,)f(G) if r; <0.5
Xi=1¢ xi— (v —u)f(G) if r;>0.5 (5)
Xi lf X; ¢ [Mi, ll]

with:

6= | (1~ Gi)} (6)

r1, r»: uniform random number between 0 and 1

G: the current generation

Gmax: the maximum number of generations

b,. shape parameter

To ensure the diversity of the population by the mutation the parameter r; is
halved in Eq. 5 (r; > 0.5 and r; < 0.5).

This has been a brief overview of GAs. For further details on the processing
power and the convergence properties of GAs, reference should be made to [15].

A. finding principal curves

The resolution of principal curve problem by GAs avoids all local optima and
converges to the global optimum of the problem. The proposed approach considers
the principal curves as an ensemble of connected lines segments. In each step new
segment is inserted to form polygonal lines.

The use of GAs in order to find the principal curves requires the development of
an objective function. This function must take into account the quadratic sum of the
distances dj.

k
(Dk = Zd(x,-,s)2 (7)

where: X, Two-dimensional random vector x; € M2, i=1,. kisa local
neighborhood for a fix point “a”

s = [a, b]: a segment pass through the data set x;

d;: the distance between the considered point and it’s orthogonal projection
given by Eq. (7).

The objective is used to find the segment that minimizes the total squared
distance of all neighbor’s points. We can project orthogonally every data point in
the neighborhood cloud onto the segment sy.
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The new genetic curve algorithm is constructed following the strategy outlined
as follows:

Algorithm:

1: Start with a random point x, from X n-

(T3]

: L, = the local neighbourhood of “n” points around x,.
: Repeat until number generation = Gmax.

2
3
4: Generate at random an initial population of K segments.
5 for every segment s; do

6

compute the Euclidean distance:

n
=D d(x,5)
i for each segment s;
7: end for
8: Apply selection (Equation 3 )
9: Apply crossover and mutation (Equations 4,5 ).
10: Save the better line segment and return to step 3.

11: Delete used local neighbourhood points from the original
distribution.

12: The end point of previous segment is served as a starting
point.

13: Connect with previous segment (Except first one).

14: Return 02 and repeat until all data points are achieved.

4 Experimental Results

This section describes how to use GAs that implements the proposed nonlinear
PCA method for fault detection. An example is used to prove the performance of
the proposed approach to find the principal curve for process monitoring.

The proposed algorithm has been tested with synthetic datasets. We conducted
experiments on several artificial data set and with 2-d data space. Data points are
disturbed along with Gaussian noise independently imposed on different dimen-
sions of the given curve.

We start first with several typical synthetic datasets to test the aptitude of our
algorithm for computation of principal curves, and then the monitoring problem of
the Continuously Stirred Tank Reactor (CSTR) is investigated.
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4.1 Synthetic Datasets
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We generate different shaped curves, such arc-shaped and circle. Contaminated
with small noise (0.03). The curve obtained by applying the algorithm is shown in
Figs. 2 and 3. One can see that the curve is reconstructed quite well.

4.2 Nonlinear Monitoring of CSTR Benchmark

One of the most commonly used chemical reactors in the industry is the

Continuously Stirred Tank Reactor (CSTR). [14].

Fig. 2 Principal curve
obtained for synthetic dataset
of an arc

Fig. 3 Principal curve
obtained for synthetic dataset
of circle

30

o1 -
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Fig. 4 Diagram of chemical
reactor CSTR

Two chemical ingredients bl and b2 come in the reactor with different con-
centrations and feed rates, respectively Cbl, Cb2 and wl, w2. This process pro-
duces the final product with the concentration Cb, feed rate w0 and the height h in
the reactor. A diagram of the reactor is given in Fig. 4.

In this section we start by finding the principal curve of two process variables,
wo = x0 and & = x1. second we propose it is use for the fault detection. The same
Eq. 5 is taken as the objective function to be optimized. The initial population
comprises 80 individuals randomly performed by the GP.

For linear process involving the linear approach of the PCA they use indices
such as detection statistics of Hotling and SPE [16, 17]. Only in the case of
non-linear PCA, application of these indices is not very suitable [18-20]. To
overcome this difficulty, a new index detection I, is proposed. The idea consists on
constructing the principal curve of safe operating mode, then check index from the
Euclidean distance between the estimated curve and data from the system at the
present time.

For the previous example we considered two variables represented by a set of
data points x,, = (xo, x;). For each data point X; let p(x;) being its projection point
on the principal curve f. The Euclidean squared distance between x; and p(x;) is
calculated for the all data set. Then the deviation between estimating principal curve
and the data set can be defined as:

I = d(x.f)* ©)
Usually, the process is considered abnormal operating if:
If > 52 (10)

With ¢ is the threshold of detection.
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In this study the principal curve was trained with a data set of 200 samples. The
detection was performed with data containing one fault at a time. The test was
designed for safe and failed operating mode.

To identify a change of the system’s operating mode by the proposed method,
we try to get the principal curve noted C, corresponding to normal operating mode
on the absence of defects. This curve (Fig. 5) is obtained by the calculating algo-
rithm of the principal curve of two variables (xg,x1).

From the constructed curve and the cloud of points, we can construct an indi-
cator of change I through the Eq. (9). The process is simulated for 400 samples in
the following manner; the first 250 samples correspond to the mode M, (Fig. 6).
The second 150 ones correspond to mode M.

The evolution of Iris shown in Fig. 3. In the interval [0, 250], the index Iy is
below the threshold corresponding to the M, mode and above its threshold in the
interval [251,400] corresponding to failed operating mode M.
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Fig. 5 Principal curve

If

P vt M A i . . )
50 100 150 200 250 300 350 400

(=]

Fig. 6 Variation of indicator value I,
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5

Conclusion

In this paper a new approach was used to perform the principal curves based on
genetic programming. The algorithm had been applied on some synthetic datasets
and to the problem of monitoring on the Continuously Stirred Tank Reactor. The
simulation improves the application of the proposed approach with real process.
This guides us to try to apply this method with principal surfaces (higher
dimension).
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Vibration and Acoustics Emissions
Analysis of Helicopter Gearbox,
A Comprative Study

Faris Elasha and David Mba

Abstract This paper investigates the application of signal separation techniques in
detection of bearing faults within the epicyclic module of a large helicopter (CS-29)
main gearbox using vibration and Acoustic Emissions (AE). It compares their
effectiveness for various operating conditions. Three signal processing techniques
including an adaptive filter, spectral kurtosis and envelope analysis, were investi-
gated. In addition, this research discusses the feasibility of using AE in helicopter
gearbox monitoring.

Keywords Vibration - Acoustics emission + Helicopter gearbox

1 Introduction

Helicopter transmission integrity is critical for safe operation. Approximately 16 %
of mechanical failures, resulting in the loss of helicopter operation, can be attributed
to the main gearbox (MGB) [1]. In addition, 30 % of the total maintenance cost of
helicopters can be attributed to the transmission system [1]. The need to employ
advanced fault warning systems for such transmission systems cannot be understated
[2, 3]. Health and Usage Monitoring Systems (HUMS) are commonly used for fault
detection of helicopter transmissions in which detection is based on extraction of
predefined features of the measured vibration such as FM4, NA4, etc. [2, 4, 5].
HUMS was developed in North Sea operations, motivated in part by the crash to a
Boeing Vertol 234 in 1986 which was caused by disintegration of the forward main
gearbox. After development in the 1990s, the UK’s Civil Aviation Authority CAA
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mandated fitment of HUMS to certain helicopters. One article suggests that HUMS
“successes” are found at a frequency of 22 per 100,000 flight hours [6]. A HUM
system consists of two complimentary subsystems: health monitoring and usage
monitoring. Health monitoring is a process of diagnosing incipient damage or
degradation that could ultimately lead to a system failure. Usage monitoring is a
process by which the remaining life of different gearbox components and auxiliary
systems is determined by assessing operation hours, current components condition
and load history [7, 8]. Several vibration signature analysis methods are developed
and applied in the commercial HUMS to detect faults in bearings, gears and shafts.
Condition Indicators (CI) refer to the vibration characteristics extracted from these
signatures and are used to reflect the health of the component [9]. Numerous con-
dition indicators are calculated from vibration data to characterize component health
and these indicators are often determined based on statistical measurement of the
energy of the vibration signal, such as rms, kurtosis and crest factors.

The majority of helicopters utilises epicyclic reduction modules gears as trans-
mission systems due to their high transmission ratio, higher torque to weight ratio
and high efficiency [10]. As such this type of gearbox is widely used in many
industries such as aerospace, wind turbines, mining and heavy trucks [11-15].
Different planetary gearbox configurations and designs allow for a range of gear
ratios, torque transmission and shaft rotational characteristics. The planetary gear-
box generally operates under severe conditions, thus the gearbox components are
subject to different kinds of fault conditions such as gear pitting, cracks, etc.
[16-19]. Recent investigations on applications of planetary gearboxes have shown
that failures initiate at a number of specific bearing locations, which then progress
into the gear teeth. In addition bearing debris and the resultant excess clearances
cause gear surface wear and misalignment [19]. More recently the accident to the
helicopter registred G-REDL [20], resulting in the loss of 16 lives, was caused by
the degradation of a planet gear bearing interestingly the HUM system condition
indicators showed no failure evidence before this accident.

2 Gear and Bearing Diagnostics

The vibration signals associated with bearing defects have been extensively studied
and robust detection algorithms are now available as off-the-shelf solutions.
Conversely the dynamics associated with bearing diagnostics within gearboxes
reduce the effectiveness of traditional techniques. Therefore, it is important to
understand the nature of the faulty bearing signal.

For rolling element bearings, a fault will cause shocks which in turn excite
higher resonance frequencies which will be amplitude modulated depending on two
factors, the transmission path and loading condition [21]. Therefore the vibration
signal is typically demodulated to extract the frequency of these impulses.
Equations for calculation of bearing faults frequencies have been reported widely in
the literature [22-24]. These equations assume no slip, however, in operation there
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is some degree of slip and this why the bearing faults frequencies vary by 1-2 % of
the calculated value. It is this slip that facilitates the separation of the gear and
bearing vibration components [17], the latter known as the non- deterministic
component of the measured vibration. The deterministic part of the signal is usually
related to gear and shaft speeds [25]. Such periodic events are related to kinematic
forces induced by the rotating parts such as meshing forces, misalignment and
eccentricity [26]. In some cases the deterministic part of the vibration signal cannot
be identified due to speed variation, and therefore it essential to re-sample the signal
to the angular domain in order to track speed variation [26, 27]. The deterministic
part of the signal can be used for diagnostics of gear and shaft faults.

In relation to AE only relatively short time series signatures were processed [28].
In application to diagnosis of machine faults, simple AE parameters are typically
employed, such as rms, kurtosis, AE counts [29] and demodulation [30]. More
recently the use of Spectral Kurtosis and adaptive filters has been employed to
facilitate the diagnosis of machine faults with AE [31-33].

3 Signal Processing Techniques

Bearing and gear fault identification involves the use of various signal processing
algorithms to extract useful diagnostic information from measured vibration or AE
signals. Traditionally, analysis has been grouped into three classes; time domain,
frequency domain and time-frequency domain. The statistical analysis techniques
are commonly applied for time domain signal analysis, in which descriptive
statistics such as rms, skewness, and kurtosis are used to detect the faults [34, 35].
A fast Fourier transform (FFT) is commonly used to obtain the frequency spectra of
the signals. The detection of faults in the frequency domain is based on identifi-
cation of certain frequencies which are known to be typical symptoms associated
with bearing or gear faults. The time-frequency domain methods are composed of
the short-time Fourier transform (STFT) [36], Wigner-Ville [34], and wavelet
analysis [37, 38]. The use of these detection techniques are feasible for applications
where a single component is being monitored however for applications that include
several components, such as gearboxes, it is essential to employ separation algo-
rithms. The adaptive signal processing techniques used in this study is fully
described by the authors [39, 40].

4 Experimental Setup

Experimental data was obtained from tests performed on CS-29 Category ‘A’
helicopter gearbox which was seeded with defects in one of the planetary gears
bearing of the second epicyclic stage. The test rig was of back-to-back rig con-
figured and powered by two motors simulating dual power input.
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4.1 CS-29 ‘Category A’ Helicopter Main Gearbox

The transmission system of a CS-29 ‘Category A’ helicopter gearbox is connected
to two shafts, one from each of the two free turbines engines, which drive the main
and tail rotors through the MGB. The input speed to the MGB is typically in the
order of 23,000 rpm which is reduced to the nominal main rotor speed of 265 rpm,
see Fig. 1.

The main rotor gearbox consists of two sections, the main module, which
reduces the input shaft speed from 23,000 rpm to around 2,400 rpm. This section
includes two parallel gear stages. This combined drive provides power to the tail
rotor drive shaft and the bevel gear. The bevel gear reduces the rotational speed of
the input drive to 2,405 rpm and changes the direction of the transmission to drive
the epicyclic reduction gearbox module. The second section is the epicyclic
reduction gearbox module which is located on top of the main module. This reduces
the rotational speed to 265 rpm which drives the main rotor. This module consists
of two epicyclic gears stage, the first stage contains 8 planets gears and second stage
with 9 planets gears, see Fig. 2. The details of the gears are summarised in Table 1.

The epicyclic module planet gears are designed as a complete gear and bearing
assembly. The outer race of the bearing and the gear wheel are a single component,
with the bearing rollers running directly on the inner circumference of the gear.
Each planet gear is ‘self-aligning’ by the use of spherical inner and outer races and
barrel shaped bearing rollers (see Fig. 2).

The MGB transmits the power from the engines to the
rotors while reducing the rotation speed.

to the rear
820 pm transmission components
E RH
accessones
/ d& \ 4919 pm
/eccessones

2405 mm /
ENGINE %

23000rpm —

ENGINE 1

Fig. 1 Gearbox internal parts [20]
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Table 1 Number of teeth for the gearbox gears
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First parallel stage Pinion teeth Wheel teeth
23 66

Second parallel stage Pinion teeth Wheel teeth
35 57

Bevel stage Pinion teeth Bevel teeth
22 45

Ist epicyclic stage Sun gear Planets gear—8 gears Ring gear
62 34 130

2nd epicyclic stage Sun gear Planets gear—9 gears Ring gear
68 31 130

4.2 Experimental Conditions and Setup

This investigation involved performing the tests for fault-free condition, minor
bearing damage and major bearing damage. The bearing faults were seeded on one
of the planet gears of the second epicyclic stage. Minor damage was simulated by
machining a rectangular section of fixed depth and width across the bearing outer
race (10 mm wide and 0.3 mm deep), see Fig. 3, and the major damage simulated as
a combination of both a damaged inner race (natural spalling around half of the
circumference) and an outer race (about 30 mm wide, 0.3 mm deep), see Fig. 4.
Three load conditions were considered for the each fault condition, 110 % of
maximum take-off power, 100 and 80 % of maximum continuous power; the
power, speed and torque characteristics of these load conditions are summarised in

Table 2.
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Fig. 3 Slot across the bearing
outer race

Fig. 4 Inner race natural
spalling

‘.\ - 1
|
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Table 2 Test load conditions characteristics

Load condition Power Rotor speed Right input Left input

(Kw) (RPM) torque (Nm) torque (Nm)
100 % max 1300 265 272 272
continuous power

4.3 Vibration Fault Frequencies

To aid diagnosis all characteristic vibration frequencies were determined, see
Table 3. These included gears mesh frequencies of the different stages and the
bearing defect frequencies for planet bearing.
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Table 3 Gearbox

-~ ) Frequency components Frequency HZ
characteristic frequencies

Gears meshes

First parallel GMF Hz 8751.5
Second parallel GMF 4640.94697
Bevel stage GMF (Hz) 1791.24269
1st epicyclic stage GMF 1671

2nd epicyclic stage GMF 573

Faulty planet bearing

Ball spin 45.31426
Outer race 96.69819
Inner race 143.9603
Cage 7.438322

4.4 Data Acquisition and Instrumentation

Vibration data was acquired with a triaxial accelerometer (type PCB Piezotronics
356A03) at a sampling frequency of the 51.2 kHz. The accelerometer had an
operating frequency range of 2—8 kHz and was bonded to the case of the gearbox,
see Fig. 5. The acquisition system employed was a National Instruments (NI) NI
cDAQ-9188XT CompactDAQ Chassis. A 60 s sample was recorded for each fault
case. The Y-axis of the tri-axial accelerometer arrangement was oriented parallel to
the radial direction of gearbox, the X-axis to the tangential axis, and the Z-axis is
the vertical axis parallel to the rotor axis, see Fig. 5.

In addition, Acoustic Emission data was collected using a PWAS sensor [41],
7 mm diameter and approximately 0.2 mm thick, bonded to the upper face of the
planet carrier, see Fig. 6. The sensor was connected to a conditioning board
attached to the planetary carrier and transmitted wirelessly using two coaxial copper
coils and a new wireless transfer technique. The new wireless transfer technique
utilise two single turn brass coils of approximately 400 mm diameter which were
cut to size using water jets for accuracy. The stationary (upper) coil was suspended
from two clamping rings which were attached to the top case of the gearbox with a
spacer through the holes to retain location. The moving (lower) coil was attached to
a circular mounting ring which was in turn mounted on top of the oil caps on the
planet carrier, see Figs. 6 and 7. Electrical isolation of the coils from the mounts and
surrounding metallic structure was achieved through the use of nylon washers and
bushes. AE data was acquired at a sampling rate of 5 MHz using an NI PCI-6115
card connected to a BNC-2110 connector block.
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Fig. 5 MGB installed on the
test bench

Fig. 6 Moving coil mounted
on the planetary carrier (coil
arrowed, sensor circled)
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Fig. 7 Coils in position prior
to assembly (static coil black
arrow, moving coil white
arrow)

5 Observations of Vibration Analysis

Spectral Kurtosis analysis was undertaken on the non-deterministic part of data sets
collected from the gearbox for the different fault cases and this yielded the fre-
quency bands and center frequencies which were then used to undertake envelope
analysis. As discussed earlier the signal separation was undertaken with adaptive
filter LMS algorithm. Observation from a typical Kurtogram used to estimate the
associated filter characteristics for different defect conditions is shown in Table 4.

Observation from the spectra of the enveloped signal showed no presence of
fault frequencies associated with the defective planetary bearing in the spectrum.
However the minor fault condition was not identified. It is apparent that the signal
separation had not completely removed the gear mesh and shaft frequencies, par-
ticularly the sun gears frequencies and its harmonics for first and second epicyclic
stages (38.8 and 13.2 Hz respectively), which were detected by envelope analysis,
see Fig. 8. Existence of these frequencies is due to fact that the vibration signal used
in this analysis wasn’t synchronised to any particular shaft.

Table 4 Filter characteristics estimated based on SK

Case Center frequency Fc (Hz) Band width Bw (Hz) Kurtosis
Fault-free condition 5200 266 0.1
Minor damage condition 6000 266 0.11
Major damage condition 20266 2133 0.5
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Fig. 8 Enveloped spectra of non-deterministic signal for (a) Fault-free (b) Major (¢) Minor
damage

6 Acoustic Emission Observations

The envelope analysis was undertaken using the central frequency F. and
bandwidth (Bw) estimated by SK analysis, see Table 5. Observations of Fig. 9
showed the presence of the bearing outer race defect frequency (96 Hz) and its
harmonic (192 Hz) for both minor and major damages under different loading
conditions.

Table 5 Filter characteristics estimated based on SK for AE signals

Case Center frequency Fc (Hz) Band width (Bw) (Hz) Kurtosis
Fault-free 1093750 312500 12
Minor damage 234375 52083 9
Major damage condition 312500 208333 7.9
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Fig. 9 Enveloped spectra of AE signal (a) Fault-free (b) Major (¢) Minor bearing defects at 100 %
maximum continuous power

7 Discussion

The techniques used in this paper are typically used for applications where strong
background noise masks the defect signature of interest within the measured
vibration signature. The AE signal is more susceptible to background noise and in
this case, the arduous transmission path from the outer race through the rollers to
the inner race and then the planet carrier makes the ability to identify outer race
defects even more challenging. However the use of the wireless system incorpo-
rated into the main gearbox has contributed significantly to improving signal-
to-noise ratio.

A comparison of the vibration and AE analysis showed AE analysis was able to
identify the presence of the bearing outer race defect frequency (96 Hz) and its
harmonic (192 Hz) for both minor and major damaged for all loading cases based
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Fig. 10 Natural spall on
bearing inner race

/ -
on observations on the enveloped spectra. However, for vibration analysis the outer
race defect for minor damage case wasn’t detected.

Interestingly the AE analysis was unable to identify the presence of a defective
inner race under the ‘major fault’ condition however vibration analysis identified
the presence of the cage frequency (7.5 Hz) for major fault condition. Under
defective inner race conditions, as severe as that seen in this condition, see Fig. 10,
it has been shown that such a fault condition manifests itself with increases in the
bearing cage frequencies. The existence of large widespread spalls on the inner race
leads to bearing excessive clearance which in turns causes an increase in the
vibration amplitude of the fundamental train (cage) frequency.

8 Conclusion

In summary an investigation employing external vibration and internal AE mea-
surement to identify the presence of a bearing defect in a CS-29 ‘Category A’
helicopter main gearbox has been undertaken. A series of signal processing tech-
niques were applied to extract the bearing fault signature, which included adaptive
filter, Spectral Kurtosis, and envelope analysis. The combination of these tech-
niques demonstrated the ability to identify the presence of the various defect sizes
of bearing in comparison to a typical frequency spectrum. From the results
presented it was clearly evident that the AE offered a much earlier indication of
damage than vibration analysis.
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Test Rig Assessment of an On-Line Wear
Sensor for Application in Wind Turbine
Gearboxes

Vicente Macian, Bernardo Tormos, Santiago Ruiz, Guillermo Miré
and Isaac Rodes

Abstract Wind energy is one of the most promising renewable energies, but it also
presents some technical challenges, especially regarding to reliability, due to the
cost of repair and maintenance actions. So, different solutions have been proposed
from the point of view of on-line monitoring of gearbox condition by means of oil
analysis. In this work, a complete process for the evaluation of a wind turbine
gearbox on-line oil sensor was performed, based on a particle counting method-
ology. This work includes the design, selection and preparation of the samples
studied and the test rig and all the experiments done for the assessment.

Keywords Oil analysis - Wind turbine gearbox - Particle counting

1 Introduction

In the last 20 years, the shortage of natural resources and the emerging social
consciousness about pollution have made that renewable energy alternatives get an
important and increasing role in energy production and specially wind energy
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among all of them. For instance, in the 2013 annual report of the Spanish electricity
system [1], data regarding electricity coverage attending primary source are
depicted (Fig. 1); showing clearly that wind energy is fighting to become the main
energy source in Spain.

Therefore, leading companies in energy business have made economic invest-
ments in several different renewable energies (wind, solar, tidal, geothermal, hydro,
etc.) that are increasingly present in our daily lives.

Among all of them, wind energy presents some advantageous characteristics.
The power efficiency of a typical wind turbine is about 40 % (of the total kinetic
energy of the wind), much more than solar energy (commercial panels available
nowadays have approximately 20 % efficiency), furthermore wind turbines take up
less space than the average power plant (a few square meters for the base), and this
ground can be placed in remote locations, such as offshore, mountains and deserts.
Additionally, combined with other alternative energy sources, wind can provide a
reliable supply of electricity.

However, the implementation of renewable energies not only offers its profits to
environmental and economic level, but also causes the appearance of new engi-
neering challenges, including design, manufacturing and maintenance actions, that
need sometimes a completely different approach.

A major issue with wind power systems is the relatively high cost of operation
and maintenance (O&M). Usually, wind turbines are structures located in remote
areas, presenting as a consequence a difficult access. Therefore, these factors
increase the O&M cost for wind power systems. Also, poor reliability directly
reduces availability of wind power due to the turbine downtime [2]. Regarding to
maintenance actions, the main subassemblies in a wind turbine are the mechanical
system, electronic control system, and electrical system, responsible to convert the
kinetic energy in electricity. More common failures are originated in subsystems
belonging to the mechanical system. This includes components such as: main shaft
and bearings, gearbox, rotor brake, blades and generator.

Specially, one of the most important maintenance aspects in a wind turbine is the
gearbox’s condition, the element that converts low-speed, high-torque spinning from
the blades into high-speed spinning for electrical energy conversion. Within the life
cycle of the wind turbine, wind gusts lead to misalignment of the drive train and
provoke gradual failure of the gear components. This failure is critical, as it creates a
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significant increase in the operating costs and downtime of a turbine, while greatly
reducing its profitability and reliability. A gearbox replacement can cost up to 10 %
of the original construction cost, enough to cut deep into the projected profits [3].

Existing gearboxes are a spinoff from marine technology used in shipbuilding,
and an example is shown in Fig. 2.

Parallel to the design of these new engineering solutions, new challenges need to
be observed. Field data [4] shows that the drive train and gearboxes of modern wind
turbines (in the MW power production range) are the weakest part in the system,
with great costs and mean time to repair (MTTR) associated. Thus, an important
part of maintenance actions and efforts should focus in gearbox condition.

One challenge is the proper maintenance of these new systems and, in particular,
the application of preventive and predictive maintenance principles for wear control
in wind turbine gearbox by oil analysis. These systems present specific character-
istics that make them really suitable for the application of on-line monitoring
techniques. Particularly, these systems are usually installed in remote locations and
need to be stopped for any maintenance inspection. These operations need to be
realized by specially trained operator to climb to the nacelle with high security
standards, and usually the mean time to repair comprises several hours. This situ-
ation implies a high economic cost for any off-line analysis, so different on-line
monitoring techniques are being developed to help managers take better mainte-
nance decisions.

As it was said, there are considerable challenges on the reliable operation of the
system bearing and gear components [5]. Extremely miscellaneous conditions cause
high contact stresses, generator faults and grid engagement cause impact loads and
bearing skidding. On the other hand, ambient moisture causes corrosive environ-
ments and lubricant degradation. These conditions have resulted in issues of
scuffing, micropitting, wear, pitting and surface cracking, as shown in Fig. 3.

Fig. 2 Schematic wind
turbine gearbox diagram.
Source ZF Friedrichshafen
AG
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Fig. 3 Typical wear phenomena in wind turbine gearboxes. Micropitting (upper left), pitting
(upper right), scuffing (down)

All phenomena mentioned above result in the appearance of wear debris in the
oil. Depending on material and size, they can be classified within each type of wear,
and also they can offer valuable information on the condition of the gearbox. In an
experiment carried out with gears [6], the relationship between amount and size of

particles in oil and gearbox condition was studied, with the results obtained in
Fig. 4.

Damage Detection
“Sweet Spot”

Wear Particle Generation Rate

W
]

Fig. 4 Wear condition versus size and shape of particles in oil for gears [7]
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The main target of this work has been the selection and subsequent test in
laboratory of an on-line oil condition sensor to check if using this sensor an early
stage detection of potential failures related with wear in a wind turbine gearbox can
be achieved.

2 Design of Experiments

In order to develop this experiment, it was necessary to pay attention to three
different aspects: selection and conditioning of the sensor, selection and manu-
facturing of the particles and design and development of the test rig.

2.1 Sensor

Particle counting devices represent one of the most important tests for used oil
analysis, whether you use onsite particle counting or relying on a commercial lab
performing off-line measurements. Thus some problems can be quickly and easily
determined by monitoring the number and size-distribution of particles in an oil
sample. Particle counting was introduced during the 1970s as a result of the
pioneering work on hydraulics and fluid power conducted at Oklahoma State
University, and then applied to a lot of different industries [8].

Many different particle counting principles are used nowadays, including optical
and laser counting techniques. The principle used in this system needed to be robust
and reliable, due to the difficulty of repairs once installed in the wind turbine. Thus,
a magnetic detection system was selected. The sensor studied in this experiment
was the MetalSCAN 3115L, designed by GasTOPS Ltd. (Canada), and shown in
Fig. 5.

This sensor is an online particle counting sensor designed to detect and monitor
metal particles in wind turbine gearbox oil, ferrous and nonferrous, generated by
wear of the gearbox. The sensor generates an electric pulse for each particle larger
than a minimum size, in order to detect the most interesting particle range. The
detecting principle is based on the measurement of the magnetic field disturbance
caused by the passage of a particle through the sensor. The particle is magnetized
before entering the counter, then it is counted, and subsequently demagnetized
before exiting the sensor. The waveforms that occur depend on the direction of
motion of the particle and the type of particle [7], as shown in Fig. 6.

As said before, this sensor is connected directly to the lubrication system of the
wind turbine. Table 1 summarizes the most important characteristics of the sensor.

The connection between the sensor and the PC was realized with a microcon-
troller with Ethernet Modbus TCP/IP protocol, which was needed to be configured
in order to monitor and log the experiments.
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Fig. S MetalSCAN 3115L

Ferrous

Signal {volts)

Non-Ferrous

V. Macian et al.

Fig. 6 Sensor signal for a particle, ferrous (red) and nonferrous (blue). Adapted from [7]

Table 1 Main characteristics
of MetalSCAN 3115L

MetalSCAN 3115L

Sensor bore

38 mm

Minimum size particle (spherical)

350 pm
Fe/1000 pm Non-Fe

Minimum size particle (equivalent
spherical diameter)

230 pm Fe/600 pm
Non-Fe

Flow rate

38-1000 1/min
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2.2 Particles in Oil

Once the sensor was selected, next step comprised the selection and preparation of
particles and oil necessary for the experiment.

First of all, the oil selected was a typical commercial PAO-based (poly-alpha-
olefins) ISO VG 320, whose main characteristics are described in Table 2.

Then, the selection of particles was carried out. According to American Gear
Manufacturers Association (AGMA) [9], the main metallic elements present in oil
are iron (Fe) and copper (Cu), as gears are mainly manufactured in iron and copper.
According to this and taking into account the sensor limits, it was decided that two
different types of particles will be studied. Initially, it was decided to get a particle
size range higher than the sensor minimum, in order to assure the validity of
measurements, thus two different materials were acquired (from Alfa Aesar):

e “Iron powder, —20 mesh”: Tron particles with size less than 840 um. A sample
of these particles was studied in a laser granulometer in order to confirm size and
verify the percentage of particles that could be used in the study, as shown in
Fig. 7. After that, particles were sieved to a range greater than 300 pm.

e “Copper shot, 0.6-0.8 mm”: These particles present spherical to hemispherical
form with different sizes, in this case, ranging between 600 and 800 um, so no
sieving was necessary. In Fig. 8 the particle size distribution of this sample is
presented.

Table 2 Main properties of

1SO VG 320 oil din th Properties Value
oil used in the - . - 5
experiment Kinematic viscosity @ 40°C [cSt] 320
Kinematic viscosity @ 100°C [cSt] 34.1
Density @ 15°C [kg/m°] 853
Flashpoint, Cleveland open cup [°C] 260
Pour point [°C] —54
Neutralization number [mgKOH/g] 0.6
Particle Size Distribution
25 1100
2 180
< 5
1 {60
g
3 10 140
<
5 4120
0 0
0.0 0.1 1 10 100 1000 3000
Particle Size (pm)

Fig. 7 Particle size distribution of “Iron powder, —20 mesh”
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Particle Size Distribution

- {100
o -
g
i {60
=3
3 10 . |
< 40

5 {20

0

001 0.1 1 10 100 1000 3000

Particle Size (pm)

Fig. 8 Particle size distribution of “Copper shot, 0.6-0.8 mm”

Additionally, it was decided to transform a portion of these particles in a “flake”
shape, since this is the usual shape for wear particles in a wind turbine gearbox.

In order to simulate this difference, a sample of these particles was milled. In
Fig. 9 the difference between spherical particles and milled particles is shown.

Fig. 9 Particle milling: original and milled iron particles (up) and original and milled copper
particles (down)
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2.3 Test Rig

For the purpose of this experiment, a test rig was designed especially for the sensor
assessment. In Fig. 10 a diagram of the test rig is presented.

The test rig configuration was designed according to the following procedure:
the oil is in a deposit, where it is stored. Before starting the cycle, the oil is filtered
by a submerged filter to prevent undesirable particles flowing through the sensor.
The oil flows up to the pump, and after that the particles are introduced, in order to
protect the pump from wear induced by the particles. Once the flow of oil and
particles pass through the sensor, there is a magnet, whose function is to collect the
particles used in the experiment, so the oil gets back clean to the deposit. One of the
main points addressed was the selection of the pump, since there was a minimum
flux rate, and it was needed also some flexibility, since the viscosity of oil is around
200 cSt at the temperature of normal operation. In Fig. 11 can be observed the final
test rig completely assembled.

One of the most important parts that were designed included the particle
injection system. After the evaluation of different alternative systems, a system
based on a tee coupler was implemented, where the particles would be dragged by
the oil impulse by the pump, shown in Fig. 12.

Particle insertion system

O —
Hose 1° Hose 15"  |sensor Hose1,5"
- "—-Ehhgnel

Fig. 10 Diagram of the test rig specifically designed for this experiment

Filter ] .E'—J

Fig. 11 Mechanical
assembly of the test rig
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Fig. 12 Particle injection
system

2.4 Experiments

Once the system was assembled and prepared, the sequence of experiments were
decided. First, it was decided that the first experiment should be conducted with
iron particles, after that with copper particles and finally using a mixture of them.
The last option was included to increase the similarity of the test with real world
conditions, since it would be the most common situation.

Thus, a blank test would be conducted, and later on, the sensor would be tested
having a single particle. After that, a sensibility test would be carried out to find out
the limitations of the sensor. Finally, it would be mandatory to realize some tests in
real conditions to confirm the sensor capability. In Table 3 the different test per-
formed are presented.

For the selection of incipient and severe wear, information was obtained from
ANSI [9], and from similar tests [7], as shown in Fig. 13.

Table 3 Test sequence of the experiment

Experiment Material Particle rate

Blank - -

2 Fe 1

3 Cu 1

Sensibility test Cu 1/min; 2/min; 3/min; 6/min; 12/min; 60/min
5 Fe+Cu Incipient wear

6 Fe+Cu Severe wear
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Fig. 13 Particle size distribution and rate of a typical gear failure. Adapted from [7]

With the information obtained, different masses of each element were considered
for incipient and severe wear, according to the number of particles, oil flow rate,
mean spherical diameter and density of each element.

3 Results and Discussion

First test performed was a blank test, in order to validate the normal operation of the
sensor in the test rig and the connections realized. Results of this experiment are

presented in Fig. 14.

Fig. 14 Blank test results e Blank test

Blank test
o Blank

Particle counts [-]
]

0 100 200 300 400
Time (s)
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The result showed no counts, as expected. After that, a test using just one single
particle for each metal considered was performed. The test was performed
according to the following procedure: once the test rig was turned on, one particle
was added through the particle injection system until the particle was detected. In
Fig. 15 the results for the metals considered are presented.

Also in this case, the results showed expected trends. After the basic tests, the
sensibility test was performed. As the test was being conducted, it was observed
that there was some difficulty to introduce particles at a high speed rate, above 30
part/min. For that reason, the latter sensibility test was performed at the very end of
the experiment, with the sensor extracted from the test rig, and the particles were
passed through the sensor by free falling. The results obtained are shown in Fig. 16.

In Table 4 the rate comparison is found.

Main results from the sensibility test were that the sensor responded to a very
wide range of functioning, and as the rate was increased, the sensor started to miss
some counts. This response appeared as a consequence of signal counting algorithm
design, since it was configured to detect faults in real environment of a wind
turbine. If the experiment was performed with a great accumulation of wear par-
ticles in a short period of time, the sensor software configuration detects this
phenomenon as inadequate environmental conditions and therefore rejects these
measurements in order to avoid false-positive wear warnings.

With all the useful information obtained from the other test, a “real conditions”
test was performed. According to the specifications given above, a quantified
amount of both type of particles were introduced in the flow, one corresponding to
incipient wear, and the second one simulating severe wear. Results are shown in
Fig. 17.

One particle test One particle test

1 particle
o Cu

1 particle

e Fo

Particle counts [-]
1

Particle counts []
|

T T T T T T
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)

Fig. 15 One particle test results, for iron (leff) and copper (right)
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Fig. 16 Sensibility test
results

Table 4 Sensibility test rate
comparison

Fig. 17 Real conditions test
results

153

Sensibility test

60 —
Sensibility
. o 1/min
o 40— a— 2/min
0 e 3/min
§ ——— G/min
8 i 12/min
% o 50/min
'E
o 20 —
0 T
0 50 100 150 200 250
Time (s)
Rate (per min) Theoretical [counts/s] Test [counts/s]
1 0.020 0.017
2 0.035 0.033
3 0.048 0.050
6 0.09 0.10
12 0.14 0.20
60 0.43 1.00
50 —  |Fe+Cu real conditions test

Particle counts [-]

100 200

Time (s)

300

Fe+Cu real conditions
o Fe+Cu incipient
e Fe+Cu severe

400
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These results confirmed the trends expected. In the particle injection system the
particles were introduced manually into the flow, so at any time it was easy to
introduce a large amount of particles in the system, and afterwards activating the
false-positive algorithm of the sensor.

4 Conclusions and Future Works

The main conclusions of the experiment realized are detailed below:

e In this experiment a test rig was developed, to simulate the environment and
characteristics of a lubricant circuit of a wind turbine gearbox, including oil
selection and flow properties.

e A complete set of particles, both ferrous and non-ferrous, were selected and
transformed in order to simulate typical wear particles.

e The sensor studied in this experiment showed good performance, detecting both
types of particles and showing good sensibility test, for the usual range of
particle rates.

e In simulated real conditions, introducing a particle amount corresponding to
severe wear result a greater amount of particles than the amount corresponding
to incipient wear, but the limitations of the particle injection system led to
saturated measurements.

Considering these results, some future works have been proposed:

The first task to do would be the use of this test rig with real oil samples with signs
of wear at different stages (from lowest to highest severity of wear) from real wind
turbines on field. Thus, the sensor could be evaluated with real particles, in terms of
number, shape and sizes.

Another future work, practically mandatory before a general installation in a fleet
of wind turbines, would be to validate the behavior of the sensor studied under real
working conditions, i.e. installed into the lubrication system of a little group of
wind turbine gearboxes, preferably in those ones that have shown interesting wear
trends in off-line analysis.
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Residual Signal Techniques Used for Gear
Fault Detection

Omar D. Mohammed and Matti Rantatalo

Abstract The role of vibration monitoring is to detect any impact on the vibration
signal due to gear degradation and to give an early warning. Early detection allows
a proper scheduled shutdown to prevent failure. Residual signal method can be
applied to improve the extraction of the hidden fault impact. The current paper
presents a comparative study of three different residual techniques. The paper
concludes with a brief discussion on the used methods.

Keywords Gear fault detection - Gear dynamics - Residual signal method

1 Introduction

Gears are widely used in different applications for mechanical power transmission.
Gear failure can occur due to an excessive applied load, insufficient lubrication,
manufacturing errors or installation problems. In gear systems the vibration signal
is dominated by the gear meshing vibration, which is accompanied by some amount
of noise and probable geometric and assembly errors. Additional impacts will be
present in the signal when a localized gear fault occurs. The additional impacts due
to the existence of a fault are masked by the regular signal components. To improve
the extraction of the hidden fault impact, residual signal method can be applied.
Thus, the idea of generating a residual signal is to remove the regular signal
components in order to detect the fault more effectively. Different techniques have
been developed in the past for generating the residual signal. The first technique
was basically proposed by Stewart [1], who developed a number of fault detection
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indicators. Stewart’s enhancement technique of obtaining a residual signal involves
the removal of the gear mesh harmonics from the spectrum. Later on, Wang and
Wong [2] developed a new filtering technique based on the autoregressive model (AR
model). In this technique, the filtered signal which describes the healthy case was
subtracted from the unfiltered signal to produce the AR model residual signal. The
authors presented results showing that the AR model was more efficient and could
detect a fault earlier than the traditional technique of Stewart. More recently, another
method for removing the regular components was applied in Refs. [3-5], which
involves the subtraction of the whole vibration time signal of the healthy case from
that obtained with the existence of a fault. The rest of the signal was then the residual
signal which contained information supposed to be only related to the gear fault.
Finally, a residual signal technique based on the ensemble empirical mode decom-
position (EEMD) method was proposed in Ref. [6]. Using this technique, the residual
signal was obtained by removing some intrinsic mode functions (IMFs) which rep-
resent the meshing frequency harmonics and the other regular signal components.

In the current paper, three different residual techniques were applied to a
vibration signal to compare their behaviour. The analysed vibration response was
obtained by simulation using a gear dynamic model.

2 Gear Modelling

A program was developed using Matlab™ to investigate the time-varying gear mesh
stiffness analytically. A crack case of a 1 mm crack depth has been modelled.
Modelling of gear tooth crack is shown in Fig. 1. The main gear modelling
parameters that were used for stiffness calculations were adopted from Refs. [5, 7, §],
and can be seen in Table 1.

A dynamic simulation of a 6 DOF model was performed based on the
time-varying gear mesh stiffness value. Figure 2 shows the dynamic model which

(a)

Crack depth ,_A. =

Fig. 1 Modelling of gear tooth crack. a modelling of cracked tooth, b tooth notation
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Table 1 Parameters of gear-pinion set
Parameter Gear Pinion Parameter Gear Pinion
Number of 30 25 Mass (kg) 0.4439 0.3083
teeth
Module 2 2 Mass moment of 2x 107 0.96 x 107
(mm) inertia (kg.mz)
Teeth width |20 20 Radial stiffness of the | 6.56 x 10° | 6.56 x 10°
(mm) bearing in X,y

direction (N/m)
Contact 1.63 1.63 Radial damping of the | 1.8 x 10 1.8 x 10°
ratio bearing in X,y

direction (N/m)
Rotational 2000 2400 Coefficient of friction 0.06 0.06
speed (rpm)
Pressure 20 20 Total damping 67 67
angle (deg.) between meshing teeth

(N.s/m)
Young’s 2x10° |2x10° |Poisson’s ratio 0.3 0.3
modulus, E
(N/mm?)

Fig. 2 Dynamic model of a one-stage gear system with 6 DOF
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was used in the current research study and which was adopted in Refs. [5, 7, 9, 10].
A Matlab™ computer simulation using the ODE45 function was used for modelling
the equations of motion. The dynamic simulation was performed for the healthy
case, after which the simulation was repeated to obtain the dynamic behaviour for
the crack case.

3 Residual Signal Method

Early fault diagnosis is not always possible by only checking the trend of classical
statistical features. For some systems, these statistical features are only able to react
after a relatively large deviation of the trend.

Therefore, model-based methods have been developed to improve the fault
diagnosis and to give a deeper insight into the system behaviour. These methods
involve the generation of the residuals of the output variables indicating the dif-
ference between the healthy and the faulty cases [11, 12].

The model-based process can be divided into three steps; residual generation,
residual evaluation and fault diagnosis [13]. In the current paper, three different
techniques were applied for residual signal generation. The three techniques are
namely; subtraction in the time domain, applying the comb filter in the frequency
domain, and the auto-regressive AR model. A description of the three techniques
can be found in Refs. [1-5]. These three techniques were applied using healthy and

Fig. 3 Original signals (a) 2
obtained from dynamic
simulation. a healthy case, —_ 1 I
b crack case with a 1 mm § !
crack depth \g 0 ‘ J
5
E
& -2
a
-3 . . . . .
0 60 120 180 240 300 360
Rotation angle (degree)
(b) 2

Displacement (um)

0 60 120 180 240 300 360
Rotation angle (degree)
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Fig. 4 Residual signal (a)
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faulty signals. The faulty signal was obtained from dynamic simulation for the case
of a 1 mm crack depth, as well as the healthy signal, see Fig. 3. The results of the

three applied techniques can be

seen in Fig. 4.

4 Results and Discussion

The three residual signals shown in Fig. 4 are obtained for the same fault case.
There are some differences which can be recognized. In the first technique which
involves signal subtraction in the time domain, the peak indicating the impact of the
crack is higher than those obtained with the two other techniques. This is because of
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the subtraction of two coincident signals representing the healthy and faulty signals.
Moreover, because of the subtraction of the two random contents embedded in the
healthy and faulty signals, the amount of the noise left in the residual signal is more
than those obtained with the two other techniques, see Fig. 4a. To perform signal
subtraction in the time domain, both the healthy and the faulty signals must start at
exactly the same point of the same tooth to ensure the synchronisation of the time
signals. This technique can be implemented in the time domain with simulated
signals.

The second technique, involves removing the gear mesh frequencies using comb
filter, has been applied, see Fig. 4b. The amount of the noise left in residual signal is
less. The peak indicating the impact of the crack is obvious, but lower than that
obtained from the first technique.

In Fig. 4c the result of the AR model is plotted. Based on the AR model used, the
residual signal shows a relatively wider peak indicating the impact of the crack. AR
technique is flexible in terms of different orders can be chosen for the prediction
filter. Filter order should be carefully chosen in order to obtain a good prediction.
High order filters can result in instability in prediction. In the current work the Burg
method with the order 200 has been adopted.

5 Conclusions

The three residual techniques can be applied for residual signal generation. The first
technique can be implemented in the time domain, but it requires a synchronisation
of the two subtracted time signals. The amount of the noise with this technique is
more than those obtained with the two other techniques. The two other techniques
namely; using the comb filter in the frequency domain and the AR model, can be
applied without the need of synchronised time signals.
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Prognostics and Structural Health
Assessment Using Uncertain Measured
Response Information

Achintya Haldar and Abdullah Al-Hussein

Abstract The authors and their team members have been working on developing
implementable techniques for the objective rapid assessment of structural health
(RASH) just after major natural and man-made events or in the context of main-
tenance over a period of time. They used the system-identification techniques by
eliminating some of its weaknesses. For easier implementation, the excitation
information was completely ignored. To locate defects and their severity at the local
element level, the structures were represented by finite elements. By tracking the
changes in the stiffness parameters of each element, the location(s) and severity of
defects are assessed. The team conducted extensive analytical and laboratory
investigations to verify all the methods. They had to overcome several challenges
related to the conceptual and analytical development, data processing, and the
presence of uncertainty in the every phase. To consider nonlinearity in the system
identification process, a method known as Generalized Iterative Least
Squares-Extended Kalman Filter-Unknown Input (GLIS-EKF-UI), was developed
earlier. Since it failed to identify structures in some cases, the authors recently
proposed a new method denoted as Unscented Kalman Filter—Unknown Input-
Weighted Global Iterations (UKF-UI-WGI). With the help of informative exam-
ples, the superiority of UKF-UI-WGI over GLIS-EKF-UI is documented in this
paper. Since at the beginning of an inspection, the defects and their severity are
expected to be unknown, the authors recommend UKF-UI-WGI for the rapid
assessment of health of infrastructures.

Keywords Structural health assessment - Uncertain measured information
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1 Introduction

ICRESH-ARMS 2015 provides a unique opportunity to discuss all the issues
related to Prognostic and Structural Health Assessment. In fact, the first two issues
of Life Cycle Reliability and Safety Engineering published by the Society for
Reliability and Safety (SRESA) in 2015 are dedicated to the related topics. The
related areas have become one of the most active research topics and have attracted
multi-disciplinary interest. Extending life of infrastructures instead of replacing
them has become a major challenge to engineers [9]. Structural health assessment
just after a natural event or a man-made event has also become a part of inspection
protocol. Non-destructive evaluation or inspection techniques of various degrees of
sophistication are developed to help the assessment process. Smart sensing tech-
nologies, high quality data acquisition systems, mitigation techniques for noise
contamination, digital communications, sophisticated computational techniques,
etc., have been developed. This general area is commonly known as structural
health assessment (SHA) or structural health monitoring (SHM).

Any automated monitoring practice that seeks to assess the health of a structure
can be considered as SHM [7]. It implies that the health of a structure can be
monitored in an automated manner by tracking the initiation or growth of a defect
already present in the system. Since visual inspections may not be adequate for this
purpose, sensors and the interpretation of their readings are essential for SHM. In
spite of its recent impressive developments, it is not generally used in real world
applications. Continuous accurate measurements of any output is a major challenge
considering power sources necessary for operation, data transfer and storage, failure
or sensors getting out of calibration, etc. The users generally assume that the
technology is not fully developed for practical applications.

Objective rapid assessment of structural health (RASH) is essential just after a
visual inspection or after a major natural event like strong earthquake or high wind
or man-made event like blast or explosion, or in the context of maintenance. There
is a potential for significant loss of economic activities in a region without such
assessment. There are significant developments in the related areas. These areas are
the subject of this paper.

2 Rapid Assessment of Structural Health

All defects are not equally important in maintaining the overall structural health.
Thus, some of the major objectives of RASH are to locate defects at the local
element level, assess their severity, and take remedial actions when necessary. If
defects are repaired, it is important to know if they are repaired properly and all
major defects are identified. To achieve these objectives, the process of listening to
audible variations of responses due to tapping of structural surface has been used
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over centuries. Visual inspections at regular intervals are also suggested in many
design codes. They can be broadly categorised as non-model based non-destructive
inspection (NDI) techniques. If location of a defect is known, the profession now
have technological sophistication to inspect it using instrument-based Penetrate
Testing, Magnetic Particle Testing, Radiographic Testing, Ultrasonic Testing, Eddy
Current Testing, Acoustic Emission Testing, Thermal Infrared Testing, etc.

For most large civil infrastructures, the location, number, and severity of defects
may not be known in advanced. Sometimes, defects may be hidden behind obstruc-
tions like fire-proofing materials. Thus, instrument-based non-model approaches may
not satisfied our needs. In the recent past, a consensus started developing about the use
of measured time domain dynamic responses at the global level to assess the current
structural health at the local element level. By appropriately tracking the signature
embedded in the measurements, the structural health can be assessed.

The research team at the University of Arizona has been working on developing
testing protocols for RASH for over two decades. After conducting extensive lit-
erature review, the team concluded that to locate defects, number, and their severity,
it will be helpful if structures are represented by finite elements and their dynamic
responses are measured in time domain representing their current state. By com-
paring the identified dynamic properties, essentially the stiffness properties of the
elements, with the expected values, or reference values obtained from the design
drawings, or changes from the previous values if inspections are carried out peri-
odically, or variations from one member to another with similar sectional proper-
ties, the location(s), number, and severity of defects can be established at the
element level. The concept is based on the axiom that the presence of defects will
alter the dynamic responses and by tracking the signature embedded in the
responses, the structural health can be assessed rapidly.

3 System Identification-Based Rash

By measuring dynamic excitation and response information, the stiffness parameter
of all the elements in the finite element representation can be evaluated using an
inverse mathematical concept commonly known as the system identification
(SI) technique. However, Maybeck [21] correctly pointed out that deterministic
mathematical models and control theories do not appropriately represent the
behavior of a physical system and thus the SI-based method may not be appropriate.
The research team successfully demonstrated that SI-based concept can be used for
RASH if the different sources of uncertainty are accounted for appropriately and the
system parameters are evaluated in an optimal sense using proper data processing
algorithm.
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3.1 System Identification with Unknown Input

One of the basic requirements for RASH is the simplicity in the inspection process.
It is known to the profession that measuring dynamic excitation forces in the field
condition can be very error prone due to inherent noises in the sensors and con-
tamination due to multiple sources of excitation which is beyond the control of the
inspector. It will be very desirable if a system can be identified using only measured
response information completely ignoring the excitation information. The team
developed several such techniques, commonly known as Iterative Least Squares
with Unknown Input (ILS-UI) [24], Modified ILS-UI or MILS-UI [19], and
Generalized ILS-UI or GILS-UI [18]. Mathematical concepts used to develop them
cannot be discussed here due to lack of space but widely available in the literature.
One major advantage of these procedures is that they are not very sensitive to the
noises present in the response time histories.

3.2 System Identification with Unknown Input and Limited
Response Information—Kalman Filter

One major deficiency of the methods discussed in the previous section is that they
require response time histories at all DDOFs. To assess health of real infrastruc-
tures, it may be practically impossible and very expensive to install sensors at all
DDOFs. In most cases, only a small part of the structure can be instrumented. When
available responses are limited, generally Kalman filter (KF)-based concept is used.
Kalman filter [15, 16] is a set of mathematical equations that provides efficient
computational means in a recursive manner to estimate the state of a process, in a
way that minimizes the mean of squared error, and calculates the best estimate of
states from the noisy sensor responses [12, 26]. It is a time domain filter and is very
powerful in several aspects. One of its limitations is that it is applicable for linear
systems. If KF is used for RASH, the identification process becomes nonlinear.
This is due to the fact that the identification of the unknown parameters jointly with
dynamic responses is a nonlinear identification problem even if the structural
system is linear. For nonlinear SI, extended Kalman filter (EKF) will be an
attractive choice. It extends the linear Kalman filter to handle nonlinear systems
based on a first-order linearization of the nonlinear statistical distributions of the
variables. For RASH, EKF is an important requirement.

To implement EKF for RASH, the excitation force and the initial state vector
must be known. The first requirement will defeat the purpose of SHA without input
or ILS-UI The second requirement is the final product of any inspection strategy
and will not be available at the initiation of the inspection process. These two
implementation requirements essentially limit the use of the basic KF concept for
RASH.
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Since EKF is very powerful, the team [25] decided to generate the required
information to implement it. Suppose only a small part of the structure is instru-
mented. For the ease of discussion, it will be denoted as substructure. It is assumed
that the responses at all DDOFs of the substructure will be measured. Then, the
ILS-UI concept can be used to identify the stiffness parameter of all the elements in
the substructure. All the beams and columns in the whole structure are expected to
have similar cross sectional properties. Assuming the substructure contains a beam
and a column element, all the elements in the whole structure can be assigned
respective properties and the initial state vector of the structure will now be
available. One very attractive attribute of ILS-UI is that it identifies the unknown
excitation time history. Thus, with the introduction of the substructure concept, the
two implementation requirements of EKF can be satisfied and the health of large
real structural systems can be assessed using limited noise-contaminated responses
without using any information on excitation.

The concept just discussed is known as Generalized Iterative Least Squares—
Extended Kalman Filter—Unknown Input or GILS-EKF-UL. It can be implemented
in two stages. In Stage 1, based on the available response information, a sub-
structure can be identified. Using ILS-UI on the substructure, the unknown exci-
tation time history and the stiffness parameter of all the elements in the substructure
can be identified. The information will help to develop the initial state vector for the
whole structure. Then in Stage 2, the EKF concept will be used to identify the
stiffness parameter of all the elements in the structure. In this way, the number,
location, and severity of defects can be assessed very accurately. The mathematical
theories behind the two stages are discussed very briefly below.

4 Mathematics of Gils-Ekf-Ui
4.1 Stage 1—ILS-UI

The governing differential equation of motion using Rayleigh damping for the
substructure can be expressed as:

MsubXsub (t) + (aMsub + ﬁKsub)Xsub (t) + KsubXsub (t) :fsub (t) ( 1 )

where My, is the global mass matrix, generally considered to be known; K, is the
global stiffness matrix; X (¢), X (1), and Xy, (f) are the vectors containing the
acceleration, velocity, and displacement, respectively, at time #; f,,(?) is the input
excitation vector at time #; and a and f are the mass and stiffness proportional
Rayleigh damping coefficients, respectively. The subscript ‘sub’ is used to denote
substructure.
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The global mass and stiffness matrix can be formulated using standard proce-
dure. The stiffness parameter for the ith element, k; is defined as E;l/L;, where L; I;
and E; are the length, moment of inertia, and modulus of elasticity, respectively.
The P vector contains all the unknown parameters and can be defined as:

P= [kl k2 T knesub ﬁkl ﬁkZ to ﬁknesub a]T (2)

Using the least squares concept, it can be estimated as [24]:
P— (ATA) 'AF (3)

where A matrix contains the measured displacement and velocity responses at time
point #; F vector contains the unknown input excitations and the inertia forces at
time point #; and the responses are measured at equal interval of At for g time points.
Since the input excitation f;,,;, is unknown, the force vector F in Eq. (3) is partially
known and the iteration process cannot be initiated. To start the iteration process,
the excitation information can be initially assumed to be zero for all the time points
as discussed in [18]. The iteration process is continued until the excitation time
history converges at all time points, considering two successive iterations, with a
predetermined tolerance level. A tolerance level is set to be 10~° in this study.

It is important to note that only acceleration time histories will be measured
during an inspection. However, velocity and displacement time histories are nec-
essary to implement the concept. The acceleration time histories can be succes-
sively integrated to generate the velocity and displacement time histories as
discussed in more details in [8, 10, 22].

4.2 Stage 2—Implementation of EKF Concept

To implement the EKF concept, the differential equation in state-space form and the
discrete time measurements can be expressed as:

Z(1) = flZ(1),1] (4)
Y(k) = h[Z(k), 1]+ V(k) (5)

where Z(1) is the state vector at time #; Z(¢) is the time derivative of the state vector;
fis a nonlinear function of the state; Y(k) is the measurement vector; & is the
function that relates the state to the measurement; V(k) is a zero-mean, uncorre-
lated, white noise process with variance R(k), and represented by
E[V(k) VI(j)] = R(k)S(k — j), where 6(k — j) is the Kronecker delta function; that
isdk—j)=1ifk=j,and 6(k—j) =0if k #j.
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For a structure represented by N number of degrees of freedom and L number of
elements, the vectors Z(z) and Z(z) are of size (2 N + L) x 1, L is the total number of
unknown stiffness parameters. They are formed in the following way:

Z,(1) X(7)
Z(t) = | Z2(r) | = | X(r) (6)
Z;(1) K
. X(1) X(1)
()= | X() | = | -M'[KX(2) + («M + fK)X (1) — £(1)] ™)
0 0
where K = (ki k- k,w]T is column vector of size (L x 1).

For the identification of the whole structure, acceleration responses will be
measured at a fewer (B) number of DDOFs. The accelerations will be integrated
twice to obtain the velocities and displacements, as described in [22]. The vector
Y (k) will have size (2B x 1) and will contain information on observed displace-
ments and velocities.

Therefore, the discrete time measurement model is linear and it can be expressed
at any discrete time k as:

Y(k) = H- Z(k) + V(k) (8)

where matrix H is the measurement matrix of size 2B X (2 N + L).
The filtering process in EKF can be started after initialization of state vector
Z,(0]0), which can be assumed to be Gaussian random variable with state mean

Z(0/0) and error covariance of P(0|0) i.e., Z(0|0) ~ N[Z(0),P(0)].

The initial error covariance matrix P(0|0) contains information on the errors in
the observed displacement and velocity responses, and in the initial values assigned
to the unknown stiffness parameters of the whole structure. It is generally assumed
to be diagonal and can be expressed as:

_ [ P00) 0
where P,(0]0) is a (2 N x 2 N) diagonal matrix, contains initial error covariance for
observed responses; P;(0]|0) is a (L x L) diagonal matrix, contains initial error
covariance for matrix K. In the present study, a value of 1.0 is considered for the
diagonal entries of P,(0]0). Jazwinski [12] and Al-Hussein and Haldar [2, 4]
pointed out that the diagonal entries for P;(0]0) should be large positive numbers to
accelerate the convergence of the local iteration process. A value of 1000 is used in
this study.

The basic filtering process in EKF is the same Kalman filter (KF), i.e. propa-
gation of the state mean and covariance from time k to one step forward in time
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k + 1, and then updating them when the measurement at time k + 1 becomes
available. Mathematically the steps can be expressed as:

(i) Prediction of state mean Z(k + 1]k) and its error covariance matrix P(k + 1|k)
for the next time increment k + 1 as:

(k+1)Ar

2k 110 =20+ [ Z(eka (10)
kAt

P(k+1|k) = ®(k+ 1|k)P(k|k)DT (k + 1]k) (11)

(i) Using measurement Y(k+ 1) and Kalman gain K(k+ 1) available at time
k + 1, updated state mean Z(k+ 1|k+1) and error covariance matrix
P(k+ 1|k +1) can be obtained as:

Zk+ 1k +1) = Z(k+1)k) + Kk + D)[Y(k+1) —H-Z(k+1]k)]  (12)

Pk+1k+1) = [I—K(k+1) H P(k+ 1]k) 1 - K(k+ 1) H]

(13)
+K(k+1) R(k+1) K" (k+1)

where
K(k+1) = P(k+ 1[k)H [HP(k + 1[k)H" + R(k+ 1)] "' (14)

where, ®(k + 1|k) is the state transfer matrix from time & to k + 1; K(k + 1) and
R(k + 1) is the Kalman gain matrix and diagonal noise covariance matrix,
respectively, at time k + 1. Detail procedure for calculation of ®, K, and M can
be found in [17]. The symbol - stands for matrix multiplication. In the present
stud4y, diagonal entries in the noise covariance matrix R(k) are considered to be
1077,

5 UKEF Based SI Concept

As will be discussed later, GILS-EKF-UI was successfully verified by conducting
extensive analytical and laboratory investigations. In the laboratory investigations,
the transverse acceleration time-histories were measured by capacitance
accelerometers and angular rotation by autocollimators [20, 23]. To avoid con-
tamination by other sources of excitations beyond the control of the inspector,
responses were collected at a high sampling rate, 4000 cycles per second, for a
fraction of a second. More recently it was observed that GILS-EKF-UI failed to
converge or identify a structure when the sampling rate is much lower than what
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was used for the laboratory investigation. Upon further investigations, the authors
concluded that the major reason for the non-convergence is the presence of higher
level of nonlinearity. GILS-EKF-UI is supposed to identify a system in the presence
of some degree of nonlinearity but the threshold is not known at this time. The
first-order linearity used in EKF may not be sufficient to address more severe level
of nonlinearities in the responses.

The authors [1] concluded that the unscented Kalman filter (UKF) concept can be
used for highly nonlinear system identification problems. The UKF concept was
developed by Julier et al. [14] to address the shortcoming of EKF. The UKF concept
was developed based on unscented transformation (UT) with the underlying
assumption that approximating a Gaussian distribution is easier than approximating
a nonlinear transformation. UKF uses deterministic sampling to approximate the
state distribution as a Gaussian Random Variable. The sigma points are chosen to
capture the true mean and covariance of state distribution. They are propagated
through the nonlinear system. UKF determines the mean and covariance accurately
to the second order, while the EKF is only able to obtain first order accuracy [13].

The main difference between the EKF and UKF procedures is in the prediction
step, i.e. prediction of the state vector and its error covariance using mathematical
model of the system. They are the same in the updating step. In the prediction step
of EKF, Jacobian matrices are used to linearize the nonlinear equations so that the
linear KF can be used. However, in the prediction step of UKF, a number of state
vectors or so-called sigma points is generated and then propagated through the
nonlinear equations to get more accurate estimate. Thus, to implement the UKF
procedure, instead of using Egs. (10) and (11) of the EKF procedure, the following
equations are necessary.

5.1 Sigma Points Calculation Step

At the current state vector Z(k|k), sets of 2n + 1 symmetric sigma points are
generated so that they have the same mean and covariance of Z(k\k) as following:

Lo (klk) = Z(k|k)
2 (klk) = Z(k|k) + /(A +n)Ceori i=1,...,n (15)
Xl+n(k|k k|k \/mccolz l: 1,...,}’1,

where

i=@*(n+79) —n (16)
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in which C is a square root of the covariance matrix such that P(k) = C - CcT, Ceol,i
is the ith column of C’s matrix; n is the dimension of the state vector (n =2 N + L);
The parameter ¢ determines the spread of the sigma points around the mean.
Typical range value for ¢ is (0 < ¢ < 1). The parameter y is a tertiary scaling factor
and is usually set equal to 0. In fact, parameter y can be used to reduce the higher
order errors of the mean and the covariance approximations. Note that sigma points
are a set of vectors whose components are real numbers.

5.2 Prediction Step

The sigma points are propagated through the nonlinear dynamic equation as:

(k+1)At
% (k4 1K) = x;(k|k) + / fIZ(t),ddt i=1,....2n (17)

kAt

The predicted state vector Z(k + 1|k) can be shown to be:

Z(k+1]k) = ZZW %i(k+ 1]k) (18)
i=0

and its predicted error covariance matrix P(k+ 1|k) can be expressed as:

P(k+1Jk) = i W; [wi(k + 1|k) — Z(k+ 1|k)] [, (k + Lk) — Z(k+ 1|k)]T
i=0

(1= @+ ) [1o(k + 1]k) — Z(k + 1)) [0 (k + 1k) — Z(k+ 11k)]"
(19)

where y is the secondary scaling factor used to emphasize the weighting on the
zero’s sigma point for the covariance calculation. The value of y is greater than 0
and the best value is 2 for Gaussian distribution. The weight factor W; can be shown
to be:

i=0 (20)

i=1,...,2n (21)
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It is important to point out here that in this study the measurement model is
linear and linear KF is used to predict the measurement vector and its error
covariance matrix.

5.3 Improvements in UKF Algorithm

When the EKF concept was used in the context of ILS-UIL i.e. the two-stage
concept used in GILS-EKF-UI, it failed to converge in some cases. The authors
observed that the use of UKF to identify large structural systems were very limited
in the literature. Most of the reported works were developed to identify shear-type
structures with very few DDOFs using long duration responses in one global
iteration. Suppose that the responses are available for g time points. The iteration
processes between successive time points in the UKF procedure are termed as local
iterations and the iteration processes for all g time points are termed as a global
iteration. The three steps of the UKF (sigma point, prediction and updating oper-
ations) are carried out for all g time points.

To obtain optimal, stable, and convergent solutions of the SI process, the authors
proposed to use several global iterations using responses collected for a fraction of
second. They noted that the error covariance matrix of the stiffness parameters
reduced significantly during the successive global iterations and the identified
stiffness values sometimes converge to the wrong values particularly when the
initial values are far from the expected values representing defective states. This
prompted the authors [3, 4] to introduce a weighted global iteration factor, w, to the
error covariance matrix after the first global iteration so that the algorithm can detect
the stiffness parameters with incorrect initial value but converges to the correct
solution. In the second global iteration, the initial values of the stiffness parameters
are the same as that of obtained at the completion of first global iteration. A weight
factor w is introduced in the stiffness covariance matrix obtained at the completion
of the first global iteration to amplify it and then used it as the initial stiffness
covariance in the second global iteration. The weighted global iteration concept can
be mathematically presented as:

o %00 X0

Z(00) = | x"(0/0) | = | X (0]0) (22)
K700 ] |[K"(4le)
_ [P{M(0]0) 0

The same processes of local iterations are carried out for all the time points and a
new set of state vector and error covariance matrix are obtained at the completion of
second global iteration. The weighted global iteration processes are continued until
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the estimated error in the identified stiffness parameters at the end of two consec-
utive global iterations becomes smaller than a predetermined convergence criterion

(&5)-
K" (glg) — K" (gla)| <& x [K' ™ (glq)| (24)

where i represents the ith global iteration. & is considered to be 1 % in this study.

Although the weighted global iterations play an important role in the later stage
to assure convergence; the global iteration procedure does not guarantee the con-
vergence of the iteration scheme. If they diverge, the best estimated values based on
minimum objective function 0 are considered, as discussed in [4, 11].

The procedure developed this way will be denoted as Unscented Kalman Filter
—Unknown Input- Weighted Global Iterations or UKF-UI-WGI. It will be
implemented in two stages in the same way as that of GILS-EKF-UI It will not
require any additional resources but it will improve the defect detection capability
in a significant way, as will be elaborated further with the help of several infor-
mative examples.

6 Examples

It is hoped that the sequential development processes used by the research team to
develop several RASHs for infrastructures are informative. However, during each
phase of the development, the reviewers of technical papers commented that the
procedures were reasonable from the theoretical point of view but could not be used
for the health assessment of real infrastructures. This prompted the research team to
initiate several laboratory investigations. One of them is discussed briefly below.

6.1 Example 1

6.1.1 Description of the Frame and Dynamic Testing

A two-dimensional one-bay three-story steel frame, shown pictorially in Fig. 1, was
initially tested to verify the EKF procedure [20]. To fit the testing facilities, the
frame was scaled to one-third of its actual dimensions. The scaled frame has a bay
width of 3.05 m and story height of 1.22 m. The frame consists of nine members;
six columns and three beams. Steel section of size S4 x 7.7 was used for all the
beams and columns in order to minimize the effects of fabrication defects and
differences in material properties. The frame was reconfigurable, i.e. bolted joints
were used so that the defect-free and defective members could be interchanged to
study defect detection capability. Several types of defects, very severe to minor in
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Fig. 1 The pictorial view of
the frame

COMPOSITES 1 mrp

nature, were introduced. Some of the defect scenarios considered were removing a
member completely, loss of area of a member over a finite length, multiple cracks in
a member, one crack in a member, loosening bolts at joints, and multiple combi-
nations of these defects. The same response information was used to verify both
GILS-EKF-UI and UKF-UI-WGTI in the following sections.

The frame consists of 9 members; 3 beams and 6 columns. The frame is rep-
resented by the finite element (FE) with 9 elements and 8 nodes. Each node has
three DDOFs; two translational and one rotational. The support condition at the
bases is considered to be fixed. Therefore, the total number of DDOFs for the frame
is 18. The actual stiffness parameters k;, defined in terms of (E;I/L;), for the beam
and column are estimated to be 96500 and 241250 N-m, respectively. The first two
natural frequencies of the defect-free frame were estimated experimentally to be
f1=9.76 Hz and f, = 34.12 Hz. Then, assuming the same damping for the first two
significant frequencies, a procedure suggested in [6], is used to calculate the
Rayleigh damping coefficients a and . They are found to be 1.1453681 and
0.0000871, respectively. The frame is excited by a sinusoidal load f(t) = 1.4 sin
(58.23t) N applied at node 1, as shown in Fig. 2. Before conducting any test,
numerous analytical verifications were carried under various testing conditions. For
the analytical verifications, the responses of the frame in terms of displacement,
velocity and acceleration time histories were numerically generated using a com-
mercial software ANSYS (ver. 15.0) [5] at all 9 DDOFs (responses at nodes 1, 2
and 3) of the substructure for all cases. The frame is identified using responses from
0.02 to 0.32 s with time increment of 0.00025 s providing a total of 1201 time
points. For the laboratory investigation, the translational and rotational acceleration
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Fig. 2 Finite element Substructure
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Table 1 St.iffnes.s parameter - nfember Nominal (N-m) Identified Change (%)
(EI/L) identification for the
substructure—defect-free @ @ (€) “)
frame k; 96500 96502 0.002
ky 241250 241255 0.002

time histories were measured. They were successively integrated to generate
velocity and displacement time histories as suggested in [8, 22].

6.1.2 Identification of the Defect-Free State of the Frame

To implement both the GILS-EKF-UI and UKF-UI-WGI methods, the substructure
used is shown in double lines in Fig. 2. The stiffness parameters of the two elements
in the substructure using ILS-UI in Stage 1 are identified and the results are
summarized in Table 1. The results indicate that the substructure is identified very
accurately. As mentioned earlier, ILS-UI also identifies the unknown excitation
force. Both the actual and identified excitation time histories are shown in Fig. 3.
The figure clearly indicates the unknown excitation time history is also identified
very accurately.

The errors in measurement noises (R) in Eq. 5 are one of the important factors
that influence the identification of the stiffness parameter. Two different values of
R (1072 and 10™*) are considered in this study. Using the information from Stage 1,
the stiffness parameter of all the nine members of the whole frame is identified
using the GILS-EKF-UI and UKF-UI-WGI methods. The results are summarized in
Table 2. As commonly used in the literature, the errors are defined as the percentage
deviation of identified values, representing the current state, with respect to the
initial theoretical values. The maximum acceptable error in the identification is
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Fig. 3 Actual and identified 2 Aol Tond
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Table 2 Stiffness parameter (EI/L) identification for defect-free frame

Member Nominal (N-m) Error in Identification (%)

R=10"* R=10"°

EKF UKF EKF UKF
1) (2) (3) “) &) (6)
k; 96500 0.002 —0.069 0.000 —0.030
k> 96500 0.062 0.091 0.064 0.054
k3 96500 0.047 0.096 -0.102 —0.065
ky 241250 —0.063 —0.063 —0.004 —0.007
ks 241250 —0.237 —-0.073 —0.063 —0.001
ke 241250 —0.096 0.013 —0.003 0.009
k; 241250 —0.338 -0.104 -0.011 —-0.015
ks 241250 —0.032 -0.222 -0.011 —0.040
ko 241250 —0.105 —-0.206 —-0.016 —0.039

about 10 % reported in the literature [2]. The results in Table 2 clearly indicate that
both methods identified the stiffness parameters of all the members reasonably well
for both measurement errors. In an overall sense, UKF-UI-WGI identified the frame
more accurately than GILS-EKF-UI Since the differences in identified stiffness
parameters are relatively small, the health of the frame can be considered as
defect-free.

6.1.3 Health Assessment of Defective Frame
After successfully identifying the defect-free frame, several defective states of the

frame were considered, as discussed earlier. Only two defect scenarios are pre-
sented in the following sections.
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Fig. 4 Defect in member 3

Fig. 5 Defects in the frame (a)
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Defect 1
In defect 1, member 3, the beam at the first story level, is considered to have one
defect. The cross-sectional area of member 3 is considered to be corroded over a
length of 30.5 cm, located at a distance of 30.5 cm from node 5. It is pictorially
shown in Fig. 4. The defect is shown in Fig. 5a in the finite element representation.
The web and flange thicknesses are considered to be reduced by 20 % of their
original values. The loss of thicknesses will result in the reduction of the
cross-sectional area by 19.13 % and the moment of inertia by 17.02 % from the
defect-free case. The identified stiffness parameters for all nine members using the
GILS-EKF-UI and UKF-UI-WGI methods are summarized in Table 3. In all cases,
the maximum changes occur in member 3, indicating it contains the defect. The
results also indicate that both methods can be used for RASH of the frame.
Defect 2
In defect case 2, member 3 is considered to have two defects. The first defect is the
same as that in defect case 1. For the second defect, the cross-sectional area is also
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Table 3 Stiffness parameter (EI/L) identification for defect 1

Member Nominal (N-m) Change in Identification (%)

R=10"* R=10"

EKF UKF EKF UKF
)] (2) (3) “ ® (6)
k; 96500 —0.008 -0.107 0.048 0.037
ko 96500 —-0.023 0.115 -0.481 -0.314
k3 96500 —2.551 -2.609 -2.371 —2.472
ky 241250 —0.057 —0.009 -0.015 0.000
ks 241250 —0.366 —-0.148 —-0.040 —-0.024
ke 241250 -0.211 —0.158 —0.091 —0.104
k7 241250 —0.398 —0.099 —0.062 —0.058
ks 241250 -0.239 —0.402 -0.192 -0.229
ko 241250 -0.321 -0.411 —-0.200 -0.237

Table 4 Stiffness parameter (EI/L) identification for defect 2

Member Nominal (N-m) Change in Identification (%)

R=10"* R=10"

EKF UKF EKF UKF
1) (2) (3) “) &) (6)
k; 96500 0.131 0.028 0.061 0.022
k> 96500 —0.347 —-0.159 —-0.199 —-0.141
k3 96500 -4.997 —5.088 —5.189 —5.055
ky 241250 -0.071 —-0.025 —0.091 0.004
ks 241250 -0.222 —-0.020 —-0.329 0.016
ks 241250 -0.223 —-0.193 —0.069 —0.055
k; 241250 —0.467 -0.176 -0.223 -0.192
ks 241250 —0.440 —0.594 -0.421 —0.653
ko 241250 —0.508 —-0.599 —0.449 —0.661

considered to be corroded over a length of 30.5 cm but it is located at a distance of
30.5 cm from node 6, as shown in Fig. 5b. The identified stiffness parameters for all
members using the GILS-EKF-UI and UKF-UI-WGI methods are summarized in
Table 4. In all cases, the maximum changes occur in member 3, indicating it
contains the defect. The reduction in the stiffness parameter of member 3 for defect
2 is more than that of defect case 1. It is clearly indicated that the defect in case 2 is
more severe than that in case 1. The results also indicate that both methods can be
used for RASH of the frame.
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6.2 Example 2

In Example 1, both the GILS-EKF-UI and UKF-UI-WGI methods appear to
identify the defect spot and the severity accurately. To demonstrate the superiority
of UKF-UI-WGI over GILS-EKF-U]I, this second example is considered.

6.2.1 Description of the Frame

A two-dimensional frame with a bay width of 9.14 m and story height of 3.66 m, as
shown in Fig. 6, is considered. The frame has a total of 25 members; 10 beams and
15 columns. The beams and columns are made of W21 x 68 and W14 x 61 sec-
tions, respectively, of Grade 50 steel. The frame is modeled by 18 nodes in the finite
element (FE) representation. Each node has three dynamic degrees of freedom
(DDOFs); two translational and one rotational. The support condition at the base
(nodes 16, 17, and 18) of the frame is considered to be fixed. The total number of
DDOFs for the frame is 45. The actual theoretical stiffness parameter values k;
evaluated in terms of (E;I/L;) are calculated to be 13476 kN-m and 14553 kN-m for
a typical beam and column, respectively. First two natural frequencies of the frame
are estimated to be f; = 3.598 Hz and f, = 11.231 Hz, respectively. Following the
procedure described in [6], Rayleigh damping coefficient o and f are calculated to
be 1.7122088 and 0.00107326, respectively, for an equivalent modal damping of
5 % (commonly used in model codes in the US) of the critical for the first two
modes.

The frame is excited simultaneously by two sinusoidal loadings. The first
loading, fi(f) = 3 sin(18¢) kN is applied horizontally at node 1, and the second
loading, f>(f) = 2 sin(22¢) kN is applied horizontally at node 13, as shown in Fig. 6.
For this example, the information on responses are numerically generated using a
commercially available software ANSYS (ver. 15.0) [5]. The responses are
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obtained at 0.0001 s time interval. After the responses are simulated, the infor-
mation on input excitations is completely ignored. Responses between 0.02 and
0.32 s providing 3001 time points are used in the subsequent health assessment
process.

6.2.2 Identification of the State of the Frame

Two substructures are considered to assess the health of this large frame. They are
shown in Fig. 6 with double lines. Using responses at 18 DDOFs in the sub-
structures, the stiffness and damping parameters and the time history of unknown
input force are identified using the ILS-UI procedure in Stage 1, initially for the
defect-free state of the frame. The errors in identification of the stiffness parameters
are shown in Table 5. From the results, it can be observed that the errors in the
identified stiffness parameter of the five members in the substructures are very
small. The damping coefficients and excitation time history are also identified very
accurately.

The information of Stage 1 is used to initiate both the GILS-EKF-UI and
UKF-UI-WGI procedures. Then, the stiffness parameters of all 25 elements of the
frame are estimated. The stiffness parameters of all members in the frame are
identified for the defect-free state and the results are summarized in Table 6,
Columns 3 and 4, respectively, for both methods. Since the identified stiffness
parameter did not vary significantly from the expected values, the methods correctly
identified the defect-free state of the frame. The results of GILS-EKF-UI are still
within the acceptable level but not as good as the UKF-UI-WGI method. However,
it can be concluded that both filters identified the defect-free state of the frame.

After assessing structural health of the defect-free frame, one defective case is
considered for this example. In Defect 1, the cross-sectional area of member 17 is
considered to be corroded over a length of 30 cm, located at a distance of 30 cm
from node 12. The results for the substructure identification in Stage 1 using ILS-UI
are summarized in Table 5, Columns 5 and 6. As for the defect-free case, for this
defective state, the substructures are identified accurately. Using the information
from Stage 1, the whole frame is then identified using both methods in Stage 2. The

Table 5 Stiffness parameter (EI/L) identification of the substructure for Example 2

Member Theoretical (kN-m) Defect Free Defect 1
Identified Change (%) Identified Change (%)

@) ) (3) ) ) (6)

ky 13476 13476 0.001 13476 0.001

k3 14553 14553 0.001 14553 0.001

kig 14553 14553 0.004 14553 0.003

ka1 13476 13477 0.003 13477 0.003

ko3 14553 14553 0.004 14553 0.003
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Table 6 Change (%) in stiffness parameter (EI/L) identification of whole structure

Al-Hussein

Member Theoretical (kN-m) Defect Free Defect 1

EKF UKF EKF UKF
(1) (2) (3) @) (5) (6)
ki 13476 —-0.05 -0.07 -0.07 —0.06
k» 13476 -0.37 0.37 —6.84 0.87
k3 14553 —-0.03 —-0.05 -0.07 —-0.05
ky 14553 0.03 0.17 -1.96 0.20
ks 14553 0.76 —-0.13 11.23 —1.00
ke 13476 —-0.06 -0.02 0.73 -0.02
k7 13476 —-0.04 -0.21 1.90 0.06
kg 14553 0.41 0.67 -0.12 0.62
ko 14553 0.38 0.57 —2.88 0.37
k1o 14553 0.69 0.22 7.31 1.37
ki1 13476 0.51 0.09 243 0.25
ki 13476 —-0.25 0.01 —2.06 -0.71
ki3 14553 —-0.68 —-0.55 -1.07 -0.57
kig 14553 -1.57 -0.81 —4.68 -1.69
kis 14553 0.07 -1.17 4.42 -0.13
kie 13476 0.40 0.26 0.56 -0.09
ki7 13476 1.24 1.01 -7.54 -8.39
kig 14553 0.01 0.02 0.17 0.05
kio 14553 —-0.69 —0.45 -1.07 -0.42
k2o 14553 0.26 0.02 -1.25 -1.16
ko1 13476 0.07 0.04 0.18 0.05
ko> 13476 -0.52 -0.45 -1.34 —0.97
ka3 14553 0.14 0.06 0.18 0.05
ks 14553 0.09 0.00 0.02 0.05
kas 14553 0.15 0.34 0.67 0.62

results in Columns 5 and 6 in Table 6 clearly indicate that the UKF-UI-WGI
procedure is capable of identifying the location and severity of defect. The iden-
tification of defect location using the GILS-EKF-UI procedure for the defective
case is not straightforward. Both the UKF and EKF-based procedures identified the
reductions of the stiffness parameter of defective member 17 as 8.39 and 7.54 %,
respectively. However, the results of EKF-based procedure show that the stiffness
parameter of defect-free member 5 is increased by 11.23 %, which is more than
acceptable error. Therefore, it can be concluded that GILS-EKF-UI failed to assess
the health of the frame for the defective state. This example clearly demonstrates the
superiority of the proposed UKF-UI-WGI procedure over the GILS-EKF-UI pro-
cedure developed earlier by the research team.
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7 Conclusions

The rapid assessment of structural health has become a major challenge in the
context of routine maintenance or just after major natural and man-made events.
The authors and their team members used the system-identification techniques by
mitigating its weaknesses to identify defects and their severity at the local element
level by representing real structures using finite elements. For easier implementa-
tion, the excitation information was completely ignored. By tracking the changes in
the stiffness parameters of each element the location(s) and severity of defects are
assessed. The team conducted extensive analytical and laboratory investigations to
verify all the methods. They had to overcome several challenges related to the
conceptual and analytical development, data processing, and the presence of
uncertainty in the every phase. To consider nonlinearity in the system identification
process, a method known as Generalized Iterative Least Squares-Extended Kalman
Filter-Unknown Input (GILS-EKF-UI), was developed by the team earlier. Since it
failed to identify structures in some cases, the authors recently proposed a new
method denoted as Unscented Kalman Filte—Unknown Input- Weighted Global
Iterations (UKF-UI-WGI). With the help of informative examples, the superiority of
UKF-UI-WGI over GILS-EKF-UI is documented in this paper. Since at the
beginning of an inspection, the defects and their severity are expected to be
unknown, the authors recommend UKF-UI-WGI instead of GILS-EKF-UI for the
rapid assessment of health of infrastructures.
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Ontology Based Diagnosis
for Maintenance Decisions of Paper
Mill Roller Using Dynamic Response

Madhav Mishra and Adithya Thaduri

Abstract Context-aware systems have been applied in several fields like
Information Technology, mobile, web services, travel guidance etc. These systems
deliver decisions based on a ‘context’ by using contextual models. In paper
industries, the failures of rollers were prominent and rolling element bearing is one
of the critical components. The failure occurs due to the varying levels of the loads
and external parameters that defines context. This paper demonstrates the ontology
contextual modeling for the diagnosis of rollers as a context by using dynamic
response. The roller is modeled using physical models and applying runs of dif-
ferent parameters and its levels. Then contextual models are generated for rollers to
show relation among input contextual parameters with different features. This paper
shows that this conceptual idea of decision based on different contexts using
ontology models is for effective diagnosis facilitate maintenance strategies and
further prospects in prognosis.

Keywords Paper mill roller - Context-aware systems - Dynamic response -
Relational models - Machine learning - Diagnosis

1 Introduction

With the rapid expansion of scientific technology, the machines used in modern
industries are becoming larger, precise increasingly automated. Their structures
become more multifaceted and their probable faults become more challenging
to find. So, in the field of mechanical fault diagnosis, it is an urgent problem to
exactly evaluate and correctly predict the running condition of the mechanical
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equipment [1]. Roller bearing is one of the utmost extensively used elements in
rotary machines. In most machinery, bearing is one of the essential components that
directly influence the operation of the whole machinery. Faulty bearings cause
majority of problems in the rotary machinery [2]. Localized defect is the main
failure mode of rolling element bearings. Vibration and acoustic emission
(AE) signals are widely used in condition monitoring of rotating machines.

During operating process, the machine set can generate all kinds of signals, and
involve in many correlated features. When any of these features deviates beyond
their specified limits, a fault may emerge. How to effectively extract the fault
feature, which can correctly reflect the occurrence of the fault, is still an ongoing
research issue [3]. In rotating machinery, the failure of rolling element bearing can
result in the deterioration of machine running condition. Effectively detecting and
diagnosing the incipient fault of rolling element bearing can provide an assurance
for the reliability of machine set running. Generally, extracting the fault feature
from the vibration signal to detecting the occurrence of the fault can effectively
reduce the possibility of catastrophic damage and the downtime [4]. Therefore,
quite naturally, fault identification of rolling element bearings has been the subject
of extensive research [5]. Fault detection is possible by comparing the signals of a
machine running in normal and faulty conditions. The faults considered in the
present study are inner race fault (IRF), outer race fault (ORF) and inner and outer
race fault (IORF) [6]. Machine condition monitoring system is a decision support
tool, which is capable of identifying the failure of a machine and capable of pre-
dicting failure from its symptoms [7].

In the case of paper industries, the rolling element bearing in the rollers are very
important because the failure of these bearings results in stoppage of production [8§].
To ensure operation of the paper mill rolling element bearing, vibration condition
monitoring techniques are implemented in this field to identify, isolate and mitigate
the failures [9]. Because the paper mill runs continuously, a certain amount of paper
dust on the felt wire will act as an extra load on the rollers. To reduce the load, a
particular maintenance action is followed to remove the dust by regular intervals.
Normally, this action is done at regular intervals without the use of condition
monitoring. Apart from this dust, there are other maintenance actions that can also
be applied on the roller without any intelligence. The main problem of this main-
tenance actions are the irregular work stoppages, corrosion by lubricant quality,
inactive human skill, cleaning, operating costs and unawareness of the surrounding
environment [10]. The main objective of this work is to establish a decision support
mechanism that provides necessary actions on maintenance depends on the con-
dition monitoring and operating environment.

There were studies that used dynamic response for the rolling element bearings
for non-linearity [11], for stiffness [12] and for transient rotor dynamics [13]. The
modelling for diagnosis by physical modelling of rolling element bearings were
carried out by using support vector machine (SVM) [14], wavelet packets [15] and
neural network approach [16]. There have been efforts to provide these decisions on
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rolling element bearing for diagnosis. The classification performance of various
fractal dimensions and their combinations on different fault data sets were studied
on rolling element bearing using support vector machines [17], envelope spectrum
and SVM [18], time-domain features and neural networks [19], fuzzy logic [20],
Statistical index development from time domain [21], fatigue life in non-stationary
conditions [22] and wavelet analysis and envelope detections [23]. To provide
decisions based on fault diagnosis, there are works that has implemented computing
with condition monitoring techniques [24, 25].

Due to the advancements in the computing fields, there exist innumerable pro-
cedures to provide decisions based on the input and environment parameters. One
of the emerging areas is the context aware systems that come under pervasive and
ubiquitous computing [26]. This technology is prominent in the areas of informa-
tion technology [27], mobile services [28], web services [29], internet of things [30]
etc. The context-aware systems can be adapted to the existing and future possible
environments without the interactions of users with effective decision making
capabilities. Earlier, these context-aware systems for diagnosis have been used in
Quality of Service (QoS) management [31], early diagnosis of bipolar disorders
[32] and heart diseases [33]. This paper utilizes the conceptual methodology of
context-aware systems for bearings in roller to provide decisions for maintenance
actions by perceiving the context. There are several existed contextual models;
popular is ontology based models to define the relations among the input, envi-
ronment and output maintenance actions. The several input variables are pro-
grammed by using Physical model of the bearing to achieve different combinations
of output variables and patterns. By perceiving these patterns, appropriate main-
tenance decisions can be taken on the rollers to improve performance.

2 Rolling Element Bearing and Roller in Paper Industry

The present work is carried out in BillerudKorsnés production unit in Karlsborg,
Sweden, and focus on one roller located in the wire section. There are several
rollers operating in this industry out of which this work focuses on three rollers that
requires main maintenance actions to be followed to increase performance. The
three rollers are modeled using Physical Model in Fig. 1 using NX 8.5 tool.

Fig. 1 Physical model of a roller in a paper mill
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3 Diagnosis

IN general, diagnostics investigates or analyzes the cause or nature of condition,
situation, or problem, whereas prognostics concerned with calculating or predicting
the future as a result of rational study and the analysis of available pertinent data. In
terms of the relationship between prognostics and diagnostics, diagnostics is the
process of detecting and identifying a failure mode within a system or sub-system.

Machine fault diagnostics is a procedure of mapping the information obtained in
the measurement space and/or features in the feature space to machine faults in the
fault space. This mapping process is also called pattern recognition. Traditionally,
pattern recognition has been done manually with auxiliary graphical tools such as
power spectrum graph, phase spectrum graph, cepstrum graph, AR spectrum graph,
spectrogram, wavelet scalogram, and wavelet phase graph to name a few. However,
manual pattern recognition requires expertise in the specific area of diagnostic
application, highly trained and skilled personnel are needed. Therefore, automatic
pattern recognition is highly desirable. This can be achieved by classification of
signals on the information and/or features extracted from the signals [34, 35].

Modal analysis is typically performed to determine a structure’s vibration
characteristics such as natural frequencies, mode shapes and mode participation
factors. From the modal analysis the mode shapes and the eigen-frequencies were
calculated. In this study, we performed the modal analysis on one of the rollers
using FEM (Finite Element Method) for dynamic response. The result from this
FEM analysis was performed in ANSYS found the 2nd bending mode that depicted
in Fig. 2. Similarly, we modeled and analyzed three rollers with felt wire by
ANSYS as shown in Fig. 3. The three rollers are running by the felt wire that acts as
transfer mechanism of paper. This physical model was being updated dynamically
by making use of continuous online condition monitoring data from vibration of the
rollers in the paper mill industry. The several input parameters and output
parameters were gathered simultaneously to obtain the context for the basis of
contextual modeling.

Fig. 2 Dynamic response with deformations
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Fig. 3 Dynamic response of three rollers with felt wire

4 Ontology Based Contextual Modeling

The concept of context-aware computing is described by [27, 36] as “the ability of a
mobile user’s applications to discover and react to changes in the environment they
are situation”. The popular definition for the context was defined by [37] as “any
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”. Another
way to classify the context is to consider the dimensional aspects dividing context
into three categories; computing context (like network connectivity, communication
instances and peers), user context (like profile of user, location, people nearby and
social situations) and physical context (like environment, physical devices) [27].
There is a need of model that abstracts and stores the data in meta-database for
decision making for context-aware systems. One of the popular contextual models
is the Ontology based model. This models use ontologies to represent the context
means relationships, concepts among entities in a structure or shared domain
knowledge [38]. They are becoming powerful by the applicability of formal
expressiveness and reasoning techniques. In general, ontology and logic based
models are not used in Wireless Sensor Networks (WSN) because of resource
constraints. Ontology based models are most useful for determining relationships,
dependencies and reasoning among the variables and permits little bit of hetero-
geneity and efficient contextual provisioning [39].

Semantic inference is the method for implementing the process of ontology for
the knowledge base [40] and this inference acts as grammar of the standard form of
ontology languages such as Ontology Inference Layer (OIL), Resource Description
Framework Schema (RDFS) and Web Ontology Language (OWL) [41]. An
ontology-based inference engine accomplishes information retrieval and question
and answer (Q&A) functions by getting information about a specific instance [42].
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Fig. 4 Primary sensor interpretation of input, environmental and outout parameters

In some cases in maintenance, where i statements or procedure are included in data,
there is need to process the text by using natural language process [43].

Context information is the technology of information analyzing and character-
izing the real context in virtual space by involving relation between real and virtual
parameters to deliver a personalized service [44]. The context sensors perceive the
context using real sensors such as temperature, vibration, humidity etc. The virtual
sensors interpret the factors from the context of the physical sensors. In this paper,
rollers in there paper mill, there exist several SKF primary sensors acquire real
information such as vibration, load, mass of dust on the felt wire, lubrication
quantity on rolling element bearing, temperature, humidity and dust density as
shown in Fig. 4.

The secondary sensors in this case are the rotational speeds that produce the peak
amplitudes in the resonant frequency found in vibration frequency analysis. The
patterns of frequency response are captured for the purpose of specific maintenance
action. For example, a change in the residual mass that forms on the felt wire is
replicated on the frequency response of vibration signal. If the pattern of the output
response is similar to the pattern of response to high mass forming on the feltwire,
the wire requires cleaning. The output alarms produce signals if there is a concern
about safety, illumination, acoustic detection and leakage or breakage of the sub-
components in system. Other maintenance actions include visual inspection,
repair/replacement of the items in setup, ventilation and noise cancellation depends
on the output variables. An additional step is required when there is a detection of
peaks from the vibration signals to acquire necessary event. These events need
further investigation whether there are any failures or not. These contextual
parameters are converted to the OWL for inference of rules generation.

The inference rules for service are applied to inference information about ser-
vices using external context information deinferred from the External Context
Ontology of maintenance [45] actions and internal context information from the
Internal Context Ontology of the condition monitoring [42]. These inference rules
are generated either by the previous history of maintenance actions or by input
actions based on experience using contextual parameters. Some sample diagnostic
rules are shown in Fig. 5.
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Fig. 5 Inference rules for
diagnosis based on dynamic
response of rolling element

bearing Check mass_feltwire

1. If op_vibration = constant increase in change
(Pattern 1)

Is additional?
Do cleanup
End
2. if op_vibration = flopping (Pattern £)
Check bearing damage ()

Visual Inspection inner_race,
outer_race, ball and cage

Replace Bearing

End

5 Architecture of Ontology Driven Diagnosis

The configuration of ontology based diagnosis for maintenance decisions
(ObDMD) architecture that is modified from [42] is shown in Fig. 6. The data
acquisition layer acquires data from condition monitoring data and sensors for
primary data. This vibration data from physical model is then converted to OWL. If
there is an event occurs, the data from the sensors are acquired. External context
information can also be accessed from data storage layer. The context query is then
transferred to context layer based on the event generation and thus create context
instance. These instances are converted to ontology models in data storage layer.
In the inference layer, the created context instances are provided to the context
manager that creates relations among the maintenance actions mapped by context
mapping from the knowledge layer as shown in Fig. 5. In Service Mapping, for
determining the format of the inferred results of service, data is converted into a
format required in each application through the predetermined service content
database. This rules are created in RDF format. The reasoner decides the reasoning
of each of the rules based on weights of maximum impact of each action. In the
event of a conflict of rules, the reasoner provides the best maintenance output action
that increases the performance using inputs from the data storage and knowledge
layer. Various computing techniques such as neural networks, decision trees, fuzzy
rules and statistical techniques can be used to provide optimum action. The service
layer thus provides access to the application layer for an interactive informatiton on
diagnosis of the roller using context-awareness. Each of the knowledge and data
storage layers is updated regularly and triggered in the triggering of an event. Out of
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Fig. 6 Ontology based diagnosis for maintenance decision (ObDMD) architecture

all the layers, the inference layer guides maintenance recommendation using the
information from all the other layers and it suggests the necessary actions to the
user.

6 Conclusions

This paper proposes the conceptual application of a context-aware decision model
to a paper mill roller using the dynamic response obtained from a physical model to
build the ontology model. The proposed process represents in using computing
techniques for the purpose of maintenance diagnosis in the paper industry. To fully
implement this mechanism, we require rules from the users in the paper industry,
research experts, we also need to know the history of failures and maintenance
actions and have condition monitoring data to auto detect the anomalies in the
frequency response. If necessary maintenance actions are taken at the appropriate
time, operating costs will decrease and performance and production will increase. If
we make use of existing data inferences and combine these with modelling the
remaining useful life, we may able to perform prognosis by combing with mod-
elling of remaining useful life.
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Context Awareness in Predictive
Maintenance

Bernard Schmidt, Diego Galar and Lihui Wang

Abstract Maintenance of assembly and manufacturing equipment is crucial to
ensure productivity, product quality, on-time delivery, and a safe working envi-
ronment. Predictive Maintenance approach utilizes the condition monitoring
(CM) data to predict the future machine conditions and makes decisions upon this
prediction. Recent development in CM leads to context aware approach where in
parallel with CM measurements also data and information related to the context are
gathered. Context could be operational condition, history of machine usage and
performed maintenance actions. In general more obtained information gives better
accuracy of prediction. It is important to track operational context in dynamically
changing environment. Today in manufacturing we can observe shift from mass
production to mass customisation. This leads to changes from long series of
identical products to short series of different variants. Therefore implies changing
operational conditions for manufacturing equipment. Moreover, where asset consist
of multiple identical or similar equipment the context aware method can be used to
combine in reliable way information. This should allow to increase accuracy of
prediction for population as a whole as well as for each equipment instances. Same
of those data have been already recorded and stored in industrial IT systems.
However, it is distributed over different IT systems that are used by different
functional units (e.g. maintenance department, production department, quality
department, tooling department etc.). This paper is a conceptual paper based on
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initial research work and investigation in two manufacturing companies from
automotive industry.

Keywords Context modeling - Context awareness - Condition monitoring
Condition based maintenance - Predictive maintenance

1 Introduction

Maintenance is crucial to ensure reliability of assembly and manufacturing equip-
ment thereafter productivity, product quality, on-time delivery, and a safe working
environment. Implementation of effective prognosis for maintenance can bring
variety of benefits including increased system safety, improved operational relia-
bility, increased maintenance effectiveness, reduced maintenance inspection and
repair-induced failure, and reduced lifecycle cost [1].

Maintenance approaches in industrial history evolve [2] and it is an ongoing
process. At earlier stages the Corrective Maintenance also known as reactive
maintenance or run-to-failure was used. Later approach called Preventive
Maintenance (PM) was focused on taking actions before the failure occurs. This
approach evolved to Condition Based Maintenance (CBM), where the decisions are
made based on the machine condition indicators obtained in most cases through
measurement systems. Predictive Maintenance (PdM) and Prognostics and Health
Management (PHM) are approaches that utilize the condition monitoring data to
predict the future machine health state and make decisions upon this prediction.

Nowadays in quickly developing word we are facing new challenges and
opportunities.

The paradigm of mass customization aims to deliver customized products with
near mass production efficiency. Mass customization is imperative for many
companies to survive in the fragmented, diversified, and competitive marketplace
[3]. Frequent changes in produced variants imply changes in operational conditions
of manufacturing equipment.

Internet of Things (IoT) is a paradigm where everyday objects are connected to
the Internet. It allows devices communication with each other with minimum
human intervention [4]. The term has been initially used by Kevin Ashton in 1999.
In [5] he describes the IoT as an enabler to know when things need replacing,
repairing or recalling.

However, large number of smart devices and sensors is producing huge amount
of data that need to be processed in a useful way, as data is not useful unless it is
processed in a way that provides context and meaning that can be understood by the
right personnel [6]. Those aggregated streams of data, are called “Big Data”.

Cloud Manufacturing (CMfg) paradigm is a result of combination of cloud
computing, the Internet of things, service-oriented technologies and high perfor-
mance computing [7]. It transforms manufacturing resources and capabilities into
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manufacturing services. It is not simple deployment of manufacturing software
tools in the computing cloud. The physical resources integrated in the manufac-
turing cloud are able to offer adaptive, secure and on-demand manufacturing ser-
vices over the Internet of Thinks [8]. Effect of this paradigm on the maintenance
approach is not well elaborated in the literature. Nevertheless we can imply that
delivering manufacturing resources as a service may cause more dynamic changes
in operational conditions of manufacturing assets.

Recently context awareness approach is gaining focus of researchers from the
field of CBM and PdM. This well-known concept in some other fields, could be
beneficial when employed in CBM/PdM.

The rest of the paper is organized as follows. Section 2 provides the details about
context and its different modeling techniques and overview on the concepts of
context-aware systems; Sect. 4 depicts the context-awareness in the context of
Predictive Maintenance; and finally, Sect. 4 discusses and concludes the paper.

2 Context

The popular definition of the context according to [9] was defined by [10] as “any
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and applications themselves”.

Noticeable amount of research on context in relation to context-aware systems
comes from pervasive and mobile computing research area. This could be because
of the popularity that mobile devices and mobile applications have gained in recent
years.

As Artificial Intelligence (AI) methods are also option for Predictive mainte-
nance [11] it could be fruitful to check what are the contribution from that field.
In Al study of a formal notation of context has a long history. In depth comparison
of two main formalizations from a technical and a conceptual point of view have
been presented by Serafini and Bouguet in [12]. Overview of those formal defi-
nitions of context from Aurtificial Intelligent field are presented in Sect. 2.1.5.

Context related aspects based on [4, 13] has been presented in Fig. 1. Some of
them has been elaborate more in following sections and subsections.

2.1 Context Modeling

Several context modeling technique are used in context-aware computing [13—15].
Each of those techniques has strengths and weaknesses, so incorporating multiple
modeling techniques brings efficient and effective results [4].
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Fig. 1 Aspects of context Pull
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2.1.1 Key-Value Models

Key Value Models (KVM) uses 2-tuple data structure <key,value>, that represents
identifier (name) of the attribute and its value. Among all other implementations it
is the simplest form of context representation. With small amount of data they are
easy to manage. However, key-value modeling is not suitable to represent hierar-
chical structures or relationships.

2.1.2 Markup Scheme Models

Markup Scheme Models (MSM) is an extension over KVM. It use markup tags and
hierarchical data structure. One of the advantages of this modeling is efficient data
retrieval. It also support validation through schema definitions. Popular technique
for markup schemas is XML [4]. It is widely used to store temporary data and
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transfer data among applications or application components in. Markup schema
modeling can be performed in any language or mechanism that supports tag based
storage e.g. JSON [16].

2.1.3 Graphical Models

Graphical Models (GM) represents context with relationships. Modeling techniques
that can be employed are Unified Modeling Language (UML) or Object Role
Modeling (ORM). The advantage of GM over KVM and MSM is that it allows to
capture relationships in the context model. Examples of low-level representations of
graphical modeling could be a SQL database, noSQL database, XML.

2.1.4 Object Oriented Models

Object Oriented Models (OOM) uses class hierarchies and relationships. It can be
easily integrated into context-aware systems, as most of the high-level programing
languages support object oriented concepts. However, due to the lack of standards,
the validation of object oriented design is difficult. Moreover it does not provide
inbuilt reasoning capabilities.

2.1.5 Logic Based Models

In Logic Based Models (LBM) context is represented with use of facts, expressions
and rules. It allows creation of new high-level context using low-level context.

Propositional Logic of Context (PLC)

e Contexts are first class objects. The formal language of a theory of context
should contain terms denoting contexts, and should allow one to predicate
properties about these objects and to express relations between contexts (e.g.,
that one context is more general than another), or between contexts and other
objects (e.g., that the time of a context c is t).

e A formula is always stated in a context. However, the same context can be
described from different perspectives, i.e., the content of a particular context is
itself context dependent. This property is called non-flatness, and each formula
have to be prefixed by a sequence of context labels e.g. kj... K,: @.

e A context is modeled as a set of truth assignments, each of which represents a
possible state of the world as described in the context.

e A context is always partial. Only a subset of what can be said is given an
interpretation in each context.
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e Statements about a context are stated in other contexts via so-called ist-formulas,
i.e., formulas of the form ist(k,p). The formula ist(k,o) is read as “@ is true in the
context k. This formula, if asserted in a context k’, means that, viewed from «’,
¢ is true in K.

e There is an intuitive relation between the assertions k’x:¢p and «’:ist(k,).
Indeed, the latter is true if the former is true, and vice versa. This property is
axiomatized via an inference rule called CS (a contextual version of the modal
rule of necessitation) that allows deriving k’:ist(k,¢) from x’«:¢. This is the main
contextual reasoning pattern allowed in PLC.

e Other relations between contexts can be stated through lifting axioms which
relate the truth in one context to the truth in another context.

e Like any other formula, lifting axioms are always stated in a context, called an
outer context.

e There is no outermost context. For any context k, there is an outer context
«k’from which k can be described.

Local Model Semantic/MultiContext Systems (LMS/MCS)

e A context is primarily a subset of a partial and approximate theory of the world
from some individual’s perspective. The collection of facts used to reason about
a given problem by individuals is the most typical example.

e Reasoning mainly happens locally to a single context. Only those facts relevant
to the problem individuals want to solve are taken into consideration.

e There are possible relations between local reasoning processes, as different
contexts are not simply unrelated representations, but different representations of
the same world. For example, two contexts may describe the same piece of
world at different level of detail from the same perspective; or may describe it,
only from different perspectives. Relations between different perspectives in
LMS are represented via a compatibility relation between local interpretations
associated with each context. The proof theoretic counterpart of compatibility
relations are bridge rules, i.e., inference rules with premises and consequences in
different contexts.

e The relationship between different contexts, in general, can be described only to
a partial extent, as each of them may encode assumptions which are not fully
explicit.
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Comparison

The main feature of a formal theory of the context, is the ability to formalize the
relations existing between different contexts. To achieve this goal, PLC and
LMS/MCS adopt two different strategies:

e PLC is based on a combination of lifting axioms as well as axioms and rules for
exiting and entering contexts.
e LMS/MCS is based on the mechanism of bridge rules.

Example, how PLC and MCS/LMS represent the fact that y in « is a logical
consequence of @ in k’ has been showed in Fig. 2. In PLC, one needs a third (“top”)
context k¥’ where logical consequence is represented by the formula ist(i,p) D ist
(«’,y) Fig. 2a. Instead, in MCS this is directly represented by the fact that «’ @y is
derivable via bridge rules from the assumption k:o, i.e., that k:¢ leCS K’y Fig. 2b.

2.1.6 Ontology Based Models

Term ontology comes from philosophy where it refers to a theory of the nature of
existence. In computer and information science, ontology determines formal
specifications of knowledge in a domain explicit specification of the objects, con-
cepts, and other entities (vocabulary) that exist in some area of interest ant the
relationships that hold among them [17].

According to [18] ontology based context modeling allows: @ knowledge
sharing between computational entities by having common set of concepts about
concept; @ logic inference by exploiting various existing logic reasoning mecha-
nisms to deduce high-level, conceptual context from low-level, raw context;
© knowledge reuse by reusing well-defined Web ontologies of different domains,
e.g. large-scale context ontology can be composed without starting from scratch.

Web Ontology Language (OWL) is modeled through an object-oriented
approach, where structure of a domain is described in terms of classes and
properties.

() (b)
K’ ist(k,b) D ist(k’:)
K:d |=Mcs K

K:d K K:d K

Fig. 2 Inference in PLC and LMS/MCS
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2.1.7 Machine Learning Models

Machine Learning Models (MLM) use machine learning techniques. It is not a
strictly context modeling approach, however does target similar objectives. It has
been presented in [19] to enable effective personalized service provision.

MLM has been indicated in [9] as the best approach for intelligent context-aware
system.

2.2 Context Reasoning

Context reasoning, also called inference, can be defined as method of deducing new
knowledge, that can be also understand as high-level context, based on the available
context [4]. Context reasoning techniques could be classified into six categories as
in Fig. 1: supervised learning (e.g. Artificial Neural Network, Bayesian Networks,
Case-based Reasoning, Decision Tree Learning, Support Vector Machines),
unsupervised learning (e.g. Clustering, k-nearest Neighbour), rules, fuzzy logic,
ontology based, and probabilistic logic (e.g. Dempster-Shafer, hidden Markov
Models, naive Bayes). There is relationship between context reasoning and context
modeling as some reasoning techniques prefer some modeling techniques [4].
Imperfection and uncertainty of a raw context are the factors that also emerged the
requirement of reasoning step. Fuzzy Logic and Probabilistic logic has been indi-
cated as reasoning techniques that can handle uncertainty.

It has been revealed in [14] that different models and techniques needs to be
integrated with each other within hybrid context modeling approach in order to
obtain more general and flexible systems.

Perera et al. in [4] provided example of the hybrid context modeling and rea-
soning approach. Statistical techniques can be used on lowest level to fuse sensor
data. Further, fuzzy logic could be used to convert fixed data into more natural
terms. Dempster-Shafer can be used to combine sensor data from different sources.
Machine learning techniques such as artificial neural networks and support vector
machines can be used for further reasoning. Thereafter, the high level data can be
modeled using semantic technologies as ontologies.

2.3 Context-Aware Systems

The context-aware systems can be defined as systems that are adaptable to the
existing and future possible environments without the interactions of users [9]. In
the pervasive computing community there is a growing body of research on the use
of context-awareness as a technique for developing pervasive computing applica-
tions that are flexible, adaptable, and capable of acting autonomously on behalf of
users [14].
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Fig. 3 Anatomy of

context-aware application
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Context-aware systems most often are represented with use of layered archi-
tecture. Context models can be seen as an abstraction layer between applications
and the technical infrastructure that provides the context data [21]. In [22] four
layers are depicted: @ sensor layer for data acquisition, @ data storage layer for
maintaining data, ® processing layer for all analysis and modeling, and @ appli-
cation layer for final representation.

A little bit different structure has been proposed in [20] that is presented in
Fig. 3. In this approach layers has been grouped into application specific layers and
layers that can be shared among different applications.

Architecture structure presented in [9] consists of interacting building blocks as:
O data acquisition layer, @ pre-processing layer, ©® network layer, @ data storage
layer, @ decision and control layer, and ® user interface layer.

3 Context in PdAM

Concepts of “context” and “context aware system” have been not well utilized by
researchers from field of CBM and PdM. Analysis of ten review and survey papers
in the area from time period 2005-2014 mentioned in literature review [23] reveals
that term “context” in the context of predictive maintenance is never directly
mentioned. However, some of indicated challenges and future trends can be
addressed by utilization of “context” and “context-awareness” approach. Some of
those are: more basic and applied research in decision making systems [24]; data
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fusion of multi-dimensional CM, model the influence of external environmental
variables, deal with multiple failure modes [25]; needed of general methodology for
prognostics [11]; the development of methods or tools for extraction, processing
and interpretation of knowledge type information [26]; the consideration of the
effects from maintenance actions, the consideration of failure interactions [27].

Integration of disparate data sources that are commonly available in industry has
been proposed for better maintenance decision making [28]. The cloud approach is
pointed as a feasible solution for this integration, and XML language is presented as
a tool that can be used for data integration.

Lee et al. [6] indicated that algorithms can perform more accurately when more
information throughout the machine’s lifecycle, such as system configuration,
physical knowledge and working principles, are included, so there is a need to
systematically integrate, manage and analyse machinery or process data during
different stages of machine life cycle.

Recently, there are reported works that apply context approach in the field of
maintenance.

In [29] the context-aware approach has been used in energy domain for pre-
dicting the future load. The prediction model parameters are stored in repository
with context in which they were valid this allow to retrieve them when similar
context occurs. Repository has been organized as binary search tree.

Semantic and modeling for a contextualized mobile client of a distributed model
that constitutes a maintenance mobile cloud has been presented Pistofidis and
Emmanouilidis [30]. Presented WelCOM platform utilizes smart sensor infrastruc-
ture for machine condition monitoring and to deliver a context aware asset man-
agement tool has been interfaced with Computerized Maintenance Management
System. Authors pointed that context modeling, identification and context-based
adaptation are key elements in Wel COM approach. Five context categories has been
identified for mobile maintenance advisor: @ user context—information about role,
expertise, activity, location, preferences; @ system context—device specification,
network status, security profile, energy consumption; ® environment context—
sensor readings (temperature, noise, light), user proximity, asset proximity, times-
tamp; @ service context—criticality, priority, task sequence, dependencies,
constrains, support; @ social context—group/team participation, relationship role,
interaction profile, rank.

In fleet-based approach presented in [31], an ontology model has been proposed
with a following context types: @ technical context—technical features and char-
acteristics of the system/sub-system/equipment; @ dysfunctional context—the
generic degradation modes on the units; © operational context—operational con-
ditions that are given by the mission to be performed for units as well as the
environment that surround them; @ service context—usage of the unit; and @
application context—for maintenance optimization, enables data/model retrieval of
the monitored units with its corresponding context. Than comparison of hetero-
geneous units could be performed based on similarity of the context. This enables
data capitalization that could improve prognostics model and precision. This
approach has been applied in naval domain to fleet of ships.
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In [32] the context driven remaining useful life estimation has been presented.
Health condition of machine is represented by so called fingerprint, while context is
represented by monitored operational data that describes the way the machine has
been used.

Galar et al. [22] proposed a hybrid model-based maintenance decision system
with consideration of context-driven aspects. The system aims to integrate expert
knowledge, physics of failure models and data driven models.

Context awareness seems to be also important from perspective of another recent
trend that is application of the Cloud concept.

3.1 Cloud-Based Approach

Recently the concept of Cloud gains on popularity in research community and there
has been a trend of applying cloud computing model in manufacturing industry
[33].

Bahga and Madisetti presented in [34] usage of this concept in maintenance.
They claimed that this is the first reported usage of the cloud architecture for
maintenance data storage, processing and analysis. Their proposed hybrid approach
uses local nodes for real-time fault prediction and a cloud for massive data
organization and analysis.

Lee et al. [35] presented methodology and framework for a cloud-based prog-
nostics and health management system for manufacturing industry. The system
utilizes modularized algorithms as basic components to form different workflows.
Workflows for typical components and mechanical problems are saved in a
knowledge base that can be later used as templates for similar problems. Based on
specific need (e.g. type of component for monitoring, type of data available, etc.)
certain workflow can be selected and provisioned into a virtual machine as an
individual Prognostics and Health Management server dedicated to an industrial
user. Summarizing, in this concept the application is adapted to the specific need of
the user.

4 Discussion and Conclusions

One of the issue in application of Predictive Maintenance in manufacturing industry
are so called Islands of knowledge [36] that could be treated as a different contexts
according to formal definitions described in chapter 2.1.5. In big manufacturing
companies often there are dedicated departments focused on different aspects as
production, quality, tooling, lubrication, maintenance. Those are different contexts
with own specific vocabularies, reasoning and assumptions. However, as are con-
cerned about the same piece of Word, the production line, they are not completely
independent. It could be possible to identify some compatibility relations between
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those contexts. This could provide better, more comprehensive view that can be
used for improvements in applied models and techniques in each of those areas so
in Predictive Maintenance as well. The work that need to be done is to find those
correlations as well as find the way to obtain those information from disparate data

sources [22].

Dealing with large amount of information from disparate data sources is in
concern of Big Data management. In [37] issues like how to store, integrate and
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process those data, and how to do this in an effective and efficient way have been
pointed out. Advances in this area will support context-aware approach as well.

At the end we want to summarize potential benefits that can be seen in the
context driven approach and in adaptation of outcomes from other research fields
that has longer research history in the area of context-awareness:

e improvement in knowledge management for later reuse,

e capitalization of data in fleet wide approach to increase accuracy and performance
of algorithms,
enabled adaptation to user needs, required in cloud-based approach,
improved automatic selection of proper approach (e.g. signal selection,
processing algorithms etc.).

In Fig. 4 we present hypothetical case how applying context-awareness can
improve estimation of Remaining Useful Life (RUL) in Predictive Maintenance.

To conclude, in this paper we provide overview of the concept of context from
different research field. Need for context aware application for Predictive
Maintenance has been indicated, as well as recent research that utilize the context
concept in it.
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Prognostics and Health Management:
Methodologies & Soft Computing
Techniques

S.V. Shrikhande, P.V. Varde and D. Datta

Abstract For safety systems of Indian nuclear plants, mean life estimates are found
using MIL-STD-217FN2 or RAIC-HDBK-217Plus. These statistical life estimates
varies from item to item due to statistical variations in base material defects, fab-
rication, operational stresses and use environment. For achieving the system reli-
ability, replacements done based on these life estimates results in under utilization
of its complete life. On the contrary when failure happens earlier than this estimate,
it is expected that failures are identified by online self diagnostic. To reveal hidden
failures which are not detected by online self diagnostics, periodic surveillance tests
are done. These discovered faults need immediate repair attention which is
unscheduled maintenance. Also recent computer based systems uses programmable
devices like FPGA/CPLD which are identical in redundant trains and therefore
susceptible to Common Cause Failures. To overcome these difficulties prognostics
giving indication of the impending failure and estimate of remaining useful life is
important so that planned scheduled maintenance can be carried out. Prognostics
require in situ monitoring sensors, data collection, pre-processing for feature
extraction, damage assessment and remaining life estimation by soft computing
techniques. This paper suggests techniques of monitoring degradation for CMOS
electronic components and feature extraction. This paper discusses soft computing
techniques of Support Vector Machines for classification (Healthy class or Faulty
class), One-class SVM for identifying an outlier (to omit this measurement from
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prognostic computation), Support Vector Regression, Fuzzy SVM (to give more
weightage to recent data) and Kalman Filter for state prediction (for estimating
remaining useful life) with uncertainty bounds.

Keywords SVM - SVR - FSVM - 1-Class SVM - LS-SVM - RUL

1 Introduction

Prognostics is anticipating impending faults and giving early warning of the failure
before it happens. It is the process of predicting a product’s Remaining Useful Life
(RUL) by assessing the health degradation. Prognostics can be based on parameters
correlated to degradation. By measuring such parameter(s) the remaining useful life
can be predicted with uncertainty bounds. For CMOS ICs the quiescent
power-supply current (Ippg) is the parameter which increases some orders of
magnitude [2] and can be one of the factors used for prognosis. This has been stated
in literature and also substantiated by carrying out Accelerated Life Testing
(ALT) experiment [3]. These prognostics computations are done using soft com-
puting techniques. This paper discusses soft computing techniques that can be used
based on Support Vector Machines (SVM). This paper also discusses variants
which are useful for different purposes viz. outlier identification, Support Vector
Regression for forecasting and using recent data by employing Fuzzy Support
Vector Machines and Least Squares SVM. This paper deals with their mathematical
formulations and usage. For SVM variants, the optimization conditions are different
and are covered in this paper. For estimating RUL, Support Vector Regression—a
data driven technique and Kalman Filter—a model based technique for state pre-
diction with uncertainty bounds is discussed.

The hybrid combining more than one technique—data-driven and model-based
can be employed for prognostics.

2 Mathematical Methodologies for Prognostics

There are two principal methodologies to fault diagnosis and prognosis; one based
on system identification and modelling and the other based purely on data-driven
approaches using statistical computational intelligence techniques.

The system identification methodology will be tried to fit the model. Based on
the Auto Correlation Factor (ACF) and Partial Auto Correlation Factor (PACF), the
model will be identified. The main advantage of this approach is the ability to
incorporate the physical understanding of the underlying process. On the other
hand, data-driven approaches derive their information entirely from process data.
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The drawback of such a method is its dependence on the quality of available
process data.

Since degradation is a thermally governed process, after taking the natural
logarithm the equation/model of the system becomes linear. This linearity is proved
by the method of bi-coherency metric. Thus techniques of linear model becomes
applicable.

Data driven Fault Detection techniques vary from simple threshold based fault
detection to the sophisticated methods of Artificial Neural Networks (ANN), Fuzzy
Logic approaches, Wavelet Analysis, Principal Component Analysis (PCA),
Independent Component Analysis (ICA), etc.

As per literature survey, the ANN based approaches are used as fault classifiers
both for binary fault classification as well as for multi-class fault classification. The
major advantage of ANN is that theoretically they can approximate any continuous
function without having any hypotheses of the underlying model. The disadvantage
are that ANNSs are like black-box where it is not possible to interpret the solution in
traditional analytical way. Moreover the solution of ANN is not globally optimal
and hence depends on the initial conditions of the network.

While ANNs are based on black-box technology, following a heuristic devel-
opment with experimentation, the SVM are based on sound theory. SVMs are a
learning tool based on statistical learning theory. SVMs have good generalization
ability to unseen data. In the past few years SVM has shown excellent performance
in may real world application including time series prediction. SVM are also
suitable to data which is not regularly distributed or has unknown distribution.
SVM involves finding solution to convex quadratic programming (QP) problem
and gives unique global solution for positive definite kernel. This is advantageous
as compared to ANN, which has multiple solutions associated with local minima
and therefore not robust over different samples. By adaptively using the changes in
the parameters, it is possible to prognosticate faults.

In model based approach like Kalman filter, the observation data is combined
with pre-determined fault-growth model in order to update state predictions in an
online manner.

3 Support Vector Machines

In machine learning, support vector machines are supervised learning algorithms
that carry out pattern recognition from datasets i.e. it is a data driven technique.
SVM are used for regression and classification.

SVMs have become one of the most popular approaches to learning from
examples and have many potential applications in science and engineering. SVMs
are relatively new computing methods. They are based on statistical learning the-
ory, have high accuracy and show good generalization capability [5]. Also SVMs
can handle data for any dimensionality.
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Fig. 1 Hyperplanes of SVM ®
wix=-b

wix=-b+1

Class -1
wix=-b-1

Using a labelled training dataset i.e., each data vector having its class label, an
SVM training algorithm builds a model for hyper-plane. Though the simplest form
of SVM is a linear binary classifier, it can also efficiently perform non-linear
classification using kernel trick [4].

SVM solution is finding the hyperplane of (n-1) dimensionality for a general
n-dimension problem; which is a line for 2-dimensional problem as shown in Fig. 1
and then draw two parallel hyperplanes to the hyperplane by pushing them as far
apart as possible, until they hit data points. The classification plane with bounding
planes furthest apart is the best one. Those points that touch the bounding plane, are
called support vectors. The salient features are that all points in class 1 should be to
the right of bounding plane 1 i.e.

wix; > = —b+1 (1)
All points in class —1 should be to the left of bounding plane —1. i.e.
wixi<=—-b-1 (2)

Pick y; to be +1 or —1 depending on the classification. Then the above two
inequalities can be merged into one as given in Eq. (3).

yi(wixi+b) >1 3)

The distance between bounding planes should be maximized. The distance
between bounding planes is given by:

2 2
VWi Ewi 4w VwTw

4)
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Thus the problem reduces to the convex optimization problem of

1
min— WTW
w,b

Such that
yi(whxi+b) > 1 (5)

This SVM or hyperplane will be fitted based on the experimental data. SVM can
accept as input, multiple features/condition indicators at the same time and produce
as output the binary decision function.

Solving for finding the hyperplane is a mathematical optimization problem
subject to constraints given in Eq. (5) [1]. More specifically, this is a quadratic
solution problem and hence is a convex optimization problem.

3.1 Canonical SVM Problem

Since many solutions are possible by scaling w and b as stated above, we restrict
our attention to a canonical solution (w, b) for which,

mmw _ (6)

So we get,

1
max —, s.t. Vi,
v [lwl] ()
(w'o(x)+b)yi>1
Equivalent to the above equation is also the following equation
. 2 .
min||w||”, s.t. Vi,
. (8)
(Wlo(x)+b)yi>1

The optimization problem of maximizing the margin can be brought down to the
minimization problem of the term

H0w) = 511w ©)



218 S.V. Shrikhande et al.

The weight vector and bias vectors for the optimal separating hyperplane are
found out as a quadratic optimization problem.

3.1.1 Non-separable Data

If a separating plane does not exist as shown in Fig. 1, then find the plane that
maximizes the margin and minimizes the errors on the training points by taking
original inequality with a slack variable to measure error.

For overlapping data the objective function is given below

. 2 .

; st Vi,
IVPHSHWH +czi:§ s.t. Vi
(W'dp(x:)+b)yi >1—¢ (10)
where Vi & > =0

In soft margin, we account for the errors. The above formulation is one of the
many formulations of soft SVMs. In the above formulation, large value of C means
overfitting.

Three types of points can be seen in Fig. 2. They are:

1. Correctly classified but & > 0 or violates margin
2. Correctly classified but & = 0 or on the margin
3. Incorrectly classified but & > 1

Where C is a positive number that is chosen to balance the two goals. To prevent
from over-fitting with noisy data the slack variable &; is introduced to allow some
data points to lie within the margin, the constant C > O determines the trade-off
between maximizing the margin and the number of training datapoints within that
margin (and thus training errors). Those points that touch the bounding plane, or lie
on the wrong side, are called support vectors.

Fig. 2 SVM for g
non-separable data wix=-b

Class 1

wix=-b+1
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3.1.2 Dual Formulation

Using the Lagrangian multipliers, the dual function is

d" = max min(7(0) + 377, Gt (11)
s.th > =0

The duality gap = O since the objective function as seen in Eq. (9) is a convex
function. After solving the Kuhn Karush Tucker (KKT) conditions, we get w by the

following equation.
w=y o oy (x) (12)

To obtain w, (or b), we can use the fact that, if o; € (0, C), y; (¢T X)W +wp) = 1.
Thus, for any point x; such that, o; € (0, C), that is, o; is a point on the margin,

o= L ) "

==y~ ¢ (a)w (14)

The decision function,
F(x) = " (x)w" +w (15)

The classification function can then be written as:
f(x) = sgn(f(x) (16)

The bi-class classification of the online state between healthy state and faulty

state will be using a bi-class SVM.

4 One-Class SVM

The primal one-class SVM problem for Novelty/anomaly detection is defined as

N
min & :lwrw—i— LZ@ —p
2 VI 4=

W,p,€i
Subject to w! ¢(x;) > p — &
&>0foralli=1,...,N

(17)
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The parameter v characterizes the solution:

It sets upper bound on the fraction of outliers (training examples regarded
out-of-class).

It separates all the datapoints from origin and maximizes the distance from this
hyperplane to the origin. Thus the function returns +1 in a small region and —1
elsewhere.

Like all other SVM formulations an equivalent dual problem is constructed and
solved using Lagrange’s multipliers as given in Eq. (18).

M=

% ((Wo(x)) — p+&) (18)

L(w,p,ej,0) = —
i=1

where oi are the Lagrangian multiplers, which can be +ve or —ve. Applying KKT
conditions the conditions of optimality are-

aL _
dw

dL N
—=0=) %-1=0
dp ;

N
0=w-— ZOC,’(]S(X,’) =0
i=1

(19)
dL
d—ei:0:>rx,~—yei:0
dL oy
d_O(i:O:> ;W $(x;) —p+e=0=0
for k=1,...,N.
Putting these equations in matrix form-
I 0 0 —¢]||w 0
0o o0 o0 I pl |1
0o 0 yI —I el |0 (20)
¢ -1 I O o 0

The matrix formalization can be written in a simplified form by eliminating w

and e -
Y
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where

Y = d(xi) P(x) (22)

which is a kernel function.

This will be used for anomaly detection i.e. deciding whether the current input is
an outlier. Outliers will not be considered for prognostic calculation and will be
omitted.

The data obtained from experiment will be used as baseline data to construct a
one-class SVM. This one-class SVM will be used with online data to distinguish
between normal data which can be used for prognostics and abnormal/outlier data
will be omitted from prognostics computation.

5 Fuzzy Support Vector Machine

Fuzzy Support Vector Machine (FSVM) is based on the idea that different input
points can make different contributions to the learning of decision surface. Each
input point is assigned a fuzzy membership, so that the different input points can
make different contributions to the learning of decision surface. By setting different
types of fuzzy membership, FSVMs can solve different kinds of problems. FSVMs
can be used for Time series data, or for bi-class with different weightage or for
reducing the effects of outliers. These are discussed below.

Time series data

For choosing the fuzzy membership function, choose the lower bound of fuzzy
memberships (¢ > 0). Time being the important factor, the fuzzy membership si can
be made function of time ti

si = f(t) (23)

where #; <... <1 is the time the data arrived in the system.

We choose the latest data t; as the most important and therefore

si=f(y) =1 (24)
Making the first point x; as the least important therefore

si=f(n)=o0 (25)
If we fit a linear function of time for fuzzy membership then

si=f(t;)) =at; +b (26)
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Applying boundary conditions, we get

l1—0 o —1
i =f(t) = i 27
= f(0) = et @)
If we fit a quadratic function of time for fuzzy membership then
si =f(t;) = ot —b)’ +c (28)
By applying boundary conditions, we get
—1\°
si=f(t)=(1— )(’ 1) +o (29)
h—t

1-class with different weightage

Accuracy of one class is very high and of the other class is lower. For this the
fuzzy membership is chosen as a function of the respective class. A sequence of
training points are (yy,x1,s1), . . ., (Vi, X1, 57)

Fuzzy membership as function of class yj; is given by

si=sy ify; =1 (30)
si=s_ify;=—1 (31)

Typically s, = 1, s- = 0.1

This fits the optimal hyperplane with errors appearing only in one class.

Reducing the effects of outliers by using class center

This can be done by setting the fuzzy membership as a function of the distance
between the point and its class centre.

For the given sequence of training points, (y1,x1), ..., (yi,X)-

Radius of class +1 is given by

re = max fiy — 2

where W, is the mean of class +1. and Radius of class —1 is given by

r_ = max |u_ —x; 33
max (33)

where i is the mean of class —1.
Fuzzy membership s;, a function of centroid and radius of class +1 and class —1
respectively are:

si={1—|xy —xl|/(ry +6)}

5i= {1 = - —xl/(r-+0)} (34)
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where 8 > 0 so that s; # 0. The distance of the two outliers to its corresponding
mean is equal to the radii of the two classes. Due to the above fuzzy membership
function, these two outliers are given least importance in FSVM training. This will
cause a different hyperplane with reduced effect of outliers.

This will be used to reduce the intensive computations. The processing of large
amount of historical data is drastically reduced using FSVM. The online time-series
data which is acquired will be subjected to FSVM. The algorithm will be adaptive
by giving higher weightage to recent data and progressively less weightage to older
data. This technique will be used in alongwith SVR given below.

6 Least Squares SVM (LS-SVM)

This has low computational overhead. It does reduce accuracy but there is sub-
stantial gain in computation time and resources. In LS-SVM, the mathematical
optimization equations are modified by adding a least squares term in the cost
function. This eliminates solving QP problem and requires solution of a set of linear
equations, thereby reducing the complexity of finding solution. In this technique the
inequality constraints are changed to equality constraints. Implicitly the least square
method is like regression.

Given training data D = {(x',y"),....(x",»¥)} with input data x; € R" and
binary class labels y € {—1,1}, the LS-SVM is mathematically defined as the
following optimization problem:

N
minJ,(w, e) = ngw gz (35)

The above equation can be written as

minJ(w, e) = ngW + %ZN; e (36)
subject to
yiwp(xi)+b)=1—¢ i=1...N
where y == 1s the tuning parameter (ratio of individual parameters p and & for

regulanzatlon and error resp.) Error variables allow some tolerance to
misclassification.

Because of the equality constraint the Lagrangian dual formulation gives sim-
plified linear programming solution given below.
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v a2 = @

where

Q=27"Z = yuyik(xi, x1),

Z = [¢p(x1) yi;.. s ¢(aw) yn] and
o= [og;. . ;o]

Thus the classifier is found by solving the linear set of above equations.

7 Support Vector Regression

Support Vector Regression (SVR) will be used for prediction of future data. The past
time series data of a fixed duration will be used for finding the regression function.

The Support Vector method can also be applied to the case of regression (apart
from classification problem), maintaining all the main features that characterise the
maximal margin algorithm. This technique is useful more for regression problems,
when sample data is sparse. A non-linear function is learned by a linear learning
machine in a kernel-induced feature space while the capacity of the system is
controlled by a parameter that does not depend on the dimensionality of the space.
The Fig. 3 shows a situation for a non-linear regression function.

As long as points lie inside the € margin, they do not contribute to the error. We
can define the e—insensitive loss function L*(x, y, f) as given in Egs. (38) and
(39) and shown in Figs. 4 and 5 respectively.

Fig. 3 The insensitive band £
(slackness) for a non-linear y
regression function
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For linear:

L(x,3.f) = Iy = ()] ,;= max(0, |y = f(x)| — &) (38)

For Quadratic:

Lix.y.f) = Iy =W} (39)
In regression when slackness is introduced we have:-
minl [wll® —|—CZ &
2 —

s.t. Vi,
(WT¢(xi) +b) —yi=¢;

(40)

The curve fitted by the regression technique of SVR is shown in the Fig. 6. The
regression scheme associated with the latest data will be used for long-term pre-
dictions i.e. fault growth estimation with confidence bounds and remaining useful
life (RUL) estimation after a fault is detected by subjecting to bi-class SVM.

Fig. 4 The linear e— L
insensitive loss for zero and
non-zero €

0

o CEAR)

Fig. 5 The quadratic e— L
insensitive loss for zero and
non-zero €

\ ')
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8 Conclusion

SVMs are used as soft computing tools for various applications. They can be used
effectively for prognostic computation. Its variants will be appropriately used like
Bi-class SVM will be used to check whether the state is healthy or Failed. For the
current input to check whether it is an outlier One-class SVM will be used. An
outliers will not be considered for prognostic calculation and will be omitted.

Support Vector Regression (SVR) will be used for prediction of future data. The
past time series data of a fixed duration will be used for finding the regression
function. Fuzzy Support Vector Machine (FSVM) will be used alongwith SVR-it
will be adaptive by giving higher weightage to recent data and progressively less
weightage to older data. Least Squares SVM is a variant which has low compu-
tational overhead. Its effectiveness in terms of computational time reduction and the
effect on reduction of accuracy will be tried out.

SVM alongwith its variants are powerful soft computing techniques for appli-
cations like prognosis.
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Intelligent Real-Time Risk Analysis
for Machines and Process Devices

Esko K. Juuso and Diego Galar

Abstract Automatic fault detection with condition and stress indices enables reli-
able condition monitoring to be combined with process control. Useful information
on different faults can be obtained by selecting suitable features. Generalised norms
can be defined by the order of derivation, the order of the moment and sample time.
These norms have the same dimensions as the corresponding signals. The nonlinear
scaling used in the linguistic equation approach extends the idea of dimensionless
indices to nonlinear systems. The Wohler curve is represented by a linguistic
equation (LE) model. The contribution of the stress is calculated in each sample time,
which is taken as a fraction of the cycle time. The cumulative sum of the contributions
indicates the degrading of condition and the simulated sums can be used to predict
failure time. To avoid high stress situations, the statistical process control (SPC) is
extended to nonlinear and non-Gaussian data: the new generalised SPC is suitable for
a large set of statistical distributions. It operates without interruptions in short run
cases and adapts to the changing process requirements. The scaling functions are
updated recursively, which is triggered by a fast increase of the deviation indices. The
higher levels, which are rough estimates in the beginning, are gradually refined.

1 Introduction

Process control systems in industry include centralized or decentralized process
controllers coupled with hosts, workstations and several process control and
instrumentation devices, such as field devices. Applications are related to business
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functions in Enterprise resource planning (ERP) or maintenance functions in
computerised maintenance management systems (CMMS). Smart field devices can
include equipment monitoring applications which are used to help monitor and
maintain the devices. A general architecture of IT systems related to operation and
maintenance in process industry is shown in Fig. 1 [1].

The early detection of fluctuations in operating conditions and fault detection can
be done with similar methods. Process and condition monitoring data is combined
in detecting operating conditions (Fig. 2): normal process measurements are directly
used in feature extraction, signal processing is needed for the condition monitoring
data, and some infrequent measurements need to be interpolated [2]. Periodic
condition monitoring measurements require interpolation to be used with other
measurements in real-time systems.

Maintenance and operation performance are measured, monitored and analysed
in many ways which provide information for the risk analysis [3]. Harmonised
indicators can be used for monitoring maintenance actions on a management level,
where the indicators are based on cost, time, man-hours, inventory value, work
orders and cover of the criticality analysis, see [4]. Key performance indicators
(KPIs), which focus on critical success factors and goals of the organization, differ
depending on the organization [5]. Fully automated quantifiable KPIs would be

', Workshops

MONITORING

ANALYSIS STATIONS SYSIEM
Mobile
(e CM DATABASE
STORAGE SYSTEM
N MONITORING
N _‘5 =
3 DOWNLOAD AND [ -
MONITGRING ANALYSIS STATION / ilie E_r &{]
SYSTEM 1
MACHINE WITH
VIBRATION MACHINE WITH
SENSORS VIBRATION

SENSORS

MACHINE WITH
VIBRATION

MACHINE WITH SENSORS

VIBRATION
SENSORS

REMOTE CONNECTION

Fig. 1 Typical architecture of maintenance information system
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Fig. 2 Detecting operating conditions and faults

very useful. Overall equipment effectiveness (OEE) is a set of broadly accepted
non-financial metrics which reflects manufacturing success [6]. Performance is
evaluated by process capability indices (PCIs), which assume that process output is
approximately normally distributed. Harmonised indicators, KPIs and PCIs can be
handled as infrequent process measurements [3].

Real-time risk analysis requires more online measurements, where different
wave form signals are important new sources of information. Vibration measure-
ments provide a good basis for condition monitoring: elevated signal levels are
detected in fault cases [7]. Mobile machines in underground mines introduce
challenging environments for the measurements [8]. In rolling processes, torque is
one of the most important measurements: the monitoring of rolling mill main drives
requires torque to be measured directly at spindles or motor shafts since the main
drives are highly dynamically loaded, which affect the product and the residual life
time of drive components [9].

Efficient signal processing and feature extraction are essential in getting the
waveform signals to real-time use: generalised norms [10] in wide variety of
applications [11]. Linguistic equation (LE) models [12] based on nonlinear scaling
[13] and data-driven tuning of the scaling functions [14] bring all the measurements
to the same informative scale. Statistical process control (SPC), which was origi-
nally developed for quality control, is now widely used in fault detection and
diagnostics [15]. Aggregation by features and indices is necessary for waveform
signals. Nonlinear scaling is used in the same way for all the levels. Natural
language can be used for all types of data [16].
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This paper focuses on possibilities of the real-time risk analysis and feasible
approaches to be used in the development. Signal analysis and feature extraction
discussed in Sect. 2 are essential in intelligent analysers (Sect. 3) and in fatigue
prediction (Sect. 4). Physical models are discussed in Sect. 5.

2 Signals and Features

Feature extraction uses derivation and statistical analysis. Real-time analysis can be
based on the generalised norms [10], which has numerous applications [11].
Generalised spectral norms include the frequency domain in the time domain
analysis [17].

2.1 Derivation

The calculation of the time domain signal x(*)(r), which is based on a rigorous
mathematic theory [18], is performed with three steps. The fast Fourier transform
(FFT) is used for the displacement signal x(¢) to obtain the complex components
{X¢},k=0,1,2,...,(N —1). The corresponding components of the derivative
x®)(r) are calculated as follows:

Xok = (iog) Xx, (1)
where w = 2nf, o € R is the order of derivation and f has integer values. Finally,
the resulting sequence is transformed with the inverse Fourier transform FFT ,
which produces the derivative signal. Since the vibration analysis is now based on

the acceleration signals, the components of the derivative are obtained with an
appropriate order of derivation o — 2 [10].

2.2 Generalised Norms

The generalised norm defined by

=

(RN Z ), @)



Intelligent Real-Time Risk Analysis for Machines ... 233

where o € R is the order of derivation, the order of the norm p € R is non-zero, 7 is
the sample time and N is the number of measurement values in the sample. The
norm (2) includes the norms from the minimum to the maximum, which correspond
the orders p = —oo and p = oo, respectively. The norm values increase with
increasing order. The computation of the norms can be divided into the computation
of equal sized sub-blocks, i.e. the norm for several samples can be obtained as the
norm for the norms of individual samples [10]. This which means that norms can be
recursively updated.

2.3 Generalised Spectral Norms

Generalised spectral norms are calculated from the frequency spectrum by

X,= (o> x|, ()
k=1

where { X, } is the sequence of complex numbers, representing different frequency
components of the signal [18]. This kind of norm can be used, to provide for
information about the change in signal in a certain frequency range or frequency
ranges.

3 Intelligent Analysers

Intelligent condition and stress indices are calculated from these features by non-
linear scaling. The nonlinear scaling approach, which also uses the norms and
moments, improves sensitivity to small fluctuations.

3.1 Nonlinear Scaling

The basic idea of the linguistic equation (LE) methodology is the nonlinear scaling
developed to extract the meanings of variables from measurement signals. The scaling
function scales the real values of variables to the range of [-2, +2] which combines
normal operation [—1, +1] with the handling of warnings and alarms. The scaling
function contains two monotonously increasing functions: one for the values between
—2 and 0, and one for the values between 0 and 2 [12]. Constraints of the monotonous
increase defined in [13] and the data-driven tuning of parameters introduced in [14]
form the current design methodology. Knowledge-based information obtained from
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natural language is translated to the same value range [—2, 2] with the indices and
indicators calculated from numerical values [16].

3.2 Stress Indices

Cavitation is detected well with the feature max(||*M37||), whose scaled value is

the cavitation index I<c4)' The index levels shown in Table 1 are consistent with the
vibration severity criteria defined in VDI 2056 [19]. Similar results obtained in a
rolling mill are used for fatigue prediction, see Sect. 4.1 [20]. Effects of the stress
are studied for a mobile machine in an underground mine [21].

3.3 Condition Indices

The norms max(HlSMi H) and max (|| M H) are highly sensitive to faulty situa-
tions in the supporting rolls of a lime kiln. The corresponding condition indices are
consistent with the vibration severity criteria, which originate from VDI 2056 [19].
Research is continuing for a mobile machine in an underground mine, where con-
dition indices are obtained repeatedly in similar steady operating conditions [21].

3.4 Generalised SPC

Statistical process control (SPC) is used in monitoring a process through the use of
control charts [15]. SPC is extended to nonlinear with a large set of non-Gaussian
statistical distributions. It operates without interruptions in short run cases and
adapts to the changing process requirements. The approach has been tested in two
application cases: a rolling mill and an underground load haul dump (LHD)
machine [22].

Table 1 Cavitation index and vibration severity criteria [14]

Cavitation index Cavitation level Severity

I(C4) <1 Cavitation-free Good

—1< I(C4) <0 Short periods of weak cavitation Usable

0< 1(C4) <1 Short periods of cavitation Still acceptable
](C4) >1 Cavitation Not acceptable
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3.5 LE Models

Linguistic equations (LE) models are linear equations

m

A X;+B; =0, 4)
j=1
where X; is the linguistic level for the variable j,j = 1...m. Each equation i has its
own set of interaction coefficients A;,j = 1...m. The bias term B; was introduced
for fault diagnosis systems. Various fuzzy models can be represented by means of
LE models, and neural networks and evolutionary computing can be used in tuning.
The methodology provides a flexible environment for fault diagnosis applications,
software sensors, risk analysis and detection of sensor failures [2].

Nonlinear effects are handled with the scaling functions, i.e. intelligent indices
can be used directly in the models to build more specific indices: two scaled
features are combined in the lime kiln case [14]; cavitation indices were also earlier
combinations of two scaled features [23].

4 Fatigue and Wear Prediction

Fatigue is caused by repeated loading and unloading. The mechanism proceeds
through cracks formed when the load exceeded certain thresholds. Structures
fracture suddenly when a crack reaches a critical size. Intelligent stress indices
based on the nonlinear scaling provide good indicators of the severity of the load.
The Wohler curve is represented by a LE model,

Is = logl()(NC)7 (5)

where the stress index Is can be a scaled value of stress or a scaled value of a
generalised norm obtained from signals. The contribution of the stress is calculated
in each sample time, which is taken as a fraction of the cycle time. The cumulative
sum of the contributions indicates the deterioration of condition and the simulated
sums can be used to predict the failure time [20].

4.1 Roller Mill

Torque measurements collected from a rolling mill have been used in the testing of
the approach. The feature is a combination of two norms and the stress index is
calculated from two scaled features obtained by using the nonlinear scaling
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Fig. 3 Linguistic S-N curve 2
presenting the analysed passes 15 4
[20] o § ",
"§ 05 e :
0 1 .
5‘% -05 = \\
1 |

10” 10° 10° 100 10° 10"

Life (eycles)

approach. The resulting linguistic S-N curve is linear (Fig. 3) and a normal S-N
curve is formed from it by scaling to the feature values: a large number of passes
have low stress indices. The high stress cases are seen as a very steep rise in the
semilogarithmic curve [20].

4.2 Load Haul Dumper (LHD)

Cumulative stress analysis uses vibration measurements from the front axle of a
load haul dumper (LHD). These machines operate in harsh conditions where fail-
ures may be difficult to repair. The machine is working in an underground mine.
The cumulative stress increases fast during the high stress periods and increase is
practically stopped when the stress is low since only stress indices are taken into
account in the cumulative stress [21].

5 Maintenance

The described approach allows the prediction of system behaviour using either an
analytical formulation of system processes (including degradation mechanisms)
based on known principles or an empirically derived relationship. Many investi-
gations into degradation mechanisms have been conducted, producing empirical
damage models that are valid in a narrow range of conditions, such as wear, fatigue
cracking and corrosion. Specific degradation mechanisms are generally studied and
characterised under standard test conditions. Physics-based models are highly
useful for describing the dynamics of time-varying systems, including different
operating modes, transients, and variability in environmental stressors, but at the
expense of the effort required to develop and validate the model [24].

The key challenge for a degradation model is to develop appropriate constitutive
relationships for the condition decrease during degradation accumulation and to
observe the complementary variables that characterise the relationship.
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In the railway field, there are many physical models already validated that
characterise the degradation of both track and rolling stock. For instance, the
deterioration of track quality is often assumed to be proportional to the current
quality. In this sense, a track in good condition deteriorates more slowly than a track
in bad condition. This is usually modelled with the equation

0(1) = Qo €. (6)

Here, Q, is the track quality at time t = O and the parameter b is the deterioration
rate characterising the behaviour in time. That is, the quality measure evolves
according to an exponential model.

In Sweden, geometrical measurements are taken approximately every
1-2 months, excluding the winter. In Fig. 4, we fit the exponential model to the
available data, ranging from April 2007 to September 2012 (21 geometrical mea-
surements total). The exponential model, however, can only be fitted to deterio-
ration branches with more than four measurements. However, the selected condition
indicator is not enough for assets with repair and reliability restoration. In Fig. 4, the
red lines represent maintenance actions on the track which eventually restore par-
tially the reliability and certainly modify the condition indicator. These maintenance
actions must be assumed as different since the maintenance performance always
depends on many factors and the assumption of “as good as new” after intervention
must be ignored.

As a summary, we find that this scenario of degradation combined with main-
tenance is a series of condition indicators modified by both mechanisms (degradation
and restoration) and therefore the best tool for this modelling is time series [25].

Effects on railway data shown in Figs. 5 and 6 provide a more realistic
description of the degradation in combination with maintenance, information
that necessarily must be fused to get the holistic view of the asset management [26].

sigH(t)
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Fig. 4 Good fit of work orders and adjusted exponential model for sigH value
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Fig. 6 Degradation followed by restoration of Q-value after a work order (WO)

The blue lines represent the exponential degradation models of the homogeneous
sections, whereas the vertical (red) lines correspond to the work orders carried out
in the homogeneous section. The thresholds SL and ML represent the Service Level
and Maintenance Level, i.e. thresholds which require maintenance intervention if
reached (proposed by the international standards) or levels of comfort worse than
required in the SLA (Service level agreements).

The Q-value corresponds to the health index SOL, which can be calculated from
the condition index by

2-I
SOL=1-— ¢

(1-9), ()

where 6 is the value of SOL index when the condition index Ij. = —2. In [27], SOL
was calculated from the cavitation index, which is a stress index.

In summary, condition monitoring systems modelled as proposed in the previous
chapter can be successfully combined with work order information from the CMMS
by the means of using thresholds for features in time series data [28]. This
assumption introduces in the model not only the degradation mechanisms but also
the eventual restoration of the system.
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6 Conclusions

Compact solutions have been developed for all the necessary steps of the real-time
risk analysis: (1) features are specific for fault type and components, (2) intelligent
analysers bring all the measurements and features to the same scale, (3) dynamic LE
models based on intelligent indices provide predictions on fatigue and wear. All the
methodologies are developed for calculations to be done in each sample time used
in process control.
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Malfunction in Railway System
and Its Effect on Arrival Delay

Sida Jiang and Christer Persson

Abstract In this research project, we have established a set of advanced statistics
models that quantify the cause-effect relation between infrastructure failures and
train delay. The major model we employed in this project is called the “Wiener
process model”, and we are the first researching team to implement the
Wiener-process model into traffic analysis area with large scale network data in
Swedish railway. The data we based our research on includes a 1) train movement
record database—TFOR 2) infrastructure error reporting system—OFELIA 3)
railway facility database—BIS. For TFOR alone, there is a 27-million data record
over 5 different rail classes (from rail class 1, major railway around big city areas to
rail class 5 least loaded rail) and 3 different passenger train types (x2000, regional
train and commuter train). By merging the database listed above, a specified wiener
process model has been estimated for the primary delay caused by system errors
and the secondary delay by interaction of trains. The model also quantifies the
effects of characteristics of railway system over different rail classes and operation
manners. In addition, the Wiener process model also enable further research to
derive the fundamental relation between capacity, speed and density (inverse
function of time gap) in railway context.

Keywords Cause-effect relation - Wiener process - System errors - Arrival delay
and Meso-level simulation

S. Jiang (D<)
WSP Analysis & Strategy, Arenavédgen 7, Stockholm-Globen, Sweden
e-mail: sida.jiang @wspgroup.se

C. Persson
KTH, Teknikringen 72, Stockholm-Globen, Sweden
e-mail: christer.persson@abe kth.se

© Springer International Publishing Switzerland 2016 243
U. Kumar et al. (eds.), Current Trends in Reliability, Availability,

Maintainability and Safety, Lecture Notes in Mechanical Engineering,

DOI 10.1007/978-3-319-23597-4_18



244 S. Jiang and C. Persson

1 Introduction

The railway system is a complex system and errors that occur in the system can
cause delay for the passengers travelling by train. However knowledge of the
relationship between railway errors and travel delay, in the current situation is
relatively deficient. The aim of the project is to put forward the knowledge by
estimating the relationship between infrastructure-related errors that occur in the
system and resulting delay in railway.

The alternative solution available today is basically micro-level simulation, e.g.
by means of RailSys [1], to simulate how the system failure affects the delays in
train traffic. In the current situation, this is an option only for certain individual
sections of the railway system due to the regard of data complexity and the long
simulation time. Besides requiring detailed features of the studied railway network,
self-defined delay distribution needs also to be constructed in Railsys simulation
[2]. Wiener process, on the other hand, is a statistical model to quantify cause-effect
relationship between errors and delays that can be applied to general analytical
scenarios, such as varied time table frequency, real-time headway and track type.
The arrival delay distribution derived from the proposed Wiener process can also
lay out a basis for delay distribution input to Railsys and other micro-simulation
tools in railway research.

In this study, rather than a general model that covers the whole railway system,
the individual trains are described individually in the model, but far less detailed
than in standard simulation model. The level of details to predict the effects of
individual trains will be less than in the simulation model, but the opportunities to
analyze the majority or large parts of the system increases. The chosen model
estimates the travel time probability distribution for individual trains and route
segments. The transport model at this context is called the meso-level simulation,
while usual practice uses the RailSys system at the micro level.

The model used is a so-called stochastic diffusion. It is a flexible model that
contains great customization options which can be applied in the sector. In this
project, the main purpose was to find out in what extent has break down of the railway
system affected arrival delay, and how to capture primary and secondary delay in the
Wiener process model, without regard to details of the whole railway system.

2 Definition and Denotation

2.1 The Wiener Process

The Wiener Process (W) is frequently referred as Brownian motion. One way to
modify the Wiener Process in the context of train movement is to introduce a
systematic drift (¢) in which the train moves towards the destination while the
infrastructure failures yield the diffusion (diffusion coefficient o) against the
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direction of the drift. If the train starts at station say W(0) = d with distance d to the
next station and it takes time 7—often termed as first passage time or hitting time,
thus T = infizo{t:W(t) = 0}. The distribution of T is an inverse Gaussian distribution
and the process X(t) = d — ut + o W(t) is called a Wiener process [3]. The Wiener
process has been frequently applied in pure & applied mathematics, physics, eco-
nomics and quantitative finance (in particular the Black-Scholes option pricing
model). The application of the results of “hitting time” to multiple channel queues
in heavy traffic is firstly discussed by Lglehart and Whitt [4].

2.2 Arrival Delay

In stochastic process theory, the Wiener Process is featured with its stationary and
independent increments which give great convenience in practicing frailty theory in
railway context; nonetheless the train movement is decomposed into a set of
independent movements over railway links between two consecutive stations/stops.
In order to avoid the violation of the independency of the decomposing train
movement over different links, we thereby introduce arrival delay as shown in
following formula [5] (Fig. 1):

Arrival delay = arrival time—planned arrival time—departure delay (2.1)
So that the defined arrival delay is independent of accumulated delay from
previous links, in the same manner that the probable arrival delays of links after-

wards is also independent of the studied link. The study focuses on the passenger
traffic and the station pairs that have the correct record of arrival time.

2.3 Primary and Secondary Delay

In railway operation, train delay is usually categorized into primary and secondary
delay due to its causes. Primary delay is majorly caused by malfunctions in

Fig. 1 Diagram of relation total
between arrival delay, arrival -
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time, planned arrival time and
d Station 2
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infrastructure (signal, track, communication etc.) or train. The secondary delay is
known as “knock-on” delay in the sense that delays may be propagated to other
trains due to interaction between trains [6]. In order to improve the robustness of the
real-time railway operations, buffer time is supplemented in the time table to absorb
the delay caused by both primary and secondary delay. The optimization of time
table with regards to time supplement has frequently discussed in railway simula-
tion and practice [7], yet the system malfunction and interaction between consec-
utive trains is more stochastic than the planned time table, therefore in this study we
have also investigate the real-time time gap between consecutive trains instead of
supplement time in time table.

All the errors of the Swedish railway system is registered in a database called
OFELIA. To derive the cause-effect relation between railway system and train
arrival delay, we have firstly matched OFELIA with a train movement database
called TFOR using the shortest path method. Hence, each row of the combined
dataset is an individual train movement with system error(s) that occurred at the
same link and can probably affect the train. In addition, the closest train movement
ahead of the studied train movement (upon the same link) is also attached in the
same row of combined dataset. To model how the interaction between consecutive
trains yields secondary delay, we also computed the headway or time gap between
closest train pairs. Our combined dataset thereby integrates train movement infor-
mation with affecting system errors and the headway to the train ahead.

3 Data and Method

3.1 Opverview of the Model

Each and every individual train movement between two train stations/stops can be
specified in the following Wiener process model [3]:

X(t) =d — pt+oW() (3.1)

where

t is time;

X(t) 1is the position of the train from the starting station along the link measured in
kilometer. Eg. X (0) =d

W(t) is a standard Wiener process, VarW(z) = ¢

d is the length of the link (kilometer), d > 0

u is the average speed that train moves over the link

o is the variation of the location of train (VarX(t) = 021‘)
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With d and ¢ > 0 yields a negative sign for u in (3.1) such that the train started
from X = d to the station along the link at the position X = 0.

The arrival time T, in the terminology of wiener process is called “first hitting
time at 0”, and can be formed as follows:

T, = inf{r : X() = 0} (3.2)

The arrival time T, follows the inversed Gaussian distribution and can be esti-
mated through maximum likelihood. Two important features can be derived from
the Wiener process model for average travel time E(7,) and the variation of travel
time Var(7T,) over the studied link:

E(T, = %) (3.3)
Var(T,) = ‘% - E(Ta)% (3.4)

The travel time and its variation are thus easily estimated through the average
speed and variation of train location from the standard Wiener process model.
Important characteristics of the railway system have been modelled as the variant of
the average speed u and location variation o. Assuming Z is the independent
variable matrix including majorly:

e Rail class
e Train type
e System errors
e Time gap
Then
w=2p (3.5)
o = exp{Zo} (3.6)

Exponential transformation is used to assure the positive sign of . f represent
the coefficients for independent variables and is estimated through
maximum-likelihood, through coefficients we can further calculate e.g. the effects
of changing corresponding railway characteristics upon the average speed and
arrival delay.
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3.2 Model Specification

Specification of average speed and variation component is formulated with a series
of variants that represent the characteristics of the corresponding railway system:

u = P + PyRail Class2 + f3Rail Class3
+ f4RailClass4 + fsRailClass5 + f¢RailClassNA + ;x2000 + s CommuterTrain
+ L + ByoTotalErrors + 3, TotalErrors - RailClass4
timegap + 1
pisRailClas2  B4RailClas4
timegap + 1 timegap + 1

+ BaTotalErrors - RailClassNA + (3.7)

Constant f3, is user specified and in the formula above it represents the reference
rail class and train type, that is rail class 1 and regional passenger train. Rail class
NA is one small part of data that has missing values for rail class information. Total
errors are the system errors registered in OFELIA that occurred yet not fixed at the
arrival station when the train starts. Alternatively, system malfunction can be cat-
egorized into errors of different types: rail, signal, communication, electricity etc.,
but we only use the number of errors since certain error category may not satisfy the
required minimum size due to rare occurrence.

The proposed hypothesis for the effect of the time gap upon the secondary delay
is up to certain limit, the marginal effect of one unit time-gap increment is
diminished over its magnitude. Therefore, the inverse function is introduced to
describe its non-linear effect. The non-linear transformation has also been tested
significantly to improve the goodness of fit for the model.

The specification of variation of location ¢ basically follows the same design as
the average speed; nonetheless we applied an exponential function to assure the
positive sign of a:

o = exp{ s + B cRailClass2 + f,;RailClass3
+ BigRailClass4 + B gRailClassS + f,yRailClassNA + f3,,x2000
B
timegap + 1
+ PysTotalErrors - RailClass2 + By TotalErrors - RailClass3
+ By TotalErrors - RailClass4 + PogTotalErrors - RailClass5
PaoRailClas2 ~ f5 RailClas4

timegap + 1 timegap + 1

+ By CommuterTrain + + By TotalErrors

(3.8)

+ fygTotalErrors - RailClassNA +

}

More combined total errors with rail class in the formulation of location varia-
tion are proved significantly.
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3.3 Data and Sampling

There are 27.6 million train movements for 2009 in the TFOR database, of which
contains 18.2 million records for passenger traffic. Each train movement record is a
combination of train number, train type, rail class (bantyp in Swedish) and travel
time related. The large data size motivates a statistical sampling through TFOR then
combined with OFELIA and time gap to corresponding closest train.

In the following tables, two ways to look at the “representativeness” of pas-
senger train movement over Sweden in 2009 from TFOR database are presented
(Tables 1 and 2):

The sample containing 90 000 passenger train movement is selected in the
project to represent the identical structure of different rail classes in Sweden, 2009,
while with 100 unique train numbers for each train type, the weights of different
train type is computed for further modal adjustment and the interpretation of results.
After data processing we have obtained 35 596 observations as our input data.

4 Results and Summary

4.1 Estimation Results

The log-likelihood of the model is —77 023.76 with total 35 596 observations. By
average, x2000 on rail class 2 has the highest speed while rail class 5 or commuter
train in rail class 1 has significantly lower speed in the Swedish railway network.
For primary delay: total errors across all rail classes have negative effects upon
average speed, yet for rail class NA even more negative than any other rail class
which may be quite meaningful to identify its rail class in further studies. For

Table 1 Division of

; Train type Share (%)

passenger train movement X2000 2
over different train types in
TFOR, 2009 Commuter train 42

Other trains 46
Table 2 DiV.iSiOII of Rail class Share (%)
passenger train movement ] 377
over different rail classes in :
TFOR, 2009 2 34.9

3 21.4

4 5.7

5 0.4

In total 100.0

Note Rail class 1—metropolitan areas e.g. Stockholm to 5—the
least traffic loaded rail class
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Table 3 Estimation results

; Coeft. | Parameter | Value | P-value
for passenger train sample

Average speed u

B1 Intercept 1.73 <0.0001
B2 RailClass2 0.32 <0.0001
B3 RailClass3 0.04 <0.0001
B4 RailClass4 0.02 0.6068

B5 RailClass5 —-0.61 <0.0001
B6 RailClassNA 0.38 <0.0001
B7 x2000 0.46 <0.0001
B8 Commuter Train -0.09 |<0.0001
B9 1/(timegap + 1) -0.68 |<0.0001
p10 Total errors -0.16 |<0.0001
B11 RailClass4*total errors 0.10 0.0266

p12 RailClassNA*Total errors —-0.02 |<0.0001
p13 RailClass2* (1/(time gap+1)) |0.38 <0.0001

14 RailClassd* (1/(time gap+1)) | —0.37 | 0.0007

Variation of location o

B15 Intercept 0.18 <0.0001
B16 RailClass2 0.24 <0.0001
p17 RailClass3 —0.07 |<0.0001
p18 RailClass4 0.59 <0.0001
B19 RailClass5 -0.16 |0.6886

320 RailClassNA 0.13 <0.0001
p21 x2000 0.11 <0.0001
p22 Commuter train -0.19 | <0.0001
p23 1/(timegap+1) 0.33 <0.0001
p24 Total errors -0.06 |<0.0001
B25 RailClass2* total errors 0.11 <0.0001
B26 RailClass3* total errors 0.13 <0.0001
p27 RailClass4* total errors -0.22 | 0.0004

B28 RailClass5* total errors 1.05 0.0321

329 RailClassNA*total errors —0.06 | <0.0001
B30 RailClass2*(1/(time gap+1)) —0.83 <0.0001
B31 RailClass4*(1/(time gap+1)) -2.56 |<0.0001

secondary delay: significant effects of time gap has been identified for rail class 2 &
4 with opposite signs compared with rail class 1, but in general the time gap has, ar
different extent, a positive effect to increase the mean speed. An extra time is often
added in the design of the time table to diminish the potential secondary delay,
more reliability can be gained through a time gap plug-in in rail class 4 since it is
usually single track and less maintained. Certainly, the fundamental relation
between A) traffic flow (indicated by rail class) & mean speed B) traffic flow &
density (can be formed by time gap) is also non-linear in railway context. It needs to
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Fig. 2 The effects of time gap upon mean speed over different rail classes

be explored further through different modelling approaches, here is just a priori
variant (Rail Class X* (1/(time gap+1))) to test the significance of a combined
variable as well as the cause-effect relation between time gap and secondary delay.
The coefficient estimation can be seen in Table 3:

In Fig. 2, a comparative result has been analyzed and illustrated where we can
find that the time gap has in general an “approximately monotone” positive effects
upon corresponding mean speed, yet all the effects is converged to certain speed
level for different rail classes. Furthermore, the diminishing marginal curve means
that it is more effective to plug in short unit of time in heavily loaded traffic
situation than otherwise. Rail class 1 & 3 been affected most since rail class 1 has
quite intensive train operations, also with a mixture of different train type at large
extent; rail class 3 is almost all single track and to great extent subjected to the
minimum time gap from both directions.

The parameter ¢ describes the variation of train location; a higher value yields
higher variation of travel time. The effect upon variation is an exponential function
of estimated coefficients. We have noticed that the sign for time gap inversion in rail
class 1 is positive which means with time gap increasing the variation will
diminishes in the amount of exp(0.33) ~ 1.39, in a way to reduce the unreliability of
travel time. Again the combination of rail class and time gap needs to be further
adjusted so that it will be comparable with fundamental relation in roadway.

4.2 Summary

The research has specified the Wiener process model and implemented it into a
large scale simulation in the Swedish railway system. The merging of train
movement database TFOR and system error registry OFELIA together with data
processing for important variable such as time gap, has enabled the railway
administrator to investigate at the meso-level both primary and secondary delay
with respect to a series of important characteristics over railway system. To enrich
the understanding of the fundamental relation between capacity, speed and density
(inverse function of time gap) in railway context, future research needs to firstly
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build upon more updated and detailed database e.g. Lupp such that track infor-
mation for train movement and travel time in seconds can be employed.
Furthermore, the application of the research results is not limited to time table
design or railway operation to minimize travel delay; we also foresee strong
motivation to calculate the elasticity as a basis for socio-economic effects of dif-
ferent maintenance strategies.

Acknowledgments We would like to thank our sponsors of ICRESH-ARMS 2015 for their
intellectual and financial support. Special thanks to Joel Akesson at Trafikverket, Hakan Berell at
WSP, Pia Sundbergh at Trafa and Dr. Alireza Ahmadi at LTU to contribute their instructive
insights and generous help.

References

1. Bendfeldt J-P, Mohr U, Miiller L (2000) RailSys, a system to plan future railway needs.
International conference on computers in railway, Bologne

2. Sipild H (2012) Simulation of rail traffic—Applications with timetable construction and delay
modelling. Licentiate thesis, KTH, Sweden

3. Aalen O, Borgan @, Gjessing HK (2008) Survival and event history analysis. Springer, New
York

4. Iglehart DL, Whitt W (1970) Multiple channel queues in heavy traffic. I Adv Appl Probab 2
(1):150-177

5. Jiang S, Persson C, Sundbergh P (2012) Fel i jarnvégssystemet och dess effekter pa forseningar,
working report, WSP

6. D’Ariano A, Pacciareli D, Pranzo M (2007) A branch and bound algorithm for scheduling trains
in a railway network. Eur J Oper Res 183(2007):643—-657

7. Kroon L, Maréti G, Helmrich MR et al (2008) Stochastic improvement of cyclic railway
timetables. Trans Res Part B Methodol 42(6):553-570



On-Condition Parts Versus Life Limited
Parts: A Trade off in Aircraft Engines

Veronica Fornlof, Diego Galar, Anna Syberfeldt and Torgny Almgren

Abstract Maintaining an aircraft engine is both complex and time consuming since
an aircraft is an advanced system with high demands on safety and reliability. Each
maintenance occasion must be as effective as possible and the maintenance need to
be executed without performing excessive maintenance. The aim of this paper is to
describe the essence of aircraft engine maintenance and to point out the potential for
improvement within the maintenance planning by improving the remaining life
predictions of the On-Condition parts, i.e. parts that are not given a fixed life limit.

Keywords Aircraft engine maintenance « Remaining useful life - Reliability -
On-Condition parts

1 Introduction

Aircraft engines are one of the most critical parts of an aircraft and are therefore
where most of the maintenance efforts are allocated.

Efficient maintenance of an aircraft focus on how to ensure the realization of the
inherent safety and reliability levels of the aircraft, and also to restore safety and
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reliability to their inherent levels when deterioration has occurred [1]. Aircraft
maintenance does also occupy a key position in airline operation because mainte-
nance is essential to the safety of the passengers and the reliability of airline
schedules [2]. An unexpected failure that could lead to an aircraft crash must be
avoided by all available means. Maintenance, and to perform correct maintenance,
is therefore a prerequisite for a successful aviation industry.

Maintenance is the combination of all technical and associated administrative
actions intended to retain an item in, or restore it to, a state in which it can perform
its required function. The goal is to prevent fatal damage for machine, human or
environment and to prevent unexpected machine failure by using condition based
maintenance planning to increase safety of production and quality control. Figure 1
below shows a breakdown of different maintenance strategies.

Basically there are three different maintenance strategies [3]:

® Run-to-break is the most simple maintenance strategy that is often used for
systems that are cheap and where damage does not cause other failures. The
machine or system is used until it breaks. It is commonly used for consumer
products.

e Preventive Maintenance is the most common maintenance method for industrial
machines and systems. With this strategy maintenance is performed in fixed
intervals. The intervals are often chosen so that only 1-2 % of the machine will
have a failure in that time.

e Condition-Based Maintenance is also called predictive maintenance.
Maintenance is dynamical planned based on machine or system condition.
Condition-Based Maintenance does have advantages compared to the other two
strategies, since modern measurements and signal-processing methods are used
to accurately diagnose item/equipment during operation. It though requires a
reliable condition monitoring method. One area within this part of maintenance
is condition monitoring which aims to continuously observe wear-related vari-
ables throughout a system’s lifetime to determine its degree of deterioration [4].

Fig. 1 Breakdown into

different maintenance Maintenance
strategies
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Maintaining an aircraft engine is not only complex and time consuming. It is,
above all, expensive. Direct engine costs actually accounts for approximately 30 %
of the total maintenance cost for an aircraft [5]. Maintaining a fleet of aircrafts also
means challenges from a business perspective since the goals of maintenance and
operations costs may conflict with desired service levels and safety levels [6, 7]. It
is therefore of importance that each maintenance event is as efficient as possible to
lower the costs and to be time efficient without adventuring the safety issues. On the
other hand, it is also of major importance not to perform excessive work and/or
component replacements and thereby throw away components with remaining life
or to reduce engine availability.

2  Current Maintenance of Engines

Aircraft engine maintenance can be carried out at three separate maintenance levels
[8]; the Operation level (O-level) is the lowest level activity and is carried out in the
flight-line environment. For example are onboard engine performance monitoring
equipment used to record engine and aircraft performance data at this level in order
to detect defects or the need for routine engine maintenance [9]. At the O-level, the
main focus for the maintenance is to perform scheduled and unscheduled inspec-
tions of the engine while it still is placed in the aircraft. This level also includes
repairs, replacements and services which can be performed while the engine is still
installed in the aircraft. The next level is the intermediate level (I-level) and the
highest level is called Depot level (D-level) [10]. Main focus for the I-level is
scheduled and unscheduled maintenance and to repair or perform service on
line-replaceable units (LRUs) that can be performed without sending the engine or
LRUs to D-level. D-level is the level were larger overhauls and maintenance of
LRUs can be carried out. Also are inspections, services and replacements and
repairs of shop-replaceable units (SRUs) are also performed at this level and nor-
mally D-level is additionally responsible for spare part distribution.

Aircraft engine maintenance has historically been carried out at fixed time
intervals between major overhauls, but has then moved on to be carried out when
needed, with no fixed time intervals [11]. Instead, services and controls of the
engine system have been implemented according to a service plan to reduce the
number of maintenance occasions to not perform excessive maintenance and only
maintain the engine when needed.

In the aviation industry two main directions can be identified, the civil aircraft
industry and the military aircraft industry. The aircraft engines used in both these
specializations are based on the same techniques and constructions. The military
engines are however exposed to higher loads, and thereby higher life consumptions,
then the engines in the civil aviation industry. A military aircraft during a flight
mission can for example vary its flight altitude many times, while a civil aircraft
normally starts and climbs to a specific altitude until it descends to land.
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Federal regulations govern all aircraft engine related matters. To maintain an
aircraft mainly three sets of standards need to be fulfilled. First the standards in the
manufacturer’s Federal Aviations Administrations (FAA)-approved maintenance
manuals [12]. Next are the standards for the maintainers’ FAA-approved progres-
sive inspection and maintenance program that must be met. Finally, the maintainer
must meet the additional airworthiness standards from the Code of Federal
Regulations (CFR) as well as the regulations concerning records, personnel and
working conditions [13].

3 Selection of Maintenance Tasks

An aircraft engine consists of three different categories of components; Life Limited
Parts (LLP), On-conditions Parts (OC-parts) and consumables (see Fig. 2). LLPs
are components with a fixed life limit and are exchanged when they have reached
their life limits [12] since they are safety critical (i.e. a breakdown may cause an
engine breakdown that are so serious that it would cause an aircraft crash). OC-parts
are “stochastic” parts that are approved for further use as long as their condition is
within approved limits. There can also be scenarios where a LLP has not reached its
life limit, but cannot be approved for continued service due to other aspects as
cracks, fretting or similar. It should be noted that an LLP also can be evaluated as
an OC-part. The third group of components, “consumables”, is a small group of
components that are exchanged each time they are removed from the engine.

In order to move from fixed maintenance intervals to maintain the engine when
required, an on-condition maintenance concept must be designed to guarantee
reliability. This is one of the reasons that Reliability Centered Maintenance
(RCM) was developed within the aircraft industry. The RCM process is designed to
focus engineering attention on component level in a formal and disciplined manner,
leading logically to the formulation of a maintenance strategy plan. Benefits with
RCM also include the development of high quality maintenance plans with
decreased lead time and at lower cost [14].

RCM methodology is used to generate and optimize a maintenance program,
including inspection requirements, that focuses on preventive maintenance on the

Life Limited Parts On-Condition Parts Consumables
May not exceed a Approved for continued
specified time, or operations as long as Exchanged at each
number of operating they are within given maintenance occasion.
cycles. limits.

Fig. 2 Component categories in an aircraft engine
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specific failure modes that are likely to occur. The methodology is based on the
assumption that the inherent reliability of equipment is a function of the design and
the built-in quality [15-19]. Theories related to RCM mean that performing
maintenance not only should be performed to avoid failures, but also to prevent or
at least decrease consequences caused by failures. That is why RCM focuses on
retaining functions instead of focusing on the hardware itself [15, 16]. This means
that RCM treats components differently depending on how important they are
considered to be for the equipment and the system functions. This is also the reason
why the components are divided into LLPs, OC-parts and consumables. If the
probability that an event could cause large consequences for the systems, like a
breakdown, components related to this event are found to have higher importance.
Preventive maintenance is then used to act as a barrier to remove the consequences
of failure, or at least to lower them to an acceptable level.

An implementation of RCM, The Air Transportation Association’s (ATAs)
Maintenance Steering Group 3rd Task Force (MSG-3) is the only process that is
approved by the FAA for the development of a Maintenance Review Board Report
(MRBR) for transport aircrafts. MSG-3 was originally developed for the Major
Airlines, and was later also adopted by Regional Aviation Users. MSG-3 is how-
ever found to be an expensive and time-consuming process were a MSG-3 process
for a propulsion system takes approximately 2000-2500 man hours. Even though
this is a significant amount of time, MSG-3 has been proven to provide significant
payback to operators in minimizing preventative maintenance costs [20]. MSG-3
outlines the general organization and decision process for determining the sched-
uled maintenance requirements initially projected for preserving the life of the
aircraft, with the intent of maintain the inherent safety and reliability levels of the
aircraft [21].

In order to evaluate and classify the failure modes into one of the three categories
below, the decision process illustrated in Fig. 3 is used [22].

1. Safety related
2. Outage related, were the system not will fulfill all its requirements
3. Economic related

If a failure mode is found to be safety related, design modifications are
mandatory. For failure modes within bullet 2 and 3 above, the maintenance options
can for example be time directed tasks as on-condition based maintenance,
run-to-failure, and design modifications [22].

While operation experience is accumulated, additional adjustments may be made
by the operator to maintain an efficient maintenance schedule [24]. The ATA
MSG-3 (2207) states that the objectives of scheduled maintenance of aircraft are
[1]:

To ensure realization of the inherent safety and reliability levels of the aircraft.

e To restore safety and reliability to their inherent levels when deterioration has
occurred.
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Failure mode

Under normal conditions do
the maintainers know that
something has occurred?

Yes No

Does the failure mode cause a

safety problem? Hidden failure
Yes No
Does the failure mode result in
Safety problem a full or partial breakdown of
the system?
Yes No
Outage problem Minor to insignificant problem

Fig. 3 Decision process for a RCM program. Source [23]

e To obtain the information necessary for design improvement of those items
whose inherent reliability proves to be inadequate.

e To accomplish these goals at a minimum total cost, including maintenance costs
and the costs of resulting failures.

Finally each aircraft, and thereby also its engines, has its own maintenance
requirements which are designed to keep the aircraft in an airworthy condition.
These aircraft maintenance requirements typically originate from the aircrafts’
manufacturer and can be revised throughout the life of the aircraft by the manu-
facturer, the FAA and/or the Maintenance Review Board (MRB) [2].

4 The Need for Accuracy in the Reamaining
Useful Life (RUL) Prediction

The main drivers for the development of a failure prediction concept are the costs of
a delay, or cancellations, of an aircraft departure or arrival. Delays can be caused by
unscheduled maintenance between aircraft arrival and departure.

The purpose of failure prediction is to give the aircraft operator the opportunity
to repair or replace a system during scheduled maintenance, if the system is not yet
broken but are predicted to be before the next scheduled maintenance. The main-
tenance case is as follows:
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. A fault happens in flight.

. Sensors detect the fault and report the fault to the cockpit.

. The pilot/aircraft sends a maintenance request to the airport.

. A maintenance mechanic checks the aircraft, when it is on ground.

. The mechanic performs a fault search and a fault diagnosis.

. Spare parts are ordered and a repair plan is made after the fault has been
identified.

. When the spare parts arrive, it is possible to carry through the repair.

8. The aircraft is ready again after the repair.

AN B W=

3

It is possible that the fault identification, diagnostics and spare parts management
take too much time, so that the aircraft departure is delayed or even canceled.
A cancellation or delay causes significant costs for an aircraft operator.

However the RUL prediction must match the opportunistic maintenance per-
formed as a consequence of planned overhauls or similar actions. Indeed, when an
aircraft engine is sent to D-level for overhaul, either a LLP has reached its fixed life
limit or something indicates that something is wrong with the engine—in which
case the engine must be taken apart, further inspected and maintained. Oil supply to
critical parts, such as bearings, is vital for a safe operation. For monitoring fuel and
oil status, indicators for quantity, pressure, and temperature are used. In addition to
these crucial parameters, vibration is constantly monitored during engine operation
to detect possible unbalance from failure of rotating parts, or loss of a blade. Any of
these parameters can serve as an early indicator to prevent component damage
and/or catastrophic failure, and thus help reduce the number of incidents and the
cost of maintaining aircraft engines [25].

A maintenance occasion were a specific component needs to be removed makes
it however, often, necessary to remove other components to be able to removed the
component that needs to be maintained. This creates an opportunity to perform
additional maintenance which may be beneficial in a larger perspective. Each
maintenance occasion is for example related to fixed costs as leasing a spare engine,
transportations, and administration. It can therefore be of interest to perform more
maintenance at this specific maintenance occasion, so that this cost does not appear
more often than necessary, i.e. to avoid sub-optimization by performing the right
amount of maintenance at each maintenance occasion. To be able to calculate a
correct maintenance schedule for what to repair, at a specific maintenance occasion,
the estimated life limit for all relevant components must be available. At present is
though not life estimated available for all components since only the LLPs have a
fixed life limit defined, while the OC-parts instead are approved for continued
operation as long as they fulfill their requirements. It would thus be beneficial, from
a maintenance planning point of view, if estimates of the remaining life for the
OC-parts would also be available when planning a maintenance event.

Research within this area has for example been addressed by Enright et al. [26]
presented an approach for improving probabilistic life prediction estimated
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through the application of prediction methods. Actual F-16/100 usage data from
flight data records were integrated with a probabilistic life prediction code to
quantify the influence of usage on the probability of fracture for some engine
component. Bolander et al. [27] on the other hand developed a method to predict
the health of aircraft engine bearings, and their remaining useful lives, using spall
detection.

Aircraft engines are maintained at D-level by companies specialized in aircraft
engine maintenance. These companies’ benefit on how much maintenance and
spare parts they are able to sell. It can therefore initially be difficult to see how
performing too much maintenance could be unfavorable for them. But engine
maintenance relationships are built on long term basis, where both the engine
operators and maintainers benefits from doing the right amount of maintenance at
the right time. It is therefore of interest to both parties to perform the right amount
of maintenance since the engine operators’ goal is to maintain the engine with as
low Life Cycle Cost (LCC) as possible without endanger the safety aspect. The
maintainer, on the other hand, has an interest in performing the right amount of
maintenance to ensure customer safety, but also to be able to attract new customers,
make profit and to be competitive with other aircraft engine maintainers.

S Proposed Framework

A need for better life estimates for the OC-parts has been identified and a frame-
work on how to estimate these life predictions will therefore be developed.

Large amount of historical data of failures and replacements of components and
subsystems are available since aircraft engine maintenance if strictly registered.
This data could be used to provide reliability analyses and reliability predictions for
the components and subsystems. This would give more accurate predictions on how
much longer the OC-parts could be kept in operation before being maintained
and/or replaced.

In addition, the use of physical parameters that are monitored during the oper-
ation of the aircraft engine is of interest as well as parameters that are inspected
during the maintenance. Both these kind of parameters could possibly by analyzed
by using Proportional Hazard Models (PHM) from the aircraft engine operation and
maintenance process as covariates.

This are two separate approaches on how to better estimate the life predictions
for the OC-parts in aircraft engines, and this research aims to determine which
approach that is the most suitable, or if they can be combined to reach better life
predictions for the OC-parts. Independently of which approach that is used, the
idea is to work with a hierarchy’s model, starting with an individual component
up to a system level covering the maintenance process for a complete aircraft
engine.
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6 Conclusions

Aircraft engine maintenance can be both complex and time consuming since each
aircraft is an advances system with excessive demands on safety and reliability. It is
therefore important to be as effective as possible at each maintenance occasion and
perform the right amount of maintenance every time.

This paper has described aircraft engine maintenance an identified a potential for
improvement within the maintenance planning. A need for research within this
topic has been identified to estimate the remaining life of the OC-parts so that their
use can be optimized in correlation to maintenance cost. This should be done to
keep the components in operation to an optimal level.

The current impression is that RAMS (Reliability, Availability, Maintainability,
Safety) modeling seems to be an appropriate technique, and that this type of data
eventually could increase the accuracy of the estimates of the remaining life for
OC-parts.
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In Need for Better Maintenance Cost
Modelling to Support the Partnership
with Manufacturing

Gary Linnéusson, Diego Galar and Mikael Wickelgren

Abstract The problem of maintenance consequential costs has to be dealt with in
manufacturing and is core of this paper. The need of sustainable partnership
between manufacturing and maintenance is addressed. Stuck in a best practice
thinking, applying negotiation as a method based on power statements in the service
level agreement, the common best possible achievable goal is put on risk. Instead, it
may enforce narrow minded sub optimized thinking even though not intended so.
Unfortunately, the state of origin is not straightforward business. Present mainte-
nance cost modelling is approached, however limits to its ability to address the
dynamic complexity of production flows are acknowledged. The practical problem
to deal with is units put together in production flows; in which downtime in any unit
may or may not result in decreased throughput depending on its set up. In this
environment accounting consequential costs is a conundrum and a way forward is
suggested. One major aspect in the matter is the inevitable need of shift in mind,
from perspective thinking in maintenance and manufacturing respectively towards
shared perspectives, nourishing an advantageous sustainable partnership.
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1 Introduction

In the eye of financial accounting all activity in business is cost generating, maybe
despite invoicing. All aspects and functions of a firm consume resources and add
costs, in that sense maintenance and manufacturing are alike. However resources
can be wisely or unwisely utilized, and thus add more or less cost. One problem in
manufacturing though is that depending on how production flows are defined costs
related to maintenance and downtime appear differently [1-4] and can be difficult to
unveil due to its interconnected nature with delayed feedback. In these intercon-
nected systems a narrow analysis utilizing “localized cost reductions” may intrude
severe consequences into the entire system of production; thus a thorough analysis
judged upon ability to generate throughput must be performed before any cost
reduction is put into effect [5]. It underlines the need of dealing with the wider
perspective of maintenance costs than “localized cost reductions” including the
systems perspective.

Manufacturing and maintenance are tightly interlinked, meaning that actions at
one partner brings consequences to the other. However, often manufacturing and
maintenance are managed with separated budgets, making it hard to identify nec-
essary jointly optimal procedures for a win-win situation. Manufacturing is the
partner in the relationship that adds value to the product and maintenance is its
supporting function ensuring the required capability of the machines. Despite how
well or poor maintenance is carried out it costs money, and on the individual
activity level it is difficult to justify and thus often seen as a cost function only [6]. It
brings the consequences that minimizing maintenance cost focus direct costs and
neglects the more tangible part of costs; consequential costs from minimized
maintenance interventions due to minimized budgets.

Literature points out the importance to convert maintenance costs, but
nonetheless values, into cash terms in order to support the communication on the
language of higher management, which is money [7-10]. In order to value main-
tenance correctly its long term effects on the interaction in the organization must be
included in the evaluation. However, managing a company focus utterly on how to
maximize ROI (return on investment) and cash flow. And, the reductionist approach
of the traditional financial control has brought a too short sighted focus on cost
reduction instead of the organizations long term survival [11, 12]. It comes down on
maintenance with bad consequences; supported by cost over profit maintenance
performance measurement systems that do not capture the reverberations of today’s
actions [9]. That saving money today is so easy, on the behalf of delayed impact
effects suffering much more expense later, is unfortunately not acknowledged by
most writers, according to [9]. Furthermore, it is considered very hard to identify
the contribution to company profits from the maintenance budget on the macro level
[6] and in combination with the short sighted cost reduction focus it may be what
hinders identification of well-functioning strategies. Thus in need to be illuminated
further.
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An example on the development of well-functioning maintenance system is
described in [13] also published in [14], showing the need of a shift in mind at
problem stakeholders, i.e. the organization facing the problem phenomena of a poor
maintenance system, in order to bring about desired development [14]. led a
modelling endeavour at a large company and the process brought several important
conceptual shifts in the way they viewed maintenance and thus their focus in the
study went from cost minimization to centre on the physics of breakdowns through
equipment degradation [13]. On that theme [15] states that; in order to strategically
manage cost optimization of the effects of maintenance on equipment, machine or
even company level we must adhere to the fundamental multi-disciplinary ingre-
dients of: understanding the mechanisms of degradation, quantitative models that
concern impact from actions such as operations and maintenance have on degra-
dation, and strategic management of maintenance. This paper acknowledges the
importance of these mechanisms and the value of dress them in economic terms in
order to improve visibility of consequential costs for higher management. However,
it is a challenge to define those mechanisms in small enough rates of precision in
order to build trust into such model’s results, previously tackled by including
stakeholders in the modelling process [16]. That is why first steps identified have to
be towards better maintenance cost modelling and not an absolute panacea equation
solving the problem, most likely such method will never be developed.

The foundation of this paper is thus based on the beliefs that maintenance efforts
must be valued through the lens of both direct cost and consequential cost with a
life cycle perspective in the context of the organization it interacts. Preparation of
maintenance efforts start perhaps in the acquisition process and are ongoing in the
daily operational business, in which decisions upon improvement on how to meet
key performance indicators such as mean waiting time, mean time to repair, and
mean time between failure etc. are taken. Constantly the status of equipment assets
are changing and constantly the maintenance organization has to deal with it; and
there are better or worse strategies depending on how the production is configured.
However on a general level it can be stated that the better the status of machines and
procedures the less emergency work and breakdowns, and reverse the worse status
of machines and procedures the more time spent on emergency work and break-
downs [13, 14].

This paper acknowledges that it is the decision making made by humans that is
key leverage in the development of manufacturing systems [17] and thus the per-
formance of maintenance, so deeply involved in it. Another important aspect when
it comes to practical implementation and change, considered important to
acknowledge, is to adhere to the need of building organizational capability that in
turn will lead to sustainable high performance [18], also in line with Lean practices
empowering the front line teams [19]. However, the slow process of building
capability bottom-up must be combined with top-down, results-driven change, as
according to [20]. It motivates the need of visualizing maintenance total costs on
short and long term (organizational capability building) for decision makers, and
underlines its potential to bring mature strategic thinking on how to confront current
situation for modern manufacturers.
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Maintenance is a support to production in order to facilitate maximum usage in
manufacturing, however at all stances it is not always necessary to require most
possible reliability because service level agreements tell so; it is a matter of cost and
total performance of systems that finally count in the financial statements and it
should be the criteria also when defining these systems in practice. The relationship
between manufacturing and maintenance has to be re-evaluated in the view of both
sides of the partnership in order to identify more cost effective procedures.

This paper begins on showing the prominent significance maintenance plays in
order to stay competitive on the global market as an underlying background to the
conceptual ideas presented later on the potential of visualizing maintenance total
costs for higher management for better decisions on maintenance strategies.

1.1 What Modern Manufacturers Confront

The situation for actors within manufacturing industry is strained, with the com-
bination of escalating competition on a global market and growing demands on
return on investment. In short the constant pressure of making more with less is
constantly present. New advanced technology and automation has during the latter
years been the means manufacturing companies have applied in order to manage
and stay on market. With its development production throughput has been
increased, both by combining multiple tasks previously carried out in a functional
layout and through improved production flows. It has contributed to the reduction
of inventory and stock levels, reduction of man hours in production and increased
quality and precision; thus delivering more with less. However, in order to sustain
on the global market further efforts will continuously be needed in order to stand
competition. Furthermore, the development until today has dramatically changed
the arena for how to play the game in maintenance. In which the flow of new
advanced technology and increased automation brings increased demand on com-
petence for the maintenance personnel, and the failure rate patterns are more
complex to wunderstand and increased requirements on equipment- and
component-reliability are prominent. The maintenance function is also challenged
from the perspective of decreased time buffers in production systems, in order to
maximize throughput and cash flow, adding increased vulnerability when a
breakdown take place. In combination these aspects bring forward requirements on
new levels of perfection on maintenance, both technically and organizationally. It
definitely points out the importance of maintenance management as an enabler for
future contribution to the improvement of the input/output ratio. There are
numerous strategies for how to run production and how to include maintenance in
order to encounter the optimum ratio, and how these strategies are valued strongly
decide upon choices for future action. Viewing manufacturing and maintenance as
separate negotiating parties may hinder systems’ full potential, also called
sub-optimization, and makes it harder to value benefits on the level of totality.
However, maintenance management is a complex undertaking with the inherent



In Need for Better Maintenance Cost Modelling ... 267

difficulty of long delays between cause and effect in which a decision apparently
beneficial on short term may end up in costly and repeating actions during the
life-time of an equipment. The efforts spent should thus constantly be valued by its
economic life cycle effects. It puts focus on the ability to evaluate maintenance
strategy and its consequences over time in order to convert it to financial statements
in a convincing manner for decision makers.

1.2 A Management Decision Making Perspective

Maintenance holds many criteria for being hard to manage on the operational level:
stochastic behaviour in the deterioration and failure process of equipment, large
portion of unplanned events, a sudden failure in critical equipment can make any
important long-planned activity delayed, decisions of importance may have to be
taken quickly with no time of thought, management is under constant time pressure,
thus little time for abstract and strategic thinking [6].

Another aspect is the phenomena of worse-before-better dynamics [21], com-
mon in complex systems also present in maintenance systems. If management don’t
understand why it occurs and for how long the short-run “worse” deterioration of
system performance might last, it may instead be held as evidence on that the new
strategies don’t work and are abandoned [13]. Our human ability to acknowledge
system dynamics is strongly limited and we construct mental models of phenomena
in order to cooperate and understand the environment we are part of [22]. However,
the mental model of two persons observing the same aspect may differ in their
description of it because they looked at different things [23]. Fortunately, if it is put
into light that decisions are being based on these incomplete, partially shared mental
models with lack of coherence and comprehensiveness they can also be subject to
learning and improve decision making around maintenance [14].

Decision making in maintenance includes many stakeholders, from operators
and machines producing value to investors interested in maximized profit via the
board of directors, top management, and operational management and support, see
illustration in Fig. 1. At each level decisions are taken, however their effect may
vastly vary. The lower triangular in the figure is most often regarded in everyday
work, however the upper triangular represented by stakeholders interested in the
company development are also actively part of daily agenda however more hidden.
All with different roles and with different incentives for being part of the structure.
It is the operators and machines that utterly create the value orchestrated by the
requirements from a level above, ending in the interest of for instance pension
savers on ROL

The Fig. 1 serves as a basis for visualizing structures having an effect on the
decision making in different levels, and the incentive structure’s influence on
thinking in respect to possible short term effects and the organization’s long term
thinking capabilities. It may be further exemplified by the following simplified story
in order to bring sense into seemingly wrong decisions, depending on what you
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choose to see (mental models). The scenario plays in a maintenance organization of
300 persons. A strong Investor in the company points: Why do they need to be so
many persons in maintenance? They cost a lot. The Board of Directors do nothing
more than repeats the question to organization. Top Management ask their people:
Why do we need so many? In order to show vigorous command: Cut 1/3. On short
term nice performance measures are presented, and most importantly, better cash
flow. No explicit consequences in production are noticed. The measures in financial
control-terms confirms that it was a correct decision, our suspicions were right.
Eventually problems add up and number of breakdowns increases. Workload shifts
sneaking from preventive towards unplanned maintenance, and cost per piece
increases due to less throughput, poorer quality, etc. Case is highlighted at top
management, decision maker using financial control as performance measure
observes this negative trend and applies present mental model that worked last time,
commanding: Cut more personnel in maintenance. The vicious circle of decreasing
maintenance capabilities to perform accelerates. A simplified story near all main-
tenance people have experienced in small or in large. A natural development in a
context of complex systems in combination with applying your own mental models
of reality without thorough analysis so important, perhaps due to lack of time and
tools for better analysis.

2 Maintenance Cost Modelling

2.1 Maintenance Consequential Cost

Since financial accounting started over hundred years ago [12] direct maintenance
cost have been explicit to account and is part of standard accounting procedures [3].
However maintenance that is not optimally performed also cause indirect costs in
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the organization, termed consequential costs [4], and these appear in other parts of
the organization such as for instance more time spent by production man hour, less
produced products or poor quality. A graph of the trade-off between direct and
indirect costs of maintenance can in theory be illustrated as in Fig. 2 below.

In an optimal procedure the direct costs, represented by cost of planned main-
tenance, should be balanced against the consequential costs represented by cost of
unplanned maintenance [19]. However in practice identifying this trade-off is not
straightforward. Consequential costs generated from poor or absent maintenance is
implicit and intangible to its character, difficult or near impossible to track in an
accounting manner. The need of better estimated quantification of consequential
costs in order to support manufacturing with optimally performed maintenance was
defined long time ago, however a problem of inherent subjectivity [4]. Maintenance
consequential costs are suggested into four categories [4]:

1. Associated resource impact costs, productivity loss (loss in production time) at
machines/equipment that are connected with the resource in which the failure
has occurred.

2. Lack of readiness costs, machines/equipment that for the moment are not used,
thus in idle, but not in a ready condition for production—seen as an incitement
for keeping capital investments in shape.

3. Service level impact costs, occur when replaceable resources/equipment in a
pool of resources fail and those left in operation must be utilized in a more
costly manner due to that they are fewer and the work still must be done to
maintain the required level of service.

4. Alternative method impact costs, in times of great pressure for delivery failure in
one machine/equipment may force usage of alternative methods in order to
deliver on time, however it may be performed in a non-optimal procedure.

How these consequential costs can be calculated is also suggested and categories
1, 2, and 4 are represented by time dependent impact profiles in which estimations
of “time from failure to start of impact” and approximated cost accumulations
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during the impact period have to be applied to the certain case [4]. Category 3 is
represented by an equation and an optimization problem in order to balance the
temporary increased loads on the equipment due to failure in any resource and at the
same time maintain the service level required. Traditional cost models has a linear
approach and assume the cost of lost production to dominate the downtime costs,
neglecting consequences such as safety buffers, wasted raw material due to scrap,
etc. [3]. The non-linear description of consequential costs by [4] is a step towards a
more practical approach attempting to bring a better estimation.

Plainly looking at definition of maintenance cost is scares and has resulted in
more qualitative designations in literature dividing maintenance costs into two
general categories [3, 8, 24]: direct costs also known as intervention costs (main-
tenance operations including labour, administration, material, subcontracting, to
name a few); and downtime costs representing more or less all consequential costs
(production losses, reduced quality, etc.). There are example of listing costs into
much more detail as well [25]. Instead it seem, literature in maintenance cost and
modelling refer to these two general categories and states what kind of consider-
ations regarding cost or delimitations on what to include constitutes each model [7,
8, 10, 24, 26].

2.2 On Maintenance Optimization Models

This section will provide an overview of difficulties worth considering regarding
maintenance optimization models. A maintenance optimization model is considered
a mathematical representation including quantified maintenance costs and benefits
in which the optimal balance is found [6]. However, there is also an emergence of
applying simulation for maintenance cost modelling [1]. And it is also argued for
the increasing need of bringing optimization into the system of maintenance
management [9].

In hi