
GIS for Web Developers
Adding Where to Your Web Applications

Scott Davis

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.ebook3000.com

http://www.ebook3000.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

ISBN-10: 0-9745140-9-8

ISBN-13: 978-0-9745140-9-3

www.ebook3000.com

http://www.ebook3000.org

Contents
Preface 10

Acknowledgments . 11

1 Introduction 13

1.1 Demystifying GIS . 13

1.2 Finding Free Data Sources and Applications 14

1.3 Becoming a GIS Programmer 16

1.4 What Are You Getting Yourself Into? 16

2 Vectors 19

2.1 Raw Materials . 19

2.2 Raster Data . 20

2.3 Vector Data . 24

2.4 Types of Vector Data . 24

2.5 What Data Is Available? 29

2.6 Know Your File Formats 31

2.7 Anatomy of a Shapefile 32

2.8 The Downloadable States of America 32

2.9 Downloading a Viewer 34

2.10 Styling Your Layers . 37

2.11 Viewing Multiple Basemap Layers 38

2.12 More Data, Please . 40

2.13 More International Data, Please 40

2.14 When Good Data Goes Bad 41

2.15 Saving Your Map in ArcExplorer 42

2.16 Conclusion . 44

3 Projections 45

3.1 The Round Earth . 45

3.2 Cartesian Planes . 48

3.3 What Is a Projection? . 52

3.4 Changing Projections in ArcExplorer 54

www.ebook3000.com

http://www.ebook3000.org

CONTENTS 8

3.5 What Does Round Really Mean, Anyway? 55

3.6 Coordinate Reference Systems 57

3.7 Getting Your Data Layers Aligned 65

3.8 Reprojection Utilities . 67

3.9 Conclusion . 70

4 Rasters 71

4.1 Getting Started with Raster Data 71

4.2 Terraserver-USA: Another Source of Free Raster Imagery 74

4.3 Mosaics and Tessellation 76

4.4 Temporal Analysis . 78

4.5 Panchromatic vs. Multispectral 81

4.6 Scale and Resolution . 86

4.7 Orthorectification . 90

4.8 Downloading Free Rasters 93

4.9 Conclusion . 106

5 Spatial Databases 108

5.1 Why Bother with a Spatial Database? 108

5.2 Installing PostgreSQL and PostGIS 109

5.3 Adding Spatial Fields . 111

5.4 Inserting Spatial Data 117

5.5 Querying Spatial Data 118

5.6 Introspection of Spatial Data 119

5.7 Importing Data . 121

5.8 Manipulating Data . 122

5.9 Exporting Data . 123

5.10 Indexing Data . 126

5.11 Spatial Queries . 128

5.12 Visualizing Data . 132

5.13 Conclusion . 133

6 Creating OGC Web Services 134

6.1 Sharing the Wealth . 134

6.2 OGC SOA for GIS . 135

6.3 Installing GeoServer . 137

6.4 Adding Shapefiles Using the GUI 139

6.5 Adding Shapefiles Manually 143

6.6 Adding PostGIS Layers 148

6.7 Styling with SLD . 151

6.8 Conclusion . 156

www.ebook3000.com

http://www.ebook3000.org

CONTENTS 9

7 Using OGC Web Services 157

7.1 Understanding WMS . 157

7.2 WMS GetCapabilities . 158

7.3 WMS GetMap . 164

7.4 Understanding WFS . 165

7.5 WFS GetCapabilities . 166

7.6 WFS DescribeFeatureType 169

7.7 WFS GetFeature . 170

7.8 Filtering WFS GetFeature Requests 171

7.9 Conclusion . 177

8 OGC Clients 179

8.1 Mapbuilder . 179

8.2 OpenLayers . 190

8.3 uDig . 199

8.4 Conclusion . 201

9 Bringing It All Together 202

9.1 From CSV to SQL . 202

9.2 Geocoding Your Data . 215

9.3 Adding PostGIS Fields 223

9.4 Setting Up OGC Services 226

9.5 Tiling vs. Styling . 229

9.6 Creating a Slippy Map 233

9.7 Beyond the Web: 3D Viewers 237

9.8 Conclusion . 242

A Mac/Linux Installation 243

A.1 Installing GDAL/Proj/Geos 243

A.2 Installing PostgreSQL and PostGIS 245

A.3 LibTIFF and LibGeoTIFF 248

B Installing Groovy 249

B.1 Unix, Linux, and Mac OS X 249

B.2 Windows . 250

Index 253

www.ebook3000.com

http://www.ebook3000.org

Preface
We are on the edge of the next big wave of technology, and it has

GIS written all over it. Soon every new cell phone will have GPS (or

some form of location-based services) built in as a standard feature.

Nearly every major database vendor now includes native geographic

data types. Free sources of geographic data and free applications are

just waiting for you to pull them together and do something clever. You

might create a simple digital version of the pushpin map, or you might

write the next Google Maps killer.

All of our lives we’ve asked “Where am I?” and “How do I get from here

to there?”

You start by rolling over, then crawling, and then walking. You walked

to school or were driven or took the bus. Maybe you eventually drove

yourself. When you got older, you joined a society of people who use

different modes of transportation every day. We ride subways to work.

We take airplane flights to far-off places. We visit client locations. We

attend conferences or night classes. We go shopping. We eat out at

restaurants. Unless you spend your days physically tied to something

large, heavy, and immobile, you probably spend a significant portion of

your time thinking about how to get from here to there and back again.

And how does traditional geography make that easier? It offers you vec-

tor and raster data, orthographically rectified and portrayed in the Uni-

versal Transverse Mercator projection. (Don’t you feel better already?)

Even asking a simple question like “What is your current latitude and

longitude?” will likely cause most people to back away slowly, hands

up, muttering, “That’s OK—I’ll ask someone else for directions.”

In GIS for Web Developers we’ll talk about GIS in simple terms and

demonstrate its real-world uses.

www.ebook3000.com

http://www.ebook3000.org

ACKNOWLEDGMENTS 11

We have always been awash in spatial data: houses and buildings

have street addresses, customers cluster together in cities and states,

you probably store your friends and family in one or more electronic

address books. What has been missing up until now are tools targeted

at developers without formal training in GIS. What was once a special-

ized field is now open to new class of technically savvy but untrained

map hackers—neogeographers1. This book is squarely targeted at this

new generation of mapmakers.

A word of warning to the faint of heart: you will be forced to wade

through a quagmire of polysyllabic jargon. My apologies in advance.

What you have to look forward to is that by the end of the book you’ll

be able to sling these phrases around with confidence, much like saying

“instantiate” and “polymorphic” to your fellow software developers.

Every application and API presented in this book is free or open source.

I have taken great pains to make sure that they are supported on all

the major operating systems (Mac OS X, Linux, and Windows). You will

have enough on your plate simply battling the obscure lingo and the

incompatible file formats. The last things you need to worry about are

platform-specific solutions, let alone expensive platform-specific solu-

tions.

Thanks for your interest in GIS for Web Developers. Welcome to the

brave new world of neogeography.

Acknowledgments

Big thanks go to Dave Thomas and Andy Hunt for creating the Prag-

matic Bookshelf. It is truly a company that is “of the developer, by

the developer, and for the developer.” You have no idea how happy it

makes me writing my prose in TextMate, using make to build the book,

and using Subversion to keep track of the revisions. Or maybe you do,

which is exactly my point.

Thanks also go to Daniel Steinberg, my editor, and all of the rest of the

PragProggers who copy edited, indexed, and did all of the other behind-

the-scenes machinations necessary to get this book from bits to atoms.

The crack team of tech reviewers went to extraordinary lengths to beat

my factual and stylistic errors into submission: Schuyler Erle, Jody

1. http://news.nationalgeographic.com/news/2006/04/0425_060425_map_blogs.html

www.ebook3000.com

http://www.ebook3000.org

ACKNOWLEDGMENTS 12

Garnett, Chris Holmes, Ken Kousen, Donald Marino, Tyler Mitchell,

Greg Ostravich, Paul Ramsey, and Christopher Schmidt. I’d also like to

thank the folks who read the manuscript way back when it was called

Pragmatic GIS: Tom Bender, Erik Hatcher, Matthew Lipper, Garth Patil,

Gary Sherman, Eitan Suez, Alex Viggio, and I’m sure many others

whose names have been lost to the fog of time and/or the inadver-

tent deletion of ancient email. Much appreciation goes to everyone who

purchased this book online when it was still in beta and submitted

errata.

Many thanks to Jay Zimmerman for the No Fluff, Just Stuff symposium

tour. Jay, along with Bruce Tate and Brian Sletten (also NoFluffers),

made my transition from corporate developer to independent consul-

tant not only possible but painless as well. Your support and advice

throughout the process was more valuable than you’ll ever know. As for

the rest of the NoFluffers—David Bock, Scott Delap, Neal Ford, David

Geary, Justin Gehtland, Andy Glover, Brian Goetz, Ben Hale, Stu Hal-

loway, Jason Hunter, David Hussman, Ted Neward, Mark Richards,

Jared Richardson, Nate Schutta, Howard Lewis Ship, Venkat Subra-

maniam, Glenn Vanderburg, and everyone else—let’s just say that it is

an ongoing honor and privilege to get to hang out with folks of your

caliber 30 weekends out of the year. As for the heaping servings of grief

you give me on the rare occasions I get us lost when I’m driving—“Nice

job, MapGuy!”—remember that not all who wander are lost. Except me.

I’m usually lost.

Finally, I’d like to thank my family. My wife, Kim, offered the same

unique combination of supportive encouragement and taskmasterly

discipline to this book that she does to our life in general. I had no idea

there were so many subtle nuances to the seemingly innocent phrase,

“So, how are things going?” My son, Christopher, has many maps up

on his wall. He has toy compasses and knows the cardinal directions.

With a bit of luck, the time he spends now drawing treasure maps will

save him in the future from the genetic predisposition to getting lost

that plagues his dad. And to Young Elizabeth, who joined us midway

through the writing of this book, your snuggles and full-body smiles

were just what I needed. Much love to each of you.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

Introduction
Developing geographic applications is far more complicated than it

should be. I have several goals for this book. The first is to demystify

geographic information systems (GIS) and teach you a bit of the lingo.

The second goal is to help you download some free data and learn a

programmatic API or two. These lead to the final goal of turning you

into a GIS developer.

1.1 Demystifying GIS

Many popular websites have GIS underpinnings (and you don’t need a

PhD to use them). MapQuest1 is perhaps one of the most well known.

In the late 1990s, it virtually owned the online mapping market.

In the following years, additional players joined the game. All the major

search engines now have GIS offerings. For example, take a look at

Google Maps.2 You simply enter a street address, and it shows you the

location on a map. Yahoo3 and MSN4 offer similar functionality.

Although all these sites provide a valuable service, they do little to raise

the geographic literacy of the general public. I can’t criticize them too

much for this—I’m sure that ease of use was their primary design goal.

But by shielding us from the complexity of the GIS problems they solve,

they don’t help us build GIS solutions of our own. They are “black

boxes” of geographical wonder.

1. http://www.mapquest.com

2. http://maps.google.com

3. http://maps.yahoo.com

4. http://maps.msn.com

www.ebook3000.com

http://www.ebook3000.org

FINDING FREE DATA SOURCES AND APPLICATIONS 14

Similarly, most consumer-grade global positioning system (GPS) devices

are sold as black boxes as well. In-dash GPS is fast becoming the de

rigueur option in high-end automobiles, but most drivers would no

more consider customizing them than they would try to change the

sound of their horn or the wiring of their radio.

I am not suggesting that everyone who drives a car should be a mecha-

nic, or even want to be. But for those of us who are just the slightest

bit curious, it would be nice to be able to crack open the hood and poke

around. Maybe I’ve just been spoiled by my years as a web developer.

When I come across a cool website, I can not only appreciate it as an

end user but also choose View > Source to see how it was put together.

To me, this is the best of all worlds—let it be a black box to those who

don’t care to look any further, but also cater to those who want to lift

up the corner and nose around the insides a bit. I firmly believe that

this democratic approach to the technology is one of the primary forces

behind the Web’s rapid growth and widespread adoption.

Unfortunately, this do-it-yourself, learn-from-others gestalt is missing

from the GIS examples we’ve discussed so far. The fact that there isn’t a

baby step up to the next level of difficulty only compounds the problem.

There seems to be very little middle ground when it comes to complex-

ity in GIS applications. Compared to MapQuest, programs that expose

their GIS underpinnings are a giant leap up in terms of complexity. The

good news is even with just a little bit of industry knowledge, you can

put together some impressive results with the free tools and data out

there.

So, regarding my first goal for the book, the “blithely ignorant end user”

segment and the “all-knowing industry veteran” segment are both well

represented in the GIS space. My hope is that this book will allow you to

join the small but growing middle class of GIS users—those who “know

more than some but not as much as others.” (The cool kids are calling

these folks neogeographers.)

1.2 Finding Free Data Sources and Applications

With only a little bit of vernacular, you can access significantly more

“white-box” GIS resources. The trick is finding them. The second goal

of the book is to show you where they are and how to assemble them

into a meaningful application.

www.ebook3000.com

http://www.ebook3000.org

FINDING FREE DATA SOURCES AND APPLICATIONS 15

You should be reasonably comfortable downloading and configuring

popular open source programs. Java developers pull down Ant, JUnit,

and the JDK all the time. Rubyists install MySQL and Rails regularly.

These are not niche applications; they are core to the development pro-

cess.

The GIS domain is no different. A number of free and open source appli-

cations are crucial to your success as a GIS developer. In fact, some

open source desktop GIS applications rival the capabilities of their com-

mercial counterparts. There are standards-based web frameworks that

allow you to display GIS data in a browser. There are GIS databases and

command-line utilities—all free and released under the usual assort-

ment of open source licenses.

The one area that might seem a bit more foreign to nonmapping pro-

grammers is the quest for downloadable free GIS data. Unlike tradi-

tional programs where the majority of the data is generated by the

application itself, most GIS applications need to be seeded with some

preexisting data.

For example, consider a GPS application. As you hike up a path or

drive along a road, your GPS unit can be configured to periodically drop

digital bread crumbs called waypoints. This allows you to see where

you’ve been and backtrack along the same path if necessary. Although

the waypoints are a major part of the application, they are only part of

the picture (literally!). If the screen simply shows a series of black dots

floating on a white background, it doesn’t do you much good. In other

words, showing only the generated data isn’t enough. Showing those

points in relation to a basemap (a map showing the roads or hiking

trails in the area) is where the real value comes into play.

There is a vast amount of free basemap data on the Web. The problem is

it isn’t gathered together in one place, and the popular search engines

don’t have targeted searches for geographic data like they do for web

pages, images, music files, and so forth. Finding the right basemap

data for your application is often more of a challenge than using it once

you have it.

Sometimes simply combining existing map data in a unique and mean-

ingful way is all you need to do. For example, you might choose to

display all cities in the United States over a basemap of state bound-

aries. This data is available and requires no further manipulation. Your

job is to bring it together and display it.

BECOMING A GIS PROGRAMMER 16

Other times the data your application generates needs to appear in

the context of a known set of data. You might decide to display cities

with populations over a certain number and then overlay that data with

sales regions where profit margins exceed a certain percentage. The

combinations of generated data and basemap data are endless, and

the tools to help you display and manipulate them are out there just

waiting to be used.

So, as I mentioned, the second goal of this book is to give you a guided

tour of the Internet, showing you where all the best nooks and crannies

are for finding free GIS applications and data sets. (Check out the com-

panion site for this book—http://www.mapmap.org—for up-to-date links

to all the data and applications mentioned here.)

1.3 Becoming a GIS Programmer

The third goal of the book is to show you how to become a GIS program-

mer. Once you have the vocabulary, the applications, and the basemap

data in place, you are going to want to generate and customize your

own sources of data.

For example, the free data you download will rarely be in the format

you’d like it to be. You’ll learn how to convert it among different file

formats and move it in and out of a database freely. You’ll learn how to

query certain pieces of it and use the tools to create entirely new data

sets.

If the second goal of the book is to show you how to be a consumer of

the data, the third goal is to show you how to become a producer of the

data.

1.4 What Are You Getting Yourself Into?

With these three goals in mind, let’s see how this book is laid out.

The first half of the book lets you get your feet wet and your hands

dirty. We download common GIS applications and free basemap data.

In the second half we get several samples working to show you how

everything comes together.

Chapter 1—Introduction

You’re reading it right now—need I say more?

WHAT ARE YOU GETTING YOURSELF INTO? 17

Chapter 2—Vectors

This chapter offers you your first taste of assembling maps from the

freely available geodata out there. Vector maps are line maps (as op-

posed to maps that use satellite or aerial imagery). We’ll pull down

vector data from a variety of different sources, learn some basic file

formats, and pull them all together in a free viewer.

Chapter 3—Projections

The previous chapter ends on a bit of a cliff-hanger: sometimes map

data gathered from disparate sources just snaps together; other times

it doesn’t. The main culprit for “snap-together failure” is when the base

layers are in different projections. This chapter explains what projec-

tions are, covers why data ends up in different projections in the first

place, and shows you how to reproject your data layers to restore the

“snap-together” magic that you were promised in the previous chapter.

Chapter 4—Rasters

Once you get comfortable with vector data, you might be interested

in adding some photographic data layers to your map as well. In this

chapter, you see the ins and outs of dealing with raster (photographic)

data, including where to find it, how to view it, and, most important,

how to get at the hidden metadata that moves it from being simply

pretty pixels to true geographic data.

Chapter 5—Spatial Databases

You’re probably going to want to store your geodata in a database for

all of the same reasons you typically store your plain old nonmapping

data in a database: speed, security, queries, and remote users. In some

cases, your database supports geodata natively. Other times you have

to spatially enable it. This chapter shows you how to take PostgreSQL—

a popular open source database—and spatially enable it using PostGIS

so that you can centralize the storage of all of your newfound vector

data.

Chapter 6—Creating OGC Web Services

Whether you’re interested in publishing a finished map in a web brow-

ser or want to provide access to the raw data via a web service, there

is no denying that putting your geodata on a web server is the quick-

est way to reach the broadest audience. This chapter introduces the

standard interfaces provided by the Open Geospatial Consortium (OGC)

that allow you to do both.

WHAT ARE YOU GETTING YOURSELF INTO? 18

You’ll install and configure GeoServer, a Java servlet–based OGC server.

GeoServer allows you to share your shapefiles and PostGIS data sets via

the Web in a standardized way.

Chapter 7—Using OGC Web Services

This chapter digs deeper into two of the most popular OGC services—

Web Map Service (WMS) and Web Feature Service (WFS). WMS services

allow you to create viewable maps suitable for a web browser from dis-

parate sources across the Web. WFS services give you access to the raw

data as Geographic Markup Language (GML). Now that GeoServer is

fully installed and configured, you’ll start reaping the benefits of your

standards-based infrastructure. You’ll combine data from your local

GeoServer installation with remote OGC services from NASA and oth-

ers. These remote services aren’t running GeoServer, but you (and your

users) won’t be able to tell the difference.

Chapter 8—OGC Clients

As a reward for wading through the low-level OGC APIs in the previous

chapter, this chapter shows you how to take advantage of your new-

found knowledge at a much higher level. We look at three client-side

applications that consume OGC data with great aplomb while hiding

much of the complexity. Mapbuilder is an OGC Ajax web framework

that comes with GeoServer. OpenLayers is another web-based slippy

map interface that not only supports OGC services but also allows you

to mix in data from proprietary interfaces such as Google Maps. And

finally, we’ll look at uDig, a rich desktop client that offers strong OGC

support alongside the other data formats such as shapefiles and Post-

GIS.

Chapter 9—Bringing It All Together

In this chapter, you see a real-world use of everything you’ve learned.

You take a data set that contains addresses but no geodata and spa-

tially enable it. You combine it with existing basemap layers culled from

across the Web. You store it in a database, expose it as an OGC web

service, and ultimately create a interactive web map.

Now that you know what to expect out of this book, let’s get started.

Chapter 2

Vectors
In this chapter we talk about getting your hands on vector basemap

data. Prepare yourself for a bit of a scavenger hunt—there isn’t a single

place where you can download everything you need. Once you have it,

you’ll probably want to see it as well. We download a free viewer so that

you can gaze lovingly at the hard-earned results of your work.

2.1 Raw Materials

Most traditional software development projects start from bare dirt—

clean, pristine, empty database tables. . . sketches of screens and work-

flow diagrams on notebook paper and cocktail napkins. . . nothing but

hope and potential.

Data is rarely a consideration during the early stages of development.

Sure, one of the first steps you generally take is to plan your data struc-

tures. You might even create a sample or two of how the data will look

for prototyping and testing purposes. But the bulk of the production

data is usually generated by the software once it goes live.

GIS projects are unique in that they depend on having some existing

data in place. Thankfully you are not expected to draw the outline of the

United States or sketch in the highways and cities to the best of your

recollection. This preexisting data, called basemap data, is generally

created and maintained by someone else. Your job as a GIS developer

is to find it and incorporate it into the finished product.

For example, let’s say you are creating a new system to keep track of

your customers. If your goal is to eventually display your customers’

locations on a map, you’ll need to create a spatial field to store their

RASTER DATA 20

geographic locations in addition to the usual assortment of string and

integer fields. The term spatial means “the space around you.” (I would

have voted for calling it a “location” field, but no one had the foresight

to ask me.)

But the spatial field alone is not enough. If the only layer in the fin-

ished application is the customer spatial data, all you’ll see is a bunch

of black dots floating in space over a white background. Although there

is some information you could glean from this—seeing how your cus-

tomers are clustered together might be vaguely interesting—seeing your

customers in relation to known landmarks such as state boundaries,

roads, and airports is probably more valuable. Layering your data over

the basemap data puts it in context and gives it meaning. Are you look-

ing at a city block? A county? A state? A country? Even if you really did

just want to see how tightly clustered your customers are, adding this

additional reference information will help.

If you’ve ever watched the weather report on the evening news, you

should be familiar with the idea of map layers. (See Figure 2.1, on the

following page.) The newscaster stands in front of a whirling storm sys-

tem (the data layer) superimposed over a map of the United States (the

basemap layer). When the newscaster zooms in for your local forecast,

the basemap layers change to counties, cities, and roads.

To put it in programming terms, GIS applications are a series of loosely

coupled, highly cohesive map layers. You might say that the rest of this

book, and for that matter a large part of the GIS industry, is about

combining map layers in new and interesting ways. (Granted, the most

interesting data layers will probably end up being the ones you create

yourself through data collection or analysis.)

2.2 Raster Data

When it comes to map layers, you need to consider two primary types

of data: raster data and vector data.

Raster data is nothing more than a top-down photograph of the earth.

It can be an image from a satellite or an aerial photo. Cartographers

call it raster data strictly for the intimidation factor—it keeps us from

clapping our hands in the middle of a business meeting and saying

giddily, “Ohhhh, let’s add a pretty picture to the map.”

RASTER DATA 21

Figure 2.1: A weather map with multiple map layers

What, you want a more precise description than that? OK—the tech-

nical definition of a raster is a file that stores its data in discrete cells

organized into rows and columns. Think of it as a spreadsheet; however,

in this case, the individual cells are the pixels of the photo.

The information stored in the cells could simply be the portrayal infor-

mation—the red, green, and blue values for each pixel that tells the

rendering software how to display it. But it could also be data such as

the historical yield of a corn field in bushels per acre. Instead of color

information, each pixel contains a value that corresponds to the yield of

a specific area on the ground. In that case, the file isn’t a photograph at

all, even though it’s stored in TIFF, which you normally associate with

viewable images. You wouldn’t ever try to view it directly.

Instead, you’d hand it off to a piece of GIS software for further analysis.

Or maybe you’d upload it to your tractor so that it could lay down addi-

tional fertilizer in precisely the areas where your field underperformed

in the past. (Don’t laugh! Do a web search on precision agriculture to

read case studies about this sort of thing.) Regardless, we’re simply

using a well-known image file format as a convenient series of buck-

ets to transport our data. So, to be annoyingly precise, all photos are

rasters, but not all rasters are photos.

RASTER DATA 22

Are you sorry you asked? Don’t worry if all of this raster/photo non-

sense is confusing right now. It should become clearer when we get

to Chapter 4, Rasters, on page 71. Why not talk more about it now?

Because I said so.

OK, the real reason I’m putting off rasters until later is that often-

times photographic data is simply not needed. Consider the weather

map mentioned earlier. The newscaster probably started with a satel-

lite image of a big cloud, but few people would understand what they

were looking at without additional hints. It’s only when the newscaster

draws big arrows on the screen showing the direction of the storm that

we can clearly see what the newscaster is trying to convey.

Similarly, roads are pretty tough to tell apart from the air. And even

if you can distinguish one from the other, they might be obscured by

clouds or hidden under a canopy of trees. So, the newscaster super-

imposes the name of the road over the raster layer and outlines it in

a bright color to help you get oriented. At this point, the line drawings

almost become more important than the photograph itself.

The meteorologist frequently draws in data that doesn’t show up at all

in photographs, such as wind direction and temperature. Meteorolo-

gists even draw in data that doesn’t exist for temporal (time-related)

reasons, such as expected high temperatures and predicted snowfall.

As you can see, the raster data layer plays a minor role in modern

weather reporting. It is the raw source of much of the data, but the

important stuff (in terms of the finished report) happens in the non-

raster layers.

For all of these reasons, we can safely ignore raster data until later

chapters. There is no raster data on the road maps in your glove com-

partment. There is no raster data on the home page of today’s most

popular mapping websites. (Don’t believe me? Go to any of the websites

I mentioned at the beginning of Chapter 1, Introduction, on page 13.) I’m

not saying that raster data is unimportant; I’m saying that we can con-

vey a whole bunch of information without showing actual photographs.

Now, am I saying that satellite imagery isn’t an unbearably cool aspect

of those websites? Of course not. But after you get over the initial “gee

whiz” factor, tell me honestly which view you use more often to get your

driving directions. Which view do you print and take with you in the

car: the vector or raster view? (It’s OK—I knew the answer before I even

asked it.)

RASTER DATA 23

Getting Oriented

Have you ever stopped to think about what the phrase “get-
ting oriented” really means? When you pull a road map out of
your glove compartment, you first generally orient it so that it is
“right side up.” But the choice of north as up is fairly arbitrary.
When you live on a round planet, any side of your map could
be considered “right side up.”

Early Roman maps used east as their up or orientation direction.
Since the sun always rises in the east, it was a natural choice
for getting your paper map lined up with the real world. (The
English word orient comes from the Latin verb oriens—to rise.)

Later in Europe, churches were built facing east toward the holy
city of Jerusalem. Religious reasons notwithstanding, this estab-
lished a convenient set of landmarks to help line up their maps
at night or on a cloudy day.

So, what was the most obvious choice of names for the Asian
countries located to the east of Europe? The Orient, of course.

Once magnetic compasses came into common use, north
became the natural direction to orient your map. Here is a
tiny device that always points in the same direction—rain or
shine, day or night, independent of religious affiliation. What
better reason to change the way you line up your map, even if
you can’t be bothered with changing the description of what
you’re doing?

For an exercise in disorientation, take a look at some south-side-
up maps.∗ They are quite popular with tourists “down under” in
Australia and New Zealand.

∗. http://www.flourish.org/upsidedownmap

VECTOR DATA 24

2.3 Vector Data

The arrows, lines, and dots used by the television meteorologist are all

examples of vector data, which is nonphotographic line-based data. The

earliest maps were comprised of nothing but vector data. The caveman

who scratched lines in the sand with a stick was using vector data.

Much as painted portraits predate photographs by thousands of years,

vector map data predates satellite images.

The question of whether to use raster or vector data on a map is not a

question of which is qualitatively better than the other—it is a question

of which is more appropriate for the story you are trying to tell.

Earlier we said that raster data stores values in discrete cells. Each

pixel in a photograph holds a specific value. Vector data differs in that

it stores only vertices. In other words, it stores each corner point rather

than the entire line. This makes for a much more compact data for-

mat, but it is appropriate only for data where discrete values are not

required. Think of it this way: vector data is generally appropriate for

storing outlines of objects, while raster data is more suited for express-

ing the content of objects.

A vector outline of a farmer’s field is appropriate for showing where it

is located in the county. Raster data is more appropriate for doing sci-

entific analysis of the crops growing in the field that year. Showing the

results of that analysis, such as areas of the field that yielded signifi-

cantly more or less than the average, might again be a better candidate

for a vector data layer. Neither format is intrinsically better or worse

than the other, but one is certainly more appropriate than the other

depending on the intended use of the application.

Another important consideration in the raster vs. vector discussion is

that vector data is an interpretation or generalization of natural phe-

nomena. It is an abstraction of reality. A photograph of a river shows

every twist and turn; a vector representation of the river can be gener-

alized to the point where it is represented by a straight line.

2.4 Types of Vector Data

Three basic types of vector data exist: point, line, and polygon.

Points are the simplest form of vector data. They are dots on a map

layer. On a two-dimensional map, points are represented by an (X,Y)

coordinate pair. 3D points add a Z coordinate.

www.ebook3000.com

http://www.ebook3000.org

TYPES OF VECTOR DATA 25

Figure 2.2: Vector points (cities in Colorado)

TYPES OF VECTOR DATA 26

Figure 2.3: Vector lines (highways in Colorado)

TYPES OF VECTOR DATA 27

You can use point data to visualize cities, restaurants, airports, and

so on. In reality these entities are more accurately squares, rectangles,

or oddly shaped polygons, but oftentimes the data you are trying to

portray on the map is a simplifying assumption.

In some applications an accurate outline of a city is required. Other

times a simple “X marks the spot” does the trick. Of course, both might

be important depending on the zoom level of your map. Looking at a

country- or state-level map, cities are probably best represented as

dots. As you zoom in to the street level, the outline of the city becomes

a better representation of the feature. (See Figure 2.2, on page 25.)

Lines are the next step up the vector food chain. At least two points are

required to define a line. Each point is now called an endpoint or vertex.

Lines can have as many vertices as necessary. The number of points

can be densified or generalized (increased or decreased) depending on

the level of detail required.

Line data is often used to represent static phenomena such as roads

and rivers, but it can also be used as a data layer to help visualize

dynamic data: driving routes of buses or delivery vehicles, driving direc-

tions between two addresses, flight paths, and so on. Notice how adding

a basemap layer of roads helps ground the city points? (See Figure 2.3,

on the preceding page.) It gives the cities context and a sense of place.

Our final stop in the grand tour of vector data types is the polygon,

which is Greek for “many gons”—OK, OK: “many angles.” To me, the

defining characteristic of a polygon is the many lines, not the many

angles. Then again, I’m not Greek, and I didn’t invent geometry. (Geog-

raphy and geometry—so close and yet so far apart....) Just as a line is

made up of many points, a polygon is made up of many lines. Another

way to differentiate between lines and polygons is that lines are open

ended and polygons form closed shapes. Many GIS applications require

the first point and the last point of a polygon to be identical, empha-

sizing that they must be closed shapes in order to be considered well-

formed.

Polygons are most commonly used to represent boundaries: continents,

countries, states, and the like. Adding county boundaries to our Col-

orado map completes the picture for now. (See Figure 2.4, on the next

page.)

TYPES OF VECTOR DATA 28

Figure 2.4: Vector polygons (counties in Colorado)

WHAT DATA IS AVAILABLE? 29

2.5 What Data Is Available?

We’ve covered some good ground so far. We know the difference between

raster and vector data. We know that we’re on the hunt for good vector

basemap data. Let’s start downloading.

If you’re a Milquetoast weenie with no sense of adventure, you can

download all the basemap data used in this chapter from http://www.mapmap.org/g4wd.

Keep in mind that I’m not going be able to hold your hand each time

you need to find new basemap data. The hunt is almost as important as

the catch in this chapter. I recommend that you cozy up to the search

engine of your choice and follow along in the next few sections.

In America, we are fortunate that many government agencies are not

only tasked with creating and maintaining geographic data but that

they are also compelled by law to make that data freely available. In

past years, seeing the data generally involved making a trip down to

the local courthouse and checking out large pieces of paper. With the

advent of the World Wide Web, getting this data is now easier than ever.

When it comes to looking for data outside of the United States, your

mileage may vary. The Canadian government has a nice website1 that

offers downloadable data for free. Other national governments are less

forthcoming with free data. They cite reasons ranging from potential

national security risks to high maintenance costs for keeping their

points, lines, and polygons private. Some countries allow commercial

entities to gather and sell geodata for them. Others maintain a govern-

ment-controlled monopoly. Grassroots organizations such as Open-

StreetMaps2 tap into the Wikipedia3 phenomenon with a uniquely geo-

spatial angle—anyone with a personal GPS unit is encouraged to upload

their waypoints to create open source maps of their hometown.

If you purchase a commercial GIS product such as ESRI ArcGIS or

MapInfo Professional, it usually includes several DVDs worth of inter-

national basemap data. Also, some companies specialize in selling geo-

graphic data. (Do a web search for commercial map data.) Bear in mind

that this data is usually licensed for internal use only. If you’d like to

publish this data on the Web, expect to pay a premium or face the very

real possibility of not being able to use it at all.

1. http://www.geobase.ca/

2. http://www.openstreetmap.org/

3. http://wikipedia.org

WHAT DATA IS AVAILABLE? 30

Free vs. Accurate

The unfortunate reality of vector data is that someone has to
create it and keep it up-to-date. This costs money.

Government agencies in the United States provide geodata for
free because it has been paid for by tax dollars. But since each
state, county, and municipality creates and maintains its own
data sets independently, pulling the disparate data together
from different locations presents its own set of challenges.

Commercial data vendors can eliminate much of that pain by
aggregating the data for you. They also create their own cus-
tom data sets that oftentimes are more accurate and up-to-
date than the free data you can find floating around (if you
can find it at all). But understandably, these companies expect
to be well paid for the added value they provide.

I’m neither suggesting that the free data is always out-of-date
or inaccurate nor suggesting that the commercial data is 100%
free from errors.

For the purposes of this book, more than enough free data
is available to get you up and running. But when you create
the budget for your production application, be sure to allocate
enough resources to research, scrub, and assemble the free
geodata, or make plans to purchase the data sets you’ll need.

Free business data, like the locations of popular retail stores and res-

taurants, is especially tough to find. It would be nice if fast food chains

and national stores made this information freely available as spatial

data sets. That would certainly add more value to my life than the

silly games and the rehashed TV commercials you usually find on their

websites. I can’t think of a better form of free advertising (“Find all

Starbucks locations near you—click here to download them for use

in your own maps”), but companies with more paranoid worldviews

might see it as sharing valuable corporate data that could potentially

be used against them by their competitors. The bottom line is that if you

need map data of local businesses, expect to buy it from a third-party

reseller.

KNOW YOUR FILE FORMATS 31

2.6 Know Your File Formats

Some government data, even though it is free, isn’t exactly map friendly.

For instance, the CIA World Factbook4 is a great public domain resource

for international information. It provides all kinds of interesting facts

about every country in the world: the population, the currency, even

a map of the country. Unfortunately, this data doesn’t do us much

good as neogeographers. The maps are provided as PDFs or JPEGs.

They lack any sort of geospatial metadata, making them essentially

impossible to incorporate into your own map. The textual data is in

HTML instead of XML, so parsing it is an exercise in screen scraping.

As you can see, even though some data is free, it also needs to be in a

format that we can use.

Once you find free data that can be used in a map (which we’ll do

in just a moment), the next problem emerges: there isn’t an interna-

tional standard for file formats. The data can be in one of any number

of potentially incompatible binary flavors. Thankfully, many utilities

exist to convert the data from one format to the next. We explore one

such utility, ogr2org, in Section 3.8, Reprojection Utilities, on page 67.

Another, GPSBabel,5 supports more than 100 file formats. The name

alone should give you an idea of what you are up against when it comes

to battling proprietary file types.

One of the most common file formats in the wild is the ESRI shape-

file. The shapefile format is not an open standard, but it is well doc-

umented6 and widely used. Like Adobe PDF, many applications, both

commercial and open source, can effortlessly read and write shapefiles.

Geographic Markup Language (GML) is an XML dialect that is growing

in popularity. It’s attractive because it is an open standard and text files

are generally easier to create than binary files. Currently, GML is more

commonly used in web services than static files, but this may change

as more desktop applications add support for it. We examine GML in

greater detail in Chapter 6, Creating OGC Web Services, on page 134,

as well as in Chapter 7, Using OGC Web Services, on page 157. In the

meantime, let’s take a closer look at the shapefile format.

4. https://www.cia.gov/cia/publications/factbook/index.html

5. http://www.gpsbabel.org/

6. http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

ANATOMY OF A SHAPEFILE 32

2.7 Anatomy of a Shapefile

The word shapefile is a bit of a misnomer—a well-formed shapefile

is really at bare minimum three separate but related files. When you

download a shapefile, there should be a file ending in .shp, another

ending with .shx, and a third ending in .dbf. Most GIS applications balk

at opening shapefiles that don’t have all three files present.

The .shp file contains the vector geometries. Shapefiles must contain

homogenous geographic data; in other words, you cannot mix points

and polygons in the same file. (It is the job of the GIS viewer to super-

impose map layers of different types on top of one another.) There is

no way of telling which geometry type is stored in a shapefile without

opening it up in a viewer, but rest assured that the first geometry type

you see in the shapefile will be the same as the last.

The .shx file is an index file. For each record in the .shp file, there is

a corresponding entry in the .shx that gives the offset and the record

length.

The .dbf file contains all of the nonspatial attributes. If your shape-

file contains state boundaries, the .dbf file might contain fields for

the full name of the state, the abbreviated name, the population, and

so on. Those of you who have fond memories of the ancient DOS-

based database dBASE should really keep those sentiments to your-

self. You will, however, feel right at home opening this file and nos-

ing around with your beloved application in all of its 16-bit glory...late

at night...when no one else is around. (You could also pull it up in

Microsoft Excel just for grins.)

The fourth most popular shapefile appendage is the optional .prj file. It

tells you what projection the data is in. We talk about projections in

Chapter 3, Projections, on page 45.

2.8 The Downloadable States of America

The U.S. Census Bureau is a great source for downloadable basemap

data in shapefile format. Let’s take a quick tour of its website.7

The U.S. Census Bureau calls its data set the TIGER database, which

stands for Topologically Integrated Geographic Encoding and Referenc-

ing, although it isn’t a database in the traditional sense of the word at

7. http://www.census.gov/geo/www/cob/index.html

THE DOWNLOADABLE STATES OF AMERICA 33

Figure 2.5: Download shapefile basemap data from the U.S. Census

Bureau.

all. The actual TIGER data files are stored in a custom ASCII format,

so working with them can be a challenge. (The TIGER data set predates

the XML revolution, but not offering a SQL version of the data set is

a curious omission.) Adding insult to injury, the information is spread

across multiple files in a pseudorelational database way. Thankfully,

you aren’t stuck with working with the TIGER data set in its funky

native format. The U.S. Census Bureau provides the data as shapefiles

as well. Click the Download Boundary Files link. (See Figure 2.5.)

To begin, let’s pull down a file that contains the outline of the states:

1. Click State and State Equivalent Areas: 2000.

2. Scroll down to the shapefile section.

3. Click All 50 States, D.C., and Puerto Rico.8

8. http://www.census.gov/geo/cob/bdy/st/st00shp/st99_d00_shp.zip

DOWNLOADING A VIEWER 34

After the 2MB download is complete, unzip st99_d00.zip. You should

see the three associated files that make up the shapefile: st99_d00.shp,

st99_d00.shx, and st99_d00.dbf. Congratulations! You now have the out-

lines of all 50 U.S. states on your hard drive.

A vast amount of data is available to you from this website. I encourage

you to look around a bit. Download whatever else looks interesting.

Don’t worry about me—I’ve got nothing but time.

2.9 Downloading a Viewer

We’re not done downloading yet. We have the data but nothing to view

it with. We need an application that will help us see the contents of

our new shapefiles. Since ESRI created the shapefile format, it’s not

surprising that they offer a free viewer as well. ArcExplorer9 is written

in Java, so it will run on Windows, Linux, and Mac OS X. Download

ArcExplorer, and follow the instructions on the website to install it.

This isn’t the only desktop application we’ll download. We’ll have quite

a collection in place by the end of the book. Each will have its own

strengths and weaknesses, but strong shapefile support will be the

common characteristic shared among all of them. We’re starting with

ESRI’s viewer purely for poetic reasons. It seems only fitting, don’t you

think? (OK, the truth is ArcExplorer is a bit of a one-trick pony—it only

knows how to display shapefiles. I chose it for our first example so that

you wouldn’t wander off, distracted by other shiny knobs and buttons.)

Viewing Data in ArcExplorer

Let’s take a look at the shapefile of the United States (see Figure 2.6,

on page 36):

1. Start ArcExplorer.

2. Right-click Layers, and choose Add Data.

3. Navigate to the st99_d00 directory, and choose the shapefile. You

should see a familiar set of polygons appear on your screen.

ArcExplorer offers a set of map tools that is common to almost every

GIS application:

• To zoom in, click the Zoom In button (the magnifying glass with

the plus sign), and lasso an area of the map.

9. http://www.esri.com/software/arcexplorer/download.html

DOWNLOADING A VIEWER 35

Free vs. Open Source

All of the applications we use in this book are free, but not all
of them are open source. For example, ArcExplorer is a free
download. It isn’t a trial version or shareware; ESRI gives away
the application at no charge.

What keeps it from being called open source is that you can
download only a compiled or binary distribution. ESRI does not
provide the source code that was used to create the program.
In simple terms, you get the cake for free (the program), but
you don’t get the recipe (the source).

At first blush this doesn’t seem to be a big deal, but bear in mind
that this prevents you from using the same View > Source menu
command you might use for a web page. In other words, if you
like the way ArcExplorer zooms in and out, you cannot see how
it is implemented by looking at the source code. We are back
to dealing with a black box.

Some folks take the distinction between free and open source
very seriously. As the name of this book’s publisher suggests, I
take a more pragmatic approach when choosing software. I
tend to use the tool that best does the job, and I encourage
you to do the same. I won’t avoid using a tool that is free if
the source code isn’t provided, but given the choice between
two utilities that are equally capable in all other aspects, I will
generally choose the open source alternative.

Free tools give you a proverbial fish. Open source tools teach
you how to fish. In the long run, the latter approach is a
more beneficial and sustainable approach to software devel-
opment.

DOWNLOADING A VIEWER 36

Figure 2.6: Viewing the U.S. shapefile with ArcExplorer

• To zoom out, click the Zoom Out button (the magnifying glass with

the minus sign), and lasso an area of the map.

• To move the map around on the screen, click the Pan button (the

white hand), and drag the map.

Viewing Feature Attributes

Each state is a polygon, but we can also say that each state is a feature.

Shapefiles are sometimes generically called feature collections. Features

can have both spatial and nonspatial attributes.

The spatial attributes of the features are easy to see—they are the poly-

gons on the screen. To see the nonspatial attributes, click the Informa-

tion button (the i button), and click a feature. A new window pops up

showing nonspatial data such as the name of the state.

Having to click each feature to see its attributes would be pretty annoy-

ing, not to mention time-consuming. To see all of the nonspatial attri-

butes at once, right-click the st99_d00 layer in the Layers list, and choose

STYLING YOUR LAYERS 37

Attribute Table. A separate window appears showing the nonspatial

attributes for all 273 states.

What, you haven’t been keeping up with your American geography?

Don’t tell me that you can name only 50 states.

The truth is that many states, especially the landlocked ones, are rep-

resented by a single polygon. The states along the coast are a different

story. They tend to have many islands. Each of those polygons is stored

as a separate record in the shapefile. To verify the single-polygon-per-

record theory, do the following:

1. Zoom in on Washington state. (It’s the state in the upper-north-

west corner. Please tell me that you already knew that. Sigh....)

2. Scroll in the attribute table down to the grouping of Washington

records.

3. As you click each record, notice the highlighting on the map pane:

a different polygon is highlighted for each record.

This “one shape/one record” data type is called a simple polygon. In

Section 5.3, Adding Geometric Columns by Hand, on page 113, we dis-

cuss the notion of multipolygons. (We also show you how to group sim-

ple polygons into multipolygons to get back to the expected 50 state/50

record database table.) Not surprisingly, there are multipoints and mul-

tilines as well as multipolygons.

There is really no right or wrong answer when it comes to simple shapes

vs. multishapes. The historical argument for using simple shapes is

that they were the lowest common denominator and therefore the most

widely usable data type across programs. This distinction isn’t as im-

portant as it used to be. All of the popular tools nowadays can han-

dle multishapes. The argument for using one over the other should be

purely semantic at this point. If you want to treat all of the polygons

as a single state, use a multipolygon. If you want to treat each polygon

as an individual entity (for island research, for example), then use a

simple polygon data type. You should let the business case determine

the data type for you.

2.10 Styling Your Layers

Let’s talk about changing the appearance of the feature collection. This

is called styling the layer, or changing its portrayal rules.

VIEWING MULTIPLE BASEMAP LAYERS 38

Right-click st99_d00, and choose Properties:

• On the Symbols tab, you can change the fill and outline colors of

the feature.

• The Labels tab allows you to display one of the nonspatial attri-

butes on the screen. Choose Name from the combo box to have

each state’s name appear inside the polygon.

• The General tab is the miscellaneous bucket. You can change the

layer name to US States. This affects the label that appears in the

Layers list. Note that you can also set layers to appear and disap-

pear based on your zoom level. For example, displaying a detailed

city street layer when you are zoomed out to see the entire world

doesn’t make much sense—it will slow down your application with

extraneous data that cannot be displayed.

Click OK to get out of the Properties dialog box. Your map should reflect

the changes you made.

2.11 Viewing Multiple Basemap Layers

Let’s add a second data layer. This time we’ll show the counties of Col-

orado superimposed over the U.S. state boundaries. (See Figure 2.7, on

the next page.)

1. Return to the U.S. Census Bureau site, and download the County

and County Equivalent Areas data for Colorado:10

2. Unzip co08_d00.zip.

3. Right-click the Layers list in ArcExplorer, and choose Add Data.

4. Navigate to the co08_d00 directory, and click the shapefile.

5. Zoom in on Colorado. You should now be able to see both the

states layer and the counties layer.

Layer Ordering

Notice that you can change the order of the map layers by dragging

them up and down in the list. If one layer is opaque and higher in the

list than another layer, the higher layer might obscure the lower layer

completely. Chances are good that if the state layer is first on the list,

it will completely hide the counties layer.

10. http://www.census.gov/geo/cob/bdy/co/co00e00/co08_d00_e00.zip

VIEWING MULTIPLE BASEMAP LAYERS 39

Figure 2.7: ArcExplorer displaying the both the states and counties

layers

This is a common problem when dealing with multiple map layers.

Point-based data layers will rarely obscure other layers, so they are

commonly moved to the top of the list. Lines are often treated the same

way. Polygon layers, on the other hand, tend to be the worst culprit

when it comes to inadvertently hiding other layers. Thankfully, you can

employ a couple of strategies. One common practice is to adjust the

transparency of the features. Rather than making them 100% opaque

(which is often the default setting), you can adjust the value down to

allow lower layers to fade through. (This transparency value is some-

times called the alpha value.)

ArcExplorer doesn’t allow you to adjust the transparency of a polygon

layer, but we can do something else to achieve the same effect:

• Right-click the state layer, and choose Properties.

• Change the style to Transparent Fill.

• Change the outline color to red, and increase the width to 2.

• Click the OK button to see your changes.

MORE DATA, PLEASE 40

By just showing the outline of the polygons, you can be sure that your

other layers will show up regardless of their order in the list.

2.12 More Data, Please

The U.S. Census Bureau data is a good start, but some of the infor-

mation contained in the files is a bit dated. For instance, Broomfield

County in Colorado came into existence after the 2000 census. The city

of Centennial, Colorado, was formed after the census as well.

To get our hands on a more up-to-date shapefile, we can visit the United

States Geological Service (USGS) National Atlas.11 The National Atlas

contains both raster and vector data.

If you click the Boundaries link and scroll down a bit, you’ll come

across County Boundaries 2001.12 Despite the label, this shapefile was

last updated in 2004. It contains the newly created Broomfield County,

among others. Download it, and add it to the map. While you’re here,

feel free to download other interesting layers as well—cities, airports,

roads, railroads, even volcanoes.

The map is getting pretty busy, isn’t it? Notice that you can hide layers

by simply unchecking them in the Layers list. If you want to remove a

layer completely, right-click it, and choose Remove.

2.13 More International Data, Please

As mentioned earlier, the Canadian government has a great website13

for downloading Great White North feature collections. Canada will even

let you download the features in French if you’d like.

Let’s download the Canadian Provinces boundary file:

1. On the Geobase website, click Administrative Boundaries (well

hidden under the Data drop-down menu).

2. Click the Download Data link.

3. Click the ESRI Shapefile link.

11. http://www.nationalatlas.gov/atlasftp.html

12. http://edcftp.cr.usgs.gov/pub/data/nationalatlas/countyp020.tar.gz

13. http://www.geobase.ca/

WHEN GOOD DATA GOES BAD 41

Once the data is safely on your hard drive and unzipped, you can add it

to the map in ArcExplorer. Right-click Layers, navigate to the directory

where you unzipped the data, and choose the prov_ab_p_geo83_e shape-

file. Notice how it snaps right in along the northern border of the United

States? Zoom in on the U.S./Canadian border. Turn the Canadian layer

on and off. It fits perfectly, even though it was produced independently

of the U.S. data layers.

Do you see how you can mix and match data from completely different

sources? Does it seem too good to be true? (Cue the ominous music.)

2.14 When Good Data Goes Bad

As easy as things have been thus far, sometimes bad things happen to

good maps. We added the Colorado counties to our map successfully.

Let’s add the Colorado highways next and see what happens.

Each state generally has one or more departments that make GIS data

available. The Department of Roads and/or Transportation is always a

good place to start. State universities are also good candidates for free

geodata.

If you’re brave-hearted, you can try to enter the URL for the Colorado

Department of Transportation website.14 Or you can do a web search

on cdot shapefile. It’s up to you.

Let’s download the statewide highways shapefile:

1. Select Statewide Data Set.

2. Choose Highways from the combo box that appears.

3. Click the Download button.

When you add the highways layer to the map, your newfound spirit of

adventure should be crushed: the highways are nowhere to be seen.

Yet the highways layer is right there in the Layers list. If you right-

click the highways layer and choose Zoom to Layer, you should see a

spiderweb appear with Denver roughly in the middle. If you right-click

the Colorado counties layer and choose Zoom to Layer, the counties

appear, but the highways disappear again. What is going on here?

14. http://www.dot.state.co.us/App_DTD_DataAccess/GeoData/index.cfm?fuseaction=GeoDataMain\&MenuType=GeoData

SAVING YOUR MAP IN ARCEXPLORER 42

Here’s a clue. Move your mouse around the Colorado counties layer,

and note the X/Y coordinates at the lower left. X should be in the low

-100s; Y should be in the upper 30s to lower 40s. Now zoom to the high-

ways layer. X is in the 200,000s? Y is in the 4,000,000 range? That’s a

neat trick, isn’t it? What we have here, friends, is a failure to commu-

nicate. More specifically, we have data in two different projections.

In the next chapter I’ll show you how to get your highways to line up

with all the other map layers. Reprojecting your data is reasonably easy

once you understand the basics.

2.15 Saving Your Map in ArcExplorer

The last task we’ll do in this chapter is save your map. The obvious

way to do this is to choose File > Save and enter a filename. You’ve

probably done this thousands of times in other applications. So, why

am I about to belabor the point? (It’s certainly not because I get paid by

the word....)

I want you to consider what we’re actually saving here. We’re not saving

individual basemap layers. Technically we haven’t changed the data in

any of the layers. What we created was a composite map. We gathered

data from a variety of sources, layered it in a specific order, styled each

layer to our liking, and zoomed in on a specific geographic area. So,

what we are saving are the instructions for how to re-create the map.

What we are saving is the current state of the map.

This is an important concept that you’ll see come up over and over

again in GIS applications. Realistically you’ll download the U.S. state

boundaries only once, but you’ll reuse them countless times. Saving

the state of your map will happen far more often than saving actual

data.

When you saved the map, you might have noticed that the file had an

.axl file extension. ArcExplorer uses a proprietary XML format to save

map state called ArcXML. Although ArcXML is not as widely adopted

as the shapefile format, many GIS applications use XML to save their

states. In Section 8.1, The OGC Web Map Context File, on page 183, we

look at the open standards–based Context file format that does exactly

for OGC web applications what ArcXML does for ArcExplorer.

If you open your saved ArcXML file in a standard text editor, you should

see the basemap layers you added to the map and portrayal information

SAVING YOUR MAP IN ARCEXPLORER 43

Figure 2.8: ArcXML saves map state in ArcExplorer.

for each layer. (See Figure 2.8.) Since this is a plain-text file, you should

have no problem manually editing it. You could even programmatically

create it if the need arises.

CONCLUSION 44

2.16 Conclusion

You are well on your way to becoming a GIS expert. You should feel a

bit more comfortable talking about spatial data, both vector and raster.

We talked about the three basic types of vector data: point, line, and

polygon. You learned about shapefiles and various sources to download

free data. You downloaded a free GIS viewer, styled your map layers,

and saved map state in an XML file.

The next chapter will introduce you to more new geographic terminol-

ogy as we discuss map projections. As a bonus, we’ll get those pesky

Colorado highways to line up with the other basemap layers in your

map.

Chapter 3

Projections
Getting spherical earth data to display nicely on a two-dimensional

screen or piece of paper requires a bit of cleverness and some compro-

mises. In this chapter, we learn what it means to project our map data.

We also talk about how to merge disparate data sets into a common file

format and projection.

The end of the previous chapter was a bit of a cliffhanger. If you just

want to get your Colorado highways to line up with your other map

layers, skip to Section 8.1, The OGC Web Map Context File, on page 183.

If you want some background information on why they didn’t line up in

the first place, read on....

3.1 The Round Earth

Our jobs as cartographers would be much easier if we were all members

of the Flat Earth Society.1 Having to map a spherical object onto a flat

surface introduces all sorts of problems—problems that we’ll discuss in

this chapter. (Being a Flat Earther actually greatly simplifies the field of

science. How does gravity work? It doesn’t—it’s a hoax. Why don’t the

oceans spill off the edge of the world? Mountain ranges rim the earth.

See? Easy....)

If we can all agree that the earth is round, then let’s talk about the

different ways to model our planet: globes and maps.

1. http://www.theflatearthsociety.org/

THE ROUND EARTH 46

Are You Sure That the Earth Is Round?

Although the Flat Earthers have had good company through-
out history, many early societies hinted that the earth is round.

Watching a ship disappear over the horizon is pretty good
empirical proof that the earth is round. If the earth were flat,
the ship would gradually recede into the distance instead of
slowly “sinking” below the visible horizon.

The ancient Greek mathematician Pythagoras hypothesized in
500 BCE that the earth was spherical because the phases of
the moon are crescent shaped instead of straight lines. Only a
round earth would cast curved shadows on the moon.

In 350 BCE Aristotle suggested that the earth was round
because sailors’ views of the stars and constellations changed
as they got farther away from the equator.

Then in about 230 BCE, Eratosthenes gave us our first mathe-
matical estimate of the circumference of the earth. Based on
the length of the shadows in two different cities during the sum-
mer solstice, he calculated the circumference of the earth to
be roughly 46,270 km (28,750 miles). Modern calculations place
it at 40,074 km (24,902 miles) at the equator. Not too shabby for
an ancient guy, eh?

Even the story that Columbus set out to prove that the earth is
round in 1492 CE is a bit off.

(Continued...)

Globes

A globe is the best approximation of the earth we have. However, it

has several problems—it isn’t exactly portable, and to get to the level of

detail we need for a city map, the globe would have to be ridiculously

large. The circumference of the world at the equator is about 40,000 km

(25,000 miles). The United States is about 10% percent of that, or about

4,000 km (2,500 miles) coast to coast. The width of an average state is

about 400 km (250 miles) across, or 1% of that. The width of an typical

city is about 40 km (25 miles) across, or 0.1% of the circumference of

the world.

If we start with a globe the size of a basketball, it has a diameter of

about 24 cm (9.5 inches). If you hold up a standard piece of paper in

THE ROUND EARTH 47

Are You Sure That the Earth Is Round? (cont.)

From Europe, India was a desirable trade destination for its
exotic spices. The route east from Spain involved either land
travel through hostile territories or a long boat trip around the
tip of Africa.

Columbus suggested that sailing west from Spain would bypass
these challenges and establish a new, more efficient route
to India. His detractors didn’t suggest that he would “fall off
the face of the earth”—they simply thought his estimate of
the earth’s circumference was too small and that the journey
would be too long to be efficient.

Here are some modern measurements to back up his contem-
porary naysayers: Spain to India heading east as the crow flies
is about 8,000 km (5,000 miles). The trip around the tip of Africa
to India is about 19,000 km (12,000 miles). Spain to India taking
the western route is about 32,000 km (20,000 miles).

He might not have realized it, but Columbus was pretty lucky
that 6,500 km (4,000 miles) into his westward trip he ran into a
little island called America. The fact that he called the indige-
nous people there “Indians” gives you a bit of insight into where
he thought he had landed.

“landscape” mode, your paper map is able to show one half of the world

with just a bit of each pole cut off.

To see the United States on a map of the same size, our globe would

have to be five times larger, or just less than 1.2 m (4 feet) across. To

see a state on that same map, our globe would end up being just under

12 m (40 feet) across. If we wanted to see a city on the map, our globe

would end up being just less than 120 m (400 feet) in diameter, or more

than four times the length of the basketball court.

“I want to get a tattoo of myself on my entire body—only 2 inches taller.”

—Steven Wright, comedian.

Mr. Wright isn’t talking about geography, but his absurdist point is

valid here. Admittedly the best model of the earth is an earth-sized

globe, but the more accurate it becomes, the less usable it becomes

as well. Our hypothetical globe—even just zoomed to the U.S. level—

quickly turns into an unwieldy instrument.

CARTESIAN PLANES 48

Paper Maps

Paper maps are great: they can efficiently display great amounts of

detail in a small space. A bound Atlas on your bookshelf can display

orders of magnitude more information than a globe in a fraction of the

space, but there are drawbacks to maps as well.

“Writing about music is like dancing about architecture.” —Elvis Costello,

musician.

To paraphrase Mr. Costello: portraying spherical, three-dimensional

data on a two-dimensional piece of paper introduces its own set of inac-

curacies. Something gets lost in the translation, much like “dancing

about architecture.” Until real-time holography becomes commonplace

in the computing world, displaying maps on a computer monitor will be

cursed with the same set of limitations as their paper-map cousins.

3.2 Cartesian Planes

Every time you look at a graph, you have the mathematician René

Descartes (1596 CE–1650 CE) to thank. He is credited with merging

algebra and Euclidean geometry. He’s the one who codified the practice

of describing points using X, Y, and Z coordinates. A two-dimensional

plane with the X axis along the horizontal and the Y axis along the ver-

tical is called a Cartesian plane2 in his honor. (See Figure 3.1, on the

next page.)

Thinking of things in terms of a grid is so ingrained in us that it’s hard

to imagine a time or a situation where it’s not useful. In geography,

though, it’s not useful at all. In fact, it’s downright misleading.

Basic Mapping Terminology

Maps commonly present a graticule, or grid of X and Y lines. In geogra-

phy, the X axis is called a line of latitude. The Y axis is called a line of

longitude.

On a globe the lines of latitude are often called parallels. Like rungs on

a ladder, they never cross each other or vary in relation to one another.

The zero-degree parallel is called the equator. Latitude lines moving

north from the equator are numbered positively, 0 through 90 degrees.

Moving south, they are negative numbers, 0 through -90 degrees.

2. http://en.wikipedia.org/wiki/Cartesian_plane

CARTESIAN PLANES 49

Figure 3.1: The Cartesian plane

CARTESIAN PLANES 50

Figure 3.2: The world mapped onto a Cartesian plane

It is the lines of longitude, or meridians, that cause the Cartesian plane

to break down in terms of mapping accuracy. On the globe the merid-

ians converge on a single point at the north and south poles. On a

Cartesian plane they are parallel like the lines of latitude. This, as we’ll

see in a moment, introduces a huge amount of mapping inaccuracy as

you move farther away from the equator. This is why Cartesian planes

are rarely used in anything but the simplest maps.

The zero-degree meridian, called the Prime Meridian, runs through Eng-

land. All lines of longitude east of the Prime Meridian are numbered

positively, 0 through 180 degrees. All meridians to the west are neg-

ative numbers, 0 through -180 degrees. The International Date Line

zigzags along the 180-degree line of longitude in an attempt to avoid

bisecting land masses.

Cartesian Mapping Errors

As you can see, projecting spherical data onto a Cartesian plane causes

great distortion, especially as you approach the poles. (See Figure 3.2.)

Each grid cell on the earth is not a perfect square—it is a trapezoid

that ultimately turns into a triangle when you reach the poles. (See Fig-

ure 3.3, on the next page.) By stretching the side of the cell

CARTESIAN PLANES 51

Figure 3.3: The world mapped onto a sphere

WHAT IS A PROJECTION? 52

opposite the equator to make it perfectly square, your view of the world

is subjected to the dreaded “Silly Putty” effect.

Think of it this way: the very top and bottom lines of latitude on the

Cartesian plane—the ones that span the entire width of the map—are

in fact a single point on the earth. To see the effect this has, look at the

relative size of Greenland compared to South America on both maps.

On the Cartesian map, Greenland’s size is greatly exaggerated.

3.3 What Is a Projection?

As you’ve probably figured out by now, portraying the round earth on a

flat surface is called a projection.

I’ve always thought that the term map projection was evocative of what

really occurs when you look at a paper map. A movie projector shoots

an image onto a flat screen. The actors and the set are all three-dimen-

sional when the filming takes place, but the resulting movie is a two-

dimensional portrayal of the events. Wearing funny paper glasses with

red and blue lenses really doesn’t change this—it tries to compensate

for the lack of a third dimension with varying degrees of success.

Map projections are really no different from the movie on the flat screen.

They try to compensate for the lack of a third dimension in a variety

of clever ways, but invariably they end up introducing some form of

distortion.

Types of Mapping Distortion

Four basic types of mapping distortion exist: distance, direction, shape,

and area.

The Cartesian map preserves direction (north is up, south is down), but

it distorts distance, shape, and area. It distorts distance because of the

“Silly Putty” effect we discussed earlier—at the poles objects appear to

be much farther apart from each other than they actually are. It distorts

shape and area for the same reason—by stretching a trapezoid into a

square, it distorts the shape of the countries and their corresponding

areas.

This really is a vexing problem. No two-dimensional projection can min-

imize all four types of distortion. Think of it this way: if you peel an

orange and press the peel flat on the table, the results inevitably will

look different from how they originally looked when they were still on

WHAT IS A PROJECTION? 53

the fruit. The best you can do when it comes to map projections is to

recognize that all maps, no matter how well put together, will always

have some inaccuracies.

Types of Projections

Cartographers throughout the ages have tried a variety of clever pro-

jection hacks. In addition to a perfectly square grid, they use cones

and cylinders for projection surfaces as well. Each type of projection is

meant to minimize a different type of distortion.

Much like the argument over whether to use vector or raster data, the

question of which projection to use isn’t one of right or wrong—it is the

question of which does the best job of minimizing the distortion you are

most interested in viewing. For example, a common projection is the

Mercator projection. It was the projection used for most of the world

maps hanging in classrooms during the twentieth century. It is also

essentially (although not exactly) the projection that Google Maps uses.

The Mercator projection is a slightly modified Cartesian plane created in

the mid-1500s by Gerardus Mercator. Mercator wanted to create a map

that would be useful for sailors—the cardinal directions of the compass

matched up with the map so that they always knew which direction to

sail. His map couldn’t tell them how far it was between locations, but in

that day and age distance wasn’t as important as direction. Traveling

by sea could take as long as necessary provided you didn’t get lost along

the way.

The Mercator projection fell out of favor in the late twentieth century

as the default projection for world maps hanging on the walls in class-

rooms because of its area distortions. Its critics said that it exaggerates

the size of first-world countries compared to third-world countries. The

Peters projection briefly was suggested as a replacement, but by better

representing areas it distorted the basic shape of the continents.

Most of the maps on the National Geographic website3 use oval projec-

tions such as the Winkel Tripel projection. North isn’t truly up anymore

since the lines of longitude are curved, but it better preserves the rela-

tive size and shape of the continents.4

3. See http://www.nationalgeographic.com.
4. For an interesting perspective on mapping distortions, see

http://www.perrygeo.net/wordpress/?p=4.

CHANGING PROJECTIONS IN ARCEXPLORER 54

OpenMap

You might have noticed that I use an application other than
ArcExplorer for some of the figures in this chapter. The world
maps are courtesy of an open source Java application called
OpenMap.∗ OpenMap doesn’t have all of the styling capabili-
ties of ArcExplorer, but I like having it around because it has the
world boundaries and graticule baked in. I often recommend it
to people who want to download a single program and begin
working immediately.

It doesn’t have nearly the projection support that ArcExplorer
has. It supports only five projections, whereas ArcExplorer offers
hundreds. But OpenMap is the application I reach for when I
need a two-dimensional globe. After I fire it up, I almost imme-
diately choose Navigation > Projections > Orthographic. You
can then use the eight arrows in the upper-left corner to spin
your virtual globe in any direction.

The moral of this story is each application has strengths and
weaknesses. Having more than one application at your finger-
tips allows you to play “best of breed” when it comes to busi-
ness requirements. And since all of the applications mentioned
in this book are free and cross-platform, your software budget
doesn’t have to bear the brunt of your fickle tastes.

∗. http://openmap.bbn.com/

3.4 Changing Projections in ArcExplorer

ArcExplorer allows you to change the on-screen projection of your map,

but it still won’t solve our miscreant Colorado highways problem. It

can only reproject the composite map, not the map layers individually.

When using ArcExplorer, you need to ensure that all of your data layers

are in a common projection before you add them to the map. We’ll show

you how to do that in the last section of this chapter. (Be patient! We’re

almost there....)

To best see how each projection gives you a distinctly different view of

the world, let’s download a world boundary shapefile.5 Create a new

map in ArcExplorer, and add the world layer.

5. http://www.cipotato.org/DIVA/data/MoreData.htm

www.ebook3000.com

http://www.ebook3000.org

WHAT DOES Round REALLY MEAN, ANYWAY? 55

You Say “Tomato,” I Say “Ellipsoid”

A sphere is a three-dimensional circle whose X, Y, and Z radii
are all the same. According to the strict mathematical defini-
tion, if you shorten or lengthen one radius of a sphere, you get a
spheroid. If all three radii are different lengths, you get an ellip-
soid.

Even though they are mathematically different, you’ll see
spheroid and ellipsoid used interchangeably by many geogra-
phers. And can you blame them for being confused? Webster’s
Dictionary lists a synonym for spheroid as “ellipsoid of revolu-
tion.”

To change the map projection, choose Tools > Projections. We are cur-

rently looking at unprojected data. (This is also commonly called geo-

graphic or simply lat/long data.) Take a moment to apply some of the

other projections and see how it changes the way your map looks.

3.5 What Does Round Really Mean, Anyway?

As if dealing with imperfect projections isn’t difficult enough, we also

have to deal with the fact that the earth isn’t truly round. If it were a

perfect sphere, we could use PI and all of that good math to calculate

distances. But that would make our jobs too easy, now wouldn’t it?

A more accurate representation of the earth is a spheroid. Because it

rotates on an axis running through the poles, the earth bulges a bit at

the equator. The radius of the earth at the equator is 6,372 km (3,960

miles). The radius from core to pole is 6,350 km (3,946 miles). This

means that the earth is about 44 km (27 miles) wider around the middle

than it is tall. (If you suffer from the same problem, try that argument

the next time you see your family doctor: “Honest, Doc, I’m not fat—it’s

the centrifugal force....”)

So, a spheroid is a better way to model the shape of the earth than a

simple sphere. That is, it would be if the earth were completely cov-

ered with water. The surface of the earth is much more complicated

than simple sea-level measurements. It isn’t perfectly smooth by any

account. The topography—elevations in the land—varies greatly from

place to place because of mountains, plains, and valleys.

WHAT DOES Round REALLY MEAN, ANYWAY? 56

There is a mathematical average of sea level and topography called a

geoid. It undulates with the terrain on the earth, but it only approxi-

mates true elevation. A geoid is a more accurate elevation model than a

spheroid since it roughly accounts for topography. (For a nice visual aid

and the nasty mathematical equations behind it, see the geoid article6

on Wikipedia.)

More accurate than a geoid is a true digital elevation model (DEM).

A DEM isn’t a mathematical approximation of elevation; it is a true

measurement of height at regular intervals along the surface of the

earth. The Shuttle Radar Topology Mission (SRTM) DEM7 is produced

by NASA. It is a raster product that offers actual elevation points every

30 m (100 feet) over the United States and every 90 m (300 feet) over

the rest of the world. Many commercial data vendors can sell you DEMs

at an even higher level of accuracy than the SRTM data.

So, you can see that cartographers have a wide variety of elevation

models they can use when creating map projections. The more accurate

the elevation model, the less the missing third dimension will affect the

accuracy of the projection.

Ellipsoids and Projections

Most projections use an ellipsoid. The question is, which ellipsoid?

There are almost as many ellipsoids as there are projections.

A popular nineteenth century ellipsoid still used in many map pro-

jections today is the Clarke 1886 ellipsoid. It was created by English

cartographer Alexander Ross Clarke. Even though he never visited the

United States, his model of the world was used for North American

projections for more than 100 years.

More recent (and more accurate) ellipsoids used for North America pro-

jections include the Geodetic Reference System of 1980 (GRS80) and

the World Geodetic System of 1984 (WGS-84). The adjective geodetic

lets people know that the models are based on a spheroid rather than

a simple planar (two-dimensional) model.

Datum and Projections

Further mathematical refinements to the geodetic model are called

datum. For instance, the North American Datum of 1927 (NAD27)

6. http://en.wikipedia.org/wiki/Geoid

7. http://www2.jpl.nasa.gov/srtm

COORDINATE REFERENCE SYSTEMS 57

datum is based on the Clarke 1886 ellipsoid. The North American

Datum of 1983 (NAD83) datum further refines the GRS80 ellipsoid.

If you are working with international data, you will most certainly come

across different ellipsoids and datum. Each continent, each country,

and each state generally uses a different mathematical model that best

approximates its locality.

You don’t need to know how the datum and ellipsoids interact at a

mathematical level to be an effective geographer. You do, however, need

to pay attention to which are being used to ensure that you don’t run

into the Missing Colorado Highway Syndrome.

3.6 Coordinate Reference Systems

Stick with me here. We started out wondering why our roads in Col-

orado didn’t match up with our county boundaries. We are almost ready

to fix the problem.

The last piece of the puzzle for us to decipher is the coordinate reference

system (CRS) used by the data layer. We’ve talked about a point on

the earth being referenced by a coordinate pair in degrees latitude and

longitude. But we can express an (X,Y) pair in many ways.

Degrees, Minutes, Seconds

All of this talk about spheroids and PI probably got you thinking about

360 degrees. If you were paying close attention, you may have noticed

that -180 through +180 degrees longitude adds up to 360, the same

number of degrees in a circle. -90 degrees through +90 degrees latitude

equals 180 degrees, exactly half of a circle.

So even though we know that the earth isn’t a perfect sphere, degrees

are still a useful unit of measure when it comes to specifying the loca-

tion of a point. Of course, the order of the points can be a bit confus-

ing. Here’s where Cartesian terminology messes up geographers once

again. Cartesian coordinate pairs are always expressed as (X,Y). Geog-

raphers traditionally talk about latitude/longitude points. Therein lies

the rub—longitude corresponds to the X coordinate, latitude to the Y. If

you aren’t paying attention, it is ridiculously easy to accidentally trans-

pose the values. (Does it sound like I’m speaking from personal experi-

ence here?)

COORDINATE REFERENCE SYSTEMS 58

So when you’re slinging coordinate pairs around, be absolutely sure

that you understand who you are slinging them at—mathematicians

and cartographers will be endlessly confused if you are not specific.

If you’re dealing with U.S. coordinates, here’s a quick sanity check:

latitude values will always be positive, and longitude values will always

be negative. This is because the United States is north of the equator

and west of Greenwich, England. Of course, this trick breaks down

when you are dealing with international locations.

To further muddy the waters, whole degrees are far too coarse-grained

to express location to the typical level of precision we need. The distance

between each degree of longitude at the equator is 111.3 km (69 miles).

Recall that the lines of longitude converge at the north and south poles,

so the distance between each degree of longitude at the poles is 0.

The United States borders Mexico at roughly 30 degrees latitude. It

borders Canada at roughly 49 degrees latitude. The distance between

each degree of longitude at the Mexican border is 96.5 km (60 miles).

The distance at the Canadian border is 71.7 km (44.6 miles).

The point I’m trying to make here is that Google Maps wouldn’t be as

popular as it is today if it gave you door-to-door directions with a 50-

mile margin of error. So, how can we break a degree up into smaller

units?

A common way to express subdegree measurements is by using

“degrees, minutes, seconds” notation. We said earlier that there are

360 degrees in a circle. Each degree can be subdivided into 60 min-

utes. Each minute can be broken up into 60 seconds. Now we have a

way to give more precise locations. The distance between minutes at

the equator is 1.85 km (1.15 miles). The distance between each second

is 31 m (102 feet).

So to give the precise location of the White House (1600 Pennsylvania

Avenue, Washington D.C.), we can say that it is at 38 degrees, 53 min-

utes, 55 seconds north and 77 degrees, 2 minutes, 16 seconds west. In

shorthand DMS, it is (38 53’ 55”, -77 2’ 16”).

If you really want to get fancy, you can say that you are expressing sub-

degree measurements using sexagesimal notation. If a decimal system

is base-10, then a sexagesimal system...is...base-60, of course. We have

60 minutes, 60 seconds—you get the idea. (This is a great term to drop

in meetings if you want to sound especially intelligent.)

COORDINATE REFERENCE SYSTEMS 59

Do I Really Need to Know Sexagesimal Notation?

It’s no coincidence that the number 60 comes up with surprising
frequency in this chapter. Believe it or not, the first recorded
numbering system in history was sexagesimal. The Babylonians
in roughly 2,000 BCE created a base-60 numbering system that
echoes throughout our society today.

So, why did they decide on base-60 instead of base-10?
Conventional wisdom suggests that humans are hardwired to
understand a decimal numbering system because of our ten
fingers and toes. Did the Babylonians have 59 fingers and a
vestigial tail that made it more natural for them to choose a
base-60 numbering system?

Not exactly. What makes a base-60 system unique is how many
even divisors it has. The number 10 can be evenly divided only
in half or into fifths using integer math. The number 60 can be
divided by 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30 with no remainder.
Using a sexagesimal system, you can easily break things into
halves, thirds, fourths, fifths, sixths, and so on.

Here’s where the base-60 conspiracy gets interesting. There are
360 degrees in a circle and 360 days in a year. (Of course, this
was before the Roman emperors starting messing around with
the calendar.) There are 12 months in a year. There are 30 days
in a month. There are two 12-hour periods of daylight and dark-
ness in a day. There are 60 minutes in an hour. There are 60 sec-
onds in a minute. How are all of these numbers related? They
are all sexagesimal, of course. (This is the sort of thing that keeps
numerologists up at night.)

The fact that we live on a round planet in a circular orbit around
the sun makes all of these 360s a bit easier to swallow. Cyclical
patterns can be easily described using sexagesimal values.

(Continued...)

COORDINATE REFERENCE SYSTEMS 60

Do I Really Need to Know Sexagesimal Notation? (cont.)

Fast-forward to modern times. The USGS uses sexagesimal nota-
tion to describe many of its maps. For example, to find free
satellite imagery on the Web, use the word DOQQ in your web
search. A Digital Orthographic Quarter-Quadrangle (DOQQ) is
a standard USGS imagery product.

Let’s parse that monstrosity. Digital is the easy part—this isn’t a
paper map; it’s a digital file that you can use in a GIS applica-
tion. Orthographic means basically that it is a top-down view.
(Orthogonal means “composed of right angles.”) So far, the
USGS is telling us that this is a digital, top-down view of the earth.

Let’s consider the last half now—Quarter-Quadrangle. In its
inimitable way, the USGS is trying to tell us how much of the
earth the map covers. Each angle (or degree) is divided into
quads (or fourths). Given sixty minutes to a degree, a quadran-
gle (quarter degree) is fifteen minutes. A quarter quadrangle
further divides each fifteen-minute length into fourths, giving
you 3.75 minutes. So, the USGS is telling us that each of these
maps are 3.75 minutes to the side. At U.S. latitudes, this means
each image is roughly 8 km (5 miles) to a side.

In summary, each DOQQ is a digital image that is a top-down
view of the earth that is 3.75 minutes to a side. See? It’s intu-
itively obvious to the most casual observer...who knows sexa-
gesimal notation, that is.

Decimal Degrees

Sexagesimal notation might have some historical precedent when it

comes to describing locations on the earth, but as a computer pro-

grammer it probably made you break out into a cold sweat, thinking

“Sheesh, how am I going to parse out all of those base-60 numbers and

the tick marks?” Thankfully DMS is only one way of expressing (X,Y)

pairs. Decimal degrees is another popular way of expressing location

coordinates, especially in computer-based GIS systems. Rather than

saying something is at 1 degree 30 minutes, you can say that it is

at 1.5 degrees. In addition to being more computer-friendly, decimal

degree notation is a bit more compact as well. The White House’s loca-

tion in decimal degrees is (38.898748, -77.037684). (When describing a

geographic point in decimal degrees, you should use at least six places

COORDINATE REFERENCE SYSTEMS 61

to the right of the decimal point to ensure the same level of accuracy as

a full DMS coordinate.)

Converting DMS to DD is a piece of cake. There are various websites8

that do this for you “automagically,” or you can do the math yourself:

simply divide the minutes by 60; divide the seconds by 3,600; and then

sum the degrees, minutes, and seconds.

Meters

Projections that use lat/long points are generally most useful for show-

ing the absolute location of a feature. Although you can certainly derive

the distance between two lat/long points, latitude and longitude are not

good units for measuring distance. It even sounds funny: “I drove more

than 3.5 degrees on vacation last summer.”

The main reason for avoiding the use of degrees as a unit of measure

is they change depending on where you are in the world. Degrees of

latitude can vary by up to 21.5 km (13.4 miles) between the equator

and the poles. Degrees of longitude can vary by more than 100 km

(63 miles) from equator to pole. Trying to use a nonstandard, inconsis-

tent measurement unit to describe the distance between two features

is probably not the best strategy to pursue.

The good news is we’ve already got some popular distance units that

have a constant value and are widely accepted—meters and feet, kilo-

meters and miles. If you’d like to create a map that allows you to mea-

sure distances easily, using distance units instead of location units is

perfectly acceptable.

UTM

The Universal Transverse Mercator (UTM) projection is a popular dis-

tance-preserving projection. Its (X,Y) coordinates are expressed in

meters instead of degrees. It has a reasonably square graticule, which

means you can use a ruler to measure straight line distances between

two points on a map. It preserves area and shape, and although the

directions it portrays aren’t absolute, they fall into the basic “up is up”

category.

8. http://www.jeeep.com/details/coord

COORDINATE REFERENCE SYSTEMS 62

Figure 3.4: UTM zones

So why does this Cartesian plane work when others have failed? It’s

primarily because it isn’t a single projection. Rather, it is a collection of

120 projections.

Huh?

It’s actually quite clever. The world is broken up into grids that are 6

degrees of longitude wide. There are 60 northern UTM zones and 60

southern. (Six times 60? Yup—360 degrees....)

UTM zone 1N starts at the International Date Line. UTM 2N is 6 degrees

east. UTM 2S is the same zone, only south of the equator. (See Fig-

ure 3.4.) The continental United States is covered by nine UTM zones:

UTM 10N in California to UTM 19N in Maine.

But still, how does UTM magically help us preserve distance, direction,

and everything else that the previous projections couldn’t? Recall our

basketball globe at the beginning of the chapter: zoomed out to the full

extent of the globe, you are looking at a distinctly round object. As you

zoom into the state and city level, your field of vision becomes distinctly

COORDINATE REFERENCE SYSTEMS 63

more planar. When looking at areas that small, the curvature of the

earth can effectively be ignored.

Rather than trying to accurately represent the entire globe using a sin-

gle projection, UTM breaks the globe down to manageable portions

that can be reasonably portrayed as a simple Cartesian plane. UTM

attempts to preserve distance, shape, and area by sacrificing the

amount of information it presents at once. Small map extents but high

accuracy—I’d say that’s an altogether reasonable compromise.

The U.S. Army adopted the UTM grid in 1947. For battlefield maps, the

area of interest (AOI) was small enough to be accurately portrayed on

a simple grid with minimal distortions. So, east/west measurements

were the same as north/south. Area and shape were reasonably well

preserved. The map sacrificed true cardinal directions for a square grid,

but there was usually an indicator showing the difference between map

north and magnetic north. In other words, “up” was more or less “up.”

Dealing with UTM projections has some other interesting quirks. For

one, UTM coordinates are not unique across the globe. They are cer-

tainly unique within the zone, but the same address can exist in each

UTM zone.

Let’s look at this idea further. The lat/long point (0,0) describes a

unique place on the earth: the point where the equator and the Prime

Meridian intersect. But as we’ve discussed, there are some aspects of

using lat/long that can be potentially confusing. The longitude of the

White House could be described as either -77 or 77 degrees west. The

latitude of 38 degrees north could be easily transposed with longitude

value, thereby describing an entirely different point on the globe.

UTM remedies this in several ways. First, no UTM coordinate will ever

be negative. For northern UTM zones, the equator is given a value of 0.

For southern UTM zones, the equator is given a false northing value of

10,000,000. (The definition of a meter is discussed in the sidebar on the

next page. It might be handy in understanding why the false northing

works. The south pole is effectively 0; every measurement northward

from that point is guaranteed to be a positive value.)

When considering east/west coordinates, UTM doesn’t use the Prime

Meridian as a starting point. Each UTM zone has a central meridian that

is given a false easting of 500,000. So all coordinates west of the zone’s

central meridian are generally in the 200k–400k range. All coordinates

to the east of it are in the 500k–700k range.

COORDINATE REFERENCE SYSTEMS 64

Why Meters Instead of Feet?

You’ve probably noticed that whenever I mention measure-
ments I express them in meters instead of feet. Why is that? This
is primarily for the same reason that I generally describe lat/long
points using decimal degrees instead of degrees, minutes, sec-
onds. As a programmer, you’ll find working with decimals and
base-10 numbers infinitely easier to work with.

The metric system, although it was created after the French
Revolution in the late eighteenth century, is ideal for program-
mers. Because it is base-10, moving from meters to kilometers is
a trivial equation. If you were hard-pressed, you could even do
metric conversions using string manipulation by simply append-
ing or lopping off zeros as appropriate.

Contrast that with using the traditional English units of measure.
There are 12 inches to a foot and 5,280 feet to a mile, and don’t
even get me started with yards and furlongs. The math certainly
isn’t impossible, but it requires a bit more thought than simple
decimal place twiddling.

Of course, the fact that the metric system was founded on geo-
graphic principles makes it even more appropriate for us to use.
Looking for a new standard unit of measure based on scien-
tific truth, the meter was defined as 1/10,000,000th the distance
from the equator to the pole.

Since a UTM zone is limited to 6 degrees, no zone will ever be wider than

about 675k meters. The false easting of 500k ensures that all east/west

coordinates will be measured in hundreds of thousands.

Map distortions are minimized along the central meridian. As you move

farther away from it into adjacent zones, the lines of latitude begin to

curve up for the northern zones. This is called the UTM smile. In my

mind, it only makes sense that a projection that guarantees positive

coordinate values should smile as well. Of course, this theory breaks

down for southern UTM zones. In the southern hemisphere the coordi-

nates are still positive, but the UTM lines curve down giving you a UTM

frown. (I haven’t come up with a clever explanation for that one yet, but

just give me some time....)

In addition to always being positive, X and Y coordinates in the mid-

dle latitudes are generally different orders of magnitude. Eastings are

GETTING YOUR DATA LAYERS ALIGNED 65

always in the hundreds of thousands. Northings are generally in the

millions. This gives you another sanity check to make sure that you

haven’t accidentally transposed the X and Y values.

So, we now have yet another way to describe the location of the White

House. It is in UTM zone 18N, 323,294 E, 4,307,514 N.

3.7 Getting Your Data Layers Aligned

What is the practical purpose of all of this mumbo jumbo? The bottom

line is that you need to know the projection, the ellipsoid, the datum,

and the CRS of each of your data layers. If each map layer uses the

same artifacts, they magically align themselves in your map window. If

they don’t, they show up in odd locations. It’s as simple as that.

How do you find out what projection your map layers are in? Let’s start

by examining the Canadian data set we downloaded. Included with the

.shp, .shx, and .dbf files is another file with a .prj extension. .Prj files are

plain ASCII text files that contain the secret information expressed in

well-known text (WKT).

WKT formats are defined by the Open Geospatial Consortium (OGC).9

This is not the last time you’ll hear the OGC mentioned; it is a stan-

dards body that has defined specifications that play a key role in almost

every chapter of this book. For a more detailed description of the WKT

format, see the Simple Feature Specification for SQL.10

Open the .prj file in a text editor. You should see the following:

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],

UNIT["Degree",0.0174532925199433]

]

This tells you (after you squint a bit) that the data is in the Geo-

graphic Coordinate System (GEOGCS); it uses the NAD83 datum and

the GRS80 spheroid; and finally, the map units are expressed in de-

grees. Recall that GCS means that the data is unprojected. So, any

other unprojected data that uses the same spheroid, datum, and units

should line up with this map layer perfectly.

9. http://www.opengis.org

10. http://portal.opengeospatial.org/files/?artifact_id=829

GETTING YOUR DATA LAYERS ALIGNED 66

The U.S. Census Bureau data doesn’t include a .prj file, but we can

assume that it uses the same artifacts since it snapped right in with

the Canadian data set.

What, that’s not enough proof?

OK, go back to the U.S. Census Bureau website. Instead of clicking

the Download Boundary Files link, click Descriptions and Metadata.

Now click State and State Equivalent Areas.11 Scroll down to the first

metadata table. As you can see, the projection for our US States layer

is Geographic (Lat/Long), and the datum is NAD83.

Yeah, I agree—it would’ve been nice of them to include a .prj file. The

assumption (and this is a weak assumption) is that if you don’t tell

someone otherwise, they should assume that your data is in simple

unprojected lat/long. There is still no guarantee that you are using the

same ellipsoid, datum, and units, so the lack of projection information

really means that you are guessing about all of the other artifacts. Not

the most robust system, eh?

Click the link labeled For Further Information at the bottom of the table.

Then click the Projection Information link.12 With any luck, this junk

should begin to make sense.

And what of our misunderstood Colorado highway data? Will we ever

learn why it didn’t line up with our other map layers? Open its .prj file

in a text editor:

PROJCS["NAD_1983_UTM_Zone_13N",

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]],

PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting",500000],

PARAMETER["False_Northing",0],

PARAMETER["Central_Meridian",-105],

PARAMETER["Scale_Factor",0.9996],

PARAMETER["Latitude_Of_Origin",0],

UNIT["Meter",1]]

The projection file tells us that the data is in a Projected Coordinate

System as opposed to GCS. The data is in the “NAD 1983 UTM Zone

13N” projection. Although it is based on the same GEOGCS as our

11. http://www.census.gov/geo/www/cob/st_metadata.html

12. http://www.census.gov/geo/www/cob/projection.html

REPROJECTION UTILITIES 67

other map layers, the projection and units mismatch causes the data

to appear in a completely different location on the map.

Even if you don’t remember all the minute details of this chapter, I hope

you’ll remember that your .prj files should be identical for all of the data

layers of your map. And, no, simply copying one .prj file around to all of

your data layers won’t magically reproject your data. This file contains

metadata about your data’s projection—it doesn’t cause your data to be

projected; it describes how it is projected.

So, the question remains: if your data isn’t in the right projection, how

do you reproject it to get it to play nicely with the other layers?

3.8 Reprojection Utilities

Three tools form the foundation of nearly every open source GIS project:

Proj, GEOS, and GDAL. These tools are the key to getting Colorado

highways to show up in the right place on our map.

Two of the three (GDAL and Proj) are maintained by Frank Warmerdam.

He is arguably one of the most prolific developers in the open source

GIS community today.13

In Appendix A, on page 243, you’ll find instructions for building these

tools from source. I highly recommend it—each is a reasonably easy to

compile if you have a basic GNU build environment in place. For the

purposes of this chapter, downloading the precompiled binaries will be

sufficient. Visit http://fwtools.maptools.org/ for Linux and Windows bina-

ries. (FWTools? You probably already beat me to it—Frank Warmerdam

Tools.) http://fink.sourceforge.net/ doesn’t provide FWTools for Mac users,

but it does contain binaries for the individual applications.

Proj14 is a reprojection library. You won’t often invoke it directly, but it

is at the core of a number of open source GIS utilities.

GEOS15 is short for Geometry Engine Open Source. GEOS allows appli-

cations to define geographic objects (points, lines, and polygons) in a

standard way, as well as read and write WKT. GEOS wasn’t written

by Mr. Warmerdam. It was written by another major contributor to the

open source GIS community: Refractions Research. Paul Ramsey and

crew have their hands in a number of different projects, but they are

13. http://home.gdal.org/projects/

14. http://www.remotesensing.org/proj

15. http://geos.refractions.net

REPROJECTION UTILITIES 68

probably best known for creating and maintaining the leading spatially

enabled open source database—PostGIS.

Once we know how to define geometric objects and reproject them,

Geospatial Data Abstraction Library (GDAL)16 gives us an easy-to-use

command-line interface wrapper. GDAL is used to reproject raster files,

but it includes a subproject named OGR that is used to reproject vector

data. OGR technically stands for nothing at this point. It got folded into

the GDAL project only because it is really convenient to have a single

set of tools that you can use to reproject both raster and vector data.

http://ogr.maptools.org will give you more insight into the origin of the

name and its current set of capabilities.

Now that we have all of the tools in place, let’s reproject our Colorado

highways shapefile. Change to the directory that contains the Colorado

highways shapefile, and enter the following command:

ogr2ogr -t_srs EPSG:4269 co-hw.shp highways.shp

We’ll parse the command-line arguments in just a minute. For right

now, why don’t you create a new map with the Colorado counties data

layer and your newly reprojected Colorado highways shapefile. Savor a

brief moment of them lining up perfectly.

See? All is well in the world. Your data layers are all lined up perfectly,

and your faith is restored in your ability to assemble maps using free

data sources. OK, now let’s talk about how you got it accomplished.

ogr2ogr is really a Swiss Army knife of vector file manipulation. Type

ogr2ogr -h to get the full listing of command-line switches:

Usage: ogr2ogr [-skipfailures] [-append] [-update] [-f format_name]

[-select field_list] [-where restricted_where]

[-sql <sql statement>]

[-spat xmin ymin xmax ymax] [-preserve_fid] [-fid FID]

[-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def]

[[-dsco NAME=VALUE] ...] dst_datasource_name

src_datasource_name

[-lco NAME=VALUE] [-nln name] [-nlt type] layer [layer ...]]

-f format_name: output file format name, possible values are:

-f "ESRI Shapefile"

-f "TIGER"

-f "S57"

-f "MapInfo File"

-f "DGN"

-f "Memory"

16. http://www.remotesensing.org/gdal

REPROJECTION UTILITIES 69

-f "CSV"

-f "GML"

-f "PostgreSQL"

-append: Append to existing layer instead of creating new

-update: Open existing output datasource in update mode

-select field_list: Comma-delimited list of fields from input layer to

copy to the new layer (defaults to all)

-where restricted_where: Attribute query (like SQL WHERE)

-sql statement: Execute given SQL statement and save result.

-skipfailures: skip features or layers that fail to convert

-spat xmin ymin xmax ymax: spatial query extents

-dsco NAME=VALUE: Dataset creation option (format specific)

-lco NAME=VALUE: Layer creation option (format specific)

-nln name: Assign an alternate name to the new layer

-nlt type: Force a geometry type for new layer. One of NONE, GEOMETRY,

POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT, MULTILINE,

MULTIPOLYGON, or MULTILINESTRING. Add "25D" for 3D layers.

Default is type of source layer.

-a_srs srs_def: Assign an output SRS

-t_srs srs_def: Reproject/transform to this SRS on output

-s_srs srs_def: Override source SRS

Srs_def can be a full WKT definition (hard to escape properly),

or a well known definition (ie. EPSG:4326) or a file with a WKT

definition.

We used ogr2ogr here to simply reproject the data. You can also use it to

change file formats. It can even dynamically query data out of a spatial

database. We’ll use it much more in Chapter 5, Spatial Databases, on

page 108.

The -t_srs argument specifies the target Spatial Reference System (SRS),

or simply the target projection. We didn’t need to use the -s_srs (Source

SRS) argument since the .prj file was present.

So, what does EPSG:4269 mean? It should come as no surprise that it’s

a bit of syntactic shorthand for Unprojected (Lat/Long) NAD83. Every-

thing else was in that projection, wasn’t it? Compare co-hw.prj to the

other .prj files. They should match up.

If you look at the bottom of the ogr2org help output, notice that you can

specify projections using the full WKT description. Typing that stuff

out doesn’t seem very efficient, so you can also store the WKT in a

text file and specify a fully qualified path to the file. But the simplest

way to specify a projection is to use the European Petroleum Survey

Group (EPSG)17 SRID. Recall that the OGC created the WKT format.

The EPSG’s claim to fame is creating a standard numbering scheme to

17. http://www.epsg.org

CONCLUSION 70

describe each projection. It would be nice if the EPSG code showed up

somewhere in the WTK, but these are two different standards created

by two different groups at two different times.

For a full listing of all of the EPSG codes, you can download a Microsoft

Access file from the Web. For a more vendor-neutral way to get at these

codes, a table is included in the standard PostGIS installation.

The good news is pretty soon all of these different ways to describe a

projection will become second nature. EPSG:4326 is the same as plain

old lat/long WGS84. UTM 13 N based on NAD83 is EPSG:26915. UTM

13 N based on NAD27 is EPSG:26713. We will continue to work with

the EPSG codes throughout the rest of the book.

3.9 Conclusion

Yes, this was a long chapter. Yes, there is lots to learn when it comes to

map projections. You might be exhausted, but this chapter was by no

means exhaustive. We covered the basics here, but this is a topic you’ll

revisit over and over again in your GIS travels.

We talked about the challenge of getting three-dimensional data por-

trayed on a two-dimensional computer screen. We talked about how

Cartesian planes are both a blessing and a curse to cartographers. We

talked about several projections and the four types of map distortions

they attempt to minimize (direction, distance, area, and shape). We

talked about the types of ellipsoids, datum, and coordinate reference

systems.

Once you understood those basic building blocks, you were introduced

to several ways to describe a projection. There is the WKT representa-

tion. There is also the EPSG code.

Finally, we talked about the three basic tools of the open source GIS

trade: Proj, GEOS, and GDAL. Our use of ogr2ogr to reproject our shape-

file is only the beginning. We will use these tools throughout the rest of

the book to get our data lined up and ready to use.

In the next chapter, we’ll talk about raster images. If you are going to

use them as a map layer, they need to be projected just like your vector

layers. GDAL will come back to save the day once again.

Chapter 4

Rasters
In this chapter, we’ll discuss the specifics of raster imagery: where to

download free images, where to download free viewers, and how to use

free utilities such as GDAL to reproject and convert file formats.

4.1 Getting Started with Raster Data

After talking about vector data and projections, you’re still hanging

around. You’ve heard me say that vector data is where most of the

real work gets done in GIS, but here you are saying “When can we see

the pretty pictures?” OK, I admit that it’s one thing to find your house

on a vector map. It’s another thing altogether to see an actual picture

of your house taken from space—undeniably cool.

A great place to start looking at raster imagery is http://maps.google.com.

Notice that Google starts you out with a vector view of the United States.

Google has taken care of assembling the various data layers, styling

them, and ensuring that they are all in the same projection. Google

didn’t cobble together the free layers that we’ve been playing with—you

can tell by the copyright notice in the lower-right corner that the com-

pany purchased commercial data sets from NAVTEQ and Tele Atlas,

two of the major players in the industry.

Things really get fun when you click the Satellite link in the upper-right

corner. You are now presented with a raster view of the same extent.

Looking at the copyrights in the lower-right corner, you can see that

Google purchased the imagery from DigitalGlobe and EarthSat. In this

chapter, we’ll find the same type of imagery available for free on the

Web.

GETTING STARTED WITH RASTER DATA 72

Zoomed out at this level, the satellite imagery is really nothing more

than window dressing. You can’t get much useful information from the

photograph. But when you’re zoomed in closer, the contrast is more

striking. For example, let’s take a look at the Colorado State Capitol

building. Type 200 E. Colfax Ave Denver CO in the query box.

I’m sorry. How silly of me. First type in your home address and look

around. You’re going to be totally distracted and worthless to me until

you get it out of your system. Go ahead—I’ll be right here when you’re

finished.

OK, now that I have your undivided attention, type 200 E. Colfax Ave

Denver CO in the query box. If you zoom in on the vector view, you can

see all sorts of detail. The streets, parks, and major buildings are all

clearly labeled. The blue arrows tell you which direction the one-way

streets go.

Now click over to the satellite view. You can see cars in the parking

lots. You can see trees and grass and sidewalks. You can even count

the number of lanes in the streets. This is undeniably cool, but if you

were new to Denver and trying to find your way around, which view

would be more helpful?

I think the answer is most likely the vector layer, although the raster

layer does show you a greater level of detail. In it, you can see park-

ing lots and actual buildings, while the vector layer simply shows gray

rectangles for most blocks.

This perfectly illustrates the ideas I first put forth in Chapter 2, Vec-

tors, on page 19. Vector data is an abstract representation of reality. In

the case of Google Maps, by showing less detail in the vector layer, you

actually get more information. The map designer has effectively elimi-

nated much of the “noise” and boiled the vector layer down to its bare

essentials. The primary purpose of Google Maps is to give driving direc-

tions, so the elements that don’t aid in that endeavor (sidewalks, trees,

and so on) are removed. Although this version of the software doesn’t

do it, it could quite easily remove roads from the map that are closed

for construction or even remove all roads that aren’t on your route from

point A to point B. This perfectly illustrates the ideas I first put forth in

Chapter 2, Vectors, on page 19. Vector data is an abstract representa-

tion of reality. In the case of Google Maps, by showing less detail in the

vector layer, you actually get more information. The map designer has

effectively eliminated much of the “noise” and boiled the vector layer

GETTING STARTED WITH RASTER DATA 73

down to its bare essentials. The primary purpose of Google Maps is to

give driving directions, so the elements that don’t aid in that endeavor

(sidewalks, trees, and so on) are removed. Although this version of the

software doesn’t do it, it could quite easily remove roads from the map

that are closed for construction or even remove all roads that aren’t on

your route from point A to point B.

For some mapping use cases, vector data is wholly inappropriate.

Google did a good job of stripping out all of the temporal artifacts from

the vector layer like the cars in the street and parking lots. But what

if that was what you were trying to study? Analysis of traffic patterns

is absolutely dependent on the noise that was removed for clarity in

the other application. Someone trying to create a vegetation index for

downtown Denver is far more interested in the trees and grass than

the sidewalks and streets. The shadows in the imagery don’t show up

in the vector layer, but without them our ancient friend Eratosthenes

wouldn’t be able to estimate the circumference of the world. You get the

idea.

Cartographers vs. Photogrammetrists

At this point it’s probably worth introducing a couple of relevant job

titles. We’ve mentioned cartography several times already. Cartogra-

phers are mapmakers. (The origin of the word is Greek: the suffix gra-

phy means “to write,” and carto means “maps.”) Historically, cartogra-

phers have focused on assembling vector layers (often drawing them by

hand). Modern job descriptions often loosen the constraints to include

working with imagery as well.

Photogrammetry, on the other hand, focuses more closely on the ima-

gery side of things. A photogrammetrist might just ensure that a raster

image is geographically and geometrically correct. A broader interpre-

tation of the job title might also include analyzing photographs looking

for patterns (such as traffic patterns or vegetation indexes) and feature

extraction (creating vector layers out of the imagery). For example, a

photogrammetrist could create a road layer by extracting the roads out

of the raster image. Another common type of output is a Land Use/Land

Cover report. Local governments can use imagery to create vector layers

of how the land is being used—streets, buildings, residential housing.

Even knowing where cement and asphalt is vs. dirt, grass, and crops

is useful: it can help city planners figure out where to place sewers to

accommodate rainwater runoff.

TERRASERVER-USA: ANOTHER SOURCE OF FREE RASTER IMAGERY 74

So, a photogrammetrist might start with a raster image and extract fea-

tures to create vector layers. The cartographer then takes the resulting

vector layers and assembles them into a map. For more information

about these job titles and some real-world examples,1 do a web search

on the terms.

4.2 Terraserver-USA: Another Source of Free Raster Imagery

Google is a really useful web application, but it is a black box of GIS.

You cannot turn data layers on and off. You cannot add your own data

layers. You cannot change the styling of the layers. And you certainly

can’t download the data layers for use in a desktop GIS application.

Don’t get me wrong—I have a great deal of respect for Google’s interface

design (so much so that I wrote a book on it).2 Google’s goal was to cre-

ate an application easy enough for Grandma to use, and it hits its mark

perfectly. (Notice that lat/long coordinates are nowhere to be found in

the user interface?) But we’re going to need a little more flexibility and

horsepower in order to move on, even at the expense of added complex-

ity. Let’s turn our attention to another web application that can supply

us with some raw materials for our own use.

Terraserver-USA3 looks an awful lot like Google Maps at first glance.

(See Figure 4.1, on the following page.) You can zoom into an area by

entering an address, clicking the map, or entering a lat/long coordi-

nate. The green areas of the map show where they have raster data

available for viewing. (The dark green areas indicate color imagery; the

light green areas are black and white.)

Terraserver-USA is a joint research project between the USGS and

Microsoft. It came online in June 1998. It gave Microsoft an oppor-

tunity to work with a huge data set and stress-test its software in a

real-world scenario. It gave the USGS an opportunity to put its entire

archive online.

One of the biggest differences between Terraserver-USA and Google

Maps is that Terraserver-USA allows you to download the base imagery

for use in your own application. (The website says, “The images are from

1. http://www.iseek.org/sv/13000.jsp?id=100031

2. http://www.pragmaticprogrammer.com/titles/sdgmapi/

3. http://terraserver-usa.com

TERRASERVER-USA: ANOTHER SOURCE OF FREE RASTER IMAGERY 75

Figure 4.1: Terraserver-USA, another source for raster data

the U.S. Geological Survey and are freely available for you to down-

load, use, and redistribute. The TerraServer team and the USGS appre-

ciate credit for their work on this project by displaying the message

‘Image courtesy of the USGS.”’) This, of course, brings with it its own

set of challenges: there is more than 6 terabytes of imagery available

for download. As a matter of fact, the name of the site has a bit of a

double meaning: terra for world and tera for trillions of bytes.

We’ll revisit the Colorado State Capitol building in just a moment. For

now, take a moment to look around Famous Places: click the link in

the upper-right corner. One of my favorites is the one labeled “B-52

Aircraft, Davis-Monthan AFB, Tucson, Arizona.” This is the “boneyard”

where the U.S. Air Force parks all of its decommissioned aircrafts.

Zoom in and out. Pan around. Get familiar with the navigation tools

and the different locations. This chapter will resume in five minutes.

MOSAICS AND TESSELLATION 76

4.3 Mosaics and Tessellation

The Terraserver-USA data set is a coast-to-coast mosaic of USGS ima-

gery. As mentioned earlier, the USGS has a standard imagery product

called a DOQQ. These are photographs of the continental United States

that are roughly 8 km by 8 km (5 miles by 5 miles). It takes about 500 of

these DOQQs to cover a strip of the United States from the east coast

to the west; 325 of them cover a straight line from the North Dakota

border to the southern tip of Texas. Terraserver-USA blends them all

together (more than 150,000 individual scenes) to make them appear

as one seamless data set.

When most people think of a mosaic, they probably envision a piece

of art made up of tiny fragments of glass or pottery arranged together

to make a bigger picture. The artist usually emphasizes the individual

pieces by leaving a gap between them, letting the plaster or mortar show

through. (For some beautiful examples of historic mosaics, see the Joy

of Shards.4)

When GIS folks create mosaics, they usually try to avoid bringing atten-

tion to the seams between the individual images. This can be done by

choosing your cut lines very carefully. If you stitch the imagery together

along a road or a river, you can usually make the seams virtually unde-

tectable.

Since the Terraserver-USA folks had such an avalanche of pixels to deal

with, they weren’t able to handcraft their mosaic. In some areas, the

boundaries between individual images are quite noticeable. Since the

images were taken at different times, the colors and shadows might not

quite match up. There might be seasonality differences. (It’s common

to hear GIS professionals talk about scenes taken during leaf-on and

leaf-off seasons.) The images might have pixel misregistration issues—

positional inaccuracies that happen when the pixels aren’t assigned to

the correct lat/long points on the ground. If you’re dealing with a single

image, misregistration can be tough to catch, but if you are dealing with

two or more images, misregistration can cause roads and rivers to shift

suddenly between scenes. (See Figure 4.2, on the next page.)

The flip side of mosaicking is tessellation, or breaking an image up into

smaller tiles. Both Google Maps and Terraserver-USA serve up tiles

instead of the entire data set at once. If you’ve got a slow Internet con-

4. http://www.thejoyofshards.co.uk/history

MOSAICS AND TESSELLATION 77

Figure 4.2: An example of misregistration

nection, you can see the individual tiles of the map show up as they

are downloaded. The map area in both applications is chopped up into

roughly a three-by-three grid.

So, wait just a gosh darn second here—you mean to tell me that Micro-

soft took 150,000 individual scenes, mosaicked them together, and

then turned around and broke them back up into tiles again?! Well,

um, “yes” is the short answer, but it’s a bit more complicated than

that. As much as I would like to make a Microsoft joke at this point

(I’m an Apple user), this is a pretty common practice. Tessellation and

mosaicking are almost always done on the same data set. Mosaicking

is done for presentation purposes; tessellation is done for distribution

purposes. An individual DOQQ is about 8,000 pixels by 8,000 pixels.

That is far too big a hunk of data to send across the Internet comfort-

ably, so the countrywide mosaic was created for artistic purposes and

then tiled back down into smaller pieces for easy distribution over the

network.

TEMPORAL ANALYSIS 78

4.4 Temporal Analysis

Let’s see what Terraserver-USA brings to the table when it comes to

the Colorado State Capitol building. (Leave the Google Maps view of the

capitol building up in another tab or another browser window if you

can.) Enter the address 200 E. Colfax Ave, Denver, CO, and click Go. On

the results page you’ll see links to three types of raster imagery. First,

don’t be fooled into clicking the Topo map link. Really. Don’t click it.

Trust me, you’ll be disappointed.

You clicked it anyway, didn’t you? Well, as long as we’re here, let’s talk

about it. Ironically, the topo map is a vector map in raster’s clothing.

A topographical map is a vector map that shows terrain and elevation.

They are quite common. Hikers and campers seem to enjoy using them,

but otherwise as nearly as I can tell, they exist only to clutter up your

search results with files that aren’t really what we wanted. They are

technically rasters, but they aren’t photographs. I’d be more impressed

with them if they were distributed as a true vector layer—then I could

style them, adjust their transparency, offer them as an additional map

layer, and so on. Instead, they are fully opaque line drawings that usu-

ally date back to the 1970s and earlier. Click your browser’s back but-

ton in disgust, and look at the other two results.

Both the Urban Areas and Aerial photos are closer to what we want.

Click the Aerial link to see a black-and-white photograph of the capitol

building. (Not all aerial photos are black and white. Aerial just tells

us that it was taken from an airplane as opposed to a satellite.) This

doesn’t look like the capitol building to you? Pan one click to the south

and one click to the west to center it on your screen. (See Figure 4.3, on

the following page.) Ahh, that’s much better. Choose the Urban Areas

tab to see a color photo of the same scene. (See Figure 4.4, on page 80.)

Let’s put on our photogrammetrists pants and analyze these two ima-

ges. It’s trivial to turn a color image into a black-and-white one, but

several clues tell us that these are in fact two distinct images. (Yes,

you’re right: one pretty good clue is that each image is clearly dated

under the ZIP code in the address, but let’s pretend for a moment that

you aren’t a complete killjoy.) Notice the temporal differences? The trees

and foliage are much fuller in the black-and-white image than they are

in the color one.

TEMPORAL ANALYSIS 79

Figure 4.3: Terraserver-USA, Colorado State Capitol building in black

and white

This is a perfect example of leaf-on/leaf-off scenes. The black-and-white

photo was taken in October; the plants are still in full bloom after the

growing season. The color photo was taken in April; the grass hasn’t

quite come back in from the winter dormancy, and the trees haven’t

put up a full set of leaves yet.

Another clue is that the shadows are at different angles. This can poten-

tially show seasonal differences, but at the very least it shows us that

the two pictures were taken at different times of the day. Shorter shad-

ows tell us that the sun is directly overhead. Longer shadows mean that

the sun is closer to the horizon.

The biggest giveaway that the photos were taken at two different times

are the cars in the streets and parking lots. If you look closely at the

major intersections, different cars are passing through the same inter-

section. Cars, people, boats, trains, you name it—anything that moves,

when captured in a still photograph, is a great temporal artifact to use

when it comes to image analysis.

TEMPORAL ANALYSIS 80

Figure 4.4: Terraserver-USA, Colorado State Capitol building in color

Even things that change more slowly over time—such as buildings

and housing developments—can be used in image analysis. Munici-

pal governments are often very interested in new construction because

it directly affects their taxable base. Change detection or change queues

are vector reports that compare the temporal differences between two

images of the same spatial extent. By comparing year-over-year differ-

ences, you can see how a given AOI has changed over time.

Just for grins, go back and compare the Terraserver-USA scenes to the

Google Maps one. It should be fairly evident that Google Maps scene is

the same as the Terraserver-USA Urban Areas scene (at least it was at

the time of this writing—Google is constantly upgrading its imagery).

For a more dramatic example of change detection, leave these windows

open, and fire up a new browser window or tab. Go to http://terraserver-usa.com,

and enter 1701 Bryant St Denver, CO. Notice that you get a long list of

possible hits. This happens when the geocoder can’t resolve a street

address to an exact lat/long coordinate.

PANCHROMATIC VS. MULTISPECTRAL 81

Figure 4.5: Terraserver-USA, Mile High Stadium as a stadium

I’ve been saying all along that mapping is an inexact science, and here

is yet another example of it.

The link that comes closest to what we are looking for is the second

in the list: Bryant St, Denver, CO 80204. Click Aerial Photo. Click one

zoom level out, and then pan three clicks north. Ah, good old Mile High

Stadium and its nascent successor, Invesco Field at Mile High. (See

Figure 4.5.) In 1999, Mile High Stadium was still in full operation while

Invesco Field was under construction.

Now click the Urban Areas tab. (See Figure 4.6, on the next page.) By

2002, Mile High Stadium had been converted into a first-class parking

lot. Invesco Field is now the official host to the Denver Broncos football

team.

4.5 Panchromatic vs. Multispectral

I hope you’re getting more comfortable looking at raster images. If you’d

like a nice generic phrase to describe what we’ve been doing, remote

PANCHROMATIC VS. MULTISPECTRAL 82

Figure 4.6: Terraserver-USA, Mile High Stadium as a parking lot

sensing is the common industry term for it. In a nutshell, we’ve been

looking at things close up from a sensor that was far away when it took

the picture. The sensor might have been mounted on a satellite or on

the bottom of a specially outfitted airplane—remote by any definition of

the word.

Let’s dig a bit deeper into the types of images we’ve been viewing. Clearly

the USGS has two distinct product lines: DOQQs are black-and-white

photos available for any area in the United States, and Urban Areas (as

the name implies) are color photos taken over metropolitan areas. How-

ever, the phrases black and white and color are positively too simple,

too unambiguous, and too easy to understand by the general public to

be used by the GIS industry to describe what we’ve been viewing. If you

move beyond Terraserver-USA to look for free sources of raster data

(many city and state governments offer free downloads), you’ll need to

be comfortable talking about panchromatic and multispectral imagery.

PANCHROMATIC VS. MULTISPECTRAL 83

Panchromatic Imagery

You’ll commonly see black-and-white photos listed as panchromatic

images. Ironically, this is a Greek word that translates as “all col-

ors.” So, how did this little piece of misdirection find its way into com-

mon usage? The term panchromatic refers to the sensor on the camera

instead of the resulting image. The sensor records information from

across the visible spectrum but stores it as a black-and-white image.

By getting data from the entire spectrum, the image is incredibly crisp.

Have you ever noticed the amount of detail in a black-and-white por-

trait? OK, so that’s the marketing answer. Another more realistic an-

swer is that panchromatic sensors are generally cheaper than full-color

sensors, and the resulting image is smaller in terms of storage require-

ments than its full-color counterpart. When you’re trying to store cov-

erage of the entire United States, every little pixel adds up.

Yet another reason to use the term panchromatic instead of black and

white is that the images aren’t technically black and white—they dis-

play a couple hundred shades of gray. (You can start humming Procol

Harum’s “A Whiter Shade of Pale” to yourself at this point.)

A typical grayscale image uses 1 byte (8 bits) to store 256 distinct levels

of gray per pixel. If you’ve got a 8,000 by 8,000 pixel image, you’re

looking at 64,000,000 pixels of data to be stored on disk. If you use

1 byte to store the gray level per pixel, you’ve got a 64MB file on your

hands. (Of course, we’re ignoring image formats that offer compression

at this point. We’ll talk about that later in the chapter.)

To simplify this even further, let’s consider how a true black-and-white,

two-color image could be stored as a file. Since each pixel can be only

one of two colors, the color information for each pixel can be stored in

a single bit. (See Figure 4.7, on the following page.)

A 1-bit raster image would end up being pretty worthless to us in the

real world—hardly a photograph at all—but an 8-bit image is surpris-

ingly expressive; 256 shades of gray gives us the detailed panchromatic

images that we’ve been looking at throughout this chapter.

Modern computer applications such as web browsers can display 8-bit

imagery without a problem. However, you might stumble across 16-bit

imagery available for download on the Web. These files use 2 bytes to

store grayscale information per pixel. This means you can see 65,536

levels of gray instead of a mere 256.

PANCHROMATIC VS. MULTISPECTRAL 84

Figure 4.7: Storing a true black-and-white image

Although this sounds like a heck of a deal (more is better, right?), if

you try to pull a 16-bit image up in a typical viewer, all you’ll see are

black pixels. The 8-bit viewer will simply not know what to do with the

additional information, so it will effectively “max out” all of the pixels

at a value of 255. Think of the distribution of color values on a bell

curve. For 8-bit imagery, the values will spread out somewhere from 0

to 255. Now what happens if you extend the range to 65,536? Chances

are very good, statistically speaking, that nearly all of the color values

will be greater than 255 (the maximum value that an 8-bit viewer can

handle). Thus, you end up looking at mostly pure-black pixels.

On the other hand, if you pull a 16-bit image up in an image viewer

that can handle 16-bit data, you’ll be in good shape. Photogrammetists

doing deep scientific study of the imagery can derive much subtler

changes from pixel to pixel using 16-bit imagery rather than 8-bit. Most

high-end GIS software can display 16-bit imagery out of the box. You

can also download a free viewer called FreeLook from RSI.5

5. ftp://ftp.rsinc.com/pub/freelook_4.1/

www.ebook3000.com

http://www.ebook3000.org

PANCHROMATIC VS. MULTISPECTRAL 85

We’ll focus on 8-bit imagery for the remainder of this book. It’s nice to

know that 16-bit imagery is out there, if only so that you know what to

do if you pull up an all-black image.

Multispectral Imagery

Up to this point we’ve been focused on panchromatic imagery. But what

about the color stuff? By color, you surely mean “multispectral,” don’t

you? Like the term panchromatic, multispectral refers to the capabili-

ties of the sensor. Only coincidentally in this case does the name also

describe the resulting image.

A multispectral camera has more than one sensor, each tuned to record

data from a specific portion of the electromagnetic spectrum. The most

common sensor groupings pick up data in the RGB bands. (RGB stands

for Red, Green, and Blue). If you’ve ever done any web development or

Adobe Photoshop work, you should be well acquainted with RGB color

notation. (Surely you’ve heard the poem “Roses Are #FF0000, Violets

Are #0000FF”....)

We’re still dealing with 8-bit imagery at this point; only now we have 3

bytes of color information stored for every one pixel of data. With three

256 value ranges of color that can be combined, we can express an

astounding 16,777,216 unique colors (8-bit RGB multispectral rasters

are often called natural color images).

Things would be pretty straightforward if we just stopped there, but

those pesky scientists are always messing things up for us simple folk.

Multispectral sensors aren’t limited to just taking natural color images.

It’s common to have sensors on board that can capture data outside of

the visual spectrum. (The Landsat 7 satellite can capture—ironically—

eight different bands of information, while the Terra satellite offers data

across thirty-six distinct bands.) People doing vegetation analysis love

dealing with infrared spectral information.

All the common image file formats have three slots to store color infor-

mation, but there is nothing stopping us from populating the bytes

with non-RGB spectral information. False-color images generally swap

out at least one of the RGB bands for data outside the visual spectrum

such as infrared. This combination makes vegetation really pop out. For

example, take a look at the false-color image of Las Vegas, Nevada. (See

Figure 4.8, on the next page—image courtesy of NASA.6) The analyst

6. http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=16318

SCALE AND RESOLUTION 86

Figure 4.8: A false-color image of Las Vegas emphasizing the vegetation

who put this image together swapped the red band out for the infrared

band. Only in a false-color image could the grass in the medians shine

brighter than the neon lights on the Strip in Vegas.

For the rest of the book, when we’re dealing with multispectral imagery,

we’ll be looking at natural-color pictures. Again, it’s just nice to know

what else is out there when you stumble across oddly colored pictures.

4.6 Scale and Resolution

We’re almost ready to begin downloading our own rasters, but we need

to know a few more things about the imagery before we get there. We’ve

already talked about how our pixels are colored. Now we need to figure

out how big our pixels are.

SCALE AND RESOLUTION 87

Scale and Resolution in the Analog World

When dealing with paper maps, pixels aren’t of much use to us as a

unit of measure; the size of your map is generally measured in inches

or centimeters. However, the physical size of your map is only half of the

equation—you’ll still want to know how much ground space the paper

map represents. What you’re looking for is the scale of the map. This is

commonly expressed as a ratio: 1:1000 means that 1 unit on the map

is equivalent to 1,000 of those same units on the ground.

This notion of ratios comes up again and again in cartography. For

example, let’s say you have a 30 cm by 30 cm (1 foot by 1 foot) paper

map that shows you a 30 km by 30 km (18.6 miles by 18.6 miles) area

on the ground. Our map scale is 30:3,000,000.

That looks bit odd, doesn’t it? Map scales are usually reduced so that

the left side of the ratio is 1. Dividing both sides of the ratio by 30

gives us a more normal-looking map scale of 1:100,000—1 cm on the

map represents 100,000 cm on the ground. To further refine this ratio,

100,000 cm is really 1,000 m, which is 1 km. You might see a scale

for this hypothetical map expressed as “1 centimeter on the map rep-

resents 1 kilometer on the ground,” but the least ambiguous way to

express the scale is to say simply it is 1:100,000 and leave the inter-

pretation up to the reader.

Now let’s say that you want to see a bigger area of the earth on your

map. If you want to see twice as much ground space per side (60 km),

you have two options: you could double the physical size of your map

to 60 cm, or you could cram 60 km into the same 30 cm map. In the

first case, you are maintaining the same scale as the earlier map. If

you hold the size of your map constant, something has got to give.

That something is the level of detail or the resolution of the map. Your

effective scale is now 1:200,000 (1 cm on the map represents 2 km on

the ground). You have a lower-resolution map—in other words, you can

see less detail.

If you move in the opposite direction—increasing your resolution—

either your map will get progressively larger or you will be able to see

less total ground space on the same-sized map. Do you see how if you

hold the size of your map constant, there is an inverse relationship

between the resolution and the total ground space? You can see either

less total earth at a higher level of detail or more total earth at a lower

level of detail. (This should remind you of our imaginary basketball

globe story earlier in the book.)

SCALE AND RESOLUTION 88

This magic ratio explains why statewide highway maps are so darn big.

They have to be 2 to 3 feet on a side to display all of the highways

at a resolution that you can see easily. But highway map resolution

doesn’t allow you to navigate your way through local neighborhoods;

no single piece of paper could realistically hold that level of detail. If

you’ve ever been out house hunting in your real estate agent’s car, the

agent probably has a thick neighborhood guide that fits ten to twelve

city blocks to a standard 8.5 by 11 page.

Scale and Resolution in the Digital World

Let’s now move our focus back to digital mapping. Digital images are

measured in pixels (a combination of the two words picture element).

Pixels are like degrees in that they are a relative unit of measure when

it comes to distance. For example, my laptop screen optimally runs at

a resolution of 1280 by 854. I have a 15-inch PowerBook G4, so we

can figure out the dots per inch (DPI) of my monitor using some pretty

simple math: 1,280 pixels divided by 15 inches gives me a DPI of about

85. (Historically, people have used 72 DPI as a benchmark for computer

displays, but as you’ll see in a moment that number can be changed

with the click of a button.)

I use my laptop for presentations quite a bit, but I have yet to find an

LCD projector that will allow me to run at native resolution. If I’m lucky,

I’ll get knocked down to 1024 by 800, but more often than not, I end

up running at 800 by 600. Obviously, the physical size of my laptop

screen doesn’t change, but my resolution and corresponding DPI takes

a pretty big hit. A 15-inch screen displaying 800 pixels yields a DPI of

a little more than 53. Just like my paper map in the previous section,

I lose total desktop space (ground space), but I can see everything else

in much greater detail (resolution). When I disconnect the projector, my

desktop gets much bigger, but my individual icons get much smaller.

Looking now at raster images, we still need a way to express “this

much on my screen represents this much on the ground.” Unfortu-

nately, as we just learned, expressing things in inches or centimeters

can be problematic. The only two absolutes we have are the dimensions

of the image in pixels and the ground space that each pixel represents.

Since you can’t very well measure ground space in pixels, we lose the

traditional notion of a scale ratio. Instead, we talk about ground sample

distance (GSD).

SCALE AND RESOLUTION 89

For example, we know that a typical DOQQ is 8,000 pixels across in

image space and 8 kilometers across in ground space. This gives us a

GSD of 1 meter per pixel. Regardless of your screen resolution, your

image resolution will always be 1 pixel = 1 meter. (For more informa-

tion on DOQQs, see either Terraserver-USA’s About page7 or the USGS

Factsheet.8 Both are chock-full of geobabble that shouldn’t scare you

in the least if you’ve made it this far.)

Most of the DOQQs date from the mid-1990s. The USGS has been sys-

tematically updating its data set with newer, higher-resolution, multi-

spectral imagery. The Urban Areas data set generally dates from 2000

and later. Its GSD ranges from 0.5 meters (roughly 1.5 feet) down to

0.15 meters (6 inches). As storage gets cheaper and sensors get more

powerful, the USGS will update its data set accordingly. It keeps the

DOQQ data set around for now because it has more complete cov-

erage of the United States, but eventually the panchromatic country-

wide mosaic will be completely replaced by the newer high-resolution

imagery. (For more information, see the fact sheet about high-resolu-

tion orthoimagery.9)

If you want to prove to yourself that the multispectral rasters on Terra-

server-USA are higher resolution than the panchromatic DOQQs, go

back to your view of the state capitol. Zoom in as far as you can on the

Aerial data set, and then flip over to the Urban Areas tab. You should

have a couple more clicks to zoom in. Did you also notice that once

you zoomed into the maximum resolution on the Urban Areas tab, the

Aerial tab disappeared? Zoom a couple of clicks out, and the other tab

should reappear.

So, what’s going on? The mapmakers wanted to make sure that you

didn’t exceed the native resolution of the imagery. Downsampling

(zooming out) doesn’t pose much risk—if you want to see a lower-

resolution snapshot of the imagery, you can easily adjust the GSD with-

out affecting the quality of the output. Of course, you’ll see less detail,

but then again that’s what you asked for, isn’t it? You are losing detail,

but the original image has all of the data necessary to safely show you

the data at the newly requested resolution.

7. http://terraserver-usa.com/about.aspx?n=AboutUsgsdoqs

8. http://erg.usgs.gov/isb/pubs/factsheets/fs05701.html

9. http://edc.usgs.gov/products/aerial/hiresortho.html

ORTHORECTIFICATION 90

On the other hand, upsampling the data beyond the native resolution

can cause serious output issues. By zooming closer than what the

imagery can support, the pixels get blocky and generally icky looking.

Your image gets pixelated because you’re asking to see more informa-

tion than the image can provide.

Both Google Maps and Terraserver-USA optimize performance by pre-

downsampling the data to a series of fixed levels. This is called pyra-

miding your data set; each time you reduce the resolution but don’t

increase the ground space coverage, the total width and height of your

image is reduced. At native 1-meter resolution, a DOQQ is 8,000 pixels

by 8,000 pixels. If you downsample the image to 2-meter resolution,

your image is now 4,000 by 4,000 pixels. If you downsample to 4-meter

resolution, your image drops to 2,000 by 2,000 pixels. Hence, you have

the pyramid effect.

Screen Resolution vs. Print Resolution

As if all of this image resizing isn’t complicated enough, there is one

more gotcha waiting to getcha. That gotcha shows up once you try

to create a “dead-tree” (printed) edition of your raster. Earlier in this

section we talked about typical screen resolutions in DPI. My laptop’s

native DPI is about 85 but can drop down to 55 based on what the

external projector can support. If you’ve looked at your printer specs

recently, you know that printers generally start at 300 DPI and can go

up to 600 DPI or higher. This means that the physical size of your map

can vary greatly between what you can see on your screen and what

comes from your printer.

Our trusty DOQQ is about 94 inches wide on my screen, or close to

8 feet wide (8,000 pixels at 85 DPI)—that’s a lot of scrolling. However,

that same DOQQ printed out at 600 DPI is just more than 13 inches

wide. The focus of this book is on digital mapmaking, but it’s nice to

know what will happen when your users press Ctrl+P.

4.7 Orthorectification

We have one more technical issue to discuss before we can actually

download some imagery—the issue of orthorectification. You’ll hear

people call it many things. Some people shorten it to just ortho, as

in, “Have you seen the high-res color orthos on Terraserver-USA?”

ORTHORECTIFICATION 91

Others use the full name orthographic rectification. Regardless, ortho-

rectifying your imagery is an important last step for display purposes,

especially if you plan to superimpose vector data overtop of it.

The USGS hits you with the following definition of orthorectification in

the very first paragraph of the DOQQ data sheet: “A digital orthophoto

quadrangle (DOQ) is a computer-generated image of an aerial photo-

graph in which image displacement caused by terrain relief and cam-

era tilts has been removed. It combines the image characteristics of a

photograph with the geometric qualities of a map.” Whew! So what does

that really mean?

Think of it this way: imagine taking a picture of your best friend. You’ll

most likely have them face the camera directly and have their head fill

most of the frame. On the other hand, you could take a profile shot from

the side. You could even lay down on the ground and shoot straight up.

You could get on the top rung of a ladder and shoot straight down.

Although the different exotic camera angles might add artistic flair to

their portrait, most famous portraits and driver’s license photos alike

are taken from straight on.

We generally strive for the same effect when we are creating a map. We

want a perfectly top-down view of the AOI. There are always different

angles you could use. (Remember the New Yorker map where New York

City is in the foreground and the rest of the world kind of fades off into

the distance?) But most maps—road maps, atlases, even Google Maps

and Terraserver-USA—give us a top-down view of the world.

This top-down view is all fine and good, but since remote sensing in-

volves a camera, it will by extension also always involve a camera angle.

This is called the off-nadir sensor angle. If your sensor is tilted at a 15-

degree angle off to the left, the GSD for the pixels nearest the sensor

(along the right side of the image) will be different from the GSD of the

pixels farthest away from the sensor (along the left side of the image).

Terrain such as mountains and hills only exacerbates the problem.

Orthorectifying an image adjusts the far pixels so it looks as though

they were shot from directly overhead. It changes the image to look as

if it were shot at a zero-degree off-nadir angle.

Orthogonal is Greek for “right angle.” That is literally what we are doing

to the image: mathematically changing (correcting, or rectifying) the

camera angle back to exactly 90 degrees over the AOI. Moreover, it

makes the sensor appear to be directly overhead each pixel in the raster.

ORTHORECTIFICATION 92

This is what gives it, as the poets at the USGS said, “the geometric qual-

ities of a map.”

So, what are the dangers of nonorthorectification?

• You cannot get accurate distance measurements from the image

since the GSD is not constant among pixels.

• Vector overlays might not line up correctly with the image (like a

vector roads layer matching up to the actual roads in the image).

• Mosaicking nonortho’d images can be difficult, causing errors like

what we saw earlier in the chapter when we discussed pixel mis-

registration.

The Raw Ingredients of an Ortho

It is far beyond the scope of this book to discuss the gory details of

how to actually orthographically rectify an image. That, as they say, is

a job best left to the professionals. It requires specialized software and

a steady hand... (OK, maybe just specialized software, but you get the

point). I am a happy consumer of orthos, never having actually created

one in my life. However, I do like knowing a little bit about a lot of

things, so I can share with you the raw materials that go into making

an orthoimage.

The first thing you’ll need to know is the image metadata with regard

to the sensor. You’ll need to know the off-nadir angle, and you’ll also

need to know the target azimuth angle. This is where the sensor was

in relation to the image. A target azimuth of 0 degrees means that the

sensor was due north of the image, 90 degrees means it was due east,

180 degrees means due south, and 270 degrees means due west. Once

you know where the sensor was located and how far it was tilted when

the image was taken, the ortho software can effectively compensate for

them.

When you have the sensor artifacts accounted for, you can then turn

your focus to terrain artifacts. If the AOI is relatively flat, there will be

very little horizontal displacement to worry about. On the other hand, if

you are shooting an area with a bunch of hills and valleys, you’ll want to

know exact elevations so that the ortho software can compensate for it.

Recall from Chapter 3, Projections, on page 45 that a digital elevation

model (DEM) stores a height measurement per pixel. The higher the

resolution of your DEM, the more accurate your ortho will be.

DOWNLOADING FREE RASTERS 93

Now that you have effectively compensated for all of the noise, all you

have left to do is figure out a way to tie the pixels back to their correct

locations on the earth. To do this, you will need a set of ground control

points (GCPs). These are points on the earth for which you know the

exact lat/long address. (You’ll also hear this referred to informally as

ground truth.)

You could take a GPS out to the middle of a farmer’s field and record

your location, but it wouldn’t be very useful as a GCP. What you need

to do is take a measurement at a location that will be easy to spot

in the image—for example, a corner of a building or the center of the

intersection of two streets. If you have a couple of GCPs around the

edges of your image and one or two in the center, the ortho software

can then create tie-points (points in the image that correspond to your

GCPs) and can rubbersheet the image so that your tie-points match up

with the GCPs.

The more GCPs you have, the more accurate your ortho will be. The

better your DEM, the better the ortho. You get the idea: the finished

product is only as good as the materials with which you start.

4.8 Downloading Free Rasters

Well, we finally made it. It has probably been so long that you can’t

remember what we started out to do in the first place. (If I remember

correctly, it had something to do with GIS.) We finally have mastered

enough jargon to download some free imagery. If you are smart enough

to ask for “8-bit natural-color multispectral high-resolution orthorecti-

fied imagery” by name, then you deserve to get some free pixels.

Let’s start by downloading a low-resolution image of the earth. What,

that doesn’t sound very impressive? I know, I know—every time I hear

low-resolution I think of 1970s-era computer graphics like Pong. Fortu-

nately, in remote sensing terms, low res doesn’t have the same negative

connotations. By low-resolution, I mean the GSD of the image, not the

quality of the image.

There are no hard and fast rules, but high resolution generally refers to

imagery with a GSD of 2 meters or less. The DOQQ and Urban Areas

scenes are considered high resolution. Medium-resolution imagery has

a GSD of 15 m to 30 m. Rasters from the Landsat series of satellites fall

into this category.

DOWNLOADING FREE RASTERS 94

Figure 4.9: Download free earth images from NASA’s Blue Marble web-

site.

Low-resolution imagery is anything higher than that. It usually, but not

always, refers to rasters that cover the world extent.

NASA, not surprisingly, has some gorgeous images of the earth from

space. Let’s visit the Blue Marble website.10 (See Figure 4.9.) As the tag

line says, “True-color global imagery at 1 km resolution.”

The first image you see on the website is a mosaic of scenes captured

between June 2001 and September 2001. (See Figure 4.10, on the fol-

lowing page.) The pictures were taken by the Terra and Aqua satellites

using a moderate-resolution imaging spectroradiometer (MODIS) sen-

sor. The MODIS sensor captures 12-bit data across 36 bands at a GSD

ranging from 250 m to 1 km depending on the band.11

10. http://earthobservatory.nasa.gov/Newsroom/BlueMarble/BlueMarble_2002.html

11. http://modarch.gsfc.nasa.gov/about/specifications.php

DOWNLOADING FREE RASTERS 95

Figure 4.10: NASA’s eponymous Blue Marble

DOWNLOADING FREE RASTERS 96

Although the picture of the globe is pretty, let’s scroll down and get

some imagery that will be more useful to us as a basemap layer. The

first Cartesian image you’ll see is labeled Land Surface, Shallow Water,

and Shaded Topography. Notice that this is a cloud-free mosaic. (See?

Even a raster can be an abstract representation of the real world. This

view of the earth doesn’t exist outside the magic of Photoshop. Finding

a cloud-free day to take a picture of a small AOI usually isn’t too tough,

but there is no way that you could take a picture of the entire world

and expect it to be cloud-free. There are always clouds somewhere.)

Go ahead and download the 2,048 by 1,024 TIFF file.12 This will be

more than adequate for our mapping needs. Notice that the full-res

1 km GSD imagery is so large that it had to be broken up into two

separate downloads—40,000 pixels is a lot of imagery.

Pop quiz: what is the GSD of the downsampled image we just down-

loaded? The circumference of the world at the equator is 40,074 km.

The image width is 2,048 pixels. That gives us a GSD of just under 20

km per pixel.

The next thing we should do is download a desktop GIS application

that can handle both raster and vector data. ESRI ArcExplorer does a

great job with shapefiles, but it cannot open image files. Quantum GIS

(QGIS)13 is an open source desktop application that fits the bill nicely.

Pull down the appropriate binary for your platform, and install it.

Let’s open our world basemap in QGIS. Go to the Layer menu, and

choose Add a Raster Layer. Navigate to where you saved the Blue Mar-

ble image. (See Figure 4.11, on the next page.)

This certainly is pretty, but unfortunately it’s not geographic data at

this point. How can we tell? Well, let’s try to superimpose a vector layer

over the top of it. (You know what’s coming already, don’t you? We are

returning to the Valley of the Mismatched Projections....)

Pull down a world vector shapefile.14 Choose Layer/Add a Vector Layer

in QGIS. Just like the good old days of Chapter 2, Vectors, on page 19,

your data layers don’t quite line up. (See Figure 4.12, on the next page.)

At least this data misregistration is a little bit easier to catch than the

errant Colorado highways that plagued us earlier. As a matter of fact,

12. http://earthobservatory.nasa.gov/Newsroom/BlueMarble/Images/land_shallow_topo_2048.tif

13. http://qgis.org

14. http://www.cipotato.org/DIVA/data/misc/world_adm0.zip

DOWNLOADING FREE RASTERS 97

Figure 4.11: Viewing the Blue Marble basemap image in QGIS

Figure 4.12: Misregistered world vector and raster layers

DOWNLOADING FREE RASTERS 98

this error almost makes sense. Move your mouse pointer around until

you find the coordinates (0,0). On the vector layer, you end up at the

intersection of the equator and the Prime Meridian (just off the west

coast of Africa). In the raster layer it might be a bit tougher to see, but

you are actually at the very topmost left pixel of the image. Since QGIS

didn’t know how to map the image in geographic space, it just used the

pixel space coordinates and lined up the map layers as best it could.

TIFF, GeoTIFFs, and World Files

So, now the question is how do we get our pretty pixels georeferenced?

Tagged Image File Format (TIFF) images are popular in the GIS commu-

nity because of their extensible design. The binary header of the image

can be used to store all kinds of information, including geographic data

such as tie-points and the GSD. Without this data, we cannot correlate

pixel space to ground space. Both TIFF and the GeoTIFF extension are

well documented; see the TIFF 6.0 spec15 and the GeoTIFF 1.0 spec.16

You can use the command-line tool listgeo17 to see the geographic

contents stored in the header of a GeoTIFF file. To confirm that the

Blue Marble TIFF is a plain old TIFF instead of true GeoTIFF, type list-

geo land_ocean_ice_2048.tif at a command prompt. Listgeo will come up

empty-handed:

$ listgeo land_ocean_ice_2048.tif

Geotiff_Information:

Version: 1

Key_Revision: 1.0

Tagged_Information:

End_Of_Tags.

Keyed_Information:

End_Of_Keys.

End_Of_Geotiff.

Corner Coordinates:

... unable to transform points between pixel/line and PCS space

Just because the geodata isn’t embedded in the TIFF file doesn’t mean

that all hope is lost: we can create a companion world file that con-

tains the required geodata. A world file is a plain ASCII text file, so it

isn’t too tough to whip up. But before we do that, let’s pull down a real

15. http://partners.adobe.com/public/developer/tiff/index.html

16. http://www.remotesensing.org/geotiff/spec/geotiffhome.html

17. http://www.remotesensing.org/geotiff/geotiff.html

DOWNLOADING FREE RASTERS 99

GeoTIFF18 just to prove that they exist. Running listgeo on a true Geo-

TIFF will give us a bit more information than we saw in the previous

example:

$ listgeo 001027_0100_020904_l7_6h_utm22.tif

Geotiff_Information:

Version: 1

Key_Revision: 1.0

Tagged_Information:

ModelTiepointTag (2,3):

0 0 0

281602 5366189 0

ModelPixelScaleTag (1,3):

60 60 0

End_Of_Tags.

Keyed_Information:

GTModelTypeGeoKey (Short,1): ModelTypeProjected

GTRasterTypeGeoKey (Short,1): RasterPixelIsArea

GTCitationGeoKey (Ascii,17): "UTM 22 T E008"

GeogAngularUnitsGeoKey (Short,1): Angular_Degree

ProjectedCSTypeGeoKey (Short,1): PCS_NAD83_UTM_zone_22N

ProjLinearUnitsGeoKey (Short,1): Linear_Meter

End_Of_Keys.

End_Of_Geotiff.

PCS = 26922 (NAD83 / UTM zone 22N)

Projection = 16022 (UTM zone 22N)

Projection Method: CT_TransverseMercator

ProjNatOriginLatGeoKey: 0.000000 (0d 0' 0.00"N)

ProjNatOriginLongGeoKey: -51.000000 (51d 0' 0.00"W)

ProjScaleAtNatOriginGeoKey: 0.999600

ProjFalseEastingGeoKey: 500000.000000 m

ProjFalseNorthingGeoKey: 0.000000 m

GCS: 4269/NAD83

Datum: 6269/North American Datum 1983

Ellipsoid: 7019/GRS 1980 (6378137.00,6356752.31)

Prime Meridian: 8901/Greenwich (0.000000/ 0d 0' 0.00"E)

Projection Linear Units: 9001/metre (1.000000m)

Corner Coordinates:

Upper Left (281602.000, 5366189.000) (53d57' 5.16"W, 48d24'39.51"N)

Lower Left (281602.000, 5146709.000) (53d50'35.18"W, 46d26'18.96"N)

Upper Right (511582.000, 5366189.000) (50d50'36.14"W, 48d26'55.44"N)

Lower Right (511582.000, 5146709.000) (50d50'56.87"W, 46d28'25.87"N)

Center (396592.000, 5256449.000) (52d22'18.59"W, 47d27'11.79"N)

As you can see, you can stuff of whole bunch of geodata into the header

of a GeoTIFF.

18. http://geogratis.cgdi.gc.ca/download/landsat_7/ortho/geotiff/utm/

DOWNLOADING FREE RASTERS 100

A world file is far more primitive, but it contains at least enough infor-

mation to allow the raster to line up with your vector layers. The world

file format was defined by ESRI, but it is recognized by most GIS soft-

ware packages. It is a six-line text file that gives the GSD of the pixels

and the geographic tie-point of the upper-leftmost pixel. By convention,

a world file should be named the same as your image file with a .tfw file

extension. The world file for land_ocean_ice_2048.tif should be named

land_ocean_ice_2048.tfw. (.tfw files are used with .tiff images. Later in this

chapter, you’ll see .jgw files used to georeference .jpg images.)

Create land_ocean_ice_2048.tfw using the text editor of your choice. The

first and fourth lines are the X and Y GSD values. This data wasn’t

available for download anywhere—I created it using the values we

already know.

0.176

0

0

-0.176

-180

90

Earlier we calculated the GSD of the image to be roughly 20 km per

pixel. If the map units were measured in km, you’d use the value 20

for the first and fourth lines. But we’re too smart to fall for that—the

WGS84 projection uses degrees as map units, not meters or kilometers.

(Of course, if we were looking at UTM data, meters would be entirely

appropriate.) So knowing that the map covers 360 degrees west to east

and that the image size is 2,048 pixels, simply divide degrees by pixels

to get 0.176 degrees per pixel.

The second and third values in the world file are the rotation values for

the pixels in case north isn’t truly up in the image. The last two values

are your tie-point—geographic X and Y coordinates for the (0,0) coor-

dinate in pixel space. Knowing that the left border of the image is the

International Date Line, -180 is used for the X coordinate. The nega-

tive number guarantees that values will increase in a positive direction

as you move your cursor east, hitting zero at the Prime Meridian and

eventually 180 on the far-right margin. Using 90 for the Y coordinate

yields the same effect—as the mouse pointer moves south, the value will

decrease, hitting zero at the equator and flipping to a negative number

until the cursor hits -90 at the bottom of the image.

DOWNLOADING FREE RASTERS 101

Figure 4.13: The Blue Marble, after adding a world file

Please be aware that I am playing pretty fast and loose with this world

file. Technically, the X and Y coordinates are supposed to represent the

center of the pixel in the upper-left corner. This world file misregisters

the pixels in the image by half a GSD. Listgeo will show us the errors

of my lax ways in just a moment. Also, this trick will work only with

images that are unprojected. Any projected image—especially one that

uses a nonequirectangular coordinate space or rotates the image in

the slightest—will fail miserably using this trick. File this under “good

enough for now, although not 100% accurate.”

With our new world file in place, let’s see whether QGIS has a better

time lining up our data. Remove the Blue Marble raster by right-clicking

the element in the Layers list along the left and clicking Remove. Now

add it back in by choosing Layer/Add a Raster Layer. After styling the

vector layer a bit and moving it to the top of this list, you should see

something like Figure 4.13.

Dealing with GeoTIFFs is admittedly easier than simple TIFF files with

a world file—you have one less file to worry about. Let’s convert our

Blue Marble image into a GeoTIFF. The libgeotiff package gives us just

DOWNLOADING FREE RASTERS 102

the command we are looking for: geotifcp. This command merges a

TIFF file and a world file into a single GeoTIFF. One quick geotifcp -

e land_ocean_ice_2048.tfw land_ocean_ice_2048.tif world.tif, and we have a

GeoTIFF world image, with a shorter name to boot:

$ listgeo world.tif

Geotiff_Information:

Version: 1

Key_Revision: 1.0

Tagged_Information:

ModelTiepointTag (2,3):

0.5 0.5 0

-180 90 0

ModelPixelScaleTag (1,3):

0.176 0.176 0

End_Of_Tags.

Keyed_Information:

End_Of_Keys.

End_Of_Geotiff.

Corner Coordinates:

Upper Left (-180.088, 90.088)

Lower Left (-180.088, -90.136)

Upper Right (180.360, 90.088)

Lower Right (180.360, -90.136)

Center (0.136, -0.024)

Even though the image and the vector layer appear to line up visually,

listgeo shows us the error in my “hack-and-slap” ways when it comes to

the world file I put together earlier. Notice the upper-left corner is listed

as -180.088, 90.088. The extra 0.088 (which doesn’t actually exist on

the face of the earth) is the 1/2 GSD error I got from naively using the

upper-left coordinate of the pixel instead of calculating the center of the

pixel. If you were to zoom in far enough (and the image was high enough

resolution), you’d clearly see some misregistration with the vector layer.

The moral to this story is, “Friends don’t let friends write their own

world files.” Or is it, “When is ‘good enough’ truly good enough?” Any

high-accuracy geospatial work will require you to pay special atten-

tion to the world file or the spatial metadata stored in the GeoTIFF.

Then again, any imagery used for high-accuracy geospatial work will

most likely already have this information in place. The quick-and-dirty

approach I used to get the imagery to line up with the vector layer was

just that—quick and dirty.

DOWNLOADING FREE RASTERS 103

Terraserver-USA and GeoJPGs

Using a world file works with high-res imagery as well as low, TIFF

images, or something else. In this next example, we’ll follow the same

simple steps we used for the Blue Marble example:

1. Find the vector layers.

2. Find the raster layers.

3. Decide on a projection.

4. Lather, rinse, repeat.

We found some pretty nice high-res raster layers on Terraserver-USA.

Go back to your Colorado State Capitol building scene. To get the

biggest bang for your buck, make sure you are viewing the largest

possible image size. In the upper-left corner (next to the zoom bar),

you should see three progressively larger boxes labeled Size. Click the

largest box.

Now let’s download the image. We could right-click each tile and down-

load it individually, but then we’d end up having to mosaic it back on

our end. To save us the trouble, the developers of Terraserver-USA gave

us a Download link in the upper-right corner. This does the mosaicking

on the server side. You can now right-click the image and save it locally.

You should end up with a file named download.ashx.jpg.

JPG, huh? Well, it makes sense—not many browsers support TIFFs

natively. JPG brings some pretty good compression to the table, al-

though it is a lossy compression algorithm. To reduce the size of the

file, it throws away data. It’s not ideal for scientific applications, but it’s

not bad for pretty pixel applications. And technically, pretty pixels are

all that we have right now. There isn’t any embedded geographic data

in this JPG. Listgeo works only on GeoTIFFs, but we can use gdalinfo

to query the file. gdalinfo download.ashx.jpg tells us that that we are in

pixel space, not geographic space: the coordinate system is empty, and

the corner coordinates are clearly the dimensions of the image.

$ gdalinfo download.ashx.jpg

Driver: JPEG/JPEG JFIF

Size is 1000, 800

Coordinate System is ‘'

Corner Coordinates:

Upper Left (0.0, 0.0)

Lower Left (0.0, 800.0)

Upper Right (1000.0, 0.0)

Lower Right (1000.0, 800.0)

Center (500.0, 400.0)

DOWNLOADING FREE RASTERS 104

Band 1 Block=1000x1 Type=Byte, ColorInterp=Red

Band 2 Block=1000x1 Type=Byte, ColorInterp=Green

Band 3 Block=1000x1 Type=Byte, ColorInterp=Blue

For the Blue Marble world raster, I felt pretty comfortable whipping

up my own world file. Knowing the world extents in decimal degrees

and the image extents in pixels made it pretty straightforward. But I

don’t have any idea what my extents are here, either in pixels or geo-

graphic. Luckily, the last option along the upper-right corner of the

Terraserver-USA page allows us to download a world file. Create a file

named download.ashx.jgw, and copy the world file values into it:

2.000000

0.000000

0.000000

-2.000000

500000.000000

4399600.000000

It looks like we have a GSD of 2 meters. (Depending on your zoom

level and how much you’ve scrolled around, your values might not

match mine exactly. That’s OK. You can zoom in and out and play

around on your own.) My corner coordinate is now 500000.000000,

4399600.000000. I’m having a hard time believing that those values are

WGS84. They look more like UTM, don’t they? I guess that makes sense

as well—remember that UTM is great for “squaring up” your pixels at

high resolutions; 2 m is clearly high resolution, so Terraserver-USA is

simply serving up the appropriate projection for the job.

The world file doesn’t have a parameter for the projection, so you have

to do a bit of guessing. Thankfully, Terraserver-USA can confirm our

guesses when we click the Info link in the upper-right corner. (See Fig-

ure 4.14, on the next page.) It clearly shows the projection (UTM 13 N),

the GSD (2 m), and the image extent (1000 by 800 pixels). The coordi-

nates around the perimeter of the image are given in degrees/minutes/

seconds, decimal degrees, and UTM. The coordinates in the upper-left

corner should match up with what appears in your world file.

Now that our world file is in place, type gdalinfo download.ashx.jpg. The

values are expressed in meters instead of pixels.

DOWNLOADING FREE RASTERS 105

Figure 4.14: Terraserver-USA info

Our image is happily georeferenced and ready for mapping:

$ gdalinfo download.ashx.jpg

Driver: JPEG/JPEG JFIF

Size is 1000, 800

Coordinate System is ‘'

Origin = (499999.000000000000000,4399601.000000000000000)

Pixel Size = (2.000000000000000,-2.000000000000000)

Corner Coordinates:

Upper Left (499999.000, 4399601.000)

Lower Left (499999.000, 4398001.000)

Upper Right (501999.000, 4399601.000)

Lower Right (501999.000, 4398001.000)

Center (500999.000, 4398801.000)

Band 1 Block=1000x1 Type=Byte, ColorInterp=Red

Band 2 Block=1000x1 Type=Byte, ColorInterp=Green

Band 3 Block=1000x1 Type=Byte, ColorInterp=Blue

CONCLUSION 106

Let’s open a new map in QGIS and give the much maligned Colorado

roads shapefile another chance at redemption. There aren’t any high-

ways in our map extent, so return to the CDOT website,19 and down-

load the statewide “Public Roads – Local” shapefile. This gives us a

vector layer of city streets. (The entire state is a 23MB download, so feel

free to just download the Denver County data set instead—1.4MB is a

bit quicker to pull down, and I can tell how excited you are to get this

licked....) A quick look at LROADS.prj tells us that we are dealing with

NAD83, UTM 13 N data.

Add the vector layer LROADS to QGIS, and then add download.ashx.jpg.

Swap the layers around so that the vector layer is on top. Now zoom into

the state capitol. Once again, even though we are dealing with different

file types from different data providers, the data layers line up quite

nicely since they are in a common projection. (See Figure 4.15, on the

following page.)

The last thing we’ll do in this chapter is convert the JPG to a GeoTIFF.

The gdal_translate20 command makes short work of it. Notice that you

can use gdal_translate to swap bands around, change the scale of the

output image, and even reproject it. This command allows you to do

all types of raster manipulation, although we’ll be happy just convert-

ing our image to a GeoTIFF. One quick gdal_translate download.ashx.jpg

state_capitol.tif and a second listgeo state_capitol.tif to confirm that the

world file was picked up, and we are happily on our way. You could add

the new image to the QGIS map to prove to yourself that the conversion

went well, but I’m feeling lucky.

4.9 Conclusion

We covered a lot of ground in this chapter. We looked at the Colorado

State Capitol building and Mile High Stadium to practice being

photogrammetrists. We visited Google Maps and Terraserver-USA. We

learned about mosaics, tessellation, and panchromatic and multispec-

tral images. We figured out how scale and resolution are interrelated.

19. http://www.dot.state.co.us/App_DTD_DataAccess/GeoData/index.cfm?fuseaction=GeoDataMain\&MenuType=GeoData

20. http://www.remotesensing.org/gdal/gdal_utilities.html#gdal_translate

CONCLUSION 107

Figure 4.15: Colorado roads on the Terraserver-USA high-res raster

We learned about orthorectification and downloading low-, medium-,

and high-resolution rasters. We downloaded QGIS to view our rasters

and learned how GeoTIFFs, World Files, and GDAL make working with

rasters easy.

In the next chapter, we’ll be back in vector land. Only this time, we’ll

be importing our vectors into a database and performing some spatial

queries.

Chapter 5

Spatial Databases
Chances are good that at some point you are going to need to store

a large volume of spatial data. The free data you download will most

likely be scattered around in individual files. In this chapter, you’ll learn

how to import geodata into a database and perform some basic spatial

queries.

5.1 Why Bother with a Spatial Database?

Over the past several chapters we downloaded a bunch of shapefiles.

Although shapefiles are a decent transportation format, in production

you’ll most likely want to load that vector data into a database. Why?

Well, you’ll want to do this for the same reasons you use a database for

nonspatial data:

• Speed: Generally speaking, you’ll get better performance out of

data served from a database than you will from a shapefile. Data-

bases are optimized for serving up large volumes of repetitive data,

and spatial data fits this description perfectly.

• Multiuser support: Spatial data tends to be reference data, and ref-

erence data is generally meant to be shared among many users.

Storing the data in a database gives you the added benefit of

remote access via a standard interface (JDBC, ODBC, PERL/DBI,

and others). It also allows you to add security to the equation—

making some data read-only for certain users and blocking others

from seeing it altogether.

INSTALLING POSTGRESQL AND POSTGIS 109

• Querying: This is by far the biggest benefit. Just as traditional

databases allow you to perform traditional queries (“Show me all

products where category equals hardware”), spatial databases al-

low you to perform spatial queries (“Show me all points that fall

within a 20 mile radius of this point”).

Finding a database that is spatially enabled is getting easier by the day.

All of the major commercial databases offer spatial data types either

natively or as a standard extension.

For example, modern versions of Oracle offer native spatial data types.

Your table’s fields can be strings and numbers or can be points, lines,

and polygons. They offer native indexing for spatial data types to speed

up queries. They even give you SQL extensions that allow you to query

the data spatially.1 IBM’s DB22 has spatial capabilities, and ESRI

ArcSDE3 and MapInfo Professional4 are commercial add-ons that allow

you to store spatial data in Microsoft SQL Server.

Although the commercial vendors’ capabilities are quite impressive, this

book is about free and open source solutions. PostgreSQL is a strong

open source database that supports most (if not all) of the features of

its commercial counterparts. There is a spatial add-on for PostgreSQL

that is quite robust, is well supported, and is considered one of the

major pillars of the open source GIS community.

PostGIS5 takes advantage of PostgreSQL’s extensibility to provide a

solid spatial database solution. PL/PgSQL is the procedural SQL

language of PostgreSQL. PostGIS leverages this feature to add spatial

capabilities. The end result is not unlike adding a new JAR to your

Java classpath—it is tough to see where PostgreSQL ends and PostGIS

begins once everything is installed and configured.

5.2 Installing PostgreSQL and PostGIS

The most recent version of PostgreSQL as of this writing is 8.2.1. The

most recent version of PostGIS is 1.2.1. You can certainly download

precompiled binary versions of these applications, but part of the ethos

of open source is building the projects from source.

1. http://www.oracle.com/technology/products/spatial

2. http://www-306.ibm.com/software/data/spatial/

3. http://www.esri.com/software/arcgis/arcsde/

4. http://www.mapinfo.com/

5. http://postgis.refractions.net

INSTALLING POSTGRESQL AND POSTGIS 110

What About the Rasters?

This chapter focuses solely on storing vector data in a
database. Why? Well, that is your only option in the open
source world.

The same, however, cannot be said for commercial offerings.
Almost all of the commercial spatial databases allow you to
store imagery right in your tables. The ingest function breaks the
image up into chips or tiles (usually about 16k in size, although
this is user configurable) and then stores them in a BLOB field.
(BLOB stands for Binary Large OBject.)

Opinions are mixed as to whether storing rasters in a database
table adds any real benefit. Opponents of it point out that vec-
tor data can easily be represented as text, whereas imagery
data is almost always stored in a binary format. Vector data
makes sense when you need to run queries such as “Please
return a list of all of the points that fall within this polygon,” while
raster data tends to be more visual than informational in nature.

Supporters of rasters in databases like that you can store data
that is identical in nature (resolution, projection, and so on) as
one big coverage. Terraserver-USA∗ is a great real-world exam-
ple of this—all of its imagery is stored in Microsoft SQL Server.

Although PostGIS doesn’t support rasters as of this writing, it is
a frequent topic of discussion on the mailing list. Don’t be sur-
prised if someone finally gets around to adding that feature.
Remember, open source software allows you to “scratch your
own itch” by adding new software features that solve your busi-
ness needs or personal interests.

∗. http://www.terraserver-usa.com

ADDING SPATIAL FIELDS 111

This allows you to always have access to the latest and greatest ver-

sion. (Binaries tend to lag a version or two behind the most recent

release, and plus you don’t get to selectively enable and disable fea-

tures and integration points.) Of course, part of the agony of building

open source projects from source is the downward spiral of dependency

hell. Thankfully, both PostgreSQL and PostGIS have pretty straightfor-

ward, garden-variety installations.

% ./configure

% make

% make install

If you are running a Unix-like OS and have a GNU GCC compiler

available, I highly recommend building PostgreSQL and PostGIS from

source. (For step-by-step instructions, see Appendix A, on page 243.)

You can, of course, always find binary versions for Linux from the usual

RPM and Apt sources. Mac folks can use the analogous Fink or Mac-

Ports project.

If you are running Windows, you can download a precompiled version

of PostgreSQL.6 PostGIS is included in the binary distribution of Post-

greSQL.

5.3 Adding Spatial Fields

In this section, we’ll explore the built-in PostGIS tables and then add

tables of our own.

The PostGIS documentation is quite comprehensive.7 Featuring details

on more than 150 functions, the downloadable PDF is an invaluable

resource to have within arm’s reach. In this chapter, we’ll focus on a

broad overview of some of the more common functions.

Exploring the Built-in PostGIS Tables

In Appendix A, on page 243, the installation had you create a simple

table named “test.” If you downloaded precompiled binaries instead of

installing from source, please quickly run through the steps (ignoring

the installation bits, of course), and make sure that the user and sam-

ple table is created:

create table test (id int, name varchar(25));

6. http://www.postgresql.org/download/

7. http://postgis.refractions.net/documentation/

ADDING SPATIAL FIELDS 112

Let’s get back into PostgreSQL and look around. Make sure you are

logged in as the PostgreSQL user (su - postgres), and get into the inter-

active PostgreSQL terminal (psql g4wd). Type \d to get a list of available

tables:

g4wd=# \d

List of relations

Schema | Name | Type | Owner

--------+---------------------+----------+----------

public | geometry_columns | table | postgres

public | spatial_ref_sys | table | postgres

public | test | table | postgres

(3 rows)

In addition to the test table you created, there are a couple of PostGIS-

specific tables. The geometry_columns table contains data about every

spatial column in the database. Type \d geometry_columns to see the

fields:

g4wd=# \d geometry_columns

Table "public.geometry_columns"

Column | Type | Modifiers

-------------------+------------------------+-----------

f_table_catalog | character varying(256) | not null

f_table_schema | character varying(256) | not null

f_table_name | character varying(256) | not null

f_geometry_column | character varying(256) | not null

coord_dimension | integer | not null

srid | integer | not null

type | character varying(30) | not null

Indexes:

"geometry_columns_pk" PRIMARY KEY, btree

(f_table_catalog, f_table_schema, f_table_name, f_geometry_column)

There are four important columns. The f_table_name column contains

the name of the table that is spatially enabled. f_geometry_column con-

tains the name of the column in the table that holds the geometric

data. srid contains the spatial reference ID, or the projection of the data.

This is the EPSG number we discussed earlier: an integer that uniquely

identifies the projection. Finally, type is the geometric data type.

Yep, we’re back to points, lines, and polygons again. (There are a few

fancy variations on that theme—we’ll get to them in a second.)

ADDING SPATIAL FIELDS 113

Take a look at the other PostGIS table:

g4wd=# \d spatial_ref_sys

Table "public.spatial_ref_sys"

Column | Type | Modifiers

-----------+-------------------------+-----------

srid | integer | not null

auth_name | character varying(256) |

auth_srid | integer |

srtext | character varying(2048) |

proj4text | character varying(2048) |

Indexes:

"spatial_ref_sys_pkey" PRIMARY KEY, btree (srid)

This table lists the EPSG codes that PostGIS uses. For example, recall

that the U.S. Census Bureau states the shapefile was in the 4269 pro-

jection. Let’s see whether PostGIS’s definition of 4269 jives with what

we saw in Chapter 3, Projections, on page 45. Type select * from spa-

tial_ref_sys where srid = 4269;. (Hint: if you’ve got wide fields in your table,

type \x to turn on expanded display. It’ll make your query output easier

to read. To turn it off, type \x again.)

g4wd=# \x

Expanded display is on.

g4wd=# select * from spatial_ref_sys where srid = 4269;

-[RECORD 1]---

srid | 4269

auth_name | EPSG

auth_srid | 4269

srtext | GEOGCS["NAD83",

DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101, AUTHORITY["EPSG","7019"]],

AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]]

proj4text | +proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs

Adding Geometric Columns by Hand

Let’s add a spatial field to our test table. Geometric fields are not added

using SQL Data Definition Language (DDL). Instead, we use AddGeome-

tryColumn(). This not only adds the field to the table, but it also updates

the geometry_columns table. The full syntax of AddGeometryColumn() is

as follows:

AddGeometryColumn(<table name>, <column name>,

<srid>, <datatype>, <num dimensions>)

ADDING SPATIAL FIELDS 114

Which Projection Should I Choose?

When creating fields in PostGIS, most times the question of
which projection you should use is dictated by the other data
sets you want to integrate with. Since the data we’ve been
working with up to this point came to us in 4269 (or was repro-
jected into 4269 using ogr2ogr), the most obvious choice for us
to use moving forward would be... (drumroll, please)...4269.

But which projection should you use if you don’t really know
which projection your data is in? For example, we’re going to
find some lat/long points on the Internet in just a bit that don’t
really tell us which projection they’re in. You might also get the
data from your GPS unit. (You do have a GPS unit, don’t you?)

The safest bet, in the absence of any hard data, is to use EPSG
4326—plain old WGS-84. Most times, this is the projection used
by GPS units. This is projection used by most websites when they
expose lat/long points. It is as close as we have, as an industry,
to a default or generic projection. And given that both ogr2ogr

and PostGIS are built atop Proj4, both make it trivial to reproject
your data into the magical correct projection if it is discovered
after the fact.

The first three parameters should be pretty self-explanatory. We specify

the name of the existing table, the name of the proposed new column,

and the SRID we’d like to use for the projection. We can technically use

-1 for the SRID (meaning “no SRID”), but this is really useful only for

purely Cartesian data. If you are planning to store real geospatial data

in the field, you should supply a real SRID. All of the data in your table

is expected to be in the same projection. You can have many tables in

the same database, all with different projections.

The fourth parameter is the data type. PostGIS follows the same spec

we encountered first in Section 3.7, Getting Your Data Layers Aligned,

on page 65: OpenGIS Simple Features Implementation Specification for

SQL.8 Not only does the spec define canonical representations of pro-

jections, it defines canonical representations of spatial data types as

well. These are called the well-known text (WKT) representations of the

basic data types.

8. http://portal.opengeospatial.org/files/?artifact_id=829

ADDING SPATIAL FIELDS 115

Here is the simplest possible subset of the WKT data types that PostGIS

supports:

POINT(10 20)

Specifies a single point.

LINESTRING(10 20,12 21,13 31)

Specifies a single line. It must contain at least two vertices: a start

point and an end point.

POLYGON((10 20,40 50,40 70,10 20))

Specifies a single polygon. It must contain at least four vertices

(the first and last being identical—this is how you close the poly-

gon.) Note the double parentheses.

We should note a couple of things about the WKT format. First, notice

that there are no commas between the coordinates. Commas are used

between coordinate pairs instead. Second, remember almost every

geometry in the world comes in the form of (lat/long)—except when

they don’t. (I hate that....) The WKT format expects them to be in the

form of long/lat pairs.

The POINT data type is pretty straightforward, other than missing the

comma in between the coordinates. You will, however, mistakenly type

LINE instead of LINESTRING about two dozen times, getting progres-

sively more frustrated each time. According to the OGC, a LINE is tech-

nically different from a LINESTRING. A LINE contains only two points;

a LINESTRING contains more than two. PostGIS supports only the

LINESTRING form, since a LINE can be represented by a LINESTRING.

And then there is the POLYGON. Remembering to repeat the first and

last coordinate pairs is tough enough, but remembering to used double

parentheses—why on earth would the OGC have subjected us to that?

Well, like the LINESTRING, there is more than meets the eye when it

comes to defining a POLYGON.

Technically, a POLYGON has one external ring and zero or more inter-

nal rings, or holes. The previous definition just specifies the external

ring. If you had holes in your POLYGON, then you would have a comma-

delimited set of rings, each surrounded by parentheses, for example,

POLYGON((0 0, 0 100, 100 100, 100 0, 0 0), (50 50, 50 60, 60 60, 60 50, 50 50)).

Once you get used to looking at double parentheses, the next set of WKT

geometries don’t look so bad. The previous trio defined single-element

ADDING SPATIAL FIELDS 116

data types. You can also cluster or aggregate like elements into MULTI*

data types:

MULTIPOINT(10 20, 30 40, 50 60)

Specifies a composite element that contains one or more points.

MULTILINESTRING((10 20,12 21,13 31), (99 89,79 69,59 49))

Specifies a composite element that contains one or more lines.

MULTIPOLYGON(((10 20,40 50,60 70,10 20)), ((0 0,0 100, 100 100, 100 0, 0 0)))

Specifies a composite element that contains one or more polygons.

You don’t ever have to use MULTI* data types if you don’t want to, but

you can do some interesting things with them if you have items that

semantically belong in a single row (or data element). We’ll see a prime

example of this when we import the U.S. Census Bureau shapefile in

just a moment.

Finally, there are a couple of generic data types. GEOMETRY is the

parent data type of all geometric elements. You’ll see it used a couple

of chapters from now when we access PostGIS via its JDBC driver. A

GEOMETRYCOLLECTION allows you to aggregate multiple potentially

disparate data types into a single element. It’s not uncommon to get

GEOMETRYCOLLECTIONs back in the result of aggregate (GROUP BY)

queries.

The fifth and last parameter to the AddGeometryColumn() function spec-

ifies the number of dimensions the element must have. We’ll be focus-

ing on simple planar (two-dimensional) data sets in this chapter—-all

of our points will be represented by simple (X Y) coordinates. If we

needed to store points that also had elevation data (X Y X), we would

specify a dimension of 3. If we needed to track elevations that changed

over time, we could create four-dimensional points. And finally, if we

needed to store spatial data relating to Motown recording artists, we’d

use points that support the Fifth Dimension. (Sorry, I couldn’t resist.)

Now that we have all of information down, let’s add a spatial field to

our test table. To add a field name location that supports a simple two-

dimensional point in the WGS-84 projection, type the following:

select AddGeometryColumn('test', 'location', 4326, 'POINT', 2);

INSERTING SPATIAL DATA 117

To verify that it worked, type \d test:

g4wd=# \d test

Table "public.test"

Column | Type | Modifiers

----------+-----------------------+-----------

id | integer |

name | character varying(25) |

location | geometry |

Check constraints:

"enforce_dims_location" CHECK (ndims("location") = 2)

"enforce_geotype_location" CHECK (geometrytype("location") =

'POINT'::text OR "location" IS NULL)

"enforce_srid_location" CHECK (srid("location") = 4326)

See our new location field at the bottom of the list? It’s interesting that it

shows up as a generic GEOMETRY data type, even though we specified

POINT. Don’t worry, though. See the three new constraints placed on

the field? Inserts on our table will fail if the field isn’t a two-dimensional

POINT in the WGS-84 projection. Not too shabby, eh?

We can also verify that our new location column made it into the geom-

etry_columns table:

g4wd=# select * from geometry_columns;

-[RECORD 1]-----+-----------------------

f_table_catalog |

f_table_schema | public

f_table_name | test

f_geometry_column | location

coord_dimension | 2

srid | 4326

type | POINT

It will come as no surprise that there is a complementary function

to AddGeometryColumn() that allows us to remove spatial fields from

tables: DropGeometryColumn(table, column). This will do the appropri-

ate ALTER TABLE command and remove the pointer record in geome-

try_columns. Rather than doing a DROP TABLE command and leaving

an orphan record in geometry_columns, you can do a DropGeometry-

Table(table).

5.4 Inserting Spatial Data

Now that we have our spatial field in place, let’s start adding some data.

We’ll use a traditional INSERT statement, with one small twist. We

already know what the WKT representation of a POINT looks like; for

QUERYING SPATIAL DATA 118

the Colorado state capitol, it is POINT(-104.98716 39.73909). Unfortunately,

PostgreSQL isn’t going to inspect our strings for us and “automagi-

cally” determine the difference between Plain Old Strings and Plain Old

Strings That Happen To Contain Well-Known Text Geometries. So when

we’re inserting geodata, we need to tip off PostgreSQL using the Geom-

FromText(string, srid) function:

insert into test(id, name, location) values

(1, 'Colorado State Capitol', GeomFromText('POINT(-104.98716 39.73909)', 4326));

To verify that it worked, type select * from test;:

g4wd=# select * from test;

-[RECORD 1]--

id | 1

name | Colorado State Capitol

location | 0020000001000010E6C05A3F2DA122FAD74043DE9A8049667B

Well, um, clearly something got inserted into our geometry field. Since

none of the constraints was violated, I guess that we can just assume

that everything is OK.

5.5 Querying Spatial Data

Yeah, I didn’t think you’d be satisfied with that answer. The truth is,

PostGIS stores all geodata in a binary format. If the text representa-

tion of the point is called WKT, then the binary format is called—you

guessed it—well-known binary (WKB).

GeomFromText() actually created a WKB object from the text string we

provided. The flip side of GeomFromText() is AsText(). This converts the

WKB back to WKT for human consumption:

g4wd=# select id, name, AsText(location) from test;

-[RECORD 1]----------------------

id | 1

name | Colorado State Capitol

astext | POINT(-104.98716 39.73909)

Much better, eh? There’s only one more thing we should do, and it’s

purely cosmetic. Notice that the third field is now named astext? This,

too, will come back to haunt you someday. “What do you mean you

can’t find the location field? It is right there!” Adjust the query one more

time to this: select id, name, AsText(location) as location from test;.

INTROSPECTION OF SPATIAL DATA 119

While we’re playing around with query output formats, a couple of other

things might come in handy. Did you notice that the SRID was miss-

ing from the location field? Interestingly, the SRID is not part of the

WKT definition. If you’d like the SRID included in your output, try

AsEwkt(geom) for Extended WKT. (Since all of the data in that column

is presumably using the same projection, having the SRID included in

the default output would be needlessly repetitive.)

Another output formula that is rapidly gaining popularity is Scalable

Vector Graphics (SVG), which allows you to define vectors using a spe-

cific dialect of XML. Try AsSvg(geom) to get your data returned as an

SVG fragment.

The appeal of SVG is that it is an open standard, created by the W3C.9

Firefox 1.5 and Opera 8 already have native support for rendering SVG.

Apple Safari should support it by the time you are reading this. If you’re

using a browser that doesn’t support SVG natively, you can download

a free plug-in from Adobe.10

Another XML dialect that has more mainstream support in the GIS

community is Geography Markup Language (GML). It is defined by—

who else?—the OGC. Try AsGml(geom) to get a well-formed snippet of

GML. (For more about GML, see Chapter 7, Using OGC Web Services,

on page 157.) For fans of the desktop application Google Earth, PostGIS

offers AsKML(geom). (For more about KML, see Chapter 9, Bringing It All

Together, on page 202.)

5.6 Introspection of Spatial Data

Let’s add a few more records so that we can begin doing interesting

aggregate stuff:

insert into test(id, name, location) values

(2, 'Broncos Stadium', GeomFromText('POINT(-105.02101 39.74630)', 4326));

insert into test(id, name, location) values

(3, 'foo', GeomFromText('POINT(-300 400)', 4326));

Does that last insert statement give you heartburn? Yeah, me too.

POINT(-300 400) is clearly not a valid WGS-84 POINT. In just a bit we’ll

9. http://www.w3.org/Graphics/SVG/

10. http://www.adobe.com/svg/main.html

INTROSPECTION OF SPATIAL DATA 120

add another constraint to your table that at least attempts to disallow

bad input. (Although, sadly, it still lets this one slip through....)

In the meantime, let’s get some metadata about our records. What is

the true data type?

g4wd=# select GeometryType(location) from test;

-[RECORD 1]+------

geometrytype | POINT

-[RECORD 2]+------

geometrytype | POINT

-[RECORD 3]+------

geometrytype | POINT

The query returns POINT for each record. That makes sense. What pro-

jection is being used?

g4wd=# select SRID(location) from test;

-[RECORD 1]

srid | 4326

-[RECORD 2]

srid | 4326

-[RECORD 3]

srid | 4326

That looks good—4326 as expected. That’s nothing we couldn’t find out

by nosing around the various geometry tables ourselves, but having it

just a simple query away is nice. And finally, is there any bogus data

lurking around?

g4wd=# select IsValid(location) from test;

-[RECORD 1]

isvalid | t

-[RECORD 2]

isvalid | t

-[RECORD 3]

isvalid | t

D’oh! Why didn’t the third record get flagged false? It boils down to that

silly WKT/Projection disconnect. The coordinate pair may not be valid

for a particular projection, but there is nothing physically wrong with

the point. It is well-formed, if nonsensical.

Truth be told, it’s really hard to create a malformed point. You could

supply an X without a Y, but you’d most likely catch that visually.

Creating an invalid LINESTRING is easier—recall we said that it has

to have at least two points. If you create a LINESTRING with only one

POINT, IsValid() will return false.

IMPORTING DATA 121

The rules get even more stringent for POLYGONs. You might have fewer

than four points. You might forget to close the polygon by setting the

last point to the same point as the first. You might have Inner Rings

that are outside of your Exterior Ring.

So, what other types of introspection can we perform on our data? Since

we are dealing with POINTs, the obvious thing we might want to do is

isolate the X and Y coordinates:

g4wd=# select id, name, AsText(location), X(location), Y(location) from test;

-[RECORD 1]----------------------

id | 1

name | Colorado State Capitol

astext | POINT(-104.98716 39.73909)

x | -104.98716

y | 39.73909

-[RECORD 2]----------------------

id | 2

name | Broncos Stadium

astext | POINT(-105.02101 39.7463)

x | -105.02101

y | 39.7463

-[RECORD 3]----------------------

id | 3

name | foo

astext | POINT(-300 400)

x | -300

y | 400

If you are querying LINESTRINGs, you have methods such as Num-

Points(), StartPoint(), and EndPoint() to play with. If you are dealing with

POLYGONS, you can query for ExteriorRing() and NumInteriorRings().

So now that we are experts at inserting data by hand, let’s get back to

one of the original premises at the start of this chapter—shapefiles are

a reasonable way to distribute data, but how can we slurp the data up

into PostGIS?

5.7 Importing Data

Let’s take a whack at inserting the shapefile of the United States that

we downloaded from the U.S. Census Bureau in Section 2.8, The Down-

loadable States of America, on page 32.11 Recall that the shapefile is in

ESPG 4269 (Geographic/NAD83).

11. http://www.census.gov/geo/cob/bdy/st/st00shp/st99_d00_shp.zip

MANIPULATING DATA 122

One of the easiest ways to get shapefiles into a PostGIS-friendly for-

mat is to use the included shp2pgsql utility in $POSTGRES_HOME/bin/. It

introspects your shapefile and creates a CREATE TABLE statement and a

corresponding AddGeometryColumn. It iterates through each record in

the .dbf and creates individual SQL INSERT statements.

shp2pgsql -s <SRID> <SHAPEFILE> <TABLENAME>

By default, shp2pgsql dumps its output to the screen. In order to capture

it in a text file, be sure to redirect the output to a file. (Thankfully, the

syntax for redirection is identical on Mac, Linux, and Windows.) To

convert the U.S. shapefile, type the following:

shp2pgsql -s 4269 st99_d00.shp us_states > us_states.sql

Open us_states.sql in a text editor. (Be careful—at nearly 5MB, it isn’t

a small file.) As you can see, running this SQL script will create a

table named us_states and insert each record. To run it, type psql -f

us_states.sql -d g4wd at a command prompt.

In PostgreSQL, typing SELECT count(*) from us_states; shows us that we

are back to the original 273 polygons we noticed when we first encoun-

tered this file. Recall that the record count is so inflated because the

coastal states have many tiny islands, each stored as one polygon per

record. It bugged me then (in Section 2.9, Viewing Feature Attributes,

on page 36), and it bugs me now. Call me crazy, but when I’m querying

the United States, I want to see 50 records—no more, no less. Earlier

in the book, we couldn’t merge these POLYGONs into one MULTIPOLY-

GON per state because we were in a simple viewer. Now that we have

the power of PostGIS at our fingertips, we can finally massage the data

into something more expected.

5.8 Manipulating Data

So, our goal here is to merge several POLYGONs into a single MULTI-

POLYGON. The question is, what criteria should we use? Typing select

name from us_states; shows us many duplicates. Typing select distinct

name from us_states; gets us back down to a reasonable number. (Yeah,

there are 52 records instead of 50, but I won’t begrudge the District of

Columbia and Puerto Rico for coming along for the ride.)

EXPORTING DATA 123

To consolidate the POLYGONs into a single MULTIPOLYGON, we need

to do a couple of things. We can create a new table by doing a SELECT

... INTO <NEWTABLE>. Rather than using SELECT DISTINCT ... as we did just a

minute ago (which limits output to a single unique value by discarding

the duplicates), we can use SELECT ... GROUP BY name to aggregate the

results. Finally, we can use GeomUnion() to merge the geometries.

Putting this all together, we end up with this:

select name, GeomUnion(the_geom) as location into us_50

from us_states group by name;

To see whether everything worked, type the following:

g4wd=# select name, NumGeometries(location) from us_50 order by name;

name | numgeometries

----------------------+---------------

Alabama | 2

Alaska | 81

Arizona | 1

Arkansas | 1

California | 11

Colorado | 1

Connecticut | 1

Delaware | 3

District of Columbia | 1

Florida | 14

Georgia | 1

Hawaii | 27

...

5.9 Exporting Data

Now that we’ve tweaked our data set, let’s dump it back out as a

shapefile. Not surprisingly, PostGIS offers a complementary utility to

shp2pgsql—pgsql2shp. Create a directory named us_50, change to it, and

type the following command:

pgsql2shp g4wd us_50

This dumps the values from the us_50 table in the g4wd database to a

shapefile. If you want to override the name, type the following: pgsql2shp

-f foo.shp g4wd us_50.

Just to sanity check the output, you can open the shapefile in the

viewer of your choice.

EXPORTING DATA 124

Alternately, you can use ogrinfo (which came along with GDAL) to do a

bit of introspection:

$ ogrinfo -so us_50.shp us_50

INFO: Open of ‘us_50.shp'

using driver ‘ESRI Shapefile' successful.

Layer name: us_50

Geometry: Polygon

Feature Count: 52

Extent: (-179.147340, 17.884813) - (179.778470, 71.352561)

Layer SRS WKT:

(unknown)

NAME: String (90.0)

The -so flag provides a summary only. If you leave that flag off, you will

get a screen dump for each record in the file. The first argument (the

data source) is pretty straightforward. The second argument (the data

layer) might seem redundant for a shapefile—after all, a shapefile can

hold only a single layer, right? Well, ogrinfo allows you to introspect a

variety of data sources. Type ogrinfo - -formats to get a listing of everything

that ogr understands:

$ ogrinfo --formats

Supported Formats:

-> "ESRI Shapefile" (read/write)

-> "MapInfo File" (read/write)

-> "UK .NTF" (readonly)

-> "SDTS" (readonly)

-> "TIGER" (read/write)

-> "S57" (read/write)

-> "DGN" (read/write)

-> "VRT" (readonly)

-> "AVCBin" (readonly)

-> "REC" (readonly)

-> "Memory" (read/write)

-> "CSV" (read/write)

-> "GML" (read/write)

-> "KML" (read/write)

-> "PostgreSQL" (read/write)

Hmmm, so you see PostgreSQL there, you say? Let’s get a list of avail-

able spatially enabled tables:

$ogrinfo PG:dbname=g4wd

INFO: Open of ‘PG:dbname=g4wd'

using driver ‘PostgreSQL' successful.

1: test (Point)

2: us_states (Multi Polygon)

EXPORTING DATA 125

Want to see what ogrinfo has to say about our original us_states layer?

$ ogrinfo -so PG:dbname=g4wd us_states

INFO: Open of ‘PG:dbname=g4wd'

using driver ‘PostgreSQL' successful.

Layer name: us_states

Geometry: Multi Polygon

Feature Count: 273

Extent: (-179.147354, 17.884811) - (179.778473, 71.352562)

Layer SRS WKT:

GEOGCS["NAD83",

DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,

AUTHORITY["EPSG","7019"]],

AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]]

Geometry Column = the_geom

area: Integer (0.0)

division: String (1.0)

gid: Integer (0.0)

lsad: String (2.0)

lsad_trans: String (50.0)

name: String (90.0)

perimeter: Integer (0.0)

region: String (1.0)

st99_d00_: Integer (0.0)

st99_d00_i: Integer (0.0)

state: String (2.0)

Where ogr gets really interesting is when you’re trying to nose around

a remote database. Since we’re looking at a local database, we use the

simple syntax. You can, however, stuff a bunch of parameters into the

PG: string:

ogrinfo PG:'host=remotehost user=bubba password=smith dbname=g4wd'

Yeah, the syntax might look a bit weird, but the capabilities of the

ogr suite of command-line utilities far outweigh any aesthetic misde-

meanors.

So now wait a second. How come our newly created us_50 table doesn’t

exist according to ogrinfo? Yep—no entry in geometry_columns. (You have

been paying attention—nice catch.)

INDEXING DATA 126

One quick insert and ogrinfo PG:dbname=g4wd will have what it needs to

interact with our new table:

insert into geometry_columns

(f_table_catalog, f_table_schema, f_table_name, f_geometry_column,

coord_dimension, srid, type) values ('', 'public', 'us_50',

'location', 2, 4269, 'MULTIPOLYGON');

Why bother? you might ask. Clearly pgsql2shp didn’t need it. Well, ogrinfo

does. As does ogr2ogr. Remember in Chapter 3, Projections, on page 45

that we used ogr2ogr to reproject our errant Colorado highways shape-

file? Well, we can also use it to transform data from one format to

another. Let’s use it to rip the data from PostGIS into a shapefile:

ogr2ogr us_50_again.shp PG:dbname=g4wd us_50

If you do a directory listing, notice what else came along for the ride?

You’re right—we get projection information in the form of a

us_50_again.prj file. ogrinfo -so us_50_again.shp us_50_again confirms that

this data is projected in EPSG 4269.

Although getting projection information is cool, you can’t really appre-

ciate the ogr/PostGIS connection until you do something like this:

ogr2ogr hawaii.shp PG:dbname=g4wd

-sql "select name, the_geom from us_states where name='Hawaii'"

Using ogr2ogr to rip arbitrary records out of your table using ad hoc

SQL brings your PostGIS kung fu to a whole new level.

So, we’ve managed to go full round-trip with our spatial data—from

shapefile to PostGIS to shapefile again. But PostGIS is more than just

a glorified geodata bucket. You can perform some sophisticated data

analysis. But before we get to the fun stuff like calculating distances

and areas, you need to make sure that your spatial data is indexed.

5.10 Indexing Data

PostGIS is just like any other database: if you have a large table, index-

ing it will greatly increase query performance. You traditionally cre-

ate indexes on fields that you query often. Indexing the name field, for

example, creates a index not unlike the index in the back of this book.

A book index is organized by keyword, showing you which pages a key-

word appears on.

INDEXING DATA 127

Figure 5.1: Complex polygons and their bounding boxes

A database index refers to record numbers instead of pages, but con-

ceptually it does the same thing—it allows the query optimizer to short-

circuit your search. Rather than having to do a sequential scan of each

record in a table, it just refers to the index. Make sense?

For spatial queries, we want to be able to do the same type of thing;

however, instead of words, we’re going to create an index on the bound-

ing box of the geometry. Sometimes called a minimum bounding rectan-

gle (MBR), it is a simple box that can be used as a placeholder for the

actual geometry (which in reality might be a complicated polygon with

tens or hundreds of vertices). For an example of bounding boxes, see

Figure 5.1.

Type \d us_states. You should see an index listed for the primary key,

gid. shp2pgsql created this index for us. If it hadn’t, you could easily

create the same thing by typing this:

create unique index us_states_pk_index on us_states (gid);

SPATIAL QUERIES 128

That syntax will work for any nonspatial field. But to create a spatial

index, the command you need to type is slightly different:

create index us_states_bbox_index on us_states

using gist (the_geom);

Typing \d us_states shows that we now have two indexes on our table.

Once your index is created, you should do a vacuum verbose analyze

us_states(the_geom);. Doing this periodically ensures that your index

is optimized and up-to-date. For volatile tables (ones to which you

are constantly adding or deleting information), the PostgreSQL man-

ual suggests doing this command at least once a day. For reference

data like us_states, doing it once in its lifetime is probably sufficient.

In the next section, you’ll see && show up frequently in the SQL. This

is telling the query to utilize the bbox index first. Oftentimes, you’ll

see a dramatic increase in query performance by doing a gross query

first (“Hey, am I even in the ballpark?”) and then doing the expensive

fine-grained analysis on the reduced result set.

5.11 Spatial Queries

We’ve been using PostGIS to move data around. Let’s spend a bit of time

doing some spatial analysis.

Netstate.com lists some statistics for the state of Colorado.12 Rather

than blindly accepting the values, let’s do some fact checking. For

instance, the site lists the center point of the state at longitude 105°

38.5’W, latitude 38° 59.9’N. To convert these to decimal degrees, take

a quick trip to http://jeeep.com/details/coord/. Type the values in the

Minute Decimal box in the lower-right corner of the page, and click

Submit. The resulting decimal degrees are (-105.641666, 38.998333).

What does PostGIS have to say about this? To find the center point, use

the Centroid() function:

select name, asText(Centroid(the_geom))

from us_states where name='Colorado';

The result is POINT(-105.547819910911 38.9985492904857). That’s pretty

close. (In the examples in this section, we’re never going to get an exact

match. What we’re looking for is close enough.)

12. http://www.netstate.com/states/geography/co_geography.htm

SPATIAL QUERIES 129

Now let’s fact check the bounding box. The website says Longitude: 102

W to 109 W Latitude: 37 N to 41 N. PostGIS gives us a couple of functions to

verify this: Envelope() and Extent(). Envelope() returns a valid POLYGON.

It is suitable for inserting into a new table. But it is also a bit verbose.

If you are trying to describe a rectangle that has 90-degree corners,

oftentimes geographers find it sufficient to provide only the lower-left

and upper-right corners. (You will see this used quite a bit in Chapter 7,

Using OGC Web Services, on page 157.) Extent() returns this shortcut

notation:

select name, asText(Envelope(the_geom)) from us_states where

name='Colorado'; select name, extent(the_geom) from us_states where

name='Colorado' group by name;

In the second query, there was no need to use the AsText() function,

because extent() returns text by default. Also note that we had to use

group by name since Colorado could have had multiple POLYGONs in

the table.

Getting back to our fact checking, extent() returns BOX(-109.060256958008

36.9924240112305,-102.041519165039 41.0034446716309). That jives with the

website. Things are looking good.

Now let’s look at the length and width of the state. The website says

Colorado is 380 miles long and 280 miles wide. Let’s see what PostGIS

has to say about it.

Using the values from Envelope(), we can measure the bounding box

horizontally and vertically using the Distance() function:

select distance(

GeomFromText('Point(-109.060256958008 36.9924240112305)'),

GeomFromText('Point(-109.060256958008 41.0034446716309)')

);

The result is 4.0110206604004. Huh? If you look real closely, you’ll see

that 4 is simply the arithmetic difference between the two latitude

points. The distance is 4 degrees. Hrmph. That doesn’t do us much

good. Let’s try another approach. We can reproject the points from

degrees into meters using our trusty UTM 13 N projection. Recall that

the SRID for UTM 13 N is 26915:

select distance(

transform(GeomFromText('Point(-109.060256958008 36.9924240112305)',

4269), 26915),

transform(GeomFromText('Point(-109.060256958008 41.0034446716309)',

4269), 26915)

);

SPATIAL QUERIES 130

The result is distance | 455802.861403081. OK, now we’re getting some-

where. Let’s use Google to convert those meters into miles. Type

455802.861403081 meters in miles into the Google search box. The results

page says 455,802.861403081 meters = 283.222767 miles. Netstate.com said

that Colorado was 280 miles wide. Looks good.

Now let’s measure the other direction:

select distance(

transform(GeomFromText('Point(-109.060256958008 41.0034446716309)',

4269), 26915),

transform(GeomFromText('Point(-102.041519165039 41.0034446716309)',

4269), 26915)

);

The result is 598433.344979358. Google says 598,433.344979358 meters =

371.849241 miles. The website says 380 miles. That’s close enough for

me.

PostGIS offers a convenience function called distance_sphere(). It allows

you to perform quick distance calculations on decimal degrees:

select distance_sphere(

GeomFromText('Point(-109.060256958008 41.0034446716309)', 4269),

GeomFromText('Point(-102.041519165039 41.0034446716309)', 4269)

);

The result is distance_sphere | 588820.960114999. Google says

588,820.960114999 meters = 365.876382 miles. This is a slightly more ac-

curate measurement, but don’t forget that we started with an abstrac-

tion—we’re measuring the bounding box. In our case, we’re not mea-

suring the distance between two real-world points. Fifteen miles off

doesn’t mean too much to me when we’re talking about nearly 400

miles. If, however, I was trying to calculate door-to-door driving direc-

tions, being 15 miles off would put me in a heap of trouble.

How is the website calculating the distance? We can’t really tell. Maybe

it’s the widest point in the state. Maybe the site rounded up. We may

never know, and again, it’s close enough for me.

You’re still not satisfied? OK, for the most accurate measurement, Post-

GIS offers distance_spheroid(). This function, as the name implies, allows

you to specify an actual spheroid. We are using SRID 4269. What

spheroid does that SRID use?

select * from spatial_ref_sys where srid=4269;

SPATIAL QUERIES 131

If we look hard enough at the srtext field, we can find SPHEROID["GRS

1980",6378137,298.257222101]. With that little nugget of information in

hand, we can perform the following query:

select distance_spheroid(

GeomFromText('Point(-109.060256958008 41.0034446716309)', 4269),

GeomFromText('Point(-102.041519165039 41.0034446716309)', 4269),

'SPHEROID["GRS 1980",6378137,298.257222101]'

);

The result is distance_spheroid | 590332.999050949. Google says

590,332.999050949 meters = 366.815919 miles. So distance(), distance_sphere(),

and distance_spheroid() all gave slightly different answers, but all were

well within the ballpark.

And speaking of “within the ballpark,” we can use PostGIS to find things

like points within a polygon. Recall that the long/lat for the Colorado

State Capitol building is (-104.98716, 39.73909):

select name from us_states where

GeomFromText('Point(-104.98716 39.73909)', 4269)

&& the_geom;

The result confirms what we already know—that the state capitol is

within the state. More accurately, it’s within the bounding box of the

state. && uses the spatial index to simply see whether we are in the

ballpark.

For more accurate assessments, we can ask questions like Intersects,

Touches, Crosses, Within, Overlaps, and Contains. (These are all defined in

the same OGC, Simple Features for Specification for SQL, that defines

the geometry types.)

select name from us_states where

within(GeomFromText('Point(-104.98716 39.73909)', 4269), the_geom);

This query still goes fairly quickly, even though it skips the spatial index

entirely and does a sequential scan on the table. For optimal perfor-

mance, you should really use this:

select name from us_states where

GeomFromText('Point(-104.98716 39.73909)', 4269)

&& the_geom AND

within(GeomFromText('Point(-104.98716 39.73909)', 4269), the_geom);

Yes, it’s long and tedious to type in by hand. But if you are trying to eke

out every bit of performance, the long duplicitous syntax is well worth

it.

VISUALIZING DATA 132

Figure 5.2: Viewing a PostGIS table and a shapefile using QGIS

5.12 Visualizing Data

In the next chapter, we’ll talk about OGC web services like WMS that

allow you to visualize this data in a web browser. But you can also do

this from standard desktop apps. Remember our good friend QGIS? Not

only does it allow us to view shapefiles and rasters, it also allows us to

sneak a peak at PostGIS tables. In the Layer menu, you should see an

option for adding a PostGIS layer. Provide the connection information

to PostgreSQL, and you will be presented with a list of tables. These

tables can be mixed freely with shapefiles and rasters on disk, provided

that they all share the same projection.

For example, you can view the us_states table and the co_highways

shapefile simultaneously, as shown in Figure 5.2.

There is one minor gotcha with the production version of QGIS as of

this writing (0.8). The 8.x PostgreSQL releases don’t create a special

hidden field that previous versions did: the object ID (OID). QGIS seems

to prefer tables with an OID.

CONCLUSION 133

If you have trouble viewing PostGIS tables in QGIS, try typing the fol-

lowing command:

set default_with_oids to true;

Once you’ve issued that command, drop and re-create your tables. This

database setting will be active only for the current psql session, so you’ll

have to remember to do it each time. Changes such as the lack of an

OID can have a ripple effect throughout the community when applica-

tions are expecting it to be present. Over time, this will become less of

an issue. I just mention it here as a short-term patch.

5.13 Conclusion

I hope at this point you feel more comfortable slinging your geodata

around in a database. We installed PostgreSQL and spatially enabled

it with PostGIS. We nosed around the built-in tables such as geom-

etry_columns and spatial_ref_sys. We created spatial fields by hand

and imported shapefiles using shp2pgsql. We queried, manipulated, and

exported our data. We indexed our data for performance and visualized

it using a desktop viewer.

So now that we have our data in a database, let’s see how we can share

this information over the Web. In the next few chapters, we’ll look at

ways to both visualize the data in a web browser (using WMS) and

share it as a standards-compliant OGC web service (using WFS).

Chapter 6

Creating OGC Web Services
This chapter introduces the OGC’s merry band of web services. These

services allow you to download raw vector data (Web Feature Service)

and finished maps suitable for viewing in a web browser (Web Map

Service). We’ll download and install GeoServer, a Java-based OGC stack

implemented as simple servlets. Our goal for this chapter is to get the

services set up. In the next chapter, we’ll look more closely at the details

of the services and how to use them in an application.

6.1 Sharing the Wealth

We’ve spent the entire book gathering geodata from across the Web,

scrubbing it, and getting it ready for prime time. Now we need to get it

in the hands of our constituents. In some cases, this means presenting

a finished map. In others, it means getting raw data to power users with

a minimum of effort. Given the ubiquity of the Web, it should come as

no surprise that it’s where we’re going to turn.

You probably remember the trouble we went through gathering the

data. There wasn’t a common file format. There wasn’t a common pro-

jection. Simply finding the data wasn’t standardized by any stretch.

Rather than contributing to the forces of chaos, we should present our

data in a standardized format that alleviates much of the grief that we

were forced to suffer. (This flies in the face of the conventional wisdom

of many cranky old programmers: “If it was tough to program, it should

be tough to use as well....”)

The OGC services we are about to set up are discoverable across servers

and implementations. There is a consistent way to query the server,

OGC SOA FOR GIS 135

asking it what data layers it has to offer. Then you can introspect each

layer, making sure you know exactly what you are going to get. Finally,

you can fine-tune the output. We’re going to provide services that allow

you to reproject the data on the fly. You can request the output file

format from a list of choices. You can set both the bounding box and

the resolution to whatever you’d like, even if it distorts the output. As

you can see, we’re moving from being a simple data provider to a more

sophisticated service provider.

6.2 OGC SOA for GIS

Service-oriented architecture (SOA) has become a popular buzzword in

recent years. Creating a service-oriented architecture means that rather

than creating stove-pipe solutions that solve a single problem, you

focus on creating generic services that can be reused across many

applications. However, one important clarification in the definition of

SOA must be made up front. Some vendors have tried to co-opt the

term to mean strictly SOAP-based services.1 Although SOAP is one spe-

cific implementation of an SOA, it is not the only solution available.

The OGC created its services long before SOAP was created. The OGC’s

services embody a simpler set of standards that are popularly called

RESTful web services.

The term REST—short for Representational State Transfer—was coined

by Dr. Roy Fielding in his 2000 doctoral dissertation.2 But don’t let that

scare you away. The principles behind REST are pretty simple. In our

case, it means that all of our queries are going to be simple HTTP GET

requests. In other words, we’re going to be able to hit our services by

using an URL with a querystring (name/value pairs). This makes it

incredibly easy to create queries and test them in your web browser.

And speaking of the Web, our SOA solution provides the easiest access

to the data to the widest audience of users. A true SOA strives to pro-

vide its services in a language-, vendor-, and platform-neutral way. The

OGC services abstract away the implementation details of how the data

is actually stored. The consumers of our data don’t need to have a

shapefile viewer or a PostgreSQL driver loaded on their systems.

1. http://www.w3.org/TR/soap/

2. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

OGC SOA FOR GIS 136

The Many Definitions of REST

SOAP is a specification. The statement “my service is SOAP 1.1
compliant” should be pretty unambiguous—at least in theory.
In practice, one library might implement the specification in an
incomplete way. Another one might add proprietary features.
The spec is supposed to guard against this sort of thing, but it is
no panacea.

REST, on the other hand, is a set of architectural principles. There
is no such thing as “REST 1.1.” As a result, different people have
different interpretations of what it means to be truly RESTful.
The popular meaning of REST is anything that uses an HTTP GET
request with name/value pairs in the querystring. Dr. Fielding’s
meaning of REST is slightly more sophisticated, involving the use
of other HTTP verbs in addition to GET such as POST, PUT, and
DELETE. This disconnect in “popular” vs. “pure” interpretations
of REST is the source of many bitter debates.

Before any true RESTafarians get upset, my use of the word REST
throughout this book refers to the popular interpretation. Some
folks call these services GETful to differentiate them from truly
RESTful services. Others use more politically loaded terms such
as “Low REST” and “High REST.”

To be absolutely clear, the OGC specifications are GETful in the
strictest sense of the word. Lumping them in with more pure-
RESTful specifications such as Atom∗ is not meant to be an insult.
It simply reflects the current usage of the word, ambiguity and
all.

Yahoo calls its services RESTful, although deep in its FAQ† it
acknowledges that its services technically “use REST-like RPC-
style operations over HTTP GET or POST requests with parame-
ters URL encoded into the request.” Google has taken a more
pure approach to REST, dropping its SOAP-based web services
in favor of an Atom implementation it calls GData.‡ Although
the implementations have clear differences, both can proba-
bly safely be called RESTful in polite company.

∗. http://www.ietf.org/rfc/rfc4287

†. http://developer.yahoo.com/faq/#rest

‡. http://code.google.com/apis/gdata/

INSTALLING GEOSERVER 137

Other OGC Servers

MapServer∗ is a mature, open source OGC server. It is a CGI
application you can deploy directly in Apache. It has strong
PHP development tools. Several good books are on the market
that talk about MapServer, including Web Mapping Illustrated
by Tyler Mitchell (O’Reilly).

Deegree† is a servlet-based OGC server like GeoServer. It, too,
is open source and has an active community behind it.

Many commercial OGC solutions exist as well. I’ve had good
experience with Ionic RedSpider,‡ but it is by no means the only
commercial solution available.

For an extensive list of software and services that are OGC
compliant, see http://www.opengeospatial.org/resource/products.
The installation and configuration are different for each, of
course. Ease of use, features, and your preferred programming
language all are factors to be considered when choosing a
solution. But the beauty of the OGC standard is that they are
all fully interoperable. Commercial or open source, each pro-
vides the same interface to the rest of the world.

∗. http://mapserver.gis.umn.edu/

†. http://www.deegree.org/

‡. http://www.ionicsoft.com

They don’t need a login to our database or an understanding of the

particular spatial SQL dialect PostGIS uses. They get free, anonymous,

standardized access to our data. The dialect they use is the same that

NASA uses, that the USGS uses, and that the Canadian government

uses. The power of this commonality cannot be overemphasized.

6.3 Installing GeoServer

GeoServer3 is the quickest way to get a full-featured OGC server up and

running. It is implemented in Java, but it doesn’t require you to know

the programming language. If you don’t already have Java installed on

your system, download the platform-specific installer from Sun.4

3. http://geoserver.org

4. http://java.sun.com

INSTALLING GEOSERVER 138

Figure 6.1: Geoserver

Two versions of GeoServer 1.4 are available for download. If you already

have Tomcat or another servlet container installed, download the WAR

file and deploy it as you would any other standard JEE application. If

you don’t have anything already installed, don’t worry about it. You can

download the BIN distribution. It includes the Jetty servlet container.

Unzip it, change to the bin directory, and type startup.sh or startup.bat. It

will start up on port 8080. Visit http://localhost:8080/geoserver to see it in

action. (See Figure 6.1.) If you already have something running on port

8080, you can change the port easily by editing the file geoserver/etc/

jetty.xml.

GeoServer comes preloaded with some sample data. Click the link to the

Mapbuilder client to explore. These maps are autogenerated for every

data set each time the server is started. Click the link to topp:states to

get a feel for the map. (See Figure 6.2, on the following page.) Notice the

four buttons along the top. The first two allow you to lasso an area to

zoom in or zoom out. The third button allows you to drag the map to

pan. The fourth returns you to the initial view.

ADDING SHAPEFILES USING THE GUI 139

Figure 6.2: The States shapefile, preloaded in GeoServer

6.4 Adding Shapefiles Using the GUI

Let’s add our own data layer. Even though there is already a US States

layer in place, we’ll add our old friend the U.S. Census Bureau state

boundaries just to get a feel for the process.

In GeoServer, all the data is stored in geoserver/data_dir. Create a direc-

tory underneath that named us_states. Copy the U.S. Census Bureau

shapefiles5 into the directory (and don’t forget to copy all three: .shp,

.shx, and .dbf).

st99_d00 is now ready to be added to the GeoServer catalog. You can

use the built-in GUI Admin console to do this, or you can manually edit

a couple of XML files. We’ll do both in the coming sections.

For our first new data layer, let’s use the Admin console. On the home

page, click the Config link. If you aren’t logged in, you’ll get redirected

5. http://www.census.gov/geo/cob/bdy/st/st00shp/st99_d00_shp.zip

ADDING SHAPEFILES USING THE GUI 140

Late-Breaking GeoServer News

Just as this book was going to press, the 1.5 version of GeoServer
hit the streets.∗ The examples as they stand here are nearly
identical to what you’ll see in 1.5. The configuration screens are
largely the same, although you might find a new field here and
there.

The biggest new feature you’ll find in 1.5 is the ability to serve
up rasters as well as vectors. You’ll see a third service—WCS—
show up alongside the more familiar WMS and WFS. This makes
GeoServer a well-rounded offering for serving up all types of
geospatial data.

∗. http://blog.geoserver.org/2007/04/18/geoserver-150-released/

to the Login page. The default username is admin, and the password is

geoserver. It probably goes without saying that you should change the

default password, especially if this is going to be a public-facing sever.

To do so, click Config > Server > Password.

Creating a new data set requires three steps. We will create a new

namespace, then a data store, and finally a FeatureType.

Namespaces

Namespaces are a way to logically group your data sets. You could

group them by provider (Census, USGS). You might choose to do it by

country, state, or region. You could even group them according to the

project with which they are associated. Of course, nothing is stopping

you from just using an existing namespace as well.

For our purposes, let’s create a new one named G4WD. Click Config >

Data > Namespace > New. Enter G4WD in the text box, and click New.

The next screen asks you for a URI. If you’ve ever dealt with namespaces

in XML documents, this should feel familiar to you. The URI tradition-

ally looks like a regular web address, although there doesn’t have to be

a web page or even a web server listening at that address. All this is

meant to be is a unique identifier. Enter http://www.mapmap.org/g4wd,

and click Submit.

ADDING SHAPEFILES USING THE GUI 141

Figure 6.3: Understanding Apply, Save, and Load

At this point, the changes have been saved, but the server isn’t using

them. Notice the buttons in the upper-left corner? (See Figure 6.3.)

Apply refreshes the server’s configuration in memory. In theory, this

allows to you to test your changes in the running server. In practice,

I always forget to save them and lose my changes when I reboot the

server. Save writes them to the config file (geoserver/data_dir/catalog.xml;

we’ll edit it by hand in the next section). Don’t click Load—it will revert

the server to the last config file. If you don’t like the applied set of

changes, this allows you to unapply them.

The asterisks next to the various lines give you a hint as to where things

stand. An asterisk next to Configuration tells you that changes have

been made but the server doesn’t know about them. Clicking Apply

moves the asterisk to GeoServer, telling you that the changes have

been applied but not saved. Clicking Save flushes the changes to disk,

removing the asterisk next to GeoServer. Click Apply and Save so that

we can add a new data store using our new namespace. (No asterisks

should be showing at the end of all of your button clicking.)

Data Stores

A data store can host many FeatureTypes. In the case of hosting shape-

files, you’ll need to create a new data store for each one. Yes, this is

redundant and tedious. Perhaps that is to motivate you to store your

ADDING SHAPEFILES USING THE GUI 142

information in a true spatial database. As you’ll see in a moment, we’ll

create a single data store for our PostGIS instance and be able to use

multiple tables from the same one.

Click Config > Data > Stores > New. From the combo box, choose Shape-

file. Enter us_states for the data store ID. Click New for the next screen.

On the Datastore Editor screen, choose G4WD from the Namespace

combo box. For the description, type US Census Bureau US States. For the

URL, type file:us_states/st99_d00.shp. Click Submit, and then click Apply

and Save in the upper-left corner.

FeatureTypes

We are now ready to create a FeatureType. These are the individual

map layers. Click Config > Data > FeatureType > New. In the combo

box, you should see the data store you typed in and any data lay-

ers associated with it. In our case, the entry you are looking for is

us_states:::st99_d00. (For shapefiles, the name of the .shp file is the

name of the data layer. You might want to give your shapefiles friendly

names for the sake of how they appear here.) Click us_states:::st99_d00,

and click New. The resulting FeatureType Editor page is the most com-

plex we’ve seen up to this point. (See Figure 6.4, on the following page.)

First, choose polygon from the Style combo box. These styles are defined

in the OGC standard file format Styled Layer Descriptor (SLD). We talk

more about SLDs later in this chapter.

Next, enter 4326 for the SRS. Clicking SRS List brings up a help screen

with every EPSG code that GeoServer knows about. Recall that 4326

is short for plain lat/long coordinates in WGS-84. The title can be a

friendly name such as “US States.” This will show up onscreen as the

name of your data layer.

Once you give GeoServer a proper EPSG number, you can have it gen-

erate the bounding box for the layer. (Jot down the max/min lat/long

values for use in just a bit.) That new WKT should look familiar from the

discussions in previous chapters. This would be a good time to update

the Keywords and Abstract fields. When you are done, click Submit,

and then click Apply and Save in the upper-left corner.

Viewing the Newly Added Shapefile

To verify that the shapefile got loaded correctly, let’s take a look at it

using the default Mapbuilder client. Go back to the main page, and

ADDING SHAPEFILES MANUALLY 143

Figure 6.4: Creating a new FeatureType

click the Mapbuilder Client link. You should see us_states:st99_d00.

Click the link to see the fruits of your labors.

It looks terrible, doesn’t it? (See Figure 6.5, on the next page.) Don’t

worry about that for now. The dimensions of our FeatureType don’t jive

well with the default dimensions of the map that Mapbuilder provides

(courtesy of those few Alaskan islands that cross the International Date

Line). We’ll fix that later in the chapter. The important thing is that you

have pixels showing, albeit ugly ones. You have successfully added your

first new data layer to GeoServer, and you didn’t even break a sweat.

6.5 Adding Shapefiles Manually

Although adding FeatureTypes through the GUI is convenient, know-

ing how to tweak the underlying configuration files is an invaluable

ADDING SHAPEFILES MANUALLY 144

Figure 6.5: The distorted, default Mapbuilder view

troubleshooting skill. Luckily, there aren’t many moving parts when it

comes to adding new FeatureTypes to GeoServer by hand.

The main file to start with is catalog.xml, found in geoserver/data_dir. It

stores pointers to our namespaces, data stores, and styles:

<?config.xml version="1.0" encoding="UTF-8"?>

<catalog>

<!--

a datastore configuration element serves as a common data source connection

parameters repository for all featuretypes it holds.

-->

<datastores>

<datastore namespace="g4wd" enabled="true" id="us_states" >

<connectionParams>

<parameter value="g4wd" name="namespace" />

<parameter value="file:us_states/st99_d00.shp" name="url" />

</connectionParams>

</datastore>

<datastore>

...

</datastore>

</datastores>

ADDING SHAPEFILES MANUALLY 145

<!--

Defines namespaces to be used by the datastores.

-->

<namespaces>

<namespace uri="http://mapmap.org/g4wd" prefix="g4wd" />

<namespace uri="http://www.openplans.org/topp"

prefix="topp" default = "true" />

<namespace uri="http://www.census.gov" prefix="tiger" />

<namespace uri="http://www.opengeospatial.net/cite" prefix="cite" />

</namespaces>

<!--

Defines the style ids and file name to be used by the wms.

-->

<styles>

<style filename="default_line.sld" id="line" />

<style filename="default_polygon.sld" id="polygon" />

...

</styles>

</catalog>

Notice that data stores can be selectively enabled and disabled. Flip

Enabled to False for the DS_poi data store. Save the file. To get Geo-

Server to reflect this change, click Config in your web browser and then

Load. The green bar (the health meter of GeoServer, really) is now tipped

with gray. (See Figure 6.6, on the following page.) If you misconfigure a

data store or a FeatureType, this bar will have a red tip. To get things

back to their original state, flip DS_poi back to enabled, save the file,

and click Load once more.

For our next FeatureType, let’s add the Canadian provinces.6 Create a

ca directory under geoserver/data_dir. Copy prov_ab_p_geo83_e.* to this

directory. Open geoserver/data_dir/catalog.xml in a text editor. Copy one

of the existing data stores, and edit the values accordingly:

<datastore namespace="g4wd" enabled="true" id="ca" >

<connectionParams>

<parameter value="g4wd" name="namespace" />

<parameter value="file:ca/prov_ab_p_geo83_e.shp" name="url" />

</connectionParams>

</datastore>

Go back to the browser window, and click Config. Click Load. To ver-

ify that everything is OK so far, click Config > Data > Stores. Choose

ca from the combo box, and click Edit. Everything should match up

between catalog.xml and the HTML form.

6. http://www.geobase.ca/geobase/en/data/cgb1.html

ADDING SHAPEFILES MANUALLY 146

Figure 6.6: GeoServer with a disabled data store

We’re halfway there. Let’s create the FeatureType. The directory

geoserver/data_dir/featureTypes contains one directory per FeatureType.

Take a look in us_states_st99_d00. (Notice that the directories follow the

naming convention [data store]_[featureType].) Inside that directory is

an info.xml file.

<featureType datastore = "us_states" >

<name>st99_d00</name>

<!--

native EPGS code for the FeatureTypeInfoDTO

-->

<SRS>4326</SRS>

<title>US States</title>

<abstract>Generated from us_states</abstract>

<wmspath>/</wmspath>

<numDecimals value = "8" />

<keywords>st99_d00 us_states</keywords>

<latLonBoundingBox dynamic = "false"

miny = "17.884813"

maxy = "71.35256064399981"

maxx = "179.77847000000006"

minx = "-179.14734" />

<!--

the default style this FeatureTypeInfoDTO can be represented by.

at least must contain the "default" attribute

-->

<styles default = "polygon" />

<cacheinfo enabled = "false" maxage = "" />

</featureType>

ADDING SHAPEFILES MANUALLY 147

Create the directory ca_prov_ab_p_geo83_e. (Don’t you wish that we

would’ve renamed that shapefile to something easier to type?) Copy

info.xml from us_states_st99_d00 to ca_prov_ab_p_geo83_e.

Changing the data store and name to match the data store and shape-

file names isn’t tough. The EPSG remains 4326. (We graciously ignore

typos in comments since misspelled comments are better than none.)

Changing the title, abstract, and keywords is similarly not an issue.

And then there is the little issue of latLonBoundingBox. The GUI sure

did a nice job of autogenerating that for us. You aren’t worried about

getting that data, are you? Have you forgotten our little friend ogrinfo

from earlier chapters? Type

ogrinfo -so prov_ab_p_geo83_e.shp prov_ab_p_geo83_e.

See anything useful there?

$ ogrinfo -so prov_ab_p_geo83_e.shp prov_ab_p_geo83_e

INFO: Open of ‘prov_ab_p_geo83_e.shp'

using driver ‘ESRI Shapefile' successful.

Layer name: prov_ab_p_geo83_e

Geometry: Polygon

Feature Count: 503

Extent: (-141.002750, 41.676556) - (-52.638016, 83.336213)

Layer SRS WKT:

GEOGCS["GCS_North_American_1983",

DATUM["North_American_Datum_1983",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],

UNIT["Degree",0.0174532925199433]]

UUID: String (36.0)

TYPE_E: String (10.0)

NAME: String (50.0)

SRC_AGENCY: String (10.0)

L_UPD_DATE: Date (10.0)

L_UPD_TYPE: String (2.0)

P_UPD_DATE: Date (10.0)

Use the information from the Extent field to complete the info.xml file.

Be sure to save it once you are done changing all of the values.

ADDING POSTGIS LAYERS 148

<featureType datastore = "ca" >

<name>prov_ab_p_geo83_e</name>

<!--

native EPGS code for the FeatureTypeInfoDTO

-->

<SRS>4326</SRS>

<title>Canadian Provinces</title>

<abstract>Generated from prov_ab_p_geo83_e</abstract>

<wmspath>/</wmspath>

<numDecimals value = "8" />

<keywords>prov_ab_p_geo83_e ca</keywords>

<latLonBoundingBox dynamic = "false"

miny = "41.676556"

maxy = "83.336213"

maxx = "-52.638016"

minx = "-141.002750" />

<!--

the default style this FeatureTypeInfoDTO can be represented by.

at least must contain the "default" attribute

-->

<styles default = "polygon" />

<cacheinfo enabled = "false" maxage = "" />

</featureType>

Let’s go back to the Config screen on more time and click Load. If no

errors show up here, then go back to the Mapbuilder client screen, and

take a look at your newly added Canadian FeatureType. (See Figure 6.7,

on the next page.) If you’re not careful, you’re going to get good at this.

6.6 Adding PostGIS Layers

Now that we are comfortable with shapefiles, let’s turn our focus to

PostGIS.

The first step we need to take is to create the data store. Click Config >

Data > Stores > New. Select PostGIS from the combo box. Give it an ID

of local_postgis. Click New to move to the next screen. Fill in the values

required to connect to the server. (See Figure 6.8, on page 150.) Once

everything is filled in, click Submit, and then click Apply and Save.

Adding a new FeatureType is just as straightforward. Click Config >

Data > FeatureType > New. All of the spatial tables from the G4WD

database should be visible from the combo box. When you click New,

everything should be filled out and waiting for you with the exception

of the bounding box. Click Generate. You can tweak the values such as

ADDING POSTGIS LAYERS 149

Figure 6.7: Our manually added Canadian provinces

the style, the title, the keywords, and the abstract if you’d like. Click

Submit, and then click Apply and Save.

The entry in catalog.xml is a bit more detailed than the shapefile entries

we saw earlier:

<datastore namespace = "g4wd" enabled = "true" id = "local_postgis" >

<abstract>Local PostGIS server</abstract>

<connectionParams>

<parameter value = "g4wd" name = "namespace" />

<parameter value = "true" name = "loose bbox" />

<parameter value = "postgres" name = "user" />

<parameter value = "password" name = "passwd" />

<parameter value = "true" name = "wkb enabled" />

<parameter value = "localhost" name = "host" />

<parameter value = "public" name = "schema" />

<parameter value = "5432" name = "port" />

<parameter value = "g4wd" name = "database" />

<parameter value = "postgis" name = "dbtype" />

</connectionParams>

</datastore>

ADDING POSTGIS LAYERS 150

Figure 6.8: Configuring a PostGIS connection in GeoServer

The info.xml file, on the other hand, looks identical to that of a shapefile:

<featureType datastore = "local_postgis" >

<name>us_50</name>

<!--

native EPGS code for the FeatureTypeInfoDTO

-->

<SRS>4269</SRS>

<title>us_50_Type</title>

<abstract>Generated from local_postgis</abstract>

<wmspath>/</wmspath>

<numDecimals value = "8" />

<keywords>local_postgis us_50</keywords>

<latLonBoundingBox dynamic = "false"

miny = "17.884811400815106"

maxy = "71.35256195011284"

maxx = "179.778472900391"

minx = "-179.147354125977" />

STYLING WITH SLD 151

<!--

the default style this FeatureTypeInfoDTO can be represented by.

at least must contain the "default" attribute

-->

<styles default = "polygon" />

<cacheinfo enabled = "false" maxage = "" />

</featureType>

GeoServer, like QGIS, prefers PostgreSQL tables with an OID field. Fol-

low the instructions at the end of Chapter 5, Spatial Databases, on

page 108 to ensure your tables have the necessary OID field. For more

information about GeoServer and PostGIS, see the online documenta-

tion.7

6.7 Styling with SLD

Now that we’ve solved the mechanics of getting the data displayed via

GeoServer, let’s focus on more aesthetic issues. Some would argue that

the look and feel of the map is the most important part of this exercise.

As mentioned earlier in the chapter, all styling is done via an OGC-

compliant SLD file. The SLD file format is standardized across all OGC

implementations so that you can move your styles between servers as

easily as you can your data. The best source of information on SLD is

the specification.8

Recall that the styles are stored in geoserver/data_dir/catalog.xml:

<!--

Defines the style ids and file name to be used by the wms.

-->

<styles>

<style filename = "giant_polygon.sld" id = "giant_polygon" />

<style filename = "capitals.sld" id = "capitals" />

<style filename = "tiger_roads.sld" id = "tiger_roads" />

<style filename = "poly_landmarks.sld" id = "poly_landmarks" />

<style filename = "green.sld" id = "green" />

<style filename = "simpleRoads.sld" id = "simple_roads" />

<style filename = "popshade.sld" id = "population" />

<style filename = "default_line.sld" id = "line" />

<style filename = "default_polygon.sld" id = "polygon" />

<style filename = "default_point.sld" id = "point" />

<style filename = "poi.sld" id = "poi" />

<style filename = "Lakes.sld" id = "cite_lakes" />

</styles>

7. http://docs.codehaus.org/display/GEOSDOC/PostGIS+DataStore

8. http://www.opengeospatial.org/standards/sld

STYLING WITH SLD 152

Each named style is a pointer to an SLD file stored in geoserver/data_dir/

styles. Let’s pull up default_polygon.sld to see what we’ve been using for

our U.S. states and Canadian provinces up to this point:

<?xml version="1.0" encoding="ISO-8859-1"?>

<StyledLayerDescriptor version="1.0.0"

xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"

xmlns="http://www.opengis.net/sld"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<NamedLayer>

<Name>Default Polygon</Name>

<UserStyle>

<Title>A boring default style</Title>

<Abstract>A sample style...</Abstract>

<FeatureTypeStyle>

<Rule>

<Name>Rule 1</Name>

<Title>RedFill RedOutline</Title>

<Abstract>50% transparent red...</Abstract>

<PolygonSymbolizer>

<Fill>

<CssParameter name="fill">#FF0000</CssParameter>

<CssParameter name="fill-opacity">0.5</CssParameter>

</Fill>

<Stroke>

<CssParameter name="stroke">#FF0000</CssParameter>

<CssParameter name="stroke-width">1</CssParameter>

</Stroke>

</PolygonSymbolizer>

</Rule>

</FeatureTypeStyle>

</UserStyle>

</NamedLayer>

</StyledLayerDescriptor>

Let’s make some sense of this. We have a NamedLayer that has a User-

Style. (UserStyle essentially means custom style.) The UserStyle con-

tains a FeatureTypeStyle. The FeatureTypeStyle has a rule that isn’t

doing much here but can be used to do conditional styling, as we’ll

see in the next example. The rule has a PolygonSymbolizer, which in

turn describes the fill and stroke used on the polygons. The fill is the

color that appears inside the polygon. The stroke is the color of the line

surrounding it.

Notice that SLD uses CSS for its styling rules. Interestingly, CSS isn’t

XML, so SLD has to wrap each CSS styling rule in an XML element.

Anything that can be expressed in CSS 2 is valid in an SLD document.

STYLING WITH SLD 153

Figure 6.9: SLD editing

Let’s make a quick change to the styling while we’re here. Change the

fill of the polygon to blue (#0000FF) and the stroke to black (#000000).

Save the file. Back in the browser window, click Config and then Load.

View the Canadian Feature in Mapbuilder to verify that your changes

took place.

GeoServer offers a nice (albeit rudimentary) SLD editor. Let’s create a

new style for our PostGIS FeatureType. Click Config > Data > Feature-

Type. Choose us_states_st99_d00 from the combo box, and click Edit.

Notice that next to the Style combo box there is a Create New SLD but-

ton. Click it. (See Figure 6.9.) In addition to color widgets for the fill and

stroke, you can also have SLD label your map elements. In this case,

choose Name from the list of nonspatial fields. Click Apply Style and

then Finished.

STYLING WITH SLD 154

Look in geoserver/data_dir/styles for your newly created style. In

st99_d00_style.sld, there is a new TextSymbolizer alongside your Polygon-

Symbolizer. (SLD also offers PointSymbolizers, LineSymbolizers, and

RasterSymbolizers.)

<TextSymbolizer>

<Label>

<ogc:PropertyName>NAME</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Times New Roman</CssParameter>

<CssParameter name="font-style">Normal</CssParameter>

<CssParameter name="font-size">12</CssParameter>

<Fill>

<CssParameter name="fill">#BB0000</CssParameter>

<CssParameter name="fill-opacity">1</CssParameter>

</Fill>

</TextSymbolizer>

Here we see, in addition to some more CSS styling, our first conditional

rule. If any FeatureType has a field named NAME (case-sensitive), these

styles will be applied. Otherwise, they will be ignored.

To see a more involved set of conditional rules, let’s take a look at the

topp:states FeatureType once again. (See Figure 6.2, on page 139.) The

SLD styling creates a choropleth9 map—the states are different colors

based on their population. popshade.sld shows us how to accomplish

this.

<FeatureTypeStyle>

<Rule>

<ogc:Filter xmlns:gml="http://www.opengis.net/gml">

<ogc:PropertyIsBetween>

<ogc:PropertyName>PERSONS</ogc:PropertyName>

<ogc:LowerBoundary>

<ogc:Literal>2000000</ogc:Literal>

</ogc:LowerBoundary>

<ogc:UpperBoundary>

<ogc:Literal>4000000</ogc:Literal>

</ogc:UpperBoundary>

</ogc:PropertyIsBetween>

</ogc:Filter>

<PolygonSymbolizer>...</PolygonSymbolizer>

<TextSymbolizer>...</TextSymbolizer>

</Rule>

9. http://en.wikipedia.org/wiki/Choropleth

STYLING WITH SLD 155

<Rule>

<ogc:Filter xmlns:gml="http://www.opengis.net/gml">

<ogc:PropertyIsLessThan>

<ogc:PropertyName>PERSONS</ogc:PropertyName>

<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>

</ogc:Filter>

<PolygonSymbolizer>...</PolygonSymbolizer>

<TextSymbolizer>...</TextSymbolizer>

</Rule>

<Rule>

<ogc:Filter xmlns:gml="http://www.opengis.net/gml">

<ogc:PropertyIsGreaterThan>

<ogc:PropertyName>PERSONS</ogc:PropertyName>

<ogc:Literal>4000000</ogc:Literal>

</ogc:PropertyIsGreaterThan>

</ogc:Filter>

<PolygonSymbolizer>...</PolygonSymbolizer>

<TextSymbolizer>...</TextSymbolizer>

</Rule>

</FeatureTypeStyle>

As you can see, styling your data layers can be as simple or as involved

as you would like. You can have many different styles for the same

data layer. This is the embodiment of the Model-View-Controller (MVC)

design pattern. The model (the geodata) is stored independently of any

styling instructions. Similarly, the view (in this case, our SLD files) is

independent of the model. The controller is the software component

that combines the model and view for us. Having a clean separation of

concerns for each of the three is a hallmark of a robust, reusable SOA.

The GeoServer website has many articles that talk about styling your

layers in great detail.10 Having your labels appear correctly11 can be

particularly tricky—you generally want them to appear without exces-

sive overlap when your features get bunched together closely or super-

imposed over many data layers. And finally, one of the GeoServer power

users has created a Google Maps SLD12 that can give your FeatureType

a familiar look and feel.

10. http://docs.codehaus.org/display/GEOSDOC/1.3+Style+Your+Map

11. http://docs.codehaus.org/display/GEOSDOC/LabelingOptions

12. http://docs.codehaus.org/display/GEOSDOC/Google+Maps+SLD

CONCLUSION 156

A friend of mine once described the ancient game of Go as something

that takes an hour to learn and a lifetime to master. That description

applies equally well to SLD and styling your maps. For now, you should

have enough to get you started.

6.8 Conclusion

At this point, we have a functional OGC server up and running. We’ve

installed GeoServer. We’ve added both shapefiles and PostGIS Feature-

Types through both the GUI and the various XML configuration files.

Finally, we wrapped up with OGC SLD files that describe the look and

feel of our FeatureTypes. With that, all of our server-side artifacts are

in place.

Now that our server is configured, let’s start using it. In the next chap-

ter, we’ll have some fun making raw WMS and WFS calls. The RESTful

nature of the OGC web requests make it easy to play around in your

web browser and even the command line.

Chapter 7

Using OGC Web Services
OK, getting GeoServer up and running was half the battle. Now let’s

start using the data layers. The nice part about focusing on standards-

based interfaces is that GeoServer is nothing more than an implemen-

tation detail at this point. The previous chapter could’ve walked you

through setting up MapServer, Deegree, Ionic RedSpider, or any other

OGC-compliant server, commercial or open source. The step-by-step

instructions would’ve varied widely, but the end result would be the

same. We’d still end up right where we are at this moment.

And where we are at this moment is kicking off our deeper exploration

of WMS and WFS services. We’ll start by examining the low-level inter-

faces. We’ll figure out which data layers are available to us and what

fields they contain, and then we’ll pull the data down. The only dif-

ference is whether we’d prefer a rendered map (WMS) or the raw bits

(WFS) so that we can do the rendering ourselves on the client side.

7.1 Understanding WMS

Web Map Service (WMS) is the OGC standard1 that you just saw in

action when you were looking at the preview screens in GeoServer. (It’s

not surprising that GeoServer eats its own dog food—if you were serving

up WMS services, what else would you use to sanity check your own

services?) Since WMS is open and nonproprietary, it has become the

lingua franca of the international mapping community.

1. http://www.opengeospatial.org/standards/wms

WMS GETCAPABILITIES 158

The first WMS version (1.0) was released in April 2000. Version 1.1

followed shortly thereafter in June 2001. Version 1.1.1 is the most

widely supported version, released in January 2002. The 1.3 spec was

released in December 2004, but not many servers support it at this

point, including GeoServer. Version 1.1.1 is the sweet spot, and that is

squarely where GeoServer lives.

The common feature of all of the specs is what makes WMS servers

so easy to work with. All services are discoverable through a standard

request. Once you find a data layer that looks interesting, you request

it in a standard way as well. The fact that these requests are RESTful

makes it a breeze to play around with by hand. Let’s dig in. Even though

we already know which data layers our local GeoServer instance has to

offer, let’s play along and ask it the WMS way.

7.2 WMS GetCapabilities

The way you find out what an OGC server has to offer is by requesting

its GetCapabilities document. The welcome page of GeoServer provides

hyperlinks to both WMS and WFS capabilities documents:

http://localhost:8888/geoserver/wms?service=WMS&

version=1.1.1&

request=GetCapabilities

Everything before the question mark is obviously the web address of

the server. The querystring contains a couple of standard parameters.

service=WMS specifies the service we’re interested in. As you’ll see later

in the chapter, WFS is another valid service that GeoServer offers. ver-

sion=1.1.1 specifies the version of the service you’d like to know about.

request=GetCapabilities asks for the capabilities document.

If the server doesn’t like the request, it will return an XML document

explaining the problem. For example, if you leave off the version param-

eter, you will get an XML document back like this:

<?xml version='1.0' encoding="ISO-8859-1" standalone="no" ?>

<!DOCTYPE ServiceExceptionReport SYSTEM

"http://schemas.opengeospatial.net/wms/1.1.1/exception_1_1_1.dtd">

<ServiceExceptionReport version="1.1.1">

<ServiceException>

msWMSDispatch(): WMS server error. Incomplete WMS request:

VERSION parameter missing

</ServiceException>

</ServiceExceptionReport>

WMS GETCAPABILITIES 159

Assuming that the GetCapabilities request is well-formed, you get a

long XML document back that, in excruciating detail, describes each

data layer the server has to offer. Here is the view from 20,000 feet:

<WMT_MS_Capabilities version="1.1.1">

<Service>...</Service>

<Capability>

<Request>...</Request>

<Exception>...</Exception>

<UserDefinedSymbolization>...</UserDefinedSymbolization>

<Layer>...</Layer>

</Capability>

</WMT_MS_Capabilities>

Service contains information about the, umm, service. Capabilities tells

you about the, uh, capabilities of the server. (I told you that this was

easy.) The Service section contains basic metadata about the service:

its name, a brief description, and who to contact if you have questions:

<Service>

<Name>OGC:WMS</Name>

<Title>My GeoServer WMS</Title>

<Abstract>This is a description of your Web Map Server.</Abstract>

<KeywordList>

<Keyword>WFS</Keyword>

<Keyword>WMS</Keyword>

<Keyword>GEOSERVER</Keyword>

</KeywordList>

<OnlineResource xlink:type="simple"

xlink:href="http://geoserver.sourceforge.net/html/index.php"/>

<ContactInformation>

<ContactPersonPrimary>

<ContactPerson>null</ContactPerson>

<ContactOrganization>null</ContactOrganization>

</ContactPersonPrimary>

<ContactPosition>null</ContactPosition>

<ContactAddress>

<AddressType>null</AddressType>

<Address>null</Address>

<City>null</City>

<StateOrProvince>null</StateOrProvince>

<PostCode>null</PostCode>

<Country>null</Country>

</ContactAddress>

<ContactVoiceTelephone>null</ContactVoiceTelephone>

<ContactFacsimileTelephone>null</ContactFacsimileTelephone>

<ContactElectronicMailAddress>null</ContactElectronicMailAddress>

</ContactInformation>

<Fees>NONE</Fees>

<AccessConstraints>NONE</AccessConstraints>

</Service>

WMS GETCAPABILITIES 160

Figure 7.1: Editing WMS service information

Our service is pretty tight-lipped, isn’t it? You can change these values

by going to Config > WMS > Description. (See Figure 7.1.) You could

also hand-edit /geoserver/webapps/geoserver/conf/services.xml.

Once you have that filled in, you can fill in the contact information at

Config > Server. (See Figure 7.2, on the next page.)

Make the GetCapabilities request again to ensure that your changes

were saved. You can do this in your browser, or you can use any

command-line utility that can make a valid HTTP GET request. For

example, I use wget on Mac/Unix systems:

wget -O wms.xml 'http://localhost:8888/geoserver/wms?service=WMS&

version=1.1.1&request=GetCapabilities'

Now that we understand the Service section, let’s focus on Capabili-

ties. It has four subsections: Request, Exception, UserDefinedSymbol-

ization, and Layers.

WMS GETCAPABILITIES 161

Figure 7.2: Editing WMS service contact information

Request lists the valid requests. These are the method calls that the

server supports. We’ll focus on the two main ones: GetCapabilities and

GetMap:

<Request>

<GetCapabilities>...</GetCapabilities>

<GetMap>...</GetMap>

<GetFeatureInfo>...</GetFeatureInfo>

<DescribeLayer>...</DescribeLayer>

<GetLegendGraphic>...</GetLegendGraphic>

</Request>

Looking into the GetCapabilities block, we see the format (technically,

MIME type) of the response document and the supported HTTP meth-

ods. We’ll stick to making GET requests, but the server will respond to

POSTs as well.

WMS GETCAPABILITIES 162

<GetCapabilities>

<Format>application/vnd.ogc.wms_xml</Format>

<DCPType>

<HTTP>

<Get>

<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://localhost:8888/geoserver/wms?SERVICE=WMS&"/>

</Get>

<Post>

<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://localhost:8888/geoserver/wms?SERVICE=WMS&"/>

</Post>

</HTTP>

</DCPType>

</GetCapabilities>

GetMap shows a similar set of information. It shows you which image

formats are supported. Unlike GetCapabilities, this request must be

made using HTTP GET.

<GetMap>

<Format>application/pdf</Format>

<Format>image/png</Format>

<Format>image/jpeg</Format>

<Format>application/vnd.google-earth.kmz</Format>

<Format>image/svg+xml</Format>

<Format>image/gif</Format>

<Format>application/vnd.google-earth.kml+xml</Format>

<DCPType>

<HTTP>

<Get>

<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://localhost:8888/geoserver/wms?SERVICE=WMS&"/>

</Get>

</HTTP>

</DCPType>

</GetMap>

If you’re familiar with SOAP web services, this document should seem

strangely familiar. It isn’t truly a WSDL document, but it serves the

same function, doesn’t it? It’s easy to create clients that automatically

consume these services since the document explicitly defines all of the

particulars.

The Exception and UserDefinedSymbolization sections are pretty

straightforward. If the server throws an error back at you, you now

WMS GETCAPABILITIES 163

know what the MIME type will be. We already knew that our server

supports SLD, but here it is stated explicitly:

<Exception>

<Format>application/vnd.ogc.se_xml</Format>

</Exception>

<UserDefinedSymbolization SupportSLD="1"

UserLayer="1"

UserStyle="1"

RemoteWFS="0"/>

Finally, we get to the real reason we care about this document at all—

the Layer section. The first thing listed in the Layer section after the

Title and Abstract (repeated here from the Service section, for those of

you paying attention) is the enumeration of all of the SRSs the server

supports. Yes, that is every EPSG code. GeoServer can convert among

them with ease, so it lists them all. Other servers in the wild might

support only a handful of projections.

After the supported SRSs, you are presented with a list of each Fea-

tureType that GeoServer has configured. Dig through the list until you

find the st99_d00 layer:

<Layer queryable="1">

<Name>g4wd:st99_d00</Name>

<Title>US States</Title>

<Abstract>Generated from us_states</Abstract>

<KeywordList>

<Keyword>st99_d00 us_states</Keyword>

</KeywordList>

<SRS>EPSG:4326</SRS>

<LatLonBoundingBox minx="-179.14734"

miny="17.884813"

maxx="179.77847000000006"

maxy="71.35256064399981"/>

<Style>

<Name>polygon</Name>

<Title>A boring default style</Title>

<Abstract>A sample style...</Abstract>

<LegendURL width="20" height="20">

<Format>image/png</Format>

<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://localhost:8888/geoserver/wms/GetLegendGraphic?

VERSION=1.0.0&FORMAT=image/png&WIDTH=20&

HEIGHT=20&LAYER=g4wd:st99_d00"/>

</LegendURL>

</Style>

</Layer>

WMS GETMAP 164

No surprises here, eh? We configured all of these details when we set

up the service, so seeing them presented back to us might seem a bit

anticlimactic. But what if you want to work with a remote server that

you don’t have administrative privileges on? Take a moment to look

through two capabilities documents that we’ll be using later in this

chapter. The first is from Iowa State. The school offers live weather

feeds that we’ll superimpose over our basemap layers. The second is

from NASA, which offers Blue Marble raster layers.

http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r.cgi?

service=wms&version=1.1.1&request=GetCapabilities

http://wms.jpl.nasa.gov/wms.cgi?

service=wms&version=1.1.1&request=GetCapabilities

Doing all of this by hand might seem a bit tedious right now, but it’ll

give you some insight into what every OGC-enabled client does on your

behalf. Neither Iowa State nor NASA uses GeoServer, but the resulting

documents should look no different from what we are serving up locally.

7.3 WMS GetMap

Once you know which layers are available via GetCapabilities, you can

request a rendered map using GetMap. Make this HTTP GET request

from your web browser:

http://localhost:8888/geoserver/wms?

version=1.1.1&

request=GetMap&

srs=EPSG:4326&

bbox=-124.731422,24.955967,-66.969849,49.371735&

width=500&

height=285&

layers=g4wd:st99_d00&

styles=polygon&

format=image/png

You should see that darn US States data layer again. (Why won’t it leave

us alone?) Now add the Canadian layer. Both layers and styles accept

a comma-separated list of values:

http://localhost:8888/geoserver/wms?

version=1.1.1&

request=GetMap&

srs=EPSG:4326&

bbox=-124.731422,24.955967,-66.969849,49.371735&

width=500&

height=285&

UNDERSTANDING WFS 165

layers=g4wd:st99_d00,g4wd:prov_ab_p_geo83_e&

styles=polygon,polygon&

format=image/png

Now let’s ask NASA for a raster version of the states. Unfortunately, we

can’t add layers from multiple servers in a single WMS request. (Stay

tuned: we’ll do that in just a moment using an OGC Context document.)

Copy and paste your GeoServer request. All we have to change is the

server address, the layer, and the style. Since the image is a raster,

there really isn’t a need for an SLD style to handle the coloring. The

NASA GetCapabilities document doesn’t list any styles, so we’ll simply

leave the parameter empty.

http://wms.jpl.nasa.gov/wms.cgi?

version=1.1.1&

request=GetMap&

srs=EPSG:4326&

bbox=-124.731422,24.955967,-66.969849,49.371735&

width=500&

height=285&

layers=BMNG&

styles=&

format=image/png

Being able to create GetMap requests like this by hand opens the door

for all sorts of possibilities. Testing and troubleshooting become a

breeze.

Now let’s shift our focus to WFS services. WFS will seem incredibly

familiar after all of this.

7.4 Understanding WFS

WMS’s strength is that all of the rendering takes place on the server

side. The output of the request is ready for display. For a browser-

based client, this is convenient. However, there is a downside. Once the

image is rendered, the look and feel cannot be modified. This can be

limiting for a rich desktop client (such as uDig, which we’ll play with

later in this chapter) that has the power to do the same sophisticated

rendering as a WMS server.

WMS output can be problematic in a more subtle way as well. The

input is clearly geographic, but the output is a flat image file with no

embedded georeferencing. GeoServer doesn’t output GeoTIFFs, much

less images with world files. Even if it did, modern web browsers would

not do anything useful with the additional spatial information.

WFS GETCAPABILITIES 166

As a presentation tier delivery mechanism, WMS does fine work. But if

you are looking to convey model data instead of view data, it falls short.

Enter the companion Web Feature Service (WFS).2

WFS is designed to return pure geodata without any hints as to how the

data should be portrayed. It falls into the same category as shapefiles

and PostGIS; however, WFS is a web service as opposed to a file format

or database dialect.

Web Coverage Service (WCS)3 does the same for rasters as WFS does

for vectors: it returns the raw data instead of the portrayed data. Since

WCS is in the domain of the Uber Raster Geek, open source support

for it is spotty but growing. GeoServer offers experimental support for

WCS.

Version 1.0.0 of WFS was released in May 2002. Version 1.1.0 was

released three years later in May 2005. Similar to the latest WMS spec,

support for the latest WFS spec lags considerably behind the more

prevalent WFS 1.0.0. GeoServer offers 1.0.0 support.

7.5 WFS GetCapabilities

Let’s do the same GetCapabilities request for GeoServer’s WFS that we

did for WMS:

http://localhost:8888/geoserver/wfs?service=WFS&

version=1.0.0&request=GetCapabilities

The format of a WFS GetCapabilities document is slightly different from

WMS’s, but the concepts are the same:

<WFS_Capabilities version="1.0.0"

xsi:schemaLocation="http://www.opengis.net/wfs

http://localhost:8888/geoserver/schemas/wfs/1.0.0/WFS-capabilities.xsd">

<Service>...</Service>

<Capability>...</Capability>

<FeatureTypeList>...</FeatureTypeList>

<ogc:FilterCapabilities>...</ogc:FilterCapabilities>

</WFS_Capabilities>

2. http://www.opengeospatial.org/standards/wfs

3. http://www.opengeospatial.org/standards/wcs

WFS GETCAPABILITIES 167

WFS Service contains the same metadata that WMS Service does. Capa-

bility lists the available service calls:

<Capability>

<Request>

<GetCapabilities>

<DCPType>

<HTTP>

<Get onlineResource="http://localhost:8888/geoserver/wfs?"/>

</HTTP>

</DCPType>

<DCPType>

<HTTP>

<Post onlineResource="http://localhost:8888/geoserver/wfs?"/>

</HTTP>

</DCPType>

</GetCapabilities>

<DescribeFeatureType>...</DescribeFeatureType>

<GetFeature>...</GetFeature>

<Transaction>...</Transaction>

<LockFeature>...</LockFeature>

<GetFeatureWithLock>...</GetFeatureWithLock>

</Request>

</Capability>

We’ll focus on the three most popular: GetCapabilities, DescribeFea-

tureType, and GetFeature. These are used to read geodata from the ser-

vice. GeoServer is notable in that it supports Transactional WFS (WFS-

T)4 as well. Transaction, LockFeature, and GetFeatureWithLock allow

you to write data back to the service. We’ll limit ourselves to consuming

WFS data, but being able to write data back via a standardized open

interface opens the door to interesting uses such as devices sending

real-time location information back to the server. Implementing some-

thing like that is, as they say, an exercise for the reader.

The FeatureTypeList corresponds to the Layers list in WMS. It starts

with a list of Operations (Query is for WFS; the others are for WFS-T).

After that, it presents a list of available FeatureTypes.

<FeatureTypeList>

<Operations>

<Query/>

<Insert/>

<Update/>

<Delete/>

<Lock/>

</Operations>

4. http://www.opengeospatial.org/standards/wfs

WFS GETCAPABILITIES 168

<FeatureType>

<Name>g4wd:st99_d00</Name>

<Title>US States</Title>

<Abstract>Generated from us_states</Abstract>

<Keywords>st99_d00 us_states</Keywords>

<SRS>EPSG:4326</SRS>

<LatLongBoundingBox minx="-179.14734"

miny="17.884813"

maxx="179.77847000000006"

maxy="71.35256064399981"/>

</FeatureType>

<FeatureType>...</FeatureType>

<FeatureType>...</FeatureType>

...

</FeatureTypeList>

The last list of items in the WFS GetCapabilities document is

Filter_Capabilities. You’ll see these in action when we begin doing Get-

Feature requests. They allow you to limit the amount of data that comes

back to you based on the criteria you pass in. Think of it as SQL for

WFS.

<ogc:Filter_Capabilities>

<ogc:Spatial_Capabilities>

<ogc:Spatial_Operators>

<ogc:Disjoint/>

<ogc:Equals/>

<ogc:DWithin/>

<ogc:Beyond/>

<ogc:Intersect/>

<ogc:Touches/>

<ogc:Crosses/>

<ogc:Within/>

<ogc:Contains/>

<ogc:Overlaps/>

<ogc:BBOX/>

</ogc:Spatial_Operators>

</ogc:Spatial_Capabilities>

<ogc:Scalar_Capabilities>

<ogc:Logical_Operators/>

<ogc:Comparison_Operators>...</ogc:Comparison_Operators>

<ogc:Arithmetic_Operators>

<ogc:Simple_Arithmetic/>

<ogc:Functions>...</ogc:Functions>

</ogc:Arithmetic_Operators>

</ogc:Scalar_Capabilities>

</ogc:Filter_Capabilities>

WFS DESCRIBEFEATURETYPE 169

7.6 WFS DescribeFeatureType

OK, so we know that there is a FeatureType named g4wd:st99_d00

based on the FeatureTypeList in the GetCapabilities document. What

else can our WFS tell us about this little nugget? I’m so glad you asked.

Let’s do a DescribeFeatureType request:

http://localhost:8888/geoserver/wfs?service=WFS&

version=1.0.0&

request=DescribeFeatureType&

typeName=g4wd:st99_d00

DescribeFeatureType returns an XML schema document describing the

structure of the data set. The schema document lists each field and its

data type:

<xs:schema targetNamespace="http://mapmap.org/g4wd"

xmlns:g4wd="http://mapmap.org/g4wd"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="1.0">

<xs:import namespace="http://www.opengis.net/gml"

schemaLocation="http://localhost:8888/geoserver/schemas/gml/2.1.2/feature.xsd"/>

<xs:complexType xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="st99_d00_Type">

<xs:complexContent>

<xs:extension base="gml:AbstractFeatureType">

<xs:sequence>

<xs:element name="the_geom"

minOccurs="0"

nillable="true"

type="gml:MultiPolygonPropertyType"/>

<xs:element name="AREA" minOccurs="0" nillable="true"

type="xs:double"/>

<xs:element name="PERIMETER" minOccurs="0" nillable="true"

type="xs:double"/>

<xs:element name="ST99_D00_" minOccurs="0" nillable="true"

type="xs:long"/>

<xs:element name="ST99_D00_I" minOccurs="0" nillable="true"

type="xs:long"/>

<xs:element name="STATE" minOccurs="0" nillable="true">

...

So, now we know that the g4wd:st99_d00 layer is a multipolygon. We

also know about the nonspatial attributes that will be coming along for

the ride. We’re ready—show us the data.

WFS GETFEATURE 170

7.7 WFS GetFeature

To get the actual data, do a GetFeature request. (Recall that in WMS it

was a GetMap request.)

http://localhost:8888/geoserver/wfs?service=WFS&

version=1.0.0&

request=GetFeature&

typeName=g4wd:st99_d00

This returns the entire FeatureType as a well-formed Geographic Mark-

up Language (GML)5 document. The good news is GML is an open stan-

dard. The bad news is it is incredibly verbose. Thankfully, you can

append outputFormat=GML2-GZIP to the end of your GetFeature request

to have the server gzip the output on the fly. (outputFormat=GML2 is the

default output type.)

<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"

xmlns:g4wd="http://mapmap.org/g4wd"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/wfs

http://localhost:8888/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd

http://mapmap.org/g4wd

http://localhost:8888/geoserver/wfs/DescribeFeatureType?typeName=g4wd:st99_d00">

<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:coordinates xmlns:gml="http://www.opengis.net/gml"

decimal="." cs="," ts=" ">

-179.14734,17.884813 179.77847,71.35256064

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:featureMember>

<g4wd:st99_d00 fid="st99_d00.1">

<g4wd:the_geom>

<gml:MultiPolygon

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:polygonMember>

<gml:Polygon>

<gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates xmlns:gml="http://www.opengis.net/gml"

decimal="." cs="," ts=" ">

-147.78711088,70.24536349 -147.765104,70.219806 ...

</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon>

5. http://www.opengeospatial.org/standards/gml

FILTERING WFS GETFEATURE REQUESTS 171

</gml:polygonMember>

</gml:MultiPolygon>

</g4wd:the_geom>

<g4wd:AREA>271.254383622068</g4wd:AREA>

<g4wd:PERIMETER>227.171421517178</g4wd:PERIMETER>

<g4wd:ST99_D00_>2</g4wd:ST99_D00_>

<g4wd:ST99_D00_I>1</g4wd:ST99_D00_I>

<g4wd:STATE>02</g4wd:STATE>

<g4wd:NAME>Alaska</g4wd:NAME>

<g4wd:LSAD>01</g4wd:LSAD>

<g4wd:REGION>4</g4wd:REGION>

<g4wd:DIVISION>9</g4wd:DIVISION>

<g4wd:LSAD_TRANS></g4wd:LSAD_TRANS>

</g4wd:st99_d00>

</gml:featureMember>

<gml:featureMember>...</gml:featureMember>

<gml:featureMember>...</gml:featureMember>

...

</wfs:FeatureCollection>

It reads like Shakespeare, doesn’t it? This is the abridged version, no

less, since what I am showing you here is only one of the 273 records.

Oh, and I also truncated the avalanche of lat/long pairs in the

gml:coordinates element. Old Will wouldn’t be too pleased if he ever

found about the liberties I took with his GML, would he?

Pushing large amounts of data across the wire, even if it is on a local

LAN, can present logistical challenges. Binary file formats take up a

fraction of the GML footprint, but they don’t offer the transparency of

plain text. It is admittedly a trade-off—size and speed for simplicity.

Let’s look at ways that we can trim this GML output into more bite-

sized pieces.

7.8 Filtering WFS GetFeature Requests

Remember the SLD for the choropleth map? (See Section 6.7, Styling

with SLD, on page 151.) It used criteria to color the states differently

based on the value of the population field. We didn’t dwell on it at the

time, but these Filters are a well-defined OGC specification as well.6

PropertyIsBetween, PropertyIsLessThan, and PropertyIsGreaterThan

are all examples of OGC Filters. Looking back at the WFS GetCapabili-

ties document, the Filter_Capabilities section gives you a nice overview

of the Filter syntax.

6. http://www.opengeospatial.org/standards/filter

FILTERING WFS GETFEATURE REQUESTS 172

We can use Filters in a slightly different context here. This time, we’ll

combine Filters with GetFeature requests to limit the amount of GML

that gets sent down the wire to us. For example, let’s say that we wanted

to see only the Colorado state polygon. Here is the Filter syntax:

<ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">

<ogc:PropertyIsEqualTo>

<ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:Literal>Colorado</ogc:Literal>

</ogc:PropertyIsEqualTo>

</ogc:Filter>

You already know what the GetFeature request looks like. If you glob

that Filter onto the end of the GetFeature request using a filter= param-

eter, the GML you get back should be limited to a single Colorado poly-

gon:

http://localhost:8888/geoserver/wfs?service=WFS&

version=1.0.0&

request=GetFeature&

typeName=g4wd:st99_d00&

filter=<ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">

<ogc:PropertyIsEqualTo><ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:Literal>Colorado</ogc:Literal></ogc:PropertyIsEqualTo></ogc:Filter>

OK, let me be the first to point out that stuffing XML into an QueryS-

tring is a crime against humanity. To make matters worse, technically

the filter string should be URL encoded (%3Cogc:Filter%3E), which ren-

ders it a total abomination. Did you just hear that? That was the sound

of the HTTP GET request being stretched beyond its capabilities. Indus-

try best practices suggest that you limit the length of your GET requests

to 255 characters or less. Does that mean that we are out of luck?

Put on your web developer hat for a moment—is there another HTTP

method that is generally used for longer, more complex submissions to

a web server?

Looking back at the WFS GetCapabilities document in the Capabilities

section, you should see that GetFeature supports both HTTP GET and

POST. I use GETs for simple requests, but sometimes POSTing your

request to a WFS server is the only way to go. Thankfully, GeoServer

makes POSTing sample requests almost as easy as just pasting GET

requests into your browser’s address line.To see what I’m talking about,

go to Welcome > Demo, and click the Sample Requests link. (See Fig-

ure 7.3, on the next page.)

The request combo box gives you a bunch of interesting samples. The

entries that end with .url are HTTP GETs. The ones that end with .xml

FILTERING WFS GETFEATURE REQUESTS 173

Figure 7.3: GeoServer testing tool for experimenting with HTTP POSTs

are HTTP POSTs. Choose WMS_getCapabilities.url, and click Change.

The URL line will be updated accordingly. Click Submit, and you’ll see

a familiar document returned.

Now choose WFS_getCapabilities.xml, and click Change. You not only

get a new URL, but the body is filled in as well. Click Submit once more

to perform the request.

<GetCapabilities

service="WFS"

xmlns="http://www.opengis.net/wfs"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/wfs

http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd"/>

OK, I admit that this makes me long for the simple elegance of an HTTP

GET. All of that nasty schema stuff makes this request more compli-

cated than it needs to be. Since we’re not using any elements from those

namespaces, we can shorten it a bit:

<GetCapabilities service="WFS"/>

FILTERING WFS GETFEATURE REQUESTS 174

Ah, that’s better. But those pesky namespace declarations will come

back later with a vengeance. This was only a temporary reprieve.

While we’re still in the early stages of playing around with POSTs, it’s

worth mentioning a command-line tool that you’ll want to get familiar

with: cURL. cURL comes standard on Mac and Linux boxes. You can go

to the cURL website7 to download Windows binaries.

The XML for WFS requests is going to get complicated in a hurry. You

should get in the habit of saving the XML to a text file and using cURL

to submit the POST. For example, save the GetCapabilities XML to the

filename getcapabilities.xml. Type the following at a command prompt in

the same directory as the file you just created. (Ignore the line breaks—

all of this must be on the same line for it to work.)

curl --request POST

--header "Content-Type: text/xml"

--data @getcapabilities.xml

http://localhost:8888/geoserver/wfs

The GetCapabilities document should flash by in the console. If you

want to save the results to a file, add - -output somefile.txt to the com-

mand.

OK, let’s return to the task at hand. We want to filter our GetRequest.

Here’s what a plain GetRequest looks like in XML:

<wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"

service="WFS"

version="1.0.0"

outputFormat="GML2">

<wfs:Query typeName="g4wd:st99_d00" />

</wfs:GetFeature>

Not bad. I can match this XML to the QueryString in my mind. Since

we’re about to begin filtering the output, I like to think about it in terms

of SQL as well. The query we just performed would be written in SQL

as select * from st99_d00;.

The first filtering we’ll do is limiting the number of fields returned in

the GML. In SQL I’d write select NAME, AREA, PERIMETER from st99_d00;.

7. http://curl.haxx.se/

FILTERING WFS GETFEATURE REQUESTS 175

Using Filter XML, it looks like this:

<wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"

xmlns:ogc="http://www.opengis.net/ogc"

service="WFS"

version="1.0.0"

outputFormat="GML2">

<wfs:Query typeName="g4wd:st99_d00">

<ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:PropertyName>AREA</ogc:PropertyName>

<ogc:PropertyName>PERIMETER</ogc:PropertyName>

</wfs:Query>

</wfs:GetFeature>

Notice that we had to add the OGC namespace in order to use the

PropertyName elements. Paste this XML block into the body text area

on the Demo Request screen, and click Submit. (Make sure that the

URL field is pointing to the WFS service.) Or use cURL. Either way,

the resulting GML should contain only those three named elements.

Stripping out that massive geometry field (the_geom) might not make

much sense from a mapping perspective, but it sure makes our query

results more manageable, doesn’t it?

Now that we’ve limited the fields, let’s limit the number of records

returned as well. To do a select NAME, AREA, PERIMETER from st99_d00 where

NAME = ’Colorado’;, try this:

<wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"

xmlns:ogc="http://www.opengis.net/ogc"

service="WFS"

version="1.0.0"

outputFormat="GML2">

<wfs:Query typeName="g4wd:st99_d00">

<ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:PropertyName>AREA</ogc:PropertyName>

<ogc:PropertyName>PERIMETER</ogc:PropertyName>

<ogc:Filter>

<ogc:PropertyIsEqualTo>

<ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:Literal>Colorado</ogc:Literal>

</ogc:PropertyIsEqualTo>

</ogc:Filter>

</wfs:Query>

</wfs:GetFeature>

That GML is getting smaller all the time, isn’t it? If you are doing this

in Firefox, the XML renderer does a nice job of indenting everything

for display purposes. But if you do a View > Source, you’ll probably

FILTERING WFS GETFEATURE REQUESTS 176

be pretty disappointed. The XML is returned as a single string with no

line breaks. (Those of you using cURL probably already noticed this.)

Another Unix standard tool, Tidy,8 will help make the output fit for

human consumption. If you saved your output to a file named co.xml,

try the following:

tidy -xml co.xml

Not bad, eh? This time, type tidy -xml -i co.xml to indent the output as

well:

$ tidy -xml -i co.xml

No warnings or errors were found.

<?xml version="1.0" encoding="utf-8"?>

<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"

xmlns:g4wd="http://mapmap.org/g4wd"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/wfs

http://localhost:8888/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd

http://mapmap.org/g4wd

http://localhost:8888/geoserver/wfs/DescribeFeatureType?typeName=g4wd:st99_d00">

<gml:boundedBy>

<gml:null>unknown</gml:null>

</gml:boundedBy>

<gml:featureMember>

<g4wd:st99_d00 fid="st99_d00.166">

<g4wd:AREA>28.03919812051</g4wd:AREA>

<g4wd:PERIMETER>22.0191923313779</g4wd:PERIMETER>

<g4wd:NAME>Colorado</g4wd:NAME>

</g4wd:st99_d00>

</gml:featureMember>

</wfs:FeatureCollection>

To complete your Unix kung fu, you could always pipe the cURL results

directly into Tidy:

curl --request POST

--header "Content-Type: text/xml"

--data @gf-criteria.xml

http://localhost:8888/geoserver/wfs

| tidy -xml -i

OK, back to filtering. In our final example, we’ll perform a spatial query.

Oftentimes you just want results back from an arbitrary bounding box.

8. http://tidy.sourceforge.net/

CONCLUSION 177

(What, you’ve forgotten your WMS queries already?) To limit our results

to a specific BBOX, try this:

<wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:gml="http://www.opengis.net/gml"

service="WFS"

version="1.0.0"

outputFormat="GML2">

<wfs:Query typeName="g4wd:st99_d00">

<ogc:PropertyName>NAME</ogc:PropertyName>

<ogc:PropertyName>AREA</ogc:PropertyName>

<ogc:PropertyName>PERIMETER</ogc:PropertyName>

<ogc:Filter>

<ogc:BBOX>

<ogc:PropertyName>the_geom</ogc:PropertyName>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml">

<gml:coordinates>-109.31,36.72 -101.87,41.03</gml:coordinates>

</gml:Box>

</ogc:BBOX>

</ogc:Filter>

</wfs:Query>

</wfs:GetFeature>

Notice the third namespace, gml? We need it to define a simple box.

Just in case you’re curious, the output is all of the states that touch

Colorado. The bounding box used for the criteria is slightly wider than

the minimum bounding rectangle (MBR) of Colorado.

OK, filtering completes our spelunking tour of the internals of WMS

and WFS. We’ve by no means demonstrated every possible example of

what you can do with these different standards, but you should know

enough to at least feel comfortable.

7.9 Conclusion

OGC interfaces are great to work with; the RESTful interface is easy

to use. Knowing that all OGC servers provide capabilities documents

means that you’ll never have to guess which data layers are available,

what your styling options are, or what file formats and EPSG codes

are allowed. A WMS GetMap request allows you to specify every last

detail of the finished map. If the raw data is what you’re looking for,

WFS DescribeFeatureType and GetFeature are more your speed. And

knowing that GML can potentially be pretty verbose, having OGC Filters

in your toolkit means that you can be sure that you’ll get only as much

information as you ask for.

CONCLUSION 178

Now let’s move back up the stack. The next chapter looks at three high-

level applications that all grok the OGC standards. Mapbuilder is an

OGC Ajax web framework. OpenLayers is another Ajax web framework

with a twist: it not only speaks OGC fluently, but it also speaks propri-

etary mapping dialects such as the Google Maps API as well. uDig is a

GUI desktop application that has wonderful OGC support.

Chapter 8

OGC Clients
Here in our third (and final) OGC chapter, we look at applications and

web frameworks that consume OGC services. We start with Mapbuilder,

an Ajax framework that ships with GeoServer. Next, we look at another

Ajax framework named OpenLayers. This toolkit was inspired by the

architecture of Google Maps. We finish the chapter with uDig, a desktop

viewer that allows you to mix OGC data sets with local shapefiles and

PostGIS data sets.

8.1 Mapbuilder

Mapbuilder is the Ajax toolkit that powers the map previews in Geo-

Server. We’re going to take a look at it in greater detail because you get

it for free—why wouldn’t you use it? Additionally, it gives us an excuse

to look at another OGC standard, the Web Map Context file.

Recall that the preview maps are autogenerated each time GeoServer

starts. (See Section 6.3, Installing GeoServer, on page 137.) That makes

them a great learning tool. No matter how badly things get screwed up,

you are always just a restart away from starting over with a clean slate.

Of course, this can also be a hindrance. If you’re not careful, all of your

changes to the files can get blown away in a single reboot. Later in this

section we’ll copy a map out of harm’s way so that our changes will be

permanent.

Let’s go hunting for those default maps. Take a look at geoserver/

webapps/geoserver/preview. You should see three files per preview map.

These files take the form [namespace]_[layername]. g4wd_st99_d00.html

is the map. g4wd _st99_d00.xml is the OGC Context file. Finally,

g4wd_st99_d00Config.xml is the Mapbuilder configuration file. Let’s take

a closer look at each one.

MAPBUILDER 180

The HTML Map

Open g4wd_st99_d00.html in a text editor:

<html>

<head>

<title>g4wd:st99_d00 Preview</title>

<link rel="stylesheet" href="../../style.css" type="text/css">

<link rel="stylesheet" href="../mb/lib/skin/default/html.css"

type="text/css">

<script type="text/javascript">

var mbConfigUrl='g4wd_st99_d00Config.xml';

</script>

<script type="text/javascript" src="../mb/lib/Mapbuilder.js"></script>

</head>

In the head section, a couple of CSS files are linked in. The core Map-

builder.js file is included as well. But most important, a pointer back to

the Mapbuilder config file is created.

<body onload="mbDoLoad()">

<table border="0">

<tr>

<td valign="top" id="locatorMap"

style="background-color: white;" />

<td rowspan="2" valign="top">

<table border="0">

<tr>

<td align="left" id="mainButtonBar"/>

<td align="right" id="cursorTrack" />

</tr>

<tr>

<td colspan="2" id="mainMapPane"

style="background-color: white;" />

</tr>

<tr align="right">

<td colspan="2">

<table>

<tr>

<td align="left" id="mapScaleText"/>

<td align="right">

Powered by

Community Map Builder

</td>

<td>

</td>

</tr>

</table>

</td>

MAPBUILDER 181

</tr>

</table>

</td>

</tr>

<tr><td id="legend" /></tr>

<tr><td colspan="3" id="featureList" /></tr>

<tr><td colspan="3" id="transactionResponse" /></tr>

<tr><td colspan="3"><div id="eventLog" /></td></tr>

</table>

</body>

</html>

Ignoring the cardinal sin of using HTML tables for page layout (hey,

this is free code—you get what you pay for), what should leap out

at you is the copious use of id attributes. These ids are placeholders

for the various map widgets. The most important one of the bunch is

mainMapPane—that is where the data layer appears. Everything else is

reasonably well named. Widgets such as locatorMap, cursorTrack, and

mapScaleText should leave little to the imagination in terms of what

they do.

If you strip away everything else on the page, here is a bare-bones

Mapbuilder map:

<html>

<head>

<title>g4wd:st99_d00 Preview</title>

<link rel="stylesheet" href="../../style.css" type="text/css">

<link rel="stylesheet" href="../mb/lib/skin/default/html.css"

type="text/css">

<script type="text/javascript">

var mbConfigUrl='g4wd_st99_d00Config.xml';

</script>

<script type="text/javascript" src="../mb/lib/Mapbuilder.js"></script>

</head>

<body onload="mbDoLoad()">

<div id="mainMapPane" style="background-color: white;" />

</body>

</html>

Before we can try this bare-bones HTML, we need to “skinny” down

the Mapbuilder config file as well. Right now it is expecting many more

ids to be available on the page. It’ll fail silently until we get those two

files back in sync again. (OK, technically it will throw errors into the

JavaScript console. But who looks there, right?)

MAPBUILDER 182

The Config File

The Mapbuilder config file contains the instructions used to fill in the

id placeholders with working widgets. Open g4wd_st99_d00Config.xml in a

text editor. There’s a lot going on, isn’t there? The following is a greatly

thinned-out config file. It won’t actually run, but it will help us see the

basic elements without getting bogged down in all the details.

<MapbuilderConfig>

<models>

<Context id="mainMap">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="mainMapWidget">...</MapPane>

</widgets>

</Context>

<Context id="locator">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="locatorWidget">...</MapPane>

</Context>

</models>

<widgets>

<ZoomIn id="zoomIn">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</ZoomIn>

<ZoomOut id="zoomOut">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</ZoomOut>

<DragPan id="dragPan">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</DragPan>

<Reset id="reset">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</Reset>

</widgets>

</MapbuilderConfig>

Notice that the model element has two Contexts. The preview map has

two maps—the main one in the center and the little map up in the left

corner. Each Context has a pointer back to a OGC Context file. This,

MAPBUILDER 183

as you’ll see in just a moment, is where you define the data layers to

be displayed. Notice the clean separation of MVC concerns? Here, we’re

simply defining a map widget, which doesn’t much care what data it

displays. Defining the map layers and the styling is someone else’s job.

Each Context has a list of widgets. I’m displaying only the important

one here—the map widget. Notice that there are widgets defined outside

of a context as well. These are the zoom buttons. They are tied back to

a specific Context through the targetModel element.

Removing all of the extraneous stuff, here is a bare-bones Mapbuilder

config file to go with our stripped-down HTML file:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<MapbuilderConfig version="0.2.1"

id="referenceTemplate"

xmlns="http://mapbuilder.sourceforge.net/mapbuilder"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://mapbuilder.sourceforge.net/mapbuilder

../../mapbuilder/lib/schemas/config.xsd">

<models>

<Context id="mainMap">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="mainMapPane">

<mapContainerId>mainMapContainer</mapContainerId>

</MapPane>

</widgets>

</Context>

</models>

<skinDir>../mb/lib/skin/default</skinDir>

</MapbuilderConfig>

Save this file, and click the Refresh button in your browser. (See Fig-

ure 8.1, on the next page.) Notice that we don’t have to update Geo-

Server when we make changes to these files. The server infrastructure

is in place; we’re just playing around in the web tier. All of the normal

web development life cycles apply.

The OGC Web Map Context File

Let’s take a look at the last file of the three. Open g4wd_st99_d00.xml in

a text editor:

The Context file is short, sweet, and to the point. It defines the viewable

nonspatial attributes of the map such as the size and the title. It also

identifies the data layer(s) that should be included on the map. (You’ll

learn more about multiple layers in just a moment.)

MAPBUILDER 184

Figure 8.1: A simple Mapbuilder map

<ViewContext>

<General>

<Window width="500" height="285"/>

<BoundingBox SRS="EPSG:4326"

minx="-179.14734"

miny="17.884813"

maxx="179.77847000000006"

maxy="71.35256064399981"/>

<Title>g4wd:st99_d00 Map</Title>

<KeywordList>

<Keyword>g4wd:st99_d00</Keyword>

</KeywordList>

<Abstract></Abstract>

</General>

<LayerList>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:st99_d00 Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:st99_d00</Name>

<Title>g4wd:st99_d00</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

</LayerList>

</ViewContext>

MAPBUILDER 185

Figure 8.2: The U.S. map with better dimensions

Like the SLD file, the Context file is an OGC standard1 that can be

shared across server implementations. Write this file once, and it is

reusable from one server to the next.

This file finally allows us to do something about our poor, misshapen

U.S. map. The culprits are right there in plain sight: the Window and

BoundingBox elements. The Window is the same size for all of the pre-

view maps. The aspect ratio is roughly 2:1 (width:height); 500 pixels

wide by 285 pixels high is a reasonable default if we assume a mini-

mum screen resolution of 800 by 600 for our web visitors.

The problem is the dimensions of the BoundingBox. They don’t come

close to matching the ratio of the Window, giving us the dreaded “Silly

Putty” effect once again. Let’s naively pretend that EPSG 4326 is a

planar projection to keep the concepts simple. We’ll figure out in raw

degrees what our map dimension should be and use them unchanged

as pixel coordinates.

First, let’s tackle the longitude. Notice that the min and max are both

basically 180 degrees. That means the width of the map runs the full

360 degrees. (Recall that there are a couple of Alaskan islands that

cross the International Date Line, making for a pretty wide map.) If we

let 1 pixel equal 1 degree, then our Window should have a width of 360.

Looking at the latitude, the height should be roughly 71–17, or 54 pixels

tall. That’s not very tall, so let’s double both values to give us a map 720

pixels wide by 108 pixels tall.

1. http://www.opengeospatial.org/standards/wmc

MAPBUILDER 186

Figure 8.3: Adjusting the BBOX to the map aspect ratio

Save the file, and hit Refresh in your browser. (See Figure 8.2, on the

preceding page.) The map dimensions might be kind of funny, but the

data layer is visibly less distorted than it was before.

The other thing we can do is adjust the BBOX to something that fits

the aspect ratio of the map. Open topp_states.xml in a text editor. Notice

the BBOX it is using to frame just the lower 48 states:

<Window width="500" height="285"/>

<BoundingBox SRS="EPSG:4326"

minx="-124.731422"

miny="24.955967"

maxx="-66.969849"

maxy="49.371735"/>

Flip our BBOX and Window settings to match these values, and click

Refresh in your browser. (See Figure 8.3.)

If we wanted to tweak the aspect ratio of the map using our naive algo-

rithm, the dimensions are 58 by 32. Multiplying each by eight yields

464 by 256—pretty close to the existing 500 by 285.

Building a Permanent Map

OK, we’ve had our fun. Restart GeoServer to get the default map in

place. Visit the preview map for st99_d00 one more time to make sure

that it has all of the widgets back in place.

MAPBUILDER 187

Now let’s move it out of harm’s way. Create a directory named g4wd in

geoserver/webapps/geoserver/. Copy st99_d00*.* from preview to the new

directory. We’re unashamedly taking the easy way out here—remember

all of those relative references to CSS and JavaScript files? By creating

our own directory at the same depth as preview, we’re ensuring that

none of the paths will break.

To make sure that there is no aspect ratio distortion, set the BBOX

to be the maximum possible and the Window to a perfect 2:1 ratio to

match. Pull it up in a browser so that you can see your changes as you

go.

<Window width="500" height="250"/>

<BoundingBox SRS="EPSG:4326"

minx="-180"

miny="-90"

maxx="180"

maxy="90"/>

As the name LayerList implies, a Context document supports multiple

layers. What happens if you add the Canadian Provinces layer? Copy it

from the Canadian Context document. While we’re at it, let’s change the

titles to something a bit more user-friendly. The legend should reflect

these changes. (See Figure 8.4, on the following page.)

<LayerList>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:st99_d00 Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:st99_d00</Name>

<Title>US</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:prov_ab_p_geo83_e Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:prov_ab_p_geo83_e</Name>

<Title>Canada</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

</LayerList>

MAPBUILDER 188

Figure 8.4: Mapbuilder displaying two layers

Notice that you can use the checkboxes in the legend to turn the layers

on and off. Pretty cool, eh? We aren’t limited to local data layers either.

Let’s add a live radar weather layer. Iowa State University offers this

data up in an OGC feed:

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1" title="weather">

<OnlineResource xlink:type="simple"

xlink:href="http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r.cgi"/>

</Server>

<Name>nexrad-n0r-m45m</Name>

<Title>Weather</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

If you copy one of the existing layers, you need to adjust four values.

The server Title attribute needs to be something unique. The OnlineRe-

source HREF can point either to a local server or to a remote one. (Tech-

nically, it needs to point to that server’s GetCapabilities document. Sur-

prised? You shouldn’t be.) You should change the Name element to the

name of the data layer. Finally, change the Title element to what you’d

like to appear in the legend.

MAPBUILDER 189

The way this weather data gets to us is interesting. The National Oce-

anic and Atmospheric Administration (NOAA) offers a free weather web

service,2 but unfortunately it is SOAP-based. We can get the data, but

not in a format that can be easily mapped. The Iowa State University

Department of Agronomy offers the same data, but as a WMS service.3

Are you beginning to see the power of a standards-based solution?

Remember our old friend the Blue Marble raster set? NASA offers it

up as an WMS service.4 Let’s add it our map. Put it at the end of the

LayerList.

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1" title="blue marble">

<OnlineResource xlink:type="simple"

xlink:href="http://wms.jpl.nasa.gov/wms.cgi?"/>

</Server>

<Name>BMNG</Name>

<Title>Blue Marble</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

Hmmm. Did your vector layers disappear? Opacity issues, right? Move

the Blue Marble layer to the top of the list, and refresh your browser.

Better? Good. (See Figure 8.5, on the next page.)

Now that we have several layers interacting, we might want to go back

and play with the SLDs a bit more. Maybe you’d like to turn off the fill

color in the U.S. and Canadian data layers. Maybe you want to tweak

the borders to bright yellow so that they stand out against the dark

Blue Marble background. The possibilities are endless.

Unfortunately, finding WMS servers on the Web is as hit or miss as

finding the raw data. The upside is that once you’ve found a server,

integrating it is a breeze (as we just demonstrated). And asking whether

a website supports WMS is a pretty unambiguous question. Either it

does or it doesn’t. For example, you can pull data from TerraServer-

USA via WMS.5

A couple of good directories of WMS services are available. Refractions

Research6 (the folks behind PostGIS) uses the Google Web API to har-

2. http://www.weather.gov/xml/

3. http://mesonet.agron.iastate.edu/ogc/

4. http://onearth.jpl.nasa.gov/

5. http://terraserver.microsoft.com/WebServices.aspx

6. http://www.refractions.net/white_papers/ogcsurvey/index.php

OPENLAYERS 190

Figure 8.5: Pulling in data layers from remote servers

vest servers from the across the Web. ExploreOurPla.net7 offers a big

generated listing of WMS servers as well.

Take this opportunity to poke around these listings and find some other

interesting data layers. Knowing that you are just a copy and paste

away from a new data set makes the power of OGC interfaces manifest.

8.2 OpenLayers

Why introduce another Ajax mapping framework? Nothing is intrinsi-

cally wrong with Mapbuilder. There are, however, a couple of reasons

why I find OpenLayers8 an attractive alternative:

• I can create a map in significantly fewer lines of code using a single

file instead of three.

7. http://exploreourpla.net/gis/wms-servers/

8. http://openlayers.org/

OPENLAYERS 191

• OpenLayers, as the name implies, supports multiple data provi-

ders. In addition to OGC services, it allows us to mix in data from

Google Maps, Yahoo Maps, and so on.

• OpenLayers provides better support for tessellated map layers.

Let’s start by creating a simple OpenLayers map. Since you’ve already

created a g4wd directory under geoserver/webapps/geoserver, let’s add

our new HTML files there. Create a file named ol.html:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<style type="text/css">

#map {

width: 500px;

height: 250px;

border: 1px solid black;

}

</style>

<script src="http://www.openlayers.org/api/OpenLayers.js"></script>

<script type="text/javascript">

//NOTE: geographic center of the US

var lon = -98.583333;

var lat = 39.833333;

var zoom = 3;

var map, us;

function init(){

map = new OpenLayers.Map($('map'));

us = new OpenLayers.Layer.WMS("US",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:st99_d00'});

map.addLayer(us);

map.setCenter(new OpenLayers.LonLat(lon, lat), zoom);

map.addControl(new OpenLayers.Control.LayerSwitcher());

}

</script>

</head>

<body onload="init()">

<div id="map"></div>

</body>

</html>

If you’ve ever worked with the Google Maps API,9 this code should look

very familiar. (If you haven’t ever worked with the Google Maps API, I

wrote a book10 that can get you up and running in a hurry.)

9. http://www.google.com/apis/maps/

10. http://www.pragmaticprogrammer.com/titles/sdgmapi/

OPENLAYERS 192

In both Google Maps and OpenLayers, notice that you include the

library with a single script element. This pulls in the library from across

the Internet. I like doing this because it frees me from keeping up with

bug fixes and feature enhancements. I always have the latest version

of the API with each page view. Of course, you can also download the

OpenMaps library to your local server. You might choose to do that

to improve performance, to minimize bandwidth consumption over an

expensive WAN link, or to simply lock in the feature set of a specific

version of the library.

Like Google Maps and Mapbuilder, you tie map widgets to HTML ele-

ments through their id attributes. Unlike Mapbuilder, you define your

map in JavaScript instead of an OGC Context document.

An OpenLayers.Layer.WMS object accepts four parameters in the con-

structor:

• The first argument is the name of the layer. This shows up in the

legend.

• The second argument is the URL to the WMS server. You don’t

need to include any of the GetCapabilities parameters, but you do

need to make sure you include the trailing question mark.

• The third argument specifies the layer(s). As you’ll see in a bit,

this is where you pass in any name/value pairs that you’d like

appended to the QueryString.

• The fourth argument (not shown here) is a set of OpenLayers-

specific arguments. Again, you will see this in action in just a

moment.

After the newly minted WMS layer is added to the map, we center the

map and specify a zoom level. These zoom levels are like the fixed zoom

levels in Google Maps; 0 is zoomed out to the world level, and 16 is

zoomed into street level. Finally, we add a little plus sign in the upper-

right corner of the map that allows us to turn data layers on and off.

Since there’s only one layer in place right now, this control is kind of

boring. Don’t worry, we’ll put it to use shortly. If everything got typed

in correctly, you should see your US States layer once again. (See Fig-

ure 8.6, on the following page.)

So, in 30 lines of HTML we have a fully functional map that rivals the

capabilities of its Mapbuilder counterpart. OpenLayers does the same

thing as Mapbuilder, but it comes in at a higher level of abstraction.

You just point it at a GetCapabilities document and let it handle the

OPENLAYERS 193

Figure 8.6: A simple OpenLayers map

minutia for you. Notice that we didn’t have to worry about setting both

the map dimensions and the BBOX? Avoiding the “Silly Putty" effect is

baked into the OpenLayers framework.

Adding a second layer to the map is simple. Just add a comma and the

layer name:

us = new OpenLayers.Layer.WMS("US",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:st99_d00,g4wd:prov_ab_p_geo83_e'});

But to really see what OpenLayers can do, let’s add the Blue Marble

layer once again:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<style type="text/css">

#map {

width: 500px;

height: 250px;

border: 1px solid black;

}

</style>

<script src="http://www.openlayers.org/api/OpenLayers.js"></script>

<script type="text/javascript">

//NOTE: geographic center of the US

var lon = -98.583333;

var lat = 39.833333;

OPENLAYERS 194

var zoom = 3;

var map, us, canada, blueMarble;

function init(){

map = new OpenLayers.Map($('map'));

blueMarble = new OpenLayers.Layer.WMS("Blue Marble",

"http://wms.jpl.nasa.gov/wms.cgi?",

{layers: 'BMNG', format: 'image/png'},

{isBaseLayer:true});

map.addLayer(blueMarble);

us = new OpenLayers.Layer.WMS("US",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:st99_d00',

format: 'image/png', transparent: true},

{isBaseLayer:false, opacity:0.5});

map.addLayer(us);

canada = new OpenLayers.Layer.WMS("Canada",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:prov_ab_p_geo83_e',

format: 'image/png', transparent: true},

{isBaseLayer:false, opacity:1.0});

map.addLayer(canada);

map.setCenter(new OpenLayers.LonLat(lon, lat), zoom);

map.addControl(new OpenLayers.Control.LayerSwitcher());

}

</script>

</head>

<body onload="init()">

<div id="map"></div>

</body>

</html>

We define three separate map layers this time: blueMarble, us, and

canada. blueMarble has to be a separate layer since it is coming from a

separate WMS server. I separated us and canada so that they could be

turned on and off independently.

Notice that we’re passing in additional arguments for the GetMap

request. In blueMarble, we specify both the layer and the format. If

you don’t tell it otherwise, OpenLayers defaults to JPEG for the image

format.

Since we want to be able to adjust the opacity of the image (and JPEG

doesn’t support alpha transparency), we request PNG instead. The on-

OPENLAYERS 195

line documentation11 shows you what the default values are for the

GetMap request:

DEFAULT_PARAMS: {

SERVICE: "WMS",

VERSION: "1.1.1",

REQUEST: "GetMap",

STYLES: "",

EXCEPTIONS: "application/vnd.ogc.se_inimage",

FORMAT: "image/jpeg"

}

In blueMarble, we also see the fourth constructor argument come into

play. {isBaseLayer:true} tells OpenLayers to treat this as a BaseLayer

instead of an overlay.12 BaseLayers are essentially mutually exclusive.

The LayerSwitcher in the upper-right corner presents all BaseLayers as

radio buttons. You can flip among them easily, but they cannot be dis-

played simultaneously. Overlays, on the other hand, can be displayed

simultaneously. The LayerSwitcher presents the user with checkboxes

instead of radio buttons.

If you are going to treat your map layers as overlays, you should pay

attention to a few other tricks. In both us and canada, we pass in the

standard but optional transparent argument with the GetMap request.

The image format must be PNG or GIF to support transparency. This

tells the WMS server to send the areas that aren’t features back as

transparent pixels instead of a solid color. In the fourth argument, we

tell OpenLayers that these layers aren’t basemaps, so treat them as

overlays instead. And finally, we tell OpenLayers to adjust the opacity

level of the entire feature. You can always set the opacity in the server-

side SLD, but being able to tweak it here gives you much finer control

of the display of the overlays. Opacity must be a float ranging from

0.0 (fully transparent) to 1.0 (fully opaque). Play around with this map,

flipping the overlays on and off, tweaking the opacity levels, and so on.

(See Figure 8.7, on the next page.)

OpenLayers Tips ’n’ Tricks

OpenLayers is a young framework. It is advancing at light speed. Rather

than present you with more code that is sure to be obsolete by the time

you read this, I’ll leave you with a couple of pointers.

11. http://trac.openlayers.org/wiki/Layer/WMS

12. http://trac.openlayers.org/wiki/BaseLayersAndOverlays

OPENLAYERS 196

Figure 8.7: OpenLayers with map layers from different servers

Support for data providers other than WMS is where much of the

growth in the framework is happening. For an example of using Google

Maps, Yahoo Maps, Microsoft’s Windows Live Local, and others, see the

sample application in the gallery.13

Be sure to choose View > Source on all of the examples; they are good

sources for additional public WMS servers.

For example, the nice world vector layer you see on the OpenLayers

home page is this:

var wms = new OpenLayers.Layer.WMS("OpenLayers WMS",

"http://labs.metacarta.com/wms/vmap0",

{layers: 'basic'});

Even if you don’t use the OpenLayers framework, the data is exposed

as a WMS layer that can be used in uDig, Mapbuilder, or anything else

that is fluent in OGC. Browse the GetCapabilities document to see what

other layers are available.

13. http://www.openlayers.org/gallery/multiple.html

OPENLAYERS 197

As you scavenge around the more recent OpenLayer examples, you’ll

see data coming from a slightly different URL:

var ol_wms = new OpenLayers.Layer.WMS("World Map",

"http://labs.metacarta.com/wms-c/Basic.py?",

{layers: 'basic', format: 'image/png' });

var jpl_wms = new OpenLayers.Layer.WMS("Satellite",

"http://labs.metacarta.com/wms-c/Basic.py?",

{layers: 'satellite', format: 'image/png' });

These data layers are being served up using the experimental WMS-C14

format. This data is tessellated instead of being served up as one big

image. MetaCarta15 is doing quite a bit of experimentation with tes-

sellated data and sharing its results with the open source community.

OpenLayers is just one example of this.

So, what is the big deal with tiled images? Go back and look at one of

the preview maps from GeoServer. Notice that you can drag the image

with your mouse, but does it behave like Google Maps? Nope. The image

is exactly the size of the onscreen map. When you drag it, you see white

pixels. When you stop dragging, Mapbuilder sends in a new request for

a new image.

Contrast that behavior with Google Maps. When you drag a map from

them, you almost never see white pixels. How do they do that? Simple.

Google Maps uses 256 by 256 pixel tiles. A typical map might be a grid

of five or more visible tiles per row and column, along with a couple of

extra tiles preloaded outside the viewable map boundaries. On a fast

connection, you might never see the individual tiles. But pay attention

the next time you start Google Maps cold. Or try dragging from one

corner of the map to the opposite corner quickly. You might be able to

outrun your browser cache and see the individual tiles downloading.

The Google Maps model scales incredibly well. Each tile has a fixed

name and dimensions. This means that it can be cached everywhere

from the local browser, up through a corporate proxy server, to the

ISP, and finally Google itself. Because the details of the maps are not

customizable by the end user, Google is able to achieve great economies

of scale—everyone gets the same pixels.

14. http://wiki.osgeo.org/index.php/WMS_Tiling_Client_Recommendation

15. http://www.metacarta.com

OPENLAYERS 198

Deconstructing Google Maps

If you’d like a deeper explanation of the mechanics of Google
Maps, go to http://www.mapmap.org/ryogm. There you’ll find a
slide show and working code examples of how to roll your own
Google Maps. Step through the pages in order, 1.html through
12.html. Be sure to choose View > Source and read the com-
ments for pointers to the important bits each step of the way.
In less than 200 lines of client-side JavaScript and no server-side
code, you can have your very own slippy map interface.

In contrast, WMS imagery is generated on demand. Since every WMS

request is unique (because of the map size, the bbox, the zoom level,

the included layers, the styling—you get the idea), caching is virtually

impossible. OpenLayers tries to get around this by making multiple

WMS requests, simulating a tiled image. In practice, this will most likely

end up having a negative effect on performance if the server is not

prepared to handle the additional load. WMS servers that are expecting

a few large, coarse-grained map requests will now be inundated with

many more than the expected number of requests. What was once a

single 1,000 by 1,000 pixel image could now be upward of thirty-six

distinct 256 by 256 pixel images by the time you take into account

the offscreen tiles needed to enable the smooth panning effect. Having

to render thirty-five more images than originally expected, multiplied

by each user of the system, could severely impact performance if the

server is already at capacity.

To help mitigate this on the server side, MetaCarta introduced Tile-

Cache.16 TileCache is a facade that sits between the WMS client and the

actual WMS server. It accepts standard WMS requests from the client

and requests tiles of a predefined size from the back-end server. It then

caches the tiles for future requests. The code is relatively new, but it is

a novel solution to the problem of optimizing WMS performance. Tile-

Cache and GeoServer make a pretty compelling one-two punch. Check

out the documentation17 for step-by-step instructions on getting the

two up and running.

16. http://labs.metacarta.com/wms-c/

17. http://docs.codehaus.org/display/GEOSDOC/TileCache+Tutorial

UDIG 199

Even though these OGC maps are served up from a web server, you

aren’t limited to simple browser-based clients. Let’s leave the web tier

and revisit the desktop again.

8.3 uDig

To take our newfound OGC knowledge out for a spin on the desktop,

there is no better vehicle than uDig.18 Short for User-friendly Desktop

Internet GIS, uDig lives up to the promise of its moniker. As you can

tell by the URL, it is sponsored by Refractions Research, the same folks

who brought us PostGIS, GEOS, and others. With solid support for

shapefiles and PostGIS, uDig allows you to seamlessly integrate those

local resources with OGC web services.

After you install uDig, start it. If you are a Java developer, this screen

might seem strangely familiar. uDig was built using the Rich Client

Platform (RCP),19 an offshoot of the Eclipse IDE project.

The first thing we’ll want to do is add our WMS to the Catalog area at

the bottom of the screen:

• Right-click the bottom pane, and choose Import.

• On the next screen, you could cheat and just import a Context

document to get an instant map, but what fun would that be?

Let’s add our WMS server by clicking Data.

• Choose Web Map Server.

• Enter the URL to our server’s GetCapabilities document:

http://localhost:8888/geoserver/wms?service=wms&version=1.1.1&request=GetCapabilities.

If all goes well, you should see a new icon for our WMS. Expanding the

list shows all the data layers. Right-click US States, and choose Add to

Current Map. (See Figure 8.8, on the following page.)

Now let’s try a WFS request. Right-click the Catalog area, and choose

Import again. Walk through the same steps you did before, only this

time choose Web Feature Service, and point it to: http://localhost:8888/geoserver/wfs?service=wfs&version=1.0.0&request=GetCa

Add the

Canadian Provinces layer to the current map.

18. http://udig.refractions.net/

19. http://wiki.eclipse.org/index.php/Rich_Client_Platform

UDIG 200

Figure 8.8: uDig displaying WMS data

You might notice a bit of a lag adding this new layer compared to

adding the last one. The difference, of course, is the amount of data

being sent down to uDig from the server. A WMS request sends down

an image that is a couple hundred kilobytes. A WFS request could be

many megabytes. No additional rendering is necessary for the WMS

image. Of course, no additional styling is possible, either. Right-click

the US States layer in the list along the left part of the screen. Choos-

ing Change Style reveals a limited list—only the SLDs you defined on

the server. That makes sense, doesn’t it? Now choose Change Style for

the Canadian Provinces layer. You are presented with a screen that

looks similar to the SLD editor provided by GeoServer. In fact, clicking

the XML option shows you that you are, indeed, creating an SLD doc-

ument. The only difference is that the data is being rendered on the

client side instead of the server side.

CONCLUSION 201

Let’s save this map. Right-click the Layers list, and choose Export.

Choose OWS Context, give it a filename, and click Finish. If you open

the resulting document side by side with the Context document we cre-

ated in GeoServer, you’ll notice a difference right away. The GeoServer

document is a Web Map Context document. The uDig document is a

OWS Context document.20 Yup, yet another OGC standard. Old-school

Context documents are limited to WMS layers. The newer OWS Context

documents support WFS and WCS layers as well as WMS layers.

We won’t take the time here to do it, but please experiment on your

own with adding in local shapefiles. Create a new connection to your

PostGIS database, and add some more data layers. Open some of the

rasters you have. Pull in the weather data from the Iowa State WMS

server. A good desktop viewer will allow you to pull in data from a variety

of sources.

Now fire up QGIS. Notice that it, too, offers OGC support, as well as

shapefiles, rasters, PostGIS, and so on. But if neither of these applica-

tions strikes your fancy, maybe OpenJUMP21 will. Yet another option is

OSSIM.22 The list goes on and on.

8.4 Conclusion

Do you see what has happened here? Without realizing it, you now

have a full set of resources at your fingertips. You’re moving among

vector and raster data sets with ease. Local files? No problem. Database

access? Got it. Web services? Of course. Need a web client? You know

two. Desktop client? You have nearly half a dozen installed and ready

to go. Command-line utilities? You betcha!

You, my friend, are officially “in the club.” If there was an official neo-

geography card, you’d be carrying it.

In the next, final chapter of the book, we’ll work through a real-world

challenge. We’ll take a set of data that has nothing but some street

addresses and spatially enable it. We’ll mix it in with our existing base-

map data. We’ll serve it up over the Web and call it a day. Ready for

graduation?

20. http://www.opengeospatial.org/projects/initiatives/contextie

21. http://openjump.org/wiki/show/HomePage

22. http://www.eogeo.org/Projects/projects_wiki/OSSIM

Chapter 9

Bringing It All Together
Here we are—the last chapter of the book. Let’s see whether we can

bring all of the concepts we’ve learned up to this point together into

one tidy bundle. We’ll find a data set that is nearly ready to be plotted

on a map. We’ll geocode it, mix it in with some existing basemap data,

stuff it into a spatial database, front it with some OGC web services,

and present the users with a browser-based slippy map. Ready?

9.1 From CSV to SQL

As you dig through the data you have in your application, you’ll find

that some of it is nearly mappable. By that I mean that it has address/

city/state/ZIP information, but it probably lacks the lat/long points

necessary to plot it on a map. We saw geocoders in action in Section 4.4,

Temporal Analysis, on page 78, so we know that it is possible to trans-

late a human-readable street address into a lat/long coordinate pair.

Before, Google and Terraserver-USA were geocoding for us under the

covers. Let’s take a nearly mappable data set and geocode it ourselves.

For our example here, we’ll download a list of colleges and universities

from the National Center for Educational Statistics.1 Feel free to substi-

tute your customer database, your personal address book, or anything

else that has addresses but no lat/long points.

1. http://nces.ed.gov/

FROM CSV TO SQL 203

The NCES offers all sorts of finished reports, but we want to get our

hands on the raw data. I’d give you a direct URL, but it is hidden behind

a usage agreement screen, so you’ll have to follow along step by step.

Don’t worry, it’s not too bad:

1. Go to http://nces.ed.gov/ipedspas/dct.

2. You’ll be greeted by an intimidating screen informing you that your

login has expired. Don’t worry—click Login.

3. On the next screen, click Guest Level.

4. A NCES data usage agreement will pop up. Once you have read it

thoroughly, click I Agree to the Terms Above.

5. On the next screen (don’t worry, we’re almost there), click the

Dataset Cutting Tool (DCT).

6. Click Download Data Files.

7. Pick the year 2005 and the “Institutional Characteristics and Stu-

dent Charges” survey.

8. Download the first data file in the list, HD2005. (The file in the last

column, Dictionary, contains a detailed description of each field.

While you’re pulling things down, you might as well grab this file

as well.)

For all of your troubles, you are rewarded with a 700KB ZIP file. Unzip

it to reveal a 2.2MB CSV file. Yup, comma-separated values. If you are

on a Unix machine, you can type wc -l hd2005.csv to see that we have

more than 7,000 rows of data. (Windows users will just have to trust

me.) Unix folks can type head hd2005.csv to see what our raw materials

are: 55 fields of potential map data. (Windows users are wondering why

their OS won’t let them do cool things like that.) We’ll limit ourselves to

the first six fields:

unitid: Unit ID

instnm: Institution name

addr: Address

city: City

stabbr: State

zip: ZIP code

FROM CSV TO SQL 204

There is plenty more interesting information hidden in there: phone

numbers and web addresses, the name of the “chief administrator,” the

highest degree offered (two year, four year, graduate, PhD), the size of

the staff, and even the enrollment totals. To keep things simple (you’re

probably already exhausted after finding the data to download), we’ll

just pop the schools onto a map and call it a day.

Choosing a Programming Language

I’ve tried to avoid showing bias toward any particular programming lan-

guage up to this point. You might have guessed that I’m a Java guy

from some of the desktop apps we used (ESRI ArcExplorer, uDig) or my

choice of OGC servers (GeoServer). Yes, these are all implemented in

Java, but I hope you’ll agree that you didn’t need to know a lick of Java

in order to take full advantage of them.

At this point, however, we’re going to need to write some code to trans-

form the colleges CSV file into a format that can be inserted into Post-

GIS. We’re also going to need to do some geocoding to get the much

needed lat/long points in place. To do this, I’m going to reach for my

current programming language of choice: Groovy.2 It offers the concise

power of Ruby but runs on the Java Virtual Machine, thereby allow-

ing me to leverage the rich Java ecosystem of open source libraries

and utilities. I’m certainly not suggesting that Groovy is the only way

we could get this task done. If Groovy isn’t your language of choice,

I hope the syntax is expressive enough to allow you to translate it to

your mother tongue. If this is your first exposure to Groovy, it won’t be

a half-bad language tutorial either. (For step-by-step instructions for

installing Groovy, see Appendix B, on page 249.)

Transforming the Data

We first need to transform our CSV file into SQL. Remember in Sec-

tion 5.7, Importing Data, on page 121 how shp2pgsql transformed a

shapefile into a text file filled with valid SQL INSERT statements? Our

script, csv2pgsql, is modeled after the same tool. Now might be a good

time to pull up one of those .sql files into the text editor of your choice

to refresh your memory.

2. http://groovy.codehaus.org/

FROM CSV TO SQL 205

Red Dot Fever

Mapping Hacks (O’Reilly) author Schuyler Erle coined the
phrase red dot fever∗ to describe what we’re doing here—
sticking pushpins on a map. This is, admittedly, the most prim-
itive thing we could possibly do in terms of cartography. If there
was a Maslow’s Hierarchy of Mapping Needs,† this would be on
the very bottom tier of the pyramid.

Assessing the current crop of web mapping APIs offered by the
“Big 3” (Google, Yahoo, and Microsoft), Schulyler laments, “At
present, all that these map APIs offer is ultimately a way to put
points on a map—what we’ve for years half-jokingly referred
to as red dot fever.... Where is the broader palette for telling
new and different stories on the Web with maps? Where is the
bidirectionality, the interactivity, the wiki nature?” He wrote this
in April 2006, but it is still an apt assessment of state-of-the-
art mapping today. Which of those providers does more than
offer you point-to-point driving directions? Not to take away
from their considerable achievements, but they’ve only just
scratched the surface of what can be done with web-based
mapping.

Consider the broader palette that our colleges map could
offer. We could create a choropleth separating out two-year
from four-year institutions. How about showing large institutions
vs. small? There are fields that identify a university as “historically
black” or “tribal.” There are fields that pertain to financial aid,
as well as whether the school is public or private. Interested in a
medical degree? How about institutions that have hospitals on-
site? There is even a field that shows “degree of urbanization”—
is the college located in a rural town or in the middle of a busy
city?

Who is using the map? If you are the target audience, then who
are you? Are you a high-school junior researching colleges? Do
you want one that is far away from your home town, one that
has a specific degree program, or one that has a major football
program? Are you a parent looking for institutions that fit within
your child’s college fund budget? Are you a working profes-
sional looking to get a master’s degree? Are you a professor

(Continued...)

∗. http://mappinghacks.com/2006/04/07/web-map-api-roundup/

†. http://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs

FROM CSV TO SQL 206

Red Dot Fever (cont.)

looking for an institution to do post-graduate work? Are you the
head of an institution wondering how you match up to others in
your area? Are you a government official researching the insti-
tutions in your district for funding reasons?

Is this meant to be a read-only map, or do you want to solicit
input from your users? Can they rate the colleges like they
would books on Amazon? Can they update incorrect informa-
tion? Can they add missing institutions?

All of those questions (and more) could be answered using
this data set. We could move beyond simple “red dot fever”
toward a map that conveys real information—a map that tells
a story. We could make a dozen or more maps from this one
data source that don’t show a single dot. Keep that in mind as
you put together your own maps.

But don’t forget Maslow’s pyramid either. You need to have
red dots on a map before you can move up the Hierarchy of
Mapping Needs and do any of that much cooler stuff. Schuyler
won’t yell at you if you are creating new maps where there
were none. I promise. More maps are always a good thing. Just
don’t be fooled into thinking that your job is done once you
have your first map up with red dots on it. Your work has just
begun....

The file starts a SQL transaction with BEGIN, creates the table, inserts

the data record by record, and then commits the transaction with END.

Here is a truncated version of what we want to end up with:

BEGIN;

CREATE TABLE college (

"id" numeric PRIMARY KEY,

"name" varchar(255),

"address" varchar(255),

"city" varchar(255),

"state" varchar(255),

"zip" varchar(255)

);

insert into college ("id", "name", ...) values(...);

insert into college ("id", "name", ...) values(...);

insert into college ("id", "name", ...) values(...);

...

END;

FROM CSV TO SQL 207

Creating the Table

Let’s start with creating the SQL to create the table. Create a file named

csv2pgsql.groovy, and type the following:

outputFile = new File("college.sql")

if(outputFile.exists()){ outputFile.delete() }

ddl = """

BEGIN;

CREATE TABLE college (

"id" numeric PRIMARY KEY,

"name" varchar(255),

"address" varchar(255),

"city" varchar(255),

"state" varchar(255),

"zip" varchar(255)

);

"""

outputFile.append(ddl)

outputFile.append("END;")

We create a new file named college.sql and delete it if it already exists

(we’re going to be running this script over...and over...and over...). Next,

we store the entire string to create the college table in the ddl variable.

Groovy’s triple quotes allow you to place anything inside of them with-

out worrying about new lines or escaping internal quotes. Finally, we

append the ddl variable to the output file and end the transaction.

Groovy code doesn’t require compilation, so type groovy csv2pgsql to run

it. Look at the contents of the resulting college.sql file. Does everything

seem OK? Then let’s hand it to PostgreSQL to test it:

psql -U postgres -d g4wd -f college.sql

Next, log into our database—psql -U postgres -d g4wd. \d should reveal

our new table. \d college should confirm that all of the fields are in

order. Type drop table college; to make sure that we are ready for the

next run. If you try to create a table that already exists, you’ll see the

following error message:

BEGIN

psql:college.sql:10: ERROR: relation "college" already exists

ROLLBACK

It doesn’t do any permanent damage. It’s just annoying. You’ll see it

plenty of times in this chapter. You’ll get used to it.

FROM CSV TO SQL 208

Inserting Records

Now let’s tackle getting those row values converted to SQL INSERT

statements. The irony is both are comma-delimited strings, but each

is just different enough to require a bit of massaging.

Before we write the code, let’s create a smaller sample data set. Copy

the first six lines out of hd2007.csv into a file named sample.csv. Once

we’re confident that our parsing algorithm works on six rows, we’ll turn

it loose on all 7,000. Now, let’s add some new code to csv2pgsql.groovy:

outputFile = new File("college.sql")

if(outputFile.exists()){ outputFile.delete() }

ddl = """

BEGIN;

CREATE TABLE college (

"id" numeric PRIMARY KEY,

"name" varchar(255),

"address" varchar(255),

"city" varchar(255),

"state" varchar(255),

"zip" varchar(255)

);

"""

outputFile.append(ddl)

// new code

// ED: how do I make this bold?

insertStart = """insert into college ("id", "name", "address",

"city", "state", "zip") values("""

insertEnd = ");"

counter = 0

inputFile = new File("sample.csv")

inputFile.splitEachLine(","){ tokens ->

if(counter == 0) {

/* skip the headers */

counter++

}

else{

println "${counter++} ${tokens[1]}" //show what is going on

insertMiddle = ""

for(i in 0..5){

insertMiddle += "${tokens[i]},"

}

insertMiddle = insertMiddle[0..-2] //strip off trailing comma

outputFile.append("${insertStart}${insertMiddle}${insertEnd}\n")

}

} // end new code

outputFile.append("END;")

FROM CSV TO SQL 209

We start by creating insertStart and insertEnd variables. Note that Groovy’s

triple quotes come to the rescue once again in insertStart—no escaping

internal quotes for us, thank you very much. Next, we open sample.csv

and walk through it line by line. splitEachLine tokenizes the line on the

comma character and puts the results in an array named tokens. The

remainder of the code creates the data for the values part of the INSERT

statement, sandwiches it between the boilerplate start and finish, and

writes it to our output file.

Yes, it pains me that we start with a comma-delimited string, tokenize

the string, and then turn it back into a comma-delimited string. Since

we are interested in only the first six fields, there is really no other way

do this, as redundant as it might seem.

Don’t forget that until recently programmers were evaluated by the

number of lines of code (LOC) they produced. Old habits die hard, I

guess.

Run groovy csv2groovy, and look at the resulting college.sql file. Look

good? Let’s see what PostgreSQL thinks about it:

$ psql -U postgres -d g4wd -f college.sql

BEGIN

psql:college.sql:10: NOTICE: CREATE TABLE / PRIMARY KEY will

create implicit index "college_pkey" for table "college"

CREATE TABLE

psql:college.sql:11: ERROR: column "Community College of the

Air Force" does not exist

LINE 1: ..., "address", "city", "state", "zip") values(00636,"Community...

^

psql:college.sql:12: ERROR: current transaction is aborted,

commands ignored until end of transaction block

psql:college.sql:13: ERROR: current transaction is aborted,

commands ignored until end of transaction block

psql:college.sql:14: ERROR: current transaction is aborted,

commands ignored until end of transaction block

psql:college.sql:15: ERROR: current transaction is aborted,

commands ignored until end of transaction block

ROLLBACK

D’oh! What happened? I’ll wait here while you copy the error messages

into a search engine and research the problem.

What’s that you say? PostgreSQL expects table and field names to be

surrounded by double quotes but string values to be surrounded by

single quotes? Excellent work.

FROM CSV TO SQL 210

Let’s see whether we can fix that:

inputFile = new File("sample.csv")

use(Fixer){

inputFile.splitEachLine(","){ tokens ->

if(counter == 0) {

/* skip the headers */

counter++

}

else{

println "${counter++} ${tokens[1].fixQuote()}" //show what is going on

insertMiddle = ""

for(i in 0..5){

insertMiddle += "${tokens[i].fixQuote()},"

}

insertMiddle = insertMiddle[0..-2] //strip off trailing comma

outputFile.append("${insertStart}${insertMiddle}${insertEnd}\n")

}

}

}

outputFile.append("END;")

class Fixer{

static String fixQuote(String self){

if(self.startsWith("\"")){

return "'" + self[1..-2] + "'"

}

else{

return self

}

}

}

class Fixer defines a method fixQuote that will flip a double quote into a

single quote. Strings in Groovy can be treated like an array of char-

acters. self[0] returns the first character of the string—in this case, the

offending double quote. So self[1] is the next character after the double

quote. If the first element in an array is [0], what would you expect [-1]

to be? In Groovy, array element notation “wraps around,” so [-1] is actu-

ally the last character in the array—the other offending double quote.

self[-2] is one character in from the last character, again skipping the

poor, misunderstood double quote.

Yes, RegEx gurus could’ve done the same thing in one mass of unpro-

nounceable characters. They are also usually fluent in Klingon. Neither

bodes well for the readability of their code or their prospects for a date

this Friday night. Any other questions? I didn’t think so....

FROM CSV TO SQL 211

Surrounding the chunk of code with a use(Fixer) block bolts the fixQuote

method onto every object inside of it. In our case, we use it on the

Strings returned from the token array. What you are witnessing here

is Groovy’s version of metaprogramming. It is far less elegant than the

metaprogramming capabilities of Ruby or JavaScript but light years

ahead of what native Java has to offer. At the end of the day, it seems

like a reasonable compromise to me.

Let’s rerun this code and see whether it meets PostgreSQL’s standards

of excellence:

$ psql -U postgres -d g4wd -f college.sql

BEGIN

psql:college.sql:10: NOTICE: CREATE TABLE / PRIMARY KEY

will create implicit index "college_pkey" for table "college"

CREATE TABLE

INSERT 0 1

INSERT 0 1

INSERT 0 1

INSERT 0 1

INSERT 0 1

COMMIT

All right, it passed the test on the sample set. Let’s see how it does on

the full data set. Change the line inputFile = new File("sample.csv") to read

inputFile = new File("hd2005.csv"), and rerun it:

$ groovy csv2pgsql

...

6593 'Illinois Welding School'

6594 'Institute of Network Technology'

6595 'Instituto Pre-Vocacional e Indust de Puerto Rico'

6596 'Instituto Tecnologico Empresarial'

Caught: java.lang.reflect.InvocationTargetException

at c4$_run_closure1_closure2.doCall(c4.groovy:32)

at c4$_run_closure1.doCall(c4.groovy:23)

at c4$_run_closure1.doCall(c4.groovy)

at c4.run(c4.groovy:22)

at c4.main(c4.groovy)

Wow. Every time I catch a java.lang.reflect.InvocationTargetException,

the first thing I do is open up my source data file and look at line 6596:

443119,

"Instituto Tecnologico Empresarial",

"Munoz Rivera St #22,",

"Trujillo Alto",

"PR",

"00976"

FROM CSV TO SQL 212

Do you see it? java.lang.reflect.InvocationTargetException translates

to “Dude, you forgot to take into account embedded commas in your

double-quoted fields. Check out that trailing comma after ’Munoz

Rivera St #22’—it is really harshing my mellow.” (I always imagine that

the JVM talks like the turtle in Finding Nemo. It keeps me from throwing

my computer out of the window when it spews indecipherable nonsense

like java.lang.reflect.InvocationTargetException.)

So, my naive reliance on splitEachLine caught up with me less than 500

lines from the end of the data file. Of course, realistically this bug

messed up plenty of other earlier records—it was only the bizarre occur-

rence of a malformed field with a comma that probably shouldn’t be

there in the first place that tipped us off at all.

Let’s trap for embedded commas in quoted fields by replacing the stock

splitEachLine with a slightly more intelligent custom function:

inputFile = new File("hd2005.csv")

use(Fixer){

inputFile.eachLine{ line ->

String[] tokens = line.getNext(6)

if(counter == 0) {

/* skip the headers */

counter++

}

else{

println "${counter++} ${tokens[1].fixQuote()}" //show what's going on

insertMiddle = ""

for(i in 0..5){

insertMiddle += "${tokens[i].fixQuote()},"

}

insertMiddle = insertMiddle[0..-2] //strip off trailing comma

outputFile.append("${insertStart}${insertMiddle}${insertEnd}\n")

}

}

}

outputFile.append("END;")

class Fixer{

static String fixQuote(String self){

if(self.startsWith("\"")){

return "'" + self[1..-2] + "'"

}

else{

return self

}

}

FROM CSV TO SQL 213

static String[] getNext(String self, int numberOf){

def list = []

def st = new StringTokenizer(self, ",")

numberOf.times{

def thisToken = st.nextToken()

while(thisToken.startsWith("\"") && !thisToken.endsWith("\"")){

thisToken += "," + st.nextToken()

}

list << thisToken

}

return list

}

}

class Fixer now has a second method: getNext. You pass it an arbitrary

number, and it returns an array with exactly that number of elements.

If an element starts with a double quote, the while loop appends the

next token in the list to it until it ends with a double quote as well. This

code could still be more robust—it fails if you pass in a empty double

quote (""). It also fails if you pass in a token that starts with a leading

comma. But in true pragmatic (lazy?) fashion, this code works for the

immediate data set, so I’ll leave those additional enhancements for a

rainy day.

Notice that inside the use(Fixer) block, we call inputFile.eachLine{ line ->

instead of inputFile.splitEachLine(","){ tokens ->. Other than that and the very

next line—String[] tokens = line.getNext(6)—the rest of the code remains

unchanged. Run this latest revision, and insert the data into Post-

greSQL:

INSERT 0 1

INSERT 0 1

psql:college.sql:165: ERROR: syntax error at or near "Hall"

LINE 1: ...102614,'University of Alaska Fairbanks','Signers' Hall','Fai...

Of course—if embedded commas tripped us up, why not embedded sin-

gle quotes as well? The good news is our final fix for parsing our per-

snickety CSV file is a single additional line of code:

static String fixQuote(String self){

self = self[0] + self[1..-2].replaceAll("\'", "\'\'") + self[-1]

if(self.startsWith("\"")){

return "'" + self[1..-2] + "'"

}

else{

return self

}

}

FROM CSV TO SQL 214

Geocoders and Guesstimates

When you type a street address into your web browser and get

a point back on a map, it seems so definitive. The reality is that

most times the point on the map is nothing more than a “best

guess.”

The TIGER data set is good example of what most geocoders

rely on. It contains street segments that represent a stretch of

road. The important nonspatial attributes are the start and end

addresses. In other words, a single POLYLINE might represent

Main Street with addresses in the 100–200 range. When you

search for “123 Main Street,” the geocoder finds the road seg-

ment and then interpolates where 123 most likely is along the

line segment. Only in rare cases do geocoders have actual

point data. Even then, what does the point correspond to? The

centroid of your tax lot? Your driveway? Your front door?

Let’s add one more wrinkle: address normalization. Humans

don’t have any trouble recognizing that “123 Main Street” and

“123 Main St” are the same address. But what about 123 Main?

Is there a Main Street and a Main Boulevard in the same city? Is

there an East Main Street and a West Main Street? Is East Main

Street the same as plain old Main? And what about the cases

where Main is also Highway 651 and Joe Football Star Memo-

rial Blvd? It makes my teeth itch just talking about it—imagine if

geocoding software had teeth.

When a website doesn’t find the address I’m looking for, I don’t

blame it too much. I vary the words (East –> E). I drop words

and add words in a friendly attempt to help the geocoder out.

I try not to be like the ugly American in a foreign country who

repeats the same unintelligible phrase over and over again,

each time slower and more loudly. What is my other option?

Picking up one of those analog dead-tree devices commonly

known as the Yellow Pages? I’d rather take my horse-drawn car-

riage to my barber/doctor for a leaching.

GEOCODING YOUR DATA 215

Using the Java-native replaceAll method on the String does the trick.

Yes, I am well aware that the first argument of replaceAll is a regular

expression. Live long and prosper, my Vulcan friend.

9.2 Geocoding Your Data

So, in 65 lines of Groovy code we’ve gone from CSV data in a flat file

to SQL statements and 7,018 records in a database. The problem with

these records is that they are still just nearly spatial. Let’s programmat-

ically geocode the addresses to get lat/long points that we can actually

map.

Remember the U.S. Census Bureau TIGER data set we talked about

back in Section 2.8, The Downloadable States of America, on page 32?

We’ve been working with the states’ boundary shapefile ever since.

The U.S. Census Bureau data goes deeper than simple state outlines—

much deeper. But rather than having to download the data and wrestle

with those funky ASCII file formats yourself, what if someone had done

all of the dirty work for you and exposed it as a friendly website. What

if, indeed?

Fire up your web browser, and visit Geocoder.us.3 This website, main-

tained by the authors of Mapping Hacks (O’Reilly), is the friendliest way

to interact with the TIGER data set without having to actually download

it. (See Figure 9.1, on the next page.)

Enter your street address—see whether the U.S. Census Bureau knew

where you lived back in 2000. (Remember, the U.S. Census Bureau

data is updated every ten years.)

Although working with the website interactively is fun, it would get less

fun typing in 7,019 addresses by hand. Luckily, Geocoder.us offers web

services as well as a website. Scroll to the bottom of the home page and

look for the section titled “How Can I Use It?” It offers SOAP, XML-RPC,

RESTful, and even CSV-based services.

3. http://geocoder.us

GEOCODING YOUR DATA 216

Figure 9.1: Geocoder.us

Grab the first address from our sample.csv file, and give the RESTful

web service a whirl:

$ wget -O result.xml

http://rpc.geocoder.us/service/rest?

address=130+W+Maxwell+Blvd,Montgomery,AL,36112-6613

$ cat result.xml

<?xml version="1.0"?>

<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<geo:Point rdf:nodeID="aid59839714">

<dc:description>130 Maxwell Blvd E, Montgomery AL 36112</dc:description>

<geo:long>-86.347754</geo:long>

<geo:lat>32.379938</geo:lat>

</geo:Point>

</rdf:RDF>

GEOCODING YOUR DATA 217

Although it’s cool that we can get the data back as XML, we’re already

pretty good at dealing with CSV data. Try this instead:

$ wget -O result.csv

http://rpc.geocoder.us/service/csv?

address=130+W+Maxwell+Blvd,Montgomery,AL,36112-6613

$ cat result.csv

32.379938,-86.347754,130 Maxwell Blvd E,Montgomery,AL,36112

We’ll perform this query in code in just a moment. Before we move on,

do you notice any subtle differences between the address that we sub-

mitted and the address that got returned? Our address got normalized.

But are “W Maxwell Blvd” and “Maxwell Blvd E” truly the same loca-

tion? Type the following into your web browser:

http://maps.google.com/maps?q=130+Maxwell+Blvd+E,Montgomery,AL,36112

On the resulting map, “E Maxwell” and “W Maxwell” fall on either side

of the info window. I feel reasonably comfortable that the address got

geocoded correctly. (Just for grins, try submitting it as “W Maxwell” to

Google. Notice that it gets confused as well.)

OK, let’s try the next address on the list:

$ wget -O result2.csv

http://rpc.geocoder.us/service/csv?

address=4107+Meridian+St,Normal,AL,35762

$ cat result2.csv

2: couldn't find this address! sorry

Curses! Foiled on our second attempt. What does Google have to say

about that?

http://maps.google.com/maps?q=4107+Meridian+St,Normal,AL,35762

Google pulls it right up. Maybe we should just use Google’s geocoder4

then. The documentation shows examples of using it in JavaScript as

well as an HTTP GET request. You can get the results back as CSV,

XML, KML, or JSON. To use it, all you have to do is register for a free

API key.5 Here’s the request to the Google geocoder:

wget -O google.csv

"http://maps.google.com/maps/geo?q=4107+Meridian+St,Normal,AL,35762

&output=csv&key=[YOUR KEY]"

4. http://www.google.com/apis/maps/documentation/#Geocoding_Examples

5. http://www.google.com/apis/maps/signup.html

GEOCODING YOUR DATA 218

And the response?

602,0,0,0

The first value is the return code. The second is the level of accuracy.

The third is the latitude, and the fourth is the longitude. So, what

does 602 mean? Address not found. Huh? But we found it on the map.

Google clearly knows where it is. What gives?

I’ll do the Internet research for you this time. In a knowledge base

entry titled “Why does the API geocoder provide different locations than

Google Maps?”6 the first sentence says it all: “The API geocoder and

Google Maps geocoder rely on two different data sources.” (Feel free to

mumble under your breath. I did....) This is pure conjecture on my part,

but it sure sounds like a licensing issue to me. Google buys its geodata

from commercial providers, and those providers most likely put some

restrictions on how Google could expose the data. Google Maps? No

problem. A programmatic API? Not so fast, Bub....

OK, let’s give it one more try. Yahoo also offers a free geocoder.7 Like

Google, you must register for a free application ID. The results come

back to you as XML or PHP:

$ wget -O yahoo.xml

"http://api.local.yahoo.com/MapsService/V1/geocode?

street=4107+Meridian+St&city=Normal&state=AL&zip=35762

&appid=[YOUR KEY]"

$ tidy -i -xml yahoo.xml

<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps"

xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">

<Result precision="zip">

<Latitude>34.7924</Latitude>

<Longitude>-86.5718</Longitude>

<Address></Address>

<City>NORMAL</City>

<State>AL</State>

<Zip>35762</Zip>

<Country>US</Country>

</Result>

6. http://code.google.com/support/bin/answer.py?answer=60738\&topic=10946

7. http://developer.yahoo.com/maps/rest/V1/geocode.html

GEOCODING YOUR DATA 219

Aha! We got a hit this time. But wait a minute—where is the address?

Notice the precision attribute in the result element? That means that

Yahoo tried to geocode the address and failed, so it fell back to geocod-

ing the ZIP code. If you go back and look more closely at the Google

Maps result—the one that worked—notice anything different about the

address? The address we submitted was “4107 Meridian St, Normal, AL

35762.” The response we got back was “4107 Meridian St N, Huntsville,

AL 35811.” That’s not only a different street address but a completely

different city and ZIP code as well. The map shows the point right on the

edge of campus, so it’s mostly likely a good hit, but this demonstrates

what a tricky game geocoding is.

As a last-ditch attempt, you could geocode the data by hand. InfoS-

ports8 provides an interesting service. They put up a Google Maps map

and allow you to click the map to find the lat/long yourself. There is no

way for you to enter an address, so it doesn’t help us much. It is just

an interesting example of a point-and-click geocoder.

Coding the Geocoding

Since there doesn’t seem to be a silver bullet for our geocoding prob-

lems, let’s use our first choice—Geocoder.us—on the full data set and

see how many hits we get. I’m not expecting 100%, but I hope we’ll do

better than the 50% we got in two attempts.

Let’s run our newly Geoserver.us-enabled Groovy script against our

sample set and see how we do:

$ groovy csv2pgsql

1 'Community College of the Air Force'

32.379938,-86.347754,130 Maxwell Blvd E,Montgomery,AL,36112

2 'Alabama A & M University'

2: couldn't find this address! sorry

3 'University of Alabama at Birmingham'

2: couldn't find this address! sorry

4 'Southern Christian University'

32.382580,-86.172265,1200 Taylor Rd N,Montgomery,AL,36117

32.365395,-86.171722,1200 Taylor Rd,Montgomery,AL,36117

5 'University of Alabama in Huntsville'

34.723716,-86.644094,301 Sparkman Dr NW,Huntsville,AL,35805

Started: Sat Apr 07 13:17:02 MDT 2007

Ended: Sat Apr 07 13:17:58 MDT 2007

Date: Sat Apr 07 13:17:58 MDT 2007

8. http://www.infosports.com/m/map.htm

GEOCODING YOUR DATA 220

Total: 5 Found: 3, 60.0% Not Found: 2, 40.0%

The good news is that our data now contains lat/long points. The bad

news is that our script took a much longer time to run (averaging

about ten to twelve seconds per request—the full run took me more

than thirty hours). For the purposes of this chapter, let’s stick with

the sample.csv file. (You can find the full results from Geocoder.us in

college-gecoder.us.sql.)

Let’s look at the code that accomplished this. To start, we expanded

the ddl statement to include the new fields: lat, long, and the normal-

ized addresses returned from the geocoder. Not shown here, we also

expanded the fields in the SQL INSERT statement:

outputFile = new File("college.sql")

if(outputFile.exists()){ outputFile.delete() }

ddl = """

BEGIN;

CREATE TABLE college (

"id" numeric PRIMARY KEY,

"name" varchar(255),

"address" varchar(255),

"city" varchar(255),

"state" varchar(255),

"zip" varchar(255),

"lat" varchar(255),

"lon" varchar(255),

"address_n" varchar(255),

"city_n" varchar(255),

"state_n" varchar(255),

"zip_n" varchar(255));

"""

The next thing we did was create an Addr class. This not only is a

convenient place to store our values—we can also hang some Addr-

specific functions off of it as well. It just didn’t seem to make sense to

bolt a geocode method onto everything using metaprogramming. Since

we need to have specific fields named a specific way, it just made more

sense to create a class. Here are the fields of the class. Notice that we

created a constructor that pulls the values out of our existing tokens

array and populates the class.

class Addr{

String id

String name

String address

String city

String state

String zip

GEOCODING YOUR DATA 221

String lat

String lon

String addressNormalized

String cityNormalized

String stateNormalized

String zipNormalized

public Addr(String[] tokens){

id = tokens[0].noQuote()

name = tokens[1].noQuote()

address = tokens[2].noQuote()

city = tokens[3].noQuote()

state = tokens[4].noQuote()

zip = tokens[5].noQuote()

}

...

}

And here is the geocode method that takes the values and sends them

up to Geocoder.us:

public boolean geocode(){

def urlStart = "http://rpc.geocoder.us/service/csv?address="

def urlBody = "${address},${city},${state},${zip}"

def urlEncoded = urlStart + URLEncoder.encode(urlBody, "UTF-8")

new URL(urlEncoded).eachLine{ line ->

println "\t${line}"

if(line.startsWith("2")){

addressNormalized = "NOT FOUND"

}

else{

def tokens = line.getNext(6)

lat = tokens[0]

lon = tokens[1]

addressNormalized = tokens[2].fixQuote()

cityNormalized = tokens[3].fixQuote()

stateNormalized = tokens[4].fixQuote()

zipNormalized = tokens[5].fixQuote()

}

}

return addressNormalized != "NOT FOUND"

}

urlStart should look familiar—that is the address of the web service. url-

Body strings the variables together in the proper order. Before we can

send it to Geocoder.us, we need to URLEncode9 the string.

9. http://en.wikipedia.org/wiki/Urlencode

GEOCODING YOUR DATA 222

This converts spaces to +, commas to %2C, and so on. URLEncoder is

a native Java class that takes care of the logistics for us.

BEFORE:

130 W Maxwell Blvd,Montgomery,AL,36112-6613

AFTER:

130+W+Maxwell+Blvd%2CMontgomery%2CAL%2C36112-6613

Once we have a well-formed URL, Groovy makes it easy for us to call

the web service. new URL(urlEncoded) creates the call. eachLine makes the

call and, as the name implies, allows us to iterate through the response

line by line. You may have noticed earlier that the geocoder could poten-

tially return more than one line. (See “Southern Christian University.”)

Our code traps for multiline responses, storing the last line in the Addr

object.

Let’s see all of this in action. We create a new Addr, passing in the tokens

array. We call the geocode method. Finally, we call toSql and append it

to the insertMiddle string:

use(Fixer){

inputFile.eachLine{ line ->

String[] tokens = line.getNext(6)

if(counter == 0) {

/* skip the headers */

counter++

}

else{

println "${counter++} ${tokens[1].fixQuote()}" //show what is going on

addr = new Addr(tokens)

addr.geocode() ? found++ : notFound++

insertMiddle = ""

for(i in 0..5){

insertMiddle += "${tokens[i].fixQuote()},"

}

insertMiddle += addr.toSql()

//insertMiddle = insertMiddle[0..-2] //strip off trailing comma

outputFile.append("${insertStart}${insertMiddle}${insertEnd}\n")

//write out current status

statusFile = new File("status.txt")

statusFile.append(new Status(counter, found, notFound).toString())

}

}

}

ADDING POSTGIS FIELDS 223

9.3 Adding PostGIS Fields

Our script is a whiz at creating String fields. Why don’t we try creat-

ing the spatial fields now? Recall from Section 5.3, Adding Geometric

Columns by Hand, on page 113, that AddGeometryColumn inserts the

field into both your table and the geometry_columns table:

SELECT AddGeometryColumn('college','the_geom','4326','POINT',2);

Once we have the geometry column in place, we need to tweak our SQL

INSERT statement to call GeomFromText:

GeomFromText('POINT(-104.98716 39.73909)', 4326)

Here is our new geocode method that creates a well-formed SQL string

if the geocoder returns data, or otherwise it simply makes the field null:

public boolean geocode(){

def urlStart = "http://rpc.geocoder.us/service/csv?address="

def urlBody = "${address},${city},${state},${zip}"

def urlEncoded = urlStart + URLEncoder.encode(urlBody, "UTF-8")

new URL(urlEncoded).eachLine{ line ->

println "\t${line}"

if(line.startsWith("2")){

addressNormalized = "NOT FOUND"

theGeom = 'null'

}

else{

def tokens = line.getNext(6)

lat = tokens[0]

lon = tokens[1]

addressNormalized = tokens[2].fixQuote()

cityNormalized = tokens[3].fixQuote()

stateNormalized = tokens[4].fixQuote()

zipNormalized = tokens[5].fixQuote()

theGeom = "GeomFromText('POINT(${lon} ${lat})', ${epsg})"

}

}

return addressNormalized != "NOT FOUND"

}

Run your code one last time. Type psql -U postgres -d g4wd -f college.sql

to insert your data. It took less than 200 lines of Groovy to go from

the raw data from the NCES to a fully populated PostGIS database. It

would’ve been less than 150 lines if I hadn’t been so chatty with all of

the comments, printlns, and result files. Overall, that’s not too shabby.

The final statistics for Geocoder.us aren’t too shabby, either. Out of

7,018 records, it returned addresses for 5,103, or just shy of 75%. The

downside is that the run took more than thirty hours to complete.

ADDING POSTGIS FIELDS 224

A Quick Look at Yahoo

Even though it is not open source (although it is free), here is the code to

do the same thing using Yahoo’s geocoder. Yahoo adds two fields to the

results—precision and warning—that allow us to capture some addi-

tional metadata about the process. Since Yahoo returns XML instead of

CSV, our geocode method changes slightly:

public boolean geocode(){

def urlStart = "http://api.local.yahoo.com/MapsService/V1/geocode?appid=[YOUR KEY]"

def urlBody = "&street=" + URLEncoder.encode(address, "UTF-8")

urlBody += "&city=" + URLEncoder.encode(city, "UTF-8")

urlBody += "&state=" + URLEncoder.encode(state, "UTF-8")

urlBody += "&zip=" + URLEncoder.encode(zip, "UTF-8")

def urlEncoded = urlStart + urlBody

def queryResponse = new URL(urlEncoded).openConnection()

if(queryResponse.responseCode == 200){

def xml = queryResponse.content.text

def ns = new groovy.xml.Namespace("urn:yahoo:maps");

def resultSet = new XmlParser().parseText(xml)[ns.Result]

resultSet.each{

lat = it[ns.Latitude].text()

lon = it[ns.Longitude].text()

addressNormalized = it[ns.Address].text()

cityNormalized = it[ns.City].text()

stateNormalized = it[ns.State].text()

zipNormalized = it[ns.Zip].text()

precision = it['@precision']

warning = it['@warning']

theGeom = "GeomFromText('POINT(${lon} ${lat})', ${epsg})"

}

println "\t${precision}"

}

else{

addressNormalized = "NOT FOUND"

theGeom = 'null'

warning = "${queryResponse.responseCode}:${queryResponse.responseMessage}"

}

return addressNormalized != "NOT FOUND"

}

More noteworthy are Yahoo’s stats. The run took just more than thirty

minutes, as opposed to thirty hours with Geocoder.us. Yahoo’s geocoder

limits you to roughly 5,000 requests a day, so that thirty minutes

is split over two application IDs—I mean two days, of course. Yahoo

gave us more hits compared to Geocoder.us as well. Yahoo matched

88% of the addresses compared to 73% for Geocoder.us. Rather than

returning null when an address couldn’t be matched, Yahoo usually

ADDING POSTGIS FIELDS 225

Figure 9.2: Creating the College FeatureType in GeoServer

returned ZIP code data, which is better than nothing. The sixteen “null”

values returned a “400: Bad Request.” Those mostly are Puerto Rico

addresses.

select precision, count(*) as total, (count(*) / 7018.0) * 100 as percent

from college group by precision order by total desc;

precision | total | percent

-----------+-------+-------------------------

address | 6174 | 87.97378170418922770000

zip | 476 | 6.78255913365631234000

street | 204 | 2.90681105728127671700

zip+4 | 111 | 1.58164719293245939000

zip+2 | 37 | 0.52721573097748646300

null | 16 | 0.22798518096323739000

(6 rows)

For legal reasons,10 we can’t distribute the Yahoo addresses. The ad-

dresses came from a variety of commercial data sets and are made

available via the geocoder “for personal use only” and “not for resale or

redistribution.” Geocoder.us uses the U.S. Census Bureau data, which

is in the public domain, which means we are free to distribute it as we

like. Drop the colleges table one last time, and type psql -U postgres -d

g4wd -f college-gecoder.us.sql.

10. http://help.yahoo.com/l/us/yahoo/maps/using/maps-24.html

SETTING UP OGC SERVICES 226

And What About a Non-PostGIS Solution?

Of course, this isn’t the only way we could’ve solved this problem. I like

the fact that we ended up with an ASCII text file full of SQL INSERTs.

That makes it easy to store the results in source control, it’s fully

language-independent, and it is consistent with our other familiar tool,

shp2pgsql.

Given different requirements, I might have used the PostGIS JDBC

driver11 to insert the data directly into the database. Or perhaps our

final destination wasn’t PostGIS at all. If I needed to convert the data

into a shapefile, I would’ve reached for GeoTools12—the Java API that

powers many popular Java-based projects such as GeoServer and uDig.

If I needed to pass the data off to a remote server, I could’ve used WFS-

T. As you can see, having a variety of tools in your tool belt allows you

to choose the proper one to get the job done.

9.4 Setting Up OGC Services

Getting the data into PostGIS was the hard part. Now that we have

GeoServer installed and configured, adding one more FeatureType is

a breeze. Click Config > Data > FeatureType. (See Figure 9.2, on the

previous page.) Generate the bounding box, and click Submit. Apply

and save the server settings in the upper-left corner. Finally, visit the

website13 to see the magic dots appear. (See Figure 9.3, on the following

page.)

Although setting up the raw data is easy, styling it will generally take up

the lion’s share of your time. And once you begin adding multiple map

layers, styling them all so that they use complementary color schemes

is no small task. In the final example, I use the US States layer, our

newly created Colleges layer, and a number of layers from the Colorado

Department of Transportation—highways, cities, and lakes. Each needs

to be styled in a way that it blends with the other map layers. (As you’ll

see in just a moment, I actually create two styles per layer: one with

labels and one without.)

For example, let’s put together a nice, elegant style for the US States

layer that displays the state name. For inspiration, we’ll “borrow” (open

source code word for “steal”) an existing SLD from the GeoServer wiki:14

11. http://www.postgis.org/download/postgis.jar

12. http://geotools.codehaus.org/

13. http://localhost:8888/geoserver/preview/g4wd_college.html

14. http://docs.codehaus.org/display/GEOSDOC/ComplexLabelingExample

SETTING UP OGC SERVICES 227

Figure 9.3: Previewing the College FeatureType in GeoServer

<StyledLayerDescriptor version="1.0.0"

xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"

xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<NamedLayer> <Name> us_states_labeled </Name>

<UserStyle>

<FeatureTypeStyle>

<FeatureTypeName>Feature</FeatureTypeName>

<!-- This rule fills in the Polygons -->

<Rule>

<PolygonSymbolizer>

<Fill>

<CssParameter name="fill">

<ogc:Literal>#EBF8C4</ogc:Literal>

</CssParameter>

<CssParameter name="fill-opacity">

<ogc:Literal>1.0</ogc:Literal>

</CssParameter>

</Fill>

<Stroke><CssParameter name="fill">#A1CE18</CssParameter></Stroke>

</PolygonSymbolizer>

</Rule>

SETTING UP OGC SERVICES 228

<!-- second rule is the state names

a) we went them centered on the polygon centroid

b) we want a 'halo' around them so they are easier to read

c) we put a little space around them so the map isn't cluttered

-->

<Rule>

<TextSymbolizer>

<Label><ogc:PropertyName>name</ogc:PropertyName></Label>

<CssParameter name="font-family">Times New Roman</CssParameter>

<CssParameter name="font-style">Normal</CssParameter>

<CssParameter name="font-size">18</CssParameter>

<CssParameter name="font-weight">bold</CssParameter>

<!-- this centers the label on the polygon's centroid-->

<LabelPlacement>

<PointPlacement>

<AnchorPoint>

<AnchorPointX>0.5</AnchorPointX>

<AnchorPointY>0.5</AnchorPointY>

</AnchorPoint>

</PointPlacement>

</LabelPlacement>

<!-- make the label easy to read-->

<Halo>

<Radius>

<ogc:Literal>2</ogc:Literal>

</Radius>

<Fill>

<CssParameter name="fill">#FFFFFF</CssParameter>

<CssParameter name="fill-opacity">0.85</CssParameter>

</Fill>

</Halo>

<Fill><CssParameter name="fill">#749A00</CssParameter></Fill>

<VendorOption name="group">yes</VendorOption>

<!-- add a little extra space around the labels so the map

isn't cluttered -->

<VendorOption name="spaceAround">5</VendorOption>

</TextSymbolizer>

</Rule>

</FeatureTypeStyle>

</UserStyle>

</NamedLayer>

</StyledLayerDescriptor>

TILING VS. STYLING 229

Figure 9.4: An elegant SLD style for us_50

Applying this SLD to our us_50 layer in PostGIS yields a nice-looking

map in Mapbuilder. (See Figure 9.4.) There aren’t enough trees in the

Amazon forest to print all of the SLDs for this example. The states SLD

is representative of what is going on in the rest of ’em (including the

Colleges layer), but just because we can’t reproduce them here doesn’t

mean that you are off the hook. Your homework is to study the rest of

them to make sure you understand how they are put together.

9.5 Tiling vs. Styling

So, the U.S. states looked pretty good in Mapbuilder. Since SLDs are a

well-understood standard, this layer should look just as good in Open-

Layers, right? (See Figure 9.5, on the following page.) Uh, not so fast.

Don’t worry—I’ll show you the code for this in the next section. I just

want to focus on the portrayal issues for now.

The duplicate labels might make you scratch your head for a moment.

How could they look so nice in Mapbuilder and so awful in OpenLay-

ers? What was the killer feature that OpenLayers brought to the party?

TILING VS. STYLING 230

Figure 9.5: Duplicate labels in OpenLayers?

Tessellation. Each map in OpenLayers is actually a series of individ-

ual WMS requests, each tile measuring 256 by 256 pixels. This view

of the same map with the individual images outlined might help. (See

Figure 9.6, on the next page.)

As you can see, the SLD labels get applied correctly to each tile. Geo-

Server (and the OGC standards in general) expect to render one big

map. It has no idea that OpenLayers is doing the tessellation one re-

quest at a time, so there is no cross-tile optimization going on at all.

Each tile, as far as GeoServer is concerned, is a one-of-a-kind master-

piece.

So, where does this leave us in the short term? It looks as if you have to

choose between the convenience and performance of OpenLayers’ tiling

strategy over labeling issues. That’s not really the truth, but that is

where we are going to leave it in this chapter. If you install TileCache,

mod_python, and mod_expires and you do a number of other tweaks

as discussed in the GeoServer/TileCache tutorial,15 you can overcome

these issues and significantly increase your performance as well. The

steps are well described on the wiki but are more involved than we have

time to get into right now. They also target a single proprietary, albeit

15. http://docs.codehaus.org/display/GEOSDOC/TileCache+Tutorial

TILING VS. STYLING 231

Figure 9.6: OpenLayer’s tiling strategy is the culprit

open source, web framework—OpenLayers. Once WMS-T becomes a

formal standard and there are more clients that can take advantage

of it, you’ll be pleased that you got some experience with it in the early

days.

If you fall back on the “one big tile” strategy that Mapbuilder employs,

your labeling will actually look pretty good. Since GeoServer has to com-

pose just a single map, it will do the right thing when it comes to styling

your map. The drawback is you won’t get the full Google Maps slippy

map effect. You can drag the map with your mouse, but you don’t get a

redraw until you release the mouse button.

Therein lies the rub. These two issues—styling and tiling—end up being

the twin pillars of web mapping challenges. Current OGC standards

favor the former, while popular web mapping sites such as Google and

Yahoo favor the latter. The two aren’t mutually exclusive. You can have

a site that both looks good and performs well, but bear in mind that

the two forces will pull you in opposite directions.

The “render on-the-fly” nature of WMS requests are simultaneously

their biggest strength and their Achilles heel. By treating each map as

a completely customizable entity, WMS gives you the ultimate in flex-

ibility. Hey, don’t like how that map turned out? No worries—throw it

away, and ask me for a new one. What this solution lacks is any sense

TILING VS. STYLING 232

of reusability. Even if two people ask for the same map, at exactly the

same resolution, in exactly the same file format, GeoServer won’t cache

the results and reserve them.

Rendering vector layers into rasters for the web browser is a compu-

tationally expensive operation. If your vector layers don’t change often

(like the US States layer), you are wasting precious CPU cycles redraw-

ing the same lines over and over again. Multiply this by the millions of

hits a popular website takes every day (if not every hour), and you can

see that this solution simply won’t scale for the masses. Think of it this

way—is that search engine really scouring the Web for your answers in

real time? Of course not. It precompiles the results and caches them.

There might be a lag of an hour or even a day or two between the time

a new website goes up and the search engine spider crawls the pages,

analyzes them, and includes them in search results.

The big mapping websites work the same way. They prerender huge

images so that the labels all look right. They then break those large

images into bite-sized 256 by 256 pixels tiles. The tiles are small so

that they download quickly. Their filenames don’t change so that your

browser will cache them up. Google Maps and similar websites actually

get faster as you use them. The more tiles that end up in your local

cache (or your router’s, or your proxy server’s, or your ISP server’s), the

fewer request actually have to go all the way back to Google. This is a

classic win-win—your application is faster, and Google can serve more

customer requests simultaneously. And all of this is simply leveraging

the native functionality of the Web. Google didn’t have to do anything

more than just play by the rules.

But consider what you can’t do with Google Maps. You can’t turn indi-

vidual layers on and off. (I’d like to see water but not roads.) You

don’t have infinite zoom levels. (Granted, twenty seems like more than

enough.) Everything that can possibly be prerendered is already in

place by the time you request the tile. The only thing that can’t rea-

sonably be prerendered—the driving directions from point A to point

B—is created on the fly.

And that, my friends, is the solution to the tiling vs. styling conundrum.

Prerender and tile everything that you possibly can. Create one big map

(like the OGC prefers) so that your labels come out right, and then

whack it up into tiny pieces (like Google prefers). The only thing that you

should be rendering on the fly is the data that, for temporal reasons,

can’t be rendered ahead of time.

CREATING A SLIPPY MAP 233

Unless, of course, you aren’t Google. You’ve heard that “premature opti-

mization is the root of all evil,”16 haven’t you? If you are building an

intranet application that is meant to serve tens of users instead of tens

of millions, then the OGC solution is more than adequate. You can

still have Google-style fixed maps by including multiple map layers in

a single request, or you can offer more flexibility because of the limited

number of users you are serving.

The point is there is no one right answer. By understanding the

strengths and weaknesses of both strategies, you can choose the right

solution for the problem.

9.6 Creating a Slippy Map

Now that we have everything in place, we’re finally ready to create a

map. Because of the labeling issues we discussed in the previous sec-

tion, we’ll create a map in both Mapbuilder and OpenLayers. The Map-

builder solution will work with nothing more than GeoServer in place.

The OpenLayers solution will be lacking labels, but it will be ready for

you if you decide to install Apache Web Server, TileCache, Python, and

everything else necessary to go down that path.

Mapbuilder

Here is what our investment in Mapbuilder will yield. (See Figure 9.7,

on page 235.)

Since all of the hard work is wrapped up in the SLDs, all we have to do

here is assemble the layers. Look in the preview directory for the three

required files (foo.html, foo.xml, and fooConfig.xml), and copy them up to

our g4wd directory. Rename them to college*.

The foo.html and Config.xml files don’t require many changes. The fooCon-

text.xml file is where we’ll assemble our layers:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<ViewContext version="1.0.0" id="atlas_world"

xmlns="http://www.opengis.net/context"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/context

http://schemas.opengis.net/context/1.0.0/context.xsd">

16. http://en.wikipedia.org/wiki/Premature_optimization

CREATING A SLIPPY MAP 234

<General>

<!-- <Window width="500" height="250"/> -->

<Window width="1000" height="500"/>

<BoundingBox SRS="EPSG:4326" minx="-180" miny="-90" maxx="180" maxy="90"/>

<Title>US Colleges</Title>

<KeywordList>

<Keyword>us colleges</Keyword>

</KeywordList>

<Abstract></Abstract>

</General>

<LayerList>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1" title="US States">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:us_50</Name>

<Title>US</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

<Layer queryable="1" hidden="1">

<Server service="OGC:WMS" version="1.1.1" title="g4wd:co_lake">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:co_lake</Name>

<Title>CO Lakes</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

<Layer queryable="1" hidden="1">

<Server service="OGC:WMS" version="1.1.1" title="g4wd:co_highway">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:co_highway</Name>

<Title>CO Highways</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

<Layer queryable="1" hidden="1">

<Server service="OGC:WMS" version="1.1.1" title="g4wd:co_city">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:co_city</Name>

<Title>CO Cities</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

CREATING A SLIPPY MAP 235

Figure 9.7: A finished map in Mapbuilder

<Layer queryable="1" hidden="1">

<Server service="OGC:WMS" version="1.1.1" title="g4wd:college">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:college</Name>

<Title>Colleges</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

</LayerList>

</ViewContext>

If you don’t have all of these layers reprojected and imported into Post-

GIS, don’t worry. Remember the three steps to getting our UTM Col-

orado highways reprojected into WGS84 and imported into PostGIS?

ogr2ogr -t_srs EPSG:4326 co-hw.shp highways.shp

shp2pgsql -s 4326 co-hw.shp co_highway > co_highway.sql

psql -U postgres -d g4wd -f co_highway.sql

Performing these same three steps on the remaining CDOT shapefiles

will have you all caught up. Once they are in GeoServer, don’t forget to

associate the SLD styles with the FeatureTypes.

CREATING A SLIPPY MAP 236

OpenLayers

Adding these layers to an OpenLayers map is similarly easy. Change

to the /opt/geoserver/webapps/geoserver/g4wd directory. Create ol4.html,

and add the following:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<style type="text/css">

#map {

width: 95%;

height: 95%;

border: 1px solid black;

}

</style>

<script src="http://www.openlayers.org/api/OpenLayers.js"></script>

<script type="text/javascript">

//NOTE: geographic center of the US

var lon = -98.583333;

var lat = 39.833333;

var zoom = 5;

var map;

var blueMarble, us_base;

var colleges, highways, cities, water;

function init(){

map = new OpenLayers.Map($('map'));

//base layers

us_base = new OpenLayers.Layer.WMS("US",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:us_50', format: 'image/png',

transparent: true, styles:'us_states'},

{isBaseLayer:true});

map.addLayer(us_base);

blueMarble = new OpenLayers.Layer.WMS("Blue Marble",

"http://wms.jpl.nasa.gov/wms.cgi?",

{layers: 'BMNG', format: 'image/png'},

{isBaseLayer:true});

map.addLayer(blueMarble);

//feature layers

colleges = new OpenLayers.Layer.WMS("Colleges",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:college', format: 'image/png',

transparent: true, styles:'colleges'},

{isBaseLayer:false, opacity:0.5});

map.addLayer(colleges);

BEYOND THE WEB: 3D VIEWERS 237

highways = new OpenLayers.Layer.WMS("Highways",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:co_highway', format: 'image/png',

transparent: true},

{isBaseLayer:false, opacity:0.5});

map.addLayer(highways);

cities = new OpenLayers.Layer.WMS("Cities",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:co_city', format: 'image/png',

transparent: true, style:'city'},

{isBaseLayer:false, opacity:0.5});

map.addLayer(cities);

water = new OpenLayers.Layer.WMS("Water",

"http://localhost:8888/geoserver/wms?",

{layers: 'g4wd:co_lake', format: 'image/png',

transparent: true},

{isBaseLayer:false, opacity:0.5});

map.addLayer(water);

map.setCenter(new OpenLayers.LonLat(lon, lat), zoom);

map.addControl(new OpenLayers.Control.LayerSwitcher());

}

</script>

</head>

<body onload="init()">

<div id="map"></div>

</body>

</html>

Notice in the layer definition the style attribute. If you don’t include a

style attribute, OpenLayers chooses the default style associated with

the layer. Since all of these default styles have labels that will look

funny, we override the default, pointing the layer to the SLD of our

choice. (I left the city labels in place because they didn’t end up looking

too bad.)

Once everything is all said and done, we end up with a similarly attrac-

tive map in OpenLayers. (See Figure 9.8, on the next page.)

9.7 Beyond the Web: 3D Viewers

Since we made it this far, we might as well end with a brief glimpse into

the future of mapping. As exciting as slippy maps are, they still face the

same problem that all paper maps face: portraying 3D information in

only two dimensions.

BEYOND THE WEB: 3D VIEWERS 238

Figure 9.8: A finished map in OpenLayers

There are a couple of 3D viewers that allow us to see the world in its

original shape. We’ll take a look at an open source one (NASA World

Wind) and a free one (Google Earth).

I call these viewers “the future of mapping,” but really I think that they

represent the future of computer programming in general. They are

hybrid applications—rather than being confined to the browser, they

are full executables that must be downloaded and installed locally.

But they don’t ship with the data. As we mentioned in Section 4.2,

Terraserver-USA: Another Source of Free Raster Imagery, on page 74,

terabytes of data won’t fit comfortably onto most people’s hard drives.

So, these applications stream the data across the Web as needed. They

act like a browser in this sense, but they aren’t limited to HTML, CSS,

and JavaScript.

Your operating system is installed locally, but it calls back to the moth-

ership periodically for security patches and new features. Apple iTunes

is another example of a hybrid application. You burn your CDs to disk

locally, but you can also buy music across the Web. As you play your

music, iTunes downloads the album art for you behind the scenes.

Sun Microsystems famously said, “The network is the computer.” At

the time, most people scratched their heads and said, “Huh?” The net-

work may not be the computer, but the computer isn’t much fun with-

out the network these days. More and more programs are built on the

assumption that the Internet is available and ready to use.

BEYOND THE WEB: 3D VIEWERS 239

NASA World Wind

NASA World Wind17 is an open source 3D viewer. As of version 1.4, it

is available only for the Windows platform. But a Java version is in the

works, which should extend it to the Mac and Linux fans as well.

World Wind is a full-featured viewer out of the box. The Blue Marble

imagery is spectacularly rendered—seeing it in three dimensions really

brings it to life. World Wind comes with a rich set of data layers, from

real-time weather to political boundaries.

Your welcome screen is a globe, suspended in space. You spin it by

dragging it with your mouse. To zoom in, double-click an area of inter-

est. As you zoom in, the imagery is streamed to your computer on the

fly from NASA’s servers across the Web.

So, what does any of that have to do with the GeoServer we have sitting

idle at this point? Well, it just so happens that World Wind is a great

WMS viewer. Oh sure, it’ll read shapefiles from disk and put them up

on the globe. But wiring it up to your OGC server, or for that matter

any OGC server on the Web, is where the fun begins.

In the menu bar, choose Tools > Import WMS url to layer. (See Fig-

ure 9.9, on the next page.) The first text box asks you for an URL. You

know what’s going to happen—World Wind is about to perform a Get

Capabilities request. Enter http://localhost:8888/geoserver/wms?. Click

the Get WMS Tree button. Once it has a list of layers, you can pre-

view any of them by clicking them. You can give the layer a custom

title, or you can simply use the title suggested by the server. In the

XML filename field, you can give the capabilities document an intuitive

name and save it. Saving it to disk allows your server to show up in

the Layers list. You are one check box away from seeing your colleges

rendered on the globe. (See Figure 9.10, on the following page.)

Flying across your data set like Superman, tilting the globe so that you

can see the mountains rise up in the distance, is like nothing that can

be offered by a browser-based slippy map today. You don’t realize how

much you miss that third dimension until you have it available to you.

Orthorectified views of the earth are still nice, but getting the chance to

look at the same features at an oblique angle really, no pun intended,

adds a whole new dimension to your data.

17. http://worldwind.arc.nasa.gov/

BEYOND THE WEB: 3D VIEWERS 240

Figure 9.9: Adding your WMS server to NASA World Wind

Figure 9.10: Your Colleges layer

BEYOND THE WEB: 3D VIEWERS 241

Google Earth

As nice as World Wind is, there is another application to consider.

Google Earth18 is free but not open source. What it brings to the table is

the full backing of a major web player with deep pockets. Google offers

versions of Google Earth for Windows, Mac OS X, and Linux and fast

servers with up-to-date commercial imagery and vector data.

A rabid community has sprouted up around this next generation map

viewer. While Google Earth offers experimental WMS support, its lingua

franca is Keyhole Markup Language (KML).19 The name Keyhole comes

from the original name of the product and the company that built it.

Once Google acquired the company, the product was rebranded, but

the original name still lingers.

KML is largely inspired by GML. The only difference is that GML is a

pure data description language, leaving styling to SLDs and Context

documents. KML merges both data and portrayal instructions into a

single file. Although this riled many OGC purists, the file format has

become wildly popular.

In a nod to the popularity of the format, GeoServer offers native KML

support. From the Google Earth menu, choose Add > Network Link.

Although you can experiment with trying to add your WMS layers, I’ve

had better luck simply dealing with KML. Enter the following: http://localhost:8888/geoserver/wms/kml_reflect?lay

Just as with NASA World Wind, your globe will come down with a case

of red dot fever.

The free version of Google Earth is limited to KML data feeds. Yes, you

can overlay images on the globe, but Google Earth doesn’t pay attention

to any geocoding. You simply import the image of your choices and

snap it to a point on the globe. Hardly a feature for professionals, this

rubbersheeting does make it trivially easy put anything you want onto

a map. You can also create your own points and lines, annotate them,

and save them to your own KML file. You can even email it directly from

within the application. For a nominal fee, Google Earth Plus allows you

to import your GPS data and Microsoft Excel spreadsheets. The top

version, Google Earth Pro, allows you to overlay shapefiles on the globe

and gives you access to premium data.

18. http://earth.google.com/

19. http://earth.google.com/kml/

CONCLUSION 242

But the real value of Google Earth is the community. On websites such

as Vactionworld,20 fans put together KML files showing everything from

the Travels of Julius Caesar to a Da Vinci Code Tour, complete with

timed flybys and text overlays. You can easily lose hours to looking

at meteor craters, aircrafts in flight, and shipwrecks. Although Google

Earth might lack sophisticated GIS features, it makes up for it in acces-

sibility. It has turned thousands of people into map geeks, sharing map-

ping data as easily as they forward on the email joke of the day. Dare I

say it? Google Earth made mapping cool.

9.8 Conclusion

Well, you made it. You now have your master’s degree in neogeography.

Unlike an expensive hobby such as golf or flying, mapping is something

that you can do on the cheap with nothing but free and open source

data and applications. Of course, the results are anything but cheap

looking. They are every bit the world-class solution as the expensive

ones. You just supply the time and the enthusiasm.

What was once the domain of a few specialists should now be common-

place. The address data that appears over and over in every business

should no longer look like simple strings and numbers—it should now

look like points, lines, and polygons just waiting to be mapped. I’m sure

you’ll see more and more spatial data everywhere you look without even

trying. Databases and web services take on new meaning now that you

know what they are really capable of.

But don’t forget the cardinal rule of neogeography—you must pay it

forward. The next time someone says, “Wow, that map is cool. I won-

der how they did that?” your response should be, “Aw, that’s easy. Let

me show you. You see, there are two types of geospatial data: vectors

and rasters....” And with that simple response, one more black box of

geographic wonder will be pried open.

Thanks for sharing your time with me. I hope that you enjoyed yourself.

20. http://vacationworld.googlepages.com/files

Appendix A

Mac/Linux Installation
This appendix will walk you through the installation process for all

the software mentioned in the book. These instructions apply to the

Mac/Linux platform.

A.1 Installing GDAL/Proj/Geos

The foundation of nearly every other application discussed in this book

is the “holy trinity” of GDAL, Proj, and GEOS. Linux and Windows users

can download precompiled binaries from the web.1 If you’re a Mac user,

many of these libraries are available from DarwinPorts.2 Even if pre-

compiled binaries are available for your platform, your best bet is still

to build them from source. Thankfully, if you have Xcode installed (or

the GCC compiler), they are pretty easy to compile.

Proj

Description: PROJ.4 is a library that allows you to reproject geographic

data.

Version: 4.5.0 Source: http://proj.maptools.org

To build, follow these steps:

1. Download the source, and unzip.

2. (optional) Download and unzip proj-datumgrid-1.3.zip into the nad

directory. This allows you to reproject NAD27, NAD83, and New

Zealand NZGD49 datums.

1. http://fwtools.maptools.org/ (named for and supported by Frank Warmerdam, the creator

of GDAL and Proj).
2. http://darwinports.opendarwin.org/

INSTALLING GDAL/PROJ/GEOS 244

3. Run configure.

4. Run make.

5. Run sudo make install.

Verify by following these steps:

1. Enter which proj. It should return /usr/local/bin/proj.

2. Enter proj. It should return 4.5.0.

3. You should see libproj.* in /usr/local/lib.

GEOS

Description: Geometry Engine Open Source (GEOS) is a library of geo-

metric/spatial functions. It is a C++ port of the Java Topology Suite

(JTS); see http://www.jump-project.org/project.php?PID=JTS&SID=OVER).

GEOS is maintained by Refractions Research, the same company that

maintains PostGIS.

Version: 2.2.3 Source: http://geos.refractions.net/

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

Verify by following these steps:

1. Enter which geos-config. It should return /usr/local/bin/geos-config.

2. Enter geos-config - -version. It should return 2.2.3.

3. You should see libgeos.* in /usr/local/lib.

GDAL

Description: Geospatial Data Abstraction Library (GDAL) is a raster

library that allows you to gather metadata and reproject imagery. OGR

is an included library that allows you to do the same thing to vector

data.

Version: 1.4.0 Source: http://gdal.maptools.org

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

INSTALLING POSTGRESQL AND POSTGIS 245

Verify by following these steps:

1. Enter which gdal-config. It should return /usr/local/bin/gdal-config.

2. Enter gdal-config - -version. It should return 1.4.0.

3. You should see libgdal.* in /usr/local/lib.

A.2 Installing PostgreSQL and PostGIS

I recommend building these two projects from source. Assuming that

you have successfully built Proj and GEOS (both recommended for

PostGIS but not required), the only additional requirement for Post-

greSQL is the Readline library. Readline provides nice command-line

history, but it is completely optional. Use configure - -without-readline on

PostgreSQL if you choose not to download and install it.

Readline

Description: Readline provides a command-line history for PostgreSQL.

It is completely optional.

Version: 5.2 Source: http://tiswww.case.edu/~chet/readline/rltop.html

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

Verify by following these steps:

1. You should see libreadline.* in /usr/local/lib.

PostgreSQL

Description: PostgreSQL is a database that, in conjunction with Post-

GIS, allows you to store and manipulate vector data.

Version: 8.2.1 Source: http://www.postgresql.org

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

INSTALLING POSTGRESQL AND POSTGIS 246

Verify by following these steps:

1. Enter which psql. It should return /usr/local/bin/psql.

2. Enter psql - -version. It should return 8.2.1.

Here are the post-installation steps:

To use PostgreSQL, you should create a user account. In OS X, go

to System Preferences > Accounts and create a user named postgres.

Assign a password.

To create a new database, follow these steps:

1. Run cd /usr/local/pgsql.

2. Run sudo mkdir data.

3. Run sudo mkdir log.

4. Run sudo chown postgres data log.

5. Run su - postgres.

6. Run cd /usr/local/pgsql/bin.

7. Run initdb -D /usr/local/pgsql/data.

8. Run pg_ctl -D /usr/local/pgsql/data -l /usr/local/pgsql/log/logfile start.

9. Run createdb g4wd.

Verify by following these steps:

1. Enter netstat -an |more. You should see a service running on port

5432.

2. Enter psql g4wd. You should seeWelcome to psql 8.2.1, the PostgreSQL

interactive terminal.

3. Enter create table test (id int, name varchar(25));. Enter \d test.

4. Enter \q to quit.

PostGIS

Description: PostGIS is a spatial extension that allows you to store GIS

data in PostgreSQL.

Version: 1.2.1 Source: http://postgis.refractions.net

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure - -with-pgsql=/usr/local/pgsql/bin/pg_config.

3. Run make.

4. Run sudo make install.

INSTALLING POSTGRESQL AND POSTGIS 247

Verify by following these steps:

1. Enter which pgsql2shp. It should return /usr/local/bin/pgsql2shp.

2. Enter psql. It should return usage instructions.

Here are the post-installation steps:

Before you can add geographic data to your database, you must spa-

tially enable it. These steps must be done on each new database you

create.

To spatially enable a new database, follow these steps:

1. Run su - postgres.

2. Run cd /usr/local/pgsql/bin.

3. Run createlang plpgsql g4wd.

4. Run cd /usr/local/pgsql/share.

5. Run psql -d g4wd -f lwpostgis.sql.

6. Run psql -d g4wd -f spatial_ref_sys.sql.

Verify by following these steps:

1. Run psql g4wd.

2. Run \d.

3. Run \d geometry_columns.

4. Run \d spatial_ref_sys.

5. Run select postgis_full_version();.

6. Run \q.

GDAL (Again)

The last time we compiled GDAL, we didn’t have PostGIS installed. Let’s

add support for it back into GDAL.

To build, follow these steps:

1. Change back to the source directory for GDAL.

2. Run configure - -with-pg=/usr/local/pgsql/bin/pg_config.

3. Run make.

4. Run sudo make install.

Verify by following these steps:

1. Enter ogrinfo - -formats. You should see PostgreSQL listed.

LIBTIFF AND LIBGEOTIFF 248

A.3 LibTIFF and LibGeoTIFF

To create GeoTIFFs, you should have both LibTIFF and LibGeoTIFF

installed.

LibTIFF

Description: LibTIFF allows you to manipulate TIFFs.

Version: 3.8.2 Source: http://www.remotesensing.org/libtiff/

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

Verify by following these steps:

1. Enter which tiffinfo. It should return /usr/local/bin/tiffinfo.

2. Enter tiffinfo. It should return usage instructions.

LibGeoTIFF

Description: LibGeoTIFF allows you to create true GeoTIFFs by combin-

ing world files and TIFFs.

Version: 1.2.3 Source: ftp://ftp.remotesensing.org/pub/geotiff/

To build, follow these steps:

1. Download the source, and unzip.

2. Run configure.

3. Run make.

4. Run sudo make install.

Verify by following these steps:

1. Enter which geotifcp. It should return /usr/local/bin/geotifcp.

2. Enter geotifcp. It should return usage instructions.

Appendix B

Installing Groovy
Everything you need to run Groovy is included in the single download—

well, everything except the JDK, that is. (Groovy runs on JDK 1.4, 1.5,

and 1.6.) This appendix contains platform-specific installation instruc-

tions.

B.1 Unix, Linux, and Mac OS X

Download the latest version of Groovy from http://groovy.codehaus.org.

Unzip it to the directory of your choice. I prefer /opt. You will end up

with a groovy directory that has the version number on the end of it:

groovy-1.0, for example. I like creating a simply named symlink: ln -s

groovy-1.0 groovy. This allows me to switch between versions cleanly and

easily.

Once the directory is in place, the next thing you need to do is create

a GROOVY_HOME environment variable. This varies from shell to shell.

For Bash, edit either .bash_profile or .bash_rc in your home directory. Add

the following:

Groovy

GROOVY_HOME=/opt/groovy

PATH=$PATH:$GROOVY_HOME/bin

export GROOVY_HOME PATH

For these changes to take effect, you need to exit or restart your ter-

minal session. Alternately, you can type source .bash_profile to load the

changes in the current session. Type echo $GROOVY_HOME to confirm

that your changes took effect.

WINDOWS 250

To verify that the Groovy command is in the path, type groovy. If you

see a message similar to the following, you have successfully installed

Groovy:

$ groovy

error: neither -e or filename provided

usage: groovy

-a,--autosplit <splitPattern> automatically split current line

(defaults to '\s'

-c,--encoding <charset> specify the encoding of the files

-d,--debug debug mode will print out full stack

traces

-e <script> specify a command line script

-h,--help usage information

-i <extension> modify files in place, create backup if

extension is given (e.g. '.bak')

-l <port> listen on a port and process inbound

lines

-n process files line by line

-p process files line by line and print

result

-v,--version display the Groovy and JVM versions

B.2 Windows

Download the latest version of Groovy from http://groovy.codehaus.org.

Unzip it to the directory of your choice. I prefer c:\opt. You will end

up with a groovy directory that has the version number on the end of

it: groovy-1.0, for example. Although you can rename it to something

simpler—groovy—I’ve found that maintaining the version number helps

upgrades and future migrations.

Once the directory is in place, next create a GROOVY_HOME environ-

ment variable. For Windows XP, go to the Control Panel, and double-

click System. Click the Advanced tab, and then click Environment Vari-

ables at the bottom of the window. In the new window, click New under

System Variables. Use GROOVY_HOME for the variable name and

c:\opt\groovy-1.0 for the variable value. (See Figure B.1, on the next

page.)

To add Groovy to the path, find the PATH variable, and double-click

it. Add ;%GROOVY_HOME%\bin to the end of the variable. (Don’t forget

the leading semicolon.) Click OK to back your way out of all the dialog

boxes.

WINDOWS 251

Figure B.1: Creating the GROOVY_HOME environment variable in Win-

dows

For these changes to take effect, you need to exit or restart any com-

mand prompts you have open. Open a new command prompt, and

type set to display a list of all environment variables. Make sure that

GROOVY_HOME appears.

To verify that the Groovy command is in the path, type groovy. If you

see a message similar to the following, you have successfully installed

Groovy:

c:\> groovy

error: neither -e or filename provided

usage: groovy

-a,--autosplit <splitPattern> automatically split current line

(defaults to '\s'

-c,--encoding <charset> specify the encoding of the files

-d,--debug debug mode will print out full stack

traces

-e <script> specify a command line script

WINDOWS 252

-h,--help usage information

-i <extension> modify files in place, create backup if

extension is given (e.g. '.bak')

-l <port> listen on a port and process inbound

lines

-n process files line by line

-p process files line by line and print

result

-v,--version display the Groovy and JVM versions

Index
Symbols
Mapping Hacks, 215

ogr2ogr, 68

A
AddGeometryColumn(), 113, 116

Alpha value, 39

Analog, scale and resolution, 87

AOI (area of interest), 63, 80

ArcExplorer, 34, 35, 36f, 39f

changing projections in, 54–55

vs. OpenMap, 54

saving maps, 42–43

ArcSDE, 109

Area of interest (AOI), 63, 80

B
Base-60, see sexagismal notation

Basemap data, 19–20, 21f

Basemaps, 15

defined, 15

Earth in QGIS, 97f

of U.S., 33f

viewing multiple layers, 39f, 38–40

Black and white, see Panchromatic

Blue Marble, see Earth

Bounding boxes, 127f, 127, 129, 147,

185

Business data, 30

C
Cartesian planes, 49f, 50f, 48–52

Cartography vs. photogrammetry, 73

Central meridian, 63

CIA World Factbook, 31

Clarke, Alexander Ross, 56

Cloropleth map, 154

College FeatureType, 225f

Colleges layer, 240f

Colorado State Capitol building, 72, 79,

80f

Commercial data, 30

Contains, 131

Coordinate reference systems (CRS),

57–65

data layer alignment, 65–67

decimal degrees, 61

degrees, minutes, seconds, 57–58

meters, 61

UTM, 61–65

Coordinates

cartographer vs. Cartesian, 58

in WKT format, 115

Crosses, 131

CRS, see Coordinate reference systems

CSS styling, 152

CSV (comma-separated value) files,

202–222

SQL, transforming into, 202–215

creating table, 207

Groovy and, 204

inserting records, 208–215

cURL, 174, 176

Cut lines, 76

D
DarwinPorts, 243

Data

basemap, 19–20, 21f

commercial, 30

in different projections, 41–42

exporting in spatial databases,

123–126

free vs. accurate, 30

geocoding, 215–222

for GIS, 15

DATA CUTTING TOOL (DCT) 254 GEOGRAPHIC INTERFACE SYSTEMS

importing in spatial databases,

121–122

indexing, 127–128

international basemap, 40

manipulating in spatial databases,

122

raster, 20–22

temporal, 22

vector, 24

visualizing in spatial databases,

132f, 132–133

see also Projections: Raster data

Data Cutting Tool (DCT), 203

Data stores, 142, 145, 146f, 150f

Databases, see Spatial databases

Datum, 57

.dbf files, 32

DD, see Decimal degrees

Decimal degrees, 61

Deegree, 137

Degrees, minutes, seconds, 57–58

DEM (Digital elevation model), 56

Densified points, 27

Descartes, René, 48

Digital elevation model (DEM), 56

Digital Orthographic

Quarter-Quadrangle (DOQQ), 60,

76, 89

Digital, scale and resolution, 88

Distance(), 129

distance_sphere(), 130

distance_spheroid(), 130, 131

Distortion, 52, 53n

DMS, see Decimals, minutes, seconds

DOQQ (Digital Orthographic

Quarter-Quadrangle), 60, 76, 89

Downloads

free Earth images, 94, 95f, 97f

free rasters, 93–106

raster imagery, 74–75

from U.S. Census Bureau, 33f,

32–34

vector data, 29–30

viewers, 36f, 34–37

Downsampling, 89

DPI (dots per inch), 88

DropGeometryColumn(table, column), 117

E
Earth

basemap image in QGIS, 97f

mapped to Cartesian plane, 50f

mapped to sphere, 51f

misregistered layers, 97f

NASA free downloads, 94, 95f

shape of, 45–48

as spheroid, 55

with world file, 101f

Eastings, 63

Ellipsoids, 56

Envelope(), 129

EPSG (European Petroleum Survey

Group), 69, 112

Erle, Schuyler, 205

ESRI ArcGIS, 29

European Petroleum Survey Group

(EPSG), 69, 112

ExploreOurPla.net, 190

Extent(), 129

F
False easting, 63

False-color images, 86

Feature collections, 36

FeatureTypes, 142, 143f, 144, 146, 149

Fielding, Roy, 135, 136

File formats, 31

Flat Earth Society, 45

Free data and application sources,

14–16

see also Downloads

Free vs. open source applications, 35

FreeLook (RSI), 84

G
GCPs (Ground control points), 93

GDAL, 67, 68, 103, 244, 247

gdal_translate, 106

Generalized points, 27

Geocoder, 81

Geocoder.us, 215, 216f

Geocoding data, 215–222

adding PostGIS fields, 223–226

coding, 219–222

Geocoder.us, 216f

and guesstimates, 214

Geodetic, 56

GEOGCS (Geographic Coordinate

System), 65

Geographic Coordinate System

(GEOGCS), 65

Geographic interface systems, see GIS

GEOGRAPHIC LITERACY 255 INTERNATIONAL BASEMAP DATA

Geographic literacy, 13

Geographic Markup Language (GML),

170

Geoid, 56

GeoJPGs, 103–106

Geometry Engine Open Source, see

GEOS

GEOMETRYCOLLECTIONs, 116

GeomFromText(), 118, 223

GEOS (Geometry Engine Open Source),

67, 244

GeoServer

adding shapefiles manually,

144–148, 149f

adding shapefiles with GUI, 139–143

apply, save, load, 141f

College FeatureType, 225f

configuring database connection,

150f

cURL, 174

data stores, 142, 145

default maps, 179

disabled data store, 146f

FeatureTypes, 142, 143f, 144

HTTP POST testing tool, 172, 173f

installation, 137

Mapbuilder, 179–190

adjusting BBOX, 186f

adjusting dimensions, 185

config file, 182–183

data layers from remote servers,

190f

HTML map, 180–181

OCG web map Context file, 185f,

183–186

permanent maps, 186–190

simple map, 184f

two-layer display, 188f

namespaces, 140–141

OpenLayers, 193f, 196f, 190–199

password, 140

screenshot of, 138f

setting up OCG services, 226–229

SLD editor, 153

states shapefile, 139f

and TileCache, 198

tiling and styling issues, 231

and Transactional WFS, 167

uDig, 200f, 199–201

version 1.5, 140

viewing new shapefile, 143, 144f

website with styling articles, 155n

see also WMS (Web Map Services)

Geospatial Data Abstraction Library,

see GDAL

geotifcp, 102

GeoTIFFs, 98–102, 106, 248

GeoTools, 226

GIS (geographical information systems)

as black boxes, 13

data for, 15

free data sources for, 14–16

Global positioning system, see GPS

Globes, 46–47

GML (Geography Markup Language),

31, 119, 170

Google, 74

Google Earth, 241–242

Google Maps, 198, 232

Google Maps API, 192

Google’s Geocoder, 217

GPS (global positioning system), 14

Graticle, 48

Grayscale images, 83, 84f

Groovy

class Fixer, 210

insertEnd variable, 209

insertStart variable, 209

creating table, 207

inserting records, 208–215

installation, 249–251

transforming CSV to SQL, 204

website, 204, 249, 250

Windows GROOVY_HOME

environment, 251f

Ground truth, 93

GRS80 (Geodetic Reference System of

1980), 56

GSD (Ground sample distance), 88, 94,

96

H
High resolution, 94, 103

Highways and streets, adding, 106

I
IBM’s DB2, 109

Indexing data in spatial databases,

127–128

InfoSports, 219

INSERT, 118

International basemap data, 40

INTERSECTS 256 MULTIPOLYGON

Intersects, 131

Ionic RedSpider, 137

J
JTS (Java Topology Suite), 244

K
KML (Keyhole Markup Language), 241

L
Latitude, 48, 186

see also Geocoding data

Layers

adding with PostGIS, 148–151

aligning, 65

ordering, 38

styling, 37, 226

viewing multiple basemap, 39f,

38–40

in WMS, 163

Leaf-off, 76, 79

Leaf-on, 76, 79

LibGeoTIFF, 248

LibTIFF, 248

Lines, 27, 115

Linestrings vs. lines, 115, 120

Linux

GDAL installation, 244

GEOS installation, 244

installing Groovy, 249–250

PostGIS installation, 246–247

PostgreSQL installation, 245–246

Proj installation, 243–244

listgeo tool, 98, 101, 102

Longitude, 48, 185

see also Geocoding data

Low resolution, 93, 103

M
Mac OS X

GDAL installation, 244

GEOS installation, 244

installing Groovy, 249–250

PostGIS installation, 246–247

PostgreSQL installation, 245–246

Proj installation, 243–244

Magnetic north, 63

Map layers, 20

see also Raster data; Vector data

Mapbuilder, 179–190

adjusting BBOX, 186f

adjusting dimensions, 185

config file, 182–183

Contexts, 183

data layers from remote servers, 190f

directory, creating, 187

displaying two layers, 188f

finished map in, 235f

HTML maps, 180–181

id attributes, 181

LayerList, 187

OCG web map Context file, 185f,

183–186

permanent maps, building, 186–190

simple map in, 184f

SLD style for US_50, 229f

slippy map, creating, 233–235

styling and tiling issues, 231

MapInfo Professional, 29, 109

MapQuest, 13, 14

Maps

3D viewers for, 240f, 238–242

adding highways and streets, 106

and distortion, 52, 53n

errors with, 52

globes, 47

and orthorectification, 91

paper, 48

red dot fever and, 205

scale for, 87

slippy, creating, 235f, 233–237

terminology for, 48

topographical, 78

MapServer, 137

Maslow’s Hierarchy of Mapping Needs,

205

MBR (minimum bounding rectangle),

127

Mercator projection, 53

Mercator, Gerardus, 53

Meridians, 50

MetaCarta, 197, 198

Meters, 61, 64

Metric notation, 64

Mile High Stadium, 81f, 81, 82f

Misregistration, 76, 77f, 97f

Mitchell, Tyler, 137

MODIS sensor images, 94

MULTILINESTRING, 116

MULTIPOINT, 116

MULTIPOLYGON, 116, 123

MULTIPOLYGONS 257 OWS CONTEXT DOCUMENT

Multipolygons, 37

Multispectral imagery, 86f, 82–86

Multiuser support, 108

N
NamedLayer, 152

Namespaces, 141f, 140–141

NASA

Earth images, 94, 95f, 97f

World Wind, 239, 240f

National Atlas (USGS), 40

National Center for Educational

Statistics (NCES), 202

National Geographic oval projections,

53

Natural-color images, see Multispectral

imagery

Netstate, 128

NOAA (North American Atmospheric

Administration), 189

North vs. magnetic north, 63

O
OGC (Open Geospatial Consortium), 65

OGC clients, 179–201

Mapbuilder, 179–190

adjusting BBOX, 186f

adjusting dimensions, 185

config file, 182–183

data layers from remote servers,

190f

displaying two layers, 188f

HTML maps, 180–181

OCG web map Context file, 185f,

183–186

permanent maps, building,

186–190

simple map in, 184f

OpenLayers, 193f, 196f, 190–199

overview, 179, 201

uDig, 200f, 199–201

OGC web services, 134–177

adding PostGIS layers, 148–151

adding shapefiles manually in

GeoServer, 144–148, 149, 150f

adding shapefiles with GUI, 139–143

GeoServer, 138f

GeoServer installation, 137

GeoServer states shapefile, 139f

overview, 134–135, 156, 157, 177

setting up on GeoServer, 225f,

226–229

SLD styling, 153f, 151–156

SOA for GIS, 135–136

software compliant with, 137

tiling vs. styling, 230f, 231f, 229–233

WMS

GetCapabilities, 160f, 161f,

158–164

GetMap, 164–165

introduced, 157–158

understanding WFS, 165–166

WFS DescribeFeatureType, 169

WFS filtering GetFeature requests,

173f, 171–177

WFS GetCapabilities, 166–168

WFS GetFeature, 170–171

OGR, 68

ogr2ogr, 126

ogrinfo, 124–126, 147

OIDs (object IDs), 132

Open Geospatial Consortium (OGC), 65

Open source vs. free applications, 35

OpenJump, 201

OpenLayers, 190–199

adding second layer to map, 193

BaseLayers and Overlays, 195n

benefits of, 190

constructor parameters, 192

duplicate layers, 230f

examples gallery, 196n

experimental WMS-C, 197n

finished map in, 238f

and Google Maps, 197

map layers from different servers,

196f

online documentation for, 195n

simple map, 193f

slippy map, creating, 236–237

tiling strategy in, 231f

tiling vs. styling, 229–233

tips, 195

OpenMap, 54

OpenStreetMaps, 29

Ordering layers, 38

Orientation, 23

Orthorectification, 91–93

OSSIM, 201

Overlaps, 131

OWS Context document, 201

PANCHROMATIC VS. MULTISPECTRAL 258 RESOLUTION

P
Panchromatic vs. multispectral, 84f,

82–86

Parallels, 48

Photogrammetry vs. cartography, 73

Pixel misregistration, 76, 77f

Pixels, 88

Points, 24, 115, 120

Polygons, 27, 37, 115, 120, 127f

Portrayal rules, 37

PostGIS

pgsql2shp, 123, 126

adding geometric columns, 113–117

adding layers, 148–151

adding spatial fields, 223–226

built-in tables, 111–113

documentation for, 111n

EPSG codes for, 113

exporting data, 123–126

indexing data, 127–128

installation, 111, 246–247

JDBC driver, 226

manipulating data, 122

MULTI* data types, 116

and PostgreSQL, 109

spatial analysis, 128–131

visualizing with QGIS, 132f

WKT-supported data types, 115

PostgreSQL

built-in tables, 111–113

geometric columns, adding, 113–117

installation, 111, 245–246

MULTI* data types, 116

and PostGIS, 109

and Readline, 245

table and field names, 210

for testing, 207, 209, 213

Premature optimization, 233n

Prime Meridian, 50

Print resolution, 90

.prj files, 32, 67

Proj, 67, 243–244

Projections, 45–70

and Cartesian planes, 49f, 50f,

48–52

changing in ArcExplorer, 54–55

and coordinating reference systems,

57–65

data layers, aligning, 65–67

and datum, 57

defined, 52–53

and distortion, 52

and Earth shape, 45–48

and ellipsoids, 56

and meaning of round, 55–57

Mercator, 53

overview, 45, 70

reprojection utilities, 67–70

selecting, 114

types, 53

world onto a sphere, 51f

Pyramiding, 90

Q
QGIS (Quantum GIS)

aligning data, 101

Earth basemap, 97f

introduced, 96

misregistration, 97f

for visualizing data, 132f

Querying, 109

Querying spatial data, 118–119

R
Ramsey, Paul, 68

Raster data, 20–22, 71–107

basics, 71–74

cartographers vs.

photogrammetrists, 73

defined, 20

free downloads, 93–106

and GeoJPGs, 103–106

mosaics and tessellation, 76–77

orthorectification, 91–93

overview, 71, 107

panchromatic vs. multispectral, 84f,

86f, 82–86

scale and resolution, 86–90

and temporal analysis, 79f, 80f, 81f,

78–81, 82f

Terraserver-USA, 75f, 74–75

TIFF, GeoTIFFs, World files, 98–102

world vector and raster layers, 97f

Ratios and scales, 87

Readline, 245

Red dot fever, 205–206

Refractions, 68

Refractions Research, 190

Remote sensing, 82

Reprojection utilities, 67–70

Resolution, 86–90

REST (REPRESENTATIONAL STATE TRANSFER) 259 UDIG

REST (Representational State

Transfer), 135, 136

Rich Client Platform (RCP), 199

Rotation values, 100

Round, as term, 55–57

Rubbersheeting, 93

S
Scale and resolution, 86–90

Scale ratio, 88

Screen resolution, 90

Search engines

and downloadable data, 29

with GIS functions, 13

Sexagesimal notation, 58, 59

Shapefiles, 32–33

adding manually in GeoServer,

144–148, 149, 150f

adding with GUI, 139–143

converting to text output, 122

as feature collections, 36

in GeoServer, 139f

vs. spatial databases, 108

viewing, 34

.shp files, 32

Shuttle radar topology mission (SRTM),

56

.shx files, 32

Simple polygons, 37

SLD (styled layer descriptor), 142, 153f,

151–156, 226, 229f

Slippy maps, 235f, 233–237

SOA (service-oriented architecture),

135–136

Spatial databases, 108–133

adding data to, 117

adding fields, 111–117

exporting data, 123–126

importing data, 121–122

indexing data, 127–128

installing PostgreSQL and PostGIS,

111

introspection of data, 119–121

manipulating data, 122

overview, 108, 133

queries, 128–131

querying data, 118–119

reasons for using, 108–110

visualizing data, 132f, 132–133

Spatial field, 20

Spheroid, 55, 130

SQL from CSV files, 202–215

creating table, 207

geocoding data, 215–222

and Groovy, 204

inserting records, 208–215

SRID (Spatial Reference ID), 112, 113,

119, 130

SRS (Spatial reference system), 69

SRTM (shuttle radar topology mission),

56

Steering projects

see also Rhythm

Streets, adding, 106

Styling, 37, 226, 230f, 231f, 229–233

SVG (scalable vector graphics), 119

T
Target azimuth angle, 92

Temporal analysis, 79f, 80f, 81f, 78–81,

82f

Temporal data, 22

Terminology for mapping, 48

Terraserver-USA

Colorado roads on, 107f

and GeoJPGs, 103–106

info link, 105f

mosaics and tessellation, 76–77

raster data, 75f, 74–75

temporal analysis, 79f, 80f, 81f,

78–81, 82f

.TFW files, 100

3D viewers, 240f, 238–242

Tidy, 176

Tie-points, 93

TIFF (Tagged Image File Format),

98–102

TIGER (Topologically Integrated

Geographic Encoding and

Referencing) database, 32–34, 215

TileCache, 198, 230n, 231

Tiling vs. styling, 230f, 231f, 229–233

Topologically Integrated Geographic

Encoding and Referencing

database, 32–34, 215

Topology, 56

Touches, 131

Transparency value, 39

U
U.S. Census Bureau, 33f, 32–34, 66

uDig, 200f, 199–201

UNIX 260 WEBSITES

Unix, installing Groovy, 249–250

Upsampling, 90

urlBody, 222

URLEncode, 222

urlStart, 222

UserStyle, 152

USGS (United States Geological

Service), 40, 82

UTM (Universal Transverse Mercator),

61–65, 129

V
VacationWorld, 242

Vector data, 19–44

basemap data, 19–20, 21f

defined, 24

in different projections, 41–42

downloads, 29–30

file formats, 31

international, 40

layer styling, 37

more U.S. data, 40

multiple basemap layers, 39f, 38–40

overview, 19, 44

vs. raster data, 20–22, 24, 72, 73

rendering into rasters, 232

saving maps, 42–43

and shapefiles, 32

storing, 110

types, 24, 25, 26f, 28f

U.S. Census Bureau, 33f

viewers, downloading, 34–37

Vector lines, 26f, 27

Vector points, 24, 25f

Vector polygons, 27, 28f

Vertices, 24

Viewers

3D, 240f, 238–242

downloading, 36f, 34–37

W
Warmerdam, Frank, 67, 243

Waypoints, 15

WCS (Web Coverage Service), 166

Weather map example, 21f

Web coverage service (WCS), 166

Web Map Services, see WMS (Web Map

Services)

Websites

for Adobe SVG plug-in, 119n

for ArcExplorer, 34n

for Atom, 136n

for basemap data, 29

for Blue Marble, 94n, 189n

for Blue Marble cloud-free image, 96f

for Canadian GIS data, 29n

for CIA World Factbook, 31f

for cloropleth map information, 154n

for Colorado Dept. of Transportation,

106n

for cURL, 174n

for Deegree, 137n

for DMS/DD conversion, 61n

for ESRI ArcSDE, 109n

for European Petroleum Survey

Group, 69n

for ExploreOurPla.net, 190n

for Fielding’s REST dissertation,

135n

for Flat Earth Society, 45f

for FreeLook, 84n

for GDAL, 68n, 244

for GDAL commands, 106n

for Geobase Canadian provinces,

145n

for Geocoder.us, 215n

for Geographic Markup Language

(GML), 170n

for GEOS, 67n, 244

for GeoServer, 137n, 140n

for GeoServer SLD, 226n

for GeoServer styling articles, 155n

for GeoTIFF specs, 98n

for GeoTools, 226n

for Google Earth, 241n

for Google Earth Keyhole Markup

Language (KML), 241n

for Google Geocoder vs. Google

Maps, 218n

for Google interface book, 74n

for Google Maps, 198

for Google Maps API, 191n

for Google Maps SLD, 155n

for Google’s geocoder, 217n

for Google’s Geocoder API key, 217n

for Google’s REST implementation,

136n

for Groovy, 204n, 249, 250

for High Resolution Orthoimagery

fact sheet, 89n

for IBM’s DB2, 109n

for InfoSports, 219n

WFS (WEB FEATURE SERVICE) 261 WFS (WEB FEATURE SERVICE)

for Ionic RedSpider, 137n

for Iowa State live weather feeds, 164

for Iowa State weather, 189n

for Java Topology Suite, 244

for Joy of Shards, 76n

for LibGeoTIFF, 248

for LibTIFF, 248

for listgeo tool, 98n

for Mapbuilder Context file, 185n

for MapInfo Professional, 109n

for mapping distortions article, 53n

for Mapping Hacks, 205n

for MapServer, 137n

for Maslow’s hierarchy of needs,

205n

for MetaCarta, 197n

for MODIS sensor images, 94n

for NASA Las Vegas image, 85n

for NASA World Wind, 239n

for NASA’s SRTM, 56n

for National Atlas, 40n

for National Center for Educational

Statistics, 202n, 203

for National Geographic, 53n

for Netstate, 128n

for NOAA weather service, 189n

for Open Geospatial Consortium,

65n

for OpenGIS features spec for SQL,

114n

for OpenJump, 201n

for OpenLayers, 190n

for OpenLayers BaseLayers and

Overlays, 195n

for OpenLayers documentation,

195n

for OpenLayers examples, 196n

for OpenLayers WMS-C, 197n

for OpenMap, 54n

for OpenStreetMaps, 29n

for Oracle spatial data query, 109n

for OSSIM, 201n

for PostGIS, 109n, 246

for PostGIS documentation, 111n,

151n

for PostGIS JDBC driver, 226n

for PostgreSQL, 245

for PostgreSQL download (Windows),

111n

for premature optimization, 233n

for Proj, 67n, 243

for Proj Linux/Windows installation,

243

for QGIS, 96n

for raster imagery (Google Maps), 71

for Readline, 245

for Refractions Research, 189n

for reprojection utilities, 67

for SLD filters, 171n

for SLD specs, 151n

for SOAP, 135n

for south-side-up maps, 23n

for Sun, 137n

for SVG, 119n

for Terraserver-USA, 74n

for Terraserver-USA DOQQ page,

89n

for Tidy, 176n

for TIFF specs, 98n

for TileCache, 198n

for TileCache tutorial, 230n

for U.S. Census Bureau, 32n, 121n

for U.S. Geological Service fact

sheets, 89n

for uDig, 199n

for uDIG’s OWS context document,

201n

for uDig’s Rich Client Platform (RCP),

199n

for URLEncode, 221n

for VacationWorld, 242n

for Warmerdam’s projects, 67n

for Web Coverage Service (WCS),

166n

for Web Feature Service (WFS), 166,

167n

for Web Map Services (WMS), 157n

for Wikipedia, 29n

for WMS/Terraserver-USA data,

189n

for world boundaries, 54n

for world vector shapefile, 96n

for Yahoo development, 136n

for Yahoo geocoder, 218n

for Yahoo Maps, 225n

WFS (Web Feature Service)

DescribeFeatureType, 169

filtering GetFeature requests, 173f,

171–177

GetCapabilities, 166–168

GetFeature, 170–171

introduced, 165–166

WGET 262 YAHOO’S GEOCODER

-T, 226

wget, 160

WGS-84 (World Geodetic System of

1984), 56

Wikipedia, 29

Windows

Groovy installation, 251f, 250–251

Proj installation, 243

Within, 131

WKB (well-known binary), 118

WKT (well-known text) format, 65, 70,

114

WMS (Web Map Services)

Capabilities, 159, 160

Contact information, 160, 161f

GetCapabilities, 158–164

GetMap, 162, 164–165

introduction to, 157–158

pros and cons of, 231

Service, 159, 160f

understanding WFS, 165–166

World files, 101f, 98–102, 104

World Wind, 239, 240f

X
XML

for geocoding, 217

for WFS, 174–177

Y
Yahoo’s geocoder, 218, 224–225

	Contents
	Preface
	Acknowledgments

	Introduction
	Demystifying GIS
	Finding Free Data Sources and Applications
	Becoming a GIS Programmer
	What Are You Getting Yourself Into?

	Vectors
	Raw Materials
	Raster Data
	Vector Data
	Types of Vector Data
	What Data Is Available?
	Know Your File Formats
	Anatomy of a Shapefile
	The Downloadable States of America
	Downloading a Viewer
	Styling Your Layers
	Viewing Multiple Basemap Layers
	More Data, Please
	More International Data, Please
	When Good Data Goes Bad
	Saving Your Map in ArcExplorer
	Conclusion

	Projections
	The Round Earth
	Cartesian Planes
	What Is a Projection?
	Changing Projections in ArcExplorer
	What Does Round Really Mean, Anyway?
	Coordinate Reference Systems
	Getting Your Data Layers Aligned
	Reprojection Utilities
	Conclusion

	Rasters
	Getting Started with Raster Data
	Terraserver-USA: Another Source of Free Raster Imagery
	Mosaics and Tessellation
	Temporal Analysis
	Panchromatic vs. Multispectral
	Scale and Resolution
	Orthorectification
	Downloading Free Rasters
	Conclusion

	Spatial Databases
	Why Bother with a Spatial Database?
	Installing PostgreSQL and PostGIS
	Adding Spatial Fields
	Inserting Spatial Data
	Querying Spatial Data
	Introspection of Spatial Data
	Importing Data
	Manipulating Data
	Exporting Data
	Indexing Data
	Spatial Queries
	Visualizing Data
	Conclusion

	Creating OGC Web Services
	Sharing the Wealth
	OGC SOA for GIS
	Installing GeoServer
	Adding Shapefiles Using the GUI
	Adding Shapefiles Manually
	Adding PostGIS Layers
	Styling with SLD
	Conclusion

	Using OGC Web Services
	Understanding WMS
	WMS GetCapabilities
	WMS GetMap
	Understanding WFS
	WFS GetCapabilities
	WFS DescribeFeatureType
	WFS GetFeature
	Filtering WFS GetFeature Requests
	Conclusion

	OGC Clients
	Mapbuilder
	OpenLayers
	uDig
	Conclusion

	Bringing It All Together
	From CSV to SQL
	Geocoding Your Data
	Adding PostGIS Fields
	Setting Up OGC Services
	Tiling vs. Styling
	Creating a Slippy Map
	Beyond the Web: 3D Viewers
	Conclusion

	Mac/Linux Installation
	Installing GDAL/Proj/Geos
	Installing PostgreSQL and PostGIS
	LibTIFF and LibGeoTIFF

	Installing Groovy
	Unix, Linux, and Mac OS X
	Windows

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

